PERFORMANCE EVALUATION OF SHADING DEVICES USED IN TALL OFFICE BULLDINGS OF DHAKA CITY

by
Anisut Rahman

A thesis submitted in partial fulfilment of the requirement for the degree of MASTER OF ARCHITECTURE

BANGLADLSHI UNIVERSITY OF ENGINFERING \&'IECHNOLOGY,
Dhaka, Baryladesh

Department of Architecture,

Bangladesh University of Engineering \&c Technology, Dhaka-1000, Bangladesh

The thesis titled "PERFORMANCE EVALUATION OF SHADING DEVICES USED IN TALL OFFICE BUILDINGS OF DHAKA CITY' Submitted by Anisur Rahman, Roll No. $040301008[\mathrm{P}]$, Session April 2003, has been accepted as satisfactory in partial fulfilment of the requirement for the degree of MASTER OF ARCHITECTURE on this day $9^{\text {th }}$ May, 2007.

BOARD OF EXAMINERS

1.

Chairman
Dr. Khandfeer Shabbir Ahmed
Associate Professor
Department of Architecture

3.
Bangladesh University of Engnelring \& 'Technology
.
 Mernber (IEx-officio)
Professor and Mead
Department of Architecture
Bangladesh University of Engineering \& Technology

2

 Member Assistant Professor
Department of Architecture
Bangladesh Universiry of Lingincering \& Technology

[^0]
CANDIDATES DECLARATION

It is hereby declared that this thesis or any part of it hay not been submitted elsewhere for the award of any degree or diploma.

Signature:

Anisur Rahman

Abstract

One of the characteristics of call office buildings in Dhaka city is the extensive use of glazing on the bulding facades. This incteasing use of glass has caused considerable changes in the relacionship between interior and ambicut climate, where the problem of overheating has become a major concern. So facades of tall buildings need protecrion from solat heat gan to achicve desicable indoor environment and to reduce the energy consumption in the buildings by the air conditioning system. External shading devices can be utilised to block the solar radiation before it teaches the window surface and hence more effecave than internal shading devices.

The problern was approached by performance evaluation of selected commonly used shading devices of tall office buildingy through simulation study. Shadow simulation allows study of the effect of changes in one aspect, keeping othcr factors constant. The observations of simulated performance that occurs due to changing parameters allow the identification of elements, the reduction or introduction of which in the design conmbute to solar heat gain. Through simulacion study, it is possible to analyse the performance of shading devices for any period of the year. The simulation studes were conducted for the months from March to September representing hot-dry and warmhumid period, which is most significant in terms of climatic severity. The simulation studies were performed to evaluate petformances of shading devices and idenify the cffects of diffetent patameters and correladion among parametets in terms of reducing solar heat gain. This study also helped to understand the influence of window orientation on the performance of shading devices.

After all the investigations and critical evaluations, a parametric srudy to exptote the strategies for optimum shading was pursued through a series of simularions as solar geometry is a predictable phenomenon and much of its impact is quantifiable. Paramencic study allows study of various alternatives with teference to performance of the model and identifying the best one. Based on the paramerric study, design recommendations and design gudelines were derived.

The findings of the thesis are concerned with the problem of solar heat gain in tall office buildings in ropical climate like Dhaka city. The results of the simulation studies and parameme studics have been expressed in terms of a number of climate responsive shading design guidelnes. It is expected that the application of these gudelines will reduce solar heat gain in comparison to chat of present praccices.

ACKNOWLEDGEMENTS

I am wery much grateful to roy supervisor Dr. Khandaker Shabbir Ahmed, Associate Professor, IDepartment of Architccture, Bangladesh Univetsicy of Engineering \& Technology, for his excellent supervision, wise guidance and inspiration throughout the thesis work. From him, I have learned the ant and skills of conducting a research and more importantly the way of chought.

My thanks to Architect Khondoker Md Mohinut Rahman and M N Zahidul Iskan Khan, for their help. I extend my thanks to Architect Kaniz Sultana Sathi in appreciation of ber helping hank, provided, without ambiguity, at the hours of necessicy. I thank Md. Rabiul Islam, Md. Nawrose Fatami, 'I'ahmina Rahman, Md. Ashrafil Azad and Ahmed l'iro\%-ul Haque, students of Arehitecture at BUE'I' for their cooperanon in Geld investigation.

I would like to express my hearfelt gratitude to my parents, for cherr endless encouragement and well wishes.

Finally, i would like to thank everyone who has encouraged and supported me during my reseatch work.

TABLE OF CONTENTS

Abstract. iv
Acknowledgements. vi
Table of Contents vii
List of Tables. xi
Iist of Fugures xii
CHAPTER: ONE PREAMBLE
1.1 Introducrion 1
1.2 Statement of the Problem 3
1.3 Objectives of the Study 4
1.4 Methodology
1.5 Scope and Limitations 6
CHAPTER: TWO THE CLIMATIC CONTEXT: DHAKA CITY
2.1 Climate of Bangladesh 8
2.2 Microclimate of Dhaka 9
2.2.1 Temperature. 10
2.2.2 Solar Radiation 11
2.2.3 Relative Hunudicy 13
2.2.4 Cloud Coverage 13
2.2.5 Sumbhine Hours 14
2.26 Wind Flow and Ditection 15
2.3 Problems in Designing in the Hot-Hunud Climate. 15
2.4 Conclusion 16
CHAPTER: THREE
'XALL BUILDING AND SOLAR HEAT' GAIN
3.1 'tall Dulding 18
3.1.1 Definition 18
3.1.2 Jusrifications for Designing with Climate. 19
3.1.3 Façade Design of Tall Buildings in Tropical Climates 19
3.2 Solar Raduation 20
3.2.1 Visible Radiation 21
3.2.2 Non-Visible Radiation 22
3.2.3 Direct, Inditect Radiation 23
3.3 Solar Heat Gain 23
3.4 Conclusion. 25
CHAPTER: FOURSOLAR CONTROL AND SHADING DEVICES
4.1 Solar Control 27
4.2 Method of Solar Control. 27
4.2.1 Window Orientanon 28
4.2.2 Internal Btinds and Cortains 29
4.2.3 Heat Absorbing/Reflecring Glasses. 30
4.2.5 External Shading Devices 32
4.3 Shading Devices 33
4.3.1 Objective of Shading 33
4.3.2 1'ypes of Shading Devices 34
4.4 Conclusion 39
CHAPTER: FTVE PERFORMANCE EVALUATION OF SHADING DEVICES
5.1 Selection of Shating Devices for Evaluation. 40
5.2 Performance Evaluation Process 45
5.2.1 Criteria for Performance Evaluation 46
5.2.2 Simulation Program. 46
5.2.3 Climate Database 47
5.2.4 Simularion Parancters, 48
5.2.5 Simulation Model. 50
5.3 Simulacion Srady for Petformance Evaluation 54
5.3.1 Effect of Orientation on Shadug Performance 54
5.3.1.1 Performance of Horizontal Shading Devices 54
5.3.12 Performance of Vertical Shading Desices 58
5.3.1.3 Performance of Composite Shading Devices 61
5.3.2 Comparative Analysis of Shading Performance. 64
5.3.2.1 Comparison among Horizontal Shadng Devices. 65
5.3.2.2 Comparison among Vertical Shadng Devices 6)
5.3.2.3 Comparison among Composite Shading Devices 74
5.4 Conclusion 80
CHAPTER: SIXPARAME'FRIC STUDY FOR OFTIMUM SHADJNG
6.1 Parancters for Optimum Shading Analysis 81
6.2 Simulation Day and 'I'ime for the Parameme Soudy 84
6.3 Parametric Modelling 84
6.4 Parametric Studes for Horizontal Shading Devices 84
6.4.1 Effect of Projecion Depth of Honizontal Overhangs 85
6.4.2 Effect of Side Offset of Horizontal Overhangs 88
6.4.3 Effect of Minumizing the Effective Herght of the Window 90
6.5 Parametric Sudies for Verical Shading Dexices 93
6.5.1 Effect of 1 eprth and Spacing of Vertical Fins 93
6.5.2 Effect of Angle of Vervical Fins 95
6.5.3 Effect of Extending of Vertical Fins above Window 98
6.6 Parametric Sudies for Composite Shading Devices 101
6.6.1 Effect of Depth and Spacing of Horizontal Overhangs \& Vertical 1 ins. 101
6.6.2 Effect of Angle of Verucal Fins 103
6. 7 Conclusion. 105
CHAPTER: SEVEN GUIDELINES FOR DESIGN OPTIMIZATION OF SHADING DEVICES
7.1 Proposed Guidelives for Opuimum Shading System. 106
7.1.1 Guidelnes for IForizontal Shading Devices 106
7.1.2 Guidelines for Vertical Shading Devices 109
7.1.3 Guidelincs for Composite Shading Devices 111
7.2 Conctusion 113
7.3 Suggestions for Fumure Research 114
HIHIIOGRAPHY 115
APPENDICES
Appendix A Heurly Dry Bulb Tempcrature (${ }^{\circ} \mathrm{C}$). 120
Appendix B Hourly Direct Solar Radation (Wart/ma) 132
Appendix C Howrly Diffuse Solar Radiation (Watt/m²) 138
Appendux D Hourly Relative Humidity (\%) 144
Appendix E Hourly Cloud Cover (\%). 156
Appendix F Daily T'otal Surshine Hours. 162

CHAPTER: TWO

Table 2.1 Climatic data of Dhaka 10
Wable 2.2 Air temperature in Dhaka City 11
'I'able 2.3 Relative humidicy in Dhaka Cicy 13
Table $2.4 \quad$ Sky condition in respect to cloud cover for a year 13
Table 2.5 Monthly average wind speed and dircction 15
CHAPTER: FIVE
'lable 5.1 List of the selected buildings and shading devices 42
Table 5.2 Percentage of shaded area by Shade H01 for $21^{\text {st }}$ Niarch 55
Talste 5.3 Percentage of shaded atea by Shade H02 for 21^{31} March 56
Table 5.4 Percentage of shaded arca by Shade H03 fot $21^{\text {st }}$ March 57
Table $5.5 \quad$ Petcentage of shaded area by Shade V01 for 21° March 58
'I'able $5.6 \quad$ Percentage of shaded area by Shade V02 for $21^{\text {st }}$ March 59
Table 5.7 Pereentage of shaded area hy Shade vo3 for $21^{\text {st }} \mathrm{March}$ 60
Table $5.8 \quad$ Percentage of shaded area by Shade CO1 for $21^{\prime \prime}$ March 61
Table 5.9 Percentage of shaded area by Shade C02 for $21^{\text {st }}$ March 62
Table 5.10 Percentage of shaded atca by Shade CO. for $21^{\text {st }}$ March 63
Table 5.11 Petcentage of shaded area at diffetent onentations by 65 Horionntal shading devices for $21^{\prime \prime}$ Warch
T'able 5.12 Anount of direct solar radiation incident on windowpance at 66 different orientaions expressed
Table 5.13 Percentage of shaded area at different orientations hy vertical 70 shading devices for 21^{x} March
Table 5.14 Amount of ditect solar radiation incident on window pane at 71 different onencations
T'able 5.15 Percentage of shaded area at diffetent orientations by 75 composite shading devices for $21^{\text {st }}$ March
Table 5.16 Amount of dircet solat radiation incident on window pane at 76 different oricntations expressed
CHAPTER: SDX
Table 6.1 Percencige of shaded area by horizontal overhangs widh 86 different depth for $21^{3 /}$ March
Table 6.2 Shading coefficient by horizontal overhangs with different 87 deph for 21^{41} March
Table 6.3 Percentage of shaded area by horizontal overhangs widh 89 different side offset from window edge for $21^{3 t}$ March
Table 6.4 Percencage of shaded ar:a by horizontal ovethangs with 21 diffetent effective heights of the window for 21^{54} March
Table 6.5 Shading coefficient by horizontal overhangs with different 92 depth at different height for $21^{\text {" March }}$
Table 6.6 Percenage of shaded area by vertical fins with different depth 94 for 21^{11} March
'Table 6.7 Percencage of shaded area by vertical shading devices with 96 different depth and angle for $21^{\text {s }}$ March
Table 6.8 Shading coefficient by vertical shading devices with different 97 depth and angle for $21^{4 r}$ March
Table 6.9 Percentage of shaded area by verical fins with varying 99 extension of verical fins above window for 21^{35} March
Table 6.10 Shading coefficient by vertucal fins with varyng extension of 100 verrical fins above window for $2 t^{4} \mathrm{March}$
Table 6.11 Percentage of shaded area by composite shading devices with 102 different spacing for $21^{\prime \prime}$ March
Table 6. 12 Percentage of shaded area by composite shadting devices wnth 104 different angle for 21^{31} March
Table 6.13 Shading coefficient by composite shading devices with 105 different angle for 21" March

CHAPTER: ONE

Figure 1.1 'I'all office buildıgs showing present trend of façade design in Dhaka city
tigure 1.2 Struccure of the work 5

CHAYTER: TWO

Figure 2.1 Thaka cicy: vicw of Dilkusha commercial area 9
$\begin{array}{ll}\text { Figure } 2.2 & \text { Ycarly weather data showing temperatute profle and solat } \\ \text { radiation }\end{array}$
Figure $2.3 \quad$ Monthly average daily solar tadiations in Dhaka 12
$\begin{array}{ll}\text { figure } 2.4 \quad \begin{array}{l}\text { Amount of solar radintion on different surfaces (hocisontal and } \\ \text { vertical) for a ycar }\end{array} & 12\end{array}$
Irgure $2.5 \quad$ Monthly average cloud cover 14
Figure 2.6 Monchly avetage sunshine hours 14

CHAPTER: THREE

Figure 3.1 Iilectromagnetic specram 21
Figure 3.2 Solar spectrum 22
Figure 3.3 Ditect, indirect solar radianon 23
Figure 3.4 Typical proportions of incident solar radarion, reflected, 24 absorbed, एansmitted and remansmitted by ghass
CHAPI'ER: FOUR
Figure 4.1 Interior shading devices for solat conrol 29
Figure 4.2 Heat gain through different typer of glazing 31
Figure 4.3 Some of movable shading devices 35
Figure 4.4 Some of Fixed shading devices 37
CHAPIER: FIVE
Eigure $5.1\left(\begin{array}{l}\text { a }\end{array} \quad\right.$ View of HO 1 42
Figure $5.1(\mathrm{u}) \quad$ Window section of 1101 42
Figure 5.2(a) View of H02 43
Figure $5.2(\mathrm{~b}) \quad$ Window section of H 02 4.3
Figure 5.3(a) View of H03 43
Figure 5.3 (b) Window section of H 03 43
Figure 5.4(a) View of V01 43
rigure 5.4(b) Window secrion of V01 43
Figure 5.5(a) Vicw of V02 44
ligure 5.5(b) Window section of V02 44
Figure 5.6(a) View of V03 44
Figure 5.6(b) Window section of V03 44
Figure 5.7(a) View of C01 44
Figure 5.7(b) Window secion of C01 44
Figure 5.8(a) View of C 02 45
liggute 5.8(b) Window section of C02 45
Figure 5.9 (a) View of CO 45
Figute 5.9(b) Window section of C03 45
Figure 5.10 - Schemauc drawings showing generation of smmulation model 50 from typical high rise building
Figure 5.11 Simulation model of Shade F F 01 51
Figute 5.12 Simulatoon model of Shade H02 51
Figure $5.13 \quad$ Simulation model of Shade H 03 51
Figure 5.14 Simulation model of Shade V01 52
Figure 5.15 Simulation model of Shade V02 52
Figure 5.16 Simulation model of Shade V03 52
Figure 5.17 Simulation model of Shade CO1 53
Figure 5.18 Simulation model of Shade C02 53
Figure 5.19 Simulation model of Shade C03 53
Figure 5.20 Percentage of shaded area by Shade H01 for $21^{\text {sh }}$ Narch at 55 different orientations
Figure 5.21 Percentage of shaded atea by Shade H 02 for $21^{\text {st }}$ March at 56 diffecent orientacons
Figure 5.22 Percentage of shaded area by Shade HO 3 for 21^{xt} March at 57different oticnacions
Figure 5.23 Percentage of shaded area by Shade V/01 for $21^{\prime \prime}$ March at 58 different orientations
Figure 5.24 Percentage of shaded acca by Shade V02 for 21" March at 59Jsce...... .n-inmentinan

Figure 5.25 Percentage of shaded area by Shade V03 for $21^{\text {st }}$ March at different oricntamons
Figure 5.26 Percentage of shaded area by Shade C01 for $21^{\text {tt }}$ March at 62 different orientations
Figute $5.27 \quad$ Yercentage of shaded area by Shading C02 for 21s March at 63 different orientations
Figure 5.28 Percentage of shaded atea by Shading C03 for 21 March at 64 different oriencations
$\begin{array}{ll}\text { Figure 5.29 } & \begin{array}{l}\text { Comparison of percentage of shaded area at south orientation } \\ \text { by horizontal shading devices for } 21^{41} \text { March }\end{array}\end{array}$
Figure 5.30 Comparison of percentage of shaded area at east onentation by67 horizontal shading devices for $21^{\text {st }}$ March
Figure 5.31 Comparison of percentage of shaded atea at south-cast 67 orientation by horizontal shading devices for 21" March
Figure 5.32 Comparison of percentage of shaded area at south-west onentation by honzontal shading devices for 21^{8} Match
$\begin{array}{lll}\text { Figure } 5.33 & \begin{array}{l}\text { Comparison of percentage of shaded area at west orientarion } \\ \text { by horizontal shading devices for } 21^{* 2}\end{array} & 68\end{array}$
Figute 5.34 Compatison of shading coefficient of three horizontal shading dievices at different orientanons
Figure 5.35 Comparison of percentage of shaded area at east onientation by 71 verucal shading devices for $21^{\text {s }}$ March

$\begin{array}{lll}\text { Fipure 5.37 Companson of percentage of shaded area at south oricutation } & 72\end{array}$ by verical shading devices fot $21^{\text {st }}$ Match
Figure 5.38 Comparison of percentage of shaded area at south-west onentation by vercical shading devices for $21^{\text {st }}$ March
$\begin{array}{lll}\text { Fipure } 5.39 & \text { Comparison of percentage of shaded area at west onentation } & 73\end{array}$ by veruical shading devices for $21^{\text {s" }}$ March
Figure 5.40 Comparison of shading coefficient of threc verrical shadng 74 devices at different orientations
Eigute 5.41 Compatison of percentage of shaded area at east oriencuion by $\quad 76$ composite shading devices for $21^{\text {sh }}$ March
Figure 5.42 Comparison of percentage of shaded area at south-east $\quad 77$ orientation by composite shading devices for 21^{51} March
$\begin{array}{lll}\text { I"igute } 5.43 & \begin{array}{l}\text { Comparison of percentage of shaded area at south orientaion } \\ \text { by composite shading devices for } 21^{\text {te }} \text { March }\end{array} & 77\end{array}$

Figure 5.44 Comparison of percentage of shaded area at south-west orientation by composite shading devices for 21^{*} March
Figure 5.45 Comparison of percentage of shaded area at west oriencation by composite shading devices for $21^{\text {sh }}$ Match
$\begin{array}{lll}\text { Figure 5.46 } & \begin{array}{l}\text { Comparison of shading coefficient of three composite shading } \\ \text { devices at different orientations }\end{array} & 79\end{array}$

CHAPTER: SIX

$\begin{array}{lll}\text { Figure 6.1 } & \begin{array}{l}\text { Schematic diagrams showing parameters of horizontal shading } \\ \text { device }\end{array} & 82\end{array}$
Figure 6.2 $\begin{aligned} & \text { Schematic diagrams showing parameters of horizontal shading } \\ & \text { device }\end{aligned} \quad 82$
$\begin{array}{lll}\text { Figure 6.3 } & \begin{array}{l}\text { Scherratic diagrams showing different parameters of vertical } \\ \text { shading device }\end{array} & 83\end{array}$
Figure 6.4 Schematic dagrams showing different parameters of composite 83 shading device
$\begin{array}{lll}\text { Figure } 6.5 & \begin{array}{l}\text { View of the model with horizontal ovethang (} 1050 \mathrm{~mm} \text { depth) } \\ \text { used for parametric srudy for } 21^{\text {s }} \text { March }\end{array} & 85\end{array}$
Figure 6.6 Percentage of shaded arca by horizontal overhangs with 86
$\begin{array}{lll}\text { Figure } 6.7 & \text { Shadugg coefficient by horizontal overhangs with different } & 87\end{array}$ depth for 21" Match
$\begin{array}{lll}\text { Figure } 6.8 & \begin{array}{l}\text { View of the model with horizonml overhang (1050mm depth) } \\ \text { with } 4 \mathrm{ft} \text { side offset used for parametric study for 21s1 March }\end{array} & 88\end{array}$
$\begin{array}{lll}\text { Figute } 6.9 & \begin{array}{l}\text { Percentage of shaded area by horizontal overhangs with } \\ \text { diffetent side offset from wndow edge for } 21^{28} \text { March }\end{array} & 89\end{array}$
Figure 6.10 Vicw of the model with horizontal overhangs (525 mm depth) $\quad 90$ with 600 mm side offset used for parameme study for $21^{\text {st }}$ March
$\begin{array}{ll}\text { Figure } 6.11 & \begin{array}{l}\text { View of the model with horizontal overhangs (} 10.5 \text { inches } \\ \text { depth) with } 1 \text { ft side offset used for patametric study for } 21^{\text {st }}\end{array} \\ & \text { March }\end{array}$
$\begin{array}{lll}\text { Figure 6.12 } & \begin{array}{l}\text { Percentage of shaded area by horizontal overhang wich } \\ \text { different effecive heights of wndow; for } 21^{" ~ M a r c h ~}\end{array} & 92\end{array}$
Figure 6.13 View of the model with vertical fins (600 mm depth at $600 \mathrm{~mm} \quad 93$ interval) used for parametric suady for $2 \mathbf{2 1}^{\text {st }}$ March
Figure $6.14 \quad$ Pcreentage of shaded area by vertical fins with different deprh 94 for $21^{\text {th }}$ March
$\begin{array}{lll}\text { Figure } 6.15 & \begin{array}{l}\text { View of the modcl with vertical fins }\left(000 \mathrm{~mm} \text { depth } 30^{\circ}\right. \\ \text { slanted) used for parametric study for } 21^{4} \text { Match }\end{array} & 95\end{array}$
$\begin{array}{lll}\text { Figure } 6.16 \quad \begin{array}{l}\text { View of the model with vertical fins }\left(900 \mathrm{~mm} \text { depth } 45^{\circ}\right. \\ \text { slanted) used for paramerric study for } 21^{5 t} \text { March }\end{array} & 96\end{array}$
$\begin{array}{lll}\text { Figute } 6.17 & \begin{array}{l}\text { Percentage of shaded area by vertical shading devices with } \\ \text { diffetent depth and angle for } 21^{\text {st }} \text { March }\end{array} & 97\end{array}$
Figure 6.18 Shading cocficient by vertical shading devices with different 98 depth and angle for 21^{4} March
Figute 6.19 View of the model with vertical fins with 600 mm extension 99 above window used for parametric study for $21^{\text {si }}$ March
$\begin{array}{lll}\text { Figure 6.20 } & \begin{array}{l}\text { Percentage of shaded area ly verticat fins with varying } \\ \text { extension of vertical fins above window for } 21^{*} \text { March }\end{array} & 100\end{array}$
Figure $6.21 \quad$ View of the model with composite shading device used for $\quad 101$ parameric study for $21^{5 t}$ March
Figure 622 Percentage of shaded area by composite shading devices with 102 different spacing for $21^{\text {sit }}$ March
Figure $6.23 \quad V i e w$ of the model with composite shading device wilh slanted 103 fins used for parameric surdy for 21^{31} March

Figure 6.24 Percentage of shaded area by composite shading devices with different angle for 21^{145} March

CHAFTER: SEVEN

Figure 7.1 Schematic diagram showing parameters of horizontal shading derice

Figure 7.2 Schematic diagram showing patameters of honzontal shading 108
device
Figure 7.3 Schematic dagram showing parameters of horizontal shading 109 device
Figure 7.4 Schematic diagram showing different parameters of verical 110 shading device
Figure 7.5 Schematic diagram showing different parameters of verical 111 shading device
Figure 7.6 Schetnatic diagram showing different parameters of composite 112 shading device
I'igute 7.7 Schematic diagram showing different parameters of composite 113 shading device

CHAPTER: ONE PREAMBLE

1.1 Introduction

ξ
'The trend of recent development has slifted from low to high-rise buildings due to the pressure of population in much of the world, and Dhaka is no excepaon (Ahtned, 2003). Constnicion of tall office buildings in utban ateas of Dhaka is characterized by extensive use of glass. These glass facades remain unprotected or barcly protected from the scorchung solar tadiation of the tropich. These often lead to green housc like sinaton (Givoni, 1969).

Along with the high out door air temperature, solat taduation is a major source of heat gain for building in tropics (Koenizsberger at al, 1973). Vast verrical surfaces of tall buildings are exposed to solar radiation and glass facades may act as heat trap for incoming solar tadiation (Ahmed, 2003). So facades of tall buildings need protection in view of generating desirable indoor cnvironment. Solar radiation mansmimed through unprotected windows or transparent walls also cause a great increase in the cooling requrements of an air-condizoned building ot high air ternpctatures in buildings without mechatrical coolng systerns (Stephenson et al, 1962; Goulding at a/, 1992). This heat is particulatly unwanted in summer and has to be expelled ly the cooling system.

Solar radiation gain may be reduced by infercepting the radiation before it reaches the building surface. Jixternal solar shading can be beneficial in preventing unwanted solar teat gain thus reducing cooling load and thus can entance thermal comfort. Mformenct, the thermal effect of a glazed wall section depends on the shading provided and the spectral properies of glass (Givoni, 1969). Shading the glass affects the property of incident radiaion and hence modifies both the heat flow to the intenor and the indoor temperature.

Limitation of enctgy resources and evet iocreasing energy $\Gamma^{\text {rices and the global watming, }}$ the necessiry to reduce the energy consumprion in the buildings can be an important assue in a developing councry like Bangladesh. In such a context the need to develop passive means of solar conmol is important and efficient design of shading devices may address chus issue significantly.

Figure 1.1: Tall office triklings shoring present rend of facade design in Dhaka city.

1.2 Statement of the Problem

A good answer to overheating problems is controlling solar radiation incident on the buitdings. Using solar-protective glazing is one simple solution which can be easily integrated into the building design (Olgray and Olgyay 1957). One major clrawback of solar-protecave glass is that it reduces solar gains in the building cven during winter-time. Thercfore, in countries whth dominant hearing requircments, a moveable device is a hetter soluton (Dubois 1999). But again manual control of movable shadng devices is not reliable and may cause a constant disruption for the occupants and most of the perple of our councry can't afford the system of dynamic concrol of motorized shading devices. Shading provision should be considered as an integral part of fencstration system design, especially for facades with high solar gains. Shading devices may control solat gains, bleck direct sunlight and transmit diffuse daylight in the room, eliminating glare and high contrast and creatng a pleasant luminous environment (Haque, 2004). It is necessary, on the one hand, to classify the shading devices by their geometric characteristics; on the other hand, to analyse their energy and luminous performance through the definition of man made parameters and calculation medhodology.

In the context of Dhaka, there is no tested rule for shading devices. According to construction act, 1952 (E.B. Act II of 1953) section 18, (Rajuk, 1996) which is enforced by RAJUK, it is said that maximum depth of shadng device wall not exceed 0.5 m over compulsory serback areas. But this rule may not have come from any mvestigarion or analysis of shading performance nor any comparative soudy and evaluation for different climatic situations. Therefore, buildings are being consmucted without propet attention to the performance of shading devices.

Due to our increased concerri about energy efficient buildings and thermal comfort as well, expenments and analysis should be made for different types of shading devices. By thotough study of the relacionship between depth and other parameters of shading device and amount of shade that cast on the windowpanc, which is essential for thermal comfort and exclude heat gain (energy consumption) from solat radiation should be established and eventually incorpotated in the design process.

1.3 Objectives of the Study

The study is an atrempt to invesigate the performance of commonly applied shading devices on facades of tall office buildings as a method of passive cooling with the following objectives:

1. To evaluate the exisuing shading devices as solar control tool used in tall office buildings.
2. T'o assess the impact of shading derice on indoor environment as they relate to the solat heat.
3. To propose a guideline for designing cfficient shading device for control of solat radiation in tall office buildings.

1.4 Methodology

To aclueve the abowe objectuves the methodology that was followed for the entire work is stated below.

The problem was approached first by a survey of published information that provided the knowledge base for the research and information about the suate of the art regarding solar shading systems. By theorerical scudies the meaning and purpose of solat shading device was explored. Moreover, this study helped in analyzing factors influencing solar heat gain. The climatic characteristics of Dhaka Ciry were studied to set the climatic umperarives with regard to solar heat gain in tall office buildings in Dhaka City.

A physical survey was conducted to record and to idenuify the characteristics and performance of commonly applicd shading devices in refetence to tall office buldings. It helped in forming the models for simulation study.

The simulation process was pursued in two phases. The first one was conducted to ascertuin the performance of commonly used solat shading devices in teducing solar radiation gain. Simulation models with the external shading devices similar to the real ones in tall office buiddings were simulated for different ocientations. By the simulaion scudy findengs and results was analyeed to identify the effects of different parameters and correlation among parameters in terms of reducing solat heat gain. The second stage
involved a parametric study pursued through series of simulations to explore possible climatically sensitive design guideline for solar shading device.

Figure 1.2: Structure of the work.

1.5 Scope and Limitations

The research work presented in this study concentrates on performance evaluation of rarious shading devices in teducing solar heat gain in the tall office buildings in Dhaka city. Although solar heat gain is a combined effect of direct radiation from the Sun and diffuse radiation reflected from surounding environment, most of the solat heat gain to buidings is caused by direct radiacion through windows. The study is limited to the role of geometry of the shading devices to cut off drect solar radiaion hence reducing solar heat gain. Recommendations and design gujdelines are made tegarding geometry of shading devices. Other aspects like material of the devices, installation or construction systems are not considered in this research.

Besides, shading device has impact on daylight, ventilation and view through window. The performance of shading devices regarding daylight, venulation and other aspects are beyond the scope of this research.

With these opportunities and constrains, research on performance of shading devices with special reference to Dhaka ciry was carried out and described in the fotlowing chapters.

References

Ahmed, Z. N. (1094), Assessment of Residential Sites in Dhata mith reppect to Solar Radafin Gams, PhD. Thesis (unpublished), De Montfort University in collabotation with the University of Sheffield, U.K.

Dubois M.-C. (1999), The Design of Seavenal Awnings for L.ow Cooling and Mearing Ioads in Offer, Proceedings of the Gfth symposiurn on Building Physics in the Nordic Countries, Gothenburg, Sweden.

Goulding, J.R., Lewis, J O., Steemers, T.C., ed. (1992), Entrgy in Archtecturt (Ibs Eurwpean Panize Solar Handook), B.T. Bats ford I.imited.

Givoni, B. (1969), Man, Climate and Ambitecture, Elscvier Publishing Company.

Haque, A.M.M. (2004), Etraluation of the performance of commonly used shading device applied outer windows in the context of Dhaka city, Plan Plus Volume 1 No. 2 (60-69), Urlyan and Rural Planning Discipline Khulna Universicy.

Koenipsberger, O.F., Ingersoll, T.G., Mayhew, A., Szokolay, S.V. (1973), Manual of Troptial Housing and Huilding Design, Part 1, Oricnt Long man.

Olgyay, A. and V. Olgyay (1957), Solar Confol and Shading Devies, Princeton University Press, Panceton, New Jersey.

Rajdfani Unnyayan Kartipatbya (KAfCK) (1996), Building construcrion rulcs (Tmarat Niman Btdluimala), building regulations for buildings in the greater merropoliran area of Dhaka.

Stephenson, D. G., Mitalas, G. P. (1962), An analeg evaluanion of mothods for controthng solar hrot gain through windoms'; Journal, American Sociecy of Heating, Refrigeraung and Air Condrioning, Engincers, Vol. 4.

CHAPTER: TWO

THE CLIMATIC CONTEXT: DHAKA CITY

THE CLIMATIC CONTEXT: DHAKA CITY

Amongst the innumerable constraints that the Architect faces during the design of buildings, climate probably is considered as one of the major factors. 'The climate of a tegion presents a set of conditions, which need to be addressed adequately in order to produce climate-responsive buildings. Climate-responsiveness results in comfortable, energy-cfficient, environmentally friendly buldings. Buildings consructed without regard to surrounding climate can, no doubt, operate given enough energy input to cortect resulting problems, whether they concern over heating, or datkness. But access to such energy is beyond the teach of much of the population of developing countries.

The chosen location for this work is Dhaka, the capital city of Bangladesh. The country is surrounded by India on the west, north and north-east. The Bay of Bengal bounds it in the south and with Myanmar on is south-castern part. The geographic location of Dhaka is, longitudes: 90° East- $90^{\circ} 30^{\prime}$ East and latitudes: $23^{\circ} 40^{\prime}$ North - $23^{\circ} 55^{\prime}$ North.

The followng section is concerned with the analysis of climate of Dhaka city in terms of its challenges and potentials. This analysis will help to determine the climacic forces to be manupulated to provide sacisfactory design solutions for tall structures in uropical situations from the view point of energy efficiency.

2.1 Climate of Bangladesh - Gencral Overview

The climate of Bangladesh is categorized as warn-humid, based on the widely used classificanon of tropical clirnate by Ackinson (Koenigsbetger et al, 1973). There are three disninctive seasons, the hot humid, the hot dry and the cool dry season (Reported in, Mallick, 1994). Genetally, the winter is short and dry while the summer is long and wet The hot dry period is berween Match and May, the hot humid period covers Junct to September and the cold dry seasons starts from mid October to Febraary.

Again, meteorologically the climate of Bangladesh is classificd into four distinct seasons winter, pre-monsoon, monsoon and post- monsoon (Reporred in, Ahmed, 1995), wherthe winter is cool and dry, the pre-monsoon is hot and dry; monsoon and post-monsoon are hot and wet.

The winter months, December to February, are characterized ly infrequent rains, cold northerly winds, mean temperature $21^{\circ} \mathrm{C}$ and mean maximum below $26^{\circ} \mathrm{C}$. The premonsoon period covers the months March, April and May and is characterized by occasional thunderstorms, and an average maximum temperature of $34^{\circ} \mathrm{C}$. The monson is the longest season covering the months June to September, a period with torrencial rains, with the average relarive humidnty above 80% and an average temperature of $31^{\circ} \mathrm{C}$. 'The post-monsoon scason ranges between the months Ocrober and Novernber. It is also regarded as a unnsitional (to winter) penod with infrequent rains and icmperamres below $30^{\circ} \mathrm{C}$.

2.2 Microclimate of Dhaka City

The climatic characteriscics of Dhaks city differ from that of other cites of the country due to its dense physical developments and location. Again, wichin the same city these characteristics are further modified in different locations (Ahmed, 1995). It is due to the surface qualry of the atea - hard or soft, densiry of built environment, building type, building height and their orientations, proximity between buildings, material used for construction, dependence on electrical and mechanical appliances and ocher related Eactors.

Figure 2.1: Dhaka ciry: view of Dilkusha conmercial area.

Tabke 2.1: Clirratic den of Dhake.

Chmanc period		Warm-fumid		$\begin{aligned} & \text { Cool-Dry } \\ & \text { Dec-Heb } \\ & \text { (Winter) } \end{aligned}$
Monthi		$\underset{\text { (MoneSept }}{\text { Jons }}$	$\begin{gathered} \text { Oct-Nov } \\ \text { (Pont-Nomson) } \end{gathered}$	
Cimatic fiector				
2. Maximum	37.60	36.10	34.90	3240
1. Ainimint	13.80	20.90	1330	6.80
c Averap	28.02	2 A 8	25.42	19.43
d. D'umal variation [averixe]	11.60	7.12	11	14
2 Retative Huminity \% \|averapel	69.91	64.78	8259	76.70
3. Rainfill (man) \|xerspl	156.70	317.50	125	23.33
	495	373	412	431
5. Sunshine [Houn (dzity aterest)	7	4.5	7	8
6. W'ind Sperd (mfo) \|xatisg]	26	22	1.5	1.5
7. Wrad Distection	S, S-1	S. S-E, S.W	S. S.E	N, N.W ${ }^{\text {r }}$

(3amte Khast, 2005)

Fipure 2.2: Yeaty weather data shwoing tomperature profile and solar radiation firmat

2.2.1 Temperature

On the basin of meteorodogical dara, the temperature profile of Dhaka city shons similatity with that of the regional patem. The highest temperature is reeorded in the
monch of March, Aprl and May, wheh reaches to $37.8^{\circ} \mathrm{C}$ maximum in April. In the monsoon and post monsoon period, from June to October the temperature remains steady at an average of $28.8^{\circ} \mathrm{C}$. In cool period it drops to $19.43^{\circ} \mathrm{C}$ on average (I'able 2.2).

Table 2.2: Air temperanure in Dhaka city.

	Jan	Fcb	Mar	Apr	Ma	Jun	Jut	Aug	Scp	Oct	Nov	Doc
Mcan maximum air terap (deg C)	26.2	279	32.3	312	330	31.8	31.2	31.1	31.7	313	28.8	26.4
Avenge air ternp (deg C)	19.0	21.2	260	290	20.0	28.8	28.7	286	28.8	27.5	23.5	198
Mean minimum air tertp (deg C)	11.8	145	197	23.8	25.0	25.8	26.2	26.1	25.9	23.7	182	13.2

Overheanng due to inexorable urlyan growth of Dhaka city is now a major environmental concern (Ahmed, 1995). Meteorological otservation in pre-monsoon period records a maximum temperatute of $37.8^{\circ} \mathrm{C}$, indicating a possible rend towards the inctcase of temperanure and overhearing.

2.2.2 Solar Radiation

Solar radiation can be considered as a single most deciding factor for assessing the climate of an area, because it affects the tempetanure and densiry of arr and thus affects the wind velocity, direccion and humidity (Ahmed, 1994). Renewable Energy Research Center of Dhaka University collects radiarion «lata for Dhaka city.

Figure 23 shows that in the hot dry perind, particularly in the months of March, Aprit and May solar radiation is high in comparison with that in the test of the year and it is maximum in April ($5.5 \mathrm{KW} / \mathrm{h} / \mathrm{sqm} /$ day). From July to November (monsoon to postmonsoon) the radiation remains fairly constant.

From Figure 2.4 it has been observed that, the horizonell surface (commonly the roof surface of a built form) receives the maximum amount of solar radiarion tound the ycar in comparison with other common external vertical facades. But this is true for low rise buildings only. Fot tall buildings, horizontal surface is very negtigible in comparison to ocher fout vertical sutfaces and only the top Aloors of the tall buildings are affected by

$$
\because+\cdots
$$

incurring adiation on the roof of the trikdings. This rowult depinas the imponance of sdopted stretcgy fur venical surfaces of the built forms in tropical architerture.

 Cumb, Dlate U/aminis, 2005/

Figure 24: Amount of sobar radiation on different surfaces (horizontal and verical) for

As overheating is one of the key problems for the given climate, the issue of heat gain from solar radiation is highly significant and the vertical surfaces are observed as more imporcant than horizontal sutfaces of the built forms (for all buildings, specially when the suo is at a low angle).

2,2.3 Relative Humidity

The humidity of Dhaka city is high and the mean annual relative humidity is 77\% (Table 2.4). If all condations temain the same, then the relative humidity is inversely proporional to the temperatute. So, higher temperature yields lower relacive humudicy levels. Since ait temperame and radiation depend on the density of the built form, the humidity varies whth the density of the surrounding built environment.

Table 2.4: Relative humidity in Dhaka city.

	Jan	Feb	Mar	Apr	Ma	Jun	Jul	Aug	Sep	Oct	Nay	Dec
Relatave Humidity	69%	63%	61%	70%	79%	83%	86%	85%	86%	81%	75%	$7 \% \%$

2.2.4 Cloud Coverage

The cloud cover is only 38% for the whole pre-monsoon and post-monsoon period (Table 2.5). This clear sky condition cuhances the drect solat radiacion to reach on building surfaces. The cloud coverage is wery high in monsoon penod and is almost 70%. The cloudy amospheric condution during this period helps in decreasing the incoming solar tadiation to the earth surface.

Table 2.5: Sky conduion in respect to cloud covet for a year.

Typc of Sky	Hot-Dry	Hot-Humid		Cool-Dry (Dec-Fel)
	Fre-Monsæon (Marth-May)	Monsoon (June-Sept)	Post-Monsoon (Oat-Nov)	
	67%	31%	$(4 \% \%$	85%
Overcast Sky	33%	69%	36%	15%

(Sonte: Chmate Didusinn, Bangladesh Afetaotogioul Deparment, Dhaka, 2005)

Figure 2.5: Monthly average cloud cover (Suurce Chmale Ditisinn, Banghdesh Meseorodigat Deparment, Dhaka, 2005).

2.2.5 Sunshine Hours

The amount of solar radiation received by the surfaces also depends on the dutation of sunshune (Reported in, Ahmed, 1994). The sunshine hour in pre-monsoon and postmonsoon in quite long than that of monsoon period (Figure 2.6).

Figure 2.6: Monthly average sunshine hours (Soura: Chwate Division, Banghadesh Mettantmgeal Depirmment, Dhaka, 2005).

2.2.6 Wind Flow and Ditection

Wind speed in Dhaka in Hot period is relatively high and the direction is predominantly southerly and south-easterly (I'able 2.5). For winter period the direction of wind was found mostly from north and north-west. Accotding to the diurnal pattern of wind llow, in summer (except Aptil) the wind speed is low becween 12:00 and 15:00 hours (Reported in, Ahmed, 1995). During that period airllow may not be considered as reliable resource for cooling, tather depending on shading of surface from solar radiation would be mote pteferable.

Table 2.5: Monthly average wind speed and direction.

Mfonths and seasoms	Wind sped in m/s	Wind direction
Jaturaty (Cool-Dry)	1.4	NW
Febreary (Cool-Dry)	1.6	N
March (1-0t-Dry)	26	sw
4prol (Hot-Dry)	3.7	SW
May (1 fot-13)	4.4	S
June (wam-Humd)	3.8	SE
July (Warn-Humid)	3.9	SE
August (3'am-Humid)	3.3	SF ,
Sepermber (W'arm-f Harnd)	34	SE
October (Warm-Hunid)	25	N
November (Warm-Humid)	1.4	NW
December (Cool-Dry)	1.5	NW

(Sourt. Chmafe Divition, Bangladesh Mfteorolagka/ Dspartmont. Dhaka, 2005)

2.3 Problems in Oesigning in the Hot-Humid Climate

'The hot-humid climacic zone is chatactetized by high ambient tempetatures, high humudity, high and fairly evenly distributed rainfall, small diurnal and annual variations of temperarure, little seasonal variation, light winds, and long periods of still air.

The physiological themal tequirements and hence the building characteristics are the same for the whole year, as the scasonal clunaic variations are low (Yeang, 1990). The mann cause of discomfort is the subjecaive feeling of skin wemess (Koenigyberget ot al,
1973). Continuous ventilation is, therefore requited we ensure a sweat evaporation rate sufficient to maintain thermal equilibrium and minimum sweat accumulation of the skin. Radiation solar heat gain should be prevented.

The hot-humid zones present two problems to destgners:

- Avoidance of excessive solar radation, and
- Provision for moisture evaporation by breczes.

To cope with these, the structures and setdements need to be built to allow frec air movement. The roofs need to be insulated and provided with lange overhangs to protect against sun and tain.

Under hot condicions, the thermal controls in the building should:

- Prevent heat gain.
- Maximise heat loss
- Remove any excess heat by mechanical or passive cooling.

2.4 Conclusion

Alchough for most of the penod, overheanng is a major envitonmental concern for Dhaka, dise nanure of the problem is dictated by the combination of the environtental factors in the ambiance during those periods. From March to May chere is high anr temperature associated with hugh solar madiation, while from June to October, conditions with high hurnidity is associated with high air temperature. So from March to May+ reducing the impact of solar tadiation can potentially moderate the overheated condition and oprimizing shading can play a vital role towards moderation. For a topical wam humid climate like Dhaka ciry the minimum solar heat gan with the help of adequate shading is the major considetations to achieve chermal comfort.

References

Ahmed, K. S. (1995), Approacbes to Biocimatic Urban Design for the Tropics with Special Reference to Dbaka, Bangladesh, PhD. Thests (unpublished), Atchitectural Association School of Architecturc, London, U.K. p. 15,32,47

Ahmed, Z. N. (1994), Arsessment of Residential Sites in Dbaka with respect to Solar Reatation Gains, PhD. Thesis (unpublished), De Montfort University in collabotation with the University of Sheffield, U.K. p. 63

Khan, M. N. Z. I. (2005), Retbineing leanning paces: in murm-bumid climatic context with sheciad reference to Dhaka, Bangladesth, M.A E\&E Thesis (unpublished), Architectural Association School of Architecnure, London, U.K. p. 13, 26

Koenigsberger, O.H., Ingersoll, T.G., Mayhew, A., Szokolay, S.V. (1973), Manual of Tropical Houring and Building Dewen, Part 1, Orient Long man. p. 23

Mallek, F. H. (1994), Thermal Comfort for Unhan Howsing in Bangladesh, PhD. IThesis (unpublshed), Architectural Associaton School of Atchitecrure, London, U.K. p. 52

Ycang, K. (1990), 'Designing the Green Skyectuper', In Procecdings of the Fourth World Congress on Tall Buildings: 2000 and Deyond, Council for 'Tall Buldangs and Utban Habitat, Hong Kong. p. 116

CHAPTER: THREE
TALL BUILDING AND SOLAR HEAT GAIN

TALL BUILDING AND SOLAR HEAT GAIN

Increased land value, limited urban accessibility, expanding urban population, globalization of national economy and locational preferences of busincss make the all building inevitable. In addidion to accommodating living space for the purpose of habitation, tall buildings are now extensively used as working space. Alhough the principles of designing with climate are relaavely advanced for low-rise and md-nse buildings, adequate attention and research yet to be directed towards the tall building type (Yeang, 1990). A brief discussion on tatl and high-rise buildings, wich special reference to their climatic characteristics has been presented in the following scetions.

3.1 Tall Building

3.1.1 Definition

The experts differ in deluning the physical parameters of tall buildengs. According to the Council for Tall Buildings and Urban lrabitat (CIBUH), a tall bulding is not scrictly defined by the number of stories or its height. It also depends upon the context in which it scands. CTBUF defines tall buikding as a building whose built form, by virate of its height, requites its own special engineering systems (Yeang, 1997). The important criterion is whethet or not the design, use or operation of the buildng is influenced by some aspects of tallness.

As stated by Eli Atia in his seminar paper in "Fourth World Congress on Iall Building: 2000 and beyond' David Fisher defines the tall buildings as 'We build tall buildings of necessity; hiow we build them is a tefiection of sociery. Tall buildngs do not bave to be bcautiful, they simply must be functional; so it is the degree of our concern for their beauty that serves as a measurc of our humantry' (Attia, 1990).

According to Ken Yeang (Yeang, 1997), a tall building can be characteristics by
a) A small foot-print in comparison to its total built-up space
b) Tall facades due to its height
c) Smali roof-area in comparison to external-wall atca
d) Special engineering systems, different from the low building type simply because of its height.

According to Taranath, to define tall building from structural aspects, from scructural design and construction point of view, it is simpler to consider a building rall when its strucural analyses and design are in some way affected by the lateral loads (Taranath, 1998).

3.1.2 Justifications for Designing with Climate

Ken Yeang (Yeang, 1990) justifies the reasons for designing the tall buildings with climate very clearly. The most obvious justification must be the forwering of costs as a result of lowering the energy consumption in the operation of the building. This can be by as much as 40% of the overall life-cycle energy costs of the building. Significant savings in operational costs would justify incorporation of climarically-responsive design fearures despite a higher inidial capital construction cosrs.

Another rationale is from the impact on the users of the all building. The climateresponsive cill building would enhance its users' acstheric well-being whle enabling them wh be aware of and to experience the external climate of the place. The climateresponsive design would provide the building's users with the opportunity to experience the external covironment (and the diumal and seasonal changes where existent) and avert the blindness of spending their workng hour over a significant part of their day in an artificial environment that remains constant throughout the year.

A further jusufication is the ecological one. Designing with clmate woutd tesult in the reducton of the overall energy consumption of the building by the use of passive structural derices (i.c. non-mechanical). Cost savings in the operational costs means less use of electrical energy resources which is usually derived from the burning of non renewable fossil-fuels. The lowering of energy consumption would further reduce the overall emission of waste heat thereby lowering the overall heat-island effect on the locality.

3.1.3 Façade Design of Tall Buitdings in Tropical Climates

In passive low-cnergy tall building design, attention should be given to the facade design. For low volume-to-surface rato, tall buildings have more external surface than same volume of low nise bulding. In case of tall buldings, generally facades do not get mutual
shading from its surrounding like low aise buildings. That's why; external surfaces of tall buldings should be designed as an environmentally-responsive filter.

The façade should be multi-functional in its design. For instance, it can provide for teducing solar heat gain to the space through external shading devices, fresh air ventilation, acoustc barrier, maintenance access and a connriburion to the building's aesthetic.

Tall buildings are exposed more directly than others to the full impact of external temperanures and direct sunlight. The greatest source of heat gain in the tropical climate can be the solar radiation entering through the window. This solar heat gan can be reduced by using shading devices. These shadirg devices cut the huge solat heat gains directly through window. This crables the designer to use clear-glass, to give better dayight entering the intemat spaces, which then reduces the lighting energy-lond (Yeang. 1997).

3.2 Solar Radiation

Solar radiation influerecs the indoor thermal climate by direct heaning on penetraning the windows, and indrectly by heating the external envelope of the buulding. Heat flow through the wall and noof then determines the indoor surface and air temperatures. The effect of solar radiation on internal temperatures, as mentioned at the beginning, may be divided into two parts: 1) the effect on the temperanues of the external suffaces and toof and the resulting heat flow and indoor heating, 2) heaing caused by penetration of radianon through glazed or open areas (Givoni, 196\%).

Solar radiation is an elcettomagneric radiacion emitted [rom Sun (McMullan, 1992). The Spectoum is broadly divided into two regions i.e. the visible radiation and non-visible radiacion. Solar radiarion teaching the carch's surface consists of about 47 percent visibie, 48 percent short-wave infta-red (heat), and about 5 percent ultra violet radiation (1.echner, 2001).

Sunlight contuns no heat, both in the visible region and in the non-visil)le region (mainly infra-red with some ultra-violet) in about equal propomons. It is only when racliation falls on surfaces that it is converred into heat. The non-visible part of the spectrum often
referred to as 'thermal radiation', implying that only this part is the cause of hearing. But the visible part still carries half the energy that potentially can become heat (Steemers $e t$ $a l, 2002$).

3.2.1 Visible Radiation

The wavelengths of electromagneic radation that are visible to the cye range from ${ }^{\text {a }}$ [Proximately 380 nm to 760 nm [1 nanomere (nm) is 10^{-9} meter]. If all the wavelengths of light ate seen at the same time the cye cannot distingush the individual wavelengths and the brain has the sensacion of white hght (McMullan, 1992).

Figure 3.1: Electromagneac spectrum (Soure: Mahnhan, 1992).
White light is the effect on sight of combining all the visible wavelengths of light. Whute light can be separated into is component wavelengths. One method is to use the different teftactions of light that occur in a ghass prism. The result is a spectrum of light, whech is traditionally described in the seven colours of the rainbow although, in fact, there is a continuous range of hues (colours) whose different wavelengths cause different sensanons in the brain. Monochromatic light is light of one particular wavelength and colour If the colours of the spectrum ate recombined then white light is again produced. Varying the proportions of the individual colours can produce different qualities of 'white' light.

3.2.2 Non-Visible Radiarion

Electromagnenic radiations with wavelengths outside the range of visible wavelengths cannot, by definition, be detected by the human cye. However, those radiacions immedately adjacent to the visble range of wave lengths are emitted by the Sun, along with light, and are often relevant to lighuing processes (McMullan, 1992).

Infra-Red

Wavelength range of infra-ted is from 760 om to above. Infra-ted (IR) radiation has wavelengths slighty greater then those of red light and can be felt as heat radiarion from the Sun and from other heated bodies. In[ra-red radiation is make use of in radiant heating devices, for detecting [afterns of heat emissions, for 'seeing' in the dark, and for communicaion links.

Figure 3.2: Solar spectrutn (Soutra: Stenters a al, 2002).

Utta-Violet

Wavelength range of ultra-violet is below 380 nm . Ultra-violet (IV) radiation has wavelengehs slightly less than those of violet light. It is emitted by the Sun and also by other oljects at high temperature. Ulitra-violet radiation helps keep the body healthy but excessive amounts can damage the skin and the eyes. The compositon of the Earth's atmosphete normally protects the planet from excessive UV radiacion eminted by the Sun. Ultra-violet radation can le used to kill harmful bacteria in kitchens and in
hospitals. Certain chemicals can convert UV encrgy to visible light and the effect is made use of in fluorescent lamps.

3.2.3 Direct, Indirect Solar Radiation

Solar radiation is a dominating influence on all climatic phenomena. Of the total energy radiated by the sun towards the carth, part is reflected off clouds ourwards, part is absorbed by water vapour, polluants, dust particles and other atmospheric condicions, beng re-emitted as diffuse radiation, and the rest of it is drectly tanamitted to the carth's surface.

Figute 3.3: Direct, indirect solar radiation (Affer Abmet, 1987)
Whereas direct radiation is dependent only on the alcitude of the sun, and is independent of geographical position, diffuse radiation vaties with the time of the day, the weathct, the cloud cover and the portion of the sky from which it is received. According to Jones, no specific ditection can be assigned to diffuse radiation and therefore there is no direcrional shadow associated with it. Diffuse radianion also varies with solar alnoude, as direct intensities reach their highest values at midday, and there is much more radiation available for scattering than when the sun is low in the sky (Reported in, Ahtned, 1987).

