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ABSTRACT

In this thesis, we study the established methods ofCbames & Cooper, Bin-an&
Novacs and Swamp's primal & dual simplex type for solving linear fmctional

programming problem, suggest a modification for Swamp's simplex type method

and compare the methods among themselves. To apply these methods on large-

scale linear fractional programming problem, we need computer-oriented program

of these methods, To fulfill this purpose, we develop computer program

(FORTRAN) ofthesc methods and apply on a sizable largc-scale linear fractional

programming problem of an agricultural farm. Finally, conclusion is drawn in

favour of our modified approach of Swarup's primal simplex method.
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CHAPTER-l

Introduction:
In this thesis, we study the established methods of Chames-Cooper's[1962], Bitrall-Novaes

(1972] and Swarup[1964 & 1965) jor solving Linear Fractional Programming (LFP) problem,

suggest a modification for Swarup[1964 J primal simplex type method and compare the methods

among themselves. But a large scale LFP problem, which involves a llumerous amount of data,

constmints and variables, cannot be handled analytically with pencil and paper. To overcome the

oomplclIities oflarge-sc.ale Linear Programming (LP) problem William et al. [1992] and Gillet

[1998] developed computer program (FORTRAN) . Here, we also generalize computer program

(FORTRAN) William et al. [1992] for the methods of Chames-Cooper's[1962]. Bitran-

Novaes {J972] and Swarup[1964 & 1965] to solve all types ofLFP problems, whatever the size

of data involve in it. To illustrate the purpose, we solve a sizable large-5Cale LFP on return 10

invcstment problem of an agricultural farm, which is formulated in section 1.5, To present ollr

study, we require the following prercquisites:

1,1 Mathematical Programming problem or Mathematical Program (MP) deals with the

optimization (maximization or minimization) ofa function of several variables subject to a set of

constraints (inequalities or equalities) imposed-on the values of variables_

The general MP in n-dimensional Ellcliadean space RTI can be stated as follows:

(MP) Maximize I(X)
Sub/cel/o

1;',(..-)$0 ,i" 1,2, ___..,m (1.1)

h,("-)OOO ,j = 1,2,-.. ...,p (1.2)

"-ES (1.3)



Where x =(XI,X2,.... ., X ,j' is the vector of unknown decisIOn variables alldf(x), g i(X),

(i =1,2, .. ,m), h ,(x), (j =l.2" ,r) are the real valued functions

Thc functionf(x) is known a~obJectivc fundion, ~nd incqualities (I. I), equation (1.2) and the

restriction (I J) are rcferred to ~s the constrai nts We havc started the Ml' as maximization one

This has been done without any los~ of gcneralilY. since a minimiLalion problcm can always be

converted into a maximization problem using the Idelltity

111111((x) -mux(.f(x)) ( 1.4)

i c, the minimization uff(x) is equivalcnt to thc maximization of (-1(x).

The set S is normally taken as a connccted subset ofR" llere thc set S is taken as the entire

space R" The ;et X ={x ",S, gi (xl:o 0: hj (,,) ~ 0. i=1,2 .. ,m, j=I,2, .. ,p} is known as the

fe~sible region, fea~iblc set ur constraint set of the program Ml' and any point XEX is a feasible

solution or feasible point of the program MI' which salislics all the constraints ef Ml' . If the

cOllstraint set X is empty (i e X=<$), then there is no feasible solution, in this case the program

MP is inconsistent

A fca,ible point X"EX is known as a global optimal solution to thc program MP if

f(x) :s; fix"~Lx" X (l.5)

A global optimal solution XOof MP program is ITldeeda global maximum point of the program

MP. A point x" is said to be a ,trict globallTla..;imum point ofj(x) ovcr X ifthe strict in""lua!ity

«) in (1.5) holds for all x '" X and;.. = x"

A point x*"X i, a local or rcl~tive maximum peint org>;) over X if there e».ists

some E >0 such that

r. .
. (x):s;.f(r l.'1x"XnNJ1").

Where N,(,.") is lhe neighborhood of x" having r~diu, L. Simil"rly, global minimum and local

minimum can be dcllncd by changing the sensc oflllequality.

•



The]ViP can be broadly elas~ilied inlOl\'iU categories, Ullcollstraiucd optimization problem and

constrained optim;~.ation problem. If the cunstraint sct X is the whole space RO,program IV.!'is

thcn known ~s an unconstrained optimization problem, in this case, we are interested in finding a

POllltof fl." at which the objective function has an optimum value, On the contrary, if X is a

proper subset of R"

ll'both the objective !Unction and the constraint Scl arc linear, then MP

is called a linear prognllnmlng llrobl"m (L1'P) or a lin~ar llrognlm (L1»)

On Ihe other hand, non-linearity of the objective function or eon5traint5 gives ri5e to non-linear

programming problem or a non_linear program (NLP) Several algorithm5 have been

developed to solvc certail! NLP

1. 2 General Linear Program (GtP)
The GLP is 10 optimize a lincar runctiun subJecllO lineal' equality and inequality constraints. ln

other wurds, we need to determine the vallie O[xI.Xl,'. ,.,"n that solve the program

«(;U') M"ximlze (or MI/1/mize) (1.6)

SlIh,eCI '"

"L",)X,(S = 2:) h, ,'= 1.2, .. ,m
"'

,I", ~ 0

in which cJ, (j=1,2, ,,,.n) bc the profit (or cost) coefficient, a;j(i ~1,2, .

coelTicients matri" I\=(a,;) aod ", be the decision variables.

(1 7)

( 1.8)

.,m.j=1,2"., ..,n) be the

The lioear Junction {1.6} whieh is to be oplil11i7ed(ma"imized 01'minimized) is known as the

objective function of the GLY The iIlC'l""lion (1 7) are con,tralnts of thc GLP An n-tuple

(""",,, .,x")',, R" whIch satislles the consll'aUlts oflile is known as a solution to the GLP.



,
Fcasibk solution: A~y ~olulion )..]. (i =1,2 _n) to the GLP is called a feasible solution if it

satisfies equatIons (1.7) and the Ilon-negatlve ~~>triclions (1.8) ,

0lltimal ;olulion: A Ica~ible solution x j,(j "'1,2 .11)is said to be ail optimal Solulion to the

GL? if it gives the ma~ill\um (or minimum) value oCthe objective function (1.6)

Constraint sd : The set of feasible solution to the (iLl' is called a constraint set if

X={ (X"Xl .. ,.,X "jT : (x"x:. _ .,X ")1 EOR" and (1.7) hold~ at (XI,Xl, ... ,x ")' J-

Standard Linear Program (LPI): Lvcry Gl,P can be reduced to an equivalent LPI as

explained below'

( i) Convc-rsioll of right hand side constraint 10 lion-negative: If a right hand side constant of

a constraint is negative, it can be made nun-negative by multiplying both sides of the constraints

by -l(if ~ecessarv).

( ii) Conversion of inequality cOllstraint to equal it), :

(a) Slack Variable: For an inequality constraint ofthc form
,
I<l;Ji"h, (1=1,2,,,.,III;h,~O),
-'~I

adding a non-negative variable x,,, 1 can be nlade e4uation
,
I"'lxl+x,.,=h, (1=1.2,,, .,111)
;01

and the Ilun-negative variable x"' 1 is ",ailed (he slack variable

(b) Suqllus VarillbJe: For an inequality constraint oCtile form

"Ia'Jx) ~ hj (i = 1,2,. ,m: h, 2. 0),
I~'

subtracting a non-ncgat ivc v~rial>le., x,, I can be made eqLJalion

"y" x .-x =f, (1=1.2,.".",m)
- '] " 1 ,
/01
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and the Ilon-negative variable x,," is called the surplus variable ,

So, without any loss of genera lily a standard lincHf program can be written as follows

(LJ'f) Ma.nmi;e l '"c' x

Sulycd /0 Ax = h

x:o:O

(1.9)

(I 10)

(1.11)

Where C,xER", A is an nJxn matrix. b;o, 0 & bER" ,

In LPl, the mXIl matrix A =(a,;) (i=I,2, .,,<11, J=I ,2, _ ,,11)15the coellicicnt matrix orlhe

equality constraints ,b = (b"b" ."b m)I ;~lhe vector of right hand side constraint" the

component ofe are the profit factors, x = (""1',,_ .,Xn)LER" is the vector of variables called the

decision variables and con~lraint (1 11) afC known as non-negative constraints. The column

vector of the matri~ A rcrelred to a, activity vectors

Now we Iwescnt the following definitions for standard linear program LPJ :

Feasible solulion: A veetur x = (XI,Xl,. ., x.Sr is a feasible solution oftheLPI irit satisfies

condilion(110)and(1,II).

Basic 50101100: A basic solution x = (XI,X".. ,x,,1" 10a L?I is a solution obtained by setting(n-

m) variables equal 10zero and ;o\ving the rem~ining m variables. provided that Ihe determinant

of the coefficients or!llese m variables are non-7ero. The m variables arc called basic variables.

Rasic feasibl~ solutioll: A basic feasible solution x = (:<"X2, ,..xn)' to the LPI is a basic

solution which also satisfies (J, I I), that is ,all basic variables are non-negative.



Non-degenl'rate bask feasible solution: A basie feasible solution X"" (XI,X2,-. ,x ")r is said to

be non_degenerate ifit has exactly m positi've (non zero) variables x" G =1,2 ... ,n), that is, all

basic variables are pOSitive On the other hand, the solution is degenerate ifone or more of the

m basic variables are zero

Optimal solution: A basic feasible solution x = (Xl.Xl, .,,,X,,)1 is said to be an optimal solution

or optimum If it maximize the objective function while satisfying the condition (1.10) and (1.11)

, that is ,.I(x") '?j(xj,1;f x EX

Basic solution and some Not:ltion~
Basil' solution: Consider the conSlfaint> (1 I0) i.e., Ax =b , are.collstraints and rank (A)=m (5:n).

Let B be any non-singular m~m sub matrix made up of the columlls of A and It be the remaining

portion of matrix A Fl.I11her,~l.Ippusethat x Il is the vector of variables associated with the

columns orB Then (l IO) call he wriUen a,-

That is, the general solution 01'(1 10) is gi\'en by

Xu = H"Ii-lr'Rx\ll

O{'.X" + IT L Rx ,'!f = IJ ' b
(1 12)

Where the (n-Ill) variable, 'Nil call be as<,iglledaIbltralY values. The pal1ieuJar solution of (1.10)

is given by
(L13)

is called the basic soil.ltion to the system Ax =b with respect to the basic matrix B. The variables

X~IJare kno",n as the vcelOI'ofnon-ba:,ic variables and the variables Xllare said tu be the vector

of basic variables.



II should be noted that tile column of A as,ociated with the basic matri)., B are linearly

independent and allnon-ba,ie variables ofx ~Barc zero in a basic solution The equation (1 13)

is known as feasible eallonieal form, If the basic solution given by it is feasible, that is, x" ~ 0,

Suppose there exists a basic feasible solutIOn tu the con~traints (1.10) and (1, 11),The coefficient

oft!!e variables in the objective function Z. after the basic variables from it have been eliminated

, arc called relative prolit fac1l1'-S[In a minimizanon problem, we call cost factors in place of

relative profit factors].

,.I _Ie' ,,1 I' -tll'~,\,"'

IIIorder to find the rclative profit facton; curresponding to the basic matrix B, we partitionl!!e

profit vector c as

(1.14)'_,.1~_,,1~ ",.'./' -, .,-~.',~n;-.\,,~.,It

Where c" and c""are the profit vector, corresponding to the variables x", and xNurespectivclv.

The objective function then i<;

Subtraclillg in this equation (1 14) the values of x Bfrom (I , 12), we get,

Where

'I< '" 0
_I 'I' . 1
C':IJ = "-\'I' -c;',I'- /I
- ,-,
Z"'~'!iH I>

Here' i, the vector ofrelativc protit factors corresponding to the basic matrix Band Z is the

value of the objective function at the ba,ic solution i, given by (1, 13) Observe that the

components of c corresponding to the baSICvariables are zero, which ought to be as is evident

from the dcfinition of;;



1.3 Simplex method

The simplex: melhod is an iterative procedure for suIving a linear program in a finite number of

steps and provides a\1the information about the program. Also it mdicates whether or not the

program is feasible If the program ;s feasihle, it either finds an optimal solution or indicates tbat

an unbOlmded solution cxi\ts At 1"11 st G B. Oantzig developed this method in 1950, Following

Dantzig (1963], Gillet [1988] described the simplex method a~ below:

Basically the simplex method is an iterative proccdl.lre thaI can be used to solve any linear
programming model irthe needed computer time and storage are available 11is a~sumed that the
original linear programming model

Maxilrnze
,

Z- ""c "'-L.,'I",., (1.15)

S"bj~c/ /0
,
""a x «=~)h ,i=L2,. ,111£...."'- ,, ,

has been converted to the equivalent ~landard L1' model,

•
Jvlaxinllz<, z=L:>"x,.

1=1

SlIh/cello

"""II x =h ,/=1.2, __./11£.... '!) ,
i ,1

( 1.16)

(I 17)

(1,18)

(1.19)

(1.20)

Which include; ~Iac]..variables that have been added to the Iell side or each less than or equal to

constrain\, surpll.ls variables that have been subl! acted from the len side or each greater than or

equal to constrainl, and artifiCial variables that have been added to the left ~ide of each greater

than or equal to constraint and each equality, It is assumcd that the profit coefficients for the



.,

slack and surplus variables ale zero wilLie Ihe coefticicnts for the artificial variables are arbitrary

small negative numbers (algebraically), say -]1.1, The equivalent moJeI necessarily assures us

thal each cqualioll contains a variable with a coefflciem of I ill thai eql1atioll and a coefficient

zero in each oflhe other equations_ If the original constramt was less than or equal to constraint,

the slack variable in the corresponding equation ". ill Slit is f} the conditIon just staled. Likewise,

the artificial variables that have been added 10the greater than or equal to constraint and each

equality satisfy the condition for each aftile remaining equatjons in the equivalent model. These

slack and artilieial variables arc the ha,ic variables in the initial hasic solution of the equivalent

problem.

The equivalent model is now rewritten as

Maximize Z

Subja/lo

"Z-Lcr",=O
j.1

•L",xj=h, ,1=1.2, .,111

"
x >0" -

(1,21)

(1.22)

(1.23 )

(1,24)

Sm<oc <0,~ - M ror each anilicial variable, we mu,t multiply by ~ M eaeh equation represented by

(I. 23) that contain, an aniticial variable and add the rc:.uhing equations 10 equation (1.23) to

give

MaXIIIII;e Z

SlIhJ<!/'//o

"
!.-Lc,x,=b"

Jol

LtlljX
j
=h, ,I=L2, .,111

,

( 1.25)

(1.26)

(1.27)

,

•



x >0, - (US)

Where 11"= -M L" t and * represent the equation, containing artiiicial variables. This assures

us that each equation in (J ,27) conlains a "lack or anificial variable that has a coefficient of 1in

lbat equation and a coefficient ohem in each of the other equal ions in (l 27) as well as in

eqllation (I 26) Equation (1.26) will be referred to as the objective function equation,

We will now present the gcncral simplex mClhod. A computer -oriented algorithm will be

followed to carry out this methou

Stept: Oblain an initial basic feasible solution of the equivalent model; thaI is, let XI';.

i=L2, .. ,Ill

Be the initial basic feasible solution where XIIIdenotes the i'l>basic variable and corresponds to

the slaek or artitieial variable in the it!'equation.

