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Abstract

In this disserlation, the effects of temperature dependent therma) conductivity on the
coupling of conduclion and Joule heating with viscous dissipation  and
Magnetohydrodynamic free convection flow along a vertical (at plate have been
investigated numerically. A steady laminar two dimensional MHD free convection [low i3
considered here. The governing equations contain the equation of contimuity. momentum
and energy. These equations with associated houndary conditions for this phenomenon are
converted to dimensionless form using suilable transformations. The transformed non-
linear otdinary diffcrential equations are then solved using the imphat finite difference
method with Keller—box scheme. FORTRAN 90 is uscd to perform computational job and
the post processing software TECPLOT has been used 1o display the numerical results

graphically.

The resuls in terms of skin friction and surface temperature profile for Joule heating
parameler J and viscous dissipation parameter N arc shown in tabular form, Numerical
results of the velocity profile, temperalure profile, skin friction cogfficient and surface
temperature profites have been exhibited graphically for ditferent valucs of Uie magnetic
patameter M, thermal conductivity variation parameter 3, viscous dissipation parameter /¥,

Toule heating parameter J scparately and the Frandtl number Pr as weil.
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Chapter 1

1.1 Introduction

‘The natural convection proccdures are governcd cssentially by three features namely the
body force, the lemperature difference in the flow fcld and the Muid density variatiwms
with temperature. Natural convection is the most important mode of heat transter from
pipes, transmission lines, refrigerating coils, buming radiators and vaitous other situalions.
't he manipulation of natural convection heat transfer can be deserted in the case of large
Reynolds number and very small Grashof number. Alternatively, the natural convecuoen

should be the governing aspeet for large Grashof number and small Reynolds number.

Flow of electrically conducting fluid in presence of magnetic held and the effect of
lemperature dependent thermal conductivity on the coupling of conduction and Joule
heating with natural convection problems are important from the 1cchnical point of view.
Such types of problems have received much atention by many researchers Experimental
and theoretical works on MHD free and forced convection flows have been donc
extensively but a few works have been donc on the conjugate eflects of convection and

canduction problems.

It is possible to atain equilibrium in a conducting [fuid if the current is parallel to the
magnelic field Then the magnetic forces vanish and the cquilibrium of the pgas 18 the sumu
a3 in the absence of magnetic fields. But most hiquids and gases are poor conductars of
electricity. 1n the case when the conductor is either a liquid or a gas, glectromagnetc
forces will be generated which may be of the same order of magnitude as the hydro
dynamical and inertial forces Thus the equation of motion as well as the other forces will
have to take these eleciromagnetic forces into account. The MIID was originally applied
to astrophysical and geophysical problems, whore it is siill very important but mole
recently applied to the problem of fusion power where the application is the creation and
containment of hot plasmas by electromagnetic forces, since material walls would he

destroyed.

Magnetohydrodynamics is that branch of science, which deals with the motion of highly
conducling ionized {eleetric conductor) fluid in presence of magnetic field The motion of

the conducting [uid across (he magnetic ficld generates electric currents which change the
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magnetic ficld and the action of the magnetic field on these currents give nisc to

mechanical forces, which modify the fluid.

The specilic problem selected for the present sudy is the flow and heat transfer in an
clectrically conducting Muid adjacent 1o the surface, The interaction of the magnetic field
and the moving electric charge carried by the flowing fluid induces a force, winch tends Lo
oppose the Auid motion and ncar the leading edge. The velocily is very small, so that the
nmgnetic-furcc which is proportional to the magmitude of the longitudmal veloity and acts
in the opposite dircction is also very small. Consequently, the influcnce of the magnetic
field on the boundary layer is exerted only through induced forees within the boundary
layer itself without additional effects arising from the frec stream pressure gradicnt. Solid
malter is gencrally excluded from MHD effects, but it should be realized that the same

principles would apply.

The motion of an electrically conducting {luid, like mercary, wnder & magnetic ficld, in
general, gives rise to induced electric currents on which mechanical forces are exerted by
the magnctic field. On the other hand, the induced elecine currents also produce induced
magnetic ficid. Thus there s a two-way interaction between the flow field and the
magnetic field, the magnetic field exerts force on the fluid by producing induced currents
and the induced currents change the nﬁginal magnetic  fleld.  Therefore,  the
magnetohydredynamic flows (the Nows of electrically conducting fluids in the presence of

magnetic lield) are maore complex than the ordinary hydrodynamic flows

The study of temperature and heat transfer 18 of greal importance because of 1ts almost
nniversal occurmence in many branches of scicnce and cngineering. Although heat transier
analysis is most important for the proper sizing of fucl elements 1n the nuclear reactors
cores to prevent burnout Heal transfer is commonly associated with fluid dynamics. Lhe
knowledge of temperature distribution is essential in heat transfer sludies because of the
fact that the heat flow takes place only whenever there 15 a temperature gradivnt 1 a

system,

In electronics in patlicular and in physics broadly, Joule heating is the heating cifect of
conductors carrying currents, It tefers to the increase in lemperature of 4 conductor as a
result of resislance to an clectrical surremt flowing through it. At an atomic level, Joule
heating is the result of moving ¢lectrons colliding with atoms in & conductor, whereupon

momentum is iransferred to the atom, increasing its kineuc or vibrational energy. W hen
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similar collisions causc a permancnt structural change, rather than an elastic rosponse, the
result is known as eleciro migration. Joule heating is caused by intcractions between the
moving padlicles that form the current (usually, but nol always, clectrons} and the alomic
ions thal make up the body of the conductor. Charged particles n an clectric circutt are
accelerated by an electric field but give up some of their kinetic energy each time they
collide with an ion. The incrcase in the kinctic energy of the ions manifests itself as heal
" and a tise in the temperatore of the conductor. Hence energy is transferred from clectrical

power supply to the conductlor and any materials with which it 15 in thermal contact.

James Prescott Joule smdied first Joule heating in 1841, It is the process by which the
passape of an electric current through a conductor releases heat. Joule's first law is also
known as Joule cffect. Tt states that heat generation by a constant current through a
resistive conductor for a time whose unit 18 joule. It is also rclated to Ohin's st Jaw.
Joule heating is also referred to as Ohmic heating or Resistive heating because of its
rclationship to Ohm's law. The ST unit of energy was subsequently named the joule and
given the symbel J. The commonly known unit of power, the watt, 13 equivalent to onc

joule per sceend.

The heat Mux, which is defined as the amount of Leat transfer per wnit arca in per unit
time, can be calculated from the physical laws relatives to the temperatura gradient and the
heat Mux. The three different manners of heat transfer namely; copduction, convection and
radiation must be considered. In reality, the combined cifects of these thrce modes of heat

iransfer control temperature distribution in a medium.

Conveetion is the transfer of heat by the aclual movement of the wanmned matter. Heat
leaves fhe collee cup as the curents of steam and air rise. Convection is the transfer of
heat ¢cnergy in & gas or liguid by movenient of currents. The heat moves with the fluid.
Considerable convection is responsible for making macaroni rise and fall in a pot of
heated water. The warmer porions of the waler are less dense and therefore, they rise

Mean while, the cooler portions of the water fall because they are denser.

Conduction is the fransfer of encrgy through matter from parlicle lo particle. It iz the
tansfer and distribution of heat encrgy from atom to atom within a substunce. For
example, a spoon in a cup of hot soup becomes warmet beeause the heat fom the soup is
conducted along 1he spoon. Conduction is most effective in solids bt it can happen in
Mnds.
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Thermal conductivity is the intensive property of malerial that indicales itz ability to
conduct heat, Thermal conductivity approximately lracks electrical conductivity, as freely
moving elecirons transfer not enly electric current but also hcat enevgy. However, the
gencral correlation between electrical and thermal conductance does not hold for other

materials due to (he increased importance of photon carries for heat non-metals

Thermal conduction is the spontancous transler of thennal energy through matter, from a
region of high tcmperature o a region of lower temperature. The same forces that act to
support the slucture of matter can be said o move by physical contact belween the
pariicles transfer and the thermal energy, in the form of continuous random motion of

particles of the matler.

1.2 Literature Survey

The case of a heated isothermal horizontal surface with transpiration was discussed in
some detail by Clarke and Riloy (1975, 1976). The combined frec and forced convection
fiow about inclined surfaces in porous media was studied by Chen (1977} The cambined
forced and free convection in boundary layer flow of a micro-polar fluid overa hori zontal
plate was investigated by Hassanien (1977). Similarity solutions were acquired in his work
for the case of wall tempcrature, which is inversely proportional to the square raot of the

distance from the leading edpe.

Takhar and Soundalpekar (1930) studied the dissipation effects cn M HD free convection
flow past a semi-infinite veriical plate. The effect of axial heat conduction in a vertical flat
plate on free couvection heal transfer was smdied by Miyamoto et al. {(1980). A
rransformation of the boundary layet equations for free convection past a vertical plate
with atrbitrary blowing and wall temperature varations was stpdied by Vidhanayagam el
al. {1980). Moreover, Raptis and Kafoussias (1982) investigated the problem of MHT) fTee
conveetion flow and mass transfer through a porous medium bounded by an infinite
verlical porous plale with conslant heat Aux Dozzi and Lupo {1988) investigated the
coupling of conduciion with Jaminar convection along a fAat plate. Lin and Yu {1988)
studied futher detail discussion of a heated isethermal horizontal sutface wath

tranapiration.