3.3 Solar Heat Gain

The heat grin in a building by radiation from the Sun depends upon the following factors (McMullan, 1992):

- The geographical lairude of the site, which determines the height of the Sun in the sky.
- The orientacion of the building on the site, such as whether rooms are facing south or nord.
- The season of the year, which alio affects che height of the Sun in the shy.
- The local cloud conditions, which can block solar radiation.
- I'he angles between the Sun and the building sutfaces, because maximum gain occurs when surfaces are at right angles to che rays from the Sun.
- 'The nature of che window glass and whecher it absorbs or teflects any radianon.
- The nature of the toof and walls, because heavyweight matenals behave differendy to lightweight matectals.

Solar radiation falls on a surface varies throughout the day and the year. Most solar heat gain to buildings is by drect radiation through windows. The maximum gains through sourh-facing windows tend to occur in pre-monsoon and post-monsoon period when the lower angle of the Sun causes radiation to fall more directly onto vertical surfaces. The solar heat gains for a particular building at a specific time are relatively complicated to calculate, alchough it is important to do so when predicring summer heat gains in commercial buildings.

Figure 3.4: Typical proportions of incident solat radiation, reflected, absorbed, transmitted and tetransmitted by glass (souras: Smith of at, 1982).

The solat radiation falling upon a clear glass surface is reflected, albsorbed and transmitted in proportions similar to chose indicated in Figure 3.4. These quantities depend upon the angle of incidence (i) and che proporion of direct and diffuse radiation. The angle of incidence (i) is the angle measured between the incident light beam and the normal to the plane of the glass (Strith et al, 1982).

The alsorbed radiation heats the gitass and patt of this heat teaches the room surfaces by convection and radiation from the inside surface of the glass. The solar heat gain is obtained by adding the inwards released heat to the directly unnsmitted component of the incident solar radacion. Absoption of this solar heat gain by the internal surfaces raises their temperature. These heated surfaces behave as low temperature, long wave radiators. Since glass cransrnits shortwave radiation in the range 0.3 to $2.8 \mu \mathrm{~m}$ but is opaque to long wave tadiation from low temperature surfaces, the solar heat gained is trapped within the enclosure causing an intemal umperature ise. This phenomenon, frequently referred to as the greenhouse effect, may give rise to solar owcrheating. Heat gain is directly proportional to the atca of glass exposed to solar radiation and therefore large glayed areas will pertrit a large and rapid heat gain.

3.4 Conclusion

The extensive use of glazing in the building façades is one of the charactensics of moden architecture. This, and the increasing use of lightweight strucnures has caused considerable changes in the relationship between interior and ambient climates and the protslem of overheating has becorne a major concern. To face this problem, in most of the cases mechanically cooling system is the solution. But this becomes a hurden on total energy load of the country. The idea of a climate-responsive call building may change the prefetence to one away from the present fully araficial working environment. Tall buldings designing with climate arc evidenty justiffed on the ground of recurting savings in cost and energy use in the opetation of the building.

References

Atria, E. (1990), The Shafte of Tall Buildings', In Proceedings of che Fourth World Congress on Tall Buildings: 2000 and Beyond, Council for Tall Buildings and Urban Habicat, Hong Kong.p. 39

Ahmed, Z. N. (1987), The effects of Climate on the derign and boation of Windowr for buildngss in Bamgladesh, M.Phil. Thesis (unpublshed), Department of Building, Sheffield City Polytechnic, University of Sheffiedd, UJ.K. p. 86

Grvon, B. (1969), Man, Chmate and Archituture, Elsevier Publshing Company. p. 175

Lechner, N. (2001), Heaning Cooling, Lighting Design methode for Antifects, John Willey ok Sons, Inc. p. 139

AlacMullan, R. (1992) Entionmental Science in Building, MacMullan Press Ltel, Londont. p. 70, 109-111

Smich, B. J.; Phillips, G. M.; Sweeney, M. L. (1982), Enviromental Saience, Lonpman Scientific \& Technical, UK. p. 65-71

Steemers, K.; Baker, N. (2002), Dayfight Design of Buildings, James \& James Ltd, Iondon. p. 109,110

Taranath, S. D. (1998), Structural Analysis and Design of Tall Buildingr, McGraw Fill Book Company.

Yeang, K. (1997), Derignting the Giren Skyscraper', In Proceedings of the Third Internacional Conference on Conquest of Verical Space in the 21 st Century, London p. 12.18

Yeang, K. (1990), 'Destgning the Gren Skysaraper', In Procecdings of the Fourch World Congress on 'I'all Buildngs: 2000 and Bcyond, Council for Tall Buildingy and Urban Habizat, Hong Kong. p. 113-115

CHAPTER: FOUR
SOLAR CONTROL AND SHADING DEVICES

SOLAR CONTROL AND SHADING DEVICES

lall buildings are exposed to the full impact of direct solar radiation, which is the greatest source of heat gain in the tropical climate. Heat gain through window is ditectly proporional to the aren of glass exposed to solar radiation and thetefore lange glazed areas permit a large and rapid heat gain. Shading is a key stritegy to reduce solar heat gain in overheated periods. The most efficient solar control is provided by external shading devices. This chapter presents a brief discussion on methods and principles of solar concrol emphasising on external shading devices. It helps to develop a clear understuodung of the issues involved for the further development of design scrategies of shading devices in the later sections of this work.

4.1 Solar Control

Direct solar radiation can be presented from reaching all or part of the walls, teof or wndows of a building by the use of shading. Shading can be provided by namual vegctation, neighbouring buildings or the surrounding landscape. Shading devices on the building (fixed of movable, the latter being manually or automatically controlled) can present direct radiation reaching critical parts, such as windows, doors and even roofs. Indirect solar gaun from the sky, or reflected from the surrounding buildings or the ground and atr feated by irradiated sutfaces also enhance significantly to the cooling load.

4.2 Method of Solat Control

The greatest source of heat gain can be the solar madianion entering through a window. This could, in fact, increase the indoor temperature far above the out-door air temperature, even in modetate climates, which is known as the 'greenhouse effect' (Koenigsberget et al, 1973). Window glasses are pracically cransparent for short-wave infra-ted tadiation enitted by the sun, but almost opaque for long-wave radiation emited by objects in the room. The consequence of this is that the radiant heat, once it has entered through a window, is trapped inside the building.

There are four merhods available for the reduction of solar heat gain chrough windows:

1. Window Orientation

2. Internal blinds, currains
3. Heat absorbing/reflecting glasses
4. External shading devices

4.2.1 Window Orientation

Building orientacion affects the indoor climate in two tespects, by ats regulation of the influence of two distinct climate factors (Givoni, 1969):
a. Solar radiation and its heanong effect on walls and rooms facing different directions.
b. Venulation problems associated with the relation between the direction of the prevailing winds and the orientation of the building.

The effect of window orientation on the indoor temperatures is largely determined by the vencianon conditions and che degree and efficiency of the wirdow shading. When shading is not effective, solar radiation enters through the window's and directly heats the building interiot, the temperanures of which will obviously be influenced by the orientaion of the windows. The healing effect of solar cnetgy penetrating a glazed wall or closed unshaded windows is mannilied, as the energ) is transformed in the exterior or by longwave radiation, to which the glass is opaque.

In the equatorial location, if solar heat gain is to be avoided, the main windows should face north or south (Koenigsberget et al, 1973). At higher latitude, an orientacion away from the equator would receive the least sunshine, but here it may be desirable to have some solar heat gain in the winter, when the sun is low - so an onentation towards the equator may be preferable. In both locations ondy minor openings of unimportant tooms should be placed on the cast and west side. Solar heat gain on the west side can be particularly croublesome as its maximum intensity coincides with the hotest part of the day.

4.2.2 Internal Blinds and Curains

From an energy-rejecion point of view, the external shading devices are the most effectuve. But for a number of practical reasons, the incerior devices, such as curtains, roller shades, venetian blinds, and shutrers, are also very important. Interior devices are often less expensive than external shading devices, snce they do not have to resist the elements. They are also very adjustable and movable, which enables them to casily respond to changing requirements. Besides shading, these devices provide numerous other bencfits, such as privacy, glate control, insulaion, and interior aesthecics (Lechner, 2001).

Since internal devices are usually included whether or not external devices are supplicd, we should use them to our advantage. They should be used to stop the sun when it out flanks the exterior shadeng devices. They are ilso useful for those exceptionally hot days during the tratsition or under heated periods of the year, when exterior shading is not designed to work. In the form of venecian blinds or light shelves, they can also produce fine day lighting.

Figure 4.1: Interior shading devices for solar control (Sours: Leibstr, 200t).
Onc of the main drawbacks of interior shading devices is that they ate not always disceming. They cannot block the sun while admining the view, something that can be effectively done with an external overhang. Since they block the solar radiation on the inside of the glazing, much of the heat temains indoors.

It is tue that they stop the passage of radiation, but they themselves absorb the solar heat and can reach a very high temperature (Koenigsberger et a/v 1973). The absorbed heat will be parly convected to the indoor air and partly reradiated. Significant portion of this reradution is outwarls, but as it is of a long wavelength, it is stopped by the window glass. The usual narrow space between the window and the blind will thus be quite substantially overheated. 'The hot surface of the blend causes the indoor MRT to rise far above the air tempetature.

As a broad generalzarion the daily average solar gain factor of a single glazed window will be:
$\theta=72 \%$ without any solar control device, and
$\theta=55 \%$ with an internal venecian blind [i.e. the reducton is only 17%.

4.2.3 Heat Absorbing/ Reflecting Glasses

Even the clearest and thinnest glass does not transmit 100 percent of the incident solar radiacion. The radiation that is not cansmitted is etther absorbed or reflected off the surface. The amount that is absorbed depends on the type and thickness of the glazing. The amount that is teflected depends on the nature of the surface and the angle of incidence of the radiation (Leclener, 2001).

One type of tinted glazing is called heat absorbing because it absorbs the shomave infra-red par of solat radiation much more than the visible part. But even this type of glazing reduces the solar heat gain by only a small amount. Although tinted glazing reduces the light ransmission, it usually does not dectexse the heat gan by much because the absorbed.radiation is then reradinted indoors (Givoni, 1998).

Glazing also blocks solar radiation by feflection. The amount of solar radation that is reflected ftom glazing can be incteased significantly by adding a reflecrive conting. One surface of the glazing is covered with a metallic coating thin enough that some solar tadiation suill penctrates. The petcentage reflectance depends on the thickness of this coating, and a mirror is nothing mote than a coating that is thick enough so that no light is teansmitted. Reflectave glazing can be extremely effective in blocking solar radiation while still allowing a view.

Figure 4.2; Heat gain through different types of glazing (Souns: Labner, 2) (1)

When reflective glazing became available in the 1970s, it quickly became popular for several reasons. It blocked solar radiation better chan heat-absorbing glass, and did so with out any color distortion.

Although tinted and reflective glazing systems can be effective shading devices, they are very undiscerning. They do not differentuate between hight from the sun and light from the view. They filter out Light whethet daylight is desited of not. And they block the desirable winter sun as much as the undesirable summer sun. Thus, tinted or reflecave glazing is not appropnate where cither day lighting or solar heanng is desired. It is also not appropnate when only the sum should be excluded, but not the view. When glazing is expected to do all che shading, it has to be of a very low ransmumance type. The view through this kind of glazing makes even the sunniest day look dark and groomy. Thus, external overhangs, fins, etc. which are more discerning, are usually still the best shading devices. Tinted or reflective glazing is excellent, however, for blocking diffuse sky radiation in very humid regions, and for glate control (Lechner, 2001).

When daylighting is desired and solar heating is not, having the visible component of solat radiation pass through while heat radiation is blocked would he advantageous. Cerain "specially sclective" glazing systems can do that to a limited extent Specially selecrive low-e-glazing transmits cooler dayluht than other glazing materials, because it transmits a much hugher ratio of visible-to-infrared radiation (Givoni, 1998).

In the near future, there might be even better glazing system than the "selective" copes mentioned above. These are known as responsive glazing systems because they change in response to light, heat, and electricity.

Responsive glazing can be either the passive or the acrive kind. Passive glazing responds directly to enfironmental conditions, such as light level or temperature (photochromics or thermochromics, respectively). The accive system can be conrolled as needed and can include such devices as liquid crystal, dispersed parricle, and elecrochromics.

Photochromitcs: These materials change their transparency in response to light intensicy. They are ideal for automatically controlling the quantity of daylight allowed into a building. The goal is to let in just enough light to eliminate the need for electeric lighting, but not so much that the cooling load woutd increase.

Themochromics. These matcrials change transpatency in response to temperature. They are transparent when cold and reflecuive, white when hot. They can be used in skylights, where the loss of transparency on a hot day is not a problem as it would be in a vew window. These materiats could also be used to prevent passive systems from overheating in the summer

Iiquid-Cyssal Glaping: When electric power is applied, the tansparent liquid crystals algn and become translucent. Thus, lequid-crystal glazing has some application for shadng, but its teal potential is in privacy control.

Dispersed-Particle Glaring: Although similar to liquid-crystal glazing, this material is mote promising for solat control because the applied power can change the transmitance of the material in a range between clear and dark states, thereby preserving the view.

Elechochromic Glaving: Thus is the most promusing material because it can change transparency-not translucency-continuously over a wide range (about 10 percent to 70 percent) and can be easily controlled. Consequently, either a computer, a photocell, a themostat, of the occupant can adjust the transpanency as the local condirions require.

4.2.4 External Shading Devices

Blocking the sun before it reaches che buildng, particularly the glazed, but also the opaque surfaces (including the roof) and reflecring the solat radiation, is fundamental to the prevention of heat gain (Goulding, 1992). The appropriate chore from a wide range of Eixed and movable shading systems will depend on location, orientation, building type
and the overall coolng, heating and daylighting strategies adopted in the design phase of the building.

While shading systems must provide good solar protection in summer, they should not reduce solar gains in winter, obstruct narural lighting or impede natural vencilation. Well designed shading systems can actually enhance natural ventilation and daylighting. Shading syscems can block the drect component of solat madiation but are usually not as effective in teducing the diffuse and reflected components.

4.3 Shading Devices

Once the window size has been established the most effecrive mechod of reducing solar heat gain is to ptevent the transmission of shorwave radiation through the glass by external shading.

The effecriveness of a trpical glazing and shading system may be measured in terms of the solar gain factor. 'Ihis is the proportion of incident solat radation cransmitred by the window and shading device to the interiot of an enclosure. The solar gain factor for an unglazed unshaded aperture is unit. 'This factor decreases as the shading system becomes mote effective in teducing solar heat gain (Srnith et al, 1982).

The requirements for daylight and ventilation may well conflict with the need to provide shading devices to control solat heat gain, reduce glare and prevent direct radiacion falling upon the occuptants of an enclosure. Traditional heavyweight building wich strall windows is unlikely to experience the solar overheating problems, which may occur in the excessively glazed lightweight modern office block.

4.3.1 Objective of Shading

Shading the glass affects the quanricy of incident radiation and hence modifies boch the heat flow to che interior and the indoor temperatures. It is useful to ser out the puppose of shading in some detail (Steemers et a/, 2002). They are mencioned as follows.

- To minimse the total solar energy entering a room and thereby reduce the average temperature of the room
- To prevent sunlight from falling directly ontor occupants, resuling in an effective increase of temperatutc of between $3^{\circ} \mathrm{c}$ and $7^{\circ} \mathrm{C}$
- To reduce the local inlumination of surfaces that may present glare soutces $t o$ the occupants
- To prevent the view of brighrly lis.outside surfaces, or clouds, or the surn itself

4.3.2 Types of Shading Devices

Shading devices are broadly classified into three categories based on its integration with the window (Goulding, 1992; Steemers et al, 2002; Lechner, 2001). They are classified again within these categones by their mophological charactensuics and physical foms. The broad categories of shading devices are:

- Retractable or removable shading dence
- Movable or adjustable shading device
- Fixed shading device

Retractable Shading Device:

Retractal) means that these elements can be completely or pattially ternovable from the window aperture (Stecmers at al, 2002). It is impottant to note that shading devices of chis rype do not influence the availability of daylight in the room. That is, they will not influence switch-on time, because at tines of low light avalability they can be removed from the apernure. Clearly this property teconciles the conflict between allowing useful light in and keeping whwanted radiation out. Jf correctly operated, devises of this type whll not lead to an increase in artificial lighting energy.

Movable Sbading Devices

Movable shadng is used extemally or internally. Control can be either manual or power assisted and may be automated to respond to changng conditions, such as curreat radiation levels and daylighting or themal requirements (Goulding, 1992). The configuration of operable shading devices can be changed, and thetefote their performance can be much betret that that of fixed devices. However, their posicion has
to be adjusted, daily or seasonally, to the changing patterns of the sun's relative mocion and the shading needs (Giveni, 1998). They usually need maintenance to keep them in good condition.

Overhang, Awning

fin Rotating, firs

Overbang: Rotating hormontal louvers

Ekgctate: Rotating I Jorizontal houvers

Figure 4.3: Some of movable shading devices (Source. I etiner, 2001).
The movement of shadeng devices can be very simple or very complex. An adjustment twice a year can be quite effecive and yet simple. late in spring, at the beginning of the overheated period, the shading devicess would be manually extended. At the end of the overheated period in late fall, the device would be rerracted for full solat sxposure (Lechniet, 2001).

There is a general convicion that since a bulding should be as low maintenance as possible, movable shading devices are unacceptable. The use of exising technology and careful detailing can produce trouble-free, low-maintenance movable shading devices.

Fixed Shading Devices

Fixed shading systems include structural elements, such as halconies and projecring fins or shelves and non-srructural elements, such as canopies, blinds, louvers and screens. The orientation and shape of the opening to be shaded, relative to the position of the sun at different times of day and year, is critical to the design of lixed systems (Goulding. 1992). Fach onientation will need to be examined separately, taking account of direct and diffuse or reflected components of the overall solat tadiation throughout the day and ycat. Typically horizontal shadng is used for south facades, whereas vertical or diagonal fins or louvers are often more efficient on the east or west facades in northern hemisphere.

Fixed shading systems atc most commonly used on the cxtemal facades where they can prevent direct radiation from reaching glazing or ocher openings and where heat absorbed by the shading system can be dissipated to the ourside air. An obvious advantage of fixed shading is that it needs no handling by the occupants and is often maintenance free.

Fixed shading devices are of three types based on their physical forms (Koenigsberger et al, 1973; Givoni, 1998). They are horizontal shading device, verrical shading device and combination of the avo (eggerate). A brief discussion of these three types of fixed shading devices are presented below:

Vemical Shading Devides

Vertical devices consist of louver blades or projecting fins in a vertical position. Natrow blades whth close spacing may give the same shadow angle as broadet blades with wider spacing (Koenigsberger of al, 197.3). Vertical fins are often presented as the shading devices of chore for east and west.

Vertical tims can be appropriate cither when thete is a desire to control the direction of view or when the view is not important. This ype of device is most effective when the sun is at one side of the elcvation, such as an castern or western clevation. A verical device to be effective when the sun is opposite to the wall considered, would have to give almost complete cover of the whole window.

Overhang Itraizonal pand

Overhang: Lourers in vetical plan

Vertical fin

Liggerate

Overhang lauvers in hovizontal plan

Overhang Vertical pramel

Vertical fin slanced

Eysctate with slanted fins

Figure 4.4: Some of fixed shading devices (Source: Iestinet, 200)).

Horizontal Shading Devices

The horizoncal overhangy and its variations are the best choice for south facade. Because Lhey are directionally selective, they can allow the low wintet sun to enter while fully shading the high summet sun with minimum obstruction of the view.

Horizontal louvers have a number of advantages over sold overhangs. Horizontal louvers in a horizontal plane reluce structural loads by allowing wind to pass right thtough (Lechnct, 2001). In the summet, they also minimize the collection of hot aur next to the windows under the overhang, Forizoncal louvers in a verical plane are approprate when the projecting discance from the wall must be lemited. This could be imponant if a building is on or near the propenty line. Louvers can also be useful when the architecture calls for small-scale elements and a rich texrure.

When designing an overhang for the south facade, one must remenber that the sun comes from the southeast before noon and from the sourhwest after noon. Thetefore, the sun will outllank an overhang the same whth as a window. Narrow windows need either a very wide ovethang or vertical fins in addion to the overhang. Wide strip windows are affected less by this problem.

Horizontal devices will be the most effecrive when the sun is opposite to the building face considered and at a ligh angle, such as for north and south facing walls (koenigstberger et al, 1973). In summer they can block the rays of the sun and in winter they can admit radiarion from the sun's lewer posinion. To exclude a low angle sun, this type of device would have to cover the window completely, permitting a vicw downwards only.

Egg-crate

Eggerate shading devices are mainly for east and west windows in hot climates and for the additional southeast and southwest oriencarions in very hot climates (Lechner, 2001). An eggerate is a combination of horizontal Overhangs (louvers) and vertical fins. By concrollhng sun penetration by both the alitude and azimuth angle of the sun, very effecrive shading of windows can be achieved. The Designer should first decide on the gencral appeatance of the eggerate system. As far as sun penetration is concemed, the
scale of the eggetate can be changed at any time as long as the ratio of herght/depth and widh/depth are kept conscant.

4.4 Conclusion

Shading is a key surutcgy of achieving thernal comfort in-the summer. Although.shading of the whole building is beneficial, shading of the glazed areas is ctucizl. Heat gain is directly proportonal to the area of glass exposed to solar radiation and therefore large glayed areas will permit a large and rapid heat gain. Existing heat-absorbing glasses can protect only 20% of the total incident radiation and reflective glazing prevents solar radiacion up to 50%. Hence extemal shading devices can be a good answer to concrol the solar radiation. The most efficient solar control is provided by extemal shading devices, the design of which can only come from understanding the solar geomeny. Direct radiation is dependent only on the altitude of the sun and geographical position. That's why; direct radiatoon can be contonlled effectively by proper external shading devices.

References

Goulding, J.R., Lewis, J.O., Steemers, T.C., ed. (1992), Enetry in Arbitecture (The European Pasitue Solur Handbook), B.T. Bats fotd Iimuted. p. 100

Givoni, B. (1998), Climate Consideralions in Builing and Uthan Design, Van Nostrand Reinhold. p. 63

Gronu, D. (1969), Man, Cfimate and Arcbite ture, Elsevier Publishing Company. p. 191-200
Kevenigsberger, O.H., Ingersoll, T.G., Mayhew, A., Szokolay, S.V. (1973), Manual of Tropical Hounng and Building Design, Part 1, Orient Long man. p. 102-113

1echner, N. (2001), Heating, Coolng, Iighting Design mothodr for Architects, John Willey \& Sons, Inc. p. 210-240

Smith, B. J.; Phillips, G. M; Sweency, M. E. (1982), Entronmental Sazence, Longman Scienulic \& I'echnical, UK. p.71.74

Steemers, K.; Daker, N. (2002), Dayitght Design of Buildings, James \& James Ltd, Iondon. f. 109, 110

CHAPTER: FIVE
PERFORMANCE EVALUATION OF SHADING DEVICES

PERFORMANCE EVALUATION OF SHADING DEVICES

The performance of shading devices and its impact on solar heat gain through windows can precisely be evaluated by simulation study. Because in reality, due to the sumuleaneous influence of many different conditions, it is difficalt to isolate the exclusive effect of one single aspect or the changes of it. Shadow simulation allows sudy of the effect of changes in one aspect, keeping other factors constant. The observations of simulared behaviour that occurs due to changing parameters allow the identification of elemente, the reduction or introfuction of which in the design conmibute to solar heat gain. Another significant achievement of simularion study is that, it is possible to analyse the performance of shading devices for any period of the year simply by assigning simulation parameters (e.g. temperature, radiation, wind specd and direction, relative humidity and cloud cover).

In this chapter, nine tall office buildings from different commercal areas in the Dhaka city have been considered to evaluate perfomnance of their shading devices, in temens of reducing solar heat gain through simularion study on the basis of set criteria. A dynamic computer simulation program named 'Ficonect' (version 5.20) has been used for thes simulation study.

5.1 Selection of Shading Devices for Evaluation

Before making seleccion of shading devices, tall office buildings are identificd nn the basis of certan considerations to be discussed in the following section. These tall office buldings are located in different commercial areas in the Dhaka city, such as Mocijheel, Dilkusha, Karwan bazaar, Panchapath, Banani, Mohakhali cte. After that, buildings were categorised considering the rypology (based on grometry) of shading derices installed on their front fraçade. Sketriches of window sections with shading device of these buildings were prepared with deail construction features, installation rechnique and geomerric features. After analysing the sketches, nine shading devires were selected movaluate performance in terms of reclucing solar heat gain considering shading device appology and similarities in geometric features.

Tall Building Criceria

There is no fixed parameter of height to denote all and high-rise building. According to the Council for Tall Buildings and Urban Habitat (CTBUH), the number of stories or its height does not strictly define a tall building. It also depends upon the context in which it stands. The Council for Tall Buildings and Uban Habirt (CTBUH) considers for instance, call buildings as being buildings of ten stoteys or more.
a) Walk up limit / provision for lift:

- Accorling to Building construction rules (2006), buildings of seven storied and above in height shall have provision for lift.
- According to Bangladesh Nacional Building Codes (1993), lifte shall be provided in buildings more than six straried or 20 m in height.
b) Fire escape provision:
- Accarding to Fire Service and Civil Defence rules, buildings of seven storied and above in height shall have provision for Fitc escape/alternative staircase.
c) Structual analysis and design:
- According to Wolfgang Shueller, buildings with height-to-width rario above 5-7 are considered as high-rise smucture.

In view of the above considerations, in the present context of Dhaka city, buildings above six storeps may be conkidered as tall buildings.

Selection of Shading Devices

Following the above criteria, cighty-four all office buildings of Dhaka cicy were identified for investigation. Among them, forry buildings are struated at Morijheel and Dilkusha area; twenty-four buildings at Mohakhali, Gulshan Avcirue and Barani Kemal Acarurk Avenue; fourteen buildings at Karwan Bazaar arca and six buikdings at Panthapath.

Among these buildings, twenty two buildings have horizontal shadiog devices, teven buildings have vertical shading devices, twenty bulldngs have composite type (combination of horizontal and verical) shading devices and thity one buildings do not have shading devices on their front façade. Among these eighty-four tall office buildings,
nine buildings sere sekered to ewhute performance of their shading dovices The list of buildings with loation beigh, orientation and rype of shading device inatalled is presented behowe

Table 5.1: List of the telected buildinga and shading devices.

$\begin{gathered} \mathbf{s} \\ \mathbf{N o}_{0} . \end{gathered}$	Idendifention Number	Location	Storey	Orkencation	Shadiaf Derice
1	H01	Jenata Benk Buston, Moxitherd	23	Eat	Hocizonty
2	1302	Crintal Insumence Lind. Dimuta	11	South	Hotmontal
3	1203	Hrac Center, Motalthat	20	Nerth	Horimant
4	701	Rupuh Bant 1dd, Dilkusha	10	South	Vertical
5	102	19+whati Bhatan, Dintuha	9	Wes:	Vertici
6	V03		9	Easa	Verical
7	C01	Krinhi Mhaben, Dillusha	11	South	Composite
8	CD2	HCIC. Bhater, Diminina	22	Sourth	Comporite
9	C03	Mephim Life lnarract, Dillusha	10	Fast	Composite

Vica of front facndea of the selected building and sketches of windore tections with shading derices of these truiddings ere presented below.

Figure 5.1(a): Vicr of building FH 1 .

Figure 5.1(b): Windore rection of H 101.

Figure $5.2(\mathrm{a})$: View of building H02.

Figure 5.3(a): View of building H03.

Figure 5.4(a): View of building V01.

Figure 5.2(b): Window section of H02.

Figure 5.3(b): Window seccion of H 03 .

Figure 5.4(b): Window section of V01.

Figure 5.5(a): View of building V02.

Figure 5.6(a): View of building V03.

Figure 5.7(a): View of building C 01.

Figure 5.5(b): Window secrion of V02.

Figure 5.6(b): Window section of V03.

Figure 5.7(b): Window section of C01.

Figure 5.8(a): View of building C02.

Figure 5.8(b): Window secrion of C 02 .

Figure 5.9(a): View of building C 03.

Figure 5.9(b): Window section of C03.

5.2 Performance Evaluation Process

Performance of the selected shading devices will be evaluated in terms of reducing solar heat gan through simularion study on the basis of set criteria to be discussed in the following secrion. Simulation is a powerful technique for solving a variety of problems. To simulate is to copy the behaviour of the phenomenon under study. It refers to some representation or model of a sysiem that can be studied in onder to understand the behaviour of the actual system italf and momake prodicrions about the furure. It involves developing a model of a system and carrying out experiments on it. It helps analyzing the effect of phenomenon and chcir interaccion on one another (Suri, 2005).
)
Evaluation process comprises the following steps:

- Setting criteria for perfommance cvaluation
- Preparing climate Jatabase
- Setting simulation parameters
- Devcloping simularion model
- Analysing results of simulation

In order to cyaluate the performance of shading devices in reducing solar heat gain, a base-case situacion is established by studying the unshaded window (without shading device) during the critual shading period of the yeat at different oricntarions.

5.2.1 Criteria for Performance Evaluation

- The percentage of the shade area, given by vanous rypes of fixed shading devices (Givoni, 1969; Stemers at of 2002). The percenmage of the shade areas refers to portion of the window area, which is not exposed to the direct solar radiarion. This also rellects the ability of a fixed shading device to protect the window area at critical tinc.
- Compuration of the shading coefficient, which is the ratio of the heat entering the window-shading combination to that entering an unshaded window. Shading coefficient ($\mathrm{C}_{\text {sb }}$) can be expressed as below.
$\mathrm{C}_{\mathrm{kb}}=\frac{\text { Heat entring through the window with shading device }}{\text { Heat entering through the window without shading device }}$
Shading coefficients basically refer to the fraction of solar heat gain that passes through a mansparent solar aperture compared to the amount of solar adiation incident upon it. The shading coefficient is expressed as a dimensionless number from 0 to 1 . A high shading coefficient means high solar gain, while a low shading coefficient means low solar gain (Givonh, 1960; Givoni, 1998; Steemers et al, 2002; Lechner, 2001).

5.2.2 Simulation Ptogram

Simulations tegarding solar performance analysis are carried out using building analysis sofrware ECOTECT 55.20°. It features a usct-friendly 3D modelling interface fully
integrated with a wide range of performance analysis and simulation functions. 'Ihe visual nature of calculation feedback makes "HCOTECI' unique. 'The process can be started with a decailed climatic analysis to calculate the potential effeciveness of various passive design techniques or moprimise the use of available solar, light and wind resources.
'The original ECOTECT' sofware was writen as a dernonstration of some of che ideas presented in PhD thesis by Dr. Andrew Marsh at the School of Architecture and Fine Ante at The University of Westem Australia. The sofrware has undergone some major changes since then. Version 5.2 builds significantly on the functionality of previous versions incroducing a range of new analysis functions and real-time hidden line and sketch visualization. It also refines some of the major algorithms, such as the thermal and daylight factor calculations.

ECO'LECI provides a range of thermal and solar performance analysis options. At its corc, is the Chartered Institute of Building Scrvices Engneers (CMSE) Admittance Method used to determine heat loads. The Admittance Method is widely used around the wotld and has been shown to be an cxterncly useful design-tool This chennal algorithm is very flexible and has no restrictions on building geomery or the number of themal zones that can be simulaneously analyzed. Most importantly, with only a few precalculations for shading and overshadowing, it is very quick method to calculate and can be used to display a wide range of very useful informaton.

Whilst in summary it is a simplified method, the Admittance Method encapsulates the effects of conductive heat flow rhrough building fabric, mfilmarion and veatilation through openings, direct solar gains through mansparent materials, indirect solar gains through opaquecelements, internal heat gains from equipment, lights and people and the effects of inter-zonal hcat How.

Nicki Taylor validated ECOTECT as part of his research work for the degree of Bachelor of Engineering (Hons.) from Deparment of Environmental Engineering at Universify of Western Australis in 2002. He showed in his rescarch that the mean error of the estimated resulta is less than 2%, indicating a reasonable degree of accuracy (Taylot, 2002).

5.2.3 Climate Database

The climate database stores filcs concaining houdy weather data. The weather files supplied wrh Ecotect cover different regions of the world and each represents a cypical year's weather for 2 particular region. The weather fite is not provided with the software. But facilities arc provided to allow creating own weather files and can be added to the climate database.

The weacher file 'Ban_Dhaka,wea' has been prepared for the research purpore by using the Weather Tool, associated sofrwate of Ecotect. The Weather Tool is a visualization and analysis program for hourly climate data. The weather file consists of a group of parametcers relaring to the weather site and hourily values of seven weather variables (drybulb temperature, relaive humidiry, direct radianon, diffuse radiation, wind spoed and direction and cloud cover). Hourly radiation data has boen collected from Renewable Energy Research Cenrre of Dhska University. Three hourly weather data regarding drybulb temperanure, relarive humidity, wind specd and direcrion and cloud cover has been collected from Climate Division, Bangladesh Meteorological Department Agargaon, Dhaka. Due to the simularion requirements, all three hourly data have been converted to hourly data by interpolation method. Houny wcather variables for Dhaks have been collected for the year 2005 .

The site parameters of Dhake for weather file are as follows:

Parameters	Dernils
Latinude (degrecs North)	$23^{\circ} 50^{\prime}$ Norh
Longitude (degrees East)	$90^{\circ} 20^{\prime}$ East
Time Zone (hours ahesd of GMT)	GMT +06.00

The combination of site parameters and hourly weather variables forms the weather file, with which the simulation program Ecotect is capable to analyse any climaric characterisrics of the selected site.

5.2.4 Simulation Parameters

Before starting the simulanons a set of parameters are set. These are described below. To investigate the resuls of the simulations, a specific day has been selected (from the weather database for a year) on the basis of some specific atributcs to obscrve the results.

Considerations for Identifying the Simulation Day

For individual daily profile analyषis, a day of the year has been sclettod in consideration of the cypical characteristics of the given climate.

The test day is $21^{\text {st }}$ of March (Day: 80). Outdoor air temperature range of this day is $24.5^{\circ} \mathrm{C}-35.4^{\circ} \mathrm{C}$ and sky condicion is clear. From $0900-1700$ hours the cloud sover is 1.1 out of 8.0 (13.8% coverage). This is a day with considerable hiph outdoor air temperature but not the extreme one and bears a common chatacter regarding the climaric feanures specially of the hot-dry season. The average temperature of this day (20 ${ }^{\circ}$) is very close to the average temperature of the scason $\left(28.02^{\circ} \mathrm{C}\right)$. It has been observed that the sky condition in the given climate is clear for 67 percent of the whole pre-monsoon period (earliet shown in table 2.3) and the 'clear sky' condirion prevail for the chosen day. This 'clear sky' condition of the chosen day is also important in investipate the impacte of solar radiation and this clear sky condition enhances the direct solar radiation to reach on building surfaces. Overcast sky condition impedes dircet radiation to reach the building surfaccs. Fixed shading device are effectuve to reduce heat gain from dircet solar radiation. These are the reasons techind choosing a day with clear sky condimon.

For a fixed shading device, the shading period is symmetrical about June 21 (Lechner, 2001). This is because the position of the sun cycles through the sky on a seasonal basis. Thus, the Sun will pass through the same parh twice every year, the first time when going from winter it summer and the second time when traveling back to winter. Thus, any shading device will ahways shade berween two dates. In the northern hemisphere, an oprimized shading device for the 21st of March will actually shade from the 21st of March, right through June until the 21st of September. Thus the whole overheated period (hot-dry and warm-humid) is taken into account for smulation.

Considerations for Identifying the Time Period for Simulanion

For simulation to investigate the performance of the shading devices, the time period is considered when the space is onfy considered to be used during office hours. In genetal, the office time is from 0900 to 1700 and this time peniod is taken as a critical time periox for shading requirement-

5.2.5 Simulation Model

Foilowing models have been developed for simulation that represent the selected shading devices. These models refet to the high-rise buildings selected with identical facades with a similar treated floor area with the shading device with single glazed clear glass. The room size for simulaton model is $6000 \mathrm{~mm} \times 6000 \mathrm{~mm}$ which is considered as beated in an intermediate floor of a high-rise building. The room size is taken from the typical high-rise column grid. A fized window width 5400 mm has been considered with single glazed glass, as the window covers the whole span between two columns. Different shading devices are attached with it for sumulation sudy. For the ease of calculation, a study plane at the level of the exterior surface of the window wall is considered.

In terms of shading analysis and solar heat gain, the simulations are done for the following options of models:

- 'The 'without shading' option - which refer to the high-rise models with idenrical facades with a similar treated floor area without the shading device but with clear glass;
- The 'with shading' option which refer to the hyb-rise models with shading as designed by the architect

Section of typical high rise building

Typical floor plan of high rise building

Figure 5.10: Schematic drawings showing generation of simulation model from rypical high rise building.

The simulations are done for the following models generated by "Ecotect':

Figure 5.11: Simulation model of Shade H01.

Figure 5.12: Simulation model of Shade H 02.

Figure 5.13: Simulation model of Shade H03.

Figure 5.14: Simulation model of Shade V01.

Parameters:

- Office room dimension:
$6000 \mathrm{~mm} \times 6000 \mathrm{~mm}$
- Floor height 3000 mm
- Window: Sill: 600 mm ,

Width: 5400 mm , Height: 1950 mm

- Vertical Fin: Depth: 300mm, Spacing 600 mm

Figure 5.t5: Simulation model of Shade V02.

Parameters:

- Office room dimension:

$6000 \mathrm{~mm} \times 6000 \mathrm{~mm}$
- Floor heipht: 3000 mm
- Window: Sill: 600 mm ,

Width: 5400 mm , Height: 1950 mm

- Vertical Fin: Depth: 450 mm , Spacing. 600 mm

Figure 5.16: Simularion model of Shade V03.

Figure 5.17: Simulation model of Shade C01.

Parameters:

- Office romen dimension:
$6000 \mathrm{mtrm} \times(\mathbf{0} 00 \mathrm{~mm}$
- Floor haght: 3000 mm
- Wrmarar: Sill 750 mm

Writh: 5400 mm , Height 2250 mm

- Vertical fin: Deputh: 450 mm , Spraing 1500mm
* Overbang depth: $\mathbf{2 2 5 m m}$

Figure 5.18: Simulation model of Shade C02

Parameters:

- Ofice room dimension: $6000 \mathrm{~mm} \times 6000 \mathrm{~mm}$
- Fioor beight 3000 mm
- Windora: Sili 600 mm ,

Wedth: 5400 mm , Height 1800 mm

- Vertical Fin: Depth: 500 mm Spacing 1050mm
- Overhang depth: $\mathbf{3 7 5 m m}$

Fipure 5.19. Simubaion model of Shade C03.

5.3 Simulation Study for Performance Evaluation

Two studies about the peffomance of shading devices on solar radiation protection are carricd out as under. The first study investigated the impact of orientation on the performance of shading devices while the second study compared the performance among the selected shading devires in different orientations on the basis of previously set crizeria.

This study will help in idenafying the effect of different parameters and intemelation among parameters in terns of solar shading aspect. This study will also assist to understand the influence of window orientation on the shading petformance of shading devices.

5.3.1 Effect of Orientavion on Shading Performance

'The efficiency of the window shading is largely deternined by the oricntation of the window. When shading is not effective, solar radiation enters through the windows and heats up the building incrior directly. Hence the indoor temperature will obviously be influenced by the orientation of the windows.

The quantitative effect of window orientaion has been studied by simulation technique under different shading condition, which also reveal whether shading devices used are effecrive or not, according to orientation in order to cut direct sunlight penetration at critical times of the day. 'The results of the study are summansed in the following secion.

53.1.1 Perfomance of Horizontal Shading Devices

The three models with selected horizontal shading devices were oriented in the three cardinal directions (East, West \& South) and two oblique directions south-east and sourh-west. The results are given below with respect to individual cases.

Table 5.2 shows perteinage of shaded area with respect to whole window area of Shade H01 at every 30 -minute interval from sunnise to sunset. In the Feld invescigaion it was found that this shading device was attached mostly with an east-facing window. But through simulacion, it is found that this shading clevice iy not efficient at east orientanon. It is capable to shade below 50% of the window area at east but u_{p} to 60% window area
at muth orientation．The performance at south is more consistent than that of other orienations．Figure 5.20 shown the shading performance of Shade H0t in different orianations and it erpressea 2 consistent performance only in south onennation．

Tuble 5．2．Percenuge of shaded are by Shade H01 for 21^{*} March．

Orimitaion	晨	8	影	豆	E	号	耍	突	\％	寊	奢	\pm	戓	$\stackrel{y}{*}$	\％	3	安
	＊	3.	：	4	4	$:$	：	＊＊	$\%$	4	＊	$\%$	\＄	4	\because	4	＊
Hart	27	78	3	51	－	－	＊	＊	－	＊	－	＊	＊	＊	＊	＊	＊
Southas	21	27	31	37	45	9	＊	＊	＊	＊	－	＊	＊	＊	＊	＊	＊
South	51	9	5	\％	56	35	${ }^{6}$	5	\％	57	54	55	5	\＄	45	42	38
Souttreest	＊	＊	＊	－	－	＊	＊	63	5	41	36	28	22	19	15	12	10
W＇ar：	＊	＊	＊	－	＊	－	＊	－	－	4	41	30	3	26	13	11	7

＊Percentige of ahaded erea is not taken into sctount as ibe sun doan not tee the window．

Figure 5．20：Percentage of shaded aren by Shade HO；fot 21＂March at differcht arientatisna＇

In case of Shade H02，simulation feult athere that the device shades more window area at soruth orientatiom．In the field investigetion it ans found that this shading device was artached with＊routh facing window，As per simulation it is coprable to shade up to 53% of window area at south orientaion．The perfomance at south is more consiatent than

[^1]that of other orientations．At south－west orientation it shades up to 56% of window area but the performance is not convintent．Table 5.3 and Figure 5.21 show the performance of Shade H02 at different oriennations and it indicater a consistent perfomance onty in mouch oritentution．

Table 5．3：Peternuge of shaded area by Shade H02 for 21＂March．

Ofintrinen	\％	多	E	名	$\stackrel{\square}{1}$	号	$\underset{4}{¢}$	8	豆	3	8	9	官	9	㫛	2	E
	\％	\％	\div	\because	\cdots	\％	$\%$	5	：	4	\％	\％	4	3	\％	52	46
Fistr	11	20	27	4	＊	＊	＊	－	＊	－	－	＊	－	\cdot	＊	＊	\cdots
Sorrimess	12	15	27	25	37	52	－	－	－	－	＊	－	＊	－	－	－	＊
Sout	43	4	41	51	S 5	50	53	$4)$	5	\％	46	45	42	41	36	27	23
Sontherat	－	＊	－	－	－	＊	＊	\＄	4	31	23	17	2，	F	1	0	${ }^{\square}$
W＇ra	＊	＊	＊	－	＊	＊	\bullet	－	\bullet	5	17	21	12	＊	3	0	\square

Figure 5．21：Percenuge of shaded area by Shade H02 for 21＂Murch at different orientations．${ }^{16}$ 57

Table 5.4 and Figure 5.32 sbow the performance of Shade H 03 at different orientationa and it expresses i comparativels better performenex at south orientation then thet for other orientations．It shade marimum 46% window erea at tocuth and more or less consistent for the whole day．

Table 5．4：Percentage of shaded area bry Shade H03 for 21^{*} March．

Orimation	8	最	？	을	E	熏	8	思	官	3	$\underline{\square}$	$\stackrel{9}{2}$	空	28	$\stackrel{9}{9}$	3	宝
	46	＊	\％	\square	$\%$	4	＊＊	\％	\％	\＄	\％	\cdots	si	9	\％	：	4：
Enst	11	3	31	38	＊	－	＊	\bullet	－	－	\bullet	＊	＊	－	－	\bullet	－
Soothest	13	7	21	3	34	4	\bullet	＊	＊	－	－	4	＊	＊	－	－	＊
South	\％	41	45	42	41	4	46	4	4	39	6	43	59	35	38	5	23
Southerer	＊	＊	＊	＊	＊	－	＊	45	35	31	27	21	17	13	12	7	－
Hict	＊	－	＊	＊	＊	＊	＊	－	4	47	31	23	17	17	4	7	$\stackrel{\square}{ }$

Figute 5．22：Percentage of shaded ater by Shade H03 for 21^{*} March at different orientations．${ }^{(6)} 5$

Finding

It has been observed from the resuls of the simubtions that the performance of horizoncal shading devicen remuins quite consistent at south orientation only．It works berer when the nun is opposite to che window pane at a high altitude．This pefformance drops when the run is in a lerrer alitude and oblique to the window pane．The horizoncal overiang is nor capable to prorect the window when the sun azimuth and aldiuade are low．So from these manhers，need for modificaion is evident when the sun is at low eximuth and eloitude．

53．12 Performance of Verical Shading Devices

The thrte selected vertial shading deriee were oriented in the three cardinal directions （East，West and South）and rwo obligur direcrions south－east and south－west to erahulte their performance at differant orientations．The result are given below with respect to individual cases．

Table 5．5：Percenrage of shaded area by Shade VOt for $21^{\prime \prime}$ March．

Orichtarime	$\underline{8}$	官	空	¢	晨	$\stackrel{9}{2}$	$\underline{8}$	曷	$\stackrel{E}{5}$	5	怱	$\stackrel{9}{\square}$	5	\％	E	－	E
	＊$\%$	\cdots	\because	\because	\because	＊	＊	$\%$	$\%$	$\%$	\％	$\%$	\％	4	4	4	46
Fa＊：	47	53	7	7	\bullet	＊	－	－	－	＊	－	－	－	${ }^{+}$	＊	－	＊
Shuthest1	46	5	50	51	7	91	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	－
South	W1	¢ 7	67	94	91	［ ${ }^{4}$	（\％）	8	E	F7	㿽	55	\＄	7	69	57	36
Snutheret	＊	\pm	＊	＊	－	＊	＊	54	7	\＄	5	＊	4	45	45	44	53
Wras	＊	＊	＊	＊	＊	\bullet	＊	\bullet	＊	57	由）	4	42	6）	37	4	3

－Percentage of waded ater is not raten into account as the win does not aee the sindow．

Figure 5．23：Pereentage of ahaded area by Shade VO1 for 21＂March at different orientations．${ }^{36} 57$

Tible 5.5 shows percenage of shaded area with respect to whole aindory are of Shade V01 at erery 30 minute interal from suncise to sunset．In the field investigaion it was found that this sheding device ows attached with a south facing windov．But through simubtion，it is found that this shading device is not onfy efficient at south orienation，it
also wotk well at eart and west＇This shading，device is caprble to shade 60% of the windory area on an avenge at east nend uest and up to 94% pindown heter at mouth orientation．But one thing is ckeat that the large overhang that holds the vertical fing makes the whole shading device effective at south．Actually vertical fins do not have signifiant rote in protection of window at souch．

Table 5．6：Pereentage of shaded wea by Shade V02 for 21＂March．

Qrimation	害	矣	E	9	E	$\stackrel{\text { 厚 }}{ }$	突	易	空	3	E	昜	E	㤩	E	2	E
	\because	\％	$\%$	\％	4.4	\％ 7	＊	4	46	7	\cdots	＊	\％	46	4	\＄＊	＊
L35t	¢）	4	4	社	＊	＊	\pm	＊	＊	＊	－	4	－	－	－	＊	＊
Southerst	44	36	43	46	4	40	＊	${ }^{\circ}$	－	－	＊	－	＊	＊	＊	＊	＊
South	78	F3	H	H3	71	75	$\boldsymbol{*}$	45	72	71	76	8%	${ }^{6}$	73	6	53	21
Snurtrictit	＊	${ }^{*}$	＊	＊	＊	＊	＊	m	57	42	3	3	35	\cdots	3	4	5
Weal	＊	＊	＊	＊	＊	＊	＊	－	＊	\％	64	5	45	46	41	94	28

－Percentrge of ahaded are is not biter into exconnt as the sum docs not ser the window

Figure 5．24：Percenage of shaded aren bry Shade V02 for 21＂Manch at different orientabions．${ }^{1657}$

Io case of Shade VOZ simulation results ahow that the deviec shades more window area at zouth orientation onty when the sum is at an angle with the windowpene．That is when the sun is in southuest and mouthessh this shading device is effective and capable to shade up to 87\％of window trea．In the fiek investigation it wets found that this shading
device was atriched with wers－facing window．Through simulation it is found that this shading devige is effective at pest orienation and it abo shades well at east and wert． This shading device is ceppable to shade 52% of the windory ures on an werage at east and west．

Table 5.7 shows percentige of shaded niex with mapect to whole window area of Shade VO3．In the fick invesagation it was found that this shading device was aturhed with an east facing windors．Through simulation，it is found that this shading device is efficient at south orientation；it also works well at south－ast and south－went．Ihis shading device is caprable to shade 50% of the window area on an werrige at east and west．This shading deriec iveffective in south fapade only when the sum in at an angle with the windory．

Table 5．7：Percentage of shaded ater by Shade V03 for $21^{\prime \prime}$ Mirch．

Orinntion	$\frac{\mathrm{e}}{\mathrm{E}}$	9	를	苞	\underline{E}	星	$\underset{\underline{y}}{\underline{g}}$	$\underline{2}$	¢	$\stackrel{2}{2}$	8	$\underset{\sim}{\boldsymbol{\theta}}$	E	突	\％	空	总
	${ }^{6}$	\because	\％	\sim	\％：	4	4 \％	4	$\%$	5	$\%$	\％	$\%$	＊	$\%$	\cdots	$\%$
Eas	30	42	33	53	－	＋	＊	＊	－	＊	＊	＊	＊	－	－	＊	－
Souihenst	43	5	\％	3	47	61	－	－	－	\bullet	－	－	＊	－	－	＊	－
South	（10）	\％	－	\％	75	\＄	31	63	6	73	72	92	10n	（ta）	（t）	（II）	（1a）
Southees	\％	＋	\cdots	－	＊	－	＊	5	\＄1	5	45	35	34	9	\cdots	2	41
West	＊	＊	\bullet	－	－	－	－	－	－	74	44	45	35	36	12	27	34

＊Pexcentyge of ahaded ater is ont tiken into tacount at the an does oot wee the windor．

Figure 525：Percentage of shaded area by Shade V03 for 21＂March at different orientations． 16 解

Findings

The inverbigaion ahoras that vertial shading deriect tee efferive on west and cast facade．The simulation results shory that all thee three verical shading devices are eapable to shade above 50% of the windor area on an evergge at east and pest．Verical shading devices are atso coprble to shade up to 94% window area at south orientacion． But one thing has to be noriced that the lage overhangs that holds the vertical fins makes the whole shading device effective at south．Actually verical fins do nor have cigrifitant role in ahting of vindow at south．＇Ihey wort efficienty when the sun is at an angular position with the window．They are not effective when the sun＇s altitude is low and perpendiruthr with the frade．It has dso to be norieed that vertical fins tre not efficient at east and west onenavion when the sun is just in front of the window．Thit phenomenon needs further inverigation．

53．1．3 Performance of Composite Shading Devices

The three selected comprsite shading devicess（combination of vertical fin and horizontal overhang were oviented in the five directions－Best，Wesh，South，South－cast and Sourh－ west and then simubred to inverigate the influence of orientation on their shading perfommace．The tesules ate given betow with reapecr to individual cases．

Table 5．8：Peremape of shaded area by Shade C01 for 21＂March．

Otikntaion	$\underset{S}{f}$	$\begin{aligned} & 8 \\ & 88 \end{aligned}$	药	$\begin{aligned} & 8 \\ & \text { e } \end{aligned}$	$\underset{-}{8}$	$\stackrel{8}{2}$	高	$\frac{9}{4}$	$\underset{\sim}{e}$	$\underset{\sim}{2}$	ε	¢	ε	$\underline{2}$	E	易	8
	\because	4	\because	\％	$\%$	\％	$\%$	\because	4	41	$\stackrel{ }{4}$	\because	$\%$	\％	\therefore	$9+$	$\%$
Fast	\％	＊	7	＊7	＊	＊	－	＊	－	＊	－	－	＊	－	－	－	＊
Southerit	58	5	56	4	75	5	－	＊	－	－	＊	＊	＊	－	＊	－	－
South	$\overline{1(1)}$	\square	93	71	D1	5	Es	5	${ }^{10)}$	7	＊	58	10）	101	103	171	10）
Southwes：	－	－	－	＊	－	＂	－	9	34	\％	5	5	5	35	57	\＄3	37
Weat	－	－	－	＊	－	－	－	－	－	9	0	π	$\omega^{\omega 1}$	59	4，	49	2

Table 5.8 shovs percenage of shaded area with reapea to whole windore area of Shade Cal at every 30 minute interval from sunnise to sunset．In the field suncer it was found that this shading device wis attheded with a south facing window．＇Ihrough simulation，it is found that this shading decice is not only effepient at south orientaion；it anso works
well at souch－east and south－west．This shading is capable to shade 60% of the aindow arez on an average at south－east and sourth－west and up to 100% window are at south orientation．

Figure 5．26：Percenuge of shaded are by Shade C0t for 21^{*} March at different －orientations ${ }^{1059}$

In ease of Shade CO ，simulation resuls show that the derice works berner at south orientaion specially when the sun is in an angle with the aindow pare．Thit is when the nun is in south－west and south－east，this shading derice is effective and epable to thade up to 100% windowe aren．In the freld usvey it was found that this shading device was atmehed with a south facing window．But through sitmulation it is found that thie shading derice is abo effective in enst，southenst and south－west orientation．

Table 5．9：Percentage of shaded area by Shade C02 for 21^{*} Mareh．

Ofientatims	\％	$\begin{aligned} & \mathbf{g} \\ & \dot{B} \end{aligned}$	品	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	8	$\stackrel{9}{\square}$	曷	3	2	2	帝	\％	告	晶	E	E	$\underset{\sim}{5}$
	4	4	\％i	\because	\bigcirc	9	\％	$\%$	4	\pm	4	si	$\stackrel{*}{*}$	＊	4	\pm	$\%$
Lant	50	5	56	74	－	－	－	$\stackrel{\rightharpoonup}{ }$	＊	－	－	－	－	＊	＊	－	－
Southens	4	4	4	52	58	73	－	－	－	＊	－	＊	＊	＊	－	－	－
South	＊${ }^{1}$	04	12	74	74	71	0	6	\cdots	73	＊）	15	K	5	10	30	101
Southarat	－	－	－	，	－	－	－	83	43	56	4）	46	43	48	41	41	क7
（10s：	－	＊	－	－	－	－	＊	－	＊	0	62	50	4	43	99	31	21

[^2]

Figure 5.27: Percentage of shaded ares by Shade C02 for 21" March at different orientations. ${ }^{1635}$

Table 5.10 shows percentage of shaded area with respect to whole window aten by Shade C03. In the field surer it was found that this shading device wis arched with an east facing window. Through simulation, it is found that this shading device is effective at east and west orientation, but not consistent. The shading performance at southeast and south-west is more consistent than other orientations.

