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Abstract

The similarity solutions of un~leady mixed convection boundary layer equations
over a fl"l porous vertical plate has been inve,tigated by the method of one parameter
cODtinuou> Group Theory. By repealed apphcatioll<;of this method which redu<:es the
number of independent v"riable~, firstly [rom three to two and finally frol11two 10one,
lhe governing boundary layer partial differential equations arc transformed into a pair of
nonlinear ordinary differential equations with appropriate boundary condition~. One set
of the coupled nonlinear equations arc solved numerically. The resullS thus obtained arc
compared with all other relevant work-; in literature.

The heal transfer and skin frittion faclols {q.(O),r w(O)}arc jnve,ligated und
Rhown graphically for some values 01 contl'Olling p;lrameters by uRing Programming
software FORTRAN 77 and visualizing software TECI'LOT II would be shown that both
lhe skin friclion und heal lran<;fercoeffIcient illcreas~s with suction and decreuses wnh
injeclion.
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Dimensionless variables

Symbol

G,
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Velocity function
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"
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Prandtl number

Reynolds number

Velocity component in the boundary layer along the plate

Velocity component in the h()umlary layer perpendicular to the plate

External velocity

Time

Temperature

Distance along the plate

Distance perpendicular to the plate



Greek symbols

Symbol Quantity Unit

Coefficient of dynamic ~iseoslty

Volumetric thermal expansioll coefficient
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Thermal conductivity
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K
kg
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m',
!£
m'
Kg
illS'

.T
mK.\'

fI DimellSioniess temperalUl'e fUllction

''iJ Dimensionle~s stream funClio[l

'I'S Similarity variables

a's Real numbers

fi's Real numbers

Subscripts

Cunditiun at the wallw

Conditiun at the ambient medium
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General Introduction

In this Ihesi, an analy,is is carried out to study similarity solutions of the
boundmy layer equation, for unsteady mixed convection flow, over a porou; vertical flat
plate by the method of one parameter continuous GroupTheory.

Chapler one contains review of the literature of th,e.prnl->lem.

Chapter two deals with the propertic, of viscolls fluid, the basic equations,
boundary layer equations and allied governing equation,;_ A brief di~cus~ion of Group
Theory is also pre~ented in thi, chapter.

In Chapter three, we explore all possible Group invariant solutions induding
those already published in the literature using Group ThEOry. In this chapter il is found
that present analysi, covers all the existing possible six ca~e~ derived by Yang; (1960).

Chapter four deals with the numerical solution of one of the transformed
nonlinear ordinary differential equutions by shooting method.

Finally, in Chapter five, we present the concluding remarks on overalt
investigation~ in the aforementioned chapters,
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Chapter One

Heat transfer estimates the rate at whieh heat is transferred aeross the system,
where the boundaries are subjected to a specific tenipCmlllte difference and temperature
distribution of the system. It occurs on the walls of a room, Oll the outside of warm and
cool pipe~ and between the ~urfaces and the fluid of all type' of heat exchanger. A heat
transfer phenomenon may occur in some fields of engineering,

There are three types of thermal encrgy transport: (i) conduction (ii) convection
and (iii) radiation. In various types of studies related to heat tr,Ln,fer Ot thermaltran~port,
considcrable effort has been ditected at the convcction mode, in which heat transfer
process takes place with the motion of the fluid. Convective heat transfer is divided
broadly into two basic process, namely, (i) free convection and (i i) forced convection.

Free (Natural) convection

Natural convection flow arise when buoyancy lorces due to density difference
occur and these acts as a driving forccs. In this case fluid motion caused entirely by
buoyancy force that arises due to density changes resulling from the temperature
variations or concentration differences of the flow. Buoyancy forces may act in diffa-ent
force field~, the gravitational field being mo,t common, the centrifugal force field, Ihe
Coriolis force field and the electromagnetic force field are al,o found in nature. It can be
both laminar and turbulent.

Natural convection flow velocitics arC gcnerally much smallcr than thosc
a'C\ociated with the forced convection and heat tran<,ferrate is generally smaller. In brief,
we can say that free convection flow results from the action of body forces on the fluid,
that i~, forces which are proportional to the rna,S Ordensity of the fluid.

A heated body cooling in the ambient air produce,> free convection flow in the
rcgion surrounding it .Considerable dlort has been givcn to the convcctive heat transfer
because of its importance in technical application; in which the relative motion of the
fluid provides an additional mechanism for the transfel' of el1Grgyand of the material, the
latter being a more import<Ult con,ideration in ca,cs where mass transfer due to
concentration difference occurs.

The mechanism of transfer of beat hom one fl\lid c1enlent to another adjacent one
is conduction. Thus a ~tudy of heat tran,fer involves (j) the mechanism of conduction and
(ii) sometimes radiative process.

1
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There are many practical situalion~ in which these factors influence the flow
phenomena. For example, in air craft propulsion system, there are components (such as
gas turbines and helicopter ramjet~) which rotate at high spc~(]~.Associated with these
relative :.peeds the large centrifugal forces ~imilar to gravitational force are also
proportional to the fluid density and hence can gcnerate stron~ natural convection flows.

Free convection heat transfer is important only when thcre exist no external flow,
It is expected from dimensional an~lysis that for large Reynolds number (i,c., for large
flow velocity) and small Grashof number, the int1ucllce of free convection on he~t
transfer can be neglected. On the orhcr hand, for large (jrashof number ~nd small
Reynolds number the free convection would be a dominating factor.

Forced convection

If the fluid motion arises due to an external agent, such as the externally imposed
flow of a fluid stream by a fan, a blower, the winds or the motion of the healed objects
itself. The process is known as forced convection. It occurs In electronic devices which
arc not classified as heat exchangers, such as furnaces with mtificial draft and
regenerators.

Buoyancy causes variations in the velocity ~nd t~mperaturc fields of forced
convection flows leading to the variations in the Nusselt number and the wall shear stress
or friction coefficient, parameters that arc important for most engineering problems. For
case of upward forced convection over a flat plate with $ur[ac~ heated to a temperature
higher than the surrounding temp~rature, the buoyancy forces aid convective motion
whereas if the surrounding tempcrature is greater than surface temp~ratur~, buoyancy
forces oppose the flow.

In nature, we face some situations where forced and free cvnvection act
simultaneously in establishing the flow and temperatUT~field n~ar tre heated or cooled
plate body. That is, if the relative importance of the forced and free convection is of
comparable order; the phenomena may be termed as mixed convection now. The laminar
boundary layer flow due to mixed cvnvection has received cvnsiderablc attention for both
steady and unsteady situation in evaluating flow parameters for technical purposes.

In recent years, the transfer of heal to and from enclosed or partially enclosed ~
r~gions by means of natural convection or by a combination of natural and forced
convection has taken a new significance in the field of Aeronautics, Automatic power,
Electronics and Chemical engineering and Eleclrical engin~ering.
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Prandtl boundary laycr
Prandll (1904) first introduced a theory for the boulllbry layer. He showed that

the tluid motion with the small friction may be divided into two regiollS (i) a very thin
region close to the body over which fluid is flowing knowil as boundary layer where
viscous effect dominate. (ii) the region outside the boundary !-Iyerwhere viscous effect is
negligible. The flow outside the boundary layer is known as potential flow.

Transition from laminar to turbulent flow ill the bOllndary layer on a tlat plate
, UL

occurs at Re~5xlO ,whereRe~-.

"
i\ typical inertia term in the Naiver-Slakes equatioll is P'u'::: and a typical

viscous term is J./ a
2
",' .In the boundary layer they arCcomparable order and hence we

ay'

have £. - ~ (Schlichting 1978)
L 'IRe

This type of argument is cailed ~caling analy~is ilnd i, a vaiuabie toni in dealing
with transport probiem.

Porous plate

By porous plate we mean that the piatc possesses very fine holes distributed
uniformly over the entire surfilce of the plate tbrough wbicb fluid can flow freely.

Platc with suction and injection

The plate from which the fluid enters inlo the flow region is known as plate with
injection and the plate from which the fluid leave~ from the rlow region is known a~ plate
with suction.

Some times it is necessary to control the boundary layer flows by injecting or
withdrawing fluid through a heated boundary layer wall. Sillce this can enhance heating
(or cooling) of the system and can hcip delay th~ transiti'"1 from laminar to turbulent
flow. Boundary layer suction is used to control laminar ,,,,d turbulent separation, by
removing flow of low momentum. The technique is used ill aircraft wings, some wind
tunnels to remove boundary layer. Blowing (injection) a boundary layer on high
temperature components can maintain a thin layer of wide, [Jow tbat allow,; th~ system
to function with very high fluid velocity.

Skin friction and s~parated flows over ext~rmll surf;Lcepenalize the performance
and economics of the airplanes, ships, cars etc. Generaily they can affect the performance
of any manufacturing process that employs long piping rUIl, or tluid tlows that become

J



unstable. It has been estimated that air craft fuel cost PCI'mile could drop up to 40% if the
now around aircraft could be smoothed out. Hence our purpo~e is to find economic ways
by which we can reduce skin friction and control boundary layer thickness, A variety of
active and passive ways had becn explored, including ntern"l pla~ma fields, varialions,
acuators, and flow additives. Among other approaches, one C,LIlconsider now blowing or
suction in the boundary layer, injection of gas with diffrl'cm viscosity or different
temperalure.

Mechanics of nonlinear fluids prcsents a special challenge 10 the Engineer"
Physicists and Mathematicians. All physical phenomcna arc, in general, governed by
partial differential equations with appropriate inilial and boumlary conditions. It is often
difficult and even impossible to find their solution using clasoical separation of varialie~,
free parameter and dimensional analysis methods, Applied Malhematicians, Engineers
and ScientiMs try to find the ways and means to reducc the panial differential equations
into ordinary differential equations to Serve their nece'sary pLLrposes.A vaot literature of
similarity solutions has appeared in the arcna of I1lLidmerlmnics, heal transfer, maS~
transfer, aerodynamics etc. Most existing solutions, in thc tcrlllllcal arcnas, arc similarity
solutions in the sense that the pertincnt boundary laycl' equalions wilh boundary
condilions under suitable transformations arc reduced to a sci of ordinary differential
equations in terms of similarity variables which are fllncti"11~of original independent
variables. They may be derived by dimen<,ional argume~t'. by sophisticated group
thcoretic method, by method of free parameter or lly sep",ation of variables. Among
them, the group theoretic method whieh includes the dimensional analy<;isas special case
is the most systematic and sophisticated in gcncrating simHanty solutions.

