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Abstract

The similarity solutions off unsteady mixed convection boundary layer equaliens
over a flat porous verlical plate has been investigated by the method of one purameler
continuous  Group Theory, By repealed applications of this method which reduces the
number of independent variables, firsily (rom three to two and [inally from two o ong,
the governing boundary layer partial differcntial equations arc transformed into a pair ol
nonlinear ordinary differcntial equations with appropriate boundary conditions. One set
of the coupled nonlincar cqualions are solved numerically, The resulls thus obained arc
compared with all other relevant works tn literature,

The heat transfer and skin friction factors {g (0),r, (0)}are investigated and

shown graphically for some values of controlling parameters by using Programming
software FORTRAN 77 and visualizing software TECPLOT It would be shown that both
the skin friction and heat transfler coelficient increases wirh sudion and decreases with
injeclion.
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Nomenclature

Dimensional variables

Symbwl Quantity Unit
x Distance along the plate "
¥ Distance perpendicular 1o the plate m
' Time ¥
u' Velucity component in the boundary layer along the plate i

h)
o Yelocity component in the boundary laver normal to the plate m
5
u’ Exlernal velocily I
$
Ug Characteristic velocity generated by buoyaney cifect m
h)
T Temperature K
L Charactesishic leapth M
g Acceleration due to gravity "
.5'2
g’ Heat transfer 1ate J
mzs
C Specific heat at constant pressure J
ke K
2 Pressure Pa
B Enthalpy J
8 Entropy J
K



Dimensionless variables

Symbol

£y

Nu

Pr

Ec

i

t.l

-}I‘

Quantity

Grashof number
Velecity function

Nusselt number

Prandtl number

Reynolds oumber

Velocity compenent in the boundary fayer along the plate

Yelocity component in the boundary layer perpendicular to the plate
External velocity

Time

Temperature

Distance along the plate

Distance perpendicular to the plate



Greek symbols

Cundition at the wall

Condition at the ambient medium

Symbol Quuntity
a' Thermal difiusivity
g Volumetric thermal cxpansion coctficient
i’ Coefficient of dynamic viscosity
v’ Coefficient of kinematic viscosity
g Densily of the fluid
T Lacal shear stress
K’ Thermal conductivity
g Dimensicnless temperature function
R Dimensionless stream funclion
n's Similarity variables
a's Real numbers
e Real numbers
Subscripts
W
= al

xi




General Introduction

In this thesis an analysis is carricd out to study similarity solutions of the
boundury layer equations for unsteady mixed convection flows over a porous vertical (lal
plale by the method of one parameter continuous Group Theory.

Chapter one contains review of the literature of the problem.

Chapter iwo deals with the properues of viscous fluid, Lhe basic equations,
boundary layer equalions and allied governing equations. A briel discussion of Group
Theory is also presenled in this chapter.

In Chapter three, we explore all pessible Group invariant sclulions including
those alrcady published in the literature using Group Theory. Tn (his chapter it 13 found
that present analysis covers all the existing possible six cases derived by Yany (19640).

Chapler four deals with the numerical solution of one of the transformed
noniinear ordinary differential equations by sheoting method.

Finally, in Chapler [live, we presenl the concluding remarks on overall
investigations in the aforementioned chapters
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Chapter One

Review of literature on mixed convection and Group theory

Heat transfer cslimates the rate at which heat is transferred across the system,
where the boundaries are subjected to a specific temperaiure difference and temperature
distribution of the syslem. It occurs on the walls of a room, on the oulside of warm and
cool pipes and between the surfaces and the lluid of all types of heat exchanger. A heat
transter phenomenon may occur in some ficlds of cngincerning,

There are three types of thermal coergy transport: (i) condoction {ii) convection
and (iii) radiation. In various types of siudies related (o heal trunsfer or thermal (ransport,
considerable effort has becn directed at the convection mode, in which heat transfer
process takes place with the motion of the [luid. Convective heat transfer is divided
broadly into two basic process, namely, (i) {ree convection and (ii) forced convection,

Free (Natural) convection

Natural convection flow arise when buoyancy lorces due to density difference
occur and Lhese acls as a driving forces. In this case fluid motion caused entirely by
buoyancy force that arises due w density changes resulling from the lemperalure
variations or concentration differences of the Now. Buoyancy {orces may act in different
force fields, the gravitational field being most common, the centrifugal force field, the
Coriolis force field and the electromagnetic force licld arc also found in nature. 1t can be
both laminar and turbulent.

Matural convection Now velociles are gencrally much smaller than thosc
associated with the forced convection and heat transfer rate is generally smaller. In brief,
we can say that free convection (low resulls from the action of body forces on the fluid,
that is, forces which are proportional to the mass or density of the [luid.

A heated body cooling in the ambient air produces [ree convection [low in the
region surrounding it .Considerable ctiort has been given to the convective heat transfer
because of its importance in technical applicatiore in which the relative motion of the
fluid provides an additional mechanism for the wransfer of encrey and of the matcrial, the
latter being a more important consideration in cases where mass transfer due to
concentration difference oceurs.

The mechanism of wranster of beat from one (luid ¢lement to another adjacent one
is conduction. Thus a study of heat transler involves (i) he mechanism of conduction and
(i) sometimes radiative process. -




There are many practical situations in which these lactors influence the flow
phencmena. For example, in air craft propuision syslem, there are components (Such as
gas turbines and helicopter ramiets) which motate at high speeds. Associaled with these
relative speeds the large centnfugal forces similar to gravitaticnal force are also
proportional to the Muid density and hence can gencrate strong natural convection Mows.

Free convection heal (ransfer 15 imporlant only when ihere exist no external Oow,
It is expected from dimensional analysis that for large Reynolds number (i.c., for large
flow velocity) and small Grashof number, the intluence of free cenvection on heal
transfer can be neglected. On Lhe other hand, for large Grashof number and small
Reynelds number the free convection would be a dominaling factor.

Forced convection

if the Muid motion ariscs duc to an external agent, such as the externally imposed
flow of a fluid stream by a fan, a blower, the winds or the molion of the heated objects
itself. The process is known as forced convection. It vecurs 1n electronic devices which

are not classified as heat exchangers, such as furnaces with artificial draft and
regenerators.

Buoyancy causes variations in the velocily and temperaturc fields of ferced
convection Mows leading w the varialions in the Nussclt number and the wall shear stress
or friction coeflicient, parameters thal arc important for most engineering problems. For
casc of upward forced convection over a flat plate with surlace heated to a temperature
higher than the surmounding lemperature, the buovancy forces ald convective molion

whereas if the surrounding lemperature is greater than surface temperature, buoyancy
forces opposc the flow.

[n nature, we face some situations where forced and frec convection act
simultancously in cstablishing the [low and temperature field near the heated or cocled
plate body. That is, if the relative importance of the forced and free convection is of
comparable order; the phenomena may be termed as mixed convection Mow. The laminar
boundary layer [ow due to mixed convection has received considemble attention for both
steady and unsteady situation in evaluating flow paramecters for lechnical purposes,

In recent years, the transfer of heat 10 and from enclosed or partially enclosed -
regions by means of natural convection or by a combination of natwral and forced
convection has taken a new significancc in the ficld of Aeronaulics, Automalic power,
Electionics and Chemical enginegring und Electrical engineering.

-



Prandt! boundary layer

Prandil (1904} first introduced a theory for the boundary Jayer. He showed Lhat
the fluid motion with the small friction may be divided into two regions (i} 2 very thin
region close to the body over which [luid is [lowing known as beundary layer where
viscous effect dominate. (i) Lhe regien cutside the boundary lyyer where viscous effect is
negligible. The flow outside the boundary layer is known as potential [ow.

Transition from laminar to turbulent flow in the boundary layer on a [lat plate

aceurs at Re =5x10° , where Re = vL .

¥

- - r - 1 r r 4 r a "
A typical incrtia term in the Naiver-Stokes cquation is p'u -—E-; and & typical

2

ViSCoUs lerm iS _u'—uz. In the boundary layer they arc comparable order and hence we
dy’

have gL {Schlichting 1978}

L JRe

This type of argument 15 called scaling analysis and 1+ 2 valuable 100l in dealing
with transport problem.

Porous plate

By porous platc we mean that the plate possesses very fine heles dislributed
uniformly over the entire surface of the plate through which fluid can flow freely,

Plate with suction and injection

The plate from which the fiuid enters into the (ow region is known as plate with
injection and the plate from which the [Tuid leaves from the (low region 18 known as plate
with suction,

Some limes it is necessary to control the boundary luyer flows by injecting or
withdrawing fluid through s heated boundary layer wall. Since this can enhance healing
{or cooling) of the system and can help delay the transition from laminar o turbulent
flow. Doundary layer suctlion is used to control laminar and turbulent separation, by
removing flow of low momentum, The technique 15 used i aircraft wings, some wind
tunnels to remove boundary laver, Blowing (injection} . boundary layer on high
temperature components can maintain a thin layer of eolder flow that allows the syslem
o function with very high fluid velocity.

Skin friction and separated flows over external surfuce penalize the performance
and economics of the airplanes, ships, cars cte. Generally they can affeet the performance
of any manufacturing process that employs long piping runs or [luid [lows that become



unstable. It has been estimated that air craft fuel cost per mile could drop vp 10 404 if the
flow around aircraft eguld be smoothed vut. Hence our purpose is o find economic ways
by which we can reduce skin friction and control boundary {ayver thickness, A variety of
active and passive ways had been explored, including externul plasma [ields, variations,
acualors, and flow additives. Among other approaches, one cun consider [low blowing or
suction in the boundary layer, injection of pas with ditferent viscosity or difforent
temperalure.

Mechanics of ncnlinear fluids prescnls a special challenge o the Engineers,
Physicists and Mathematicians., All physical phenomena are, in general, governed by
partial differcntial equatons with appropriate inittal and boundary conditions. [t is often
difficult and even impossible to find their solution using classicul separation of variables,
free parameler and dimensicnal analysis methods. Applied Mathematicians, Engineers
and Scientists try w0 find the ways and means to reducc the partial differential equations
into ordinary differential equations to serve their necessary purposes. A vas literature of
similarity solutions has appeared in the arcna of (hwd mechanics, heat transler, mass
transfer, aerodynamics etc. Most existing solutions, in the technical arenas, are similarily
solutions in the sense that the pertinent boundary layer equations with boundary
conditions under suitable transformations are reduced to a sct of ordinary differential
equalions in terms of similanty variables which are [onctivns of original independent
variables. They may be derived by dimensional arguments. by sophisticated moup
theoretic method, by method of free parameter or by sepmation of variables. Among
them, the group theoretic method which includes the dimensionsl analysis as special case
i5 the moest systematic and sephisticated in generating similariy solutions.

