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Abstract

In this thesis the effect of radiation on magnetohydrodynamic (MHD) free convection

boundary layer flow along 11vertical porous plate with variable plale temperature will

be investigated. By using the appropriate transformations, the basic equations arc

transformed to nOll-dimensional boundary layer equations, which are solved

numerically using finite -difTerence method. Here we have focused our attention on

the evolution of the surface shear stress in/enns of local Nusselt number, velocity

distribution as well as temperature distribution for a selection of parameter sots

consisting of Radiation parameter (Rd), Magnetic parameter (M), exponent parameter

(m), the Prandtl number (Pr) and Delta (A), The results of wall shear stress and the

rate of heal transfer iotcnns of the local skin friction coefficient and local Nusselt

nwnber, velocity distribution as well as temperature distribution havc been shown

graphically by using the software LAHEY FORTRAN 90 and TECHPLOT .
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Nomenclature

"A
B

f

g

k

m

M

Pc

q,
Q

T

"
v

y

"T

: Rosseland mean absorption coefficient, m']
: constant

: Transverse magnetic field component, T

: Constant of proportionality of B

: Dimensionless stream function, m2/s

: Acceleration due to gravity, m/s'

: Coefficient of thermal conductivity, W/mK

: Exponent parameter

: Magnetic field parameter

: Prandtl number

: Component of radiative flux, W/ml

: Rate of heat transfer, W

: Radiation parameter, rns K4!W

: Temperature of the Iluid, K

: Temperature of the ambient fluid, K

: Surface temperature/plate temperature, K

: Velocity component in the x direction, m1s

: Velodty component in the y direction, mls

; Represents the suction of velocity of fluid through the

Surface of the platcfUnifOlTIl transpiration velocity, mls

: Coordinate measuring distance along plate, ill

: Coordinate measuring distance nonnal to plate, m

: Temperature difference, K
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Greek symbols

",

",
p

(

A

: Electrical conductivity, slm

: scattering coefficient, mol

: Stream funclion, m21s

: Viscosity of the fluid, kg/ms

: Kinematic viscosity, m2/s

: Skin friction, kg/ms2

: Coefficient of cubical I vollUllc expansion, Kl

: Similarity variable

: Coefficient of thermal diffusivity, m2/s

: Dimensionless temperature function

: Density ofthc ambient fluid, kg/m]

: Scaled streamwise coordinate

: Surface temperature parameter, K
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Chapter 1

Introduction
The study of heal transfer is of great interest in many branches of science and

engineering. In designing heat exchangers such as boilers, condensers and radiators

etc, heat transfer analysis is essential for designing such equipment. for example, in

the design of nuclear-reactor cores, a thorough heat transfer analysis of fuel elements

is important for proper sizing of fuel element to prevent burnout. In aerospace

technology, heat transfer problems arc crucial because of weight limitations and

safely considerations. In heating and air conditioning applications for buildings a

proper heal transfer analysis is necessary to estimate the amount of insulation needed

to prevent excessive heat loses or gains,

The three distinct modes of heat transfer, namely conduction, convection and

radiation must be considered. In reality, the combined effects of these three modes of

heat transfer control temperature distribution in a medium. Conduction occurs if

energy exchange takes place from the region of high temperature to that of low

temperature by the kinetic motion or direct impact of molecules, as in the case of fluid

at rest, and by the drift of electrons, as in the case of metals. The radiation energy

emilted by a body is transmitted in the space ill the form of electromagnetic waves,

Energy is emitted from a material due 10its temperature level, being larger for a larger

temperature, and is then transmitted to another surface which may be vacuum Of a

medium which may absorb, reflect or transmit the mdiation depending on the nature

and extent of the medium. Considerable effort has been directed at the convective

mode of heat transfer. In this mode, relative motion of the fluid provides an additional

mechanism for energy transfer. A Sllldy of convective heat transfer involves the

mechanisms of conduction and, sometimes, those of radiation processes as well. This

makes the study of convective mode a very complicated one.

Considerable attention has been given to magneto hydrodynamic (MHD) flows since

the beginning of this century, The branch of science which incorporates with the

motion of a highly conducting fluid in presence of a magnetic flied is called magneto
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hydrodynamics. The motion of the conducting fluid across the magnetic field

generates electric currents which changc the magnetic ficld and the action of the

magnetic field on these currents give rise to mechanical forces, which modily the

fluid. It is possible to attain equilibrium in a conducting fluid if the current is parallel

to the magnetic lield. For then the magnctic forces vanish and the equilibrium of the

gas is the same as in the abscnce of magnetic fields, such magnctic lields are called

force-free. But most liquids and gases are very poor electrically conductors. In thc

case when the conductor is either a liquid or a gas, electromagnetic forccs will be

generated which may he of the same order of magnitude as the hydro dynamical and

inertial forces. Thus the equations of motion will have to take these electromagnetic

forces into account as well as the other forces.

However, it is possible to make somc gases very highly conducting by ionizing them.

For ionization to take effect, the gas must be very hot at temperature upwards of 5000

K or so. Such ionized gases are called plasma~.The material within a star is plasma of

very high conductivity and it exists within a strong magnctic field.

Solid matter is generally excluded from Magneto hydrodynamics effect, hut it should

be realized that the same principles apply in Electro hydrodynamics. Electrical

conduction in metals and the Hall Effect are two examples. In an electric molar, the

magnetic field produced by the armature current affects the operdtion of the motor in

an important way, so that the mechanical and electrical analyses are coupled, just as in

MHD. Electromagnetic forces are an cssential part of motors and generators, though

they generally do not produce significant elastic deformations, and the motions occur

with the help of rotating and sliding contacts. Homo polar generators (ones that

produce DC currents) are, indeed, closcly related to Magneto- hydTodynamics
analogous.

Magneto- hydrodynamic was originally applied to astrophysical and geophysical

problems, where it is still very important, hut more recently to the problem of fusion

power, where the application is the creation and containment of hot plasmas by

electromagnetic forces, since material walls would be destroyed. Astrophysical

problems include solar structure, especially in the outer layers, the solar wind bathing

the earth and other planets, and interstellar magnetic lields. The primary geophysical
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problem is planetary magnetism, produced by currents deep in the planet, a problem

that bas not been solved 10any degree of satisfaction.

The inclusion of radiation terms is complicated and the resulting equation is very

difficult to solve. Grief and Habib (1971) have shown that, in the optically thin limit,

the physical situation can be simplified and they derived and exact solution of the

problem of fully-developed radiating laminar convection flow in an infinite vertical

heated channeL Their analysis was based on the work by Cogley et al. (1968). In the

optically thin limit the fluid does not absorb its own emitted radiation but the fluid

does absorb radiation emitted by the boundaries. It was shown by Cogley el al. (1968)

that in optically thin limit for a gray ~gas neat equilibrium, the following relation

holds:

Here q, is the radiative flux, irA is the absorption coefficient, e•• is the Planck

function and the subscript w represents the value of a quantity at the wall. Further

simplification may be made concerning the spectral properties of radiating gases, but

this is not essential for the present analysis. It should be mentioned tbat Soundalgekar

and Takhar (1993) considered the radiative free conve<:tiveflow of an optically thin

grey-gas past a semi- infinite ~ertical plate.

But the Rosseland model is valid for isotropic local intell5ityand high optical density

of the medium and the radiative heat flux is given by

q =_16aVT
J

IlT
, 3(a+a,)

where T denotes the temperature, a is the Rosscland absorption coefficient, a, is the

scattering coefficient and a is the Stcfan- Holtzman constant The thermal boundary-

layer equation can be written as

3
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The problems of radiation effeel un free or forced or mixed convection boundary

layer flow over or on bodies of various shapes were discussed by many

mathematicians, versed engineers and rc~earchers.Amongst them the name of Rees

el al. (1999), Hossain and Pop(2001), Arpaci(1968), Chamka(l997), Ganesan and

Loganathan(2002), Yih(1999), llankston(1977) are noteworthy.

Rees ct at (1999) considel'cd the ei'l(,cl of radiation on Iree convection from a porous

vertical plate. Radiation effects on free convection over a vertical flat pl'lle embedded

in a porous medium with high porosity i?vcstigaled by Hossain mid Pop(2001).

Arpaci (1968) studied the effect of thermal radiation on the laminar free convection

from a heated vertical plate, Solar radiation assisted natural convection in lmiform

porous medium supported by a vertical flat plate discussed by Chamka (1997).

