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ABSTRACT

A numerical simulation of two-dimensional laminar sicady-siate natural convection in a
rectangular open cavity has been investigaled, An adiabatic circular eylinder s placed al the
eenter of the cavily and the opposite wall to the aperture is heated by a consiant heat flux. The
top and bowom walls are kept at the constant temperatere, The fluid is concemed with Prandtl
numbers .72, 1.0 and 7.0. The properiies of the fluid were assumed 1o be constant.’] he physical
problems are represented mathematically by difTerent sets of poverning equations zlong with the
corresponding boundary conditions. In this thesis, a finite element method for steady-state
incompressible natural convection flows has been developed. The non-dimensional governing
equations are discretized by using Galerkin weighfed residual method of finite element
formulation. The obtained results are presented in terms of streamlines and isotherms, heat
transfer characteristics Nusselt numbers  for Grashof numbers from 107 to 10° and for an
inclination angles of the cavity ramges for 0°,15°30%nd 45 The obiained results arc also
presented with the variation of diffcrent diameter ratios of the cylinder. T'he results show that the
Nusselt numbers increase with the increasing of Grashof numbers. Also (he Nusselt number
changes substantially with the inclination angle of the cavity while better thermal performance is
alsa scnsitive (0 the boundary condition of the heated wall. Mesh refinement led to solutions for

Grashof numbers from 10 to 10°.
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CHAPTER 1

b L PP o

INTRODUCTION

1.1 GENERAL

Heat transfer is that science which seeks to predict the energy transfer which may take place
between malerial bodies as a result of 8 temperature difference, Thermodynamics teaches that
this energy transfer is defined as heat. The science of hcal transfer seeks not merely to explain
how heat energy may be transferred, but alse 1o predict the rate at which the exchange will take

place under ceain specified conditions.

The phenomenon of heat transfer was known to human being even in the primitive age when
they used to use solar energy as a source of heat. Heat transfer in its initial stage was conceived
with the invention of five in the carly age of human civilization, Since then its knowledge and use
has becn progressively increasing each day as it is directly related to the growth of human
civilization. With the invention of stream engine by James watt in 1765 A, D, the phenomenon
of heal transfer got its first industrial recognition and after that its use extended to a great extent
and spread out in different spheres of engineering Nelds. In the past three decades, digital
computers, numerical techniques and development of numercal medels of heat transfer have
made it possible to calculate heat transter of considerable complexity and thereby create a new

approach to the design of heat transfer equipment.

The smdy of the universe has led to the realization that all physical phenomena are subject o
natural laws. The iterm natural might weli be used w describe the framework or system of
fundamental and universal imporiance within this system is the mechanisms for the transfer of
heat. Heat transfer is a branch of applied thermodynamics. It estimates the rate at which heat is
transferred across the system boundaries subjecicd 1o specific temperature differences and the
wemperature distribution of the syslem during the process. Whercas classical thermodynamics
deals with the amount of heat transferred during the process. Heat transfer processes have always

been an integral par of our environment.

The study of temperature and heal transfer is of great importance to ihe engmeers because of its
almost vniversal occurrence in many branches of science and engineering. Although heat transfer
analysis ts most imperiant for the proper sizing of fuc] clemenis in the nuclear reactors cores to
prevent birmout, the performance of aircrafl alse depends upon the case with which the structure
and engines can e cooled. The design of chemical plants is usually done on the basis of heat

transfer analysis and the analogous mass (ransfer processes. The transfer and conversion of
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energy from one form to ancther is the basis Lo all heat transfer process and hence, they are
gavemned by the first as well as the second law of thermodynamics. Heat transfer is commonly
associated with fluid dynamics. The knowledge of temperature distribution is essential in hest
transfer studies because of the fact that the heat flow takes place only wherever thers is a
temperalure gradient in a system. The heat Dux which is defined as the amount of heat transier
per unit area in per unil lime can be caleulated from the physical laws relating to the temperature

gradient and the heat (Tux.

1.2 HEAT TRANSFER MECHANISM

Heat is the form of energy that can be transferred from one system to another as a result of
lemperature difference. A thermodynamic analysis is concerned with the amount of heat transler
as a gystem undergocs a process from one equilibrium state to another. The science that deals
with the delermination of the rates of such crergy (ransfers is the heat transfer, The transfer of
energy as heat is always from the higher temperature medium to the lower tetperature one, and

heat transfer stops when the bwo mediums reach the same lemperature.

Heat can be transformed in three different mechanisms or modes: conduction, convection and
radiation. All modes of heat transfer require the existence of a temperature difference, and all
modes are from the high temperature medivm to a lower temperature one. In reality, the
combined effect of these three modes of heat transfer control iemperaiure distribution in a

medium. A brief description of canvection mode is given below.

1.3 CONVECTION

Convective hcal transfer is the heat transfer mechanism affected by the Dow of Duids. The
amaount of energy and matter are conveyed by the fluid can be predicted through the convective
heat transfcr. The convective heat transfer bifurcates into two branches; the natural convection
and the forced convection. Forced convection regards the heat transport by induced fluid motion
that is forced to happen. This induced flow needs consistent mechanical power, But natural
conveetion dilfers from the forced convection through the Muid Dow driving foree that happens
naturally. The flows are driven by the buoyancy elfect due to the presence of density gradient
and gravitational field. The density difference gives rise to buovancy effects due to which the
flow ts genernted. Buoyaney is due to the combined presence of the fluid density gradicnt and the
body force. As the temperature distribution in the natural convection depends on the intensity of
the Tluid currents that is dependent on the temperature potential itself, the gualitative and
quantitative analysis of natural convection heat transfer is very difTicult. Numerical investigation
instead of thcorelical analysis is more needed in this field. Two types of natural convection heat

transfer phenomena can be observed i the nature. One is that external free convection that is
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caused by the heat (ransler interaction between a single wall and a very large fuid reservoir
adjacent (o the wall. Another is that internal free convection which befalls within an enclosure.
The thermo-fluid fields developed inside the cavity depend on the oricalation and peometry of
the cavity, Reviewing the nature and the practical applications. the enclesure phenomena can be
organized into two classes, One of these is enclosure heated from the side which is found in solar
collectors, double wall insulations, laptop cooling system and air circulation instde the room and
another one s enclosure heated from below which happens in geaphysical system like natural

circulation in the atmosphere, (he hydrosphere and the molten core of the earth.

Convective heat transfer or, simply, convection is the study of heatl transport processes affected
by the fow of (uids. Convective heat transfer, clearly, is a field at the interface between two
older fizlds-heat transter and {luid mechanics, Before reviewing the foundations of convective
heat transfer methodelogy, it is worlh reexamining the historic relationship between Muid
mechanics and heat transfer at the inlerface. Especially during the past 100 vears, heal transfer
and Muid mechanics have enjoved a symbictic relationship in their parallel develepment.
Convectien is that mode of heat transfer where energy exchange ocours berween the parlicles by
conveetion current. It may be explained as; when fluid flows vver a solid body or inside a
channel while lemperatures of the (luid and the solid surface are dilferent, heat transfer betwesn
the fluid and the solid surface takes place as a consequences of the moiion of the Muid relative to
the surfaces; the mechanism of heat transfer called convection. In the diversity of the studies
related to heat transfer, considerable effort has been directed at the convective mode, in which
the relative motion of the fiuid provides an additional mechanism for the transfer of heat and
materials. Cenvection is inevitably coupled with the conductive mechanism, since though the
fluid motion modifies the trangport process, the eventual transfer of heat from one Fluid element

te another in its neighborhood is through conduction.

The conveetion mode of heat transter is further divided into two basic processes, [f the motion of
the Nuid arises due to an external agent, such as the externally imposed (ow of fluid stream over
a heated object, the process is termed as forced convection, The tluid flow may be the results of,
for instance, a fan. a blower, the wind or the motion of the heaied objeet itsell. Such problems are
very frequently encountered in technology where heat transfer to, or from, a body is ofien due to
an imposed flow of a fluid al a temperature different from that of the bodv. It has wide
applications in cempact heat exchanger, ceniral air conditioning system, cooling tower, pas
turhine Ylade, internal cooling passage, chemical engineering process industries, nuclear reactors
and many other cases. If, on the other hand, no such externally induced Flow is provided and the
flow arises “nawrally™ simply due to the elfect of & density dilfcrence, mesulting from a
temperatore difference, in a body [oree Deld, such as gravitational field, the process is termed as

natural or free convection. The density deferenee gives rise to buoyancy effects due to which the
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flow is generated. A heated body cooling in ambient air generates such a Mow in the region
surrounding it. Similarly, the buoyant Mow arising from heal rejection to the atmosphere and to
other ambient media, Heat transfer by free convection oveurs in many enginecring applications,
such as heat transfer from hot radiators, refrigerator coils, lramsmission lines, clectrie

lransformers, electric heating elements and electronic cquipment etc.