The problem of the free convestion boundary layer on a vertical plate with prescribed
curface heat flux was studied by Merkin and Mahmood (1990} Hossam (1992) analyzed

{he viscous and Joule heating eflects o MHD free convection ow with variable plate
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temperalure. Pop et al. (1995) then extended the analysis to conjugate mixed convection
on a vertical surface in porous medinm. Maoreover, the thermal interaction hetween
laminat film condensaiion and forced convection along a conducting wall was investigated
by Chen and Chang (1996). Merkin and Pop (1996) analyzed the Conjugate free
convection on a verlical surface. Hossain et al, (1997} studied the free convection
boundary layer Mow along a vertical porous plate in presence of magnetic field. Also
Hossain et al. (1998} investigated the heat transfer response of MHD free convection flow
along a verlical plate to surface tomperature oscillation. Shu and Fop (1999) analyzed the
tharmal interaction between free convection and forced convechon along a vortical

condneting wall. Al-Khawaja el al. {1999) also studied MHD mixed convection flow

MHD free convection flow of wisco-slastic fluid past an infinite porous plate was
invesligated by Chowdhury and Islam (2000). Elbashbeshy (2000) also discussed the
cffect of free convection flow with vardable viscosity and thermal dilfusivity along a
vetlical plate in the presence of magnetic ficld, Khan (2002) investigated (he conjugate
effect of conduction and convection with natural convection Mow from a verlical (at plate.
Ahmad and Zaidi (2004) investigated the magpetic ellect on oberbeck convection through
verlical stratum. Chen (2006) analyzed a numencal simulation of micropolar flud flows
along a Mal plate with wall conduction 1a11d buoyancy effects. Alim et al {2007)
investigated the Joule heating effeci on the coupling of conduction with MID frec
corveetion flow from a verical Mat plate. Alim et al. also studied the combined effect of
viscous digsipation & Joule heating on the coupling of conduction & free convection along
a vertical flat plate (2008). Rahman et al, (2008} investigated the cffects of tcmperatne
dependent thermal conductivity on MID free convection flow along 2 vertical [lal plate

with heal condoction.

In all the aforementioned analyscs the effects of temperature dependent (hemnal
conductivity with Joule heating and viscous dissipation have not been considered. In the
present work, the effects of temperature dependent thermal conductivity on the coupling of
conduction and Joule heating with MHD frcc convection {low along a vertical flat plate
have been investipated, The results have been obtained for different values of relevant
physical parameiers. The governing partial differential equations arc reduced o locally
nor-similarity partial differential forms by adopting appropriate transformations The

transformed boundary layer equations are solved numerically wsing imaplicit finite
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difference method together with Ketler {1978) box technique and later used by Cobeei and
PBradshaw (1984).

In chapter 2, the effects of the lemperature dependent thermal conductivity on the couphing
of conduction and Joule heating with MHD free convection [ow along a verlical [lat plate
have been analyzed. Wclocity, temperalure, skin friction coefficient and surface
emperature profiles have becn presented graphically for vanous values of the thermal
conductivity variation paramelery, magnctic parameter M, Prandtl number Py and Joule
heating parameter J/. In labular form the numerical results of the local skin {rictien
coelficient and the surface temperature profile for different values of Joule heating
parameter J are also represented, The comparisons of the present numerical resubts of the
okin friction cocfficient and the surface temperature profile with those obtained by Porzi

and Lupo (1988) and Merkin and Pop (1996) are presented.

In chapter 3, MID naiural conveciion flow of an clectrically conducting fluid along a
verlical (at plale with variahle thermal conductivity on the coupling of conduction and
Joule heating in presence of viscous dissipation has been descnibed. Flere numerical tesults
of the velocity, temperature, skin friction coefficient and surface temperature profiles for
different values of the viscous dissipation paramcter N, thermal conductivity variation
parameter ¥, magnetic parameter M, Prandil number Pr, and Jouls heating parameter .Jf
have been presented graphically. Some results for skin friction coefficient and surface
temperature for different values ol viscous dissipation parameter have also been presented
i tabular Torm s well. The comparison of numerical values of the skin fnction coelTicient
for differcnt values of thermal conductivity variation parameter {with and without the

effect of viscous dissipation parameter ) is also given,



Chapter 2

Effects of Variable Thermal Conductivity on the Conpling of
Conduction and Joule Heating with Magnetohydrodynamic
Free Convection Flow along a Vertical Flat Plate

2.1 Introduction

The effects of the lempersture dependent thermal conductivily on MHD free convecuon
flow along a vertical flat plate with Joule heating and conduction have been described in
this chapter. The poveming boundary layer cquations are transformed into & non-
dimensional form and (he resulting non-linear sysiem of partial differential cquations is
solved pumerically by very cflicient implicit finite-dilference method togelher with
Keller-box technique. Numericat results of velocily, temperature, skin friction coefficient
and surface temperature profiles for magnetic parameier M, thermal conductivity variation
parameter 7, Prandtl number Pr and Joule heating parametcr J are presented graphically.
Also in tabwlar form numerical results of skin friction coefficient and surface temperature
profile are shown for Joule heating paemeter J. In the following section detailed
derivations of the governing cquations for the flow and heat transfer and the mcthod of

solutions along with the results and discussion are presented.

2.2 Governing equations of the flow
The mathematical statement of llie basic comscrvation laws of mass. momentum and
energy [or the steady (wo-dimensional viscous incompressible and electrically conducting

flow are respectively

V. =0 2.1
PV W =—Vpa u V¥ +F+ (I xB), (2.2}
pC (T, = Vix,VT,)+al7 V) (2.3)

where ¥ =(#,7), ¥ and ¥ are (he velocity components along the ¥ and ¥ axcs
rospectively, Fis the body force per unit volume which is defined as —gx , the terms
Jand F arc respectively the curment density and magnetic induction vector and the term

T » B is the force on the fluid per unit volume produced by the interaction of current and

magnetic field in the absence of excess charges. Tr1s the temperature of the fluid in the
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boundary layer, g is the acccleration due to gravily, ', is the thermal conductivity of the
fluid and C, is the specilic heat at constanl pressure and 4 is the viscosity of the fhud.
HereJ = u,H, , i being the magnetic permeability of the fluid, /p is the applied

magnetic figld strength and V is the vector diffcrential operator and is defined by

‘F:fxi-r} g

£ 24
af )'aj; { )

where f . and 7 , are the unit veetor along ¥ and ¥ axes respectively. When the extemal

clectric conductivity of the [uid is zero and the induced eteciric field 1s negligible, the

current density is related to the veloeity by Ohm’s law as follows
F=o(V xB) (2.5)

where (F x B)is clectrical fluid vector and o denotes the electrical conductivity of the
[uid under the conduction that the magnetic Reynold's number is smatl. This conduction

is usually well salisficd in terrestrial application especially by low velociny free cotvection

Mo, S0 il can be written as

D=jH, ‘ (2 6)
Rringing logether cquations from (2.4) to (2.6} the force per unit volume Jx B acting

along the X - axis takes the follewing form

(JxBYy, =—-cli & {2.7)
Again together equations (2.5) and (2.6} the Joule heatiny term in vector form becomes
TIxV )= o HL 7 (2.8)

Consider a stoady natural convection flow of an clectrically conducting, viscous and
incompressible fluid ateng a vertical flat plate of tength { and thickness b (Figure-2.1). It s
assumncd that the lemperature at the outside surface is maintained at a constant temperaturc
Tp, where T = 7. the ambient lemperature of the Auid. A umlorm magnctic field of

strongth Hy is imposed along the ¥ - axis.

Using the equations (2.4) to (2.8) with rospect to above considerations into the basic
equations (2.1) (o (2.3), the steady two dimensional laminar free convection boundary

layer flow of a viscous incompressible [luid with Joule heating and also theomal
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conduetivity variation along a vertical flat plate takes following electrically conducting

form

L (2.9)
oaF O

_du i T oM ¥

LN LU, s O S W 2.10
= v@ VBJ‘ 0T, -T.) (2.10)
gy, _aT

Al Ikl S a(r —Lys ”H“'Z (2.11)

i = —_—
& &F pC,&y & pC

r

Here 7 is cocllicient of volume expansion. Consider the temperature dependent thermal

conductivity, which is proposed by Charraudeau {1975}, as follows

LY

; = xL[1+8(T, —1,)] (2.12}

where &, is the thermal conductivity of the ambient fluid and & is defincd as
5oL [Eir

ol
The appropriate boundary conditions to be satisfied by the above equations are ( Merkin &

Pop 1996)

g=0, V=10
on v=0, x>0 (2.13)

T = T(ED) ) o K1)
= LM, —= -
s an bK’r r b

ﬁ—}l},]’j—h?‘ﬂ as y—en, x>0

X
i)
insulaled T
T .
Hy = —interface
_'ETJ,_ s &
_— I L r{z,0 i
A 7

e —
—_—

0 "

Figure 2.1; Physical model and coordinate system
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It is observed that the equations (2.10) and (2.11} together with the boundary conditions
(2.13) are non-linear partial differential equations. In the following sections the solution

methods of these cquations are discussed in details.