The results obtained from similarity selutions are usable in various technical
applications

Siumilarity sotulion first introduced by Blasius (1908} is one of Lhe pioneer work
to reduce the number of independent variables as well as dependent variables. Group
theoretic  method, Arst used by Bickhoff (1955), which includes the dimenstonal
analysis, is the most systematic and sophisticated in generating similarity solutions. For
comptehensive review one is referred to the lext by llansen (1964). This technigue has
been applicd inlensively by Abd-el-Malek et al (1990, 1990 and 1991), Ames (19585)
and many others. Different types of perturbation technujues are wsed to solve the
nonlincar partial differential equations primarily based on similarily solutions.

Ostrach (1953) analyzed the aspect of nmatural convection heat transfer. He
studied flow between two parallel infinite plates orientated (o the direction of generating

body force. He (1934) larter worked on combined natural anu forced convection laminar
flows.

Yang (1960) studied analytically the unsteady laminar boundary laver cquations
for free convection on vertical plates and cylinders. e established some necessary and
sutficient conditions for which similarity solutions are possible. He derived the similarity



solutions of the governing eguations when temperalure vanialions are proportional 1o
Tl ﬂ't.fII I '
R A LR

ax +ht'

r)
mi
#Mand ¢ .

Most of the works on effect of suction and blowiig on [ree convection boundary
layer had been confined to the cases where prescribed wall twmperature was considered.
The power law variations of the plate temperature and transpiration velocity considered
by Eichhorn (1960) are ihose for which similanity <olutions existL

Merkin (1969) considered ihe boundary layer [low over 2 semi-infinite verical
plate, heated to a constant temperature in a uniform free stream. He discussed two cuses
when the buoyancy forces aid and oppose the development ol the boundary layer. In lhe
former casc, two scrics solutions were obtained, one of which was valid near the leading
edge and other was valid ssymptotically. Tn the latter case, scries valid near the leading
edge was cbtamned and it was extended by a numelical method to the point where
boundary layer was shown to separate.

Ping Cheog (1977) investigated (he combined [ice and forced convection
boundary layer Aow along inclined surfaces embedded 1n porous medium. 1t was found
that when both wall temperature distribulion of the plale and velocity parallel to the plate
outside the boundary layer vary according 1o some power [unction of the distance, then
similarity solutions exist,

Sell—similar solutions have been studicd by Merkin and Ingham (1987) for wall
temperature prescribed as an inverse square root of the disunce from the leading edge.
Unsteady laminar [ree convection flow of a viscous incompressible and electrically

conducting, [luid past an accelerated vertical infinite porous plate subject 10 a suction
1

velocity proportional 1o (tirnejnl-E was investigaled by Hossain and Mandal (1985).

Aldoss {1994} investigated mixed convection Now over non-isothermal horizontal
surface in a porous medium. In his study he considered two conditions of surface heating

i) variable wall temperature (VYWY in the form T, (x} -7 =ax™ and (ii} a vadable
pe

surface heat lux (VHF) in the form q;v =bx™,

Soundalgeker (1972} analyzed viscous dissipation effects on unsteady free
convective flow pasl an infinite, vertical porous plate with conslant suction. He denved

the solutions of the governing coupled nonlincar equations lor velocity and temperature
field.

Effect of blowing and suclion on free convection boundary laver was shudied by
Merkin (1972}, He considered the cascs of uniform suction and blowing with the plate

held at constant temperature {T}; ) greater than the ambient teraperature T, .



Soundalpgeker (1977} siudied elfects on mass lransier and suction on unsicady
free convection flow neglecting Sorct —Dufour eftects on the energy equation. In his
study the plate temperature was assumed to be oscillatory.

Pop and Takhar (1993) investigated the free convectiom Mow gver a non
1sothermal two dimensional body of arbilrary geometnic conliguration. He discussed in
detailed the effects of geometric shape parameter and Prandtl namber on velocity and
lemperature field as well as heat transter coeflicient.

Conjugate {ree convection on a vertical Surlsce had been discussed in some
detailed by Merkin and Pop (1996).

Chaudhary, Merkin and Pop (1995) studied i detad, the similarity solutions
for free convection boundary layer over a permeable wall in the saturated porous media.
It was shown that the system depends on the two parameters m{exponenl) andd
¥ (dimensionless surface mass temperature rate).

Williams et al (1987} siudied unsteady [ree conveclion (low over a vertical plate
under the assumption of the variations of wall temperare with time and distance. They
found possible semi-similar solulions for a variety of classes of wall temperature
disiribubion.

Possible similarity solutions of ihrec dimensional laminar  incompressible
boundary layer equations were invesligated by Hansen (1958}, He cxhibited different
possible cases in tabular form for AT’ variations in addition to those of exlenior velocity
COmpeonents,

In order to apply the methad of group theory in our problem a peneral idea of the
group is discussed below:

Group: A proup G is & sct of clements a,b,c topether with binary operation
(mapping, transformations, rotation etc) o deflined on G satisfy the following properlies:

{i} Closure property: A set is closed under the given operation. If a,bare the

elements of G, then o o & = ¢ is also a unique element of G,
(ii)  Associatlive property: The given operation is associative, that is, if
g, b cEGthen{gebloec muao(boc).

(i)  [Identity exisis: There exist a unique element [ in G (called identity element}
such that #aef =Joq, forall & in G.

{(iv)  lnverse exist: For every element ¢ in G, there exist a unique element
a ' (called inverse of a)such thal gaeg™ =g cqa=1.

A continugus r parameter group transformation (r z 1) is sometimes known as simply a
group.

<



Definitions:
A set of functions Fj {xl,xz,xa,---,x”)is saicl 10 be “conformally invariant”

under a group transformations G : x*; — x; , with a numenical parameteta, if
Fl:fl' (xx]z f'ﬁ (x;:a] F‘j (II*],EI = 1’2’3r"' + § = l:2s3s' T, m

where Fy (.ri_*] are exactly the same functions of the .ri-* as F L!:!. Jan: of the x;.

The functions Fy lxl_) are called consiant “conformally invariant™ under the same

group transformations if f (xl_*;aj are independent of the Variahlts.ri*,

The ful'Ls:.T.i-:ml:l:?.FEr ‘(!IJ are called constant “absclutc invatiant” under the same

group transformations if f (.ri*;a) =1.

Literature concerning the group theory is abundant. Representalive studies in
group theory may be found in review papers by Ahd-el-Malek et al (1990, 91, 97),
Morgan (1952), Hansen {1964}, Zakerullah (2001) and BirkhofY (1933).

Similarity solutions of unsteady mixed convection flow about a vertical plaie
were investigated by Zmbair (1990) using one parameler continuous group theory
method.

Mixed convection flow over a verlical surfaces/plate occurs in many industrial
and technical applications which include nuclear reactors cooled by fans during
gmergency shut down, solar central receivers exposed to wind cuments and heat
exchangers placed in low velocity environment. Merkin {(196%) investigated the mixed
convection boundary layer Mow on semi inlinite vertical plate when buoyancy forces aid
and oppose the development of boundary layer. Upsteady mixed convection boundary
layer [lows on vertical surface was studied by Harris (1999) and many others,

In this analysis, attention is directed to the sitvation where forced and free
conveclion act simultaneously in establishing the flow and temperature fields.

Similarity solutions of unsteady mixed convection lMow without suction was
investigated by Zubair (1990) by repeated applications of Group Theory. Similar
soluitons of mixed convection flows have been studied by many authors, notable amongst
them are those by Wantanable (1991), Rapits, et al (1998), Ramachandran (1998}
and Cheng {1977},

However, there have been only a few studies dealing with unsteady mixed
convection Flow over a flat vertical porous plate by “Group theory method. Ludlow DK



{2000) ct al have analyzed new similarity solutions of unsteady incompressible boundary
fayer equations.

A review of literature shows that very litile rescarch has been reported on
unsteady mixed convection flow aboul a porous vertical plate by the method of group
theory.

Zakerullah (2001} has derived similarity solutions of some of the possible cascs
ol unsteady mixed convection by Group Theory without suction. We will explore the
similarity solutions of the remaining four cases with suction. From the present analysis it
is shown Lhat our solutions include some existing solutions as well as many new ones.

The numerical solutions of one of the representative transformed equations for
different values of controlling parameters arc obtained. Resulls are therefore compared
with the known results in the literature.

Thc problem of unsteady mixed boundary layer [lows has long been a major
subject in fluid dynamics because ol its importance from both theoretical and practical
view point.

Many research papers have been published o dale related to unsteady forced
convection by many authers. Among them some are Riley (1975, 1990}, Telions (1979,
1981), Harris (2002) elc.

ITarris (1999) has performed an analysis of unstcady mixed convection boundary
layer flow from a verlical flat plate embedded in porous medium. He made complete
analysis at initial unsteady flow (¢'=0) and the sieady state flow for large times
(t'— ) and a scries solulion valid for small time obtained using semi-similar
cvordinates followed by Smith (1967). Very recently, Roslinda {2004) et al investigated

unsteady mixed convection boundary layer Aow near the stagnalion point on a vertcal
surface 1m a porous mediamn,

The present analysis is to incorporate the suction elfect into the six possible
similarity cases derived by Yang (1960) und for these similarity cases we introduce the
idea of Group Theory lo transform the governing equations into ordinary differential
equations.

Finally, similarity requirements are exhibited for AT,u, and v varations and

we will solve the one of the (ransformed cquations aumerically to predict the [low
characteristics for different numercal valucs of controlling parameters involved.



Chapter Two

Fundamental equations of the flow of fluids
Introduction

In this chapter we will discuss the basic properties of the fluid, Continuity
equation, MNaiver-Slokes equation and Enerpy equation. We will analyze the order of
magnitude of the basic equalions so that small order terms can be neglected.

Properties of fluid

There are two types of Muids (i) perfect fluid and {ii) 1cal fluid

Perfect [luid: It is frictionless and incompressible. In the motion of perfect fluid,
two contaching layers expenience no langential forces but act normal forces only,

Real fluid: In the moticn of real fluid, two contacting layers experience tangeniial
forces and normal forces.