The resull~ obtained from similarity 801ution, are Llsable il] various technical
applications

Similarity solution first introduced by Blasius (1908) is one of the pioneer work
to reduce the number of independent variables as well as depend"'l variables. Group
theoretic method, first used by Birkhoff (1955), which includcs the dimensional
analysis, is thc most systematic and sophislicated in generaling similarity solutions. For
comprehensive review one is referred to !lIe text by Hansen (1964). This technique has
been applied intensively by AbrI-el-Malek d al (1990, 1990 3nd 1991), Ames (1985)
and many others. Different types of perturbation techm'lue, are used 10 solve the
nonlinear panial differential equations primarily based on silllilarity solutions.

Ostrach (1953) analyzed Ihe aspeet of nalural convection heat transfer, He
studied flow between two parallel infinite plates orienlated to the direction of generating
body force. He (1954) latter worked on combined natllral and forccd convection laminar
flows,

Yang (1960) studied analytically Ihe unsleady laminar boundary layer equations
for free convection on vertical plates and cylinders. He establishcd somc necessary and
sufficient conditions for which ~imilarity ~olutions are pos,ible. Hederived the similarity

4



solutions of the governing equations when temperature val iations are proportional 10
1• •

m m", X 'm m'x',e , , "2,1 ande _
axtbt I'

Most of the works on effect of ~uclion and blowing 0" free convection boundary
layer had been confined to the cases where prescribed wnlllcmpcralurc was considered.
The power law variations of the plate temperature ami lran'I'Lration velocity considered
by Eichhorn (1960) are lho~e for which s,milaril y ~olutioIlSC~iSL

Merkin (1969) considered the boundary layer now ovcr a semi-infinite vertical
plate, healed to a constant temperature in a uniform fr~c stream, He discussed two CaSeS
when the buoyancy forces aid and oppm,e the development or the boundary layer. In the
former case, two series solutions were obtained, one of which was valid near tne leading
edge and otner was valid asymptotically. In tne laller case, ,cries valid near tne leading
edge was obtained and it was extended by a numelical method to the point where
boundary layer was shown to separate.

Ping Cheng (1977) investigated the combined l,ee and forced convection
boundary layer flow along inclined surfaces embedded in porous medium. It was found
that when both wall temperature distribution of the platc and vclocity parallel to the plate
outside the boundary layer vary acconling to some power function of the distance, then
similarity >olutions exist.

Self-similar solutions have been studied by Merkin nnd Ingham (1987) for wall
temperature prescribed as an inverse square root of the di<;tmccfrom the leading edge.
UIL~teady laminar free convection flow of a viscous incompressible and electrically
conducting fluid past an accelerated vertical infinite powu, plate suhject to a suction_,
velocity proportional to (time~ 2 was investigated by Boss'lin and Mandai (1985).

Aldoss (1994) investigated mixed convection flow over non-isothermal horizontal
surface in a porous medium. In his study he considere,l two conditions of surface heating
(i) variable wall temperature (VWl) in the form 1;;.(x') - r; ~a x,n and (ii) a variable

surface heat flux (VHF) in the form q~_bx,m.

Soundalgel<er (1972) allaly~ed vi,cous dis,ipati"n effects 011unsteady free
convective flow past an infinite, verticai porous plate with constant suction. He derived
the solutions of the governing coupled nonlinear equation~ I"orvelocity and temperature
field.

Effect of blowing and suction on free convection boundary layer was studied by
Merkin (1972). He COfL~ideredthe cases of uniform suction and blowing with the plate
held at constant temperature (T~)greater thall the ambient temperature T~.

5
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Soundalgeker (1977) studied df~CIS on maSS lmnskr and suction Oil unsteady

free convection flow neglecting Sorel -Dufour eftccts on the energy equation. In his
study the plate temperature was assumed to be oscillatory.

Pop and Takhar (1993) jove.'ligated the free C()nvection flow over a non-
isothermal two dimensional body of arbitrary geometric co"hguralioll. He discussed in
detailed the effects of geometric sha~ parameter and Pramltl number all velocity and
temperature field as well as heal transfer coeflicient.

Conjugate free convection on tl vertical surbce had been discus,ed in some
detailed by Merkin and Pop (1996).

Chaudhary, Merkin and Pop (1995) studied in uel"l!, the similarity solutions
for free convection boundary layer over a permeable wall in the saturated porous media.
It was shown that the system depends on the two par'lmeters ",(exponent) am.I
r (dimensionless surface mass temperature rate).

Williams eI al (1987) studied unsteady free convection flow over a vertical plate
under the assumption of the variations of waH temperalUre with time and distance. They
found possible semi.similar solutions for a variety of classes of wan temperature
distribution,

Possible similarity solulions of three dimensiolwl laminar incompressible
boundary layer equations were investigated by Hansen (195!J). He exhibited different
possible cases in tabular form for AT' variations in addition 10those of exterior velocity
components.

In order 10apply the method of group theory in our problem J general idea of the
group is discw,sed below:

Group: A group G is a sci of clcmeills a,b,c togcthcr with binary operation
(mapping, transformations, rotation etc) 0 defined OnG sati,f y the following properties:

(i) Closure property: A SCIis closed under tile given operalion. If a,bare Ille
elements of G, then a 0 b _ c is iliso a unique element of G.

(ii) Associative property: The given operation i,,, associative, that is, if
u,b,cEG then(a 0 b) 0 c ~ a 0 (b 0 c).

(iii) Identity exists: There exist a unique element r in G (called identity element)
suchthataol~loa, forallainG.

(iv) Inverse exist: For every element a in G , there exist a unique element
a-I (called inverse of a) such thilt a 0a-1 '" a-lOll ~ I.

A continuous r parameter group transformation (r:.: J) is sometimes known as simply a
group.

G

,
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Definition;
A set of functions Fo (xl ,x2,x3' --', xll Jis said to he "conformally invariant"

under a group transformationsG: x\ -> Xi' with a num~rical parameter a,if

Fo (x,l- I" (xi";a) F" (x,' ),i _1,2,3,", II, (j ~ 1,2,3"",m

where Fo (xi.) are exactly the same functions of the Xi" as F"lxJare of tlte Xj .

The functions Fo lx) are called constant "conform ally invariant" under the same

group transformations jf h (xi"; a) are indep~ndent of the variab1esxi".

The functionsFo~;! are caned constant "absolulu invariant" under the same

group transformations if 10(xi.; a) '"I.
Literature concerning the group theory is abundant. Representative studies in

group theory may be found in review papers by Abd-el-Malek eI al (1990, 91, 97),
Morgan (1952), Hansen (1964), Zakerullah (2001) and Birkholf (1955).

Similarity solutions of unsteady mixed convection flow about a vertical plate
were investigated by Znbair (1990) using one parameter continuous group theory
method.

Mixed convection flow over a vertical surfaces/plate occurs in many industrIal
and technical applications which include nuclear reactors cooled by faM during
emergency shm down, solar central receivers exposed to wind currents and heat
exchangers placed in low velocity environment Merkin (1969) investigated the mixed
convection boundary layer flow on semi infinite vertical plate when buoyancy forces aid
and oppose the development of boundary layer. Un,teady mixed convection boundary
layer flows on vertical surface was studied by Harris (1999) and many others.

In this analysis, attention is directed to the situation where forced and free
convection act simultaneously in establishing the flow and temperature field~.

Similarity solutions of unsteady mixed convection now without suction was
investigated by Zubair (1990) by repeated applications of Group Theory. Simiiar
solutions of mixed convection flows have been studied by many authors, notable amongst
them are those by Wanlanable (1991), Rapits, et al (1998), Ramachandran (1998)
and Cheng (1977).

However, there have been only a few studies dealing with unsteady mixed
convection flow over a flat vertical porous plate by "Group theory method. Ludlow D.K

7



(2000) ct al have analyzed neWsimilarity solutions of unsteady incompressiblc boundary
layer equiltions.

i\ review of literature shows that very little rcsearch has been reported on
unsteady mixed convection flow about a porous vertical plate by the method of group
theory,

Zakerullah (2001) has derivcd similarity solutions of sOme of the possible cases
of unsteady mixed convection by Group Theory without suction. We will explore the
similarity solutions of the remaining four cascs with suction. From the present analysis it
is shown that our solutions include some e"i,ting solutions as well as many new ones.

The numerical solutions of one of the representatiw tmnsformed equations for
different values of controlling pammeters arc obtained. Re~ults are therefore comparcd
with the known results in the litcrature.

TIICproblem of unsteady mixed boundary layer Hows has long been a major
subject ill fluid dynamic; because of its importance from both theoretical and practical
view point.

Many research papers havc been published to date related to unsteady forceJ
convection by many authors. Among them ,Orne arCRiley (1~75, 1990), Telions (1979,
1981), Harris (2002) etc.

Harris (1999) has performed an analysis of unsteady mixed convection boundary
layer flow from a vertical flat plate embedJeJ in porous mcdium. He made complete
analysis at initial unsteady flow (/. ~ 0) anJ the steaJy ,tatc flow for large times
(I' -> co) and a series solution valid for small time obtained nsing semi-similar
coordinate~ followed by Smith (1967). Very recently, Roslinda (2004) et al investigated
unsteady mixed convection boundary layer flow near the stagnation point on a vertical
surface in a porous medium,

The pre~ent analysi, is to incorpomte tile suction effect into the six possible
similarity cases derived by Yang (1960) ilnd for these similarity cases we introduce the
idea of Group Theory 10 transform the govcrning cqnation~ into ordinary differential
equations.

Finally, similarity requirement8 are exhihited for l;T,u. and v~ variations and
we will ~olve the one of the transformed equations numerically to predict the flow
characteristics for different numerical values of controlling pJramelers involved.

• •



Chapter Two

Fundamental equations of the flowof fluids

Introduction

In this chapter we will discuss the basic properties of the fluid, Continuity
equation, Naiver-Stokes equation and Energy equation. Wc will analyze the order of
magnitude of the basic equations so that small order terms can be ncglected.