Gancsan and Loganathan (2002) investigated radiation and mass transfer effects on

flow of an incompre~sible viscous lh.lid past a moviog vertical cylinder. Radiation

effect on natural convection over a vertical cylinder embedded in porous mCc!ia

studied by Yih (1999),Bankston ct al. (1977) radiation convection intcraction in an

absorbing - emitting liquid in natural convection boundary laycr flow. Hossain and

Alim (1997) investigated natural coovection _ radiation interaction on boundary layer

flow along a thin vertical cylindcr. Interaction of themml radiation with free

convection heat transl'er was invcstigated by Cess (1966). Hossaio and Takhar (1996)

studied radiation effect on mixed convection along a vertical plate with uniform

surface temperature. Natural convectioll-radiation interaction boundary laycr flow

along a thin vertical cylinder investigatcd by Hossain and Alim (1997). Takhar et

al.(I999) discussed radiation interaction on forced and free convection across a

horizontal cylinder. Effect of condnction-radiation intcraction on the mixed

convection flow from a horizontal cylinder studied by Pop et a!. (1999). Hossain et al.

(1998) investigated radiation-conduction interaction on mixed convection flow along

a slender vertical cylinder. Radiativc free convection flow of gas past a semi -infinite

vertical plate was discussed by Soundalgekar and Takhar (1993). All the cases
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mcntioned above, the radiation effcct on MHD lree convection m presence of

transverse magnetic field has not been studied yct.

The effect of a magnetic field Onfrec convection heat transfer was studicd by Sparrow

and Cess (1961) . Hossain et al. (1997) invcstigated MHD forced and free convection

boundary layer now along a vertical porous plate. Natural convection between heated

vertical plates in horizontal magnetic fields was studied by Ostrle and Yound (1961).

Wilks (1976) studicd Magneto Hydrodynamics free convection about a semi-infinite

vertical plate in a 8trong cro~s field. Free convection with mass transfer under the

influence of a magnClic field Wa> investigated by Cobble (1979). Poots (1961)

considered laminar natural convection flow in magneto hydrodynamics. Steady and

transient frec convection of an electrically conducting JIuid from a vertical plate in the

presence of magnetic field was studied by Gupta (1961). Hossain and Ahmcd (1990)

investigated MHD loreed and lree convection boundary layer now ncar the leading

edge. All the cases mentioned above, radiation tcrm was totally absent there.

Free convection induced by a vertical or horiwntal wavy surface in a porous medium

with uniform hcat nux or without hcat flux was studied by Rees and Pop (1994) .

Non-Darcy natural convection Irom a vcrtical wa~y surface in a porous medium was

also studied by them (1995). /n (1997) they also considered the effect of longitudinal

surface waves on free convection from vertical surfaces in porous media. Rees (1999)

showed the effect of steady stream wise surface tempcrature variation on lree

convection. Mixed convection boundary layer flow along a vertical cylinder was

investigatcd by Hossain et al.(1998). Sparrow and Gregg (1956) studied laminar free

convectiun from a vertical Ilat plate with uniform Surface Heat Flux. Comhined

forccd and free convection in a boundary layer flow was investigated by Sparrow et

al.(1959). Pozzi and Lupo (1988) discussed the coupling of conduction with laminar

natural convection along a flat plate. Hydro magnetic lree convection for high and

low Prandtl numbers was investigated by Nanda and Mohanty (/970). Miyamoto et

al. (/980) studied the cffect of axial heat conduction in a vertical flat plate on lree

convection heat transfer. Natuwl convection of an electrically conducting fluid in thc

presenec of a magnetic field was investigated by Lykoudis (1962). Cheng (1977)

studied combined free and forced convection Jlow about inclincd surtaces in porous

media. Mixed convection in bOlmdal'Y laycr now on a horiwntal plate was discussed
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by Chen et aL (1977). Lin (1976) has shown laminar free convection from a vertical

cone with uniform surface heat flux. Deviation from classical free convection

boundary layer theory at low Prand(1numbers was studied by Sparrow and Guinle

(1968). Keller and Cebeei (1971) have discussed accurate numerIcal methods for

boundary layer two dimensionnl !lows, Mixed convection along a wavy surface wns

studied by Moutie and Yao (1989),They also ~tudied natural convection along a

vertical wavy surface with uniform heat flux. Merkin (1997) investigated mixed

convection from a horizontal circular cylinder. In all the case8 mentioned above,

radiation tenn and magne(i~ tem] were totally absent there.

In chapter-I reported results regarding radiation effect 00 MHD free convection have

been discussed from both analytical and numerical point of view. In ehapter-2, a

steady laminar free cunvective boundary layer now with variable plate temperature

and magnetic parameter including radiation parameter effects is considered. In

ehapter-3, a two dimensionallalllinar MHD free convection bonndary layer flow with

radiation from a vertical porous plate with presence Prandtl and magnetic parameters

induding joule healing parameter effects is considered. The above two problems

have been solved numerically using a most practical, an efficient and accurate

solution tecbnique, known as implicit finite difference method together with Keller-

box elimination technique which is wdl documented and widely used by Keller ilnd

Cebeci (1971) and recently by Hossain (1992).The cffects of various parameters Le.

the radiatiun parameter (Rd), the magnetic parameter (M), PrandtI number (Pr), the

exponent parameter (m), the ~urfaee temperature parameter (Il.) entering into the

problems are discussed with the help of graphs. We have presented a genera.!

conclusion ill Chapter-4 of the model studied. At the cnd all references extracted in
the thesis can be found ilt the last pan of the thesi~.
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Chapter-2

Radiation effect on magneto hydrodynamic free

convection flow along a vertical porous plate

with variable plate temperature.

2.1 Introduction

In this chapter radiation effect on free convection flow along a vertical porous plate in

a steady two - dimensional viscous incompressible fluid in presence of magnetic field

with variable platc temperature is considered. Using the appropriate transformations,

the governing boundary layer equations are transformed into a non- dimensional form,

which are solved numerically using a very efficient implicit finite difference method.

We have represented the effect of radiation parameter (Rd), magnetic parameter (M),

Prandt] number (Prj, the exponent parameter (m), the surface temperature parameter

(6) on the velocily llild temperature including the skin friction coefficient llIld the rate

of heal transfer. The Prandtl number Pr is to be taken 0.76, 0.88, 1.0 which

correspond to CO, ,NH, and f-{ ,0 v~por.
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2.2 Governing equations of the flow
The mathematical statement of the basic conservation laws of mass, momentum and

energy for the steady viscous and incompressible and electrically conducting are

given by

l7.q=O

p(q.l7) q= - 'Vp+ f.' V'q + F + J x B

PCp (q.V')T=kVJ.r

(2.1)

(2.2)

(2.3)

where q = (u,v ), u and v are the velocity components along the x and y axes

respectively, F is the body force per unit volume which is defined as _pg, the terms J

and B are respectively the current density and magnetic induction vector and the term

JxB is the force on the fluid per unit volume produced by the interaction of CUlTent

and magnetic field in the absence of excess charges. T is the temperature of the fluid

in the boundary layer, g is the acceleration due to gravity, k is the thermal

conductivity, cp is the specific heat at constant pressure and I! is the viscosity of the

fluid. For the energy equation we neglect the viscous dissipation and the Joule heating

term. Here B = P. Ho , P. being the magnetic permeability of the fluid, Ho is the

applied magnetic field and '17is the vector differential operator and is defined by

"a . 8'1=1 -+/ -
x8x YOy

where Ix and the I" are the unit vector along x and y axes respectively.

When the external electric field is zero and the induced electric field is negligible, the

current density is related to the velocity by Ohm's law as follows

J~a(qxB) . (2.4)

where (J' denotes the electric conductivity of the fluid. Next under the conduction

that the magnetic Renold's number is small, the induced magnetic field is negligible

compared with applied field, This condition is usually well satisfied in terrestrial

applications, especially so in (low velocity) free convection flows. So we can write

B=[ H, 0

8
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(2.6)

Bringing together equations (2.4) and (2.5) the force per unit volume J x B acting

along the x-axis takes the form:

JxB=-o-J-Iau

Under the Boussincsq approximation, the variation of p is taken into only in the

term F in equation (2.1) and the variation of p in the inertia term is neglected. We

then can v;rite:

p=p.ll-p(1'-T= II (2.7)

where Po, and 1'., are the density and tempcratnre respectively oul side boundary

layer, j3 is the coefficient of thermal expansion.

We consider the steady two dimensional laminar free convection boundary layer flow

of an optically dense viscous and incompressible and electrically conducting fluid

along a vertical plate in a porous medium as ShOWIlin fig-2. L We assume that the

plate is heated to a constant temperJtureTw' which is higher than that the temperature

T", of the ambient fluid. The flow configuration and the coordinate system are shOWIl

on figure 2.1.