The convection heat transfer that 15 neither dominated by pure forced nor pure free convection,
but is raiher a combination of the two is referred as combined or mixed convection, The
buoyancy forees that arise as the results of the temperature differences and which cause the Muid
flow 1 free convection also exist when there is a forced flow. The effects of these buoyancy
torces are however; usually negligible when Lhere is a forced flow, In some cases, however, these
buoyancy forces do have a significant influence on the Mow and consequently on the heat
transfer rate. In such cases, the flow about the body is a combination of forced and free
convection; such fMows are referred to as mixed convection. For example, heal transfer from one
fluid to another fluid through the walls of pipe occurs in many practical devices. In this casc, heat
i5 translerred by convection from the hotler Muid to the one surface of the pipe. Heat is then
transferred by conduetion through the walls of the pipe. Finally, heat is transferred by convection

from the other surface to the colder tloid.

1.4 SOME DEFINITIONS

Some basic definitions that are related to the corrent study are presented below.

1.4.1 THERMAL CONDUCTIVITY

Thermal conductivity of a material can be defined as the rate of heat transfer through a unit
thickness of the matcrial per unit area per unit lemperature difference. Uherefore the thermal
conductivily of a material is a measure of the ability of the material to conduct heat. A high value
for thermal conductiviry indicates that the matenial is a good heat conductor, and a low value for
thermal conductivity indicates that the material is a poor heat conductor or insulator. For
example the materials such as copper and silver that are good electric conductors are also good
heal conductors, and have high values of thermal conductivity, Materials such as rubber, wood
are poor conductors of heat and have low conductivity values. The rate of heat conduction
through a medium depends on the geometry of the medium, its thickness, and the material of the
medium, as well as the temperature dilference across the medivm, Tle proportionality constant k

is called thermal conduciivity of ithe material.
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1.4.2 THIERMAL DIFFUSIVITY

The time dependent heat conduction equation for constanl k contains a quantity ¢, called the
thermal diffusivity. Thermal diffusivity represents how fast heat diffuses through a material and

18 defined as

w=
pC,

Here the thermal conductivity x represents how well a material conducts heat, and the heal
capacity pCp represcnts how much energy a malerial stores per unit votume. Therefore, the
thermal ditfusivity of a material can be vicwed as ihe ratio of the heat conducted (hrough the
materiai to the heat stored per unit volume. A material that has a high thermal conductivily or a
low heat capacity will obviously have a large thermal diffusivity. The larger thermal diffusivily
means that the propagation of heat into the medium is faster, A small value of thermal diffusivity

means the malerial mostly absorbs the heat and a small smount of heat is conducted Turther.

1.4.3 INTERNAL AND EXTERNAL FLOWS

A Nuid Now is classified as being internal or external, depending on whether the fluid is forced to
flow in a confined channel or over a surfage, An internal flow is bounded on alt sides by solid
surfaces except, possibly, for an inlet and exit. Flows through a pipe or in an air-conditioning
duct are the examples of intemal flow. Internal flows are dominated by the influence of viscesity
throughout the fow field. The internal Mow configuration represents a convenient geometry for
the heating and cooling of [uids used in the chemical processing, environmental control, and
chergy conversion arcas. The flow of an unbounded Muid aver a surface is exicmal Aow. The
flows over curved surfaces such as sphere, cylinder, airfoil, or turbine blade are the example of
external (low, In external Mows the viscous effects are limiled to boundary layers near solid

surlaces.

1.4.4 BOUNDARY LAYER

Since fluid motion is the distinguishing feature of heat conveciion, it is necessary to understand
some of the prnciples of fMuid dynamics in order to describe adequately the processes of
convection. When a fluid Qows over a body, the velovity and temperature dismribution at the
immediate vicinity of the surface strongly inflluence by the convective heat transfer. In order to
simplify the analysis of convective heat transfer the boundary laver concept frequently is
introduced to model the velocity and temperamre ficlds near the solid surface in order to simplify
the analysis of convective heal transfer. So we are concerned with twa dilferent kinds of

boundary layers, the velocity boundary layer and the thermal boundary layer,

L
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The velocity boundary layer is defined as the narrow region, near the solid surface, over which
velacity gradicnis and shear stresses arc large, but in the region outside the boundary laver,
called the potential-flow region, the velocity gradients and shear stresses are negligible. The
exact limit ot the boundary iayer cannot be procisely defined because of the asymplotic nature of
the veloeity variation. The limit of the boundary layer is usually taken to be at the distance from
the surface, at which the fluid velocily is equal to a predetermined porcentage of the free stream
value, &/, . This percentage depends on the accuracy desired, 99 or 95% being customary.
Allhough, outstde the boundary laver region the flow is assumed to be inviscid, but ingide the
boundary layer the viscous Mow may be either laminar or turbulent. In the case of laminar
boundary layer, Muid motion is highly erdered and it is possible 1o identify streamlines along
which pariicles move. Fluid motion along a streamline is characterized by velocity components
i both the x and y directions. Since the velocity compenent v is in the direction normal to the
surlace, it can contribute significantly to the transfer of momentun, energy or species through
the boundary layer. Fluid motion normal to the surface is necessitated by boundary layer growth
in the x direction. [n contrast. Muid motion in the turbulent boundary iayer is highly irregular and
is characterized by velocity Muctuations. These fluctuations cnhance the transfer of momemtum,
energy and species and hence increase surface friction, as well as convection transfer rates. Dug
to Muid mixing resuiting from the fluctvations, turbulent boundary layer thicknesses are larger
and boundary layer profiles are flatter than in Jaminar flow. The thermal boundary layer may be
defined (in the same sense that the veloeity boundary layer was defined above) as the namow
region berween the surface and the point at which the fluid temperature has reached a cemain

percentage of ambient temperature T, . Quiside the thenmal boundzry laver the Muid is assumed
to be a heat sink at a uniform lemperature of T, The thermal boundary layer i generally not

coincident with the velocily boundary laver, althouph it is certainly dependent on it. If the fluid
has high thermal conductivity, it will be thicker than the velocity boundary layer, and if

conductivity is low, it will be thinner than the velocity boundary layer.

1.4.5 FLOW WITITIN AN ENCLOSURE

The flow within an enclosure consisting of two horizomtal walls, at different temperatures, is an
impertant circumstanee encountered quite frequently in practice. In all the applications having
this kind of situation, heat transfer cccurs due (o the temperature difference across the tleid layer,
one herizontal solid surface being at a temperature higher than the other. If the upper plate is the
hot surface, then the lower surface has heavier fluid and by virtue of buoyancy the fluid would
nol come to the lower plate. Becausc in ihis case the heat transfer mode is restricicd to only
conduction. But if the fuid is cnelosed belween two horizontal surfaces of which the upper

surface is al lower temperature, there will be the exastence of cellukir natural convective currents
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which are called as Benard cclls. For Muids whose density decreases with increasing temperature,

this leads to an unstable situation.

1.4.6 TILTED ENCLOSURI:

The tilted enclosure geometry has reccived considerable attention in the heat transfer literature
because of mostly growing interest of solar collector technology. The angle of tilt has a dramatic
impact on the flow housed by the enclosure. Consider an enclosure heated from below is rotated
about a referenee axis. When the tilted angle becomes 90°, the NMow and thermal ficlds inside (he
enclosure experience the heating from side condition. Thereby convective currents may
pronounce over the diffusive currents, When the enclosure rotates to 180, the heat transfer

mechanism switches to the diffusion because the top wall is heated.

1.4.7 BOUSSINESQ APPROXIMATION

The governing equations for convection flow are coupled elliptic partial differential equations
and are, thercfore, of considerable complexiny. The major problems in obtaining a solution o
these equations lic in the inevitable variation of density with lemperature, or concentration, and
in their partial, elliptic nature. Several approximations are generally made to considerably
simplify these equations. Among them Boussinesq approximation atiributed to Boussingsg
(1903} is considered here. In flows accompanied by heat transfer, the Muid properties are
normally [unctions of temperature. The variations may be small and yet be the cause of the fAuid
motton. If the density variation is not large, one may treat the density as constant in the unsteady
and convection terms, and treat it as varizble only in the gravitational term. This is called the

Boussingsq approximation.

1.5 DIMENSIONLESS PARAMETERS

The dimensionless parameters can be ihought of as measures of the relative importance of certain

aspects of the Mow, Some dimensionless parameters related to our swdy are discussed below:

Grashof number Gr

The flow regime in free convection is governed by the dimensionless Grashof number, which
represent the ratio of the buoyancy force 1o the viscous forces acting on the fluid, and is defined
as

gpl(r,-1.)