Properties of fluid

There are two types of fluids (i) perfect fluid and (ii) lcal fluid

Perfect fluid: It is frictionless and incompres~ibl". In the motion of perfect fluid,
two contacting layers experience no tangential forces but act normal forces only.

Real fluid: In the motion of real fluid, two contacting layers experience tangential
forces and normal fOrces.

Viscous fluid possesses the following properties:

i) Kinematics properties (linear velocity, m'guJar velocity, vorltctty,
acceleration and strain rate). These are the properti"~ of the flow field itself rather
than of the fluid.

ii) Transport properties (viscosity, thermal conductivity, specific heat at
constant pressure, the Prandtl number).

iii) Thermodynamic properties (Pressure, den<;ity, temperature, enthalpy,
entropy, bulk modulus, coefficient of thermal expansion).

iv) Other miscellaneous properties(Surface tension, vapor pre~sure, eddy
diffusion coefficients, surface accommodation coefficients)

Some properties of (iv) are not the true properties but depend upon the flow
conditions, surface conditions and contaminants inlhe fluid,

9
'"" '. ,.



Kinematic properties

In fluid mechanics ones first focus is normally with the !luid velocity. If R' is the
any property of the fluid and <lx',dy', dz' and dt' represent arhitrary changes in x',y',z'
and /' then we have

DR' ~ aR' +(V"'V')R' (2.1)
Dt' at'

where V' ~(u',v',w')is the fluid velocity at any point (x',y',z')at any lime ( and V' i~
lhe gradient operator .If R' is V' itself then

DV' av' (V' n')V' I' . Vu' .Dv' Dw'--.--+ 'v ,=acceeratlOn'=I--'I--.k--.
Dt' at' VI' . 1)1' Dt'

Transport properties

The important transport properties of viscous fluid nows are the viscosity, the
thermal conductivity, specific heat at constanl pressure amI the P.-andtl number whi<.:his
the combination of the first three properties.

Viscosity

II is an inlernal property of a fluid Ihat causes resislance to flow. This property
can be thought of as an internal friction. A1111uid(liquid<;or ga~es) bears the property of
viscosity in varying degrees. The dynamic viscosily /i' is defined by Newton's law of
frictiOn

F' 'Ad"'
s~!l dy"

Here F; is the shearing force or friction of fluids between two parallel layers of fluid,
whieh have equal areaA, separated by the distance dy' and one moves parallel to other

with velocities u', u' +du' respectively. ~;: is the velocity gradient perpendicular to the

direction of Ihe flow of Ihe Iwo fluid layers.

If A 1 d '" 1h F' ,. ,. hi' b h- ~ -, ~ ten, s ~ /i ,I.e., /i IS I e s lcanng slress elween I e
'y

two layers of unil area.

(i)

(ii)

Now shear stress per unil area, 1S
, ,du'

T~/idy"

If T' ~ 0, then /i' ~ 0, and (2.2) will represent an ideal fluid.
,,'

If dy' ~ 0, then p' ....•.<Xl and (2.2) represenl an clastic bodies.

III
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(iii) A fluid for which IJ-'does not change with the ratc of deformation (shear
strain) is said 10be Newtonian fluid.

(iv) If the viscosity varies with the rate of deformation, Ihen it is said to be non-
Newtonian fluid. Examples of non-Newtonian t1uids are Bingham plastics,
Pseudoplastics and Dipolants.

We shall restrict our study to Newtonian fluid.

The coefficient of viscosity of a Newtonian fluid is direclly relaled to the molecular
imcraclions and thus may be considered as a thermodynamic propcrty in thc macroscopic
scnse, varying with temperature and pressure i,e., .u' ~ /t'(T', 1''). Normally, the viscosity
decreases rapidly with temperature for liquid, increases with temperature for low pressure
gases (dilute) and always increases with the pressure.

A common approximation for viscosity ot dilute ga"e, suggested by Maxwell is

", (T')1'-. _ ,llisoforderO.7.
J-l~ 1~

If n _1 and surface is the reference condition, then Ij' ~ IJ-~;: .
w

For an isothermal wall, this reduces to ,u' ~ (constant) T'.

Experimental measurement of the visc<Jsityof air is reluted with the temperature
by the Southerland equation

", (T')'T'"4 '"y:; ;!+s'". "
Here S is an effective temperature called Southerland cons tam and ,u;)' T~ are

reference values.

Thermal conductivity

When a fluid in stalic equilibrium is heated nonunifomally, heut may be
transfetred from lhe region of higher temperature to lower temperature. The basic
transport mechanism is conduclion which is governed by Fourier's hlw of heal
conduction

, '..,'T'q~-"v .

Here q is the vector rate of heat flow per unit area (flux). The quantity /C'is
caned thermal (heat) conductivity; negative sign indicates that the heat f10ws in the
direction of decreasing temperature,
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Solid substances often show the anisotropy or directional sensitivity:
oT' aT' aT'. ( . . . )-q~K,-K.-K.-,

x ax" Yay" Z oz'

Bul a fluid is isotropic, i.e., has no directional characteristics and tllUS K'is a
thermodynamic property, The value of K' for a substance depend on the chemical
composition, the physical state, temperature and pressure. Il varies fluid to fluid. The
variation of the thermal conductivity of the gases with tempelature is the same as that of
dynamic viscosity.

Specific heat at constant pressure (c ,)
, .

For air, it is almost constant for a wide range of temperatures,

The Prandtl number
•P"

The Prandtl number Pr ~ ---f- is e&senliallyinvariant with temperature.
Therefore, it is assumed that Pr for a gas is COn\lanl.

Thermodynamic properties

The most important thermodynamic properties are pT~~sure(p'), density (p'),
temperature(T'), entropy(.~'), enth_alpy (h')and internal energy (e').Con~lder p' and
T' as independent variables and other four variables depend 011p' and T' .

•

First law of thermodynamics

Any thermodynamic system in equilibrium state posses~es a state variable called
internal energy (E'). Between any two equilibrium slate, change in internal energy
(dE')is equal to the difference of the heat tran8fer(dQ') into lhe system and the work
done (dw') by the system.

Mathematically, dE' _ dQ' - dw' .

For a substance at rest with infinitesimal changes

d w' ~ - p' d v' (for ~onSlant volume)
dQ'.T'ds'

Here <is' is the change of entropy.

)2
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(2.5)

(2.6)

Subslituting into (2.3) and expressing the resull for unl! mllSSbasis, we Ilave

de'~T'ds'+ P~dP' (2.4)
p'

which is one of lhe forms of lhe first and seconu laws combinetllor infinitesimal process.

From the equation (2.4) we may wrile

"I")r'(")e ~e s ,p "unCllon s,p _

Total derivative of e' is

d' {le'd' iJe' ,'0_ ,,-d1'
iJs' op'

Now comparing (2.4) and (2.5), we have T,~(iJe:) allu p'.p'2(iJe',) ,
as p' ap s'

From lhe definilion of enthalpy we gel,

h' ,p.,.-
p'

Thus a single chart of e' versus s' for lines of constanl p' , is SlllTicienllo calculate
alilhermodynamic properties. Also from (2.4) and (2.5) we h,lve

From (2.7) we may write

dh' I'd' 1 d '• S t-, P
P

h' =funclion(.,',p')

dh' ah'd ' ah'd'~- H- p,
a" ap'

(2.7)

(2.8)

From (2.7) and (2.8) we have

T'=(~~:t,~'~(:J~l,
e'~h'-~:'

Tnlhis case, a chart of h'versus sfor constant pressure p' ,will define a substance
completely.
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Coefficient of thennal expansion

For natural convection flow, the flow pattem is due to the buoyant forces caused
by temperature differences and buoyant forces am proportional to the wcfficient of
thermal expansion [3', defined as

p,---,-("P') .
p' aT' p'

For perfect gas, [3' -1~" For liquid fl' is usually smalicr than '/~'and may even

be negative. For imperfect gas [3' may he larger than ;, at high pressure.

The quantity [3' is useful in estimating the dependence of enthalpy on pressure
from the thermodynamic reiation

rJh'-Cp.dT'+(l-P'Tlr.'. (2.9)
P

14
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Fundamental equations of the fluid flows

The fundamenlal equations of flow of vi~oou<,compre,,<,ible fluids are

(i) Equalion of conlinuity( conservation of mass)

(ii) Equations of mOlions( conservation of momentum)

(iii) Equation of energy( conservation of cncrgy)

(iv) Eqnations of spccies( conscrvalion of species)

(v) Laws of chemical reaction.

For the sake of simplicity we Can ignore diffu8,ional cl"mical reaction. i.e.,
ignorc (iv) and (v). We assume that fluid is uniform alld of homogeneous composiion,

The three basic equations, namely, continuily cquatioll, Naiver-Stokes equation
and energy equation based on conservation of mass, momentum and encrgy arc

(lp' +V'o(p'v')~O".
D
' 1 ('" "") I' v •• , .' ,. .' "p--~p g +'\7 0 J.l ,---++-,--+ +b _ A V'v -V P

Df' uX. uX. 'J, '

Dh' D' \ l'" "') )"", _ 'P '"" (,"",,) , f J " "v' , ;P __ , ,+vOKv +p.--,.--,+<J"A 'V-,
Dl Dr (Ix (Ix 'J ux.

j i I

(2.10)

(2.11)

(2.12)

where for a linear Newtonian fluid, the viscous Slresses ar~

(' ' "')J.l' ~ + __ i +,5',. "': V'. v' (=heal generated due 10 frictional force~).
ax~ ax; IJ

Here ,1.' is lhe coefficient of second visco:.ity and 6:,j is defined

{j' p.
',I-lo,

, = I

i ~i

1S

is lhe Kronecker delta,

•



Assumptions

The above equations are based on the following assumptions.

(i) The fluid is a continuum

(ii) The particles are essentially in thermollynamic equilibrium

(iii) The only effective bolly force~ are llue to gravity

(iv) Heat conduction follows Fourier's law

(v) There are no internal heat source,(e.g., ralliation, chemical reaction, Joule's
heat)

(vi) Stress tensor is symmetric(the fluill ha~ nOlocallmque proportional to the

(vii) volume as woulll be possihle in an electric Held)

(viii) The fluid is isotropic(There is no locally preferred direction)

(ix) The fluid is Newtonian

(x) The slokes hypothesis is valid(i.e., 3'\' + 21j' - 0).