T=

I g
T.

Momentum
V boundary layer

"L,
y

Fig 2.1: Physical model and coordinate systems.
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Under the usual Boussinesq approximation and using the equations (2.4) to (2.6) with

respect to the abovc consideration into the basic equations (2.1) to (2.3), the

conservation equations for the steady two dimensional laminar free conv~tion

boundary layer flow of a viscous incompressible and electrically conducting fluid

with viscosity and also constant thennal conductivity and thermal expansion

coefficient past a vertical porous plate take the following form.

(2.8)

(2.9)

(2.10)

The appropriate boundary conditions to be satisfied by the above equations are

x =0, y,O u == 0, T=Tro

y = 0, nO u = 0, I'=-V, T=1" (2.11)•
y .....•.oo,x>O u = 0, T=T •

In equation (2. I 1) V represents the suction velocity of the fluid through thc surface of

the plate. In this chapter we shall consider only the suction case (rather than blowing)

and therefore , V is taken i'I, positive throughout, a is the equivalent thermal

diffusivity, k is the thermal conductivity and the quantity q, represents the radiative

heat flux in the y direction. In order to reduce the complexity of the problem, we will

consider the optically thick radiation limit in the present analysis. Thus, radiative heat

flux term is simplified by the Rosscland diffusion approximation proposcd by Siegel

and Howell (1972) for an optically thick fluid according to

q, -40" 8T'
3(a+0",) 8y

10
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where 0" is the Stefan-BoI17,rnanconstant and 0", is the scattering coefficient and a

is the Rosseland mean absorption coefficient. This approximation is valid at points

optically far from the boundary surface and is good only for intensive absorption, that

is, for an optically thick boundary layer. We observed that the equations (2.8-2.10)

together with the boundary condition (2.11) and equation (2.12) are non-linear, partial

differential equations. In the following sections the solutions methods of these

equations are discussed in details.

2.3 Transformations of the governing equations

In equation (2.11) V represents the suction velocity of the fluid through the surface of

the plate. In this chapter we shall consider only the suction ease (rather than blowing)

and therefore, V is taken as positive throughout. Near the leading edge, the boundary

layer is much like that of the free convection boundary layer in the absence of suction,

although much further downstream suction it will be found to dominate the flow. Also

the magneto hydrodynamic field in the fluid is governed by the boundary layer

equations .Therefore to solve the equations (2.8-2.10) subject to the boundary

conditions (2.11) the following group of transformations are introduced for the flow

starting from up stream to downstream.

,
Rd= 40"T~

k(a+O",) ,

(2.13)

where lJand ,; is the dimensionless similarity variable, If/ is the stream function

I.h .fi '" . f .. d 8V' 8lf/A. •W llC satls les 'He equatlon 0 contlnmty an u '= -, 11'= -_, IS constant, '-'
iY "

is the surface temperature parameter, Rdis the radiation parameter, e(IJ,q) is the
dimensionless temperature, m is the exponent parameter. Substituting equation (2.13)

into equations (2.9) and (2.10), we get the following transformed non dimensional

equations.

II



r +(3 +m)f f" -2(l+m)(" +8- A{f' +If' = q(l_m){r°f' - r Of) (2.14)
as' as'
,

Pr-I g' +(3+m)fB' +qO' -4mO f' + pr-LHRd (l+M)' B'} =W-m){f':; -8' Z}
(2.15)

In the above equations the primes denole differentiation with respecllo 1].

The boundary conditions (2.11) then take the following form:

(2.16)
(IS 17 --'> ~

/=0 ,8.f =0

"
Of =0 0=0" '

where Pr is tho Prundtl number, M = [0"B'0, ( _ )J where B' = 2Bo' ~
/~pgfJTw Tu

is the magnetic parameter.

The solutions of equation (2. 14)-(2, J 5) enable us to calculate the skin friction T and

the rate of hea! transfer Q at the surface oftha plate from

(2.17)

(2.18)

12



2.4 The important dimensionless parameters related

to problem:

The governing equations of the fluid flow are discussed at the previous section in this

chapter. These equations contain a number of variables. It is difficult 10 study the

effect of each variable on the process. Moreover these equations are nonlinear. There

is no general method to find the solution of these nonlinear equations. In order to

bring out the essential features afflow, it is necessary to find important dimensionless

parameters, which characterize the flow. These parameters are very useful in the

analysis of experimental results. Some 000- dimensional parameters related to our

problems arc discussed below:

Prandtl number P,

PrandtJ gave an important number known as Prandtl number. The Prandtl number is a

dimensionless parameter of a conveclive system that characterizes the regime of

convection. It is the ratio of viscous force to the thermal force and is defined follows:

Viscous forcer, - "
Thermal force

= Kinematic viscosity
Thermal diffusivily

'" pjp =!.
K/pC" a

The Prandtl number is larger when thermal conductivity is small and viscosity is

large, and small when viscosity is small and thennal conductivity is large .For small

value of v, a thin region will be affected by viscosity, which is known as boundary

layer region. for the small value of K/ pC" a thin region wiII be affected by heat

conduction which is known as the thermal boundary layer .Prandtl number also gives

the relative importance of viscous dissipation to the thermal dissipation. Thus it

rcpresent~ the relative importance of momentum and energy by the diffusion process

is comparable. For oils, Pr» 1, hence the momentum diffusion is much greater than

the energy diffusion; but for liquid metals, Pr«l and the solution is reversed.
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Magnetic parameter M

The magnctic parameter is obtained Irom the ratio of the magnetic force to the inertia

force and is define as

,
AI '"o-B,,-L

pO

If this of the order one thcn the magnetic forcc is important and the flow is to bc

considered as hydromagnetic flow .If it is very much less than one, then the flow cal

be taken as hydrodynamic. For small value of M, the motion is hardly affected by the

magnetic field and for large value of M, the motion is largely controlled by the

magnetic field.

Radiation parameter Rd

The radiation parameter is obtained from the radiative heat llux tenn which is

simplificd by the Rosseland diITl.lsionapproximation proposed by Siegel and Howell

(1972) for an optically thick lluid according to

- 40- aT'qe _
, 3(a+0-,) 0'

From this one can get radiation parameter which is defined as

Rd '" 4 0- To"'
k(a + 0-,)

where 0- is the Stefllll-Boltzman constant and 0-, is the scattering coefficient and a

is the Rosscland mean absorption coefficient and k is the thermal conductivity. This

approximation is valid at points optically far from the boundary surface and is good

only for intensive absorption, that is, lor an optically thick boWldary layer. For small

or large value of Rd, the motion is always affected and controlled by the radiation

field.
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2.5 Results and discussion:

The effect of radiation on magnelohydrodynamic natural convection flow along a

vertical porous plate with variable plate temperature has been investigated. The results

are obtained in tenns of the local skin friction and the local rate of heat transfer fOT

different values of the aforenlentioned physical parameters and these arc shown

graphically in Figs.2.4-2.11.Thc velocity and temperature distributions obtained by

the finite difference method lor various values of the governing parameters are

displayed graphically in Figs.2.12-2.19.

First of all, to verify the proper treatment for the problem, the present solution for

M = 0.0 and m = 0.0 has heen compared with that ofM.A. Hossain (1999). It can be

seen from lhe Fig.2.2 and Fig. 2,3 that the present resnlts are in excellent agreement

with M,A. Hossain.

Thc effects of varying the radiJtion parameter Rd on both the skin- friction coefficient

r(~,O) and the local ratc of hcat twnsfer O,(~,O)are shown in Fig. 2.4 and Fig.2.S.

for the fluid having PfJndtl numhcr Pr =0.73. the magnetic parameter M = 1,0, the

exponent paramcter m ~0.2 and the surlace temperature parameter Ii. = O.I.The figures

show that the changcs in Rd lead to changes in the asymptotic value of the skin-

friction but not in the asymptotic rate of heat transfer. In general, however both the

skin- friction and the IOCJIrate of heat lransfer increase as Rd increases.

The skin- friction coenicient .f"(~,0) and the local rale of heat transfer 8'(q,0) for
diD"erent values of the PrJlldllllUmher Pr ( = 0.76 , 0.88 , 1.0 ) when the value of the

radiation parameter Rd =1.0, the magnetic parameter M =0.5, the exponent parameter

m =0.1 and the surface temperature parameter !:J.= 0.1 are depicted in Fig.2.6 and

Fig,2.7,The values of the Prantltl number Pr are taken to 0.76 that corresponds

physically for CO, in the temperature range 100-650°F, 0.88 that corresponds for

NH, vapor ill the temperature range 120-400oP and 1.0 corresponding to water

vapor in the temp~rJture range 220-900°F.ln Fig. 2.6 and Fig. 2.7 it can be se~n that
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as Prandtl number Pr increases, the skin friction coefficient f"(; ,0) dccrease~ but the

rate of heat transfer 0'(;,0) increases.

