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ABSTRACT.

A numerical simulation of two-dimensional laminar steady-state natural convection in a

rectangular open cavity has been investigated. An adiabatic circular cylinder is placed at the

center of the cavity and the opposite wall to the aperture is heated by a constant heal flux. 'fhe

top and bOllomwall> are kept at the constant temperature, The fluid is concerned wilh Prnndtl

numbers 0.72, 1.0 and 7.0. The properties of the fluid were assumed to be constant"] he physical

problems are rcprcscmcd mathematically by different ,els of goveming equations along with the

corresponding boundary conditions. In this the,i" a finite element method for sleady-sMe

il1C<Jmpres<iblenatural convection tlows has been developed. The non-dimensional governing

equatio", are discreti7ed by using Ga1crkin weighted residual method of finite element

formulatiol1. The obtained results are presented in terms of streamline~ and isotherm" heat

transfer characteristics Nusseit numbers for Orashof numbers from 10' to 10' and for an

inclination angles of the cavity ranges for OO,15°,30"al1d45". The obtained results arc also

presented" ith the variation of diftcrcnt diameter ratio, of the cylil1der.The re,uits ,how that tile

Nusselt numbers increase with the increasing of Grashof numbers. Also the Nusselt number

chilllgessubstantially with the inclination angle of the ca, ity while better thelmal performilllce is

also scnsilivc to the boundary condition of the heated wall. Mesh ret,nement led to solutions for
Omshofnumber, from 10' to 10".
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Nomenclature
K gravitational accelcration (rns-')

Gr Grashofnumber

k thermal conductivity of the fluid (Wrn-'K-L)

L height and width of the enclosure (rn)

D DiamelCr of the cylinder

,Nu Nusscit number

p pressure (Nm-')

P non-dimensional pressure

Pr Prandtl number, "fa

q heat flux (Wm-')

dr Diameter ratio

T temperature (K)

u, v velocity components (m,-')

U, V non-dimen,ional veloe ity components

);.y Carte.,ian coordinates (m)

X, Y nOll-dimensional Cartesian coordinates

Greek symbol.I'

i.< themlaI diffu,ivity, (m'S-L)

P thermal expansioll eoeftlcient (K-1)

p density of thc fluid (kgm -')

D kinematic viscosity of the fluid (mls-I)

8 nOll--dimensional temperature

<1> inclination angle of the cavity

V11I
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INTRODUCTION

1.1 GENERAL

Heat transfer is that science which seeks to pr<::dictthe energy transfer which may take place

hetween malerial bodies as a result of a temperature difference. Thermodynamics teaches that

this energy transfer is defined as hea!. The science (If heal transfer seeks not merely to explain

how heat energy may be transferred, but also to predict the rate at which the exchange will take

place under certain specified condition"

The phenomenon of heal transfer was know]] to human being even in the primitive agc when

they used to use solar energy as a SOurC~of heat. Ileal transfer in its initial stage was conceived

with the invention of fire in the carly age of human civil intion. Since [hen its knowledge and usc

has bC\:J\ progressively increasing. each day as it is directly related to thc gmwlh of human

civilization. With thc invention of stream engine by James walt in 1765 A. D., the phcnomenon

of heat lransfer got its first industrial recognition and after lhal ils use ~"l~nded to a great extent

and spread oul in different spheres of ~ngineering fields. In the past three d~cades, digital

computers, numcrical techniques and development of numerical models of heat transfcr havc

madc it possible to calculate heat transfer of consid~rable complexity and thereby create a new

approach to the dcsign of heat transfer equipmcnt.

The study of the universe has led to the realization that all physic,'] phenomena are subject [0

natural laws. Thc lcnn nalural might well hc uscd to describe the framework or systcm of

fundamental and universal importance within this system is the m~hanisms for [he transfer of

heat. Hcattransfer i, a branch ofapplicd thermodynamics, It e~timates thc rate at which heal is

transferred across thc system boundaries subjected to specific temperature differenccs and the

tempcrature distrihution of thc syslcm ,luring the process, Whcreas classical thermodynamics

deals with the amount of heat transferred during the process, Heal transfer processes havc always

heen an integral part of our environment

The study oftemperaturc and heat transfer is of great importancc to the engineers because of its

almost univer,al occurrence in many branches of science and engineering. A Ithough heat transfer

finalysis is most important for the proper sizing oft'ucl clements in the nuclear reactors cores to

pre,ent burnout, the perfonnanee of "ircraft also depend, upon thc case wilh which the structure

and engines can b<;;cooled, The design of chemical plants is usually done on the hasis of ~,eat

lransfer analysis find the analogous mass lran,fer processes, The transt",r and conversion of



Chapter 1: Introduction

energy trom one form to another is the basi, 10all heat tran,fer process and hence, they are

govem~d by the first as well a, the >eeon,lla" of thermodynamics. Heat transfel' is commonly

associated with fluid dynamics. The knowledge of temperature distribution is e'>ential in heal

transfer studie, because of the fad lhat the heat flow takes plac~ only wherever there is a

temperature gradient in a system. TIle heal flux which i, defined as the amount of heat transfer

per unit area in per unit lime can be calculated from the ph},icallaws relating to the temperature

gradient and the heat flux.

1.2 HEAT TRANSFER MECHANISM

Heat is the form of energy that can be transferred from one system to anoth~r as a result of

lemperalur~ difference. A thermodynamic analysis i, concerned with the amount of heat tran~fer

as a system undergoes a proee~, from one equilibrium state to anoth~r. The science that deals

with the det~rminalion of the rates of such energy lransf~rs is the heat transfer. TIle transfer of

energy as heat is al"ays from Ille higher temperature medium to the lower temperalure one, and

heat transfer stops when the two mediums reach the same lemperature.

Heat can be transferred in three different mechanisms or modes: eondue\ion, wnvection and

radiation. AlI modes of heat transfer r~'1uirethe existence of a temperature difference, and all

modes are from the high temperature medium to a lower tempcrature one. In reality, the

combined effcet of these three modes of heat transfer control temperalure distribution in a

medium. A brief description of convection mode is given below.

1.3 CONVECTION

Convective heal transfer is the heat transfer mechanism aftceted by lh~ flow of fluids, 'Ihe

amount of energy and matter are conveyed by the fluid can be predicled through the conv"'"tive

heat transfer, The convective heat transfer bifurcates into two branches; the natural convection

and the forced convection, Foreed convection regards the heat transport by induced fluid motion

lhat is forced to happen, This induced flow needs consistent mechanical power, But natural

convection dilT~rs[rom the forced convection through the fluid flow driving force thm happens

naturally. The flows are driven by lhe bu[)yancyeffecl due to the presence of dellsity gradienl

and gravitational field. The density ditference gives rise to buoyancy effecls due to which the

flow is generated. lJuoyaney is due to lh~combined presence of the fluid density gradient lind the

body force. As the temperature distribution in tile natnral convection depends on the intensity of

the fluid eurrenls that is dependent on the temperature potential itself, the qualitative and

quantitative analy,is of natural convection heHttransfer i, ,el)' difficult. Numerical investigation

instead of theoretical analy,is is more needed in this Held, Two types ofnalural conveclion heat

lransfer phenomena can be obser\'cd il1the natu",. One is that extemai free convection that is

2



Chapter I: Introduction

caused by the heat transf~r im~raction between a single "all and a very large fluid reservoir

adjacenllO the wall, Another i, that internal frc~ ~"nv.ction which befalls within an cnclosur~.

The thermo-fluid fieids devcloped insid~ the ~avity depend on the orientation and geometry of

the cavity. Revicwing the nature and the practical applications. the enclosure phenomena can be

organized into two classes, One ofthe,e is enclosure heated frOlllthe sidc which is found in solar

collectOr>,double wall insuiations, laptop cooling system and air circulation insid~ the room and

another onc is enclo,ure heated from below which happens in geophysical systcm like ""tural

circulation in the atmosphere, the hydrosphere and the moltcn core of the earth.

Convective heat transfcr or, simply, comection is the study of hcat tmnsport processes affected

by thc flow of fluids. Convective heat transfer, clearly, i, a field at the interface bctween two

older fields-heat transfcr and fluid mechanics. Before revicwing the foundations of convoctive

heat transfer methodology, it is worth reexamining the hi,toric relationship between fluid

mech"nics and heat transfer at the inlerface. E'p~cially during the pa<t 100 years, heat transf~r

and fluid meehani~s have enjoyed a <ymhiotie relationship in their parallel development

Convection is that mode of hcat transfer where energy exchange occurs bcm'ccll tile particles by

convcction enrrent. It may be explained as; wIlen /luid flows ",er a solid body or inside a

ehanncl while temperatures of the fluid and the solid surface are different, heat tl'llnsferbetwcen

the fluid and the solid surface take, plnce a, a consequences of the motion of the fluid relative to

the surfaces; the mcchanism of heat tmn,fer called convection, In the diversit} of the studies

related to heat transfer, considerable effort has been directed at the convective mode, in which

the relative motion of thc fluid provi,le, an additional mechanism for thc transfer of heat and

material,. Convection is inevitably coupled with the condnctive mechanism, since though thc

fluid motion modifies the transpOT(process, the eventual transfer of heat from one nuid element

to another in its neighborhood is through conduction.

