COMPARATIVE STUDY OF DIFFERENT METHODS FOR SOLVING LINEAR FRACTIONAL PROGRAMMING PROBLEM

by

MOHAMMED FORHAD UDDIN
Roll No. 100109009P, Registration No. 0110649 , Session: October 2001

MASTER OF PHILOSOPHY in Mathematics

Department of Mathematics, llangladesh University of Engineering and Technology, Dhaka-1000

December 2004

COMPARATIVE STUDY OF DIFFERENT METHODS FOR SOLVING LINEAR FRACTIONAL. PROGRAMMING PROBLEM

Submitted By
MOIIAMMED FORIHAD UDDIN

Registration No. 01 10649, Session: October, 2001, a part-time M. Phil, student in Mathematics has been accepted as satisfactory in partial fulfilment for the

Degree or MASTER OF PHILOSOPHY in Mathenuatics
on December 28, 2004

Board of Examiners

1. Mr. Md. Obayedullah

Assistant Professor

$$
-2 .-(6 y-2 n
$$

Supervisor
(Chairman)
Department of Mathematics, BUET
2. Dr. Md. Annul Islam

Professor
Department of Mathematics, Dhaka University
3. Dr. Nilufar Farhat Hossain

Professor and Head
Department of Mathematics, BUET

Co-Supervisor

AVACMCR
$25-122104$

Member (Ex-Officio)

Member

5. Dr. Ganesh Chandra Roy

Associate professor
Department of Mathematics.

112104

Member (External)

Chittagong University

ABSTRACT

In this thesis, we study the establistied methods of Chames \& Cooper, Birtan \& Novaes and Swarup's primal \& dual simplex type for solving linear fractional programming problem, suggest a modification for Swarup's simplex type method and conpare the methods among themseives. To apply these methods on largescale linear fractional programming problem, we need computer-oriented program of these methods. To fulfill this purpose, we develop computer program (FORTRAN) of these methods and apply on a sizable large-scale linear fractional programming problem of an agricultural farm. Finally, conclusion is drawn in favour of our modified approach of Swarup's primal simplex method.

CANDIDATES DECLARATION

I hereby declare that the work which is being presented in the thesis entitled "Comparative study of different methods for solving linear fractional programming problem." submitted in partial fulfilment of the requirement for the award of the degree of Master of Philosophy in Mathematics, in the Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka is an authentic record of my own work. 1 have not submitted the matter presented in this thesis for the award of any other degree in this or any other university.

ACKNOLEDGEMENT

All praises are due to Almighty for enabling me to complete this dissertation successfully. This is a great pleasure to express my wholehearted gratitude and indebtedness to my reverend supervisor Md. Obayedullah, Department of Mathematics, Bangladesh University of Engineering and Technology and co-supervisor Professor Md. Ainul Islam, Department of Mathemstics, University of Dhaka, who have inspired me to initiate this work. They have extended their full cooperation by offering constant advice, encouragement and proper guidance throughout the entire period of work and preparation of this thesis. Undoubtedly, it would be impossible to complete this work without their invaluable supervision.

I express my deep regards to my honorable teacher, Dr. Nilufar Farhat Hossain, Professor and Head, Deparment of Mathematics, Bangladesh University of Engineering and Technology for providing me help, advice and necessary research facilities.

1 also express iny gratitude to my honorable teachers Dr. Md. Zakerullah, Professor Dr. Md. Mustala Kamal Chowdhury, Md. A. K. Hazra, Mohammad Isa, Md. Abdul Quddus Mean, Dr. Md. Elias, Dr. Md. Abdul Maleque, and Dr. Md. Abdul Hakim Khan of the Department of Mathematics, Bangladesh University of Engineering and Technology for their invaluable guidance and helpful suggestions to complete this research work successfully.
I also offer my best regards to all respected teachers of this Depanmen for their affections, encouragement and kind cooperation. Convey my thanks and best wishes to my friend Md. Moshiour Rahman of the Deparment of Mathematics, BRAC University, for his better suggestions and cooperation.
I acknowledge the heip, co-operation of all olfice staff of this Departmem.
Finally, I convey my regards to my beloved parents, my wife and my relatives who have initiated and encouraged me to accomplish this work properly.

CONTENTS

CHAPTERS Page No

1. INTRODUCTION 1
2. CHARNES \& COOPER METHOD 19
3. BITRAN\& NOVAES METIOD 34
4. SWARUP SIMPLEX TYPE METHOD 48
5.COMPERATIVE STUDY OF THE METHODS 75
REFERENCES 88

CHAPTER - 1

Introduction:

In this thesis, we study the established methods of Chames-Cooper's [1962], Bitran-Novaes [1972] and Swarup [1964 \& 1965] for solving Lincar Fractional Programming (LFP) problem, suggest a modification for Swarup[1964] primal simplex type method and compare the methods among themselves. But a large scale LFP problem, which involves a bumerous amount of data, constraints and variables, cannot be handled analytically with pencil and paper. To overcome the complexities of large-scale Linear Progrananing (LP) problem William ct al. [1992] and Gitlet [1998] developed computer prograin (FORTRAN) . Here, we also generalize computer program (FORTRAN) William et al. [1992] for the methods of Chames-Cooper's [1962], BitranNovaes [1972] and Swarup[1964 \& 1965] to solve all types of LFP problems, whatever the size of data involve in it. To illustrate the purpose, we solve a sizable large-scale LFP on resum to invesiment problem of an agricultural farm, which is formulated in section 1.5. To present our study, we require the following prerequisites:
1.1 Mathematical Programming problem or Mathematical Program (MP) deals with the oplimization (maximization or minimization) of a function of several variables subject to a set of constraints (inequalities or equalities) imposed on the values of variables.

The general MP in n-dimensional Eucliadean space \mathbf{R}^{n} can be stated as foltows:
(MP)
Maximize $\quad f(x)$
Subject to

$$
\begin{align*}
& g_{1}(x) \leq 0, i=1,2, \ldots \ldots, m \tag{1,1}\\
& h_{1}(x)=0, j=1,2, \ldots \ldots, p \tag{1.2}\\
& x \in S \tag{1,3}
\end{align*}
$$

Where $\mathrm{x}=\left(\begin{array}{l}\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \\ \ldots\end{array} \mathrm{x}_{n}\right)^{1}$ is the vector of unknown decision variables and $f(x), \mathrm{gi}_{\mathrm{i}}(\mathrm{x})$, ($i=1,2, \ldots, 1 \pi$), $h_{1}(x),(j=1,2, \ldots$, p) are the real valued finctions

The function $f(x)$ is known as objective function, and incqualities (I.I), equation (1.2) and the restriction (1.3) are referred to as the constraints We have stared the MP as maximization one This has been done without any loss of generality, since a minimization problem can always be converted into a maximuzation problem using the identity

$$
\begin{equation*}
m m f(x)-m a x(f(x)) \tag{1.4}
\end{equation*}
$$

ie, the minimization of $f(x)$ is equivalent the maximization of $(-f(x))$.

The set S is normally taken as a contrected subset of R " tlere the sct S is taken as the entire space R^{n} The set $X=\left\{x \in S, g_{i}(x) \leq 0 ; h_{j}(x)=0, i=1,2, \ldots, j, j=1,2, \ldots, p\right\}$ is known as the feasible region, feasible set or constraint set of the progran MP and any point $x \in X$ is a feasible solution or feasible point of the program MP which satistics all the constraints of MP . If the constraint set X is empty (ie $X=\phi$), then there is no feasible solution, in this case the progran MP is inconsistent
A feasible point $x^{0} \in X$ is known as a global optimal solution to the program MP if

$$
\begin{equation*}
f(x) \leq f\left(x^{\prime \prime}\right), x \in \lambda \tag{1.5}
\end{equation*}
$$

A global optimal solution x° of MP progran is mdeed a globat maximam point of the program MP. A point $x^{\prime \prime}$ is said to be a strict globad maximum point of $f(x)$ over X if the strict inequality (C) in (1.5) holds for all $x \in X$ and $x=x^{\circ}$

A poinh $x^{*} \in X$ is a focal or relative maximum point of $/(x)$ over X if there exists some $\varepsilon>0$ such that

$$
f(x) \leq f\left(x^{*}\right), \forall x \in X \cap N_{2}\left(x^{n}\right)
$$

Where $N_{\varepsilon}\left(x^{x}\right)$ is the neighborhood of x^{*} having radiuse. Similarly, global minimum and local minimum can be detined by changing the sense of inequality.

The MP can be broadly classilied inlo two categories. utheonstraiucd optimization problem and constrxined optimization problem. If the constraint set X is the whole space R^{n}, program $M P$ is then known as an unconstrained optimization problem, in this case, we are interested in finding a pont of $\mathrm{R}^{\prime \prime}$ al which the objective function has an optinum value. On the contrary, if X is a proper subser of $R^{\prime \prime}$

If both the objective function and the constraint set are linear, then MP is called a linear programming problem (LP'P) or a linear program (LP')

On the other hand, mon-linearity of the objective function or constraints gives rise to non-linear programming problem or a non-lisear program (NLP) Several algorithms have been developed to solve certain NLP

1.2 General Lincar Program (GlP)

The GLP is to optimize a linear function subject to linear cquatity and inequality constraints. In other words, we need to delermine the value of $x_{1}, x_{2}, \ldots, x_{n}$ that solve the program
(($/ / P$) Meximize (om Mommize $) \quad \angle=\sum_{i}^{1} c_{r}$
Subject 10

$$
\begin{equation*}
\sum_{1}^{n} u_{v}, r,(s=z) b, \quad i=1,2, \ldots, m \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
x_{i} \geq 0 \tag{1.8}
\end{equation*}
$$

in which $c_{j},(j=1,2, \ldots, n)$ be the profit (or cost) coelficient, $a_{i j}(i=1,2, \ldots, m, j=1,2, \ldots, n)$ be the coellicients matrix $A=\left(a_{14}\right)$ and x_{1} be the decision variables.

The lincar function (1.6) which is to be optimized (maximized or minimized) is known as the objective function of the GLP The inequation (17) are constraints of the GLP An n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\prime} \in R^{\prime \prime}$ which salisties the constrants of the is known as a solution to the GLP.

Feasible solution: Any solution $\lambda_{1},(\mathrm{j}=1,2$.n) to the GLP is called a reasible solution if it satisfies equatoms (1.7) and the non-rlegative restrictions (1.8) .

Optimal solution: A leasible solution $x_{j},(j=1,2$. 1) is said to be ain optimal solution to the GLP if it gives the maximum (or mininum) value of the objective function (1.6)

Constraint set : The set of feasible solution to the GLP is called a constraint set if $X=\left\{\left(x_{1}, x_{2} \ldots, x_{n}\right)^{\boldsymbol{\top}} ;\left(x_{1}, x_{2}, \ldots, x_{p}\right)^{\boldsymbol{\prime}} \in R^{\prime \prime}\right.$ and (1.7) holds at $\left.\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{3}\right\}$.

Standard Linear Program (LPI): Lvery Gl.P cat be reduced to an equivalent LPI as explained below
(i) Conversion of right hand side constraint to non-negative: If a right hand side constant of a constraint is negative, it can be made non-negative by multiplying both sides of the constraints by -1 (if necessary).

(ii) Conversion of inequality constraint to equality :

(a) Slack Variable: For an inequality constraim of the form

$$
\sum_{i=1}^{n} a_{i j} x_{f} \leq b, \quad\left(t=1,2, \ldots, m ; b_{1} \geq 0\right)
$$

adding a non-negative variable $x_{n 11}$ can be made equation

$$
\sum_{j=1}^{n} a_{y} x_{j}+x_{\mathrm{w}-\mathrm{t}}=b_{1} \quad(t=1,2, \ldots, m)
$$

and the mon-negative variable x_{31} is called the slack variable
(b) Surphus Variable: For an inequality constraint of the form

$$
\sum_{i=1}^{n} a_{i j} x_{j} \geq b_{j} \quad\left(i=1,2 \ldots, m: b_{1} \geq 0\right)
$$

subtracting a non-ncgative variables $x_{n} ;$ can be made equation

$$
\sum_{j=1}^{B} a_{13} x_{j} \cdots x_{n \mid}=b, \quad(i=1,2, \ldots \ldots, m)
$$

and the mon-negative variable x_{411} is catled the surplus variable .

So, without any loss of generality a standard linear progrank can be written as follows
(LIf) Maxmize $Z=c^{T} x$
Sublect to $A x=b$

$$
\begin{equation*}
x \geq 0 \tag{110}
\end{equation*}
$$

Where $c, x \in R^{\prime \prime}, A$ is an $m \times n$ matrix. $b \geq 0 \& b \in R^{\prime \prime}$.

In LPI, the $m \times n$ matrix $A=\left(a_{i j}\right)(i=1,2, \ldots m, j=1,2, \ldots n)$ is the coefficient matrix of the equality constraints,$b=\left(b_{1}, b_{2}, \ldots, b_{m}\right)^{\prime}$ is the vector of right hand side constraints, the component of c are the profit factors, $x=\left(x_{1}, x_{2}, \ldots, x_{1}\right)^{\prime} \in R^{11}$ is the vector of variables called the decision variables and constraint ($\mid 11$) are known as non-negative constraints. The column vector of the matriv A refered to as aclivity vectors

Now we present the following definitions for standard linear program LPI :

Feasible solution: A vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is a feasible solution of the LPI if it satishies condition (110) and (1.11).

Basic solution: λ basic solution $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{r}$ to a LPI is a solution obtained by setting (n mi) variables equal to zero and solving the remaining m variables, provided that the determinant of the coefficients of these m variables are non-zero. The m variables are called basic variables.

Dasic feasible solution: A basic feasible solution $x=\left(x_{1}, x_{2}, \ldots x_{n}\right)^{1}$ to the LPI is a basic solution which also satislies (1.16), that is, all basic variables are non-regative .

Non-degenerate basic feasible solution: A basic fasibie solution $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{5}$ is said to be non-degencrate if it has exactly mpositive (non zero) varables $x_{1},(j=1,2, \ldots, n$), that is, all basic variables are positive On the other hath, the solution is degenerate if one or more of the m basic variables are zero

Optimal solution: A basic feasible solution $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{3}$ is said to be an optimal solution or optimum if it maximize the objective function white satisfying the condition (1.10) and (1.11) , that is, $f\left(x^{\prime \prime}\right) \geq f(x), \forall x \in \mathrm{X}$

Basic solution and some Notations

Basic solution: Consider the constraints (l 10) i.e., $A x=b$, are constraints and rank (A) $=\mathrm{m}(\leq n)$. Let B be any non-singular $m \times m$ sub matrix made up of the columns or A and R be the remaining portion of matrix A Further, suppose that X_{13} is the vector of variables associated with the columns of B Then (1 10) can be writlen as-

$$
\begin{array}{r}
{[B, R]\left[\begin{array}{l}
x_{n} \\
x_{n, 3}
\end{array}\right]=b} \\
o r, b x_{b}+R x_{: y, k}=b
\end{array}
$$

That is, the general solution of (1 10) is given by

$$
\begin{align*}
x_{y}= & B^{-1} b-B^{-1} R x_{, ~} \\
& o r, x_{B}+B^{-1} R x_{*, s}=B^{1} b \tag{112}
\end{align*}
$$

Where the (n-min) variables $x_{i n}$ can be assigned abibtrary values. The particular solution of (1.10) is given by

$$
\begin{equation*}
x_{f f}=b^{-1} b, x_{\backslash B}=0 \tag{1.13}
\end{equation*}
$$

is called the basic solution to the system $A x=b$ with respect to the basic matrix B. The variables $x_{\text {vis }}$ are known as the vector of non-basic variables and the variables x_{13} are said to be the vector of basic variables.

It should be noted that the columa of A associated with the basic matrin B are linearly independent and all non-basic variables of x, ware zero in a basic solution The equation (1.13) is known as feasible canonical form, 1 the basic solution given by it is feasible, that is, $x_{3} \geq 0$. Suppose there exists a basic feasible solutron to the constraints (1.10) and (1.11). The cocfficient of the variables in the objective function Z, after the basic variables from it have been eliminated , are called relative profit factors [in a minimization problen, we call cost factors in place of relative profit factors].

In order to find the relative profit factors corresponding to the basic matrix B, we partition the proht vector cas

$$
c^{s}=\left\lfloor c_{k,}^{d}, c_{v i n}^{\prime} \mid\right.
$$

Where \mathcal{c}_{1} and $c_{\mathrm{N}_{3}}$ are the profit vectors corresponding to the variables x_{B} and x_{NB} respectively. The objective function then is

$$
\begin{equation*}
Z=c^{\top} x=c_{B}^{\top} x_{B}+c_{s, H}^{7} x_{A D} \tag{1.14}
\end{equation*}
$$

Subsracting in this equation (1 14) the values of x_{13}, from (1.12), we get,

$$
\begin{aligned}
Z & =c_{h}^{\gamma} B^{-1} b-c_{B}^{T} B^{-1} R x_{N B}+c_{N B}^{T} x_{S B B} \\
& =\overline{7}+\left[c_{N B}^{\gamma}-c_{B}^{T} B^{-1} R\right] x_{w B} \\
& =\bar{Z}+\bar{c}_{b}^{\prime} x_{B B}+\bar{c}_{\alpha B}^{\top} x_{B B H} \\
& =\bar{Z}+\bar{c}^{1} \mathbf{r} .
\end{aligned}
$$

Where

$$
\begin{aligned}
& \bar{c}=\left[\begin{array}{l}
c_{B}^{\prime} \\
c_{v B}
\end{array}\right] \\
& \bar{c}_{B}=0 \\
& \bar{c}_{* H}^{\prime}=c_{X_{3}^{\prime}}^{\prime}-c_{H}^{c} B^{-1} R \\
& \bar{Z}=c_{B}^{\gamma} B^{-1} b
\end{aligned}
$$

Here \bar{c} is the vector of relative profit factors corresponding to the basic matrix B and \bar{Z} is the value of the objective function at the basic solution is given by (1.13) Observe that the components of \bar{c} corresponding to the basic variables are zero, which ought to be as is evident from the definition of \bar{c}

1.3 Simplex method

The simplex method is an iterative procedure for sulving a tincar progrann in a finite number of steps and provides all the information about the prograin. Also it medicates whether or not the program is feasible If the program is leasible, it either finds an optimal solution or indicates that an unbounded solution exists At liust G B. Danzzig developed this method in 1950. Following Dantzig [1963], Gillct [1988] described the simplex method as below:

Basically the simplex method is an iterative procedure that can be used to solve any linear programbing model if the needed computer time and storage are available it is assumed that the original linear programming model

$$
\begin{equation*}
\text { Maximze } \quad Z=\sum_{k=1}^{n} c_{1}, x_{i} \tag{1.15}
\end{equation*}
$$

Subject to

$$
\begin{equation*}
\sum_{j=1}^{r} a_{1 j} x_{s}(\leq=\geq) b_{r} \quad, i=1,2_{r}, m \tag{1.16}
\end{equation*}
$$

$$
\begin{equation*}
x_{1}, b_{1} \geq 0 \tag{117}
\end{equation*}
$$

has been converted to the equivalent standard LP model.

$$
\begin{equation*}
\text { Mcaimuze } \quad Z=\sum_{i=1}^{r} c_{1}, x_{i} \tag{1.18}
\end{equation*}
$$

Subject to

$$
\begin{gather*}
\sum_{i=1}^{n} a_{1} x_{j}=b_{1} \quad . \quad 1=1,2, \ldots, m \tag{1.19}\\
x_{s} \geq 0 \tag{1.20}
\end{gather*}
$$

Which includes slack variables that have been added to the lell side of cach less than or equal to constraint, surplus variables that have beer subtacted from the lell side of each greater than or equal to constraint, and artifictal variables that have been added to the left side of each greater than or equal to constraint and each equality. It is assumed that the profit coefficients for the
slack and surplus variables ate zero whle the coelficients for the antificial variables are arbitrary small negative numbers (algebraically), say - \mathbf{M}. The equivalent model necessarily assures us What each equation contains a varlable with a coefficient of 1 in that equation and a coefficient zero in each of the other equations. If the origital constrant was less than or equal to constraint, the slack variable in the corresponding equation will satisly the conditon just stated. Likewise. the artificial variables that have been added to the greater than or equal to constraint and each equality satisfy the condition for cach of the femaining equations in the equivalent nodel. These slack and artiticial variables are the basic variables in the initial basic solution of the equivalent problem.
The equivalent model is now rewritten as
Maximize Z
Subject to

$$
\begin{align*}
& Z-\sum_{j=1}^{n} c_{j} x_{\mathrm{r}}=0 \tag{1.22}\\
& \sum_{j=1}^{n} a_{1 y} x_{j}=b_{1} \quad, t=1.2, ., m \tag{1.23}
\end{align*}
$$

$$
\begin{equation*}
x, \geq 0 \tag{1.24}
\end{equation*}
$$

Suce $\mathcal{c}_{3}=-\mathrm{M}$ for each artificial variable, we must multiply by -M each equation represented by (1.23) that contaits an artificial variable and add the resulting equations to equation (1.23) to give

Maxmmee Z
subect 1%

$$
\begin{align*}
& Z-\sum_{j=1}^{n} c_{j} x_{j}=b_{n} \tag{1.26}\\
& \sum_{i=1}^{n} a_{y j} x_{j}=h_{1} \quad, i=1.2, ., m \tag{1.27}
\end{align*}
$$

$$
\begin{equation*}
x, \geq 0 \tag{1.28}
\end{equation*}
$$

Wherc $b_{n}=-M \sum_{t} b_{t}$ and * represent the equations containing artilictal variables. This assures us that each equation in (1.27) contains a stack or artificial varrable that has a coefficient of 1 in that equation and a coefficient of zero in each of the otler equations in (1 27) as well as in equation (126) Equation (1.26) will be referfed to as the objective function equation. We will now present the general simplex method. A computer -oriented algorithm will be followed to carry out this method

Step1: Obtain an initial basic feasible solutwon of the equavalent model; that is, let $\mathrm{x}_{\mathrm{ij} \text {. }}$ $\mathrm{i}=1,2, \ldots \ldots . \quad \ldots$.
Be the initial basic feasible solution where x_{131} denotes the $i^{\text {ll }}$ basic variable and corresponds to the slack or arificial variable it the 'th $^{\text {th }}$ equation.