The last term of right hand side of equation (2.12) is the viscous dissipation term
(positive). II is the work done by the vi,cous stresses. In low speed flow this term will
usually be negligible. It is important for gases at extremely low temperature.

There are seven variables involvell in e<juatiolls (2.10)-(2.12) of which three,
variables, namely p', v' andT', are assumed to be primary variables. The remaining
variables p',h',I-/ and K' are assumed to be functions of p' amI T'.

The dependencies of the quanli(ie~ p', h', J1' amI K' 011 pressure arc generally very
small and may be neglected.

16



For two dimensional incompressible flows, tlc above "'Illation, become

,(au' ,au' 'OU') " ap' ,(a 2/1' a 2/1')P -H -H - ~p g '---'1' --,--
at' ax' ay' x ax' ilx,2 ay,2

,(ay' ,ay' ,ay') " <lp' '(il2V' il2y')P -H -H - ~pg ,---,p --,--
01' <lx' ay' Y <lr' ax,2 ily,2

, (aT' ,aT' ,aT') J (,aT') "( ,aT')P" -,"--H - 0- !-- ,-!-
P or' ax' ay' ox' ax' ay' ay'

T,",(ap' ,aI" ,aI") '[2("")' 2('''')' 1"" a"'ll'',,-"'-H-,P -, - ,-,- .
01' iJx' <1/ ax' ax' <lx' (JY'

(2.13)

(2.14)

-r
(2.15)

(2.16)

Before proceeding to obtain the ,olutions of the equiltillns (2.10) - (2.12) we will
first find the dimensionless group upon which the solution!>must depend. We stilrt by
introducing dimensionless quantities into the equation, refcrring all lengths to somc
characteristic lengthL, along the plate con~idered, velocitie, with reference to some

characteristics velocity U and t' by ~. The density will he made dimensionles~ with

respect to p~, the pressnre will be made dimensiontC8' by p:,U' and I1letemperature by
AT' The other transport properties of the tluid 1(',1>' ,cp,and the gravitational

components g' ,and g' ,will be made dimen,ionless by!,:, K,'"c , and g respectively.x y . Po
Hcre thc suffix 0 refers to wme convenient constanl reference condition&, undisturbed
by the boundary layer. Hence we introduce the following dimensionless quantitie~.

v' p'v __ ,P "
U p;u

T' -T'T_ ~
T' -T'" -

I7

"



Introducing the above dimensionless variables in equalLons (2.10)-(2.12) we
obtain the following nondimcnsional equations.

D, 1 1 1 ("" a,,)p- __p,._v. p_,_'.-] +O"AV'.'
DI FT Re ilx. ax 'J

1 '

DT Dp 1 ( ) l>cp',--Ec-.--V. K:VT+-,
DI DI PrRc Re

lvp

(2.17)

(2.18)

(2.19)

is the viscous dissipation

\ [a" a,,) )a"Hererp- I-' _'. __ J +0 .AV'" --'ax ax I] ax
J I i

function and Pr,Re,Ec,Fr are Prandll ,Reynolds, Eckert and Froude numbers
respectively,
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We shall now discuss the physical importance of the nOJl(Jimensionalparameters
upon which similarity solutions depend.

Important nondimensional parameters

Prandtl number

The Prandti number IS (he ratio of the kinematic viscosity to the (hermal
diffusivity and is defined as ,, "c," r,Pr~-,r--,-.a ,

The value of v shows (he effect of viscosity of the fluid. For small value (lfv, a
thin region in the immediate neighbourhood of the surface will be affeded by the,
viscosity, caned thermal boundary layer. The quantity u' ~---;"-represents thermal

pcp'

diffusivity due to heal conduction. For small value oiu', (hin regions will be affected by
heat COnductionwhich is known as thermal boundary layer.

Thus Prandtl number shows the relative importance of heat conductim and
viscosity of the fluid.

II is a materia! property and thus varies fluid to fluid. Liquid metals have small
Prandtl number (e.g. Pr=U.U24 for Mercury), gases arc shghty less than unity (e,g.
Pr=O.70 for Helium), light liquids somewhat higher than mit 0'and oils have very high Pro

Reynolds number

Reynolds number is the mas! important paramcter of the dynamics of viscous
fluid. It represents the ratio of inertia to visC{lU~forcc and is defined by

,U'
PT ULRe.--'-.-
/i'V v'
I.'

It is, in fact, a parameter for viscosity, for if Re is small the viscous forces will be
predominant and the effect of viscosity will be felt in the whole flow field.

On the other hand, if Re is large (he inertia force will be predominant and in such
a case effect of viscosity can be considcred to be confined in a thi!J layer know as
boundary layer adjacent to the surface. For large Reynold" number the flow ceases to be

19



laminar and becomes turbulent. Reynolds showed lhal flow in a circular pipe becomes
turbulent when Reynolds number of lhe flow exceeds CIilical \'alue 2300,

ThaI is Re _ (~d)=2300(pipe)
v

where u is the mean fluid velocity and d is lhe Jiameler of the pipe,

Eckert number

For incompressible flow, it determines the relative rise in lemperalure of the fluid
through adiabalic compression. In high speed flow, il is defined by

, 2(AT)
U ""()'Ee ._ y -1 M-

cp,AT' rp,I),T'

U. .where M _ -IS the Mach number. Here c ISlhe speed 01 sound,,
The work of compression and thaI of fncllon become important when lhe

characleristic velocity is comparable wilh or much grealer Ihan lhe sound or when the
prescribed lemperalure difference is small compared 10 the .,b,olule temperature of lhe
free stream.

Froude number

II is defined by the ratio of inerlial force ( p 'U
2

) 10 gravity force (p' g: ) and
L

is given by

It is important when there is a free surface e.g., in all open charud problem.

For perfect gas

cp']; 1 ("2
----;[Lgy-lg'L'

20



There are however further conditions which ml"l be imposed in order to have
similarity solutions,

(i) u(x,O,t) ~ 0, v(x,O,t) ~ ° for solid plate.(no slip condition)
and u(x,O,t) ~O,v(x,O,t) ~ v.(x,!);" 0 for porous plate.

(ii) The velocity at a large distance from the plate IllU~tbe equal to the
undisturbed fluid velocity i.e., «(x, "",t) ~ IIe (x, t).

(iii) The temperature of the plate must be equal to the Iltid temperature.
T' -"I"'

Hence 8w-8(x,o,t)-l.Here8-, 00

Fw -T",

(iv) The temperature at a large distance from the plate must be equal [0 the
undisturbed fluid temperature i.e., V(X,"",I) mO.

21
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Boussincsq approximation and governing equations

Let us confine our attention to two dimensional incornpre~sible flows past a flat
vertical porous plate and the flow configuration is shown in the following figures.

,

L
0'

" T; ,r-T' T,~• "L " ,
, " r" •, 1~'. , 0

0'
y

(aJ " (b)

Fig 1 (a) Flow conllguratlon for T: ;> T~

(b) Flow configuration for T:,< T~

22

•••



The relevant continuity, Naiver-Stokes and Energy equations in dimensional form
are

au' iJv'-,-.0
at' ay'

(" "') " ',", , '),U ,aU ,au "R'(T' T') up 'lU U i) UP -," -H - -p g.1' - GO---'I' --,--ilt' ilx' ily' x ax' iJx" ily'2

,(av' ,av' ,au') "R'(T' T') ap' ,(a2v' a2v')p -," -H - -p g'I' - ---,p --,--
iJt' at' ay' Y '" ay' ,ax'2 ay,2

, (ar ,aT' ,aT') ,(a27" (1
2'1"')p' , -," --H -- .k --,--

P ai' ax' ily' ax'~ a 1,'2

,p,[,('P')' ,,(~)\(;,,', '/)'1
ax' ily' ily' ilx'

The boundary layer equations

(2.20)

(2.21)

(2.22)

(2.23)

The boundary layer equations rcprcscnt a significant simplification ovcr the full
Naiver-5lokes and Encrgy equations in the boundary layer region. This simplification is
done by the order of magnitude analysis i.e" determining which term is small relative to
(he olher lerms.

Order of magnitude analysis
oJ

We take T', x' and u' as quantities of 0(1) and y', alld v' of o(Re 2 ),

To make the order of magnitude aIlalysis, we shall nondimensiona!i<.e the
equatioIls by IIsing the following nondimensional variables,

x' y' 1 I' '1"'-1-;' /I' v' 1 p'-p~x~- y~_Re2 t~-U T~--- u__ v __ Re2 p _
L' L ' L' T~-T;'" u' u ' p'U2

Here order of eaeh nondimensional variable is one.
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We shall estimate the order of magnitude ot each term by taking Reynolds
number very large. The order of magnitude of each term is shown in the beneath of each
equation.

Continuityequalion

,'U <1v-.-.0
ax ily

(,)
1,1momenlum eql,lalion

1 1

(0) 1 1 1 1 1 1 1

v momenlum equalion

_1_(<1V +u<1v+vav)~ t:..TfJT
..jRe iJt ax ay Fr,

(0) 1 1 1 1 1

Energyequalion

(0)

1 au av 1 (0")'.-&--.-&- .
Re ay ax Re ax

fj2 fj4

We retain the terms as Ltfj2 •.•o.
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where Ec ~ __ U_'__ is the Eekert number and Fr, = U I, is the Froude number in
c ,(T' -T') !II.
P W "" I

each dircction.Herc i ->0 (x,y) directions,

There are many things to be nOliced

(i) Continuity cquation is affected by thc consideration of Reynold number.
(ii) The pressure gradienl is nearly zero, heing affecled o"ly by a buoyant lerm

which does not contribule to acceleration in y' direction.

'p' .0 '" ,oy' i.e,p .p(X,I).

We can say that pressure is constant in the direction normal to the boundary layer
and may be assumed equal to that at the outer edge of the houndary layer where it is
determined by the outer flow (polenlial now).

We may lherefore write,
1 op' iJ,,~ • iJu~-~--.--H--.p' ax' at' r <lx'

Wc can now neglect some terms who;c contributiun is very small.

In our analysis of the boundary byer equations lhe following assumptions are
laken inlo accounl~.

(i) Reynolds number i~very large.