Numerical values of the skin friction coefficienl r(;,O) and the rate of heat transfer

0'(; ,O)arcdepicted graphically in Fig.2,S and Fig.2.9 respectively for different values

of the magnetic 111(=0.1,0.5, O.S.1.0) for the fluid having Prandtl number Pr = 0.73,

the radiation parameter Rd =1,0, the exponent parameter m =0.25 and the surface

temperature parameter b = 0.1. It is observed that as the magnetic parameter M

increases, both the skin friction cocmcientf"(.;,O) and the rate of heat transfer

0'(';,0 )decrease.

In Fig 2,I0 and 2.11, the skin friction eoeilicientj"(.;,O) and the rate of heat transfer

0'(;,0) arc shown graphically fllr different values of exponent parameter m (=0 .1,

0,15,0.25) "hen Prandtl number 1'r =0.73, the radiation parameter Rd = 2.0, the

magnetic parameter 111=1.0, the surface temperature parameter b =0, I, It is observed

that the skin friction coefficientj"(.;,O) decreases with the increase of the exponent

parameter m (=0.1, 0.15, 0.25) and as the exponent parameter m increases, the rate of

heat transfer 0'(;,0) increases also.

Fig. 2.12 and Fig.2.13 denl wilh the effect of the l"lldiationparameter Rd (= 1.0, 2.0,

3.0, 4.0, 5.0) for Prandtl number Pr = 0.73, the magnetic parameter M =1.0, the

exponent parameter m =0.2 and the surface temperature parameler A= 0.1 on the

velocity profile ['(;,Il) and the temperature profile e(';,Il).From Fig, 2.12 it is

revealed that the velocity profile [,(';-,1]) increases as the values of radiation

parameter Rd increases. Ncar the ~urface of the plate velocity increases significanUy

along '1 and becomes maximum and then decreases slowly and finally approaches to

zero, the asymptotic value. I;rom Fig.2.13 it is seen that when the values of the

radiation parameter Rd increase, the lempcrature profile 0(';,1]) also increase,

Fig. 2.14 depicts lhat the velocity profile r{.;,I]) for different values of the Prandtl

number Pr (=0.76, 0.S8, 1.0) "hile tile radiation parameter Rd = 1.0, the magnetic
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parameter ,11=0.5, the exponent parameter m =0.1 and the surface temperature

parameter A= 0.1. Corresponding dbtribution of the temperature profile B(rg,'l) in the

fluids is shoVi'llin Fig. 2.15. From Fig. 2.14, it can be seen that if the Prandtl number

increases, the velocity of the nuid decreases. On the other hand, from Fig. 2.15 we

observe that the temperature profile decreases within the boundary layer due to
increase orthe PrandtJ numher Pro

Figs. 2.16 and 2,17 display results for the velocity and tempenlture profiles for

different values of magnetic parameterM (=0.1, 0.5, 0.8, 1.0) against." for the fluid

having PrandtJ number J'r = 0.73, the radiation parameter Rd =1.0, the exponent

parameter m =0.25 and the surface temperature parameter A = 0, I. It is observed that,

as the magnetic parameter increa,es, the velocity profile decreases between

0$." $ 3.5 and then increases with very small difference and finally approaches to

lero along 'ldirection. From rig.2.17 it is seen that when the values of the magnetic

parameter M increase, the temperature profile B(:,I]) also slightly increase.

Again in Fig. 2.18 and Fig. 2.19, the velocity profile r(:,.,,) and the temperature

profile 8(:,1]) are shown graphically for different values of the exponent m (=0.1,

0.15,0.25) when the radiation parameter Rd=2.0, the Prandtl number Pr = 0.73, the

magnetic parameter M=I ,0 ami the surface temperature parameter 8 = 0.1. From Fig.

2.18 it is observed that if (he exponent m increases the velocity of the fluid decreases

and from Fig.2.19 it can be seen that the temperature profile decreases due to increase

of the exponent parameter m,
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2.6 Conclusion

The effect of radiation on magneto hydrodynamic MHD free convection along a

v~rtical porous plate with variahle plate temperature has been investigated introducing

a new c1a>s of transformations. Numerical solutions of the equations governing the

flow are obtained by using the very erficient implicit tinite difference method together

with the Keller Box scheme. From the present investigation, the following

conclusioll5 may be drawn:

1. The skin friction coefficient and the rate of heat transfer increase for increasing

value oftbe radiation parameter Rd.

2. Increased value of the radiation parameter Rd leads to increase the velocity

distribution as well as the temperature distribution.

3. An increasing value of Prundtl number Pr leads to decrease the skin friction

coefficient but increase the rute of heat transfer.

4, As Prandtl number Pr increases, both the velocity and the temperature distributions

decrease significantly,

5. With increased of magnetic parameter M, the skin friction coefficient and the rate

ofheatlransfer decrease.

6. An increase in values of M kads 10 decrease the velocity distribution but slightly

increase the temperature distribution.

7. Increased value of the exponent parameter m leads lo decrease the skin friction

coefficient but increase the rate of heat trunsler and as the exponent parameter m

increases, both the velocity and the temperature distributions decrease significantly.
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To verify the proper treatment for the problem, the present solution for M=O.O and

m = 0.0 has been compared with that of Hossain et ill. (1999). It can be seen from the

table 2.1 that the present rcsult~ are in excellent agreement with Ho~sain el al.

Table 2.1: Comparisons of the present Illuncrical results of skin friction coefficient

and the ratc of hcat transl",r against ; obtaincd by finite difference method for the

values of Prandtl number I'r = 1.0, the radiation parameter Rd = 0.05, the surface

temperalllrc parameter!J, = 0.1 with those obtained by Hossain d al. (1999) without

the effects of the magnetic parameter AI and the exponent parameter m.

Valucs of Local skin friction coefficient Rate of heat transfer, Hossain et al. Present papcr Hossain el al. Present paper

(1999) (1999)

0.10 0.0655 0.0655 6.4627 6.4529

0.20 0.1316 0.1314 3.4928 3.4714

0.40 0.2647 0.2643 2.0229 2.0225

0.60 0.3963 0.3955 1.5439 1.5424

0.80 0.5235 0.5215 1.3247 13233

1.00 0.6429 0.6400 1.1995 1.1943

1.50 0.8874 0.8868 1.0574 1.0570

2.00 1.0278 1.0251 1.0120 1.0115

3.00 1.0769 1.0594 1.0001 1.0000
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Chapter-3

Jonle heating effect on magneto hydrodynamic

free convection bonndary layer flow along a

vertical porons plate in presence of radiation.

3.1lnlrodnclion

Free convection flow is often encountered in cooling of nuclear reactors or in the

study of the structure or ~(<lrsand planets, Along with the frcc convection flow the

phenomenon of the boundary layer flow of an electrically conducting fluid up a

vertical flat plate ill the presence of a strong magnetic field is also very common

because of its application ill nuclear engineering in cOlllloxtion with the cooling of

reactors. And radiation effects on free convection flow are important in the context of

space technology and process involving high tcmpcratl.lte, and very little is known

about the effects of radiation on the boundary -layer llow of a radiating fluid past a

hody. Heat transfer from a heated vertical plate provides probably one of the most

basic scenarios for natural convection problems. Variations of the problem occur

frequently in the literature. Free convective steady hydromagnetic flow about a heated

vertical flat plate has been considered by Gupta (1961), Poots (1961), Osterle and

Yound (1961), Sparrow and Cess (1961), Lykoudis (1962) and Cramer (1963).The

similarity solutions were sllldied by Gupta (1961) and Lykoudis (J 962) considering

that the magnetic field differs inversely as the fourth root of the height above the

bottom edge of the plate. Afterwards Nanda and Mohanty (\970) made use of the

similar technique to solve (he hydromagnctic free convection of high and low Prandt!

numbers because of realistic applications, as for liquid metals, the Prandtl number is

low. Riley (1964) considered a uniform magnetic field and integrated the boundary

layer equations over a single boundary layer thickness. Effects of transversely applied

magnetic field on free convection of an electrically conducting fluid past a semi-
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infinite plate were studied by Wilks (1976). Miyamoto et al. (1980) have given an

analysis of the relative importance of the parameters of the problem in particular with

reference to coaxial heat conduction. Hossain and Ahmed (\990) studied the MHD

forced and free convection boundary layer flow near the leading edge. They also

investigated the combined forced and free convection of an electrically conducting

fluid past a vertical flat plate at which the swface heat flux Vias uniform and magnetic

field was applied parallel to the direction normal to plalc. The natural convection

boundary layer flow of an electrically conducting lluid up a hot vertical wall in the

presence of a strong magnetic lield has been studied by several authors because of its

application in nuclear engineering in connection ""ith the cooling of reactors.