P,E

Gr

where g is the acceleration due to gravity, #is the volumnetric thermal expansion coeflicient, T, is

the wall (emperature, 7. is the ambient temperature, L is the characteristic lengrh and v is the
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kinematics viseosity. The Grashof number Gr plays same role in free convection as the Reynolds
number Re plays in forced convection. As such. the Grashof number provides the main criterion
in determining whether the fluid [ow is laminar or turbulent in free convection. For vertical
plates, the critical value of the Grashol number is observed to be about 10%. Therefore, the flow

regime on a vertical plate becomes turbulent at Grashof numbers greater than16°,

Prandt]l Number Pr

The relative thickness of the velocity and the thermal boundary layers is best described by the

dimensionless parameter Prandil number, defined as
Pr= Molecular diffusivily of momentum / Molccular diffusivity of heat = o/ &

It is named afier Ludwig Prandtl, who introduced the concept of boundary layer in 1904 and
made sigrificant contributions to boundary layer theory. The Prandtl numbers of fluids range
from less than 0.04 for fiquid metals to more than 100,000 for heavy oils. Note that the Prandt]
number is in the order of 7 for water, The Prandtl numbers of gases are about 1, which indicates
that both mementum and heat dissipate through the fluid at about the same rate. Consequently
the thermal boundary layer is much thicker for liquid metais and much thinner for oils relative to

the velocity boundary layer.

Nusselt Number Vu

The Nusselt number represents the enhancement of heat transfer through a fluid layer as a result

of conveetion relative to conduction across ihe same fluid layer, and is defined as
Nu=hi/k

where £ is the thermal conductivity of the fluid, 4 is the heat transfer coefficient and L is the
chameteristics length. The Nusselt number 15 named after Wilhelm Nusscli, who made
significant contributions to convective heat transfer in the [irst hall of the twentieth century, and
it is viewed as the dimensionless convection heat transfer coefficient. The larger Nusselt number
indicales a large temperature gradient at the surface and hence, high heat transfer by convection.
A Nussell number of Ny = |, for a fluid layer represents heat transfer across the layer by pure
conduction. To understand the physical significance of the Nusselt number, consider the
following daily life problems, We remedy (o forced convection whenever we want to increase
the rate of heat franster from a hot object. In free convection flow velocities are produced by the

buoyancy forces henge thers are no cxlemally induced flow velocities.

% 4
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1.6 MAIN OBJECTIVES OF THE WORK

The present study has focused on the development of a malhematical model and numerical

techniques regarding the effects of namral convection flow around an adiabatic circular cylinder

placed in a reetangular open cavity,

The specific objectives of the present research work are as [ollows:

A mathematical model] regarding the effeet of natural convection flow around an adiabatic

circular cylinder placed in a rectangular open cavity has developed.

To visualize the fluid Mow and temperature distribution inside the enclosure in terms of

streamling and isoltherm plots.
The analytical model has numerically solved using Gnite element method.

To investigate the effects of Grashof number and Prandtl number on the heat transfer

characteristics (Nusselt number).

To investigale the effects of diameter ratio of adiabatic cylinder on natural convection
placed inside an open cavity,

To carry out the validation of the present finite clement model by investigating the effect of
natural convection heat transfer in a rectangular open cavity.

To examine the effects of inclination angles of the enclosure on the heat transfer

characteristics,

‘#
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LITERATURE REVIEW

Natural convection in open cavities has received considerable attention because of iis importance
in several thermal cngineering problems, for example, in the design of electronic devices, solar
thermal receivers, uncovered fat plate solar collectors having rows of vertical sirips, geothermal
reservoirs, £tc. During the past two decades, several experiments and numerical calculations have
becn presented for describing the phenomenon of natural convection in open cavities. Those
studies have boen focused to study the effect on flow and heat transfer for difterent Rayleigh

numbers, aspect ratios, and tilt angles.

Natural convection in an air Glled, differentially heated, inclined square cavity with a diathermal
partition placed at the middle of its cold wall was numerically studied for Rayleigh numbers 10°
to 10°. It was observed thal due to suppression of convection, heat transler reductions up to 47
percent in comparison to the cavity without partition obscrved by Frederick (1991). Laminar
natural convection and cenduction in enclosures wilh multiple vertical paritions are studied
(heoretically try Kangni et al. (2003). The study covers Rayleigh number Ra in the range 10°-10’,
Pr = (.72 {air) aspect ratio 5-20, cavity width 0.1-0.9 and partition thickness .01-0.1. Thev
found that the heat transfer decreases with increasing partition number ai high Rayleigh number
for all conductivity ratios Kr and heat transfor decreases with increasing parlition thickness C at
all Ra except in the conduction regime where the cffect is negligibly small. The offender
partitions arc less effective in decreasing the heat transfer, Nusselt number is also a decreasing
{unction in the aspect ratio. Tasnim and Collins (2004} determined the effect of a horizontal
baffle placed on hot (left) wall of a differentially heated square caviry. Tt has been found that
adding baffle on the hot wall can increase the rawe of heat transfer by as much as 31.46 percent
compared with a wall without baffle for Ra = 104. When Ra = 105 the increase in heat transfer is
| 3.3 percent for the same balfle lengih and the increases in heat transfer iz 19.73 percent, when
the longest baffle is attached at the middle of the cavity. Bilgen and Oztop (2005) studicd
numerically the sicady-state heat transfer by natural convection in partially open inclined square

cavilies,

Natural convection in [luid-filled rectangular enclosures has received considerable atiention over
the past several years duc to the wide variery of applicalions that involve natural convection
precesses. These applications span such diverse [lelds as solar energy collection, nuclear reactor
operation and safety, the encergy efficient design of building, room, and machinery, waste
disposal, and fire prevention and safety. The oscillation-induced heal transport has been studied

by a number of researchers dug to its many industrial applications, such as bicengineering,
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chemical engineering, and so forth. Kuhn and Oosthuizen (1987} numerically studied unsteady
natural conveetion in a partially heated rectangular caviry. They concluded that as the heated
lecation moves from the top to the bottom, the Nusselt number increases up to a maxtmum and
then decreases. Lakhal ct al. (1999) studied the transient natural conveetion in a square cavity
partially heated from side. In the first, the temperature is varicd sinusoidal with time while in the
seeond; it varies with a pulsating manner, The results showed that the mean values of heat
transfer and flow intensily are considerably different with those obtained in stationary regime. Le
Quere et al (1981} investigated the efMect on the Mow feld and heat ransler of the Grashof
number as it varied from 10* to 3x10™ the temperature difference berween the cavity walls and
ambicnt changed from 50 to 500 K, the aspect ratio varicd beiween 0.5 and 2, and the inclination
angle of the cavity was modificd from 0 to 45° (for 0" the wall opposite the aperture was vertical
and the angles were taken elockwise}. The results of the paper showed that the Nusselt number
diminished with the increase in the inclination angle, and that the unsteadiness in the flow akes
place for values af the Grashol number greater than 10° and inclination angles of 0°. Showole
and Tarasuk {1993} investigated, esperimentally and numerically, the natural steady state
convestion in a two dimensional isothermal apen cavity, They obtained experimental results for
air, varying the Rayleigh number from 10 to 5.5 x10¥, cavity aspect ratios of 0.25, 0.5 and 1.0,
and inclination angles of 0, 307, 45" and 607 (for 07, the wall opposite the aperture was horizontal
and the angles were taken clockwise). The numerical results were calculated for Rayleigh
numbers between 10" and 5.5x10°, inclination angles of 0 and 43", and an aspect ratio equal to
one. The results showed that, for all Rayleigh numbers, the first inclination of the cavity caused a
significant increase in the average heat transfer rate, but a further increase in the inclination angle
caused very little increase in the heat transfer rate. Another result observed was that, for 0%, two
symmetric counter rotating eddies were formed, while at inclination angles greater than 0°, the

symmetric flow and temperature pattems disappear.

Mohamad (1995) studied numerically the natural convection in an inclined two-dimensional
open cavity with ene heated wall opposite the aperiure and ™o adiabatic walls. The author
analyzed the influence on fluid flow and heat wransfer, with the inclination angle in the range 10°-
90" (for 90" the wall opposite the aperture was vertical and the angles were taken clockwise), the
Rayleigh number from 107 to 10", and the aspect ratio between 0.5 and 2. The study concludes
that the inclination angle did not have a significant effect on the average Nussclt number from
the isothermal wall, but a substantial one on the local Nusselt number. Polat and Bilgen (2002)
made a numerical study ol the conjugate heat transfer by conduetion and natural convection in an
inclined, open shallow caviry with a uniform heat {lux in the wall opposite to the aperture. The
parameters studied were: the Raylcigh number from 10° to 10", the conductivity ratio from | to

60, the cavity aspect ratio from 1 to 0.125, the dimensionless wall thickness from Q.05 to (.20,

11
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and the inclination angle from 0 1o 45° from the horizontal (for 0°, the wall opposite the aperture

was vertical and the angles were tnken counterclockwise).