Table 5.10: Percentage of shaded area by Shade C03 for 21^{*} March.

[^3]

Figure 5.28: Percentage of shaded urea by Shade C03 for 21* March as different oriencabiona ${ }^{1525}$

Finding

The asalfais shows that composite shading devicen are effective in south southeenst and south-west orientation They are effective both when sun is in perpendizular and angular position with the windor pane. Horizontal overhangs of the composite shading art effective to protect the sur when it is at perpendicular porizion to the orindort. And vertical fins of the componite shading are effective to protect the sun when it is at an naguat posision to the window. Hut their performance in east and weat orientation is not consistent.

5.3.2 Comparative Annlyzis of Shading Performance

To tratuate the shading perfortance on the basis of set critetin diseussed andier a compantive antyia among the selected shading derices has been summarised in the folboring section. This study will help in ikentifying the effect of differant parimetets and corrchaion among parimeters.

5．3．2．1 Comparison among Horizonul Shading Devices

From sbove invertigation on influence of orientation，it was observed that horizontal shading devices were effective on windows at south orienntion than other orientations． At south otienarion，all three shading dericea were caprble to ahade maximum ere of window pane at mid day．Simubtion rexulta show that among the three horizontal shading devices，Shade H01 can ahade marimum 60% of the whole windoupane，Shade H02 an shade maximurn 53% and Shade H 03 an shade maximum $\mathbf{6} \%$ of the whole windowpine．

Table 5．11：Percentage of shaded area at different orientations by hotizontal ahading devices for $21^{\prime \prime}$ Murch．

$\begin{aligned} & \text { 膏 } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 知 } \\ & \text { 年 } \end{aligned}$	客	8	e	㫛	$\underset{\sim}{E}$	易	含	N	鲴	\＄	$\underline{\underline{E}}$	5	镸	\＄	ES	9	$\underset{\sim}{E}$
		\％	\％	＊	\because	\％	\div	9	\％	96	4	$\%$	4	4	$\%$	\because	＊＊	\％
Fast	H01	2	2	35	\＄7	－	＊	－	＊	－	＊	，	＊	－	＊	＊	＊	－
	H62	11	30	77	4	－	\pm	＊	＊	－	－	＇	＊	＇	＊	－	－	${ }^{*}$
	1103	11	D）	31	51	＊	＊	－	＊	＊	＊	－	＊	＊	＊	＊	－	－
Sounh 	1001	7	7	31	5	45	5	＊	－	＊	＊	＇	＊	＇	－	－	＊	＊
	1105	12	13	3	28	17	52	－	＊	＊	＊	＊	＊	＊	＊	－	＊	－
	1F03	17	22	21	33	， 4	4	－	＇	－	－	＇	－	＇	－	＇	＊	－
Sourt	J101	57	54	53	56	56	55	$6)$	53	5	57	54	55	52	50	48	42	38
	H20	45	4	47	51	5	5	5	\％	5	\cdots	4	45	12	4	\cdots	37	23
	H03	W	41	4	42	41	4	＊	4	4	\cdots	\times	43	5	31	38	3	28
South wes：	H01	＊	－	－	－	＊	＊	${ }^{+}$	5	$3 n$	41	M	73	2	17	15	12	40
	H02	＊	－	＊	＊	＊	＊	－	\underline{M}	4	33	23	17	13	${ }^{8}$	4	0	0
	7103	＋	＊	＊	＊	－	＊	＊	4s	85	30	2 A	21	17	13	12	7	＂
Weat	101	－	＇	－	－	＊	－	＇	－	－	82	41	\cdots	24	15	13	11	7
	＋109	－	－	＊	＊	－	4	－	＊	－	5	3	21	12	4	3	0	0
	F103	＇	＇	－	＊	＇	－	＇	－	－	4）	31	23	19	19	＊	7	＊

－Percentafe of thaded mea in mot taken into account mat the run doca not see the window．
From uble 5.11 it is observed that it enst，southenst，west and south－west orientations ill three shading daricea are oor effectize．Sometimes these three shading derices an shade up to 63% of the windor we but the efficiency drops frequentry．Considering all these limitations，in comparison amomp these three thorizontal shading deviocs，Shade

H01 is capable to ahade better than other tro shading devices at all frie orientations. Shade H01 performs better in protecting sobar ndiztion in comparison to other two shading deviecs.

Table 5.12 shows that at south osientation, Shade H01 an block 3411 watt soler madiation which is 54% of the total incident radiacion ($6,314 \mathrm{wsit}$). If it is compered with other two horizontal ahading deriess, it is found that Shade H02 can block 46% of the incident radiacion and Shade H03 can bloct $\mathbf{4 1 \%}$ of the incident madiation.

Table 5.12: Ammont of direct solar nadintion indident on windowpane at different orienations.

Oricntation	Shade 1301		Shade 1102		Shate H03	
	Shaud	Unshaded	Shaded	Unchaded	Shaded	Unthaded
	in Went	in Wrat	加Watt	in Whatt	in Wett	in Watt
Fest	1885	3761	2153	3764	2126	3761
South	2903	6114	34.39	6319	376	6325
Southeers	2420	5020	2759	5005	2856	5013
Sonth-mert	1693	3983	1960	3981	20185	3980
Wrat	1138	2553	1318	2554	1421	2558

Figure 5.29, Comprason of percentage of shaded area at south orientation by horizontal shading device for 21^{*} Murch.

Firgure 5.30: Comparison of percentage of shaded area at east orientation by horizontal shading deviect for 21^{*} March. ${ }^{15}$ (5)

Figure 5.31: Comparion of percentage of shaded area at south-east orientaion by borizonal shading devices for 21^{*} March. ${ }^{\text {it }}$ ")

Figure 5-32. Comparison of perentage of ahaded are at south-wet ofientaion by horizontal shading devices for 21"Mareh. ${ }^{16}$ is

Figure 533: Comparison of percentage of shaded area at west orientation by horizontal shading devices for 21^{4} March. ${ }^{165} 59$

Figure 5.34: Comparion of shading coelfrient of three horizontal ahading devices at diffetent orientariona

Although Shade H01 is more effective in compation to Shade H02 and H03, the shading performance of Shade f101 is not up to the mast It an not block atmost 50% of the tosal incident radiation. This huge rediation enters through the unshaded part of the window pane into the spice. So, horizontal projection of this Shade H01 is not enough to protee the window from the molar radiation propenty.

Findings

The invearigation shows that the horizontal shading device with leger ovetheng with respect to window height, shades more window wer and reduces heat gain than ather tgpe It indientes that projection depth of horizontal thading devices is the min detemining fector for shading the windon from direct solar radiation.

53.22 Compation among Vertical Shading Devices

From aforessid invescigation on influence of orientation, it was also obsenced that Vertical shating devices wete effecive on windows at souch-ast and anuth-west orimation. So firsity, the perfornances of the vertical shading derices tre cratured with seference to their performance at these two orientations

At south－east ind south－weat orientation，innost same chancter of performance of these verical shading devices has been observed．All three shading devices are capable to shade maximum arta of window pane at the time when the sun is just inted to cast or wert from sonth．Simulation resuls show that among the three vertial shading devices， Shade H0t can shade 53% of the whole windoupane，Shade H02 an shade 45% and Shade H03 an shadt 42% of the whole windowpine on in averige．

From table 5.13 it is observed that at east，south，west orientations all three shading derices ate not consistent in their performance．Sotmetimes these threx shading devices an protect almost 90% of the window are but the efficiency drops frequenthy to 15% ． Considering all these limitationa in comparison with theare three vertial shading devices， Shade V0t is eapable to shade better than ocher two shading derices at all five orientations．So Shade V01 gives better protection from sober ndintion in comparison to other two shading devices．

Table 5．13：Percenlage of shaded atez at difterent orientations by vertical shading derices fo： 21^{*} March．

	$\begin{aligned} & \text { 皆 } \\ & \text { 真 } \end{aligned}$	\％	$\stackrel{9}{8}$	$\underset{\underline{E}}{\underline{E}}$	是	$\underset{\sharp}{E}$	$\stackrel{9}{3}$	E	2	\％	$\underset{\sim}{\mathrm{S}}$	8	$\stackrel{9}{ \pm}$	罣	$\begin{aligned} & \underset{\sim}{2} \end{aligned}$	E	$\underline{8}$	$\underset{\sim}{8}$
		4	4	\because	7	$\%$	$\%$	9	$\stackrel{1}{6}$	9	5	$\%$	46	\％	$\%$	\％	＊	4
Eas：	vir	4）	\＄1	T	\pm	5	＊	＊	＊	＊	4	＊	4	－	4	－	＊	－
	va	＊	緼	4	\square	4	－	－	－	＊	＊	＊	＊	＊	＊	＊	＊	＊
	V03	5	42	9	5	¢	－	－	＊	－	4	＊	＊	＊	＊	＊	＊	＊
South ［ax	FOL	46	5）	50	3	73	11	＊	＊	＊	＊	＊	＊	＊	＊	＊	－	－
	V02	41	\cdots	4）	4	＊	01	＊	＊	－	－	＇	－	－	－	＊	\cdot	－
	FBS	43	32	30	4	＊	41	＊	＊	－	4	＇	－	－	＊	＇	＊	－
South	Yal	81	87	6	\cdots	\＄1	B3	${ }^{1}$	＊	\％	57	19	\＄5	E5	T1	0	37	\cdots
	V¢0	\％	a）	\pm	83	71	3	0	65	$\overline{7}$	11	7	0	83	3	6	53	21
	vos	151）	\％	c	6	73	5	51	4	65	73	72	5	（0）	t0）	100	100	101
South ＝	V0i	－	－	＊	＇	－	－	－	9	π	58	55	4	4	45	4	4	53
	V02	－	－	＊	＊	＊	＊	＊	M	\＄	42	4	3	35	\cdots	\cdots	＊	\＄1
	503	－	＊	－	＇	－	－	－	50	51	5	45	35	4	3	9	32	41
Wert	701	＊	＊	－	－	－	－	－	＊	－	\cdots	H	4	42	40	27	46	13
	Vm	，	－	＊	＊	＊	＊	＊	＊	－	©	4	50	40	K	31	3	36
	v03	－	－	＊	＇	－	＊	＊	＊	＊	76	4	＊＊	3	m	72	t．	14

[^4]Table 5.14: Amount of direct acolar radiation incident on window pane at different oritnacions.

Orientation	Stade ${ }^{\text {rob }}$		Sharle V08		Shade V 03	
	Shaded	Unthaded	Shaded	Unthoded	Shaded	Unshaded
	in Wert	mu'ztt	m Wett	in Wati	in Whtt	in What
Ein	1248	3760	1461	3766	1443	3763
Wouth	1102	6319	1783	6326	1336	6318
South-rat	1493	5015	1962	5010	1998	5013
South-mbit	1022	3984	1465	4364	1492	4364
West	701	2556	906	2556	848	2556

Trable 5.14 shows that at south-cest and wouth-west orientition, Shade V01 an pretent abmost 70% of the tota! incident matiation. If it is compared with the other tro vertical shading derikea, it is found that Shade V02 can resist $\mathbf{6}-65 \%$ of the incident ndiation and Shade V03 an pritent $60-65 \%$ of the incident mdiation.

Figure 5-35: Comparison of perenage of shaded ates at elst oriencation by vertical shading devicen for 21^{*} March. ${ }^{14 \%}$ (])

Figure 536: Comparison of percentage of ahaded area at sowtheast oientation by vertical ahading devires for $21^{\text {K }}$ March. ${ }^{1659}$

Fipure 5.37: Comprison of percentage of shaded area at south orientation by verical shading device for $21^{\prime \prime}$ March.

Figure 5.3.: Compnision of percenrage of shaded aren at sounh-west orientation by verical shading deticen for $21^{\prime \prime}$ March. ${ }^{165)}$

Figure 539: Comparison of percentage of shaded tren at west orientation by vertied shading deriocs for 21° Murch. ${ }^{143 s)}$

Fipure 5.40: Compurizon of shading eneficient of three vertiol shading devices at different orientations.

Although Shade V01 is more effective in comparion to Shade V02 and V03, the performance of Shade V01 is nor up to the mart Actualty it can not block $\mathbf{3 0 \%}$ of the tool incident radiation. This mediation enters through the unshaded par of the window pence into the rpace. So the depth, spring and angle of the vertieal fins of this Shade VO1 are not enough to protect the window from the moler radiation propert.

Findings

The invesigation shows that the vertial shading device with luger fin depth ahades mote than other selected vertial darices. It indiates the role of effective depth of shading devices (disunce from windore face to outer face of fins) inchuding the $g^{2} \mathbf{p}$ berween them on shading performance.

5.3.23 Comparison among Composite Shading Devices

Firom ertier invercigaion on intluence of ocientation, it was observed that composite thading devices were effecive on windorer at south, southerest and south-wear orientation. So the performance of the comporite shading devices is evatuated aith refierence to their perfornance at these thrit oriennations.

At woutheast and south－west orientation，the anme chancter of performance of these composite shading devices has been observed Simubaion resulrs show that among the three composite shading devices，Shade C01 can shade maximum 96% of the whole aindoxpane Shade CO2 an shade maximum 83% and Shade C03 can shade maximum 67% of the whole aindoxpane．The percentage of shaded window erea decreases when sun moves to cast or wet from south．Table 5.16 dhows that at south－zest and south－ west orientation，Shade C01 an block almost 80% of the total incident tadiation．If it is compared with the other roo comporite shading devices，it is found that Shade C02 an block 65－70\％of the ineident madiation and Shade C 03 an also block $60-65 \%$ of the incident radiation．

Table 5．15：Percentage of shaded area at difterent orientations by composite shading devives for $21^{\prime \prime}$ March．

$\begin{aligned} & \text { 冕 } \\ & \text { E } \\ & \text { 菅 } \end{aligned}$	$\begin{aligned} & \text { ? } \\ & \frac{1}{4} \end{aligned}$	§	曻	宾	8	$\stackrel{B}{E}$	$\stackrel{5}{i}$	8	20	$\underset{\sim}{9}$	3	雨	$\frac{8}{7}$	缶	\％	总	3	長
		\％	41	4	\％	$\stackrel{1}{7}$	＊	$\%$	9	$\%$	\％	\％	\cdots	7	$\%$	9	4	4
Fent	$\mathrm{CO1}$	c	4	7	07	－	＇	，	－	－	＇	－	－	－	－	－	－	＊
	C02	51	52	5	7	－	－	－	－	F	，	－	－	－	－	－	－	－
	CO3	35	4	54	7	－	－	，	－	＇	\cdot	－	－	－	－	－	－	－
Sounth ex4	CO 1	5 m	51	\＄	4	35	5	＊	＊	4	＇	－	＊	＊	－	－	－	－
	CO2	46	48	4	52	51	3	＊	＊	4	＊	＊	＊	－	＊	＊	＊	＊
	COS	53	37	37	38	4 4	6	＊	－	4	＊	＊	＊	－	＊	－	－	＊
Sonuth	C 01	1（1）	9	＊	11	91	\％	m	m	［15	－7	¢）	9	In	101	101	107	171
	CO 2	80	\＄	12	＋	74	7	0	ω	5	73	m	＊ 5	11	\％ 5	10	100	1 m
	cos	109	30	9	11	69	57	51	5	67	6	9n	4	3	10）	101	107	10
South neat	001	＊	＊	＊	－	，	＊	－	＊	\cdots	6	54	57	5	53	57	65	57
	002	＊	＊	＊	＊	＊	＊	＊	63	6	5	48	4	46	40	41	31	43
	06	＊	－	－	＊	＊	＊	＊	67	51	43	35	35	39	4	31	41	50
$\mathbf{W}^{\prime} \mathbf{c s +}$	001	＊	＊	＊	4	＊	＊	＊	－	＊	＊	0	76	${ }^{(1)}$	55	＊${ }^{1}$	＊	$\mathbf{5}$
	002	＊	＊	＊	＊	＊	＊	＊	＊	＊	0	4	53	4	43	97	31	21
	（0）3	－	－	－	＊	＊	＊	＊	＊	－	x	51	\％	\＄2	37	3	31	21

－Percentage of shaded area in not biten into mccount as the aun thocs oot nec the mindow．

Table 5.16: Amment of direct molar radiation incident on windory pane at diftetent orientations.

Orichtatiom	Shade C01		Shade CO2		Shade CO	
	Shader	Unatraded	Shaded	Unshamed	Shaded	Unakaded
		m What	in What	in Wert	in Whast	in Wett
Heat	900	3764	1255	3762	1342	3767
Soruth	364	6324	1211	5843	1180	6.319
South-ert	1461	5015	1697	5000	1869	5025
South west	788	3986	1159	3985	1388	4189
WFen	\$31	2556	780	2558	501	255\%

Figure 5.41: Comparison of pereentage of shaded ares at cast orientation by composite shading derices for 21^{*} March. ${ }^{1 \% 3)}$

The perfomence of comprosite shading devices is quite satisfatery at routh orientation They on thade up to 100% of window area. Although all three shading devicen en shade up to 100% of windory mees, only Shade C01 is consistent in its perfomence througtrout the day. It is deaty evident from figure 5.43. At south orientaion, Shade C01 an block 5960 Wan, which is etmost 95% of the incident radiation (6324 W/an).

Figure 5.42: Comparison of percenuge of shaded area at south-enst orienacion by composite shading devices for 21^{*} March. ${ }^{16}$ in

Figure 5.43: Compatison of percenuge of shaded aten at south oniencaion by composite shading derics for $21^{\text {T }}$ March.

Figure 5.44: Comparison of percentage of shaded area at south-west orientation by composite shading derices for 21^{*} March. ${ }^{\text {(6) }}$ (1)

Figure 5.45: Comprison of percentage of shaded area at west orientation by composite thading devices for 21" March. ${ }^{1 / 4} 19$

From able 5.15 it is observed that at east and wess orientations all three shading deriecs are not consiatent in their performanec. Sometincs these thrte shading devises an protect almost 90% of the mindow urea but the effiriency drops frequently to 15%. Considering all these limitations, in compariton atrong these three composite ahading
devices Shade CO1 in able to shade betret than other mo shading derices at all fre orizntations. So Shade CO performs better in protecting molar medintion with compared to other two shading derices.

Fipure 5.46: Comparison of shading coeffieient of three composite shading devioes at different orienations.

Athough Shade C01 iv more effecive in comparion to shade C02 and C03, the performance of COl is not upto the mark at southeast and south-west. It an not block utnost $20 \%-30 \%$ of the total incident madiation This nadiation enter through the unshaded part of the window pane into the space. So the depth, npacing or angle of the vertical fins and horirontal overhang of this shade C01 can be modified to protect the window from the solar madiaion propenty.

Findings

The investigation thows that the composite thading devices are signifienth efficient at south oriennatioas. The shading device with larger overhang and fin-depth and smalker spacing beracen fins performs berter than the others. It indiceres the role of depth and spacing of fins and overhang on shading performance. With same deph and apacing of fins and overhang, shading devices are not as effecrise at south-east and south-west lize sowth orientation. Here angle of fins may help to cut off the direct radiation at south-elst and south-wrest.

5.4 Conclusion

The influences of orientations on performance of vanous shading devices are now clearly evident. It is also evident that horizontal overhangs are effecrive on facades facing south, verrical fins on windows at cast and west onientation and composite shading devices are effecrive on whodows at south-cast and sourh-west. It has been also observed that vertical fins are not effecrive at east and west orientation when the sun is in east or west side.

After invesigaring the perfornance of commonly used shading devices it could be stated that the design of the shading devices are need to be explored for desired performance. The results of both the studics indicate that depth and spacing of overhangs and depth, spacing and angle of ventical fins has significant effect on shading performance. Modification of these parameters may make the shading devices effective in different orientations at the cricical periods.

References

Bamgladebs Natronal Bralding Codes (1993), Housing and Building Reacatch Inscioute and Bangladesh Standards and Testing Insritute, City Art Press Lhl, Dhaka.

Lechner, N. (2001), Ieating Cooling I-igbing Design methods for Architeck, John Willey \& Sons, Ince $p .213$

Rojuhan Unnyayan Konnipatbya (RA)CK) (1996), Building construction rulcs (Imarat Niman Bidhimala), building regulations for bulldings in the greatet metropolitan area of Dhaka

Shueller, W. (1977), High Rise Simatmes, Jobn Wiley \& Sons, NY.

Sun, P. K. (2005), 'Simulation and Modeling', In Proceedings of National Conference in RAFП-2005.
www.sese.uwa.edu.au/_data/pagc/96394/cuylor 2002.pdf, accessed at 10 am on April 24, 2097.

CHAPTER: SIX
PARAMETRIC STUDY FOR OPTIMUM SHADING

PARAMETRIC STUDY FOR OPTIMUM SHADING

After investigating the selected commonly used shading devices, it is found that the performances of these selected shading devices are not consistent through out the critical period of the day. Heat gain is directly proportional to the arca of glass exposed to solar radiation and, therefore, unshaded glazed areas permit a large and rapid heat gain. Solat heat gain can be controlled effectivcly by oprimising shading. To achieve optimum shading, the design strategy of shading devices is needed to explore further.

An investigation through paramerric study to explore the strategies for oprimum shading is presented in this chapter. Paramene study allows stady of various specific alternatives with reference to performance of the model and choosing the best one. Series of parametric studics are performed where different parameters of shading devices ane subjected to adjustment. Only one parameter is changed at a cime in order to determine the relative influence of each. On the basis of the investigation and analyals that has been carried out in the previous chapter, some parametets have been chosen as variables to investigare through computer simulation for opumum shading. The simulation program 'Ecotect' (version 5.20) has been used for this parameric srudy.

6.1 Parameters for Oprimum Shading Aralysis

Before scaring the paramerric study, a set of parameters are considered as variables and some parameters are consideted as constant. Variables and constancs are considered separately for horizontal, vertical and compositr shading deviecs. Variables that have been taken into consideration as different alternatives for sirmulations are given below:
A. Cases with horizontal shading devices:

- Depth (D) of horizontal overhangs
- Side offset (W) of horizontal overhangs
- Minimizing the effective height (II)

Section

Jilcvation

Figure 6.1: Schemaic diagrams showing parameters of horizoncal shading device.

Secrion

Elcyation
Figure 6.2: Schemaric diagrams showing parameters of horizontal shading device.
B. Cases with verrical shading devices:

- Depth (D) and spacing (S) of vertical lins
- Horizontal angle of yerical fins (0)
- Hxtension (X) of verucal fins above window

Plan

Plan

Secuon

Figure 6.3: Schemaric dagmms showing different parameters of verical shading device.
C. Cases with composite shading devices:

- Depth (d) and spacing (h) of horisontal overhangs
- Depth (d) and spacing (w) of vertical fins
- Horizontal angle of vertical fins (6)

Figure 6.4: Schematic diagrams showing different parameters of composite shading derice.

6.2 Simulation Day and Time for the Parametric Study

The consideted day for simulaton is $21^{\text {th }}$ of March (Day: 80). The time period is considered from 0900 to 1700 . The considerations behind selecing the day and time period were mentioned earker.

6.3 Parametric Modelling

Models have been developed for the paramerric study by Fcotect'. 'Ihe following aspects have been considered for the parameric movels:

- The room size for simulation model is $6000 \mathrm{~mm} \times 6000 \mathrm{~mm}$, which is considered as located in an intermediate floor of a high-rise building. The room size is taken from the typical high-rise column grid.
- A fixed window size ($5400 \mathrm{~mm} \times 2400 \mathrm{~mm}$) has been considered with single glazed clear glass for the paramerric study. 'The window width is detemined by the column span as it is assumed that the window covers the whole span between two columns. The maximum window height found in the field survey is taken as the height of the windlow for the parameric scudy. Different shading devices are arrached with it for simulation study.
- Fot casc of calculation, thickness of the shade has not been taken into account and a study plane at the level of the exterior surface of the window wall has been considered.

In order to evaluate the shading performance of shading devices in reducing solar heat gain a base case sinuarion is established by studying the unshaded window (without shading device) during the crincal shading period of the year at different omentations.

6.4 Paramecric Srudies for Horizontal Shading Devices

From case studies and literature reviews it has been observed that horizonel shading devices are effective at south oricntation. Through parametric study an attempt has been made to find out the size of the horizontal overhang for optimum shading at south oniencaion only. 'Ihree parameters (overhang depth, side offset of horizontal overhangs and minimizing the effective height) ate consideted as viriables for this parametric study.

Only one parameter is changed at a ime in order to detemninc the effect of each parancter on the shading performance. The parameric study is started with a cettain value of paramerers and then an increase in valuc of parameters has been considered to assess the impact of parameter on the shading performance. In all the cases, the shading performance is increased to a cerain level with the increase in value of parameters. After that, the shading performance is not increased any more with the increase in value of parameters. This value of parameter is considered as opumum value for makimum shading. The results of this study are summarised in the following sectons.

6.4.1 Effect of Depth of Horizontal Ovethangs

The paramerric study is started for horizonal shading devices of varyng depth, started from 750 mm up to 1350 mm from the exteriot sutface of the wall, over the window (moxdel shown in figure 6.5). In each step impact of 150 mm increment has been scudied.

Figure 6.5: View of the model with horizontal overhang (1050mm depth) used for patamerric study for $21^{\text {th }}$ March (Fcotect output).

The pereminge of ahaded are of the window varies for difterent depths of overhang． Table 6.1 shows percentuge of shaded ateat for difterent overhang depth．The percentage of shaded area is increased with the inerase of shading depth up to some extant．For 750 mm depth，in shades maximum 74% of the window area and for 900 mm depth it ons shade maximum 88% of the winchow area．For 1050 mm depth，it shadea maximum 100% of the window ares and after that the pereminge of shaded arer is not inereased with the increave of chadinf denth．But athough for 1050 mm depth，it shades maximum 100% of the winctrow aten，the percentage of shaded area is decreased along as rime passer before and after mid day（shoran in figure 6．6）．

Table 6．1：Percentige of shaded ares by horizontal overhangs with different depth for 21＊March．

Dų¢b	E	8	空	g	$\underset{\underset{y}{2}}{\underset{\sim}{2}}$	$\stackrel{\Phi}{=}$	$\underset{\sim}{E}$		$\underset{\sim}{\boldsymbol{y}}$	$\begin{aligned} & 5 \\ & \stackrel{t}{2} \end{aligned}$	$\%$	$\stackrel{\text { 务 }}{\stackrel{2}{2}}$	会	$\stackrel{s}{\stackrel{\rightharpoonup}{2}}$	$\underline{ \pm}$	\％	$\underset{\sim}{E}$
In mm	4	\％	＊＊	$\stackrel{\square}{\square}$	0	$\%$	！	\％	9	\％	\％	4	9	\％	¢	\％	\％ 4
750	57	58	43	45	67	47	74	6	88	6	85	＊）	60	53	50	＊ 0	31
900	ω	\cdots	75	7	7	＊3	Et	W	E3	7	74	\％	4	W1	54	43	27
1050	73	78	ET	87	72	5	10	0	9	0	m	7	\％	6	59	$4{ }^{4}$	31
1200	74	M）	15	30	72	5	99	W	94	2	－ 7	12	7	6	60	45	3
t350	7	\％1	$\overline{\text { M }}$	67	\％	\％	∞°	67	9	7	E5	I2	74	70	∞	42	2

Figure 6．6：Pereentape of ahaded area by horizontal overhangs with different depth for 21＂March．

Frown table 6.2, it is evident that more energy is anved with the incresse of shading depth, which is not atwars applinable e.g. energy saving performance of 1050 mm device is same to 1200 mm and 1350 mm device. Hiphest percenage (81%) of energy is anced by the device having 1050 mm to 1350 mm depth, while the kouest wias presented by 30ireber device, which ans onfy 61%

Table 6.2: Shading cocfficient by horizontol overhangs with different depth for $21^{* \prime}$ March.

No.	Shading depth	Wieh ahade	Without shade	Shating Cocflicient
	in mm	in Watr	in Wiat	
1	750	2763	6327	0.39
2	$9 \times$	1673	6377	0.26
3	1050	1202	6327	0.19
4	1200	1185	6327	0.19
5	13.30	1179	6327	0.19

Figure 6.7: Shading coxeflicient by horivontal avethangs with different depth for 21^{*} March.

From fapure 6.7, it has been observed that the mio of total energe recived between shaded and unshaded situation in lowest for 1050 mm to 1350 mum depth of shading device, while it is highest for 750 mm depth. The 1050 mm devier shown lowest shading cocthaient 0.19, which is equal to that of 1200 mm and 1350 mm derice. For 1050 mm depth the ahading device tracher the kroret shading coefficient and after that it goes
same for 1050 mm and 1350 mm depth. 'The lower the shading coeflicient is better against solar radation gain.

Findings:

For 1050 mm depth, horizontal overhang shades maximum window atca and shows lowest shading coefficient. So, for 2400 mm window height, optimum depth of overhang for maximurn shading is 1050 mm which is $7 / 1 \mathrm{G}$ of window height.

6.4.2 Effect of Side Offyet of Horizontal Overhange

From the aloove investigation, it has been observed that honzontal shading device with 1050 mm depth can provide maximurn shading. After that, further inctoase in depth has no sipnificant improvement to increase shading area. To improve the performance of 1050 mm depth device at morning and afremoon, the effect of side offset of horizontal overharge from window edge is studicd. The parametric study is staterl for horizontal shading devices with varying side offset, started from 300 mm up to 1200 mm (model shown in figure 6.8). In each step 300 mm increment has been considered

Figure 6.8: View of the model with horizontal overhang (1050 mm depth) with 1200 mm side offset used for parametric study for $21^{\text {st }}$ March (Ecotect oupput).

The percentuge of shaded atre of the uindow varies for difterent side offset of oremang． Thble 6.3 belosy shows percentage of shaded areas for different aide offict．The percenage of shaded sres is inereased with the increase of side offset．for 1200 mm depth，it shades 91% of the windrow aren at 9 am，which is 18% higher than that of without aide oftsee of 1050 mm device．liot 1050 mm depth，it shades 84% of the window＇ area and after that，the percentage of shaded area is decreased as cime passes（shown in fegure 6．9）．At 5pm it can shade 44% of the winghat arco，which is 13% higher than that of without side offset of 1050 mm device．

Table 6．3：Percentage of thaded area by horizoncal overtang（ 1050 mm depth）with different side offert from windowe edge for 21^{*} March．

Side Oftret	8	官	容	¢	总	兰	星	－	価	\％	E	8	鲁		$\stackrel{\text { E }}{\underline{6}}$	E	
in mm	${ }_{4}$	4	－	\％＊	\％	3	$\%$	${ }^{\circ}$	in	\％	＊＊	5	\％	\％	8	\％	\％
0	75	7	61	ET	92	93	1（4）	＊	＊	6	S	79	5	6	59	41	31
3115	刀	W	W	73	94	101	1111	\％	交	\％	第	14	－1）	73	5	44	13
600	22	07	93	क）	\％	7	101	4	101）	9 4	92	69	\％	77	7	53	36
900	＊	W0	4	빼	970	（1）	F	30	1（1）	（1）	53	54	벙	E1	73	56	\＄1
1203	91	72	玺	को	9	100	76）	Itx	7 7 （1）	LTIF	\％	93	52	4	76	42	4

Figurc 6．9．Pereentage of shaded area by horizontal orecharigs with different side offset from window rdse for $21^{\prime \prime}$ March．

Findings:

For 1200 mm side offiet from window edge, horizontal overhang shades maximum window arey So, for 2400 mm whon height, optimum side offset of orerhang for maximum shading is 1200 mm which is $1 / 2$ of window height. 900 mm side offset may also be used.

6.4.2 Effect of Minimizing the Effecive Height of the Window

From the above investigation it has been obsecved that horiontal shading device with 1050 mm depth with 1200 mm side offset from window edge can provide maximum shading.

Figure 6.10: Vicw of the model with horizontal overhangs (525 mm depth) with 600 mm side offset used for paramerric study for $21^{1 t}$ March (Ecotect output).

Afrer that, to invesigate the impact of the effective height of the window on the shading performance of the devices, two oprions have been studied. At first oprion, wwo overhangs are considered, one at lintel level and another at mid pane of the window. The depth of both of the overhangs is 525 mm , which is half of the prevous depth ($105(\mathrm{~mm}$) with 600 mm side offset from windew cdge (model shown in figure 6.10). At second option, four overhangs are considered, one at lintel level and the other three are distributed evenly at 600 mm intervals. The depth of both the overhangs is 262 mm
inches，which is half of the provixus depth（ 525 mm ）with 300 mm wide offset from windons edge（model shown in firgure 6．11）．

Fipure 6．11：Virw of the mexdel with horivonal overtange（ 262 mm depth）with 300 mum side offart used for paranterie study for 21^{*} Manh（Iizotect output）．

Table 6．4：Percentage of shaded area by horizontal overhangs with different effective heights of the windorw for 21^{*} March．

Encth	晨	8	曷	易	$\underline{8}$	$\stackrel{9}{\square}$	\％	8	官	祭	旁	\％	\％	3	P	安	\cdots
in mm	\％	\because	$\stackrel{*}{6}$	\％	\because	5	＊	\pm	\because	4	$\%$	6	7	$\%$	$\%$	\％ 6	\％
1060	91	92	9月	핵	\％	191	1111	97	101）	1（1）	5	5	\％	${ }^{4}$	\％	12	4
525	3	0	7	97	97	\％	（6）	7	1（1）	\％	\％	57	53	（5）	8	72	67
262	9	＊＊	\＄	）（\％）	15	7	（ ${ }^{(1)}$	I（5）	101	3（\％）	V7	9	9 9	\％	97	ES	82

The perecntage of shaded area of the windors increases with minimiring the effective height of the window．Table 64 shoos percentage of shedet areas for different options． For first opion，it shades 95% of the vinckw arra at 9 am and 67% of the window area at 5 pm while for scoond option，it ahades 98% of the window arez at 9 am and $8 \% \%$ of the window mee at 5 pm At 5 pm the percentage of shaded ater for second option is 15% higher than that of for first option．

Figure 6.12: Percenage of shaded are try horizontal overhang with different effecive heights of winckw for 21^{*} March.

From table 6.5 it is evident that more energy is aved with minimizing the effective height of the window. Highest percentage (95%) of energy is suved by wecond option which is 4% higher than that of first option. The ratio toral energy recxived betaren shaded and unshaded situation is krwest for second option In the second option the lowest shading co-eficient is 0,05 . The lower the shading co-efficent is better aginst solar mdiation gain.

Table 6.5: Shading coefTecient by hotizontal overtangs with different depth at different height for 21" March.

No	Effective height of the vinutne in mum	Wish thade in Wiat	Without ahade in Wint	Shating Coneftrient
1	2400	714	6327	0.11
2	1200	582	6327	0.09
3	600	330	6327	0.05

Findings:

Minimizing effecrive height of aindox is beneficial to improwe the petformance of shading derice futher. 'This could be done by using neveral overthangs on the window' pane instend of one lape overhang.

6.5 Pammerric Studies for Vertical Shading Devices

Fiom case sardies and litenture mevicas it has been observed that vertial shading devices are effective at west and enst orientation Through paramerric aridy an attempt has been made to find out the size and grometry of the vertical fins for optimum shading at cust and weat orientation only. Parnmetric atudy is done for optimum shading at west orientinion. As sun path is symmetrical about 12 prim same sotution will be applicable for ast orientation. Three paramerets (depth and apacing of vertical fins and angle of vertical fins) art considered as varinbles for this patametric study. 'The results of this study are summarised in the following sections.

6.5.1 Efrect of Depth and Spacing of Vertical Fins

'The panmetric study has been started for vertical shading devicea of narying depth from 600 mm to 1200 mm from the exterior surface of the tall , over the window (model showen in figure 6.13) while the spacing berween the fins in comsidered 25 consunt In each step impact of 300 mm increment has becn obscrved.

Figure 6.13: View of the model with sertial fins (600 mm depth at 600 mm intervil) used for parametric study for 21" March (tixutect ourput).

Table 6．6：Peroentage of shaded area by vertical fins with different depth fot 21＂March

Depph	S	E	空	安	E	$\underline{8}$	${ }_{6}$	＋	E	号	E	7 7	E	g $\underset{7}{3}$	E	豈	它
int mim	9	\＄	4	\％${ }^{2}$	\pm	4	\％	\％	$\stackrel{*}{*}$	4	\％	4	5	$*$	4	8	4
600	＊	－	＊	－	－	＊	＊	＊	＊	\cdots	b1	＋4	57	31	2	21	5
900		＊	＊	＊	＊	＊	＊	＊	＊	70	72	4	51	4	32	77	14
1200	＊	＊	＊	＊	＊	＊	＊	＊	－	71	72	7	43	51	41	36	34

The percentage of shaded area of the aindow naries for different depths of fins Tnble 6.6 shows percentage of shaded arges for different fin－depith．The percentape of shaded area is increased with the increase of shading afoth but not very significantly．for 600 mm depth，the device shades maximum 70% of the window area and for 900 mm depth it enn abso shade maximum 70% of the window aren and for 1200 mm depth it an shade maximurn 71% of the windore aree．Fior 600 mm 900 mm ，and 1200 mtm depth，the minimum percentape of shaded arez is 9% ， 14% and 24% respectireh．So，onk incrensing of depth of fins is not effective to shade the window from solar radiation．

Figure 6．14 Percentape of shaded are by verital fins with different depth for 21 ＂ March．＇

[^5]
Findings:

The percentage of shaded aren is increased with the increase of shading depth but not very significanty. So, only increaing of depth of lins is not effective to shade the window from solar ndiation.

6.5.2 Effect of Angle of Vertical Fins

firom the above investigation it has been observed that for verical ahading onty increasing of depth of fins is not effective to protect the window from solat radiation. After that the increase in depth of fins is not further effecrive to increase shading area. 'To improve the performance of vertical devices, the effect of difterent angk of rerical fins with window nurface is sudied. The parmetric study is done for 600 mm , 900 mm and 1200 trin decp verical fras with 30° and 45° anglea with the line perpendicular to the uindow surface (model shown in figure 6.15, 6.16).

Figure 6.15: View of the model with vertial fins (000 mm depth 30° slanted) used for panmetric study for $21^{\prime \prime}$ March (Teotect output).

Figurt 6．16：View of the model uith vertical fins（000mm deph 45° shanted）used for parantetric study for $21^{\prime \prime}$ March（Theotect output）．

Table 6．7：Percentage of shaded area by vertial shading devices with different depth und angle for 21＂Merch．

$\begin{gathered} \text { G E } \\ \text { E } \\ \hline \end{gathered}$	$\begin{aligned} & \text { N } \\ & \mathbf{k} \end{aligned}$	E	옹	$\underset{ \pm}{E}$	e	E	$\stackrel{y}{4}$	各	突	莖	S	$\underset{y}{5}$	3	g	$\underset{\sim}{\underline{\sim}}$	E	¢	\underline{E}
		خ	＊	\％	5	9	\％	：	\％	\％	${ }^{\text {b }}$	$\%$	＊－	；	7	$\stackrel{\square}{*}$	\％	\because
600	30°	－	＊	＊	＊	＊	＊	－	＊	＊	m	4	${ }^{0}$	7	73	70	4	34
600	45＊	＊	＊	＊	－	＊	＊	－	－	＊	易	47	W	11	N	5	F	33
900	30	－	＊	＊	－	－	＊	－	＊	＊	${ }^{3}$	13	W	n）	m	${ }^{1} 1$	11	87
900	45°	－	＊	＊	＊	＊	＊	＊	－	＊	${ }_{4}$	\＄	－1	9	92	9	97	97
1200\％	30°	－	－	－	＊	－	＊	＊	＊	－	＊）	83	5	87	5	\％	11	\％ 5
12000	45°	＊	＊	＊	－	－	＊	＊	－	\bullet	\％	Δ	＊	\＄${ }^{\text {d }}$	क	9	53	\star

The pereentage of shaded area of the aindow varies for diffarent depths of fins with different angle．With changing the angle from perpendiculat to the window surface the percentage of shaded ater of the windkry is incrased significonty．lable 6.7 shows perventige of shaded areas for different findepth with difterent angles．The highorst
performance is seen by vertial fing, 900 mm depth with 45° angle. For 900 mm depth with 45° angic pertical fins, in shades maximum 97% of the window ares and afier that the percentage of shacted aren is ner incrensed with the increase of ahading depth. The Performance of 900 mm depth with 30° angle vertial fins is very ckrse to that of 900 mm depth with 45° angle vertical fins.

Figure 6.17: Pereentake of shaded area by vertical shading devices with different depth and angle for 21^{*} Murch. ${ }^{16 m}$

Table 6.8: Shading coefficient by vertical shading devices with different depth end anger for 21^{-1} March.

Ne.	13epth		With ahade	W'ttrout shade	Shading cocficient
	in mm	Angre	戒 Wrat	in Wian	
1	600	30	564	255	0.22
2	60)	45^{*}	3 m	2558	0.15
3	900	30^{*}	444	2558	0.17
4	900	45°	346	2558	0.14
5	1200	30^{*}	439	25.58	0.17
6	1200	45^{*}	347	25.58	0.14

Prom table 6.8, it is evident that more enengy is saved with the increase of shading depth, which is not atuyss nppticable e.g energy saving performance of 900 mm depth with 45°
angle verical fins is same to that of 1200 mm depth with 45° angle verical fins. Hipheat percentage (86%) of energy is saved by the devices hating 900 mm depth with 45° angle verical fins, while the bowest is presented thy 600 mm depth with 30° angle vertial fins, which is only 78%.

Figure 6.18 Shading coefficient by vertical shading devies with different depth and *ngle for 21^{*} March.

Findings:

For 900 mm deprth, werical fin at 45° angle with the line perpendiculat to the window surface, athades maximum window are and thows loweat shading coefticient. So, for 600 mm spring, optimum depth of fins for maximum shading is 900 mm which is $3 / 2$ of spacing berween fins.

6.5.3 Effect of Extending of Venical Fing above Window

Firom the abowe invertigation it has been observed that for varial shading incrensing of depth and angle of fins is effective to proceet the uindes from solar radizion. After that the inerase in depth and angle of fins is not further effective to increase shaded area. To improve further the performsnce of vertical denices, the effect of extending of vertical fins abowe window is studied for 900 mm depth with 45° angle vertical fins. The pramerric study is atared for vertical shading devices with ançing extension of verical
fins above winderov，started from 150 mm to 600 mm （model shown in fipure 6．19）．In each step 150 mm indroment has been considered．

Figure 6．19：View of the model with verical fins with 600mmentention sbove windsw used for prometric study for 21^{10} March（Ficotect ourput）．
＇The percentage of shaded are of the window＇satice for diffetent extension of verical fins sbove window．Tiable 6.9 thowe pereentage of shaded tetes for different extersion of vertical fins abowe window．The higheat performance is seen by veriogl fins with 600 mm extension above window，which shadea commantly 100% of the window atea．

Table 6．9．Percentage of shaded area by verical firs with varying extension of venical fins abone window for 21^{*} March．

Deph	E	$\begin{aligned} & \text { 最 } \end{aligned}$	突	en	$\underset{\underset{\Xi}{\leftrightarrows}}{ }$	总	呙	즉	$\underline{5}$	$\underset{\sim}{E}$	$\underset{ \pm}{5}$	8	E	$\stackrel{\text { Q }}{\sim}$	g	단	$\underbrace{}_{ \pm}$
En man	－	46	\％	\％	\％	9	：－	＊	46	\％	\％	$\stackrel{\square}{6}$	\％	36	\％	4	©
150	${ }^{*}$	＊	＊	＊	－	－	＊	＊	＊	9）	93	＊	\cdots	7	\％	7	101
300	＊	＊	＊	＊	＊	－	－	＊	＊	3	\＄8	\＄	9	（10）	1（1）	111）	107
450）	－	＊	＊	－	－	－	＊	＊	－	9	$1(1)$	t（0）	1（0）	${ }^{2} \mathrm{Fl}$	$1{ }^{10}$	14	115
（\％）	－	－	＊	＊	－	－	＊	－	＊	（1）	5010	（1）	（1）	（ti）	（ii）	jin）	107

[^6]

Figure 6.20: Percentage of shaded area by verical fins with varying entension of vertical Lins above window for 21^{*} March. ${ }^{1690}$

From table 6.10 belour, it is erident that more energy is sured with different extension of vertical fins abowe windkrs. Highest procencare (99\%) of enerfy is naved by the draicer

Table 6.10. Shading coefficient thy vatical fins with varing extension of vertical fins sbove window for 21^{-2} March.

No.	Jxtersion	Writh shatic	Without shade	Shating Coclficiont
	in mm	in W'st?	in watt	
1	150	218	2588	0.07
2	301	132	25,8	005
3	450	67	2588	0.03
4	600	32	2558	0.01

Findings:

 shows hrwerl shading coefficient. So, for 600 mm spacing optimum extension of vertical fin abore window for maximum shading is 600 mom, which is equal to the apring berween fins.

6.6 Parametric Studies for Composite Shading Devices

Case studies and literature neviews so fat done, teveal that composite shading devices ate effective at south-east and south-west orientation Through this patametric study an attempt has been made to find out the size and geometry of the horizontal overhangs and the vertical fins for optimum shading at south-cast and south-west oricntation only. Parametnc swady is done for optimum shading at south-west orientation. As sun path is symmetrical about 12 pm , the same solurion will be applicable for sourh-east orientarion also. Two parameners (depth and spacing of horizontal overhang and vertical fins and angle of vertical fins) are considered as variables for this parametric soudy. The results of this sudy are summarised in the following sections.

6.6.1 Effect of Depth and Spacing of Hotizontal Overtangs \&e Vertical Fins

The paramerric srudy has been done for composite shading devices of varying spacing of horizontal overhangs and vertical fins, while the depth of the fins and overhangs is considered as constant. As composite shacting devices are combination of horizontal overhangs and verical finy, spacings of borh devices have impact on the shading performance of composice shading devices.

Figure 6.21: View of the model wich composite shading device used for parametric study for 21^{31} March (Ecotect output).

Two options have been studied．At first option spacigg of verizal fins is considered as constant along with the depth of therizuntal everthangs and vertical fins；only spacing of horizoninl overhungs is a veriatse．The prometric atudy is done for 600 mm and 1200 mm spacing of horizontal overtangs．Ae second option，spring of horizontal overhangs is considered as consmat along with the depth of horizonral owethanges and verical fins， only spacig of rertiol fins is a variable．The parametric atudy is done fot 600 mm and 1200 mm spacing of vertionl fins（moded showo in figure 6．21）．In both ases，Jepth of hurizontal ovorhangs and vertical fins is 600 mm

Table 6．11：Pereentage of shaded nere thy composite shading devices with different spacing for 21^{4-} March．

 in m	晨	或	空	g	8	$\stackrel{9}{7}$	亚	3	$\underset{7}{8}$	5	E	爯	㝰	3	E	全	E
	\％	\％	74	＊	46	$\stackrel{*}{*}$	\％	\％	\％ 6	＊	\％	4	4	＊＊	\％	＊	8
$\begin{array}{ll} 600 & 2 \\ 1200 \end{array}$	＊	＊	＊	＊	＊	＊	＊	2（1）	20）	E	\boldsymbol{R}	67	68	66	To	\％	\cdots
6017	＊	＊	＊	＊	＊	＊	＊	1（0）	（1）	I（！）	1（\％）	1（4）	¢	E］	E	8	E
（2m）	＊	＊	＊	－	＊	＊	＊	t（M）	9	1fi）	m）	1（0）	纤	\％	T	64	6
$\begin{array}{ll} 1200) \\ 120010 \end{array}$	＊	＊	＊	＊	＊	＊	－	IM	t（1）	5	47	61	56	5	97	\rightarrow	17

－Petcentax of thaded ater is not talen into account as the wan docs not wee the window．

Figure 6．22：Percentage of ahaded are by compraite shading device with different rparing for 21^{m} March．${ }^{169 \%}$

The petcentage of shaded area of the window varies for different spacing of fins and overthanks. Table 6.11 shows percenage of shaded areas for different spacing of fins and overhangs. The percentage of shaded area is increascal with the decreasc of spacing of eins and overhangs. The highest performance is seen by 600 mm spacing verical fins with 60 mm spacing horizontal overhangs. For 600 mm spacing vertical fins widh GOOmm spacing horizontal overhangs, it shades from 79 to 100% of the window area at different time of the day. The performance of ocher alternatives is not consistent (shown in figute 6.22).

Findings:

For 600 mm depth of fins and overhangs at 600 mm interval, composite shading devices shade maximum window area and shows lowest shading coefficient. So, at 600 mm interval, opimum depth of vertical fins and overhangs for maximum shading is 60 Omm , which is cqual to the spacing between tins and overhangs respectively.

6.6.2 Efiect of Angle of Vertical Fins

From the above investigation it has been wbserved that for composite shadiny only increasing of spacing of fins and overhangs is not effecive to protect the window from solar radiacion throughout the day. To improve the performance of composite shading devices, the effect of different angle of vertical fins with window surface is studied in the following section. The parametric study is done for 600 mm spacing horizontal overhang and 600 mm sfracing verical fins with 30° and 45° angles with the line perpendicular to the window surface (model shown in figure 6.23).

Figure 6.23: View of the model with composite shading device with slanted fins used for parametric stualy for $21^{* 1}$ March.

The percentage of ahached pres of the window sariss for vertial fins of composite shading devioe with diflerent anube．With changing the angle from perpendinular to the window surface the percentage of shaded vies of the window is increased significanth． Table 6.12 shonst percentige of ahaded areas for vertical fins with differant angtes．For 600 mm spacing hotizontel overhangs with 600 mm spacing vertical fins with $\mathbf{3 0} 0^{\circ}$ nogife，it shader maximum 100% of the window ares．The performance of（ 00 mom spacing horizontal overhange with 600 mm spacing vertiol fins with 45° ange is nimost game to that of 600 mm spacing herrizomeal overhangs with 600 mm spacing vertionl fins with 30° angle（shown in fipure 6．24）．

Tnble 6．12：Percentape of shaded area by componsite shading devices with different angte for $21^{\prime \prime}$ March．

Arge	E	8	올	$\underset{\underline{\theta}}{\underline{\theta}}$	$\frac{8}{=}$	星	$\underset{X}{x}$	5	$\underset{\sim}{\xi}$	$\stackrel{5}{2}$	$\underline{\square}$	5	江	宗	$\underset{\underline{y}}{\underline{E}}$	E	$\underline{\square}$
	9	T	4.	${ }^{4}$	8	\％	\％	4	\％	＊	\％	\％	＊	！	5	5	\％
0	－	＊	－	－	＊	－	－	110	tirs	1（F）	（15）	1（0）	＊	${ }^{\square} 7$	\pm	E	As
30°	＊	＊	＊	＊	＊	－	＊	14	（17）	\％	（1］）	\cdots	47	97	tin	$1(1)$	00
45^{*}	＊	－	＊	＊	＊	＊	－	107	19	9	＊	\cdots	¢	97	M	Im	D0

Figure 6．24：Percentage of shaded ntay by composite shading dervices with difterent angle for $21^{*} \mathrm{Narch}^{1 / 4 m}$

Fookwoing Table 6.13 shows that, energy saving perfomance of 600 mm spacing horizontal averhangs with 600 mm apraing vertical fins wirh 30° anyte is very dose to that of 600 mm epreing horionnal overtanyer with 600 mm apacing vertical fins nith 45° angle. Hiphest percentage (9%) of energy is saved by the devices having 600mun apicing horifontal overhangs with (x)0mm spacing vertical fins with 45° anple

Table 6.1: Shading coefficient by composite thading devices with different angle for 21*Mreh.

Na.	Anyle	With ohade	Without shade	Shading Coefticient
		in Wert	in matt	
t	0^{2}	81	4015	0.02
2	30°	36	4015	0.01
3	*5*	27	4015	0.01

Findings:

For 600 mm depth of fins and overhanges at 600 mm interval, comporite shading device at 45° angle with the tine perpendirular to the windore surfice shader maximum window atres and sheron howert ahading enefficient.

6.7 Conchusion

Based on the ofsectration made in the parametric studies, it can be sated that with the help of some simple stratepies and modifications of shading devices, the optimum solution conceming solar heat gain isure within tall office buildings can be achieved for considerable period of office hours at fine critiol orientations for periods requiring shading. By providing : bettet protection pgainst wolar heat gain the enerfy consumpuion to dissipgte that heat could be rechuced.

GUIDELINES FOR DESIGN OPTIMIZATYON OF SHADING DEVICES

Shading is the major consideration to reduce solar heat gain in overheated periods. Shading of a window offers the first lne of defence against heat gains from solat radiation. External shading device is the most efficient solar control as it cuts off solar radation before reaching the window. The design of shading devices can primarily come from understanding the solar geomerry. 'The efficiency of the window shading derices is Lagely determined by the orientation of the window. Every orientation of the wndow requires appropriate shading strategy.

In the previous secions, the theoretical basis and the results of the simulation studies were discussed. Based on the set criteria nine selected shading devices were evaluated mrough simulation. The evaluacion of these selected shading devices in terms of solat concrol helped in identifying the factors that affect in reducing solar heat gain. To explore the stratcgies for oprimum shading, a parametric stady was pursued chrough series of simulations. The observations of the simulated behaviour that occurs due to changing parameters allow the identification of geometric elements, the reduction of introduction of which in the design contribute to reduce solar heat gain. The following sections present recommendations and guidelines.

7.1 Proposed Guidelines for Efficient Shading System

In view of all the investigations and on the basis of findings ourlined above, a set of gridelines has been drawn for efficient shading to teduce solar heat gain. Invesigaions showed that different types of shading devices were appropriate for different orientations. The following recommendations arc made for different orientations and for different rypes of shading devices. The recommendations and guidelines are parricularly applicalle for tall office buildings of Dhaka ciry (longitudes: $90^{\circ} 23^{\prime}$ East and lariudes: $23^{\circ} 46^{\prime}$ North).

