RADIATION EFFECT ON MHD FREE CONVECTION
BOUNDARY LAYER FLOW ALONG A VERTICAL
POROUS PLATE WITH VARIABLE PLATE

TEMPERATURE

A thesis submitted to the
Department of Mathematics, BUET, Dhaka -1000 -

in partial fulfillment of the requirement for the award of the degree of

MASTER OF PHILOSOPHY

in

MATHEMATICS

STANLY PIUS ROZARIO
Student no.040209008P, Registration no.0402408, Session: April -2002
Department of Matheinatics
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY
(BUET)
DHAKA-1000

ced ommymne |

— = —

583

Under the supervision
of
Dr, Md. Mustafa Kama] Chowdhury
Professor
Depaniment of Mathematics
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY (BUET)
DHAKA-1000

ii



The thesis entitled

RADIATION EFFECT ON MHD FREE CONVECTION BOUNDARY
LAYER FLOW ALONG A YERTICAL POROUS PLATE WITH
VARIABLE PLATE TEMPERATURE

Submittcd by
STANLY PIUS ROZARIO
Srudent No 040209008P, Registration No. 0402408, Session: April —2002 a part time student of

M. Phil. (Mathematics) has been accepled as satisfactory in partial fulfillment for the degree of
MASTLR OF PHILOSOPHY in Mathematics on Qctober 31, 2007.

BOARD OF EXAMINERS

1. WMM 21, Io- ﬂ’?—
Dr. Md. Mustafa Kamal Chowdhiry Chairman
Prolessor {Supervisor)
Department of Mathematics, BUET, Dhaka-1000

2. A—“""“‘/“J‘

Head Mcmbrer
Department of Mathematics, BUET, Dhaka-1000

i frocnes %
Dr. Md. Ahdul Maleque Member
Professor
Depariment of Mathematics, BUET, Dhaka-1000

WM/M{W

4.
Dr. Md. Manirul Alam Sarker Mcmber
Aszociate Professor
Depurtment of Mathematics, BUET, Dhaka-1000

5. - )
Dr. Amulaya Chandra Mandal Mcmber
Professor {Exlernal)

Depariment of Mathematics, Dhaka University, Dhaka-1000
1ii



CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in this dissertation
entitled "Radiation effect on MHD free convection boundary layer flow
along a vertical porous plate with variable plate temperature” submitted
in pertial fulfillment of the requirements for the award of the degree of
Master of Philosophy in Mathematics in the Department of Mathematics,
Bangladesh University of Engineering and Technology (BUET) , Dhaka-

1000 is an authentic record of iny own work.

The matter presented in this thesis has not been submitted else where

{Universities and Institutions ) for the award of any other degree.

Stan 1’7 s Pﬂa‘ﬂ BLO
Slanly Pius Rozario
Date: 31 October, 2007



Acknowledgement

At first all praise belongs to God, the most merciful, benevolent to men and his action.

I would like to express my sincerest gratitude, inlense thankfulness and indebtness to
my supervisor Dr. Md Musigfu Kamal Chowdhury, Professor, Depariment of
Mathematics, BUET, Dhaka-1000 for his invaluable sugpestion, consiant inspiration,
inexorable assistance and supervision during the research work of my M. Phil
Program, [ am also cxceedingly grateful to him for providing me necessary research

facilities, sclemn feeling and helpful advice during my study in this department.

I express my deep regards to my respectable teacher Dr. Md Abdul Malegue
Professor and Head, Depariment of Mathematics, BUET, Dheka-1000, for his helpful

advice during my study in this department.

I also express my gratitude te all my respectable teacher, Department of Mathemalics,
BUET, Dhaka-1000, for their generous help, constant encouragement and assistant.

I am also grateful to the authority of Notre Dame College for giving me pcnmssmn
for pursuing this M.Phil, degree.

I am grateful to my parents who guided me through the entire studies and had helped
and are helping me morally and spiritually.

Finally, 1 also render my special thanks to my dearest fricnd Nur Hosain Md Arifid
Azim, Assislant Professor, Depaniment of Mathematics, South-East University, Dhaka

for his cooperation in all respect,

Stanly Pius Rozario

Date: 31 October, 2007

vi



Abstract

In this thesis the effect of radiation on magnetohydrodynamic (MHD) free convection
boundary layer flow along a vertical porous plate with variable plate temperature will
be investipated. By using the appropriate transformations, the basic equations are
transformed to non-dimensional boundary layer equations, which are solved
numerically using finite —difTerence method. Here we have focused our atiention on
‘[ilE evolution of the surface shear stress interms of local Nusselt number . velocity
distribution as well as temperature distribution for a selection of parameter sels
consisting of Radiation parameter (Rd), Magnelic parameler (M), exponent parameter
(m), the Prandti number (Pr) and Delta {(A), The results of wall shear stress and the
rale of heal transfer interms of the local skin friction coefficient and local Nusselt
number, velocity distribution as well as temperature distribution have been shown

graphically by using the sofiwarc LAHEY FORTRAN 90 and TECHPLOT .
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Nomenclature

AT

: Rosseland mean abserption coefficient , m”
: constant

1

: Transverse magnetic field component, T
: Constant of proporlionality of B

: Dimensionless stream function, m*/s

: Acceleration dne to gravity, m/s®
: Coefficlent of thermal conductivity, W/mK
: Exponent parameter

: Magnetic ficld parameter

1 Prandtl number

: Component of radialive flnx, W/m?

: Rate of heat transfer, W

: Radiation parameter, ms K* /W

: Temperature of the fluid, K

: Temperature of the ambijent fluid, K

: Surface temperature/plate temperature, K
: Velocity component in the x direction, m/s
: Velocity component in the y direction, m/s

: Represents the suction of velocity of fluid through the

Surface of the plate/Uniform transpiration veloeity, m/s
. Coerdinate measuring disiance along plate, m
: Coordinate measuring distance normal to plate, m

: Temperature difference, K

vili



Greek symbols

a : Electrical conductivity, s/m

o, : scattering cocfficient, m™

Y : Stream funclion, m%'s

B : Yiscosily of the fluid, kg/ms

v » Kinematic viscosity, m%/s

T : Skin friction, kg/ms®

B : CoefTicient of cubical / volume expansion, X!
n : Similarity variable

a » Coefficient of thermal diffusivity, mzlfs
g : Dimensionless temperature function

p : Density of the ambient fluid, kg/m’

£ : Scaled streamwise coordinate

A : Surface iemperature parameter, K
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Chapter 1

[ntroduction

The study of heat transfer is of great interest in many branches ol science aﬁd
engineering. In designing heat exchangers such as boilers, condensers and radiators
ete, heat transfer analysis s essential for designing such equipment. For example, in
the design of nuclear-reactor cores, a thorough heat transfer analysis of fuel elements
is 1mpertant for proper sizing ol fuel element to prevent bumcut. In aerospace
technology, heat transfer problems are crucial because of weight limilations and
safely considerations, In heating and air conditioning applications for buildings a
propet heal iransfer analysis is necessary to estimate the amount of insnlation needed

to prevent excessive heat loses or gains.

The three distinct modes of heat transfer, namely conduction, convection and
radiation must be considered. In reality, the combined effects of these (hree modes of
heal transfer control lemperatnre distribntion in a medium. Conduction cceurs if
energy exchange takes place from the region of high temperature o that of low
temperature by the kinetic motton or direct impact of molecules, as in the case of fluid
at rest, and by the drift of electrons, as in the case of metals, The radiation cnergy
emiited hy a body is iransmitted in the space in the form of electromagnetic waves,
Energy is emitted from a malerial due (o its tlemperature level, heing larger for a larger
temperature, and is then iransmitted to another surface which may be vacnum ot a
medium which may absorb, reflect or transmit the radiation depending on the nature
and extent of the medium, Considerable effort has been dirccted at the convective
mode of heat transfer. In this mode, relative motion of the fluid provides an additional
inechanism for energy transfer. A siudy of convective heat iransfer involves the
mechanisms of conduction and, sometimes, Lthose of radiation processes as well. This

makes the study of convective mode a very complicated one.

Considerable attention has been pgiven to magneto hydrodynamic (MHD) [lows since
the beginning of (his centnry, The branch of science which incorporates wilh the

motion of a highly condneting fluid in presence of a magnetic flied is called magneto



hydrodynamics. The motion of the conducting fluid across the magnetic field
generates clectric currents which change the magnetic ficld and (he action of the
magnetic field on these currents give rise 10 mechanical forces, which medily the
fluid. It is possibie (o attain equilibrium in a conducting fluid if the current is parallel
to the magnetic field. For then ihe magnetic fotces vanish and the equilibrium of the
gas is the same as in the absence of magnetic lields, such magnetic fields are called
foroe-lree. But most liquids and gases are very poor electrically conductors. In the
case when the conductor is either a liquid or a gas, electromagnetic forces will be
generated which may be of the same order of magnitudc as the hydro dynamical and
inertial {orces. Thus the equations of motion will have to take these electromagnetic

forces mto account as well as the other forces.

However, it 1s possible to make some gases very higbly conducting by jonizing them.
For ionization 1o take effect, the gas must be very hot at temperature upwards of 5000
K er so. Such ionized gases are calied plasmas, The material within a star is plasma of

very high conductivity and it exists within a strong magnetic field.

Solid maller is generally excluded from Magneto hydrodynamics effect, but it should
be realized that the same principles apply in Clectro hydrodynamics. Elecirical
conduction in metals and the Hall Effect are two examples, In an electric motor, the
magnctic field produced by the ammature current affects the operation of the motor in
an important way, so (hat the mechanical and clecirical analyses are coupled, just as in
MHD. Elcetromagnetic forees are an essential part of motors and gencrators, though
they generally do not produce signilicant elastic deformations, and the motions occur
with the help of rotating and sliding contacts. Homo polar gencrators (ones that
produce DC currents) are, indeed, closcly related o Magneto- hydrodynamics

analogous.