The convection mode of heat transfer is further divided into two basic processes, if the motion of

the fluid ari,es due to an external agent, such as thc e.~ternallyimposed flow offluid stream over

a heated object, the process is termed as forced convoction. The tluid flow may be the re,,,lts of,

for instance, a fan. a bloVver,the wind orthe motion offhe healed object itself. Such problems are

very frequently encountered in technology where heat transfer to, or from, a bod} is often due to

an imposed flow of a fluid at a temp.rature different from that of the body. It has wide

applications in compact heat exchangcr, central air conditioning system, cooling tower, gas

turbine blade, internal cooling passage, chemical engineering process industries, nuclear reactors

and rrntnyother cases. If, on the other hand, no such e:<.temallyinduced flow is provided and the

flow arises "naturally" simply due to the effect of a density diJl"crence, resulting from a

temperature difference, in a body force field, snch as gra~itational field, the process is lenncd as

n"!llral or free convoction. The density deference gives ri", [0 buoyancy effects due to which the

]
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Chapter 1: Introduction

flow is generated. A heated body cooiing in ambient air gcncrates ,uch a flow in the region

surrounding it. Similarly, the buoyant flow arising from hcat rejection to the atmosphcre fIfldto

other ambient media, Heat transfer by free convection OcCursin many enginccring application"

such as heat transfer from 110t radiators, refrigerator coils, tran,mission lines, electric
transformers, electric heating eiement, and electronic cquipment etc.

TIICconvection heat tran,fer that ISncither dominated by purc forecd nor pure free convection,

but is rathcr a combination of thc two is referred as combined or mixed convection. Thc

buoyancy forecs that arise as the results of tl1ctemperature differences and which Causethe fluid

flow in free convection also cxist "hen there is a forced /low, The effects of these buoyancy

forccs are however; usually negliglblc when there is a forced flow,]n some ca,es, however, thcsc

buoyancy forees do have a significant influence on the /lQWand consequently on the heat

transfer rate. In such cases, the flow about thc body is a combination of forced and free

convection; such /lows are referrcd to as mixed convection. For cxample, heat transfer from one

fluid to another fluid through the walis of pipe OcCUrsin many praeticai devices. In tl1iscase, heat

is transferred by convection from thc hotter /luid to the one .,urfacc of the pipe. Heat is then

transferred by conduction through the walls of the pipe. Finally, heat i, transferred by convection

from the other surface to the colder tluid,

1.4 SOME DEFINITIONS

Some basic dctinitions that are related to the current study are presented below.

1.4.1 THERMAL CONDUCTIVITY

Thermal conductivity of a material can be defined as the rate of heat trallsfcr through a unit

thickness of the material per nnit area per unit tempcrature difference, fherefore the tl1cnnal

conductivity of a material is a measurc of the ability of the material to conduct heat. A high value

for thcrm"l comiuctivity indicates that the material is a good heat conductor, and a low value for

thennal condnctivity indicates that the material is a poor heat conductor Or insniator. For

e"ample the materials such as copper and silver that arc good electric conductor, are al,o good

heat conductors, and have high values of thermal conductivity. Matcrials such as rubber, wood

are poor conductors of heat and have low conductivity ~alues. The rate of heat conduction

through a medium depends on the geometry orthe medium, its thickncss, and the material of the

medium, as well as the tempcrature difference across the medium, TIle proportionality constant k

is called thermal conductivity of the material.
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1.4.2 THERMAL DIFFUSIVITY

The time dependent heat eonduction equation for constant k cootains a qnantity CI., called the

thermal diffusivity, Thermal diffusivity represents how fast heat diffuses through a material and

js dcfined a,

Ka=--
pCp

Here the thermal conductivity K repre,ents how well a malerial condncts heat, and the heat

capacity pCp represents how mueh energy a material stores per unit volnme. Therefore, the

thermal diffusivity of a material ean be viewed as the ratio of the heat conducted through the

material to the heat stored per unit volume. A material thal ha, a high tbermal eonduetivity Or a

low heat capacity WIll obviously have a large thermal diflusivity. The larger thermal dift\lsivity

means that the propagation ofheal into the medium is faster. A small ,alue oftbermal ditfusivity

means the material mostly absOI'b, the hcat and a small amollnt ofheat is conducted further.

1.4.3 INTERNAL AND EXTERNAL FLOWS

A fluid flow is classified a., being internal or external, depending on whether thc fluid is forced to

flow in a eon fined channel Or over a surITtce. An internal tlow is bounded on all sides by solid

surfaces except, possibly, for an inlet and exit. Flows through a pipe Or in an air-conditioning

duct are the examples of Internal flnw. Internal flows arc dominated by the intluence of viscosity

throughout the flow field, 'J he internal flow conflguration represents a conven ient geomctry for

the heating and cooling of fluid, used in the chemical processing, en,ironmenlal control, and

energy conversion area,. The tlow of an unbounded tlllid over a Sllrface ;s extemal flow. The

flow, Over eUl'VedsUl'faces .,"eh as sphere, cylinder, airfoil, or turbine blade are the example of

external flow. In externaJ tlows lhe viscous effects are limited to boundary layer~ near solid

surfaces.

1.4.4 BOUNDARY LAYER

Since fluid motion is !he distinguishing featUl'e of heat eonveetion, it is necessary to understand

some of the principle, of fluid dynamics in order to describe adequately the processes of

convection. Wben a fluid flow, over a body, the velocity and temperature ,Iistribution at the

Immediate vicinity of the surface strongly intluence by the convective heat transfer, ln order to

simplify the analy,is of convective heat transfer the boundary layer concept frequently is

introdueed to model the velocity and temperature fields ncar the solid 'UI'face in order to simpl il'y

the analysis of convective heat tmn,fer. So we are eoncemed with two different kinds of

boundary layers, the velocity boundary layer and !he thermal boundary layer.

5
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Chapter 1: 1ntroduction

The velocity boundary laycr is defined as the narrow region, near the solid surface, ovcr which

~elocity gradicnts and shear stre'ses arc iarge, but in the region outsidc the boundary iayer,

called the potential-flow rcgion, the veiocity gradients and shear stresses are negiigiblc, The

exact Iimit of thc boundary layer cannot be precisciy defined becau,e of the asymplOlicnature of

the velocity varialion. The limit of the boundary layer i, usually taken to be at the distance from

the surface, at which the fluid veiocity is equal to a predetermined pereenlage of the free stream

vallle,U",. n,is pereenlage depends on the accuracy desired, 99 or 95% being euSlOm"ry,

Although, outside the boundary layer region the flow is assumed to be inviscid, but inside the

boundary iay~r the viscous flow may be eithcr laminar Of turbulent. In the case of laminar

boundar) layer, fluid motion is highly ordered and it is possibie lO identify streamlines aiong

which particles move, tluid motion along a ,lreamline i, characterizcd by ,e1o~ity components

in both the x and y directions. Since the vclocity component v is in the direction normal to the

,urface, it can contribute significantly to the transfer of momentum, energy or species through

the boundary layer. Fluid motion normal to the surface is necessitated by boundar)' layer gro"1h

in tile x direction. [n contra,t. fluid motion in the turbulent boundary layer is highiy irreglliar and

is characterized by velocity fluctuations, These fluctuations enhance the transfer of momentum,

energy and species and hence increase ,"rface friction, as weli as convection transfer rates. Due

to fluid mixing resulting from the fhlctuations, turbulent boundary layer tbicknesse, are I"rger

"nd boundary layer profiles are flaller than in laminar tlow. TIle thermal boundary layer may he

defined (in the same Sense that the velocity boundary byer W"Sdefined above) as the narrow

region Ix:twecn the ,urface and the point at which the fluid tempemture h"" reached a certain

percenlage of ambient temperature T", ' Outside the themmi boundary laycr the fluid is assumed

to be a heat sink at a lInifoml lemperature of~~ The thermal boundary byer is generally not

coincident with thc veiocity boundar)' layer, although it is certainly dependent on it. If the fluid

has high thermal conductivity, it wii] be thicker than the velocity boundary iayer, and if

conductivity is low, it wiil be lhinner than the velocity boundary iayer.

1.4.5 FLOW WITHIN AN ENCLOSURE

TIle flow within an enclosure consi,ting of two hori£onlai w"iIs, "t different temperatures, is an

important circumstancc encountered quite frequently in practice. In ali thc applicalions having

this kind of situation, heat transfer occurs due to the tempemture difference across the J1uidiayer,

Qnehoriwntai solid surface being at a temperature higher than the olher. Iftbe upper plate is the

hot surfacc, then the lower ,urbce ha, heaviel' fluid and by virtue of buoyancy tbe fluid would

nOIcome to the lower plate. Because in this eaSe the he"t transfer mode is restricted to only

conduction. Hut if the fluid is enclosed between lwo boriwntal surfaces of which the upper

surfacc is at lower tempemture, there wilIbe the eXlstenccof ccHularnaluml convecti~e currents

6
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"hich are called a. Renard cells. For fluid. whose den.ity decreases willi inerea,ing temperature,
this leads to an unstable silllation.