7.1.1 Guidelines for Horizontal Shading Device

- It has been found from the invesigation that horizontal shading devices were efficient at south orientation only. Hence honzontal shading devices are appropriate
to protect the windows from solar heat gain at south orientation. It works efficiendy from 10 am to 2 pm when the sun is opposite to the window pane and at a high alitude.
- The depth of the overhang depends on the window height and is independent of the window width. 'Ihe petformance of horizontal shading device increases with the increase of depth of the overhang. After a certain depth, the performance does not increase significantly with the increase of shading depth. The important factor is the ratio between depth of the overhang and height of the window.
- For optimum shading, the ratio between depth of overhang and height of the window is

$$
\mathrm{D}=7 / 16 \times \mathrm{H}
$$

Where, $\mathrm{D}=$ depth of overhang
$\mathrm{H}=$ IFcight of window

Figure 7.1: Schematic diagram showing patameters of horizontal shading device.

- When designing an overhang for the south facadc, one must remember that the sun travcls from the sontheast before noon and to the southwest after noon. Therefore, the sun will outlink an overhang with the same width as window-width. Windows need wider overhang offset from the window cdge (figure 7.2). The side offset from window edge also depends on the height of the window.
- The tario between the side offset from window edge of overhang and height of the window is

$$
w=H / 2
$$

Where, $\mathrm{W}=$ side offset from window edge

$$
\mathrm{H}=\mathrm{Height} \text { of window }
$$

Figure 7.2: Schematic diagram showing parameters of horizontal slading device.

- Fiot large height of windows, minimizing effective height of window is beneficial to umprove the performance of shadng device further. This could be done by using scveral overhangs on the window pane instead of one large overhang (ifigue 7.3). Installing several overhangs on the window pane is also appropriate when the projecting distance from the wall is limited for structural of other reasons. This could be important if a building is on or neat the property line or there are certain resmictions by building regulations. As far as sun penetration is concerned, the scale of che overhangs cat be changed at any time as long as the racio of D / H and W/H ate kept conscant

0

Secrion

Licuauon

Figure 7.3: Schematic diagrams showing parameters of horizontal shading device.

7.1.2 Guidelines for Vertical Shading Device

- It has been found from the invesciganon that vertical shading devices were efficient at cast and west orientation only. Hence veracal shadng devices ate approptinte to protect the wndows from solar heat gain at east and west oricntation. It works efficiently with the sun at a low alninde.
- The depth and spacing of verical fins is independent of window height and width. 'The performance of vertical shading devices increases with the increase of depth of verrical fins and with the decrease of spacing between vertical fins. After achieving certann depth, the performance does not increase with the increase of shading depth. The depth of verrical fin depends on the spacing berween vertical fins and vice versa. The important factor is the tatio berween the depth of vertical fio and the spacing between verucal fins.
- For oprimum shading the ratio between the depth and the spacing of vertical in is $\mathrm{D}=1.5 \mathrm{x} \mathrm{S}$

Where, $\mathrm{D}=$ depth of vertical fin
$\mathrm{S}=$ spacing of the verlical fin

Figure 7.4: Schemaric diagrams showing different parameters of vertical shacling device.

* This type of dericc is most effective when the sun is at one side of the devation. A verical device to be effective when the sun is opposite to the window considered would have to give almost complete cover of the whole window. With changing the angle from perpendicular to the window surface to clock-wise drection, he performance of verucal fin increases significandy. Vertical fins at 45° angle with the line perpendicular to the window surface are most effecive. This type of vertical slanted fin can be appropriate either when there is a desite to conrol the drection of view or when the view is not important.
- When desbging a vertical fin for west facade, one must remember that the sun cravels telative to earth from the southwest. 'Therefore, the sun will outflank a vertical fin with the same height as a window-height Windows need higher vertical fin extending over the window edge. The extension over the top edge of window depends on spacing betweco verucal fins.
* The ratio betwecn extension of fins over the window edge and the spacing between vertical fins is
$\mathrm{X}=\mathrm{S}$
Where, $\mathrm{X}=$ cxtension of fin over the window edge
$S=$ spacing berween vertical fins

Figure 7.5: Schemacic diagram showing different parameters of verical shading device.

7.1.3 Guidelines for Composite Shading Device

- The investigation showed that the composite shading devices wete efficient at souchcast and south-west orientation. By concrolling sun penerration by looth the alritude and azimuth angle of the sur, very effecuive shading of windows can be achieved.
- The depth and spacing of vertical fins and horizontal overhang of composite shading device is indcpendent of the window height and width. 'The performance of composite shading devices increase with the increase of depth and with the decrease of spacing bewween vettical fins and horizontal overbangs of composite shading device. The depth of verrical fin and horizontal overhang depend respectively on the spacing between verrical fins and horivontal overhangs and vice versa. The imporant factor is the ratio between the depth and the spacing between vertical fins and horizontal overbangs.
- For optimum shading, the tatio berween the depth and the spacing of the vervical fins of composite shadng device is

$$
w=d
$$

Where, $d=$ depth of vertical fin
w= spacing between veruical fins

And the ratio becween depth and spacing of horizontal overhangs of composite shading device is

$$
\mathrm{h}=\mathrm{d}
$$

Where, $d=d e p t h$ of horizontal overhang

$$
\mathrm{h}=\text { spacing between horizontal overhangs }
$$

It means that depth of verrical fins and depth of horizontal overbangs has to be equal.

Secrion

Plan

Figure 7.6: Schematic diagrams showing different parameters of composite shading device.

- With changing angle of vertical fin from perpendicular to the window surface to anti-clock-wise direction, the performance of composite shading device increases. Vertical fin at 30° angles with the line perpendiculat m the window surface are most effecive.

Figure 7.7: Schematic diagram showing different patameters of composite shading device.

- The Designer should first decide on the general appearance of dhe composite system. As far as sun penctration is concerned, the scalc of the composite shading device can be changed al any time as long as the ratio of h / d and w / d are kept constant.

7.2 Conclusion

This work was an attempt to explore design strategics of efficient shading devices in tropical urban climatic context with a focus to teduce solar heat gain in overheated periods. T'o achieve the oljectives, through investigations a set of strategies has been dawn that could help to design an efficient shading device in place of commonly practised ones in Dhaks. This work may also insugate designers design efficient shading devices with a reference to climate issues.

At present the necessicy to reduce the energy consumption in the buildings is an important issue in Bangladesh. 'The design strategics of efficient shading devices that have emenged as a direct outcorne of this study are important in producing energy efficient design solutions. It may be extremely useful to have such strategies in mind during the pre-design and design stages of buildings, as passive solutions allow buildings to responsive with environment, thereby reducing energy consumption.

7.3 Suggestions for Future Research

Some of the most important ateas that need to be explored furcher are summarized below:

- More research needed to assess the impact of shading devices on daylight and vencilation through the window.
- Performance of shading devices can be evaluated in reducing heat gan for diffused solar radiation.
- Performance evaluation can be done with various thickness of shadeng devices with different types of materials. The use of shading materials and methods of installation with regards to their thermal properties need to be invesugated for detailed recommendanon for their uses.
* Possibility of mechanized movabie shading device can be explored. The cost effectiveness of fixed shading device with comparison to movable shading device can be done considering maintenance and construction cost.
- Combination of shading devices (interior and exterior), movable shading devices and shading devices combined with special (solar-protective, low-e) glazing should be studied.
- 'Dhaka Metropolis Building Construccion Rule 2006' can be examined considering solar shading in buildings.
- Impact of shading optimizanon on building energy consumption may be studied in view of energy saving potencials.

BIBLIOGRAPHY

1. Ahmed, K. S. (1995), Approaches to Bioctimatic Urban Design for the Tropics with Special Referracy to Dhake, Bangladesh, Ph1). Thesis (unpublished), Architectural Association School of Architecture, London, U.K.
2. Ahmed, M. F..; Madros, N. H; Ossen, D. R. (2003), Tinerg-efficent Solar shading yystem: Liffects on Dayhghe quality and enery use in bigh nist office buildingr for mopical cimalest. Internauional Seminar on Architecure Overcoming Constraints, Dept, of Architecturc, BUE'I'.
3. Ahmed, Z. N. (1987), The effects of Climate on the design and Locution of Windows for buildings in Bangladesh, M.Phil. Thesis (unpublished), Deparment of Building, Sheffield Ciry Polytechnic, University of Sheffield, U.K.
4. Ahmed, Z. N. (1994), Assesment of Residential Sites in Dhated anth respect to Solar Radiatan Gains, 1hD. 'I hesis (unpublished), De Montfort Unuversicy in collaboration with the Unuversity of Shefficld, U.K.
5. Ahmed, Z. N. (2003), 'Clinate Repponjiseness in Tall Residential Buildings of Trupial Cities', International Seminar on Architecture Orercoming Constraints, Dept. of Architecturc, BUEI'.
6., Avkinson, G. A., (1953), 'Impical Anthterrare and Building Standadi', Conserence on Tropical Architecmure.
6. Atcia, Fi. (1990), The Shape of Tall Builaings', In Proceedngs of the Fourth World Congress on Tall Buildings: 2000 and Beyond, Council for 'I'all Buildings and Urban Habitas Hong Kong.
7. Bangladesh National Building Codes (1993), Housing and Building Rescarch Institute and Bangladesh Scandards and Testing Institute, City Art Press Ltd, Dhaka.
8. Choudhury, J. R. (1990), Tal/ Building Detelopments in Bangladesh', In Proceedings of the Fourth World Congress on Tall Buldings: 2000 and Beyond, Councl for Tall Buildings and Urban Habitat, Hong Kong.
9. Dubois M. C. (2000), A Muthad to Define Shading Devices Convidering the Ideal Total Solat Enezy Tranymiltance; In Proceedings of liutosun 2000 Conference, 19-22 June, Copenhagen, Denmatk.
10. Dubois M. C. (2000), 'A Simple Chant to Design Shating Devices Considering the Window's Solar Angle Dpendent Properties', In Proceedings of Eurosun 2000 Conference, 19-22 Junc, Copenhagen, Dentmatk.
11. Dubois, M. C. (2001). Impat of Solar Sbading Detrices on Daphght Quatiby: Measurments in Experimental Office Rooms', Report TABK- 01/3061, Lund (Sweden), Lund University, l und Insricute of Technology, Dept. of Building Seience.
12. Dubois, M. C. (2001). Impact of Solar Shating Devices on Dayight Quality in Offices: Sinulations with Radanr'; Report 'TABK- 01/3062, I.wnd (Sweden), Lund University, Land Insuiute of Technology, Dept. of Buildng Science.
13. Dubois, M. C. (1997). Solar Sbading and Buiding Energy Use, A Litenature Reviow, Report TABK- 97/3049, Lund (Sweden), lund University, Lund Institute of Technology, Dept. of Building Science.
14. Dubois, M. C. (2001). Sohar Shading for Low Enengy Use and Daylight Quality in Offier: Simulations, Measurments and Design TooL', Report TABK- 01/3062, Lund (Sweden), Lund Universiry, Tund Institute of Technology, Depr. of Building Science.
15. Dulwois M. C. (1999), The Design of Seasonal Awnings for Low Cooling and Heating Loads in Ofiee', In Proceedings of the fifth symposium on Buildtag Physics in the Nordic Countries, Gothenburg, Sweded.
16. Efans, M., (1980), Housing, Climate and Comfort, W and J Mackay Ltd., Chatham, London.
17. Goulding, J.R., Lewis, J.O., Stecmers, T.C., ed. (1992), Enemy in Arrbitecture (Tbe Etropean Parribe Solur Handbook), B.'I'. Bats ford Larnited.
18. Givoni, B. (1998), Climatu Considerations in Building and Urban Design, Van Nostrand Reinhold.
19. Givoni, B. (1969), Man, Chmate and Architecturr, Elsevier Publishing Company.
20. Haffner, C. (1990), 'Aesthetit and Social Aspects of Tallness in Hong Kong', In Proccedings of the Fourth World Congress on Tall Buildings: 2000 and Beyond, Council for Tall Buildings and Urban Habicat, Hong Kong.
21. Haque, A.M.M. (2002), A Skady of Thermal performance of operable mof insulution, vith peczal reference fo Dbaka, M. Arch Thesis (unpublished), Department of Architectute, BUET.
22. Haque, A.M.M. (2004), Evaluation of the performance of commonly zued shading detice applied over mindows in the context of Dhaka aif, Plan Plus Volume $1 \mathrm{~N}^{\mathrm{r}} \mathrm{O}$. 2, Utiban and Rural Planning Discipline Khulna University.
23. Haque, A.M.M. (2005), Denivation of an Optinum Room Depth in Tems of Dayzat Standard for Classrooms in the context of Dhaka, Plan Plus Volume 3 No. 1, Urban and Rural Planning Discipline Khulna University.
24. Hein, W.N.; Istiadji, A.D., (2003) Effects of external shading devices on dayligbting and natural ventilation', Eighth International IBPSA Conference, 11-14 August, Eindhoven, Nietherlands.
25. Hydc, R., (2000), Climate Responsive Design, E and FN SPON Taylor and Francis Group.
26. Khan, M1. N. Z. I. (2005), Rethinking leaning spares: in wam-bumid chmatic antext with special nference to Dhaka, Bangladesh, MA L\&E 'Thesis (unpul)tished), Architecrural Associaton School of Atchitecrure, London, U.K.
27. Koenipsberger, O.H., Ingersoll, T'.G., Mayhew, A., Szokolay, S.V. (1973), Manual of Tropical Housing and Building Design, Par 1, Orient Long man.
28. Kukrija, (1978), Tropical Architecturr, Tata McGraw Hill.
29. Lechner, N. (2001), Heating Cooling, Lighting Design metbods for Arbitecth, John Willey \& Sons, Inc.
30. MacMuilan, R. (1992) Environmental Science in Building MacMillan Press Ltd, London.
31. Mallick, F. H. (1994), Thermal Comfort for Urban Housing in Bargladest, PhD. Thesis (unpublishedJ), Atchitcctural Association School of Architecture, London, U.K.
32. Mojumder, S. A. U. (2000), Thermal Peffomance of Brick Residential Buildings of Dhoka Ciby, M.Arch Thesis (unpublishecf), Deparment of Architecture, BUET', Dhaka.
33. Muhammad, A.E.; Zuraini, D.; Puteri Shireen, J. K. (2005), 'pptinixing tropical sunt shating systems zsing themal andysis and fighting visuatiation fools', The 2005 World Sustainable Building Conference in Tokyo.
34. Olgyay, A. and V. Olgyay (1957), Soler Control and Shading Dezues, Princeton University Press, Prnceton, New Jersey.
35. Rahman, A. (2004), Chmatic Evaluation of Planned Residential Developments in the context of Dhake City, M.Arch Thesis (unpulblished), Department of Architecrure, BUET, Dhaka.
36. Rajdbami Untyayan Kanमウaktya (RAJUK) (1996), Building consruccion rules (Imarat Nirman Bidhimala), buildng regulations for buildings in the greater metropolitan area of Dhaka
37. Rashid, F.. (1991), Geograpby of Banglade.ft, Univetsity Press I_imited, Dhaka.
38. Seraj, T., M. (1997), High-rise Develoment in Dhaka: Pmopects and Pmblems', International Conference on 'lall Buldings, organized by Council on Tall Buikding and Urban Habitat-
39. Stemers, k.; Baker, N. (2002), Dayght Derign of Buildings, James \& James Ltd, London.
40. Stephenson, D. G., Mitalas, G. P. (1962), An analog evaluation of muthod for controling solur heat gain through windour', Joumal, Amcrican Sociecy of Hcating, Refrigerating and Air Conditioning, Engineers, Vol. 4.
41. Shueller, W. (1977), High Rise Structures, John Wiley \& sons, NY.
42. Smith, B. J.; Phillips, G. M.; Sweeney, M. E. (1982), Envirnmental Science, Longman Scientific \& Technical, UK.
43. Suri, P. K. (2005), 'Simulation and Modelltrg', In Proceedingy of National Conference in RAFIT-2005.
44. Tao, W. (1990), Einergy and Ecology Impact of Tall Buildings: Beyond Bwilding Boundary', In Proceedings of the Fourth World Congress on Tall Buildings: 2000 and Beyond, Council for Tall Buildings and Urban Habiara, Hong Kong.
45. Taranath, S. B. (1998), Strutwral Anafysis and Design of Tall Buildings, MeGraw Hill Book Company.
46. Wall, M., \& Bülow-Fübe H. (eds.), (2001), Solar protection in buildings, (lleport TABK-01/3060), Lund (Sweden): 1 und University, 1.and Institute of 'Iechnology, Dept. of Construction \& Architecnure.
47. Wall, M., \& Bülow-Hube H. (eds.), (2003), SoLer profection in buildings, Part 2: 20002002. (Report 1iR1)-K-03/1), Lund (Sweden): Lund Unversity, Lund Institute of Technology, Dept. of Construcrion \& Atchitecrure.
48. Yeang, K. (1997), Derigning the Green Skyragher', In Proccedings of the 'Third International Conference on Conquest of Verical space in the 21 st Centory, London
49. Yeang, K. (1990), Designing the Green Seyscraper', In Procecdings of the Fourth World Congress on Tall Buildings: 2000 and Beyond, Council for Tall Buildings and Urban Habicat, Hong Kong
APPENDIX A: Hourly Dry Bulb Temperature (${ }^{\circ}$)
Hourly Dry Bulb Temperature (${ }^{(C)}$
Sousce Bangadceh ineteorvlogeal Department, (.lmane Duston, Agargacon, Dhaka
Year 20003 Month:]anury

Hourly Dry Dub Temperature（ ${ }^{\circ} \mathrm{C}$ ）

Yeir 2005 Month：Febrnary

Day	1	2	3	4	5	6	7	8	9	10	11	12	1.3	14	15	16	17	18	11	20	21	22	23	24	25	20	27	28
Tise																												
010	14.4	15.2	124	13．5	13.9	13，4		181	17.4	18.4	16.9	1R1	2114	215	2116	225	227	24.4	2 H ，	222	23.8	21．1）	199	2 L 2	try	9，	18s	$\underline{6} 6$
1 （i）	t H ．${ }^{\text {d }}$	1 L 9	13.9	14.5	152	156	［43	19 fi	19.4	3．，	R	11）	21．21	25	21.	21	$3+$	24.7	24.1	22.4	246	22	210	21.1	19.9	107	209	
2.0	19.3	17.7	15.5	155	turn	17．k	19.7	21.2	2111	221	21.0	215	2.1	23,3	22	230	25	25	24.	235	25.4	23.5	22.	219	19.11	21.9	$22 \cdot 1$	
300	14.8	18.	1711	16.5	13.9	210	21.11	22\％	22.6	2412	23,	23.2	242	24.2	21.	24 fr	25.6	25	247	$2+2$	26.	24	23	22．15	22 （1）	2.31	250	
（0）	20.9	197	182	18	19	2 t ．	27	24	243	25.4	24.	249	t（a）	256	25.2	25	$2{ }_{5} 9$	76.7	256	25	27.	25，6	247	241	23．－	24.8	26.4	，
501	22	$21 .!$	19	21.2	231	23.6	24.7	26	25.	200	25.5	25.7	28.1	270	261	269	27.9	27.1	26	$2(.4$	29．1	26	2！	255	24．1）	246	27.9	2 H 4
$1{ }^{1}$	23	224	20.5	22，	240	25．4	26.	27.9	276	276		2 S 4	3， 11	27．4	285	2R，1）	214	$2{ }^{21}$	27.	235	31	27	27，${ }^{\text {，}}$	$2 \mathrm{~L} . \mathrm{K}$	26．3	2r．	29.3	
7．141	22	22.1	21.9	29	$2+6$	24.1	27.5	2 L 2	241	27.	27.2	2以！	K17	24．2．	20.1	2 F 7	21）	29	$2 \mathrm{k}, 2$	2， 3	309	27.5	24	27.3	27.1	29.	215	
（1）	224	33.7	21.4	23.5	25	267	2R．5	2R，	245	27.	27．	2）．$)^{1}$	3 H.	29．	（11）	20.	316	（1） 4	no． 1	2）II	31.5	276	293	27.7	240	20.5	29 B	
9，14）	224	$2+11$	21． K	242	25.7	27.1	21） 4	$2{ }^{21}$	2041	2×4	2314	ma	32.0	294	， 1	311	11.4	113	25	$29 . \mathrm{H}$	1.16	23 R	319．1	282	285	W11	估	
1.8111	21.7	22.9	21.	23	247	$x_{1} 1$	2x， 3	27 K	2 x 1	27 \％	27.1	29	317	2×7	31.9	210	\％19，	\％	2．．	297	\％	27.3	$29+1$		27．9	$2{ }^{2}$		
［1］： $1 / 4$	21	219	20	23	2.	24.	27	26.7	27	26.4	20，7	2h6	$2 \cdot 15$	27.6	2 H	202	296	29.5	з $\boldsymbol{4}_{6}$	29.5	K1，	2（6）	27.2	26.3	271	244	2\％3	\％
12	21	21 R	19.	$2{ }^{\text {I }}$	22a	23.	$2(1)$	235	26.2		20.0	276	272	265	2 H	284	247	2R，R	2.42	$29+$	21	26.	26．）	254	26，2	275	27.4	2 k 2
13 m		21，2	18.8	21	205	225	25	24.5	25.3	244	245	267	$27+$	257	20.9	274	2 F 9	37.	27.5	2 F	286	255	35	244	25.3	25.	$2{ }_{\text {chis }}$	\％ 2.
	12.4	19，0	Lht	1．	$1{ }^{1} 3$	21	24	234	24.5	236	2211	25．	26.6	25．91	254	271	27.1	27.1	26，	27.	2 N 1	24	2411	23，4	24.5	34.4	25.4	25.3
Of	In．	100	17	19.0	tur	3） 4	23，0	22.	2 t .1	224	．	9	25	2． 2.	24	26.2	23_{1}	21.2	26.1	2 t .1	27.	23，8	226	$22+$	2.3	228	24．	23，
16．09	18.3	185	17	1k， 3	13 n	10.	272	21.6	22.9	21	21.3	24.4	254	2aj	$2+$	25	25.3	236	24，k	$2{ }^{5} 9$	26.6	27.2	22.1	21 H	2.5	21.7		227
17：00	$1 \mathrm{R}, 1$	17	$1 r_{1} 7$	17	15.	t）．	214	2	22	21.4	213	$2+1$	249	22.7	212	2.1	5	25	2ヶヶ	25．4	258	22.5	21	21.3	23．3	20.7		21.7
1890	174	17.	tict			1911	2）．t．		21	12.4	21.2 ．	235	245	220	22.	24，	248	24.5	213	256	－24，9	2241	21.2	2）． 7	222	176	21.5	206
t9．141	13.	11.6	15.	16	141	18．6	$2 \mathrm{x}, 0$	V	21.2	to． 3	210	27.1	2411	21.	22.	245	24.7	24.	224	25.1	29.7	21.3	2）${ }^{4}$	（2）	214	19.4	19	202
2（1， 1 M$)$	12.3	15.	14.8	$15:$	1.31	18.2	104		2112	\％ 1	21.4	212	3.5	31.7	22	24	24.7	24	225	4 5	22.6	21.5	2） 4	202	$\underline{16}$	19	18.7	198
－14．	17．13	t5	1411	15	13	17.	15，R	145	0	－	2 m	22.	2311	211，	227	24	24．6，	242	22	$2{ }^{2} 11$	21.	21.2	2 L It	nu	19 y	to	17.4	194
，	19，	173	17．2	17.3	tis	2013	X1，6	210	217	21.5	21.	272	24	215	2211	23.	24， 1	241	22］	23，8	22.4	72.4	3，${ }^{1}$	） 2.2	21	21．5．	199	214
2300	19.7	［1］	205	12	20.9	223	22	23.1	231	220	231	$\underline{23}$	21．8	211	217	23.5	235	241	22.5	236	335	34.4	217	204	20.5	21.9	221	23.9

Hourly Dry Bulb Temperature（ ${ }^{\circ} \mathrm{C}$ ）

Diy	1	2	3	4	5	6	7	4	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Time																															
0 O）	21.11	22.1	237	21	34.5	24，5	242	$25+$	2.4	$2: 5$	247	21，8	21.2	214	21.4	232	2t．lt	24．1）	23！	24	24．5	26.0	225	21，6	$3) 4$	234	24.2	27.3	23.4	25.1	7
100	$\underline{22} 3$	232	24.5	235	254	257	25.1	259	24.3	245	243	$\underline{22}$	22.9	27.3	$22 ?$	24.2	24.2	25.7	23.3	3.1	25.5	20.7	27.	211	22.16	245	251	26.0	2t． 1		
2，00	23.7	$\stackrel{2}{4}$	254	25.7	26.3	268	259	$2 \mathrm{f}_{3} 3$	25.3	25.5	24，${ }^{2}$	220	245	25.1	24	25	25	2	235	267	266	275	2.	21.7	292	25.6	26.1		26.9		
3.00	25.11	25.	251.2	278	27	2 S 1	$251,{ }^{2}$	2 ar	26_{1} ？	2 L 5	274	234	$22_{1} 2$	$25_{2} 7$	254	\bigcirc	26	2k2	23，	284	296	R，2	244	322	$24+$	26，	270	27.	27，		
400	27.11	27.	$2 \mathrm{R}, 4$	29	247	$\underline{\underline{x}}$.	2R，2	27 K	27.7	24：	2＊－4	237	27.7	284	271	27.7	27	277	20.1	2\％	$2{ }^{2}$	以， 1	336	223	23.4	274	27， 1	29.5	245		
5 M	2り11	301	31f	31.4	3112	． 317	20，6	24 n	2נ1． 1	，112 2	2k 1	239	2	（1）］	2 K 6	2	$2{ }^{2}$	271	$2{ }^{2}$	31）	319	31.9	22K	213	26， 5	272	21） 3	29.7	253		
from	11，1）	32.4	32．	332	．11．7	321	314	29 K	${ }_{3}^{11}(1)$	3214	21，	24	310.7	7 L	312	3l．fi	\％）	20.6	Bil． 4	31	32.5	33 k	2렌	224	275	R9	319.4	．			
7 CHI	315	329	13.	379	$\underline{22}$	32，R	4.1 .7	30， 1	112	32.8	5	$2{ }_{4}$	3101）	32	3120	\＄1，${ }^{\text {3 }}$	． 1	272	5194	． 3	335	3，K	22	22.9	2R	297	1	31.5	11.0		
$\mathrm{B}_{3} \mathrm{H}$	321	314	33.0	$3+5$	127	335	325	81］	318	32，6	린	25.1	11.1	32.3	315	114		21） 2	31.2	32	34.	$1 . \mathrm{K}$	23,	245	2 B	31	31.6	32.	117		
9－14．	326	33．4	34，4	352	33.2	4.42	312	． 3.311	32．4．	34.4	293	25．5	31．2	326	372	320	22．	3125	316	33	35.4	318	$2+1$	341	2	12	322	32.4			
lick	217.	32 C	33．7	34.3	32－6	3.3	323	3 313	${ }^{3} \mathrm{t}, \mathrm{k}$	335	28	25.1	3	312	115	318	3 t.	293	311	33.	3，4， 1	32）	226	27	2 F 8	0.7					
13.041	3 31.7	31.7	7.21	32.3	32，1）	123	317	31．1）	312	32.7	378	24 亿	297	29 R	31）	3．11\％	3 t .1	28． 2	307	32.7	327	312	212	22	2R2	30.7					
［2．14］	29.4	30	$3{ }^{11}$	$\underline{23} 1$	31.4	t1．4	Kin	（x， 1,1	3116	31．2	27.1	242	주）	2x，4	311	－30 2	31.2	27.1	302	32.2	314	311	19	2311	27.6	208					
	20，${ }^{2}$	2）3	3113	311.16	311.7	15	$\underline{2}$	292	2115	310.7	262	274	2 n 2	2×1	）	$\underline{2} 5$	295	$2 \mathrm{ch}^{2}$	$\underline{29} 8$	31.	316	29，7	213	21．4	26.9	K6					
14 （1）	27.8	2 H 5	－29．7	29.6	20．1）	29	26．5	－\square_{4}	24.7	29.5	25 亿	235	27.5	7，	2 k 1.	2k，9	24	26,5	22.4	311	${ }^{11} \mathrm{k}$	2 t,	20	21.5	25						
15.10	26.4	274	29）	랜	29.2	2R，	23.1	276	27.7	2R 4	2＋4	23.2	20.7	$\underline{27}$	27.1	$2 \mathrm{~K}=$	2 x 2	260	210	23， 0	290	2411		21 ！							
trime	32	26.7	2 R	27.5	2R．	27.	27.1	27.3	273	230	24.1	2211	25．	34，1	205	377	27.7	257	3n，3	28.1	22.3	24.1									
17．111！	254	259	23.5	26.4	2 H	27．1	26.7	27	2	27.6	3.7	227	25.2	245	25．k	27.1	271	$\underline{25}$	276	27	27.5	24.									
18．19）	250	25？	2 fin	20.2	$27+$	262	26.2	2rik	2ftil	27.2	23.4	2근	24.4	230	25．2	26 （1）	266	$\xrightarrow{2}$	2t．1）	26.	20，8	24.	2		224						
19（0）	24.3	249	25.7	25．8	26． 1 ）	26	2 t,	2 亿r1	26t	24.7	$27!$	22%	3，9	225	24	2615	26.3	$\underline{-1}$	$2 t_{1}$	26	31.4	241	711								
$2 \boldsymbol{n}(x)$	23．7	247	24.5	－25．4	265	257	25 R	252	25.5	24．1	22	21	235	22.11	27.	25.4	259	243	23.5	25									24.7		4.3
2t（x）	$\underline{13}$	24.4	2.3	25	26.1	255	256	24.4	25.1	$25{ }_{1}$	224	2211	230	21.5	22 H	$2+4$	25.6	241	24 x									25 k			23.9
73（ 4 ）	27，0	23 h	23.5	23.4	24.9	25.	254	25 ！	35.3	35.9	235	275	229	229	230	25.4	291	243	257												，
23．0）	23.0	232	23.7	21.8	23.1	25.3	25.2	257	25.7	24.3	245	249	22.9	242	24.9	259	2n， 7	24，6	26.3	27.7	24.0	2 O	2	20．				2	234	21.	15.7

Houtly Dry Bulb Temperature（ ${ }^{\circ} \mathrm{C}$ ）

Year， 2005 Munth Aprl

14	1	2	3	4	5	$\underline{\square}$	7	8	2	10	11	12	13	14	15	14	17	18	19	23	21	22	23	24	25	26	27	2 R	29	0
7ime																														
M， x	2311	27	278	2112	22.1	5.2	25	21_{3}	2511	$2{ }_{2} 6$	25	2fr．	23	254	2511	26	272	$2+5$	27.6	2 ak	243	2.	27，0	220	231		4.0			
11	243	24	259	221	246		250	37．2	263	275	34.	2 c \％	24.9	267	27.2	27.1	241	26.7	2R5	295	261	2h2	280	25	24.		25.9	26		
$2($ 나	25.	2（1）	27.9	24.1	24.3	27.3	3，${ }^{2}$	$2{ }^{4.1}$	27	24．3	27.	27.2	20.	27．）	$\underline{314}$	27，4．	24	2 L	20	31） 3	2v0	292	291	7	267	2N？	27.9	88.	211	57
3 cm	2，1．1）	2）	310	2611	231	2．4． 4	27.4	20， 11	2 n 3	29.2	2hin	27.	214	29.1	29	2R， 4	3， 1×1	312	310， 3	1311	313	312	（1， 10	29	2R6	296	$2)^{2}$ ，	25．1．	26.4	27.4
400	2 R .1	to． 3	312	277	20． 1	29.5	20.1	298	215	313， 4	293	21	111．	30.3	$\times 16$	－11	312	31.3	31.6	1211	32.7	31.6	11．4．	\％ 8	29.6	30.7	30．1）	31.1	28.1	， 5
S－14）	$2{ }^{2} .2$	31.7	32.	29.	3 1 L 11	31.5	31.3	311.9	31．n	12.	3115	31.2	31	31？	31.5	31.5	125	32.4	32.9	$33.1)$	337	37．N1	31.	315	3115	31.8	321	325	3.9	925
6.10	313	33.	33	$3 \mathrm{t}, 0$	311	316	316	31 h	320	328	3.1	125	32.4	330	325	37， 12	33，7	31	14	34.0	34	34.4	225	32.5	31.5	仁り	13.2	340	316	\％
$7.1 \times$	305	31	7．3．	315	31.2	32.1	32.1	324	そ7	3，3	$32+$	ざリ	231	336	4.3	晾	H0	34．1	346	344	34．51	3.49	1.31	332	32.1	373	132	34.5	30.3	31.1
R00	36． 4	3.7	3＋11	3211	31.7	227	325	37.	3，3	41，${ }^{3}$	11.16	\％3．2	33.9	34.1	4	137	34.3	14， 5	$5{ }^{1}$	347	34\％	55	36	33.6	127	3．1．	131	34.9	29	1.7
0.101	311	3 L .5	H2	32	12.15	332	3．．．11	32.7	34，）	4.43	3	36	346	34.7	35.1	H13	346	15.3	354	35 t	44	354	4	34	4.2	341	031	35.4		2
10，（x）	IN， 8	12.7	$33+$	い1	316	32.1	52.5	3.71	33	12.2	12．11	1311	337	3＋11	4.7	332	337	14？	34.7	34.	445	15.1	337	335	129	\％）	22.3	3.3	20.2	1.5
11 （\％）	W15	318	32	31.2	31.2	느네	121	32	32.5	un．	314	32.	42.	\％． 3	42	32.4	121	37	339	$1{ }^{1} \mathrm{~K}$	345	3.4 \}	33,1	$3{ }^{3} \mathrm{t}$	127	271	31.4	31.1	246	57
（1）	k1， 3	12.11	41.	H14	1115	11.	31	710	37 k	22_{11}	2R， 4	3	22.1	3 Cr	378	316	3네	33，6	332	ห\％． 1	34	3，${ }^{\text {cr }}$	326	32		236	n6	29.0		
13 （ H / l		21.9	29.1	295	31.2.	313， 7	30.7	$3: 17$	u1．5	27.	2 Sl	ห1， 3	11.2	11%	32.6	3119	41.3	32 R	32.7	123	3.35	32.7	32.1	31.9	29．8．	24.2	25	27.7	27.1	287
1416t	27．6	2 S	20.3	24.5	＊）	3,1	29.3	2リリ	29	$3{ }_{3} 9$	273	201	11	3119	3.4	u12	． 117	3211	12.1	314	326	31.7	31.5	31.3	27.1	24.	［17	26.1	2	27.3
15	26.2	278	236	274	236	2）， 4	22.11	2951	2 n ）	26.	26\％		$2)^{3}$	H1， 2	3112	2 ys	，	312	316	3.16	31.7	311	19	30， 0	24.5	35	24.8	${ }^{5}$	237	27.0
16 Mil	257	27	23.3	26.7	28	28.	2R， 1	$2 \mathrm{n}, 3$	27，k	26.3	56	27.1		11． 7	295	28， 9	21） 4	M1，	31.	2 N ，	31.1	311． 4	30	310	241	25.	2＋4	251	23.5	45
15：3m	252	27.5	229	259	27.4	27.8	27	27.7	37.4	281	21.2	26.7		$2^{1 / 2}$	24.	2 K 4	2．4．4	2）	31.5	24）	bilf	29.	29	21	25	2	248	25.1	237	？ 31
18.00	24.3	27.4	226	25	27，4	27	22.4	27，0	27	2011	3 m 0	¢12	$27 \times$	287	2 B 2	27，	2x2	20%	आस्रा	25	（1） 1	2y 5	$2 \mathrm{~F}, \mathrm{~B}$	24	25	25.1	248	25.	23.9	21.1
1950	24.5	26	219	24.4	2714	26.7	$3 \mathrm{~L}, 3$	2，${ }^{1}$	272	26	259	± 5	27.	29，4	278	27.7	26.5	2h9	碰 7	248	29.1	2	2n， 2	28.1	35	24.9	24.7	24	23，6	21.6
2000	23	26	21.3	24.	266	［13	26.2	26.7	271	2	25.	245	27.1	2k．1	27.4	23.5	247	2n，	295	246	2R，7	28.5	2：6	274	255	247	24.7	24	233	1．6
21，（0）	23，4	254	，	24	26	2 L	361	26.5	26.9	21	$\underline{35}$	23.1	36， 4	27	30	27.	2311	24	2 l	24.4	2 O	2 S	27.1	26.4	25.4	24，6	246		23	21.6
22 （n）	22 K	27	21.7	24.6	25.3	24．）	25.2	2，${ }^{1}$	2 F .3	$\square 7$	20.3	253	26.2	2 L 4	$2 \mathrm{~T}, 6$	271	23.4	25.5	2x．	2411	$22^{2} \mathrm{~B}$	2k，${ }^{\text {r }}$	$2{ }_{3}$	26	26.	25.	251	25.7	2	23.8
23.00	222	241	229	25	2.	23.	249	25	29．B	27.5	269	$\underline{7 .} 1$	25	24	363	27.3	238	23.9	28.4	23.7	256	3 HO	257	268	26， 7	27.	257	27.3	26.7	20

Houty Dry Bulb Temperature（ ${ }^{\circ} \mathrm{C}$ ）

Year 3005 Mforth：Mlay

Day	1	2	3	4	5	6	7	8	9	10	11	12	13	11	15	16	17	18	19	210	21	22	23	24	25	26	27	28	29	30	31
Time																															
1） 610	216	2.3	24.0	25．h	22^{4}	22.	33.4	25.2	312	2 H ？	27．4	26，${ }^{\text {R }}$	25.11	23，5	25，9	27.2	242	218	2 Al	23 \％	$2+4$	ご家	25.0	268	273	2\％ 6	362	29.1	2R 6	28.2	28.4
100	$2{ }^{1} 1$	25．3）	256	26.3	25．8	241	251	24．亿	22.5	2） 1	$2 \times .5$	20，7	26.7	25.1	259．	$2{ }^{4} 6$	25.5	214	28．	24．7	24.9	䊽 2	262	27.9	279	㒭， 3	27．8	29.8	295	20．1	1
2.00	25.6	27.1	232	26.3	$\underline{2517}$	35.5	26.9	21リ	$\underline{27} 7$	20.2	29.5	245	2 3 3	27.2	20.11	S0） 1	$3{ }^{-9}$	250	29，	26.1	25.5	244	274	289	29A	30.1	294	． 30.5	W0， 3	29．9	H
300	276	29．11	2r．n．	27.2	30， 2	270	$\underline{2 H} G_{1}$	23， 3	24.1	$310 \times$	30.1	24．4	31）， 1	210	26.11	31.5	$2 \mathrm{k}, 2$	2ti．6	304	27.5	260	22ム	2R， 6	30.0	2川．11	31．4	310	31.2	． 12	316．8	32．0
＋ O_{6}	239 ${ }^{\text {a }}$	29.7	29， 2	27，${ }^{2}$	271	2H01	20．f．	25.1	20,7	31.8	31.7	29.9	31.3	－193	27．01	32．3	2 HR ．	28.	31，1t	$22^{6} 6$	273	22N	2R．2	204	312． 3	3.318	32.2	121	320	31.9	128
$5 . \mathrm{m}$	W1	311，5	30.9	27，	$2+1$	2り）	3116	26.8	273	32 K	32.9	314	225	317.	2811	330	214	$\underline{29} 7$	31.6	297	2987	2711	27 K	24n	． 31.7	12.8	发 4	32 K	32， B	32 d	336
G．（1）	31 f	31.2	32.6	27.4	210	\％ 3 S． 11	． 116	2R， 6	24．11	3.38	34．11	22．リ	33 B	37.11	32.16	33 k	औ｜，．11	31.3	32.2	आ1k	आkil	233	27.4	242	130	23，8	34，6	336	37.6	34.0	44
7－4，4	31．斤	315	$3{ }^{2}-4$	27．6	242	3un 4	319	20，2	29］	H5	347	335	342	3.3 .3	297	3.41	317	321	20R．	2り ${ }^{\text {\％}}$	319	245	$2{ }^{2} 11$	28.7	337	343	34.18	342	34.1	34.3	34.5
R， H_{1}	31.8	31.7	32 K	27.7	274	H0． 8	． 173	$2{ }^{2} \mathrm{R}$	313， 1	35.1	355	340	340	4.3	－ 113	34.7	31.5	37 rl	374	27.9	31.2	257	28． 7	29.2	24， 7	$3{ }^{3} 6$	350	14.7	34.5	347	34．7
9 NL	3211	32112	372	27．9	$30 f_{1}$	31．2	32.6	แ． 4	112	35 K	142	346	35.11	． 35.17	310	152	3211	31,1	2511	2¢．）	31\％	27，0	29.3	29.7	35，1）	350	352	35.1	35.0	350	3.8
［1．1．1．1］	297	．31．1	32.5	2811	2\％5	317	31.1	$2 川 .5$	31.3	319	17，7	$3: 1$	$3+4$	34， 3	311,3	547	2 k 4	33.3	25． 1	¹． 1	305	27，0	2川．1	29.3	34.1	344	345	349	345	． 747	5
11.4	275	313， 1.	31.9	$2 \mathrm{~s}, 1$	265	31.1.	31.3	20.3	37.3	31．1）	35，1	275	1.78	337	$22^{2} .7$	－ 4.3	24 \＃	32．5	25.1	25.7	20．3	27.0	2094	20．f．	33， 3	339	330	34.4	31.4	445	34．1
12．（x）	25.7	38.2	31.2	2 L 2	244	29.6	31.	278	314	31）．11	246	24.11	37.2	31，0	2911	338	212	124	25.2	25.4	2K，${ }^{\text {c }}$ ）	270	28．斤	29%	32.4	337	33.2	34.11	I．	34.2	338
13 CO	25 （1）	2 hf	295	27.7	245	29.11	255	$\underline{7711}$	31.7	29.1	333	$\underline{23.7}$	27.4	315	285	32.9	21.7	11 亿	25 \％	25．7	279	$26_{1} 7$	28.4	291	319	3.3 .5	323	7.8	12.9	35.4	3.11
1＋1010	24.7	28， 1	27.7	27.1	$24!$	28.3	291	$20_{1} 2$	3191	$\stackrel{\text { ² }}{ } 1$	32.1	235	255	311.1	27．9	321	33.3	． 21.8	247	25， 1	27．1	26.3	23． 1	2k， 5	313	31.5	31.5	320	124	327	32.5
1500	245	275	？ 71.11	26．6	247	77^{7}	28， 4	254	2 N 4	272	3 l H	23，2	21.7	28.6	27.4	312	2マロ	31，	245	250	27.7	365	279	갠）	41） R	30． 4	30¢	31.6	31.9	11.4	3t， 8
16．0．	34.0	27.3	2 ta 2	24.3	246	27.1	－7．4	256	2R9	27.1		－ 411	22.5	$2 \mathrm{sb}$.	2゙	3115	22.9	2ท17	$\underline{7} 4$	25.1	27.1	$251]$	27， 6	279	364	30.3	3×1	3.15	3.3 .3	．11．4	31.3
17．0）	2．3， 5	27.1	264	$\underline{3} 1$	245	$2(1.4$	279	25 स	2R5	2 2.15	2919	248.	23.2	2 L .1	26． 7	297	229	21） 5	241	253	2817	35.7	27.7	$2{ }^{2} 9$	3010	29，$)^{2}$	297	20	3.106	．0．8	317
	2311	2 CH	266	25 R	24．	25%	267	$2{ }_{4} 11$	2H9	26.8	2） 5	25.4	24.11	2K， 2	26.4	$\underline{38}$	2才，1）	끼 2	2\％．R	254	2 K 2	256	23.6	274	29 亿	3.4	2 l 2	294	31019	． 01.3	H1
リリオ！	230	2 t .4	$2(1,4$	24 H	271	35.4	212.4	259	2x， 11	260	20.3	25.7	2413	27，3	26.7	267	22.10	249	27 f	25．7	2 kr 2	25.5	27.5	27.4	292	28．5	24） 1	27． 2	297	29.7	311.0
2014.	230	25.5	2 C 2	21．is	273	240	36.1	257	2811	269	20.2	257	$\underline{24} 1$	$2 r, 5$	261	243	226	$2 \times .5$	235	25.1	2 k 2	234	27.5	27.4	285	77.7	2）！	2】．11	293	29.2	29.7
21 （4）	2301	255	26.11	22：4	2ご	245	25，k	256	2816	2711	20， 14	258	$2+4$	256	272	220	22.4	2 SK 2	231	35.11	$2 \mathrm{~K}_{2}$	253	274	278	2 H 4	is，k	24， 11	234	$\underline{29} 0$	2HG	27.5
㬵（0）	24，${ }^{\text {a }}$	26,8	27.1	235	2411	25，1）	20.6	23.1	2 3	27，6	24	267	25， 19	26.2	271	34.4	241	枵5	357	26.7	2¢ 4	2at	27.7	278	37.9	2 3^{19}	281	27.7	28.0	27．）	19.7
2300	36.9	28.2	283	24.3	25.2	25.5	274	26． 1	39,0	28.2	29.0	276	27.7	$2 x^{1} 1$	27.1	26.8	3.7	289	37.1	275	296	27.5	27 ¢	$\underline{27.8}$	27.5	27.1	270	26.5	270	27.1	9.8

Hourly Dry Dulb Temperature（ ${ }^{\circ} \mathrm{C}$ ）

Year． 2005 Mior．he Jurs

Day	1	2	3	41	5	6	7	H	9	10	11	12	13	14	15	16	17	18	15	2）	21	22	23	24	25	26	27	28	29	10
Fome																														
003	20，${ }^{2}$	2 J 5	？	2513	$\underline{2}$	2611）	2k， 2	281	21		21）	래 5	29	27.5	27．11	292	27.	21.2	2¢5．11	2R ${ }^{\text {R }}$	28．8	28	2	27 k	27.1	27.2	200	25.4	30.1	26.
$1 \cdot(0)$	24） 9	．al． 3	（1）． 1	26.3	23 H	27.7	$\underline{\sim}$	2 Cb	H16	29）	29 H	2113	316	20k	2 fi 5	200	$2 k$	312	259	297	72.5		2R．7	래9	27.	27.8	26.	35.5	26	26.7
2.10	313	312	31．2）	27.7	24	2）	3	21.2	31.7	31	319	$31+11$	51.2	311	$3{ }^{3}$	05	2 y	31 t	317	\％1，5	310	302	29.3	29.9	28.5	24.	7.5	25.		
3 Cl	12	324	316	그）	311.5	． 31.1	31	312	32 K	12，	ไ1．	312	32010	31.	25	712	\％ 1,6	32 t	． 315	314	11.	31	2）	31	25．	29 th	2 s	25 b	27	274
4 CK	32，	12.1	S2	W） 2	31.1	31.5	32.2	319	337	3 31.15	125	311	11	32.1	26	2）	313	12.5	\＄214	32 t	31．8	． $\mathrm{k}_{1} .3$	21）	31.3	29.2	0	291	24	27	279
$5 \% \mathrm{~h}$	33，5	3.3 .7	Si．3	31.3	322	31.9	32.4	3－5	34r．	4.41	3.5	13.1	310	32	272	280	32.1	34.6	． 32	327	32.7	293	21）	31.7	29.1		28．		271	
60 m	54	14.6	H7	3.25	$3.3,1$	12.	331	37.2	35.5	352	14	． 342	29，1	31.10	2k	31	32 R	344	3312	3．1．4	3.1	2\％	29.1	320	29	320	29，9	26		1
7.01	345	352	34.9	32.7	． t ． F_{1}	331	33.2	31 h	34	そ	34.6	． 14.5	21） 3	32.5	근，	20n	37.11	346	33.1	31.5	37	28.4	293	3 3 ｜l1	29.	313	23	36， 2	27.1	5
	34.9	． 15.8	351	32，4	34．	34，4	34.7	544	$3+$	35.5	14	3.	？ 7	33.5	．${ }^{1} 1$	27.3	4.33	14	33	370	34	239	29.5	27.	2 F	31.7	24.	26.	37.	37.8
9.00	35.	\％	35.3	31.0	． 254	344	15	35	33.	． 15.	34，4	35	101	13	315	27．6	t． 5	35.1	33，4	342	2	275	2y	23	$2 k$	30	28	2 h	27.4	
$\underline{1+1 / 2)}$	34	35，6	34 h	125	31	34.3	35.2	347	326	3.5	33．7：	$34+$	2r．斤斤	6， 6	314	27.5	33.1	34.4	321	13	33，4	28	$2 \% .3$	26	29.2	2	27	$2(0,4$	27.5	27.4
1］：내I	341	34， K	34.4	． 315	27	37	1	24	3 t	34.5	22！	37	212	27．4．	11 3	27.5	127	33.7	32.3	37	32.2	3	27.	26.	215	$2{ }^{2} .2$	27.5	26．）	27.	273
12 1 Hf	33.	3，4．11	311	． 31	긋	37	34.3	$3+$	आ	3.4	12	34	2.4	25，0	312	27	32.5	33.0	31 H	13	31	24	$\underline{2}$	$\underline{77.2}$	2 l 成	29.	27.2	273	27.	27.5
1.3 （H）	そ27	37.1	33.	31	2 \％．亿	32.5	31.	345	111	312	313	$\underline{29}$	3k	252	（！）	$2 \overline{7}$	317	\＄2 3	31.2	32	3n， 1	$2{ }^{2}$	23	27.	21	$2{ }^{2} 5$	36.9	27	27	37.1
14，x_{1} ）	31.15	323	32.	3117	24	31	27.	12\％	11	24．	20， 5	51	2 k 2	25.5	${ }^{1} 1.5$	27	313	11.7	碞	31	31.7	2 k,	2 n	271	2\％5	2） 1	22_{1}	26	27	270
1509	412	3 t	31.7	29	25	311	24	12	29	37	20，4	． 3	27）	25.	21，2	23	3112．	31，	䓣	31.	31）	2 HC	2	270	27 \％	2f	2¢．13	26	2681	$2 \mathrm{f}, \mathrm{B}$
16－（ H	3	31.1	31	28.6	25	311	$\underline{25}$ ？	31.	297		24.6	आ，	27.7	25	311,0	27.	H2，	\square	2リR	\％｜k．	31.3	2 C 5	24	27.	27．7	$2{ }^{2} 5$	2 k	36.4		2 a .7
－17 ing	3 l	31． 5.5	30	27.5	25.	1112	35	11.1	吅	2r	23） 4	3113	$\underline{73}$	2r，	2）R	275	301	${ }^{7} 1.5$	21）．in	3	2.9	2 CH	28.	37	27.6	2\％． 1	26.	20.2	2 t ，	24.7
18.10	20．1	（U）	ท	20	25	3010	2 C 2	314	2r．n	29	292	31， 11	272	26	29.	27.	W1，	H13	25	22.	24， 6	382	2	27	275	27．8．	262	2at	266	$\underline{4}$
1001	29.	29.	$2 \pm$	76	25	2） 6	2ti． 1	31．2．	29.5	29	24	290	27.	20.4	$\underline{7}$	27.5	293	3114 4	29.2	295	21.4	28.	27.	269	27．4	27.6	3	25.9	26	36.5
20.00	24.	$2{ }^{2} 6$	28， 7	24.	25	292	26.1	T13 2	$2{ }^{2}$	24，	뇨	2 y 21	26.	2 亿．	29	27	29.7	2） 7	$\underline{2}$	21） 3	$22^{2} .1$	232	27.9	267	27.3	27.4	259	25.7	26.	26.5
$\underline{2}$（ k ）	29.6	21	部	26，2	258	2 HK	76011	（11）11）	2） 1	293	246	$29 \times$	268	7f1， 5	29.1	275	겐 6	29.4	284	그） O_{1}	20． 9	282	27．${ }^{2}$	266	27.2	27．2	25．8．	35.11	261	264
2n¢0，	286	23，2	20.1	26.1	35.9	27．6	26.4	2\％． 2	28.5	293	27 4	2911	27.1	20.2	27 f	27.1	2 4 6	2\％ R	285 ．	256	2H． 1	27	27	368	272	27 方	25.4	26.1	26.5	36.7
23くイス	27.5	27.0	75.18	26	26.1	20.19	26：4	$2{ }_{5} 4$	2 P .1	2ヶリ	271	28.3	27.3	$7 . .8$	262	20.8	276	282	2831	래 1	27.2	27.0	276	27.0	27.3	277	27.0	26.7	271	36.9

Hourly Dry Bulb Temperature（ ${ }^{\circ} \mathrm{C}$ ）
surce，Hargladesh Metrorolokical Departmeml，Cl：mare Divsion，Apargation，Dhaka
Year＇ 20015 M［crett．lulf