Magmeto- hydrodynamic was originally applied o astrophysical and geophysical
problems, where it is still very unportant, but more recently to the problem of fusion
power, where Lhe application is the creation and containment of hot plasmas by
eleciromagnetic forces, since material walls would be destroyed. Astrophysical
problems include solar structure, especially in the outer layers, the solar wind bathing

the carth and other plancts, and interstellar magnetic fields. The primary geophysical



problem is planetary magnetismn, produced by currents deep in the planst, a problem

that has not been solved to any degree of satisfaction.

The inclusion of radiation terms is complicated and the resulting equation is very
difficult to solve. Grief and Habib (1971) have shown that, in the optically ikin limit,
the physical situation can be simplified and they derived and exact solution of the
problem of fully-developed radiating laminar convection flow in an infinite vertical
heaied channel. Their analysis was based on the work by Cogley et al. {1968). In the
optically thin limit the fluid dees not absorb its own emitted radiation but the fluid
does absorb radiation emitted by the boundaries. It was shown by Cogley et al, (1968}

that in oplically thin limit for a gray -gas near equilibrum, the following relation
holds:

L PP U Y0 PR
> = 4(7 Tw}{!xlw[ - )wdﬂ,-cl(i'" T,

r c
where /= I:IW(&] dA
L+ aT w

Here g, is the radiative flux , «, is the absorption coefficient , e,,is the Planck
function and the subscript w represents the value of a gnantity al the wall. Forther
simplification may be made concerning the speciral properties of radiating gases, but
this is nol essential for the present analysis. It should be mentioned that Soundalgekar

and Takhar (1993) considered the radiative free convective Mlow of en oplically thin

grey-gas past a semi- infinite vertical plate.

But the Rosseland model is valid for isotropic local intensity and high optical density

of the medium and the radiative heat flux is given by

16a VT
=29V gy
9 3(a+ n‘k)

where T denotes the lemperature, & is the Rosseland absorption coefTicient , a,is the

scattering coefficient and o is the Stefan- Bolizman constant, The thermal boundary —

layer equation ¢an be written as



The problems of radiation effcet on free or forced or mixed convection boundary
tayer flow over or on bodies of various shapes were discussed by many
mathemalicians, versed engineers and researchers. Amongst them the namc of Rees
et al. (1999), Hossain and Pop(2001), Arpaci(1968), Chamka(1997), Ganesan and
Loganathan(2002}, ¥ih(1999), Bankston(1977) are notewodhy.

Rees ct al. (1999) considered the efiect of radiation on [ree convection from a porous
vertical plate. Radiation effects on free convection over a vertical at plate embedded
m a porous medium with high porosity ipvcstigalr:d by Hossain and Pop(2G01).
Arpaci (1968) studied the cffect of thermal radiation on the laminar [ree convection
from a heated vertical plate. Solar radiation assisted natural convection in uniform
porous medium supported by a veriical Mlat plate discussed by Chamka (1997).
Ganesan and Loganathan {2002) investigated radiation and mass transfer effects on
flow of an incompressible viscous 1luid past a moving vertical cylinder. Radiation
effcet on natural conveetion over a vertical cylinder embedded in porous me’éia
studied by Yih (1999) Bankstou ct al. {1977) radiation conveclion interaction in an
absorbing — cmitting liquid in natural convection boundary layer flow, Hossain and
Alim (1597} investigated natural convection - radiation interaction on boundary layer
flow along a thin verical cylinder. Interaction of thermal radiation with free
convection heat transfer was investigated by Cess (1966). Hossain and Takhar {1996)
studied radiation effect on mixed convection along a vertical plate with uniform
surface temperature. Natural convection-radiation interaction boundary layer (low
along a thin vertical cylinder investigated by Hossain and Alim (1997). Takhar et
al.{1999) discnssed radiation interaction on forced and free convection across a
horizontal cylinder. Effeet of conduction-radiation interaction on the mixed
conveclion flow from a horizontal eylinder studied by Pop et al. (1999}, Hossain et al.
(1998) investipated radiation-conduction inleraction on mixed convection flow glong
a slender vertical cylinder. Radiative free convection low of gas past a semi —infinite

vertical plate was discussed by Soundalpekar and Takhar (1993). All the cases



mentioned above, the radiation effect on MHD [ree conveclion in presence of

transverse magnelic field has not been studied yet.

The effect of a magnetic ficld on free convection heat transfer was studied by Sparrow
and Cess (1961) . Hossain et al. (1997) investigaled MHD forced and free convection
boundary layer llow along a vertical porous plate, Natural convection between heated
verlical plates in horizontal magnetic fields was studied by Ostrle and Yound (1961),
Wilks (1976} studicd Magneto Hydrodynamics [ree conveclion aboul a semi-infinite
vertical plate in a stronp cross field. Free convection with mass transfer under the
influence of a magnetic field was investigated by Cobble {1979). Poots {1951)
considered laminar natural convection flow in magneto hydredynamics. Steady and
transient free convection of an electricatly conducting fluid from a vertical plate in the
presence of magnetic field was studied by Gupta (1961). Hossain and Ahmed {1990)
investigaled MHD forced and {ree conveetion boundary layer [low ncar the leading

edge. All the cases mentioncd above, radiation term wus totally absent there,

Free convection induced by a verical or horizontal wavy surfacc in a porous medium
with umiform heat flux or without heat Nux was studied by Rees and Pop {1994) .
Non-Darcy natural convection Irom a vertical wavy surface in a percus medium was
also siudied by them (1995}, In (1997) they also considered the effect of longitudinat
surface waves on free convection from vertical surfaces in porous media. Rees (1999)
showed the effect of steady stream wise surface lemperature variation on free
convection. Mixed convection boundary laver flow along a verlical cylinder was
investigated by Hossain et al {1998), Sparrow and Gregg (1956) studied laminar free
convection from a vertical flat plate with uniform Surface Heat Flux. Combined
forced and free convection in a boundary layer flow was investigated by Sparrow et
al.(1959). Pozzi and Lupo (1988) discussed the coupling of conduction with laminar
natural convection along a flat plate. Hydro magnetic free conveclion for hi gh and
low Prandtl numbers was investigated by Nanda and Mohanty (1970). Miyamoto et
al. (1980) studied the cffect of axial heat conduction in a vertical flat plate on lree
convechion heat transfer. Natural convection of an clecirically conducting lwd in the
presence of a magnetic feld was investipated by Lykoudis (1962). Cheng (1977)
studied combined free and forced convection flow about inclined surfaces in poIoUusS

media. Mixed convection in boundary layer Now on a horizontal plate was discussed



by Chen et al. (1577). Lin {1976) has shown laminar free convection from a verlical
cone with uniform surface heat flux. Deviation from classical free conveetion
boundary layer theory at low Prandtl numbers was studied by Sparrow and Guinle
(1968). Keller and Cebeel (1971} have discussed accurate numerical metbods for
boundary laycr two dimensionzal (lows. Mixed convection along a wavy surfacc was
studied by Moulic and Yao (1989).They also studied natural convection along a
vertical wavy surface with uniform heat flux. Merkin (1997) investigated mixed
convection from a horizontal circular cylinder. In all the cases mentioned shove,

radiation term and magnetic term were tolally abscnt there,

In chapter-1 reported results regarding radiaiion effect on MHD free convection have
been discussed from both analylical and numerical point of view. In chapter-2, a
steady laminar free convective boundary layer llow with varfable plate lemperature
and magnetic parameter including radiation parmneter cffects is considered. In
chapter-3, a two dimensional laminar MHD free convection boundary layer Mow with
radiation from a vertical porous plate with presence Prandtl and magnetic parumeters
including joule heating parameter effcets {s considered. The above two problems
have been solved numcrically using a most practical, an efficient and accurate
solution technique, known as implicit (inite difference method together with Keller-
box elimination technique which is well documented and widcly used by Keller and
Cebeci (1971) and recently by Hossain (1992).The elfects of various paramelers ie,
the radiation parameler (Rd}), the inagnetic parameter (M), Prandt! number (Pr), the
cxponent parameter (m), the surface temperaturc parameter {A) entering into the
problems are discussed with the help of graphs. We have presenied a peneral
conclusion in Chapter-4 of the model studicd. At the end all references extracted in

the thesis can be found at the last part of the thesis.



Chapter-2

Radiation effect on magneto hydrodynamic free
convection flow along a vertical porous plate

with variable plate temperature.

2.1 Introduction

In this chapter radiation effect on free convection flow along a verlical porous plale in
a sleady two ~ dimensional viscous incompressible fluid in presence of magnetic fleld
with variable platc temperature is considered. Using the appropriate iransformations,
the governing boundary layer equalions are transformed into a non- dimensional form,
which are solved numerically using a very efficient implicit finite dilference method,
We have represented the effect of radiation parameter (Rd), magnetic parameter (M),
Prandil number (Fr}, the exponent parameter (), the surface temperature parameler
{A} on the velocily and temperature including the skin friction coefficient and (he rate
of heat transfer, The Prandtl number Pr is to be taken (.76, 0.88, 1.0 which
correspend to CO, , NH, and 4,0 vaper.