Le Cuere et al (1981) investigated thermally driven laminar nalural ¢onvection in enclosures
with isothermal sides, one of which facing the opening. They used primitive variables and finite
difference expressions suitable for (realing problems with large temperature and density
variations. The computatienal domain was an enlarged domnain comprising a square open cavity
and a far field surrounding it. Penot (1982) stedied a similar problem wsing sircam [metion-
vorticity formulation, He also used an enlarged computational domain similar 1o that of Le Quere
et al {1981) with approximate boundary conditions. Chan and Tien (1985) studied numerically a
square open cavity, which had an isothermal vertical heated side facing the opening and two
adjoining adiabatic horizontal sides. The buundary conditions at far field were approximaied to
obtain satisfactory solutions in the open eavity. Chan and Tien (1985) studied numerically
shallow open cavitics and also made a comparison study using & square cavity in #n enlarped
computational domain, They found that for a square open cavity having an isothermal vertical
side facing the opening and two adjoining adiabatic honizonial sides, satisfactory heat transfer
reselts could be obtained, especially at high Rayleigh numbers. In a similar way, Mohamad
(1995} studied inclined open square cavitics, by considering a restricted computational domain.
Difterent from those by Chan and Tien {1985), pradients of both velocity components were st 1o
zero at the opening plane. It was found that heat transfer was not sensitive to inclination angle
and ihe Now was unstable at high Rayleigh numbers and small inclinations angles. Polat and
Bilgen {2002) studied numerically inclined open shallow cavities in which the side facing the
apening was heated by constant heat flox, two adjoining walls were insulated and the opening
was in contact with a reservoir at constant temperamre and pressure. The computational domain

was restricted to the cavity,

The finile clement methed is one of the numerical methods that have reeeived popularity due to
its capability for solving complex strugtural problems (Cook, 1989, Zienkiewicz, 1991). The
method has been extended to solve problems in several other fields such as in the ficld of heat
transfer (Lewis et al., 1996, Dechaumphai, 1999), electromagnctics (Jini, 1993}, biemechanics
{Gallagher et al., 1982), etc. In spite of the great success of the method in these felds, its
application o fluid mechanics is still under intensive research. This is duc o the fact thal the
governing, differential equations for general Mow problems consist of several coupled equations
which are inherently nonlincar. Aecurate numerical solutions thus require a vast amount of
computer time and data storage. Onc-way Lo minimize the amount of computer time and data
storage used s to employ an adaptive meshing technique {Dechaumphai, 1993, Peraire ot al.,

1987) The technique places small elements in the regions of large change in the solution
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gradients to increase solution accuracy, and at the same (ime, uses large elements in the other

Tegions to reduce the computational time and computer memory,

Goutam Saha et al {2007) studied a numerical simulation of two-dimensional laminar steady-
state natural convection in a sguare tilt open cavity has been numerically studied. The opposite
wall to the aperture is kept at either constant surface temperature or constant heat flux, while the
surrounding Muid interacting with the aperture is maintained at an ambient temperature. The two
remaining walls are assumed to be adiabatic. The fluid concerned is air with Prandtl number
fixed al 0.71. The goveming mass, momentum and energy equations are expressed in a
normalized primitive variables formulation. A finite element method for steady-smate
incompressible natural convection flows has been developed. The streamlines and isotherms are
produced, heat transfer characteristics ts obtained for Rayleigh numbers from 107 to 10% and for

an inclination angles of the cavity ranges from 0° to 60°,

In experimental studies of Ozoe et al. (1975), Amold et al. (1976}, Linthorst et al. {1981} and
Hamady et al. {1989) found as the tilt angle changes from 0° 1o 90°, the heat transfer decreases
until a mininwm point is reached, and then gradually increases again and the minimum point
occurs at the angle where Mow changes its moede from the three-dimensional roll patiem caused
by the thermal instability to the two-dimensional circulation caused by the hydrodynamic etfect.
Most of these experimental researches only studied cavities with small to medium aspect ratios,
with the maximum aspect ratio 135, In the study of Elsherbiny et al. (1982), six aspect ratios
between 5 and 110 were examined experimentally to find the influcace of the tilt angle and the
aspect ratio on the heat ransfer rate. A comelation for tilt angle 60° was developed, and a
suggestion of a straight-ling interpalation between 60° and 90° was proposed, A lot of numerical
studies were also performed. Most of them are two dimensional and anly studied Flow in an
inctined square cavity, such as Ozoe et al. (1974), Chen et al. (1935}, Koyper et al. (1992) and
Zhong et al. (1985). However, these two-dimensional numerical studies could not work well at
small tilt angles close 1o horizontal position, In the recent paper of Soung et al. (1996), the same
model of square cavity from Ozoe el al. (1974) was studied with the imperfect constant wall
temperature boundary conditions, and the resulis showed good agreement with the experimental

curve even al small tilt angles.

In the present thesis a numerical simwlation of two-dimensional lanitar steady-state natural
convection in & rectangwlar open cavily has numerically studied. An adiabatic circular cylinder is
placed at the center of the cavity and the opposile wall to the aperiure is heated by a constant heat
Mux. The top and bettom walls are kept at the constant temperature. ‘1he Muid is concerned with
Prandt] number at 0.72, 1.0 and 7.0. The governing mass, momentum and energy cquations are
expressed in a nonmalized primitive variables formulation. In this thesis, a finite element method

tor steady-state incompressible natural convection Mows has been developed. The streamlines

13
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and isotherms are produced, heat transfor characteristics is obtained for Grashof nombers from
10% to 10° and for an inclination angles of the cavity ranges from 0° (o 45% The results show that
the Nusselt number increases with the Grashof numbers. Also the Nusselt number has changed
substantially with the inclination angle of the cavity while better thermal performance is also

sensitive to the boundary condition of the heated wall.

14
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MODEL DESCRIPTION

A1 PHYSICAL MODEL

The heat transter and the Quid Mow in & two-dimensienal open rectangular cavity of length L was
considered, as shown in the schematic diagram of figere3. 1. The opposite wall to the aperture
was first kept to constant heat flux q, while the surrounding [uid interacting with the aperture
was maintained to an anbient lemperature T.. The top and bottom walls were kept to constant
lemperature Ty, The remaining circular evlinder was assumed to be adiabatic. The (luid was
assumed wilh Frandil number (Pr = 072, 1.0, 700 and Newtonian, and the fluid low is

considered to be laminar, The properties of the (luid were assumed to be constant,

AIIIAIIIAITIT N

Figurc-3.1. Schematic disgram of the physical syslem.

A2 MATHEMATICAL MODEL

Natural conveetion is poverned by the differential equations expressing conservation of mass,
momentum and energy. The present flow is considered steady, laminar, incompressible and rovo-
dimensional. The viscous dissipation term in Lhe energy equation is neglected. The Boussinesg
approximation is invoking for the fluid propertics to relawe density changes 1o temperalure
changes, and to couple in this way the temperature field to the tlow field. The goveming

couations for sleady natural convection flow can be written as:
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The boundary conditions used are:

u([], )=u(x,L)=[]

u(x,{}) y
}r]= v(x,L): 0

v(x,[})= v(ﬂ,

where x and v arc the distances measured alonmg the horizonml end vertical directions,
respectively; u and v arc the velocily components in the x- and y-direction, respectively, T
denotes the (emperature: v and o are the kinematic viscosity and the thermal diffusivity,
respectively, p is the pressure and p is the density; 6, and 8. are the constant and ambient
temperatures respectively. The poverning cguations in non-dimensional form are wrilten as

follows:
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with the boundary conditions

U(X, 0)=U(X, }=U(0, Y)=0,

V(X, 0)=V(X,1)=V(0, Y)=0,

cf of

—X, O)j=—{X, 1}=0
2|8 v

EU» Y)—&(L Y)=0

o

Yo, ¥)=-1

a}(( ? )

Equations {5)-{8) were nermalized using the following dimensionless scales:
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Here Gr and Pr arc Grashof and Prandtl numbers, respectively. The Grashol number represents
the ratio of the buoyancy force to the viscous force acting on the fluid. The reference velocity U,

is relaied to the buovancy force term and is delined as

Uo =+/gBL0n —0)

The Nusselt number {Nu} is one of the important dimensionless paramcters to be
computed for heat transfer analysis in naneral convection flow, Also the Nusselt number for free
conveclion 1s a [unction of the Grashof number only. The local Nusselt number can be obtnined

from the temperature field by applying

]