Step2: Scleclthe non-basic variable with the most negative coefficient in the equalion (1 ,26) as

the variable to enter as a basic variable in the new basic feasible ;olutIOJl, If all coefficients in

equation (1.26) are norHlegative, an oplimal solution of the original model only ifthc basic

vanables are void of any artr ["rcialvariable:; wilh a positive valuc. That is to say, if at least one

basic variable is an artiliciai variable with a positive valuc in thc optimal solution of equivalent

model, then there arc no feasible ;olutions of the original model.

Step3: Select a basic variable to leave the set of variable:; that are present in the Current basie

feasible solution. The ba~ic variable in the equatron corresponding to lhe minimum ralios of the

b; s to the COlTe'ponding positive coellkielll of enlering variable in eaeh equalion represented by

(1.27) will lea vc and 1I0tbe a part ol"tilc nexl basic feasible solution, Let equation r contains the

leaving variable. II' there °are no lion-negative ratios, then the ubjective [unction is unbounded

above (That is no [Illite optimal solution exists)



Step 4: Perfortll elementary trnnsformatlon, on equation (1.26) and (1.27) untillhe coefficient of

the entering variable from step 2 is one In equation r and zero in evcr)' othcr equation induding

C{tl.lation(t 26). This can be ai;eomp Iished by the Gauss-Jordan ciimination method for solving a

system uflincar equations The ne,," basic feasible solution is XB,~ b;", j ~ t,2,. ,.,m

Where x", (i #- r) corresponds to the same basIc variables in the previous basic feasible solution

and X,,,corresponds to the ncw basic variable that just entered the basic ,01ution,

Step 5: Let equation (1.26) alld (I 27) now represent the transformed system of linear equations

from Step 5 Return to step 2,

Properties of the Sillllliel. Method:
The important properties of the simple>;:method are summarized here for convenient ready

reference,
1) The simplex method fur maximizing the objectivc function ,tarts at a basic teaslble

solutiol1 for the equivalenl model and mo"es to an adjacent basic feasible solution that

does not decrease the value of the objective function, If such a solution does not \-'Xist,an

optimal solutlUn tor the equivalent model has been reached That is. if all of the

COe!flcients of the non-basic variables in the objective function equation are greater than

or equal to zero at ,ome puinl, then an optimal solution for the equivalent model has been

reached.
2) lfan artificial variable i3 in an optimal solulion of the equivalent model at anon-zero

level, then no feasible solution for the original mudel exisls. On the contmry, if the

optimal solution of the equivalent mollel docs not contain all al1ificial variable at a non-

zcro leveL the solution is also optimal fOI the onginal model

3) Jfall oflbe slack, surpll.ls, and artificial variables arc lero when an optimal solution orthe

equivalent model is Icached, lhen all of the cOllstraints in the original model are strict

"equalities" for the values of the variables that optimize the objective function

4) If a non-basic variable has I,era co~mcients in the objective tunction equation when an

optimal solution is reached, Ihere arc multiple oplimal solutions, In fact, there is infinity

of uptimal solulions The simple:>::method finlls only une optimal solution and stops.

5) Once an artificial variable leaves the set of basic variables (the basic), It will never enter

the basi, again, So all calculations lorlhat variable can be ignored in future steps,



6) When selecling the variable to leave the current basIs

a) If two or more ratio i, smallest, choose one arbmarJly,

b) If a positive ralio does not exist, the objective fUl1ctionin Ihe original model is not

bounded by the cOll;trai nlS. Thus. a ti nite optimal solution Jbf the original model

doe; not exist

7) Ira basis has a vanable at the zero level, il i, called a degenerate basis,

8) Although cycling is possible, there have never been any practical problems fOf which the

simplex method failed to converge.

Linear Fractional Pro~ram (LFP) :

Recently variou; optimization problems, involving the optimi7ation of the ratio offunctions, e.

g; tunc/cost, vulume/cosl, profit/cust, loss/cost or other quantities measuring the etlieiency of the

syslem have been the subject of ••..ide interest ill non-linear programming problem. Such

problem~ are known as LFP,

If the objective function of a mathematical programming problem is the ratio of two lineaf

functions and lhe constraints arc lineal', it is called a linear fractional programming problem, or

LFP, Likewise LP, a standard LFP can be expressed as follows

(UP) MaXIIIII;e
c""x+o:

f-(x)=---
d'x+fi

(1.29)

Sullied I"
XEX =~E:lI" ,Ax=h,X20} (1.30)

Where x, c, d E R"; bERm: a, B ER: A is an m~n matrix and superscript T

denotes transpose

For simplicity of notation, throughout this chapter and hence forth, we can omit the transpose

sign T over vectors In an inner product uf two vectors, one can assume that the left hand side

vectors be a row vector and right side vector be a column vector,



Nowaday, linear fraction criteria arc frequently encountered in business and economics such as

Corporate Planning

Min [debt-to-equity ratio]

Max [return on inve,tment]

Max [out put per employ\.-~l

Min {actual cost-lo-standard cost]

Bank Balance Sheet Management

Min [risk as~ets -to-capital]

Max [actual capital-to-rcquired capital]

Min [foreign loans -tu-totalloans]

Mm {residenlial mortgages -to-total m0l1gagesj

Linear fractional objective also occur in other areas of,cience, engineering and social sciences

,Now we consider a real IiI'" problem

1.5 A Production Problem of a certain agricultural farm:

Suppose a farmer has I000000/'" taka by whicb he can cultivate maximum 50 hectors of land,

Tbe farmer wishes to culli,'ate different crops (Rice, Wheat, Jute, Potatoes, Pube, Maize,

Mustard seed, Tomatoes, Brinjal ,onion, Cauliflower, Cabbages and Beans). He has the

followmg data for pec heclOr'

•

u-



Cost of Fertilizer Irrigation Pest

Pulse 1000

Maize 400

Mustard seed 500

4260 4500

_466~__ 1 1500

1580 700

6050 1500

25200

23000

14000

66000
13800

21700

20100

1500

1500

1800

1200

t500

1500
1500

cost

1200

Cultivation Labour Return

1500

2000

2000

1500

1200

1200

Management cost

500

400

800

600
800

400
400

700

1500

700

cost

1780

5960

5840

cost,eeds

375

1500

ZlO

22500

Jute

Potatoes

Name of

Crops

Rice

Wheat

39220

28000

36350

3J180

30000
16800

1500

1500

1800

2000

2000

1500

1500

1500

1500

1500

1500

2000

200

800

1000

200

600

500

3000

3500
1000

4000

-'SOO744S

11870

6130

6825

6550
1000

200 4025 1000
-- -~~~ ~-----

In addition the larmer bas the followi ng Iimilations of expenditures:

Maximum JIlvestment tur seed; is taka 135000/=

Caulil10wer 1000

Tomatoes 500

Brimjal 500

Onion 7000

Cabbage

~,~s

Maximum investment for lertilinr;s taka 236000/""

Maximum IIlvestment for Lrrigation LStaka 115000/~

Ma:<imum invcstment for peSI managcment is taka 30000/~

Maximum investment fur cuit,vatLon is taka 95000/~

Ma:<imum investmcnt for labor is taka 100000r.;:

And the farmer has a lixed expenditure taka 5000/=.

Tbc objective is to ma~imize tbe ralio ofrctum IQ invcstmcnt. This leads to a LFP,

Formulation:

The three baS1C,tep, in wnstTucting a LFP model are a~ follow,:

Step I: Identi fy the ll1llnown variable, to be detennined (deci,ion variables) and represent them

in terms of algebraic symbols.



Step 2: Identify all the re,trictions ,,1'con,traints in the pl'Oblclll and cxpre,s thelll as lincar

Cl-lUation,or inequalities, which arc linear fu nctions of the unknown variables.

Stql3: [dentify the objective or criterion and represent it as a rmio of two lincar fUlletiolls of the

deci,ion variables, which is to be nUI,imizeu (or minimized)

Now, we shaillormulate above problem as tollo"',:

Stell t: (Identify tbe Decision variable,)

For this problem the unknown variables arc the hectors ofland, planted for ditferent crops. So,

Ie! XI =Tbe hectors of land planted lor Rice

Xl =The hectors of land planted lor Wheat

XJ = The hcctor, orland planted for Jute

X4=The hector, orland planted for Potatoes

x, =The hectors of land plantcd tor Pllise

Xc; = The hector, orland planted for Maize

h7 "'The hectors ofland planted for Mustard seed

x~ = The hectors of land planted for Tomatoes'

x~ =The hectors ofland planted for Brll1;al

x", =The hectors ofland planted for Onion

XII = Thc hectors of land planted for Cauliflower

X'l =The hector, of lam] plamed for Cabbage

alld XlJ =The hectors ofland planled [or Beao,

Step 2: (IdentIfy the Constraint)

III thi, problem conslraints are the Iimited availabilit} of fi.mdfor differenl purposes as follows:,

I. Since the larmer wishes to cultivate maximum 50 ilectorsofland, so we have

2 Since the farmer has l\1a,imum investment for seeds i, taka 135000/=, so we have

375-,",+ 1500-,",+ 210-,",+ 22S00x., + IOOO.\",r 400.,., + SOOx)+ 5UOx,+ 500x, + 7000x,o

+1000x., +IOOOx" +200X'3:::; 135000

,.



u,

3, Since maximul1l investment lor JcrliliLer is tab 286000/=, so we have

4260x, + 4660,,-, + j 580r, + 6050,,-, + 1780x, + 5960x(, + 5840,,-, + 1 J 870x, + 6130"-,,

4 6825x,,, + 6550x'1 + 7445x" + 4025x,; :; 286000

4 Since the tarmer has Ma;;;mum il1vcstmetll for Irrigation is taka I J 5000/=, so we have

4500x, + 1500x, + 700"-,1 + 1500x. + 700x, + 1500r" + 700.1", + ,OOOx, +3500r,

+ 1000x,,, + 4000x" + 3500"" + IODOr" s 115000

5. Since the farmer has Maximum investmenl for Pest management is taka 30000/=, so we have
SOOx,+400x,+800x,+600~+800x,+400x,.+400x.+800x,+IOOOx.

+ 200x". + 600". + SOOr" + 200.1"'1 ~ 30000

6 Since the farmer has Ma~in1llm investment for Cultivalion cos! is taka 95000/=, so we have

]500x, + 2000x, .12000x, + ]500x, + 1200,~, -'-1200x(, + 1200x 1 + 2000x, + 1500.1'9

+ 1500.1',,,+] 500.1'" + 1500.1'" + I 'iOOx" ,,95000

7. Since tile farmcr Ilas Ma~iml1m investment for labOl\f is taka 100000I~, so we Ilave

1500x\ + 1500x2 + 1800r, + 1200x, + I500x~ + 1500x" + 1500x] + 1500xs + 1500.1'"
+!800xlf> + 2000xll + 2000.1'" + 1500xl) ;; 100000
We must assume tllat the variables X,, i~ 1,2, .. ,13 are not allowed to be ncgative, Tilat is,

we do not make negative quantities of any product.

Step 3: (Identify tile objective)

In tlli, case, the objcctive'$ to maximize the ratio of total retUnl and investment by differcnt

crop,. That is,

25200r, + 23000x, + 14000,'1,+ 66000x" + 13800x, + 21700~-(,+ 20100x,
,,,. + 39220.1', + 2~OOOx"+ 36350.1',,,+ 31 180xll + 30000.1'" + I6800x"
IYluxl'{x)= -

5000 + 12635x, + J 1560.1',+ 7090.1', " 33350.1', + 6980x, + 10960x. + 10140x,.. .

+ 19670..-<+ 14130x" + 18325.1",,,+ 15650x" + 15945..-" + 8425x,-,

I



Now, we,have expressed our problem a, a mathcmaliealmodcl. Since the objective function is

the ratio ofretum to investment and all of the constraints f'Indions are linear. the problem can

be modeled as the following LFP model:

25200x, + 23000..-. -I-14000x, + 66000x" + 13800x, + 21700.(, + 20100.,
. + 39220x, -I-28000x; + 36350x,,, +) 1180x, +30000.(" + 16800x"

Maxl'(x); . .
5000 + 12635x, + 11560x, + 7090x, + 33350x. + 6980.~ + 10960x, + 10140x,

+ 19670-" + 14130.1'"+ 18325.1',,,+ \5650..-" + 15945r" +8425-'"

Subject 10

375x, + 1500x. + 21Ox, + 22500x, + 1000.1",+ 400x, + 500x, + 500r, + 500xo- .

-I-7000x,,, + 1000x" + lOx" -, 200X" ,,135000

4260x, + 4660x, + 1580x, + 6050x, + 1780x, .;.5960x(, + 5840x, + 1I870x,
+ 61 )0.1'"+ 6825x,,, + 6550..-" + 7445.1:" + 402';x" '> 286000

4500x, + 1500x, + 700x, + 1500x, + 700x, + 1500x, + 700x I + 3000.1',
+3500.1', + 1000.1'",+ 4000x" -I-3500.1'" + I000.1"" ::::115000

500x, + 400x, + 8001', -I-6001'. +800x, + 400x(, +400.'", + 800x,
+1000x, + 200xlO + 600x" + 500x" + 200x,-, :030000

1500x, + 2000x, + 2000x, + 1500x, + 1200-,,; ., 1200-", + 1200., + 2000x,
.•.1500.0 + 1500.1',,,+ 1500-,,, + 1500x,- + 1500x" ,; 95000

1500.1',+ 1500x: + 1800x, .L 1200x4 -I-15001', + 1500r" + 1500x, + 1500x.
+ 1500x, + 1800x"J + 2000-"" + 2000x" + 1500-"" ;s 100000

Tillls the given problem has been formulated as a LFP

by using different methods

-,We ",ill solve this formulated problem

•



1.6 Summary of the thesis

In this thesis, we study the established methods of Chames-Cooper's[196Z], Bitnm-Novaes

[1972J and Swarup[1964&1965J for solvin~ LFI' prob1cm , suggest a modification for

Swarup[19M] simp1cxtype method and compare the methods among themselves. But to apply

these methods on large- scale L1''Pproblem, we need eomputer- oricnted program of these

methods. To fulfill this purpose, we develop computer programs (FORTRAN) of thcse methods

and solve a sizable large-scale return to investment prob1cm,which i, tonnulated in section 1.5.