2.2 Governing equations of the flow

The mathemalical statement of the basic conservation laws of mass , momentumn and

energy for the steady viscous and incompressible and elecirically conducting are

given by
V=0 Q2.1)
PlaV1g==-Vp+uVig+ F+JxB (2.2)
P, (g T=kV'T (2.3)

where ¢ = (v J, u and v are the velocity components along the x and ¥ BXes
respectively, I is the body force per unit volume which is defined as - gz, the terms J
and B are respectively the current density and magnetic induction vector and (he term
JxB is the force on the fluid per unit volume produced by the interaction of current
and magnetic [ield in the absence of excess charges . T is the temperature of the fuid
in the boundary layer, g is the acccleration due to pravity, k is the (hermal
conductivity, ¢, is the specific heat at conslant pressure and g is the viscosity of the
fluid. For the energy equation we neglect the viscous dissipation and the Joule heating
term. Here B = 4, Hy , g, being the magmetic permeability of the fluid, &, is the
applied magmetic field and V is the vector differential operator and is defined by
vl 2. 2
ox Oy
where fx and the f}. are the unit vector along x and y axes respectively,

When the external electric field is zero and the induced electric field is negligible, the
current density is related to the velocity by Ohm's law as follows

J= o (g=B) C(2.4)
where o denotes the electric conductivity of the fluid . Next under the condnetion
that the magnetic Renold's number is small , the induced magnetic ficld is negligible
compared with applied field . This condition is usually well satisfied in terrestrial

applications , especially so in (low velocity ) free convection flows . So we can write



Bringing together equations (2.4) and (2.5) the force per unit volume J x B acting
along the x-axis takes the form:

JuB=-a Hyu (2.6)
Under the Boussincsq approximation, the variation of p is taken into only in the

term F in equation (2.1) and the varialion of p in the inertia term is neglected . We

then can write:
p=p,1-p(T -1, )] Q.7
where g, and ¥, are the density and temperature respectively oul side boundary

layer, f7 is the coefficicnt of thermal expansion,

We consider the steady two dimensional laminar fiee convection boundary layer (low
of an optically dense viscous and incompressible and electrically conducting fluid

along a vertical plate in a porous medium as shown in fig-2.1. We assume that the

plate is heated 1o a constant temperature 7, , which is higher than that (he temperature

T, of the ambient fluid. The flow configuration and the coordinate system are shown

on ligure 2,1.

&

hermal
boundardy layer

T,

%]

- | -

Momentumn
boundary layer

&

F 3

f ]

F 3

F 3

F 1

M

L.,

F 13

F

>

Fig 2.1: Physical model and coordinate systems.



Under the usual Boussinesq approximation and using the equations {2.4) to (2.6) wilh
respect fo the above consideration into the basic equations (2.1} to {2.3), the
conservation equations for the steady two dimensional laminar free convection
boundary layer flow of a viscous incompressible and electrically conducling fluid
wilh viscosity and also constant thermal conductivity and thermal expansion

coefficient past a verlical porous plate take the following form.

ou &

+—=10 (28)
dr oy
T TR -5 a By
HE'FVEJ}——V?'FEJ{Q(T—TW)- » (29}
T  aT 8T 1@
5w 0

The appropriate boundary conditions to be satisfied by the above equaticns are

x=0, y>0 n=0, =T
y=0, x>0 ; u=0, v=-¥, T=T, (2.11)
y—rao, x>0 u=0, T=T,

In equation (2.11) V represents the suction velocity of the fluid through the surface of
the plate. In this chapter we shall consider only the suction case (rather than blowing )
and therefore , V is taken as positive throughout, @ is the equivalent thermal

diffusivity, & is the thermal conductivity and the quantity g, represents the radiative

heat [lux in the y direction. In order to rednce the complexity of the problem, we will
consider the optically thick radiation limit in the present analysis. Thus, radiative heat
flux term is simplified by the Rosseland difTusion approximation proposed by Siegel

and Howell (1972) for an optically thick fluid according to

-
¥ Na+o.) oy

(2.12)

10



where ¢ is the Stefan-Boltzman constant and ¢, is the scattering coefTicient and a

¥

is the Rosseland mean absorption cocfficient. This approximation {s valid at points
opticalty far from the boundary surface and is good only for intensive absorption , that
is , for an oplically thick boundary layer. We observed that (he equations (2.8-2.10)
together with the boundary condition (2.11) and equation {2.12) are non-linear, partial
differential equalions. In the foliowing sections the solutions methods of these

equations are discussed in details.

2.3 Transformations of the governing equations

In equation (2.11) V represents the suction velocity of the Auid through the surface of
the plate. In this chapier we shall consider only the suction case (rather than blowing )
and therefore , V is laken as positive throughout. Near the leading edge, the boundary
layer is much like that of the {tee convection boundary layer in the absence of suction,
although much further dewnstream suction it will be fnuﬁd to dominate the flow. Also
the magneto hydrodynamic ficld in the fluid is governed by the boundary layer
equations .Therefore to solve (he equations (2.8-2.10) subject to the boundary
conditions (2.11} the following group of transformations are iniroduced for the Mow
slarting from up siream to downstream.

Fy 4x 4 -3, - 1 1
=2r, =V = T, T J)E—
1=l ¢ [u*gﬂ(ﬂ—n)} p =V 0BT, -1,)5 {f(f 7) 44?}
r-i, 7, 4o T’
= 8{£.7), A=_1, Rfd=—""= | -7, =Ax"
T T, {£.7) T d Hato) F,-7T =Adx

(2.13)

where 7and &'is the dimensionless similarity variable, w is the sirearn function

which satislies the equation of continuity and u = el s V= —%f—— ,A4 18 constant , A

is the surface temperature parameter, Rdis the radiation parameter , &{n, &) is the

dimensionless temperature, m is the exponent parameler, Subslituling equatfﬂn {2.13)

inlo equations (2.9) and (2.10), we get the following transformed non dimensional

equations.

11



ST Qe =2 m) 0= M & = £ - m){f@; f'?—é__} (2.14)

f

Pro' @ +(3+m)f O +&0 —4m0 £+ Fr"{%}td (1+ AgY 9'} = r;(l—m){fﬂ-g'i}

o I
(2.15)
In the above cquations the primes denole differentiation with respect to 5.
The boundary conditions (2.11) then lake the following form:
f:ﬂ i:ﬂl ,ﬁzl ai }:_I:ﬂ
o (2.16)

g

=0 ,0=0 as pow
o

where Pris the Prandtl number, M _jo® - where B =287 x
Jo'ep(r,-T,)

1s the magnetic parameter.
The solutions of equation (2.14)-(2,15) enable us to calculate the skin friction r and

the rate of heat fransfer (0 at the surlace of the plate from

[gﬂ{,f )](a“) =& /g .0) (2.17)

0= _[V_&"TT_)][Z—H = —(H%Rd a‘]g*‘gf(g,n) (2.18)

12



2.4 The important dimensionless parameters related

to problem:

The govemning equalions of the fluid flow are discussed at the previons section in this
chapter. These eqnations contain a number of variables. 1t is difficult to study the
effect of each variable on (he process. Morcover Lhese egquations are nonlinear. There
is no general methed to find the solution of these nonlinear equaticns. In order to
bring out the essential features of flow, it is nceessary to find important dimensinqlcss
parameters, which characlerize the flow. These parameters are very useful in the
analysis of expenmental results. Some non- dimensional paranieters related to our

problems are discussed below:

Prandtl number 2

Prandtl gave an imporiant number known as Prandtl number. The Prandil number is a
dimensionless parameter of a conveclive system that characterizes ithe regime of
conveclion. It is the ratio of viscous force 1o the thermal force and is defined follows:

Viscous force
Thermal force

»

_ Kinematic viscosity

 Thermal diffusivity
- He ¥
kxfoC, «

The Prandtl number is larger when thermal conductivity is small and viscosity is
large, and small when viscosity is small and thermal conduclivity is large .For small
value of v, a thin region will be affected by viscosity, which is known as boundary

layer region. For the small value of «/p C,, a thin region will be affected by heat

conduction which is known as the thermal boundary layer ,Prandtl number also gives
the relative imporlance of viscous dissipation to the thermal dissipation, Thus it
represents the relative imporiance of momenium and energy by the diffusion process -
1s cownparable. For oils, Pr >>1, hence the momentum diffusion is much greater than

ihe energy diffusion; but for liquid metals, Pr<<1 and the solution is reversed,
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Magnetic parameter m

The magnctic parameler is obtained from the ratio of the magnetic force to the inertia

force and is define as

3 o 8,1
2L

M

If this of the order one then the magnetic force is important and the flow is to be
considered as hydromagnetic flow .If it is very much less than one, then the [low cal
be laken as hydrodynamic. For small value of M, the motion is hardly affected by the

magnetic [ield and for large value of M, the molion is largely controlled by the
magnetic [ield.

Radiation parameter rs

The radiation parameter is obtained from the radiative heat flux term which is
simplificd by the Rosseland diflusion approximaltion proposed by Siegel and Howell
(1972) for an optically thick [fuid according to
. —4g  BT*

Ma+a) &

From this one can get radiation parameier which is defined as

g,

_ :fh:rir;,3
Ka+o)

where o is Lhe Stefan-Boltzman constant and o, is the scattering coefficient and

is the Rosseland mean absorption coefficient and £ is the thermal conductivity, This
approximation is valid at points optically far from the boundary surface and is good

oniy for intensive absorption, that is, for an optically thick boundary layer. For small

or large value of Rd, the motion is always affected and controlled by the radiation
field.
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2.5 Results and discussion:

The effect of radiation on magnetohydrodynamic natural convection flow along a
vertical porous plate with variable platc temperature has been investigated. The results
are oblained in tenns of the local skin friction and the local rate of heat transfer for
different values of the aforementioned physical parameters and these are shown

graphically in Figs.2.4-2.11.The velocity and temperaiure distributions obtained by
the finite difference method for various values of the goveming perameters are

displayed graphically in Figs.2.12-2.19.

First of all, to verify the proper Lreatment for the problem, the present solution for

M = 0.0 and m = 0.0 has been compared with that of M.A. Hossain {1999). It can be
seen from the Fig.2.2 and Fig. 2.3 that the present results are in excellent agreement
with M.A. Hossain.

The effects of varying the radiation parameter Ref on both the skin- friction coefficient
S£7(£,0) and the local rate of heat transfer @'(£,0) are shown in Fig. 2.4 and Fig.2.5.
for the fluid having Prandtl number Pr =0.73. the magnetic parameter M = 1.0, the
exponeit parameter s =0.2 and the surface temperature parameter A = 0.1.The {igures
show thal the changes in R lead to changes in the asymptotic value of the skin-
friction but net in the asymptotic ratc of heat transfer. In peneral, however both the

skin- friction and the local rate of heal (ransfer increase as R4 increases.