D1\％	1	2	3	4	5	4	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Time																															
0	26.5	25：	247	2612	20,2	25.	272	274	27，6	276	7 F （1．3）	27.5	27.6	254	24．1	2 t 4	266	27．a	2k 0	27.7	264	26.4	27.5	27.2	$2{ }^{2} .31$	2R 0	27.6	27.2	27	2	28.0
1.100	27.3	262	$\underline{2} 48$	26.2	25 \％	27.1	2ho	2 x 5	$\underline{2} 0$	27.7	76．⿺𠃊⿳亠丷厂犬	24．11	27.5	255	25.11	2719	27.6	28． 1	2R 7	2N， 4	27.3	364	27.9	27 B	28.4	289	27.5	27.4	24	1	． 9
2.001	24.1	266	24.	26.1	254	2R．t	2 k	가） 5	2R， 4	279	$\underline{27.2}$	2 5	27．3	35.5	25.2	27.0	2H6	28.5	22.5	29 t	24.1	36.5	2k，${ }^{\text {a }}$	24	$2{ }^{2}$	20.7	275	24.4	， 0	28.1	
$\left.3 \cdot()^{\prime}\right)$	28， 9	27， 5	25.1	263	25.11	각	20.6	314	2hth	2\％${ }^{1}$	27.7	2 c 1 1	27.3	256	254	2 S 2	20.6	291	312	2．） H	313，4	265	$\underline{2}$	29，0	310	． 1	27.4	（1）	． 7	29.8	
4.00	27.4	273	25.1	26.8	25.3	314	प्र1．4	31.0	29.7	2 C .4	$\underline{7} 3$	23.9	272	25.2	25.4	28．9	ओ 3	잔 5	ओ，R	31.5	W，${ }^{3}$	27．7	296.	312． 1.	31.2	317	2 H	29.7	30.4	．07 7	
$5 \cdot \mathrm{CHI}$	27， 1	275	257	271	26,3	31.3	312	316	H1，7	28：	2711	相	27.2	363	255	자．7	11.1	90）	314	31.3	305	23，${ }^{\text {H }}$	30.6	31	＋1 8		29.4	30.5		31．6	
6×14	2 k	27.8	25.3	27.4	271	172	3211	522	31.4	29） 7	2f， 61	318	27.2	366	25.5	3114	， 11 \％	31，5	1211	． 32	31.6	3110	31.5	32.2	324	30.4	304	31.2		325	
7 ？ 6	267	27.7	25.6	27．11	$\underline{27}$	123	． 12.1	322	31） 7	¹：	27．2	313	26.7	27.1	25 k	3114	323	31,1	321	312	14.1	3124	31.4	32.5	32.3	，${ }^{\text {d }}$	，				
$8(0)$	27.4	－77，5	20.01	26， 7	2\％． 3	32 S	22.3	12．27	297	3） 7	27，${ }^{2}$	41， 7	263	271	20，0）	31 H	129	31.5	32.3	※13	315	U11\％	31.	327	3	31.1	\％				
9.0	24．17	27	26_{3}	36.3	24．11	122 6	72	32．：	26s	219	28.5	312	25．8	27 k	$2 ¢ 13$	\＄1，11	． 3.3	3211	12.4	295	3211	112	31.	33	322	\＄1．2	． 332	320			
$1(5)$	28， 1	27.2	265	26． 8	28 H	32.5	320	317	3） 2	2y！	245	23	25.	275	36	31P．${ }^{2}$	32.5	1211	$2 \cdot 2$	$\underline{2}$	31．1．	31．${ }^{2}$	31.2	32.6	324	309	32.1	317	32	31）． 2	
11．0x	24	270	260	27.4	247	32.3	32 K	31.3	216	29 ¢	$\underline{24} 4$	2）	259	27.1	26.4	310 \％	31 K	3211	32 19	2 n （1）	31.6	abs	32	722	31． h	317	71	31.5	आ1．¢	310	1
12.01	2R	7 C .4	368	272	2ris	322	311	3 M K	3111	引111	2K 4	30	200	76 ${ }^{\text {¢ }}$	36,5	307	311	Y닌	31， 5	272	31.4	31） 2	312	71 ，	31.6	．5）	31	31.2	2川．2	31	32.0
13 cm	277	267	21.4	27.7	2Fh	11．5	31，8	31189	21．al	295	28，	$2)$	$\underline{3} 1$	36.7	26.5	297	3113	31.2	3 l	27.3	（1） H	29.4	307	31.1	3． 1.1	स1）	20.7	31 H．	29	30	313
17414	27.3	26.7	2011	274	774	30.8	$\mathrm{j}_{1} \mathrm{f}_{6}$	25	29， 2	29.	2 H	래4）	20.1	265	24.2	3x，4	29.7	． $\mathrm{H}_{1} 1$	3115	275	3017	\％0．4	． 31.3	प15	3），	20.6	215	31）．	2.	2	
1500	26.8	206	$25{ }_{4}$	27.2	27.1	311	29.4	292	3t．K．	246	28	24．h	26.2	$2(1,4$	2¢0	23	29.11	20	21J． 4	27 （1）	20.7	210	20， R	22.4	29	20.2	24.2	30	29.1	292	
1 HO	26.7	26	25.5	23	26.7	2リ	$\underline{2}$	$2 \mathrm{2}, 11$	246	2 x .5	2 2 $_{2}^{11}$	247	26.1	光 3	2 fi	27.4	2h5	212	28	27	？ 2 ， 4	$2 \mathrm{R} R$	的5	28，	20	21	29.1	296			
13 （1）	2 Cl .5	266	25.5	26．${ }^{2}$	2 L 4	29.4	24	28.4	74	28， 3	2kII	$2^{4} 5$	2¢1	$2{ }^{2}$	$2(1.11$	27	2k， 7	2.8	27.1	27.2	$\underline{13}$	24	29.1	23	3	28	220	22.2			
18．14	$2 \mathrm{ri}, 4$	246	254	268	$20_{1} 0$	201	$2{ }^{2}$	2 Bf	282	2 R 2	2 X （t	2k， 4	20.61	7 ¢ı．2	26．11	272	2 K 6	2ra 5	25.6	270	2 NR	2\％， 5	28，${ }^{\text {4 }}$	27	212	22					
1919	265	$2 r_{1}+$	25.5	26.7	25.1	2 S 5	$2{ }^{4} 5$	25.5	2511	231	27．9	$2 \mathrm{R}, \mathrm{t}$	259	2¢11	2611	271	23	24.	25.	3×19	27.7	까	28	27	간	28．5					
3），（h）	26.5	$2 \pi_{1} 1$	25.7	26.7	25．リ	27.1	77.9	2K］	$27 \times$	379	27．9	2 K	25．9）	25 K	2611	36 D	2K． 2	3×3	25.9	$2 \mathrm{r}, 7$	2 L 5	242	27．4	26	$\underline{2}$	28.					
31 l	266	25．）	$\underline{59}$	$2(0,6$	3	374	27.4	27.8	276	27， $\mathrm{R}^{\text {d }}$	27， H	2 k 1	255	250	2 x 11	264	28	232	261）	$2{ }^{2} 16$.	254										
$\underline{2300}$	27.1	27.11	361	$2(1)$	26.3	27.3	27.4	27.7	272	275	27 \％	27.7	265	3 r	265	26 \％	237	27 －	2， 3												
23．（\％）	27.7	28，2	265	274	36.7	27.1	274	277	20.5	273	76.9	273	27.1	274	269	26.8	275	27 7	26.7		26.3	371							2 H	2.	28
																					2	27	28	27.	269	27.	$\underline{7}$ ， 5	27.	28,3	28.1	28.5

96	$8{ }^{\prime} / z$	6 F		ritz		Itz	Ls	9 O	1ZZ̄	F9\％	C52	L－zz	1＇sz	¢ ¢	＋${ }^{\text {LIL }}$	5＇\％	16%	¢	L2	5\％				Iiz	L\％	＇R2	412	LLz		＋4\％		
86	＋＇4c	Liz	RLi	己くて	\＃2	12	5	E＇ż	S 5	L\％	－̇̇	ctz	1 1＇S	Liz	＋\ddagger	退	「ご	18	（iti	6\％	i，	s＇z	12	kiz	l＇z	ITE	9：Z	pit	irkic	Fra	人izz	
Wh	$0, \mathrm{z}$	放	ग\％	2\％	\＃ 4	－12	17，	52	0\％	U12	ItL	，$\overline{L \bar{L}}$	ह14\％	1182	¢ $¢$	\％${ }^{\text {a }}$	（rise	$116 \bar{L}$	¢ kz	Hit	Utz	O¢z				2			\＃ri	（1）	wizz	
1＇62	2 行	R88	2kz	2i	S＇L	ILI	cis	LLC	${ }^{11+2}$	Tiz	Izz	LEL	¢ ${ }^{2}$	fiz	Ez	こく	＂192	16	1×2	4	－2				2	12	＋2	5 L̄	1\％\％	2 2代	0112	
Etiz	＇tic	佑	${ }^{6} \mathrm{Bz}$	\＆it	4 4	I＇żz	risz	92.2	1%	2iz	をこ	7	5，$\times 1$						－	\％	を＜	14\％	8	1192	SL2	¢ $2 \overline{2}$	SLI	2 Lz	\％	Liz	alve	
\％＇6z	\％	て＇id	$10^{\circ} 8$	i 12	9\％	¢ \bar{L}	प्र：c	0×2	$18 z$	tiz	\％	Tis	：	－ut	1 kc	97	14%	¢ 3	$5 \geqslant 2$	CLI	522	I 42	$1 \cdot \underline{2}$	［\％	¢	2K	iz	Cz	L＇\＄2	\％	${ }^{10161}$	
F＇6z	Liz	5 \％	\％ 8	＋ 2	Ez	tiz	－ct	14 L	व182	riz	प＜z	5		bá	＋$\times 2$	＂ 18	11 hi	d	\％${ }^{\text {c }}$	17 kc	＊ 12	z\％	Fiz	2 2	צ：	¢ Cz	Riz	N：t	वR	1 Fmf	m81	
¢	Ciz	66°	sba	Ez	ciz	GLE	¢＇\％	3 Hİ	BLZ	s 2	St		10\％	こfil	＇${ }^{2}$	4 $\overline{\bar{c}}$	\％	）	［ $\overline{\text { ¢ }}$	\％ Hz	912	\％	fri	LR	RLC	1	kii	2＇\％	¢	\％	HHLL	
b＇bc	（501\％	p＇nt	\％	92	9 $2 \overline{2}$	LEL	t＇sz	Fis	cz	s＇z			${ }^{\prime \prime}$	Stic	\％	Hit	ki	4	析	2	LL	5 kz	5 RT	＋${ }^{\text {che }}$	${ }^{12 \times 1}$	\％ 8 \％	Stz	\％${ }^{2}$	Skù	， k_{i}	｜ki＇l	
															\％	jkz	\％ F	（11／k	${ }^{116} 6$	542	ciz	गx\％	$58 \stackrel{\rightharpoonup}{0}$	＋${ }^{2}$	14%	H 2	प12	＂18	cie	18	chis	
$50{ }^{2}$	18	bit	2if	Ėً	¢＇\＄8	$z \bar{z}$	R8\％	1082	\bar{z}	92	11 ki			家	－ 11	${ }^{6}$	\％	¢12	＋	＂N1\％	13 1\％	\％	к＂ni	${ }^{16}$	CRz	＇42	rī̀	\％	－	\％	（mict	
	Izt	ck	Izi	162	$9 \mathrm{a} \overline{\bar{c}}$	$t{ }^{\text {a }}$	1／2	GG	24z	6．27	：cz	3 F		－	Tif	Pr	H12	2z，	${ }^{9}$	4， $1 \times$	${ }^{9}$	5	176	6，	，17\％	\％	zizu	（10）	16	\％	$1 \mathrm{l}+\mathrm{C} 1$	
208	5zE	at 1	2zi	1iz	1915	＂，	5%	$6{ }^{\prime \prime}$	t $\%$	2\％z	E＇tz	，oiki	cus	㲀	${ }^{\text {a }}$	2115	714	\＆${ }_{\text {ct }}$	que	$1{ }^{1}$	L行	662	\％ F	$6 \\|$	R＇行	$1{ }^{1}$	＋	Lus	cte	（1¢ ¢	（0， 1	
प्राIIE	ast	\％it	Tis	9＇2	Eziz	8 8	462	प्राE	iLi	－\％		（0ix	\％	Hit	（1）	210	412	¢	116	Lex	2，	2．12	t2z	s＇lic	＋	412	9%	\％	［ii	tit	aror	
CGz	Oṫ	で	Lzi	9，$\overline{\text { ü }}$	$1 \mathrm{~B}=$	b＇k	ciz	\＆＇t	\％ 42	$11 / 2$	¢ kz	1p	ur	と	P48	N（1）	12	＋${ }^{\text {＋}}$	rits	$2{ }^{2}$	86	9，$\sim_{1 / 2}$	RIL	FZE	\％	समाE	最产	RTİ	2t	2ti	［147\％	
s＇z		726	rait	1\％ N	प्रIE	Gig	5 位	（＇1）	4 C	5	＇62	\％	［iz	fir	9	312	Vit	Lit	（50）	F＇x：	\＆亿ü	4 ¢	0x2	${ }^{\text {cizi }}$	\underline{L}	ITE	¢＇凶	†18	t\％	Et	1968	
Flz	0 \％	zze	（12）	${ }^{2}$	S\％	9，${ }^{\text {d }}$	F18	tilk	$8{ }^{\text {Br }}$	$111{ }^{\text {a }}$	\％${ }^{\text {ch }}$	\％	＂1／2	${ }^{125}$	In	$8{ }^{1}$	（illut	－	112	LK	，	¢ kz	${ }^{17 \%}$	2it		＂İ	Fix	II	H2	＋10	Cart	
CR2	z	（1） 1	T¢	${ }^{+1 \%}$	\＃ $1{ }^{\text {k }}$	7\％	\％＇za	lik	6ick	5	ग\％	ह：＇ 22	¢	3112	に	8ct	fill	＋TIE	\％	z＇a	k 2	¿く̄	If	97%	alis	J！	Mex	Cale	$\underline{i c}$	Ets	（142）	
6	－	${ }^{\circ} \mathrm{HL}$	Firick	11\％	$4{ }^{1}$	㑆	1960	\％	cis	צ 8	गね	¢＇s	$1{ }^{\text {m }}$	$\overline{\mathrm{L}} \mathrm{l}$	\％	Tin	${ }^{1 / 2}$	\％ik	Exi	Ex 2	12	\＆	${ }^{19}$	2m	${ }^{5} 6$	${ }^{2} 1 k_{i}$	Eg	2， 14	$1{ }^{\text {c }}$	动	1445	
216	OR	－	－${ }^{\text {a }}$	\％${ }^{\circ}$	ocz	siz	\％\％z	5 Sk	（14C	$2 \overline{\text { mz }}$	Liz	9\％	ste	Hiz	${ }^{18}$	5is	＇1／1	Fin：	riz	2に	52	2	14	fi＇z	1162	\square^{4}	lari	2 ic	佼交	\％	（1）${ }^{1}$	
EM	10is	F\％	E＇42	01／k	： F	12	¢\％z	$1{ }^{1 / 2}$	9L2	CLE	6́sz	1 \％	tic	S\％	L			，	\％	Lt	．	，	－	${ }^{16}$	¢k	$1)^{1 / 2}$	＋+ L	2＇M	\％	511%	（0）	
56	17\％	＋	LLE	2 12	CLL	\％	122	9\％8	Liz	¢ 5	z＇yz	Siz	Fec	18\％	Fiz	62	\％ 4	－	－	TVe	\％	灰	пй	$58 i$	${ }^{118}$	＋$+1 \bar{\square}$	$1{ }^{18 \%}$	＋4z	6゙ィ	20	（01z	
9，	82	\％	42	F＇z	112	C\％	z＇z	ztz	（\％）	\％	tiz	＋L2	viz	$2 \bar{L}$	\％	tiz	\％	\％	dz	＋ワ\％	İz	®	二it	ULi	Sck	${ }_{\text {rict }}$	1，$¢$	p\％	1＇6i	11／	Mal	
																						\％	Li	＋iL	$1: z$	ziz	2＇z	H\％	\％	z＊	1000	
Is	$0 ¢$	62	\％	Iz	\％	5	b	iz	π	L	Iz	61	81	4	11																${ }^{1}$	
																St	n	！	21	1	01	6		L	，	s			z		irg	

JTisiny yivin side
…
Hourly Dry Bulb Temperature（ ${ }^{\circ} \mathrm{C}$ ）

I＇car 2005 Monely Setromber																														
Day	1	2	3	4	5	$\underline{6}$	7	H	9	10	11	12	13	14	15	16	17	1 s	10	20	21	22	23	24	35	26	27	24	2）	30
Tane																														
（10k）	27.3	과세	27 S ，	$\underline{314}$	27.11	364	777	$2 \mathrm{r}, 2$	264	$2+2$	$\underline{2}$	27， 2	2rimb	2 t .4	$2{ }^{2}$	234	27 If	2R．2	2）${ }^{1}$	25 18	2608	$2 r_{1} 0_{1}$	26.1	246	272	25.5	27.2	262	260	272
1， Cl_{1}	2901	28．1	253	24．4	2 201	381	390	2r，4	31.2	254	$\underline{\sim}$	3R，4，	231	2in	27 k	$2 \times .8$	3R1）	2 y ！	29.2	24.5	2r，9）	27，7	27.5	251	239	26.6	28.5	277	265：	27.1
2 ¢	3813	298	21） 2	${ }^{3} 97$	29.3	20.7	311,3	275	2416：	32.6	27.6	296	27.1	2F3	ワワ	3132	20.0	316．1	い岳	27.5	27.7	28.7	2 R 4	255	29.5	27.6	293	291	37.1	28.7
3ın！	31.5	0，7	20.0	304	SO 4	314	31.51	282	2R，R	27， 1	$2{ }^{2} 3$	3118	2d 4	22．5	3106	316	310	31.11	3211	2R18．	24.1	－ 29	21．3	20.1	2 d 2	2\％ 7	31．6．	31.6	23.6	24．4
4 回	31.1	2t 7	31k．${ }_{1}$	31，1）	2R，${ }^{\text {2 }}$	3211	29） 2	29.5	2） 4	2ND	$2{ }^{2}$	31.3	25 碞	3115	31.7	32.5	H）C_{1}	\＄1 7	32.7	28．5	294	詨1	217	27，2	274	$29{ }^{2}$	31.4	31.5	27.7	2911
5．80	306	32 h	117	367	27.1	326	24．9	ㄴ，5	\＃11	，3－1	$\underline{2}$ ），${ }^{\text {R }}$	31.7	． 312	31．fir	3） 3^{2}	31，3，	312	．223，	3.33	2r，i	316,2	3615	121．7	28.4	． $\mathrm{N}, 4$	316	318	32.3	27 ¢	．k） 5
（f）rm］	30.2	318	． 220	323	2.4	332	245	31.6	31） 7	． 312	प्र15	323	320	\＄20	3＋11－	342	31.	31，0）	$3+11$	27 s	310	． 3.1 R R R	3） 0_{1}	296	310	315	322	3．1．2	27 g	310
7：091	29，4	3．3．1	35．9	31．H	35.4	33 k	24 4	32.1	± 1.1	3t 3	31 ！	32．4．	125	324.	342	14．1	$371)$	32.11	3.5	269	313	$29+$	$30+$	과9	3116	31 R	323	314	$22^{3} 3$	$2 \mathrm{R}, 9$
8int	2 nk	32.5	\＄1．9	314	261	344	25.0	125	314	31.9	316.	325.	123	12.3	344	34．1	$3 ? 2$	1215	13 n	25 年	317	28	新2	313 3	3112	321	525	301	2 R 6	26.7
9 ikf	27.8	31．8	${ }^{3} 1.12$	ふり	265	350	253	3311	32.51	322	321	327	3？ 2	12.1	146	3718	$32+1$	32 L	Sth	250	320	$2 \square_{1}$	\％）1	． 116	21）R	32.4	326	285	290	24
J16，${ }^{\text {chi }}$	2x 4	315	31.5	如稆	27.9	1.14	25．7	32 4	31.9	31.7	11 R	31.7	3112	313	\％\％， 1	结》	323	322	32.5	24.9	3118	265	92，	3102	리 5	$31 \mathrm{t}_{1}$	31.4	28．7	21	34 R
11：1H	29川	31.3	引 ${ }^{\text {3 }}$	313	$27{ }^{3}$	31.7	26.1	． 718	$31+$	31．3	31.4	W3，	2 R 2	3119	337	32.7	315	317	323	24，9	$2 川 7$	263	285	20， B	241	3tis	303	？R，R	24.1	24．1）
120）	29， 4_{1}	1111	． 1.0	31.51	27．7	310）	32,5	31.2	いh	P115	311	$\underline{99} 9$	$22_{1,2}^{2}$	214	320	32 （1）	31．］	14．1）	르늬	$\underline{24}$	2×5	26.4	277	21） 4	288	310	2） 1 ．	290	292	23.1
1300	20.1	30.4	आ15	24.3	275	20，R，	2 1,4	311.12	M8， 3	295	आ \square^{5}	21，2	20.5	22^{5}	321	41.7	31， 9	औ1	316	27.1	28.3	26．in	23 k	2s．n	38.5	20.5	29 （1）	389	2910	23．2
14，	285	2 yR	4， 1.11	29， 3	37.0	29.7	26.3	315	297	20.3	$2 \mathrm{l} \mathrm{I}_{5} \mathrm{~F}$	26， K	261	$2) 1$	317	31.5	$3 \times 1,6$	3110	31.2	25.4	2R， 1 ¢	203.	27．1）	283	2R，${ }^{\text {a }}$ ，	23.1	2\％k	24．2	28.7	25.1
15 （1）	2 k	2 d 2	28.5	29，0	26.6	295	26.2	W1？	29.2	27， 11	2 C 2	28．3	$2{ }^{2} 2$	36.6	31.2	31．21	3， 14	2ل－4	（31） H	25.7	27 B	2¢，	24．11	27.7	2 K （ ${ }^{\text {c }}$	246	28，7	288	2 k 3	254
Lis（v）	28． 1.	2919	29.3	20.11	26.5	2） 21	$2(1,1$	2R．6	28.9	27 t．	2 P 4	241	27.5	2 4 3	预4	$\mathrm{X}_{1}{ }^{2}$	． $31+2$	29.2	3）	259	33.6	$2(1.3)$	278	213	27，R	284	28 c	2 N 3	2n， 3	254
17 m	28.1	28 c	2נ1	\％）， 16	26， 31	299	$\underline{2011}$	27．11	24，5	27．13	276	$27 \times$	23 ${ }^{2}$	27，9	31.4	2） 2	411	\％）if．	2 D 2	20_{1}	27．4	26.1	27.5	270	$\underline{27}$	28，2	285	277	$2{ }_{2} 2$	255
1800	28	280	28.4	2）is	2¢1， 2	28.6	2（1．11	354	2れ2	270	2（1，, 1	276	24．2	274	H， Cl^{1}	2 S 2	29 x	项员	$3 \mathrm{n}, \mathrm{t}$	242	27.2	214	27.3	206	27.4	2 L 1t	23.4	272	2940ㄴ）	25.5
1 ¢5．l｜ll	2K， 1	2N，4	28.5	2\％ 5	2¢ 2	28，4	26.1	236	2 R 1		2 f 1	27.4	27．）	273	3112	2＞411	295	2k 7	$2{ }^{2} 3$	242	27.1	265	37	21.7	7 1.7	27 ¢	27.9	27.1	27.1	25.5
20.110	2k	$2{ }^{2} .2$	2k ${ }^{\text {a }}$	28 1	26.2	282	26.1	25%	2 x 1	26， 3	267	2） 2	27.7	27.1	28， 11	27.4	293	285	28，	26.2	27 1	3（1，）	27.4	$2(1.2)$	25.9	27.7	275	2311	27.7	25.4
2 l （k）	2 SO	2311	$2 \mathrm{R}-1$	$27{ }_{4}$		$\underline{24} 18$.	367	（a）	28， 1	$2 \pi_{11}$	26,15	27.11	$\underline{\square 2.4}$	27．1）	274	27.6	291）	2 K 4	24.11	26.2	26， 9	275	235	27．1t	25.2	${ }_{3} 7.6$	270	270	27.	25.4
22.10	2：1	2681	235	20k		266	257	$2 \square_{1} 1$	27.2	2f， 11	2t．4	$2 \square_{1} 7$	271	2 1,18	264	27 \％	2 h 1	27.6	$26{ }_{2}$	253	$\left.22_{2} 1\right)$	359	2611	25.	244	2f， 1	20,3	26.4	26.6	25.1
23 （x）	26.1	35.6	26.7	26 U	262	25， 1	25.3	263	26．4	26.4	262	26.4	26.7	20.7	35.3	271	27.2	26.7	252	24，3	25.2	245	24.5	23.8	23.5	24.7	25.7	26.2	25.7	247

5	981	$6{ }^{6}$	15	Foz	T＇た	200	Ent	61	Suk	$1 z$	61	161	Is 12	Blz	te	Sil	¢	602	1ε	¢โ2	198	1＇5	2 z	比	Lz	2	＇ 2	6iz	こ	佰	$00^{\prime \prime} \mathrm{z}$
6\％1	$0 \cdot 1$	1＇z	＋\ddagger	＋	属	0iz	リ	G＇k	6	1928	8に	－ 1	6cz	3t	9＇s	Ē＋	こt	（＇12	6\％	䋁	nisz	Cs	11ヶ2	いたて	＋z	「＇	¢	5	＋て	£	$10 \% 2$
『て	Z	95 it	¢ 9	09	Fs	リ2	y	${ }^{1} 12$	を¢	$111+2$	k	5－1	ztz	45	55^{5}	\％\％	$1{ }^{\text {ILE }}$	$1{ }^{\prime \prime} 2$	－${ }^{\text {\％}}$	硡	¢\％	こ\％	$\times \mathrm{F}$	9\％	5	（0＇tz	t＇\％	＋ 5	－	＋2	$0{ }^{0} 12$
bz	1072	I＇\％z	5		ES	2\％	fizz	81	t	$11+2$	k ${ }^{\text {c }}$	15	2tz	ks	¢＇sz	12	Fiz	ELz	6\％	\＆ग	L \％	5\％		1110	E 28	＇tr	\％	65	\％	＋2	以＇0\％
Pて	6\％	5	20	＊＇\％	\％	\％	Lz	8	¢	11t2	0%	E ¢	2tz	5	95	！ 12	R 2	5＇L	$12 \bar{t}$	\％	天	－リ2	Csz	6 元	sz	ttz	0	1 に	$11{ }^{1}$	tて	On 61
＋	L＇52	ÓLL	＋gz	吅を	\square_{1}	¢ 5	Z¢	ه＇に	5	itz	f＇t	${ }^{9} \mathrm{sc}$	1tz	45	9＇s	N＇Lz	Z Ku	－${ }^{\text {a }}$	ごく	5	1itic	1）	＇G6	呩	5	17 ¢	N＇J2	そ\％	年辰	＊5	（11．85
5	1＇\％	192	F\％	では	\％＇sz	652	ctz	¢＇iz	2z	$1+2$	\％ 2	Bsc	cti	L＇st	Bst	Z ki	942	乐	5 L	к见	\＆ 6	s＇z	¢＇Sz	\％ L	CT	152	12	「＂2	リ	いて	い1
97t	95	5\％	\％゙g	Ftz	LJ	\％＂\％	を＇t	KıZ	12	12＇ti	にと	1F\％	175	L＇St	11.9	9 95	cta	¢ \％	－-6	12	s＇z	cit	2	こ	1＇गE	C＇S＇	¢	碳	\％	5	
458	0＇2	この	て＇ワZ	9 F	＋＇L2	सब	＋！2	－12	に	t＋	］${ }^{\text {c }}$	2＇リ	it	65	2＇ス	G＇k	－	2 Hz	ก14	－	Riz	＋Ri	5	isz	＇\％	11%	J	\％	－2z	Fg	t
458	リひ	0＇L2	［ $21 \bar{z}$		， $\mathrm{C}^{1 / 2}$	でLZ	6 62	L＇k	を「た	でれ	risz	L＇ת	6.2	454	5%	120	GGi	9 L	182	C＇z	${ }_{\text {¢ }}^{\text {\％}}$	0信	码	L SZ	＂Lz	カリ	U	6	12	\＆＇50	$\underline{0}, \underline{1}$
E＇sz	ter	LLZ	12E	＋ 412	¢ CB	ग＇2	S＇t	$\underline{5}$	こちて	をtz	\＃	Iz	L＇	2＇5c	6%	${ }^{\text {cifl }}$	512	（1）	cif	CLi	akz	L＇k	\％	12	1 RR	8 d	$6{ }^{2}$	FLz	\％	\％	0） 51
W5	7 ${ }^{8}$	5 ＇sz	9 SL	${ }^{8,98}$	4 kz	－19 $\overline{\text { ET }}$	0 c	＋＇L	2t	T ${ }_{\text {L }}$	\	N＇La	リざ	$1{ }^{12} 96$	呩	${ }^{\text {cher }}$	－12	F	－1／2	－＇L	＋K	Fif	99	1815	¢＇${ }^{\text {che }}$	こと	$\square_{\text {¢ }}$	$\bar{L} \bar{L}$	\％	1＇s5	ह1
7tz	L＇6z	p＇did	F．	L＇K	5\％	प्र¢	－ss	\％ l	¢ + で	Etū	10＋2	1＇82	り虬	$0 \leq 8$	28t	6＇E	¢		F	1 kc	L＇Ik	12	－Lz	［12：	L＇ic	R＇\％	12i	く	r	＂ 5	dil
P\％	50	†＇0	68	2	＋ 712	50 C	658	¢ 1	ども	¢5	$1+z$	＋82	9\％	Gs	でに	1284	1 1址	\％${ }^{1 / 4}$	1 L	¢ 42	1 18	F	ci	L112	18	＂14	\％	1：9	Coz	＋ CL	（M） 615
2゙5	ヶ	E＇t	5 cik	9	Itr	\＆ 1 K	－	\＃1砳	F\％tz	［＇\＄2	気加	C\％E	92	15	Silt	192	ても	414	L－2	9%	＋t5	5	＇kz	（1）	$5{ }^{\text {c }}$	年1\％	保	＋゙มz	40	）	（x）， 6
ZTE	を＇¢	1tí	É大	Z＇IE	F\％	2115	च\％	F＇LE		${ }^{6} \mathrm{ra}$	t	${ }^{\text {j k } 2}$	15	12	11 5	6 6\％	$1{ }^{1}$	If	¢ze	त＇si	－	F！	DK	Fis	$1{ }^{\text {c }}$	（1）${ }^{\text {cit }}$	交	FHz	¢	5	r＇s
Cric	jor	6\％	促	1302	－	D＇M	（is	$5 \cdot \mathrm{~L}$	5 C	O＇s	＋	＋ RL^{2}	¢＇\％	［＇K	\＄1E	Et	ir	\＆ 2	Fat	$11 / 8$	¢ZC	－2\％	L＂t	518	くた	S	L＇sz	＇k	5\％	56	（6） 6
EE	F1ヶ	Com	の＇y	F0y		S＇z	85	8TE	10	7＇c	5	£ ${ }_{\text {c }}$	1sis	2\％	9 ¢t	＋22	Ti		2is	$\bar{\square}$	Zit	＋ 26	for	吅	Fil｜	W\％	F	＋82	\％	－ 5	（mis）
Vivi	0\％	¢0	E＇K	¢tic	5	（fidz	5	2 亿	2 z	E＇si	2	＋$\quad \bar{z}$	1182	218	L＇r	Nă	1 ¢	120		T\％	Lut	＇18	$\mathrm{c}^{\prime \prime}$	\％${ }^{\text {a }}$	L化	b：	（iL	＇sz	＇sa	Csc	iniz
zaz	右㑑	G＇6	CiLz	\＆${ }^{\text {Rz }}$	ก゙ね	［＇\％	isc	512	\％\％	$0^{\prime} 52$	（rı	\％	Uk	こ＇く的	for	10．	2\％	！	Elit	5112	ale	R＇K	$17{ }^{\text {a }}$	\％14	$1 / 2$	\％	¢して	\％${ }^{\text {c }}$	－	$\bar{\square}$	
\％＇sz	F＇zz	\％iz	5	E＇Lz	䂭	で砍	¢ +2	$\mathrm{F}^{\prime} 12$	F\％	C．ja	－＂\％	$\mathrm{C}^{\prime} \mathrm{FE}$	108C	2	${ }^{11}$	¢ 12	¢ İ	\％	¢	＇！	5＇ld	119	祏	Uu	P＇sz	1102	tiz	L	\％	家	D0＇t
LV2	12	6＇Z	（6）\％	d	6	$L^{\prime} c z$	$4 ヶ$	612	55	＇cr	9 ¢	\％ 12	\＆	9＇2	0xit	＋	L	682	－sk	＋	is	\％	C＇s	¢ 0	r\％	\％	5 ग2	L	－	2 2	We
＇SI	$\mathrm{Cr}^{\text {cin }}$	\＆	＋${ }^{2}$	${ }^{\prime} \mathrm{S}$	¢ 2	Lit	12	ciz	tot	Crā	$5 ¢$	5	9	6%	氏と	でK	［＇tz	EL	，	2	R＇iL	L	¢	5	E＇s	\％	65	¢	${ }^{\text {P }}$	Eç	01
92	F\％	L	\％	15	ごに	Cz	て	1它	45	12	t^{+}\％	だ々	Sz	5	H＇\％	19	5	－ 2	＇\％	19	$11 /$	J 5	＋13	8＇ヶ	L＇sz	マ況	\％¢	K＇ș	t＋z	\％ 52	M10
																															${ }^{161}$
İ	$0 ¢$	62	${ }_{4}$	12	2	52	pz	iz	2	17	$\overline{\mathcal{L}}$	61	¢ 1	4	91	¢t	\＃	£1	I	II	05	0	R	\checkmark	9	\bigcirc	¢	\＆	$\overline{\text { u }}$	1	${ }^{\text {Kig }}$［

Hourly Dy Bulb Temperature（ ${ }^{\circ} \mathrm{C}$ ）

Year 2005 Monle Noveminter

D	1	2	3	4	5	6	7	8.	9	10	11	12	13	14	15	16	17	18	$11)$	20	21	22	23	24	25	26	27	28	29	30
True																														
11	220	21	23	21.8	21	2211	21	22	24.6	24.	22	21	7.9	LH	188	12.	9 h	212	¢！	178	198	1	90	19.1	185	（1）	R， 2	18		
1 ¢ht	23.4	23	24.2	22	231	27.	23	23，5	250	24.7	235	230	［ N,	21	21	21.	22	21	1， 7	19.5	21	210	21,2	21.5	97		\％， 6	9，		
2010	256	2512	25^{5}	34.	245	24.	$2+5$	24	20.6	24	2＋9	24	2 L,	23	21	232	24	22	21.1	21.	22		22.	21．4	220	$1{ }^{1}$	0.4	210		27
tilki	27.	26.	76	25	2rill	26.1	26.1	25.	27	25	$2{ }^{2}$	25	24.	25 h	23	2¢10	$2{ }^{2}$	24.			23， 2		24 k	23		15	21	22.2		
$4(x)$	3	23.	27.	26	27.	271	27.	20.3	24	3	27.1	20.3	25	2 t .3	26.	23	27	254	24.7	24	245	24.9	25 R		234	21， 2	216	276		
5	24． 7	23．	28，	2 B	28.3	$2{ }^{4}$	－R	27.	2y	2.4	38	27.	26.	2 a ，	37.	2 x	2	36	259	23	25	25.1	26，${ }^{\text {a }}$	25.	346	220	29.2	$23_{3} 1$		
Gun	29.1	$29)$	10，	210	295	290	20．4	20，	2\％	2	2.4	24	27.5		27.	29	29	2 x	27	2	25%	25	27	an	25．R	21.2	24＊	36.4		
7 CHI	29.	29	31	20．	2.	21， 4	29.	28.3	294	212.5	2） 3	2.	27.	27.5	27	2K	21	2×5	27	$2 r^{5}$	26	26	27	26.	20.1	24.1	25.5	20.4	6，	
8.04	2 L	（1）1	311	30.3	． X,	21.4	20	23．6	20.9	217	297	296	27.	27.7	27.7	$2 \mathrm{R}, 9$	21）	2.4	27.	27	th．	27.1	27.	27	20.5	24	261	27.5	27.2	析
ग．114	2 P 6	20，4	$31+$	3	3116		Will	2 2 9	315	294	\＃， 1	24.9	2k 1	27，k	27	245	29.5	$2 \mathrm{R}, \mathrm{R}$	$27+$	27	27.2	${ }_{2}^{21}$	2 cok	27.	268	258	2 5,8	28.0	23.4	？
1414， 4 ）	27．2	29.	2！	2）	21） 2	29	2 K	2k	2）	28，	2	27	35.5	2.5	763	27	27.	24.2	25 ，	2 Cl	25.7	20,9	25	25，${ }^{\text {R }}$	25	249	25.2	242	26	
$11: 1$	2r．	28．5	23	2 K	27.1	3R，	27.	276	24.5	27	$2 k$	2r，	256	25.3	249	2t1	3	25	$2+5$	25	24.5	25%	24	24.2	24．	$2+1$	23.6	24.4	25.1	
12－（x）	36	27.	27	27	265		20.8		27.1	2713	27.2	256	23	241	23，6	$2+1$	241	23	2.1	23	22.	24,	232	2 r	24，16	232	220	22.6	23.4	
19 C	2.7	2a，	26.	20.4	2611	26	25	245	$2{ }^{2}$	3	$2 \mathrm{r}, 5$	25	275	나2	23.1	23.	23.	22.3	22.1	23	22	23.2	229	22	230	22.3	215	225	23.3	
14 cki	25	26.1	25.	\％	25	25	24.	2 ta	258	25 ¢	25.7	24	21.5	22.4	22.7	23	23	21.4	22		22.	22	225	22	22	21.3	201	215	22	
15 ¢ 4	250	25.	251	25	25.	2511	21	256	34	25	251	24.11	2）	21.6	22	2	22.4	21.	228	2 t ．	211	21.4	22	32.2	210	21.	210.4	224	－－	
f（ith）	2	24	24	248	24	34.1	23.3	25	24	25.1		326	${ }^{x}$	21.3	21.1	22	21 K	19	225	21.	20.	20	21.7	21.5	2leri	21.1		218	21.6	
17\％${ }^{\text {a }}$	23 ：	24	24		23		23.	25.3	24	25.1	$2+1$	21	1	21.	位	21.	21.1	1 B	22.1	21.	2n！	21.5	21.1	2119	2012	19.7		21.1	21.1	
叫	23.2	24	23.	2414	23.	22	234	25.2	24.4	25	23.5	119	192	I11	21.	21.	3）	1 L	$21 . \mathrm{K}$	21	2111	20,2	2116	I212．	19	19	210	20.5	215	
19，00）	22	23 k	2i．2	23.	2	231	21.2	25.1	24	24.7	23	ty．4	1． 1	20.	21.2	21.	$2{ }^{1} 5$	17.	21	21.	20.3	以成	211	20	19	19	20	21.1	20	
，	22	23， 7	22	233	22.	22.	27	251	2	24，3	22	（189	1n，	201）	2 t	21.1	$3{ }^{3}$	173	12.	3，	$\underline{9}$	切	210	197	19	18.9	라3	19	12	1）
21.15	22	21	2211	$23 n$	22	221	끄N	251	24.4	2411	22.	18.4	18.4	197	30，6	21.	3	13.6	18	2.	112	115	12	19.	196	t8	20.0	12.	192	77.
22	218	21.	23.3	21	2117	219	211	21	21	211,7	195	136	［181	18.4	Lh：	19.4	19	178	$1 \times$	19.1	1 R 1	1.7	！ 1.	18.6	18.6	17	in	17.4	17	15
23：	18.	18.6	18	20	1	18.	18	LB_{3}	17.7	17.5	16.1	168	17.3	17	14.5	17.8	176	185	17.7	173	15.7	20.0	197	17	17.7	109	10.4	15.4	152	14.

Hourly Dry Bulb Temperature（ ${ }^{\circ} \mathrm{C}$ ）
Source＇Bargladesh Meteoroiogical Department，Climate Divisum，At siryapn．Dhaka
Yeqr 2005 Month．December

D2y	1	2	3	4	亏	6	7	8	9	10	11.	12	13	14	15	10	17	${ }^{11}$	19	20	21	22	23	24	25	26	27	2 t	29	30	31
Time																															
0,	16.	15	17	112	17.	16	17.	151	144	12	14.	10	Lrta	15.9	4.	4	16,2	123	172	130	$15+$	21，2	19.3	（5）	14， 7	50，	46	I	13.2	2．B	
（＇ch）	18	14	$1 \mathrm{k}, 7$	21.1	18	17	18.2	17.	169	16.5	！	17	17.	171	$1 \mathrm{l} / 4$	18	17	Il｜	18 L	178	175	211,	20.5	碞	179	10.7	16.2	159	15.1		
$2 . \mathrm{MI}$	21	21	21.5	21.7	18	15	$\underline{1} 2.5$	19.7	（1） 5	1， 1	18，	1）	10．6	1 k 2	！ 4	n	LH	21.	20，4	199	125	21.1	21.	［1	12.0	1.	17.4	178	17.1		
［171	23.4	23.	22	31	19	211	20.7	22	220	21.2	212	211	1）t	12.	21）	22	12	21.9	2211	2？ 1	1.	21	220	？ 1	20.2	18	19.4	2011	190		
m）	24.	24	2	241	21.1	21，	225	234	23.4	22 K	22	22	21.5	21.4	22	24	21.7	2	23	23.4	233	22	279	22	21.5	12.2	21， 2	220	219	20	1.7
（0）	25.5	25	25.5	24.9	22.9	21	242	349	24.0	－	241	24	23	23	24	36.	2.3	24	24	24.7	$24+$	227	23.	23 h	220	21.7	22	24	22.7	23.10	
G（h）	2ri．	26,4	27.2	${ }^{5}$	24	23.5	20.0	26.3	3 （1．）	2\％	25	25.	25	35.3	27.1	27.	2 L.	37.	26	25_{1}	2 t	23.2	24 R	25.1	24.2	27.1	23.	26.0	24	250	24.2
7．14）	26	26	27.5	25.	25.	25 k	26	$2 r_{1}$	2 a	162	25	26， 1	25.	25	$2{ }^{2} .5$	379	25.2	26	26.6	20.4	27.3	23.1	25.	25	55.2	24.	244	26	24.9	25.0	248
R，（b）	$2{ }^{2}$	274	27.	25.7	25 H	26	26	$2{ }^{2}$	265	26	$2 ¢$	$3 \times, 4$	25 ？	25	27.	$2 \mathrm{R}, 2$	$2{ }_{2}$	36	27.	2 C R	27.	22	25	25.8	24.2	24	25	36.5	25.	250	54
2.01	27	27．3	2 R	25.6	2 （t．）	285	$\underline{3}$	$2{ }_{1}$	2 f	2fick	$2 r_{1}$	2n，7	2	36	2k，4	$2 \mathrm{~K}, 4$	26.8	21.	27，	27.7	2 M	22.5	26.2	26.2	27.	250	25	26.5.	23.6	250	27.11
10109	25.	2 l 1	3r，	2－． 11	± 5	24	245	2＋4	－24．5	24	24	255	2511	24	$2 r_{1} 5$	21.7	25.	25	25	235	27	22.2	25.	241	259	24		35.2	23	23，k	24.
11 （x）	23	$3+8$	$\underline{257}$	24	21？	231	22.5	23.	223	227	2 ± 3	24	27	22	24.5	24	24	25，	2.	23.	26	21.	2.1	23	24.	230	231	21.7	21.7	227	27.3
1200	21	235	34	21	22.	21.	21.5	21	2ㅔㅔ	216	21.	27.	$22 \times$	${ }^{2}$	22	232	23.	34	21.	2	248	21	23	224	23	22	21.8	$\underline{32}$	19	21.5	220
17 O	21．	22.6	$2: 5$	27.	2 t	21.	19	21	1）	19，7	19.	21.	22	± 1.	224	2	234	210	21.	21	23	21	22.	21．	222	21		21.	184	2	21.4
14.1	21）	21.6	23	22	24.	21.	197	12	191	18，	185	21	21.	211	22	21.3	2.52	212	208	2	22	21.	21.3	2	211	22.3	20	20.3	17.9	19.	21.21
15．00	20	211．	22	22.	21	21	1R	18.2	18	18	17 f	19，6	21	$\underline{211}$	22	$\times 1.3$	2t． 1	21	Y，	190	21	21.	20	191）	21.		10	20.0	17 ll：	12 l	20.3
16.10	124	21），	21	21	2）	21.7	18t	17.	1k1	17.	171	19	311	$1 \times$	21	$1{ }^{10} 7$	22	215	$1{ }^{1 / 5}$	18.	211.	219	12.2	19	12	2	120	19.5	16.4	t4．12	19．3
17．0x	1 1．s	2.	21.	20.9	196	18.2	17.3	17.	17	17	10.7	1 H	12．	17，	2 t ．	112	2	21.2	176	10，5	218.	21	1 L	19	11	1	18	188	15.9	18.7	
18.00	18	21	21.2	20．2	192	12.2	16.5	16.8	14	13.5	1 fi	180	183	16	211.	18	219	21.0	17 K	18.2	29,6	$2 x_{1}$	L 4 ！	19．h	14.	18	17．4	184	15.3	18.6	185
19．4．h）	17．8	211	193	$1{ }^{1}$	1 CR	18.	163	11	16．5	17	1.58	17.7	18．3，	L	17.5	18	216	以12	17.5	178	21.7	211	18.1	19.4	183	17.	16	17	14k	17．9	17.9
23），00	17	11.	1R7	10.5	${ }^{1}$	147	1 10，2	（ 19	16， 9	17 ？	15.4	17	17 L	$\mathrm{t}_{6} \mathrm{~L} 2$	18．	17	213	18.7	173	17.4	219	212．	17．9	19	17	16.3	156	16.5	14．3	171	2
21， 181	171	19	18.0	（1）．	18.11	$1 \mathrm{R}-$	1 fr,	171	15 ：	1719	15，11	1713	$17+$	16，11）	17	15，	21．11	17	171）	17.11	211	12.	17	1 B	17	16.1	136	15	17，	16	
23（ x_{1}	18.3	127	120	－12．7	1211	12	1117	11.3	1 （1）	$1{ }^{1}$ 3	14111	11.3	126.	（11．7）	11.5	1 t 2	1411	11，3	113	It 3	141	13.2	119	12.4	11	10.1	91	10	9.2	10.	1
23 （\％）	57	6.3	6.0	63	6.0	6.1	53	5.7	53	5.7	50	571	5.51	53	57	56	30	5.2	5.7	5.71	70	6． 6	5，	62	5.8	53	45	5.2	46	5.5	5.5

APPENDIX B：Hourly Dircet Solar Radiation in Watt／m ${ }^{2}$ Hourly Direct Solar Radiation in Watt／m ${ }^{2}$
Year 2005 Month：］anuary

Day	1	2	3	4	5	6	7	8	9	10	11	12	13	1＋	15	19	17	18	19	30	21	22	23	24	25	26	27	$\underline{28}$	29	30	31
Tanse																															
500	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	d	0	0	$1)$	0	0	0	0	0	0	0	［	0	0
600）	0	6	0	0	0	D	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13
7.00	14	12	4	t	7	15	16.	14	15	14	1	4	8	14	11	12	13	15	16	18	21	23	25	28	30	32	33	32	2	4	$\frac{5}{5}$
8：00	62	22	52	5	48	85	92.	97	83	85	16	49	81	79	56	78	7	79	B0	91	102	113	123	134	145	153	129	122	5	7	5
9：00	16， 5	34	119	13	t，32	166，	178	194	210	188	1	79	152	［ ${ }^{1}$ ］	54	197	154	110	67	107	146	186	226	265	30.5	312	273	167	8	17	72
10：00	290	B8	195	2b	218	24＋	254	245	347	307	2	395	215	300	142	285	204	122	41	96	152	208	264	320	375	378	293	158	113	89	53
1100	379	49	197	12，	278	206	313	331	388	376	1	$\underline{+57}$	24	366	204	327	260	$19 ?$	125	178	231	284	337	390	443	339	371	114	96	75	56
12：00	3BB	97	16.7	88	357	239	265	384	373	408	1	436	179	340	335	2 BO	$\underline{214}$	149	83	143	208	270	3，32	395	457	429	368	16＋	152	135	125
13.06	353	175	172	21	325	（9）	204	374	340	334	1	365	233	333	300	272	275	177	130	161	232	282	333	384	435	402	368	$16+$	32	28	$\underline{105}$
14.00	24］	152	106	34	$\underline{294}$	140	212	$\underline{75}$	233	250	1	285	28	236	191	1 AG	168	150	1：2	163	194	22a	25	288			171	101	72	51	37
1500	124	62	33	17	165	108	108	13¢	113	124	0	173	56	121	117	116	111	107	100	118									72	35	32
16．00	26	13	¢	3	46	25	28	24	27	23	0	43	17	？ 6	21	27	28	30	31	37					67			24	$\underline{3}$	1，	10
17：00	0	1	1	0	0	0	0	0	0	0	1	1	0	1	0	1	1				3		5.	91	67	5.	37	2	1	4	4
18：00	0	0	0	0	0	0	0	0	0	0	0	0	0	0						0		0	\％		1	1	2	0	1	2	1
							0		0	v	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

品	\bigcirc	1	子	营	穿	5	同㳳	克富	客	号	$\begin{array}{l\|} \infty \\ \cdots \\ \hline \end{array}$	雩	擩	믄	
Fi	\bigcirc	CH	\cdots	管	古荋	$\stackrel{3}{3}$	8	0	$\stackrel{\sim}{\sim}$	0	옹	$\underset{\sim}{-3}$	$\stackrel{\text { r }}{\sim}$	5	0
$\stackrel{5}{2}$	θ	r 1	r！	$\xrightarrow{4}$	永	产	ก	9	5	$\underset{\sim}{\infty} \underset{\sim}{\infty}$	定：	in	今	$\stackrel{*}{*}$	0
$\stackrel{0}{1}$	0	－ 1	品	$\stackrel{0}{8}$	\％	5	而		永	Cin	号	$\stackrel{\pi}{2}$	8	J	\bigcirc
吅	\bigcirc	－	깬	둔	$\stackrel{\square}{\square}$	\％	B	a		定	$$	¢	\pm	c	3
$\stackrel{\text { rif }}{ }$	\bigcirc	（－1	\％	5		$\underset{\sim}{c}$	$\begin{gathered} 1 \\ 3 \\ 3 \\ 0 \end{gathered}$				$\operatorname{lin}_{\substack{\mathrm{m}}}$	랑	发	∞	0
E	\bigcirc	－	\cdots	8	翆	年	－	n 1	$\therefore \frac{a}{i 1}$	$\frac{a}{i-1}$	공	$\stackrel{\sim}{4}$	g	r	¢
－1	\bigcirc	－	$\stackrel{\rightharpoonup}{3}$	C_{1}	耍	－		\％			穴宫	曾	［ ${ }^{1}$	＋	－
C_{1}	¢	－	\pm	＋	\cdots	¢1	17	守		Ci	N-	\％	它	－	\bigcirc
\cdots	\square	－	r－	븐	\cdots	\bigcirc	寺	\％		\cdots	$\underset{\sim}{m}$	8	0	1－	\bigcirc
∞	\bigcirc	－	＋	\＄0	F	9	$=$		$\underset{\sim}{n}$		$\underset{\sim}{\infty} \left\lvert\, \begin{gathered} \infty \\ i \end{gathered}\right.$		3	n	＊
$\stackrel{\text { r－}}{\sim}$	\square	－	m	\mathcal{O}	\sim	3	灾	只	谷侖	N		\therefore	\％ 0	\cdots	\bigcirc
\bigcirc	¢	－	$r 1$	－	$\stackrel{\square}{0}$	贺	10	$\underset{\sim}{\infty}$	$\underset{\sim}{\infty} \underset{\sim}{\vec{m}}$	${ }^{3}$	$\stackrel{9}{\square}$	宔	第	－	0
\cdots	$=$	\cdots	5	$\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \hline 1 \end{aligned}\right.$	$\stackrel{3}{7}$	in	$\begin{gathered} c \\ 8 \\ 8 \end{gathered}$	$\stackrel{\leftrightarrow}{6}$	骨			$\underset{\sim}{4}$	2	－	－
\pm	\bigcirc	A	F1	$\left\lvert\, \begin{aligned} & \text { 哯 } \\ & \text { a } \end{aligned}\right.$	$\frac{5}{5}$	会	3	M	$\sqrt{7} \mid$	$\underset{\sim}{9}$			芯 $=$	\square	0
m	0	－	7	\cdots	士	$\stackrel{\rightharpoonup}{n}$	3	5	5		$\stackrel{+}{+}$	$\underset{\sim 1}{\infty} \mid=$	$\stackrel{\rightharpoonup}{*}$		3
－1	\bigcirc	\geqslant	\cdots	8	$\stackrel{5}{9}$	究	$\frac{20}{2 n}$	定	8	苞	9180	5	－	2	0
二	\bigcirc	\bigcirc	$\stackrel{\sim}{0}$	－	8	举	年	$\underset{\sim}{\infty}$	8			8	$\stackrel{\sim}{0}$	－	\bigcirc
응	\bigcirc	－	1		$\left\lvert\, \begin{aligned} & n \\ & e, ~ \end{aligned}\right.$	$\stackrel{7}{3}$	会	8	3	$\hat{0}$	$\stackrel{5}{2}$	Σ_{15}	$5 \cdots$	\bigcirc	－
\bigcirc	¢	$=$	C	馆	81	$\left\|\begin{array}{c} \infty \\ \end{array}\right\|$	盆		苐	$8 \left\lvert\, \begin{aligned} & \overrightarrow{2} \\ & \stackrel{1}{2} \end{aligned}\right.$	F\|r	？	＋		
∞	\Rightarrow	\bigcirc	F	를	글	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~m}, \\ & \hline \end{aligned}$	\％	$\stackrel{\pi}{\pi}$	8	$\begin{array}{l\|l\|} \hline 7 \\ \hline 9 \\ \hline \end{array}$	穴	家	「	\pm	0
${ }^{-}$	\bigcirc	\square	\bigcirc	S	$\mid \pm$	$\begin{array}{\|c\|} \hline 81 \\ \hline 81 \end{array}$	\ddagger	$\begin{aligned} & 3 \\ & m \end{aligned}$	3	$\stackrel{1}{4}$	）	－	字	1	
\bigcirc	0	－	r	＋	可	$\stackrel{0}{81}$	熍	冷	0	棕	守耍	¢	－	r	－
0	0	－	¢	딘	$\begin{aligned} & 1 \\ & 8 \\ & 8 \end{aligned}$	$\left\|\begin{array}{c} \mathrm{r} \\ \mathrm{C} \end{array}\right\|$	奀	3	會	品	$8 \left\lvert\, \begin{gathered} \pi \\ \sqrt[N]{1} \end{gathered}\right.$	\％	\％ 10	ค	\bigcirc
\pm	\bigcirc	－	品	氙	$\bar{\sim}$	令	尔	9	亭	示	－	5	0	，	σ
m	0	\bigcirc	－	$\stackrel{2}{2}$	910	\cdots	－	守	㗊	8	3	令	令 s		
C	0	3	쇠	딘	$\stackrel{y}{m}$	毒	$\overrightarrow{\vec{N}}$	$\left\|\begin{array}{l} \text { 俞 } \\ \underset{\sim}{n} \end{array}\right\|$	会	合	5	；	in		－
－	\bigcirc	－	\therefore		－	∞	\pm	三	\square	$\bar{\square}$	－	－－	\cdots	5	5
$\stackrel{y}{\Delta}$	$\stackrel{\rightharpoonup}{8}$	号	$\underset{\sim}{8}$	容		0	呂	$\mid 8$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	4	$\begin{gathered} 8 \\ \\ \cline { 1 - 3 } \end{gathered}$	3	3		$\stackrel{3}{3}$