1.4.6 TILTED ENCLOSURE

The tilted enclo,ure geometry has received eon,iderable attention in thc heat transfer literature

because of mostly growing interest of solar coll~tor technology. The angle oftilt has a dramatic

impact on the flow housed by the enclosure, Consider an enclosure hcated from bdow is rotated

about a reference axis. When the tilted angle becomcs 90', the flow and thermal ficlds inside the

enclosure experience the heating from side condition. Thereby convective ClllTents may

pronounce over the dilTusive current•. When the enclosure rotate. to 180", the heat transfer
mechanism switches to the diffusion because the top wall is heated.

1.4.7 BOUSSlNESQ A1'I'ROXIMA nON

The governing equations for eom~ction flow are coupled elliptic partial dilTerential equations

and arc, therefore, of considerable complexity. The major problem. in obtaining a solution to

these equations lie in the inevitable variation of density with temperature, or concentration, and

in their partial, elliptic nature, Several approximations arc generally made to considerably

simplify these equations. Among thern Bou"inesq approximation aUributed to Bou~sinesq

(1903) is considered here. In flows accompanied by heat transfer, the fluid properties are

normally fundion. of temperature. Tile variation, may be small and yet be the cause oftbe fluid

motion. If the density variation is not large, one may treat the density a. constant in the unsteady

and convection tel1llS,and treat it as ,ariHble only ill the gravitational term. This is ~alled tile
Boussinesq approximation,

1.5 DIMENSIONLESS PARAMETERS

The dimensionless parameters can be thought of a. measures of the relative importance of certain

aspect, of the flow. Some dimensionle" parameters related to our smdy are discussed below:

Grashofnumber Gr

The flow regime in free convection is governed by the dimensionless Gra,hof number, which

represent the ratio of the buoyancy force!O the viscou, forces acting on the fluid, and i, defined

'"

where g is the acceleration due to gravity, {J is the volumclrie thermal expansion coefficient, T. is

the wall temperature, 1'., is the ambient tcmpcrst"re, L is the cilaracteri.tic length and v is the

7
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kinematics viscosity, The Gmshofnumber Or plays ,arne role in free convcction as lhe Re}nolds

number Re play, in forced convection. As such. the Gmshofnumbcr provides the main criterion

in determining whether thc fluid flow is laminar or turbulent in free convection. For ,ertical

plates, the critical value of the Grashofnumber is observed to be about 10", Therefore, thc flow

regime on a vertical plate becomes turbulent al Gra,hof numbers greater thanl 0',

Praudtl Number Pr

The relative thickness of the velocity and lhe tbermal boundary layers is best described by thc

dimensionle" parameter Prandtl number, defined as

1'r = Molecular diffusivily of momentum I Molecular diffusivity of heat = vi u

It is named after Ludwig Prandtl, who introduced the concept of boundary layer in 1904 and

made significant contributions to boundary layer theo')'. The Prandtl numhers of fluids range

from less lhan 0.Q1 for liquid mctals to mOre than 100,000 for heavy oil:;, Note that the Prandtl

number is in the order of 7 for water. The Prandtl numbers of gase, are about I, which indicate,

that both momentum and heat dissipate through the fluid al about the same rate. Consequently

the thennal boundary layer is much thicker for liquid metals and much thinner for oils relative to

the vdociry boundary iayer.

Nusselt Number Nu

The Nusselt number represents the enhancement of heat transfer through a fluid layer lISa resuit

of convection relative to conduction across the Same fluid layer, and is defined as

Nu=hLlk

where k is the thennai conductivity of the fluid, h is the heat transfer coefficient and L is the

charactcristic, iength, The Nusselt number is named after Wilhelm Nusseil, who made

significant contributions to convective heat transfer in the first haif of the twentieth centu')', and

il i, viewed as the dimensioniess convection heat transfer coefficient. The larger Nusselt number

indicales a large temperature gradient at the surface and hence, high heat transfer by convection,

A NusseU number of Nu = I, for a fluid layer represents heat transfer across the iayer by pure

conduction. To understand thc ph}sical significance of thc Nusseh numbe" comider the

following daily life problems. Wc remedy 10 forced con~ection whenever we want to increase

the rate of heat transfer from a hot object In free convection flow velocities are produced by the

buoyancy forces hence there arc nOcxtemaiiy induced flow velocities.
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1.6 MAIN OBJECTIVES OF THE WORK

The present study has focused on the development of a mathematical model and numerical

techniques regarding the effects of natural conveclion flow around an adiabatic circular cylinder
placed in a rcctangular open cavity.

The specific objectives of the present research work arc as follows:

• A mathematical model regarding the cffcct of nalural con~ection flow around an adiabatic

circular cylinder placed in a rcel"ngltlar open cavity has developed.

• To visualize the fluid flow and temperature distribution inside the enclosure in terms of

streamIine and isotherm plots.

• The analytical modcl has numerically 'olved using finite element method.

• To investigate the effects of Grashof number and I'randtl number on the he"t transfer

chHfacteristics(Nusselt number).

• To investigate the effects of diamctcr ratio of adi"batic cylinder on natural convection

placed in,ide an opcn cavity.

• To CHIT)'out the validation of the present finite clement model by investigating the effect of
natural convection heat transfer ill a rectangular open cavity.

• To examine the effects of inclination angles of the enclosnre On the heat transfer
characteristics.

9 ('
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Natural con~ection in open cavities has received con,icierable attention because of its import1lJlce

in several thermal engineering problems, for eX1IIIlple,in the design of electron tCdevices, solar

thennal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal

re,ervoirs, etc. During (he past m'o decades, several experiments and numericnl calculations have

been presented for describing the phenomenon of natural convection in "pen cavities. Those

studies have been foc"",d to study the effect on flow and heal (ransfer for different Rayleigh

numbers, aspect ratios, and lill angles.

Natural convection in an air filled, differentially heated, inclined square cavity with a diathcrmal

partition placed at the middle of its cold wall was numericaliy ,tudied for Rayleigh number.' 10'

to iO', It was observed that due to suppression of convection, heat transfer reductions up to 47

percent in comparison to the cavity without partition observed by Frederick (199i). Laminar

natural convection and conduction in enclosures with multiple vertical partitions are studied

theoretically by Kangni ct ai. (2003). The study covers Rayleigh number Ra in the range 10'-10',

Pr= 0.72 (air) aspect ratio 5-20, cavity width U.I-0.9 and partition thickness O.Oi-o,1. They

found that the heat transfer decreases with increasing partition number al high Rayleigh number

for all conductivity ratios Kr 1Uldheat transfer decreases with increasing parlition thickness C at

all Ra except in the conduction regime where the effect i, negligibly small. The offender

partitions arc les, effecti~e in decreasing the heat transfer. Nusselt number i, also a decreasing

[unction in the aspect ratio, Ta,nim and Collins (2004) determined lhe effect of a horiwntal

baffle piaced on hot (left) W"i1 of a differentially heated square cavity. It b"s been found that

adding baffle on the hot wali can increase the rate of heat tran,fer by as much as 3 1.46 pereent

compared with a waH "ithout baffle for Ra ~ 104. When Ra = lOS lhe increase in heat transfer is

15.3 percent for the same baffle length and the Increases in heat transfer is 19.73 percent, when

the longest baffle is attached at the middle of the cavity. Bilgen and Oztop (2005) studied

numerically the stcady-state heat transfer by natural convection In parlially open inclined square

cavilies,

Naturai convection in fluid-filled rectangular enclosure, has received considerable attention over

the past several years due to the "ide variety of applications that involve natural convection

processes. These applications span such diverse fields as solar energy eolle<:lion, nuclear reactor

operation and ""fety, the encl"g) efficient design of building, room, and machincry, wa,te

disposal, and fire prevention and safety. The o,ciilation-indueed heal transport has been studied

by a number of researchers due to its many industrial applications, such as bioengineering,
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chemical engineering, and so forth. Kuhn and Oosthuizen (1987) numerically studied unsteady

natural convection in a partially heated rectangular cavity. They ~oncluded that as the heated

localion mOve, from the top to the bottom, the Nusselt number increases up to a maximum and

then decreases. Lakhal et al. (1999) studied the transient natural convection in a square cavity

partially heated from ,ide, In the flfst, the temperature is varicd sinusoidal with time while in the

second; it varies with a pulsating manner. The result, showed that the mean values of heat

transfer and flow itllcnsity are con,iderabl} different with those obtained in stationary regime. I.e

Quere et al (1981) investigated the eff~ct on the flow field and heat transfer of the Grashof

number as it varied from 10' to 3x I0'; the lcmpemlure difference between the cavity walls and

ambient changed from 50 to 500 K, the aspect ratio varicd between 0,5 and 2, and the inclination

angle of the cavity was modified from 0 to 45' (for 0" the wall opposite the aperture was ~ertical

and the angies were taken cloekwisc). The re,ult, of the paper showed that the Nus,elt number

diminished with the increase in the inclination angle, and that the unsteadiness in the flow takes

place for values 01"thc Gra,hof number greater than 10" and inclination angle, of 0'. Showole

and Tarasuk (1993) invesligated, e"perimentaliy and numericallv, the natural steady state

convection in a 1"'0 dimensional isothermal open cavity, They obtained experimental results for

air, varying the Rayleigh mlmbcr from 10' to 5.5 xlO', cavity asp~t ratios 01"0,25, 0.5 and 1.0,

and inclination angles of 0, 30', 45" and 60" (for 00, the wall oppo,ite the aperture ",a\ hori70ntal

and the angles \~cre taken c1ockwi,e). The numerical results were calculated for Rayleigh

number, between 10' and 5.5xI0', inclination angles of 0 and 45', and nn aspeet ratio cqual to

one, The results showed that, for all Rayleigh number;, the first inclination of the cavity eaused a

significant increase inlhe average heat transfer rate, but a further increase in the inclination angle

caused very little increase in the heat transfer ratc. Another resuit obsened was that, for 0", two

symmetric counter rotating eddies were formed, while at inclination angies greater than 0', the

s}mmetrie flow and temperature p"tlems disappear.