2.3 Transformation of the governing equations

Lquations {2.9) to (2.12) will be non-dimensionalized by using the following

dimenstonless vatiahles

¥ v o1 af -t ¥ -1 T T
x:%, y=%ﬂr“, u=£ Gr 2, v:v—L-Gr 4, e?:?{ T“,
v 3 v p =i (2.14)
T T
G!" = gﬁf { :r -:n-.}
-
H
where £ = —H— is reference lenpth , Gr is the Grashol number, & 18 the non dimensgional
5

temperamre, v = % is kincmatic viscosity. Substituting the relations (2.14) into the

equations (2.9) fo (2.11) the following non-dimensional equations are obtained

.1
LA (2.15)
ox Oy :
I
ua—”w?‘-mﬁ:i’;w (2.16)
&y ay
1 )
u@wa:—l-(l |!3']|a—?-+L LR I (217}
dx Yy Pr ¢ Pr' v
C A , .
where Pr= et 15 the Prandfl number, M = 1:1!1’(;_' is the dimensionless magnctic
K-“'.‘ JI'JIG r "

parametcr, y =8(T, —T,) is the dimensionless thennal conductivily variation paranielcs

o I, vGr'
pC (T, -T.)

houndary conditions (2.13) then take the form as follows

and J = is the dimensionless Joule heating parameter - The cartesponding

w=0,v=10, E}'—1={1+}*ﬂ}p—?§ ,on y=0,x>0 (2.1}

u—0,8=20 , as y—2o,x>0

10
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£ b - " : - .
7 Gr''* is the conjugate conduction parameter, In fact, magnitude of O{p)

Ly

£

where p :[

depends on AL and Gr'" being the order of unity. L iz small, the term b/L beeomes greater

. . . _ .
than one. For air, —= atains very smalt values if the plate is highly conductive. It reaches
X

F

to the order of 0.1 for material such as glass. Therefore in dillercnt cases, p is different but

not always a small number. In the present investigation, it is considered that p = ] which

is accopted for &/L of O(FL}.
X

I

To solve the equalions (2.16) and (2.17) subject to the boundary conditions (2.18) the
following transformations are {Merkm & Pop 1996} applied

[

L
w=x'(1+x) *f(xn)
i 1
n=yx S(1+x) ® (2.19)

L 1
#=x*(1+x) *h{xn)
here 7 is the similarity variable and y is stream function which satisfies the contimiity

. . . . &
cquation and is related to the velocity components the usual way as u 2 and

3] i .
v=— al'; Maoreover, h(x,n) represents the non-dimensional tcmperalurc. Then the

momentnm  and energy cquations {cquations (2.16) and (2.17) respectively) ale
transformed o fhe new co-ordinate systom. At [irs, the velocily components are exprissed

in terms of the new variables for this transformation. Thus the resulting equations are

3 |

16+15x 6+5xr = —
o —_— T A x5(1 T
7 +m(l+x}ff 1D[1+x]f ety 20
,E!f' naf .
h= S e A
" x[f ox 4 5)4:}
: !
Ly L[_x_]ﬁhh,_P _E’_{L]’ [T 16 +13x i
Fr Pril+x Ir L1+ x 2001 + x) (231)
% ¥y i 1 [.,ﬁh ,Ef]
Je {1+ x e - h o= ok _ et
RGO A R Gl < ®

11
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where prime denotes partial differentiation with respect to 7. The boundary conditions as

mentioned in equation (2.18) are transformed into

S0 =S x0)=0
1 1

(4% Sh(x0)-1

1 L 9
(+x) 7 +yxt(1+x) A0 (2:22)

B(x,0) =

faee) >0, h(x,0) >0
I he set of equations {2.20) and {2.21) together with the boundary conditions {2.22) are
solved by applying implicit finite-difference method with Keller-box {1978) schemy. The

solution process is given in Appendix.

TFrom the process of numerical computation, in practical point of vicw, it is important to
calcuiate the valugs of the surface shear stress in terms of the skin friction coefficient. This

can be written in the non-dimensional form as (Mamun et al 2005}

3
.
Cf=6r L (2.23)
LV

where 1,[= 2(85 /8 F);,] is the shearing stress. Using the new variables descnibed in

(2.14), the local skin friction co-cificient can be written as

Cp= x5 (Lrx) 2 f7(x,0) (2.24)

The numerical values of the surface temperature profile are obtained from the relation

8(x,0)=x° (14 ) * A(x,0) (2.25}

2.4 Results and Discussion

The wvalues of the Prandil number arc considered to be 0.73, 1.73, 2.97 and 4 24,
Numerical tesults of the wvclocity, temperature, skin friction coefficient and surface
temperature prohles for differcnt vatues of (he magnstic parameter, thermal conductivity
vaniation parameier, Joule heating paramcler and Prandt) number are  prescted

graphically.

The magnetic field acting along the horizontal direction retards the fluid velocity with ¥ =
0.1, J=0.07 and Pr = (.73 as shown in figure 2.2. Because there creales & Lorentz [orce

by the interaction between the applied magnctic field and flow feld. This force acts

12



MDD free convection [low along a vertical flat platc with Joule hcating

against the fluid flow. From figure 2.3, it can be observed that the temperature within the
boundary laycr increases for the increasing values of M from 0.1 to 3.7. The magnetic
field decreases the temperature gradient at the wall and increases the (emperaturc in the
Mow region due to the interaction. It is also observed that the temperaturc at the inlerface

varies due to the conduction within the plate.

0.8

=
n

Velocity, £’
o~
=

0.2

95 2 4 5

Figure 2.2: Variation of velocity profile against 1 for varying ol M with
¥ =0.10,J=0.47 and Pr=0.73

3
L
E" Z
=2
®
(18]
(Wi
5
- 1
0 =R
g 2 4 g

Figure 2.3: Varislion of temperature profile against 7 for varying of Af
with y =0.10,7=0.07 and Pr=0.73.
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0.8

Velocity, /'
-
Lo}

=
B

0.2

Figure 2.4: Variation of velocity profile against 7 for varying of ywilh
M=001,7=001and Pr=20.73

—
|55}

Temperature, o

=2
tn

Figure 1.5 Variation of temperature profile agamst 77 for varying of ¥
with M =0.01, 7=0.01 and Pr=0.73

The effect of thermal conductivity varialion parameter y on velocity and temperature

profiles within the boundary layer with other fixcd parameters M = 0.01, Ff=0.01 and Fr=

14



MHD free convection flow along & vertical Nat plate with Joule heating

(.73 arc shown in figure 2.4 and fpure 2.5, respectively. Asy =&(T, — I}, so increasing

values of ¥ increase his temperature difference betwecn outside the plate and outside
boundary layer, Then heat is transferred rapidly from plate to fluid within the boundary
layer. That's why both velogity and temperature profiles increase with the Increasing
valucs of ¥ Morcover, the maximum values of the velocity are 07371, 0.8069, 0.83%96 and
09001 for y= 0.01, 0.21, 0.3} and 0.51, respectively and cach of which oceurs at =
1.1144. Tt is observed ihat the velocity increases by 18.11% when yincreases from 0.01 to
1.51. Furthermore, the maximum valucs of the temperature are 2.0446, 2.1735,2.2225 and
22972 for y=0.01, 021, 031, and (.51, respectively. Each of which cocurs at the surface
because thermal conductivity of solid is greater than [uid. It is observed (hat the

temperaiure increases by 10.996% when yincreases from 0 01 to 0.5

Figure 2.6 and figure 2.7 illustrate the velocity and iemperaturc profiles for different
values of Prand( numher #r with M = 0,10, F = 0.07 and ¥ = 0.1¢. It is well known that
Prandti number is the ratio of viscous foree and thermal force. So, increasing values of £r
increase viscosity and decreases {hermal action of the Muid. If viscosity 13 increased, then
fluid does not move freely. Because of this fact, it can be observed from figure 2.0 that the
velocity decreascs as well as its position moves toward the interface with the mwcreasing
Prandtl number, Also from figure 2.7, it is secn that the lcmperature prolile shift down
ward with the increasing Pr. It is shown that the velocity decreasss by 52.45% when FPr
increascs from (.73 to 4.24. Purthermore, the temperature decreases by 30.37% far

increasing values of Prat the inlerface.

The cffect of Joule heating parameter J on the velocity and the lemperature profiles within
the boundary layer with M = 0.01, y = 0.01 and Pr = 0.7} are shown in hgure 2 8 and
fgure 2.9 respectively. Due to Joule heating effect, lemperature of the conductor increases
and cleetrical encrgy is transforred to thermal enengy. So increasing values ol J increases
lemperature of the plale and temp-eraturc difference of {7, = 7_}. Then velocity, as well as
tempoerature profile increases within the boundary layer with the increasing value of J.
Moteover, the maximum values of the velocity are 0.7354, 0.7476, 0.7505 and 0.7723 {or
J=0.001, 0.15, 0.27 and 0.48 respectively and cach of which occurs at 7 = 1.1144. It is
observed that the velocity increases by 4.78% when J increases from 0 001 to 0 48.
Jurlhermote, the maxirmm valucs of the temperature are 20424, 20782, 21077 and
21608 for 7 = 0.001, 0.150, 0.270, and 0.480 respectively and each of which vecurs at the

15
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surface. It is observed that the temperalure increases by 5.48% when J increases from

0.001 to 0.480.