Viscous fluid possesses the following properiies:

i) Kinematics properties (lincar velocily, angular velocity, vorticity,
acceleration and strain rate). These are the properties of the flow field itself rather
than of the  fluid.

ii) Transport properties (viscosity, thermal conductivity, specific heal at
constant pressure, the Prandil numbet).

iity Thermodynamic properlies (Pressure, density, temperature, enthalpy,
cntropy, bulk modulus, coefficient of thermal cxpansmion).

iv)  Other miscellaneous properties(Surface tension, vapor pressure, eddy
diffusion coefficients, surface accommodation coefficicnts)

Some properties of (iv) are not the true properties bul depend upon the flow
conditions, surface conditions and conlaminants in the fuid.




Kinematic properties

In fluid mechanics ones first focus is nermally with the fluid velocity. If R' is the
any property of the fluid and dx’,dy', dz'and df' represent arbitrary changes in x',v',z’
and ¢ then we have
DR' 4R’ P
—EET—FH? *VIR (2.1)
where ¥' = (u',v',w)is the fluid velocity at any point (x', ¥,z )at any ime ¢ and V' is
the gradient operator . If R' is ¥'itself then

D ' a ' Il 1 ] - + " : '} J } J

_vj=i:+{‘¥ * VY’ =acceleration= i D”r +_]J'r v, +h’-JE ”j .

D¢ dt F 2y I Dy
Transport properlies

The imporiant transport properties of viscous Fuid [lows are the viscosity, the
thermal conductivity, specific heat at constant pressure and the Prapdtl number which is
the combination of the first Lhree propertics.

Yiscosity

It is an internal property of a fluid that causes resistance to {low. This property
can be thought of as an internal friction. All fluid (liquids or gases) bears the property of

viscosily in varying degrees. The dynamic viscosity g’ is defined by Newton’s law of
friction

Fe= p'Ai.
dy

Here F, is the shearing force or friction of NMuids between two parallel layers of Muid,
which have equal area A , scparated by the distance dv’ and one moves parallel 1o other

r

. T ' . du’ . . X
with velocities ', u’ +du’ regpectively. f; is the velocity gradient perpendicular lo the
¥
direction of the flow of the two Muid layers.

If A=1 and :f_u_J =1then, F; = ', ie., u' is the shcaring stress between the
Y :

two Jayers of unit area.

Now shear siress per unit arca, 1S

; . ol

(i) Ift'=0,then u'=0,and (2.2) will represent an ideal fluid.

@) I % =0,then ' -—~wand (2.2) represent an clastic bodies.

10



{(iii} A fluid for which @' does not change with the rate of deformation (shear
sirain} is said to be Newtonian fluid.
(iv)  If the viscosity varies with the rate of deformation, then it is said to be non

Newtonian fluid. Examples of non-Newtonian fluids are Bingham plastics,
Pseudoplaslics and Dipotanls.

We shall reslrict our study to Newtonian {luid.

The coefficient of viscosity of a Nowtonian fluid is direclly relaled to the molecular
interactions and thus may be considered as a thermodynantic property in the macroscopic
sense, varying with temperature and pressure i.e., 4’ = 1'(7', p') . Normally, the viscosity
decreases rapidly with temperature for liquid, increases with temperature for low pressure
gases (dilute} and always increases with the pressure.

A common approximation for viscosity ot dilute gases suggested by Maxwell is

il

— & r—, , nis ol order 0.7.
1y

. . . T
If 7 =1 and surface is the reference condition, then §' = u), —.
W

For an isothermal wall, this reduces to ¢’ =(constanty T,

Experimental measurement of the viscosity of air 1s reluled with the temperature
by the Southerland equation
3
P AR/
quj T:_J] "+8
Here S is an efective temperature caliled Southerland constant and y;J ,T{; are

reference values,

Thermal conductivity

When a fuid in static equilibrium is heatcd nowunifomally, heat may be
transferred from the region of higher temperature 1o lower temperature. The basic

transport mechanism is conduction which is governed by Fourier’s law of heat
conduction

qQ=-x'VT.
Here q' is the vector rate of heat flow per unil area (Mux). The quantity x”is

called thermal (heat) conductivity, negative sign indicates that the heat [lows in the
direction of decreasing temperature.
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Solid substances often show the anisolropy or directional sensitivity:

R ¥ A ¥ S i
—q =(K' a—'—T,H.‘ r-j—',.hl':—r}.
Foat Y gyt oz

But a fluid is isotropic, i.e., has no ditectional characieristics md thus &'is a
thermodynamic properly. The wvalue of &' [or a substance depend on the chemical
composition, the physical state, lemperalure and pressure. It varics fluid to fiuid. The
variation of the thermal conductivity of lhe gases wilth tempetature is the same as that of

dynamic viscosity.
Specific heat at constant pressore (¢ )

For air, it is almost constant for a wide range of temperatures,

The Prandtl number
u'e o

The Prandtl number Pr = is essentially invariant with temperalure.

Therefore, it is assumed that Prfor a gas is constant.

Thermodynamic properties

The most imporiant thermodynamic properties are pressure (p'), density { p),
temperature{T"y, enlropy(s", enthalpy (4"yand internal encrgy (e".Consider p'and
T"as independent variables and other four variables dependon p' and T,

First law of lhermodynamics
Any thermodynamic system in equilibrium state possesses a state variable called
internal energy (£'). Between any two equilibrium state, change in inlernal energy

(dE") is equal to the difference of lhe heat transfer (d0Q") into the system and the work
done (dw’) by the system.

Mathematically, dE'=dQ'—dw'. {2.3)
For a substance at rest with inflimiesimal changes
d w'=-p’dv'(for conslant volumc)

dQ'=T'd s
Here ds'is the change of entropy.

12



Substituling into (2.3) and expressing the result for unit mass basis, we have

de' =T'ds'+ £ _dp’ (2.4)
p'?

which is one of the forms of the first and second laws combined lor infinilesimal process.
From the equation {2.4) we may write
' =&'(s', p)=function(s’, p").
Total derivative of ¢’ is
de’ = Eds' + a—e:dp' . {2.3)
ds ¥4

Now comparing (2.4) and (2.5), we have T' = a—EJ and p'=p? ie—; :
o8 PI ] P 5

From the definition of cnthalpy we get,

Kag el (2.6)
il

Thus a single charl of ¢ versus s° for lines of constant p', is sulficicnt to calculate
all thermedynamic properties. Also from (2.4) and {2.5} we have

W =T ds o dp @7
o

From (2.7} we may writa
A" = function (s, "

- ﬂd 5 ok

an'’ +—dp'. (2.9)
ip

oy

From (2.7) and (2.8) we have

<), 5
a5 PO ap )y

In this case, a chart of &' versus s for constant pressure p' will define a substance
completely.

13



Coefficient of thermal expansion
For natural convection flow, the [low pattern is duc to the buoyant forces caused

by lemperamre differences and buoyant forces are proporiional to the ooefficient of
thermal expansion §°, defined as
' 1{ap
14 =-—,(i,] :
P I

For perfect gas, 8' -?1;;. For liquid 8" is usually smaller than %and may even

be negative. For imperfect gas £ may be larger than % at high pressure.

The quantity 8’ is wseful in estimating the dependence of enthalpy on pressure
from the thermodynamic relation

E

dh' =g, dT"+ (1- ﬁT‘)dir. (2.9)
p
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Fundamental cquations of the Auid flows

The fundamental equations of flow of viscous compressible Muids are
{1} Equation of conlznuity{conservation of mass)
(i)  Equations of molions(conservation of momentum)
(iiiy  Equation of cnergy{conscrvation of energy)
{iv)  Equations of species(conscrvalion of spedies)
{(v)  Laws of chemical rcaction.
For the sake of simplicity we can ignore diffussional clemical reaction. i.e.,
ignore (iv) and {v). We assume that fluid is uniform and of homogeneous composiion.

The three basic equations, namely, continuity equation, Naiver Slokes equation
and energy equation based on conscrvation of mass, momentum and encrgy are

' L] Ll " 211[]
L PR @10
at
' ' ' 2.11)
¢ D ¥ P Il L 9 u;‘ @ u_{ 1 [ — ' I (
e DI.=PE+‘F #[E}'l"ax; -Hji;'l? vi-¥'p
Y ! . 2.12)
' ! o i o e (
J-D_';IF=D_IJ'+vJ.(x: va?n)_'_ 'u.l —II+—{ +t5.llllrvr.‘r.l —f
Dy I Adx ax i ax,
i L !
where for a lincar Newtonian fluid, the viscous siresses are
au' o'
u' -v-,-‘-+—{ +&" A"V =v'{=hecar generated due (o [rictional forces).
a.::j &x 1]

Here A’ is the coefficient of second viscosity and &/ | is defined

3,

1 3 =] .
- _ 15 the Kromecker deita,
0, i=J
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Assumptions

The above equations are based on the following assumplions.

&)
(ir)
(iii)
(v)
V)

i)
(vii)
(viif)
(ix)
(x}

The fluid is a continuum

The particles are essentially in thermodynamic equilibrium
The only effective body forces are due 10 gravity

Heat conduciion follows Fourier’s Jaw

There are no internal heat sources{e.g., radiation, chemical reaction, Joule’s
heat)

Slress tensor is symmetric{the {luid has no local lorque proportional to the
volume as waould be possible in an electric licld)

The {luid is isotropic{Therc 15 no locally preferred direction)

The fluid is Newtomian

The stokes hypothesis is valid(i.e., 34"+ 2u' = 0).

The Jast term of right hand side of equation {2.12) is the viscous dissipation term
{positive). 1t is the work done by the viscous stresses. In low speed llow this term will
nsually be negligible. It is important for gases at extreniely low temperabure.

There are seven variables involved in equations (2.10)-(2.12} of which three,
variables, namely p’,v'andT’, arc assumed to be primary variables. The remaining
variables p',#', 4 and k' are assumed to be functions of p"and T,

The dependencies of the quantities g, &', u"und &' on pressure are generally very
small and may be neglected.

16



For two dimensional incompressible [lows, the above cyuations beconie

a4y (2.13)

—J+—r=0

dx  dy
o aw e\ L, oy {0k o (2.14)
P Vs T T S T TR 2 ay'?