In all the above studies, the effects or the joule heating and viscous dissipation were

neglected because they are of the same order as well as negligibly small. But Gebhart

(1962) has shown that the viscous dissipation effect plays an important role in natural

convection in various device, \_hich arc subjected to large deceleration or which

operate at high rotative speeds and also in strong gravitational field processes on large

scales (on the planets) and in geological processes. With this LIIlderstanding Takhar

and Soundalgekar (1993) have studied the effects of Joule heating and viscous on the

problem proposed by Sparrow and Cess (1961), using the series expansion method of

Gebhart (l962). Hossain (1992) have studied the effect of Joule heating and viscous

on the flow of an electrically conducting and viscous incompressible l1uid past a semi

inlinite plate of which temperature varies linearly with the distance from the leading

edge and in the presence of unilorm transverse magnetic field. He has solved the

equations numerically governing the flow applying the finite difference method along

with Newton's linearization approximation. Alam (1995) has investigated the effects

of Joule heating as well as viscous dissipation 011 the un~teady magneto hydrodynamic

free convection and mass transfer flow with Hall current of an electrically conducting

and viscous incompressible nuid past an accelerated infinite vertical porous plate with

time dependent wall tcmpcwture and concentration. In the present study the Joule

heating effects on magnetohydrodynamic boundary layer flow along a vertical porous

plate in presence of radiation will be investigated.

1 he transformed non ~imilar boundary layer equations governing the flow together

with the boundary conditions based convection were solved numerically using the
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Keller box (implicit finite difference) along with Nev>1on's linearization

approximation method in the entire region starting !fom the lower part of the plate to

the down stream for some value, of the radiation panuneter Rd, the magnetic

parameter M, the joule heating parameter J and the Prandtl number Pro The effect of

the parameters Rd, .I, M. and f'r on the velocity and temperature fields as wen as on

the skin friction coefficient and the rate of beat tr.msfer have been studied. In the

following sections detailed derivations of the governIng equations for the flow and

heat transfer and the method of solutions along with the results and discussions are

presented.

3.2 Governing equations of the flow
The steady two dimen~ional laminar free convection boundary layer flow of an

optically dense viscous and incompressible and electrically conducting fluid along a

vertical plate in a porous medium as shown in fig-3.1.We assume that the plate is

heated to a constant temperature T", \vhieh is higher than that the temperature T", of

the ambient fluid. The flow configuration and the coordinate system are shown on

figure 3.1.

ermal
bounda

y

Momentum
boundary layer

T.

V

Fig 3.1: Physical mode! and coordinate systems.
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The equations governing the flow arc

(3.1)

(3.2)

(3.3)

The appropriate boundary conditions to be satisfied by the above equations are

.1'=0, pO 11=0, T=T •
y",O, DO II= 0, V=-V, 1"=T (3.4)•
y-t"',x>O 11=0, T=T •

In equation (3.4) V represents the suction velocity of the fluid through the surface of

the plate. In this chapter wc shall considcr only the suction case (rathcr than blowing)

and therefore , V is taken as po~itive tluoughout, a is the equivalent thermal

diiTusivity, k is the thermal conductivity and the quantity q, represents the radiative

heat flux in the y directioll. In order to reduce the complexity of the problem, we will

consider the optically thick radiation limit in the present analysis. Thus, radiative heat

flux term is simplified by the Rosscland diffusion approximation proposed by Siegel

and Howell (1972) for an optically thick Iluid according to

-40- aT'q •
, 3(a+0-,) By (3.5)

whcre 0- is the Stefan-Boltzman constant and 0-, is the scattering cocfficient and a

is the Rosseland mean absorption coefficicnt. This approximation is valid at points

optically far from the boundary surface and is good only for intensive absorption, that

is, for an optically thick boundary laycr. We observed that the equations (3.1-3.3)

together with the boundary condition (3.4) and equation (3.5) are non-linear, partial

differential equations. In the following sections the solutions methods of these

equations are discussed in details.
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3.3 Transformations of the governing equations

In equation (3.4) V represents the suction velocity of the fluid through the surface of

the plate. In this chapter we shall e0l18ider only the suction case (ruther than blowing)

and therefore, V is taken as positive throughout. Near the leading edge, the boundary

layer is much like that of the free cOl1\'ection boundary layer in the absence of suction,

although much further dO\\fTlstreamsuction it will be found to dominate the flow. Also

the magneto hydrodynamic field in the fluid is governed by the boundary layer

equations .Therefore to solve the equations (3.1-3.3) subject to the boundary

conditions (3.4) the following group of transformations are introduced for the flow

starting from up stream to down8tream.

,If = V.'u' gfJ(Tw - T,.);' {f(;, 1/):t:~;}

4 T'Rd= 0" ~

k(a+O",,l

where 1J and; is the dimensionless similarily variable, VI is the stream function

which sati8fies the equation or continuity and u = _8v_,
'"

J"v=--,8
m

is the surface

temperature parameler, Rdis the radialilln parameter, 0(7),;) is the dimensionless

temperature. Substituting equation (3.6) into equations (3.2) and (3.3), we get the

following transformed non dimensional equations.

r +3( f" -2f" + ()-M(' + ~f"= c;-f raf' -f' W) (3,7).. ~~ La; ac;-

,
Pr-I O' + 3f 0' +.; (}'+ Pr-I f~Rd (I + MY 0') + Jf'l =;f f' ao -0' aj) (3.8)b l rJ; a;

In the above equalions the primes denllte differentiation with respect to 1/.
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The boundary conditions (3.4) then take the following form:

(3.9)

,8=1 at 17=0/=0,8/ =0
a"

Of =0 ,0=0
a'i

where Pc is the Prandtl number, M = [0-B';; ( )) where B' = 2Bo',J;
/ ~p'gPT. -T,

is the magnetic parameter and .J =[gPH'1r -----J where
/ ~p'c/gP(Tw-T~)

H' =80-oHo'(,J;} is thejouleheating parameter.

The solutions of equation (3.7)-(3.8) enable us to calculate the skin friction T and the

rate of heat transfer Q at the surface of the plate from

.e[gp(:'-lJX~Lelfl,o)
Q= -(V{T~V_TroJ(~:Jy_, =-(I+~Rd /:.'};-'gl(q,o)

(3.10)

(3.11)
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3.4 Joule heating parameter:

In electronics, and in physics more broadly, JOllie heating or ohmic heating refers to

the increase in temperature of a conductor as a result of resistance 1.0an electrical

current flowing through it.

At an atomic level, Joule heating is the result of moving electrons colliding with

atoms in a conductor, where upon momentum is transferred to the atom, increasing its

kinelic energy. Joule heating is named fur James Prescott Joule, the lirs! to articulate

what is now JOlI1e's law, relating the amount or heat released from an electrkal

resistor to its re~islance and the charge passed through it. In our problem we got a

dimensionless parameter J =[!iPH'1r ' J which is Joule heating
/ ~p'c/gP(T~-T~)

parameter.

3.5 Method of solution:

To gellhe solutions of the parabolic differential equations (3.7) and (3.8) along with

the boundary condition (3.9), we shull employ implicit finite difference method

together with Keller- box diminution technique which is well documented and widely

used by Keller and Ccbcci (1971) and recently by Hossain (1992). Since a good

description of this method has been discussed in details in Chapler-2 i.e. in Appendix,

farther discussion is disregarded here, The numerical reSl1!lsobtained arc presented in

the following section.
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3.6 Results and discussion:

In this chapter Joul~ h~ating drect on magnetohydrodynamic free convection

boundary layer flow along a vertical porous plate in presence of radiation has been

investigated, Solutions arc obtained for the fluid having Pmndtl number Pr = (0.76,

0.88, 1.0) and for a wide range of the valucs of the Joule h~ating parameter J = (0.1,

0.2,0.5, l.0, 2.0, 3.0), the Radiation parameter Rd= (0.5, LO, 3.0, 5.0), the magnetic

parameter M = (0.1, 0.5, 0.8, 0,9, 1,0) and the surface temperature parameter tI. If we

know the values of the functions j(;",) , /1(;,17) and their derivatives for different

valnes of the Prandtl number Pr, the Radiation parameter Rd , the Joule heating

parameter J and the magnetic parameter M. we may calculate the nnmerical valnes of

the local rate of heat tran~ferO'(;,O) and the velocity profile1'(;,17)at surface that
arc important from phy~ical point of view.