0.8

o
m

Velocity, /'
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I
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0

Figure 2.6: Variation of velocity profile again;st n for varying of Pr
with M =0.10, J=0.07 and y =0.10
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Figore 2.7; Variation of temperaturc profile against n for varying of Pr
with M = 0.10, /=007 and y = .10
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08l ————— J=0.001

s mmmee J=0150
y % 000 000020 2————- J=0270
—mm —e J=0480

o
oM

Velocity, /'
o
i

0.2

e ]

Figure 2.8: Yaration of velocity profile against # for varying of J with
y=0.01, M =001 and Pr=073
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Figure 2.9: Varation of lemperature profile against # for varying of J
with » = 0.01, M =001 and Pr=0.73
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The variation of the local skin friction coefficient Cp and surface tempcrature profile
8 (x,0) for different values of M with Pr= 0.73, 7= 0.07 and = 0.10 at different positions
are illustrated in Ggure 2.10 and figure 2.11 respectively. It is pbserved from figure 2.10
(hat the increased value of the Magnetic parameler M leads to a decreasc of the skin
friction factor. Apain figure 2.11 shows that the swiface temperature £ (x,0) increases due
(0 the increasing values of 3. This is due to the interaclion between magnetic hicld and
flow field. It can also be noted that the surface temperature increases along the up ward
direction of the plate for a paricular value of M. The magnetic ficld acts agawnst the Muid
flow and reduces the skin friction coefficient and produces the temperature at the solid-

Muid interface.

Figure 2.12 and figure 2.13 illustrate the effects ol the thermal conductivity variation
parameter on the skin friction coeflicient and surface temperalure profile against x with M
= 001, J = 001 and Pr = 0.73. It is seen that the skin fnction cocfiicient incieases
monolonically along the up ward direction of ihe plate for a particular valuc of  1t1s also
shown that the skin friction cocfficient increases for the increasing y. The same result is
observed for the surface lemperature from figure 2.13. This is to be expected because the
higher valug fer the thermal conductivity variation parameter accelerates the fluid flow
and increases the temperature as mentioned in figure 2.4 and Tigure 2.5 respectively.
Figure 2.14 and figurc 2.15 deal with the effects of Prandil number on the skin friction
coefficient and surface temperamure profile against x with M = 0.10, /= 0.07 and =010
It can be obscrved from figure 2.14 that the skin friction coeflficient incieases
monotonically for a particular value of Pr. 1t is also noted that the skin friction coellicient
decreases for the increasing Prandtl number. From figure 2 15, it can be seen that the
surface temperature decreases due to the increasing values of Pr from 0.73 10 4.24.

Fipure 2.16 and figurc 2.17 deal with (he effect of Joule heating parameter on the skin
friction coefficient and surface temperature profile againstx with M =001, Pr=0.73 and
¥= .01, It can be obscrved from figure 2.16 that the skin friction coefficient increascs
monotonicatly for a particular vaiue of J. It can also be noled that the skin frction
coefficient incteases for the increasing J. From Rgare 2.17, it can be seen that the surface
(cmpertature increases due to the increasing values of JF from 0.00] to 0.420

In this problem the values of parameters (magnetic parameter M = 0.1, 1.7, 2.7, 7,
thermal conductivity varation parameter y = 001, 0.21, 0,31, .51, Joule healing

parameter S = 0.001, 0.150, 0.270, 0.480, and Prandtl number Pr = 0.73, 1.73,.2.97, 4.24)

18
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are taken. It is observed that for each parameter, if greatcr than above valve is taken then it
does not converge will other controlling paramelers. In that case {ipores of velocity,
temperature, skin friction coefficient and surface temperature profiles will not be better

than that are shown above. Also then the fluid flow will no longer be laminar,

Skin friction, CJ&

Figure 2.10: Variation of skin friction coefficient against x for varying
of Mwithy =0.1, =007 and Pr=073

Surface temperature, ©

I 1 |
0 0 1 2 3 4

Figure 2.11: Variation of surface temperalure profile againsi x for
varying of M with y =0.1, /=0.07 and Pr=0.73
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Skin friction, Cﬁ,

Figure 2.12: Variation of skin friction coefficient against x for varying
of ¥y wilh M =001, J=0.01 and Fr=0.73

Surface temperature, 0

| 1
uﬂ 05 1 1.5

Figure 2.13: Varation of surface temperature profile against x for
varying of ¥ with A = .01, 7= 0.01 and Pr=0.73
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Skin friction, Gg

Figurc 2.14: Variation of skin friction cocfiicient aganst x for varying
of Prwith M=0.10, 7= 007 and y=0.10
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Figure 2.15: Variation of surface lemperature proftle against x lor
varying of Prwith M =0.10,J=0.07 and y=0.10
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Figure 2.16G: Variation of skin friction coelficient against x for varying
of Jwith M=0.01, y = 0.01 and Pr = 0.73
3
)
=
5
o 2
=
@
et
b
5
‘t
5 1
o
) i 1 1
EU 1 2 3 4
x

Figure 2.17: Variation of surface temperature profile against x for
varying of J with A =0.01, y =0.01 and Pr=0.73

Table 2.2 and 2.3 depict the comparisons of the present numerical results of the surface
temperature 8 (x,0) and the skin friction coelficient Cp with thuse obtained by Pozzi and

Lupo (1988) and Merkin and Pop {1996) respectively.
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Here, the magnetic parameler M, thermal conductivity variation parameter y and Joule

heating parameter S arc ignored and the Prandll number Pr = 0,733 with x'* = £ s

chosen. Tt is elearly scen that there is an excellent agreement of the present 1esults with the

solutions of Pozzi and Lupo in 1988 and Merkin and Pop 1n 1994,

Table 2.1: Comparison of the present numerical results of surface temperature profile
with Prandtl number Pr=0.733, M =00, /=00 and ¥y =0.0

A{x,0)
r% ¢ Pozzi and Lupo {1988) Merkin and Pop (1996} Present work
0.7 0.651 {.651 0,631
08 0684 0686 0637
RS 0.708 0715 0,717
1.0 0.717 0.741 1741
11 0.64% 0.762 0763
1.2 0.640 0.781 .781

Table 2.2: Comparison of the present numerical results of skin friction coelficient with
Prandtl number Pr=0.733, M=0.0,F=00and y =00

Crr

x% _ s Pozs and Lupo {1988) Merkin and Pap (1996} Prusent waork
0.7 0.430 0.430 0,424
0.8 0,530 0.530 0.528%
(.9 0635 0.635 0.634
10 0.741 0.745 0.743
1.1 0.820 0 859 (+ 858
1.2 0.817 0.972 0.973
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Table 2.3: Skin friction coefficient and surface temperature profile agmnst x for

different valucs of Jouls heating parameter J with other controlling parameters » = 0.01,

M=001and Pr=0.73

J=0.001 J=0.150 J=0.270 J=0.480

X C_Iﬁ ﬂ (_:r’r g Cﬁ f;l' (}1 ]

0.86881 13558 1.753% 13744 17779 13895 L7976 14163 18320
13356 1.5560 1.8323 15943 18772 1.6258 19145 1.6820 1.9824
2.5346 1.9202 1.9504 2.039% 20702 21406 2.1746 23260 23742
37403 2.1846 20246 24298 22489 26427 24553 3.0461 28718
49370 23802 20757 2778 24209 3.1348 27355 38260 3.4035
53785 24753 2.0996 29741 2.5220 34272 29436 43167 38572
66947 26245 21361 33246 27112 39777 3.3143 52829 44713
7H6E3 27641 21691 37135 25314 46220 37715 64673 57276
87021 2.8549 2.1900 4.0056 31030 53268 41436 74224 606187
972437 2.9108 22027 42033 32219 54761 44081 80959 72657

2.5 Conclusion

From the prosent investigation the following conclusion may be diawn

» The veloeity profile within the beundary layer increases for decreasing valucs of
the magnetic parameter M, Prandtl namber Pr and increasing values of the thermal
conductivity variation parameter x and Joule healing parameter .z

# The temperalure profile within the boundary layer increascs for the mmereasing

values of M, yand J, and decreasing values of the Prandtl number Pr.

e The skin friction cocfficient decreases for the increasing value of the magnetic
parameder M, Prandtt number Pr and decreasing valucs of the thermal conductivity

variation parameter ¥ and Joule heating parameter J,

a  Anincrease in ihe values of the thermal conductivity variation parameter 3 Joule
hesling parameter J and magnelic parameter M leads to increase in the swface

temperalure profile

e The surface temperature profile decreases for the increasing values of the Prandi

number P,
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Chapter 3

Combined Effects of Variabie Thermal Conductivity and Joulc
Heating on MHI Free Convection Flow along a Vertical I'lat
Plate with Conduction and Viscous Dissipation,