Mohamad (1995) studied nUlllerically the natural convection III an inclined lwo.dimensional

open cavity with one heated wall opposite the aperture and two adiabatic walls, The author

analyzed the influence on fluid flow and heat transfer, with the inclination angle in the range 10'.

90" (for 90" the wall opposite the aperture was vertical and the angles were taken clockwise), the

Rayleigh number from 10' to 10', and the aspect ratio between 0.5 and 2, The study concludes

that the inclination angle did not have a significant effect on the average Nussclt number from

the isothermal wall, but a sub,tantial one on the local Nusselt number. PoJat and Bilgen (2002)

made a numerical study of the conjugate heal transfer by conduction and natural convection in an

inclined, open shallow cavity with a uniform heat flux ill the watl opposite to the aperture. TIle

parameters studied were: the Rayleigh number from 10' to 10", the conductivity ratio from I to

60, the cavity aspect ratio fmm I to 0.125, thc dimensionless Walllhickness from 0.05 to 0.20,

11
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and the inclination angle from 0 1045' from the horimntal (for 0", lhe wall opposite the aperture

was vertical and th~ angles were taken counterclockwise).

Le Quere et al (1981) inve,ligaled thermally driven laminar nalurai convection in enclosures

wilh isolherrnal sid~s, one of which facing the opening. They us~d primitive variables and finite

difference expressions suitable for lrealing probl~ms "ith large temperature and density

variations. Th~ ~omputalional domain was an enlarged domain comprising a sq,,,,re open cavity

and a far field surrounding it. Penot (1982) st"died a similar problem using stream fun~tiun-

vorticity fOl1llulation,He also used an enlarged eompulational domain similar to that of Le Quere

et al (1981) with approximate boundary conditions. Chan and Tien (1'lX5) studied numerically a

square opcn cavity, which had an isothermal vertical heatcd side facing th~ opening and two

adjoining adiabatic hori70ntal sides, The bUlmdaryconditions at far field wcrc approximated to

obtain satisfactory solutions in the open cavity. Chan and Ti~n (1985) studied numerically

shallow open cavitics and also made a comparison study using a square cavity in an enlarged

computational domain. They found that for a square open cavity having an isothermal vertical

side facing the opening and two adjoining adiabatic horizontal sides, satisfactory heat transfer

results could bc oblained, especiall} at high Rayleigh numbers, In a similar way, Mohamad

(1995) stlldied inclined open square cavitics, by considering a restricted computational domain.

Different from thosc by Chan and Tien (1985), gradients of both velocity componellts wcrc set to

zero at the opening plane, It was found that Ilcat transfcr wa, not sensitive to inclinatioll angle

and the flow wa, unstable at high Rayleigh numbcrs and small inclinations angles. Pobt and

Bilgen (2002) studied numerically inclined open shallow cavities in which the side facing the

opcning was heated by constant Ileat flux, two adjoining walls were in,ulal~d and the opening

was in contact with a resenoir at constant temperature and pressure. The compulational domain

was restricted to the cavity.

The finite clcmenl method is one of the numerical methods that have received popularity due to

its capabilily for ,olving complex structural problems (Cook, 1989, Zienkiewicz, 1991). The

metllod has been extended to solve problem, in ,everal other fields such as in the field of heat

transfer (Lewi, et aJ., 1996, Dechaumphai, 1999), e1ectromagnetics (Jini, 1993), biomechanics

(Gallagher et aI., 1982), etc. In spite of the grcat success of lhe melhod in these fields, its

applicauon to fluid mechanics is ,lil1 under intensive researeh. This is duc to the fact that the

governing diffcrential equations for general flo" problems consist of several coupled equations

which are inherently nonlinear. Accurate numerical solulions lhus require a vast amount of

computer time and data storagc. Onc-way 10minimize lhe amount of computer time and data

storage used is to employ an adaptive meshing technique (Dechaumphai, 1995, Pcraire ct aI.,

1987) The technique places small elements in the regions of large change in the solution
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gradients to increase Solulion accuracy, and at the same lime, u,e, large elements in lhc olher

regions to redoce the eomputalionallime and computer memory,

Goutam Saha et al (2007) studied a numcric"1 ,imulation of two-dimensional laminar steady-

stale natural conveelion in a square till open cavity has been numerically studied. The opposite

wall to lhe aperture is kept al either eonstam ,urface temperulure Orc()nstant heat flux, while the

surrounding fluid interncting with the aperlure is rn"inmined at an ambient temperature. The two

remaining walls are assumed to be "diabatic. The fluid concerned is air with Pmndll number

lixed al 0.71. The governing mass, momentum and energy equation~ are expressed in a

nonnalized primitive variable~ formulation. A finile element method for steady-state

incompressible natuml convection flows ha, been devcloped. The slre"mlines and isotherms are

produced, heat trander characteristics is obtained for Rayleigh numbers from 10' to 10' and for

an inclination angles of the cavity ranges frOIH00to 60',

In experimental studies of 070e et a!. (1975), Arnold et a!. (1976), LintbOl'Stet al. (1981) and

Hamady el a!. (l989) found as the tilt angle changcs from 0° to 90°, lhe heat transfer decreases

ulltil a minimum poinl i, reached, and then gradually increases again and lhe minimum point

occur, at the at1glcwhere flow changes its mode from the three-dimensional roll pattern caused

by lhe lhermal instabil ity to the two-dimensional circulation c"used by the hydrodynamic effect.

Most of these experimental researches only studied cavities with small to medium aspect ratios,

with lhe maximum aspect ratio 15.5, In lhe sludy ofElsherbiny el a!. (1982), six aspect ratios

between 5 and 110Wereex"mined experimentally to find the intlucnce of lhe tilt angle and lhe

aspect ratio on the heat transfer rule, A correlalion for tilt angle 60° was developed, and a

suggeslion of a straight-Iine interpolation between 60" and 90" was propoled, A lot of numcrieal

studies wcrc also purformed. Mosl of them are two dimensional and only studied flow in an

inclined square cavity, such a, Ozoe et al. (1974), Chen et al. (1985), Kuyper el al. (1992) and

Zhong et al. (1985). Ilowever, these two-dimensional numerical studies could not work well at

small tilt angles close to horizonlal position, In the reecnt paper of So()nget al. (1996), the -.arne

model of square cavity from Ozoo el a!. (1974) was studied with the imperfect eonslant wall

temperature boundary conditions, and the results showcd good agreemeul with the experimental
curve even al small tilt angles.

In the present thesis a numerical ,irnulation of two-dimensional laminar steadY-Slatenalural

convection in a rectangular open cavily has numerically studied. An adiabatic circular cylinder is

pla"ed at the center ofthe cavity and the opposile wall to lhe aperture is heated by a constant heat

flux. The top and bottom \~alls are kept at the constant lemperature. 'J he fluid is concerned with

Prandtl number at 0.72, 1.0 and 7,0. The governing mass, momentum and energy equations are

expressed in a non11a1i7ed primitivc variables fOITllul"tion.In this thesi" a finite element mclltod

for steady-stale incompressible natural convection flows has been devel"ped. 'J he streamlines
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and isothenns are produced, heat transfer characterislics is obtained for Grash"f numbers from

]O'IO ]00 and for an inclination angle< of the cavity ranges from 0' 10 45", The result, ,how that

the Nusselt numb-er increa<es with lhe Grashofnumbers, Also the Nusseh number has changed

substantially wilh the inclinalion angle of the cavity while better tbermal performance is also

sensitive to the boundary condition of the heated wall.
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CHAPTER 3
MODEL DESCRIPTION

3.1 PHYSICAL MODEL

TIleheat transfer and the fluid flow in a two-dimensional open rectangular cavity of length L was

considered, as shown in the schematic diagram of figure3.!. The opposite wall to the apertllfe

wa, first kept to constant heat flux q, while the surrounding fluid interacting with the aperture

was maintained to an ambient temperature L, The top and bottom walls were kept to constant

temperature T". The remaining circular cylinder was assllmcd to be adiabatic. The fluid wa.

assumed with Prandtl "umber (Pr ~ 0.72, 1.0, 7.0) and NC"1onian, and the fluid flow is

considered to be laminar, TIle properties of the fluid wcr" assumed to be constant.

y

q 0 lh
g

- *T"

I- L -I
Figure-].]. Schematic diagram of the physical system.