The skin- friction coefficient /*(£,0) and the local rate of heat transfer &'(£,0) for
diflerent valucs of ithe Prandtl number Pr { = 0.76 , 0.88 , 1.0 } when the value of the
radiation parameter Rd =1.0, the magneiic parameter M =0.5, ihe exponent parameter
m =0.1 and the surface temperature parameter A= 0.1 are depicted in Fig.2.6 and
Fig.2.7.The values of the Prandtl number Pr are taken to (.76 that corresponds
physically for CO; in the temperature range 100-650°F, 0.88 that comesponds for

NH, vapor in the temperature range 120-400°F and 1.0 corresponding to waler

vapor in the temperature range 220-900°F. In Fig. 2.6 and Fig. 2.7 it can be seen that
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as Prandtl number Pr increases, the skin friction coefficient f "{§ .0} decreases but the

rate of heat transier 0'(£,0) increases.

Wumerical values of the skin {riclion cocfficient f"(;,’f ,D) and the rate of heat transfer

3'(§,ﬂ)arc depicted graphically in Fig.2 & and Fig.2.9 respectively for differcnt values
of the magnetic M (=0.1, 0.5, 0.8. 1.0} for the Auid having Prandt] number Pr = 0.73,

the radiation paramcter Rd =1.0, the exponent parameler m =0.25 and the surfacc
temperature parameter 4 = {.1. It is observed that as the magnetic parameler M
increases, both the skin [riction cocfTicient £"(£,0) and the rate of heat transfer

&'{(& 0)decrease.

In Fig 2,10 and 2.11, the skin friction coeflicient £(£,0) and the rate of heat (ransfer
6'(£,0) are shown graphically {or different values of cxponent parameter m (=0 .1,
0.15, 0.25) when Prandtl number Pr =0.73, the radiation parameter Rd = 2.0, the
magnetic parameter M =1.0, the surface temperature parameter A =0.1, It is observed
that the skin friction cocfficient /*(£,0) decreases with the inerease of the exponent

parameter m (=(.1, 0.15, 0.25} and as the cxponent parameter m increases, the rale of

heat transfer &'(£,0) increascs also.

Fig. 2.12 and Fig.2.13 deal with the effect of the radiation parameter Rd (= 1.0, 2.0,
3.0, 4.0, 5.0) for Prandt] number Pr = 0.73, the magnctic parameter M =1.0, (he

exponent parameter m =0.2 and the surface temperaturc parameter A= 0.1 on the
velocity profile f*(£,7) and the teinperatnre profile 6'(5",1}'],Frum Fig, 2,12 1t is
revealed that the velocity profile ;'{(£,n) increases as the values of radiation

parameter K4 increases. Near the surface of the plate velocity increases significanily

along 7 and becomes mnaximum and then decrcases slowly and linally approaches to
zero, the asymiptolic value. I'rom Fig.2.13 it is seen that when the values of the

radiation parameter Rd increase, the temperature profile #(£,1) also increase.

Fig. 2.14 depicts that the velocity profile f{&,n) for different values of the Prandtl
number Pr (=0.76, 0.88, 1.0) while the radiation parameter Rd = 1.0, the magnetic
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parameter A=0.5, the exponent parameier m =0.1 and the surfacc temperalure
parameter A= 0.1. Corresponding disiribution of the lemperaturc profile &(&,7) in the
fluids is shown in Fig. 2.15. From Fig. 2.14, it can be scen that if the Prandtl number
increases, the velocity of the fMuid decreases. On the other hand, from Fig. 2.15 we

observe that the temperature profile deercases within the boundary layer due to

increase of the Prandt] number Pr,

Figs. 2.16 and 2.17 display results for the velocity and temperature profiles for
different values of magnetic parameter M (=0.1, 0.5, 0.8, 1.0} against # for the fluid
having Prandt] number £+ = .73, the radiation parameter R4 =1,0, the exponent
parameter m =0.25 and the surface temnperature parameter A = 0.1. It is observed that,
as the magnetic parameter increases, the velocity profile decreases between
0<p<3.5and then increases with very small difference and finally approaches to

zero along direction. From [ig.2.17 it is seen that when (he values of the magnetic

parameter M increase, the tomperature profile 8(¢£,7) also slightly increase.

Again in Fig. 2.18 and Fig. 2.19, the velocity profile f’(f,r;) and the temperature
profile &(¢,7) are shown graphically for differcnt values of the cxponent m {=0.1,
0.15, 0.25) when the radiation paramcter R4=2.0, the Prandtl number Pr = 0.73, the
magnetic parameter M=1,0 and the surface temperature parameter A = 0.1. From Fig.
2.18 it 15 observed that if the exponent m increases the velocity of the fluid decreases

and from Fig.2.19 it can be secn that the temperature profile decrcases due to increase

of the exponent parameter m.
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2.6 Conclusion

The effect of radiation on magnelo hydrodynamic MHD free convection along a
vertical porous plate with variable plate temperature has been investigated introducing
a new class of (ransformations, Numerical solutions of the equations governing the
flow are obtained by using the very efficient implicit linite difference method together
with the Keller Box schemc, From the present investigation, the following

conclusions may be drawn:

1. The skin friction coefficient and the rate of heat ransfer increase for increasing
value of the radiation parameter Rd.

2. Increased value of the radiation parameter Rd leads to increase the velocity
distribution as well as the temperature distribution.

3. An increasing value of Prandtl number Pr leads to decrease (he skin friction
coefticient but increasc the rate of heat transfer.

4, As Prandt] number Pr increases, both the velocily and the temperature distributions
decrease significantly.

3. With increased of magnelic parameter 3, the skin friction coefficient and the rate
of heal transfer decrcase.

6. An increase in values of M leads to decrease the velocity distribution but stightly

increase the temperature distribution.
7. Increased value of the exponent parameter m leads o decreasc the skin friction
coeflicient but increase the rate of heat transler and as the exponent paramcter m

increases, both the velocity and the temperaturc distdbutions decrease significantly.
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To verify the proper ireatiment for the problem, the present solution for A=0.0 and
m = 0.0 has been compared with that of Hossain et al. (1999), Tt ¢can be seen from the

table 2.1 that the present results are in excellent agreement with Hossam ef al.

Table 2.1: Comparisons of the present numerical resulis ol skin friction cocfficient
and the rate of heat transfer against & obtained by finite dilference method for the
values of Prandtl number 7 = 1.0, the radhation parameter Bd = 0.03, the surface
temperature parameter 4 = (.1 with those obtained by Hossain et al. (1999} withont

he effccts of the magnehic parameter M and the exponent parameter m.

Values of Local skin friction eoefficient Ratc of heat transier
£ Hossain et al. Present paper Hossain et al. Present papet
(1999} {1999

0.10 0.0655 (L0635 6.4627 0.4529
0.20 0.1316 0.1314 3.4928 3.4714
0.40 01.2647 0.2643 2.0229 2.0225
0.60 (0.3963 0.3955 1.5439 1.5424
(.80 0.5235 0.5215 1.3247 1.3233
1.00 0.6429 0.6400 1.1995 1.1943
L.50 0.8874 (1.8868 1.0574 1.0570
2.00 1.0278 1.0251 1.0120 1.0115
3.00 1.0769 1.05594 1.0001 1.0000
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Chapter-3

Joule heating effect on magneto hydrodynamic
free convection boundary layer flow along a

vertical porous plate in presence of radiation.

3.1 Introduction

Tree convection flow is often encountered in cooling of nuclear reaclors or in ihe
study of the structure of stars and plancts. Along with the frec conveclion flow the
phenomenon of the boundary fayer [low of an clectrically conducting fluid up a
vertical flat plate in the presence of a strong magnetic field is also very common
because of its application in nuclear engineering in connection with ihe cooling of
reactors. And radiation effects on free convection flow are important in the context of
space technology and process involving high temperature, and very litlle is known
about the effects of radiation on the boundary —layer {low of a radiating [luid past a
body. Heat transfer from a heated vertical plate provides probably one of the most
basic scenarios for matural convection problems. Variations of the problem occur
frequently in the literature. I'rec convective steady hydromagnetic flow about a heated
vertical [lat plaie has been considered by Gupta (1961), Poots (1961), Osterle and
Yound (1961}, Sparrow and Cess (1961}, Lykoudis {1962) and Cramer (1963).The
similarity solutions were studied by Gupla (1961) and Lykoudis (1962) considering
that the magnetic ficld differs inversely as the fourth root of the height above the
bottom edge of the plate. Afterwards Nanda and Mohanty (1970) made use of the
similar technique to solve (he hydromagnetic free convection of high and low Prandtl
numbers because of realistic applications, as for liquid metals, the Prandt] number is
low. Riley (1964) considered a uniform magnetic field and integraied the boundary
layer cquations over a single boundary layer thickness. Cffects of transversely applied

magnetic field on free convection of an elecirically conducting fluid past a semi-
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mfinite plate were studied by Wilks (1976). Miyamoto et al. (1980) bave given an
analysis of the relative importance of the parameters of the problem in parlicular with
reference to coaxial heat conduction. Hossain and Ahmed {1990} studied (he MHD
forced and free convection boundary layer flow near the leading edge. They also
investigaled the combined forced and free convection of an clectricelly conducting
fluid past a vertical [lat plate at which the surface heat ux was uniform and magnetic
field was applied paralle]l to the direction normal o plate. The natural ecnvection
boundary layer flow ol an electrically conducting fluid up a hot vertical wall in the
presence of a strong magnetic field has been studied by several authors because of its

application in nuclear engineering in connection with the cooling of reactors.