3.1 Introduction

This chapter describes combined cffects of variable thermal conductivily and Joule healing,
on MUD free convection [ow along a vertical flat plate with heat conduction and viscous
dissipation. The governing equations are madc dimensioniess by vsing a new class of
wansformations. The resulting non-linear system of partial differenhial equations iz then
solved numerically using very efficient implicit finitc-difference method known as Keller-
box scheme. Numerical results are presented graphically by velocity, temperature. skin
friction coefficient and surface temperatare profiles for a selection of parameters set
consisting of magnetic parameler M, thermal conductivity vanation parameter , viscous
dissipation parameter ¥, Joule heating paramelcr J and Prandil number Pr. The
comparson of numerical values of the skin {riction cocfficient for diffurent valucs of
thermal conductivity variation parameter (with and without ihe effect of viscous

dissipation paramelter N) is also piven as well,

3.2 Governing equations of the [low

In fhe present work it is assumed that & steady natural convaction flow of an electrically
conducting, viscous and incompressible fluid along a vertical flat plate of length / and
thickness b (Figure-3.1) The iemperature at the outside sucface is considered at a constant

temperature T, where Ty > T the temperalute ontsidc the boundary laver. Along the ¥'-

axis a uniform magnetic field of strength Iy is applied.

Under the usmal Boussinesq approximation, the continuity, momentum and encrpy

equations for two dimensional laminar flow can be written as

HLD (3.1
& )

- iy



Combined effects of Joule heating & viscous dissipation on MHD Mow

— aE I 2=
ﬁﬁi+iu-=vaf+gﬁm}—n}—“H“’ {3.2)
&
ar. _ar 1 a7 2 TN
Pl +v— = gﬂg—%g+5£i?+i;ﬁﬂ] {(3.3)
arg & pC, oy oy pC, C,\2F

Here [ is coefficient of volume expansion. Consider the temperature dependent thermal

conductivity, which is proposed by Charraudeau {1973)

k=, [1+8(F, -T )] (3.4}
where x_is the thermal conductivity of the ambicnt fluid and & is defined as
seL(2).

Ko A\ET ),
The above cquations arc satisfied by the following appropriate boundary conditions

(Merkin & Pap 1596}

=0, ¥=0
ar $=0, T>0 3.5
T, =T(%.0), il AL B on y=u oA (3.3)
&  bx,

R0, 1,21, as Yoo, ¥l

x
L
msulaad Tw
Ts
Ha M=interlace
r
L5 - I
—_— —— W
_— i | 7{z.0)
A ¥
—_— —
e ——
> ¥
Q

Figure 3.1: Physical model and coordinate sysiem

3.3 Transformation of the governing equations

The non-dimensional governing cquations and boundary condilions can Le obtained fram

equation (3.1) - (3.5} using the following noen-dimensional guantities:
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= = 1 i L ) -1 T, -1
X:ig}’zlﬁf“,u=£6r 1|v=1_(:-ﬂ d!&l: f m!
L L v v 7, -7
LNT, =T ) G0
Gr_gﬁ {V; )

where Gr is the Grashof mumber, L is the tefercnce length of the plal, & is the non

dimcnsional temperature, v £ s Kinematic viscosity. Now substtuting the equation
P

(3.6) inta the equations {3.1) - (3.3), the following non-dimensional equations are ablaincd

";34-—5"- =0 (.7
dx oy
E

d 2 e =T (38)

or v ay

oy 2 K I

uan—ﬂrt-v£=i(l+:f€}a ?+L L LI il {3.9)

dr & Pr gy Pri v ay

2L2 .

where Af = EﬁﬁT is the dimensionless magnetic parameter, Pr= £ is the Prandtl

i, Gre e

e

number, =487, =T, ) is the dimensionless thennal conductivty variation parameter,

G . , 2 Gr
= M is dimensionless Joule heating parameter and N = v G
pC,(F,~T.)

=— iy
1 - -

£C, (T, -1,
the dimensionless viscous dissipation parameter. The conesponding boundary conditions

{3 53 then 1ake the following form
ad
w=0 =0, H—l:(l-hyﬂ]pa ,on p=0x=0 {314

naod-0 , asy—2w x>l

! .
where the conjugate conduction parameter p = [i;j Gr''% . Magnitude of Ofp) depends
N

a

on &/ and Gr' being the order of unity. X+ attains very small values if the plate s
"

i
highly conductive and reaches the vrder of 0.1 for materials such as glass. Since L is small,
{he term h/L becomes greater than one. p may be different in different cases but not always

a small number. p = 1 is considered in the present investigation.
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The following transformations are introduced (o solve the equations (3.8) and (3.9}

subject 1o the boundary conditions (3.10},

L

w=x(14x) * f(5m)
g=yx (l+x) ¥ (311)

8=x*(i+x) *h(x1)
here 4 is stream  function which satishes the continuity equation and is iclated 1o the

. : ai e i o
velocity components in the usual way as = 9 and ve —ﬁ—d'f , 7 18 the similarity

o

variable. Moreover, A(x,#) represents the non-dimensional temperature. The momentum
and encrgy equations (cquation (3.8} and (3.9 respectively} are iransformed lor the new
coordinale system. At first, the velocily components arc expessed in terms of the new

variables for this transfommation. Thus the following equations are obtained

16 +15; 2 L
J,I”'“_|. 6415'{ ff"-- 0+ 5x f,}_ _M-rs{l_l_x}mfi
2001+ %) 1001 +x) 512
=T o
+ f::x[f'-?{——f"f“'i]
&x fx
1 !
L | ]ﬁ.ﬁ!.ﬁ"-l- i’“_[ B Y L Y
Pr Pril+x Pr \l+x 2001+ x)
£3.133
l 2 th &F
s S ) ot Rt Nxf" = [ f— —J
trxfios siin S T

where prime denotes partial differentiation with respect to #7 'the boundary condilions as
mentioned in equation {3.10) then take the following form
[(x0) = f'(x01=0
1 |
{1+ x) *h{x0-1

i T il
(1+x) T +yx’(1+3) Th(x,0) 3 14)

B{x,0) =

F{(x,0) — 0, k (x,00) 20

By applying implicit finite difference method with Keller-box (1978) scheme the sel of
equations {3.12) and {3.13) together with the boundary conditions {3.14) can be solved.
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3.4 Results and Discussion

The main objective of the presenl work is to analyze the combined elltets of thermal
conductivity variation due to temperaturc and Joule healing on MHD free convechion flow
along a vertical Mat platc with heat conduction and viscous dissipation. The values of the
Prandtl number are considered to be .73, 1.73, 2.97 and 4.24 that cowesponds Lo air,
water, methyl chloride and sulfur dioxide respectively. Detailed numerical resulis of the
velocily, tcmperature, skin friction coefficicnt and surlace temperature profiles for
different valucs of the thermal conductivily variation paramcicr, viscous dissipation
patameter, Joulc heating parameter and Prandtl number are presented graphically, The
velocily and the temperaturc [ields oblained from the solutions of the equations {3.12) and

{3.13) are depicted in figure 3.2 o figure 3.11.

Fipure 3.2 and figure 3.3 illustrale the velocity and temperature profiles fur difterent
values of Prundtl number # with other controlling parameters M = 0.02, ¥ = 002, J =
001 and ¥ = 0.1, From figure 3.2, it can be observed that the velocity profile decreases as
well s its position moves toward the interface with the incrcasing Pr. From fipme 3 3, 1t

is seen that the temperature profile shifts down ward with the increasing £r.

The effect of viscous disstpation parameter & on the velocily and the temperature wilhin
ihe boundary layer with M = 2.6, y=0.02, /= 0.01 and Pr = 0.73 ar¢ shown in fligme 3.4
and [gure 3.5 respectively. The velocity and temperature increase within the boundary
laver with the increasing values of N. Morcover, the maximum values of the velocity are
02701, 0.2777, 0.2860 and 0.3007 for N = 0.01, (.50, 1.00 and 1.50 respectively and cach
of which occurs at 77 = 1.1412. It is observed that the velocity Increases by 10 18 %0 when
N increases from 0.01 o 1.80. Furthermore, the maxamum values ol the temperalure are
00133, 0.9395, 0.06593 and 1.0250 for ¥ = 0.01, 0.50, 100, and 1.80 rezpectively and cach
of which occurs at the surface. It is ohscrved that the wempetature increases hy 10.9 %

when N increases from 0.01 to 1.80

Tigure 3.6 and 3.7 show the cffect of Joule heating parameter J on the velocity and
temperatute profiles within the boundary layer with other controlling parameters M = 2.0,
y=001, N =0.01 and Pr=1.73 respectively. It is seen that from figure 3.6 and figure 3.7
{hat these profilcs increase within the boundary layer with the ncreasing valees of J from
0.01 1 0,23,
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Figure 3.2: Variation of velocity profile against 7 for varying of Pr with
M=002,N=002,/=00land y =01
0.8
D
W 0.6
=
i
g 0.4
& 0
(Ol
|_
02