The method of Chames-Cooper's[1962], llitran-Novaes [1972Jand Swarup[1964& 1965] arc

briefly presented in chapter- 2. chapkr- 3 and chapler- 4 respectively. Further in section 4.3, we

suggest a modilicd approach or Swarup[1964] simplex type melhoo. In chapter-5, a comparative

study is madc orth~ <lbovcmethods on the ba~~01"Islam & Nath [1992] investigations. Finally,

conclusion is drawn in favour of our modified approach of Swamp's primal simplex type

method.

•)J



CHAPTER-2

CHARNES& COOPER METHOD

In tbis chapter, we shall discuss brie!1y the-method ofCharnes & Cooper [1962] for ,olving LFP

problem defined by (1.29) and (1.30) and develop computer program (FORTRAN) for this

method.

Considering all possible cases relating to the SigHof denominator of objective function ofLFP

problem, Islam & Nalh [1992] obtained some independent results to investigate how Charnes &

Cooper {1962] method call be applied for ,olving LFP problem

The Sumnlllry of the Method

Charnes & Cooper [1'l62]considcl"cd tile LFP problem defined by (1.29) and (1 30). They also

assumed thal-

I) The feasible region X is non-empty and bO\l1\ded,

2) C X-Ia and d x< fJ do not vanish sllllult~neously in X

Introducing the variable transformation y ~Ix, Where I ~O,Charne" & Cooper [1962] proved that

LFP problem i. reduced to either of (he tollowing 1"o Equivalent Linear Programs (ELPs)'



'"
I,P) Maximize Z --cv'al, .

Sltl!f'!e! w
Ay I b/ ..()

dylfil~j

y,I;:IJ,

And

(l':l'J Mtlxlmi;;~ Z, _.--cy-fJ!

Sub/eel/o
Ay-hl-- II

dY'fJ' '--I

y, I ;;:(J,

Tilell they used the well-knuwn Da~l7'g (1960] ;Lmplcx method to solve either Equivalent

Positive (EP) or Equivalent l'iegmivc (EN) problem,

Ifonc of the problems 1:<:1'and EN has an optimal solution (r*. 1*) and the OIlier is inconsistent,

then the LFP problem also has an optimal solution x' == y "/1' If any Olle of the two problems

is unbounded, then the LFP problem i8 L.mbounded. Therefore. if the problem first is found

unbounded, one call avoid solving the other

Remark 2.1
It should be observed tllat [he same red<.lction can be made using the numerator instead of

denominator

Since,
c'x+a ,,'..-+/3

m"---- =1l1~x{-1).----
,j'x+/3 ,.'x+a

Remark 2.2
Thus, if one know~ the ,igll of either the numerator or [he denominator of the objective function,

one need only ,olve a single ordinary linear programming problem.

•



Though Chames & Cooper [1962]dise\lssed some cases relating to the sign of denominator of

objective function> it seems that they did not exhau,qt all cases. Ncxt Islam & Nath [1992]

considered the following six ca,es eovcrlng all possibilities of the sign of denominator dx+,B of

LFP problem over the feasible region X and obtained some independent results to investigate

how Charnes & Cooper [1962] method can be applied lor solving LFI' problem

Then they discussed from CASE I to CASE VLindelails relating to the sign of the denominator

Jx I,B ortbe objective !I.mction LFI' problem and obtained the following results.

CASE I:Jx'fJ_~O, 17XEX

Thcorern:2.3.1: If J x I P :> 0 for all;>.belongs to X. then

I) E!' lui.san optimal sol\llion (l". 1*)anJEN is inconsistent;

2) LFP has an optima! sOluliol\ x•. 'y' //•.

CASE II: dx,P<lJ,forallxbelong"toX

Theorem 2.3.2: If"x-+ P <0, lor all x belongs to X, then

I) EN has an optimal solution (1", ,') and EP is inconsistent;

2} LFI' has an optimal solution x' '"y * /, •.

CASE III: d x~P ~ II, for all x belongs to.r.

,

,.'
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"
Theorem 2.3.3: If: dx + fJ = 0, v X EO X , then

1) Both lOPand EN are inconsis!cnt.

2) LI-'I' problem i,undefined.

In this case the objective fUllcllon ofLFP problem becomes undefined and thus the question of

solving a problem docs nol arise

CASE IV: d xcII ~(J,for all x belongs to .\"

Theorem 2.3.4: Let I' be a non_empty ,ub sel of X such that dx+ fJ '" O,Vx E P and

dx+ jJ > 0, 'elXE X -I' .11'

al cx+a>O,\;fxE/',lhen

1) EP is unbounded and EN is inconsistent;

2) LIT is unbounded

b) eX-I-a < 0, 'Ix coX, then

I) EP has a fillite 01'11111<11solution (y., ,.) and EN is inconsistent,

2) LI'P pwblcm has a linite optimal solution x* = y * II *

CASEY: dxl-{LO. for all x belongs toX

Theorem 2.3.5: LeI I' be a non-empty ~mbset of X stich that dx +p = 0, 'rIx EO l' and

dx+/J<O,Vx€X-I',lf "

•
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a) cx-.-u<O,\fxEI',thcl1

1) EN has 811optimal solutioll (y*.I*) and EP is inconsistent,

2) LFP problem ha, an optimal soiut'Ull x' '"y '/ /. ,

b) cx+a < 0, \fXE X, then

l) EN is unbounded and EP is inconsistent,

2) LFI' problem L, unbounded

CASEVI: J XI pchanges ;ign over X,

Theorem 2.3.5: If dx + p changes sign over X, then

1) Either EP or EN i,unbounded and other !la., optimal solution;

2) LFP problem is unbounded.

The sulution procedure for LFP problenl applving (harncs & Cooper [1962] technique can be

summarized in the lollowing diagram



LFI'

Solve EP or EN

Unbounded soluti"n .,
yo; LFP is

unbounded

No

Solve tbe otber I
-
Ye"

.1Unbounded solution '! LFP is unbounded

No

If One of EP and EN has an Ifboth EI' and eN are
optimal solution and otber IS inconsisfenl, then d ~+-j3=11 ,\;j

inconsistent, then LFP has an ~EXand LFP is undefined uver
optimal ,olotion X

If the sign ofthc dcnominator dx +- fJ is known ovcr X. the above discussion shows that one can

solve LFI' problem by solVing either EP or EN But in reality, il is rather impossible to know the

sign oCthe denominator d x-' paver X Since LFP problem can be solved by solving at most two

linear programs I-Y& EN, So for solving I.FI' problem one l1lu"tproceed in reverse order_ lfone

of the problems EN & EN h,,,, an optimal sulu!loli and other is inconsislent then UP problem

also has an optimal solution. If anyone of the two



Problems EP & EN ;~ unbounded. and thcn LFP problem ;s also unboulldo:.-'l:l.Thus if (he

problem solvcd first;; unbounded, one need 110tto solve (he ulher_

WC 1I0W wish (0 present Fortran ,",ompu(er progrnm ofthc method <15follows'

Fortran Program forCh~rnes & Cooller [1%2] transformlltion technique.

c ,
C ,
C ,
C ,
C ,
C ,
C ,
C ,
C ,
C ,
C ,

PROGRAM FOR Charm,,>; & Cooper '[f;CHNlQUE
M ~u~BER Of CONSTR~lNTS
N ~~~BEROF VARIABLES
rol NUMBER OF L£SS THAN OR EQUAL TYPE CONSTRAINTS
m2 NUMBER OF GR~AT~R TllilNOR EQUAL TYP~ CONSTRAINTS
m3 NUMRER OF ~QUAL TYPE CONSTRAINTS
lCASE 0 OPTIMAl, SOT,UT,ON IS FOUND
lCASE; -1 TNCONSlS1'£NT SOLUTIO,,'IS mUND
lCASE 1 UN80UNDED SOLUTIO~ IS FOUND
A(i,j)C8E2FIClENT !1l\TFIX0,'EP.
B{i,j)COEFFI::lENT !1l\TRJXOr"NF.

Parameter(M=3,N=3)
Real aiMI-2,Nn), b(M+2,N+J)
Int<3ger np, mp,ml, :n2,m3, iease, i zrov (N) , iposv (M), x (Nt 1)
Op<3n(1, flle='CJ ~ .jaL')
Open (2, file= t C13. Jat' )

Read(l, *) ml,m2,m3
mp=!1+2
np=N+I

Read{1,*)
Re"d(l,"J

(a (l, JJ, J~l,N+I), i=I,N+2)
I (b (i, j), j=I,N41), i=1,M+2)

Call '3j mplx (a, M,N,HLp, np, ;a1, m2,m3, iease, izrov, iposv)

\'irite(2,')
~iril:e(2,')
\\rit",(2,+)
Write(2,'1

" The leLL hand vdrlables arB:"
(lposv(j),j~l,;1)
" '!'he right hand varlabl<3s are:"
(izrDv(l),i=I,N)

\.lrii:e(2, >-) " The '~alue or th" lease:"
write(2,"i lease
if (iciJ.se. 8q.1: then

GOT03
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ENDI:'"
WrIte (2, 88) I (il (i, J), J=l, npl, i=l,ltlpi

138 FOl;mar.(ix,'1(6x,f8.S)1

C,ill s implx Ib, ~:, eI,mp, np, rui, m2, m3, iease, izrov, iposvl
\'lritei2,*1 " The left hand vari;J.bles are;"
\I'dee(Z,") (iposv(jl,j=l,M:)
Write(2,+) " Tl~", :::ight hand l1ilriabl,"s are;"
~JrH_t'(2,+) (lzrov(il,i=l,Nj

Writ<,,{2,*) " Tho value o[ tl,e lease:"
write!?, ') l<;il,;e

Write (2, 781 ((b (i I ~iI, j=l, np), l=l,mp!
78 Format (lx, 4 (6)(, fS.51!
3 Stop

Ena

Subroutine simplx Ia, ill, Il, mp, np, rtl, m2,la3, lease, j zrov I i posv)
Integer lea 5e, m,m1,m2,m3,rnp, Il, np, i zrov In) ,

i posv (m) ,ill1AX, NJ'.1AX
Real a(mp,npl, EPS
Parameter 1~l!~AX=JClO,NM.'\X=lOO, EPS=.OOOl)
Integer: I, ip,is,k,kh,kp,nLl,Ll(NMAX),L3(MMAX)
Real bmax, ql

if(TI,.ne.rnl+m2'+m3) pause 'bad input constr<)int counts In
simplex'

O1l,l=n
do 11 k=1,1<

'"

Ll(k)=k
izrov (k) =k
continue

do 12 i=I,IlL
1f{a{i+l, 1) .It.O)
s.imp1ex'

pause 'bad input constJ::a,lnt counts in

i.pm;v(.i)=r>+.i
12 contlnue

if{m;>+m~.eq.O) go to 30
do 13 i=I,TI'2

L3(ll=1
13 continue



do 15 k"'1,0+1
q1.=O
do 14 j~m1+1,rn
ql=ql+ali+1,k)

14 continue

a(m+Z,k)=-ql
15 contlnue

10 call slmpl:a,mp,r,p,m+1,L1,nLl,0,l:p,bmax)
If Ibmax .1.0.£10':;. and." {IT.., 2, J) .1.e. - EpS) then

ic,",,,e=-1
roturn
olse l[(brnax.le.E::PS.and.a(m+2,1) .1t.£PS)then
do 16 ip~ml+m2+1,m
d' Iiposv Iip) . eq. ip+n) then
call simplla, mp,np, ip, L1, n1,], 1, kp, brna>;)
iflbmax.gt.E,PG) go to 1.

endif
16 cqntinue

do 18 i_m1+J,ml+m2,1
if{L.': li-mlj .eq.l1 tben

do 17 1:"'1,n+1
a luI, ki =-a 11+1,k)

17 continue
else

endif
18 continue

go to 30
endif

(;,,11 simp2(a,m,n,mp,Ilp,ip,l:pi
if {ip.eq.O) then

lcase=-l
return
",ndif

1. call sinlp3(a,mp,np,m+l,n,lp,kpi
If(lposv(.ipi .ge.n-lm1.-lm2-11i then

do 19 l:=l,nl.l
l.fIL1Ik).eq.f.l'l go to:;:'



19 cont3rHI€

2 nL1=nL1-1
do 21 ].s~k, nLl
L1(is)~Ll (is+1)

21 contlr.ue

else
kh"'iposv (lp) -m1-:1
If(kh.ge.l) t:"le!l
if(L3(kh) .n€.O)then

L3(kh)=O
a Im+2, kp+J) =a Im+2, kp+11 +~
do 22 .i~l, m+2

a(i,kp+l)= -a(i,kptJ)
22 CQntir,ue

cmdlf
endif
cndif
is=.i,p.ov (kp)
i l.H,V (kp) =iposv (ip)
ipOSV(lp)~lS
Cjo to 1[1

30 call s~mpl(a,mp,,,p,O,,,l,ni,1,0,kp,bmax)
if(bm"x.le.CPS) l:hen

lcasc"'O
return
endif

c<Jl1.,imp2{<l,m,n,mp,np,ip,kp)
.if{jp.eq.O) then

leasc=1
rctur;l
endi:

call slmp3(a,mp,np,m,n"i,p,kp)
is--'lzrov(kp;'
izrov(kpi=iposv(ip)
ipo,:;v (ip) =is
go to 30
end

•



c*'***""""'*"""*"*****""*"'*"'*'*"*"*****,***
Subroutine ~impl ia, j~P,np, I:1m,LL, nLL, iabf, kp, bmaxl

C Det.ermines t.he pi\lot co:i.umn
C**'************'*'++*+**"*"**"*"*************'*** ••***

Integer iabf, kp, mm,mp,nL!" np, LL(npJ
Rea.1 lomax, a {rr.p,r1p)
Integer k
Real t.ee;t
if(nLL.le.O) then

bmax"'O
elsE'
kp~L], II!
bma.x~a(mm;-l,l:p+11
do 11 k=2, nLL
if(iabf.eq.O)then

test=il. (mrtH 1, j,L: ~:)+ 1) -bmax
else
tesc=;lbs la Imm+l,LL ikl + \1 I-Jbs Ibmal()
endif
if (te51:. gt. 0) then

bmax"'a {mm+1, LL (k) +J )
kp"'LLIl:1
endif

11 continue

endii
return
ocd

Subroutine simp2(a,m,n,mp,np,ip,kp)
C Determines pi vot element
C* *'******'*TT**'" •••," *,•••• *."'*->* •••*.***'*******

Integ('i ip, kp,m,mp,ll,np
Roal a(mp,npl, EPS
Piiramct<er {r;PS=.OOOl)

Inl<oger i,k
R8al q,qO,ql,qp
ip~O



1

do 11 ,i=I,m
if(a(i+l,f:p+.1j.1t.-EPS) go to J

11 continue

return
ql=-a(i+l,1)/<1(1+1,kp+1)

~p=i
do 13 J.=ip+l,m

if la I i+l, kp+1) . .1t. -EPS) then _
q=-a ii+l, I) fa (i+l, kp+1)

if(q.lt.qll then

ip=1
ql=q
elseif(q.eq.ql) then
do 12 k=l,n
qp=-a {ip+1,};+J i I a (ip+1, kp+1)
qO=-a (I+I, ktl) la (i+l, kp+1)
i[{qO.ne.qplgo to 2

'"

12 contlIlue

2 iflqO.lt.qplip=i

endif
endif

13 continue
return
end

c*~*******""**""""*"""""~~'*"*****W*******
Sworall tine s impJ (a, mp,np, 11, kl, iI', kpJ

C Matrix operations to exchange a left-hand and
C right-hand vanabJe
C','*'~*"'*""'*"*',.,"*'*~,~,*ww*w~********'**"+

Integer mp,np, iI, kl, iI', Kp
Real a (:np,np)
Integer Ii, kk
Real v

v=l./a(Jp+l,kp+l)
do 12 li=1, .11+1
1f (J.i -1. ne. i.p) then



a(ii,kp+l)"'a(ii,kp+l) 'v
do 11 kk"'l,kJ+l
if{kk-I.ne.kplthen

a Iii, kk) ~a Iii, kkJ -a Iip+I, kkl 'a Ill, kp+ll
endlf

11 contlnue

endif
12 cont:inue

do 13 kk=l,y.1+1
if Ikk-I. ne. kpl a IlP+ 1, \kl ~-a (ip+l, kkl'v

13 continue

a(ip+l,kp+l)"'.v.
return
end

Now, we solve the following numerical examples of by using the above program

Example 2.1

(LFP)

Subject 10

-24x. -7
Z = '

5x, +X, +1-

-x,+x,:o:l
r,-x, S;1

x,+x,oO,2
x,. X.::C 0

The equivalcnllinear program (ELI's) of the above LFP problem is obtained by selling

y,= Ix i

where 1=1,2, l?- 0 as follows.