Houtly Dircct Solar Radiation in watt/ $/ \mathrm{m}^{2}$

lemr quoj ineurbs: Mareh

Day	1	2	3	4	5	6	7	6	9	10	11	12	13	14	15	16	17	18	19	20	21	$\underline{2}$	23	34	25	26	27	28	29	30	31
Clime																															
5.60	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	[0	0
(raty	3	3	0	4	2	1	2	1	2	3	$\underline{7}$	1	2	7	3	2	5	1	2	3	8	1	6	1	17	2	5	2	3	7	10
7:00	65	62	3	5	42	37	26	4	14	23	14	3.	74	108	71	64	58	12	3-	$5{ }^{7}$	91	6	56	2	77	11	B'	6	22	31	50
$8: 00$	220	219	153	224	145	130	65	5	131	255	179	4	269.	229	204	181	155	112	[16	219	21.	73	36	4	5.9	34	1116	88	91	5	76
9.90	399	410	378	38.5	301	321	118	17	302	+33	22.1	4	483	$\underline{+25}$	311	282	253	2 t	408	195	230	165	$4)$	4	68	133	250	97	85	11	131
10.00	526	$5+4$	556	524	432	459	218	73	402	519	35	3	604	502	380	494	305	21	356	240	516	265	30	19	286	303	302	336	82	211	323
1t:00	577	(6)5	652	620	+7+	535	+10	101	499	495	57°	8	701	533	479	479	478	29	$\underline{206}$	3 ch	611	$t 10$	58	7	635	584	39]	298	351	296	327
12.00	563	594	660	621	422)	414	400	367	525	507	$\underline{.7}$	28	6.7	533	525	512	495	143	293:	447	620	171	66	6	493	623	416	267	92	348	253
13.00	527	509	607	536	404	415	+61	363	517	565	20	16	396	302	482	459	360	70	148	493	582	391	1	65	570	593	434	268	273	173	141
1+40	429	364	461	402	302	313	376	2B!	+13	372	108	3	368	235	367	304	$3+4$	227	49	431	449	$\underline{298}$	9	45	5.39	200	296	268	240	176	209
15:00)	321	$\underline{216}$	307	266	180	187	219	122.	2+3	171	77	1	226	101	237	263	232	36	52	27	243	67	1	1	351	186	23+	178	123	68	119
1690	132	79	127	116	73	64	54	46	58	34	19	0	76	2	93	115	91	32	37	119	63	68	1	1	173	42	90	60	3	9	38
-1700	11	7	14	15	3	4	8.	1	9	6	1	1	11	0	9	7	14	10	5	16	8	0	2	3	17	18	13	14	3	0	5
18.00	0	0	0	0	0	0	0	1	0	0	0	0	6	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Year 2005 Month: April

Din	1	2	3	$+$	5	G	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	33	24	25	26	27	28	29	30
lime																														
$5 \cdot 00$	0	0	1	2	0	0	0	0	0	0	D)	0	0	0	U	0	0	0	0	0	0	1	1	0	0					
6:00	$1+$	17	17	20	17	19	2	4	5	30	2	3	12	11	10	0	5	23	0	0	28	24	18	17	6	8	0	0	16	7
7:00	70	89	123	126	90	119	14	68	9	97	11	6	88	69	51	32	25	117	56	8	141	59	7	12	- 6	8	2	9.	16	42
80	146	21^{7}	283.	333	237	146	103	177	6	48	96	31	282	333	185	137	126	243	10	60	285	83		10	10	5	1	-	32	223
9:00]	252	373	484	511	321	156	287	250	225	291	267	213	463	416	$4{ }^{4} 5$	482	371	34 B	317	163		118		175	12			190	251	284
10:00	434	346	548	628	302	353	370	269	235	403	212	145	583	$5 \mathrm{i}+$	44.4	375	535	457	371						1	8	386	196	143	271
11:00	358	388	564	650	49.7	3,54	510	423	101	316	315	392	674	503	562									237	405	337	504	382	342	50
12:00	157	61	598	574	530	436	624	469)	4,36	365	375	452	593	547	5.7t	455	02	249						503	40	432	+63	252	329	287
13.00	109	78	377	+40	50-4	517	596	376	421	$40]$	23ㄱㄴ	45,	554	512	470	128	148	304						$+10$	480	$\underline{73}$	491	401	404	454
14:00	$\underline{3}+7$	275	134	518	38.j	3+7	3017	276	410	254	204	351	+01	343	284	295	210	277				44		40	435	375	503	410	83	222
1500	170	221	169	359	기6	263	332	295	303	232	217	717	243	206	16	132	180	17							218	-313	4	184	1	385
16.4	6, 6	45	65	16.4	10.2	127	131	90	1.d	[(1)	リ4	13	[0]	81	50	31	+	3					-19	180	128	1	117	154	0	334
17%	1	14	1	27	15	20	2+	22	27	2	1	9	14	12	10	8	6	2	?		116	118	121	32	$\underline{2}$	5	125	1015	2	160
1800	0	0	0	0	${ }^{6}$	1	t	0	0	4	0	\}	0	0	0	0	0	0	1	0	1	,	$\underline{2}$	9	0	b	19	1ע	2	50
																		0	1	4	1	0	0	0	1	0	1	0	0	0

Houtly Direct Solar Radiation in wath／m ${ }^{2}$

F					号苟	南		答	里	宫	会盛	9	
号			－${ }_{0}$		딩	年	－	－	等	宕耍	感	家	
$\stackrel{*}{*}$			\％		品	\％	嵒	\％	骨	雩	\％	$\stackrel{\circ}{\circ} \mathrm{O}$	\％
$\stackrel{9}{9}$	－		8	雨	䎟	\％	式	잉	\bigcirc	$\stackrel{\square}{\square}$	盘	管	in
8	$=$	守	湥	第品	袻	O_{7}	\cdots	守		${ }_{-1}^{\text {ct }}$	容 5	38	3
品			， 2	$\stackrel{5}{2}$	敫合	d		宫	5 ${ }^{\text {c }}$		\％	0	
ni	\％	－	8		皆家	気	\％	等	${ }_{28}^{98}$	穻些	Cif	＋	－
${ }^{\text {ct }}$	－	7	${ }^{7}$	\cdots	9	त्रो	㘼筞	缶 8	8	$\stackrel{\square}{\sim}$	品等	\％	0
तit			F 3	3）	읻	$8{ }^{8}$	～	或宫	简事	简崔	出 5	8	i
人1			\％	${ }^{6}$	$\stackrel{9}{7}$	－${ }^{2}$		$\underset{\sim}{\infty}$	哭	磁	年	－	9
$\overline{1}$	Cl	8	柰	${ }^{\text {cid }}$	－	为	気	宫象	$\overline{\text { ci }}$	令	－18	$8 \pm$	
家	－	品 ${ }^{\text {a }}$	玉	号令	若	Cin		$\stackrel{\square}{\square}$	可㫛	특	式	7	0
2			$\cdots=$	¢	－1	$\hat{9}$	9	筞	－品		窑	－	－
\cdots		S	알	苍缩	－	P	－	$\stackrel{0}{0}$	$\stackrel{\square}{5}$	㦴冷	家家	）∞	∞
\therefore			$\stackrel{*}{*}$	㟮	2	－		号	를	${ }^{\circ}$	$+{ }^{+1}$	3	－
\because			6 ${ }^{\circ}$	항	E	等	爫	号	3	$\stackrel{3}{3}$	雨	0	
－			\％	－1	领亭	${ }_{7}$	\cdots	${ }^{*}$	F		令	－	
\pm			덩	오요	${ }_{80}^{6}$	＋	守	\cdots	$\stackrel{\rightharpoonup}{0}$	$\operatorname{con}_{i=1}^{0}$	为号	2－	7
m	\therefore	－		－	－80		氷品	\cdots	29		＋	＋	\bigcirc
O			8	8	子	城	䓣缶		捛	合号	8	－	C！
\pm	\square			不合	8	永	合	成		$\mathrm{c}_{\mathrm{c}}^{\mathrm{m}}$	－	18	
\because	$=$		$\stackrel{1}{0}$	8	嫁	$\stackrel{3}{0}$	\％	穿寺	寺年	－${ }_{5}$	\％	＋	
σ	\bigcirc	\cdots	\cdots	～ 4	\sim	0	寅号	－	気 ${ }^{\text {c }}$	0	0	－	\bigcirc
\sim				\rightarrow	守筞	守	3%	8	8，	刮呂	号	，	－
r			－离	离家	＋	8	8	怱	成等	寺 $=$	）	－1	
\bigcirc				会等	令哭	$\stackrel{\square}{0}$	号	号	4	5	20	\sim	＋
\checkmark				号等	${ }_{7}{ }_{7}$		9	${ }_{7} 9$		）	0	10	
\checkmark				O	\％	5	\％	字容	容出		）	｜el	
\cdots	\sim		鋮呂	年	湂		80	访	家		$\stackrel{3}{2}$		\bigcirc
I	－	\sim	ก	会号	N	1 잉	人	－	的古	告	－	－	C
－		2	2）	完品	－	永	巂	哭	筞嵒	䫆	1	${ }^{\circ 1}$	－
\％	豈		8	家	\％						，⿹ㅜㄱ		\％

Year 2005 Month：June

哃	\bigcirc	ति	\cdots		湤	同	${ }^{\text {cha }}$	7 ${ }^{-1}$	셈	${ }^{5}$
7						－ 0^{-1}	त	ค	\cdots	
突						－1－	$\Rightarrow{ }^{1+7}$	－	0	
E－1		${ }_{5}$	成	－		守	成	77	m	
谷		\％	N	\pm		気	式资	齐		
\cdots		人				保	－	${ }^{\text {a }}$	N	
$\stackrel{+}{3}$		官	5	寺产		（	凩号	m	会 ${ }^{-9}$	
m		d				筞家	P－	15	令：	
\therefore		7	\％			－	8	$\frac{e_{1}}{c_{1}}$	9	
－1				$\stackrel{\square}{4}$		8	空気	\％	${ }^{7}$	
9			이	2	${ }^{2}$	17	50	$\sqrt{2}$	事	\bigcirc
\bigcirc	$-\cdots$	守				考	言管	in	二	
∞	\cdots			悪	$\stackrel{7}{7}$		㝵商	南	헝	${ }^{7}$
$\stackrel{\sim}{\sim}$	5.					会枵	気阾	${ }^{\text {a }}$	\cdots	
\|	P			\cdots	$\bigcirc=$	二 ${ }^{\text {I }}$	\pm－	\cdots	\bigcirc	7
\cdots	$\therefore \because$	＝				$\mathrm{m}_{\mathrm{m}} \mathrm{n}$	成盛	${ }^{\text {c }}$	－	$=$
\pm	\square			熍	${ }_{8 i}$	$\stackrel{(}{\infty}$		－7	F	
$\stackrel{m}{m}$	\％			${ }^{-}$	$\stackrel{i n}{7}$	$\overline{i n}$	${ }_{3}{ }^{-1}$	\cdots	－${ }^{\text {a }}$	\cdots
t	－	2		+	$\mathrm{Cl}_{1} 9$	号	8	匀家	아웅	\bigcirc
\cdots	S	O	$\stackrel{\sim}{2}$	＋	0	$\stackrel{F}{90}$	－${ }_{1}{ }^{3}$	5	${ }^{2}$	3
$\underline{7}$	－	河		風等	感家	－	\cdots	\cdots	nc	${ }^{\text {F }}$
－	- 盛			웅		等葆		90		\bigcirc
∞	0	分	容苐	芯突	缡	0		x_{1}	动包	$\stackrel{\text { c }}{\sim}$
\cdots	華\|	5	5	\bigcirc	${ }_{\sim}^{+}$		同	氛	\cdots	$\mathrm{Fic}^{\mathrm{F}}$
0	$\stackrel{\rightharpoonup}{2}$		5		$\underset{\substack{\dot{n}}}{\stackrel{\rightharpoonup}{n}}$	3	刺	$\stackrel{\square}{\square}$	9	${ }^{301}$
W	π		気会	令守		\cdots	A ${ }^{0}$			\pm
＋	A		C ${ }_{\text {c }}$	7\％	可声	执気	鱼	${ }^{\text {O }} 0$	0 m	-0
3	－			号吉	啶感	哈合	盛	－		Cl^{-1}
－1	7		${ }_{9}$	${ }_{-}^{1}$	号	产	（ ${ }_{4}$		事	C^{3}
－	－		袁	$\frac{7}{7}$	悊合	咢哭	\％	気		\cdots
合	$\stackrel{8}{6}$ 웁		80.		8	3	1	$$	家 웅	$$

Hourly Ditect Solar Radiation in watt/m \mathbf{m}^{2}

lear To0. 5 Nenth: luly

Duy	1	2	3	4	5	6.	7	8	${ }^{4}$	16	11	12	13	14	15	16	17	18	19	$21)$	21	22	23	24	35	$\underline{2}$	27	28	29		
Time																														30	31
$5-00$	0	0	,	3	2	0	0	0	0	0	1	1	0	0	0	0															
6:00	9	5	0	19	10	2	7	11	T	5	2	2	2	2	?	,	,	0	,		1	D	0	0	1	0	0	0	t	1	0
7:00	16	8		73	38	2	2	15	4	4	3	3	+	4	5	5	5		-	87	,	8	,	6	69	35	19	3	57	$2+$	30
8:00	8	4		,	가늬	397	523	51	52	5	65	59	5,3	47	4	35	29					9	5	33	$\underline{3}$	21	134	5.5	174	43	42
9.00	+1	64	1	1	38	75	189	$3+1$	35	5	26	+ ${ }^{\text {c }}$	53	58	6	69	75		T		[17	9	76	5	416	336	226	117	237	288	177
10.00	34	18	0	12	5	455	216	422	154	11	18	25	1	2	1	12	17					168	313	45:	602	63	152	241	180	110	8
-1100	18	10	1	12	7	311	232	167	407	38	38	35	33	30	27	25	22	2	A	25	10	34	38	332	${ }^{\text {che }}$	334	62	333	128	242	279
$12: 60$	44	35	4	23	17	188	578	533	57	14	11	R	5	2	16	30	4	58	,		-	if:	1.3	423	. 14	25	113	104	70	112	205
t3.00	42	64	7	7	25	287	486	224	0	27	24	20	16	12	4	7	1	15	2	12	32	101	169	316	463	416	369	25	186	164	239
14:00	10	?	8	2	161	146	235	150	95	1	42	70	98	126	4	111	218	325	197	-	101	-	\%	28.	371	307	24.2	322	46 H	99	258
15:00	12	13	5	16	13	374	295	182	213	1	39	67	95	123	3	143	283	423	330		36	-	58	107	2	162	163	469	310	100	1+8
16.00	9	3	7	17	+	263	300	156	11	42	39	37	34	32	1	77	152	27	90	0	$\underline{1}$	157	32	106	181	145	194	23.4	3.13	19-1	154
17:00	3		5	\%	3	05	tt7	11	1i1	B	6	4	2	1	1	21	42	$1 i 3$	55	0	,			0	35	13	24.	56	6	105	108
18.00	0	0	1	6	t	6	8	1	1	0	0	0	0	1	1	1	1		0	0	0		-	O	4	5	40	3	40	23.	4

Year 2005 Month: Augut

Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	14	20	21	22	23	24	25	36	27	28	29	30	31
Time																															3 t
5.00	1	1	1	0	0	1	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	,	0	()	0	0	1		0		
6:00	16	3	2	11	3	2.	8	1	1	0	0	1	0	1.	2	15	28	1	1	1	1	1	0			0	0	0	0	O	0
7:00	22	2	12	19	14	7	$1(1)$	80	41	1	2	2	3	3	5	118	181	1	8	f	1	1	,	2	2	4	3.	2	1	3	5
8:100	11	+	14	24	18	15	17	12	6	1	t	2	3	4	20	53	86	6	5		4	2	3	+	3	24	28	31	35	38.	41
9.00	26	44	301	143	25	行	26	18	,	1.	19	37	55	6	102	197	111	4	4	5	5	4	10	10	7	34	64	23	123	152)	160
1000	316	353	89	106	72	158	30	21	12	2	3 B	73	102)	8	32	323	$16+$	5)	1	19	6	11	6	9	-108.	121	134	27	69	111
11:00)	299	392	56	45	164	72	75	51	27	3	73	1-4	215	26.7	284	354	376	10	$3{ }^{2}$	32	20	3	9	15	10	128	199	270	67	42	158
1200	313	38B	23	$1]$	191	72	5	45	34	23.	11	3.5	59	116	132	86	215	16	4	20		6.	11	1.3	2	141	229	31.	51	t11.	6
1300	417	576	346	173	129	59	29	23	16	10	17	22	26	180	4	54	342	1	102	60	24	87	43	,	12	135	243	352	2	[83.	6
1400	197	246	241	82	8	44	172	119	67	15	77	101	120	103	59	15	233	363	118	61	1	16	13	10	10	262	367	272	9	162	378
1500	110	65	231	1+2	3	22	110	83	56	29	171	165	150	$5{ }^{\text {i }}$	49	$4]$	333	354	65	41	16	176	10	10	17	$2+6$	371	295	52	116	119
16:00	111	18	94	8	5	33	36	25	14	3	221	156	9	37	96	156	33	304	14	9	3	101	10	10	13	295	334	213	71	6	150
$17 \cdot 00$	68	1	3	$?$.	5	1	1	1	1	58	+0	?	3	25	47	26	29	20	22	24	-	,	1	28	2	45	87	94	26	14
18:00	2	0	1	1	1	0	1	1	0	0	3	2	1	0	0	0.	0	0	j	2	3	0	0	0	0	1	${ }^{6}$	12	12	2	0

Hourly Direct Solat Radiation in watt $/ \mathrm{m}^{2}$

Day	1	$\underline{2}$	3	4	5	6	?	8	9	10	11	12	13	$1+$	15	16	17	18	19	20	2 t	22	23	24	25	26	27	2 O	29	30
Thne																														
5:00	0.	0	0	0.	1.	$1)$	0	0	0	(1)	16.	5	0	8	1	c)	1	1.	ט	0	0	0	0	0	0	0	(1)	0	0	0
6:00	24	9	16	27	29	3.5	12.	1	0	t	0	14	0	5	0	5	1.	64	20	2	$?$	6	,	3	4	6	7	8	10	11
7:00	96	102.	108	113	119	127	43	26	19	5	15	182	1	38	100	172	37	213	153.	4	9	141	3	9	14	14	33	27	32	36
8:00	63	87	1(M)	233	314'3	378	203	116	24	137	80	520	18	68	151	234	50	269	171	9	105	102	30	20	10	181	33	48	62	77
900	241	261	344	426:	509	591	264	327.	47	31	- 5 ?	625	101	293	$\underline{+26}$	345	29.	523	+5,31	16	342	184	37	24	12	293	242	191	140	89
10:00	93	70	47	24	2	692	5	12	20	24	248	$5+8$	216.	178	566	372	147	4륵	근	to	415	73	165	94	24	348	247	224	202	179
11.00	2	2	2	2	2	658	1	312	36	314	161	010	406	25	574	57]	136	478	108	3	251 .	173	54	36	19	324	184	134	83	33
12:00	1.	2	$?$	3	4	$62{ }^{2}$	d	264	541	93	488	659	391	43	480	722	4	3433	3301	2	163	238	7	$1+$	22	136	32	135	99	133
1300	1	3	4	3	3	172	1	363	398	94	503	343	138	(6)	291	586	301	418	46.1	7	+ 61	300	203	107	10	28	10\%	92	83	75
14:00	2.	4	5	7	7.	124	1	344	371	1+0	+69	136	121	181	318	3132	24	277	412	1	228	5	7	13	17	2 .	122	88	55	22
15:00	$+$	3.	3	3	8	6	3	282	121)	$\underline{27}$	16	Y5	23.	61	192	$2{ }^{2} 9$	25	368	2600	1	28.	1	5	8	13	11	11	131	11	11
16:00	7	6	5	4	5	4	4	99	5.	34	190	128	$+$	3	59	149	28	t ${ }_{\text {c }}$	126	1	82	t	2	3	4	4	5	5	6	6
17.00	4	3	$\underline{2}$	2	3	0	2	3	1	14	22	16	1	1	5	13	0	19	11	0	1	d	0	0	1	6	6	6	6	6
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0)	0	0	0	0

[^7]| Dir | 1 | 2 | 3 | 4 | 3 | 6 | 7 | b | 9 | 10 | 11 | 12 | 13 | $1+$ | 15 | 16 | 17 | 16 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| :---: |
| 'lime | | | | | 1 | |
| 5\% 04 | 0 | 0. | 0 | 0 | 1 | 0 | 0 | (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | d | 0 | 0 | 0 | 0 | (1) | 0 | 0 | |
| 6:001 | 8 | 4 | 1 | 4 | 7 | 10 | 13 | 16 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | (m) | 40 | 0 | 0 | 2 | , | , | , | , | 0 | 1 |
| 7:00 | 31 | 26 | 21 | 34 | 32 | 48 | 57 | 66 | 75 | 73. | 71 | 68 | 66 | 64 | 62 | 34 | 46 | 37 | 29 | 21 | 4 | 5 | 5 | 5 | 18 | 26 | | 0 | 5 | 10 | 4 |
| 800 | 93 | 110 | 126 | 142 | 157 | 173 | 188 | 204 | 219 | 215 | 211 | $2(7)$ | 202 | 198 | $19+$ | 166 | 138 | 111 | 83 | 55 | 10 | | 5 | | 寿 | 20 | 13 | 1 | 29 | 52 | 78 |
| 90 k | 88 | 86. | 85 | 1.95 | 232 | 306 | 379 | +5.3 | 527 | 444 | 439 | 434 | 428 | 423 | 4 | 30 | | 131 | 67 | | | | | | 3.3 | 0 | 65 | 90 | 115 | 140 | 164 |
| 1000 | 1 | 4 | 169 | 239 | 309 | | 448 | 518 | 588 | 194 | $2+5$ | 295 | $3+5$ | 396 | 446 | 233 | 175 | | | | | | | | | 349 | 25 | 63 | 101 | 1,39 | 177 |
| 11:00 | 1 | 2 | 41 | 100 | 160 | 219 | 278 | 337 | 396 | 12 | 187 | 247 | 3 ta | 368 | 420 | | | | 5 | \square | 0 | 2 | 3 | 269 | 335 | 46 | 157 | 172 | 185 | 201 | 215 |
| 12:00 | $6)$ | 5 | 1 | 26 | 52 | 77 | 102 | [28 | 12 | 337 | $3+5$ | 35 | 359 | | | | | | | 0 | | 0 | 0 | 199 | 397. | 101 | 701 | 599 | 498 | 596 | 294 |
| 13.00 | 51 | 27 | 3 | 5% | 100 | 141 | 197 | 246 | 354 | 3 | 340 | 310 | 200 | 250 | 720 | | | | | 1 | | 1. | 3 | 3 | 331 | 54 | K28: | 525 | 422 | 320 | 217 |
| 14.00 | 24 | 25 | 27 | 23 | 19 | 15 | 12 | B | 186 | 71 | 13 | | 758 | | | | | 57 | 3 | ! | 1 | 0 | 1 | 2 | 32 | 167 | 482 | 401 | 321 | 240 | 159 |
| 15:00 | 9 | 7 | 4 | 8 | 12 | 16 | 20 | 24 | 151 | 94 | 1 | 13 | 15 | | 3 C | 0 | '8 | 17 | 26 | $!$ | 1 | 0. | 2 | 21 | 232 | 134 | 316 | 317 | 319 | 321 | 322 |
| 1600 | + | 2 | 0 | 4 | 8 | 12 | 16 | 츼 | 36 | 17 | $2+$ | 37 | | 18 | | | | 1 | , | , | 1 | 0 | 1 | 116 | 36 | 98 | 143 | 151 | 159 | 167 | 174 |
| 1700 | 4 | 1 | 3 | ! | 6 | 7 | 9 | 10 | 1 | 0 | | | | | , | | , | 12 | 0 | 0 | 1 | 1 | 2 | 15 | 9 | 6 | $\underline{13}$ | 25 | 27 | 29 | 31 |
| 1800 | () | 0 | 0 | 10 | d | 0 | 0 | 0 | (1) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 0 | 1 | 1 | 1 | 1 | 0 | 1. | $1)$ | 0 | 0 | 0 | 0 |
| | | | | | | | | | | | | - | 1 | 0 | 0 | 1. | 0 | 0 | 0 | 0 | 0 | 0 | [10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Hourfy Ditect Solar Radiation in watt／m ${ }^{2}$

Year 2005 MIonth：Nowerber

Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1.5	16	17	18	19	20	21	32	33	24	23	26	27	38	20	30
T＊ッ¢																														1
5：00	0	0	0	0	0	0	9	0	0	4.	0	0	0	0	0	0	）	0	0	0	0	0.	0	0	0	0	0	0	0	0
600	19	16	24	36	40	39	26	23	20	17	17	17	17	17	17	17	13	10	1	2	8	5	2	2	1	3	5	，	14	12
7：00	［17	H2	140	181	169	108	154	140	126	112．	112	112	112	12	112	112	$9+$	75	56	38	35	2）	$\underline{2}$	27	21	38	56	74	4	17
8：00	189	278	312	356	391	356	319	321	304	288	280	286	$2{ }^{26}$	286	286	296	245	204	163	122	101	81	60	77	Bt	30	9	8	7	278
9：40	215	447	488	524	573	573	528	503	477	472	452	452	45 ？	452	452	452	399	346	293	14	90	5.4	133	14	19	d	10			\cdots
1000	230	569	607	6.336	Gat	6.54	630	605	581	556	556	556	576	550	556	556	＋34	312	1 cro	195	123	52					，		421	404
11：00	193	652	055	695	69 근	67.3	633	594	554	515	515	515	515	515	515	515	430										438	4 4	$5+3$	498
12：00	114	533	600	652	541	428	388	342	310	271	229	186	$1+4$	10	59							38	223	137	257	377	497	486	601	380
13：00	78	121	520	316	495	＋5＋	＋24	395	365	335	307	279	251	223	195	335		－-9		141	12t	96	463	108	248	3 B 7	527	404	506	323
t $4: 00$	24	280	312	344	344	312	236	200	144	BB	28	10 B	1	12	130	120	113	101	，		160	191	114	25	16.4	303	＋42	278	381	331
15：00	3	119	133	147	157	210	166	121	77	33	33	3.4	34	$3+$	35					，	102	108	71	58	134	210	286	210	211	209
16.00	1	17	17	24	26	22	17	12	7	2	4	5	7	8	10				3	30	32	23	18	19	35	91	126	92	96	83
1700	（	0	1	0	0	0	U	0	0	1	0	0	（1）	0		8		4	$-$	4	＋	3	2	2	3	8	11	8	to	8
1800	0	0	0	0	0	0	0	0	0	13	（1）	O	，	0	0	－	d	0	0	0	1	2	（1）	0	0	0	0	0	0	0
														0	0	0	v	0	0	0	0.	0	0	0	0	0	0	0	0	0

Year 2005 Month：Deceribur

D3y	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1 B	19	20	21	22	23	24	25	24	27	28	29	30	31
Timer																									25	24	－			30	
5－00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$1)$	0	0	d	0	0	0	0				
6：00	4	7	9	11.	13	15	17	19	17	14	12	10	7	5	5	5	2	0	0	0	0	0	1	1	\square	0	0	0	0	0	0
704	35	73	R6	28	110．	122	135	$14{ }^{-}$	138	128	112	110	1 tat	91.	56	106	4	3	3	4		5	14			1	1	2	1	1	0
$8: 007$	163	122	2145	215	237	238	250	361	257	253	248	$2+4$	2391	235	218	241	23	16	38	61	5	3	4	2	3.3	42	52	61	29	24	19
9：00）	272	333	335	338	341	343	346	3.46	354	360	36.5	371	377	3 B 3	$+23$	303	26	147	167	61	R3	106	11.9	132	145	159	172	185	94	83	72
10.00	377	407	411	416	420	425	429	43.4	434	433	433	433.	＋32	432	472	$+13$	62	110	158	析				205	278	290	302	314	185	178	172
1100	400	345	352	360	368	375	38.3	3.91	347	404	＋11	418	424	431	412	329	5	55	17	25		311	1			372	389	407	263	272	281
12：00	426	350	312	274	236	198	100	122	173	233	289	344	$4(10)$	453	भf	$38+$	24	9	174				4	391	379	368	356	345	226	277	128
13：0）	314	280	370	200	250	240	2.0	220	237	275	272	284	30×3	323	278	$1 \mathrm{R}^{2}$	00								324	333	341	350	260	303	345
1490	166	$23+$	215	195	176	156	137	117	132	146	$16 t$	176	$19 t$	205	126	161	48	2	136				189	267	225	243	261	280	298	316	335
1500	7	126	114	95	79	64	48	32	＋1	49	57	65	73	82	47	96	11	4	13		224	26	263	257	251	246	240	234	236	238	23.1
16.00	7	15	13	11	10	8	6	$+$	3	5	6	6	7	8	4	1.1	2	20	31	$\overline{5}$	7		160	153.	146	139	133	136	125	123	124
［7：00	0	0	0	1	9	0	0	0	0	0	0	0.	0	0	0	0	0	6	17	13	\％	，	Bt	68	55	41	28	15	18	20	23
18：00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	d	0	0	1	18	24	30	25	20	15.	10.	5	0	0	0	0
																		，	0	0	0	0	0	0	0	0	0	0	0	0.	0

APPENDIX C：Hourly Diffuse Solar Radiation in W att $/ \mathrm{m}^{2}$ Hourly Difinse Solar Radiation in watt $/ \mathrm{m}^{2}$
Fear 2005 Mionth fanuary

Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	2 t	22	23	24	25	26	27	28	29	30	3 t
Trine																															
5：00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
6：00	4	3	4	3	3	3	3	4	3	3	3	4	4	3	5	5	5	3	j	5	5	5	4	4	4	4	5	4	5	5	4
7：00	50	45	3.2	30	54	55	55	54	54	55	29	42	58	55	81	57	56	56	55	55	5.5	55	54	54	54	54	63	64	57	54	53
8：00	112	99	126	103	130	129	127	136	129	127	135	137	139	134	150	129	136	132	133	130	128	125	122	120	117	112	134	159	150	152	157
9.00	166	95	181	164	194	190	18．	183	185	185	136	172	307	195	$\underline{24}$	187	195	203	211	202	192	183	173	164	154	149	194	247	23	244	257
10．00	193	168	241	222	240	226	223	279	202	210	110	206	269	219	269	217	24	271	299	289	279	269	259	249	239	212	260	309	291	269	244
11：00	200	183	251	362	256	250	246	$2+0$	226	224	107	214	310	236	330	244	289	333	378	356	335	313	292	270	249	288	320	331	334	339	343
12－00	198	176	249	297	235	268	274	29	232	221	7	234	3106	252	257	259	293	3－15	300	$3+0$	320	300	2 BO	260	240	236	317	347	365	387	401
13：00	184	220	340	237	21.1	270	243	202	220	214	（i）	215	290	222	229	260	382	305	327	317	287	366	246	226	206	228	271	336	303	262	217
14：00	152	186	193	223	137	209	191	180	195	178	6.2	177	208	193	206	$\underline{12}$	233	233	$27+$	259	24	231	216	202	188	199	287	282	26.8	243	219
15：00	108 51	$\frac{12}{50}$	107	138	120	134		134	140	126	48	$12{ }^{1 / 2}$	138	140	144	$t 53$	174	195	236	203	190	177	165	152	139	153	200	164	142	124	103
17：00	51	5	＋	5	5	5	62	$\frac{64}{6}$	67	61	47	6） 1	73	69	6t	61	65	64	6ut	69	72	75	78	81	83	86	111	50	53	57	62
18.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\％	9	11.	13	15	18	1.5	16	5	6	7	8

${ }_{\text {git }}$					［ 딘	욱		3	守	5	星	19	50	
F18			5	7	成	空	它	－	으응	5	合	\％	8	
7i				－	O	5	0	鉴	骨	苞	$\stackrel{1}{9}$	문	2	
H1		0		如	－	0_{0}^{3}	－	閏	\cdots	0	5	岕	둥	
H				＊$\dot{\sim}$	合		0		気号	高品	品	家	$\stackrel{\square}{\square}$	
\cdots		0		－	只	웅	$\frac{\infty}{-1}$	ल्वा	E	\％	，	E	$\stackrel{\mathrm{r}}{-}$	
¢1		0	$\xrightarrow{7}$	故	F\％	年年	年等	\％		苦芴	兌	哃	※	\％
$\overline{1}$		－		\％		－	薦	$\stackrel{\text { 雰 }}{ }$	9	官第	m	気号	等	
A		\bigcirc	I	\therefore	S	会安				気	긍		픈	
a		¢		r1号	号空	冎	$\mathbf{x}_{\substack{1}}^{\frac{7}{7}}$	学窵	乐品	象荷		吹	츧	
\geq		$0=$		S	： 3		W	为	筬	$\stackrel{\square}{n}$	可	8	－	¢0
\because				\％	菏涼		管	＋	¢	高荅	Nif	－	$\stackrel{\stackrel{1}{\square}}{\square}$	Fin
\square				\cdots	－	敢高	号莒	宮䓵	品菹	原家	筒	可	：	
In			P	古	룰	年守	守	，${ }^{5}$	5	O	0	\％	令	
\pm				5	$\begin{array}{\|l\|l\|} \hline \stackrel{\sim}{\mathrm{N}} \\ \hline \end{array}$	$\underset{\sim}{\sim}$	$\underset{\sim}{9}$		荷	$\begin{array}{ll} \vec{~} \\ \cdots \end{array}$	\approx	号	5	
\sim			d	45	F－	或管	志䔍	点号品	2	或总	\％	겡	\pm	
c				凩	令	刮管	cis		9	8	2	示	＊	
$=$				枵等	筞	28	F_{1}	気串嵒	両	品	－	$\stackrel{\text { F－}}{\sim}$	市	
\cdots				等军	咢			$\stackrel{H}{4}$	+ive	8	\％	${ }^{3}$	c	
a				\bigcirc	家 ${ }^{\text {a }}$	玉s			$\underset{\sim}{\infty} \underset{\sim}{\infty}$	${ }_{5}$	3.	S	2	
∞				6	${ }^{5}$	Fif	cix	둥	0		F	5	S	
			3	3	合品	nin	简	俞	$\underset{\sim}{8}$		8	2¢	ε	
－				家	穴租	${ }^{4} 10$	8	昆品	0	89	9	${ }_{7}$	\％	
ค			5	\％	20		9	）	त ${ }^{2}$	20	－	子	S	
＋		0	\pm	7	9	$\stackrel{\text { 雨 }}{ }$	7	䟮会	風	冎	－	先	5	
3			0 \％	7	？${ }^{2}$	へ1	Pan	8	Co	瓦领新	15	扣	－	
			－	－吉	吉	\pm	d	318	令		翂	$\stackrel{8}{\circ}$	\pm	
			－	5．${ }^{\text {a }}$	家品		㫛管	虬	－	\cdots	＋	＋	S	
		$\stackrel{C}{n}$	\mathfrak{c}	8	灾				8	$\begin{array}{l\|l\|} \hline 8 \\ \hline 8 \\ \hline \end{array}$	8	号	\％	

Hourly Diffuse Solar Radiation in watt $/ \mathrm{m}^{2}$

Day	1	2	3	4	5	6	7	8	9	10	11	12	13	$1+$	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Tiple																															
5：00	0	0	0	0	0	0	0	0	1）	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6：00	16	19	10	17	18	18	22	10.	21	31	32	33	25	20	21	30	43	31	31	32	40.	29	50	15	42	29）	45	29	49	49	50
7：00	88	99	d 4	40	$10 t$	100	11.5	61	86	112	84	55	109	100	103	115	126	139	123	106	127	120	140	35	136	117	145	124	134	137	133
R：C0	135	14^{7}	201	132	193	193	$21 ?$	96	116	136	122	109	151	（6）	161	191	222	$2 \mathrm{~B}+$	239	194	204	252	188	102	339	159	241	2.57	243	201	19
900	162	167	191	161	230	203	306.	200	273	165	$14+$	122	1 14	205	214	265	315	281	271	330	318	303	280	113	220	280	332	312	317	268	250
10006	176	182	172	175	239	217	376	319	300	213	38.	i0	173	294	257	269	352	236	30.3	350	259	372	279	312	2 Ch	360	370	364	324	447	38
11：00	207	198	164	178	266	233	386	311	302	267	430	216	175	277	260	314	338	296	340	383	238	363	270	176	310	314	351	417	439	464	409
12：00	220	208	162	180	294	316	337	3.40	289	250	363	351	192	245	252	327	341	401	416	337	$2 \ddagger 3$	317	$\underline{59}$	199	312	$\underline{3}+9$	367	405	435	449	309
13：00	198	$\underline{214}$	162	180	266	271	276	340	252	t83	273	274	200	278	243	293	406	277	345	273	217	349	34	352	222	240	33	367	424	39\％	350
15．00	133	16B	136	135	184	169	181	$\underline{194}$	213	$\underline{196}$	$\underline{248}$	35	192	294	23	26	320	383	242	229	1918	31.3	123	282	183	2 t （ ${ }^{\text {a }}$	297	315	333	333	317
16.00	97	10.4	97	91	108	102	127	125	121	122	136	36	133	20	161	111	134	177	132	121	109		69	27	155	－	$\underline{23}$	237	（1）	4	37
17：00	32	28	32	26	30	28	45	30	40	41	37	25	34	12	55	34	45	$4{ }^{4}$	48	39	42	16	28	39	46	59	46	50	46	51	2
18：00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0	19

Year． 2005 Moarh Apal

－					等	豆	令	言	守	合	产	20			
－1			3	20	管	合	5	5	守	京	－	$\mathrm{m}=$		－	
硆			8	A	\％	穼		桨		0	9	0	突		
Cir			g	\％	感	笽	製	9	号	風	120	\％	守	8	
只	－		人	\％	简		$\underset{\sim}{n}$	8	50			＋	if_{6}	$\stackrel{\rightharpoonup}{-}$	
A		tin	莫	2	令	$\stackrel{3}{5}$	운	$\begin{aligned} & \square \\ & \hline \end{aligned}$	7	\cdots	8	7	込	\bigcirc	
菏		0	\％		$\underset{\substack{u \\ ⿴ 囗 十 i}}{ }$	잉	昷	8			\cdots	$\underset{\sim}{9}$	－	¢	
？		\％	0	Kin	0	\mid	$\sqrt{\infty}$	9		8	畕盆	素	${ }_{\sim}^{2}$	\checkmark	
쇠	O	\cdots	号	\％	${ }_{\text {ci }}$	是		圭	c_{1}	0	笪覀	筥管	－	－	
$\overline{-1}$		0	－	7	7	简		\|ral		$\begin{gathered} n \\ n \\ n \end{gathered}$	m_{m}		F	T	n
8		\cdots	¢		－1	F_{0}	$\left[\begin{array}{l} 5 \\ 7 \end{array}\right.$	合	寑		㫛	촉	－	\％	
\bigcirc	\checkmark	污	N			$\underset{m}{m}$		\cdots	a	5 ${ }^{2}$	第等	${ }_{4}{ }_{4}$	\cdots	7	
\sim	r－	F－	\bigcirc		－	\cdots	丽	可	$\stackrel{y}{2}$	调	$\underset{\sim}{8}$	栄完	2	号	
\approx		5	\％		1	\％	管	鬲	9	0		$\stackrel{9}{9}$	－	－	
\bigcirc	\sim	5	$\stackrel{\sim}{7}$		7		$e_{i=1}$	∞		m_{0}^{∞}		$\underset{\sim}{0}$	－	\％	
－	\sim	\pm	5		，	穿，	$\underset{\sim}{e}$	0	8	家	会盛	令	\％	．	
\pm	\checkmark	7	F		－	\％	${ }_{5}$		$\bar{I}_{i} \mid$	\vec{x}_{3}	${ }^{\text {B }}$－${ }^{-1}$	$\xrightarrow{7}$	2	5	
m	$=$	P－	年					Cick	Cor		式司	2	in	$7{ }^{\circ}$	
¢	$+$	in	它			9	\cdots	守	9		8	管	，	0	
\cdots		T	－	$\underset{\sim}{2}$	4	\cdots	3	C_{7}	荷保			－+1	－	± 0	
9	\cdots	F	7	家		con	${ }_{9}$	$\overline{\mathrm{a}}$		$\stackrel{\text { c }}{\text { c }}$	会管	$\stackrel{5}{9}$	－	± 0	
\checkmark	＋	г－	\％	寸	先	易	$\frac{7}{7}$	守	娄媱	穿荗	風	完	涬	O	
∞		in	P	त1	，	\％	Co	0	$\hat{m}_{n}^{i}{ }_{m}^{m}$	${ }^{\text {m }}$		120	in	－	
r－	\cdots	ल	合	$\underset{i}{n}$			5	$\underset{c}{9}$			2	－	\％		
\checkmark	m	8	筞	\therefore	8	8	$\hat{8 N}$	突			＋	8	¢	0	
\％		\sim	7	$\overrightarrow{A l}$		${ }^{\circ}$				8	戓 1 －	8			
$+$	\bigcirc	\cdots	穴	守	$\stackrel{\sim}{*}$	0			ra	\％	${ }^{5}$	蓳		－	
	0	\％	N	＋					風		\pm	9	0	\bigcirc	
－	\bigcirc	的	等	\％		$\stackrel{N}{9}$	ε_{1}		2	成边	凩込	盛	\pm	－	
	－	穴	熍		令	${ }^{1}$	N	5		会		－	－	\bigcirc	
5	8	菅	宮	$\|\underset{\infty}{\hat{C}}\|$	$\stackrel{8}{\circ}$				8	2		可	8		

Hourly Difiuse Solar Radiation in watt $/ \mathrm{m}^{2}$

－	Cr_{1}	¢	ci	${ }_{0}$	ç	＋	（\％）	ก	N	N0	8	尚	\cdots	
	\＃	$\stackrel{\text { ¢ }}{ }$	问	$\stackrel{\square}{1}$	8		另制	8		霜	$\begin{array}{\|l\|} \hline \text { 会 } \\ \hline \end{array}$	空 ${ }^{0}$	7	
0	F－	8	Si_{1}	号	品	家	露			客	$\begin{array}{\|c\|} \hline 8 \\ \text { ci } \end{array}$	\cdots		
\％	a	士		$\begin{array}{\|l\|} \infty \\ 8 \\ 8 \end{array}$	侖	合	$\stackrel{9}{2}$		霛	\cdots	$\begin{array}{\|c} \hline \text { C } \\ \hline \end{array}$	$\begin{array}{l\|l} \pm \\ \stackrel{N}{n} & \vec{n} \end{array}$	？	
1	剆	$\underset{\sim}{2}$	悹	$\stackrel{8}{8}$	c	+	+			$\ln _{\operatorname{con}}^{8}$	总	管	－	
佼	0	今	$\stackrel{m}{e n}$	$\begin{array}{\|c\|} \hline \mathrm{F} \\ \mathrm{Ci} \\ \hline \end{array}$	呂		9	$\frac{7}{7}$			©	心会	－	
岩	＊	9	$\begin{array}{\|c} \stackrel{C 1}{2} \\ \stackrel{1}{3} \end{array}$	\vec{m}	表	$\stackrel{5}{9}$				$\stackrel{\rightharpoonup}{2}$	$\underset{c}{ \pm} \mid \stackrel{\rightharpoonup}{c}$		－	
ल	0	\％	$\bar{\square}$	$\underset{\sim}{9}$	\pm	\cdots	s占		-	$\stackrel{\rightharpoonup}{n}$	合	8	－	
m	\cdots	딩	${ }_{0}$	$\stackrel{\otimes}{\circ}$	$\stackrel{\sim}{\sim}$	$\stackrel{1}{\mathrm{C}}$	8	\vec{a}	$$	容宫		$\underset{c}{7}$	，	8
ct	\bigcirc	心	$\stackrel{m}{2}$?	合	$\underset{\sim}{20}$	Br	空	$\stackrel{\text { A }}{\sim}$	9	早官	気边		？
F	$\hat{8}$	穴	是	畕	帯	佥	B	9		$\stackrel{8}{4}$		－	\cdots	？
8	c	$\stackrel{\mathrm{C}}{\mathrm{C}}$	$\stackrel{\sim}{2}$	$\begin{aligned} & \infty \\ & \infty \\ & \vdots=1 \end{aligned}$	3	$\frac{\mu}{2 n}$	年馀	守		9	$\stackrel{\circ}{\stackrel{\circ}{C}}$	\％	＋	σ
\geqslant	\checkmark	3	吉	宗	$\frac{\infty}{9}$	5	$\left\{\begin{array}{c} x \\ x_{0} \end{array}\right.$	$\stackrel{8}{7}$	\％	0	을	$\stackrel{3}{3}$		θ
∞ ．	1	\％	$\stackrel{\rightharpoonup}{\sim}$	7	亖	8	$\begin{aligned} & 8 \\ & + \\ & \hline \end{aligned}$		$\underset{\sim}{9}$	$\stackrel{n}{7}$	$\stackrel{n}{m}$	矿	\％	（ n
$\stackrel{+}{*}$	\square	\％	会	䀎	安	$\underset{\sim}{9}$	∞	∞		0	）	－		\bigcirc
9	\cdots	E	或	令	$\stackrel{\mathrm{r}}{-}$	0	安	\cdots		\therefore	会免	$\underset{\sim}{8}$	$\stackrel{\rightharpoonup}{-}$	
\cdots	$\stackrel{4}{4}$	＋	$\stackrel{\circ}{\circ}$	\pm	范	䓵	克敛	$\stackrel{1}{2}$		$\begin{array}{l\|l\|} \hline 8 & \text { 18 } \\ \hline \end{array}$			8	m
\pm	30	\％	을	$\frac{8}{7}$	吕	或	5		5	3	$\stackrel{\rightharpoonup}{\mathrm{C}}$	$\underset{\sim}{9}$	志	E
\＃	$\bar{\square}$	$\stackrel{\square}{2}$	$\stackrel{\infty}{\sim}$	家	$\begin{array}{\|l\|} \hline \frac{r}{c-6} \end{array}$	$\underset{\sim}{\sim}$	m	穻	$\begin{array}{l\|l} -1 \\ \hline \end{array}$	n	$\underset{\sim}{9}$	8	S	気
$\stackrel{+}{5}$	成	$\|\stackrel{\rightharpoonup}{\dagger}\|$	盆	$\left\lvert\, \begin{aligned} & \mathrm{F} \\ & \times 1 \\ & \sim 1 \end{aligned}\right.$	总	$\underset{m}{m}$	8	$\frac{5}{7}$	河	只容		河	${ }^{3}$	N
$=$	里	in	$\stackrel{\sim}{ \pm}$	$\left\lvert\, \begin{gathered} r- \\ x-1 \\ x-1 \end{gathered}\right.$	$\underset{\sim}{2}$	$\frac{\pi}{\pi}$		5	5	3		－	5－－	可
\bigcirc	士	5	§	$\hat{\vec{c}}$	$\left\lvert\, \begin{gathered} 3 \\ \rightarrow 人 \end{gathered}\right.$	$\stackrel{8}{\square}$	$\left\lvert\, \begin{gathered} \mathbf{c}_{1} \\ \hline \end{gathered}\right.$	$\underset{\sim}{9}$	$\underset{\sim i n}{2}$	i 若		可	$\stackrel{\square}{\square}$	＊
c	I	沓	$\stackrel{s}{马}$	$\stackrel{0}{\square}$	$\underset{\sim}{\underset{c}{1}}$	$\left\|\begin{array}{c} \mathrm{r} \\ \mathrm{~N} \end{array}\right\|$	9	\mid	3	9	4	O	8	m
\＄	士	c	c	年	＋	\％	熍	筞	令	）		－	\％	m
1－	$\stackrel{10}{2}$	C1	＋	呺	$\begin{aligned} & 9 \\ & c \\ & c \end{aligned}$	㖛	5	号	总		잉	$\xrightarrow{+}$	鸟	\bigcirc
\bigcirc	に	5	冾	$\left.\begin{aligned} & 61 \\ & 0 \\ & 01 \end{aligned} \right\rvert\,$	$\stackrel{\text { 示 }}{ }$	$\frac{5}{51}$	号	－	－	盛		－	3	N
－5	1	\bigcirc	－	$\underset{A}{9}$	盆	估	気	－	9	$\overline{5}$	$\underset{\sim}{5}\|\underset{i}{5}\|$	$\underset{\sim}{\square}$	3	－
＋	\cdots	9	部	c	$\overline{5}$	＋	号	$\begin{array}{\|l\|} \hline 4 \\ \hline 7 \\ \hline \end{array}$	5	8	cis	咢	${ }^{1}$	寸
H	\cdots	∞	ㅍ	$\stackrel{\text { a }}{ }$	${ }_{\sim}^{\sim}$	品	\cdots	$\begin{aligned} & \overrightarrow{0} \\ & \overrightarrow{i n} \end{aligned}$	c_{c}	$$	$\underset{\sim}{7}$	家	－	\cdots
C1	会	完	尽	$\underset{\sim}{\infty}$	$\stackrel{\sim}{2}$	$\begin{aligned} & \mathbf{7} \\ & \mathrm{m} \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Th } \\ \text { Cl } \end{gathered}\right.$	苚	空	氟	，凩	只	can	त
\rightarrow	\cdots	0	染	\cdots	$\stackrel{\square}{\square}$	$\begin{array}{\|c\|} \hline 0 \\ i \end{array}$	－ 8	$\overrightarrow{\mathrm{F}}$	${ }_{2}$	${ }_{6}^{6}$	$\stackrel{\text { c }}{ }$	家	P1	N
$\underset{3}{2}$	䍃	莺	帚	3	8	$$	各	官	宫	$\begin{aligned} & 9 \\ & \underset{\sim}{\mp} \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \\ & 8 \end{aligned}$	5	3	号

Year： 2005 Morsth：June

P			$\stackrel{\sim}{\square}$	$\overbrace{0}{ }^{\text {c }}$	忥	奖	甭	악	守，	\％	S	Sa	哑	『		
7		\Rightarrow 我	吅	， 9	$=$	4	－	뮹	感	잉		$\underset{\sim}{\text { a }}$	T			
宊			9	等	袻	亨	天	它发	¢	\％		\bigcirc	－	事		
Fris			－	哭哭	9^{2}	3	Fi	m	管	\％	気高	Cic	－	F		
\％			CO	$\underset{\sim}{9}$	$\stackrel{N}{\mathrm{~S}}$	F	8	蔄	N	3	\％	格	2	－${ }^{-1}$		
\cdots			6．	$\begin{array}{c\|c\|} \hline 0 \text { 管 } \\ \hline \end{array}$	管	豆	Cric	${ }^{\text {a }}$	त1	200		式空	S	5		
－		Fir		$\stackrel{r}{n}+\overrightarrow{i n}$	$\underset{\overrightarrow{A l}}{\substack{2}}$	$\underset{\sim}{9}$	in	9	$\xrightarrow{\mathrm{c}} \mathrm{m}$	$\xrightarrow{\sim}$		刮	S	\therefore		
ค．			\vec{y}	9		\cdots	9		氟気	空		高 ${ }^{2}$	＂	9］		
8			$\stackrel{3}{2}$	$\underset{m}{7}$	${ }_{\mathrm{m}}^{7}$	式	$$	令	\％	F	吻到	䆚	守	家		
－				$\frac{\square}{91} \frac{1}{n}$	\bar{m}	3	3	$\underset{\sim}{\infty}$	옹	$\underset{m}{2}$	\％	－	\bigcirc	3 \％		
8			5		$\stackrel{\mathrm{ran}}{\mathrm{ra}}$	\cdots	8		$\underset{\rightarrow}{3}$	路	鬲家		茓	Ci．		
\geqslant				$\overline{r-1} \bar{n}$	$\stackrel{y}{4}$	8	$\overrightarrow{\mathrm{s}} \mathrm{~F}$	mor	窘	雱	害菅	会克	\pm	P		
∞			Cin	穴伿	0	$\stackrel{\text { con }}{\text { cin }}$?	会	蓇穷	葛	${ }_{\text {F }}$	${ }_{i=1} \sum_{i}^{2}$	R 3	$\underline{3}$		
\cdots	\cdots	，${ }^{\text {P }}$		girn	cive	P	$\underset{\sim}{2}$	我	品	－	5	5 三	$三 \mathrm{C}$	［5］		
$\stackrel{\square}{\square}$			E	园高	官	会为	成示	\geq	$\underset{O}{\infty}$	为	\cdots	－	［ \square^{-}	8		
\sim	－	\cdots		示	夺	$F=$	$\underset{=1}{x}$	$\overrightarrow{B_{i}}$	$\stackrel{\rightharpoonup}{8}$	\pm		${ }_{7} 8$	웅	c		
\pm		，	管	$\stackrel{c}{9}$	\cdots	令筞	筞		缶袁	寺	気运	式	\bigcirc	0		
m	7	$\stackrel{\square}{=}$	\cdots	ती	－	第䎟	年	品	\％	N	\％	㫫	${ }^{\circ}$	in		
F	完	\cdots	，	成	家	家守	守 5	Sis	茍第	\％	䆖	皆	국	9		
$=$	한	$\stackrel{3}{2}$	综		成	閉等	宗	守安	＋	${ }^{6}$	9	Cif	澼	F		
$\stackrel{\square}{\square}$	＇	－	5	合空	耍商	家	会	m_{2}^{2}	$\begin{gathered} 90 \\ =10 \end{gathered}$	$\underset{\sim}{m}$	$\begin{array}{c\|c} 9 \\ \hline 9 \\ \hline \end{array}$	$\stackrel{7}{7}$	$\bar{\ddagger}$	Sio		
\cdots	\|-i		1	貧	家可	악	쇽	年	$\begin{gathered} 90 \\ 0 \end{gathered}$	谷空	S_{3}^{1}	$\stackrel{0}{3}$	9	$\underset{i}{3}$	\％	－
∞	$\%$	5	知	䎟	\％	令台	至	䒯	而卉	$7{ }^{+}$	\cdots	${ }_{0}^{\infty}$	3，${ }^{2}$	$\stackrel{5}{2}$	\sim	
	${ }^{2}$	－	－	解袻	，		－	守	c	？	成	8	國	$\stackrel{\square}{4}$	\bigcirc	
0	$1-$		高宫	郤彮	盛	\cdots	$\stackrel{\rightharpoonup}{2}$	m_{10}	87	7	呂	$\stackrel{5}{7}$	$\underset{7}{7}$	닫	9	
n	\bigcirc	$\stackrel{-}{*}$	枵	合灾	，	？	Sis			j	羚	领	두	\sim^{10}	\cdots	
\％	त＇			200	\％	会		＋${ }^{3}$	守等	－	3	合宫	－	－	－	
ค	品		家	会定	気	可宗	i	$\mathrm{Ci}_{\mathrm{i}}^{2}$	\cdots	鱼	－	\bigcirc	2\％	\cdots	2	
1	－1			年	告	n	8	8	\cdots	$\stackrel{\text { \％}}{\sim}$		$\xrightarrow{\square}$	${ }_{\sim}^{7}$	$\cdots{ }^{1}$	a	
	Hi		合	${ }_{-1}^{2}$	袘	$\underset{\sim}{2}$	势	8	5	$\sqrt{n} \cdot \frac{2}{m}$	9	O	\％	20	\bigcirc	
5	8		\％	\dot{z}	5			为						88		