Figure 3.3: Vanation of temperature profile against 7 for varying of Pr
with M =002, N=0.02, J=0.0] and y = 0.1
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Velocity, S

Figure 3.4: Variation of velocity profile against 7 for varying of N with
y =002, M=26,/=001 and Pr=0.73

Temperature, 0

Figure 3.5: Vanation of temperatute profile against » for varying of ¥
with A = 2.6, ¥y =(L.02, f=001 and #r="0.73
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Figure 3.6; Varation of velocity profile against 7 for varying of J with
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Figure 3.7: Variation of tcmperature profile agmnst 7 {ur varying ol J
with M= 2.6,y =00, ¥=0.01 and Pr=1.73
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Table 3.1: Skin friction coefficient and surface lemperature profile against x for

different values of viscous dissipation parameter & with other contmolling paramelers M =
2.6,y =0.02,/=0.01 and Pr= 0.73

N=0101 AN=050 N=1.00 N=180

x Cr 0 Cr f) Cr £ Ch i

11752  0.6435 0.8060 006654 08304 06900 0.8584 0.7354 091121
23736 0.6958 0.8469 07295 0.8821 07648 09251 08515 1040
14792 0.7219 0.8664 0.7633 09086 0.28149 09619 09272 LOSIS
45494  0.738% (L8790 07861 009263 08469 (.9830 09379 1.1362
56020 07510 0.88%% 08043 09405 08738 1.0100 10452 11882
6.8315 0.7619 0.8962 0.8188 09516 08957 1.0280 1.0978 12304
77012 L7681 0.9008 0.5280 0953588 0.9103 L0400 1.3360 12713
88791 07751 09060 08385 0.9669 09274 10541 11868 13193
100179 0.7807 09103 0.8471 09737 09421 1.0662 12354 13632
12.0026 0.7887 09163 08597 09836 09642 10846 13213 14478
152684 07983 0.9236 08736 09962 09941 11098 14764  1.6009

Figure 3.8 and figure 3.9 deal with the effect of prandtl number on the skin friction
coefficient and swface lemperarie profile against x with A = 0.02, ¥ = 0.02, /= 0.01 and
¥ = 0.1. It can be observed from figure 3.8 that the skin friction coefficient increasea
monotonically for a particular value of Pr. It can also be noted that the skin fnction
cocflicients decrease for the increasing /. From figure 3.9. It can be seen that the surface

terperamre profile decreases for (he increasing Fr.

The effect of viscous dissipation parameter on the skin friction coelficient and surface
temperature prolile against x with M = 2.6, y = 0.02, /=001 and Fr= (.73 are shown in
figure 3.10 and figure 3.11, rcspectively. It 18 observed [rom figwe 3.10 that the skin
friction coefficient increases monolonically for a particular valuc of N. From figere 3.11 11
can be scen that the surface temperature profile increases for increasing N from .01 to

1.80.

The variation of skin {detion coefficient and surface temperature profile for different

values of J with = 0.01, ¥ = 0.01, M =26 and Pr =173 at differeni positions ars
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iHustrated in figure 3.12 and figure 3.13 respectively. It s obseived from Ogure 3.12 that
the increasing vatues of the Joule heating parameter J leads to an increase in the gkin
friction factor. Again figure 3.13 shows that the surface temperature increases dug to the

increasing values of .

1.8

—%
P

0.8

Skin friction, Cﬁ

0.4

|
05 1 2 3

Figurc 3.8: Variation of skin friction coefficient apainst x for varying of
Prwith M =002, ¥=0.02,7=001 and  =0.1

Surface temperature, 9

|
o 0% 1 5 2

Figure 3.9: Variation of surface lemperature profils apainst x fo
varying of Prwith M = 0.02, N = 002, =001 and y =01
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Figure 3.10: Varation of skin ftiction cocfficient against x for varving
of Nwith M=20, y =0.02,/=0.01 and Fr=10.73
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Figure 3.11: Varation of surface tempecrahie profile against x for
varying of N with M = 2.6, y = 0.02, /=001 and Pr=1{0.73
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3.5 Comparison of effect of ¥

The comparison of the effects of thermal conductivity vanalion parameter y on the
velocity profile wilhin the boundary layer with olher controlling parametes M=001J7=
0.01 and Pr = (.73 {baving the effect of ¥ = 0.0 and N = 0,1} are shown in figurc 3.14 and
figure 3.15, respectively. In figure 3.14, maximum valucs of velocity are 0.5937, 0.6134,
6.6234, and 0.6416 due to values of = 0.01, 0.21, 31 and 0.31 respectively. Each of
them oceurs at 77 = 0.2808. Velocity profile increases by 7.47% when y incrcases from
0.01 to 0.51. From figure .15 it is noted that maximum values of velocity ate 0.5870,

0.6076. 0.647) and 0.6352 in the casc of using ¥ = .1, Ilere veloeity increases by 7 31%.

Figures 3.16 and 3.17 show the compatison on tlemperature profile witmin the houndury
layer for the effccis of ¥ using the parameter ¥ = 0.0 and N =1.1 respectively Maximum
values of temperatire are obtained 0 8293, 0.8397, 0.844] and ( 8516 from fizure 3.160.
Each of them occurs at the interface. Temperature profile increases by 2.62% in the
ahsence of cffect of viscous dissipation parameter & (N = 0.0). Maximum values of
lemperature are 0.8451, (L8553, 0.8595 and 0.8667 due 1o increasing valees of ¥ frotn 0.01

{0 0.51. Temperatore increascs by 2.5% in the case of using &= 0.1,

Figure 3.18 and figure 3.19 illustrate the {:ﬂmtl:larimn of the effects of thermal conductivity
variation parameler on the skin friction cocfficient against x with other conirolling
parameter A = 0,01, 7=0.01 and Pr=10.73 It is seen that the effect of viscous dissipation
parameter is ignored (¥ = 0.0) in figure 3.18 and is used significantly (% = 9.1} in figure

.19, respectively.

The companson of the cffects of ¥ (without and with the effcct of viscous dissipation
parameler /¥) on Surface temperature profile are shown in figure 320 and 3.21,
respectively. It is observed that the surface temperature profile incieases for both cases
due 1o the increasing values of ¢ from 0.01 to 0.51. This parameter also accelerates the

Muid fiow and increases the surface temperanure.
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Figure 3.14: Yariation of velocily profile against # for varying of ¥

with 4 = 0.01, =001, Pr=1.73 and ¥ = 0.0.
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Figore 3.15: Variation ol velocity profile against # for varying of y

with M =0.01,7=001, Pr= 173 and ¥ = 0.1.
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Temperaiure, g

Figure 3.16: Variation of temperalurc profile against 77 for varying of ¥
with M =0.01, /=001, Pr=1.73 and ¥ = 0.0,
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Figure 3.17: Vanation of lemperature profile against s for varying of y
with M =0.01,/=001, Pr=173 and ¥=0.1.
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Figure 3.18: Variation of skin friction cocfficient against » for virying
of ¥ with M= 0.01, /=001, Pr=073 and ¥ =0.0.
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Figure 3.19: Variation of skin friction coetficient apainst x for varying
of ¥ with M =001, f=001, Pr=073 and ¥=0.1.
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Surface temperature, 0

0 1
0 0.2 0.4 0.6
A

Figurc 3.20: Variation of surface tempemmure profilc against x for
varying of ¥ with M=0.01, /=001, Pr=073 and N = 0.0.

Surface Temperature, §

0 ] 1
0 0.2 0.4 0.6
Figure 3.21: Varialion of surface temperature profite agamnst x fur

varying of ¥ with M=0.01,/=00L Pr=073 and ¥=1(.1.

From the above figures it is observed thal when there is no effcet of viscons disaipalion

parameter &, then the ligures ate same as in the previous chapter. Also when the effect of
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& = 0.1 is introduced then some variations are obtained significantly, This is because for
N = 0.1, viscosity is dissipated and fluid velocity is increased by 7.51%, which is greater
than 7.47% in the case ol using & = 0.0. Also maximum values ol temperature profile arc
preater for /¥ = 0.1 than that of using ¥ = 0.0 in each case. So additional using of viscous

dissipation parameter ;¥ in this chapter signifies significant sipmificance,

Table 3.2: Comparison of Skin friction coelTcient Cn agamst x for dillorent values of

thermal conductivity variation parameter y (without and with the effect of viscous
dissipation parameter ) having other controlling parameters M = 0.01, /= 0.01 and Fr =
0.73

Ch ¥ =001 y=021 y =031 y =051

X N=0D N=01 N=00 N=01 N=00 N=01 N=00 N=01

08615 005434 09564 09690 0.9821 09807 0.9938 10021 1.0152
1.0847 1.0079 1.0251  1.0348 10521 10471 1.0644 10694 1.0867
31340 13770 1.4419 14080 14724 14213 14858 14452 1.5099
56920  1.6530 1.7903  1.6812  1.8200 16935 18329 17152 1.8358
74063 17967 19910 18227 20201 18339 20327 18536 2.0548
57021 1.893¢ 2.1350 1.9179  2.1646 19284 21771 1.9466 2.1991
96231 1.9587 22365 19814 22657 19913 22784 20085 2.3004
113011 20703 24188  2.0006 24495 20994 24626 21149 24854
14.9654 2.2433% 2.8230 23107  2.8625 23177 28787 23300 2.9059

In Table 3.2, the numerical values of the skin friction coellicient Cp against x fou differcnt
values of y (with and without the effect of J¥) in the case of fixed valugs M = 001, F’r =
0.73, J = 0.01 are shown. It is observed from the lable that the values of the skin foiction
cocfficient at different position of x for » = .01, 0.21, 0.31, 0.5] are lower when
parameter & is not used (V¥ = 0.0) than that of using ¥ = (.1. Near the axial posiion x =
7.4063, the rule of increase of the local skin friction coefficient 15 around 3.07% as ¥
changes from 0.01 ta 0.51 when there is no effect ol N, Put applying the cffect of & =10.1

the corresponding rate is around 3.11% as y changes from 0.01 10 0.31.