¥
)J ?.E_'.'_ura_l;r_'.vra_l; ot v f]PII + p i ?.V.I + i z'l.l'r (2115)
f a.f'l ﬂIJ ﬂ_}-‘r P g,}“: ﬂ}'r # ax.i a},ri
. {87 8T 8Ty &4 4T a[ a7 (2.16)
fL —+ i =+ V e K || X —
2l dx fy i d oy dy

P

IR ITY
+ —r+ - -
ax dy

Before proceeding to oblain the solulions of the equations (2.10) - {2.12} we will
first find the dimensionless group upon which the solutions musi depend. We starl by
introducing dimensionless quantities into the equation, referring all lengths to some
charactenstic lengthZ, along the plate considered, velociies with reference o some

r r r o 2 ! i
+T'ﬁ(?;_,+ur%wrg]wﬁ;] 2]
! dy X ;

characteristics velocity U7 and ¢ by %.T’he density will be made dimensionless with

Tespect to g, , the pressure will be made dimensionless by o, U ¢ and the temperature by
AT" . The other transport properties of the fluid ;t',x’,cPJ and the pravitational

componenls g and g}.will be made dimncnsionless by w, &,,c o and g respectively.
’ ]

Here the suffix (0 refers to some convemient constant relerence conditions, undisturbed
by the boundary layer. Hence we introduce the following dimcnsionless quantities.

r 1

x ¥ ¢ i’ v P
Xx=—, ¥y=— f=—U u=—, V=, p=——,
L L L U U o
g g * ¢, reT
gxu_x’ g_}?=__}?r p=£'},cpr=fj I.:I” I—-'
£ g ' Py w A
u=t
Ho
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Intraducing the abeve dimensionless variables in equatwons (2.100(2.12) we
obtain the following nondimensional cquations.

2.17
a—p+?'(pv)=ﬂ (2.17)
at
bv_1 ,.1lv o, 5 AVey LoV (218)
- = m— - — a _ .
o T EPE R éx,ax |7 F
DT . Dp 1 Ee (2.19)
< =F¢ + Vel VT+ —
T A S A
Ju dH U,
Here @ = lu 'é?j*a_{r +8 ATy E’- is the viscous dissipation
I

function and Pr,Re, Ec, F, are Prandtl ,Reynolds, Eckert and Froude numbers
respectively,
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We shall now discuss the physical importance of the nuondimensional paramelers
upen which similarity solutions depend.

Important nondimensional parameters
Prandul number

The Prandtl number is the ratio of the kincmatic viscosity lo the thermal
diffusivity and is defined as

r rC.l

! f

K

f‘:

Pr=

=

The value of v shows the ellect of viscosity of the lMuid. For small value ofv, a
thin region in the immediate neighbourhood of the surface will be affected by the

¢

viscosity, called thermal boundary layer. The quantity « = ul represents thermal

pe
r
diffusivity due to heat conduction. For small valuc of ¢’ , thin regions will be affected by

heat conduction which is known as thermal boundary laver.

Thus Prandtl number shows  the relative importance of heat conduction and
viscosity of the fuid.

It is a material property and thus varies Muid to Nuid. Liquid metals have small
Prandll number {e.g. Pr=0024 for Mercury), gases arc shglity less than unity (e.g.
Pr=0.70 [or Belium}, light liquids somewhat higher than unity and oils have very high Pr,

Reynolds number

Reynolds number is the most important parameter of the dynamics of viscous
fluid. It represents Lhe ratio of inertia to viscous foree and is defined by

UZ
Re = T = gi
u'lU v
LI

1t 1s, in fact, a parameter for viscosity, for if Re is small Lhe viscous forces will be
predominant and the effect of viscosity will be felt in the whole Mow field.

On the other hand, if Re is large the inertia force will be predominant ang in such

a case effect of viscosity can be considered to be confined in a thin layer know as
boundary layer adjacent to the surface. For large Reynolds number the low ceases lo be

14



laminar and becomes turbulent. Reynolds showed thal {low in & circular pipe becomes
turbulent when Reynolds number of the flow exceeds citical value 2300,

Thatis Re = (=d4)=2300(pipe)
Vv

where uis the mean fiuid velocity and d is the diameter of the pipe,

Eckert number

For meompressible flow, it determines the relative rise in lemperalure of the (loid
through adiabatic compression. In high specd flow, it is defined by
z 20AT"
U2ty

cp.r}.T CP,M

Fom

where M = v is the Mach number. Here ¢ is the speed ot sound.
c

The work of compression and thal of [ncuion become important when the
characteristic velocity is comparable with or much geeater than the sound or when the

prescribed temperature difference is small comparcd to the absolute temperature of the
free sircam.

Froude number

- . pU?
1113 defined by the ratio of inertial (oree {

} o gravity force (p'g’ ) and
is piven by

s ve LT
_UP ATyl

IFr — = - —.
gL I, 7 °L

It is important when there is a free surface e.g., 10 an open chamel problem.

For perfect pas

Cpr Tn 1 £'2

gL y-1g'l

20
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There arc however further conditions which must be imposed in order (o have
similarity solutions.

(i) w(x,0,1) = 0,v{x,0,8) = 0 for sold plate.{no slip condilion)
and uf{x,0,8) =0, v(x,0,0) = v, (x,¢) = [or porous plate.

(i) The velocity at a large dislance from the plate musi be equal to the
undisturbed fluid velocity i.e., n{x,%,1) =u,(x,1).

(ili) The temperalure of the plate must be equal lo the [kid temperaturc.
I- ’ _ Tl:;)
Hence @, =8(x,0,f)=1.Tlere @ = o7,

W'Tlx

(iv) The temperature at a large distance from the plate must be equal (o the
undisturbed fluid temperature i.c., #{x, 2,1} = 0.
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Boussinesq approximation and governing equations

Let us confine our attention o two dimensional incompressible Nlows past a fat
vertical porous plate and the flow configuration is shown in (he following figures.

x tE 0 >y
1 T—: g '[Jr
-+ , il
, — g T
Ty a—» A IV
. >
— ol B i’ ‘
- il g
r ] Fu v, N
V, P
; » ¥ "'6
0

@ d (b)

Fig 1 {a) Flow configuration for - _
(b) Flow configuration for 7° < 1!
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The relevant continuity, Natver-Stokes and Encrey cquations in dimensional form
are

au' 8y (2.20)
d

uf }l’
— ¢ — v —|=p gL BT T ) 4+
' ] P gy Bl -t

r"a'zuF-'-azuf (2.21}
[ Ei.r‘z ﬂ-y’z

' . ' : 2o 2 . (2.22)
fav Lav i bor e , & Ja v a e
Pl=—tt —tv — (=mp g -'H{T _Tm)_ ‘pr+,u,
y ’ ay

+

¢’ ax’ d ,Ellx"z ﬂ}l'z
. (AT’ o1 Ty fatrr alr (2.33)
Pepler e T ay T G T

I 2’ ] 2 ] 4 ] 2'
, du t d
+ 0|2 —=] +2—]| +|—+—
ox ady gy ix

The boundary layer equations

The boundary layer equations represent a sipnilicant simplification over the full
Naiver—5lokes and Energy equations in the boundary layer repion. This simplification is

done by the order of magnitude analysis i.e., delermining which term is small relative to
the oiher lerms.

Order of magnitude analysis

=1
We take T',x"and &' as quantitics of of1) and y',and v’ of o(Re 2 ),

To make the order of magnitude analysis, we shall nondimensionalize the
cquations by using the following nondimensional variables |

' r 1 t #pal g r : =

5 ! -1

=2, y=2ReZ, t=—U Tor2 4u oV Re2 pa
L L L T —Too U v

Here order of each nondimensional variable 15 one.



We shall estimate the order of magnitude ot cach term by taking Reynolds
number very large. The order of magnitude of each lerm is shown in the bencath of cach
equatiosn.

Continuity equation

e dv

E & ¥
(2] 1 1

u momentum equation

[ﬂu A ﬂu]_ﬁ?'ﬁ’f ap 1 a9

—u—tVv— >+t —
at dx oy Fro ox R, ax~  ay

(0) 11 1 1 1 1 1

¥ momentum equation

1 {av v vy ATBT dp 1 a°v 1 a4
| ettt >
JRel ot ax @y 3% JRe ay

(0) 11 1 1 1 a? 3
Energy equation

2 3
af  aT  aT ¥ a7 1 Rea?l 2Ec (au) [av] [ﬁu]
— tH—tV— = —dl—1 +|—1 +Er

V—=— —t— 5+
ot dx d p € Ul ax UL a}uz Re |} dx ay oy
. 1 2
@) 1 1 i 52 — 1 é
52

+—Ec—— +—F¢
Re dydx He

1 gudr 1 éﬂv2
ax ]

52 54
We retain the terms as Litd < — 0.
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2

where Ee¢ = ————— is the Eckert number and Iv; =
e AT =T'} '
P ow o I

cach dircction.Here { —»{x, y} directions,

is the Froude number in

There are many things to be noticed

(1) Continuity equation is affecied by the consideration of Reynold mumber.
(ily  The pressure gradient is nestly zero, being affected only by a buoyant lerm
which does not contribule to acceleration in ' direction.
ap'

—— = f.c,p’ - p'(x',i').
¢y

We can say that pressure is constant in the dircction normal to the boundary layer
and may be assumed equal to that at the outer edge of the boundary layer where it is
determined by the cuter flow (potential Now).

We may Lherefore write,
1 ap du, 17y
Sl z

ar % ax

! !

P

We can now neglect some terms whose contribution is very small.

In our analysis of the boundary luyer equations the [ollowing assumptions are
Llaken inle accounts,

)] Reynolds number is very large.
(i)  Eckert number is very small {small velocity, large temperature difference).

(iii)  Fluid properties are constant except in the denstty variations in the body bree
term { Boussinesq approximation’.
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Reverting to the dimensional system, we have the lollowing governing boundary
layer equations perlinent (0 our problem viz, the unsteady mined convection boundary
layer equations over a vertical perous fla plate.

! ! 2.24
w (229
ax’ o ay
: ) f 2 (2.25)
diig
Rl N Oy L T T
iH ix iy ; ay
o (2T, 9T AT v atT (2.20)
Peol ar ax' v’ | Progy'?
The boundary conditions are
i mi), v v (2,0, T =T, aty =0 (2.27}
w=u,, T'=Te at p' —>ex.

Thus the boundary layer equations provide a sigmilicant simplification to the
parent Maiver-Stokes equations, in lwo ways: by allowing mvicid solutions to be used
outside the boundary layer and by changing cquations from clliplic lo parabolic inside the
boundary laver.