(Ell)

(EN)

Maximize

Subject to

Maximize

_y,+y,_I~O

y,-y,-I :;;0
y,+y,-2IS0
5y, +Y, +1 '" I

y"y,,1 ;CO

Z,=24y,+71

Subject to

- YI +y, -I :'0:"9

Y,-Y,-I sO

y,+y,-21";0
5Y,+h+I=-1

y"y,,1 2.0

Now, applying the above program 10solve EP & EN, we have obtained the rollowing data:

For EP:

The lell hand variable,; arc (basic variable)
2 5 6 3

The right hand variables are (non-basic variable):
4 , 7

The value of the iease'O (Optimal50lulion is found)

-3.50000100 -3.50000100
.50000010 ..50000000
] 00000000 .00000007
.50000010 1.50000000
,50000010 ,500000I0
00000000 .00000000

-9.99999700 -3.50000100
.300000000 - 50000010
-600000000 -I 00000000
.2,00000000 _,50000010
_2,00000000 _,50000010

00000000 -1.00000000



For EI'::
The left band variable, are

456 7
The right hand variables are

I 2 -'
Tbe value of the ica,e: -I (Inconsistent solution is fotmd)

.00000000
,00000000
,00000000
.00000000
I 00000000
-1.00000000

24,00000000 00000000
1.00000000 -I 00000000
-1.00000000 1,00000000
-1.00000000 -1.00000000
5.00000000 100000000
_5,00000000 -100000000

.00000000
1 110000000
.00000000
.00000000
J,OOOOOOOO
"1,00000000

The solution of the above EXHmple 2.1 is'

Yl~ 0, Yl~ 0 5, (= 0,5 and (hi, implies

XI=O.O x,=I,O with Zmax=-J.5

Example 2.2

(UP) MaxImize

Subjecllo

5x, +4x,z=- .
-x, - x, + I

-x,+2x,sl
x,+Jx: :0;1

x,- x.:::O

Similarly, applying the above program. we have obtained the following data

FOI' E:P:

The left hand varlables (basic variable) are'
4 2 3

The righ! hand variables (non-basic variable) arc:
I 5 I)

The value ufthe icase I (unbuunded solutiun)

FOI' EP,
Since EP Ii>unboundeu, we need nOllO solve EN.

Therefore, the solution orlhe above f.Mlmpl~ 2.2 I, Unboullued



CHAPTER-3

BITRAN & NOVAES METHOD

In this chapter, we discuss briefly the method developed by Bilran & Novae, [1972] for solving

LFP problem delined by ,

(LFP) •• . I.() cx+aM<lnmIZt' • X ,,---
dx+P

(3.1 )

:)llhiect to Ax=b (3.2)

(3.3)

where x , C,d fOR" : b", R m ; a: & j3 Ell : A is an mXIl matrix, and generalize computer

program (FORTRAN) of (he method

Assuming the constraint sct non -empty <llldbounded and the denominator orlhe

objective function of U' P problem is posit ;ye I"r all feasible solutions. Bitrall & Novae> [1972]

method with validity orlhe;r rC,llll~ with an illustrative example is presented next section

Bitran & Nov~lesMcthotl

Bitran & Novae, [1972jconsidercd LFP problem defined by (3 1) to (3.3) assuming the

positivity of the denominator of the objective Illllction

They developed the method that can be ~laled as follow5



Step I: First they introduced a new objective function as follows:

MW:lllliz~ L=(y,x)

SllbJcct to Ax~h

In which y=£'-[{c,d) i{d,d)]d

And hence they solved the L1'1' problem Hpplying simplex method which yields a sub optimal

solution x' .

Step II : Again, they inlroduced another new linear objective fimctilJn L' as follows:

(LP) Maximize L'= < [£' - F(x') d] x) (3.4)

Sllbject to the same sel of constraints and hence then solve as before. This leads to another

ne",' sub optimal feasible sol11tionx;' I

Step III :Compare x' with ~i'l ; il'x' = x' , ,then x' is the global optimal solution, otherwise
go to step n. making x'= X,-I and repeating the Pl'Oeess 111\tilthe vector x' remains unchanged,

Next. they discussed they validity of the mdho,l as lollows'

Validity of the Method

Property 3.1: {u-l.jJ )+(k-hl Lx)=o
represents a family of hyperplanes of order n that have a common Sllhset of order

n-1.

PrOjlerty 3.2 : The hyperplane a +(c,x) = 0 contains S the sub sd of order n-l common

to all hyperplaners that satisfy thc relation detined by (3.1) to (3,2),

Property 3. 3: The hyperplane /3 +<",x) = 0 contains S the sub set of order n-] common
to all hyperplanes that ;atisfy the relalion defined by (3.J) to (3 2).



Property 3.4: The hyperplane fJ + (J, x) = 0 does nut intercept the positive orthant.

Property 3.5: lfx" is a point that belongs to a pa'1icular hyperplane of the family given by

(3,1) and such that fJ +U,x) '" 0, then the gradient of F(x,,) is orthogonal to lh" hyperplane at

point x".

Property 3.6: Since fol' all feasible solotions, the relation x;o;0 must always hold ,it has already

been shown in properly- 4 lilal [fJ + (J, x> ] >0 therefore lhe gradienl (VF) .•• has the same sign

as vector [e-F(".,,)]

Property 3,7: Vector [c - J.'(x,,)] !la, tile same directions as (VI'). for any point x sueh that

F(x) "'F(x,,) ,

Property 3.8: For any x 2:0 and XfJ 2:0 necessary and sufficient condition for having

j'(x»F(x") is given hy z~. 0, where

Z = [c- F(x"jf3]-'- ([c - F(x,,) J], x) (3,5)

The solution obtained with the method prcsetlled in this section is optimal.

One gets a solution when, In Step Ill, the >lmplex leads to a sub optimal point Identical to the

initial one x',

The objective function for the simplex in Step !I is

Max <k-l-'(x')Jj,x),

with the same set ofconstrallll, as in Step t

(3,6)



Suppo,e no'" there i, a point J,t' such tbat F(~;")'>F(~'), Ifthi, is the ~ase>then Property 3,8

yielJs ,

!meh that Z >0 ,

On the other hand. relations (3.1) to (3.3) yields

la - Hr')j3 j+ < [c- F(x' }</J,x' > '" 0

Subtracting (3.S) It'Om(3 7). one gel"

(3 7)

(3.8)

(3.9)

But. irrelation (3 9) hoJd:., one can,ce by looking at the objective !'unction (3,6) that X,+lis a

belter feasible ,,,lotion than x' lfthi, had been happened, one wOllld go back to

Slep II again unliltllC convergence is attained

Convergence
The simplex llsed in Step II gllarante"$ that the solution ISa verte~ orthe convex set. further,

Property 3 6 also guarantees thal, whenever in Slep 11 thc proces, gocs ITom a vertex :2to a

vertex ,t I , one alway:. has F(x" ') > F(,,'). This happens because the gradient of (V'F)x has

same ,ign as the objective Junction given by (3.4), Since we ma"im,ze (3 4), the process moves

along in the direction of the gradient, Thi, means that the feasible solution, are always upgraded

a5long as one applies Step II.

On the other hand, lhe number of vertexes is nnile, whieh mean~ that one reached the optimal

solution (point) Within a Iinite number of ,tep,. l-Jere ",e develop the computer program

(FORTRAN) of Bitran &l"ovaes [1972] method i~as rollows,

o

.{



I'ortnm Program for Bitran &Novaes [1972J melllO}d.

C * PROGRAM ]<OR RITRi\N & NOVAES METHOD
C • M NUMBER orc CONSTi\]UNTS
C N NUMBEROJ'' \li'.Rli',RLES
C * ra1 NUl1BER OF LESS THAN OR EQTJAL TYPE CONSTRAINTS
C * m2 NUMBEROf GR'i;ATER THilN OR FQUAL TYPE CONSTRAINTS
C * m3 NUMBEROr £QUAi, TYPE CONSTRldN'I'S
C • lCASE 0 OPTIMAL SOLUTION IS ,,'OUND
C * leASE: -1 INCONSlS'i'!'.NT SOLUTION IS POUND
C * lCASE 1 Lfl','BmJt-;lJElJ SOLUTION IS FOUND
e * AA(i,j)COEfTJCIENT IJ'ATRIX
e * B(i,j)COEff'lCJENT HATRIX !,F'T],;!\ AN ITERATION
C * C(N+1) NUMERATOROF THE OBJECTIVE FUNCTION
C • D(Nn) DENOl'lTNATOROF TEE OBJECTIVE FUNCTI,JN

Parameter (M=l, N=2, t,)l= .0001)
RaaJ. aa {M+2,N+l) ,b(M+2, N+l), e (N+l) ,djN+l)
T, x (N+M+2 i , Z1, z2, sum.! , s.;m2, ,;umJ, sum4, sum33, sum4 4
In teger np, mp, ml, m2, m3, ieas"", i zrav (N) , lPOSV (M)
Open11, flle~ "'Jl 2. Gat' I
Open12, file=' bi -I.did.' i
Readll,*) ml,m2,m3
Read (1, *) aI, a2
Readll,*) (c(i),i"'2,N+ii
Read(],*) (d(j),j=2,N+1)
i;uml=. I)
5um2=. I)
Do 47 l=2,N+l
sum1,sumH C"(,l ) 'd (l)

47 sum2.~sum2.+d(i)++2
T~,;ullll/surn2

aa(l,l)~O.1)
Do 22 l~2,N+l

22 aa{l,l)'~C(l)-'J"d(,i)

mp~M,2
np~N+l
RGadIL+) Ilaali.,J),J~1,N+l),i=2,M+1i
Wni:eI2,33) Ilaali,j),j~r,n'lli,t~l,m+li

33 FormiLtllx,1416x,f8.Sii

Call si.mplx (iia, M, N, lnp, np, rn1, ra2, m3, .i.ease, i zrQV, iposv)



Write(*,*) " Th", 1",Ct hand \iar.iab.1e5 are;"
Write (*, *) (iposv (j), :i=l,MI
,Jritc(*,*) " The right hand viuiabl"s are;"
W/;ite(*,*) (iz/;ovlil,i~1,NI
Write(',') " The value of the icase;"
wr-ite(', 'I lcase
Write(', 78) ((aali.,j) ,j=i, npl, i=1,mp)

78 Format(lx,316x,I8.~11

Do 31 j=1,1':
31 x(ipo,;v(j))=aalj+J,11

Do 11 k=I,N
41 xlizrov(kll=0.0

Do 43 i=2,N+l
sum3='.ium3+c(i 1'x (,i -] )

43 surn4=sum4'ld(l)*x(i-l)
zl= (sum3'1all / (sum4+,12:,

21 b{l,l)=O.O
Do 51 k=N+l,2,-1

5] b(l,I:)=c(k)-(zl*d(k))
Do 32 i=2,M+l
b(i,l)=aa(i,l)

32 Continue
Do 37 i~2,H!1
Do 3'1 j=2,N+l
b(l,N'3-ji=aa(i,jl

37 Continue
Ca.l.l 5,1mp1x(b, M,N,mp, np, r;f1,n2, m3, ica5e, i zr-ov, iposv)
Write(*,*) " The left hand v<3r-i'ables are;"
Wr-ite(','1 (iposv:]),]=l,M)
WT.lte(',*) " The right har,d vilr.iabJes are:"
Wr.i,te(',') (izt'ov(i),i=l,N)
Do 61 i=I,M

61 x(~posv(.i))~b(i"I,l)
Do "71 j-l,N

71 x(i,uQv(j))"'O.O

DO .16 .i,=-:>,N+J
sum33=snm33I c (i) *x (i-I)

46 sLJm44=sum44+d(l) 'x (i-I)
z2~ (sum33+a l) / (Sllln44+a2)

Wr.ite(;J.,') z2 ,zl



z3=abs Izl-z2)
Iflz3.gt.tol)then
zl=z2
Do 34 i"2,M+l
Do .14 J~J,N+l

'"a(i,j)=bli,:i)
34 Continue

go to 21
end.ij'
Write 12, 88i lib Ii, j), J=l, npi, i"'l,mpi

88 Format(1;.;,3(6;.;,f8,:o))

stop
End

•

Subrout.ine simpJx(a,m,n,np,np,ml,n2,m3,icafe,izrov,ipQsv)
J nteger, .i case, m,m1,m;, m}, r~m,n, nfl,.i 7.roVin) ,j posv (m)