(ii) Eckert number is very small (8mall velocity, large temperature difference).

(iii) Fluid properties are constant except in the den,ity v"riations in the body bee
term (Boussinesq approximation).
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Reverting to the dimensional system, we h~ve the following governing boundary
layer equations pertinent to our problem VlY, the unsteady mixed convection boundary
layer equations over a vertical porous flal plate.

(
"" "') ,,' .,' ,2,ul/ ,01/ ,uU ''''(T' T') vUe ,v"e ,v U
--H-H- ag,,/-' _ +--H, --H--
ai' ax' ily' " ai' ",Ix' oy'2

The boundary conditions are

U' _ 0, v' _ V;"(x',I),T' _ T;" at y'. 0)
, , T' T' ,"~ue' ~ "" at y -+"'.

(2.24)

(2.25)

(2.26)

(2.27)

Thus the boundary layer equ~[ion<;provide a significant simplification to the
parent Naiver-Stokes equations, in two ways: by allowing illvicid solutions to be used
outside the boundary layer and by changing eqnations from elliptic to parabolic inside the
boundary layer.

Limitations of the boundary layer equations are

(i) Reynolds number must be large, Re >WOO.

•

(ii) fl. . GUo iJp' .If the outer ow ISdeceleratmg (- < 0,- > O)a pomt may be
<lx' ax'

where wall shear stress approaches uro, the separ~ti()n point.

reached

(iii) If Re > 106, then the laminar solution,> hecome unstable and the lra'n,ition to
turbulent occurs.

26
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Chapter Three

Transformations leading to similarity solutions

Dimensional analysis of the governing equations

In order to have the nondimensionallorm of the governing equations, we use the
following substitutions:

Ar~T'( '<')-T'w x, ""

<'t~-V
L

,'(' ')-1"~ATeX,I •

where L is the characteristic length,V is the characteristic velocity, Re ~ VI. is the
v

Reynolds number.

The nondimensional forms of the equations (2.24)- (2.26) are

Du gxPATL iJue iJue iJ2u- .ev__ vv --v--
Dt V' iJl e iJx iJy2

,
DB [' e ,] "e-+8 -(lnA1')+u-(lnM) -P,--"
Dt at ax ay

The associated boundary conditions are transfonred I"

u_o, v-vw(x,I),O-1 aty~o)
u~ue' 8~0 al y-->oo_.

In the case of mixed convection, fluid mution wldy depends on temperature
difference. Simon Ostrach (1953) deline a maximum velocity vJ, generated by the
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buoyancy effec15 for nudimensiona1i~alion wilhin the boundary layer in term, of
(T>T~) as

where r i, the characteriSlics lenglh.

Thus the above equations are simplified 10the following forms

The associated boundary condilion., are lransformed to

U&O, v~vw(x,I),O~l aty~o)
u-ue,O-O at y-+oo.

The above sel of partial differenlial equalions are ~imultaneous nonlinear
equalions and to obtain lheir solution is exlrcmely difficult. Hcnce we now proceed to
reduce the equations into a pair of ordinary differcnlial cqualiollS using one parameIer
continuom. group lran~formalion followed byMorgan (1932).
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3.1CASE-l

Unsteady mixed convection with surface temperature varying
inversely as a linear combination of x and I, the I'ree stream velocity is
constant and the suction velocity varying innrscly as a sqnare root 01'
the linear combination of x and I.

Stream runclion ronnulation;

An alternative form of Ihe Prandtl boundary layer equations is derived by
representing the velocity field in terms of a scalar field", ' calied stream function. The
existence of this function is a mere consequence of the incompre~sibility of the fluid in
two dimensional flows. Any solenoidal velocity field in two dimensions can bc expressed

as II ~ a", , v __ a", . For general unsteady problems '" ~ 1{(x, y, I) .
ay ax

The boundary layer equations with the introducl,on of continuity equation are:

The boundary conditions are

alJ' a",-_o, v"" e~l,aty~O
ay ilx

alJ' --> II fJ _ 0 at y --> "'.
ay c.

(3.1.1)

(3.1.2)

(3.1.3)

Finding the similarity solutions of the equation, (3.1.1) and (3.1.2) ,are equivalent
to determe the invariant solutions of these equations under a particular cOlllinuolls one
parameter group.

Qne of the simplest methods j; to ~earchfor a transformation group from the
elementary set of one parameter transformation, defined by the following group (GI)

•



, ",x ~a ' x

, ",y gQ Y
at*_a1t

(3.1.4)

,
UI'

e* _ e
,

IIe - "0 - con",ot

Here a(•••O)is the parameter of the group and a's arc the arbitrary re~l numbers
whose interrelationship will be determine by the subsequent ~nalysis.

We now investigate the relationship between the exponents a's such lhat

(

, ') :(3.1.5)••••• fJlj!
rp, x ,y ,I ,II ,v ,",--

J ay.3

-H(X,y,t,u,v,"', iJ3,p ;aj'J[ex,y,t,u,v, .. , iJ31j!)
J iJy3 oy3

for this is the requirement that the differential forms !/J1'I/J, be conformally invariant under
the transformation group (3.1.4).

Substituting the transformations (3.1.4.) in equations (3.11) and (3.1.2), we have

a2'ljJ' oW' a21jJ' a1/!* iJ21})' u;Z • iJu; • au; a 3,1' ,
I/Jj" a/at' + oy' ilx'ily* - ax' oy,2 -{j20 -7-ue ilx' - o1y.3

U3-UCU2 iJ21/J 2u3-lX:I-2al (IV' a2", 2u]-ul-2az iJ1j!a2v'-a --" ----a ---
aya I ay iix oy ax ily 2

_aa4 u~B-a -a1 aUe +a -a1u oUe _aa3-3a2 ii31/J
u' at e oX 0/
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,
x-B x

and

ae' O'i" atJ" fJ'i" fJtJ' ,[ a ,ii'/" a .] 1 J2e'',_-,-'-,---,---,---,-" -OnAT )+----( IntlT ) -----
ot oy ax ax iJy iiI' oy' oX' P, Jy,2

~ a-a1 JI) + aa3-C1.-a2 a'i' fJe _ aa3-a1-a2 0'" iltJ + a-al 0E-( In i'l.T)
at ay iJx ax oy at

0: -0: -0: a", a -20: a2e+a 3 I 2 e--(lni'l.T)-a 2pr-'_ (3.1.7)
iJy ax ay2

Equaling the various exponent" of a in equations (3.1.6) and (3.1.7) leads to the
following equations

a3 -0:1 -112 -20:J - 2a2 - a, ~ -0:, ~ a3 - 3a2 g (4)
(3.1.8)

-a
1
-a3 -a2 -a1 ~ -ill2.

Solving equations (3.1.8), we have !lIe following relationship between Ihe
exponents.

al-2a2; a3~a2; a4~-2a2--al;a2( ••O)isarbitrary,

It follows that 1/',and 1/', is conformally invariant under Ihe following
transformation group.

, ",y ~a y_By

'"",-,
'"", ,t,ga~t~Bt

'". ",
'" ~ a 1/J - B",

""
U•2 0:2U' B"U'
F ~a F - F

""
I1T'_a a211T~B-211T

e'~e
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"Herea2=B.

We shall now show that if>" ifJ, can be expressed in terms of new independent
variable 7) (similarity variable), F,G,l,U: and their derivatives with respect to 7).

The solution of the new system will be a particular set of invariant solutions of the
original system in terms of x, y, u, v, etc. The variable II is to be an absolute invariallt of
the subgroup of the transformation of the independent variables.

In other words, 1/ is to be a fundion such that

("'(1/ x,y ,1 )=11 x,y./)

• 2x -B x

(3.1.10)where •Y _By

t* _B21.

The way of seeking absolute invariant i~not well-dclillcd. From the boundary
layer conceptions, it would be a good guess to assume that 'I might be wrilt~n in terms
of powers of xand t .

Variable Transfonnalion

Independent variable transfonnation

Assume Ihat
1/_y(ax+bt)P

is an absolute invariant of the group (Gl)
(3.1.11)

Now, restriction might be placed on p, in order that ,]would be invariant under
(3.1.9).

So we must have 1]* _ y* (a x. + bt')1' ~ BI+21' rl.

For absolute invariant pul 1+ 2p ~ 0,
so that 1) ~ y(ax+ bt) 2 is an absolute invariant.

It doesn't mean that 1/ is the only absolute invariant.

•
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Dependent variable transformation

We now express all dependent variables in terms of 1/. Since there are five
dependent variables, we seck five functions g; (i ~ 1,2,3,4,5) which are absolutely
invariant under (3.1.4).

Of the countless possible forms which cxist, we sclect

gl ~1jJ(ux+bt)q

g2-e-G(~)

g =u =u; , 0
g4 =l>.r(ux+bl)'

g, .U~(u](;+bt/.

(3.1.12)

One dependent variable has been assigncd for cach function. The selection of the
power forms is in keeping the power form of the transformatiolL~(3.1.9).