In all the above studics, the effects ol the joule heating and viscous dissipation were
neglected because they are of the same order as well as negligibly small. But Gebharl
(1962} has shown that the viscous dissipation effect plays an imporant ole in naturaf
conveclion in various devices which arc subjected to large deceleration or which
operate at high rotative speeds and also in strong gravitational field processes on large
scales {on the planels) and in geological processes. With this understanding Takhar
and Soundalgekar (1993) have studied the effects of Joule heating and viscous on the
problem proposcd by Sparrow and Cess (1961), using the serics expansion method of
Gebhart (1962). Hossain {1992) havc studied the cffeet of Joule heating and viscous
on the flow ol'an electrically condncting and viscous incompressible fluid past a semi
infinite plate of which temperaturc varies linearly with the distance from the leading
edge and in the presence of umilorm transverse magnetic field. He has solved the
equations numerically governing the flow applying the finite difference method along
with Newton's linearization approximation, Alam (1695) has investigaled the elfects
of Joule heating as well as viscous dissipation on the unsteady magneto hydrodynamic
free convection and mass transfer flow with Hall current of an electrically conducting
and viscons incompressible Nuid past an accelerated infinile vertical porous plate with
time dependent wall temperature and concentration. In the present study the Jonle
heating eflecls on magnetohydrodynamic boundary layer flow along a vertical POIOUS

plate in presence of radiation will be investigated.

lhe transformed non similar boundary layer equations governing the flow together

with the boundary conditions based convection were solved numerically using the
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Keller beox (implicil {inite diffcrence) slong with Newton's  linearization
approximation method in the entire region starling from the lower pari of the plate to
the down stream for some values of the radiation parameter Rd the magnetic
parameter M, the joule healing paramcter .f and the Prandt] number Pr. The eFect of
the parameters R J M, and P7 on the velocity and lemperature fields as well as on
the skin friction coeflicient and the rate of heat transfer have been studied. In the
following sections detailed derivations of the governing equations for the flow and
heat transfer and the method of solutions along with the results and discussions are

presented.

3.2 Governing equations of the flow

The steady two dimensional laminar frec convection boundary layer flow of an
optically dense viscous and incompressible and electrically conducting fluid along &

vertical plate in a porous medivin as shown in fig-3.1.We assume that the plate is

heated to a constant temperature 7, , which is higher than that the temperature T, of

the ambicnt fluid. The flow configuration and the coordinate system are shown on

figure 3.1.
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Fig 3.1: Physical mode! and coordinate systems.
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The equations governing the flow arc

e gy
7 2
u—a£+vﬁ=u'—a-—j+gﬁ[?"—?;q}—gﬂu ! (3.2)
o B b P
-y 2
PLCLISPNG /SN I R WA Y £/ (3.3)
o oy koy re,

The appropriate boundary conditions to be satisfied by the above equations are

=0, ¥»>0 : u=0, F=T_

y=0, x>0 : u=0, v=-¥F, 7=T, (3.4)
yoo,xx>0 0 ou=0, T=T,

In equation (3.4) V represents the suction velocity of the fluid through the surface of
the plate. In this chapter we shatl consider only the suction case (rather than blowing }
and therefore , V is tuken as positive throughout, @ is the equivalent thermal

diffusivity, & is the thermal conductivity and the quantity ¢, represcnts the radiative

heat flux in the y direction. In order to reduce the complexity of the problem, we will
consider the optically thick radiation limit in the present analysis. Thus, radiative heat
flux term is simplified by the Rosscland diffusion approximation propesed by Siegel
and Howell (1972) for an optically thick fluid according 1o

_ -4o 3T
" Ma+o) v

q (3.5)

where ¢ is the Stefan-Boltzman constant and o, is the scaitering coefficient and @

is the Rosseland mean absorption coefficient, This approximation is valid at points
optically far from the boundary surface and is good only for intensive absorption, that
15, for an optically ihick boundary layer. We observed that the equations {3.1-3.3)
together with the boundary condition (3.4) and equation (3.5) are non-linear, pariial
differential equaticns. In the following sections the solutions methods of these

equations are discussed in details.
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3.3 Transformations of the governing equations

In equation (3.4) V represents the suction velocity of the fluid through the surface of
the plate. In this chapter we shall consider only the suction case (rather than blowing)
and thercfore, V is Laken as positive throughout. Near the leading edge, the boundary
layer is much like that of the free convection boundary layer in the abscnce of suction,
although much further downstream suction it will be found 10 dominate the fow, Also
the magneto hydrodynamic field in the fluid is governed by ithe boundary layer
cquations Thereforc to solve the equations (3.1-3.3) subject to the boundary
conditions (3.4} the following group of transformations arc introduced for the flow

starling ltom up stream to downstrean:.

_E}: _ dx . = Y2 _ k] l
1= ¢ V{Uzgﬁ(n_?m}} =V 0BT, -T,)4 {f(r:,u)i 45}

T -T T 4o 7T,’
—o{en), Aty pi=Pie 3.6
T. T, ) T Kato) 6.6)

where #7 and £ s the dimensionless similarity variable, w is the stream function

i . . . . d
which satisfies the cquation of continuity and x = =¥ ¥=— oy L

is the surface

temperature parameler, Rdis the radialion parameter , (1, &) is the dimensionless

temperature. Substituling equation (3.6) into equations (3.2) and (3.3), we gel the

following transformed non dimensional equations.

f"+3ff"—2f’2+ﬂ—Mf'+§f"=§{f’%—f"%} (3.7

¥

-l n* ' i -1 i 1 g 2 r@_ rg_{_
P " +37 6 +&8 +Pr {3Rd[l+.ﬁ&) &} +Jf _g;'{f Py g 5§} (3.8)

In the above equations the primes denote differentiation with respect to 1.
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The boundary conditions (3.4} then take the foliowing form:

f:ﬂ ,izﬂ ,{?:1 af f}'=ﬂ

a7 a
o (3.9)
—=0 0=0 a+ p—ow
i

where Pr is the Prandt] number, M = 517 - where B* =28, Jx
'\/p gﬂ(Tw - T'ZI }

is the magnetic parameter and J = 8PH" — where
JP'e, gBT, ~T.)

H® =80,H,' (w-'r; }) is the joule heating parameter,

The solutions of equation (3.73-{3.8) enable us to calculate the skin friction ¢ and the

rate of heat transfer { at the surface of the plate from

4 St
= o—— — W ‘['
’ [gﬂ{Tw—I;] JD $/7e) (3.10)
_ v ar _ i oo
Q__(V{Twn)}(a_y]y_ﬂ" (”3’?“"*]5 &'(6.0) G.11)
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3.4 Joule heating parameter:

In electronics, and in physics more broadly, Joule heating or ohmic heating refers (o
the increase in temperature of a conductor as a result of resisiance o an electrical
current flowing through it.

Al an atomic level, Joule heating is the result of moving clectrons colliding with
atoms in & conductor, where upon momentum is transferred (o the atom, increasing ils
kinetic energy . Joule heating is named fur James Prescott Joule, the lirst to aniculate
what is now Joule's law, relating the amount of heat released from an electrical

resistor 10 ils resistance and the charge passed through it. In our problem we got a

2
dimensionless parameter J = 8bH ———— which is Joule heating
\/P‘C,, g, -T,)

paramctcr.

3.5 Method of solution:

To gel the solutions of the parabolic differential cquations (3.7) and (3.8) along with
the boundary condition (3.9), we shall employ implicit finite difference method
together with Keller- box elimination technique which is well documented and widely
used by Keller and Cebeci {1971) and recently by Hossain (1992). Sincc a good
deseription of this method has been discussed in details in Chapler-2 i.e. in Appendix,
further discussion is disrcgarded here. The numerical resulls obtained arc presented in

the [illowing section.
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3.6 Results and discussion:

In this chapler Joule heating effect on magnectohydrodynamic free convection
boundary layer flow along a vertical porous plate in presence of radiation has becn
investigaled. Solutions arc obtained for the fluid having Prandll number Pr = (0.76,
(.88, 1.0} and for a wide range of the values of the Joule healing parameter J = (0.1,
0.2, 05, 1.0, 2.0, 3.0), the Radiation parameter K4 = (0.5, 1.0, 3.0, 5.0), the magnetic
parameter M = (0.1, 0.5, 0.8, 0.9, 1.0) and the surtacc temperature parameter A. If we
know the values of the functions f (§ ,?;) . E{g",r_:r] and their derivatives for different
values of the Prandtl number Pr, the Radiation parameter R , the Joule heating
parameler S and the magnetic paramcter 34, we may calculate the numerical values of
the local rate of heat transler @'(£,0) and the velocity profile £'(&, 7)) at surface that

arc important from physical point of vicw.

Numerical values of the skin friction coefficient and the Iocal rate of heat transfer
depicled graphically in Fig.3.2 and Fig.3.3 respeclively for different values of the
Joule heating parameter J=( 0.5, 1.0, 2.0, 3.0} for the fluid having Prandt] number
Pr=10.73, the Radiation parameler R = 1.0, the magnetic parameter M = (.5 and the
surface lemperature paramcter A—{.1, In Fig.3.4 and Fip.3.5 the skin friction
coeflicient /"(£,0) and the local raie of heat transfer ¢"(£,0) arc shown graphically
for differcnt values ol the Prandtl number Pr = (0.76, 0.88, 1.0) when the value of the
radiation paramcter R4 = (.5, the magnetic parametcr M = 1.0, the Joule heating
parameter J = 0.3, and the surface {emperature parameter A=0.1, The values of the

Prandt! number Pr are taken to 0.76 that corresponds physically for €0, in the
temperalure range 100-650°F, (.88 that comesponds for NH, vaper in the

temperature range 120-400°F  and 1.0 correspending te water vapor in the

lemperature mnpc 220-900°F,

In Fig.3.6 and Tig.3.7 the skin frietion coefficient f"(£,0) and the local rate of heat

transfer E'(c_f-',ﬂ] are shown graphically for different values of the radiation parameter

Rd = (0.5, 1.0, 3.0, 5.0% when the value of the Prandtl number Pr = 0,73, the magnetic
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parameter Af = 0.8, the Joule heating parameler J = 0.2, and the surface temperature
parameter A=0.1.In Fig.3.8 and Fig,3.9 the skin friction coefficient /"(¢£,0) and the
local rate of heat transfer '(£,0} are shown graphically for different values of the

magnetic parameter M = ( 0.1, 0.5, 0.9) when the value of the Prandtl number Pr=

0.73, the radiation parameter R4 = 0.3, ihe Joule heating parameter J = 0.1, and the

surface temperature parameter A=0.1.