3.2 MATHEMATICAL MODEL

Natural convection is governed by the differential equations expressing conservation of mass,

momentum and ener~. The present flow i, considered steady, laminar, incompressible and m'o-

dimensional. The viscous dissipation term in the energy equation i, neglected. The Boussinesq

approximation is invoking for the fluid properties to relate density changes to temperature

change" and to conple in thi.' "ay the temperature field to the /low Held. The governing

eqllations for steady natural convection flow can be wrine]] a<:
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au au lap"-H-=---+r
ax 0' pax

('J

8v Uv lap
"-H-=---+r
ax 0' P0'

(3)

('l

iff iff
"-H-=aiJx ily

(4)

The boundary conditions "sed are:

"(x,o)= U(O,y)= u(x,L)= 0
v(x,O)= v(O,y)= v(x, L)= 0

where x and yare the distances me"sured along the horizontal and vertical directions,

respectively; u and V arc the velocity component> in the x- and y-direction, respectively; T

denotes the temperature: y and (l are the kinematic ~i,cosity and the thermal diffusivity,

respectively; p is the pressure and p is the density; ll" and e~ are the constant and ambient

temperatures respectively. The governing eqnations in non-dimensional form arc wrllten as _

follo"s:
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OU+OV =()

oX oY
(5)

(6J

(7)

[o'U U'U]
DX2 + 8r2 +& sin<!J

[
a'v c'v]~+--2 +&cosW
dX Dr

(8)

with the boundary conditions

u(x, 0)= u(x, 1)= u(o,Y)= 0,

V(x, 0)= V(X, 1)= v(o, Y)= 0,

80(X O)=OO(X 1)=0
ar' ar'

au (1 v)= BY (1 v)= 0
ax' ax'

8°(0 Y)=-lax '

Equalion, (5)-{8) were normalized using; lh~ foll"w;ng dimen,i()nl~," 'Gal~;:

17
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X=~
L'

y u ,
Y=~ u=- v=-

j' U' U~,.,
, 0 0 •

p= P-Peo
2 '

pUo

T = _'_-_'_00_
At

v
a

Gr = g /3t:.T L3

V '

Ddr=-
L

t:.t = qL
k

Here Gr and Pr arc Grashof and Prandtl numbcrs, respectively. The Grashof number represents

the ratio of the buoyancy force to the viscous forcc acting on the tluid. The rcfCrcnce velocity Uo

is related to the buoyancy force term and is defined as

The Nusselt number (Nul is one of the important dimensionless paramctcrs to be

computed for heat transfer analysis in namral convcction flow. Also the Nussclt numbcr for free

convection is a function of the Gra,hof number only. The local Nusselt number can be obtained

from the temperature field by applying

1Nu=----
B(O,Y)

and the average or overall "'usselt number wa, calculated by integrating the temperature gradient

over the heated wall as

, 1
Nu,,= f ( )dY

o (J O,Y
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3.3 COMPUTATIONAL DETAILS

The governing equations in fluid dynamics and heat transfer, including conservation forms ofthc

Navier.Stokcs system of equation, a, derived from the first law of thermodynamics, expressed in

terms of the control volume I surface integral equations, which repre,ent various phy,ical

phcnomena. To visualize these thcrmo fluid flow >eellarios,an approximate numerical solution is

needed, which can be obtained by the crn (Computational Fluid Dynamics) code, The partial

differential equations of fluid mechanics and heat transfer are discretized in order to obtain a

system of approximate algebraic equatlons, which then call be solved on a computer. The

approximations are applled to small domains ill 'pace and! or tlme so the numerical ,olution

provides results at discrete locations in space and time. Much accurac} of experimental data

depends on the quality of the tools used; thc accuracy of numerical ,olution i<dependcnt on lhe

quality of discretization u>ed, CFO computation involvcs the creation of a set numbers that

oonstitutes a realistic approximation of a real life system. The outcome of computation proccss

improve, the understanding ofthe behavior of a system, Thereby, engineers need CFa codes that

can produce phy,ically realistic resulls with good accuracy in simulations with finite grids,

Contailled within the broad field of computational fluid dynamic, are activities that cover the

range from the automation of wcll establi,hed engineering design methods to the u,c of detailed

solution, of the Navier-Stokes equations a, substitute, for experimental researeh into the nature

of complex flows, CFa have been used for ,olving wide range of fluid dynamics probl~m. It is

more frequently uscd in fields of engineering where the geometry is complicated or some

importallt feature that cannot be deal! with ,tandard methods, The complete Navier-Stokes

equations arc considered to be the correct mathematical des~ription of the governing equations of

fluid motion. The most accurate numerical computations in fluid dynamics come from solving

the Navier.Stokes equations, The ",]uations represent the conservation of rna" and momentum.

There are wveral discretiZlltion methods available for the high perfonnance numerical

computation in CFD.

• Fillite volumc mcthod (FVM)
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• Finite element method (rEM)

• Finite difference method (FDM)

• Boundarv clement method (BEM)

• Boundary volume method (IWM)

In the present numerical compntation, Galerkin Finite Element Method (FEM) is used.

3.4 FINITE ELEMENT METHOD

The tlnitc clement method (HoM) is a powerful Computlltionaltechnique for solving problems

that are described by partial differential equations, The basic idea of the finite clement method is

the domain is broken into a set of finite clements that are generally triangular or quadrilaterals,

The distingui,hing feature of FE methods is that the equations an: muHiplied by a weight

funetion before they are integrated over the entire domain. In the simplest FE methods, the

solution is approximated by a linear shape function within eaeh element in a way that guarantees

continuity of tile solution aero" element boundaries, Sueh a limetion Canbe constructed from its

value, at the corners of the elements, The weight function may be the same or different form,

This approximation i~ then substituted Into the weighted integral of the conscrvation law the

equations to be solved are derived by requiring the derivative of the integral with respect to each

nodal vallie to be zero; this corresponds to selecting the best solution within the set of allowed

functions. The result is a set of nonlinear algebraic equations_

Mathematical model of physical rh~nomena mol' be ordinal)' or partial differential equation"

which have been the subject of analyti~"1and numerical investigation,_ Analytical sulutions of

these equations involve closed form expressions that give us the variation of [he dependent

variables continuously througholll the domain, On the other hand, for most of these equations

there are nn available anal>1iealmethods to find their solutinns, In contrast, there arc available

numerical methods to solve these equations. Numerical solutions of these equations can give

answers at only di~erete points in the domain. In addition, numerical methods gIve us

approximate sol"tion of these differential equations, To obtain an approximate solution

numerieaily, one has to use a discretizatinn technique that approximate, the differential equations

by a system of algebraic equations "t only discrete points in the domain, which can then be
sol,ed Ona computer.

rhe first step to numerically solve a mathematicai model of physical phenomena is it, numerical

diseretiz.ation.This means that each component ofthe differential equations is transformed intn a

"numerical analogue" which Can be represented in the computer and then processed by a

20
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computer program, built on some algorithm. There are many different methodologies were

devise<:!for this purposc in the P",t and the development still continues. In thi, thesis the finite

elementmethod (FEM) has been used to solve thc diffcrcntial equations.

3.5 THE REASON FOR FINITE-ELEMENT SOLUTION

The analy,is of flow and heat transfer in thennodynamics c"n be performed either thcoretically

or by experimental means. Experimental investigation of,uch problem could not gain that much

popularity in the field of thermodynamics because of their limited flexibi lity and appl icatious.

For every change of geometry body and boundary condition, it need, separate in~e,tigation,

involving scparutc c,,"perimentalrequirement! arrangement, which, in tum makes it unattractive,

especi"lly, from the time involved as well as economical point of views, The theoretical

investigation, on the other hand, can be carried out either by analytical approach or by numerical

approach, The an"l)tical methods of solution arc not of much hclp in solving the practical

problems. TIlis is mainly due to the very involvement of a large number of variables, complex

geometric"l bodies and boundary conditions, and arbitrary boundary shapes. General closed form

solutions ean be obtained only for very ideal cases and the results obtained for a particular

problem, usually with unifon11 boundary conditions, for two-dimensional thennodynamics

problems, mathematie"l model invol,e panlal differential equations arc required to be solved

simultnne{luslywith somc boundary conditions, Therefore, there are no alternatives except the

numerical methods for the solution of the problems of practical interest. In th~ field of numerical

analy,is, the major numerical methods in lISCarc the method of finite difference (FD), finite

volume CFV)"nd finite element (FE).