Limitations of ihe boundary layer equations are

i) Reynolds number must be large , Re > 1000,

. . a ' .
(ii)  If the outer [low is decelerating (-_ji% < D,%F—J > (}a point may be rcached
130 8 X

where wall shear stress approaches zero, the separation point,

(i) If He »10°, then the laminar solutions become unstable and the transition to
wibulent occurs.
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Chapter Three

Transformations leading to similarity solutions

Dimensional analysis of the governing equations

In order to have the nondimensional 1orm of the governing cqualions, we use the
followinp substitutions:

¢ ¢ r 1
il T v
Hym——, H=—, V¥ —Re?
U & &
. .. . .. . UL .
where Lis the characleristic length, I/ is the characteristic velocity, Re = — 1§ the

v
Reynclds number.

The nondimensional forms of the equations (2.24)- (2.26) are

gu v

—+—=l
v
ATL = @ d 2
%-—gxﬁz &+ u€+uf “e (97U
Dt U it o gp®
Do a 3 326
—+8 | —(InAFy+u—{nAT) | =Pr "—,
Dt Bt ax ay?

The associated boundary conditions are transformed 10

Um0, vy, {r),0=1aty=0
u=u,, =0 at y—=oo,

In the case of mixed convection, Muid motion solely depends on temperature
difference. Simon Ostrach {1953) deline a maximum vclocity Uf; generated by the
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buovancy effecls for nudimensionalivation within the boundary layer in terms of
(T =T!) as

ol
U m-g fATL
where 1. is the characteristics lengih.
Thus the sbove equations are simplified to the [ollowing forms

du v

‘—+‘—=ﬂ
dx  dy
U2 42
&': fﬂ+ﬂui.+ueﬂue+du
Dt oyt ot ax  dy
. 2
D8 ol 2 Aty rulinary] =prt 28
Dt it ix a2

The associated boundary conditions are transformed to

usl, v=v (xf),0=1lary=0
=g, =0 at y—oo,

The above set of partial differential equations are simultanecus nonlinear
cgquations and to cbtain their solution is extremely difficult. Hence we now proceed to
reduce the equations into a pair of ordinary differential equations using one parameter
continuous group transformation followed by Morgan (1952).
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3.1CASE-1

Unsteady mixed convection with surface temperature varying
inversely as a linear combination of xand :, the free stream velocity is
constant and the suction velocity varying inverscly as a sqoare root of
the linear combination of r and ;.

Stream luoction formulation:

An alternative form of the Prandtl boundary layer equations is derived by
representing the velocity ficld in terms of a scalar field 3, called stream {unclion. The
existence of this funclion is a mere consequence of the incompressibility of the fluid in
two dimensional flows. Any solenoidal velocity ficld in two dimensions can be expressed

s M= i—w L V= Hz—w. For peneral unsteady problems ¢ =4 (x, y.1).
¥ x

The boundary layer equations with the introduction of conlinuity equation are:

b = 3% L a2y _a_wazw _Uf, g_dle _ Bity oy 0 {3.1.1)
Y ayde  dy axdy o a? Ul gt T oar gyl
2 (3.1.2)
c}
¢, AL L) KA i[inﬂ‘hﬂi(mﬂ} 8y
A¢ Ay dx  ax oy it ty dx ay* -
The boundary conditions ure
313
ﬂ-ﬂ,—ﬂ-v“,,ﬂ=l,aly=ﬂ ( )
iy x
i

— —n, =0 aty—m,
ay e, ¥

Finding the similarity solutions ol the equations {3.1.1) and (3.1.2) ,are equivalent
to determe the invariant solutions of thesc cqualions under a particular conlinuons one
paramcter group.

One of the simplest methods is 10 search for a (ransformation group from Lhe
elementary set of one parameter transformation, defined by the following group {(G1)
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*
1 =g .. = conslant

i ()

(3.L.4)

Here a(= (})is the parameter of the group and «'s are the arbitrary resl numbers
whose interrelationship will be determine by the subsequent analysis,

We now investigate ihe relationship between the exponcents a's such that

a3w*‘|
HJ?*SJ

E ] H [ ] [ ] [ ]
e‘:j A N A

dy

3

{
d
=Hj[x,}',f,u?v’...’%;{3}¢j (_x,}.";’u,v’...,_?.}_

\ ay"

(3.1.5)

|

for this is the requirenent that the differential loims ¢ ¢, be conformally invariant under

lhe transformation proup (3.1.4).

Substituting the ransformations (3.1.4.) in cquations (3.1.1) and (3.1.2}, we have

4 azw* awt azw1 _awt BEUJ‘HUF?Z ﬂ*_au;_ .au;_ﬂ31p'
Cowtat eyt gyt axt et U ar* % axt oy
) 2 o 42

LJBTAy 3%y | logmanlm dy oy | 2ay-ay—la 3y 9%y

dydt oy dxdy ox ayz

2 - - 3 !

a, U a 9 @ d t,-3a, 4
-q 4 —’:H—a 12 e 4a Lu, Je 43772 —Tg 2(3.1.6)
U at dx 8
¥
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and

] » ¥ x L] 2 M
dy 4 * N 1 a4@
i, =aﬁ* + TF* H* Hﬂw* aﬂ* +6" i(ln&l‘*]-rfw—i{ InAT™ )| ——
at dy ok dr oy a* ay* ax’ Pr 3 w2
id
- Oy —th — &, —C —a -t
= al-aEH: 370% ﬂ'_‘.“ﬂ_a 371 2i':"'—]'uﬁmg IEE—{IHM‘}
dt dy &r dx dy ot
o=~ ; —2er 2
wa TN g 0 Ay T 3.L7)
ty ox ayz

Equating the various exponents of @ in equations (3.1.0) and (3.1.7) leads to the
following equations

aa—ﬂl-ﬂz -mj—zaz_al=_(z1=a3_3ﬂ2=a4 (3].8)
..C[l -ﬂf} "'a-z —al =_2H2'

Solving equations (3.1.8}, we have the following relationship between ihe
cXponents.

@ =2y dy=dy; dy =2, = = ;a4 (= 0} is atbitrary.

It fotlows that @ and g, is conformally invariant under the following
lransformation group,

L

I

W' =a 2y =By . (3.1.9)
'l
* 4 -
UP =a 2UF =B}
94
© Gy . -
AT =g “AF=0°AT
6" =6

- L
U, =u, =consant.




3

Here @ ¢ =B.

We shall now show that ¢, ¢, can be expressed in terms of new independent

variable n  (similarity variable) , F,G .U ; and their derivatives with respect to 1.
The solulion of the new system will be a particular set of invariant solutions of the
original system in lerms of x, y,u,v, etc. The variable i1 is to be an absolute invariant of
the subgroup of the transformation of the independent variables.

In other words, n is lo be a function such that
FCHS NIRRT ESR)

x*zﬂzx
where y =By (3.1.10)
t*

=02

The way of seeking absclule invariant is not well-delined.  From (he boundary
layer conceptions, it would be a good guess to assume that i3 might be written in terms

of powers of xand £ .
¥ariable Transformation
Independent variable iransformation

Assume that

1= y{ax+b)F (3.1.11}
is an absolute invariant of the group (G1)

Now, restriction might be placed on p, in order that 1y would be invariant under
(3.1.9).

So we must have nn* = y*(ax" +bs™)’" -p"2P

For absolute invariantpul 1+2p=10
1

so that 7 = y{ax+bf) 2 is an absolute invarianl,

1t doesn’t mean that 1 is the only absolute invarnant.
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Dependent variable transformation

We now express all dependent varables in terms ol 7, Since there are five
dependent variables, we seck five [unctions g, (i =1,23,45)  which are absolutely
invariant under (3.1.4}.

Of the counuess possible forms which cxist, we sclect

g =!,If{a:c+h.f)q
gzsﬂ'{;{ﬁ'}
gy =4, =t | (3.1.12)

g, =T (ax+bey

2 L)
g_ﬁ -UF(I'JI-FEJ-E:I .‘

Une dependent variable has becn assigned for cach function. The selection of the
power forms i5 in keeping the power form of the transfermations (3.1.9).

Employing expression (3.1.9) in g, gives

g’ -w{ax+bt)q=3-1-lq¢~[ax“ +bt;f
g, =" =6

% e * (3.1.13)
g, =AT{ox+bt) -5~ % ﬂT*(ax* +br*T

o2 . 2-2s *2( * *)"
g UF[ax+b:}’ B ULtlax® + ke

For constant conformally invariant, we must have

—1-2g=10
2-2rmi) (3.1.14)
2=25=10)

33



The invariant solutions of the equations (3.1.1) and {3.1.2) can nowbe expressed
in terms of 57 and the functions F,Gand 7.

1
g o=t {ax+br) 2
_ 1
ﬂ:-[ax+bt}2 Fi)
& =Gim
wo=Hy {(3.1.15)
-1
AT =(ax+ bty ily)
-1
2 2
UF={ax+brj Uf[r;)_
Inn view of (3.1.1} and (3.1.2), one oMains
ua ¥ o ¥ -—lm;[ax+b:]"F
gy 1 dxdy p m
2z
a—qf& = —lbr; [ax + bt)'l F
Yo 2 i
2
Iy --lﬂn(ﬁ.l:-i-bf]_]}f‘
dxdy 2 7
gy 4 1 -
ik d v =——a:]'(a1+ba‘)1FF
dy dxdy 2 ton
Ly 1t:tJ'-‘—la'.'jF (ax+br]'l {3.1.5)
ax |2 2 'y 2 o

H
2y 0y -[laFF Lanrr ](ax+br}"
n

dxay* |2 m 2

3 3 8 2 i}
fe _0,2% 0, u, e 0 and LY c(axa b} F
dx g x a}-3 nyy
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Also we have,

8 =Gy

ﬂﬂ afl _l azﬂ

= ,m{a ,r+br)'],
o 1 -1
. - —Em;.'f}”[a .r+b.r)

il‘JI-JI—-EII—{E\‘—-—ii-m]u:?r F {ux+br}'l
gy dx 2 o

9998 11 re LlauF G faxsbsy!
de gy |20 0% 2 " mon

aw d .
ﬂ} {1 nAl) = [—aﬁq—ﬂr}ﬁ? ”][ﬂx+br)

d - -
HE(IHM)F[ bix Mnj”](a.r+b:]

Substituting the abeve valucs in to the equations {3.1.1) and (3.1.2) we have

(3.1.16)

_ b1 3.1.17
Prl6  +{2np+=aF |G +(b+aF ](}'+— WE 1, G+inf ¢ . U
o127 2 # 21 2f 7

The boundary cenditions becomes

Fp(0) =0, F(0)= F, (@) =0, GU)=1at 5 = ul
(3.1.18)

Fr; {m}_- L Gz =0 ar -,
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Here the'addilional parameter is given in the boundary condition as F(0) = £,

related to the suction v_.
1 _1 . g . .
Here—v,, =E{a.r + br) 2 F(0), v =0 signifies suction; v, = Q injection.