11MAX, l\'I1AX
Real a(mp,npi, ElOS
PilrilmeLer (MMAX=,lOIJ,1\'J'.:;,-X=lOG,£P$=.OOOl)
Jnteget' .i, .ip, ';,3, k, kil, kp, nl,1, L1iNMAX),L3 (MMAX)
Rea.l bma.x,q1
ifim,ne,m1+m2+m3) pause 'bad input constraint

counts in simplex'
nLi=n
do II k=1, n

Lllk)=k
j".t'ovlk)-k

11 conl:inue
do J7 i=l,m
i[(a(i+l,l).J.t.O)pausc 'bad lnput constraint
counts i<l simp1t'x'
ipo,;v(i)=n+i

12 ccnt.l.nue

If(m2+m3.eq.O) go to 30
do 13 j_~I,m2

L3(li=1
13 continuE"

do 15 k=1,n+1
ql=O
do 14 i=m1+1,m
q,l=ql+a(i.+l,t)



14 conUnUf<

a{rr,+2,k)~-ql
IS contLnue

10 cull ~imp1 !",mp, np,m+1, L1, nLl, 0, kp, bmax)
iflbm<lx.lc.EPS.and.alI:l+2,1) .1e.- EPS) then

iCa[;8=-1
return
e1s<3 if(bmax.lc.r;PS.and.d(m+2,1) .It.EPS)then
do 16 ip=m1+m2+1,m
if! ipo.~v I '.p) . eq. ip+n) i:nen
call ,;imp1 1a, "'P,np, ip, 1,1, nL1, I, kp, bma::)
lflbmax.gt.EPSI go to :i.

er,dif
16 continue

do 18 i=ml+1,m1+m2,1
ifIJ,3Ii-ml).eq.l) then

do 17 k=l,n+J
,,(i' 1, k; =-01 li+1, kl

17 cont.inue
1"1"",,
endif

18 contlnue
'10 to ]0
endif

call simp2Ia,j~,n,mp,np,ip,kpl
if !ip.eq.O) then

icas8~-1
return
"ndif

call slmp3(a,mp,np,m+l,n,ip,kp)
if! lPOS"J I ipl . ge .n.IIT,1+m2+ 1) th"n

do 19 L=l,nLI
if(L1Iki.eq.kp) go to 2

19 continu""

2 nLl=nL1-1
do 21 is=k, nLl



Ll(lS)=Ll(is+lI
21 cor.tinGE'

e1:;e
kh=ipcsv:~p)-m1-n
iflkh.ge.l) then
if (I,3(kl1) .ne.O)l:l1en

L3(kh)~O
a(TI~2,kp+1)=a(m"2,kp+J }+1
do 22 ~=l, m+2
a (l,kp+lI'" -aii,kp+J)

22 continLle

cmdi f
etldif
end~f
i5=izrov(kpi
i zrov (kp) "'J po" I' (ip)
iposv(ip)=,b
go co 10

call simplia,mp,llp,(1,Ll,nL1,O,kp,bmax)
i1 (r.,mflx.le.EPSi then

icase=O
rel:urn
endlE

call slmp2{a,m,n,mp,np,ip,kp)
if(ip.eq.OI tIlPn

ica~€=l
return
f'ndif

ca ,1,1simp3 (a, mp, tlp, ilL, n, ip, kp)
lS~l zrov(kp)
lzrov {kp) =lPO"V {iPi
lPOSV (lp) =is
l)0 co 30

"'Old

•



c

c

c~***'~*~~'***'**~~~'**"'**"******'*"************~******
Suorou t iJHo' campI Ia, mp, np, mm,LL, nL1, lab r, kp, bmax)
Determines the pLvat column

Integer iabL', kp,:Tun,mp,nL1, np, 11 (np)
Real bmax, a(mp,np)
Int8ger k
Real te~t
if InLL. J e. 0)then

bmax=O
else
kp-LL(J)
bmax=a Immll, kp+l)
do 11 k=2, [\LL
if Iiabf .eq. 0) then

tes t=a (m:n+1, LL (k) ,I 1) -bm')x
else
test=abs {a imIlL+ l, LL (k,' + l) ) -ilDS (bmax)
endJ,f
if (tcst. gL. 0 I then

bmax=almm+l,LLlk)+i)
kp=LL(k)
8ndif

11 continue

endlf
retur:l
end

c*~~***~****"'~*~",~~****" ,.*.,>~*~*.,'***<**+******
SUb;;Olltine "lmp2 Ia, m, ll, I~P,np, ip, kp)
Determines pivot element

Integer ip,kp,m,mp,n,np
Real a II"?, npJ, ~:FC;
Parameter I)W~i=.OOOll

IntBgcc:: j,};

Real q,qO,qJ ,gp
ip=O

,



do 11 i~l,m
if(a(i+l,kpil) .It.-EPSI go to 1

11 continue

return

1 ql=-a(i+1,1)/a(i+l,kp+1)
ip=i
do 13 i=ip+l,rn

if (a(i+l,kp+ll .It.-EPS) then
q=-a (i"l,1)/a Ii+1, kp+1)

if(q.lt.ql)then

ip=i
q1=q
elseif(q.eq.qll then
do J2 k=J,n

qp=-a(Jp+l,k+l)/a(ip+l,kptl)
qO=-a(i+l,k+l)/a(i+l,kp+ll
if(qO.wo.qp)go to 2-

12 continue

2 if{qO.lt.qp)ip=i

endif
endif

13 continue

return
end

c*••••••+•••••••••••• +•••• +».++++++++++++++++++*++***

Subroutine simp3(a,mp,np,il, kJ ,ip,kp)
C M~trix operations to exchange a left-hand and
C right-hand varlable
C******************** ••**********.**.* ••*••••• **.*>k**

Integer mp, np, iI, kl, ~p, kp
Real a(mp,npi

Integer ii, kk
Real v



vm1./ iJ. (ip'l L kp+1)
do 12 iim1, i1+1
if Iii -1. [le. ip) then

a(ii,kp+1)malii,kp+1) 'v
do 11 kkm1,kl+1
if (kk-1. ne. kp) then

a{ii, kk)=a(li, kkl ~a{ip+1, tk) 'a (ii, kp+1)
endif

11 continue

endif
12 continue

do 13 kk=1, k1+1
iflkk-1.ne.kp)alip+l,kk)=-alip+1,kk)*v

13 continuo

a lip+L kp+1)=v
return
end

Now, applying the above program to solve the Production Problem formed in sectioll 1.5 of
Cbapter-t. we obtain the following data:

The left hand variables are {basic variables}-
2 14 8 I 15 20 18
The right hand variable. are (Non-basic variables):

10
o

16

4,,
3
11

),0

13
12

,
10

The value of the icase:
o

1296630.00000
-1762.65800
894.91930
1283.69000
855.30640

-1.93697
-S.74450
1066.10300

13192.69000
-)7.56.62300

43305.37000
2263.61000

-1.84668
2719.59700



656070.90000 -,96538 21957,20000
-851.82430 -2.90308 1175.84200
521.28380 584,46430 -,92399
732.52560 6698.80300 .. 1381.76200
1332.48400 -614.04010

32.46644 .00020 -.42698
-1.45907 -.00088 ~. 73864
~.17283 -.34465 .00010
-.018'/6 -.45188 .12211
.1.0885 -.72360

,14448 ,00008 ~.26217
-,01238 ,00048 -.39912
-.40453 -,46478 -.00002
-.10798 -.31357 -.07591
-.12925 -.76829

7.96701 .00003 -.35953
.42193 .00031 .14129
-.44076 -.44968 -.IJOO15
~.30519 -.48884 -,34983
-.49660 -,08127

9.42207 -.00031 .04868
.04951 .00008 -.00354
.01811 .25912 .00006
~.56806 .25430 -.69637
-.48299 .07316

78783.55000
1749.06500
72.82928
-106.23910
-733.84600

25216.12000
-318.56700
-606.79270
-161.97640
-693.87820

5928.78100
-578.67490
12,6'7998

-.20023
1.J2627

,144.65420
-61/3.11600
898.59700

.11661

.'/190'1
-697.16960
-770.36220
-402.43410

.04899

.05774
-31.94990

-21698.02000
38.64083
-,09704

-747.10930

-93.25553
-598.67360

-.02426
~613.86040

-165,92260
615,80900

,04529

,.
•



-464.31070
95.23967

244.67630
117.87700

-20.79352

The maximum value lS:

1.97636

Henee solving the problem, we have obtained the following resl.llts.

To obtain maximum l'etl.lrnon investmo;nl.

the farmer has to plant rice in 9 422207 hectors orland, wheat in 32.46644 hectors of land,

tomatoes in 7.96701 lleelars afland, and the maximum return on investment is 1,97636,



CHAPTER- 4

SWARUP'S METHODS

In this chapter, we discuss briefly the methods developed by Swamp [1964& 1965J and we

develop computer program (FORTRAN) of these methods. We also suggest a modified approach

ofSwarup[I964] primal simplex type method for solving LFP problem IMined as:

(LfJ') Maximize

Subject to

F(xl = cx+a
dx+ fJ

Ax=h

X20

(4.1)

(4.2)

(4.3)

Where x, C,d ",R n , bGR "' : a & B Ell.: A j<.an rnxl\ matrix

We ass",me the constraint set non-empty and bounded and the denominator of objective function

ofLFP problem is positive for all feasible solutions.

4.1. Swarup's Primal Simlllcx type method

lrthe constraint sct in the canonical form olle can proceed to the initial simplex type table for

solving the LfP problem.

Let x" be the initial basic feasible solution such lbat

Bxu=b

where H = (bl,b:!._ , .,b m)

•



Further let

~d

where cHand d" arc the veet(Jrs having their components as the coefficients associated with the

basic variables in the numerator and the denominator of the objective function respectively

.'
Then the value of the objective function for thi:; initial basic feasible solution i:; F ==.;-,
In addition, one can assume that for this ba,ic soh,llion

a =B-l a, ,

Are known for every column a, of A nol in B,

One can now wish to examine the possibility of finding another basic soh.ltion with improved
,

vallie of F = ~, ' he shall confine his auention to those basic feasible solutions in which only

one column of 13is changed Let x: be the new such basic feasible solution and the new value of

the objective function is

_ ;;"
/.' = --' '•

Then

where

i ,e, a new non singular matrix B' obtained from B by removing b, and replacing it by

a
J
belongs to A not in B The column of the new matrix B' are given by

b: =h" (i"-y)
h' ='a, ,



'"
He obtained values of the new basic variables in terms of the original ones and the II. are

X~,=XB,-XH,((lljla~) ,Iter

x~, =(xo,!u.j=B (say)

where

,.
;: =

Again

Similarly_

Where ,,' & z', ,

'.= ICB ,(x0, - xII,a) la, J) +c",(xoy jar,) +a
,~l

" m
= Icn,XB, -(Ic",a'J )xBr/aB +C,XH, la" ,(": cOr = cj)

,~l ,~t

z" =;;' ~.B(J -:'), ,
refer to the original basic feasible solutioll.

The value of the objective lunction will be improved if

"-'>1'

or ,:I [;/ -I 8(crz/)}- z' [;-'+13(dr-z/)} .-"0

[!&!" are positive, :.ince the denominator of the objective function is positive for all feasible

solution 1

or, ;/(crz/j-zl(dr=j'»O
[8 being positive in the nOI\- degenerate case; if0=0 ,F'=F 1

,)11'Let Ai=" (c,-z, )-z (d,-zj)

Now,



Case II :(dJ_z,2) < 0

(c,-zi)/(dj-z/) < Zl!zl

Case Ill: (d)-z/)= 0

cJ.ZJ
1> 0

Swarup[1964j deduced that given a basic feasible solution Xu= B-'b. iffor any column 3j in A

but not in B, 6 J > 0 holds and if at least one a" > 0 (i = I,2, ,,_,m), then it is possible to find a

new basic feasible solution by replacing one of the column in B by aJ and new value of the

objectivc function satisfic'

1'.>1'

One can show lhat for any a, in A not in B alleasl onc a'j <: 0, If possible, let all

" 0 (i =1,2,." .,m)

The basic feasible solution is givcn by

•Where LX", is a component of basic vector. Now adding and subtracting -e.<lj',~,
•(0 being any scalar) to (4 3), one obtains.

IX
H1

h, -B. G
J
+O.u

J
=h

'"'
Since,

-B'a; =-B.Ia"b,,~,
Then

f:<x", -B. a" lh, +0'" J = b
'0'

where e. >0

(4.4)

(45)

(4.6)



Therefore Xm- O"UIj;:O

Since by assumption, a;j"; 0 (i =1,2, . ,m)

Therefore, (XIII -e"aiJ'" ,."., XII,,,- e"ami) and e" is a feasible solution for all e "> 0 .

Thus the feasible set X is unbounded contrary to ones hypothesis of regularity, So for basic

feasible solution if there is vector aJ not in oasis having

'"'J>O (4.7)

Then there exists another basic feasible solution with improved valu'e of the objective function

such that

For non-degenerate case

Thus one can move from one basis to another changing one vector at a time so long as there is

some a, not in basis with condition (4.7) and a~each step f is improved.

This process can not continue infinitely, since there is only a finite llL1mberorbasis and in non-

degenerate case, no basis can ever be rcpeated, since F is increased at every step and the same

basis can not yields lwo din"erent val"es ofF While at the same time the maximum value of the

obje<::tive.f"nction occ"rs al of the basic feasible sol"lion.

The process will terminate only one-way, that is, when all '"'J,,;0 (j =1,2 ... n) for the column aj of

A not in the basis,

Now for those columns of A which are in the ba~is



Le.,8j=O.

Henee the summaries of the results are as !ollows'

Given a basie feasible solution

xn=B.1b

with

F" '" ('BXB +a
u"X""+fi

to the problem (4 I) -(4.3) such that all 8)::; 0 for every column aj in A , Then F" is the

maximum value ofF and the corresponding basic feasible solution is an optimal solution.

Iterative procedure ofSwarup's primal simplex type method

For Swarup[1964] primal simplex type algorithm are as follows:

Step J: First one has to convert Ihe LFP problem to its standard form by inserting slack and

s•.•rplus variables to the constraints. If the constraint set is in a canonical form, go to Step II. If

the constraint set is not in a canonical form, go to Step IV.

Step II : Now one has 10compute z', z', relative eo,t factorc,i-'/, relative profit factor

d)-z/ and the ratio 8"

•



Step III: One has 10 choose max tlJ > 0 lor coveting optImality condition and 10 improve the

basic solution. The minimum ratio test is to be applied to determine the new basic variable to

enter the basic and the departing variable to leave the basis.

Step IV: If all tlj :0;0 one has reached to the optimal solution, other wise go to previous step.

Step V: If the constraint set is not in a canonical form, introduce al1ificial variables wherever

it required and form an al1ificiallinear objective function. In phase I, solve the problem as aLP,

Ifil is feasible, go to phase II orthe LFP problem and solve LFP problem llsing Step II to Step

1V.

Here we develop the computer program (FORTRAN) of the above method is as follows:

Fortran Program for Swarup's pl'imal simplex type method.