Employing expression (3.1.9) in g, gives

• •g3 -ue ="e

g4*=IJ.T{ax+btY ~B2-2r IIT*(ux*+br*J

g; _U~(a](;+ blf ~B2 - 2. u;2(ax* + br*Y

For constant conformally invariant, we mu&!have

-1-2q,,,)
2-2r_O
2- 2$ ~ Il

33
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The invariant solutions of (he e4uatiorrs (3.1. 1) and (3.1.2) can nowbe expressed
in (erms of 1] and (he functions F,G and I. ,

g, -'If! (ax+bt) 2

,
~1.(ax+bt)2F(I))

0= G('1l

-,
ilT_(ax+bt) [(,,)

vi, - (a x + btl -'v}('1)

In view of (3.1.1) and (3.1.2), one obtains

01/! 0'1/1 1 I )-',_-_F ,-- aqax+bl F
oy 1) ilxoy 2 '1'1

0''If! 1 I )-'--~--b'l llx+bt /'oyiJl 2 1)')

0'1/1 1 I )-'-----ar) "x+bt F
oxiJy 2 ')1)

a1jJ a'1jJ 1 I )-'------aqax+bt FF
ay ilxay 2 '1'1'1

'W [' 1 II h)-!->.-g -aF--aT)F ax+ I 2ax 2 2 'I

iJ1jJ il'1/! [' 1 II )-'---_ -aI'/' --uT)F F ux+bt
ilx iJ y' 2 '/'1 2 1)1)1)

(3.1.5)'

(3.1.15)
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Also we have,

f!-G('I)

;01 ()_'----b.,G ux+bl
iJt 2'1~ '

;01 ()_'- UI]G'1ux+bl

'" 2iJV'iJ8 1 ( )-1-- U'IO F ux+bl
ayax 2 ~~

a,/,iJ{J [I , ]( )_'--_ -uFO --a,)F G lIx+btiJxay 2 1) 2 1) '}

8 iJ1jJ ~(ln t.T) ~G[_a}~ - !!..-'Jt~,J" j(ux + b t)"l
ay ax 21

8~(lnLlT) ~ [- bG- ~I] 1" ](a x + bit'al 21

Substituting the above values in 10the equations (3.1.1) and (3.1.2) '"'c have

,,'
(" b) 0 fF + -F+-I] F +-G~U

1)1)~ 2 2 'I'} ,,2

"

_, (b I ) ( )" "Pr G + -1]+-u1' G + b+aF G+-'IF / G+-'1/ 0 ~o.
1)1) 2 2 'I ~ 2! 1/ 'I 2/ 1) IJ

The boundary conditions becomes

1''1(0) - 0, 1'(0) - Fw(O) '" 0, G(O) _I al "rl ~ 0l
F ("')~1, G("')_O at '1-"'., -
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(3.1.17)

(3.1.11;)
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Here the'additional parameter is given in the boundary wndition as F(O) ~ F.
relatcd to the suction v~.

Here - v'" ~~(ax + hit1 F(O), v. < 0 signifies suction;vw :> 0 injection.

If the function I ~con~tant, we have form (3.1 16-17)

,
(" b) UfF + -F+-II F +-C=n

'1'1'1 2 2 ')'1 U2

Pr-!c +(!!..II+'!.-F)C '(b+aF )c_n
'1'1 2 2 'I I)

(3.1.19)

(3.1.20)

II should be noted thalthe ~imilarity solutions i, only valid when (ax + bl) is
positivc.

A minor change in the constants, the equations (3.1.1'1)-(3.1.20) reduces to that of
Zakerullah (1976). The minor changes are

a~2f3, b_2
Following the above changes, wc havc from (3.1.1'1)- (3.1.20)

(3.1.21)

(3.1.23)

(3.1.22)Pr-1G +(II+{3F)G +2(1+fJF )G=O
'1'1 1) 'I

The boundary conciilions are
Fo(O) - 0, F(O) ~ F~(O)••0, G(O) _1 at '/_ 0)
F (00)_1, C(oo)_n at '1-->"'.
"

U'"
The controlling parameler~ are fJ,l'r,-+ and the additional parameter F •.•._ F(O)

",
related to the suction parametcr vwwhcn fl ~ 0 for the equation (3.1.5)'.

The variations of f,T,u, and ~uctjon vware proportional!o (fJ x + It 1,uo and,
{.6x+ It, respectively.
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3,2CASE.2

Unsteady mixed convection with surface temperature, frce stream
velocity and suction velocity varying directly with any power of linear
function of x,

For this case <xm,ider lhe group (G,) is given by the following sel of
lransformalion"

• ax _a 1 x

• ay _a 2 y
• a

I ~a 3 I

• a
"'T ~ a 5 "'T

a
a '~" 6 U, ,

a
(J'A,,7tJ

(3.2.1)

a
U'Z.aSUZ
F F

where Q ('" 0) is lhe parameter and a'sare arbitrary ['eal numbers whose interrdalionship
will be determine by the Sllbseqllenl analysis. The funclionaily independenl sel of
absolule invariants of the group (3.2.1) playa cenlral role in lhe Group Theory.

Substituling (3.2.1) in equations (3.1.1-2), iike lhe previous case, we have, for
constant conform ally invariant, the following algebraic equalions

U4-az -a3 ~zu4 -Z~2 -: ~a8 +~] ~:6-:3 a ~(l6-_al -~4_3a2\
a] a3 a4 +a] at az a] U3 -a] 2u2.

Without loss of generality, we may put lX, _ 0, a, ~a,.

Solving equations (3.2.2), we h~ve the following relalionship between the
exponents.

(3.2.2)

G,
,-~1-4nG,

- •
,



a
where n ~ --.£ is an arbitrary consta"l.",

II follows that tA ,1jJ, arc confo!mally invariant under the following transfcrmation

group

x* ~ B x

y*=Bny

1*=B211/

• BI-2nII = II, ,
u.2_nl-4nu2
F F

",'~£1-n1J!

tJ.T'~Bl-4n aT

a
Here B=" 1

Variable Transformation

Independent variable transformation

(3.2.3)

We now reduce number of imlependen\ variables, like the previous case, from
three to two variables 1'/1 andl1,_ Assume that'll"/, might be written in terms of
powers of x, y and x ,I .Considering x a~ the common variable for hoth 'I, ~Ild r12"

Let 1J,.Yx' and 'I, ~IXs' arc two similarity variables.

Now, restrictions might he placed On ", s' in order thal Ih,1], would be invariant under
, ,

(3.2.3) we musl obtain lx's .yxS and IOX's _lXs

so that absolute invariant is satisfied. Hence we obtain the relation between the exponents
with arbitrary n.

...s~-n and s'~-2n
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-n -In'l,myx amJ'12~tx

It doesn't mean that '1,,'1, are the only two ilbsolute invariants.

We now express all dependent variables in terms of rr, and 'h .Since lhere are five
dependent variables, we seek five funclion~ g, (i ~ 1,2,3,4,5) which are absolute
invariant uncler (3.2.1).

Dependent variable transformation

Employing expression (3.2.1) in gigive~

Hn+7I-i • • ., bg] ~ V' X ~~' X

For constant conformally invariant, we must have
b+n-l_O

1-" ( )gj_1jJx ~F('II,'12) say

,-":.1jJ_x 1'('i),'11)'

The dependent variables transformalion~ are

•

'"_}-n 1'('11,'12)

U _x1.lnH(JI,JI}, , ,
t.T ~ x1- 4n 1(,,1' '12)

U2 (.4" u', )F-X /"1,1)2

e =G('11'~2)'

(3.2.4)

Since u,is the nondimensional external forcing velocity, we are allowed to

replace 1- 2n by m, thus all the dependenl vmiables becomes

39
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'" - x F(J'I"'Z)

ue _xm 11('11''12)

!J.T _ x2m - J f('l] .'1
2

)

U1 _ X1m-1 U2(" )
F J "1''12

o =G(111"'Zl

In view of (3.1.1) and (3.1.2), one obt.1im

(3.2.5)

3m-!,

o1jJ a'lp m-l[mF 2 (m-l) F F (1) F r ]
oy iJxily -x 1Jl + -2- 1/1 'II 'h'lj + m- '121/1 "1}'12

. m-I'. ,[""," (m-J) () ]_,, __ ox --r.--'I,F +m-17!2F~ 2 2 1/1 1J2

aUe 2m-l---x H
iJl '12

"", m-'[ (m-') () I---x mll+ -- 'IH + m-ll1H
iJx 2 I 111 2 '12

,,,, "" ,[ 1 (m-') () ]",--X ~ mil + -- 'IHN + m-lt)HH
Ox 2 1 1/1 2 '12

40
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Substituting the above values into the equations (3.1.1-2), we have after some
algebraic manipulations.

"d

[(m'I)1' G -(m-1n,(G F -F G ) -(2m-l)GF -G I2 '11 '12 111 1)2 rl1 111 r/2

_~[(m,-I) '11Gf F +(m-l)'I! F G_G! ]+pr-1c .0.
f 111'11 2 "2 '11 "2 '11'11
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TIlC boundary conditions becomes

F (O,q,)-O,O(IJ"I,'"
" ,
~ vw(x,t) ~x m; 1[m; 1F(IJ,ql) + (m -1)'ll~12 (O"ll)] .t'll ~()

F ("','ll)~H, G("','l2)~() .t'II-"'-",

(3.2.8)

It is interesting to note several features of cquations (3.2.6-7). If the analyses are
to be stopped at this stage and assumc that H ~ constan,l ~ constant and one of the
similarity variables (say) I), ~ 0, equations (3,2,6-1) becomes

U'F +(m'l)FF +m(1l2_F2 )+-.LG=O (3.2.9)
'1lql'll 2 '11'11 '11 u2

G .,,[(m'l)FG'I -(2m~I)GF'I 1.0
'1I"t 2 1 1

The boundary conditions are

(3.2.10)

m -,-_ (m'l)-v (XI)_X L --F(o)m • 2

F'l ("')~H, G(",)_O,
(3.2,11)

m_'
Hence u"Ll.Tand Vw variations are xm, x2m-1 and x 2 respectively.

For constant suction m ~ 1.
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Comparison with the published results

With following minor change of stream functions and similarity variables

F(71t)~~F('7),G(1il)-O('1),1)~tIL,J1+m andH~2.
1.m

We have from (3.2.~-1O)

F +FF + 2m (J-F 2J+U~O_O
'1'/'1 '1'1 m+J 'II U2

(3.2.12)

(3.2.13)

Let 2m _ /3, and without loss of generality put U • ue to have the compabalitym.l
with the boundary conditions.

Equations (3.2.12-.13) becomes

F +F F +/3(l-F 2)+R2e_o
'1'1'1 '1'1 '/ F

The boundary conditions are

(3.2.14)

(3.2.15)

F,,(O)_O, F(O)~Fw(O)"O, G(O)-lat II~O)
F ("')_), G("')_O 01 '/->00. (3.2.16)• •

U'
The controlling parameters are Ii, Pr,Ri - -f and the parameter FLV ~ F(O)

U,
related to the suction parameter v~respectivel y.

These are purely steady case derived form unsteady mixed convection houndary
layer equations.

-



A flow separation may ocem when forced ami free convection act in opposite
directions. If the buoyancy force has a positive component ill the direction of free stream,
then the flow is said to be aiding flow, opposing flow i, ju>t reverse. For small V"dloe,of

c'
"~ forced convection will be predominant and for large value free convection will
,
control.The equations (3.2.14-15) arc idcntical with thc equations derived by Zakerullah
(1976).