Nu=-——
“TTe(0r)

and the average or overall Nusselt number was caleulated by intggrating the temperaturme gradieni

over the heated wall as

1
|
Nu, = [———d¥
rewg
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33 COMPUTATIONAL DETAILS

The governing equations in fuid dynamics and heat transfer, including conservation forms of the
Navier-Stokes syslem of equations as derived from the first law of thermodynamics, expressed in
terms of the control volume / surface integral cyuations, which represent various physical
phenomena. To visualize these thenmo fluid Mow scenarios, an approximate numerical solution is
needed, which can be obtained by the CFD {Computational Fluid Dynamics) code. The partial
differential equations of uid mechanics and heat transfer are discretized in order to oblain a
syslem of approximate algebraic equations, which then can be sclved on a computer. The
approximations are applicd to small domains in space and/ or time so the rumerical solution
provides results at discrete locations in space and time. Much accuracy of experimental dala
depends on the quality of the tools used; the accuracy of numerical solution is dependent on Lhe
quality of discrctization used. CFD compufation invelves the ¢reation of a set numbers that
constitutes & realistic approximation of a real life system. The outcome of compuration process
improves the understanding of the behavior of a system, Thercby, engineers need CFD codes that
can produce physically realistic resulls with good accuracy in simulations with fnite grids,
Conuained within the broad field of computational fluid dynamics are activities that cover the
range from the automation of well cstablished engimeering design methods to the use of detailed
solutions of the Navier-Stokes equations as substitutes for experimental research into the nature
of complex Mows, CFD have been uscd for solving wide range of Muid dynamics preblem. It is
more frequently vsed in fields of engineering where the grometry is complicated or some
important feature that cannot be deall with standard methods, The complete Navier-Stokes
equations arc considered to be the correct mathematical description of the governing equations of
fluid motion, The most accurate numerical computations in fluid dynamics come from solving

the Navier-Stokes cquations. The equations represent the conscrvation of mass and momenhim.

There are several diserctization methods available for the high perforinance numerical

computation in CFD.

*  Finite volume method {FVM)
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= Finite element method {FEM)

' Finite difference method (FOR )
= [Boundary clement method (BEM)
*  Boundary volume method (BVM)

In the present numerical computation, Galerkin Finite Element Method (FEM) is used.

1.4 FINITE ELEMENT METHOD

The finite clement method (FEM) is a powerful compulational technique for selving problems
that are described by partial dilfercntial equations. The basic idea of the finite clement method is
the dotnain is broken into a set of finite elements that are generally trianguiar or quadrilaterals.
The distingnishing feature of FE methods is that the equations arc muliiplied by a weizht
function before they are integrated over the entirc domain. In the simplest FE methods, the
solution is approximated by a linear shape function within each element in a way that guarantecs
continuity of the solution across element boundaries, Such a finction can be constructed from its
values at the corners of the elements. The weight function may be the same or different form.
This approximation is then substituted into the weighted integral of the conservation law the
equations to be solved are derived by requiring the derivative of the integral with respect to each
nodal value to be zem; this corresponds to selecting the best solution within the set of allowed

functions. The result is a sct of nonlinear algebraic equations.

Mathematical model of physical phenomena may be ordinary or partial differential cquations,
which have been the subject of analytical and numerical investigations. Analylical solutions of
these equations invalve closed fuorm expressions that give us the variation of the dependent
variables continuously threugheout the domair, On the other hand, Tor most of these equations
there are no available analytical methods to find their solutions, In contrast, there are available
numerical methods to solve these cqualions. Wumerical solutions of these equations can give
answers al only discrete points in the domain. In addition, numerical methods pive us
approximate solution of these differential cquations. To obtain an approximate solution
numerically, onc has 1o use a discretization technique that approximates the differential equations
by a system of algchraic equations at only discrete points in the domain, whick can then be

s0lved on a computer.

Lhe first step to numerically solve a mathematical model of physical phenomena is its numerical
discretization. This means that each component of the diMerential equations is transformed into a

“numerical analoguc™ which can be represented in the computer and then processed by a

20
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computer program, built on gsome algorithm. There are many different methodologics were
devised for this purpasc in the past and the development still continucs. In this thesis the finite

glement method (FEM} has been used to solve the differential equations.

35 THE REASON FOR FINITE-ELEMENT SOLUTION

The analysis of flow and heat transfer in thermodynamics can be performed either theoretically
ot by experimental means. Experimental investigation of such problem could not gain that much
popularity in the field of thermodynamics becavse of iheir limited flexibility and applications.
For ¢cvery change of geometry body and boundary condition, il needs separate investigation,
invalving separate caperimental requirement! arrangement, which, in turn makes it unattractive,
gspecially, from the time involved as well as cconomical point of views, The thearstical
investigation, on the other hand, can be carried cut either by analvticat approach or by numercal
approach, The amalvtical methodsz of solution are not of much help it selving the practical
problems. This is mainly duc o the very involvement of a large number of variables, complex
geometrical bodies and boundary conditions, and arbitrary boundary shapes. General closed form
solutions ¢an be oblained only for very ideal cases and the results obtained for a particular
preblem, usually with uniform boundary conditions. For two-dimensional thermodynamics
problems, mathematical model involve partial differential equations are required to be solved
simultaneously with sotne boundary conditions. Therefore, there are no alternatives cxcept the
numerical methods for the solution of the problems of practical interest. In the feld of numerical
analysis, the major numerical methods in use are the method of Mnite difference {FD), Anite

volume (FV) and NMinite element (FE).

Finite element method is an ideal numerical approach for solving a system of paniial ditferential
equations, The linite clement method produces equations for each element independently of all
other elements. Only when the equations are collected together and assembled into a global
matrix are the interactions between clements laken inlo account, Despite these ideal
characteristics, the finite element method dominates in most of the computational Muid dynamics,
The present research is an attempt to bring the FE technique again into light through a novel
formulation of two dimensional incompressible thermal flow problems. As the formulation
establishes a priority of finite element technique over the FD and FY method, the philosophy and
approach of the thres methods are recapitulated here in briet, The finile difference methed relies
on the philesophy that the body is in one single piece but the parameters are evaluated only at
some selected poimts within the body, satisfying the goveming dilTerential equations
approximately, where as the finite volume method relies on the philosophy that the body is

divided into a finite number of control volumes, On the other hand, in the Nnite element method,
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the body is divided mto a number of elements. The relative advantages and disadvantages of the

[inite element method is shown belows:

Finite Element Method

Advantages

a) Finite element method works when all other metheds fail,
by Itis very good in managing complex geometrical badies and boundaries.

¢) There are many commercial packages such as ANSYS, FEMLAD for analy zing practical

problems.

Disadvantages
a) The body is not in one piece, but it {s an asscmblage of elements connected only at
nodes.

b} Variations of parameters over individuzl elements are assumed to be simple like

polynoemial of Lmited ocder.
¢} Finite clement selution is highly dependent on the element type.

Accurate and reliable prediction of complex geometry is of great importance to meet the scvere
demand of greater reliability as well as economic challenge, Tt is noted that those complex
geometrics occurs maost Trequently in CFD. Presented methods have a common feature: they
generate equations for the values of the unkuown functions al a [inite number of points in the
computational domain. But there are also several differences, The {inite difTerence and the finite
volome methods gensrate numerical equations at the refergnce point based on the values at
neighbering points. The finite element melhod takes care of boundary conditions of Neumann
type while the other mwa methods can easily apply o the Dinchlet conditions. T'he finite
difTerence method could be easily extended to multidimensional spatial domains if the chosen
grid is regular {the cells must ook cuboids, ir a topological sense). The grid indeaing is simple
but some difficulties appear for the domain with a complex geomerry. For the [inite element
method thers are no restrictions on the connection of (he elements when the sides {(or faces) of
the elements are correctly aligned and have the same nodes [or the neighboring elements. This
Mexibility allows us to moedel a very complex geometry The finite volume method could also use
irregular grids like the grids for the finite clement methods, but keeps the simplicity of writing
the equations like that for the Minite difference method. Of course, the presence of a complex
geometry slows down the computational programs. Another benelit of the finite element method
is that of the specific mode to deduce the cquations for each elemenl that are then assembled.

Therefere, the addition of new elements by refincment of the existing ones is not a major
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problem. For the other methods, the mesh refinement is a major task and could involve the
rewriting of the program. But for all the methods used for the discrete analopue of the initial
equation, the oblained system of simultangous cquations must be solved. That is why, the present
work cmphasizes the use of finite element (cchniques to solve Now and heat ransler problems.

The details of this method are explained in the following section.