C ~ PROGRAM FOR ~WARUP SIMPLEX TYPE METHOD
C * M NUMBER OF CONSTRAINTS
C • N NUMBER OF VARIABLES
C ~ rul NUMBER OF LESS THAN OR EQUAL TYPE CONSTRAINTS
C ~ m2 NUMBER Of GREATER THAN OR EQUAL TYPE CONSTRAINTS
C ~ rn3 NUMBER OF EQUAL TYPE CONSTRAINTS
C • lCASE 0 OPTIMAL SOLUTION IS FOUND
C • leASE -1 INCONSISTENT SOLUTION IS FOUND
C * I,ASE 1 UNBOUNDED SOLUTION IS FOUND
C * A('i,j ICOEFFICIENT MATRIX WITH NUMERATOR AND
C DENOMINATOR Of THE OBJECTIVE FUNCTION

Parameter (M~7,N~13)
Real a(M+3,N+l)
Integer np,rnp,ml,m2,m3,icase,izrov(N),iposv(M)
Open(l,tile;'s6.dat' )
Open(2, filc='s9.dat')

•



Read (1, *) rn1,rn2,rn3
mp=M+3
np=N+1

Read(1,*) Ila(i,j),j=l,np),i=1,M+2)

Call sirnplx(a,M,N,rnp,np,m1,m2,m3,icase,izrov,iposv)

Writa{2, *)
Wrlte(2,*)
Write(2,*)
Writa(2,*)
l'/rite(2,*)
writE'(2,*1

" The left hand variables are;"
(iposv(j),j=l,M)
" The right hand variables are;"
(izrov{i), i=l,N)
" The v,1lue of the iease;"
lCaSE'

Write (2, 88) ((a(l, j), j=l,N+l), 1=1,M+2)
88 rormat(3x, 14(5x,f20.10))

Write(2,*) " The maximum value is: "
Wd,te (2, 33) a H, 1) Ill. (2, 1)

33 Format(3x,f20.10)
Stop
End

Subroutlne simplx (a, m,n, mp, t1p,ml, m2,m3, iease, izrov, iposv)
IntegE'r 1ca se, m,ml, m2,:n], rnp,n, np, i zrov (n) , iposv (m)

MMAX, MMAX
Real a(mp,np), EPS
Parameter (MMAX=lOO,NMAX=lOO,EPS=,OOOl)
Integer i, ip, is, k, kh, kp, nLl,LlINMAX) ,L3 (MMAX)
Real bmax,ql

if(m.ne.m1+m2+m3) pause 'bad input constraint counts In
slmplex'

nL1=n
do 11 k=1, n

Ll(k)=k
izrov(k)=k

11 continue
do 12 i=1,m

if(a(i+2,1) .It.O) pause 'bad input constraint counts in
simplex'
iposv(i)=n+.i

12 continue



30 call simpl (a, mp, np, (), 11, nl1, 0 I kp I bwax)
if (bm(ix.le,EPS) then

.Lcase~O
r.eturn
endiE

call simp2(a,m, ",mp,Dp. ip, kp)
if (ip.eq. 01 then

lease"'}
return
endif

call simp3 (a,mp, "p,m,n, ip, kp)
is=izrov(kpi
izrov(kpi=iposv(ip)
iposv(ip)=is
go to 30
end

e*******************k*********************************kkk*'
Subroutine simplia,mp,np,ffiIn,LL,nLL, iabI,kp,bmax)

C Determinesthe pivot row
c*******************************************************k'.

Integer iabf,kp,mm,mp,nGL,np,LL(np)
Real ornax, a imp,np)
Integer k
Real test
if (nLL.1e. 0) then
bmax~O
elso
kp=I.L(l)
brnax= (a(2, 1) *a (mm+1,kp+lll- (a 11, I) *a. (mrn.+2,kp+l) I

do 11 k=2, nLL
if(iabf.eq.O)then

test=la(?,1)*almm+l,LL(k)+lj-a{1,lj+a{mrn+2,LLlk)+1))
-bmax

else
t:esl:=abs(a (2,1) *a (mrn+l,LL Ik)+1) -a 11,1) *a Imru+2,LL(kj +1))

-abs(bmax)

endif



if(test.gt.OltheTI

bmax= la{2,l)+a{mm+l,LL(k)+1)
11,1) +a Imm+2,LLIk) +1))

kp"'LLlkl
endif

11 continue

endif
return
end

c++*********** •• ++•• ******* ••••••••• *.**+*****++ •••••••
Subroutine simp2(a,m,n,mp,np,ip,kp)

C DetermlneS pivot element
C•• ++.*.* ••••••• ++***** •••• +*.***** ••• ++****** •••••••••

Integer ip,kp,ffi,ffip,n,np
Realalmp,np), Io:t's
p"rameter (EPS=. 00011

Integer i, k
Real q, qO,q1, gp
ip=O

do 11 i=l,m
if(a(i+2,kp+ll.lt.-EPS) go to 1

11 continue

1
retur"
ql=-a li+2, 1)/uli+2, kp+l)
lP=l
do 13 i=ip+l,ffi

if {a IH2, kp+ll .1 t. -\,;PS) then
q~-a (i+2, lila Ii +2, kp+11

jf(q.lt.q1) then

Ip=i
gl=q
elsciflq.eg.qlJ then
do 12 k=l,n
qp=-a (ip+2, k+ll /a Iip ,2, kp+l )
qO=-a (i+2, k+11/a (i+2, kp+ll
if(qO.ne.qp)go to 2



12 continue

2 if(qO.lt.qp)ip~i
endif
endif

13 continue

return
end

c••••••••••• , ••••• , •• ***"", ••,••**"', •••••••'*.***.
Subroutine simp3 {a,mp,np, i1,k1,ip,kpJ

C Matrlx operations to exchanga a left-hand and
C right-hand variable
C***••••**••******••••****,****** •••*******•••******.*

Integer mp,np,.il,kl,ip,kp
Real a(mp,np)
Integer ii,kk
Real v
v=1./alip,2, kp+l)

do 55 ii~l, 1l+2
iflii-1.ne.ip,1Ithen

a(ii,kp+l)~a(ii,kp+ll 'v
do 11 kk=1,k1+1

if(kk-l.ne.kp)then

alii, kkJ~a{ii,kk)-u(lp+2,kk)'a(ii,kp+1J
endlf

11 continue
endlf

55 c;oIltinue

do 13 kk=1, kl+l
iflkk-1.ne.kp)a (ip+2,kk)=-a(lp+2, kk) *v

13 continue

a(ip+2,kp+l)=v
return
ood



Now, applying the above program to solve the Production Problem formed in section 1,5 of
Chapte •....l, we obtain the following data:

The lell hand variables are (basic variables).
2 14 8 I 18 15 20
The right hand variables are (Non-basic variables):

6

12 13

The value of the ica&e: 0

19

10

5

11

1296630.00000 -1.93697 43305.37000
-1762.65800 -5.74450 2263.61000
894.91930 1066.10300 -1.84668
1283.69000 13192.69000 2719.59700
855.30640 -1256.62300

656070.90000 -.96538 21957.20000
-851.82430 -2.90308 1175.84200
521.28380 584.46430 -.92399
732.52560 6698.80300 1381. 76200
1332.48400 -614.04010

32.46644 .00020 -.42698
-1.45907 -.00088 -.73864
-.17283 -.34465 .00010
-.01876 -.45188 .12211
.10885 -.72360

.H448 .00008 -.26217
-.01238 .00048 -.39912
-.40453 -.46478 -.00002
-.10798 -.31357 -.07591
-.12925 -.26829

7.96701 .00003 -.35953
.42193 .00031 .14129
-.44076 -.44968 -.00015



60

-.30519 -.48884 -,34983
-.49660 -.08127

9.42207 -,CiQ03l .04868
.04951 . 00008 -.00354
.01811 .25912 .00006

-.56806 .25430 -.69637
-.48299 .07316

5928.78100 .04899 -165.92260
-578.67490 .05774 615.80900
12.67998 -31.94990 .04529
-464.31070 244.67630 -20.79352
95.23967 117.87700

78783.55000 -.20023 -21698.02000
174~.O6500 1.12627 38.64083
72.82928 144.65420 -.09704
-106.23910 -6173.11600 -747.10930
-733.84600 898.59700

25216.72[100 .11661 -93.25553
-318.56700 .71907 -598.67360
-606,7927[1 -697.16960 -.02426
-161.97640 -770.36220 -613.86040
-693.87820 -402.43110

The maximum value Is:

1.97636

Hence solving the problem, we have obtained the following results:

To obtain maximum return on investment,

the farmer has to plant rice in 9.422207 hectors ofland ,wheat in 32.46644 hectors ofland,

tomatoes in 7,9670) hectors efland, and the maximum return on investment is 1 97636.



4.2, Swarup's dual simplex type method

In this section, we briefly present the dual simple>; type method ofSwamp[196S] assuming the

positivity of the denominator of the objective function ofLFP problem defined by (4.1) - (4.3),

In section 4, I Swarup[1964] showed that any basic feasible solution will be optimal if

1,.1= !(cr;;/)-;;'(~-z/),j~1,2, ,II.

The above observation presents the following interesting possibility, if one can start with some

basic but not feasible solution to a given LFP problem with all 1,.j S;0 and remove from this basic

solution to another by changing one vector at a time In such a way that he keeps all l!.j S;0

provided no basi~ is to be repeated, an oplimal solution to LFP problem will be obtained in a

Ilnite nl.lmber of itera lions That is > the fact that he maintains all l!.j ~ 0 at each iteration and

is not concerned about the feasibility of the basic solution that the dl.lal simplex method should

be great help in developing such a method.

Swamp [1965] assumed that the given LPP problem with additional restrictions as follows:

Denominator orthe objective function ofLfP problem is positive for all basic solutions into the
standard form for the application of simplex method.
Now if

Aod
6j'$O,j=I,2, ,11.

then he obtained an optimal solution \0 the LFP problem, He studied the ca~;ewhere one or more
XIJ,<O (iEI, I is the set of subscripts lor basic variables).

The algorithm for the ehange of basis in LFI' problem is'

Step I: Variable to lease the basi, set i~ obtained as:
XI],= min XB, . lor all iEI [XBi<O]

So in LFI' , x~, will be driven to zero That is, x", wi1lleave the basis set

StepU: Variable enter to the basis set is deternlined from
J.k!lld=min J.j1a~' for all j ,! a.-J<0]

I



Then one obtains b.dZ"[xu,(dl_Zkl)/Z"+a..] = min b.j1Zl{xBr(dJ-Z/)/Z
1+a,;1

J

Where the coefficient of Zl in the denominator on the right is negative.
Then one assumes,

0, = XMcirZ/)lZl+a'J
Theretbre, the variable Xu, to enter the basis set in the LFP problem is determined trom

8,/0. = min tI/o,
J

By adopting this procedure, Swarup[1965]maintain Ilj <;: 0 at each iteration
Moreover, this method for solving LFJ' problem. one tirst determines the vector to leave the
basis and then the vector to enter the basis This is reverse oCwhat is done in simplex procedure
for solving LFP problem

Our computer program (FORTRAN) of the Swarup dual type method ;s a, follow'

Forlran Program for SWlIrup [1965J dual simplu type method.

C * PROGRAM FOR SWARUP DUAL SIMPLEX TYPE METHOD
C * M NUMBER OF CONSTRAINTS
C * N NUMBER OF VAlUABLES
C * rnl NUMB~R 0, LESS THAN OR EQUAL TYPE CONSTRAINTS
C * rn2 NUMBER 0, GREATER TlIAN OR EQUAL TYPE CONSTRAINTS
C * rn3 NUMBER or EQUAL TYPE CONSTRAINTS
C • ICASE 0 OPTIMAL SOLUTION IS FOUND
C • lCASE -1 INCONSISTENT SOLUTION IS FOUND
C * ICASE 1 UNDOUNDED SOLUTION IS FOUND
C * A(i,jlCQS,FICIENT MATRIX WITH NUMERATOR AND
C DENOMINATOR OF THE OBJECTIVE FUNCTION
C*.***.** ••••••••••••• *******.* ••••**••********.*.* ••******

Par<lmeter (M~8,N=13j
Real aIM+5,N+1)
Integer np, mp, m1, m2, m3, icase, izrov INj,iposv(Mj
Open11,fi1e~' s5l. dat' 1
Open (2,file~'"s2.dat'l
Read (1,*) ml,m2,m3
mp~M+5
nV"'N+l

Read(1,*j ((ali,jl,j"'1,npl"L=1,M+2j

•



Call simplx (a, M,N,mp, np, ml, m2, m], icase, izrov, iposv)

write(2,*)
Write(2,*)
W:rite(2,*)
Write(2,*)
vlrite,(2,*)
write(2,*)

" The left hand variables are;"
Iiposv Ij) ,]"'l,H)
" The right hand variables are;"
(izrov(ij,i=l,N)
" The value of the icase;"
lcase

"
88

33

Write (2, 88) ( (a (i, J) ,J=1. N+l) ,i=1,M+2)
Format (1x, 7 (5x, f20 .10) )
Write(2,") " The maximum value lS;
Write (2, 33) a{1, 1) la (2, 1)
Format {3x, f20.10)
stop
end

Subroutine simplx(a,m,n,mp,np,ml,m2,m3,icase,izrov,iposv)
Integer icase,m,ml,m2,m3,mp,n,np,izrov{n),iposvlm)

Mt-lAX,NI-1AX
Real a(mp,np), EPS
Parameter (MMAX=lOO,NMAX=lOO,EPS=.OOOl)
Integer i., i,p, i,s, 1;,kp,n"LJ, 1,1(NMAX), Lll (MMAX),mLl
Real bmin,bratio

if{m.ne.m1+m2+m3) pilU'<E' 'bild input constraint counts In
simplex'

rnLl =rn
Do 77 i=l,m
Lllli)= i

77 Continue

nLI"'n
do 11 1;=I,n

LI(k)=k
izrov (k) =k

11 continue
do 12 i=l,m

lposv(i)=n+i
12 continue

30 call simpl (a,mp, np, 0, L11,rnLl, 0, ip,'bmin)
if(bmin.gt.EPS) then
write(",") "line 62"



icase=O
returr.

cndlf
v/r.iLe (*, *I" line -66"

call simp2 (a, m, 0, Ll, nLl, mp, np, 0, .i p, kp I

.iL(kp.eq.O.OI then

iease=l
return
endJ f

call slmp3(a,mp,np,rn,n,ip,kpl

is=izrov(ip)
lzrov(lp)=lPOSv{kp)
iposv{kp)=is
go to 30
end

c**********************************************************
Subrouti[]e simp] (a, mp, []P,=, 1,[,1,lULL, iabf, iI", bmi[])

C Determines the pivot row
C**********************************************************