The equations (3.2.9-10) are wilh lhe equalion, of Zuhair (1990) if we
U'fl.replaccH _ v ,-,- _1 and m _ -and the transformed cquallons arc
" 2

3 1212F +~F F --F +8+-v_0
'1'1'14 '1'1 2 'II 2

3fJ +Pr-F8 ~o.
'1'1 4 'I

The boundary condilions arc

F'I(O)~: F(O)~Fw(O) ••O, fJ(O)~lalll~O)

F'(oo)~x2v,8(00)~O at '1-->00

(3.2.17)

(3.2.18)

(3.2.19)

Equations (3.2.9-10) are identical wilh the Spanl1w, Eichorn and Gregg (1959)
following a minor change. Minor changes arc

F~I)_2F~I),f{_4,G_e anduj _16Uj

and lhe lransformed equations are

U'
F +(m+l)F F -2mF 2 +8--.LG+8m~lI
fltl'l '1'1 'I U2

e'I'1 +Prl(m+l)FGI] -(4m-2)GF'lj~o.

The boundary conditions are

(3.2.20)

(3.2.21)

F, (0) ~ 0, F(O)~ F",(O)••0, G(O)~1 at 7) ~ 6)
. () G() (3.2,22)I' 00 ~J, 00 ~o at '1-->00.

"Here the additional parameter is given in the boundary condition as 1'(0) ~ F.
related to the sUl-1ionv~.
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Results and Discussion

The quantities of physical interest are local skin friction and holt translcr factors.
We know local heat transfer q' per unit area [rom the plate (0 the nuid may be
calculated by Fourier's law, i.e.,

'~_k,(H') ,
q ay'y=<l

It is convenient to express heal transfer results 1Il (erms of heal tran;fcr
coefficients and Nusselt number according to (he following definition

h' ~ q' ,Nu • 11' '" '" (J'(O)
1" -1" k'w "

NI~~-(J'(O).

R,'
For wall shear stress

, ,(aw',. -,
w J.l ay')Y=O'

Defining skin fridion coefficient
2T~

cf - , ,2'
P w,

and nondimensional skin friction coefficient
1

cf Re2 ~F'I'I(O)
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3.3 CASE-3

Unsteady mixed convection with surface temperature varying
directly with linear function of x inversely with square of the linear
function of I, the free stream velocit}' varying with linear function of x
inversely with linear function of I, and the suction velocity varying
inversely as a square root orthe linear function of I.

It is clear from equation (3.2.6) and (3.2.7) thill, they are still partial differential
equations with two independent variables I], andr),. To reduce them into single one, we
define the following one parameter continuous transformation group (G2) as

. "11,~b 'I,
• P,

'I> -b il2

F' _b/i3F

G'~b#4G

H'~bIJ5H

]._b/3°j

.' 117 2Up ~b UF

(3.3.1)

Here b( •• u •• 0) is a parameter of the group and fJ"" are Ie<l! numbers,
determined by previously indicated manner. Substituting (3.3.1) into (3.2.7-))) we have,
like previous case, the following algebraic expressions

/33 -3/31 -2{J3 -2{Jl - {J3- {J1- {J2 -1l4 + 117 -2{Js • Ils - 1121
/33 - 2/\ - 134 + 133 - /31 ~ 134 - /32

Solving equations (3.3.2), we have the following relationship between the
exponents.

(3.3.2)

Without loss of generality, we may put /34 -0,/36 -/3 7'
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Proceeding exactly as before, we Can find the folbwing invariant transformations,

","---
~ ,

F('V/2)~IJ2 -"2 f(IJ)

l(IJl'IJ2)~IJ2 -21(,))
G(IJ 1'1J2 ). g(,))

UJ (IJl"h).'/2 -2UJ (II)

H(IJt ,IJ2)-IJ2 -1 h (IJ)

In view of equation~ (3.2.7-8), we have,

(3.3.3)

Again,
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(JII -2[']and-,-~-'12 h+-h .
a'12 2 '1

Using the transformations (3.3.3) and tlrn pulling l _ H ~ 1, we have from
(3.2.7-8)

(3.3.4)

""'

The boundary conditions becomes

1(0)-1,[ (O)CO,g(Ol_ljw ,
f ("')_1 ,g("')_O,,

(3.3.5)

(3.3.6)

The variations of t'J.T, , ,]"",1,]
11, an Vw ar~ proporl,ona 102,- an r: respective y.

t I "I

The conlrolling paramelers are

parameter vW'

U'
Pr -L
'u'

48
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3.4 CASE-4(pURELY UNSTEADY CASE)

Unsteady mixed convection with surface temperature and free
stream velocity varying any power of linear function of I and the suct-
ion velocity varying inversely as a square 1'00tof the linear function of t.

In this case in order 10 seek the invariant solution to the !let of governing equat-
ion, we sel the following transformation groupe Gl)

, ",x _a x

. "I _a 3(. ".
1/J - a ~'4'

t>.T* ./'5/'"T
, a

u -a 6 u
" "a

0* ~a 70

U*2 _ USU2
F " F

(3.4.1)

He,e a( •• O);s the parameter of the group and a's are (he arbitrary real numbers
whose interrelationship will be determined bylhe subsequent analysis.

For constant conformally invari"lll we must have,

<14-a2 ~a3 ~2a4- 2a2 -a~ -as + a~ ~ ur, - u] • 2ali - uj -u4 -3U2!
u7 -U3 - u4 +u7 -u1 -uZ -u7 -uj - u7 - 2«2"

Solving equations (3.4.2) we have the folklwing relationship between the
exponents

(3.4.2)
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", 1-_n __,a, 2
",-_n_l,",

It follows that ,p,,IjJ, are conformall y invariant under the following transformation
group.

,
t _B I

1

y*~B2y

1
11--

1jJ~~B 21/J

u* _ U

AT* .nl1-2"'T

2U*p _nll-2u;
* 11-1u ~B H, ,

"HereH-a 3,

Variable Transfonnation

Independent variable Transformation

(3.4.3)

"LeI 111~yt and 7}2~;xl'\

For absolute invariant, we have lhe following relationship between the exponents
wilh arbitrary II.

_"
:.lh~yt 2 and

s.-~ands'~-II.
2

are two invariants( out of many possibilities).
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We now express all dependent variables in terms of '10and /), .since there are five
dependent variables, we seek five functions S, (i ~1,2,3,4,5)which are absolutely
invariant under (3.4.3).

Dependent variable Transformation

Of the countless possible existing forms, we seleet

8j ~~I I"

g ~81c,
g ~" Id, ,
8
4
a!:JTI"

85 aU;'. If

Employing expression (3.4.3) in 8, gives

For constant conformally invariant, we mn,l have
1-b_n __
2

(3.4.4)

(3.4.5)

Therefore, we have !he following transformation, for dependent variable,.,
" --"'~I2F('lj"12)

8=G('11"12)

"' ( )u.~t u'Jj"J2

!:JT c t
n - 2/('11"'2)

, ,_, ,I )
Up_l ufWj"12
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U~ing lhe transformations given hy (3.4 .4), we have from the equations (3.1.1)
and (3.1.2).

U'
F +(l:.'h+1',,)1' +[(m+1)112-lf -IIIF +---.LG
'11'11'112 "2 '11'11 '11'12 '11 u2

+mfl+-2111H +[(m+l)",-l~ =0
1 'l:t L '12,.d

e +pr[(m+1)1;12-F,,]G ,[:i+F IG
'Ii'll "1 '12 2 'J2 ql

.-' I'll +(m+1)1;1/ -] ]e -(m-l)G_1I
2f 'II "2 "2

(3.4.6)

(3.4.7)

If analysis is stopped here, wc will scc somc intcrcsling aspcct. Puuing fl ~1
,1 ~l, 'I)~'I)land 11,~ O,we havc

u'
F +.!..'I)F -mP +1G+III=O (3.4.8)
Q'I" 2 'I" 'I v2

and

Pr-1G +.!..'1G +(l-m)G-O.
Wi 2 'I

Thc boundary conditions becomes

1',,(0)-0, 1'(O)-1'w(O) ••O, G(O)_IUI'I.O)

F ("') _I, G(",) a 0 at 'J ~ "'.

"
Herc u, ,I1T and Vw variations are 1111,lm-1 and 0 re;pcclively.
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3.5 CASE-5

Unsteady mixed convection with surface temperature and free
stream velocity varying with an exponential function of function of I

and the suction velocity is zero.

In this case in order 10seek the invarianl solution of the set of governingcqua-
lions (3.1.1)-(3.1.2) we set the following spir~1group (GI)

•t ~I+ala

* u2 a
X ~e x

• "2'Y ae Y

• "4"'1' - e !jJ

* as a!J.T _ e !J.T

• a"u ~e 6 u
" "

Here a(••O)is the parameter oflhe group and a's are the arbitrary real numbers.

(3.5.1)

For constant conformally invariant of the equations (3.Ll}-(3.1.2), we must have,

a -(j -2a -a -2a ~a +a ~a ~2a -(I =0 -3a )4342387662'12
a _(l +a -(l -a ~a -2a7 4 7 3 2 7 2

Withoutlossofgeneralitywemaypul "7 ~Oand as~a8'
Solving equations (3.5.2), we have the following relationship between the

exponents.
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By direct substitution, we can show that 1/>,,I/>, are conformally invariant under
the spiral group transformation (3.5,1).

Variable Transfonnation

Independent variable Transformation

a
(m ~~) are two invariants similarity variables",

(out of many possibilities).

Dependent variable Transformation

Like previously indicated manncr wc have thc following dependent variable
transformations.

m'1/!gC F('1J"12)

e .G(qt"12)

m'
ue ~ e H(lIt''12)

m'
!J.T ~ e 1(',1,'12}

2 mt 2
UF - e UF('11,Q2)

(3.5.3)

Using (3.5.3) and considering H ~ constant, I _ constant and 1J2~ 0, we have
from (3.2.1) and (3.2.2).

The boundary conditions arc

F(O) - 0, F (0) - 0, G(O) .1)
"F (00) _1, G(",) _ 0.

"
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(3.5.4)

(3.55)

(3.5.6)
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These equations arc identical with lhe case C (II), derived by 7.lIMruliah (1976)
ifwepulm_l, andH_I.

u'
The controlling parameters are Pr, 11/and 1 respeclively.