Step2: Sclect the not-basic variable with the most negative coefficient in the equation (1.26) as the variable to enter as a basic variable in the new basic feasible solutron. If all coefficients in equation (1.26) are non-negative, an optimal solution of the original model only if the basic vartables are void of any artificial variables with a positive value. That is to say, if at least one basic varrable is an artilicial variable with a positive value in the optimal solution of equivalent model, then there are no feasible solutions of the original model.

Step3: Select a basic variable to leave the set of variables that are present in the carrent basic feasible solution. The basic varable in the equaton corresponding to the minimum ratios of the b_{1} "s to the corresponding positive coeflicient of enteritg variable in each equation represented by (1.27) will leave and not be a part of the next basic feasible solution. Let equation r contains the leaving variable. If there are no non-negative ratios, then the objective function is unbounded above (That is no finite optimal sotution exists)

Step 4: Perform elementary transformations on equation (1.26) and (1.27) until the coefficient of the entering variable from step 2 is the to equation r and zero in every other equation including equation (I 26). This can be accomplished by the Gauss-Jordan elimination method for solving a system of linear equations The new basic feasible solution is $x_{B_{1}}=b_{i}{ }^{*}, 1=1,2, \ldots \ldots \ldots, m$ Where $x_{131}(i \neq 9)$ corresponds to the same basic variables in the previous basic feasible solution and $x_{1 r}$ corresponds to the new basic variable that just entered the basic solution.

Step 5: Let equation (1.26) and (127) now represemt the transformed system of linear equations from Step 5 Returt to step 2.

Properties of the Simplex Method:

The impertant properties of the simplex method are summarized here for convenient ready reference.
i) The simplex method for maximizing the objective function stars at a basic feasible solution for the equivalent model and moves to an adjacent basic feasible solution that does not decrease the value of the objective function. If such a solution does not exist, an optimal solution for the equivalent model has been reached That is, if all of the coefficients of the non-basic variables in the objective function equation are greater than or equal to zero at some point, then an optimal solution for the equivalent nodel has been reached.
2) If an artificial variable is in an optimal solution of the equivalent model at a non-zero level, then no feasible solution for the original model exists. On the contrary, if the optimal solution of the equivalent model docs not contain an artificial variable at a nonzero level, the solution is also optimal for the original modet
3) If all of the slack, surplus, and artificial variables are zero when an optimal solution of the equivalent model is icached, then all of the constraints in the original model are strict "equalities" for the values of the variables that optimize the objective function
4) If a non-basic variable has rero coefficients in the objective lunction equation when an optimal solution is reached, there are nultipic optimal solutions. In fact, there is infinity of optimal solutions The simplex method finds only one optimal solution and stops.
5) Once an antificial variable leaves the set of basic variables (the basic), it will never enter the basis again. So all calculations for that variable can be ignored in future sleps.
6) When selecling the variable to leave the current basis
a) If two or more ratio is smallest, choose one arbirarily.
b) If a positive ratio does nol exist, the objective function in the original model is not bounded by the constraints. Thus, a finite optimal solution for the original model does not exist
7) If a basis has a varable at the zcro level, it is called a degenerate basis.
8) Although cycling is possible, there have never been any pracical problems for which the simplex method failed to converge.

Linear Fractional Program (LFP):

Recently various optimization problenis, involving the optimization of the ratio of functions, e. g; tunc/cost, volume/cost, profit/cust, fossicost or other quantities measuring the efliciency of the system have been the subject of wide interest is noti-linear programming problen. Such problems are known as LFP.

If the objective function of a mathematical programming problem is the ratio of two linear functions and the constraints are linear, it is called a linear fractional programming problem, or LFP. Likewise LP, a standard LFP can be expressed as follows
(LFP) Mcoxmme $\quad f(x)=\frac{c^{\prime \prime \prime} x+\alpha}{d^{1} x+\beta}$
Sublect to

$$
\begin{equation*}
x \in X=\left\{x \in R^{\prime \prime}, A x=h, x \geq 0\right\} \tag{1.30}
\end{equation*}
$$

Where $x, c, d \in R^{n} ; b \in R^{m}: \alpha, \beta \in R ; A$ is an mxn matrix and superscript T denotes transpose

For simplicity of notation, throughout this chapter and hence forlh, we can omit the transpose sign T over vectors in an inner product of two vectors, one call assume that the left hand side vectors be a row vector and righ side vector be a column vector.

Now a day, linear fraction criteria are frequently encountered in business and economics such as

Corporate Planning

Min [debt-to-cquity ratio]
Max [return on investnentr]
Max [out put per employce]
Min \{actual cost to-standard cost]

Bank Balance Sheet Management

Min [risk assels -to-capital]
Max [actual capital -to-rcquired capital]
Min [foreign loans-to-totat hoans]
Mm [residential morlgages -to-total moltgages]

Linear fractional objective also occur in other areas of science, enginecring and social sciences .Now we consider a real life problem

1.5 A Production Problem of a certain agricultural farm:

Suppose a farmer has $1000000 /=$ taka by which he can cultivate maximum 50 hectors of land. The farmer wishes to cultivate difierent crops (Rice, Wheat, Jute, Potatoes, Pulse, Maize, Mustard seed, Tomatoes, Brinjal , onion, Cauliflower, Cabbages and Beans). He has the following data for per hector'

Name of Crops	Cost of seeds	Fertilizer cost	Irrigation cost	Pest Management	Cutivation cost	Labour cost	Return
Rice	375	4260	4500	500	1500	1500	25200
Whicat	1500	4660	1500	400	2000	1500	23000
lute	210	1580	700	800	2000	1800	14000
Potatoes	22500	6050	1500	600	1500	1200	66000
Pulse	1000	1780	700	800	1200	1500	13800
Maize	400	5960	1500	400	1200	1500	21700
Mustard sced	500	5840	700	400	1200	1500	20100
Tomatoes	500	11870	3000	800	2000	1500	39220
Brimjal	500	6130	3500	1000	1500	1500	28000
Onion	7000	6825	1000	200	1500	1800	36350
Caulitlower	1000	6550	4000	600	1500	2000	31180
Cabbage	1000	7445	3500	500	1500	2000	30000
Beans	200	4025	1000	200	1500	1500	16800

In addition the larmer has the following limitations of expenditures:
Maximum mvestment tor seeds is taka 135000/=
Maximum investment for fertilizer is taka $286000 /=$
Maximum investment for irrigation 15 taka 115000/=
Maximum investment for pest management is taka 30000/=
Maximum investment for cultivaton is taka 95000/=
Maximum investnent for labor is taka $100000 /=$
And the farmer has a tixed expenditure taka $5000 /=$.

The objective is to mavimize the ratio of return to investment. This leads to a LFP.

Formulation:

The three baste steps in constructing a L.FP model are as follows:
Step1; Identify the uthnown variables to be determined (decision variables) and represent them in terms of algebraic symbols.

Step 2: Identify all the rebtrictions or constrains in the problem and express them as linear cupuations or inequalities, which are linear functions of the unknown variables.
Step 3: (dentify the objective or criterion and represent it as a ratio of two linear functions of the decision variables, which is to be maximized (or minimized)

Now, we shall formulate above problem as follows:

Step 1: (Identify the Decision variables)
For this problem the unknown variables arc the heciors of lands planted for different crops. So,
let $\quad x_{1}=$ The hectors of land planted for Rice
$x_{2}=$ The hectors of land planted for Wheat
$\mathrm{x}_{3}=$ The hectors of land planted for Jute
$x_{4}=$ The hectors of land planted for Potatoes
$x_{5}=$ The hectors of land planted cor Puse
$x_{6}=$ The hectors of land planted for Maize
$x_{7}=$ The hectors of land planted for Mustard seed
$x_{x}=$ The hectors of land planted for Tomatocs.
$x_{9}=$ The hectors of land platuted for Brimal
$x_{10}=$ The hectors of land planted for Onion
$\mathrm{x}_{11}=$ The hectors of land planted for Cauliflower
$\mathrm{x}_{12}=$ The hectors of land planted for Cabbage
and $\quad x_{13}=$ The hectors of land planted for Beans
Step 2: (Identify the Constraint)
In this problen constraints are the limited availability of fund for different purposes as follows:

1. Since the larmer wishes to cultivate maximum 50 hectors of land, so we have

$$
x_{1}+x_{2}+x_{5}+x_{4}+x_{5} \div x_{6}+x_{7}+x_{6}+x_{9}+x_{30}+x_{16}+x_{12}+x_{13} \leq 50
$$

2 Since the farmer has Maxitnum investment for seeds is taka 135000\% so we have
$375 x_{1}+1500 x_{2}+210 x_{3}+22500 x_{4}+1000 x_{5}+400 x_{6}+500 x_{7}+500 x_{6}+500 x_{4}+7000 x_{10}$
$+1000 x_{11}+1000 x_{12}+200 x_{13} \leq 135000$
3. Since maximun jnvestment for Fertilizer is ata $286000 /=$, so we have
$4260 x_{1}+4660 x_{2}+1580 x_{3}+6050 x_{7}+1780 x_{4}+5960 x_{6}+5840 x_{7}+11870 x_{8}+6130 x_{t r}$
$+6825 x_{11}+6550 x_{11}+7445 x_{12}+4025 x_{1 ;} \leq 286000$

4 Since the farmer has Maximum investment for migation is taka 1 I 5000%, so we have

$$
\begin{aligned}
& 4500 x_{1}+1500 x_{2}+700 x_{3}+1500 x_{4}+700 x_{4}+1500 x_{6}+700 x_{7}+3000 x_{5}+3500 x_{9} \\
& +1000 x_{11}+4000 x_{11}+3500 x_{12}+1000 x_{15} \leq 115000
\end{aligned}
$$

5. Since the farmer has Maximum investment for Pest management is taka $30000=$, so we have $500 x_{6}+400 x_{2}+800 x_{3}+600 x_{4}+800 x_{5}+400 x_{b}+400 x_{7}+800 x_{8}+1000 x_{4}$ $+200 x_{10}+600 x_{11}+500 x_{12}+200 x_{13} \leq 30000$

6 Since the farmer has Maximum investment for Cultivalion cost is taka $95000 /=$, so we have

$$
\begin{aligned}
& 1500 x_{1}+2000 x_{2}+2000 x_{3}+1500 x_{4}+1200 x_{4} \pm 1200 x_{6}+1200 x_{7}+2000 x_{8}+1500 x_{9} \\
+ & 1500 x_{111}+1500 x_{11}+1500 x_{12}+1500 x_{15} \leq 95000
\end{aligned}
$$

7. Since the farmer has Maximum investment for labout is taka $100000 /=$, so we have

$$
\begin{aligned}
& 1500 x_{1}+1500 x_{2}+1800 x_{1}+1200 x_{4}+1500 x_{8}+1500 x_{6}+1500 x_{7}+1500 x_{8}+1500 x_{y} \\
+ & 1800 x_{11}+2000 x_{11}+2000 x_{12}+1500 x_{1,3} \leq 100000
\end{aligned}
$$

We must assume that the variables $x_{1}, i=1,2, \ldots, 13$ are trot allowed to be negative. That is, We do not make negative guantities of any product.

Step 3: (Identify the objective)
th this case, the objective is to maximize the ratio of total retum and investment by different crops. That is,

$$
\operatorname{Mar} F(x)=\frac{25200 x_{1}+23000 x_{2}+14000 x_{3}+66000 x_{4}+13800 x_{5}+21700 x_{6}+20100 x_{7}}{+39220 x_{8}+28000 x_{11}+36350 x_{111}+31180 x_{11}+30000 x_{12}+16800 x_{51}} \begin{aligned}
& 5000+12635 x_{1}+11560 x_{7}+7090 x_{3}+33350 x_{4}+6980 x_{5}+10960 x_{8}+10140 x_{7} \\
& \\
& +19670 x_{4}+14130 x_{1}+18325 x_{111}+15650 x_{11}+15945 x_{12}+8425 x_{13}
\end{aligned}
$$

Now, we have expressed our problen as a mathematical model. Since the objective function is the ratio of return 10 investment and all of the constrants furctions are linear , the problem can be modeled as the following LFP modet:

$$
\begin{aligned}
& 25200 x_{1}+23000 x_{z}+14000 x_{s}+66000 x_{1}+13800 x_{4}+21700 x_{6}+20100 x_{7} \\
\operatorname{Max} F(x)= & \frac{+39220 x_{8}+28000 x_{9}+36350 x_{11}+31180 x_{1}+30000 x_{12}+16800 x_{13}}{5000+12635 x_{1}+1560 x_{z}+7090 x_{3}+33350 x_{+}+6980 x_{s}+10960 x_{6}+10140 x_{7}} \\
& +19670 x_{x}+14130 x_{9}+18325 x_{61}+15050 x_{11}+15945 x_{12}+8425 x_{13}
\end{aligned}
$$

Subject to

$$
\begin{aligned}
& x_{1}+x_{2}+x_{2}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}+x_{9}+x_{11}+x_{11}+x_{12}+x_{62} \leq 50 \\
& 375 x_{1}+1500 x_{z}+210 x_{i}+22500 x_{4}+1000 x_{s}+400 x_{6}+500 x_{7}+500 x_{k}+500 x_{7} \\
& +7000 x_{11}+1000 x_{11}+10 x_{12}+200 x_{17}=135000 \\
& 4260 x_{1}+4660 x_{2}+1580 x_{3}+6050 x_{4}+1780 x_{2}+5900 x_{6}+5840 x_{3}+11870 x_{k} \\
& +6130 x_{1,}+6825 x_{11}+6550 x_{11}+7445 x_{12}+4025 x_{1:} \leq 286000 \\
& 4500 x_{1}+1500 x_{2}+700 x_{3}+1500 x_{4}+700 x_{3}+1500 x_{6}+700 x_{3}+3000 r_{8} \\
& +3500 x_{7}+1000 x_{16}+4000 x_{11}+3500 x_{12}+1000 x_{13} \leq 115000 \\
& 500 x_{1}+400 x_{2}+800 x_{5}+600 x_{4}+800 x_{5}+400 x_{6}+400 x_{7}+800 x_{5} \\
& +1000 x_{4}+200 x_{10}+600 x_{11}+500 x_{12}+200 x_{13} \leq 30000 \\
& 1500 x_{1}+2000 x_{2}+2000 x_{3}+1500 x_{2}+1200 x_{5}+1200 x_{b}+1200 x_{7}+2000 x_{8} \\
& +1500 x_{u}+1500 x_{6}+1500 x_{11}+1500 x_{1-}+1500 x_{1} \leq 95000 \\
& 1500 x_{4}+1500 x_{z}+1800 x_{3} \div 1200 x_{4}+1500 x_{8}+1500 x_{6}+1500 x_{7}+1500 x_{h} \\
& +1500 x_{4}+1800 x_{10}+2000 x_{11}+2000 x_{12}+1500 x_{1} \leq 100000 \\
& x_{1}, x_{2}, x_{1}, x_{1}, x_{1}, x_{6}, x_{1}, x_{5}, x_{11}, x_{16}, x_{11}+x_{12}, x_{13} \geq 0
\end{aligned}
$$

Thus the given problem has been formulated as a LFP We will solve this formulated problem by using different methods

1.6 Summary of the thesis

In this thesis, we study the established methods of Charmes-Cooper's[1962], Bitran-Novaes [1972] and Swarup[1964\&1965] for solving LFP problem, suggest a modification for Swarup[1964] simplex type method and compare the methods among themselves. But to apply these methods on large- scale LliP problem, we need computer- oriented program of these methods. To fulfill this purpose. we develop computer programs (IFORTRAN) of these methods and solve a sizable large-scale relum to investment problem, which is formulated in section 1.5. The method of Chames-Cooper's [1962], Bitran-Novaes [1972] and Swanp [1964 \& 1965] are briefly presented in chapler- 2 , chapter- 3 and chapter- 4 respectively. Further in section 4.3 , we suggest a modilied approach of Swarup [1964] simplex type method. In chapter-5, a comparative study is made of the above methods on the base of Islam \& Nath [1992] investigations. Finally, conclusion is drawn in favour of our modified approach of Swanap's primal simplex type method.

CHAPTER-2

CHARNES \& COOPER METHOD

In this chapter, we shall discuss briefly the nethod of Charnes \& Cooper [1962] for solving LFP problem defined by (1.29) and (1.30) and develop computer program (FORTRAN) for this method.

Considering all possible cases relating to the sign of denominator of objective function or LFP problen, [slam \& Nath [1992] obtained some independent results to investigate how Charnes \& Cooper [1962] inetiod can be applied for solving IFP problem

The Summary of the Method

Charnes \& Cooper [1962] considered the L.FP problem defined by (1.29) and (130). They also assumed that-

1) The feasible region X is non-empty and bounded,
2) $c x-1 \alpha$ and $d x+\beta$ do not vanish sumultaneously in X

Introducing the variable transformation $y=t x$, Where $1 \geq 0$, Clarnes $\&$ Cooper [1962] proved that LFP problem is reduced to either of the following two Equivalent Linear Prograns (ELPs)
(E) Maxinize $Z_{1}{ }^{-}{ }^{\prime} y^{\prime}{ }^{\prime} a t$

Subject to

$$
\begin{aligned}
& A y+b t \cdots 0 \\
& d y+\beta t=1 \\
& \therefore t \geq 0 .
\end{aligned}
$$

And
(FN) Maximize $Z_{2}--c y-\beta t$
Subject to

$$
\begin{aligned}
& A y-b r-0 \\
& d y \cdot \beta t \cdot-l \\
& y, t \geq 0 .
\end{aligned}
$$

Then they used the well-known Dantzy $[1960]$ smplex method to solve either Equivalent Positive (EP) or Equivalent Negative (EN) problem.

Ir onc of the problems EP and EN has an optimal solution $\left(y^{*}, f^{*}\right)$ and the other is inconsistent, then the LIFP problem also has an optimal solution $x^{*}=y^{*} / t^{*}$ If any one of the two problems is unbounded, then the LFP problens is unbounded. Therefore, if the problem first is found unbounded, one cal avoid solving the other

Remark 2.1

It should be observed that the same reduction can be made using the numerator instead of denominator

Since, $\max \frac{c^{\top} x+\alpha}{d^{T} x+\beta}=\max (-1) \frac{d^{\prime} x+\beta}{c^{\top} x+\alpha}$

Remark 2.2

Thus, if one knows the sign of either the mumerator or the denominater of the objective function, one need only solve a single ordinary linear programming problem.