3.6 FEM FOR Y1SCOUS INCOMPRESSIBLE FLOW

Viscous incompressible thermal Hlows have been the subject of this investigalion. The problem is
relatively complex due to the coupling belween the energy equation and the Navier-Stokes
equations Lhat govern the fluid motion. These cquations comprise a set of coupled nonlinear
partial differential equations that is difficult to solve especially with complicated geometries and
boundary conditions. The finite ¢lement method is one of the numerical methods that have
received popularity due lo its capabitity for solving complex structural problems. I'he method has
been extended to solve problems in several other fields such as in the ficld of heal transfer,
compurational fluid dynamics, electromagnetic, biomechanics ete. In spite of the great success of
the method in these ficlds, its application to Muid mecharics, particularly to convective viscons
flows, is still under intensive research. This is due w the fact that the governing partial
differential equations for general [ow problems consist of several coupled cqualtons that are
naturally nonlinear. Accurate numerical solutions thus require a2 vast amount of computer time
and data storage. One-way to minimize the amount of computer time and data storage used is to
employ an adapting meshing technique, The technique places small elements in the regions of
large change in the solution gradient to increase salution accuracy, and at the same fime, uses

large elements in the other regions to reduce the computational time and computer memory.

As the first step toward accurate flow solutions uging the adaptive meshing techniques, this
chapler develops a finite element formulation suitable for analysis of gencral viscous
imcompressible thermal fiow problems. The formulation evaluated in this chapier will be used
with the adaptive meshing technique in the future. The chapter starls from the Navier-Stokes
equations together with the energy equation to derive the corresponding finite element equations,

The computational procedure used in the development of the computer program 'is described.
The major steps involved in finite clement analysis of a tvpical problem are;

¢ Discretization of the domain into a set of finite clements {mesh generation).
¢ Weighted-integral or weak formulation of the differential equation to be analyzed.

* Development of the finite ¢lement model of the problem using its weighted-integral or
weak form.

»  Assembly of finitc clements to oblain the global system of algebraic equations.
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» Imposition of boundary conditions.
= Solution of equations.

« Post-computation of solution and quantities of interest,

1.7 NUMERICAL PROCEDURE

The numerical proccdure used to solve the governing equations [or the present work is hased on
the Galerkin weighted residual method of finile-element formulation. The non-lincar parsmetric
solution method is chosen o solve the governing equations. This approach will result in
substantially fast convergence assurance. A non-uniform triangular mesh arrangement is
implemented in the present investigation especially near the walls to capture the rapid changes in

the dependeni variables.

The velocily and thermal energy equations (5)-(8} resull in a set of non-linear coupled cquations
for which an iterative scheme is adopted. To ensure convergence of the numerical algorithm the
following criteria is applied to all dependent variables over the solution domain
Tl 4510

where ¢ represents a dependent vartable U, V, P, and T the indexes i, | indicate a grid point; and
the index m is the current iteration at the grid level. The six node triangular element is used in
this work for the development of the finite element equations. All six nodes are associated with
velocities as well as (emperalure: only the comer nodes are associated with pressure. This means
that a lower order poiynomial is chosen for pressure and which is satisfied through continuity

equation The velocity component and the temperature distributions and linear interpolation for

the pressure distribution according to their highest derivative orders in the differential Egs (5)-(8)

as
UX,Y)=Ng Ug (9)
V(X,Y)=Ng Vq (10)
(X, Y}=N, 86, a1
P(X,Y)=H, P, (-1 2
where o =1,2, ... .., 6 3=1, 2, 3; N, are the element interpolation functions for ihe velocity

components and the temperature, and Hy, are the element interpolation functions for the pressure.
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To denive the Ninite element equations, the method of weighted residuals (Zienkiewicz, 1991} is

applied to the continuity Eq. {5}, the momentum Eqs (6)-(7), and the cnergy Eq. (8), we get

-

) 3]

U o‘v’
AN [ ]‘“’L 0 (13)

1 &y 8'u {14}
+J§ LN“[E.‘HE‘Y—:] dA+Lh‘u(smt‘D}Hd,4
[ ¥, (Uay Vi’f.] M:-jﬂl(?—fj} A
A oX ay 4 34
(15)
1 i I 4 r
+J§LN‘*[512 oy ]‘M”IJ"* (cos ®)ddd
af oo 76 &Fo
[N, [0y | da= »
’ ( ax 51’] Prﬁ ¥ (F‘XZ a}’zJ (16)

where A is the element arca. Gauss's theorem is then applied to Egs (14)-(16) to generate the

boundary integral terms associated with the surface tractions and heat flux. ‘Then Eqgs (14}-(16)

become,
| N, (Ua—U Va—UJ dA+J‘HA(£] dA+
4 ax 8y V) ¢
. (17)
ay, ou m"va atr : : .
\.r"_ I[ o EJX 57 a7 JdA—Lsmm.NaﬁdAz LuhandSﬂ
IN [Uﬂ Va—VJ dA+JH;(éD—jdA+
ay 4\ oY
(18)
[ Ny OV, Ny OV - [ cos®N,0dd = | W,S,dS,
.,/5 4\ aX aX oY oY 1 )
IN [Uggw,@) R L[SN 80 N, 59) "y
el T ey ar prﬁ ax ax | By oy (19)

=[N, q, ds,

Here (14)-(15) specifying surface fractions (8, S,) along ouwtflow boundary S; and (16)
specifying velocity components and fluid lemperature or heat fux that flows into or out from

domain along wall boundary S,.. Substiluting the element velocity component distributions, the
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temperature distribution, and the pressure distribution from Fgs (9)-{(12), the finite element

equations can be writlen in the form,

K xUB‘I‘K

op rVﬁ=D

ap?

1
Ky Usly + Ky WU, 4 M B (S +S,50 ) U,
— sin® Kaﬁﬁﬁ .

1
Kopo Uty + Kopp V1, + My Pt (S, 480 ) ¥,
- cos® K 6,=0,

K, U8, +K_ Vb, +Pr\@ (S +S0n ) 8,0,

(20}

2

{22}

(23)

where the cocfficients in element marrices are in the form of the integrals over the element area

and along the element edges S; and 5, a3,
K px = f NaNp,xdA

K gy = [\ NaNp, ydA |
Ky = Jy NaNpNy, xda |
K gy = [s NaNpNy ydA
Kap = [, NaNpdA,

Sanx = _[,,LNa,xNﬁ,di .

SHB}T = JA Nai }PNﬂy }rdA '

M5 = |y HeHy xdA

M,y = Js HaHy, yda

26

{3da)

(24b)

(24c)

(24d)

(24e)

(245)

(24g)

{244)

(243)
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Qu = Eﬂﬂahxdﬂ[},

o (24)
Qv = -[3.:, NgSydSq | (24K)
0,0=[ N, q,dS,. (241)

These element matrices are evaluated in closed-form ready for numerical simulation. Details of

the detivation for these element matrices are omitted herein for brevity,

The dcerived finite element equations, Egs (20)4{23), are nonlinear. These nonlincar algebraic
equations are sofved by applying the Newton-Raphson iteration technique (Dechaumphai, 199%)
by first writing the unbalanced values from the set of the finite element Eqs (20)423) as,

Fap :Kr_‘:ﬁx UI3+K,1|3:~“ ‘v’[}, (25a)
Fan = KﬂﬁI:UﬁU}, +KHMVIU? +MQF,PF +

1 . 25b
(S, +8,00) Uy— sind K,8,-0, (25b)

JGr
F, - K, UV, +K V.V, +M_ P,
G
Far = Kaﬁr’ Uﬂﬂy + Kaﬂ?, Vﬂlg}, +
FIJG_—T(S@“ + Saﬁ”') 05 = Qo

This lcads 1o a set of algebrajc cquations with the incremental unknowns of the element nodal

2
(Sn.ﬂn + S&’ﬁ’:’ }V,{:‘ - CGS(I) Kl’!’ﬂﬂﬁ _Q:r" ( SC}

(25d)

velocity components, temperatures, and pressures in the form,

Km ‘{w K-I-l‘}‘ Khlf M P;F

K.., Kw Km Km Av| ‘Fc;”

K K K 0] M £ (26)
K K 0 0]l Fy

wheng

K.=K,.U+K .U, +K,_ Vﬁ+J_( S,
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Ky =—sind K_,
Kup =M x, :

Kqnw=K Y
¥u 'CI'.[:II'?"K 'l"»..

, 1
Kp=K, UstK W, +K V,+—— (Saﬂ” +Saﬁp)

JGr
Ky=-cos® K

| =M .

vp u_’_l_} ]
Kﬂﬂ' = Kﬂ.ﬁylg?/,
Kﬁ‘v = Kﬂ.ﬁ?}'g}/

1
Koo =K, Ug+ K, Vy+ P (Sﬂﬁ“ S, )

‘Kﬂ‘p =D, Kpu =Ka|-jx N KPY:KHB}' and Kﬂq =0: KPF‘

The iteration process is terminated if the percentage of the overall change compared to the

previous iteration is less than the specified value.