U'
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Unsteady mixed convection with surface temperature, frce stream
velocity, and suction velocity varying with an exponential function of
function of x •

In this case in order to seek the invariant solution to the set of governillgequatio-
us (3.1. 1-2) we set the following spiral group (Gl)

•x ~x+<11a

* a ay ge 2 y

; a"t ~e 3 r

• a,
1/J -e 4 '"

a "AT* ~e 'i AT
(3.6.1)

have,

• a,
u _e 6 ", ,

a ,
0* ~e 7 0

u*2~ as"U2
F e F

Here a(••O)is the parameter of the group and a's are the arbitrary real numbers.

For constant eonformally invariant of the equation (3.1.1) and (3.1.2) we must

"4 -a2 - "3 -2a4 - 2a2 -ax + a7 -a6 -a, • 2afi -a4 - 3a2)

"7 -a3 .a, +a,-a, ~a7- 2<1,

Without loss of generality, put a7 - Oand as ~ as .

Solving (3.6.2) we have the following relations 'among the exponents_

a3 ~ 2a2,a4 ~ -a2, a6 g -2a2, as g -4a2 .
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By direct substitution we can show that I/l" I/l, arc eonformally invariant under the
spiral group transformation (3.6.1).

Variable Transformation

Independent variable Transformation

-m>: _2m>: ( ",)III - Y e and 112 ~ t e m - ~ are two invariants similarity

variables. (out of many possibilities).

Dependent variable Transformation

In a similar manner applied as before, the following absolute invariants involving
dependent variables are found.

-mx
1/1~e F('11"121

e -G('l1,'l2)
-2mx"0 _e !f('lt,112)

T .4rnx
fj, _e [('1),'12)

2 -4mx 2
uF-e UF('Ij"IZ)

(3.6.3)

Using the transformations given by (3.6 .3) we have from the equations (3.2.1)
and (3.2.2).

(3.6.4)

(3.6.5)
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The corresponding boundary conditions are

(3.6.6)

It is interesting to note several features of the equaliom (3.6.4-5). If the analysis
stopped at lhis slage and by laking H ~ constant=l, I ~constant=l and one of the
similarity variable (say) 1J2~ 0 then we have,

The corresponding boundary comlitions are

F1](OJ=O, F(O)= Fw(O)'"0, G{OJ-1UIII-Oj
F (00) ~ 1, G(oo) _ 0 at I] -"'"e>.

"

(3.6.7)

(3.6.8)

(3.6.9)

It is dear from equations (3.6.4) and (3.6.5) that, they are still partial differential
equations with two independent variables IJ,andlJ,. To reduce them into single one, we
define the following group (G2) as
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. "'II ~b 1/1. "112 _6 1)2

F' ~b/33F

G' ~bfJ4G

H' _b/3sH

l'~bfJ61

V'2 _/7U1
, F

(3.6.10)

Here b(", a '" 0) is a parameter of the group and fi's are realllumbers determined by
previously indicated manner. Substituting (3.6.9) into (3,6,4-5) we have the following
algebraic expressions

/33 -3/\ - 2fJ3 - 2fJ1 - fJ3 - f\ - 112 ~fl4 + fl7 - 2fJs - fJs - fJ2)
fJ4 - 2f\ - fJ4 + fJ3 -/\ • fJ4 - fJ2

(3.6.11)

P,---,
P, '

ft,- __ 1

ft, '

Solving equations (3.6.11) we huve, the following relationship between lhe
exponents.

f32 _2
ft, '

Proceeding exactly as before, we a.~surnethe following transformatiJns (out of
many possibilities).

11 _ ....:b.....;;;;
1

F(1/1'1]2)~J}2 -2/(1/)
1(111,1]2). 112-2j (!])
G('Jr.'h) - g(q)
'( ) -"Uf1J1'112 -1/2 U[(1])

H('7l' Tl2)-1)2 ~1h (1/)

(3.6.12)

"

,r



Using the transformations (3.6.12) and then put! m h m j, we have form (3.6.4)
and (3.6.5)

and

Pr-Ig +7Ig .•.2g_0.
'1'1 2 'I

The boundary conditions becomes

(3.6.13)

(3.6.14)

/(0)-/ ,/ (0)_0, g(O)~l)
IV 'I (3.6.15)

f'{"')~1,g(oo)~O.

u'
The controlling parameters arePr ,-L and I" ~ 1(0) related to the suctionu'

parameter vw.

These equations are special case of the equations of case-4 for m ~ -1.

T[ .. f d .[[ld1.[Je vanatlons 0 aT, u, all v.' arc proportlOlla to 2'- an I. respeclive y.
I t "i I
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3.7 A TABLE FOR SIMILARITY REQUIREMENTS

The nature of aT, Ue and Vw with the similarity variables for
which similarity solutions exist are shown in the following table.

CASE H ". ". Similarity
VARIATl- VARIATI- VARIATI- Variables
ONS ONS ONS

01 (Bx+uot)-' "e
, ,
~ y(.sHUolj"l(j3xtuot)

02 'm , ."' m , m ,
" - -

"
,
'"
,

03 , "
, Y-

"
, .Ii .Ii

04 t m_l ,m (l Y
.Ii

05 m' m' U Y, ,

O. _4mx _2mx _m. om., , , Y'

"
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Chapter Four

Results and Discussions

Numerical resulL, tF~~(0), - A'I(0)1 based on equations (3.2.14) and (3.2.15) are

presented in Table-l for {3g 1,Pr _ 0.71 and R}._ ~ 1.

Graphs of velocity and temperature profiles are displayed ill figures 1, 2, 3 and 4
respectively.

Graphs of effect of snction on skin triclion factor and heat transfer tactors arc
shown in figure 5 and 6 respectively.

••



Table-l Numerical values of the skin-friction coefficient and heal transfer coefficienl

for different values of Fw while Pr ~ 0.71 , fI = 1 and R; = U~ = I.
",

F, F,),) (0) IJ,) (OJ

-4 0.4921 0.040~
-3 0.63~O O.O~53
-2 0.8689 0.1903-, 1.2195 0.407~
0 1.7058 0.7669
1 2,31~9 1.2542
2 3,0400 1.8243
3 3.8413 2.4443
4 4.6965 3.0910
5 5.5957 3.7712
10 10.3265 7.2137
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Fig.! Effect of RJ- on velocity profiles.
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Fig.3 Effect of Fw on velocity profiles
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Fig.4 Effect of Fw on temperature profiles.
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Figure.S Effect of Fw on skin friction factor
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Figure.6 Effect of Fw on heat transfer factor
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Discussions

In the present inve~tigation, one set of nonlinear ordinary differential equation
(3.2.14) and (3.2.15) is solved numerically by shooting m~thod. The calculations are
carried out for several values of the pmameler Fw (Fw > 0 for suction and Fw < () for

U'
injection) forPr ~ 0.71, if:. _-.L~ 1 and j3 ~ 1,

e',
Figure 1 represellls velocily profile, to show tile effect of the parameter,

, U F
R1" _ - for p, ~ 0.71, Fw ~ 1 (suction) and (3 _1. From lhe figure it Can bee',

U'
concluded that velocity profiles increases as R"f, = -.L increases ..',

Figure 2 represents lemperature profiles to show the effecl of the parameter,
, U F

R1" -7 for Pr - 0,71, Fw ~ l(suction) and j3 ~ 1, From the figure it can he concluded

<

U'
lhat lemperature profiles decreases as R} = -.L increases ..'<

Figure 3 represents velocity profilcs to show the dfe"t of the pawmeter }.~"

for Pr m0.71, R;' ~ 1and fl = 1. From the figure it can be concluded lhal velocily profile~

decreases asFw increases.

Figure 4 represents temperature profiles to ,how the effect of the parameter

Fw forPr - 0.71, R;' _1 and {3~ 1. From the figure it can bc concluded lhal lemperalure

profiles dectease asFw increases.

Prom figure 5 we observe lhatlhe skin friction gradually increases with increasing

Figure 6 shows that heal transfer rale increases remarkably with increase of Fw'
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Chapter Five

Conclusion

The similarity solutions of unsteady mixed convection boundary layer equations
over a flat porous vertical plate has been investigated by repeated applications of the
method of one parameter continuous Group Theory. By applying group theory we have
converted the governing partial differential equations into a pair of ordinary differential
equations with appropriate boundary conditions. We have analyzed six possible cases for
which similarity solutions exist. Out of six cases two cases Were derived by Z3kerullah
(2001) without suction. It is found that our solutions arc consistent with some of tbe
published results in the literature. One set of the coupled nonlinear equation~ are ~olved
numerically. This set is a purely steady one. In most practical purposes steady cases are
generally dealt with.

The heat transfer and skin friction factors {q.(O),T~(O)}are displayed and shown
graphically for some values of the parameter F" .. It is shown that both the skin friction
and heat transfer coefficient increases with suction and the effect of injection is just
reverse.

It is desirable to solve certain classes of problem (bur not all) by Group TIleory
method. Each problem has its own special features. So it requires a thorough knowledge
of the happenings of the problem. The method of Group Theory may also be applied to
certain classes of the boundary value problems for which the governing partial
differential equations are expressed in ~phericill or cylindrica I cOQrdinates.

If a number of dependent and independent variable are present in the problem,
first a group of independent similarity variables '11,'12,'1]>'" are sought from the
original independent variables and are one kss in number. The17, are absolute invarianl.

For each dependent variable, an absolute invariant Ii. is sought which involve the,
dependent variable.

A good choice is gj =ui h, Ix,x ,. ",X I,where u. is the dependent variable.,\1 2 n I

The function gj is then equated to a function

F(17l"12" ",17m_t).
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If gj ~Ujh'\Xl'X2""'X,) then

~
F;\rI ,l/y"',l/m 1)

Uj ~ h. X ,x~,...,x =f-
I 1" mJ

is the dependent variable transformation. Substituting V;l1;OUS transformations into the
original system of equations, the new system stands mth numher of independent variable
reduced by one.

Thus the reductions of variables in the problem carry more and more restrictions
to develop various types of possible cases. It would be quite simple to investigate these
possibilities. Finally, we may reach 10a po~ilion to give the analytical solution of the
problem under restricted conditions.
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