Numerical values of the skin friction coemci~nt and the local rate of heat traIl.';fer

depicted graphically in fig.3,2 and Fig.3'] respectively for different values of the

Joule heating parameter J = ( 0.5, 1.0, 2.0, 3.0) for the fluid having Prandtl number

Pr = 0.73, the Radiation parameler Rd = 1.0, the magnetic parameter 1'4= 0.5 and the

surface temperature parameter A-(I.l. In Fig.3.4 and Fig.3.5 the skin friction

coeJ1icienlj'({,O) and the local rale orheallransfer O'({,O) arc shown graphically

for different values or tile Prandtlnumber Pr = (0.76, 0.88, t.O) when the value of the

radiation parameter Rd = 0.5, the magnetic parameter M = 1.0, the Joule heating

parameter J = 0.5, and the surface temperature parameter tI~O.I. The values of the

Prandtl nwnber Pr are taken to 0.76 that corresponds physically for CO, in the

temperature range 100_650°1', 0.88 that corresponds lor NH, vapor In the

temperature range 120-400°F and 1.0 corresponding to water vapor III the

temperature range 220-900°F.

In Fig.3.6 and fig.3.7 the skin friction coefficient/"({,O) and the local rate of heat

transfer /1'(;,0) are shown graphically for ditTerentvalues of the radiation parameter

Rd = (0.5, 1.0, 3.0, 5.0) when the valu~of the Prandtlnumber Pr = 0.73, the magnetic

36



parameter M = 0.8, the Joule heating parameter J = 0.2, and the surface temperature

parameter A=O.l.In Fig.3.B and Fig.3.9 the skin friction coeflicientj'({,O) and the

local rate of heat transfer 11'(;,0) are sho\Vllgraphically for different values of the

magnetic parameter M = ( 0,1, 0.5, 0,9) when the value of the Prandtl number Pr=

0.73, the radiation panllneter Rd = 0,5, the Joule heating parameter J = 0.1, and the

surface temperature parameter L'i~0.1.

From fig.3.2, it is shO\vnthat the skin friction coefficientj'({,O) increases with the

increasc of the Joule heating parameter J (=0.5, 1.0, 2.0, 10) and from the FigJ.3,

opposite result is observed on the local rate of heat transfer 9'(;,0) due to increase of

the value of the Joule heating parameter J when the value of the Prandt! number is

0.73, the Radiation parameter Rd = 1.0, the magnetic parameter M = 0.5 and the

surface temperature parameter L'i=0.1.

From Fig. 14, it is observed thai the skin friction coefficientj"(;,O) decreases

monotonically with the increase of the Prandtl number Pr (=0.76, 0.88, 1.0). Again

Fig.3.5 shows that the increase of the Pnmdtl number Pr leads to increase of the local

rale of heat transfer 8'(;-,0) when the value of joule hcating parameter J = 0.5, the

Radiation parameter Rd = 0.5, the magnctic parameter M = 1.0 and the surface

temperature paramctcr L'i=0.1,

From Fig. 3.6, it is shown that the skin ii-ictioncocfficientj'(;-,O) increases with the

increase of the Radiation parameter Rd (=0.5, 1,0,3.0,5,0) and from the Fig.3.7, the

same result is observed on the local rate of heat transfcr 8'(;,0) due to increase of the

value of the Radiation parameter Rd when the value of joule heating parametcr J =

0.2, the Prandt! number Pr =0.73, the magnetic parameter M = 0.8 and the surface

temperaturc parameter L'i=0.1.

From Fig. 3.8, it is observed that increase in the value of the magnetic parameter M

leads to decrease of the value of the skin friction coefficientj"(;,O) which is usually

expected. Again FigJ.9 shows that the increase of tile magnetic parameter Mleads to

decrease of the local rate of heat transferfi'(;-,O) when the value of joule heating
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parameter J ~ 0.1, the Prandtl number Pr =0.73, the radiation parameter Rd = 0.5 and

the surface temperature p"rameter L'.~O.1.

Fig.3.10 depicts the velocity proJile for different values of the Joule heating parameter

J (= 0.5, 1.0, 2,0, 3.0) while the Radiation parameter Rd = 1.0, the Prandtl number Pr

= 0.73, the magnetic parameter M = 0.5 and the surface temperatllre panlmeter

L'.~O.I.Corresponding distribution of the temperature proll1e 8(~, /j) in the fluids is

shown in Fig. 3.1L From Fig. 3.10, it is seen that if JOllie heating parameter J

increases, the velocity of the fluid in~reases. Small increment is shown from Fig.3.1]

on the temperature profile 0 (II,xl for increasing values of J.

In Fig.3.12 and Fig.3.13, the velocity profile 1'(;,17) and the temperature profile

8(;./j) arc shown graphi~ally for different values of the Prandtl number Pr (= 0.76,

0.88, 1.0) when the value of the radiation parameter Rd = 0,5, lhe magnetic parameter

M = 1.0, the Joule heating parameter J = 0.5, and the surface temperature parameter

L'.~0.1.From Fig. 3.12, it is seen (hal if the Prandtlnumber increases, the velocity of

the fluid decreases. We al,o ob~erve from Fig.3.13 that the temperature profile

decreases within the boundary layer due (0 increase of the Prandtl number Pro

Fig.3.14 and Fig.3.15 deal with the effect of the radiation parameter Rd (= 0.5,1.0,

3.0, 5.0) for Prandtlnumber Pr = 0.73, the magnetic parameter M = 0.8, (he Joule

heating parameter J = 0.2, and for the surface temperature parameter ri.=0.1 on the

velocity profile f'(~,/j) and the temperature profile8(;,1]). From Fig. 3.14, it is

revealed that the velo~ity profile j'(<;' ,'I) increases with the increase of the radiation

parameter Rd which indicates that rJdiation increases the fluid motion, We also

observe from Fig.3.15 that the temperature profile increases within the boundary layer

due to increaw of the radiation parameter Rd.

In Fig.3,16 and Fig.3.l7, the velocity profile /'(;,1/) and the temperature

profileB(~,.,,) are shown graphically for difl'erent values of the magnetic parameter M

(= 0.1, 0.5, 0.9) when value "rthe Prandtl number Pr is 0.73, the radiation parameter

Rd = 0,5, (he Joule heating parameter J = 0.1, and the surface temperature parameter
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A=O.I.Frorn Fig. 3.16, it is seen that if the magnetic parameter increases, the velocity

of the fluid decreases. Wc also observe Ii-omFig.3.17 that the temperature profile

increases within the boundary layer due to inereaw of the magnetic parameter M.

3.7 Conclusion:

The effect of Joule heating parameter J, the radiation parameter Rd and the mllglletie

parameter M for different values of I'randtl number Pr on the magneto hydrodynamic

(MHO) free convection boundary layer flow along a vertical porous plate with

radiation has been investigated by introducing a new class of transformations.

Numerical solutions of the eqllation~ governing the flow are obtained by using the

very ef1icient implicit finite difference method together with the Keller Box scheme.

From the present investigation, the following conclusions may be dra,vn:

I. The skin friction coefficient increases for increasing value of the joule heating

parameter J but increased value of the joule heating parameter J leads to decrease the

rate ofheat transfer.

2. Increased value of the joule heating parameter J leads to increase the velocity

distribution as well as the temperature distribution.

3. It has been observed that the skin friction coefficient, the rate of heat transfer, the

temperature distribution over the whole boundary layer and the velocity distribution

increase with the increase ofthc radiation parameter Rd.

4. An increasing value of Prandtl number Pr leads to decrease the skin friction

coefficient but increase the rate of heat transfer .As I'randtl number Pr increases, both

the velocity and the temperature distributions decrease significantly.

5. The skin friction coefficient, the rate of heat transfer and the velocity prol11e

decrease while the temp~ra[ure profile slightly inerea~e for increased values of the

magnetic parameter M.
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Chapter 4

Conclusions
In this dissertation. we have investigated the radiation dfect on magneto

hydrodynamic frcc convection flow along a vertical porous plate with variable plate

tcmperatl.lre. Using the appropriate transformations the basic equations are

transformed to non ~imilar boundary layer equations, which have been solved

numerically in the entire region starting from the lower part of the plate to the down

stream using a very efficient implicit finile difference method known as Keller box

scheme. Here we have focused our aUention 011the evolution of the skin friction, the

surface temperature distribution, velocity distribution as well as temperature

distribution for a selection of parameter sets consisting of the Prandtl number Pr, the

radiation paramctcr Rd, the magnetic parameterM , and the exponent panlrneter

m and the surface tempcrature paranleler fl..