To solve the sets of the global nonlinear algebraic equations in the form of matrix, the Newton-

Raphson iteration technique has been adapted through PDE solver with MATLAB interface,

28



Chapter 3. Model Description

3.6.1 ALGORITTIM

In the iterative Newton-Raphson algorittun, the discrcte forms of the continwily, mementum and
energy equations are solved to find out the value of the velocity and the temperature. Tt is
¢ssential to guess the initial values of the variables, Then the numerical selutions of the variables

are obtained while the convergent criterion is fulfilled.

IMhysical misdel

!

Governing equaliims

v

Boundary
condilions

¥

Mesly
goneration

Initizl guess values of

wo, T

Twming &x0 matrix
#eainst an clement

I

Assemhle gll
eloments

'

Matris factorization
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3.7 SOLUTION OF SYSTEM OF EQUATIONS
A system of linear algebraic equations has been solved by the UMFPACK with MATLAB

interface, UMFPACK is a set of roatines for solving asymmetric sparse linear systems, Ax = b,
using the Asymmetric Multi Frontal method and dircct sparse LU factorization, Five primary

UMFPACK routines are required to factorize A o Ax=h;
1. Pre-orders the columns of A 1o reduce fill-in and performs a symbolic analysis.
2. Numerically scales and then factorizes a sparse matrix.
3. Solves a sparse linear system vsing the numeric factorization.
4. Frees the Symbolic object.
5. Frees the Numeric object.
Additional routines are:
. Passing a different column ordering
2. Changing default paramelers
3. Manipulating sparse matrices
4, Getting LU factors
3. Solving the LU [actors
. Computing determinant

LUMFPACK factorices PAQ, PRAQ, or PR™AQ into the product LU, where I, and U are lower
and upper triangular, respectively, TP and () are permutation malrices, and R is a diagonal matrix
of row scaling factors for R = | if row-scaling is not used). Both P and @ are chosen to teduce
fill-in {new non zeros in L and U that are not present in A). The permutation P has the dual role
of reducing Fll-in and mainlaining numerical accuracy (via relaxed partial pivoting and row
interchanges). The sparse matrix A can be square or rectangular, singular or nen-singular, and
real or complex (or any combination). Only square matrices A can be used to solve Ax =b or
related systems. Rectangular matrices can only be faclorized. UMFPACK first linds & calumn
pre-ordeting that reduces fill-in, without regard (o numerical values. It scales and analyzes the
matrix. and then automatically selects one of three sirategies for pre-ordering the rows and

columns; asymmectric, 2-by-2, and symmetric. These stratcgics are described below.

One notable attribuie of the UMFPACK is that whenever a matrix is factored, the factorization is
stored as a part of the original matrix so that furlher operations on the matrix can rcuse this
factorization. Whenever a factorization or decomposition is calculated, it is preserved as a list

(element) in the factor slot of the original ohject. In this way a sequence of operations, such as
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determining the condition number of & malrix and then soiving a lincar system based on the

matrix, do not require multiple factorizations of the intermediate results.

Conceptually, the simplest represenlation of a sparse matrix is as a triplet of an integer veetor i
giving the row numbers, an integer vector j giving the ¢column munbers, and a tiumeric vector x
giving the non-zero values in the matrix. The triplet representation is row-criented if elements in
the same row were adjacent and column-oriented if clements in the same column were adjacent.
The compressed sparse row or compressed sparse column {csc) representation is similar to row-
oriented triplet or column-oricnied triplet respectively, These compressed representations remove
the redundant row or column in indices and provide faster access to a given location in the

malrix.

3, 8 GRID INDEPENDENCE TEST

Preliminary rcsults are obtained to inspect the field variables grid independency solulions. Test

for the accuracy of grid lineness has been carried out w find out the optimum grid number,
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Figure 3.2 Convergence of average Nusselt number with grid refinement for Gr = 10°
and dr = 0.2

In order to oblain grid independent solution, a grid refinement study is performed for a
rectangular open caviry with G = 10° and v = 0.2. Figure 3.2 shows Lhe convergence of the
average Nusselt nomber, Nu at the heated surface with grid refinement. I is observed that grid
mdependence is achicved with 13686 elements where thore is insignilicant change in Nu with
further increase of mesh elements. Six different non-uniform prids with the following number of

nedes and elements were considered for the grid refinement tests: 27342 nodes, 4818 elements:
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49335 nodes, 7663 clements; 72782 nodes, 10365 elements; 73542 nodes, 1413 elements;
96030 nodes, 123 56clcments; 982450 nodes, 13686 clements. From these values, 982450 nodes,
13686 elements can be chosen throughout the simulation to optimize the relation berween the

accurzcy required and the computing time,

3.9 MESH GENERATION
In finite element method, the mesh generation is the echnique to subdivide a domain into a set of

sub-domains, called finite clements. Fig 3.3 shows a domain, <1 is subdivided into a set of sub-

domains, A" with boundary £ .

Figure 3.3: Finite element discretization of a domain

The present numerical technigue will discretize the compuiational domain into unstructured
triangles by Delaunay Triangular method. The Delaunay triangulation is a geometric structure
that has enjoyed great popularity in mesh generation since the mesh generation was in its
infancy. In two dimensions, the Delaunay triangulation of a vertea set maximizes the minimuom

angle among all possible triangulations of that vertex set.

Figure 3.4 shows the mesh mode for the present numerical compuration., Mesh generation has

been done meticolously,
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CHAPTER 4

RESULTS AND DISCUSSION

Two-dimensional laminar steady state natural convection flow in a rectangular open cavity with
the left vertical wall is at constant heat lex has been studied numerically, as shown in Figure 3.1.
An adiabatic circular cylinder is placed at the center of the cavily and the opposite wall to the
aperiure is heated by a constant heat {lux. The top and bottom walls arc kept at the constant
temperature.  Two-dimensional forms of Navier-Stokes equations along with the cnergy
equations are solved using Galerkin [inite element method. Results are obmined for a range of
Grashof number from 107 to 10° at Pr = 0.72, 1.0 and 7.0 with constant physical properties. The
paranctric studies for a wide range of governing paramciers show consistent performance of the
present numerical approach to obtain as stream functions and temperzture profiles. The
computational resulls indicate Lhat the heat transfer coefficient is strongly affecled by Grashof
number. Using Nusselt number and Grashof number develops an empirical correlation.
Obviously for high values of Grashof number the ervors encountered are appreciable and hence it
is necessary to perform some grid size testing in order to establish a suitable grid size. Grid
independent solution is ensured by comparing the resulis of different grid meshes for Gr = 10°,
which was the highest Grashof number. The tetal domain is discretized into 4806 elements that

result in 32643 nodes.

The effect of melimation angle is examined for & = 07, 10°, 30° 45° with aspect ratic A= 1, A
comparison betweet the sicady-state patterns of streamlings from Grashof nombers of 107 10 10°
wilh dilferent anpgles is presented in Figure 4.1 — 4,15, Also a comparison between the steady-
stale patterns of isotherms from Grashof numbers of 107 to 10° with different angles is preseried
in Figure 4.1 = 4.15. For the isotherm, the figurcs show hat as the Grashof number and the
inclination angle increases, the buoyancy foree increases and the thermal boundary layers
become thinner, Tor the strcamlines, the figures show that the Nuid enters from the bottom of the
aperture, circulates in a clockwise dircetion [ollowing the shape of the cavity, and leaves toward
the upper part of the aperture. The streamling patierns is very similar for first one Grashof
number and the inclination angle, but the fluid moves faster for Gr = 10%, Also, for Gr = 107 and
10°, the sreamline pattermns is stmilar but the upper boundary laver becomes thinner and faster,
the velocity of the air low moving toward the aperture increases, and the arca that is occupied by
the leaving hot [luid decreases compared with that of the cntering uid. Isotherms and
streamlines show that as the inclination angle of the heated wall increases, the velacity gradient
increases at upper heated wall, the strength of the circulation increascs. The results are presented
in terms of streamlines and izothcrm patierns. The variations of the average Nusselt number ang

gverage temporature are alse highlighted. . The results in the steady state are oblained for a
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Grashof range from 10" to 10%and for a range of 0°-45° for the inclination angles of (he cavity.
The results show that for high Grashof numbers, the Nusselt number changes substantially with
the inclination angle of the cavity. The numerical model predicted Nusselt number osciliations

for low angles and high Grashof numbers.

In order to validate the numerical code, pure natural convection with Pr = (.72 in a squarc open
cavity was solved, and the results were compared with those reported by Hinojosa et al. (2005),
obrained with an extended computational domain, In Table 4.t, a comparison between the
average Nusselt number is presented. The results [rom the present experiment are almost same as

Hinojosa et al.