Il the funetion [ =conslant, we have form (3.1.16-17)
(r (3.1.1%)
a. b f
F +1=F+-_n|F +—=0G=1
) (2 2 ) W2
{3.1.20)

rrla +(EW+EF)G +(L‘r+aF )t‘]‘-—ﬂ
V2 2 e 7

It should be noted that the similarity solutions is only valid when {(ax + bt} is
positive.

A minor change in the constanls, the cquations (3.1.19)-{3.1.20) reduces lo that of
Lakerullah (1976). The minor changes are

a=2f, b=2
Following the above changes, we have from (3.1.19)—(3.1.20}

2
U
F_ +lg+pFF_ + L -0 (3.1.21)
i w2
[

» (3.122)
Pole [;-;.-+,GF]G” s 2(1+ ﬁF”)G _

The boundary conditions are

F,(0)=0, F(O)=F,(0)=0, G{0)=1ar 3 =0 s
f;]{m}-l, Gloy=0  at 1p—>m, (5.1.23)

75
The conlrolling parameters are /3, Pr,—‘; and the additional parameter F,, = F(1)

¢
related w the suction parameter v when # = Ofor the cquation (3,1.5}.

The variations of AT,u, and suction v, are proportional to (Sx+¢)” l,uu and

1
{Bx +£)z respectively.
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3.2 CASE-2

Unsleady mixed convection with surface temperature, free stream
velocity and suction velocity varying directly with any power of linear

function of x.

For this case consider the group ((G)) is given by the following set of

trangformations:

et
v=a ' 0

F

x
*2 8 2
U e} UF

, (3.2.1)

where a (= () is the parameter and ex's are arbitrary real numbers whose interrelationship

will be determine by the subsequent analysis. The functionally independent set of
absohute invariants of the group (3.2.1) play a central role in the Group Theory.

Substituting {3.2.1} in equations (3.1.1-2), like the previous case, we have, (or
constant conformally invariant, the following algebraic equalions

o, - —33=2ﬂ4—2ﬂ2—

4 2

ﬂ!?,-ﬂ

g =d,+4d_ =

8 T b 3

=, -0 W, =30

&8 1 4 2

O -0 - = Q= Oy = -24,. (3.2.2)

7 1 2

3 7

Without loss of generality, we may put ar, =0}, a, = .

Solving equations (3.2.2), we have the [ollowing relationship between the

exponents.

a4 &
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a
where 1 =—=2 is an arbitrary conslanl.
a
1

11 follows that ¢,,¢, are conformally invariant under the following transformation
group

F=RBx

(3.2.3)

Yariable Transformation

Independcent variable iransformation

We now reduce number of independent vadables, like the previous case, from
three to two variables 7, andn,. Assume that 3,5, might be written in terms of

powers of x,y and x,7 .Considering x as the common variable for both 1, and #.,.

Let 5, =yxfand p, =tx® arctwo similarity variables.

Now, restrictions might be placed on s, s° inorder that 5,17, would be invariant under
r il

S-IIS

3.2.3) we must obtain ¥*x*¥ = yx¥ and ("1
( ¥

50 that absolute invariant is satisfied, Hence we obtain the relalion between the exponents
with arbilrary .

ns=-nand ' =-2n
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mo=yx"and g, = xR

it doesn’t mean that r,,n, are the only two absolute invariants.

We now express all dependent variables in terms of r, and 77, .Since there are five
dependent variables, we seek five functions g, (F=123,45)  which are absolule
invariant vnder (3.2.1).

Dependent variable transformation

Of the countless existing possible forms, we sclect
gy =% xb, En =!?xc, £y =t x.:.’

g4=ﬂ.TxE VB =U% .xf,
Employing cxpression (3.2.1) 1n g, gives
31 _ Hm”_lip'r* _ip ,rh

For constant conformally invariant, we must have
b+n-1=0)

1-n

Sy =y x T =G, ){saYy)

1-n _,
Wex o Flya,).

The dependent variables transformations are

y-x " Fimy.ny)

1-2n
¥ =X H
e {1111 }

IIE
_ el-dn

AT =X f(:-;rl,uz:l ! (3.2.4)
2 L-dn gr2

vy - xR vl )

8 = GGy, )

Since u,is the nondimensional cxternal forcing velocity, we are allowed to
replace 1- 2n bym, thus all the dependent variables becomes
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| +

2
W=x Fn,n,)

n
u, =X A1,

AT = x2m -1 o) (3.2.5)
2 _ .m-1,.2
UF =X E—"I{qlsnz}

& - Glny)

In view of (3.1.1) and (3.1.2), cne obtairs

m-1
Fol 2Nk, +(m-Dny F
. +( - ]m 1y + =Dy ,}2]
2
W oy _ am-1f{mil i NPT g
ox ay? 7 )" P +(T]”1" m Py + D2 Py

2

2 =
v U at 1,

g -l i =1
— = H o+ H m-—1in H
=X s (2 g, (=,

dU, L1

- 2, (@1 -
e - [nrﬂ' +( - )quH”l +(m—Dn_# H”J
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2
d Sy _
and ' =.r2m 1F

ay’ MUY
Apain, {} = G(rh,r,al}
=1
£=I 2 . ,E=xm-1(}',}
a5y L' ot 2

61{) dad -1 m—1
Y 9° G, F, +(m-1h,G, F
ay o K 2 J”l ny Fy n=naGy, J11]

diyp o m=1[f m+1 =1
——= —|G,,. F F G -ln,F. G
dxay ! [( 2 ] | +( 2 ]IF]‘ +{m )r}z n2 ”1]

GyaninaT)=s [[ 27 ] gy Fopy +0m=thmaly, By 5 +(2""1)

6 nany ="l Lg
Y My I
Substituting the abeove values into the equations {3.1.1-2), we have aller some
algebraic mampulations.

F +(m+1]FF +(m-1 [ -FF ]-sz _F G
i 2 mh ny N A oW
u2
f 2 (m-1
+ ==+ mf 2 ulHH +{m ]}:q HH +fH =0 {3.2.6)
v? K o
and

m+ly . : _f
KT]ﬁ Gp, "(”"1}”2(6?121?31 9 ) ~{(2m~ 1)&1,}1 -an‘
e T P WX 5

1lim=-1
— Ci F o +im-111 F G=-GF
[( ]nl p, * IR Ty a1

Ty 2 1 2 M "y
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The boundary conditions becomes

- - 1 3.2.8
F;jl({}, ny)=0,0(0,1,) =1 (3.2.8)
el .
. nx 2 [P . F -
ww{x,.r} x 5 F (u,qzj +(m 1):32.’; ) {1}, a;l} atry, =0

W

Fnl(m,nz] - H, G(‘”sﬂz} =1 a s

It is interesting (o nate several features of equations (3.2.6-7). If the analyses are
to be stopped at this stage and assume that H = constan, 7 = constant and one of the

similarity variables {say) n, = 0, equations (3.2.6-7) becomes

2
12
Foo+™Ner  mu?-r2 i Lo (3.2.9)
A 2 i ] u?
m+1
G +Prl — [F G, =(2m-DGE_ |0 3.2.10
i [( 2 ] ! (@m=1) "?1] ( )
The boundary conditions are
F_(0y=0, GOy =1
"
m—1 ]
- - 2 (Bt F -
vw[x,.r} x ( > )T({}} an;l—ﬂ , (32.11)
F (o) m I, G(m}nﬂ at o, =,
n, I
=1
Hence x,,ATand v, variations are x™, x**L and x 2 respectively.

For constant suction m=1.

42



Comparison with the published results

With fellowing minor change of stream functions and similarity variables

Fng = ﬂ%ﬂ Fn). 6(,) =0(y), n =, 1m and H -2.

We have from (3.2.9-10)

2m Uy
F__+FF +—[]~F 2]+—f

7 =1 (3.2.12)
iy M om+l ™

e

-2
E?W +P1'IF ﬂ?.! —( ] -

i F ]-ﬂ ] (3213
14+ m

Let Zm
m+1

with the boundary condilions.

= 1, and without loss of penerality put & = i, to have the compabality

Equations (3.2.12-13) becomes

2 2
F +FF_ +,5(1-F;} )+RFH-I[} (3.2.14)

60+ Pr|F 6, ~(38-200 £, |-0. (3.2.15)

The boundary condilions are

F,(0)=0, F(0)=F,, (0} =0, GU)=1at =0
} (3.2.16)

F#)el G=) =0 at e

2
L
The controlling parameters are f ,Pr,Rf? - —J; and the parameter F,, = F({()
i

c
related to the sucticn parameter v, respectively.

These are purely steady case derived form unsteady mixed conveclion boundary
layer equations,
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A [low separation may occur when forced and free convection act in opposite
directions. If the buoyancy force has a positive component in the direction of free stream,
then the fow is said to be aiding Now, opposing Now 15 just reverse. For small values of
UZ
—‘Z forced convection will be predominant and for large value free convection will

]
£

control The equations {3.2.14-15) are identical with the equations derived by Zakerullah
(1976).