Though Charnes \& Cooper [1962]discussed some cases relating to the sign of denominator of objective function, it seems that they did not exhaust all cases. Next Islam $\&$ Nath [1992] considered the following six cases coverng all possibilities of the sign of denominator $d x+\beta$ of LFP problem over the feasible region X and obtaincd some indepenctent results to investigate how Charnes \& Cooper [1962] method can be applied for solving LFP problem Then they discussed from CASE I to CASE VI indelails relating to the sign of the denominator $d x+\beta$ of the objective litiction LFP problem and obtaned the following results.

CASE I: $d x: \beta>0, \forall^{\prime} x \in \lambda$

Theorem:2.3.1: If $d x^{\prime} \beta>0$ for all x belongs to X, then
I) Ef? has an uptimal solution (y^{*}, f^{*}) and EN is inconsistent ;
2) LFP has an optimal solution $x^{*} \cdot y^{*} \cdot y^{*}$.

CASE 11: $d x, \beta<0$, for all x belongs to X

Theorem 2.3.2: if $d x+\rho<0$, for all x belongs to X, then

1) EN has an optimal solution $\left(v^{*}, t^{*}\right)$ and EP is inconsistent;
2) LFP has an optimal solution $x^{*}=y^{* / t^{*}}$.

CASE III: $\quad d x+\rho=0$, for all x belongs to N .

Theorem 2.3.3: if: $d x+\beta=0, \vee x \in \bar{X}$, then

1) Both EP and EN are iticonsistent.
2) LHP problem is undefined.

In this case the objective function of LFP problem becomes undefined and thus the question of solving a problem does not arise

CASE IV: $d x+\beta \geq 0$, for all x belongs to K.
Theorem 2.3.4: Let P be a non-empty sub set of X such that $\alpha x+\beta=0, \forall x \in P$ and $\alpha x+\beta>0, \forall x \in X-\beta$.If
a) $c x+\alpha>0, \forall x \in P$, then

1) $E P$ is urbounded and $E N$ is inconsistent;
2) LFP is unbounded
b) $c x+a<0, \forall x \in X$, then
3) EP has a frote optimal solution (y^{*}, i^{*}) and EN is inconsistent,
4) LHP problem has a litvite optimal solution $x^{*}=y^{* / /^{*}}$
.-

CASEV: $\alpha x+\beta \leq 0$, for all x belongs to X

Theorem 2.3.5: Let P be a non-empty sub set of X such that $d x+\beta=0, \forall x \in P$ and $d x+\beta<0, \forall x \in X-P$ If

$$
y
$$

a) $c x+a<0, \forall x \in P$, then

1) EN has an optimal solution $\left(y^{*}, f^{*}\right)$ and EP is inconsistent ,
2) LFP problem has an optimal solution $x^{*}=y^{*} / t^{*}$.
b) $c x+\alpha<0, \forall \boldsymbol{x} \in X$, then
3) EN is unbounded and $E P$ is inconsistent,
4) LFP problen is unbounded

CASEVI: $d x+\rho$ changes sign over X.

Theorem 2.3.5: If $d x+\beta$ changes sign over λ, then

1) Ether EP or EN is unbounded and other las optimal solution;
2) LFP problem is unbounded.

The solution procedure for LFP problem applying Charnes \& Cooper [1962] technique can be summarized in the following diagram

If the sign of the denominator $d x+\beta$ is known over X , the above discussion shows that one can solve LFP problem by solving cither EP or EN But in reality, it is rather impossible to know the sign of the denominator $d x-1$ over X Since LFP problem can be solved by solving at most two linear programs I:P \& EN. So for solving LIP problem one must proceed in reverse order. If one of the problems EN \& EN has an optimal solution and other is inconsistent, then LFP problem also has an optimal solution. If anyone of the two

Problems EP \& EN is urbounded, and then LFP problem is also unbounded. Thus if the problem solved first is unbounded, one need not to solve the oher.

We now wish to present Fotran computer program of the method as fotlows'

Fortran Program for Charnes $\&$ Cooper [1062] transformation techuique.

C * PROGRAM FOR Charines \& COOPET TECHNIQUE
C * M NGMBER OF CONSTRAINTS
C * N NOMBER OF VARTABLES
C * nd NUMBER OF LESS THAN OR EQURL TYPE CONSTRAINTS
C * m2 NUMBER OF GRTATER THRN OR EQUFL TYPE CONSTRAINTS
C * m3 NUMPER OF EQUAL TYPE CONSTRAINTS
C. * ICASE 0 OP"JMAT SOTUT ION iS FOUND

C * ICASF - 1 JNCONSISTENT SOLUTION IS FOUND
C * ICASE 1 UNFOUNDED SOLJTION IS FOUND
C * A (i, j) COEFFICIENT MATRIX OF EP.
C * B(j, j)COEFFICIENT MATR]X OF NJ.

Farameter $(\mathrm{M}=3, \mathrm{~N}=3\}$
Reíl $a(M+2, N+1), b(M+2, N+1)$
Integer np, mp,ml,m2,m3,icase,izrov(N),iposv(M), x(N+1)
Open (1, file= 'C]4. dat')
Open (2, file='C13. Aat') Read (1, *) m1, m2, m3
$m=M+2$
$n \mathrm{p}=\mathrm{N}+1$

Read $(1, *)((a(\lambda, J), J=1, N+1), i=1, M+2)$
Kesd $(1, *)\left\langle\left(b\left(i,{ }^{*}\right), j=1, N+1\right), i=1, M+2\right)$

Call simplx $\{a, M, N, m p, n p, m 1, m 2, m 3, i c a s e, i z r o v, i p o s v\}$

```
                Write{2,*; " The Left harta var゙lables are:"
                Write(2,*) (iposv(j), j=1,M)
            Srite(2,+! " The right hand varlables are:"
            Writ:e(2,*i (izrov(i),i=l,N)
            Write(2,*) " The value of tho icaso:"
            write{2,*i jcase
    if'(icuse.eq.1), then
                                    GO TO 3
```

ENDIF
Wrate $(2,88)((a(i, j), j=1$, nop $, i=1, \operatorname{moj}$
88 Format. (ix, $4(6 x, f 8.51)$

Call simplx(b, $\mathrm{N}, \mathrm{N}, \mathrm{mo,np,mi}, m 2, \pi 3, i c a s e, i z r o v, i p o s v)$ Write $\hat{\imath}, *, "$ The ieft hand variables are:" Wrilie (2, *) (iposv (j), j=1, M)
Write ($2,{ }^{+}$) "The right hand variables are:" Write (2,*) (1zrov(i), $i=1, N)$

Write $\{2, *$ " The value of the icasc:" write (2,*) icasse

Write (2, 78) ((b (i, $\dot{j}), j=1$, np), $1=1$, mp)
78 Format (ix, 4(6x, fo.5))
3 SLOP
Enc

Subroutine simplo (a, n, r, mp, np, ra, m2, m3, icase, izrov, iposv) Irteger icase, m, m1, m2, m3, Ho, m, mp, izrov (n), i posv (m), MMAX, NMAX
Real a (mp, npl, EPS
Parameter (MMAX=100, $\mathrm{MMAX}=100, E P S=.0001$)
Integer i, ip,is,k,kh, kp, mLi, L1 (MMAX\}, L3 (MMAX)
Rcal Emax, q1
if (mune.m1+m24m3) pause "bad input constraint counts in simplex ${ }^{\top}$
$n I_{1} 1=n$
do $11 \mathrm{k}=1, \mathrm{n}$
$\sigma=\quad L l(k)=k$
izrov (k) $=k$
11 continue
do 12 i=1, m
 s.implex ${ }^{\dagger}$
$i \operatorname{posv}(i)=r i+i$
12. continue

$$
\text { if }\{m\rangle+m 3 . e q .0\} \text { go to } 30
$$

do $13 \quad i=1, \pi 2$
$13(1)=1$
13
contirne

```
        do }15\textrm{k}=1,\textrm{n}+
        ql.=0
        do l4 j=ml+l,m
        qi=q\+a{i+1,k}
        continue
        a(m+2,k)=-q1
continue
call simp1(a,mp, r, ,m+1, 1, , nL1,0, kp, bmax)
        if(bmax.le.EPS,and.a{{r,| 2, 1).le.- EPS}then
        icrse=-1
        return
        clse 1f(bmax.le.EPS.and.a(m+2,l).lt.EPS) then
        do lo ip=m1+m2+l,m
        af(iposv(ip).eq.ip+n)then
        call simpl(a,mp,np,ip,L1, ri,l,l,kp,bmax)
        if(bmax.gt.EPS) go to i
        endif
cont.inlue
        do 18 i=m1+],ml+ill2,1
        if{L:(i-ml).eq.1} then
        do 17 k=2,n+1
        a(i+1,k)=-a (i+1,k)
continule
            else
            endif
continue
            go to 30
            endif
        call simp2{a,m,n,mp,np,ip,kp}
        if {ip.eq.0) then
    icase=-1
    return
    endlif
1 call simp3(a,mp,np,m+1,n,1p,kpi
    lf(1posv(ipi.ge.n+m1+m2+i) then
        do 19 f:=1,ntal
        _f(L1(k).eq.t.p) go to ?
```


contimue

nLl=rLL-1
do 21 J.s=k, nLl
L 1 (is) $=\mathrm{f}, 1$ (is+l)
contirue
else
kh=iposv (1p)-m1-n
If (kh.ge.1) then
if (L3 (kh), ne.0) then
$\mathrm{L} 3(\mathrm{kh})=0$
$a(m+2, k p+1)=a(m+2, k p+i+i$
do $22, \mathrm{i}=1, \quad \mathrm{~m}+2$
$a(i, k p+l)=-a(i, k \rho+1)$
contirsue
ondif
endif
ondif
j. $s=$ i. $\quad \mathrm{r} . \mathrm{ov}(\mathrm{kp})$
i arov (kp)=iposv (ip)
iposv (1p)=1s
go to 10
call simpl (a, пip, ip, 0, í, nsi, 0, kp, bmax)
if (binax.le. FPS) ther

1case=0
ret.urn
enciif

Call simp2 $\langle a, \pi, n, m p, n p, i p, k p)$ if (ip.eq.0) 组en
$1 \mathrm{CaSc}=1$
roturil
endiz
call sımp3(a,mp, пр, π, π, i.,$k p$)
is $\%$ zrov (kp;
izrov (kp)=iposv (ip)
iposv(ivj=is
go to 30
end
subroutine simpi (a, no, np, nan, LL, nLL, iabf, kp, bmax)
C Determines the pivot coiumn
C****************************k*************
Integer iabf,kp, men, mp, nLt, np, LL (np)
Real bmax, a \{mp, np\}
Integer k
Real test.
if (nLL. le.0) then
bmax=0
else
$\mathrm{kp}=\mathrm{L} 1$ (i)
bmax $=a(m m+1, k p+1)$
do $11 \mathrm{k}=2$, nLT
if (iabf.eq. O) then
test=a (mm+1, ILL $(k)+1)$-bmax
else
test=abs (a (mm+l, LL(k)+l))-abs(bmax)
endif
if (tesl.gt. 0) then
bmax $=\bar{c}\{\operatorname{man}+1, L \dot{L}(\mathrm{~K})+1\}$
$\mathrm{kp}=\mathrm{LL}(\mathrm{k})$
endif
11 continue
endif
return
end
Subroutine simp2{a,m,n,mp,np,ip,kp)
Subroutine simp2{a,m,n,mp,np,ip,kp)
C Determines pivot element
C Determines pivot element
C********************************
C********************************
Integer ip,kp,m,mp,n,np
Integer ip,kp,m,mp,n,np
Real a (mp,np), EPS
Real a (mp,np), EPS
Parameter (:PS=.0001)
Parameter (:PS=.0001)
Integer i,k
Integer i,k
Real q,q0,ql,qp
Real q,q0,ql,qp
ip=0
ip=0

```
            do 1. i=1,m
            if(a(i+1,kp+!).lt..-EPS) go to l
                continue
return
```

 q1=-a(i+l, l)/a(i+l,kp+1)
 1p=i
 do 13 ı=ip+1,m
 if(a(i+1,kp+1).lt.-EPS)then.
 q=-a(i+1,i)/a(i+1,kp+l)
 if(q.lt.ql) then
 ip=i
 q1=q
 elseif(q.eq.q1) then
 do 12 k=1,n
 qp=-a(ip+1,k:1;/a (ip+1,kp+1)
 q0=-a(i+1,k+1)/a(i+1,kp+l)
 if{q0.ne.qp}go to 2
 12 contanue
 if(q0.it.qp)ip=j.
 endif
 endif
 13 continue
return
end

```
```

c*******t**

```
c*******t****************************************
C Matrix operations to exchange a left-hand and
C Matrix operations to exchange a left-hand and
C right-hanc varaable
C right-hanc varaable
C*********************************,**
C*********************************,**
    Real á(:mp,np)
    Real á(:mp,np)
            Integer li,kk
            Integer li,kk
            Real v
            Real v
        v=1./a(1p+1,kp+1)
        v=1./a(1p+1,kp+1)
        do 12 ii=1, jl+1
        do 12 ii=1, jl+1
        1末(0.i-1.ne.ip) then
```

 1末(0.i-1.ne.ip) then
    ```
```

 a(ii,kp+1)=a(ii,kp+1) *V
 do 11 kk=1,k]+1
 if(kk-1.ne.kp) then
 a(ii,kk)=a(ii,kk}-a(ip+1,kk)*a(il,kp+i)
 endiF
 continue
a(ip+1,kp+1)=v
return
enc

```
11
12

Now, we solve the following numerical examples of by using the above progratn

\section*{Example 2.1}
(LFP) Maximize \(Z=\frac{-24 x_{i}-7}{5 x_{1}+x_{2}+1^{-}}\)
Subject to
\[
\begin{aligned}
& -x_{1}+x_{2} \leq 1 \\
& x_{1}-x_{2} \leq 1 \\
& x_{1}+x_{2} \leq 2 \\
& x_{1} \quad x_{2} \geq 0
\end{aligned}
\]

The equivalent linear program (ELi's) of the above LFP problem is obtained by setting
\[
y_{1}=t x_{i}
\]
where \(i=1,2, t \geq 0\) as follows.
(EP) Maximize \(\quad Z_{1}=-24 y_{1}-7 t\)
Subject to
\[
\begin{aligned}
& -y_{1}+y_{2}-t \leq 0 \\
& y_{1}-y_{2}-t \leq 0 \\
& y_{1}+y_{2}-2 t \leq 0 \\
& s_{y_{1}}+y_{2}+t \leq 1 \\
& y_{1}, y_{2}, t \quad \geq 0
\end{aligned}
\]
(EN) Maximize \(\quad Z_{2}=24 y_{1}+7 t\)
Subject io
\[
\begin{aligned}
& -y_{1}+y_{2}-1 \leq 0 \\
& y_{1}-y_{2}-1 \leq 0 \\
& y_{1}+y_{2}-2 t \leq 0 \\
& 5 y_{1}+y_{2}+1=-1 \\
& y_{1}, y_{2}, r \quad \geq 0
\end{aligned}
\]

Now, applying the above program to solve EP \& EN, we have obtained the foliowing data:

\section*{For EP:}

The left hand variatles arc (basic variable)
\(\begin{array}{llll}2 & 5 & 6 & 3\end{array}\)
The right hand variables are (non-basic variable):
\(4 \quad 1 \quad 7\)
The value of the icase 0 (Optimal solution is found)
\begin{tabular}{cccc}
-3.50000100 & -3.50000100 & -9.99990700 & -3.50000100 \\
.50000010 & -.50000000 & -300000000 & -50000010 \\
100000000 & .00000007 & -600000000 & -100000000 \\
.50000010 & 1.50000000 & -2.00000000 & -.50000010 \\
.50000010 & .50000010 & -2.00000000 & -.50000010 \\
00000000 & .0000000 & 00000000 & -1.00000000
\end{tabular}

\section*{For EN:}

The lef hand variables are
\(\begin{array}{llll}4 & 5 & 6 & 7\end{array}\)
The right hand variables are
\(1 \quad 2 \quad 3\)
The value of the icase: - ( (Incomsistent solution is found)
\begin{tabular}{ccccc}
.00000000 & 24.00000000 & 00000000 & .000000000 \\
.00000000 & 1.00000000 & -100000000 & 100000000 \\
.00000000 & -1.00000000 & 1.00000000 & .00000000 \\
.00000000 & -1.00000000 & -1.00000000 & .00000000 \\
100000000 & 5.00000000 & 100000000 & 5.00000000 \\
-1.00000000 & -5.00000000 & -10000000 & -1.00000000
\end{tabular}

The solution of the above Eximple 2.1 is'
\(y_{1}=0, y_{2}=05, t=0.5\) and this implies
\(x_{1}=0.0 \quad x_{2}=1.0\) with \(Z \max =-3.5\)

\section*{Example 2.2}
(IJF) Maxımize \(Z=\frac{5 x_{1}+4 x_{3}}{-x_{1}-x_{2}+1}\)
Subject 10
\[
\begin{gathered}
-x_{1}+2 x_{2} \leq 1 \\
x_{1}+3 x_{2} \leq 1 \\
x_{1 .} \quad x_{2} \geq 0
\end{gathered}
\]

Similarly, applying the above program, we have oblained the following data

\section*{For EP:}

The left hand variables (basic variable) are
\(4 \quad 2 \quad 3\)
The right hand variables (non-basic variable) are:
156
The value of the icase I (unbounded solution)

\section*{For EP.}

Since EP is unbounded, we need not to solve EN.
Thercfore, the solution of the above Fxample 2.2 is unbounded

\section*{CHAPTER - 3}

\section*{BITRAN \& NOVAES METHOD}

In this chapter, we discuss briefly the melbod developed by Bitran \& Novaes [1972] for solving LFP problem delined by
\[
\begin{align*}
& \qquad \begin{array}{l}
\text { Moxmize } \\
\\
\text { Subject to }(x)=\frac{c x+\alpha}{d x+\beta} \\
\\
\\
\\
\quad A x=b \\
\\
x \geq 0
\end{array} \tag{IFP}
\end{align*}
\]

Where \(x, c, d \in R^{\prime \prime} ; b \in R^{n \prime} ; \alpha \& \beta \in R: A\) is an \(\operatorname{m} \times n\) matrix, and generalize computer program (FORTRAN) of the method

Assuming the constraint set non-empty and bounded and the denominator of the objective function of LHP problem is positive for all feasible solutions. Bitran \& Novaes [1972] method with validity of their resulis with an illustrative example is presented ucxt section

\section*{Bitran \& Novaes Method}

Bitran \& Novaes [1972] considered LFP problem defined by (31) to (3.3) assuming the positivity of the denominator of the objective tunction They developed the method that can be stated as follows

Step 1: Pirst they introduced a new objective function as follows:
\[
\begin{array}{rr}
\text { Mcammize } & \mathrm{L}=\langle\gamma, x\rangle \\
\text { Subject to } & A x=b
\end{array}
\]

In which \(\gamma=\iota-[\langle c, d\rangle ;\langle d, d\rangle] d\)

And hence they solved the LPP problen applying simplex method which yields a sub optimal solution \(\mathrm{X}^{\prime}\).

Step II : Again, they inroduced another new linear objective finction \(L^{\prime}\) as follows:
(LP) Maximize \(L^{\prime}=\left\langle\left[c-H^{\prime}\left(x^{\prime}\right) d\right] x\right\rangle\)

Subject to the same set of constraints and hence then solve as belore. This leads to another new sub optimal leasible solution \(x^{i-1}\)

Step III: Compare \(x^{\prime}\) with \(x^{i-1}\); if \(x^{\prime}=x^{\prime 1}\), then \(x^{\prime}\) is the global optimal sotution, otherwise go to step Il, making \(x^{\prime}=x^{3, z}\) and repeating the process uttil the vector \(x^{\prime}\) remains unchanged.