From chapter 2

The effect of radiation on magneto hydrodynamic MHD free convection boundary

layer flow along a vertical porous plate willi variable plate temperature has been

investigated introducing a new class of transformations. Numerical solutions of the

equations governing the Dow arc obtained by using the vcry efficient implicit finite

difference method together with the Keller Box schemc. From llie present

investigation, the following eonclLlsionsmay be drawn:

1. The skin friction eocfficlcnt and the rate of hC<1ttransfer increase for increasing

value of the radiation parameter Rd.

2. Increased value of the mdiution parametcr Rd leads to increase the velocity

distribntion as well as the tcmperature distribution.

3. An increasing value of Prandtl number Pr leads to decreasc the skin friction

coefficient but increase the rale of he'lt tnmsfer.

4. As Prandtlnumber Pr increases, both the velocity and the temperature distributions

decrease significantly.
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5. With dYect of magnetic parameter M, the skin friction coefficient and the rate of

heat transfer decrease.

6. An increase in values of M leads to decrease the velocity distribution but slightly

increase the temperature distribution.

7. Increased value of the exponent parameter m leads to decrease the skin friction

coefficient but increase the rate of heat transfcr and As the exponent parameter m

increases, both the velocity and (he temperature distribldions decrease significantly.

From chapter 3

The effect of Joule heating parameler J, the radiation parameter Rd and the magnetic

parameter M for diffefCnt values of Prandtl number Pr on the magneto hydrodynamic

(MHD) free convection boundary layer 110w along a vertical porous plate with

radiation has heen investigated by introducing a new elass of transformations.

Numerical solutions of (he equations governing the flow are obtained by using the

very emcient implicit finite difference method together with the Keller Box scheme.

from the present investigation, (he following conclusions may be drawn:

L The skin friction coefficient increases for increasing value of the jOllle heating

parameter J but increased value of the joule heating parameter J leads to decrease the

rate of heat transfer.

2. Increased value of the joule heating parameter.J leads to increase the velocity

distribution as well as the temperature distribution.

3. 11has been observed that the skin friction eoef11cient, the rate of heat transfer, the

temperature distribution over the whole boundary layer and the velocity distribution

increase with the increase Mthe radiation parameter Rd.

4. An increasing value of Prandtl nnmber Pr leads to decrease the skin friction

coefficient but increase the rate of heat transfer .As Prandti number Pr increases, both

the velocity and the temperature distributions decrease significantly.

5, TIle skin friction coefficient, the rale of heat transfer and the velocity profile

decrease while the temperature profile slightly inc'-ease for increased values of the

magnetic parameter M,
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Chapter-5

Further Recommendation

The present studies may he extended further,

/. In this work, both the viscosity and thermal conductivity have been considered

as 11 constant but they are functions of temperature. If the viscosity and thermal

conductivity arc the function oftempcralure then the problem can be extended.

2. Viscous dissipation is neglected here, so vi~cous dissipation may be added to

the energy equation ami hence the problem can be extended.

3. Instead of taking vertical flat plate one can choose vertical cylinder. Thus the

problem can also be extended.

4. By using perturbation methou or tinite volume method to solve the governing

equations.
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Appendix

Methods of Solution
Implicit finite difference method (IFDM)

To get the solutions of the diITereolial e~uations (2.14) and (2.15) along with the

boundary condition (2.18), we shall employ a most practical, an efficient and accurate

solution technique, known as implicit finite difference method together \'vith Keller-

box elimination technique which is well documenled and widely used by Keller

(1978) and Cebeei (1984) and recently hy Hossain(1992).

To apply the aforementioned method, we first convert the equations (2.14) and (2.15)

into the following system offil'st order differential equations with dependent variables

uC.;,If), vee,ll) and pce, 11) along with the boundary condition (2.18) as

/' '" Ii

g' = p

Equations (2. 14) and (2.15) transform 10

, , ' [a" 8i)v +PLJV-PJU +p,g-p,u+p,l''''P.; uEg-v;;.;

AP' + ptfp +p,p - p,gJl + IJpl = Pos[u i.Jg - p at J
Dg D?

(1)

(2)

(3)

(4)

(5)

When:

P, =3+m, p, = 2(l+m), p, =1, p, = Ai, p, =g, P" =l-m, p, =4m,

A~_l {I +(l + Ag)',Rddl, B=_l 3Rdd(l+tl.g)'.6 (6)
pr pr

The boundary conditions are:

(7)
f = 0, /,=0, g=! (1/'7=0 )

('",0, g=O, al'l-}OO
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Wc now cunsiderthc nct rectangle on the (~, 11)plane shown in the figure (a) and

denote the net puints by

;' =0,

17,=0,

;" =;"_L + k" where

11, = 111_1+hJ WhCFC

n=u, ..,NI
j =1,2, .. ,J

(8)

Here 'n' and 'j' are just sequence of numbers on the (s, 1"])plane, kn and hj are the

variable mesh widths.

p

,
- - - -"","",0-

h, ,

'li-I ,p,,!------'------1op,1---

sn"[

Figure (a): Net rectangle of the difference approximation for the Box scheme.

We approximate the quantities (r, u, v. p) at the points (?'. 11,)of the net by(f/ ,u;

v;, p;) which we call net function. We also employ the notation g; for the

quantities midway between net point, shown in figure (a) and lor any net function as

f"-112 "'!W +C-I)
2

1
'I}-1!2 =2('1j -l} I-I)

e ,.LI2' =..t..(e" + e 0-1)
) 2 J J
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Now we write the difference equations that are to approximate the three first order

ordinary differential equalions (1).(3) according 10 Box method by considering one

mcsh rectangle, We start by writing the !inite difference approximation of the abovc

three equations using central difference quotients and average about the mid-point

(;",'1,-,") of the segment PIP1 shown in the tigure (a) and the finite difference

approximations to the two firsl urder differential equation~ (4).(5) arc written for the

mid point (C-1i1,II rli' ) of the rectangle P, p]PJP 4, TIlis procedure yields.

[" ,., "']v -v v-v
~ 1 1"'+ I ,f-l +( "I,,-,n_(p"')"-L.:'+( )"_11'2 h h P,!' r'" , !-L.l pJg rl,l, ,
( ),,-'/2 + ( In-V'- P,U 1-1/' p,V )-V'

[ 1, ,., I 1/' f'" l]_ ( )"-V 2!"'_'" "-112 11.,_1" -Url12 _ ,n-I'l }-I;' - ,-Ill
-P6/_~l~i_lllUj_lll k" 1/_lll k

n

Now from the equation (13) we get
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, Where u,

'[V;-V;_,] l[V~-I_V~:lIJ 'i r." .-1 I2" h
J

+'2 h
J

+"2 (p,JV)/_ll,+(p,fi\_II'

'I, ')' ( ',,,.,) 'i, )" , )"., }- '2 p,u j_Ln+ p,u )-1/2 +"2 p,g i-II' + P.,g ,-11'

-11(p,u);-,/, +(P<II):=:i,}+1{(p,V);.1I1 + (P!I');::" 1
I , )"_'l' ;"_112 I " ,-,II" n-1)"2k P. J-l""~J-112 U;-','l+UJ_'12 11,_,,,-11,-]/1,

h., (" ") h" ("-' .-') , )' (~.)" ,)"', ~.)"-I;;;} J Vi -vJ., + J VJ -V,_I + p, )-1,2 J' }-'"+ P, J-II' J' J-112

( )" ")" ()"" (')".' , )' ()" ')"_' h_'- P, Hil " }.JI2 - p, j_ln 11. j_''"' + P, ,-'" g ,-11' + p, J-l/2g1-'i'
( )" ,)' ()n_', )"., ( )" ()" ()"., ._,- p, J-lI' U j_LI2 - p, )-'1' U /_1" + P, ,-II' V rll, + P, J-l/' Vj_li'

I( ')' (')".' ,~.)' "f"-l ,,-, j' (' )"., )=U, U j_Li2- 11 j-IIJ- J" J"tl'+VJ_11, ;-lll-Vj_L12 ,_II2+.IV rLI2