The equations (3.2.9-10) are with the eqoations of Zubair (1990) if we

2
eplace H = v ,—’; =] and m= -l—and the transformed cquations are

g 2

F +orr lp 29,12, (3.2.17
w4 2w 2
3

f +Pr—F@ =0. {3.2.18)
G 4 1

The boundary conditions arc

Fp(0)=0, F(0)=F,(0)=0, 8(0)=lat n=0
1 (3.2.19)

Fx)=x%v, 8(=)=0 at n-rm,

Eguations (3.2.9-10) are identical with the Sparrow, Eichorn and Gregg (1959)
following a minor change. Minor changes are

Fln)=2F(n) H =4,G=b andU/? =160 2

f f
and the transformed equations are
v
F_ +(m+DFF_ -2mF .81 gigm-u (3.2.20)
0 mm ] e
G, * Prm+DF Gpy —(4m-2)G I, |-o0. {3.2.21)

The boundatry condilions are

F,(0)=0, F(0)=F,(0)=0, G(0)=1at 5 =0

E(®)=1,G(5)=0 & p—o (3.2.22)

Here the additional parameter is given in the boundary conditicn as F{0) = F
related to the suction v,

44



Results and Discussion

The quanlities of physical inlerest are Jocal skin {riction and hea wransler factors.
We know local heat itansfer g° per unit area from the plate 1o the Quid may be
calculated by Fourier’s law, i.e.,
T r

r r a
g =-k (a—y.)y;g

1t is convenient to express heal transfer results in lerms of heal wamsfer
coefficients and Nusselt number according to the following definition

hi:.-.rq aprd T Nu-h .rL:g'(ﬂ) -
7, -1
MNu ,
== -6'(0).
Re?

For wall shear siress

r

' AU
T, =i (—) .

Delining skin frichion coellicient
2T,

C .
vor2
T

and nondimensional skin [riction cocfficient
1

¢ Re? = Fyu(0)

45



3.3 CASE-3

Unsteady mixed convection with surface femperature varying
directly with linear function of x inversely with square of the linear
function of ¢, the free stream velocity varying with linear function of x
inversely with linear function of :, and the suction velocity varying
inversely as a square root of the linear function of :.

It is clear from equation (3.2.6) and (3.2.7) that, they are still partial differential
equations with two independent variables 13, and#,. To reduce them inlo single one, we
define ihe lollowing one parameier continuous transformation group (G2) as

(3.3.1)

Here bB(maw0) is a paramcter of lhe group and f#'s are real numbers,

determined by previously indicaied manncr. Substituling {3.3.1) into {3.2.7-8) we have,
like previous case, the following algebraic cxpressions

ﬁ3'2ﬁ1'ﬁ4+ﬁ3'ﬁ1=ﬁ4 “ﬁg

ﬁ3_3ﬁ1=2ﬁ3_2ﬁ1‘ﬁ3_ﬁ1"ﬁ2 '.ﬁ4 +Jﬂ'j.r ‘zﬁs -.ISS 'ﬁg}

Solving equalions (3.3.2), we have the following relationship between the

exponents.
Br, B,
Pi P

Bs
i

=2,

£

—8 .28, =0.

2

Without loss of generality, we may put 8, =0.0, =8 -
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Proceeding exaclly as before, we can find the follbowing invariant transformations,

I

F(’Tlsflz)=ﬂ2_% f(ﬁ')
I(’Tl:’?z) - F{’?)

Glnyny ) .!3(*-'3)
U_f (ﬂ'pﬂg)' ny U?‘ ()

H(”Jpﬂz)’ﬂg_l i [TJ]

In view of equations (3.2.7-8), we have,

1
F(’?lsf‘}'z)' ’?2_2 f{ﬂ)

aF a%F 3 f
an, P2ty n? T2 2 iy
33 F =
‘31?13 : )
HEF ) ; s
i 2 [ o2t
aF 1 -2 s
— e +1
o, 2732 [i! : # |
Again,
1
[731:?]'2) g(ﬁ') "”-'?2 Egn
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3
-1 f =3 oif -2 n
Hlg. .n, )= =1~k and ———=- h+=h |.
ta.my )=, £l) Ty 2 Byl =g Sk

Using the transformalions (3.3.3) and then pulting 7 = H =1, we have from

(3.2.7-8)

2

Ny p 2,00,
fnnn""[ﬁz]fw =5 wh ’ 334
and
7
B * Pr[(f " E]gn + (2- f, H -0 (3.3.5)

The boundary conditions becomes

f(oy- fw,fn(ﬂ] =0,g0h =1

(3.3.6)
£ el g (@) =0,

- . 1 .
The varialions of AT, #, and v are proportional o iz,f and Trespectwel}r.
t t !
ot
The conlrolling paramelers are Pr’_},— and f = f(D)related o the suction
L

parameter vy,
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3.4 CASE-4(PURELY UNSTEADY CASE)

Unsteady mixed convection with surface temperature and free
stream velocity varying any power of linear function of ¢+ and the suct-
ion velocity varying inversely as a square root of the linear function of .

In this cese in order to seek the invariant solution to the set of goveming equalt-
ions we set the following transformation group(Gl)

(3.4.1)

[}
0¥ <a 70

2 Hg 2
UF =q UF‘

Here a(= 0)is the parameter of the group and a's are the arbitrary real numbers
whose interrelationship will be determined by the subsequent analysis.

For conslant conformally invariant we must have,

rx4—az-c13 ==2a'4—232 —al-ag+a?=rxﬁ—a3-2aﬁ—a1-a4—3a

(3.4.2)
Uy —Q, =0y +0y —A ~ Ay =Ay ~ Ay = Uy —Zuz,

Solving equations (3.4.2) we have the folbwing relationship between the
exponents

03-232, A, =a) —d,, a8+a7-al-4a1, Ag = A —dq

o
Lct—1=-n and & =[] and (s = 0ty

o

3
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g, 1 @ 1 o a o
2 7 4-::-—, —ﬁ-n-l, 8 opo2a2
e 5} 2 oy e s

It follows that ¢,,¢, are conformally invariant under the following transformation
group.

t* =B ¢ ]
Py "
1
y*=B2y
y" = H”_Ew (3.4.3)
0" -
AT* =07~ A7
Ut B2yl
u*=ptly

x
Here B=g -+,

VYariable Transformation
Independent variable Transformation

Lat ﬁlz}rr‘g and 7, =xe¥

For absolule invariant, we have the following relationship between the exponents
with arbitrary n :

sm-——and ' =-n.
2
1

ST =yt 2 und 7 =x¢" are two invarianis(out of many possibilities).
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We now express all dependent variabiles in

terms ol #7, und 1, Since there are five

dependent variables, we seek five functions g, ({ =1,2,3,4,5) which are absolutely

invariant under (3.4.3).

Dependent variable Transformation

Of the countless possible existing forms, we select

gt
g2=ﬂfc
g3=uctd i
g4u&Ta“’-

ef

2
Employing expression (3.4.3) in g, gives

g =yl A

(3.4.4)

For constant conformally invarianl, we must have

—tr—p ——
2

1

i

3
Y=t I'{nl,nzl

Therefore, we have the following transformations for dependent variables.

1

T

_f 2p
w=r = Fia)
8 = Gny 1)
n-1
#, 1 H{‘ijl,ﬂ,z}

n-2
AT =1 1(t: 1)

2_n-2 26 )
UF | U_il" }1,1]2

let n=1=m.

3l

(3.4.5)




Using the transformations given by (3.4 .4), we Imvc irom the cquations (3.1.1)
and {3.1.2}.

2
I
F +(1 1’}') [{m+1}r‘12—1]F —m] +—'£G
mapy 4271 Ty o (3.4.6)
1
+mE +Eanq1 + [{m +1]|r;2 —]L]H”2 =
and
G +Pri{m+lm,-F, |G il ¥l
-F +|—+F
Irrlnl [ 2 7?1] |20 H |
1
+— 4,4 ! -1 |G -{m-0LG=0 3.47
w[ﬂlnl+{M+)ﬂ2n2 nJ (m-1) 347

If analysis is slopped here, we will sce some interesting aspect. Putting H =1
I =1, 71=nand n, =0 wc have

S T Uz
F o+—nF -mF +——G+m=0 (3.4.8)
M 20 im o2
and
-1 1
Pr Gr_;r_: +ET} G” +{l-mG=0. {3.4.9)

T'he boundary conditions becomes

Fy(0)=0, F{0)=F,,(0)=0, G{0)=lat p=0

F’? (m} =1, G{W) = i} [Fr A s [34 1[']

Here u,,AT andv,, variations are ¢/ 17~ land 0 respectively.
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3.5 CASE-3

Unsteady mixed conveclion with surface temperature and free
stream velocity varying with an exponential function of function of ¢
and the suction velocity is zero,

In this case in order 1o seek Lhe invarianl solution of the set of governingequa-
tiens (3.1.1)-(3.1.2) we sct the following spiral group (G1)
N 5
Fo=t4 (Ilﬂ'
X

o a | (3.5.1)

Here a{= 0}is the parameter of the group and «z's are the arbitrary real numbers.
For constant conformally invariant of the equations {3.1.1+(3.1.2), we must have,

ad—aa =2::4~a2—2a3=a3+a? =(Iﬁ =2&6—¢12=a4 ~3a2 552)
a? =a, +a7'a3 -a,=a, -2{12

Without loss of generality we may put ay =0and a; = ag.

Solving equations (3.5.2}, we have the following relationship berween the
£XpONENts.

“2'“4 =&, = =0y and a3=ﬂ.
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By direct subslitution, we can show that ¢, ,¢, are conformally invariant under
the spiral group transformation (3.5.1).

¥ariable Transformation

Independent variable Transformation

-mt

Let py=yand n,=xe (m= —2] are two invariands similarity variables

€
1
(out of many pessibilities).

Dependent variable Transformation

Like previously indicated manner wc have the following dependent variable
transformations.

=" Fin )
a -G{r}l,nz}

mi
=€ Houn) o (3.5.3}

m/t
AT =e Im,n}

2 miro.2

Using (3.5.3) and considering H = constant, [ =constant and 7, =0, we have
from (3.2.1) and (3.2.2}.

2
o=
F +m{H -F ]+iG={] (3.54)
and
G -m =0, (3.5.5)
i

The boundary conditions are

FO)=0, F, @) =0,6(0)=1
. (3.5.6)
F_(0)=1,G{x) =0,

™
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These equations are idenlical with the case C (1), derived by Zakerullah (1976)
ifweput m=1, andH =1.
ir 2z
The controlling parameters are Pr, s and —12 respeclively.
U
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3.6 Case-6
Unsteady mixed convection with surface temperature, free stream

velocity, and suction velocity varying with an exponential function of
function of x .

In this case in order to seek the invariant solution to the set of governing equalio-
ns {3.1.1-2) we set the following spiral group ({¥1)

W
Az =I+|‘Ilﬂ

y
_ p (3.6.1)

«2 agﬂ 2
UF =¢ UF

Here a{= 0}is the parameter of the groop and a's are the arbitrary real numbers.