Next, they discussed they validity of the method as follows'
Validity of the Method

Property 3.1: \((\alpha-H \beta)+\langle(c-\beta d), x\rangle=0\)
represents a family of hyperplanes of order it that have a common subset of order n -1.

Property 3.2: The byperplane \(a+\langle c, x\rangle=0\) contains \(S\) the sub set of order \(n-1\) common to all hyperplaners that satisfy the relation defined by (3.1) to (3.2).

Property 3. 3 : The hyperplane \(\beta+\langle d, x\rangle=0\) contains \(S\) the sub set of order n -1 common to all hyperplanes that satisfy the relation defined by (3.1) to (32).

Property 3.4: The hyperplane \(\beta+\langle d, x\rangle=0\) does not intercept the positive orthant.

Property 3.5: If \(\mathrm{X}_{0}\) is a point that belons to a particular hyperplane of the family given by (3.1) and such that \(\beta \cdot+\left\langle d_{, ~ x}\right) \neq 0\), then the gradient of \(\mathrm{F}\left(\mathrm{x}_{\mathrm{f}}\right)\) is orthogonal to this hyperplane at point \(x_{0}\).

Property 3.6: Sitice for all feasible solutions, the relation \(x \geq 0\) must always hold, it has already been shown in property- 4 that \([\beta+\langle d, x\rangle]>0\) therefore the gradient \((V / 4)_{v,}\), has the same sign as vector \(\left[c-\mu\left(x_{1}\right)\right]\)

Property 3.7: Vector \(\left[c-F^{\prime}\left(x_{11}\right)\right]\) has the same directions as (V/F), for any point x such that \(F(x)=F\left(x_{0}\right)\).

Property 3.8 : For atly \(x \geq 0\) and \(x_{i 1} \geq 0\) necessary and sufficient condition for having \(\mathrm{F}(\mathrm{x})>\mathrm{F}\left(\mathrm{x}_{0}\right)\) is given by \(\mathrm{Z}>0\), where
\[
\begin{equation*}
Z=\left[c-\mu\left(x_{n}\right) \beta\right] \div\left\langle\left[c-\mu\left(x_{n}\right) d\right], x\right\rangle \tag{3.5}
\end{equation*}
\]

The solution obtained with the method presented in this section is optimal.
One gets a solution when, in Step HI, the smplex leads to a sub optimal point identical to the initial one \(x^{\prime}\).

The objective function for the simplex in Step Il is
\[
\begin{equation*}
\left.\operatorname{Max} \quad\left\langle k-\mu\left(x^{\prime}\right) d\right\}, x\right\rangle \tag{3.6}
\end{equation*}
\]
with the same set of constraints as in Step I

Suppose now there is a poim \(x^{i+4}\) such that \(\mathrm{l}^{1}\left(\mathrm{x}^{i+1}\right)>F\left(x^{\prime}\right)\). If this is the case, then Property 3.8 yields.
\[
\begin{equation*}
Y=\left|\alpha-H\left(x^{\prime}\right) \beta\right| \div\left\langle k-H\left(x^{\prime}\right) c t \mid, x\right\rangle \tag{37}
\end{equation*}
\]
such that \(Z>0\).

On the other hatd. relations (3.1) to (3.3) yields
\(\left|\alpha-F\left(x^{\prime}\right) \beta\right|+\langle | c-F\left(x^{\prime}\right) d\left|, x^{\prime}\right\rangle=0\)

Subtracting (3.8) from (37), one gets.
\[
\begin{equation*}
\left.\left.\left\{\langle | c-\mu\left(x^{\prime}\right) d|, x\rangle\right\}>\left\{\langle | c-H\left(x^{\prime}\right) d\right], x^{\prime}\right\rangle\right\} \tag{3.9}
\end{equation*}
\]

But, if refation (39) holds, one can see by looking at the objective function (3.6) that \(\mathrm{x}^{1+1}\) is a better feasible solution than x' If this had been happened, one would go back to Step Il again until the consergence is attained

\section*{Convergence}

The simplex used in Step If guarantees that the solution is a vertex of the convex set. Further, Property 36 also guarantees that, whenever in Step II the process goes from a vertex \(x^{2}\) to a vertex \(x^{i+1}\), one always has \(F\left(x^{i+1}\right)>F\left(x^{\prime}\right)\). This happens because the gradient of \((\nabla F)_{x}\) bas same sign as the objective lunction given by (3.4). Since we navimuze (34), the process moves along in the direction of the gradient. This means that the feasible solutions are always upgraded as long as one applics Step II.

On the ohier land, the number of venexes is finite, which means that one reached the optimal solution (point) within a finite number of steps. Here we develop the computer progrant (FORTRAN) of Bitran \&Novaes [1972] method is as follows.

Fortran Program for Bitran \(\mathcal{E}\) Novaes [1972] method.

C * PROGRAM FOR BITRAN \& NOVAES METHOD
C * M NUMBER OF CONSTMAINTS
C + N NTMBER Of VARIPBLES
C * m1 NUMBER OE LESS TRAN OR EQJAL TYPE CONSTRAINTS
\(C\) * m2 NUMBER OF GREATER THAN OR FOUAL TYPE CONSTRAINTS
C * m3 NUMBER OF EQUAI, TYPE CONSTRAIN'I'S
C * ICASE O OPDIMAL SOLUTION IS FOUND
C * ICASE -1 INCONSISTTPNT SOLUTION IS FOUND
C * ICASE i iNBOMADELJ SOLUTION IS FOUND
C * AA (i,j)COEFFTCIENT MATRIX
C * B(i,j)COEF'F'ICJENT MATRIX \(\AA\) F"'ER AN ITERATION
C * \(\mathrm{C}(\mathrm{N}+1)\) NUMERATOR OF T'HE OBJECTIVE FUNCTION
C * D(N41) DENOMTNATOR OF THE OBJECTIVE FUNCTION

Parameter ( \(\mathrm{M}=3, \mathrm{~N}=2\), tol=.0001)
Read. \(\mathrm{aa}(\mathrm{M}+2, \mathrm{~N}+\mathrm{l}), \mathrm{b}(\mathrm{M}+2, \mathrm{~N}+1), \mathrm{c}(\mathrm{N}+1), \mathrm{d}(\mathrm{N}+1)\)
\(\mathrm{T}, \mathrm{x}(\mathrm{N}+\mathrm{M}+2), 21, z 2, \operatorname{sum} \mathrm{l}, \operatorname{sum} 2, \sin 3, \operatorname{sum} 4, \operatorname{sum} 33, \operatorname{sum} 44\)
Integer mp, mp, m1, m2, m3, icase, izrov( N ), 1.posv(M)
Open(1, file='bl2. cat' \(^{\prime}\) )
Open(2,file='bil.dat.')
Read (1,*) m1, m2, m3
Read (1,*) al,a2
Read \(\left(1,{ }^{*}\right)(c(i), i=2, N+i)\)
\(\operatorname{Read}(\mathrm{J}, *)(\mathrm{d}(\mathrm{j}), \mathrm{j}=2, \mathrm{~N}+1)\)
sum1 \(=.0\)
\(\operatorname{sum} 2=.0\)
Do \(471=2, N+1\)
sum1-sum \(1+c(1) \times d(1)\)
        \(\operatorname{sum} 2=\operatorname{sum} 2+d(i)+* 2\)
        \(\mathrm{T}=\) sum1 /sum2
                        aa \(\{1,1\}=0.0\)
                        Do \(22 \mathrm{l}=2, \mathrm{~N}+1\)
        aa \(\{1,1\}=c(1)-1\) '* \(d(i)\)
\(m p=M+2\)
\(\mathrm{np}=\mathrm{N}+1\)
\(\operatorname{Read}(1, *)((a \operatorname{i}(i, j), j=1, N+1), i=2, M+1)\)

Format (1x, 14 (6x,f8,5)!

Cal.l. si,mplx (ãa, M, N, mp, np,m1, m2, m3, i.case, izrov, iposv)
```

 Write (*,*) " The left hand varjables are:"
 Write (*,*) (iposv(j), j=1, M)
 Writc (*,*\} " The right hand variables are:"
 Write (*,*) (izrov(i), i=1, N)
 Write (\({ }^{*},{ }^{k}\)) " the value of the icase:"
 write (*,*) 1 case
 Write (*, 78) ((áa (i, \(-j), j=\bar{j}, r i), ~ i=1, m p)\)
 Format (1x, 3(6x, [8.5))
 Do \(31 \quad j=1, M\)
 \(x(i p o s v(j))=a \operatorname{a}(j+1,1)\)
 Do \(41 \mathrm{k}=1, \mathrm{~N}\)
 x(izrov(k))=0.0
 Do \(43 \mathrm{i}=2, \mathrm{~N}+1\)
 sum3=sunn \(3+c(i) * x(i-1)\)
 \(\operatorname{sum} 4=\operatorname{sum} A \cdot d(1) * x(i-1)\)
 \(z 1=(\sin 3+a 1) /(\sin 4+a 2)\)
 \(\mathrm{b}\{1,1\}=0.0\)
 Do \(51 k=N+1,2,-1\)
 \(b(1, k)=c(k)-(z 1 * d(k))\)
 Do 32 i=2, M+1
 b (i, l)=aa (i, l)
 Continue
 Do 37 i=2,M4 1
 Do 3' \({ }^{\prime}=2, N+1\)
 \(b(a, N+3-j)=a \bar{a}(i, j)\)
 Continue
 Ca.] simplx(b, M, N, mp, np, ril, m2, m3, icase, izrov, iposv)
 Write (**) " The left hand variabies are:"
 Write (*, *) \((\operatorname{iposv}(\jmath), j=1, \mathrm{M})\)
 Wr.te(*,*) " The right hand variables arc:"
 Wri.te (*, *) 〈izrovii), i=1,N\}
 Do 61 i=l, M
 \(\mathrm{x}(1 \mathrm{posv}(\mathrm{j}))=\mathrm{b}(\mathrm{i}+1,1)\)
 Do \(71 \mathrm{j}-1, \mathrm{~N}\)
 \(x(i . z \operatorname{rov}(j)\}=0.0\)
 Do 46 . \(1,=2, \mathrm{~N}+1\)
 sum \(33=\operatorname{sum} 33+c(i) * x(i-1)\)
 sum44 \(=\operatorname{sum} 44+d\{1\} * x(i-1)\)
 \(z 2=\{\) sum \(33+a 1\} /(\sin 44+a 2)\)
 Write (2..*) z2, z1
    ```
```

 z3=abs(21-z2)
 If(z3.gt.tol)then
 zl=z2
 DO 34 i-2,M+1
 D0 . }34,\textrm{J}=1,N+
    ```

```

 Continule
 go to 21
 endijf
 Write(2,88j(in(i,j),]=1, nश),i\not=1,mp)
 Format (1x,3i6x,5.8, 5)!
 stop
 End
 Subroutine simplx(a,m,n,mp,no,m3,m2,m3,icase,izrov,iposv)
, nteger icase,m,m],m2,m3,m,n, np, izrov(л), iposv(m)
MMAX, NMAX
Real a (mp, np), EPS
Parameter (MMAX=, OG, NM, N=100, EPS=.0001)
Jnteger j, ip, is, k, kh, kp,ntil, Li (NMAX), L3 (MMAX)
Real bmex, ql
if(m.ne.m1+m2+m3) pause 'bad input constraint
counts in simplex'
nLi=n
go 11 k=1,n
Ll(k)=k
Azrov(k)=k
contimue
do l2 i=1, m
\&f{a{i+,l,l}.Jt.0}pause 'bad unput constraint
counts in simplex'
iposv(i)=r+i
contamue
lf(m2+m3.eq.0) go to 30
do 13 j.=1,m2
L3{1;=1
1 3
contimue
do 15 k=1,r+l
q1=0
do 14 i=ml+1,m
q.l=|. = + {j.+], l:}

```
\[
\left.a\left\{\pi_{2}+2, f\right\}=-q\right]
\]
contintie
```

if(bmax.lo.EPS.and.a(m+2,1).le.- EPS) then

```
icasje=-1
return
olse jf(bmax.lc.EPS.and.a(m+2,1).lt.EPS)then
do 16 ip \(=m l+m 2+1\), \(m\)
if (iposv (ip).eq.iptri) then
call simpi (a, rap, np, ip, I, \(, \pi \mathrm{m}, \mathrm{l}, 1, \mathrm{kp}, \mathrm{mmax})\)
    If (bmax.gt. EPS) go to i
    endif
16
    contimue
    do \(18 \quad i=m l+1, m 1+m 2, l\)
            if (T,3(i-mb).eq.l) then
    do \(17 \mathrm{k}=1, \mathrm{n}+7\)
    a (ill,k; =-a (i+1, k)
    17 contimue
        elise
        enditi
    18 contınue
        go to 30
        endif

        if (ip.eq.0) then
    icase=-1
    return
    endif
            Call. 51 mp 3 (n, mp, \(n \mathrm{p}, \mathrm{m}+1, \mathrm{n}, \mathrm{ip}, \mathrm{kp}\) )
            if (1posv(ip).ge.n+milm2+1) then
            do \(19 \mathrm{k}=1, \mathrm{nLl}\)
            if \(\{\mathrm{L} 1\{\mathrm{k}\} . \mathrm{eq} . \mathrm{kp}\}\) go to 2
        continue
    nLl=nL1-1
    do \(2 \mathbf{i}\) is=k, mLi.
\[
\mathrm{L}(1 \mathrm{~s})=\mathrm{L} 1(\mathrm{is+i})
\]
cortinle
```

else
kh=iposv(1p)-m1-n
if(kh.ge.l) then
if(Is3(kh).ne,0) then
L3{krı}=0
a {mk+2,kp+1)=a(ml-2,kp+1}+1
do 22 1=1, m!+2
a{i,kp+1j= -a{i,kp+]j

```
```

ordj f
endif
anduf
is=izrov(koj
izrov(kpj=aposw(ip)
iposv(ip)=is
go to 10

```
call simpl \{a, mp, inp, 0, h.1, nt1, 0, kp, kmax \}
iJ (imax.le.EAS) thon
```

icase=0
return
ond.l f
call si,mp2(a,m,n,mp,np,ip,kp)
if(ip.eq.0) then
icase=i
return
endif
ca,1, simp3(a,mp,np,m,n,ip,kp)
1s=1 7rOv(kp)
̇zrov(kp)=1posv(ip;
lposv(ap)=is
go to 30
eind

```
```

C*****************************\&,********************************
Integer iabl', kp,mm,mp,nLI, np,'LL{mp}
Real b\pimax, a (mp,np)
Integer k
Reai test
iI(nLL.Je.0) then
bmax=0
else
kp=LL(J)
bmax=a(mm| 1, kp+l)
co }11\textrm{k}=2\mathrm{ .rnLL
if(iabf.eq.0)then
test=a(mm+l,LL(k);1)-bm=ax
el.se
test=abs{a(mmll,LL(k;+1})-abs(bmax)
end..f
if(test.gl.0)then
bmax=a(murli,LL(kj+í)
kp=LL (k)
endif
11 continue
endzf
return
encl
Subroutine simp2(a,m,n,mp,np,ip, kp)
C Determines pivot eiement
C***
Integer ip, lp,m,mp,n,np
Real a (rib, np), FFS
Farameter (FiPS=.0001)
Integer i,k
Real q,q0,q],qp
ip=0

```
```

 do 11 i=1,m
 if(a(i+1,kp+1).lt.-EPS) go to 1
 11 continue
 return
 1
q1=-a{i+1,1}/a(i+1,kp+1}
ip=i
do 13 i=ip+1,m
if(a(i+1,kp+1).It.-EES) then
q=-a(i+1,1)/a(i+1,kp+l)
if(q.1t.q1)then
ip=i
ql=q
elseif(q.eq.q1) then
do 12 k=1,n
qp=-a(.p+1,k+l)/a(ip+l,kp+1)
q0=-a(i+1,k+1}/a(i+1,kp+1)
if(q0.ne.qp)go to 2-
continue
if(q0.lt.qp)ip=i
endif
endi\&
continue
return
end

```
```

 Subroutine simp3(a,mp,np,il,kl,ip,kp)
 C Matrix operations to exchangc a left-hand and
C right-hand variable
C***

```
Integer mp, np,ii,k1, 1p,kp
    Keal a (mp, np)
            integer ii,kk
            Real v
```

v=1./a(ip41,kp+1)
do l2 ii=1, il+l
if(ii-1.ne.ip)then

```
```

 a(ii,kp+1)=a(ii,kp+1) *v
    ```
            do \(11 \mathrm{kk}=1, k i+1\)
            if \((k k-1 . n e . k p)\) then
            \(a(i j, k k)=a(1 i, k k\}-a(i p+l, k k) * a(i i, k p+1\}\)
            endif
endif12
continue
```

 do \(13 \mathrm{kk}=1, \mathrm{ki}+1\)
 if \((k k-1 . n e, k p) a(i p+i, k k)=-a(i p+1, k k) * v\)
    ```
continue
    \(a(i p+1, k p+1)=v\)
    return
    end

Now, applying the above program to solve the Production Problem formed in section 1.5 of Chapter-1, we obtain the following data:

The lelt hand variables are (basic variables)
\(\begin{array}{lllllll}2 & 14 & 8 & 1 & 15 & 20 & 18\end{array}\)
The right hand variables are (Non-basic variables):
\begin{tabular}{ccccc}
17 & 4 & 3 & 19 & 5 \\
6 & 7 & 11 & 12 & 13 \\
16 & 9 & 1.0 & &
\end{tabular}

The value of the icase:
\begin{tabular}{lcr}
1296630.00000 & -1.93697 & 43305.37000 \\
-1762.65800 & -5.74450 & 2263.61000 \\
894.91930 & 1066.10300 & -1.84668 \\
1283.69000 & 13192.69000 & 2719.59700 \\
855.30640 & -1256.62300 &
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 656070.90000 & -. 96538 & 21957.20000 \\
\hline -851.82430 & -2.90308 & 1175.84200 \\
\hline 521.28380 & 584.46430 & -. 92399 \\
\hline 732.52560 & 6698.80300 .. & 1381.76200 \\
\hline 1332.48400 & -614.04010 & \\
\hline 32.46644 & . 00020 & -. 42698 \\
\hline -1.45907 & -. 00088 & -. 73864 \\
\hline -. 17283 & -. 34465 & . 00010 \\
\hline -. 01876 & -. 45188 & . 12211 \\
\hline . 1.0885 & -. 72350 & \\
\hline . 14448 & . 00008 & \(-.26217\) \\
\hline -. 01238 & . 00048 & -. 39912 \\
\hline -. 404.53 & -. 46478 & -. 00002 \\
\hline -. 10798 & -. 31.357 & -. 07591 \\
\hline -. 12925 & -. 26829 & \\
\hline 7.96701 & . 00003 & -. 35953 \\
\hline . 42193 & . 00031 & . 14129 \\
\hline -. 44076 & -. 44968 & -. 00015 \\
\hline -. 30519 & -. 48884 & -. 34983 \\
\hline -. 49660 & \(-.08127\) & \\
\hline 9.42207 & -. 00031 & . 04868 \\
\hline . 04951 & . 00008 & -. 00354 \\
\hline . 01811 & . 25912 & . 00006 \\
\hline -. 56806 & . 25430 & -. 69637 \\
\hline -. 48299 & . 07316 & \\
\hline 78783.55000 & -. 20023 & -21698.02000 \\
\hline 1749.06500 & 1. 32627 & 38.64083 \\
\hline 72.82928 & . 144.65420 & -. 09704 \\
\hline -106.23910 & -61/3.11600 & -747.10930 \\
\hline -733.84600 & 898.59700 & \\
\hline 25216.720000 & . 11661 & -93.25553 \\
\hline -318.56700 & . 71907 & -598.67360 \\
\hline -606.79270 & -697.16960 & -. 02426 \\
\hline -161.97640 & -770.36220 & -613.86040 \\
\hline -693.87820 & -402.43410 & \\
\hline & \(\cdots\) & \\
\hline 5928.78100 & . 04899 & -165.92260 \\
\hline -578.67490 & . 05774 & - 615.80900 \\
\hline 12.67998 & -31.94990 & . 04529 \\
\hline
\end{tabular}
\begin{tabular}{lll}
-464.31070 & 244.67630 & -20.79352 \\
95.23967 & 117.87700 &
\end{tabular}

The maximum value is:
\[
1.97636
\]

Hence solving the problen, we have obtained the following results.
To obtain maximum return on investment.
the farmer has to plant rice in 9422207 hectors of land, wheat in 32.46644 hectors of land, tomatoes in 7.96701 hectors of land, and the maximum return on investment is 1.97636.