Finite element method is an ideal numcrieal approach for solving a 'ystem of partial dlt'fcrcntial

equations, TIlc finitc elemCJltmethod produces eqllations for each element independently of all

olher element,. Only "hen the equations are eollectcd together and a~",mbled into a global

matrix are the interactions ben.'een clements taken into account. Despite these ideal

characteristics, the finite element method dominatcs in most of Ihe ~omputational fluid dynamics,

The pre,ent re,earch is an attempt to brin)! the FE technique again into light through a novel

fonnulation of two dimensional Incompressible thermal t10w problem~. As the fonnubtion

establishes a priority of finite element tel:hniqueover the I'D and FV method, the philosophy and

approach of the three method, are recapitulated here in bncf. The finite difference method relies

on the philosophy that the body is In one single piece but the parameters are evaluated only at

some ,elected points within the body, satisfying the )!oveming difTerential equations

approximately, where as the fillite volnme method relies on the philosophy that thc body is

divided into a finitc number of control volumes, On the other hand, in the finite element method,
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thc body is divided into a number of eiements. The relative advantages and disadvanlages of the

finite element method is shown below:

Finite Element Method

Advantages
a) Finite element method works when all other methods fail.

b) It is very good in managing complex geomelrical bodies and boundaries.

c) There are many commerciai packages ,uch as ANSYS, I'EMLAB for analy£ing practical

problems,

Disadvantages

a) The body is not in one piece, but it is an assemblage of elements connected oniy at

nades,

b) Variation, of parameters over individual elements are assumed to be simple like

polynomial ofiimited oruer.

c) l'inite clement solution is highly dependent on the element type.

Accurate and reliable prediclion of complex geometry is of great importance to meet the severe

demand of greater reliability as ",eli as economic challenge. It is noted that these complex

geometries occurs most frequenHy in CFD, Pre,enled methods have a common feature: they

generate equation. for the values of the unknown functions at a finite number of points in the

computational domain. I:lutlhere are al.;o several differences, The finile difference and lhe finite

volume methods generate numerical equations at the reterenee point based on the values al

neighboring points. The fin ite element method takes eare of boundary conditions of Neumann

type while the other two meHwds can easlly apply 10 lhe Dirichlet conditions, rhe finite

diJTereneemethod could be easily extended to multidimen.ional spatial domains if the ehosen

grid is regular (the cells must look cuboids, in a topological sense). The grid inde"ing i, simple

but some difficullie, appear for the domain with a complex geometry, For the finite element

method there are no restrictions on the connection of lhe elements when the ,ides (or faces) of

the element, are correctly aligned and have the same !lodes for the neighboring elements. This

flexibility allows us to model a very complex geometry The tinite volume method could also use

irregular grids like the grids for the finite clement melhods, bul keeps the ,implicit} of writing

the equations like that for the finite difterenee method. Of course, the presence of a compiex

geometry slnws down the computational programs. Another benefit of the finite clement method

is that of the specific mode to deduce the equations for each elemen! that are then assembled.

Therefore, the addition of new elements by refinement of lhe exisling ones is nOl a major
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problem. For the other methods, the mesh refinement is a major task and could involve the

rewriting of the program. But for all the methods used for the discrete analogue of the initial

equation, the obtained system of simultnneous equations must be solved, That is why, the pre,ent

work emphasizes the use of finite e1emcnt techniques to solve flow and heat transfer problems.

The details of this method arc explained in the following section.

3.6 FEM FOR VISCOUS IN:COMPRESSIBLE FLOW

Viscous incompressible thermal tlows have been the subject of this investigation. The problem is

relatively complex due to the coupling betwe~n the energy equation and the NHvi~r-Stokes

eqllations that gov~m the fluid motion. These equations comprise a set of coupled nonlinear

partial differential equations that is difficult to solve espec ially with complicHted geometries and

boundmy conditions. The tinitc element method is one of the numerical methods that have

received papulari!y due to its capabi lity for ,olving complex structural problems. I"hemethod has

been extended to ,olve problems in several oth~r fields such as in the field of heat transfer,

computational fluid dynamics, electromagnetic, biomechanics etc. In spite of the great success of

the method in these fields, its appli~ation to fluid mechanics, particularly to convective Vi'COllS

/lows, is still under intensive research, This is due to the fact that the governing partial

differential equations for gcncral flow problems consist of several coupled equation, th"t "re

naturally nonlinear. Accurate numerical solutions thus require a vast "mount of computer time

and data storage, One-way to minimize the amount of computer time and data storage used is to

employ all adapting meshing technique. The technique places small elements in the regions of

large change in the solution gradient to increase solutlOn accuracy, "nd at the same time, uses

large elements in the other regions to reduce the computational time and computer memory.

As the first step 10w"rd accurate flow solutions using the adaptive meshing techniques, this

chapter develops a finite element formubtion suitable for analysis of general viscous

incompressible thermal /low problems, The formulation evaluated in this chapter will be used

with the adaptive meshing technique in the future. The chapter starts from ilie Na,ier-Stokes

equations together wiili the energy equation to derive the corresponding [mit~ element equations,

The computational procedure used in the development of the computer program 'is described.

The major steps involved in finite clement analysis of a typical prohlem are:

• Diseretillltion of the domain into a set of finite clements (mesh generation).

• Weighted-;ntegral or weak formulation of the differenti"1 equation to be analyzed.

• Development of the finite c1emcnt model of the problem u,ing its weighted-integral or
weak form,

• Assembly of finite elements to obtain the global system of algebraic equations.
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• Imposition of boundary condition,.

• Solution of equations.

• Post-computation of solution and 4uantities of interest.

3.7 NUMERICAL PROCEDURE

The numerical procedure used to solve the governing equation, for the present work is based on

the Galerkin weighted residual method of finite-dement fonnulation. The non-linear parametric

solution method is chosen to solve the governing equations. This approach will result In

substantially fast convergence aSSurance. A non-uniform triangular me,h arrangement IS

implemented in the present Investigation especially near the walls to capture the rapid changes in

the dependent variable"

The velocity and lhennal energy equations (5)-(8) resull in a set of nOll-Iinear coupled equations

for which an iterative scheme is adopted. To ensure convergence of the nnmerieal algorithm the

following criteria is appl ied to all dependent variables over the solution domain

II~~-~~-11S; 10-5IJ IJ

where <jlrepresents a dependent variable U, V, P, and T; the indexes i,j indicate a grid point; and

the index m i, lhe current iteration at the grid level. The ,ix node triangular element is used in

this work for the development of the finite element equations. All six nodes are associated with

velocitie, as well as temperature, only lhe comer nodes are assoclated with pressure. This means

that a lower order polynomial is chosen for pressure and which i, satisfied thr01lgh eontinuily

equation The velocity component and the temperature distributions and linear inlerpolation for

the pressure distribution according 10 lheir highest derivative orders in the ditrerenlial E'ls (5)-(8)

"'
V(X,V)=Na Va (9)

V(X,Y)=Na Va (10)

e(x, Y)=N" eo (11)

p(X,V)=I-I"P, (12)

where ({= 1, 2, ... ,6; A= 1, 2, 3; No are the element interpolation functions for the velocity

components and the temperature, and H, are the element interpolation functions for the pressure.
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To derive th~ finite element equations, the method of weighted residnals (Zienkiewiez, 199 I) is

applied to the continuity Eq. (5), the momentum Eqs (6).(7), and the energ) Eq, (8), we get

j N [au + aV)dA=O
Actaxay

jN luau +vBU) dA=~jH[ap) dA
A a oX oY A A ax

1 [OlU a'U)+~ jN -0+-' dA+jN (sinttJ)BdAvGr A a aX" BY. A U

jN [U8V +vBV) dA=~jH [aP) dA
A a oX ay A A ay

1 [iJ"V alV)+ ~ j N --, +-, dA+ j N"(cosQ'l)BdAvGr " a ax. ar ~

( 13)

(14)

(15)

1 [a'B O~BJjN -+- dA
PrJ(j; "a ax' ayl (16)

"here A is the element area. Gauss's theorem is then applied to Eqs (14)-(16) to genemt~ the

boundary int~gmJ terms associated with the surface tractions and heat flux. Then Eqs (14)-( I6)

become,

jN,,[Uau +VaU) dA+jH,[ap) dA+A axay ,lax

_l_j[ONa au + aNa BUtA_jsin<}:l,N edA= r N SdS
JGr A AX ax ay oyr A " k, a x ~

(17)

(18)

jN [Uae +Vae)
4 a ax oy
=jN q dSI,a"",

dA+ 1
Pr-JGr

j [aN" ao aN" ae)
Aaxax+ayoy dA

(19)

Hero (l4)-(I5) specifying surface tractions (S" S,) along outflow boundary So and (16)

specifying velocity components and fluid temperature Or heat flux that flo"s into or out from

domain along wall boundary S." Substiluling the element ~e[ocity component distributions, the
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temperature distribution, and the pressure distribution from Eqs (9)-(12), the finite element

equations Can be written in the foml,

K"(ir,U/3Ur + K"fir' VyUr + M "",~, + .J~r (Sa(J'. + Sa!3") U/3
- sin <P K"/3B/3 = Q,,"

KaPi'UtY, +KaPrYrVr +M",;,~, +)~ (Sup'" +SaP") ViJ
- cos<P K,,/Jp = Qa'

(21 )

(22)

where the coefficient, in element matrices are in the form of the integrals over the element area

and along the element edgcs So and Sw as,

(24a)

(24b)

(24e)

(24d)

(24e)

(24f)

(24g)

(2411)

(24;)
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(24j)

(24k)

(24/)

These element matrices are evaiu"ted in ciosed-form ready for numerical simulation. Details of

the derivation for these eiement matrices are omitted herein for brevity.