For conslant conformally invariant of the equation (3.1.1) and (3.1.2) we must
have,

-:14—112 —r:r3 -2{14 —iaz-aﬂ+cz? =0 —ay -Zaﬁ-a4 -3&2

g =&y =i, +a, -, =, —2a,

} (3.6.2)

Without loss of generality, put @ = (and a5 = ag .

Solving (3.6.2) we have the fellewing relations among the exponents.

;= 2“2:34 ==y, Xy = _zazg g = —4&12 .
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By direct substitution we can show that ¢, ,¢, arc conformally invariant under the
spiral group transformation (3.6.1).

Variable Transformation

Independent variable Transformation

_ -7 o ) . e s
Let M =ye T and n,=te mx (m =—2] are two invariants similarity
£
]

variables. (out of many possibilities).

Dependent variable Transformation

In a similar manner applied as before, the following absolute invariants involving
dependent variables are found.

e TRy
8 =Gn.n,)

-2mx
e

IIE

#, - ULy

L

(3.63)

-dmux
AT = e 1{111,112}|

7 -dmx .2
UF € UF{I;I,I;E}

Using the transformations given by {3.6 .3) we have from the equations (3.2.1)
and (3.2.2).

F F ImF 2

F -mFF +2m -F F -r
K "2 n 2 T, ’?1’?1] 7y * ™

T mm

2

U

+£G v H  -2mH%-mnHH -2mn HH =0 (3.6.4)
e o 1 U 2 1,

Pl -mFG +4mF_ G +2mn
™ ™ £ 2

Fﬁr GT? _Fq & ]—G
1 a2 2 N 2 (3.6.5)

1
+y mﬁlfr] Fn =1,

, G+2mr;r21 F G—I,ZG

1 T N
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The comesponding boundary conditions are

1

Fﬂ (I],nz} =0, V=€ mx[_ m F(ﬂ,nz] - Emnzﬁ;?z ({J,nz)} .G(ﬂ,nz)- i
Fnl(m,ﬂz)- H,G({m,n2]= {J.

(3.6.6)

It is interesting to note several teatures of the equalions (3.6.4-5). If the analysis
stopped at Lhis stage and by taking A = constant=1, I =constant=1 and one of the
similarity variable (say) 7, =0 then we have,

2
Lr
F -mFF _ +2m F? -1+ =0 (3.6.7)
il  -mFG +4mF G-0. (3.6.8)
" h gl

The corresponding boundary conditions  are

F {0)=0, F(0)=F,,(0)=0, G(0)=1at =0
} (3.6.9)

F ()=} GE)=0  a g—o

1t is clear from equations (3.6.4) and (3.6.5) that, they are still partial differential
equations with two independent variables 7, andsn, . To reduce them into single one, we
define the [oliowing group (G2) as
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1;1* =bﬁ1 T 1
Ny = b2 3
F* =bﬂ3F
G* =bﬁ"' G (3.6.10)
H* =bﬁ5H
1" =1
i)
7 Tr:2

Here b(= a =0} is a parameter of the group and ﬁ‘s‘ure real numbers determined by

previously indicated manner. Substituting (3.6.9) inta (3.6.4-5} we have the following
algebraic expressions

(3.6.11)

By=3F =2P3-28 =By~ B -6, =By + By =285 =55 - I,
ﬂ4‘2ﬁ1=ﬁ4+ﬁ3_ﬁ1'ﬁ4_ﬁ2

Solving equations (3.6.11) we have, the [following relationship between the
exponents,

Jig) i g B 2
2oy R, S DLl 0. Set 8, =00, =8

Proceeding exactly as before, we assume the following transformatons {out of
many pessibiliies).

e

Vm

1
F(’-‘?;_:Hg)E'-'?g_z f(’?]

I(’?;{:”?g)' 3'-"2_2 I{H)
Glnn, )= gl)

Ulany)-n, Ut o)

Hipym, )=n, ™ 1ln)

b

(3.6.12)
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Using the transformations (3.6.12) and then put/ = 4 = |, we have form (3.6.4)
and (3.6.5)

n U?

+ L -l =g i) 3.6.13
ff.?"'.'l""i' 2 fﬂﬂ * f?? i e d ( )
and
pr! A lgag. 3.6.14

r E}m + 5 En + 28 =0 ( )

The boundary conditions becomes

fO=f F(0=0, gilh=1
. (3.6.15)
Fi=1, g(=)=0.
UZ
The controlling parameters are Pr ,—J; and f, = f(U)related Lo the suciion
iy

DATATNELET Vi,

These equations are special case of the equations of case-4 for m = -1.

The vanations of AT, #, and v, are proporticnal to L,l and 1 respectively.

(27t Vit
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3.7 ATABLE FOR SIMILARITY REQUIREMENTS

The nature of AT, u. and v, with the similarity variables for

which similarity solutions exist are shown in the following table.

CASE | AT i, V., Similarity
VARIATI- | VARIATI- | VARJAT]- | Yariables
ONS ONS ONS
n X+u )| U - 1
(ﬁ 0 )_ 0 (Br+uyt) 3 y(ﬁx+uur)2
02 IZM—I xm m—1 m-1
x 2 yx 2
0 x x 1 b2
£ : N i
04 i?i':vb—] U i ¥
N/
05 em.! em.! {) ¥
06 g--’imx E-me g ye-—mx
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Chapter Four

Results and Discussions

Numerical resuls {F,.,, (0), ~ 8, (0} based on equations (3.2.14) and (3.2.15) are
presented in Table-1 for £ =1,Pr = 0.71and R_;?} =1

Graphs of velocity and temperature profiles are displaved in figures 1, 2,3 and 4
respectively,

Graphs of effect of suction on skin trictien factor and heat iransfer  lactors are
shown in figure 5 and 6 respectively.
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Table-1 Numerical values of the skin-friction coefficient and heal transfer coefficient

for gifferent values of F,, while Pr=0.71 , #=1and R} =

1

2
Hp

FW R.l];] {m - H?] m]‘
-4 (.4921 (0.04049
-3 0.6380 00853
-2 0.8689 0.1903
-1 1.2195 0.4078
0 1.70358 {17669
1 23159 1.2542
2 3.0400 1.8243
3 3.8413 2.4443
4 4.6963 3.0910
5 5.5457 a7nl
10 10.3205 7.2137
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For Pr=0.71, F_ =1 and [=1

R
50
20

25

0.5

Fig.1 Effect of RZ on velocity profiles.
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ForPr=0.71,F,=1and p=1

Fig.2 Effect of RZ on temperaturc profiles,

05



1.25

2
F ForPr=071,R2=1.0 and f = 1.0

0.75

0.25

Fig.3 Effect of F, on vclocity profiles
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ForPr=071,R;=1.0and B=10

Fig.4 Effect of F, ontemperature profiles.
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10

Figure.5 Effect of F, on skin friction factor
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Figure.6 Effect of F,, on heat (ransler [actor
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Discussions

In the present investigation, one set of nonlinear ordinary differential equation
(3.2.14) and {3.2.15) is solved numericaliy by shooting mcthod. The caleulations are
carried out for several valucs of the parameter F, {F, =0 for suction and F,, <0 [or

2

- 2 _YF
injection) forPr = 0.71, Ry - —2=1 and g =l

M
e

Figure 1 represents velocity profiles to show the cfifcet of the parameler
2
U
RZ -—;‘"- for Pr=0.71, F, =1 (suction) and f=1. From the [igure it can be

M
e

concluded that velocity proliles increases as R;fi = Increases.

= o
KL = N, )

Figure 2 represenls lemperalure profiles to show the effect of the parameter
p
v
Rf.« - ~—g forPr =0.71, F, =1{suction) and 5 =1. From the [igure it can be concluded

u
4

|'::'.
o

that temperature prefiles decreases as Rﬁ = INCreases.

2

It
o

Figure 3 represents velocity profiles to show the eflfect of the parameter F,

forPr=0.71, Rﬁ_ =land £ = 1. From the figure it can be concluded that velocity profiles

decreascs as &, increases.

Figure 4 represents temperature proliles to show the effect of the parameter
F forPr = 0.71, Ri =1and g =1. Frem the figure it can be concluded that lemperature

profiles deerease as Fy, increases.

From figure 5 we observe that the skin friclion gradually increases with increasing
of Fy, .

Figure 6 shows that heat iransfer rate increases remarkably with increase ol F, .

i
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Chapter Five

Conclusion

The similarity solutions of unsteady mixed convection boundary layer equations
over a flat perous vertical plate has been investipated by rcpeated applicalions of the
method of one parameter contimwous Group Theory. By applying group theory we have
converled the governing partial differential equations into a pair of ordinary differential
eguations with appropriate boundary conditions. We have analyzed six possible cases for
which similarity solutions exist. Out of six cascs two cascs were derived by Zakerullah
(2({}1) without suction. It is found that our solutions arc consistent with some of Lhe
published results in the literature. One set of the coupled nonlinear equations are solved

numerically. This set is a purely steady one. Tn most practical purposes steady cases are
generally dealt with.

The heat {ransfer and skin frictton faciors {qh(ﬂ),rwm)}are displayed and shown
graphically for some values of the parameter £,.. 1t is shown that both the skin fnclion

and heat transfer coefficient increases with suction and the effect of injection is just
Feverse.

1t i5 desirable to solve certain classes of problem {but not all) by Group Theory
melhod. Each problem has is own special features. So it requires a thorough knowledge
of the happenings of the problem. The method of Group Theory may also be applied to
certain classes of the boundary value problems for which the governing parlial
differential equations are expressed in spherical or cylindrical coordinates.

If a number of dependent and independent variable are present in the problem,
first a group of independent similarity variables  +),375.44,--- are sought from the

original independent variables and are one less in number. They, are absolute invariant.
For each dependent variable, an absolute invariant £ is sought which involve the

dependent variable.
A pood choice is g; =x; hi(xl,xz,- --,xﬂj , where uiiﬂ the dependent variable.

The function g, is then equaled to a function

F{leﬂg v ":-Hm..]_] ’
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If g;=u; h: {xl,.rz,---,an then
_ Ffbj‘]’nzz?”',nm —-\JJ
'
hf lxl’IZ’ r:‘ch
is the dependent variable transformation. Substituting various transformations into the

original system of equations, the new system slands with number of independent variable
reduced by one.

Thus the reduclions of vanables in the problem carry more and more restrictions
lo develop various types of possible cases. It would be quite simple to investigate (hese
possibilities. Finally, we may reach 10 a position to give the analytical solution of the
problem under restricted conditions.
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