Integer iabf,ip,=,mp,mLL,np,LLl(mp)
Real bmln, a(mp,np)
Integer k
Real test
if(mLL.le.O)then

bmin~O
else

ip=LLI (l)

bm.in= a(ip+2,llllTL+II
do 11 k=2,mLL

if(iabf.eq.O) then

test=a (LLI (K)+2, mm+11-bmin
else

test=abs(a(LLl (K)+2,mm+l) )-abs(bmln)

endif



if(test.lt.O) then

bmin= a(LLl(K)+2,mm'111
ip=LLl (k)
endi f

11 continue
endit

return
eod

c*****************<***********************"**'********
Subroutine sirr.p2 (a, m,nn, LL, nLL,mp, iabfl, np, J.P, kp)

C Determines pi vot element
C•••• ******************************.*******************

Integer ip, kp, m,mp,np, nn, LL(np-),nLL, .i abn, 1, k, j
Real a;mp,np) ,test

if{nLL.le.O)then

else

do 11 i~1,nLL
a (m+3,i)=il (2, 1)'a {nn'11, i,l) -a (1, 1) *a{nn'I,2, i+1)
a (m+4,i) = {a {ip+2, 1) *a (nn+2, i +1) ) / a (2, 1)

+a{ip+2, i+ 1)
11 continue

Do 31 ii=l, nLL
If(Fi(m+4,ii) .1t.0.0)go to 1

31 continue
T.eturn

1 q1=cl.{m+3, ii)/a{m+4,ii)
kV"ii
do 100 ii=kp+l, nLL
If{a(m+4,ii).lt.0.0) then
q= a(m+3, li)/a(m+4,ii)
if(q.eq.ql)then
kp=i.l.
ql=q
endif
endif

100 continue

••••



return
end1f
end

c**************************"""""""'************
Subrout1ne simp3 (a,rap,up, ii,kl,ip,kpl

C Matrix operations to oxchange a left-hand and
C rjght-hand variable
C••****************"********.,*,., ••••••••••••••• ****

Integer mp,np,il,kl,ip, kp
Real a(mp,npl

Integer ii,kk
Real v
v=l./a (ip+2,kp+ll

wrlte(',') v
do 55 U=l, .il+2

if(li-1.ne.ip+1) then

a(ii,kp+1j=a(ii,kp+1)*v
do 11 kk=1,k1+1

1f (kk-l.nc. kplthen

d (ii,kkl=a (ii,kk)-a (ip+2,kk) *a (ii,kp+11
endif

11 continue
endif

55 continue

do 13 kk-l.k1+1
if(kk-l.ne.kp)a(ip+2,kk)=-a(ip+2,kk)*v

13 continue

aHp-+2,kp+1)=v
return
end

Now, we consider a numerical example ofSwarup dual type method and solve it by the above
program,



Example 4.2.1

(LFP) Maximize

Sl.lbjeet to

7- -x,+x,+2
- - x, +2

4x,-3x,",,2
X, £ 5

x, ;" 2

x,. X,"" 0

Now, applying the above program, we have obtained the following data:

Tile Jell hand variables are (bagic variable):
152

The right hand variables are (non-basic variable)'
4 J

The value oftbe leage' 0 (Optimal solution is found)

2 0000000000 .3333334000 -.3333333000
4,0000000000 1.3333330000 -.3333333000

2.0000000000 1.3333330000 -.3333333000
3 0000000000 -I 0000000000 .0000000000
2,0000000000 1,0000000000 .0000000000

The maxlrnl.lln vallie is:
.5000000000

Thus applying Swamp duallype method, one can obtain tbe following results,

,,= (2,2) and Zma" = 0,5

4,3. The modified approach of Swarup's primal simplex type method

Tn this section, we suggest a modification based on primal 8implex type method, which extends
the scope ofSwarup [1964JmeLhod discussed in ,ection 4, I oflhi, chapter. Assuming the
positivity of the denominator orlhe objective function ofLFP problem del1ned by

•



(LfP) Maximize F(x)", cx+a
dx+fJ

Subject to

Ax",h

x;':: °

(4 8)

(4,9)

(4.10)

Where x, c, d c;R ", bER '" a & ~ ER; A is an mxn matrix.

SwanJp[1964]!irst developed a method for ~olving LFP problem. However, this method can be
applied only when the system Ax = b is in a canonical form, that is, all constraints ate less than
or equal form (~ ). The problem that is not in canonical form, one can solve by using dual
simplex type method developed by SwanJp[1965]. Likcwisc, LP problem, dual simplex type
method also cannot be applied in the case where the dual feasible basi, is not obtained, Let us
consider thc following numerical cxample

Example.4.3.1

(LFP) Maximize Z = x, - 5
-1',-1',+9

Subject to.

2x, +5x, ;::10
4x, +3x,::; 20

-x,+x,5:2
xl. 1',;0,0

Now, introducing surplus and slaek variables Sl and S2 , s., to I" and 2"J & )"1 constraints

respectively to make the LFI' problem in the standard form as follows:

Ll'PI ) Maximile

Subjcct 10

z=
-1',-:>:,+9

2x, +5x, -", = 10
41', +3x, +$, = 20
-x, +1', +S, =2

XL X"S".I""s,;o, 0

Tlms the initial basic solution
s,=-IO, sl=20,s,_2 andxl=x2=0

•



Now proceed to constluct simplex table as follows:

1l1itial Table

co d" 1
c, - 0 , 0 0 0

d, 0 ., ., 0 0 0

". " " " " ;,

0 0 I, .10 .2 5 , 0 0

0 0 Sl= 20 4 3 0 , 0

0 0 sJ.2 ., , 0 0 ,
, 5 , 9 Z--9/5

Cj-Z, 0 , 0 0 0

d,-zj' ., .1 0 0 0

d, 0 5 141 0 0 0

3; 819 -35/9 , 0 0

dJ',sj 45/& -36135 0 . .

To obtain optimal sollltion we must maintain all dJ';; 0 at each optimization stage, But in the
initial table, we observed lhat "'2 = 4> 0, which indicates tailure ofSwarup[I965] dual type
method

To overcome the above limitation of Swamp!I 964 & 1965] mel hod we suggest a modification
based on Dantiz [1960] two phase method for solving LP problems.

4.3,\' Solution procedure of Dlodilied approach of S•••.arul' [1964]

After introducing slack variables or surplus variables iflhe constraints set

Ax=b (4.11)

Is in a canonical form, ;t indicates that some ortbe constraints arc greater than or equal

form and one can not find leading mitial basic feasible ,olution In that case one has to

follow the procedure-described bellow

Step I: First, one has to find a initial basic n~asible solution of LFP problem. Since, PHASE I of

simplex method concerned with finding initial basic feasible solution with respect to

- .f i

1



'"
artificial objective function and not relevanl to original objective function ofLFP problem, one

can find an initial basic solution as follows

Sub-slep I: We al.lgmcnt the system (4 1I) to include a basic set of artificial variables

w,:::,O( i =1,2, ".,m) so that we have augmented the system

Ax+Jw=b

Where, ,
___.wm) ,

Sub-step 2; Solve the artificial linear program (ALP)'

(ALP)

Subject to

•
Minimize \I' '" 2>',

,~[

Ax+lw=h

x?:O

(4.12)

(413)

(4.14)

Sub-step 3: Since w 0:0, this problem can not have an unbound soll.ltion, Moreover this

problem is feasible, since w' = b, x' = 0, Ii>a ba~ic feasible solution in which artificial

variables w, (i =1,2,__ _,m)are basic, Writing the system (4.13) with using the

variable coefficient of (4.12), we obtain initial tableau of PHASE 1 It should be noted

that the ini(iallableau contains rows corresponding to thc original objective function F of

LFP problem (to be maximized in PHASE II ) and PHASE 1objective function w. The

Simplex method can now be applied to this tableau to minimize w. It would be

terminated an optimal basic solutIon (x',w') to this PHASE 1problem has been lound,

and in this situation, min w::: 0, This is the end of PHASE J.

Two cases may hold no",:

CASE A: min w>O



Here ALP has no solution, since if there is x ~ 0 satisfying (4,1 I), then (x' ,0) is a feasible
solution with w"O to (4,11).(414) and this violets the assumption w>O Thus the simplex
method tenninate, with the conclusion that ALP has no feasible solution.

CASE 8: minw~O

Here all the artificial variabks have been zero, i.e, w,' •• 0 Thus ALP has a feasible solution x",
hom the fiDal simplex tableal.l of PHASE I, one can now deletc the objective row corresponding
to w, since it has served its purpose with this as the starting basic feasible solution, one proceeds
to PHASE II in the next step.

Step II: If PHASE I yields an optimal solution not involving positive artificial variables, one can
start PHASE 1Iwith original objective function of LFP problem and initial basic feasible
solution, which is optimal solution of PHASE L Thcn one has to apply the primal simplex type
method of Swarup [1964] to maximize F, which terminates as soon as either an optimal solution
or an unbounded Olle, In an unbounded solution, all entries ill the pivot column are non-positive
corresponding to the greatest Opposlle relative prufit factor,

Step ill: Now one has to compute zl, z', relative cost factor e,-z," relative profit factor
dj-z/ and the ratio I'lj,

where Zl= CnXu + a

z2=dBxK+ j3
,-Zj -CIlaJ

t/=duaJ

Step lY: One has to choose max I'lJ> 0 fur covering the optimality condition and to improve the
basic solution and the minimum ratio test is to be app[lied to determine the new basic variable to
enter the basis and the departing variable to leave the basis,

Step Y: [fall 6j S;0 in the previous :.tep, then one has reached to the optimal solution, Otherwise
one has 10go to Step 11

Now, we solve the above Example 4,3, 1 applying our modified approach of Swamp [1964] as
follows'

Step I: We have to first find a initial basic feasible solution of the given LFP problem, To do
this, we consider the following ALP'



(ALP) Minimize /-' = 11'

Subjccllo

2x, +5x, -.\",+",=10
4.1',+3x, +s, =20

-x, +.1', +".' = 2
x, X".I'"S"S\,w~O

n

Now we construct the simplex table for PHASE-[ as follows,

PHASE.}

'" ~ " ~ 0 0 0 0 0 1 B

Ba~ist " " " " " w

1 w 2 5 -1 0 0 1 10

0 " 4 3 0 1 0 0 20

0 " -1 1. 0 0 1 0 2

'j Cr Zj -2 -5 1 0 0 0 -10

0 " 215 1 -115 0 0 1/5 2

0 " 14/5 0 315 1 0 -3(5 14
0 " -7/5 0 115 0 I -]/5 0

C, cJ-z, 0 0 0 0 0 I 0

Since all cj' '" 0 and there is 1\0artificial variable in the last table, it yields a primal

feasible solution., this table gives another sub optimal point

s,=O, sl=14,S1"'O andx,:O, x,"'20

Step U; Now the initial basic feasible :;olution is
52=14,8)=0 and x2=20

with d, = -23/5, D2= 4/5 and [\, = L\. '" dl = 0

o



Now, we construct initial table as follows:

INITIAL TABLE

Cit dB!
, 0 I 0 0 0'-
clj_ -I -I 0 0 0

XBI ~ " " " 5, " Xucia"

I -I Xl -2 2/5 I -1/5 0 0 -10

0 0 52=14 14/5 0 315 I 0 70/3

0 0 sJ =0 -7/5 0 115 0 I 0

, -3 , 7 Z -3/7 - - -
CrZj -2/5 0 1/5 0 0

dj-z/ -3/5 0 -1/5 •. 0 0

6;_ 23/5 0 M5 0 0

Sterlll: Since max 6J = 6)=4/5 > 0 and mm x" /a~ = O.Thus SI enter to the basis and s-, leave

to the basis,

FIRST lTERA TlO]\,

'1 d ll! " 0 I 0 0 0-
d

j
_ -I I 0 0 0

x B; ! 5, " " 5, " xll;la;J

I -I x, -2 -I I 0 0 0 -211

0 0 s2=14 7 0 0 I -3 14/7

0 0 51=0 -7 0 I 0 5 0/-7

z -"3 Z 7 Z -3/7 - - - -

"" I 0 0 0 I

drz/ 0 0 0 0 I

',- 7 ! 0 0 0 _4



Step IV: Since max Aj= AI =7;> 0 and min x" ;fa" = 2. Thus Xl enter to the basis and slieave to

the bas]"

FIRST ITERATION

,") d" )
, 0 I 0 0 0,~

--
d,~ -I -I 0 0 0

XIII ~ " " " " " XI>/au

I _1 Xl -4 0 I 0 1/7 4/7
0 0 ",=2 I 0 0 1/7 -3/7

0 0 Sl =\4 0 0 1 I 2
, -1 , 3 Z -1/3 - - - -

Cj Zj 0 0 0 -1/7 -4/7

dj-z/ 0 0 0 U7 1/7
d, ~ 0 0 0 -\/7 -1117

Since all Aj ,.;0 in the above table, thi, table yields an optimal solution,

Thus the solution orthe Example 4,3 \ is:

XI=2,Xl=4 wilhZ"",,=-l!3

Similarly, by using Charncd & Cooper method and Bilran- Novaes mctllod one can also
oblailllhe same result



CHAPTER -5

COMPERATIVE STUDY OF THE METHODS

5.1 Introduction

In this chapter, we discuss the comparative analysis on the Method of 13itran& Novaes [1972],
Swamp [1964 & 1965] and Chames & Cooper [1962] transformation technique considering the
sign of the numerator & denominator of the objective function of LFP problem Islam &Nath
[1992) investigated on Charnes & Cooper [1962]lransformation method and they considered the
following six cases:

CASE I: dx + p>O, VXEX
CASE II' dx + p<o, VXEX
CASE III' dx + P =0, VXEX
CASE IV: dx -l p 20, 'iXEX
CASE V: dx+ p:o:O,\iXEX
CASE. VI: dx + p changes sign over the feasible region X

8ilmn & Novaes [1972] and Swamp [1964& J 965] considered only the case where the
denominator: dx + P of objective function ofLFP problem is strictly positive (i.e, CASE I of
Chames & Cooper [1962] l.

Ifwe multiply the CASE 11and CASE V by -I, they reduced 10 CASE I and CASE IV
respectively Therefore, we may reduce the above six cases investigated by Islam &Nath
[1992] into the following four cases'

CASEI: dx+P>O, VXEX
CASE n dx + p "'0, 'txEX
CASE 1II: dx + p ;:,0, 'v'XEX
CASE IV; dx + p changes sign over the feasible region X

It is further noted that CASE lJJ consists oflhe [ollowing'two sub cases'

(a) dx + p;:'O & ex+O'.>0, \iXEX
(h) dx + p;:,O & cx+o'. <0, 'v'XEX

We can also observe the following:

•



H,

I, Ifd>::~ ~ =0, \;'\EX, the objective function ofLFP problem i,undefined and thus the queslion
of solving Ihe LfJ> problem is me<lning Ics~

2 Ifd); + B;o,O& eX'la >0, vx",X. the objecli,c function (cx+a))I (dx +~)tend; 10 infinite,
where dx,. B tend, to Lew for ;Ollll' ""X and con,cqlu~ntly the problem has nO fmite solution.