From Fig.3.2, it is shown thal the skin friction coeflicient £ "(&,0) increases with the
increasc of the Joule heating parameter J (=0.5, 1.0, 2.0, 3.0) and from the Fig.3.3,
opposite result is observed on the local rate of heat transfer 8{¢,0) due to increase of

the value of the Joule heating paramcter 7 when the value of the Prandtl number is
0.73, the Radiatton parameter R4 = 1.0, lhe magnctic parameter Af = 0.5 and the
surface lemperature parameter A=0.1,

From Fig. 3.4, it is obscrved thal the skin friction coefficient f™{£,0} decreascs
monctonically with the increase of the Prandtl number Pr (=0.76, 0.88, 1.0). Again
Fig.3.5 shows that the increase of the Prandt] number Pr leads to increase of the local
rale of heat transfer H*(g:,ﬂ) when the value of joule heating parameter J = 0.5, the

Radiation paraineter Rd = 0.5, the magnetic parameler M = 1.0 and the surface

temperature parameter A=0.1.

From Fig. 3.6, it is shown that the skin friction cocfficient £*(£,0) increases with the
increase of the Rediation parameter R4 (=0.5, 1,0, 3.0, 5.0) and from the Fig.3.7, the
same result is observed on the local rate of heat transfer #°(£,0) due to increase of the
value of the Radiation parameter R4 when the value of joule healing parameter J =

0.2, the Prandtl number Pr =0.73, the magnetic paramcter M = 0.8 and the surface
lemperature parameter A=0.1.

From Fig. 3.8, it is observed that increase in the value of the mnagnetic parameter Af

leads to decreasc of the value of the skin friction coefficient £ "(£,0} which is usuaily

expecled. Apain Fig,3.9 shows ihat the increase of the magnetic pﬁramcter M leads o

decrease of the local rate of heat trﬂnsferr}?'(g’,ﬂ) when the value of joule heating
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parameter .J = 0.1, the Prandtl number Pr =0.73, the radiation parameter Rd = 0.5 and

the surface temperalure purameter A=0.1.

Fig.3.10 depicts the velocity prolile for different valucs of the Joule heating parameter
J(= 0.5, 1.0, 2.0, 3.0) while the Radiation parameter d = 1.0, the Prandtl number Pr
= (.73, the magnetic paramcter 4 = 0.5 and the surfacc temperature parameter
A=0.1.Corresponding distribution of the temperature profite Er'(ff ,r;) in the fluids is
shown in Fig. 3.11. From Fig. 3.10, it is seen that if Joule heating parameter J
increases, the velocity of the [luid increases. Small increment is shown from Fig.3.11

on the temperature profile & (#, x) for increasing values of J.

In Fig.3.12 and Fig.3.13, the velocity profile /'{£,7) and the temperature profile
G{£.5) are shown graphically for different values of the Prandtl number Pr {= 0.76,

0.88, 1.0) when the value of the radialion parameter 84 = 0.5, ihe magnetic parameter
A = 1.0, the Joule healing parameter J/ = 0.5, and the surface temperature parameter
A=0.1, From Fig. 3.12, it is scen that if the Prandtl number increases, the velocity of
the fluid decreases. We alse observe from Fig.3.13 that the {emperature profile

decreases within the boundary laver duc to increase of the Prandt] number Pr.

Fig.3.14 and Fig.3.15 deal with the cffect of the radiation parameier Rd (= 0.5, 1.0,
3.4, 5.0) for Prandtl number P+ = 0.73, the magnetic parameter M = 0.8, the Joule

heating parameter J = 0.2, and for the surface temperature parameter A=0.1 on the
velocity profile /'(£,5) and the temperature profile (¢, 7). From Fig. 3.14, it is
revealed that the velocity profile /(&) increases with the increase of the radiation

parameter Ko which indicates thal radiation incrcases the [luid motion, We also

observe from Fig.3.15 that the temperalure profile increases within the boundary layer

due to increase of the radiation parameter R4

In Fig3.16 and 11g3.17, the velocity profile f'(&,#} and the temperature
profile 8{&, 7} are shown graphically for different values of the magnelic parameter A

(= 0.1, 0.3, 0.9) when value of the Prandt]l number Pr is 0.73, the radiation parameter

Rd = 0.5, the Joule heating paramcter ./ = (.1, and the surface temperature parameter
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A=0.1.From Fig. 3.16, it is seen that if thc magnetic parameter increases, the velocity
of the fluid decreascs. We also observe from Fig.3.17 that the lemperature profile

increases within the boundary layer duc to increase ol the magnelic parameter M.

3.7 Conclusion:

The effect of Joule heating parameter J, the radiation parameier Rd and the magnetic
parameter M for different values of Prandtl number Pr on the magneto hydrodynamic
{MHD) free convection boundary layer flow along a verlical porous plate with
radiation has been investigated by introducing a new class of transformations.
Numerical solutions of the equations govemning the flow are oblained by using the
very ellicient iinplicit finite difference method together with the Keller Box scheme.

From the present investigation, the following conelusions may be drawn;

I. The skin friction coefficient increases {or increesing value of the joule heating
parameter J but incrcased value of the joule heating paramcter J leads to decrease the
rate of heal transfer.

2. Increased valuc of the joule healing parameter J leads to increase the velocily
distribution as well as the temperature distribution.

3. It has been obscrved thal the skin friction coefficient, the rate of heat transfer, the
temperaturc distribulion over the whale bonndary layer and the velocity distribution
increase with the increasc of the radiation parameter Rd.

4. An increasing value of Prandtl number Pr leads to decreasc the skiun friction
cocfTicient but increase the rate of heat transfer .As Prandll number Pr increases, both
the velocity and the temperature distributions decrease significantly.

5. The skin friction coefficient, the rate of heat transfer and the velocity profile
decreasc while the temperature profile slightly increase for increased values of the

magnetic parameter A,

39



7.0

& (c. O

a5

3.0

2.2

20

i.5

101

LR

*%.

Fig.3.2: Skin friction for differcnt values of ]
when Pr=0.73, Rd=1.0. M= 0.5 and A=0.1.

Iig.3.3: Rate of heat transfer for different values
of J when Pr=0.73, Rd=1.0, M=0.5 and A=0.1,

40



LAY

& (., 0)

<0

g

3.0
Pr=076
— — — — P=0B8
- — — - Pr=1D
20
1.0} T T e — e —
0o 10 20 a0 70 50 60

Pr=) 76

- — — - Pra0R8
—— — - Pi=iD

0 1.0 2.0 10 4.0 20 6.0

g

Fig.3.4: Skin fniction for different values of Pr
when Rd =0.5. I=0.5, M=1.0 and A=0.1.

Iig.3.5: Rate of heat transfer for dilferent values
of Pr when Rd =0.5, J=0.5, M=1.0 and A=0.1.

41



(6.0

(A

64
———— Ad<0.5 u
X -
=0 - — — - Ad=14d p
———— FAd=3.0 s
— — —- Rd=6D // -
40 Py
-
A
Ao
s K4
30} et -
o -
K .
o -7 —
2ol A —
' " < - - —
i e
P
&
10} PR
e
o = . - :
%o 10 2.0 3.0 a0
g

Fig.3.6: Skin friction for different values of Rd
when Pr=0.73, 1 =00.2, M=0.8 and A=0.1.

Rd=0.5
-~ — - Rd=1.0
———— Rd=1.0

== — —— Rd=5.0

Fig.3.7: Ratc of heat transfer for dillerent values
of Rd when Pr=(1.73, ] =0.2, M=0.8 and A=0.1.

42



PR,

g (g0

30

3

5

Fig.3.8: Skin friction lor different vahues of M
when Pr=0.73, Rd =0.5, J=0.1 and A=0.1.

3.0
‘1 — M=01
- — — = M=0S5
————— - M=0.9
h
201 ",II|,
)
,
[
g
L
B
&
101 =
o
“F*ﬁﬂh_ﬂﬁ
. , e
on 1.0 20 a0 4.0

I'ig.3.9: Rale of heal transfer for differcnt values
of M when Pr =073, Rd =0.5, J=0.1 and A=0.1.



T

e 7

0.3
5
¥ J=05
W, - — - = J=1a0
L ——m - J=20
nzl iy ———- J=30
o
vy
!
%,
0.1
*%0 T 20 30 4.0 5.0 5.0
1
Fig.3.10: YVelogity profile for different values of
Jwhen Pr=0.73, Rd=1.0, M=0.5 and A=0.1.
1.0
\\\ J=0.5
08 - — — - J=1D
T ————— J=2.0
—— — - 4=20
4
06} N
%
9
ey
'\#\.\
04 i,
o,
m
K
N
0.2
e
%
*ﬁ-_t_‘cz__-‘_
f , , , L
%5 10 20 90 a0 50 80
n

Fig.3.11; Temperature profile for different values
of ] when Pr=0.73, Rd=1.0, M=0.5 and A=0.1.

a4



02
A
[ \\"-.
W
II|I| s '.\ Pr=07E
i o - - = — Pr=0.88
; AN -~ - — = Pr=10
SO
= ' Yy
L 0.1 } WY
= W
F W
I "o
w0
| 3
| S
| ™
\.\H‘\ .
043 70 25 an 4.0 50 5.0
n
Fig.3.12: Velocity profile for different values of
Prwhen Rd =0.5, J=0.5, M=1.0 and A=0.1.
1.0
0Bl é}\ Pr=0.76
i P
[ — i Fr=1.0
0.6 '
=
b
o
0.4]-
02F
2%

Fig.3.13: Temperature profile for different values
ol Pr when Rd =0.5, J=0.5, M=1.0 and A=0.1.