42 .



Combined effects of Joule heating & viscous dissipation on MHD flow

3.6 Conclusion

Combined effects of variable thermal conductivity and Joule heating on MHD fre
canvection flow along a verlical flat plale with conduction and viscous dissipation has

Leen sindied. The conclusion is as follows

¢  Significant eflects of viscous dissipation parameter ¥ on velocity and temperature
profiles as well as on skin friction coefficicnt and swface wmperatwe witlun the

boundary layer have been found in this investigation.

® The increase in Pr leads 1o decrease in velocity, temperature, local skin fiiction

coefficient and surface tempcrature profiles.

s All the velocily, temperature, skin friction cocfficient and surtace lempurature
profiles increasc significantly when the valucs of thermal conductivity vatiation

parameter y increase for both cases {(without and with the clfect of N).

e  The increase in J leads 1o an increase in velocity, temperatwe. local skin friction

cocficient and surface temperature profiles.
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Chapter 4

4.1 Conclusion

The effects of variable ihcrma! conductivity on the coupling of condnction and Joule
heating with Magnctohydrodynamic (MHD) free convection flow aleng 2 vertical [lat
plate in presence of viscous dissipation have been studied. Jrom the present investigation

the following conchision may be drawn

¢ The velocity profile within the boundary layer incrcases for decreasing valucs of
the magnetic parameter M, Prandt] number Pr and increasing values of the thermal
conductivity variation patameter x viscous dissipation parameter N and Joule

heating parameicr J.

e The temperature profile within the boundary layer increases for the increasing
value of magnetic parameter M, thermal conductivity variation parameter y and
viscous dissipation parameler N, Joule heating parameter J, and decreasing values
of the I'randt] number Fr.

s The skin friction coeflicient decreases for the increasing values ol the magneuc
patameter M, Prandtl number Pr and decreasing values of the thermal conductivity
vatiation parameter 3 viscous dissipation parameler A and Joule heating parameter
J.

*  An increase in the values of the thermal conductivily variation parameter ¥ viscous
dissipation parameter &, Joulc heating parameter J and magnetic parameter M
lcads to an increase in the surface temperatore profile.

» The surface temperature profile decreases for the increasing values of the Prandtl
nuniber Pr.

¢  The presence of a magnetic field normal to the flow in an electrcally conducting
Auid introduces & Lotentz force, which acts against the flow. This resistive force
tends o slow down the flow and hence the Auid velocity decieases wath the
increase of the magrietic parameler. There is a friction between magnetic field and
fluid flow. It produces heat. As a result the temperature profile increascs with the
increase of the magnetic paramcter and also swiface (emperature profile increase
with (ie incroase of M. Since the velogity decreases for the increasing valucs of

magnetic parameter, so skin friction reduces for increasing valucs of M.



Conelusion

o Thermal conductivity depends on {he (cmperature iifference between the
temperature outside the plate and the temperature outside (he boundary layer. 1f
this difference increascs then also thennal conductivity increascs, so incieasing
value of thermal conductivily variation parameice indicates that heat is transfesred
rapidly from plate to (he [luid in the boundary laycr. Then temperature Ncreases
within the boundary layer and also fluid mass is transferred Incieasing velocity
increascs skin friction coellicient and surtace temperalure as well

4.2 Extension of this work

The present work may be extended in different ways. Some of those are:

e Temperature dependent thermsl conductivity has becn considercd in the present
sudy. For larther cxtension temperature dependent viscosity of the fluid may be

considered.
e The problem may be extendsd considering the Radiation heat transfer cfiects,
e  Forced convection may be studied with the same geometry.
s It can also be considered for unsteady Mow of the fluid.
*  Wayy surface can also be gonsidered here.

s This problem may be extended by considering crilical behavior of the flow.

45



References

Ahmad N. and Zaidi 11, W., Magnetic effect on oberbeck convection thiough vertical
stratum, Proc. 2nd BSME-ASME International Conference on Thermal Engineering, pp.
157-166, 2004,

Al- Khawaja M. J., Agarwal R. K. and Gradner R A., Numerical study of magneto (Muid
mechanics combined free and forced convection heat transfer, Int. ) of Heat Mass
Transfer, Vol. 42, pp. 467-4735, 19599,

Alim M. A, Alam M. and Abdullah Al-Mamun, Joule heating effect on the couphing of
conduction with Magnetohydrodynsmic free convection flow from a vertical Nat plate,
Nonlincar analysis: Modelling and Control, Vol. 12, No. 3, pp. 307-316, 2007,

Alim M. A, Alam M, Mamun A. A. and Bellal H, Combined cffect of viscous
dissipation & Joule heating on the coupling of conduction & free convection along a
verlical flat plate, Int. Communications of Heat & Mass Transfer, Yol 33, No. 3, pp. 338-
346, 2008,

Cebeci T. and Bradshaw P., Physical and Computational Aspects of Convective Heat
Transfer, Springer, New York, 1934,

Charraudcay J., Influcnce de gradicnis de properties physiques en comvection force
application au cas du tube, Int. J. of Heat Mass Transfer, Vol 18, pp. B7-95, 1973,

Chen H. T and Chang 5. M., The thermal interaction between laminar {ilm condensation
and forced convection along a conducting wall, Acta Mech., Vol.118, pp.13-26, 1996.

Chen 1. C., A numerical simulation of micro polar (Muid flows along a flat plate with wall
conduction and buoyancy clfects, ). of Applied Physics D., Vol. 39, pp. 1 132- 1140, 2006

Chen P., Combined free and forced convection flow about inclined surfaccs in porous
media, Int. J. Heat Mass Transfer, Vol. 20, pp. 807-814, 1977,

Chowdhory M. K. and Islam M. N., MU free convection low of visco-elastic Muid past
an infinite porous plate, Heat Mass Transfer, Vol. 36, pp. 430-447, 2000,

(larke J. F. and Riley N., Natural convection indoced wn a gas by the prescnee of a hot
porous horizontal surface, Q. J. Mech. Appl. Math , Vol. 28, pp 373-396, 1973

Clarke 1. T. and Riley N., Free convection and the burning ol a horizontal [ucl swiface, J.
of Fluid Mech., Yol. 74, pp. 415431, 1974,

El-Amin M. A., Combined elfect of viscous dissipation and Joule heating on MHD forced
convection over a non isethermal horizontal cylinder embedded 1 a (nid saturated porous
medium, Journal of Magnetism and Magnetic Materials, 263(3), pp. 337-343, 2003

Elbashbeshy E. M. A., Free convection flow with variable viscosity and thormal
diffusivity along a vertical plate in the presence of magnetic ficld, Int. ). of Lnaineering
Science, Yol. 38, pp. 207-213, 2000,



Crander 2. A. and Lo Y. T., Combined free and forced convection heat transfer in
magneto fluid mechame pipe flow, AICHE, Vol. 73, No. 164, pp.133, 1575

Hassanicn 1. A., Combined [orced and free convection in boundary layer Now of a micre
polar fluid over a horizontal plate, ZAMD, Vol. 48, Ne.4, pp. 371, 1977,

Hossain M. A., The viscous and Joule heating effects on MHD free convection flow with
variable plate temperature, Int. J. of Heat Mass Uransler, Vol 35, No. 12, pp.3483-3487,
1992,

Hogsain M. A., Alim M. A and Rees D. A. 5., The effeci of radiation on free conveotion
from a porous vertical plate, Int. ). of Heal Mass Tiansfer, Vol. 42, pp. 181191, 1999,

Hossain M. A., Das 5. K. and Pop L., Heat transfer response of MHD free convection flow
along a vertical plate to surface temperanire oscillation, Int. J. of Non-Linear bochanics,
Vol. 33, No. 3, pp. 541-553, 1995,

Hossain M. A. and Ahmad M., MHD forced and frce convection boundary layer flow near
the leading edge, Int. J. of Heat Mass Transfer, Vol. 33, No. 3, pp. 571-575, 1990,

Hossain M. A., Alam K. C. A, and Rees D. A, 8, MHD forced and free convection
boundary layer flow along a vertical porous plate, Applicd Mechamcs and Engincering,
Yol 2, No.l, pp. 33-51, 1997,

Keller H. B., Numerical methods in boundary layer theory, Annual Rev Fluid Meachanics,
Vol. 10, pp. 417-433, 1978.