The derived finite element equations, Eqs (20)-{23), are nonlinear. These nonlinear algebraic

equations are solved by applying the Nev.ton-Raph,on iteration toochnique (Deehaumphai, 1999)

by first writing the unbalanced value, from the set ofllle finite element Eqs (20)-{23) as,

(25a)

(25b)

(25e)

(25d)

This leads to a set of algebraic equation, "ith the incremental unknowns of the eiement nodal

veloeity componetllS, temperatures, and pressures in the form,

K K K K
"'"

F., " • " ,
K K K K 0' F"• " " "K K K 0 M F, (26)

'" '" ro
!'{'K K 0 0 F,,. "

where
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Kup =M x"" '

K,m=K,'Vy'u a y ,

K",,=M Y
'¥ ""

-K A,- G/Ir,vr,

Koo '" Kah,Up + Kqflr,Vp + pr~ (S,,{/" + Sup,,)

The iteration process is terminated if the percentage of the overall change compared to the

previous iteration is iess thall the specified vaiue.

To solve the sets of the global nonlinear algebraic equations in th~ f"rm of matrix, the Newton-

Raphson iteration technique has been adapted through PDE solver with MATLAB interface.

28
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3,6.1 ALGORITHM

ln the itemti~e Ne\\1on-Raphson algorithm, the discrete forms of the continuily, momentum and

energy equation, are solved to t1nd out the value of the velocity and the temperature, It is

essential to guess the inilial values uf the variahles. Then the numerical solutions of the variable,
are obtained while the convergent criterion is fultillcd.

l'hl',;,al """lei

GoveJ"j~"""m,

ElmmJ,,,
ronJjlioru

Melh
generation

j,
Sl,<t I

ini,i.1 Sue'S "ol
u'.v'. r'

r"rmin~ 6,6 mot,i,
llgIlinst '" dem,"lt

A«e",hl< ,II
eI,m,n",

~
I M,,,i> f.ctoriza,i"" I

u, ". T

'0
CO"''''''S'"''''.'-I SlU!' J
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3.7 SOLUTION OF SYSTEM OF EQUATIONS..
A sy,lem of linear algebraic equalions has been solved by the UMFPACK with MATLAB

interface, VMFPACK is a set of routines for solving asymmetric 'parne linear systems, Ax ~ b,

using the Asymmetric Multi Frontal melhod and direct sparse Lli factoriZlltion, five primary

UMFPACK routincs are required to factorize A or Ax ~ b:

1. Pre-orders the columns of A 10reduce fill-in and perfonns a symbolic analysis.

2. Numerically scales and then factorizes a sparse matrix.

3. Solves a sparse linear system using the numcric factorization.

4. Frees the Symbolic object.

5. Frees the Numeric ohject.

Additional roulines are:

I. Pa"ing a different column ordering

2. Changing default parameler,

3. Manipulating spar,e matrice,

4. Gelling LV faclors

5. Solving lhc LU faclors

6. Computing determinant

LJMFPACKfaetori"e, PAQ, I'RAQ, or PR-'AQ into !he product LLJ,where L and V are lower

and llpper triangular. respcctively, P and Q are permutation matrices, and R is a diagonal matrix

of row scaling factors (or R ~ I if row-scaling is not used). !:lothP and Q arc chosen 10reduce

fill-in (new non zeros in Land U lhat are not prescnt in A), The pennutation P has the dual role

of reducing fill-in and maintaining numerical accuracy (via relaxed partial pivoting and row

interchanges). The sparse matrix A can be square or rectangular, singular or non-,ingular, and

real or complex (or any combination). Only 'quare matrices A can be used to solve Ax ~ b or

related systems, Rcctangular matrices can only be factorized. UMtl'ACK first find, a column

pre-ordering !hat reduces fill-in, without regard 10numerical values. It scales and analyzes the

malrix. and then automatically ,elects one of three strategies for pre-ordering the row, and

columns: asymmctrie, 2-by-2, and symmetric, These stratcgies are described helow.

One notable attribule "fthe UMFPACK is that whellcver a matrix is faclored, the factorization is

stored as a part of the original matrix so that furlher operations on the matrix can reuse this

factorizalion, Whenever a factori7ation or decomposition i, calculated, it is preserved as a list

(element) in the faclOr ,Jot of lhe original object. In thi, way a sequence of operations, such as

30
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determining lhe condition number of a malrix and then ,olving a linear syslem based on the

matrix, do not require multiple factorizations of thc intermediate re,uits.

Conccptually, the ,impie,t representation of a sparse matrix is as a triplet of an integcr vcctor i

giving the row numbers, an integer vector j giving lhe column numbers, and a numeric vector x

giving the non-£ero vallLes in the matrix, The triplet representation is row-oriented if elements in

the same roy, were adjaccnt an,l column-oriented if clemenls in the same column were adjacent.

The compressed sparse row or compressed sparse column (csc) represcntation is similar to row_

oriented t,iplet or column-oricnted triplet respectively. These compressed representations remove

the redundant row or column in indiccs and provide faster access to a given location in the

matrix.

3.8 GRID INDEPENDENCE TEST

Preliminary results are obtained to inspect the field variable, grid independency solulion,. Test

for the accuracy of grid finene" has been carried out to find out the optimum grid number.

5,441

5.440

5439

5,43&

5.437

5.436

-/
//

-.48t8

•
t5642

5,435,~ 6[1{){) 8000 10000 120UU
[1,mOllI NumOcrs

Figure 3,2 Convergence of average Nusselt number wilh grid refinement for Gr ~ 10'
and dr ~ 0,2

ln order to obtain grid independent solution, a grid refinement study Is performed for a

rcwmgular open cavity with Gr ~ 10' and dr ~ 0.2, Figure 3.2 shows !he eon,ergence of the

average Nusse1t nnmher, Nu at lhe heated surface with grid refinement. II is ob,erved that grid

independence is achieved with 13686 elements where !here is insignificant chal1ge in Nu with

further increase of mesh elemenls. Six different non-uniform grids with the following l1urnber of

nodes and e1emenlS were considered for the grid refinement tests: 27342 nodes, 4818 elemenls;
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49335 nodes, 7663 element,; 72782 nodes, 10365 element,; 73542 nodes, 11413 elements;

96030 nodes, 12356e1cments;982450 nodes, 13686element" From these valnes, 982450 nodes,

13686 element, can be chosen throughout the simnlation to optimize the relation between the
accuracy required and lhe computing time.

3.9 MESH GENERATION

In finite element method, the mesh generation is Ihe lechniqne to snbdivide a domain into a set of

,"b-domains, called finite elements. fig 3.3 shows a domain,A is subdivided into a set of snb-

domains, ;j'with bonndary]".

l'igurc 3.3: Finile doment discretization of a domain

Tho present numerical technique will discretize the computational domain into unstrm:tured

triangles by Delaunay Triangular mcthod. The Dolaunay triangulation is a geometric ,lructure

thaI ha, enjoyed great populfl!ily in mesh generation since the me,h generation was in its

infancy. In two dimensions, lhe lJelaunay triangulation of a verte" set maximize, the minJmum

anglc among all possible triangulations of lhal ,er1ex set.

Figure 3.4 ,hows the mesh mooe for lhe present numerical computation. Me,h generation has
been done meticnlously.

32
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Figure 3.4: Current mesh structure of elements for rectangular open cavity.
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CHAPTER 4
RESULTS AND DISCUSSION
Two-dimensional laminHr steady state natural convection flow in a rectangular open cavity with

the left vertical wall is at constant heal flux ha, been ,tudied numerically, as shown in Figure 3,1.

An adiabatic circular cylinder is placed at the center of the Cavil) and the opposite wall to the

aperture is heated by a constant heat flux, The top and bottom walls arc kept at [he constant

temperature. Two-dimensional forms of Navicr-SlOkes e4uations along with the energy

equations are solved using Ga1crkin finite dement method. Results are obtained for a range of

Gra.hof number from 10' to 10' at I'r ~ 0.12, 1,0 and 7.0 with constant physical properties. The

parametric ~("die" for a wide range of governing parameters show comi,lent performance of the

present numerical approach to obtain as stream functions and temperature profiles. TIle

computational results indicale !hat the heat transfer coefficient is strongly affected by Grashof

number. U,ing Nusselt number and Grashof nllmber de,dop' an empirical correlation.

Obviously for high values of Gra,hof number the errors encountered arc appre<:iable and hence it

is nece'sary to perform some grid ,i"" testing in order to establish a suitable grid sim. Grid

independent solution is ensured by comparing the resuUs of different grid mesbe, for Gr = 10',

which was the highest Gmsbof number. The tol1l1domain is diseretized inlo 4806 element, tbat

res"lt in 32643 nodes.