Houtly Diffuse Solar Radiation in watt／m ${ }^{2}$

Day	1	2	3	4	5	6	7	8	9	10	11	t2	13	14	15	16	17	18	19	20	21	22	23	24	25	20	27	28	29	30	$3 t$
Stime																															
5：00	19	t0			7	14		19	8		13		12	12	11	10	10			13	1	16	15				15	1.	19	13	
6：00	76	4.	6		37	7	88	102	88	64	40	4	49	33	53	6	${ }^{6}$	70	74	112	123	115	10	9	67	102	87	72	90	10	
7：00	127	31	15.		35	68	105	141	13 （1）	118	116	129	12	133	139	144	150	156	162	19	258	24	228	212	11	$14+$	16	194	50	189	
8.06	6	43	18.	190	$\underline{2} 7$	2×14	301	240	27	282	288	284	283	281	278	276	274	27	26	2 C	36	259	259	25	138	207	234	2 （0）	21	22	1
9：9］	280	415	27	214	271	326	369	390	33	133	253	373	383	393	＋10	413	423	433	43	328	32	281	24	19	15	308	28	263	337	35	8
10.00	28	21	12	3，3	173	363	$28-4$	350	415	268	$27+$	27	82	BB	15	22	28	353	420	467	$25+$	353	452	370	248	360	432	300	2 28	19	40
11：00	258	300	47	369	223	317	\＄ 3.30	32	351	370	372	375	379	$3 \cdot 3$	3.85	389	392	393	473	465	33	398	458	337	$\underline{1}$	38	38	39	353	315	，
12：00	＋1	49	112	460	376	328	31	332	＋37	411	340	268	196	125	217	30	＋0	493	471	487	40	411	＋22	344	267	290	31	395	316	284	
13：00	352	547	t17	140	$+27$	304	282	29	218	320	316	306	296	286	175	24	312	350	363	32	44	39.	3.47	32	29	284	27	20	2	275	
1＋100	13	t5	250	75	406	273	28	26	360	219	27	340	＋0	461	177	$25:$	338	4	38	166	36	50	2－4	27	29	374	21	245	224	312	
15：00	176	265	150	286	20	128	198	216	271	199	229	259	2 2 ．	319	152	156	160	163	307	22	297	231	165	21	273	306	25	20	24	26	
16： $16 y^{4}$	1093	94	120	151	121	93	1.5	175	1102	135	154	173	$19:$	$\underline{10 .}$	106	112	119	125	178	18	237	186	145	178	211	154	167	21	21	182	14
17：00	39	38	65	81	$\because 6$	71	52	79	80	15	55	6.	6）	75	80	82	84.	85	5 F		79	87	96	46.	78	95	60	48	102	－	
18.00		7	t4		19	23	$1{ }^{1}$	16.	12	12		2		4	4	5	－		5	1		11	15	，	，	，	6		$\underline{5}$	6	

Year 2005 AFontlu August

Du	1	$\xrightarrow{2}$	3	4	5	6	3	6	9	10	it	12	13	$1+$	15	16	17	18	1）	20	21	$\underline{2}$	23	24	25	26	27	38	29	30	31
Tinle																															
3.00	10	11	10	3	13	1.	1.3	6	3	0	2	4	4	4	5	7	10	0	4	4	3	2	4	3	6	11	10	9	8	7	6
6：00	78	60	36.	80	75	36	108	50	30	10	20.	31	21	12	58	64	69	13	＋1	35	29	24	31	33	3 B	90	75	6	7	36	4
7：00	82	32	$1+3$	136	120	121	123	194	111	2 B	［6］	52	64	76	$1+5$	171	197	43	117	97	79	57	20	33	$3{ }^{\text {a }}$	9	15	1	，	81	$6{ }^{60}$
$8: 00$	171	132	155	179	212	229	230	2ヶヶ7	133	19	40	61	82	163	166	193	220	145	137	127	118	109	211		8	14		$1{ }^{1}$		，	7
9：${ }^{\text {ch }}$	251	321	322	345	285	23－1	306	211	117	22	113	204	295	176	335	463	278	134	125	2316	335	189	201		118			4	5	85．	293
10：00	384	367	398 ．	274	361	564	475	337	20 NJ	62	173	284	395	203	284	dić	314	15.3	297										361	5	372
11：00	350	367	398	311	＋28	328	390	280	17：	61	t87．	313	430	383	＋ 77	465	178	279	225	376								458	390	394	419
1200	369	322	257	329	$+38$	394	501	＋62	473	384－	343	335	325	379	240	378	415	260	460	346					171	360	404	449	244	476	125
13：00	$\underline{72}$	271	353	395	41i	320	149	299	250	201	3．1	312	243	389	211	374	754	107									414	440	74	497	177
14.06	278	273	270	252	133	294	$3{ }^{3} 5$	328	261	1144	＋22	411	4041	31										120	280	410	400	390	157	431	$3 \mathrm{B2}$
1500	さ12	180	238	$16:$	tis	233	238	251	264	230	357	340	กวา									$2(4)$	231	134	318	339	336	334	271	274	356
1600	11／	｜09，	180	129	9tr	218	1.36	118	101	H．	18.	29¢	27，	10	150	1	14	127	－6．	239	191	300	153	190	334	20980	221	235	185	153	327
18.00	14	0	7	11	11	7	0	2	4	2	37	26	15	3	4	，	4	3	3					23	57	！ 1	36	59	32	36	15
																				1	，	－	1	0	1	0	0	0	0	0	0

0	0	0				，	0	0	0	19	0	0	0	0	9	0	0	®	0	0	0	0	0	0	0	10	（1）	0	0	0	00：41
\％	${ }_{8}^{0}$	¢	\bar{z}	0	＋5	10	tt	－	E	－	1	0	1	Z	i	t	\％	5	9	9	L	t	6	O1	01	01	91	11	11	te	00：21：
56	16	06	68	18	st	git	tt	$\frac{104}{35}$	¢i	！	${ }^{6}$	10t	tel	迷	56	dit	$6{ }^{6}$	8	${ }^{8+}$	${ }_{\text {8 }}+$	4	$\stackrel{+}{ }$	06	18	z_{i}	E9	＋5	5	St	68	$00^{\circ 9} 1$
LE1	¢	act	9 L	¢ 71	号	6za	toz	¢¢	15	\％	L	O5，	Eat	9	tII	201	LD1	CIt	911	121	101	¢	1081	＋91	8 c 1	Eit	211	101	［51	$10 \stackrel{ }{ }$	00：5！
¢9	¢	¢0a	¢ 21	Et1	कn	161	coz	201	5	\bar{z}	0.1	zis	tiz	5	${ }^{\text {KL }}$	6tl	［5］	tsl	9	951	（191	โП	691	ZSI	＋61	9 g	6ict	Las	gice	sct	00：＋1
piz	zLz	0 EL	881	Sti	＋52	18 ¢	E61	951	551	Tz̄1	94	655	9St	¢	${ }_{\text {P2 }}^{81}$	$06 \overline{0}$	192	02 c	＋st	it $\overline{\text { a }}$	Oū	19%	9＋${ }^{\text {a }}$	56	t＋a	cid	tıl	06	OL̄	$6+\varepsilon$	00：¢81
GŻE	892	9t̄	col	t91	19 a	86	$9 \% \overline{1}$	＋ib	$1 / \overline{1}$	$\stackrel{9}{9}$	ti	951	6ī̀	$16 \overline{4}$	92\％	60¢	96a	ZRa	8\％	＋5¢	［tz	キLE	55	¢	L2	行	28	${ }^{\text {c }}$	¢EE	86 E	00.51
OSE	¢q¢	Li	068	prot	tis	26i	tgl	1061	搨	¢t	16	CI	\％	6	SLi		跳	25	1）	为	th2		－1E	90%		¢9\％	1LL	652	861	c	00：11
¢ 8 \％	L $\angle 1$	$16 \overline{1}$	56	$66 \overline{1}$	です	SIC	691	¢	HSE	0sz	$9 ¢ 1$	894	102	fci	$59 \bar{L}$		＋s，	河	Lic	Oaz	86%	$81 \bar{C}$	洨	ciz	60	こ६彑	09\％	849	951	ti	0001
1	zoz	2na	いた	Siz	諒	611	I¢1	$10 \overline{1}$	izu	でて	1	0t	6	（11		Sfal	Lž	9tz	59	18¢	E0\％	niz	Líz	$15 \bar{L}$	2Lz	£ 6 ū	＋1E	¢¢¢	10：	2\％	006
201	I6	9	19	9＋1	O¢i	2it	tis	9¢1	8 Cc	121	－				，	561	961	L61	961	851	661	50	L	Lzi	Dta	E5	－2\％	082	015	OTE	$00^{0} 8$
¢	O＋	88	L_{1}	$\overline{\text { c }}$	It	85	－	Licle	ti	1	0	L		，	18	10.	＋01	801	11.	911	811	ect	9¢	85	$9+1$	1＇s	2l	1	691	891	00：2
0	0	0	0	0	0	0				0			，	0	\％	¢	Lic	at	9\％	15	5	09	¢9	99	69	zL	$5 i$	92	18	เ8	\％ m ：
											0	9	0					0	0	0	0	0	0	0		0	0	0	0	0	0 Ca
1ε	กร	bi	¢ $\overline{2}$	L	Q	5																									7unt
						¢	\％	\underline{L}	i	L	$\underline{2}$	61	81	4	9	51	ti	ع1	it	11	01	6	\％	c	9	5	t	โ	z	1	ira

	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	，	0	0	0	0	0	0	0	0	0.	0	0	00：81
4	Z	－	L	9	21	81	81	B1	Til	9	5	$2 \cdot$	71	t \bar{i}	t	11	9	15	\％	$\overline{\text { a }}+$	81	51	18	¢1	11	$8{ }^{\text {c }}$	1	＋	it	00：21
EI	021	111	Enl	56	58	5	49	59	0101	to	99	＋	$8{ }^{8}$	88	211	19	EC	951	［「1	101	51	16	08	z	多	＋6	tol	911	Scl	009
155	98 C	に灾	90	［61	t81	6 ± 1	51.	［H	LBi	1ε	891	52	ata	151	f61	5 Sl	291	291	Et	Opl	$\overline{6}$	¢	16	むっ1	9＇̇1	cti	－$\overline{1}$	ū1	C1	M
听衰	隹	OEE	何	6il	くら	016	814	9月	9S5	65	だ¢	20	GEC	¢1\％	10 L	ELI	¢0¢	161	SRI	5 L	的	cte	09	L！	CLI	Oce	991	¢II	LS	coitl
65	12t	¢9\％	$90 ¢$	$94 \overline{6}$	961	ゆのて	ठ¢¢	OOt	262	B5	tos	9¢己	L	＋iz	E1E	ticic	bot	1 ¢	Dí	c9¢	9 ${ }^{\text {c }}$	tis	0t	29	$0{ }^{1}$	651	OtI	IR	\％	$00 ¢ 1$
C9\％	61%	$0 ¢$	โระ		＋20	$\mathrm{g}_{6} \mathrm{C}$	5i	LSE	0¢¢	ct	SCK	Lic	OEt	$61 \overline{0}$	KOL	96%	！	［01	ご亿	08t	的	E5S	5	Sc	9，	toi	88	19	65	002cl
cit	别	15	ttt	$91 \pm$	Lis	188	6 c	¢¢	fiot	99	885	倍	8こt	$\underline{L L L}$	Stic	こLく	8	－ 1	¢t	16t．	¢！	ist	61	1012	0 S	85	59	\＆	18	00 kI
88%	＋ 21	165t	ctip	551	0＜t	865	92\％	cle	1信	6 L	869	0た	clt	560	1，iz	LEE	86	［11	119	2\％	40t	5気	4	9＋1	L	［6	pl	\％	20ε	0001
T¢5	1言	80S	96ヶ	¢ ${ }_{\text {c }}$	0 Ó	605	Bく亏	†Lく	998	9日交	L120	99.	508		8 C	Fi¢	¢ ${ }_{\text {c }}$	011	01\％	99 c	$6{ }^{\text {cte }}$	ELC	79\％	Ot	28	5¢	c8	OES	1ヶ¢	00：6
015	｜15§	C¢5	cis	¢GT	L8	18 $1+1$	5LZ	9t¢	¢5¢	981	Gét	L6L	¢ 5 \％	$2 \bar{L}$	tos	ctis	8 CL	\＆	96i	9ร\％	9 c	菏	¢ $¢$	Otl	t5l	691	Er！	86	coc	008
ER．	08	CL	59	85	05	$\frac{\square}{4}$	＋if	211	50c	¢ $¢$	951	18	A6！	981	から1	coz	601	St 1	¢¢1	\＄s	851	291	96	$8 \overline{1}$		641	091	0 1	841	00 －
9	－	0	0	0	0	0	ε	5	t	1	－	\bar{c}	－	18	9	59	¢t	¢	901．	$0 z$	¢	$10+$	01	69	89	29	99	59	6	009
																0	0	0	0	1	ร	2	t	8	$\overline{4}$	＋	L	6	R	
02	$\underline{1}$	8 ${ }^{\text {a }}$	L	92	$5 \overline{6}$	巾	$\varepsilon \bar{L}$	$\overline{4}$	： $\bar{\square}$	$0 \overline{2}$	6.1	81	L	91	¢1	＋1	f	E1	11	01	，	8	1	9		＋				${ }_{\text {\％}}$

 Sit

Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	20	27	28	29	30
Trme																														
500	0	,	0	0	0	,	0	\%	0	0	0	0	,	0	0	0	(1)	0	0	0	0	0	0	0	0.	,	,	,	0	1
6:00)	43	40	38.	39.	34	37	35	3.3	31	29	29	29	29	20	21	29	29	30	30	30	0	18	36	20	23	24	24	25	26	20
700	122	118	$0 \cdot$	85	70	80	714	78	77	76	76	26	76	76	7 m	76	22	88	24	100	108	116	125	20	104	9	22	85	71	6-1
800	193	149	. 136	It2	91	98	100	102	105	$10{ }^{\circ}$	107	107	107	107	$10 \cdot$	107	121	135	149	163	16)	163	163	159	177	162	146	131	101	106
009	279	$17+$:52	1,3+	(01)	102	109	115	12?	t29)	129	129	129	12)	129	129	159	190	221	210	171	132	254	214	203	192	fBt	170	125	25
10-00	336	173	162	$1+2$	119	113	12+	1,34	144	155	155	155	155	155	155	155	182	210	238	26.3	239	216	313	249	23	22	210	181	136	163
11:00	370	(5)	165	139	145	13.3	14)	165	182	198	198	191	108	198	198	198	231	263	296	293	284	275	348	$2{ }^{2}$	355	233	210	195	132	247
12:00	357	168.	160	1,3,5	160	2 l 21	200	198	196	124	197	200	203	206	209	194	217	240	264	271	286	300	7	248	225	201	177	205	136	216
1300	22.	162	.152.	127	125	167	186	185	185	184	190	197	203	309	215	184	202	221	239	$25 t$	263	276	230	189	171	153	135	301	58	67
1400	203	138	$\underline{126}$	113	99	155	159	164	169	174	16.3	152	141	130	120	133	147	160	174	175	190	$20 \cdot 6$	199	160	142	124	106	139	148	+39
1500	100	99	93	87	77	122	116	110	10.	98	95	91	88	85	81	${ }^{5} 5$	90	94	98	112	112	113	85	8.3	80	26	73	78	92	92
16.60	34	37	40.	35	31	31	31	30	30	30	30	30	29	29	29	29	29	30	30	30	31	32	9	19	20	22	24	21	31	24
17\%:013	0	0	0	d	0		0	,	0	,	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00	0	0	0	0	0	0	0	0	0	0.	0	0	0))	0	0	(1)	0	0	0	0	0	0	0	0	0	0	0	,

Yori: 2005 Month: December

Day	1	2	3	4	5	0	7	8	9	1	11	12	1.3	$1+$	15	16	17	18	19	20	$\underline{21}$	22	23	$\underline{2+}$	25	26	27	28	21)	30	31
'linke																															
5:00	0	0	0	0	0	0	0	0	0	0	0	,	,	,	0	0	0	0	0	0	0	0	0					,			0
6.00	25	28	23.	18	1.	9	5	1	2	5	7	10.	12	15	14	14	13	11	8	5		0	2	4	6	8	10	11	11	9	0
7:00	76	83	72	60	4	37	23	14	22	30	38	46	54	63	61	55	81	70	56	42	28	14	22	31	4			,	11		6
800	118	119	108	98	87	76	66	55	61	67	24	80	R 0	22	88	76	172	14)	126	102	T4.	5			T	48	5.	6	$7+$	66	58
9.00	166	$1+1$	130	t19	109	98	87	76	82	87	93	9	10.5	111	84	122	24	,				5	6	11	79	88	96	164	131	125	$\underline{118}$
10000	195	$t 57$	151	145	139	133	127	137	125	128	131	134	13 ?	140	$1{ }^{1}$	t42	301	265	200	19	5	12	,	23	104	113	123	132	18	176	71
11-00	189	189	14:	17.3	16.	1.57	150	142	145	148	[5u	15.3	156	159	171	204	260	236	213.	189	166	142	150	15	16	145	[51	157	208	203	98
12.00	179	181	1901	199	2 nc	216	225	234	218	$2(1)$	187	172	156	140	$23+$	21.3	328	309	290	271	253	234	225	216	208	(9)	181	189	22	216	208
13:00	164	175	176	1:8	1 BO	182	183	185	180	17.5	170	164	159	154	185	220	315	289	263	23	211	185	183	182	180	178	176	175	77	22	2
14,00	147	1299	131	132	133	13+	136	137	135	1.33	131	129	12?	125	137	168	316	192	178	16.	151	137	1.6	134	33	3	13	179	135	万,	182
1500	92	35	85	86	86	87	B_{7}	88	87	B	B9	$8+$	S	83	86	12	1016	105	1(w)	96	92	RR	87	87	B6	86	5	85	0	41	40
LO 104	2	3-1	32.	31	1	2 H	27	25	25	25	23	25	21	24	15	31	2 k	27	27	26	2	25	27	\%	30	31	32	34	38	47	$4{ }^{2}$
17:00	0	0	0	(0	0	0			(3)	n	(t)	0	0	0	4	0	(0	0	,		0	0	()	0	0			2	47
19:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0		0	0	0	0	0	0	0	0	3

\％	08	82	0 E	$L Z$	Iz	H2	\mathscr{F}	62	15	52	15	Giz	6	$1 \xi^{\prime}$	Z\＆	ゅ2	L	82	R2	を χ^{\prime}	Hz	iZ	（2）	sc	\underline{z}	$t 2$	1ε	$0 ¢$	08	12	$02 \cdot 2$
$\bar{\square}$	65	65	65	$5 ¢$	¢	59	Z5	55	比	15	IF）	［ 3	L5	を	\％	碞	54	1） 5	－ 5	と ${ }^{\text {d }}$	L 5	＋s	12	15	CT	$\underline{5}$	19	（11）	［1］	117	เห｜
8 ti	䛧	SH	68	$\overline{\text { I }}$	2，	¢ ${ }^{4}$	Hi	E\％	5	现	$1 \mathrm{~K}^{\prime}$	＇940	9 R	r	56	21	䛞	H	5 M	51	59	14	（x）	＇ 2	¢12	11 K	26	016	It ${ }^{\text {r }}$	Z	（以）に
$5{ }^{5}$	8B	¢R	L8	L	－${ }^{\text {a }}$	18	SL	\％ 8	10	［	巩	\＆	9K	z^{\prime}	tr	12	On	$\stackrel{\rightharpoonup}{\text { ch }}$	［ ${ }^{\text {\％}}$	＋fi	¢ 2.4	\％	65	\＆	（1）	52	（4）	2 L	Hı	$1{ }_{1}$	
EL	LB	ZK	24	ZL	14.	${ }^{1 \times 1}$	\bar{L}_{L}	ER	56	リ	$\varepsilon 1$	15	${ }_{5} \mathrm{~N}$	fick	50	69	6	110	WL	二í	1 l	L	45	U	0	c	\cdots	4	114	11	－म⿵冂人）
0.	14	［ ${ }^{\text {L }}$	t＋	5	4	臸	6	28	to	I）	59	LL	$\underline{¢}_{5}$	［1	¢ ${ }^{\text {a }}$	49	4	kL	4	$1{ }_{1}$	4	4		－		（	，	\％	10	（1）	M1－6
92	LB	46	16	W	ti	51	（1）	［k	8	枵	就	LL	\＆ 4	烟	（叶	［9	2	KI	$\stackrel{1}{2}$	，	1										
59	Ll	HL	t	「	¢	てL	кij	111＇	26	为	SL	82	IT	＋ir	5	＋41	1						，	L	2	2	th	$1 \times$	9	54	14，${ }^{1 / 2}$
69	26	2	6	\％	4	61）	$\mathrm{B}^{\prime \prime}$	H6	16	โร	做	ki	G	¢	18												¢	10n	\％	C3	（00．51
W5	49	\bar{L}	＋19	8	29	ワ	49	EI＂	\＆ 8	25	$1 i$	4	51	B2	tr	［	（11）										14	88	14	\％	（\％） $0^{\text {a }}$
95	17	62	们	6	IS	49	19	L）	9	む5	（1）	（）	$1{ }^{1}$	ris	K1	ग5	10	1	7	1	S1										
55	95	$5{ }^{5}$	$5{ }^{5 \prime}$	15	25	6	45	Z）	L）	15	25	こ	נ1	（i）	19	15	65		哣	16	65	25									
$8{ }^{8}$	65	117	05	2	$6 t$	F	5	85	5	EP_{4}	dt	85	11＇）	（IS	\＆ 5	外	t5	47	bs	210	你	ct	他	－							
UT	Lt	25	＋7	H	9	$4{ }^{\circ}$	d／5	ts	$8{ }^{4}$	\％	St	55	5	1／3	叶	¢	8	45	1 L	4丕	们	6	¢ +	Ht	zc	ct	4	15	15	It	
EE	78	15	Of	行	Lt	tr	LF	1 F	PG	y	lt	［¢	（it	$1 \pm$	9 ${ }^{\circ}$	4	¢	LS	91	LK	U12	己t	48	\＆	$\stackrel{+}{+}$	$11+$	15	29	$\stackrel{5}{+}$	13	－16
58	6	P5	$2 t$	$1{ }^{10}$	L5	5	6	is	59	${ }^{18}$	9	Z5	kt	（t）	8	Gt	Cf	少	佔	tr	zi	少	65	\％	hir	帅	－5	IIS	や	NL_{5}	（ki） 4
\％	2 t	2	「哵	\＆t	（6）	9	5	15	E3	12	$\bar{\square}$	$t 5$	Lt	しt	Ib	41	4	HS	5	1 L	＋i	4	EF	¢15	ZS	15	L5	¢ ${ }^{\text {c }}$	\％	It	फ，
为	Sp	GS	6it	や	¢5	隹	5	25	－ NS	18	せt	54	壮	（1）	25	Z +	（it	15	ds	\％	烟	\＆t	サ	4	F	L	115	¢¢	6	\％\dagger	（\％）
¢ ${ }_{\text {d }}$	¢ 5	G9	＋5	$6{ }^{6}$	6	619	（2）	6	リ	सह	こ）	リリ	55	\ddagger	116	保	1.5		21	RL	¢ \dagger	＋	51%	45	45	＋9）	113	（\％）	（1）	59	¢ ${ }_{\text {HI }}$
65	19	06	08	＋	\pm	Li	$2 i$	（5）	$\pm L$	9	リ	リ	H	fil	リ5	59	69	ち！	${ }^{4} 5$	H2	15	51	55	19	65	IL	D 2	Ci	4	92	00 F
67	67	2t	S）	65	69	［4］	18	巾1	こ¢	8	！	23	E	$\mathrm{ch}^{\text {H }}$	ヶ＇）	29	6L	［4］	＋ 1	HL	85	M	15	59	て）	$0 \cdot$	（\％	－	16	E S	W）
－t	56	［8	$t t$	に	12	58	57	Z\％	88	पリ	H2	N8	$6 L^{-}$	${ }^{1 / 1}$	16	49	¢ 8	54	18	Cs	リリ	2	59	W	0	54	58	L 4	\＆ 6	＋ 4	D0＇z
$0{ }^{1}$	I8	吅	th	\pm	62	L 4	18	68	故	t	64	宕	tH	26	$0{ }_{0}$	3	比	64	年	58	I	2	（ 31	51	Lí	16	16	［G］	56	的	0.1
98	LH	Í	56	9）	5	69	56	4.5	Ck	F	26	6 k	fís	26	呩	18	LK	E6	E6	68	15	M	t	W）	¢ K_{1}	$\underline{4}$	\％	56	26	26	（\％）
																															3
I¢	0 0．	62	87	Lt	92	52	$\downarrow z$	亿z	CL	［ 2	（z	65	81	21	91	5 I	－	¢＇1	ZI	II	01	©	R	4	9	5	t	Σ	Σ	［	${ }^{\text {frecl }}$

Srouse

Hourly Relative Humidity（\％）

Year． 2005 Month Februng

Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	14	17	18	19	20	21	22	23	24	25	26	27	28
lume																												
U16）	71	97.	）	88	咀	39	（k）	${ }_{3}$	85	87	9	（W）	R ${ }_{\text {R }}$	48	$6{ }^{6}$	H9	gut	8.4	प9\％	d	53	74	77		50	74	79	${ }_{7}$
$1(x)$	（1）	＊$\times 1$	87	${ }^{\prime} 3$	${ }^{6} 3$	31	陦	75	76	77	K－1	P41	78	45	（i）	＊	H7	Rill	\％	89	5	37	70	75	57	\％，9	67	71
200	4	${ }^{8}$	79	Th	77	64	H2	Gi^{1}	6	倞	37	71	71	41	58	${ }_{3} 3$	Rif	76	8	kH	53	72	6	72	$5 ¢$	43	55	13
3 chl	65	36	70	73	72	54	39	59	54	54	711	tis	64	38	52	詸	． 1.	72	BI	kfi	54	7	55	［19	54	57	41	55
＋ 4.14 F	（k）	713	64	（14	${ }_{6} 6$	47	73	52	5.	54	62	5	59	12	4	74	75	67	74	\％	48	61	4	6.3	49	45	3	$4{ }^{4}$
5̧ M0	56	14	5）	55	55	4.3	6s	45	47	49	53	50	4	26	35	（i）	（is	62	74	75	43	51	12	58	45	33	32	37
（6，0）	51	5 s	53	46	＋6	36	39	3	41	． 45	4.5	$\pm+$	31	30	27	6	C_{1}	57.	71	69	37	4	36	32	4	31	26	28
710	55	53	51）	42	41	t6．	51	35	43	43	43	4	2 t	19	$2 i$	（1）	57	55	65	6.5	37	4	． 3	47	3R	22	25	3
8 OCO	59	47	47	4	3	35	43	12	45	4	12	35	$2{ }^{2}$	18	25	37	52	57	（i）	6	34	34.	33	43	37	24	24	27
9.10	62	$4 ?$	4	37.	31	35	35	21）	$4 \bar{i}$	3 R	411	31	24	17	24	54	47	511	54	5R	$3{ }^{3}$	3.7	12	38	35	25	2.	21
11）．143	${ }_{6} 15$	4i	49	－n ．	3.4	42	－4	4	18	3）	4	$3{ }^{4}$	${ }^{11}$	21	27	56	5.2	5.3	57	59	42	4	34	39	34	27	24	25
11.00	6 F	4	53	43	$3{ }^{3} 4$	$4)$	52	39	51	41	45	4	35	37	31	39	53	57.	6	$6 t$	4	44	${ }^{2}$	39	34	24	25	29
12×1	71	37	54	$4{ }_{4}$	3）	56	61	44	51	11	4.3	45	4	29	34	01	1.2	（i）	6.1	62	519	47	$3{ }^{2}$	4）	37	31）	16	3.3
13，1／1］	74	5 R ．	（12	511	4）	（i）	64	511	$5{ }_{5}$	4 H	5	4 A	4.	31	45	6	cis	6	Lff_{1}	（19）	32	51	4 H	44	42	37	，${ }_{1}$	41
14．14i	W	［ 2	17	55	59）	63	$6{ }_{6}$	514	（0）	35	65	$5_{1} 1$	A	4	54	7.1	73	6）	願	75	53	54	57	47	47	44	34	41
15，（x）	8.5	4	71	5）	6	67	（i）	6.2	63	12	73	5	49	3	0	79	7）	31	73	82	55	54	1.7	31	52	51	34	54
1 ra （\％）	Rícin	70	72	（1）	74	711	72	65	fifi	${ }_{6}$	72	5tr	5	11	71	k 2	81	77	73.	${ }^{1} 3$	57	59	6	52	55	54	${ }_{4}{ }_{1}$	58
1700	R 7	73	34	$7{ }^{1}$	79.	72	76	67	711	3.7	12	（1）	52	4	75	Ri，	${ }^{2} 4$	81	73	R5	59	6	71	53	54	$\underline{1}$	5.	64
18（h）	48	3	35	8.	R4	75	79	3 ll	13	79	71	63	54	${ }^{517}$	79	苜	${ }^{16}$	85	73	46	61	62	73.	54	4	${ }_{1} 1$	01	69
19.10	$8)$	79	77	78	85	7	79	37	7 H	79	73	6 K	55	55	79	H	4	k5	73	${ }^{48}$	64	65	75	54	仿	688	67	71
210	${ }^{3}$	43	m 1	R0）	87	78	39	76	R2	71	7 fm	74	57	（ 1	Hir	＊	Kíd	\％if	$\cdots 1$	＊	67	iris	77	54	6：	69	72	74
2109	91	\pm	K2	H2	${ }_{\text {d }}$	kill	79	79	H_{3}	74	79	7	59	1.5	${ }_{\text {Kib }}$	39	Bri	Ril	85	91	$7!1$	71	\％	54	72	70	73	76
27（min	(1)	57	55	55	5）	5.5	53	53	5	5	52.	53	3	4	5.7	5）	57	57	57	61	47	17	5	36	48	47	52	51
33： 21	30	2	27	27.	$21)$	27	36	26	29	24	26	$2{ }^{2}$	20	22	$2 ?$	30	27	29	28	31	23	24	26	18	24	23	24	25

Hourly Relative Humidity（\％）

Year 200）5 Aontr Alarch

in	5	c																						
\cdots	$\stackrel{\rightharpoonup}{2}$	\％	＊	\％	$\stackrel{\sim}{2}$	8	\％	碞	\％	荌		\propto	\％	5	5	\bigcirc		＊	－					
2	$\stackrel{\square}{4}$	\％	\％	F	：－	6	S	效	浛	in	5	${ }_{\sim}^{4}$	5	－	r	8				5	d			
$\stackrel{\sim}{4}$		5	$\%$	\％	N	¢	\％	in	in	\％	－	in	江	5	3	$\stackrel{\sim}{2}$	＋		＇	2	\％			
\％	5	2	포	\cdots	$\stackrel{\rightharpoonup}{2}$	＇	F	is	in	is	，	召	T	\pm	5	3			號	？	\％	\％	c	
令	0	${ }^{\text {c }}$	F	$\stackrel{ }{\sim}$	$=$	5	T	5	\sim	守	\％	F	：	${ }_{7}$	：	4	3				m	\％		
0	\pm	\％	0	$\stackrel{\text { \％}}{ }+$	F＇	5	5	5	\％	可	$0 \sim$	洼	\％	E	s	3	G	i	F		，	\％		
\％	$\stackrel{\sim}{*}$	3	${ }^{\text {rax }}$	$\stackrel{3}{z}$	\cdots	\％	\％	5	\％	5	c	${ }_{5}$	$\overline{ }$	$\bar{\square}$	$=$	ज	c	\cdots	－	－	－		：	
กิ	5	도․	$\overline{\bar{x}}$	F	$\overline{\bar{x}}$	2	\％	\cdots	N	준	F－	50，	a	5	$\stackrel{\sim}{x}$	\％					3	ミ		
N	\％	\pm	F	－	－	二	\％	주	\pm	죽	N	品	इ	5	3	荌	\％							
त	「	\％	$\stackrel{\text { r－}}{\text { r－}}$	F	\bigcirc	3	二	5	C	5	\％	\％	三	，	$\overline{3}$	F	$i=$	立	\cdots	\％	\％	${ }^{\text {r }}$	${ }^{2}$	
©	\bar{x}	\because	8	${ }_{6}$	\％	5	\sim	n	7	¢	8	二	단	\％		F		\sim	r	F－	F	$\stackrel{7}{7}$	0	
9	\％	；	cas	\％	O	：	9	动	\cdots	\cdots	瓦	$\stackrel{5}{8}$	5	3	E	\％	F	i	\bar{x}	\％	F	，	：	
끙	兵	\vec{x}	\ldots	3	\bar{F}	T	\％	θ	9	5	：	\approx	$\stackrel{-}{\text { r－}}$	\sim	I－	二	r－	\％	\cdots	\pm	\％	\％	3	
$\stackrel{\square}{\square}$	$\stackrel{\sim}{*}$	$\stackrel{\square}{5}$	\％	$\stackrel{\sim}{2}$	$\stackrel{\square}{7}$	［		${ }^{x}$	f	\cdots	7	\square	7	is	\sim	in	［5	三	\pm	3	F	2		
$\stackrel{\square}{-}$	22	\cdots	F－	r	\pm	\％	－	\＄	5	$\stackrel{\sim}{*}$	午	＋	\％	$\bar{\square}$	is	碞	$\stackrel{5}{5}$	\pm	G	\cdots	I	F	：	N
n	E	－	in	\bigcirc	7	$r=$	粏	\％	\pm	\geqslant	\cdots	枵	$\stackrel{0}{0}$	\cdots	7	둑	\％	\％	3	\cdots	\cdots	2	ज	－
\pm		$\stackrel{1}{1}$	E	2	\％	$\stackrel{\sim}{0}$	筒	3	$\bar{\square}$	m	$=$	$=$	$=$	\cdots	\％	－	$=$	ज	F	if	s	5		云
\cdots	5	江	F	\pm	5	$\bar{\sim}$	$\stackrel{+}{+}$	파	F	$\stackrel{\sim}{\sim}$	$\stackrel{1}{7}$	－	玄	it	is	\sim	\sim	\because	짖즤	\＄	항	$\stackrel{\rightharpoonup}{2}$		त2
잒	$\stackrel{\sim}{*}$	倖	$\stackrel{\sim}{2}$	5	\cdots	i	\％	3	5	신	－	E）	S	조	F－1	${ }_{7}$	F－	$\stackrel{\text { \％}}{ }$	F－	\cdots	\％	$\overline{\bar{x}}$	5	Fir
7	$\bar{\sim}$	\sim	\％	I2	ज	5	7	5	7	－	\cdots	5	8	「	x	考	${ }^{*}$	포제N	$\underline{\text { I }}$	ᄃ	全	$\stackrel{ }{2}$	こ	\％
P	空	${ }^{2}$	$\stackrel{3}{2}$	r－	3	言	二	\pm	$\bar{\square}$	H	$\stackrel{\rightharpoonup}{*}$	只	7	7	in	5	¢	N	$\stackrel{\sim}{5}$	${ }_{7}$	x	ㅍ	5	，
a	혼	2	존	成	言	7	\cdots	\cdots	产	ti－	\cdots	\cdots	\％	＇	$\stackrel{5}{9}$	爻	玄	in	1	二	5	즌	4	N
\approx	8	5	I	\bar{x}	$\stackrel{\sim}{*}$	：	x	市	＋	$=1$	\％	9	约	城	$\stackrel{0}{6}$	\sim	N	r^{2}	：	F	$\overline{\text { I }}$	7	$\stackrel{5}{5}$	碓
r－	$\stackrel{\text { \％}}{\sim}$	\％	$\stackrel{3}{4}$	$\stackrel{1}{\sim}$	$=$	\％	\％	気	9	\geqslant	拄	S	二	\pm	$\stackrel{\sim}{2}$	\cdots	\％	\bar{x}	파자T	安	\％	8	\sim	む
\checkmark	$\stackrel{5}{\circ}$	\pm	F－	家	군	7	\cdots	\sim	\％		\because	7	$5{ }^{2}$	5	3	잉	5	\cdots	5	$\stackrel{\sim}{n}$	r－	$\stackrel{\text { F－}}{ }$	i	8
\sim	F	0	초	\cdots	3	인	in	\％	in	等	动	5	5	8	\％	종	1	in	F	I	告	奖	F	d
＊	天	\pm	\cdots	活	等	予	枵	$\overline{\text { \％}}$		5	Fir	$8{ }^{1}$	$\bar{\sim}$	7	E．	F－	可	$\underset{\sim}{*}$	$\stackrel{\rightharpoonup}{x}$	${ }^{5}$	$\stackrel{\sim}{x}$	$\overline{\text { a }}$	3	\％
\cdots	N	5	c	$\stackrel{\square}{0}$	Ξ	7	\％	¢		$\underset{\sim}{\sim}$	${ }_{5}$	Tit	\cdots	\cdots	献	7	\pm	7	苧	1	会	\geq	\pm	－
N	\approx	r－	${ }^{\sim}$	F	筞	$\stackrel{\square}{\square}$	\cdots	$=$	$\stackrel{\rightharpoonup}{=}$	잔	¢	）	F	\div	字	予	U	ξ	$\stackrel{\sim}{4}$	F	S	\cdots	E	\％
－	E	3	Σ	장	7	$\overline{7}$	$\stackrel{1}{2}$	\％	Hi）	N	－	m	；	\equiv	\div	\ddagger	4	\％	等	$\overline{\bar{n}}$	in	， 7	$9-$	m
战	들	춖		8	8	5			줄				䊀		\％	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	鵇	$\stackrel{8}{8}$	$\underset{\sim}{\bar{z}}$	$\stackrel{3}{3}$		$\begin{gathered} \frac{\lambda}{x} \\ \stackrel{y}{\vec{r}} \end{gathered}$	\pm	¢

97	$\downarrow 2$	$\downarrow 2$	Gz	12	9	82	\％	$L i$	$\overline{s r}$	（iz	52	昭	0	G	位	cz	52	Ö̇	lit	Of	6	BZ	42	82	$8 \bar{L}$	现	04	52	Lz	（0）U5̄
45	${ }^{\text {L }}$	（it	15	＋5	15	5	45	5	15	1it	15	24	15	${ }^{4}$	\％	115	$1{ }^{1}$	is	19	（1）	N＇5	4	25	LS	\％	Z4	（1）	$6+$	55	䏚で
5%	IL	12	\cdots	＇18	4	\＆	58	ik	2	199	\cdots	ck	\square	प18	${ }^{2} \mathrm{~K}$	52	4	乐	16	（if）	${ }^{1}$	5	掚	乡ir	如	\％	00	＋	ट8	Mo＇t
58	115	5	SL	${ }^{\text {OH }}$	u	4	ZK	u	以	z9	\dagger	－$\overline{\mathrm{c}}$	${ }^{10}$	外	و	5	＋19	Hi	15	Li	明	＋	昭	ts	L	リ	48	Di	＋ H_{1}	IkJIZ
58	K＇）	H	5	St	お	G	$6{ }^{6}$	12	19	（1）	14	6		¢R	＋	ti	7）	I	116	5 S	＋	洝	$\overbrace{}^{2}$	Ik	${ }_{4}$	や	㡎	9）	$L 8$	D0＇61
5 K	49	IL	\pm	U	$\%$	4	\cdots	$1:$	Z ${ }^{1}$	¢）	I2	J	Sk	LS	¢ ${ }^{1}$	12	¢	¢9	${ }^{1 / 1}$	¢ 4	8	İ	14	O_{2}	5	zi	昽	（＇）	6.6	c086
${ }_{0} 0$	6	U	Li	\％	U	El	－	OL	45	17	69	Li	2 L	GL	$\mathrm{CN}^{\text {a }}$	${ }^{\text {\％}}$	15	¢9	溭	18	018	4	\％	5	8）	$6{ }^{10}$	9	59	＋	CHFLl
SL	L	LL	以	CL	BL	2	69	少	zs	69	29	16	fild	： 1	2	9	15	こ）	¢ CH	（0x	62	L	16	ZL	部	59	L）	\％ 9	M2	14.91
0	t	UL	61）	hi	62	69	¢9	L	${ }^{\text {ct }}$	1.	51	${ }^{81}$	HL	9	L	$z^{\prime \prime}$	a	て＇）	GL	$6{ }^{2}$	52	49	F	8）	5	\％	（11）	12	\underline{L}	x， 9.5
㠺	＋	L	（1）	k	\pm	（9）	z^{19}	ご）	5	\％${ }^{\text {\％}}$	${ }^{\text {a }}$	5	＋1	4	部	${ }_{4}$	\％	15	SL	Rt	11	φ	a）	21）	$\uparrow 5$	9	\％	\％ 2	\％	（1）
65	5.	49	25	28	－ 49	17	65	is	¢	（1）	85	19	12	1 C	1） 5	45	87	${ }^{11}$	E	K2	9\％	\％	45	6	\＄5	${ }^{6}$	15	而	1	（ H ¢ 21
75	\％	＋1	15	12	¢9	01	25	Zs	$1+$	CS	¢	WS	（ ${ }^{\prime \prime}$	L＇	\＄	109	${ }^{\prime \prime}$	i	81	4	29	45	55	＋5	45	\％	$\stackrel{L}{4}$	（1）	8	（f）${ }^{\text {a }}$（ 1
${ }_{6}{ }^{\text {b }}$	69	95	zs	2	（i）	1）5	†	\％	Ot	zs	\％ 5	55	\％9	（1）	1＋	9t	\％	6	！	W	¢5	$\overline{\text { c }}$	is	$\bar{\square}$	z	$\stackrel{ }{+}$	हो	$\stackrel{5}{9}$	IIS	（m）：
9t	29	诂	55	92	45	25	¢5	54	6	8	85	－\square^{5}	95	（1）	＋	\％t	is	42	洨	$\overline{\text { ¢ }}$	吅	15	郘	15	z	${ }^{6}$	等	${ }^{1}+$	fis	（0000
\％	5	（t）	45	9	＋5	6	15	It	gr	$\underline{\text { Sr }}$	5	${ }^{6}$	ts	リ 1	Ct	6	Li	${ }^{1} \overline{4}$	DS	5	11	IIS	${ }_{5}$	6	15	4	1	0 C	09	MIE：
${ }^{+}$	85	L	4	65	＋	15	is	¢t	8.	$6{ }^{6}$	$\stackrel{\text { it }}{ }$	$\bar{\square}$	5	\％${ }^{5}$	L	Z	1 L	＋	4	15	± 5	14	4	115	45	0	vit	ct	29	0
H	D9	［G	H ${ }^{\text {P }}$	19	$5{ }_{5}$	75	45	＋	\＄${ }^{\text {R }}$	45	泫	$\underline{5}$	55	55	zs	将	＋	6	4	（11）	45	15	I6	15	＋5	l	4	\％	\％	（1）＇，
5	（1）	$1{ }^{1}$	29	\＄0	55	55	59	5	${ }^{*}$	：S	05	RS	25	SS	4	端	4	5	\％	29	29	I5	t5	25	为	¢F	$1 t$	（it	¢1	（x） 2
6	t1	59	99	51）	55	45	（＊）	5	$1{ }^{1}$	\％	45	\cdots	29	19	埌	${ }_{4}$	Lí	59	9	碞	H\％	85	訨	（1）	1.	L	\％	55	II	0.5
\＄5	5	M	6	¢ ${ }^{\text {p }}$	Zs	45	\％	5	fis	59	91	的	${ }^{(4)}$	${ }^{12}$	In	${ }^{29}$	\％	既	z	4	4	t	（1）	6	－	23	95	19	\square	人 ${ }^{\text {a }}$
\％ 5	2	52	8	92	IJ	（17）	69	5	14	6	！	\％	$5 i$	$8:$	72	9	\％	2	ris	\％	6	W	IL	${ }^{3}$	z	1）	\％i	\square^{9}	24	（0）
19	76	2	yit	fit	29	${ }^{81}$	5	\because	${ }^{\text {a }}$	$\overline{z L}$	1.2	5	08	IN	42	zk	¢5	1	14	¢\％	ts	\leq	14	\％	L	99	1	t	cis	${ }^{6} \mathrm{~K} 1 \overline{\mathrm{c}}$
\％	4	\cdots	Ik	42	92	$\%$	1 L	，	45	ti	턴	4	58	F	9	48	r	ग\％	संत	\％${ }^{\text {in }}$	$\mathrm{Li}^{\mathrm{LH}}$	118	59	18	［ 4	少	L	$1{ }_{3}$	ix，	
58	54	4	48	t	L	t\％	L	L	99	u	6	${ }^{6}$	川	$\stackrel{4}{4}$	16	ETI	46	16	\underline{L}	เห์	［ 1	${ }^{+1}$	${ }_{6}$	16	194	93	Fis	If	＋6	（i） 0
																														${ }^{\text {Jumil }}$
0ε	Gz	82	$L z$	9	$5 z$	tz	$\underline{5}$	32	12	Uz	61	${ }_{8}$	4	91	51	t	$\underline{1}$	zI	11	01	0	，	\square	9	5	\dagger	Σ	そ	1	${ }^{\text {are }}$

Hourly Relative Humidity（\％）
Source Panyladesh Meteoralogical Deparment，Climace Divisum，Agagnon，Whaka
Yeare 2005 Mianth．Miny

－	\％	＊	管	$\underset{\sim}{2}$	3	3	風	出	络	n	\％	J	5	\％	r	F	$\stackrel{1}{1}$	\％	\cdots	N	\％	\cdots	－	
它	$\stackrel{\circ}{\circ}$		5	T	$\stackrel{+}{6}$	3	a	in	n	\cdots	W	运	会	5	s	3	r	F	F	$\overline{\bar{c}}$	\％	$\stackrel{ }{\circ}$	同	
N	$\overline{3}$	2	5	＋	它	\＃	S	岳	同	นึ	5in）	3	3	5	¢	\bigcirc	5	ra^{r}	F	${ }_{1}$		2	n	8
®	\％	∞	F－	5	\cdots	\cdots	\pm	容	（2）	寝	in	品	3	난	P	\ldots	\approx		家	${ }_{\sim}^{2}$	3	3	H	2
N－1	苞	\cdots	$\stackrel{0}{2}$	晜	永	8	式	－	\％	5	5	T	¢	f	$\stackrel{\rightharpoonup}{2}$	$\stackrel{r}{\text { r }}$	F	8	5	或	家	춪	in	成
－	E	듲	遃	\％	$\stackrel{\square}{2}$	\mathcal{F}	3	を	$\stackrel{\sim}{6}$	E	\checkmark	F	0	\cdots	\approx	\bar{x}	宝	安	里．	조	조즈․	좆	\cdots	O
N		$\overline{7}$	5	\pm	\％	\cdots	＇	管	5.	気	多	它	N	F	\％	조		寺	家	等	E．	S		m
A	会	E	令	\pm	\approx	\cdots	0	－	0	$\stackrel{\rightharpoonup}{2}$	5	3	S	H	2	in	$\stackrel{\sim}{c}$	C	\％	춫	$\stackrel{\text { r }}{ }$	管	\％	\％
$\stackrel{\sim}{\square}$	窘	춫	T 7	©	$\stackrel{9}{9}$	$\stackrel{\rightharpoonup}{4}$	茳	$\overline{\mathrm{F}}$	$\stackrel{\square}{1}$	\cdots	\cdots	\％	\％	\bar{x}	$\overline{7}$	家	5	\cdots	곤	폳	三	ξ	气	E
N	实	三	N	\pm	$\stackrel{1 n}{3}$	$\stackrel{\text { H }}{\sim}$	空	5	F	5	\％	$\stackrel{\sim}{\sim}$	\％	5	8	笑	\cdots	${ }_{\sim}^{2}$	S	$\stackrel{\square}{8}$	8	$\stackrel{\sim}{*}$	3	m
$\vec{\square}$	\％	－	$\stackrel{\sim}{*}$	T	r	－	F	离	\％	\bigcirc	F－	F	\cdots	號	$\stackrel{7}{7}$	${ }^{\text {r }}$	$\stackrel{5}{2}$	$\stackrel{\text { r－}}{ }$	－	空	等	空	ה	5
\cdots	㦴	＊	F	N	$\stackrel{\text { \％}}{\sim}$	5	3	3	ㅍ	5	$\stackrel{\rightharpoonup}{*}$	\cdots	F－	F－	\pm	$\stackrel{\sim}{2}$	\cdots	$\underset{\sim}{2}$	2	\％	可	d	$\stackrel{\sim}{\sim}$	N
3	N	촟	${ }^{\text {r }}$	完	r－	$\stackrel{\sim}{\sim}$	F	弪	2	5	齐	［	－	춫	${ }^{T}$	\pm	5	穴	3	老	，	年	F	\％
∞	S	$\stackrel{\square}{\sim}$	\bar{x}	\cdots	$\stackrel{1}{2}$	F－	S	\pm	諒	F	\％	\sim	5	i		安	年	＊	\cdots	古	\％	$\overline{5}$	$\stackrel{\sim}{5}$	－
$\stackrel{+}{-}$	万	宫	「	¢	$\stackrel{5}{6}$	胫	S	\pm	\because	E	垵	風	号	\pm	－	¢	조	三	二	E	E	E	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\sim}{1}$
\triangle	$\overline{\bar{\sigma}}$	管	F	$\stackrel{\square}{2}$	意	5	5	第	\sim	\％	3	주N	3	C		${ }^{2}$	0	\cdots	产	六	5	三	こ	8
\cdots	\％	\checkmark	듣	${ }^{19}$	F	r	\％	$\stackrel{*}{*}$	$\stackrel{\sim}{2}$	\cdots	5	F1	\cdots	F	O	空	4	5	i＝	1	笑	줏	\therefore	岛
7	3	F－	$\stackrel{\text { r }}{\text {＋}}$	F－	$\stackrel{4}{6}$	$\overline{5}$	W	家	5	\％	3	${ }_{4}$	E	6		r	F－	$ふ$	$\underset{\sim}{2}$	5	－	F	W	작
$\stackrel{\square}{-}$	\％	N	䒠	\％	9	5	8	5	\％	in 3	x	N	\cdots	\pm		玉	掃	\bar{x}	r	「	¢	\bar{F}	午	rid
$\stackrel{\sim}{\sim}$	S	走	：	？	5	T	＊	E	$\underset{\sim}{\sim}$	5	\sim	3	\approx	$\stackrel{\rightharpoonup}{c}$		5	＊	F	さ	T	\pm	＋	\％	Ai
\approx	ç	弪	자자	ㅊ	「	r	E	W	\bar{x}	\pm	\％	3	in	E		\％	会	寽	䨗	「	突	는	3	\％
¢		筮	지	F	F－1	즌	F	\hat{E}	\％		\bar{x}	＋	7	－	r	2	$F=$	\cdots	r_{2}	F	$\stackrel{\rightharpoonup}{2}$	F\％	，	5
ค	$\stackrel{0}{c}$	$\stackrel{+}{\sim}$	F－	迆	N	$\underline{5}$	5	잔	\sim	灾灾	）	S	5	－		－	そ	0	¢	$\underset{\sim}{-}$	찿	三	ξ	3
∞	気	$\stackrel{9}{8}$	E	$\hat{\#}$	\pm	F	$F-$	3	F	5	S	O	－	－		令	E	三－	玉－	5	会	$\underset{\sim}{2}$	ct	7
r－	Tr	T	3	＋	\cdots	－	7	＋	$\stackrel{4}{+}$	\ddagger	3	3	$\stackrel{+}{\sim}$	E		－	$=$	\％	－	혹	5	$\stackrel{\sim}{*}$	in	甹
$=$	8	c	F－	3	$\vec{\square}$	3 \％	$\stackrel{\rightharpoonup}{\overline{2}}$	＋	尔	\％	7	5	n	5		2	6	\cdots	－	ris	F－	F	甬	\％
in	：	3	\％	$\stackrel{\leftarrow}{\top}^{-}$	$\overrightarrow{5}$	\cdots	$\bar{*}$	\because	3	\％	5	\％	2	T		\bar{x}	¢	\sim	［	令	$\stackrel{\sim}{*}$	感	$\stackrel{4}{6}$	m
\pm	穴	这	7	\cdots	家	家 5	5	${ }^{2}$	\therefore	\cdots	\therefore	F	F	－		x	\pm	\％	F	$\%$	\％	T	쿠	㬽
m	妾	咅	药	든	38	กn	7	－	\％	キ守	5	－	～	＇		－	\％	\cdots	＊	0	豆	汞	in	$\stackrel{\text { c }}{ }$
0.	可	F－	$\stackrel{5}{4}$	令	5	5	\cdots	A	大	\％	，完	星	S	令	F	$=$	2	＋	0	$\stackrel{1}{2}$	\ldots	穴	S	－
7	3	\％	5	5	H is	ก ${ }^{3}$	－ \mathbf{x}^{1}	合	\cdots	嫁	\％	＊	3	$\stackrel{1}{2}$	T	F	－	\％	c	テ	\％	0	［80	\cdots
副	恶	즐	$\underset{\sim}{8}$	E	8	気	돚	空		宔	哑	空	$\stackrel{3}{2}$	E			$=$	$\underline{1}$	c	2	－1	咅	줓	容