\section*{CHAPTER- 4}

\section*{SWARUP'S METHODS}

In this chapter, we discuss briefly the methods developed by Swarup \(\{1964\) \& 1965] and we develop computer program (FORTRAN) of these methods. We also suggest a modified approach of Swarup [1964] primal simpiex type method for solving E.FP problem defined as:
(LFP) Meximuze \(F(x)=\frac{c x+\alpha}{d x+\beta}\)
Subject to
\[
\begin{equation*}
A x=b \tag{4.2}
\end{equation*}
\]
\[
\begin{equation*}
x \geq 0 \tag{4.3}
\end{equation*}
\]

Where \(x, c, d \in R^{n}, b \in R^{m} ; \alpha \& \beta \in R ; A\) is,an \(m \times n\) matrix
We assume the constraint set non-empty and bourded and the denominator of objective function of LFP problem is positive for all feasible solutions.

\subsection*{4.1. Swarup's Primal simplex type method}

If the constraint set in the canonical form one can proceed to the initial simplex type table for solving the LFP problem.
Let \(\mathrm{x}_{13}\) be the initial basic feasible solution such that
\[
\begin{array}{r}
\mathrm{B} x_{\mathrm{b}}=\mathrm{b} \\
\text { or, } \mathrm{x}_{\mathrm{B}}=\mathrm{B}^{-1} \mathrm{~b}
\end{array}
\]
\[
\text { where } B=\left(b_{1}, b_{2} \ldots, b_{m}\right)
\]
\[
\mathrm{x}_{\mathrm{B}} \geq 0
\]

Further let
\[
z^{1}=c_{B} x_{n}+\alpha
\]
and
\[
z^{2}=d_{H} x_{b}+\beta
\]
where \(c_{g}\) and \(d_{B}\) are the vectors having their components as the coefficients associated with the basic variables in the numerator and the denominator of the objective function respectively Then the value of the objective function for this initial basic feasible solution is \(F=\frac{z^{1}}{z^{2}}\) In addition, one can assume that for this basic solution
\[
\begin{aligned}
& a_{j}=B^{-1} a_{J} \\
& z_{j}^{\prime}=c_{R} a_{J} \\
& z_{j}^{2}=d_{i j} a_{j}
\end{aligned}
\]

Are known for every column \(\alpha\), of A not in B .

One can now wish to examine the possibility of finding another basic selation with improved value of \(F=\frac{z^{1}}{z^{2}}\), he shall confine his attention to those basic feasible solutions in which only one column of B is changed Let \(x_{B}^{*}\) be the new such basic feasible solution and the new value of the objective function is
\[
i^{*}=\frac{z^{1 *}}{z^{2+}}
\]

Tisen
where
\[
x_{B}^{*}=b^{-1} b
\]
i e. a new non singular matrix \(\mathrm{B}^{*}\) obtained from B by removing \(b_{v}\) and replacing it by \(a_{j}\) belongs to A rot in B The column of the new matrix \(\mathrm{B}^{*}\) are given by
\[
\begin{aligned}
& b_{1}^{\prime}=b_{1}, \quad(i \pm \gamma) \\
& b_{y}^{*}=a_{3}
\end{aligned}
\]

He obtained values of the new basic variables in terms of the original ones and the \(a_{v}\) are
\[
\begin{aligned}
& x_{B_{1}}^{*}=x_{B 1}-x_{B r}\left(a_{t y} / a_{y y}\right) \quad, t \neq \gamma \\
& x_{B y}^{*}=\left(x_{B \gamma} / a_{y j}\right)=\theta \quad(s a y)
\end{aligned}
\]
where
\[
a_{j}=\sum_{r=1}^{m i} a_{i 2} b_{1}
\]
\[
z^{I^{*}}=\sum_{t=1}^{m} c_{\beta_{t}} x_{\beta_{1}}^{*}+\alpha
\]
\[
=\sum_{r=1}^{n+} c_{B,}\left(x_{p_{r}}-x_{b y v} a_{j} / a_{\beta j}\right)+c_{B y}\left(x_{B y} / a_{r \prime}\right)+\alpha
\]

Again

Similarly, \(\quad z^{z^{*}}=z^{2}+\theta\left(d,-z_{j}^{i}\right)\)
Where \(z_{j}^{i} \& z_{j}^{2}\) refer to the original basic feasible solution.
The value of the objoctive function will be improved if
\(\left[z^{2} \& z^{20}\right.\) are positive, since the denominator of the objective function is positive for ail feasible solution]
or, \(z^{2}\left(c_{j}-z_{j}^{2}\right)-z^{t}\left(d_{j}-z_{j}^{2}\right)=0\)
[ \(\theta\) being positive in the non- degenerale case ; if \(0=0, \mathrm{~F}^{*}=\mathrm{F}\) ]
Let \(\Delta_{j}=z^{2}\left(c_{i} z_{j}^{\prime}\right)-z^{\prime}\left(d_{i}-z_{j}^{2}\right)\)

Now,
\(\Delta_{j}>0\) if
\[
\begin{aligned}
& F^{*}>I^{\prime} \\
& \text { or, } \quad\left[z^{1}+\theta\left(c_{1}-z_{j}^{1}\right)\right] /\left[z^{3}+\theta\left(d l_{j}-z_{j}^{3}\right)>z^{1} / z^{3}\right. \\
& \text { or, } \left.\left.z^{1}+\theta\left(c_{-} z_{j}^{1}\right)\right] \cdot E^{2}+\theta\left(d_{j}-z_{j}^{2}\right)\right] \cdot z^{l / z} z^{2} \cdot 0 \\
& \text { or } \left., z^{2} z^{\prime}+\theta\left(c_{j}-z_{j}^{I}\right)\right]-z^{\prime}\left[z^{2}+\theta\left(d_{j}-z_{j}^{2}\right)\right]-0
\end{aligned}
\]
\[
\begin{aligned}
& =z^{1}+\left(c_{j}-z_{j}^{\prime}\right) x_{i j} / a_{y}=z^{\mathrm{t}}+\theta\left(c_{j}-z_{j}^{\prime}\right)
\end{aligned}
\]

Case I: \(\left(d_{j}-z_{j}^{2}\right)>0\)
\[
\left(g_{j}-z_{j}^{\prime}\right) /\left(d_{j}-z_{j}^{2}\right)>z^{1} / z^{2}
\]

Case II: \(\left(\mathrm{d}_{\mathrm{j}}-\mathrm{z}_{1}^{2}\right)<0\)
\[
\left.\left(c_{j}-z_{j}\right)^{1}\right) /\left(d_{j}-z_{j}^{2}\right)<z^{1 / z^{2}}
\]

Case III: \(\left(\mathrm{d}_{1}-z_{j}^{2}\right)=0\)
\[
c_{-}-z_{\jmath}^{1}>0
\]

Swarup [1964] deduced that given a basic feasible solution \(x_{B}=B^{-1} b\), if for any column ofy in \(A\) but not in \(\mathrm{B}, \Delta_{s}>0\) holds and if at least one \(\mathrm{a}_{\| 1}>0(\mathrm{i}=1,2, \ldots, \mathrm{~m})\), then it is possible to find a new basic fcasible solution by replacing one of the column in \(B\) by \(a_{j}\) and new value of the objective function satisfies
\[
\mathrm{F}^{*}>\mathrm{F}^{2}
\]

One can show that for any \(\mathrm{a}_{1}\) in A not in B at least one \(\mathrm{a}_{\mathrm{j}} \geq 0\). If possible, let all \(\leq 0(i=1,2, \ldots, m)\)

The basic feasible solution is given by
\[
\begin{equation*}
\sum_{i=1}^{m} x_{B}, b_{1}=b \tag{4.4}
\end{equation*}
\]

Where \(\sum_{j=1}^{m} x_{y}\), is a component of basic vector. Now adding and subtracting \(\theta^{\circ} a_{j}^{j}\) ( 0 being any scalar) to (43), one obtains.
\[
\begin{equation*}
\sum_{t=1}^{m} x_{k_{t}} b_{t}-\theta^{*} a_{1}+\theta^{*} a_{j}=b \tag{45}
\end{equation*}
\]

Since,
\[
\begin{equation*}
-\theta^{*} a_{j}=-\theta^{*} \sum_{t=1}^{\infty} a_{t} b_{i} \tag{4.6}
\end{equation*}
\]

Then
\[
\sum_{t=1}^{m}\left(x_{x_{1}}-\theta^{*} a_{2,}\right) b_{t}+\dot{o}^{*} a_{j}=b
\]
where \(\theta^{*}>0\)

Therefore \(x_{B y}-\theta^{*} a_{y} \geq 0\)

Since by assumption, \(a_{i j} \leq 0(\mathrm{i}=1,2, \ldots, \mathrm{~m})\)

Thus the fcasible set \(X\) is unbounded contrary to ones hypothesis of regularity. So for basic feasible solution if there is vector \(a_{\text {, }}\) not in basis laving
\[
\begin{equation*}
\Delta_{J}>0 \tag{4.7}
\end{equation*}
\]

Then there exists another basic feasible solution with improved value of the objective function such that
\[
F^{*} \geq F
\]

\section*{For non-degenerate case}
\[
\mathrm{F}^{*}>\mathrm{F}
\]

Thus one can move from one basis to another changing one vector at a time so long as there is some कo not in basis with condition (4.7) and at each step \(F\) is improved.
This process can not continue infinitely, since there is only a finite number of basis and in nondegenerate case, no basis can ever be repeated, since \(F\) is increased at every step and the same basis can not yields two dillerent values of \(F\) While at the same time the maximum value of the objective function occurs at of the basic feasible solution.

The process will terminate only one-way, that is, when all \(\Delta_{\jmath} \leq 0(j=1,2 \ldots n)\) for the column \(a_{j}\) of A not in the basis.

Now for those columns of A which are in the basis
\[
c_{j}^{\prime}=c_{13} a_{j}=c_{13} B^{-1} a_{j}=c_{13} B^{-1} b_{j}=c_{j}
\]
and
\[
\mathrm{a}_{\mathrm{j}}^{2}=\mathrm{d}_{13} a_{j}=d_{13} B^{-1} a_{j}=d_{13} 3^{-1} b_{1}=d_{j}
\]
\[
\text { So, } \Delta_{j}=z^{2}\left(c_{\jmath}-z_{\jmath}^{1}\right)+z^{1}\left(d_{\jmath}-z_{\jmath}^{2}\right)=0
\]
\[
\text { i. e., } \Delta_{\mathrm{j}}=0
\]

Hence the summaries of the results are as follows'

Given a basic feasible solution
\[
\mathrm{x}_{\mathrm{B}}=\mathrm{B}^{-\lrcorner} \mathrm{b}
\]
with
\[
F^{\prime \prime}=\frac{c_{B} x_{B}+\alpha}{d_{B} x_{a}+\beta}
\]
to the problem (41)-(4.3) such that all \(A_{1} \leq 0\) for every column \(a_{j}\) in \(A\). Then \(F^{0}\) is the maximum value of \(F\) and the corresponding basic feasible solution is an optimal solution.

\section*{Iterative procedure of Swarup's primal simplex type method}

For Swarup [1964] primal simplex type algorithm are as follows:
Step I: First one has to conver the LFP problem to its standard form by insering slack and surplus variables to the constraints. If the constraint sct is in a canonical form, go to Step II. If the constraint set is not in a canonical form, go to Step IV.

Step II : Now one has to compute \(z^{1}, z^{2}\), relative cost factor \(c_{j}-z_{j}^{l}\), relative profit factor \(\mathrm{d}_{j}-\mathrm{z}_{j}^{2}\) and the ratio \(\Delta_{\rho}\)
where \(z^{1}=c_{[3} x_{13}+\alpha\)
\[
\begin{aligned}
& z^{2}=\mathrm{d}_{\mathrm{B}} \mathrm{x}_{\mathrm{B}}+\beta \\
& \mathrm{z}_{\mathrm{j}}^{1}=\mathrm{c}_{\sqrt{3}} \mathrm{a}_{\mathrm{j}}
\end{aligned}
\]
\[
x_{j}{ }^{2}=d_{B} a_{j}
\]
and
\[
\Delta_{j}=z^{2}\left(c_{j}-z_{j}{ }^{1}\right)-z^{1}\left(d_{j}-z_{j}^{2}\right)
\]

Step III: One has to choose max \(\Delta_{1}>0\) for covering optimality condition and to improve the basic solution. The minimum ratio test is to be applied to determine the new basic variable to enter the basic and the departing variable to leave the basis.

Step IV: If all \(\Delta_{\mathrm{j}} \leq 0\) one has reached to the optimal solution, other wise go to previous step.

Step V: if the constraint set is not in a canonical form, introduce artificial variables wherever it required and form an anificial linear objective function. In plase I , solve the problem as a LP . If it is feasible, go to phase II of the LFP problem and solve LFP problem using Step II to Step IV.

Here we develop the computer program (FORTRAN) of the above method is as follows:
Fortran Program for Swarup's primal simplex type method.

```

Parameter (}\textrm{M}=7,\textrm{N}=13\mathrm{)
Real a (M+3,N+1)
Integer np,mp,ml,m2,m3,icase,izrov(N),iposv(M)
Open(l,tile='sG.dat')
Open(2,filc='s9.dat') -

```
```

$\operatorname{Read}(1, *) m 1, m 2, m 3$
$\mathrm{mp}=\mathrm{M}+3$
$n \mathrm{p}=\mathrm{N}+1$
$\operatorname{Read}(1, *)(\{a(i, j), j=1, n p), i=1, M+2\}$

```
Call simplx \(\{a, M, N, m p, n p, m 1, m 2, m 3, i c a s e, i z r o v, i p o s v\}\)
    Write (2,*) " The left hand variables are:"
Write (2, *) (iposv (j), j=1, M)
Write ( \(2, *\) ) "The right hand variables are:"
Write (2, *) (izrov (i), i=1,N)
Write (2,*) "The vilue of the icase:"
write (2,*) icase
    Write \((2,88)\{\{a(1, j\rangle, j=1, N+1\rangle, 1=1, M+2)\)
Format \((3 x, 14\{5 x, f 20.10\})\)
Write \((2, *)\) " The maximum value is: "
Write \((2,33) \quad a(1,1) / a(2,1)\)
    33 Format (3x, 520.10)
Stop
End
Subroutanc simplx (a,m,n,mp, mp,ml,m2,m3,icase,izrov,iposv)
Tnteger lcase, m, m1, m2,m3, mp, m, mp,izrov(n),iposv(m)
        MMAX , NMAX
    Real a (mp, np), EPS
    Parameter \((M M A X=100, ~ N M A X=100, E P S=.0001\}\)
    Integer i, ip, is, \(k, k h, k p, n L l, L 1\) (NMAX), L3 (MMAX)
    Real bmax, ql
if(m.ne.mI+m2+m3) pause 'bad inplit constraint counts in
        simplex'
        nL1 \(=\) n
        do \(11 k=1, n\)
        \(\mathrm{L} 1(\mathrm{k})=\mathrm{k}\)
        izrov \((k)=k\)
        continue
    do \(12 \mathrm{i}=1\), m
if \((a(i+2,1\}, 1 t, 0) \quad\) pause \({ }^{\text {b }}\) bad inpllt constraint counts in
            simplex'
            iposv(i)=n+i
12
    continue
```

 call simpl(a,mp,np,0,Ll, nL1, 0, kp,bmax)
 if(bmax.le.EPS) then
 icase=0
seturn
endif
call simp2(a,m, ri,mp,np,ip,kp)
if(ip.eq.0) then
icase=l
return
endif
call simp3(a,mp, mp,m,n,ip,kp)
is=izrov(kp)
izrov(kp)=iposv(ip)
iposv(jp)=is
go to 30
end

```

Subroutine simpl (a,mp, np,mm, LL, nLl, iabl, kp,bmax)
C Detcrmines the pivot row
```

 Integer iabf,kp,mm,mp,nT,L,np,LL{np)
 Real bmax, a (mp,np)
 Integer k
 Real test
 if(nLL.le.0) then
 bmax=0
 elsc
 kp=L.L (1)
 bmax={a{2,1)*a(mm+1,kp+1))-{a(1,1)*a(mm+2,kp+1))
 do 11 k=2,nLL
 if(iabf.eq.0) then
 test=(a(2,1)*a(mm+1,LL(k)+1)-a{1,1)*a(mmn+2,LL(k)+1})
 -bmax
 else
 test:=abs (a(2,1)*a(mm+1,LL(k)+1)-a(1,1)*a(mml2,LL(k)+1))
-abs(bmax)

```
endiI
if(test.gt.0) then
```

bmax = {a(2, l)*a{ma+1, LL {k)+1}
- (I,1)*a(mm+2,LL(k)+1))
kp=LL (k)
endif
11 continue
endif
return
end

```
\begin{tabular}{|c|c|}
\hline & Subroutine \(\operatorname{simp} 2(a, m, n, m p, n p, i p, k p)\) \\
\hline C & Determunes pivot element \\
\hline \multicolumn{2}{|l|}{\(C^{* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~}\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{```
Integer iprkp,m,mp,n,np
Real a(mp,np), L'PS
Parameter (EPS=.0001)
```}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|r|}{Integer \(i, k\)} \\
\hline \multicolumn{2}{|r|}{Real q, q0, q1, qp} \\
\hline \multicolumn{2}{|r|}{ip \(=0\)} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{```
do 11 i=1,m
if(a(i+2,kp+l).lt.-EPS) go to i
```}} \\
\hline & \\
\hline 11 & continue \\
\hline \multicolumn{2}{|r|}{return} \\
\hline \multirow[t]{3}{*}{1} & \[
q 1=-a(i+2,1) / a(i+2, k p+1)
\] \\
\hline & 2p=i \\
\hline & do \(13 \mathrm{i}=i p+1, \mathrm{~m}\) \\
\hline \multicolumn{2}{|r|}{\[
\begin{array}{r}
\text { if }\{a(i+2, k p+1), l t .-E P G\} \text { then } \\
q=-a(i+2, i j / a(i+2, k p+1)
\end{array}
\]} \\
\hline \multicolumn{2}{|r|}{jef(q.lt.q1) then} \\
\hline \multicolumn{2}{|r|}{\(i p=i\)} \\
\hline \multicolumn{2}{|r|}{ql \(=\) q} \\
\hline \multicolumn{2}{|r|}{elscif(q.eq.ql) then} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
q p=-a(i p+2, k+1) / a(i p+2, k p+1)
\]}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{q0 \(=-\mathrm{a}(\mathrm{i}+2, \mathrm{k}+1) / \mathrm{a}(\mathrm{i}+2, \mathrm{kp}+1)\)} \\
\hline \multicolumn{2}{|r|}{if(q0.ne.qp) go to 2} \\
\hline
\end{tabular}
    if(qo.lt.qp)ip=i
    endif
    endif
continue
return
end
```

Subroutine simp3(a,mp,np,il,k1,ip,kp)
C Matrlx operations to exchange a left-hand and
C right-hand variable
C*

```
    Tnteger mp,np,il,k1,ip,kp
            Real a (mp, np)
                        Integer ii,kk
            Real \(v\)
            \(\mathrm{v}=1 . / \mathrm{a}(\mathrm{ip}+2, \mathrm{kp}+1)\)
            do \(55 \mathrm{i} i=1, \quad \mathrm{i}+2\)
            if(ii-1.ne.ip+1)then
            \(a(i j, k p+1)=a(i i, k p+i) * v\)
                        do \(1 \mathrm{l} k \mathrm{k}=1, \mathrm{k} 1+1\)
            if \((k k-1\).ne. \(k p)\) then
            \(a(i i, k k)=a(i i, k k)-a(1 p+2, k k)^{*} a(i i, k p+1)\)
                endif
            continue
            endif
55
            continue
            do \(13 \mathrm{kk}=1, \mathrm{kl}+1\)
            if (kk-1.ne.kp)a(ip+2,kk)=-a(ip+2,kk)*v
            continue
            \(a(i p+2, k p+1)=v\)
            return
            end