The effect of inclination angle is examined for <D= 0", 10', 30', 45' witb aspect ratio A = I. A

comparison bem'eell the steady-state pattems of streamlines from Grashof numbers of 10' 10 10'

wi!h different angles is presented in Figure 4.1 - 4.15. Also a eompariwn between tbe steady_

Slal.Cpallem, of isotherms from Gra.,hof numbers of 10' to 10' with different anglcs ;s prcscnled

in Figure 4.1 - 4.15. For tbe isotherm, the tigures show !hat as the Grasbof number and tbe

inclination angle increases, the buoyancy force inerea,e, and the thennal bonndary layers

be<:ometbinner. for the streamline" tbe figure, sbow tbat tbe fluid enters from the bottom of the

aperture, circulates in a clockwise direelion follo",ing the shape of tbe cavity, and leaves toward _

tile upper part of the aperture. The streamline patterns is very similar for first one Gra.,hof

number and the inclination angle, but the fluid moves faster for Gr = 104.Also, for Gr ~ 10' and

10", the streamline patterns is similar but the upper bOlllldary layer becomes thinner and faster,

the velocity of tile air flow moving toward the aperture increa'es, and the area that is occupied by

the leaving hot fluid decreases compared with that of the entering fluid. Isolherms and

streamlines ,how tbat as the inclination angle of the heated wall increases, the velocity gradient

incre"ses at upper heated wall, the strength of the circulation increases. The results are presented

in terms of streamlines and isolherm paUems. The variations of the average Nusselt number and

average temperalure are also highlighted .. The results in the steady state arc oblained for a
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Grashof range from 10' to 10'and for a range of 0'.45" lor the inclination angles of tho oavity,

The results show that for high Grashof numbers, the Nusselt number ohanges substantially with

the inclination angle of the cavity. Tho numerical model pre<:!ictcdNu,,,,1t number oscillations

for low angles and high Gra,hofnumber:s,

In order to validale the numerical code, pure natural convection with Pr ~ 0.72 in a square open

ca,ity was solved, and the results were compared with tho,e reported by Hinojosa et al. (2005),

obtained with an extended computational domain. In Table 4.1, a comparison between the

"verage Nusselt number is presented, The resulls from the present experiment <lfealmost samc as

Hinojosa et"1.

Table 4.1: Comparison oflhe results for the constanl ,urface temperature with Pr ~ 0.72.

G, Nu"

Present work Hinojosa et aL (2005)

" 1.32 1.30

10 3.45 3.44

10 7.41 7.44

10 14.44 14.5 1

4.1 EFFECTS OF INCLINATION ANGLE

With the increase of the Grashof number, complex flow paUem ch"racteristics were found for

somc inclination angles, To sho" this, the profiles of isotherm and streamline and inclination

angles of 0', 15", 30' and 45" are presente<:!in Fig. 4.1 to 4.15, For incl ination angles of the cavity

between 0" and 45', the steady state ean nOl be reached; the instantaneou; pictures show that lhe

fluid enters and leaves in a very irregular way, indieating an unsteady convection, The cold fluid

cnlcrs by the lower section of th~ ap~rture plane, withoul symm~try, and the hot fluid leaves by

th~ upper section, The vdocity magnimdc of the leaving fluid is greater than th~ incoming fluid,

and thus the thermal boundary layer at the top wall beeomes much thinner. For the tilted angle of

45", the air flow entering "nd leaving the eavity decrease, its velocity considerably.

In Table 4.2, av~rage Nusselt number for different cavity's inclination angles and Grashof

number" obtained with lh~ present modcl for Pr ~0.72 and dr=0.2 is presented. Table 4.2

presents the average Nusselt numbers for four Gmsh"f numbers (I 0', I0', 10'and 10') for" range

01'0'.45° for the tilted angles oflhe open cavity. For different angles "nd Or numbers, mainly for
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lo"er angies and for higher Gr, lhe average Nusselt number increases. Therefore, in Table 4.2,

the average Nu'selt numbers and lheir standard deviation are repor1ed.

In Fig.4, 16, we observe that the heat transfer rale Nu increases with the increase of inclinalion

angle, and increase of Grashof number.

Table 4.2: Average Nussclt number Nu for different cavity's inclination angle, <I>and
Grasofnumbers for l'r =0,72 and dr==O.2,

Nu"

• Gr=iO Gr=10 Gr W- OFW

0" 3.2421358 3.2695525 4.0484195 5.453783

,,' 3.244i77 3.2988331 4.1695323 5.582469

30' 3,2482889 3.3173974 4.2411466 5.608271

45" 3.2544684 3,3222377 4.271296 5,563731

4.2 EFFECTS OF PRANDTL NUMBER

For investigating the effects of Prandti number on lhe flow and heat transfer characterislics, a

smdy forPr= 0.72,1.0 and 7.0. The predicted isothenn, and slreamlines are shown in figure 4.1
to 4. i 5. It is seen lhal fluid moves clock wise around lhc cylinder.

In Table 4.3, average NusseII numbers for different Prandlt numbers while Pr= 0,72, 1.0 and 7.0

and Grasofnumbers, obtained "ith the present model for angle <!>~0' and diameter ratio dr = 0.2

is presented.

Figure 4.19 shows the averageNusselt number variation for different Prandtl numbers while Pr=

0.72, 1.0, 7.0 In Fig.4.19, we observe that average Nusselt number Nu decreases with increasing

of Grashof number Gr and increasing of Prandtl numbcr Pr, The ,imilar behavior is observed in

Fig 4.20, 4.21 aud 4.22, H~al transfer characteristics become low for iower Prandtl number f'r ~

0.72 and high fol' higher Pr ~ 7.0, So lhe resulls ,how insignifLcant for different angles.

The temperature is higher in the easc of Pr~ 7.0 than in the case of I'r= 0.72. This is becau>c,

the lluid with Pr ~ 7.0 has a lower thermai ditl\lsivity lhan lhal of the fluid with f'r = 0.72.

Hcnee, the fluid "ilh Pr - 7.0 will tend to exchange less heat wilh surrounding fluid by

diffusion.
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Table 4.3, Average Nusselt number, for different Prandtl number while Pr ~ 0.72, 1,0
and 7.0, angle <1>=0' and dr - 0.2.

A'u,,,

P, Gr-lao G, " Gr-IO Gr-l0

0.72 3.2421358 3.2695525 4.0484195 5.453783

, .0 3,2313557 3.3345096 4,2389865 5.8061547

7.0 3,2676048 4,1116834 5.7404647 8.43430 I

4.3 EFFECTS OF DIAMETR RATIO

In Table 4,3, average NU55elt numbers for different diameter ratios while dr ~ O. 2, 0.3 and 0.4

and Gra,hof numbers, obtained with the prescnt model for angle <I>~0" and Prandlt number

~0,72 is presented. Figure 4.23 ,hows average Nussclt number increases with increasing of

diameter ratio of the cylinder.

Table 4.4: Awrage Nusselt numbers for difterent diameter ralios whi Ie dr = 0, 2, 0.3
and 0.4, angle <P~0' and Pr= 0.72.

Nu"

d, Gr-l0 Gr=lO Gr=IO Gr-l0

o 7 3.2421358 3.2695525 4.04~4195 5.453783

OJ 3.188554 3,21l96665 4.0131702 5.4594J5

04 3.1257522 3.1240125 3,9524283 5.453659
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CONCLUSION
rwo-<limensional laminar steady state natural convection flow in a rectangular open cavity

with the lefl wrtical wall is at constant heat ilu.~ ha, been studied numerically. i\ finile

element method for steady-state incompressible natural convection flo", is presented. The

finite element C{Juations",ere derived from the governing flo", equalions that oon,ist of the

eon,ervation of ma~" momentum, and energy equations. The derived finite dement

C{Juatjonsare nonlinear requiring an iterative lechnique solver. The Nc\\10n-Raphson

iteration mcthod has applied 10 solve these nonlinear equation, for solutions of the nodal

velocily component, tcmpcrature. and pres>ure hy considering Prandll nlllnhers between

0.72,1.0 and 7.0 and Grashofnumbers bct'llcenW' to 10'. '('he results show that

.:. Heal lransfer depends on Prandtl number and heat trllllsfer rate increase, for higher

Prandtl number.

•:. Thel1l1alboundary layer thiekness is thinner for increasing of Grashof nummber.

•:. Thc heat lran,fer rate decreases for certain Gmshof number (10') and increases

gradually for increasing ofGmshofnumber .

•:. The heat transfer ratc Nu increa,es ",ith the increase of inclination angles and

increase ofGrashofnumbcr.

-:. TIICheat tmn,fer rale Nu increases with the increase of dilUneterratio and increase of

Grashofnumbcr .

•:. Various vortices enlering into the flo", field and a sccondary v(}rtexal the center of

the cavity is Seen in the streamlines.

EXTENSION OF THIS WORK
In lhi, work, we considered two-dimcnsional laminar steady-state natural convcction III a

rectangular open cavity. An adiabatic circular ~) linder is placed at the ccntcr of the ~avily lllld

the left sidewall Is healed by a constant heat flux. The top and boltom walls are kept at the

amhient constant tcmperature .

•:- If we consider the heated cylinder inside the cavity instead of adiabatic cylinder then

we can extend Ourproblem.

•:- Also taking the non-unifonn surface temperalure, the problem can be extendcd.

,
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Fig.4.22: Effect ofPrandll number on average Nu"elt number and Grashof number
while Pr ~ 0,72, 1.0 and 7.0, angle 45' and dr ~ 0.2.
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