Hourly Relarive Humidity（\％）
Source Bangladesh Mitteorotogical Deparsnkoc，Chrmate Dwisim，Agurgen．Dhaks
Year 2005 Mondy lime

\％	：								\％	\％	50	5	¢	年								
81	E	5	3	\％	盛	$\stackrel{\sim}{2}$	83	z	E	0	줒	${ }^{\text {c }}$	［8］	＊	突	2	年					
或	5	：	S	＇2	in	H	\＃	है	8	5	$\overline{5}$	8	구	$\bar{\sigma}$	A	N	：	，				
त－A	$\bar{\square}$	c	딜	－	2	2	c	\％	$=$	क	\％	$\stackrel{7}{7}$	$\overline{5}$	\％	，		\％					
3	\＆	2	P1	\％	$\stackrel{8}{8}$	i	O	\％	N	쿨	5	\cdots	F－	\％－		：						
勾	\cdots	\％	क	2	5	s	2 ${ }^{2}$	－	N	－	枵	ra	\％	\％	2		2					
寺	\cdots	${ }^{\text {ra }}$	二	： 2	$\stackrel{7}{ }$	F－	F F	2	N	8	\％	5	\cdots	줒		x	a					
${ }^{\text {min }}$	E		\％	\pm	$\stackrel{\square}{x}$		玄	i－	\％	F－	§	5	c	5			空					
N	\％		${ }_{4}$	N		3	稑	$\stackrel{\sim}{\circ}$	2	3	留	玉	∞	\vec{z}		－	5	\％				
$\vec{\sim}$	I	찿	출	$\stackrel{-}{ }$	N	＊	\％	\％	2	5	ㄹ	re	$\stackrel{1}{2}$	\pm		（ ${ }^{2}$	\％	－				M
可	\％	$\overline{7}$	\cdots	F	7	：	\％	N	5	$\stackrel{4}{*}$	F	\cdots	\cdots	F		，		$=$			5	
9	$\stackrel{1}{2}$	F－	5	F	$\overrightarrow{4}$	\％	$\therefore \mathrm{F}$	9	5	r	f－	$\stackrel{1}{-}$	＋	F			r^{7}	r＝				
을	$\stackrel{N}{\sim}$	5	\cdots	\％		8	5	\％	줏	F	$\underset{y}{6}$	－	$\stackrel{2}{2}$	5			\％	r_{2}				
$\stackrel{-}{2}$	$\stackrel{C}{8}$	ㅍ	팓	π	2		F	S	5	$\bar{\sim}$	F	F	7	\bar{x}			c	조				
\simeq	cos	\％	\％	조	7	¢	85	$\bar{\square}$	E	8	8	\％	E	돈			\％	\＃	\times	2	π	
\because	N	5	最	＊	＊	$\stackrel{\sim}{c}$	$\stackrel{\rightharpoonup}{\mathrm{F}}$－	잔	F\％	자N	\cdots	\％	＊	∞		？	간	5			5	
\pm		$\stackrel{1}{2}$	考	＝	F－	$\stackrel{\square}{\bar{\prime}}$	9	E	$\stackrel{\sim}{3}$	$\stackrel{ }{2}$	좆	즞	$\stackrel{-}{-}$	5		5	8	－	－	－	E	
$\stackrel{\sim}{2}$	玉	5	\bar{x}	F－	$\overline{\bar{x}}$	－	\％	$\stackrel{1}{1}$	${ }_{4}$	$\stackrel{\sim}{5}$	F	포	\bar{x}	x	＝	，	Fif	－		石	玄	Γ_{1}
s	$\stackrel{5}{x}$	F	F－	＋	F－	${ }_{3}$	r	E	克	S	\pm	6	＝	A	\％	\％	t	$\stackrel{0}{*}$		，	［	d
\ddagger	\bigcirc	x	\pm	$\overline{\bar{x}}$	\cdots	5	E	을	ज	\checkmark	3	F－	－	\cdots		1	F	초	x		\sim	$\stackrel{\sim}{1}$
응	3	t	$\stackrel{\text { c }}{ }$	F_{5}	5	5	5	5	会	tis	㧒	2	5	5	；	\％	\＄	\％	$\stackrel{\square}{5}$	x	쟁	5
0	5	宸	¢－	$\stackrel{\text { r }}{\text { r－}}$	令 5	$3{ }^{*}$	7	\pm	5	5	2	¢	3	\cdots	i：	i，	［2	$\stackrel{-}{2}$		x	n	$\underset{\sim}{\sim}$
∞	三	\％	${ }^{\text {r }}$	＋	：${ }^{\text {a }}$	2	\％	3	5	F	可	［－	E	3		，	\cdots	2		2	－	合
m	$\stackrel{5}{5}$	C	돋	Fir	$\bar{\square}$ 장	종	\％	回	年	河	吕	x	t	\square	3	I	$\bar{\square}$	\cdots	三	E	E	$\%$
$\stackrel{\square}{7}$	5	\％	Fi	F	5	¢	5	$\bar{\square}$	5	．${ }^{\text {c }}$	in	二	S	\cdots	r	F	\hat{F}	\bar{x}	＊	\％	ז－	8
＂	x	\％	「		\pm	G	${ }^{3}$	${ }_{0}$	ir	종	${ }^{\text {笑 }}$	항	5	－	$\stackrel{5}{5}$	2	管	S	2．	$\stackrel{\rightharpoonup}{ }$	5	2
＊	\％	氠		＊	$\stackrel{9}{5}$	in	$\stackrel{*}{*}$	\pm	6	${ }_{3}^{2}$	$\stackrel{\rightharpoonup}{\sim}$	F	\％	\％		：	2	\％	\％	家	2	8
\cdots		\pm	管	${ }_{2}$	答 5	6	n	5	\％	Hin	ξ	${ }_{5}$	0	＋	F	\bar{z}	\pm	号	\％	¢	＊	㒳
\cdots	$\stackrel{\infty}{\infty}$	$\stackrel{1}{2}$	\％	产	2t	5	3	\％	［20	$\overline{5}$	C	＇	，	\％	$\bar{\sim}$	${ }^{2}$	¢	5	2	춘	3	\％
－	\％	\bar{x}	H		E	N	\％	家	宛	5	2	\cong		F	产	${ }_{\sim}^{5}$	∞	5	단	${ }^{\text {r－}}$	¢	8
或	$\stackrel{5}{3}$	8		8		気	둘	妾	5					\％	$\stackrel{5}{3}$	－	돌	$\underline{3}$	8	¢	令	気

Hourly Relative Humidity（\％）

Year： 2005 Monlu：July

m			0				3	2		\％														
\％			\cdots		F	：	5	E	F	\cdots	N	\cdots	\％		－	－		F	天	\％	2	2		
2			Fid		g	い	C	5	3	\sim	\％		${ }^{2}$	\％	a	¢		F		－	∞	7	，	
枵			\％		F	閖	5	W	\％	4	ミ	5	笭		6	定		\pm		1	$\bar{\square}$	$\stackrel{1}{2}$	－	
F－1	，		5－8	S	\pm	$\stackrel{+}{\sim}$	F	T	［	5	－	，	i	\cdots		\％		2			3	∞	\％	
\cdots	주	－	7		O	\％	＊	t_{0}	5		3	5	5	5		：		－	5	5	\square	F		
Cl_{1}	$\stackrel{3}{2}$	\％	$\bar{\sim}$	W	\pm	인	E	5	\checkmark	－		C	들	5		二		\％			品	F		
＋	¢	年	产	\％	F－	［	E	\bigcirc	3	\pm	\％		${ }_{6}$	5	\％	，		N			5	5	E	
N	$\stackrel{\square}{\circ}$	\＃	却 싱	\％	$\stackrel{1}{4}$	\cdots	0	3	5	3	3	3	8	F		\pm		F	－		$\stackrel{\text { r }}{\sim}$	$\stackrel{5}{5}$	＝	
N		5	5	8	$\underset{\sim}{0}$	c	\％	간	1	F	\pm	$\stackrel{\sim}{5}$	$\stackrel{1}{2}$	\bar{z}	5	¢	！	8	줒	\％	$=$	\＆	5	
त	8	\％	\％	S	F	\％	F－	$\stackrel{ }{2}$	\％	5	$\stackrel{\sim}{*}$	T	3	$:$	8	－	＊	倖	츨		\equiv	\％	E	
－	\pm	\％	，遠	\Rightarrow	F－	$\stackrel{+}{*}$	\cdots	2	只	N	\％	5	\％	$\overline{\text { E }}$	家	$\stackrel{1}{8}$		\cdots	H	E	N	$\bar{\square}$	今	
3	ㅊ	$:$	［ ${ }_{\text {a }}$	\％	：	$\stackrel{-}{\text { F }}$	$\stackrel{\square}{8}$	5	5	\pm	E	장	$今$	F	${ }^{2}$	\pm	Σ	\％	5	E	8	$\stackrel{3}{ }$	H	
9	S	C	\％	\pm	2	12	－	今	¢	C	T	\because	\pm	3	r		r	\％	5	찬	：	號	$\stackrel{3}{4}$	
$\stackrel{\sim}{-}$	－	完	찿	$\stackrel{ }{\sim}$	F－	$\hat{3}$	\bigcirc	$\underline{=}$	＋	5	E	3	3	F	－	\cdots	x		\％	\％	浐	줒		
\because	${ }^{*}$	三	숮	2	\％	7	F	F	9	장	\cdots	F－	듣	F－	\cdots	＝	\％	${ }^{\text {r }}$	\％	B	8	ᄃ		
\cdots	\％	5	惹	\because	\pm	\pm	$\stackrel{3}{3}$	込	출	9	$\stackrel{\rightharpoonup}{x}$	\％	完	\％	5	5	－	a	E	$\stackrel{1}{ }$	秥	2		
\pm	$=$	¢	2	t	ct	5	\％	梁	\geqslant	F	조	프즈N	I	N	\pm	＇	a	x	－	자즐	줒	\％	3	5
m	\％	2	5	z	\pm	$\stackrel{*}{\circ}$	\＆	5	$\stackrel{\square}{5}$	5	F－	5	5	5	\because	－	\＆	$=$	0	8	5	E	＇s	¢
$\stackrel{\sim}{7}$	$\stackrel{\text { ¢ }}{ }$	5	${ }_{\sim}^{2}$	E	\％	I－	\％	N	－	\％	\therefore	2	$\overline{\bar{x}}$	号	\％	）	¢	\％	「	号	${ }_{5}$	$\stackrel{\square}{8}$	\pm	$\overline{\text { a }}$
$=$	$\stackrel{\sim}{*}$	Σ	\equiv	줓	三	\％	等	二	10	${ }^{\text {c }}$	\bar{x}	${ }^{\prime}$	號	\pm	5	\％	三	E	5	笖	N	$\stackrel{1}{ }$	＝	m
9	空	\％	5	\％	\％	玉	\％	F－	空	$\overline{\bar{s}}$	$7{ }^{2}$	F－	i^{n}	F－	촐	x	x	＇${ }^{\text {r }}$	${ }_{\infty}$	¢	c	$3{ }^{2}$	二	
9	${ }_{5}$	古	\％	2	\sim	F	C	f：	F	${ }^{1}$	찿	r $=$	\％	F	$\stackrel{\sim}{2}$	気	$\overline{\bar{x}}$	実	玉	每	\％	x	［	${ }_{5}$
∞	5	N	r＝	$\stackrel{7}{7}$	\％	6	S	\pm	\＃	\cdots	5	5	5	$\stackrel{5}{0}$	¢	1	$1 \sim$	\cdots	F－	$\stackrel{\square}{\text { F }}$	s，	\％	n	Fi_{1}
m－	3	$\overrightarrow{\mathbf{x}}$	$\overline{\text { c }}$	\％	$\stackrel{\sim}{\sim}$	3	5	5	E	E	5	\checkmark	5	寺	C	F	F－	\％	F－	장	§	$\vec{\square}$	$\stackrel{\rightharpoonup}{\sim}$	F
\checkmark	3	\cdots	\％	R	r^{2}	준	S	\％		7	T	$\stackrel{4}{5}$	2	$\stackrel{5}{5}$	in	\％	\％	P－	E	$\stackrel{+}{-}$	去	§	छ	F
＇	$\stackrel{5}{5}$	$\stackrel{ }{5}$	9	E	边	2	${ }_{\sim}^{x}$	\％		F＝	F	＝	「	\cdots	${ }^{\text {\％}}$	5	ㅊ	딜	－	（	［	\pm	\because	＋
＊	＊	8	E	$\bar{\square}$	$\overline{7}$	\％	\％	춫	8	劲	新	$\stackrel{*}{x}$	\％	5	江	「 ${ }^{\text {r }}$	\％	告	$\stackrel{1}{2}$	宗	3	\％	5	\％
\cdots	\％	S	8	$\stackrel{\sim}{2}$	$\stackrel{1}{\sim}$	잦	号	客	院	8	安	$\underset{\sim}{2}$	자ㅈㅏㅜ	2	$\bar{\square}$	$\stackrel{\square}{5}$	：	$\stackrel{\text { H }}{\text { ¢ }}$	\mathfrak{N}	$\stackrel{7}{7}$	$\stackrel{ }{-}$	8	こ	二
N	5	囦	弾	\％	축	\％	${ }_{5}{ }^{2}$	${ }^{-1}$	部	筀	3	$\overline{2}$	湥	$\stackrel{3}{\circ}$	$\stackrel{ }{2}$	8	こ	5	5	5	5	2	＇s）	F
－	잉	2	\％	管	5	E	思	E	5	\％	7	寺	$\stackrel{8}{2}$	존	N	关	d	2	5	\％	\％	8	5	－
Э		S	気	㲾	令		8	浸	$\stackrel{\text { ¢ }}{ }$	줄	蔁	新	$\frac{3}{2}$	$\stackrel{8}{8}$	$\stackrel{5}{7}$	동	$\underset{=}{E}$	클	8	$\underset{\substack{c \\ \hline \\ \hline}}{ }$	室	涍		

Hourly Relative Humidity（\％）

Yeas 20015 Monds：2ugust

Day	1	2	3	4	5	U	7	8	9	114	11	12	13	14	15	16	17	18	11）	20	21	22	23	24	25	26	27	28	29	． 30	31
Tinue																															
0×0	B7	87	84	＊1．	911	92	HK	122	12	浐	上5	06	05		犋	93	1）	り5	23	模	122	94	外	973	91	的	92	92	9	92	92
101	43	Mis	84	阶	47	91	k7	$\mathrm{R}_{\mathrm{c}}^{4}$	リ4	45	35	明	21	94	絈	92	NG	$9+$	4	${ }_{4}$	21	リ3	8 k	91	H5	90	R7	納	83	87	R？
20 M	7 R	86	（4）	旺。	83	ki^{1} ）	47	H3	95	頻	95	9	48	9	R3	91	\％ 4	94	45	－	919	93	陈	RM）	H8	Kis	R1	84	\％	R2	h3
500	74	85	71	R．	\＄	M	碞	79	แ	95	05	87	H4	9 t	K1	121.	75	03	${ }_{1} 1$	76	${ }_{6}$	52	${ }_{3}{ }_{4}$	K7	46	83	7 m	级	00	77	7 H
4	（1）	78	73	His	77	85	n 1	35	97	93	91	34	\％ 2	\％${ }_{6}$	71	N2	72	91	42．	73	H_{4}	87	82	R5	85	79	35	75	68	74	RO
51 ln	65	$7(1$	S_{1}	3，	73	81	37	（0）	6	92	87	\＄2	79	KS	34	7.4	71	B ${ }_{\text {H }}$	${ }^{1}$	71	3	8	R1	R 4	8， 4	74	74	71	6 B	74	82
616	60	63	67	$7{ }^{7}$	711	78	72	y	犗	91	K．	73	37	H 2	$7{ }_{7}$	6it	67	KG	43	（i，${ }_{\text {c }}$	75	77	7	${ }^{4} 2$	83	7 J	3.7	64）	67	67	R4
7.06	5\％	62	［i］	73	72	77	311	\％	（9）	53	74	74	75	3 H	is	73	67	Ki_{1}	81	7%	77	H_{2}	77	沙	83	6 H	58	6.4	67	Gu	82
$\mathrm{H}_{5}(\mathrm{X})$	57	67	tir	71.	73	77	6）	91	H 2	$\mathrm{Hi4}$	7.4	72	73	75	75	4	6,7	Kl_{1}	7 K	［ 41	79	k7	75	75	${ }^{\text {盐 }}$	$\mathrm{f}_{6} 7$	N2	63	6.7	6.4	39
9） 0^{0}	55	（1）	6i	61）	75	76	67	197	75	41	（t）	1,9	71	71	74	$k 7$	63	78	76	リ2	R1	22	71	72	79	1,5	87	$6[$	67	63	77
10（b）	58.	0.5	6 R	73	［4）	77	＋1	124	73	4］	71	75	71	7.3	73	H_{3}	［ition	76	76	水	8.8	$\mathrm{KH}{ }^{\text {\％}}$	36	75	＊	71	85	64	6	66	76
11.00	61	GS	6 R	只5．	88	719	75	リ2	7）	＊2	77	\％ 21	72	$7+$	72	Kll	隹	73	75	87	R R_{6}	H＋	78	79	R2	36	82	67	70	（1）	76
12.000	64	12	（1）	93	物	刮	79	$8{ }^{4}$	81	स2	74	Mf_{1}	37	76	71	36	69	71	7.2	85	K＇）	H	81	32	R_{3}	${ }^{1} 2$	W	－70	72	72	75
13.14	们	72	71	92.	刮	22	83	c）	85	Hif	$31)$	Rif	75	74	31	77	11	74	76	$8{ }^{\text {dfi }}$	Dir	4.7	84	R7	H．${ }^{\text {a }}$	$\underline{4}$	B2	74	75	75	， 1
14－00	71	7.3	73	91	Hi）	85	H	9	R8．	911	X 4	K7	7 C	R1	37	77	74	73	76	R ${ }_{\text {R }}$	i）	为	㬉	91	83	87	H． 4	78	77	79	B4
15100	71	7.7	75	fiv．	H9）	87	＇＊1．	91	92	14	S	4， 7	81	H_{3}	911）	7 T	$7 \mathrm{~F}_{1}$	Rin	77	阿	92	89	40）	吅	H3，	89	R ${ }_{4}$	H2	8 g	82	k ${ }^{\text {d }}$
16.1×1	75	74	711	Ki）	（4）	k7	01	92	02	94	\％	49	${ }_{3} 3$	H_{4}	81	${ }_{4} 1$	79	H2	719	$\mathrm{H}^{\prime \prime}$	11	on	榢	？	35	（3）	k7	的	43	84	HH
17 Ol	77	75	R3	H	91	KK	91	Q2	92	15	41	（91）	＊S	HCH_{1}	82	83	R C	Y5	8 t	D19	89	\％	91	25	¢	（ $\times 1$	RM	45	86	87	H2，
LSint	74．	76	K＇	895	92	HiS_{4}	122	93	灶	リ5	923	92	R 7	47	H3	R5	炜	－ H_{7}	$\mathrm{R3}$	219	縑	91	21	15	00	M	$\mathrm{H}^{\prime}{ }^{\prime}$	88	89	陣）	R7
［1）${ }_{\text {ch }}$	81	R＇	48	\＄9	23		リ1	43	壮	95	97	． 92	K）	87	HF_{6}	K7	¢4	${ }^{87}$	H．	10	R9	91	21	4.7	91	21	45	留	（0）	H7	98
	K2 2	¢7	［14．	吅	り3	［40	91	92	53	95	94	93		ד	x_{1}	K\％	${ }_{4}$	8 R	$\mathrm{K}_{1} 1$	J！	少	911	21	92	92？	21	919	29	F 5	枵	90
$21-1 \times 1$	8.4	20	（9）	Kh	明 4	48	¢ ${ }^{\text {c }}$	92	93	25	15	93	［4	Ki	23	，2110	H_{2}	HR_{H}	87	¢1	22	ㅂㅣㅏ	［12	－ \mathbf{K}_{1}	93	42	9	9	R2	90	72
22.1×1	54	（il）	59	5リ	（ 1.3	59	（al	61	6.2	41	（i）	［1］	is	5 K	121	fill	53	51	58	（ k ）	4.1	（	（1）	硕	6	S， 1	（0）	61	50	（1）	61
230\％	2 d	30	¢	29	31	$2)$	आ	31	31	32	12	11	29	2）	31	30	$\underline{27}$	21	29	＊）	31	3.3	31	． 3	31	31	30	30	31	30	31

Hourly Relative Humidity（\％）

Year． 2005 Mombl september																														
Dar	1	2	3	4	5	6	7	8	9	10	11	17	13	14	15	16	17	28	15	20	21	22	33	24	25	26	27	28	21）	30
Time																														
OWh	97	95	9f1	20	93	97	122	98	97	94	2%	${ }^{1} 3$	8.3	\％	45	79	K_{3}	77	H7	\％	25	93	． 25	$9:$	5	$\%_{1}$	97	45	2¢	A8
1－（k）	，${ }^{1}$	R9	Ru	4	KR	R 7	8 ra	92	93	2）	＊ 4	77	（2）	R 5	88	7 K	限	74	R4，	14.	\％	E7	91	姩	93	，	91	42	92	85
？ 2 （k）	R3	R3．	A． 5	79	R．4．	38	\＄11	W7	RH．	H7	85.	72	7 F	7）	84）	7 k	7 H	Cis	71	リ1	\％ 5	R1	67	外	K1）	R4	H＋	78	89	B3
301	36	37	79	73	－${ }^{\text {il }}$	6	74	－ HL	K_{4}	， 3	${ }_{4}$	fit	75	34	73	77	75	C	只	49）	8＊ 1	75	3.3	水	R斤	78.	77	75	85	［m
4．（M）	37	71	75	7	k3	${ }^{1} 5$	42	77	K］	77	$7{ }^{7}$	估	（6）	511	（6）	－72	72	$\underline{62}$	6.4	49	76	74	81	93	R？	76	34	71	枵	7
5． ¢ $_{\text {H }}$	77	c_{1}	74	俔	s7	62	M_{1}	34.	79	71	74	62	（i）	66	65	fí	（6）	¢， 1	6	\％	7.	71	79	k）	\％	73	72	$6{ }_{6}$	Rk	71
（fill	7 k	63	U，	Gí	41	$5 y$	144	311	76	－6．4	71	住	57	$\underline{6}$	f．1	${ }_{6} 1$	66	5）	${ }_{6} 1$	9	（i）	（i）	7	R 4	75	71	69	64	BP	$\mathrm{fi}_{7} 7$
7 lm	R2	69	6	cis	91.	57	94	${ }_{6} 1$	7.3	1.3	67	6	118	62	C．1）	（i）	65	5\％	6.3	92	6.8	76	78	Br－	78	6 k	69	70	kS	77
$8.0)$	R＇5	3	¢19	71	91	54	1／N	4.65	$0{ }^{0}$	6.	（1）	f，ut	12	63	5！	59	64	Sti	1.5	$1{ }^{1}$	$6{ }_{6}$	83	7 R	R4	$4]$	6ris	62	7	$k 1$	86
9 9（3）	49	74	12	73	9 t	53	98	62	$6 \square_{1}$	［i2．	（1）	（11）	6.5	6．3．	58	58	6.3	55	67	名	1.5	9）	79	K_{4}	84	6.3	69	B_{3}	77	56
10：00	8	35	6i4	74	\％	54	${ }^{58}$	$6{ }_{6}$	67	6.4	6,2	15	75	64	6.2	61	6	59	67	26	68	49	B_{4}	hS	Hf_{6}	68	77	R5	74	96
11 （x）	${ }_{2} 2$	$7{ }^{7}$	（ 6_{6}	74	－	16	97	A 11	［i8）	67	64	（1）	R5	74	6.5	63	fin	6.2	67	15	72	87	911	85	88	74	R5	R	\％	97
1201	71	77	6 R	75	47	7.3	97	74	（1）	69	85	74	25	79	（1）	fit	71	（ris	67	95	75	的	95	Hf_{1}	0	79	93	\％88	79	97
（3）（4）	43	79	72	37	m9	75.	9	77.	73	77	71	75	111	处．	72	CaH^{2}	74	（6）	71	\％	77	R3	リ5	49	x	H_{3}	27.	48	81	97
1＋10）	8 k	． 1	75	\％	（）	76	$\%$	79	7 H	85	75	75	47	kt	74	G）	76	7，${ }^{3}$	74	\％	Pal	к）	リ4	91	K1	4	2） 3.	＊ 9	${ }_{3} 3$	2
15，14，	92	$\mathrm{H}_{3} 3$	79	k 2	92	78	45	R2	K11	21	＊111．	76	${ }^{3}$	k 2	77	71	79	\％	78	97	H_{3}	91	54	94.	Rip	42	93	89	${ }^{2} 5$	リf
16．（0）	听	45	B1．	K2．	13.	${ }_{31}$	95	K？	H2	12	${ }_{8}$	78.	84	Hfi_{1}	（1）	74	71	37	时．	2	${ }^{14}$	91	94	95	${ }^{2}$	y_{2}	0.3	81	${ }^{\text {en }}$	72
17．（\％）	91	kR	64	8,3	94	84，	\％	$1{ }^{1} 1$	37	42	${ }_{4}$	79	H_{1}	k＇）	83	7	74	38	91	2	${ }^{4} 5$	9	94	リ	1.1	93	42	Bk	$6{ }_{6}$	46
［3，46）	93	2， 1	Hí	83	95	k7	\square_{6}	126	85	93	92	81	$k 7$	43	拓	Pa1．	79	79	97	訾	$8{ }^{4}$	91	24	リ 3	22	93	92	kin	89	96
1910）	$9+$		4	\＄8	95	8i4	$1{ }_{1}$	96	87	94	22	12	к）	9．3	RT	R17	$7{ }^{7}$	81	97	45	桇	91	$1{ }_{4}$	17	． 92	24	92	R9	5i）	96
200	9， 4	89	87	R5	95.	x）	95	97	kis	194	92	12	归	93	R）	41	H1．）	k2	－ 91	14	${ }_{\text {Hik }}$	9	0.3	96	93	94	22	13	910	\％ 6
2 t	05	89	k_{7}	BH_{5}	05	T0．	95	27	）	15	22	83	92	93.	12	$\cdots 1$	（1）	R．t	\％	牰	R＇）	91	明	96	94	195	22	92	919	$\%$
22：14．18	13	51）．	5i	57	6	（ $\times 1$	63	4_{1}	fil	(3)	41	5	61	1.2	(11)	54.	51	50	f_{1}	63	51	［1．	${ }_{6} 1$	6	6，3	$6{ }^{6}$	4	61	60	6,4
$\underline{23.109}$	32	30	29	29	32	3	32	32	30	32	31	23	31	31	3	27	27	28	32	31	30	30	31	32	31	32	31	31	30	32

－	$\stackrel{\rightharpoonup}{x}$	F－	N	\％		\％	\pm		\％	\％	7	＋					H	3						
8	＊	F－	\％－	둘	5	以	二	7	¢	F	5		3	31	F	8	2	－	\pm	i	）		cis	
A	\vdots	\％	L	\pm	\pm	4	3	会	会	n	S	S	${ }_{2}$	－		2		5		g	\％	${ }_{\sim}^{4}$	\％	
＊	$\stackrel{4}{4}$	\bar{x}	言	2	F－	r	r^{-1}	r－	${ }^{*}$	F	：	F	天	天	\％	\％	5	\％	S	S	8		5	5
大－	단	2	\cdots	\％	©	S	E	5	－	\％	in	3	\％	r	＋			\pm	$\stackrel{ }{2}$	T	\bar{z}	2	－	
\％	5	\％	宔	\sim	\therefore	\bigcirc	S	E	5	8	5	5.3	5	，		，		－	난	c	\％	\％		
4	\％	年	${ }^{2}$	\％	\cdots	F	3	$=$	N	${ }^{3}$	\because	5		\％		x		的	\pm	\pm		5	＝	E
H	\％	8	\％	$\stackrel{1}{ }$	\cdots	포	F	x	22	F	\pm	\％	क	E				5	\cdots	8	5	5	$\stackrel{ }{ }$	N
N	$\underset{\sim}{3}$	「－	$\stackrel{\mathrm{r}}{5}$	5	边	今	S	\％	$\overline{5}$	$\stackrel{\square}{2}$	\cdots	\＆	\％	3		5		S	5		${ }^{2}$	\％	4	m
（1）	＊	$\stackrel{\square}{\square}$	\％	：	\cdots	$\bar{\pi}$	${ }_{2}$	2	妾	5	¢	I	\pm	\pm	2	\％			\％	$\stackrel{\square}{3}$	5	5	3	
तो	8	5	5	${ }^{2}$	\％	T	$\bar{\square}$	E	2	5	5	S	\sim	\＆	5	$\stackrel{ }{2}$	\％	\pm	5	3	\pm	\pm	3	
号	$\stackrel{\square}{2}$	\pm	3	2	\＆	3	3	5	5	if	\cdots	5	\％	4	5	\％	\pm		2	®	8	Σ	3	
3	「	$\stackrel{\text {＇}}{ }$	$\stackrel{\rightharpoonup}{*}$	N	莌	－		F＇	F	F	\pm	\％	F－	5	9					\geqslant	S	5		
$\stackrel{+}{7}$	\＆：	\pm	8	$\overline{3}$	5	F_{F}	\cdots	\％	2	5	新	三	E	$\overline{5}$	\％	或	\％		2	三	＊	2		
$\stackrel{5}{-}$	云	$\stackrel{\square}{*}$	\pm	\bar{z}	\geqslant	$\stackrel{1}{2}$	「	F－	${ }^{2}$	¢	3	\bigcirc	Σ	¢	$こ$	Σ	\bigcirc	5	家	今	［－	5		
\bigcirc	졷	7	F	in	은	3	5	3	\cdots	5	d	㒭	3	矿	है	5	8	5	2	E	\pm	5	5	
\bigcirc	\％	F	\％	，	W	5	$\bar{\square}$	－	7	号	＇ 7	ir	E	츨	r	＝	¢	㐋	＋	춪	三	\％	E	
\pm	\cong	찿	1	\bigcirc	5	Fr．	7	甬	交	ज	in	in	\％	5	$\stackrel{\square}{4}$	$\stackrel{\sim}{-}$	\cdots	r－	，	c	\％	c_{\times}	交	产
\cdots	就	$\stackrel{1}{2}$	F	c	こ	준	耏	缶	没	～	云	5	5	f－	$\stackrel{ }{2}$	$\bar{\square}$	\％	\pm	\％	\％	잔	\％	3	－
\bigcirc	実	妴	\sim	$\stackrel{\sim}{7}$	$\stackrel{7}{7}$	$今$	\because	Ξ	C1	$\overline{5}$	5	5	3	N	$\mathrm{r}^{\text {² }}$	\％	$\underset{\sim}{x}$	\％	－	N	＊	3	융	\％1
\Rightarrow	2	令	F－	E	\pm	ㄹ	¢	S	$\stackrel{*}{1}$	5	ミ	\cdots	F1－1	${ }^{2}$	T－	ra	豆	소		\because	\％	5	5	${ }_{1}$
2	ᄃ－	5	$r=$	3	5	5	is	ำ	\％	2	［ir	C	G	F	7	\％	$\stackrel{ }{*}$	弪	$\overline{\text { 仡 }}$	$=$	$\stackrel{+}{\square}$	5	N	＝
－	に	\bar{y}	圭	안	E	\％	산	in	5	二	［－1	\pm	\cdots	\pm	$\stackrel{\rightharpoonup}{2}$	$\stackrel{1}{8}$	准	\％	告	8	$\underset{\sim}{8}$	2	¢	$=$
$\%$	＇	空	\＃	F	$\stackrel{1}{2}$	F	F	F－	部	$\stackrel{1}{1}$	$\stackrel{1}{2}$	2	$=$	＇n	完	学	d	H	\％	$\underset{\sim}{\sim}$	出	\because	G	F1
5	$\stackrel{8}{8}$	출	20	S	セ	\％	品	5	\pm	5	令	F	F！	1	T	${ }^{\text {r－}}$	\％	5	5	5	\pm	\sim	\％	c_{4}
\bigcirc	Ξ	E	\％		$\stackrel{\text { i }}{ }$	F－7	5	5	动	＊	E	산	＋	F	\cdots	$\stackrel{\square}{6}$	궂	5	S	\pm	三	3	$\stackrel{1}{4}$	F
n	$\stackrel{2}{2}$	란	5	$\mathrm{F}=$	2	䒬	${ }_{\sim}^{2}$	$\stackrel{ }{2}$	F	$\stackrel{\sim}{6}$	$\stackrel{\square}{1}$	\％	\pm	$\vec{\infty}$		$\bar{\square}$	\％	\％	先	5	5	$\stackrel{\text { 2 }}{ }$	\％	F
＋	Cr	\＆	\％	5	\％	$\overline{\text { x }}$	产	F－	＋	\％	7	\cdots	$\stackrel{\square}{2}$	\％	か	∞	\％	江	？	5	二	$\bar{\square}$	Ξ	F
	E	5－1	寺	출	7	$\bar{\square}$	$\stackrel{\rightharpoonup}{\infty}$	도드N	x	\bar{x}	$\vec{\square}$	［	픋	7	号	宝	\％	尔	\％	2	$\stackrel{\sim}{8}$	\％	\％	－
N	家	ch	n	8	8	产	x	$\stackrel{3}{2}$	部	x	3	줒	꿀	50	3	\bar{x}	주주N	5	E	$=$	Σ	2	E	F
－	2	K	家	8	8	5	$\stackrel{\square}{8}$	\％	t	$\stackrel{\square}{*}$	$\stackrel{\sim}{8}$	${ }^{2}$	8	5	門	3	\％	E	5	\％	8	\＆	5	8
5	\％	新	容	3		5	\％	$\stackrel{y}{c}$	$\stackrel{\text { 空 }}{ }$	缶			$\stackrel{8}{8}$	令	$\stackrel{8}{7}$	言	魚			$\left\lvert\, \begin{array}{l\|l\|} \hline \text { 宅 } \end{array}\right.$		嫘部	$\left\lvert\, \frac{k}{4}\right.$	है入

P	$\stackrel{\square}{*}$						\cdots									2			\％				2		
n	＊	\sim	ra^{-2}	E	江	\％	号	7	7	S	5		7	䎁	家	\because	F	：	F	F	10	2	N	in	
（	$\stackrel{\sim}{2}$	\％		F			\％in	－		7		－	5	F	F	3	응	\cdots	Fi	ㄷ－	F	F－	－	去	
Fir	\％	c	$\stackrel{\square}{5}$	8			2 5	：	1	F	；	f	2	r－	F		而	～	$\bar{\sim}$	\％	\％	∞	5	Fs	8
完		N	5	\％	\％		F	조	5	，	¢	r	\cdots	5	3	\％	5	N		5	＝	5.	＊	\pm	\％
N	\％	$\overrightarrow{5}$	F	天				¢	5	${ }^{4}$	\％	F	F	조	尔	3	\pm	\pm	\％	\pm	S	5	\pm	5	$=$
A	5	\％	\％	＊			－	5	5		动	F	－	\cdots	5		\％	긴	敋	\＃	产，	\％	去	C	－
N^{3}	$\stackrel{\square}{2}$	조즈․	\cdots	\cdots	T		\％	\％	－	9	，				$\stackrel{\rightharpoonup}{\infty}$		\approx	s	$\stackrel{5}{2}$	9	数	G	边	3	\％
N	E	\％	\cdots	\pm	5		\％	碞	in	F	i				－		cor	x	等	3	E	\pm	～	ङ	N
$\vec{\sim}$	\cong	S	\＃	$\stackrel{\sim}{\sim}$		4	$\underbrace{}_{0}$	5	F	，	3	5	－		＊		天	0	冎	空	5		2	\＃	to
$\overline{7}$	8	三	127	7	3	㑆	\％	等	爫	等	\sim	5			둘		8	\bar{x}	${ }^{x}$	\pm		5	8	亏	\cdots
$\stackrel{\square}{\square}$	\％	4	＋	$\stackrel{5}{5}$	5	\square	，	${ }_{7}$	\％	7	in	\leqslant	r－		\bigcirc				N	r	r－	$\stackrel{-}{-}$	\％	\％	N
\pm		$\bar{\square}$	r	F－	E	if	－	年	ir	in	7	ज	5							자ㅈㅏㅜ	주		＊	云	A
\cdots	Σ	\％	－	5	5	－	$\stackrel{\square}{7}$	寺	墄	7	ज	5	－	\％			\cdots	x	2	5	空		\％	F	\％
\checkmark	$\stackrel{\sim}{\circ}$	\％	f：	5	x_{5}	ir	in	in	9	F	4	亏	5	1	N	$\stackrel{*}{*}$	8	x	줏	3	号			$=$	n－
－	$\stackrel{3}{*}$	范	5	\％	\＆	3	5if	n	$\stackrel{\square}{5}$	\＄	$=$	E	$\stackrel{ }{2}$	7	－		：		조	妾	5	5	S	5	mi
\pm	\％	管	F－	${ }^{\text {n }}$	H	＋	$\stackrel{\sim}{4}$	P	等	7	Σ	H	F	［2	$\overline{\text { \％}}$	\＃	\％	5		$\bar{\square}$			\sim	$\underline{8}$	F
7	8	\％	\％	3	in	F	2	5	\％	F	${ }_{+}^{+}$	～	2	$\stackrel{3}{5}$	唇	\bar{x}	\％	「		5	57			5	\cdots
\cdots	\cdots	$\stackrel{1}{1}$	\pm	준	w	${ }_{7}$	＋	筞	7	7	7	安	r	\％	：	A	3	F		F	\％	N	$\stackrel{\square}{2}$	31	N
－	E	\bar{x}	m	Ξ	in	尔	子	7	$\stackrel{\text { ¢ }}{+}$	7	\％	－	H	is	5	\pm	！	9		\cdots	F	\cdots	枯	\％	${ }_{4}$
F	\triangle	\cong	\because	学	\％	F－	E	5	$\stackrel{9}{ }$	5	졸	2	\％	N	\approx	\approx	x	齐		줏	家 3	35	a	¢	3
\rightarrow	초줄	安	2	$\overline{\bar{x}}$	H2	른	\pm	$\stackrel{3}{3}$	¢	5	6	P	\cdots	2	\％	\％	5			갗		＝	＊		\cdots
∞	\％	＋	F－	F	F	N	F	3	突	צ	\bar{z}	\cdots	1	\％	5	\equiv	\％			江	\bar{z}	${ }^{\text {cor }}$	㦴	为	s_{4}
－	\％	${ }^{\text {r }}$	\％	：	士	H	尔	$\stackrel{5}{7}$	7	5	\cdots	in	$\stackrel{\square}{5}$	\％	\cdots	$\underline{7}$	\％	\＃	5	－	\％	¢	採	죽	N
\checkmark	폰	W	\cdots	\％	E	E	紬	5if	$\overline{\text { B }}$	T	－	识	3	管	E	${ }^{[}$	간	s	，	3	5 5	：	5	0	\cdots
n	完	F	\cdots	E	\％	二	9	7	$\stackrel{\sim}{\sim}$	\％	暏	＋	¢	8	n	二	E	和	F_{2}	C_{2}	\pm	家	勆	S	
－	∞	F．	$\stackrel{1}{*}$	F	出	5	寺	in	－${ }^{\text {r }}$	可	is	in	础	E	판	5	F	d	$\stackrel{\sim}{n}$	F＝	7	2	5		
m	\％	\vec{s}	\％	F	3	午	$=$	9	守	ก	耑	\％	F	\cdots	\％	\＃	－	F		\％	$\stackrel{7}{\text { \％}}$	5	5	，	5
N	5	客	\％	5	단	3	可	午	15	\％	枵	郎	\％	5	6	$=$	F	${ }^{2}$		2	7	둗	完		Σ
－	5	$\stackrel{1}{2}$	※	$\vec{\sim}$	in	7	\bigcirc	4	字	$\stackrel{\sim}{r}$	通	5	$\stackrel{1}{1}$	$\stackrel{1}{2}$	5	F2－	\bar{x}	c			菏		5		
0	$\stackrel{\text { ¢ }}{6}$	줄	亲	竞	$\stackrel{*}{7}$	家	3	$\stackrel{F}{2}$	8	$\stackrel{\bar{z}}{8}$	8	$\stackrel{8}{\square}$	${ }_{\sim}^{\text {c }}$		푹		－	首		\％	5	－		\％	$\stackrel{\text { ® }}{\hat{N}}$

Hourly Relative Humidity（\％）

Yeat 20x）M Menth；December

\bar{m}	高	$\stackrel{\sim}{\sim}$	C	它	\％	\％	\％	3	1	－	定	通	\cdots	盛	¢	C_{6}	5	\％	m	$\stackrel{\rightharpoonup}{c}$	\％	5	\％
$\%$	4	河	＋	3	： 7	5	0	N	$\stackrel{\sim}{\sim}$	\％	4	F	C）	17	g	v	넌	5	$\stackrel{\sim}{\square}$	\cdots	8	if	8
8	咬	C_{2}	$\stackrel{\rightharpoonup}{3}$	滴	＋	示	寺，	m	18	4	䫆	空	T	\sim	\approx	∞	安	\＆	E	三	0	3	\cdots
吹	$\bar{\pi}$	\cdots	N	访	䆑 ${ }^{\text {守 }}$	－	\cdots	T	寺	\cdots	\cdots	\bigcirc	6	훈	9	cis	吕	－	P	\pm	5	4	N
$\stackrel{\sim}{\sim}$	2	x	$\stackrel{+}{2}$	寺	亏 in	洨	5	7	\％	午	\％	溒	通．	n	5	E	\％	5	$\hat{\sim}$	圭	${ }^{2}$	8	\cdots
\wedge	\sim	F	\pm	F	5	部	IT	宁	守	$今$	去	爷	永	［	6	5	\％	\％	s	\cdots	$\stackrel{\sim}{\sim}$	5	c
d	\％	行	F	\％	E．	L	ni	年	¢	等	n	\％	\cdots	老	प	$F=$	N	F	\pm	F－	$\overline{\bar{x}}$	\％	5
$\underline{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{2}$	突	突	＊	ir，	5	\％	寺	二	\％	${ }_{\sim}^{4}$	ir	\cdots	궂	\cdots	$\stackrel{\sim}{2}$	\approx	F－	초	¢	4	$\stackrel{r}{ }$
${ }^{3}$	\approx	－	it	N^{2}	\cdots	\cdots	洼	O	7	\cdots	m	\％	恐	$\stackrel{\sim}{\sim}$	\cdots	\bar{x}	笑	芠	E	S	云	$\stackrel{\rightharpoonup}{*}$	5
§	产	5	国	凩	\hat{F}	5	U	守	3	5	令	＋1	－	F	F	$\bar{\square}$	\pm	$\stackrel{*}{1}$	「	室	E	E	5
\cdots	\approx	N	$\stackrel{N}{2}$	3	示	\mp	〒	7	学	7	7	$\stackrel{\sim}{\sim}$	9	E	$\stackrel{+}{\square}$	\％	年	豆，	穴	2	$\stackrel{5}{x}$	in	去
层	3	处	T	3	合 宍	4	7	\％	\cdots	尔	5	5	F－	$\stackrel{\sim}{2}$	筞	\＄	$\stackrel{\sim}{*}$	0	$\underset{\sim}{2}$	3	$\overline{\text { F }}$	3	\cdots
9	$\stackrel{\sim}{0}$	\％	5	品	： 7	$\stackrel{\square}{-}$	5	：	\pm	ที่	管	F	안	F	N	去	N	\cdots	23	尓	\％	\cdots	\cdots
	$\stackrel{r}{\sim}$	笎	춘	5	r ${ }^{\text {c }}$	8	E．	n	\％	In	瓦	N	$\stackrel{4}{5}$	3	F－	5	3	家	5	「	$\stackrel{\rightharpoonup}{\sim}$	${ }_{5}^{5-}$	$\stackrel{\sim}{*}$
$\stackrel{\square}{2}$	곡	$\stackrel{\sim}{*}$	\because	$\stackrel{7}{*}$	$\overline{\text { c }}$ 灾	积	它	这	5	S	$\underset{\sim}{3}$	\％	$\stackrel{+}{5}$	－	F	$\stackrel{\sim}{\sim}$	F－	$\stackrel{F}{*}$	$\stackrel{\rightharpoonup}{\sim}$	I	可	5	${ }_{5}$
\pm	\approx	\＃	F－	\bigcirc	3－	국	7	［	す	\％	的	m	$\stackrel{5}{5}$	F－	$\stackrel{\sim}{\sim}$	天	号	等	家	E	ご，	¢	$=$
会	S	$\stackrel{1}{2}$	$\stackrel{\sim}{\sim}$	\cdots	cin	¢	$\stackrel{+}{7}$	¢	子	\％	N	F	$\stackrel{\square}{5}$	$\stackrel{\sim}{5}$	5	즌	灾	交	「－	웡	$\stackrel{\sim}{2}$	$\stackrel{1}{2}$	$=$
\pm	F	$\overline{5}$	$\overline{5}$	5n 5	为	\％	\bigcirc	年	$\stackrel{\sim}{\sim}$	7	준	可	？	恕	至	$\stackrel{\square}{\text { F }}$	研	～	\cdots	至	3	3	；
9	$\stackrel{\square}{\square}$	\pm	P	\sim	8	0	$=$	式	Fi，	午	等	N	＋	in	${ }_{5}$	E	d	E	3	\bar{F}	\cdots	\cdots	$\overline{7}$
$\stackrel{1}{2}$	交	－	$\stackrel{4}{\square}$	존	E＊	～	F	자자N	0	嫁	${ }_{9}$	5	is	5	［2	3	$\stackrel{\rightharpoonup}{2}$	N	走	気	交	法	伥
－	～A	管	Nㅣㄷ	등		$\stackrel{4}{4}$	\pm	筞	$\stackrel{\sim}{2}$	＋	～	上	\bar{F}	\％	\＃	耑	\％	$\stackrel{\square}{4}$	空	S	二	$\overline{5}$	\cdots
ㄷ	$\stackrel{8}{8}$		3	永 8	＋ 7	\％	水	$\stackrel{\sim}{\sim}$	\sim	F	잔	s	\pm	$\underset{\sim}{2}$	∞	I	\pm	\sim	2	年	$\stackrel{\square}{\square}$	\％	ลิ
$=$	\sim	3	${ }^{3}$	5	砍	\％	조	\geqslant	$\stackrel{\sim}{*}$	寺	$\stackrel{\square}{\circ}$	9	\cdots	N	－	$\underset{\sim}{2}$	$\widetilde{8}$	17	「	줒	$\hat{\square}$	E	9
∞	先	5	$\stackrel{*}{*}$	$\stackrel{\sim}{2}$	37	$\stackrel{\sim}{m}$	좆N	ミ	\＃	$\underset{\sim}{7}$		5	$\stackrel{\sim}{c}$	\cdots	7	\geqslant	$\stackrel{4}{2}$	3	${ }^{\text {r }}$	촟	\pm	5	家
r	云	$\stackrel{*}{*}$	\cdots	令	（ ${ }^{\text {in }}$	7	\cdots	장	5	拄	놀	奚	3	\cdots	$\stackrel{1}{6}$	F－	晏	\％	좆	\％	\％	n	三
$\stackrel{+}{4}$	宗	\％	N	空		7	－	4	\cdots	nir	T	＋	f．	F	3	$\stackrel{\sim}{2}$	＊	¢	\＃	$\stackrel{7}{2}$	$\underset{\sim}{x}$	3	ลे
in	3	－	去	洤等	守	7	$\stackrel{\sim}{\sim}$	\cdots	気	\sim	孚	죽	穹	夺	部	n	u	盛	인	c	F	－	5
寸	7	7	F	9	吕	8	5	n	＋	念	\pm	\％	F	c	F－	\％980	\＃	3	二	完	会	\％	$\hat{\text { הे }}$
en	5	：	조	\cdots	$\stackrel{\square}{7}$ 会会	π	字	南	示	守	n	寝	N	＊	2	F－	家	9	in	\cdots	会	ㄹ	$\underset{1}{1}$
\cdots	3	「	\％	앙	E 9	7	于	守	7	in	令	5	\cdots	\％	$\stackrel{*}{2}$	7	豆	\bar{x}	\％	${ }^{2}$	立	$\stackrel{*}{*}$	令
\cdots	8	\％	30	N	\＄	「	H0	7	$\stackrel{+}{7}$	N	${ }_{6}$	\％	\cdots	ミ	0	\pm	옫	좆	三	Σ	$\stackrel{\sim}{2}$	c	$\vec{\square}$
呺	$\stackrel{3}{5}$	完	崈	$\hat{S}_{\text {S }}$		3	$\underset{\vec{i}}{\vec{k}}$	氠	空	8			家	荃	ํㅡํ	8	－	苞	家	空	家	$\underset{\sim}{2}$	\％

APPENDIX E+ Hembly Cow Coret (\%)

Hount Orul Com (\%)

\footnotetext{
Howry Couccome (i)
I

YE

Houmy Cord Comer (ed).

促

Howht Chand Cower (f)

Sour R Min

Yo6 trin shent del

Hourty Oond Cont (:)
$\boldsymbol{Y} \leq \boldsymbol{L} \boldsymbol{L}$

Flowhty Coad Concr Cis)
 Ya

(1)

Hontr Coxed Comer (0)

-

Howh Choul Cour for

 Yeor 3is Mown mperty

Hown Coud Coner (\%)
 YK $\mathbf{2 1 5}$ Nowh Gation
-

Honetr Oond Comer (ix)

Ync

(

14burty Oland Cower (50)

APPENDIX F: Daily Total SunShine Hours
Daily Total SunShine Hours

Year 2005																															
Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26					
Mronth																							2.		25	26	27	28	29	30	31
Tanuary	73	3.8	5.1	1.4	6.7	8.2	8.2	8.0	77	8.1	0.0	87	7.5	81	6.7	7.3	5.2	3.9	49	R 5	80	28	00	6	89	7					
Felruact	0.8	9.0	8.4	8.9	76	5.2	7.2	80	8.6	8.6	9.1	2.4	0.6	97	07	83	68											4.2	40	8.3	84
March	9.8	2.5	92	9.6	9.0	8.8	7.9	58	26	88	01			-3			6.8	8.4	3.6	4.8	0.9	5.0	8.	8.8	9.5	9.8	95	2.2			
											01	0.0	8.8	8.3	3.5	9.3	8.2	2.1	5.2	9.2	90	6.8	2.6	0.9	8.5	8.3	2.3	8.3	7.1	5.2	27
\therefore April	7.5	9.0	8.2	9.9	2.3	9.7	86	9.0	6.7	82	7.7	6 H	9.8	9.4	9.6	8.5	8.6	10.0	75	3.0	10.5	B6	8.8	0.1	7.1	7.5	8.6	8.8	6.4	8.1	
Mar	7.6	44	10.9	56	59	9.4	10 B	6.8	4.5	$9+$	8.2	96	9.3	8.7	72	9.2	7.4	R 3	3.9	9.4	5.8	1.6	3.2	5.1	7.2	10.0	96	9.4	92	11.3	11.1
Juse	9.1	77	9.5	7.9	76	9.4	8.1	6.4	8.4	37	18	3.1	0.6	1.0	02	00	0.3	39	2.0	1.8	1.5	0.0	0.3	2.4	0 t	1.6	0.4	0.0	00	0.0	
Iuks	0.6	0.0	0.0	01	0.4	8.8	105	7.6	4.7	0.6	0.2	15	0.0	1.4	0.0	0.5	8.9	3.6	45	1.9	4.6	0.1	3.4	8.3	10.0	67	7.1	7.3	2.1	7.3	9.6
dugust	8.8	6.0	6.9	2.8	3.6	1.0	3.3	0.2	1.0	0.0	32	1.7	2.9	1.8	3.9	34	9.5	3.3	16	3.9	2.6	2.6	0.7	0.4	0.7	'6.1	4.2	9.0	5.6	1.8	4.7
September	2.7	5.4	6.4	3.2	0.0	7.8	1.2	7.2	48	5.3	77	t0. 1	4.0	4.7	2.7	97	4.4	102	78	0.0	5.1	5.0	23	2.1	0.0	5.3	3.4	2.7	4.3	2.6	
October	00	0.0	30	1.5	7.1	96	6.7	29	92	8.5	35	3.4	6.0	9.4	2.9	39	1.8	6.8	18	0.0	0.0	0.0	00	1.9	0.0	7.1	7.6	0.8	7.6	9.6	
November	55	9.7	95	9.6	2.6	BR	8.3	00	5.1	7.6	9.3	9.3	9.1	84	7.7	8.6	8.2	84	6.6	3.9	2.0	3.8	09	0.2	3.2	14.0	7.2	8.2	82	. 2	2, 8
December	7.7	8.3	K. 1	4.5	82	7.9	8.2	K0	8.0	8.6	8.4	8.6	87	8.5	8.2	7.4	0.8	27	7.3	8.3	7.3	0.0	5.2	8.0	8.3	71		8.2		75	

[^0]: Ruandel 14.05 .07
 4.

 Dr. Amalesh Chandra Mandala
 Professor
 Department of Mechanical Engineering
 Bangladesh University of Engineering \& Technology

 Mconber
 (External)

[^1]: I Corresponding wher of percentegr of ahmeded uren prime to boun whom are nor indicated as the em does not see the sindary prior tol the time anger chocer period

[^2]: ${ }^{*}$ Percentage of ataded ases is not tation into account as the man docs not nee the mindow．

[^3]:

[^4]:

[^5]:

[^6]:

[^7]: Year. 2005 Montly. Octohet