Now, applying the above progran to solve the Production Problen formed in section 1.5 of Chapter-1, we obtain the following data:

The left hand variables are (basic variables).
\begin{tabular}{lllllll}
2 & 14 & 8 & 1 & 18 & 15 & 20
\end{tabular}

The right hand variables are (Non-basic variables):
17
4
3
19
5
\begin{tabular}{llllll}
6 & 7 & 16 & 9 & 10 & 11 \\
12 & 13 & & & &
\end{tabular}

The value of the icase: 0
\begin{tabular}{lrr}
1296630.00000 & -1.93697 & 43305.37000 \\
-1762.65800 & -5.74450 & 2263.61000 \\
894.91930 & 1066.10300 & -1.84668 \\
1283.69000 & 13192.69000 & 2719.59700 \\
855.30640 & -1256.62300 & \\
656070.90000 & -.96538 & 21957.20000 \\
-851.82430 & -2.90308 & 1175.84200 \\
521.28380 & 584.46430 & -.92399 \\
732.52560 & 6698.80300 & 1381.76200 \\
1332.48400 & -614.04010 &
\end{tabular}
\begin{tabular}{lrr}
32.46644 & -.00020 & -.42698 \\
-1.45907 & -.00088 & -.73864 \\
-.17283 & -.34465 & .00010 \\
-.01876 & -.45188 & -.12211 \\
.10885 & -.00008 & \\
& .00048 &.- \\
.14448 & -.46478 & -.26217 \\
-.01238 & -.31357 & -.00012 \\
-.40453 & -.26829 & -.07591 \\
-.10798 & .00003 & \\
-.12925 & .00031 & -.35953 \\
7.96701 & -.44968 & -.00015
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline -. 30519 & -. 48884 & -. 34983 \\
\hline -. 49660 & -. 08127 & \\
\hline 9.42207 & -.00031 & . 04868 \\
\hline . 04951 & . 00008 & -. 00354 \\
\hline . 0181.1 & . 25912 & . 00006 \\
\hline \(-.56806\) & . 25430 & -. 69637 \\
\hline -. 48299 & . 07316 & \\
\hline 5928.78100 & . 04899 & -165.92260 \\
\hline -578.67490 & . 05774 & - 615.80900 \\
\hline 12.67998 & -31.94990 & . 04529 \\
\hline -464.31070 & 244.67630 & -20.79352 \\
\hline 95.23967 & 117.87700 & \\
\hline 78783.55000 & -. 20023 & -21698.02000 \\
\hline 1749.06500 & 1.12627 & 38.64083 \\
\hline 72.82928 & 144.65420 & -. 09704 \\
\hline -106.23910 & -6173.11600 & -747.10930 \\
\hline -733.84600 & 898.59700 & \\
\hline 25216.72000 & . 11661 & -93.25553 \\
\hline -318.56700 & . 71907 & -599.67360 \\
\hline -606.79270 & -697.16960 & -. 02426 \\
\hline -161.97640 & -770.36220 & -613.86040 \\
\hline -693.87820 & -402.43410 & \\
\hline
\end{tabular}

The maximum value is:
1.97636

Hence solving the problem, we have oblained the following resuits:
To obtain maximum return on investment, the farmer has to plant rice in 9.422207 hectors of land , wheat in 32.46644 hectors of land, tomatoes in 7.9670 ) hectors of land, and the maximum relurn on investment is 197636.

\subsection*{4.2. Swarup's dual simplex type method}

In this section, we brienly present the dual simplex type method of Swarup[1965] assuming the positivity of the denominator of the objective function of LFP problem defined by (4.I) - (4.3).

In section 4.1 Swarup[1964] showed that any basic feasible solution will be optimal if
\[
\Delta_{f}=z^{2}\left(c_{f} z_{j}^{1}\right)-z^{1}\left(d_{f}-z_{j}^{3}\right), j-1,2, \quad \ldots \ldots \quad, n
\]

The above observation presents the following interesting possibility, if one can start with some basic but not feasible solution to a given LFP problem with all \(\Delta_{j} \leq 0\) and remove from this basic solution to another by changing one vector at a time in such a way that he keeps all \(\Delta_{j} \leq 0\) provided no basic is to be repeated, an optimal solution to LFP problem will be obtained in a linite number of iterations That is, the fact that he maintains all \(\Delta_{j} \leq 0\) at each iteration and is not concemed about the feasibility of the basic solution that the dual simplex method should be great help in developing such a method.

Swanp [1965] assumed that the given LFP problem with additional restrictions as follows:
Denominator ol the objective tunction of LFP problem is positive for all basic solutions into the standard form for the application of simplex method.
Now if
\[
x_{B}=A^{-1} b>0
\]

And
\[
\Delta_{j} \leq 0, j=1,2, \ldots \ldots, n .
\]
then he obtained an optimal solution to the LFP problem. He studied the case where one or more \(\mathrm{x}_{\mathrm{bl}}<0\) ( \(\mathrm{i} \in \mathrm{l}\), I is the set of subscripts for basic variables).

The algorithm for the change of basis in LFP problem is'
Step 1: Variable to lease the basis set is obtained as:
\(x_{1 J r}=\min x_{B 1}\), for all \(i \in \mathbb{I}\left[x_{B i}<0\right]\)
So in LFP, \(\mathrm{x}_{\mathrm{Br}}\) will be driven to zero That is, \(\mathrm{x}_{\mathrm{Br}}\) will leave the basis set
StepII: Variable enter to the basis set is detembined from
\(\Delta_{k} / a_{k}=\) min \(\Delta j / a_{n}\), for all \(j,\left[a_{4}<0\right]\)

Then one obtains \(\Delta_{k} / Z^{2}\left[x_{b h}\left(d_{k}-Z_{k}^{2}\right) / Z^{2}+a_{k k}\right]=\min \Delta_{i} / Z^{2}\left[x_{B_{r}}\left(d_{j}-Z_{j}^{2}\right) / Z^{2}+a_{r j}\right]\) j

Where the cocfficient of \(Z^{2}\) in the denominator on the right is negative.
Then one assumes,
\[
\delta_{j}=x_{[r}\left(d_{j}-Z_{j}^{2}\right) / Z^{2}+a_{r]}
\]

Therefore, the variable \(\mathrm{x}_{\mathrm{Br}}\) to enter the basis set in the LFP problem is determined from
\[
\Delta_{\mathrm{k}} / \delta_{\mathrm{k}}=\min _{\mathrm{j}} \Delta_{\mathrm{j}} / \delta_{\mathrm{j}}
\]

By adopting this procedure, Swarup \([265]\) maintain \(\Delta_{J} \leq 0\) at each iteration Moreover, this method for solving LFP problem, one first determines the vector to leave the basis and then the vector to enter the basis This is reverse of what is done in simplex procedure for solving LFP problem

Our computer program (FORTRAN) of the Swanup dual type method is as follow'

Fortran Program for Swarup [1965] dual simptex type method.

```

Parameter (}\textrm{M}=\textrm{B},\textrm{N}=13\mathrm{)
Real a(M+5,N+I)
Integer mp, mp, m1, m2, m3, icase, izrov (N},iposv{M}
Open(1,file='ssl.dat')
Open (2,'ile='ss2.dat')
Read {1,*} ml,m2,m}
mp=M+5
np=N+1

```
\(\operatorname{Read}(1, *)(\{a(i, j), j=1, n p\}, i=1, M+2)\)

Call \(\operatorname{simplx}(a, M, N, m p, n p, m 3, m 2, m 3, i c a s e, i z r o v, i p o s v)\)
Write (2,*) " The left hand variablos are:"
Write (2,*) (iposv(j), J=i,M)
Write (2,*) " The right hand variables are:"
Write \(\{2, *\}\) (izrov (i), i=1,N)
Write (2,*) " The value of the icase:"
write (2,*) icase
Write \((2,88)((a(i, J), J=1, N+1), i=1, M+2)\)
88 Format (1x,7(5x,f20.10))
Write (2,*) " The maximum value is: "
Write \(\{2,33\) ) a \(\{1,1\} / a\{2,1\}\)
33 Format (3x, f20.10)
stop
end
Subroutine simplx(a,m,n,mp,np,ml,m2,m3,icase,izrov,iposv)
Integer icase,m,m1,m2,m3,mp,n,np,izrov(n),iposv(m) MCIAX, NMAX
Real a (mp, np), EFS
Parameter (MMAX=100, \(\operatorname{NMAX}=100, \operatorname{EPS}=.0001\) )
Integer j., i.p, is. \(k, k p, n t j, h 1\) (NMAX), L11 (MMAX), mL1
Real bmin, bratio
if(m.ne.m1+m2+m3) paluse 'bad input constraint counts in simplex'
mL1=m
Do \(77 \mathrm{i}=1\), m
Lll(i)= i

Continue
\(n L 1=n\)
do \(1 \mathrm{l} \mathrm{k}=1, \mathrm{n}\)
\(11(k)=k\)
izrov \(\{k\}=k\)

30
```

call simp1(a,mp, np,0,L1I,mL1,0,ip,mmin)
if(bmin.gt.EPS) then
write(*,*)"line 62"

```
```

 icase=0
 returr.
 cndlf
wrile(*,*)"line 66"
call simp2(a,m,0,L1,nL1,mp,np,0,ip, kp)
if(kp.eq.0.0) then
icase=l
return
endjf
call slmp3(a,mp,np,m,n,ip,kp)
is=izrov(ip)
IZIOV (lp)=lposv {kp}
iposv {kp}=is
go to 30
end

```
```

C*
C Determines the pivot row
C**

```
```

 Integer iabf,ip,mm,mp,mLL,np,LL1 {mp}
 Real bmin, a {mp,np}
 Integer k
 Real test
 if(mLL.le.0) then
 bmin=0
 else
 ip=LrLl {l.}
bmincl= a(ip+2,rum+l)
do 11 k=2,mLL
if(iabf.eq.0)then
test=a(LL1 (K)+2,mmbl)-bmin
else
test=abs{a{LLl{K} +2,mm+1}}-abs {bmmr}
endif

```
```

 if(test.lt.0) then
 bmin= a(LL1 (K) +2,mm+1)
 ip=LLl{k}
 endif
 11 continue
 endif
 return
 end
 Subroutine simp2 (a,m,rn, LL, nLL, mp,iabf1, np, ip, kp)
C Détermines pivot element
Integer ip, xp,m,mp,np,nn, LL (np), nLL, iabli,i,k,j
Real a (mp, ip), test
if(nLL.le.0)then
else
do $11 \mathrm{i}=1, \mathrm{nLL}$
$a(m+3, i)=a(2,1) * a\{n n+1, i+1\}-a(1,1) * a(n n+2, i+1)$
$a(m+4, i\}=\{a(i p+2,1\} * a(n n+2, i+1)\} / a\{2,1)$
$+a(i p+2, i+1)$
11 continue
Do 31 ii=1, nLI
If(a(m+4,ii).lt.0.0)go to 1
31 continue
return
$1 \quad q 1=a\{m+3$, $i i\} / a(m+4$, $i i)$
$\mathrm{kp}=\mathrm{i} \mathrm{i}$
do 100 ii=kp+1, nLL
If $(a(m+4, i i) . l t .0 .0)$ then
$q=a(m+3,1 i\} / a\{m+4, i i)$
if (q.eq.q1) then
$\mathrm{kp}=\mathrm{i}$.l
$\mathrm{ql}=\mathrm{q}$
endif
cndif
100
continue

```
return
endif
end


Integer mp, mp,il,ki,ip,kp
Real a (mp, np)
Integer ii, kk
Real v
\(v=1 . / a(i p+2, k p+1)\) write (*,*) v do 55 i.i=1, il \(1+2\)
if (1i-1.ne.ip+1) then
\(a\{i i, k p+l\}=a(i j, k p+l\} * v\)
do \(11 \mathrm{kk}=1, \mathrm{kl}+1\)
1f( \(k k-1 . n c . k p)\) then
\(a(i i, k k)=a(i j, k k)-a(i p+2, k k){ }^{*} a(i i, k p+1)\) endif
11
continue
eridif
55 continue
```

do 13 kk-l,kl+l
if(kk-1.ne.kp)a{ip+2,kk}=-a(ip+2,kk}*v