3. lfdx + Bchanges sign over X, the ohjective funClion (cx+a:))/ (dx + B) becomes undefined at
which dx + B equals to zero and it lends to inflllile at which d~ + P tends to zero for some XEX
and consequently the problem become, unbounded.

4, The remaining only case where dx + p;::O & c>;4a ,,0. VI''''X rhrough in this case the
objective function of LFP problem tends to infinite at which dx -'-p tends to zero tor some
'iXEX, the pl'Oblem may have finite solutIOn, ilSit is maximizalion one So, tinally it is enough
to consider the following two cases instead of six cases considered by Islam &Nath [1992]'

CASEA:dx+~>Q, \'x"X
CASE B" dx + ~ 20 & ex+a <0, VXEX

5.2. If the denominator is strictly positive (dx + ~ > 0, VXEX)

If tile denominator the objective lunction is strictly pmiti"e the Method of Bitran & Novae"
[1972], Swarup [1964 & 1965J, our modified method of ~wafllp [J 964 ] and Charnes &
Cooper t 1962] transformation technique ,Dive the LFP prublem successfully. We now illustrate
tilLSby simple numerical examples.

Example S.I:

(LFP)
.,~ -x,+x,+2Maximize /" ~ ."-x +2

Subject to

4.1",-3.1",22
x, ,; 5

x 2: 2,
", \',?O

Now. we solve the ab<we problem by using Billan- Novae:; method as follows:

Here c~(-j.j), «(-'2

and

•



.., <'-',d) '" L:>A '" (- 1,1)(0,1) = 1
"

(d,d';= !,J,' =(0,1)(0,1)= I

"
Tnus

Step I :

, , d'
~=l
(d.d)

Tne linear objective timction L l~ given by

[<cd" Ir=\r_x)=< c--,-'-' d ,x)
,d,d)

=<[ (-1,1)-1(0,1) l.x)
=-x,

Now we maXImize 1. subject to the same COllstraint, as follows:

LP) Maximize I. = -x,

Subject to

4x,-3x,22

~,$5
~,22
, ~, :::0,

lnsertlllg surplus variables s, & s-,and .~Iaekvariable Sl to the I", 3"" & 2m constraints

respectively to make the LP problem to its standard lorm as tollows

(LPl) Ma,dmize L" -x,

Subjecllo

4x, -3x, -.', = 2
x, +,', =)

x.. x".'".'"s,"' 0

Adding artificial variable, w, , w, to the I" and ]'" constraints and assign profit -1 to each of the

altilicial variables and profit zero to all other variables 111the objective flillCtioll, then PHASE-

] of the Lt' is'



(ALP) ",la~il\lize /, = -w, -\1,

Subject to

4.1', -_lx, -.1, +"', =2
x, +.1', =5

x,-,', +11',=2

x, X".I',.-',."-,:II', 11',;0,0

Now .we constll.lct simplex table orlbe PHASE-] as follol"5:

PHASE-l

0" l 0" .. i 0 0 0 0 0 -I -I B

BasiS+- " " " s; " w, w,

-I w, 4 -3 I 0 0 I 0 2

0 " I 0 <I I 0 0 0 5

-I w, I 0 0 0 -I 0 1 2

'" cr Z J 5\ 3 I 0 -I 0 0 ,
0 " I -3/4 -114 0 0 1/4 0 1/2

0 " 0 3/4 1/4 I 0 -1/4 0 912

-I w; 0 314 114 0 -I -1/4 I 3/2

'I cJ-zJ 0 3/4 I 1/4 0 -I 114 0 3/2

0 " I 0 0 0 4/3 0 -1 2

0 " 0 0 0 I 413 0 -I 3

0 " 0 I 113 0 - 413 -1/3 4/3 2

°" CJ-Zj 0 0 0 0 0 -I _I 0

Sine""all c,'s Oand there i, no artificial variables in the basis this last table gives an

optimal solution for PHASC-I and W"" CQll,truct lhe simplex table for PHASE-H.



PHASE-II

Since all c,\; 0 _this table gives" sub optimal POLiltx'= (2, 2) with Z(xL) =.1/2 ,

Step II : A&1in, the new ob.iective function L' i, given by

0" j ',~ -I 0 0 0 0 II

Aa,is+ " x, " ;, '.1

I " I 0 0 0 4/3 2

0 SJ 0 0 0 I 4/3 5

0 Xl 0 , In 0 4" 2- ','

" Cr 7,' 0 0 0 . 0 -4/3 2
- --

I.'=dc-Z(x')d Lx)
= <[(-1,1)-1/2(0.1) ],x)
=-x, +112x.,

Now, 'Wemaximize C ,ubject lOlhe same ~et of constraints and hence applying

two pha,e simples method, PHASI:-II ofthc problem'> given by

PHASE-II

I

o
o
o

112

o
o
I

o

o

"o
o
II]

-116 o

o

o
I

o

o
5]

413

413

- 4/3

B

2

5

2

I

SlIlce all c,'s 0, thi, t"ble gives anollier ,ub oplimal point

x'= (2,2) with Z(:<:2)= 1/2

Now, since x' = x' = (2.2), th~retiJre. we have reached to the oplima! Solulion x = (2,2)

with Z,,'" ~ 1/2



Now, we solve the above problem by llsin!! ou" modified .pproach as follows:

(ALP) Minimize L '" w, +w,

Subject to

4x,-3x,-s,+W,",2
x, +sl",5

x,-s, +w,"'2

Now, we construct simplex table of the PHASE-I ali follows:

PHASE-]

" j
Cj ••..••..• 0 0 0 0 0 1 1 B

Basis! " " " " " w, w,
1 w, , -3 -1 0 0 1 0 2

0 " 1 0 0 1 0 0 0 5

1 w, 1 0 0 0 -1 0 1 2

•
g Cj-z) _5 3 1 0 1 0 0 -,

0 " 1 -3/4 -l/4 0 0 II' 0 112

0 " 0 3/4 114 .. 1 0 -1/4 0 9/2

1 w, 0 3/' II' 0 -1 -114 1 3/2

" cr z) 0 - 'I. I -1/4 0 1 Y- O -312

0 " 1 0 0 0 413 0 1 2

0 " 0 0 0 1 '13 0 -1 3

0 " 0 1 1/3 0 - 4/3 -1/3 '13 2

'I Cr Zj 0 0 0 0 0 I 1 0

•Since all Cj :<> 0 and there is 00 artificial variables in the basis this last table, it yields a

basic feasible solution.

x,=x2=2 and sl=3



Thus initial basic solution ofLFP problem,

",'";.:, ••..2 and s,'"3

with .1.1=;',2=.1.4= 0 and A,= -2/3, ;',~=-413

Initial Table

" 1 d, 1 " ~ -I I 0 0 0

dj • 0 I 0 0 0

"Ili " "
., " s.,

-1 0 " 2 1 0 0 0 -1

0 0 5:2=3 0 0 0 I I

I I "2=2 0 I 113 0 -4/3

, -2 ~-4 Z 112 --,-. 0 0 1/3 0 1/3
d -, 0 0 -IB 0 413rZj

d, • 0 0 2/3 0 -4/3

Since all "Ui>0 & all .1.j::;0, we have reached to the optimal solution and the optimal solution is ;
",=2 and "2=2withZm,,= 1/2,

Similarly, by using Swamp dual type method lind Chimes & Cooper method, one can obtain
the following results:

XI=X2'" Zwith Zmox= 1/Z.

5.3. If the denominator dx + P ~Oand the numerator cx+a. < 0, VxeX.

If the denominator dx + ~ <1land the numerator ex+<! < 0, VXEX, the method ofBitran-Novaes
may fail, whereas our modIfied approach ofSwarup simplex type method, Swamp dual type
method & Chames-Cooper transformation technique will always recognize and stop at an
optimal point, ifsuch a point is rcached , We now illustrate this differem:e by following simple
example,

Example 5.2:

(LFP) Maximize Z = - Zx, - 3x,
l-x,-x2

Subject to



x,+x,s;2
x, +X, ;" I

X, x;:eO

Now, introducing slack and surplus variables S1 and 5210 I'" and 2nd constraints respectively to

make the LFP in the standard form,

Thus the initial basic solution
5)"'2,52"'-1 and )[1'" lI2"'O
with iiI'" -4, lw -6, lil", ~"'O

Now proceed to constl\let simple)[ table as follows

Initial Table

"' j d, j 'J ~ .2 • 3 0 0

dj • , ., 0 0

'& " " " "0 0 " 2 ] , , 0
0 0 81'" -1 ., ., 0 ,
, 0 ,"" Z""

C;-z; .2 .) 0 0
d' ., ., 0 0j-LJ

dj • -4 .6 0 0

6j -1/2 112 0 ,
~I/)j 8 12 . .

0 0 s,-1 0 0 , ,
.2 ., )[1"'1 , , 0 .,
Z 2 Z , Z--2

C,-Zj 0 ., 0 .2
d' 0 0 0 .,rLJ

dj 0 ., 0 .4~

Since all )[0;>0 & all "'J'" 0, we have reached to the optimal solution and the optimal solution is :
)[,=1 and )[2 '" OwithZ "",,=-2



Now, we solve the above problem by using our modified approach as foHows:

(ALP) Minimize L co w

Subject to

X,+X,+S,co2
x,+x,-s,+wcol

X,.X"8"S,, W '" 0

Now, we oonstruet simplex table ofthe PHASE-I as follows:

PHASE-l

'" ~
" ~ 0 0 0 0 ] B

Basis+. " " " " w

0 " ] ] ] 0 0 2

1 w 1 1 0 -] ] ]

" Cj-Zj :jf -] 0 ] 0 -]

0 " 0 0 ] ] -] 1

0 " ] ] 0 -I ] ]

" Cj-Zj 0 0 0 0 ] 0

Since all C;',.:;0 lind there is no artificial variables ill the basis this last table, it yields a

basic leasible SOllitioll

xl:1 and s,"'1

Thlls initial basic solution ofLFP problem'

•



Initial Table

'" j d" j <; - -2 -3 0 0

d, • -I -I 0 0

x~; " " " "
0 0 " 1 0 0 1 1

-2 -I xl=1 1 1 0 -I
Z -2 Z -I Z 2

Cj~j 0 -I 0 -2
d -, 0 0 0 -Ij-I]

d, 0 -I 0 -4-Since all Xili >0 & all tl.j'" 0, we have reached 10the optimal solution and the optimal solution is :
XI= 1 and x, = 0 wilh Z mOX = -2,

Similarly, by using Chamn & Cooper transforlnation t«hnique, one can obtain the

following results:

XI'" I and "2 = 0 with Z mo.= -2.

On the other hand if we apply Bitran-Novacs method to solve example 5.2; we obtain

Here c =(-2,-3) . a'" 0

"d
d~(-I,-l) ,P=2

,
:. (c,d} = Le,d, = (-2,-3}(-1,-1) = 5

.~I

.=l

Thus (c,d) =512
(d,d>



Step I: The linear objective function L is given by

L = (r,x) = ([ c- ~:~; d l,x)

=<[ (-2,-3)-5/2(-1,-1) ],x)
=x,l2-x,/2

Now we maximize L subject to the same constraints as follows:

x,+x,S:2
x, +x,;:"]

x, x,;:" 0

Therefore, inserting slack, surplus and artificial variables we obtain:

(ALP) Minimize L ~= w

Subject to

x,+x,+S, =2
x,+x,-s,+w=!
x" x: ,.\",\"w;:"O

Now ,we construct simplex table ofPHASE-! as follows:

PHASE.I

'" ~ " ~ 0 0 0 0 .] B

Basis+. " " " " w

0 " ] ] ] 0 0 2

.] w ] ] 0 .] ] ], 'j " -] , -] 0 1 0 -I

0 " 0 0 ] ] -I ]

0 '. ] ] 0 -] ] ]

" Cj-Zj 0 0 0 0 1 0

Since all c/'20 and the artificial variable w is out of basis, it yields an optimal solulion

for PHASE-I.



" j
Cj .•......••• 112 -112 0 0 B

Basis.+- " " " "
0 ., 0 0 1 1 1

" <, 1 1. 0 -1 1, C r zJ 0 1, 0 1/2 -1/2

0 " 0 0 1 1 1

Y, <, 1 1 1 0 2

'j Cj-Zj 0 -] -1/2 0 -1

Smce all c, e::0 and the last table yIelds a sub-optlmal solutIOn x (2,0) ,

But Z(x') = -4/0, that is, the maximum value is "Undefined.

Conclusion:

If the constraint set or the feasible region X is bounded and the denominator is strictly

positive for all XEX, each of the four algorithm can successfully solve the LFP problem

(see also Example 5.1 of this chapter). The method ofBitran-Novaes[1972] and Swarup

[1964] are algorithmically equivalent in the sense that two algorithms select the same

non-basic variables 10 enter the next trial solution and remove the same basic

variable from the current solution, One can also observed that the technique of Bit ran-

Novaes [1972], which is the solution of a sequence of linear programs, only checks for

optimality of the fractional programs at points that are optimal solution ofintermediary

linear programs. It is also observed that primal Simplex type method ofCharnes &

Cooper, Swarup or Bitran -Novaes are not applicable if the constrains fail the

feasibility; whereas Swal1Jp [1965hdual type method is not applicable If the constraints

fail the optimality

If the denominator dx + P C':Oand the numerator cx+<:t< 0, IIXEX, the method of Bit ran-

Novaes may fail (see also Example 5.2 of this chapter); whereas our modified approach

of Swarup simplex typ<:method, Swamp dual type method & Charnes-Cooper



transfonnatiolllechniQue will always recognize and stop at an optimal point, if such a

point is reached (sec also Example 5,2 of this chapter).

Finally, we conclude that without considering the restrictions on the sign oftbe

denominator orthe objective function ofLFP problem Charnes.Cooper (1962]

transformation technique is more applicable. If ,he constraint set or the feasible region X

is bounded and the denominator is strictly positive for all XEX Bitratl-Novaes [1972]

method which involves a sequence of linear programs, 10 solve a LFP problem it takes

more time and labor; but in the same case Swamp simplex type method solve only a

single LFP problem. So, Swarup(1964J simplex type method with our modilied

approach is best one,

Since large-scale rcallife LFP problem cannot be solved by hand calculations, it requires

computer- oriented wlution, Hence, here we generalize computer program (FORTRAN)

of all these methods for solving LFP problem. So we may conclude that linear fractional

programming method and required computer program a mighty method fOf large scale

optimization problem, where it can be applied.

"
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