Khan Z. 1., Conjugate effect of conduction and convection with natural convection flow
from a vertical Mat plate and in an inclined square cavity, M. Phil thesis, Departmen of
Mathematics, BUET, 2002,

Lin H. T. and Yu W. S., Free convection on a horizontal plate with blowing and suction, J.
of 1leat Trans., ASME, Yol. 110, pp. 793-796, 1982,

Luikoy A. K., Conjugale convective heat transfer problemns, Int. J. of Heat Mass Transfer.
valls, pp. 257-265, 1974,

Mamun M. M., Azad R. and Lineeya T. R., Natural convection flow from an isolhermal
sphere with temperature dependent thermal conductivity, J. of Naval Archit and Marine
Engp., Yol. 2, pp. 53-64, 2005,

Mamun, A. A., Arim, N, H. Md. and Maleque, Md. A., Combined Elfect of Conduction
and Viscous Dissipation on MHD Free Convection Flow along a Vertical Flat Plate, J. of
Naval Archit. and Marine Engg., Vol. 4, pp. 87-98, 2007.

Mendez T, ‘ITevine C., The conjupate conduction-natural convection heat transfer along a
thin verical plate with non-uniform intemal heat gencration, Int. I, of Heal and Mass
Transfer, Vol. 43, pp. 2739-2748, 2000.

Merkin 1. 11 and Pop I, Conjugate free convection on a veriical surface, Int. ). of Heat
Mass Transfer, Vol. 39, pp.1527- 1534, 1996, " .

47



Merkin T. H. and Mahmood T., The free convection boundary layer flow on a vertical
plate with prescribed surface heat flux, J. of Engg, Maths, Yol. 24, pp. 45-107, 1990,

Miyamoto M., Sumikawa I, Akiyoshi T. and Nakamura T., The effect of axial heal
conduction in a vertical [lat plate on free convection heat {ransfer, Int ) of Heat Mass
Transfer, Vol. 23, No.11, pp. 1545-1553, 19480.

OZISIK M. Necati , Heal Transfer, Now York, International Edition, 1935,

Pop 1., Lesnic D. and Ingham D. B., The conjugate mixed convection on a veriical surface
in porous medium, Int. J. of Heat Mass Transfer, Vol. 38, No &, pp. 1317-1525. 1995,

Pop |, Ingham D, B., Convective heat transfer, Pergamon, Oxlord 179, 2001,

Pozzi A. and Lupo M., The coupling of conduction with laminar convection aleng a [lat
plale, Int. J. of Heat Mass Transfer, Yol. 31, No. 9, pp 1807-1814, 1988,

Raisinghania M. I, Fluid Dynamics, S, Chand & Cempany Ltd., New Delhi, 2003.

Rahman M. M., Mamun A. A, Azim M. A, Alim M. A, Fiffecls of temperature
dependent thermal conductivity on magnetohydrodynamic free convection flow along a
vertical flat plate wilh heat conduction, Nonlinear Analysis: Modelling and Contmol, Vol
13, No. 4, pp. 513-524, 2008,

Raptis A. and Kafoussias N., Magnetohydrodynamic free convection flow and mass
iransfer through a porous medium bounded by an infinite verlical porous plate wilh
constant heat flux, Canadian Journal of Physics, Yol 60, No 12, pp.1725-1729, 1982,

Shu ). J. and Pop L, The thermal interaction between I[rce convection and forced
convection along a vertical conducting wall, Int. I. of teat Mass Transfer, Yol 35, pp. 33-
38, 1999,

Takhar H. S. and Soondalgekar V. M., Dissipation efTeets on MHD fiee convection [low
past a semi-infinite vertical plate, Applied Scientific Research, Vol 306, No 3, pp. 163-
171, 1980,

Vedhanayagam M., Altenkirch R. A, and Iichhom R., A transformation of the boundary
layer equations for free convection past a vertical flat platc with arbtrary blowing and
wall temperaturc variations, Int. J. of Heat Mass Transfer, Vol. 23, pp. 1286-1288, 1950

Wikipedia online encyclopedia, hitp:/fen. wikipedia.org/Joule heating, 2009,

4%



Appendix

Implicit Finite Difference Mcthod

To get the solutions of the transformed governing equations (2.20) and {221} along with
the boundary condition (2,22}, the implicit fimic dillerence method {ogether with Keller
box elimination lechnique is employed. It is well documented and widcly used by Keller

(1978) and Cebeci (1924}

To apply the aforementioned method, equations {2.20) and {2.21} are fArst converled into

the following system of first order equations with dependent variables w(&,17). v(E.7).

p(&.n) and gig,m}as

f=uw=v,g'=p (A1)
. o

By B = Pk g £ D (A2)
1 ) P " P a
Lovnsp-pugeBepsZpenut =« -0 (A3

where £=x, h=g and

2 1 3
S A 645 o 1 pamat(en)”, Pﬁ(——]
20(1 +x) 10(1 + x) 31 +x) Ve

Fo= sz[] +x]}{“

and the boundary conditions arc
f(£.0)=0, H(f ﬂ}'ﬂ

5‘ (1+§} ‘g (&, ‘3*) -1
(1+¢) +y§5[l+§} 2”3(6 0

p(£0) = (A
u(E,M =0, g (£0=0

Now consider the net rectangle on the (£,7) plane shown in the Figure: A-1 and denote the

net points by

=, éﬂ =gvm—l+kn' }’!-_—1,2:“""""",N
1, =0, R, =% +h;~ ) I RINTT J
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Figure: A-1 Net rectangle of dilference approximations for the Dox scheme.

Here # and f are just sequence of numbers on the {£ 5} plane, ks and fi; are the variable
mesh widths. Approximate the quantities £ w, v, p at the points (&', ) of the nel by

"ou". v, p” which call net function. It is also employed that the notation P ofor the
f ! i r ! plOy !

quantities midway between net points shown in Figure: A-1 and for any net funclion as

£ =g ) | (A3)
oz =50 7,00 (A6)
A AT (A7)
B =5 (] +€) (A8)

The finite differcnee approsimations according 1o box method to the three [irst order
ordinary differential cquations (A1) are written for the mid point (&, 132 ) of the seoment
PP, shown in the Figure: A-1 and the finite difference approximations 1o the two firuL
order differential equations (A2} and (A3} are written for the mid point { & ol 2 ) of the
rectangle Py F;P:Py. This procedurc yields,

TR T
SN Loln e Y y {A9)
2 2

!
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wh =t Vi v
E) -l m I=1
__h—‘l = v_,l—l."l = 2 I {.lf\. ] {]]
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po o 2 (ALY
I. 1"" _v‘r—l v_:l B V;_!l a1 2 Yn-1'2 1 Il s
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i P,
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The houndary condition becotnes
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It iz assumed that f Ju e ,pj", for 0% j<J are known Then equations

(A5) ta (A13) form a system of 5/45 non lingar equations for the solutions of the 555

unknowns (£, uy, v7, gL, i=0123,...J hese nan-linear systems of algebrac

cquations are Lo be linearzed by Newton's Quassy lingarization method. The iterates

(], v g pr ), i=002, 3. N are detined with mitial values equal those al (he

previous x-station for the higher iterates. Thus the following forms can be wniln
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Now by substimting the right hand sides of the above equations in place of f" %], v} and
g7 dropping the terms that arc quadratic in & f7, d ), Evj and & p, the cquations (A9),
(A10} and {A]1) then take the following linear system of algebraic lorm

A

fradyP-ri-4 J.[jiz?"{”+§u“ o+ +ézri'}}
h
511 =6 fa -2 Eu) +8u) = (), (A22)
e’
s, - ’2 B+ 5V =(r,), (A23)
Eg"} Jgff} .-' (5 pf” +5Fff-]|] =), {A24)

where, (), = f{“J J,r'{ﬂi +,’1Ju5””
(ra), =iy —u + 10
(?'5};=£'}| {”+.F'J pi "

‘Then cquation {Al4) becomes,

STEIP RN EEN TSI R
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= (5}, 60" +(5,), 3V + (s, ), EL174(3,), 6 110 +(s5), St

J=h

(AZ5)
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Here the coefficients (s,}, and (s}, , winch are 210 i this case, are included here for the

generafity, Similatly by using the equations (A17) to {A21), then the cguation (A13) can

b written as
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The boundary conditions {A10) becomies

g fy =0, duy, =0,
3 1 -
E]_ T oy
5oy — L re) gl | (A29)
(+&)7 +7£0+H7 g

Suf =0, o g, =0

which just express the requirement for the boundary conditions to remain dunng the
iteration process. Now the system of linear equations (A22), (A23). (A24), (A23} and
(A27) together with the boundary conditions (A29) can be written in matrix ot veetor
form, where the coefficient matrix has a block tri-diagonal structure. I'he whole proccdure,
namely reduction 1o first order followed by central ditference approximations, Newton's
Quasi-linearization method and the block Thomas alporithm, is well known as Keller-ho

meihod.
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