F,-l"
_ ( )"_'/' ~ J-'i2
- p, r

'
/' -k-,

+ (p, l;.'n (g );_,,", - (p, )';-1/] Ii ;.,/, + (p, l;_L'2 (v J';.", +
, "., i" "f"") C-' I,~.)".,(' )'H }a" V,_I" 1_11,-Vj_1I2 1_'." =- ,_II2+U" I' )_1"- U }-I12

h l"-L ()"', ,),,_l ( )"" , ,)".,were, ~>-li' '" pJ I-II' ,/' j_'" - P, I-JI2 U }_1I2 +
( )"., ()"., ,)"_' ._L ( )"" ()'"+ P, ,-[I' g >-I" - P, HI' UJ_1i2 + P, I_'ll V }-II'
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Sinee p, = P,(;) , so we may write the above equation as

h;' (vj- V;_L)+ kp, )" +aJ (lV);_lI' - (PI)" +11" }(U' );-Ill +( p,)" (g );-111
( )"" ()"" ( ,,-I f" "f"-') R""- P, Uj_Li2 + 1', Vr", +U" V,_I,"' HI> -V)_'12 )-111 = j_1I2

( 15)

(16)
Again from the equation (14) we get

A [p; - P;'-I + p;-I- P;':,
L
] + e f )"-112 ( )'_''"' ( )"-'1>2 h h P, P }-Ill + P,P )-112- p,gu r"2, ,

[ lB" B"" I 1f" f"" I]B( ')"_LI2 = ( )'_'12 1',,-112 "-II' r]l' - j-II' _ ,_lI' J-LI2- rill
+ P j-Ill P. J-'"~I-Ill Uri!' k PJ-," k

, "

Ah"(" ") Ah"( ,,-I "-') ()".'12(,)" ()"_ll>(,)".,
:0} j Pi - Prl + J Pj - Fr, + P, J-II' jp ,_LI' + p, )-'Il jp j-'"

( ),,_112()" e )"_112()"-' ( )"_Iil ()" ()"-lil ( )".,+ P, }-Ill P r'l2 + P, j-lIl I' ,-I'" - P, 1-1!1gu J-lI' - P, rill gu J-ll>

+ R(pl);_112 +R(p');::I'
I" ".,)( " ".,) (" ".,)«(" f"")1= u" \\,Urlll +UJ_t12 grl12 - g}_LI2- PH!' + P)_I" . Hil - )_,,,

Ah-I(" ") ()"_II'(,),, ()"_lIl()" (),,-lIl()"
:0} i PJ - PJ-I + P, /"112 jp J-Ill + P, J-,12 P }-1Il - P, )-11' gu r'l'

B( ')' M"-L ()" , ,_J ,_1 , ( J)"+ p )-,,,=- J_lll+a" ug J-I"-U}-I"gr",+uJ_,,,gJ_II,- pJ J-'12

"f"" "., j") 1(')"" ( )"" 1+Fj_lI, I-lll - PJ-Lll r"' +a" .iP )-IIl- UR j-1Il

Wh M'.' Ah-I ("_' "_') ( )'-]1' (~)"., ( )"_'ll ( )".,ere, rll'= ) P, -1')_1 + P, 1-11' JJ-' )_11'+ Ps J-'" P }_lI'

( )"-'" ()"" B( ')""- P, }-1I1 gu )_lI' + P rll'

Ah" (" ") I( )"'''' Je')" I. )".", t.)"=> ) PJ-Pr' + P, )_1,")+11" Jp J-II'-\\.P, rL12+a"j\ug rll'+

( ),-112 ()" B( ')" ("_'" " "-I 'f""P, j-I" P J-112+ P J-LIl-a" U/"II' Rj_I" -11,_111g)-II' + PJ-Lt, r'l2

"., f" ) T"-'- P,-lIl r'12 = J-II'

T'-' M,,-I {(' )"-1 ()"., 11-11' = - )_J" +U" ;1' 1-111- ug ,-'12
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The boundary conditions become

{'''-0,,-
u;=o

(18)

If we assume I,"", u;'-' , ,,:'-' ,0;'-' , f' :•., to be known for 0::; j::; J , equations ( 10) to

(12) and (15) - (18) form a system of 51 + 5 non linear equations for the solutions of

the 5J + 5 unknOV>llS(I;', <, v; ,0;' ,p; ), j '"0,1,2 ,.. J. These non linear system of

algebraic equations are to be linearized by Newton's Quassy linearization method.

We define the iterates r IJ", 11',',v; ,8;', p; 1 , i '" 0,1,2 ... N with initial values equal

those at the previous x-station, which are usually the best initial gucss available. For

the higher iterates we set:

1('+') = f(') +0 fli) (19)
J J j

UIH1) =u(:) +ouiJ) (20), , ,
vlj+!) =v(1) +ov(') (21), , ,
01.+1) =8{') +0e(') (22), , ,
1';'+')=Pj') +,) p;i) (23)

Now we substitute the right hand sides of thc above equations in place of f
j
" ,

v;, 0; and p;' in equations (10) to (17) and (18) and omitting the terms that are

quadratic in ,) fi' ,0 u;, is v;, 0 B/ and is p~,we get the equations (10) to (12 ) in the

following rorm:

Wh () -f'" f'" h ,.,ere r1 j- j_'- I + JUJ-Ill

56

(24)

(25)



57

(26)

(27)

(28)

(29)



=>(S,) J OV~')+ (S,) J OV;'.', +(SJ) J 0 f}') +(S4)) 0 fJ~: + (s,) IOU;')

+ (so)! 0 1Ij~1+ (S,) J 0'g;" +(S,) jog j'2, +(.1',) jO P; +(SLO)J 0 p;_,
=(rl))

Wh I) _(h-' (p');_'I)+a" [i'l (P');-II' -!a f""' )
eres'J-,+ 2 [+ 2 2'J-II'

() I h-' (p');_lI,+a" }'«) (p,);.'1) 1 J"");' - - +----- +------a
., J - J 2 J-' 2 2' rll'

I,,)_ II)" } ('I (P')';_lI's, 1-- Pl rLI)+an U, - 2

() {()" } {'I (p,r;_Hl)
S'I=- P, J_"'+u" 11,_,- 2

(S7)J = (P');-'Il /2
(s,) 1= (pJ);-112 /2
(S9)J =0

(SW)j =0

() R'" Ih"'( (II ('I) I( )" )(,)",}r, I eo r'12- , vJ -1',-1 + P, J-'12 +U" JV rll'

(I )" )( ')'" {f!,1 ,,-I ['-' i'l }
+ p, }-II) +U. 11 j.ll) -u" 1_'1, Vr'I' - j"LI,V,_Ll,

I, )" (JI') ()' Id I)" (I) )-'r,.Pl,_Ll' j_LI)- P4 Ur'l) + P, V,_Ill

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

Here the coefficients (S9) J and (sw) J' which are zero in this ease, are included here

for the generality,

Similarly by using the equations (19) to (23) in the equation (17) we get the following

form:
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(42)

(43)

(p )"_,1, +u (p )"_112
( ) --Ah-' 'J-'" " lUI j )-112t, j - J + 2 H + 2 (44)

(45)

(46)

( )
"-112

p, j-Ill +U"
2

( )"-'"P7 j_'" +a"

2

(17)j=0

(1')j=O

(47)

(48)

(49)

(50)

(I,)) = (51)

(52)

( )"-Ill +a ( )"_'"
( ) =1"-' -Ah-I{ 1'1_ 1')_ P, I_Ill "(")l') p, )-112 ( ),',
']; )"112 ! P, P)., 2 Jp 1-11) + 2 P r"'
()~II'+ (53)
P, 1-'" U. (){" H( ')'" {( )111 ,,_I {.) "_")2 gu j-II' + P J-''"' +U" ug 1-11' +Uj_li, g )_,,,- g rljlU)"~2

(f"-' i') "-I f'" }
+U. J-II2PJ-,,,-P)"li2 j-II'

The boundary conditions (18) become

oj; =0, 6u~=O,ogo"=O

au; =o,oe; =0
(54)

\Vhichjust express the requirement lor the boundary conditions to remain during the

iteration process.
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Now the syslem of linear equations (24) - (30), (41), (42) and (53) together with the

boundary conditions (54) can written in a block matrix from a coefficient matrix,

which are solved by modified 'Keller Box' methods especially introduced by Keller

(1978). Later, this method hw, been used mosl efficiently by Cebeei and Bradshaw

(1984) and recently by Hos~ain (1992). Ho~saiJl et. al. (1994), taking the initial

iteration to be given by convergent solution at; = ;J-'. Results are shown in graphical

form by using the Jlmnerical values ohtained Ii-om the above technique. The solutions

of the above equations (2.14) and (2.15) together with the boundary conditions (2.18)

enable us to ealculale the skin friction r and the rale of heat transfer Q at the surlace in

the boundary layer from the rollowing relations:

(55)

(56)
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