```

13
continue
```

 a(ip+2,kp+1)=v
 return
 end
    ```

Now, we consider a numerical example of Swarup dual type method and solve it by the above program.

\section*{Example 4.2.1}
(LFP) Maximize \(Z=\frac{-x_{1}+x_{2}+2}{x_{2}+2}\)

Subject to
\[
\begin{aligned}
& 4 x_{1}-3 x_{2} \geq 2 \\
& x_{1} \leq 5 \\
& x_{1} \geq 2 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
\]

Now, applying the above program, we have obtained the following data:
The left hand variables are (basic variable):
\(1 \quad 5 \quad 2\)
The right hand variables are (non-basic variable).
43
The value of the icase' 0 (Optimal solution is found)
\begin{tabular}{ccc}
20000000000 & .3333334000 & -.3333333000 \\
4.0000000000 & 1.3333330000 & -.3333333000 \\
& & \\
2.0000000000 & 1.3333330000 & -.3333333000 \\
30000000000 & -10000000000 & .0000000000 \\
2.0000000000 & 1.000000000 & .0000000000
\end{tabular}

The maximum value is:
5000000000

Thus applying Swarup dual type method, one can obtain the following results.
\[
\mathrm{x}=(2,2) \text { and } \mathrm{Z}_{\max }=0.5
\]

\subsection*{4.3. The modificd approach of Swarup's primal simplex type method}

In this section, we suggest a modification based on primal simplex type method, which extends the scope of Swarup [1964] method discussed in section 4.1 of this chapter. Assuming the positivity of the denominator of the objective function of L,FP problem delined by
(LFP)
\[
\begin{equation*}
\text { Maximize } f(x)=\frac{c x+\alpha}{d x+\beta} \tag{48}
\end{equation*}
\]

Subject to
\[
\begin{equation*}
A x=b \tag{4.9}
\end{equation*}
\]
\[
\begin{equation*}
x \geq 0 \tag{4.10}
\end{equation*}
\]

Where \(x, c, d \in R^{n}, b \in R^{\prime \prime \prime} \alpha \& \beta \in R ; A\) is an m \(\times n\) matrix.
Swanup[1964]first developed a method for solving LFP problem. However, this method can be applied only when the system \(A x=b\) is in a canonical form, that is, all constraints are less than or equal form ( \(s\) ). The problem that is not in canonical form, one can solve by using dual simplex type method developed by Swarup [t965]. Likewise, LP problem, dual simplex type method also cannot be applied in the case where the dual feasible basis is not obtained. Let us consider the following numerical example

\section*{Example 4.3.1}
(LFP)
\[
\text { Maximize } Z=\frac{x_{2}-5}{-x_{1}-x_{2}+9}
\]

Subject to .
\[
\begin{gathered}
2 x_{1}+5 x_{2} \geq 10 \\
4 x_{1}+3 x_{2} \leq 20 \\
-x_{1}+x_{2} \leq 2 \\
x_{1} \quad \quad x_{2} \geq 0
\end{gathered}
\]

Now, introducing surpius and slack variables \(s_{1}\) and \(s_{2}, s_{3}\) to \(1^{\text {sl }}\) and \(2^{\text {nd }}\) \& \(3^{\text {rd }}\) constraints respectively to make the LFP problem in the standard form as follows:

LFPI ) Maximize \(Z=\frac{r_{2}-5}{-x_{1}-x_{2}+9}\)

Subject to
\[
\begin{aligned}
& 2 x_{1}+5 x_{2}-s_{1}=10 \\
& 4 x_{1}+3 x_{2}+s_{2}=20 \\
& -x_{1}+x_{2}+s_{3}=2 \\
& x_{1} \quad r_{2}, s_{1}, s_{2}, s_{3} \geq 0 .
\end{aligned}
\]

Thus the initial basic solution
\[
s_{1}=-10, s_{2}=20, s_{3}-2 \text { and } x_{1}=\kappa_{2}=0
\]

Now proceed to construct simplex table as follows:
Initial Table
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(C_{B}\)} & \multirow[t]{2}{*}{\(\mathrm{d}_{13}\)} & \[
\begin{aligned}
& c_{j} \longrightarrow \\
& d_{1} \longrightarrow
\end{aligned}
\] & & \[
\begin{gathered}
1 \\
-1
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & 0
0 \\
\hline & & \(\mathrm{x}_{33}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{s}_{1}\) & \(\mathrm{S}_{2}\) & 53 \\
\hline 0 & 0 & \(\mathrm{s}_{1}=-10\) & -2 & -5 & 1 & 0 & 0 \\
\hline 0 & 0 & \(\mathrm{s}_{2}=20\) & 4 & 3 & 0 & 1 & 0 \\
\hline 0 & 0 & 53.2 & -I & 1 & 0 & 0 & 1 \\
\hline \multirow[t]{5}{*}{\(\mathrm{z}^{1}=-5\)} & \(z^{2}=9\) & \(\bar{Z}=-9 / 5\) & & & & & \\
\hline & & \[
\begin{aligned}
& c_{j}-z_{3}^{1} \\
& d_{1}-z j^{2}
\end{aligned}
\] & \[
\left\lvert\, \begin{gathered}
0 \\
-1
\end{gathered}\right.
\] & \[
\begin{array}{r}
1 \\
-1
\end{array}
\] & \[
\begin{gathered}
0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0
\end{gathered}
\] & 0 \\
\hline & & \(\Delta_{1} \longrightarrow\) & -5 & [4] & 0 & 0 & 0 \\
\hline & & \%j & -8/9 & \[
-35 / 9
\] & ] & 0 & 0 \\
\hline & & \(\Delta_{j}{ }^{\text {j }} \mathrm{j}\) & 45/8 & \(-36 / 35\) & 0 & - & - \\
\hline
\end{tabular}

To obtain optimal solution we must maintain all \(\Delta_{J} \leq 0\) at each optimization stage. But in the initial table, we observed that \(\Delta_{2}=4>0\), which indicates failure of Swarup[1965] dual type method

To overcome the above limitation of Swarup [1964 \& 1965] method we suggest a modification based on Dantiz [1960] two phase method for solving LP problems.

\subsection*{4.3.1. Solution procedure of nodified approach of Swarup [1964]}

Afler introducing slack variables or surplus variables if the constraints set
\[
\begin{equation*}
\mathrm{Ax}=\mathrm{b} \tag{4.11}
\end{equation*}
\]

Is in a canonical form, it indicates that some ol the constraints are greater than or equal form and one can not find leading mitial basic feasible solution In that case one has to follow the procedure-described bellow

Step 1: First, one has to find a initial basic leasible solution of LFP problem. Since, PHASE I of simplex method concerned with finding initial basic feasible solution with respect to
arificial objective function and not relevant to original objective function of LFP problem, one can find an initial basic solution as follows

Sub-step 1: We augment the system (4 iI) to include a basic set of artificial variables \(w_{1} \geq 0(j=1,2, \ldots, m)\) so that we have augmented the system
\[
\mathrm{Ax}+\mathrm{Jw}=\mathrm{b}
\]

Where,
\[
w=\left(w_{1} w_{2} \ldots \ldots w_{\mathrm{m}}\right)^{\mathrm{T}}
\]

Sub-step 2: Solve the anificial linear program (ALP)
\[
\begin{equation*}
\text { (ALP) } \quad \text { Minimize } w^{\prime}=\sum_{i=t}^{m} w^{\prime} \tag{4.12}
\end{equation*}
\]

Subject to
\[
\begin{gather*}
A x+I w=b  \tag{413}\\
x \geq 0 \tag{4.14}
\end{gather*}
\]

Sub-step 3: Since \(w \geq 0\), this problem can not have an unbound solution. Morcover this problem is feasible, since \(w^{*}=b, x^{*}=0\), is a basic feasible solution in which arificial variables \(w_{1}(i=1,2 \ldots \quad \ldots\), , m\()\) are basic. Writing the system (4.13) with using the variable coefficient of (4.12), we obtain initial tableau of PHASE 1 lt should be noted that the initial tableau contains rows corresponding to the original objective function \(F\) of LFP problem (to be maximized in PHASE II) and PHASE 1 objective function \(w\). The Simplex method can now be applied to this tableau to minimize w. lt would be terminated an optimal basic solution ( \(\mathrm{x}^{*}, \mathrm{w}^{*}\) ) to this PHASE 1 problen has been found, and in this situation, min \(w \geq 0\). This is the end of PHASE I.

Two cases may hold now:

CASE A: min \(w>0\)

Here ALP has no solution, since if there is \(x \geq 0\) satisfying \((4,11)\), then \(\left(x^{*}, 0\right)\) is a feasible solution with \(w=0\) to \((4.11)-(414)\) and this violets the assumption \(w>0\) Thus the simplex method terminates with the conclusion that ALP has no feasible solution.

CASE B: \(\min w=0\)
Herc all the artificial variables have been zero, i.e, \(w_{1}^{*}=0\) Thus ALP has a feasible solution \(x^{*}\). From the final simplex tableau of PHASE I, one can now delete the objective row corresponding to w , since it has served its purpose with this as the stanting basic feasible solution, one proceeds to PHASE II in the next step.

Step II: If PHIASE 1 yiclds an optimal solution not involving positive anificial variables, one can start PHASE II with original objective function of LJFP problem and initial basic feasible solution, which is optimal sotution of PHASE I. Then one has to apply the primal simplex type method of Swarup [1964] to maximize F, which terminates as soon as etther an optimal solution or an unbounded one. In an unbounded solution, all entries in the pivot column are non-positive corresponding to the greatest opposite relative profit factor.

Step III: Now one has to compute \(z^{1}, z^{2}\), relative cost factor \(\mathrm{c}_{\mathrm{j}}-z_{1}{ }^{1}\), relative profit factor \(\mathrm{d}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}^{2}\) and the ratio \(\Delta_{\mathrm{j}}\),
\[
\begin{gathered}
\text { where } z^{\prime}=c_{B} x_{B}+\alpha \\
z^{2}=d_{B} x_{B}+\beta \\
z_{j}^{1}=c_{B} a_{\lrcorner} \\
z_{j}^{2}=d_{B} a_{\lrcorner}
\end{gathered}
\]
and
\[
\Delta_{j}=z^{2}\left(\mathrm{c}_{\mathrm{j}}-z_{\mathrm{j}}^{1}\right)-z^{1}\left(\mathrm{~d}_{\mathrm{j}}-z_{\mathrm{j}}^{2}\right)
\]

Step IV: One has to choose max \(\Delta_{\mathrm{J}}>0\) for covering the optimality condition and to improve the basic solution and the minimum ratio test is to be app[iied to determine the new basic variable to enter the basis and the deparing variable to leave the basis.

Step V: If all \(\Delta_{j} \leq 0\) in the previous step, then one has reached to the optimal solution. Otherwise one has to go to Step ll

Now, we solve the above Example 4.3.1 applying our modified approach of Swanep [1964] as follows

Step 1: We have to first find a initial basic leasible solution of the given LFP problem. To do this, we consider the following ALP
(ALP) Minimize \(\quad I^{\prime}=w^{\prime}\)
Subject to
\[
\begin{aligned}
& 2 x_{1}+5 x_{2}-s_{1}+w=10 \\
& 4 x_{1}+3 x_{2}+s_{2}=20 \\
& -x_{1}+x_{2}+s_{3}=2 \\
& x_{1} \quad x_{2}, s_{1}, s_{2}, s_{3}, w \geq 0
\end{aligned}
\]

Now we construct the simplex table for PHASE-I as follows.

\section*{PHASE-1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{c}_{\mathrm{B}}\)} & \(\mathrm{c}_{\mathrm{J}} \longrightarrow\) & 0 & 0 & 0 & 0 & 0 & 1 & \multirow[t]{2}{*}{B} \\
\hline & Basis \(\downarrow\) & \(\mathrm{x}_{1}\) & \({ }^{2}\) & \(s_{1}\) & \(\mathrm{s}_{2}\) & S3 & w & \\
\hline 1 & w & 2 & 5 & -1 & 0 & 0 & 1 & 10 \\
\hline 0 & \(\mathrm{s}_{2}\) & 4 & 3 & 0 & 1 & 0 & 0 & 20 \\
\hline 0 & \(\mathrm{S}_{7}\) & -1 & 1 & 0 & 0 & 1 & 0 & 2 \\
\hline \(\mathrm{c}_{\mathrm{j}}{ }^{\mathbf{N}}=\mathrm{c}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}\) & & -2 & -5 & 1 & 0 & 0 & 0 & \(-10\) \\
\hline 0 & \(\mathrm{X}_{2}\) & \(2 / 5\) & 1 & -1/5 & 0 & 0 & 1/5 & 2 \\
\hline 0 & 52 & 14/5 & 0 & 3/5 & 1 & 0 & -3/5 & 14 \\
\hline 0 & \(5_{3}\) & -7/5 & 0 & 1/5 & 0 & 1 & -3/5 & 0 \\
\hline \(\mathrm{C}_{\mathrm{i}}=\mathrm{c}_{\mathrm{j}}-\mathrm{z}\), & & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{tabular}

Since all \(\mathrm{cj}{ }^{*} \geq 0\) and there is no artificial variable in the last table, it yields a primal feasible sofution., this table gives another sub optimal point
\[
s_{1}=0, s_{2}=14, s_{1}=0 \text { and } x_{1}=0, x_{2}=20
\]

Step II: Now the initial basic feasible solution is
\[
s_{2}=14, s_{3}=0 \text { and } x_{2}=20
\]
with \(\Delta_{1}=-23 / 5, \Delta_{2}=4 / 5\) and \(A_{3}=\Delta_{4}=\Delta_{5}=0\)

Now, we construct initial table as follows:

\section*{INITIAL TABLE}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
{ }^{c}+
\] & \[
\mathrm{d}_{\mathrm{s}}
\] & \multirow[t]{2}{*}{\[
\begin{aligned}
& { }^{c_{j}} \longrightarrow \\
& d_{j} \longrightarrow
\end{aligned}
\]} & 0 & 1 & 0 & 0 & 0 & \\
\hline \multirow[t]{2}{*}{} & & & -1 & -1 & 0 & 0 & 0 & \\
\hline & & \(\mathrm{x}_{13}\) - & \(\mathrm{X}_{1}\) & \(\mathrm{x}_{2}\) & st & \(\mathrm{s}_{2}\) & \(\mathrm{s}_{3}\) & \(\mathrm{x}_{\mathrm{D}} / \mathrm{a}_{\mathrm{y}}\) \\
\hline 1 & -1 & \(\mathrm{x}_{2}=2\) & \(2 / 5\) & 1 & -1/5 & 0 & 0 & -10 \\
\hline 0 & 0 & \(s_{2}=14\) & 14/5 & 0 & 3/5 & 1 & 0 & 70/3 \\
\hline 0 & 0 & \(\mathrm{s}_{3}=0\) & -7/5 & 0 & 1/5 & 0 & 1 & 0 \\
\hline \(z^{1}=-3\) & \(\mathrm{z}^{2}=7\) & \(\mathrm{Z}=-3 / 7\) & - & - & - & & & - \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \(\mathrm{c}_{5}-z_{j}{ }^{\text {a }}\) & -2/5 & 0 & 1/5 & 0 & 0 & \\
\hline & & \[
\mathrm{d}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}^{2}
\] & & 0 & -1/5 & 0 & 0 & \\
\hline & & \(\Delta_{j} \longrightarrow\) & -23/5 & \(\overline{0}\) & \(4 / 5^{4}\) & 0 & 0 & \\
\hline
\end{tabular}

Step III: Since max \(\Delta_{\mathrm{J}}=\Delta_{3}=4 / 5>0\) and min \(x_{B 3} / /_{i j}=0\). Thus \(s_{1}\) enter to the basis and \(s_{3}\) leave to the basis.

\section*{FIRST ITERATION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{c}_{\text {m }}\) & \(\mathrm{d}_{13} 1\) & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \mathrm{c}_{\mathrm{J}} \longrightarrow \\
& \mathrm{~d}_{\mathrm{j}} \longrightarrow
\end{aligned}\right.
\]} & 0 & 1 & 0 & 0 & 0 & \\
\hline \multirow[t]{2}{*}{} & & & -1 & - I & 0 & 0 & 0 & \\
\hline & & \(\mathrm{x}_{81}\) & \(\mathrm{X}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{s}_{1}\) & \(\mathrm{s}_{2}\) & S3 & \(\mathrm{x}_{\mathrm{B}} ; / \mathrm{a}_{\mathrm{j}}\) \\
\hline 1 & -1 & \(\mathrm{x}_{2}=2\) & -1 & I & 0 & 0 & 0 & -2/1 \\
\hline 0 & 0 & \(\mathrm{s}_{2}=14\) & 7 & 0 & 0 & 1 & -3 & 14/7 \\
\hline 0 & 0 & \(\mathrm{s}_{1}=0\) & -7 & 0 & 1 & 0 & 5 & O/7 \\
\hline \(z^{1}=-3\) & \(\mathrm{Z}^{2}=7\) & \(Z=-3 / 7\) & - & - & - & \multicolumn{2}{|c|}{-} & - \\
\hline \multirow[t]{3}{*}{.} & & \(\mathrm{c}_{5}-\mathrm{z}_{1}\) & 1 & 0 & 0 & 0 & -1 & \\
\hline & & \(\mathrm{d}_{1}-\mathrm{r}_{1}{ }^{2}\) & & 0 & 0 & 0 & 1 & \\
\hline & & \(\Delta_{\mathrm{j}} \longrightarrow\) & 7 & 0 & 0 & 0 & -4 & \\
\hline
\end{tabular}

Step IV: Since max \(\Delta_{j}=\Delta_{1}=7>0\) and min \(x_{B} / a_{11}=2\). Thus \(x_{1}\) enter to the basis and \(s_{2}\) leave to the basis.

\section*{FIRST ITERATION}


Since all \(\Delta \mathrm{j} \leq 0\) in the above table, this table yields an optimal solution,

Thus the solution of the Example 4.3 l is:
\[
x_{1}=2, x_{2}=4 \text { with } Z_{\max }=-1 / 3
\]

Similarly, by using Charmed \& Cooper method and Bitran- Novas method one can also obtain the same result

\section*{CHAPTER -5}

\section*{COMPERATIVE STUDY OF THE METHODS}

\subsection*{5.1 Introduction}

In this chapter, we discuss the comparative analysis on the Method of Bitran \& Novaes [1972], Swanp [1964 \& 1965] and Charnes \& Cooper [1962] transformation technique considering the sign of the numerator \& denominator of the objective function of LFP problem Islam \&Nath [1992] investigated on Charnes \& Cooper [1962] Iransformation method and they considered the following six cascs:

CASE I: \(\quad d x+\beta>0, \forall x \in X\)
CASE II \(d x+\beta \in 0, \forall x \in X\)
CASE III \(\cdot \mathrm{dx}+\beta=0, \forall \mathrm{x} \in \mathrm{X}\)
CASE IV: \(d x+\beta \geq 0, \forall x \in X\)
CASE V: \(d x+\beta \leq 0, \forall x \in X\)
CASE. VI: \(d x+\beta\) changes sign over the feasible region \(X\)
Bitran \& Novaes [1972] and Swanu [1964\&1965] considered oniy the case where the denominator: \(\mathrm{dx}+\beta\) of objective function of LFP problem is strictly positive (i.e, CASE I of Charnes \& Cooper [1962]).

If we multiply the CASE 11 and CASE \(V\) by -1 , they reduced to CASE I and CASE IV respectively Therefore, we may reduce the above six cases investighted by Islam \&Nath [1992] into the following four cases'

CASE I: \(d x+\beta \geqslant 0, \forall x \in X\)
CASE Il \(d x+\beta=0, \forall x \in X\)
CASE III : \(d x+\beta \geq 0, \forall x \in X\)
CASE IV: \(d x+\beta\) changes sign over the feasible region \(X\)
It is further noted that CASE IIl consists of the loilowing two sub cases'
(a) \(d x+\beta \geq 0 \& c x+\alpha>0, \forall x \in X\)
(b) \(d x+\beta \geq 0 \& c x+\alpha<0, \forall x \in X\)

We can also observe the following:
1. If \(d x+\beta=0, \forall x \in X\), the objective function of LFP problem is undefined and thus the question of solving the LFP problem is meaning less

2 If \(d x+\beta \geq 0 \& c x+\alpha<0, \forall x=X\), the objective function \((c x+\alpha)) /(d x+\beta)\) tends to infinite, where \(\mathrm{dx}+\beta\) tends to zero for some ye X and consequently the problen has no finite solution.
3. If \(d x+\beta\) changes sign over \(X\), the objective function \((c x+\alpha)) /(d x+\beta)\) becomes undefined at which \(d x+\beta\) equals to zero and it lends to infinite al which \(d x+\beta\) tends to zero for some \(x \in X\) and consequently the problem becontes unbounded.
4. The remaining only case where \(d x+\beta \geq 0 \& c x+\alpha<0, V x \in X\) Through in this case the objective function of LFP problem tends to infinite at which \(\mathrm{dx}+\beta\) tends to zero for some \(\forall x \in X\), the problem may inave finte solution, as it is maximization one So, finally it is enough to consider the following two cases instead of six cases considered by Islam \&Nath [1992].
\(\operatorname{CASEA}: d x+\beta>0, \quad \forall x \in X\)
CASE B. \(\mathrm{d} x+\beta \geq 0 \& \mathrm{cx}+\alpha<0, \forall \mathrm{v} \in \mathrm{X}\)

\subsection*{5.2. If the denominator is strictly positive ( \(\mathrm{d} x+\beta>0, \forall \mathrm{x} \in \mathrm{X}\) )}

If the demoninator the objective function is strictly positive the Method of Bitcan \& Novaes [1972], Swarup [1964\& 1965], our modified method of Swarup [1964] and Charnes \& Cooper \(\{1962\) ] transformation technique solve the LIP problen successfully. We now illustrate thus by simple numerical examples.

\section*{Example 5.1:}
(LFP)
\[
\text { Maximize } \quad Z=\frac{-x_{1}+x_{2}+2}{-x_{-}+2}
\]

Subject to
\[
\begin{aligned}
& 4 x_{1}-3 x_{2} \geq 2 \\
& x_{1} \leq 5 \\
& x_{1} \geq 2 \\
& x_{1} \quad r_{2} \geq 0
\end{aligned}
\]

Now, we solve the above problem by using Bituan- Novaes method as follows:
Here \(c=(-1, /), \alpha-2\)
and
\[
d=(0,1), \beta=2
\]
\[
\begin{aligned}
& \therefore\langle c, d\rangle=\sum_{t-1}^{2} c_{1} d_{1}=(-1,1)(0,1)=1 \\
& \langle d, d\rangle=\sum_{1}^{2} d_{r}^{2}=(0,1)(0,1)=1
\end{aligned}
\]

Thus \(\quad \frac{\langle c, d\rangle}{\langle d . d\rangle}=1\)
Step I: The linear objective finction: is given by
\[
\begin{aligned}
L & =\langle\gamma, x\rangle=\left\langle\left[c-\frac{\langle c, d\rangle}{\langle d, d\rangle} d\right], x\right\rangle \\