Table 4.1: Comparison of the results for the constani surface temperaturce with Pr= 0.72.

5 M,

Present wark Hinajosa et al, (2005)

10° 1.32 1.30
107 345 3 44
10° 7.41 7.44
10° 14.44 14.51

4.1 EFFECTS OF INCLINATION ANGLE

With the increase of the Grashof number, complex flow patiem characteristics were found for
some inclination angles. To show this, the profiles of isotherm and streamtine and inclination
angles of 0%, 15%, 30° and 45° are presented in Fig. 4.1 to 4.15, For inclination angles of the caviry
berween 0 and 45", the steady state can not be reached; the instantaneous pictures show that the
fluid enters and leaves in a very imegular way, indicating an unsteady convection. The cold Fluid
enters by the lower section of the aperture plane, without symmetry, and the hot fluid leaves by
the upper section. The velocity magnitude of the leaving fluid is greater than the incoming fluid,
and thus the thermal boundary layer at the top wall becomes much thinner. For the tilted angle of

45°, the air [low enlering and leaving the cavity decreases its velocity considerably.

In Table 4.2, average Nusselt number for different cavity’s inclination angles and Grashol
numbers, obizined wilh the present model for Pr =0.72 and d+=0.2 is presented. Table 4.2
presents the average Nusselt numbers for four Grashof numbers €107, 10%, 10%and lﬂlﬁ) for a range

of 0°- 45 for the tilted angles of the open cavity. For different angles and Gr numbers, mainly for
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lower angles and for higher Gr, the average Nusselt number increases. Therefore, in Table 4.2,

the average Nusselt numbers and their standard deviation are reported.

In Fig.4.16, we observe that the heat transfer rale Nu increases with the increase of inclination

angies and increase of Girashof number,

Table 4.2: Average Nusselt number Nu for different cavity’s inclination angles & and
Grasof numbers for Pr=0.72 and dr=0.2.

Nu,,
& Gr=10" Gr=10" Gr=10° Gr=11"
0 3.24213358 3.2693525 4.0484193 5453783
15° 3244177 3.208%33] 4.1695323 5.582469
30° 3.2482889 3.3173974 42411466 5.608271
45° 3.2544684 33222377 4271296 5563731

4.2 EFFECTS OF PRANDTL NUMBER

For investigating the effects of Prandtl number on the Mow and heat transfor characteristics, a
study for Pr=0.72, 1.0 and 7.0, The predicted isotherms and stream lines are shown in figure 4.1

o 4. 13, It is scen that Nuid moves clock wise around the cylinder.

In Table 4.3, average Nusselt numbers for different Prandlt numbers while Pr=0.72, 1.0 and 7.0
and Grasof numbers, oblained with the present model for angle @= §° and diameter ratio dr = 0.2

is presented.

Figure 4.19 shows the averageNusselt number variation for difTerent Prandt] numbers while Pr=
0.72, 1.0, 7.0 In Fig.4.19, we ghserve that average Nusselt number Nu decrcases with increasing
of Grashof number Gr and increasing of Prandtl number Pr. The similar behavior is observed in
Fig 4.20, 421 and 4.22. Heat transfer characteristics become low for lower Prandtl number £y =

0.72 and high for higher Pr = 7.0. So the results show insignificant for different angles.

The temperature is higher in the case of Pr= 7.0 than in the case of Pr = 0.72. This is beeause,
the fluid with Pr = 7.0 has a lower thermal diffusivily than that of the fluid with Fr = 0.72.
Hence, the Muid with Pr = 7.0 will tend io exchange less heat with surrounding fluid by
diffusion.
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Table 4.3: Average Nusselt numbcers for different Prandt] number while Pr=0.72, 1.0
and 7.0, angle ©=10" and dr = 0.2.

M
Pr Gr=10° Gr=10" Gr=10° Gr=1¢0°
0.72 3.2421358 3.0695525 4.0484195 5453783
10 33313557 33345096 42389865 5.8061547
7.0 3 2676048 41116834 57404647 843430

4.3 EFFECTS OF DIAMETR RATICQ

[n Table 4.3, average Nusselt numbers for diflerent diameter ratios while dr = 0. 2, 0.3 and 0.4

and Grashof numbers, obtained with the present model or angle @= 0 and Prandlt number

=072 is presented. Figure 4.23 shows average Nusselt number increases with increasing of

diamneter ratio of the cylinder.

Table 4 4: Average Nusselt numbers for differcnt diameter rattos while dr =10, 2, 0.3
and 0.4, angle ®= 0" and Fr=10.72.

Nog,
dr Gr=14r Gr=10" Gr=10" Gr=10°
0.2 3.2421358 32695525 40484193 5.453783
0.3 3.188554 3.2096663 4.0131702 5459415
0.4 3.1257522 3.1240125 3.9524283 5453659
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CONCLUSION

I'wo-dimenstonal laminar steady state natural convection Mow in a rectangular open cavity
with the leli vertical wall is at constant heat flux has been studied numerically. A [inite
element methed for steady-slate incompressible natural convection [ow is presented. The
finite element cquations were derived from the governing [ow equations that consist of the
conservation of mass, momenlum, and energy equations. The derived finite element
cqualions are nonlinear requiring an iteralive lechnique solver. The Newton-Raphson
iteration method has applied to solve these nonlincar cquations for solutions of the nodal
velocity component, temperalure. and pressure by considering Prandt! numbers betwecn

0.72, 1.0 and 7.0 and Grashof numbers berween ! to 10% The results show that

e

* Heal transfer depends on Prandtl number and heat transfer rate increases for hipher

Prandtl number,
% Thermal boundary layer thickness is thinner for increasing of Grashof nummber.

< The heat transfer rate decreases for certain Grashof number (10°) and increases

gradually for increasing of Grashof number.

% The heat transfer ratc Nu increases with the increase of inclination angles and

increase of (frashof number,

% The heat iransler rate Mu increases with the increase of diameter ratio and increase of

Grashof number.

% Various vortices enlering into the fMow field and a seccondary vortex at the center of

the caviry is seen in the streamlings,

EXTENSION OF THIS WORK

In this work, we considered bwo-dimensional laminar steady-state natural conwveetion in a
rectamyular open cavity. An adiabatic circular cylinder is placed at the ceater of the cavity and
the left sidewall is heated by a constant heat Mux. The top and bottem walis are kepl at the

ambient constant temperature.

> If we consider the heated cylinder inside the caviry instead of adiabatic cylinder then

we can exlend our problem.

“  Also taking the non-uniforin surface (emperature, the problem can be extended.

i8



Chapter 4: Results and Discussion

,.,,,,,
LT + v L
HHHH TR
fnt, GHIH
N
HE L ot e
HHHTH IR
HHOH R
PHIL nHE
T e
L TR
BN B
ORI
IR
fhie, GRHE
B Tt
Bt S :
FEE C#r rekk TR v F]
B T, R ' =
HE Tbeees'H : E
Hib .p :
F E + 1 F —
[ v H v [
Pl ; H HEHEE !
F H F th E [~}
BT HE
[ + et 3 v L
= [ PR + H =
i b LS
it i b 1
i $H5 e
i IO L 1+
i il
H tini s
frfbpeme it ;
; siiet iy
; i i P
: H R I
; Hithatin L
1 i HIRE
s i b e
JiEL i i
HHEE LRI
B MR o = = L
B . H H T e e ———
N PR L L ==
e i b

T —

g I8

e

———

m_”-._”"Hu ._.qn-_.”-._..ml.u m_“;"—,mu_ Aur_n”-_.H._MV

St
d Pr=10.72 at angle 0"

KJ

Figd.1: Isotherms and streamlines patterns for dr = 0.2 an



T e S—

L

i~




Isotherm



1

T

—_——
————

,,,
!

m

42

Chapter 4' Results and Disgpssion

otherm

I=

Fig 4.4: Isotherms and streamlines patterns for &r = 0.2 and Pr = 0.72 at angle 45"
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Gr=10°

Gr=10°

Gr=10°

Gr=10°

Isotherm

Streamline
Fig 4.5: Isotherms and strcamlines patlems for dr = 0.2 and Pr = 1.0 at angle ("
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Gr=10°

Gr=10*

Gr=10°

Gr=14"

Q756

Isotherm

Streamline
Fig 4.7: 1sotherms and streamlines paterns for g+ = 0.2 and Pr = 1.0 aL angle 30°
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47



Chapler 4: Results and Discussion

Gr=10°

Gr=10"

Gr=10°

Gr=10°

0037353

Isotherm

Slreamline
Fig 4.10:1sotherms and streamlines paterns for gy = 0.2 and Py = 7.0 at angle 15°
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