45



Jte.w

g,

¢

0.4
Ad=0.5
,.f““\ — — — - Rd=10
0ar FREN — — — - R4=010
N —-——- Rd=50
I ER
P W
L " \
i h/_ v & \~\
P4 \\ . \
,FII \\' N N N
I RN SN
] hS
II \ S ~ N
[/ | # \\ \.:‘\
j NN
\ NS
- R
- e
"~ - -
H"‘“—:____ e -
. L L . S LS |
g-%.ﬂ 1.0 2.0 a0 40 50 6.0

Fig.3.14: Veloaily profile for different values of Rd
when Pr=0.73, ] =0.2. M=0.8 and A=0.].

1.0

OB

06

Gar

a2

%

i,
o
§ ¥
W — Rd=05
\ W — — — - Ad=10
bt —————— Rd=3.0
Y T —— — - Rd=5D
COETN
L v
.,
o

Fig.3.15: Temperature profile for differcnt values
of Rd when Pr= (1,73, 1 =0.2, M=0.8 and A=0.1.

46



F .

o,

0.3

0z

o

°%.

Fig.3.16: Velocity profile for different values of
M when Pr=0.73, Rd =0.5, j=0.1 and A=(.1.

i0

I

o.z|

*%o

an

Tig.53.17: Temperature profilc for different valucs
of M when Pr = 0.73, Rd =0.5, J=0.1 and A=0.1.

47



Chapter 4

Conclusions

In this dissertalion. we have investigated the radiation effect on magnelo
hydredynamic frec convection flow along a verlical porous plate with variable plate
temperature. Using the appropriate transformations ihe basic equations are
transformed to nen similar boundary layer equalions, which have been solved
numerically in the entire region starling [rom the lower pan of the plate to the down
stream using a very efficient implicit finile difference method known as Xeller box
scheme. Here we have focused our atlention on the cvolution of the skin friction, the
surface temperature distribution, wvelocity distribution as well as temnperaturc
distribution for a selection of parameter sets consisting of the Prandtl number Pr, (he
radiation parameter R4, (he nagnetic paramefer M, and the exponent parameter

m and the surface temperature parameler A.

From chapter 2

The cifect of radiation on magneto hydrodynamic MHD free convection boundary
layer flow along a vertical porous plate wilh variable plate temperature has been
investigated introducing a new class of transformations. Numerical solutions of the
equations governing the flow arc obtained by using the very efficient implicit finite
dilference methed together with the Keller Box scheme. From the present

mvestigation, the following conclusions may be drawn:

1. The skin friction cocfiicient and the rate of heat lransfer increase for increasing
valuc of ihe radiation paramcter R4

2. Increused value of the radiation parameter Xe leads to increase ihe velocity
distribution as well as the temperature distribution.

3. An increasing value of Prandil number Pr leads lo decrease the skin friction
coeflicient but increasc the rate of heat transfer.

4. As Prandi] number Pr increascs, both the velocity and the temperature distributions

decrease sipnilicantly.
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3. Wilth ellect of magnetic parameter M, the skin [riction cocfficient and the rate of

heal transfer decrease.

6. An incresse in values of M leads to decrease the velocity distribution but slightly

increasc the temperature distribution.
7. Increased value of ihe cxponent parameter m leads to decrease the skin froction
coefficienl but increase the rate of heat transfer and As the exponent parameter m

increases, both the velocity and the temperature distribulions decrease significantly.

From chapter 3

The effect of Joule heating parameter J, the radiation parameter R4 and the magnetic
parameter M for different values of Prandtl number Pr on the magneto hydrodynamic
(MHD} free convection boundary layer [low along a vertical porous plate with
radiation has been invesligated by introducing a nmew class of transformations.
Numerical solutions of the equations governing the flow are obtained by using the
very eflicient implieit [inite difference method together with the Keller Box scheme,

I'rom the present investigation, ihe following conclusions may be drawn:

1. The skin friction coefficient increascs for increasing value of the joule heating
parameter JS but increased value of the joule heating parameter J leads to decrease the
rate of heat {ransfer.

2. Increascd value of the joule heating parameter JJ leads (o increasc the velocity
distribution as well as the temperature distribution.

5. It has been observed that the skin friction coefficient, the rate of heat transfer, the
temnperature distribution over the whole bonndary layer and the velocity distribution
increase with the increase ol the radiation parameter Rd.

4. An Increasing value of Prandtl number Pr leads to decrease the skin friction
coefficient but increase the rate of heat transfer .As Prandtl number Pr increases, both
the velocity and the temperature distributions decrease significantly,

5. The skin friction coefficient, the rale of heat transfor and ihe velocity profile
decrease whilc the lemperature prefile sliphtly increase for increased values of the

magnetic parameter Af,
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Chapter-5

Further Recommendation

The present studies may be extended further,

1. In this work, both the viscosity and thermal conductivity have been considercd
as a constant but they are {unclions of temperature. If (he viscosity and thermal
conductivity arc the function of temperature then the problem can be extended.

2. Viscous dissipation is neglected here, so viscous dissipation may be added to
the enerpy equation und hence the problem can be extended.

3. Instead of takmy vertical flat plale one can choose vertical cylinder. Thus the
problem can also be extended.

4. By using perturbation method or finite volume methed to solve the governing

equations,
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Appendix

Methods of Solution

Implicit finite dilference method (IFDM)

To get the solutions of the dilferential equations (2.14) and (2.15) along with the
boundary condition (2.18), we shall employ a most practical, an efficient and accurate
solution technique, known as implicit finitc difference method together with Keller-
box elimination technique which iz well documesnled and widely used by Keller

{1578) and Cebeci (1984) and recently by Hossain(1992).

To apply the aforementioncd method, we first convert the equations {2.14) and (2.13)
intor the following system of first order diffcrential equations with dependent variables

u(&, ), v(&,n) and p(&, ) along with the boundary condition {2.18) as

Sl (1)
uw = (2)
g'=p 3
Equations (2.14) and {2.15} transform 10
: foit] £
4 +Flﬁ’_ﬁzu2+F3§_P4”+P51’=Pag(ua_vaé} (4)
figr d
Ap' + p Ip+ pop—pigu+ Bp' = pf u—é‘—p—f (3}
o ag
Where

p|=3+m"P3 :2(l+m}?p3=11p4 :ﬁ{! p5=§! Pﬁ=l_m! FE5 :4]'?1'}

A= L{1 +(1+Agy Rdd}, B = L 3pdd+ gy A ©)
pr pr

The boundary conditions are:

N
F=0 =0, g=1 atn=0
/=0, =0, atp—>m
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We now consider the net rectangle on the (€, 1) plane shown in the figurc (a) and
denote the net points by

(8}

E'=0, &"=E"N 4k, where n=12,. N
’FDZD: 7, =1, +h_,. where 7 =12,....f

Here ‘n’ and *j' are just sequence of numbers on the (£ , ) plane , ky and h; are the

vanable mesh widths.

kp
P«i————— e —-P
U | x
: h
Mtz - - - D e Qo
' l
' I
. ¥
Thl P3 Pz
&n-l E,_m E;n

Figure (a): Net rectangle of the difference approximation for the Box scheme.

We approximate the quantitics (I} u, v. p) at the points (¢, 5, ) of the net by( J7

i

Vis PP which we call net funclion . We also cmpley the notation g , for the

quantilies midway belween net points shown in figure (&) and lor any net function as

g =%(§” +&™) (9a)
Moz =%(n; —,.) (9b)
aj""”;%(aj" +8"") (%c)
M =%(3J“+9;1]) (9d)
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Now we write the dilference equations that are to approximate the three [first order
ordinary differential equalions (1)-(3) according to Box method by considering one
mesh reclangle, We start by writing the (inite difference approximation of the above

three cquations using central dilference quolients and average aboul the mid-point
(£",7,;2} of the segment P\P; shown in the figure (a} and the finite difference
approximalicns to the two first onder differential cquations {4)-(5) arc written for the

mid point ( £7% . ;-2 of the rectangle P PaP3Py. This procedure yields.

B u" U HH; +u

h;i(f J'r_m) ”; F5 - — 3 (10)
N v+

h'jl{ﬂ'; "J.-i"‘r_]):'I.:'::_U.zz—"r 2 s (ll]
) ; ‘f}“ +j?”

(01 =60, )=y =21 12

]. v "v - V”_I _vh i M=

—| Lt + +{P|ﬁ") -:jz (Pz”z);-té"'(ﬁ':}g}j-:fg

2 hj hj

~(pa) iz + (P (13)

n =1 L n-]
—(p, )2 £ 11| i B "Hpn iz T =S
WPl -1 2 -1
iy 2 p| ¥ k Sz k.

n-1
Py =Py P, TPy Weli " s
_2,1: Jh L P 1 :|+{pljp)j_:;z +(F5F]J-:§§'(P7-‘-’“);—:j2
1

!

v (14)
H— L= o -z .- iH -7 - ? f
+B{P2];—1lj'r§ = (pﬁ I{—::’E _,1—11;22 [u;—ll.:rE { |l Uzk = } p_}—:;’%{ =2 L }“

k

H

Now from the equation (13} we pot
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n—|
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_El{_p-;u)}_yz +(p-1"' _Ir_]lln'z }+E{{p5v}3—lil + (Pﬁv);—:-’Z ]
1 r=ly " K —
_Ek (pﬂ-]_.l—}:li = II."FEE( il 2+H_f Ifl)(y.l—h'ﬁ _u;—]1."2)

"
1 =112 Fn-142 n=-1 " =|
=) J, Y=gy ( s Y ;-m)(f,—wz "f;l-uz)
2k,

:""h;] {1’: 'qu }"‘h_l ( vh_l v - )J n: UV + (P Jj::xz (ﬁ’)i:_:.fz

|

- ):—Hz(“z}uawz -(p, }J 142 '[” ); Rl ); 11 (E)J 112 "'(Fa]J 123’; i,-z
n-1 n1

- Py )_r 13 (”),« ez — Py )j :r" (”};-m +{ Py ); [ (""),f iz "'{F’s); e Vi
=0x, {{u )j e —{ )"::u “(J‘"’L u:‘H’; uzf-uz ;j ll.fl f; ez +{ ﬁ’); iz}