& =\langle[(-1, \mathrm{i})-1(0,1)] . x\rangle \\
& =-x_{1}
\end{aligned}
\]

Now we maximize \(l\). subject to the same constraints as follows:
LP) \(\quad\) Maximize \(L=-s_{1}\)
Subject to
\[
\begin{aligned}
& 4 x_{1}-3 x_{2} \geq 2 \\
& x_{1} \leq 5 \\
& x_{1} \geq 2 \\
& x_{1} \quad x_{2} \geq 0
\end{aligned}
\]

Inserting surplus variables \(s_{1} \& s_{1}\) and slack variable \(s_{2}\) to the \(!^{11}, 3^{m b} \& 2^{\text {N }}\) constraints respectively to make the LP problem to its standard form as follows
(LP1) \(\quad \operatorname{Maxinize} L=-x_{1}\)

Subject to
\[
\begin{aligned}
& 4 x_{1}-3 x_{2}-x_{1}=2 \\
& x_{1}+s_{2}=5 \\
& x_{1}-y_{2}=2 \\
& x_{1} \quad x_{2}, x_{1}, s_{2}, s_{3} \geq 0
\end{aligned}
\]

Adding artificial variables \(w_{1}, w_{2}\) in the \(1^{\prime \prime}\) and \(3^{\text {rd }}\) constraints and assign profit -1 to each of the artilicial variables and profit zero to all other variables in the objective function, then PHASE 1 of the LP is.
(ALP) Masimize \(h_{1}=-u_{1}-H_{2}\)
Subject to
\[
\begin{aligned}
& 4 x_{1}-3 x_{2}-s_{1}+w_{1}=2 \\
& x_{1} \div s_{2}=5 \\
& x_{1}-s_{2} \quad r_{1}=2 \\
& x_{1} \quad x_{2}, s_{1}, x_{2}, s_{3} w_{1}, w_{2} \geq 0
\end{aligned}
\]

Now we construct simplex table of the PHASE-I as follows:
PHASE-1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{C}_{13}\)} & \(\mathrm{c}_{\boldsymbol{j}} \longrightarrow\) & 0 & 0 & 0 & & & & & \multirow[t]{2}{*}{B} \\
\hline & Basis \(\downarrow\) & \(\mathrm{X}_{1}\) & \(x_{2}\) & s \({ }_{1}\) & s & & & \(\mathrm{w}_{2}\) & \\
\hline -1 & wi & 4 & -3 & -1 & 0 & 0 & 1 & 0 & 2 \\
\hline 0 & S 2 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 5 \\
\hline -1 & \(\mathrm{w}_{2}\) & I & 0 & 0 & 0 & -1 & & 1 & 2 \\
\hline \multicolumn{2}{|l|}{\(\overrightarrow{c_{1}} \overrightarrow{=c}_{\mathrm{c}_{5} \mathrm{z}_{1}}\)} & & \(54-3\) & -1 & 0 & -1 & 0 & 0 & 4 \\
\hline 0 & \(x_{1}\) & 1 & -3/4 & -1/4 & 0 & 0 & 1/4 & 0 & 1/2 \\
\hline 0 & \(\mathrm{s}_{2}\) & 0 & \(3 / 4\) & 1/4 & 1 & 0 & -I/4 & 0 & \(9 / 2\) \\
\hline -1 & \(w_{2}\) & 0 & 3/4 & 1/4 & 0 & -I & \(-1 / 4\) & 1 & \(3 / 2\) \\
\hline \(c_{j}=c_{j}-z_{s}\) & & 0 & 3/4 & 1/4 & 0 & -I & -1/4 & 0 & 3/2 \\
\hline 0 & \(\mathrm{x}_{1}\) & 1 & 0 & 0 & 0 & 4/3 & 0 & -1 & 2 \\
\hline 0 & 52 & 0 & 0 & 0 & 1 & 4/3 & 0 & -1 & 3 \\
\hline 0 & \(\lambda_{2}\) & 0 & 1 & 1/3 & 0 & -4/3 & -1/3 & 4/3 & 2 \\
\hline \(c_{j}{ }^{*}=c_{j}-z_{j}\) & & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 \\
\hline
\end{tabular}

Since att \(c_{1}{ }^{*} \leq\) ond there is no attilicial variables in the basis this last table gives an optimal solution for PlASE-I and we construct the simplex table for PHASE-II.

PH/ASE-II
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{CH}_{5}\)} & \(\mathrm{c}_{1} \longrightarrow\) & -1 & 0 & 0 & 0 & 0 & \multirow[t]{2}{*}{B} \\
\hline & Basiş & \(\mathrm{x}_{1}\) & x 2 & 31 & \(S_{2}\) & 5. & \\
\hline -1 & \(\mathrm{X}_{1}\) & 1 & 0 & 0 & 0 & 4/3 & 2 \\
\hline 0 & \(\mathrm{S}_{2}\) & 0 & 0 & 0 & 1 & 4/3 & 5 \\
\hline 0 & \(\mathrm{X}_{3}\) & 0 & 1 & 1/3 & 0 & -4/3 & 2 \\
\hline \multicolumn{2}{|l|}{} & 0 & 0 & & 0 & -4/3 & 2 \\
\hline
\end{tabular}

Since all \(c_{1} \leq 0\), this table gives a sub optimal pont \(x^{3}=(2,2)\) with \(Z\left(x^{1}\right)=-1 / 2\).
Step 11: Again, the new objective function \(L^{\prime}\) is given by
\[
\begin{aligned}
I^{\prime} & =\left\langle\left[c-Z\left(x^{\prime}\right) d\right], x\right\rangle \\
& =\langle[(-1,1)-1 / 2(0,1)], x\rangle \\
& =-x_{1}+1 / 2 x_{2}
\end{aligned}
\]

Now, we maximize \(L^{\prime}\) subject to the same set of constraints and hence applying two plase simplex method, PHASE-II of the problem is given by PHASE-II
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathcal{C l}_{13}\)} & \(\mathrm{c}_{1} \longrightarrow\) & -1 & \(1 / 2\) & 0 & 0 & 0 & \multirow[t]{2}{*}{B} \\
\hline & Basis \(\downarrow\) & \(\mathrm{x}_{1}\) & \(\mathrm{X}_{2}\) & \$1 & \(5_{2}\) & 57 & \\
\hline -1 & \(\mathrm{x}_{1}\) & b & 0 & 0 & 0 & \(4 / 3\) & 2 \\
\hline 0 & \(\mathrm{s}_{2}\) & 0 & 0 & 0 & 1 & 4/3 & 5 \\
\hline 1/2 & \(\mathrm{x}_{2}\) & 0 & 1 & 1/3 & 0 & -4/3 & 2 \\
\hline \(\mathrm{c}_{\mathrm{j}}{ }^{-}=\mathrm{c}_{5} z_{1}\) & & 0 & 0 & -1/6 & 0 & -2/3 & 1 \\
\hline
\end{tabular}

Suce all \(c ; \leq 0\), this table gives amother sub optimal point
\[
x^{2}=(2,2) \text { with } Z\left(x^{2}\right)=1 / 2
\]

Now, since \(x^{1}=x^{2}=(2,2)\), therefore. we have reached to the optimat solution \(x=(2,2)\) with \(Z_{\text {max }}=1 / 2\)

Now, we solve the above problem by using our modified approach as follows:
(ALP) \(\quad\) Minimize \(L=w_{1}+w_{2}\)
Subject to
\[
\begin{aligned}
& 4 x_{1}-3 x_{2}-s_{1}+w_{1}=2 \\
& x_{1}+s_{2}=5 \\
& x_{1}-s_{3}+w_{2}=2 \\
& x_{1} . \quad x_{2}, s_{1}, s_{2}, s_{3}, w_{1}, w_{2} \geq 0
\end{aligned}
\]

Now, we construct simplex table of the PHASE-I as follows:

\section*{PHASE-I}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{CB}_{\text {B }}\)} & \(\mathrm{c}_{\mathrm{i}} \longrightarrow\) & 0 & 0 & 0 & 0 & 0 & 1 & & 1 & \multirow[t]{2}{*}{B} \\
\hline & Basis & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(s_{i}\) & \(\mathrm{s}_{2}\) & S & 3 & & \(\mathrm{w}_{2}\) & \\
\hline 1 & \(\mathbf{w}_{1}\) & 4 & -3 & -1 & 0 & 0 & & & 0 & 2 \\
\hline 0 & \(\mathrm{s}_{2}\) & 1 & 0 & 0 & 1 & 0 & & 0 & 0 & 5 \\
\hline 1 & \(W_{2}\) & 1 & 0 & 0 & 0 & \(-1\) & & 0 & 1 & 2 \\
\hline \multicolumn{2}{|l|}{\(c_{j}^{*}=c_{j}-z_{j}\)} & -5 & 3 & 1 & 0 & 1 & \multicolumn{2}{|c|}{0} & 0 & -4 \\
\hline 0 & \(\mathbf{x}_{1}\) & I & -3/4 & -1/4 & 0 & 0 & 1/4 & & 0 & 1/2 \\
\hline 0 & \(5_{2}\) & 0 & \(3 / 4\) & 1/4 & \(\cdots 1\) & 0 & -1/4 & & 0 & \(9 / 2\) \\
\hline 1 & \(\mathbf{w}_{2}\) & 0 & 3/4 & 1/4 & 0 & -1 & -1/4 & & 1 & \(3 / 2\) \\
\hline \(c_{j}=c_{j} z_{j}\) & & 0 & - \(3 / 4\) & -1/4 & 0 & 1 & 1/4 & 0 & & -3/2 \\
\hline 0 & \({ }_{1}\) & 1 & 0 & 0 & 0 & 4/3 & 0 & & -1 & 2 \\
\hline 0 & \(\mathrm{s}_{2}\) & 0 & 0 & 0 & 1 & 4/3 & 0 & & -1 & 3 \\
\hline 0 & \(\mathrm{x}_{2}\) & 0 & 1 & 1/3 & 0 & -4/3 & -1/3 & & 4/3 & 2 \\
\hline \(\mathrm{c}_{\mathrm{j}}{ }^{*} \mathrm{c}_{\boldsymbol{j}}-\mathrm{z}_{\mathrm{j}}\) & & 0 & 0 & 0 & 0 & 0 & I & & 1 & 0 \\
\hline
\end{tabular}

Since all \(\mathrm{c}_{\mathrm{j}}{ }^{*} \leq 0\) and there is no arificial variables in the basis this last table, it yields a basic feasible solution.
\(x_{1}=x_{2}=2\) and \(s_{2}=3\)

Thus initial basic solution of LFP problem.
\(x_{1}=x_{2}=2\) and \(s_{2}=3\)
with \(\Delta_{1}=\Delta_{2}=\Delta_{4}=0\) and \(\Delta_{3}=-2 / 3, \Delta_{5}=-4 / 3\)

\section*{Initial Table}
\begin{tabular}{|l|l|l|l|lllll|}
\hline\(c_{B}\) \\
& \\
\hline
\end{tabular}

Since all \(\mathrm{x}_{\mathrm{Bi}}>0 \&\) all \(\Delta_{\mathrm{j}} \leq 0\), we have reached to the optimal solution and the optimal solution is :
\(x_{1}=2\) and \(x_{2}=2\) with \(Z_{\text {max }}=1 / 2\).
Simitarly, by using Swarup dual type method and Charnes \& Cooper method, one can obtain the following results :
\[
x_{1}=x_{2}=2 \text { with } Z_{\text {max }}=1 / 2 .
\]

\subsection*{5.3. If the denominator \(d x+\beta \geq 0\) and the numerator \(c x+\alpha<0, \forall x \in X\).}

If the denominator \(d x+\beta \geq 0\) and the runerator \(c x+\alpha<0, \forall x \in X\), the method of Bittan-Novaes may fail, whereas our modffied approach of Swarup simplex type method, Swarup dual type method \& Chames-Cooper transformation technique will always recognize and stop at an optimal point, if such a point is reached. We now illustrate this difference by following simple example.

\section*{Example 5.2:}
(LFP) Maximize \(Z=\frac{-2 x_{1}-3 x_{2}}{2-x_{1}-x_{2}}\)

Subject to
\[
\begin{aligned}
x_{1}+x_{2} & \leq 2 \\
x_{1}+x_{2} & \geq 1 \\
x_{1} \quad x_{2} & \geq 0
\end{aligned}
\]

Now, introducing slack and surplus variables \(s_{1}\) and \(s_{2}\) to \(1^{\text {st }}\) and \(2^{\text {rd }}\) constraints respectively to make the LFP in the standard form.

Thus the initial basic solution
\(s_{1}=2, s_{2}=-1\) and \(x_{1}=x_{2}=0\)
with \(\Delta_{1}=-4, \Delta_{2}=-6, \Delta_{3}=\Delta_{4}=0\)
Now proceed to construct simplex table as follows

\section*{Initial Table}
\begin{tabular}{|l|l|l|l|llll|}
\hline\(c_{B}\) \\
& \\
\hline
\end{tabular}

Since ali \(x_{\mathrm{bi}^{2}}>0\) \& all \(\Delta \leq \leq\), we have reached to the optimal solution and the optinal solution is : \(\mathrm{x}_{1}=1\) and \(\mathrm{x}_{2}=0\) with \(Z_{\text {max }}=-2\)

Now, we soive the above problem by using our modified approach as follows:
(ALP) \(\quad\) Minimize \(L=w\)
Subject to
\[
\begin{aligned}
& x_{1}+x_{2}+s_{1}=2 \\
& x_{1}+x_{2}-s_{2}+w=1 \\
& x_{1}, x_{2}, s_{1}, s_{2}, w \geq 0
\end{aligned}
\]

Now, we construct simplex table of the PHASE-I as follows:

PHASE-1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \(\mathrm{c}_{\mu} \longrightarrow\) & 0 & 0 & 0 & 0 & 1 & \multirow[t]{2}{*}{B} \\
\hline & Basis \({ }^{\text {b }}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{s}_{1}\) & \(\mathrm{s}_{2}\) & \(w\) & \\
\hline 0 & \(s_{1}\) & 1 & 1 & 1 & 0 & 0 & 2 \\
\hline 1 & w & 1 & 1 & 0 & -1 & 1 & 1 \\
\hline \multicolumn{2}{|l|}{\(\mathrm{c}_{\mathrm{j}}=\mathrm{c}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}\)} & -17 & -1 & 0 & 1 & 0 & -1 \\
\hline 0 & \(\mathrm{S}_{1}\) & 0 & 0 & I & 1 & -1 & 1 \\
\hline 0 & \(\mathrm{x}_{1}\) & 1 & 1 & 0 & -1 & 1 & 1 \\
\hline \(\mathrm{c}_{3}{ }^{*}=\mathrm{c}_{\mathrm{j}} \mathrm{z}_{\mathrm{j}}\) & & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{tabular}

Since all \(\mathrm{c}_{\mathrm{j}}{ }^{*} \leq 0\) and there is no artificial variables in the basis this last table, it yieids a basic feasible solution
\(x_{1}=1\) and \(s_{1}=1\)

Thus initial basic solution of LFP problem
\(x_{1}=1\) and \(s_{1}=1\)
with \(\Delta_{1}=\Delta_{3}=0\) and \(\Delta_{1}=-1, \Delta_{4}=-4\)

\section*{Initial Table}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(C_{B}\)} & \multirow[t]{2}{*}{\(\mathrm{d}_{\mathrm{H}}{ }^{1}\)} & \[
\begin{aligned}
& \mathrm{c}_{\mathrm{j}} \longrightarrow \\
& \mathrm{~d}_{\mathrm{j}} \longrightarrow
\end{aligned}
\] & \[
\begin{aligned}
& -2 \\
& -1
\end{aligned}
\] & \[
\begin{aligned}
& -3 \\
& -1
\end{aligned}
\] & 0
0 & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] \\
\hline & & \(\mathrm{X}_{\mathrm{Bi}}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{s}_{1}\) & \(\mathrm{s}_{2}\) \\
\hline 0 & 0 & \(\mathrm{s}_{1}=1\) & 0 & 0 & 1 & 1 \\
\hline -2 & -1 & \(\mathrm{x}_{1}=1\) & 1 & 1 & 0 & -1 \\
\hline \multirow[t]{4}{*}{\(Z^{\prime}=-2\)} & \(\bar{Z}^{2}=1\) & \(\mathrm{Z}=-2\) & & & & \\
\hline & & \(\hat{c}_{j}-z_{j}{ }^{\text {j }}\) & 0 & -1 & 0 & -2 \\
\hline & & \(\mathrm{d}_{\mathrm{j}} \mathrm{z} \mathrm{zj}^{2}\) & 0 & 0 & 0 & -1 \\
\hline & & \(\stackrel{\Delta_{\mathrm{j}}}{ } \longrightarrow\) & 0 & -1 & 0 & -4 \\
\hline
\end{tabular}

Since all \(\mathrm{x}_{\mathrm{Bi}}>0\) \& all \(\Delta_{\mathrm{j}} \leq 0\), we have reached to the optimal solution and the optimal solution is : \(x_{1}=1\) and \(x_{2}=0\) with \(Z_{\text {mux }}=-2\).

Similarly, by using Charmes \& Cooper transformation technigue, one can obtain the following results:
\[
x_{1}=1 \text { and } x_{2}=0 \text { with } Z_{\max }=-2
\]

On the other hand if we apply Bitran-Novaes method to solve example 5.2 ; we obtain Here \(c=(-2,-3), a=0\) and
\[
\begin{gathered}
d=(-1,-1), \rho=2 \\
\therefore\langle c, d\rangle=\sum_{t=1}^{2} c_{t} d_{t}=(-2,-3)(-1,-1)=5 \\
\langle d, d\rangle=\sum_{r=1}^{2} d_{r}^{2}=(-1,-1)(-1,-1)=2
\end{gathered}
\]

Thus \(\quad \frac{\langle c, d\rangle}{\langle d, d\rangle}=5 / 2\)

Step I: The linear objective function L is given by
\[
\begin{aligned}
L & =\left\langle y_{r}, x\right\rangle=\left\langle\left[c-\frac{\left\langle c_{,} d\right\rangle}{\langle d, d\rangle} d\right], x\right\rangle \\
& =\langle[(-2,-3)-5 / 2(-1,-1)], x\rangle \\
& =x_{1} / 2-x_{2} / 2
\end{aligned}
\]

Now we maximize \(L\) subject to the same constraints as follows:
\[
\begin{aligned}
x_{1}+x_{2} & \leq 2 \\
x_{1}+x_{2} & \geq 1 \\
x_{1} \quad x_{2} & \geq 0
\end{aligned}
\]

Therefore, inserting slack, surplus and arificial variables we obtain:
(ALP) Minimize \(L^{*}=w\)
Subject to
\[
\begin{aligned}
& x_{1}+x_{2}+s_{1}=2 \\
& x_{1}+x_{2}-s_{2}+w=1 \\
& x_{1}, \quad x_{2}, s_{1}, s_{2}, w \geq 0
\end{aligned}
\]

Now, we construct simplex table of PHASE-I as follows :

\section*{PHASE-I}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{C}_{\mathrm{B}}\)} & \(\mathrm{c}_{1} \longrightarrow\) & 0 & 0 & 0 & 0 & -1 & \multirow[t]{2}{*}{B} \\
\hline & Basis \(\downarrow\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & 51 & s2 & \(w\) & \\
\hline 0 & St & 1 & 1 & 1 & 0 & 0 & 2 \\
\hline -] & w & I & 1 & 0 & -1 & 1 & 1 \\
\hline \multicolumn{2}{|l|}{\(\mathrm{c}_{j}{ }^{*}=\mathrm{c}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}\)} & -1 & -1 & 0 & 1 & 0 & -1 \\
\hline 0 & \(\mathrm{s}_{1}\) & 0 & 0 & 1 & 1 & -1 & 1 \\
\hline 0 & \(\mathrm{K}_{1}\) & 1 & 1 & 0 & -I & 1 & 1 \\
\hline \(\mathrm{c}_{5}=\mathrm{c}_{\mathrm{j}}-\mathrm{z}_{1}\) & & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{tabular}

Since all \(c, \geq 0\) and the artificial variable \(w\) is out of basis, it yields an optimal solution for PHASE-L.

PHASE-II
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{C}_{\text {B }}\)} & \(¢_{j} \longrightarrow\) & 1/2 & -1/2 & 0 & 0 & \multirow[t]{2}{*}{B} \\
\hline & Basist & \(\mathrm{X}_{4}\) & \(\mathrm{x}_{2}\) & \(\mathrm{s}_{1}\) & 52 & \\
\hline 0 & S & 0 & 0 & 1 & 1 & 1 \\
\hline 1s & \(\mathrm{X}_{1}\) & 1 & 1 & 0 & -1 & 1 \\
\hline \multicolumn{2}{|l|}{\(c_{j}=c_{j}-z_{j}\)} & 0 & -11 & 0 & 1/2 & -1/2 \\
\hline 0 & \(\mathrm{s}_{2}\) & 0 & 0 & 1 & 1 & 1 \\
\hline 1/2 & \(\mathrm{X}_{1}\) & 1 & 1 & 1 & 0 & 2 \\
\hline \(\mathrm{c}_{\mathrm{j}}{ }^{=} \mathrm{c}_{\mathrm{j}}{ }^{-} \mathrm{z}_{\mathrm{j}}\) & & 0 & -1 & -1/2 & 0 & -1 \\
\hline
\end{tabular}

Since all \(c_{j}^{*} \geq 0\) and the last table yields a sub-optimal solution \({ }^{1}=(2,0)\).
But \(Z\left(x^{1}\right)=-4 / 0\), that is, the maximum value is undefined.

\section*{Conclusion:}

If the constraint set or the feasible region X is bounded and the denominator is strictly positive for all \(\mathbf{x} \in \mathbf{X}\), each of the four algonithm can successfully soive the LFP problem (see also Example 5.1 of this chapter). The method of Bitran-Novaes [1972] and Swanup [1964] are algorithmicaliy equivalent in the sense that two algorithms select the same non-basic variables to enter the next trial solution and remove the same basic variable from the current solution. One can also observed that the technique of BitranNovaes [1972], which is the solution of a sequence of linear programs, only checks for oplimality of the fractional programs at points that are optimal solution of intermediary finear programs. It is also observed that primal Simplex type method of Charnes \& Cooper, Swarup or Bitran -Novaes are not applicable if the constrains fail the feasibility; whereas Swarup [1965]'s dual type method is not applicable if the constraints fail the optimality

If the denominator \(\mathrm{dx}+\beta \geq 0\) and the numerator \(c x+\alpha<0, \forall \mathrm{x} \in \mathrm{X}\), the method of BitranNovaes may fail (see aiso Example 5.2 of this chapter); whereas our modified approach of Swarup simplex type method, Swarup dual type method \& Charnes-Cooper
transformation technique will always recognize and stop at an optimal point, if such a point is reached (sec also Example 5.2 of this chapter).

Finally, we conclude that without considering the restrictions on the sign of the denominator of the objective function of LFP problem Charnes-Cooper [1962] transformation technique is more applicable. If the constraint set or the feasible region \(\mathbf{X}\) is bounded and the denominator is strictly positive for all \(\mathrm{x} \in \mathrm{X}\) Bitran-Novaes [1972] method which involves a sequence of linear programs, to solve a LFP problem it takes more time and labor ; but in the same case Swarup simplex type method solve only a single LFP problem. So, Swarup [1964] simplex type method with our modified approach is best one.

Since large-scale real life LFP problem cannot be solved by hand calculations, it requires computer-oriented solution. Hence, here we generalize computer program (FORTRAN) of all these methods for solving LFP problem. So we may conclude that linear fractional programming method and roquired computer program a mighty method for large scale oplimization problem, where it can be applied.

\section*{REFERENCES}
1. Bitran, G.R. and Novaes, A.G.: Linear Programming with a Fractional Objective Function, Operations Rescarch, Vol. 21, pp. 22-29, (1972).
2. Charnes, A, \& Cooper, W.W.: Programming with Fractional Functionals, Naval Research Logistics Quarterly 9, pp. 181-186,(1962).
3. Dantzig, G.B.: Linear Programming and extension, Princeton University Press, Princeton, N. J., (1962).
4. Dantzig, G.B.: Inductive proof of the simplex method, IBM Journal of research and development, Vol. 14, No. 5, (1960).
5. Gillet B.E.: Introduction to Operations Research, McGraw Hill, Inc., New York, (1998).
6. Islam, M.A., \& Nath. G.: Investigation on some Algorithm for solving Linear Fractional Programming Problems, Bangladesh Sci. Res., 14(1) , pp. 1-11, (1996).
7. Lipschutz, S. \& Poe, A.: Programming with FORTRAN including Structural Fortran, McGraw Hill, Inc., New York, (1998).
8. Mayo, E.W. \& Cwiakala ,M.: Programmng with FORTRAN 77, McGraw Hill, Inc., New York, (1995).
9. Press, H.W., Teukoisky, A S., Vetterling, T.W. \& Flannery , P.B.:

Numerical Recipes in FORTRAN 77, Cambridge University Press, (1992).
10. Swarup, K.: Linear Fractional Programning, Operations Researcl, Vol. 13, No. 6, pp. 1029-1036, (1964).
11. Swarup, K.: Some Aspects of Lincar Fractional functionals Progranming, Australian Journal of Statistics, Vol. 6(3), pp. 90-104, (1965).
```