.fn_]:llz
 Where @, =(p, )} =

]

= b v e Y e, U s~ Y e, Y Y
P Y (8 o — () s ;m+(p5 Vit )0

=, (¥’ L w1 HV }rT]rz vy T2 Sl # (A 21— (P ):_:n (ﬁ’);-m
(P L (WY = A OV = = (P 8 (P )T

=l

+(P:‘.]; 2 ¥,

= B ] VD e 4 U =Py Vs + e Y,
P Y () = (P o W (P Y )y 4, (VT s -
Vi L )= U — (Y = () Y2 + (Yo (42,
- K (v"'—v Y =(Py Vi (&)} + () 1 — (P, ) )T

= }‘II("?“V?—L}J"{(IH I;I ity } ﬁ’},. 12 {(Pz :'j-uz +&, }(H:);-uz
+(P3]j,,;a(£’};| (pa.),u|1H;|-'2+(p5).a|.2{");”‘2+

@a (Vi Flre =V Fian) == U0 e, {0 -y,
where Ir:li'll'_(p])_,l :.rz(ﬁ"}::az (F‘z);m(” ¥ uz"‘h,_l(""‘rj_":::)

u=|

+{ P, ), 11 {S), Tz — P -|;1 “;-nz + 025 )i ("’);-m
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= ;, (" _VHI)+{(PI -1 T, } ﬂ"); Iz [{Pz }h 1z T, }(ul)j_uz
+{( P, )] _,r—l:'? (&Y = (P Yoy it (P ). ()] J-112
+a, "Ju uz f; tez —l.-Z Jr,.u-llu '_R:-ulu

f = —L ., +a, {':ﬁ"}”—:n -’ }; I ?}

(13)

Since p, = p,(£), s0 we may write the above equation as

h I:V _UJ 1)"‘{(,0]} T }{fv:’_,u 1z _[(PI )" +a, }(uz}n 12 +(F"3 }" (g):_uz

= Ir =1

=
—{p.)" ”;-uz"'(f’s V,.«—;.rz"“an(v,m .-1#2 =¥, _.—I.-'I} R |.r2

(16)
Again from the equation (14) we get

2 A

£ !

E}n 1 fn _fn—l
=112 n= -z =12 112 1F2 . -2 12
+ H(Pz};_ll;:z = {Pe);_}.{i ;-ll.fz |:”;—|Ixz I%} P;_::zz‘l J—;:_'_;—

fl

A Pﬂ-_p”— p p"- - H= "
_|: ! ;I' al + . o1 } + (p]jp}j—::'; +(P5p)1u:j§_ [P'.'gu) -;;;

= AR (p] =Py )+ AR () =gl - YR U)o + (0 Y )
+(Ps )00 (P + (P Y0 (DY = () YA (&) = (s YV (g™,
LB+ B(PYT,

=, {00+ U8 s = €)=+ P Ty = )

= AR (p] =Pl Y+ (2 Vi UPY i + o Vs (0) s = (2, VR (80
+ B(P Yy = =M 50 + @, U8 iy —¥a By +HT 08 s = (B Y
P = P T e, (UYL — gy )

Where, M".‘Iz—Ah (P = P ) Y U + (s Y (B

-{p; }J; 1::2 gu)”::u +B{F ); 1z

= AR (pr—pr )+l ) v, U .m—{u:-? RS (I
(s : :.{i {P) —iz t B(P )Ju 2 i, HT-_II.-'E g; 12— —m 3:—1;:4 +P:.1_”2 f,.« B2
_P,«-Hz —uz )= T-uz

T;—llz = M” - T@, {(Jﬁ")r;::az —(ug) -uz}

(17)
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The boundary conditions become

Jo=0  uy=0 g =1 {18)
¥ =0 07=0
Ifweassume £, )", '™ 07", " to be known for 0% j<J , equations { 10) to

(12) and (15) — (18 ) form # systern of 5] + 5 non linear equaticns for the solutions of

the 53+ 5 unknowns (f,, &7, v),0). p7 },j=0,1,2 ...I These non linear systcm of
algebraic cquations are to be lncarized by Newlon’s Quassy linearization method .
We define the iterates [ /', «”, v 58000 1,1=0,1,2 N with initial values equal
those at the previous x -station, which are usually the best initial gucss available . For

the higher iterates we set:

f(r+|]' f{r] +§f[i} (19)
) _ o 20
W =il + 5 (20)
vjﬁll _vm +c'5‘u{'} {213
0D =69 4 50 (22)
Pfrrm “Pf} +5P:n (23)

Now we substitute the right hand sides of the above equations in place of 7, t
., 07 and p} in equations (10} to (17) and (18) and omitiing the terms that are

quadratic in & f, & u},6v,, 58] andﬁp}we get the equations (10) to (12 ) in the

following form:

. O ,f m (s (24)
ﬁf - — +ou )=(r),

Where (1, ) ;= fm — 0+ hult,, (25)
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A (26}
(e} in !
Sult - 5ut7) - EJ (6v+ 8vi2=(r),
(7, ); =Hf£1 m +h V?}m @7
EE?JE'] _5‘9?-}1 _ {é p[” iy pw I=(r, )1 (28)
Where {f’s :JJ =§j1}1 _g-:_r] + k pjr_]”g (29)
h;] I:vj’} +r51’f.'} m' 51’“] }+{(P| Vi ta H(ﬁ’}mwz +5(ﬁ}&r}wz}

- {{ P }j-uz ta, H(” }; st 5{” E;]sz}+ (Fa )J 142 {(gjmlrz +5{E)i:-luz}
—{pg) {”;914 +‘5'”H ez b H ()" {""“-]m "'&VETUI P, ( ;[:sz "‘inf;;z Vi ra
—a, (vfrl—]m + ‘Evjf—lwz )f, : = H:rr-!lfz
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=53, 6V +(5;), v +(5;), 8 £ +(s,), § 110 +(s5), St

(s}, 6ul +(5,), 8¢ +(55), 8 g W+ (55),6 p, +(50), 8 P}, (30}
=(r, )J

Where (5,), =(},;‘+M ;rl+m_lan ;"-_ljm] (31)

2 2 2
- {p )H— +a.l| T (pﬁ )"- ] -

(‘?1)_,1 z{_h_,ll + = ;2 _,lt-: + ,;: = _Ean L—]Iu [32}
(s3), =(—~—~—(Fl)"'g’* Dy sla v, (33)
(5.} =(—-__(’U']j"” Zo i 1 ! a, v ) (34)

47 2 _r | 2 - 1.|"‘

i ..rl.] (JD4)|| 111 35
()= =P v &b 0 T (35)
(SG —{(p.)] -uz"'ﬂr ju _{pd 2! mL ) (36)
(59, =(ps))n 2 (37)
(53),= (1)) /2 (38)
(85),=0 (39)
(510 }J =0 (40)
{F‘z) R;-tlxz {h {vﬂ] Vm BRIV Yo +an)(fv)[!’j”2 }
+({p,)] it ) (u )tr-]wz = {f[iim "’: ::.fz f;n ll.rzvirjuz} {41)

- kpj):-uz 5}!;2 —(py)" “ji]wz +(ps)" ?}1-'2}

Here the coefficients (8, ), and (s,,),, which are zero in this case , are included here

for Lthe generalily.

Similarly by using the equations (19) to (23) in the equation (17) we get the following

{orm:
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(1), 89 +5,), 8 PO, +(1), 6 1 +(0,), 8 11 +(ts), Sl

=1

42
(), Sl + (), 86 4 (1), 58"+, ), S (), 68 =), (42)
Jr--l.l'J. n-1ie
Where (1)), = 4h]' + 2, ; f;” L -‘-‘}5""“ + Iip? -%a,, i (43)
n=1i2 =12
- 1
(fz)J-:—Afr;] (P + Jir} (r 5) -112 +BPEJ_}| L ;:].rz (44)
2 2
(p n— 1:'2 ar J I N
(IS}J _'_I_lr_121—pi\-'+ Ealr p_,l—t[.'ﬂ {45)
(PO i+, 1
(1), = — 2 Pi-]i + 2“» P',u-lfi (46)
(P2 4a, 1
(1), === g+ S, @47
(pYidta, o 1
{ts), =——”rf—';-— g+ % 8] (48)
(£,),=0 (49)
(r), =0 (50
(P ﬂ:l.."E +ex 1 -
(1), :——EL;E— ul — Ea“uj_,',z (51)
(p)Van+e, 1
(LIUJ T—;!“.Z_‘_uj—]l - ;aaru;—]]n'z (52)
- I."E .r: -1/2
(rj) _.'-I.n'2 Ah (f}“} jﬂ) (pl I—;z il (f ){;}1f1+{p5 e ( }f.]}],fz
(pa) 5 +a N g (53)
_#'I';__(Eu} i + B(p’ ) ST, {(“E); 112 TH; s g;nw 8- 1,-2 y-yz}
+o, {]‘;-uzﬁir)m P |.f1 {J:I.rz
‘The boundary conditions (18) become
17 =0, d6u =0,6g =0
Jo 0 Lo (54)

Sul =0, 567 =0

Which just express the requirement {or the boundary conditions (o remain during the

iteration process.
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Now the sysiem of lincar equations (24) - (30), (41}, (42) and (53) together with the
boundary conditions (54) can written in & block matrix from a coefficient matrix,
which are solved by modified ‘Kelter Box® methods especially introduced by Keller
(1978). Later, this method has been used most efficiently by Cebeci and Bradshow
(1984) and recently by Hossain (1992). Hossain et. al. (1994), iaking the initial

iteration to be given by convergent solution at & = & ;-1 - Results are shown in graphical

form by using the numerical valucs obtzined from the above technique. The solutions
of the above equations (2.14) and (2.15) together with the boundary conditions (2.18)
enable us to caleulate the skin friction T and the raie of heat transler ) at the surlace in

the boundary layer from the following relations:

14 Y B i
< o) e )
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