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Abstract

The designer of an integrated circuit (IC) transforms a circuit description to a geometric

description, called the VLSI layout. The task of converting the specification of an

electrical circuit into a layout is called the physical design. In physical design cycle a

circuit specification is converted into a VLSI layout in the four phases: partitioning, floor-

planning, routing (global routing and detailed routing) and compaction. A large circuit is

divided into a set of smaller blocks and the interconnections (nets) between them in the

partitioning phase. Each block is then placed (floorplanning phase) in a plane so that

interconnections can be routed (routing phase) through the remaining space. Most of the

works that appear in the literature deal floorplanning and global routing in two different

phases. Although there are some linear time floorplanning algorithms, but the known best

algorithms for global routing and detailed routing run in O(N2) time, where N is the

number of given nets. In this thesis, we present an integrated algorithm based on

orthogonal drawing of plane graph that handle floorplanning and global routing in a

single phase. The time complexity of our algorithm is linear. We also develop a linear

time detailed routing algorithm.
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Introduction

Chapter 1

Integrated Circuit (IC) has transformed our society into an information society. This

revolutionary development and widespread use of ICs has been one of the greatest

achievements of mankind. Since its inception in 1960's, IC technology has evolved from

integration of a few transistors in Small Scale Integration (SS!) to integration of millions

of transistors in Very Larger Scale Integration (VLS!) chips currently in use. ICs consist

of a number of electronic components, built by layering several different materials in a

well-defined fashion on a silicon base called wafer. The designer of an IC transforms a

circuit description into a geometric description, called the layout. The process of

converting the specification of an electrical circuit into a layout is called the Physical

.Design Cycle. Due to the tight tolerance requirements and the extremely small size of

individual components, physical design is an extremely tedious and an error prone

process. As a result, almost all phases of physical design extensively use Computer Aided

Design (CAD) tools and many phases have already been partially or fully automated.

1.1VLSI Design Cycle

The VLSI design cycle starts with a formal specification of a VLSI chip, follows a series

of steps, and eventually produces a packaged chip. A typical design cycle may be

represented by the flow chart shown in Figure 1.1.

System specification is a high level representation of the system. The factors to be

considered in this process include: performance, functionality and the physical

dimensions. It IS a compromise between market requirements, technological and

economical viability.

2



System Specification

Functional Design

Logic Design

Circuit Design

Physical Design

Fabrication

Packaging and Testing

x= (AB * CD) + (A+D)
y= A(B+C) + AC + D

1__ 1

I- - - - -I
~

.-
Figure 1.1: A Simple VLSI Design Cycle

In functional design step, main functional units and different parameters of the system are

identified. This step also identifies the communications between the units.

In logic design, the control flow, word widths, register allocation, arithmetic operation

and logic operations of the design that represent the functional design are derived and

tested.

The purpose of the circuit design is to develop a circuit specification based on the logic

design.

In physical design, the circuit specification is converted into a geometric representation

called layout.

Layout data is converted into photolithographic masks during fabrication. Mask identifies

spaces on the wafer, where a certain material needs to be deposited, diffused or even

removed.
3



Fabricated chip is then packaged and tested to ensure that it meets all design

specifications and that it functions properly.

1.2Physical Design Cycle

Physical design is a very complex process and therefore it is usually broken into various

sub steps. The input to the physical design cycle is a circuit specification and the output is

the layout of the circuit. This is accomplished in several stages such as Partitioning,

Floorplanning, Routing and Compaction.

1.2.1 Partitioning

Figure 1.2: Partitioning into three blocks

The input to physical design cycle is a circuit design and output is the layout of the circui~

which is later been fabricated, packaged and tested. A chip may contain several millions

of transistors. Layout of the entire circuit cannot be handled at once due to the limitation

of memory space as well as computation power available. Therefore, it is normally

partitioned by grouping the components into blocks. The output of partitioning is a set of

blocks and the interconnections required between the blocks. Figure 1.2 shows that the

input circuit has been partitioned into three blocks. In the large circuit, the partitioning

process is hierarchical and at the topmost level a chip may have 5 to 25 blocks [2]. Each

block is then partitioned recursively into smaller blocks.
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1.2.2 Floorplanning

After the circuit partitioning, the area occupied by each block can be calculated and the

number of terminals (pins) required by each block is known. Given a set of blocks and the

interconnection among them, the floorplanning problem is to assign each block a

rectangular area on a plane such that each connection can be routed through the space

which is not occupied by any block and no two nets intersect each other. Floorplanning is

a key step in physical design cycle. A poor floorplanning consumes larger area and results

in performance degradation. It generally leads to a difficult or sometimes impossible

routing task.

• • •
• 0."

.. .

I
I I I

I 0I I I I +
Figure 1.3: Circuit blocks and pins after floorplanning.

1.2.3 Routing

Spaces not occupied by the blocks during floorplanning can be viewed as a collection of

regions. These regions are used for routing and is called routing region. The process of

finding the geometric layout of all the interconnectios among the blocks through the

routing region is called routing. The entire process of routing is divided into two phases:

global routing and detailed routing. If the position of the connection terminals on each

block is flexible, that is, actual position of connection could be floated along the side lines

of the block, then the routing problem is called global routing problem. It generates a

loose route for each net.

But if the position of the connection terminals on each block is fixed then the routing

problem is called detailed routing problem. Detailed routing finds the actual geometric

5 ,



layout of each net within the routing region. The concepts of global and detailed routing

are shown in Figures 1.4 and 1.5, respectively .

................ ............... .......... ....... ...... ............................................ ..............

C- ......... ....)

- 0,l \ ..............

\"
."..... ")

\,.•.
if

.... ............ ..• //

d
............. - ..'...••.: .......... ..... ..

......................... , '. _ ..............

( ............ ........
". !

.••.. f ........................... ..... ...............• • • . ......... 4 •
I t -

.' ....-.... ..... ...."." ............ ..............

Figure 1.4: Global routing.

Figure 1.5: Detailed routing.

1.3 Traditional Approach of Floorplanning and Routing

A set of blocks and a netlist (as obtained from partitioning) is the input to the

floorplanning problem. A floorplanning algorithm generates a floorplan for the given

partitioning of the circuit. Then the global routing of the floorplan is determined ifthere is

any feasible global routing exists; otherwise we backtrack to the floorplanning phase for

any other alternative floorplan. A feasible global routing is the base of the detailed

6
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routing phase. If no feasible detailed routing is possible for a given global routing we

backtrack for alternative global routing. Thus the overall floorplanning and routing

process may iterate for several times. The traditional approach of handling floorplanning

and routing problems is shown in Figure 1.6.

A Set of
Blocks
and

a Netlist

Infeasible

Floorplanning

Global Routing

Feasible

Detailed Routing

Feasible

Compaction

Infeasible

Figure 1.6: Tr~itional approach of floorplanning and routing

1.4 Objectives of this Thesis

Since 1960, many researchers have been worked on floorplanning and routing problems.

Most of the work had treated floorplanning [1, la, 14, IS, 16, 18, 19,20,21] and routing

[3,29,31] as two successive phase in the physical design. Here we have presented an

integrated approach to solve floorplanning and global routing problems in linear time

using orthogonal graph drawing. We also have developed a linear-time algorithm to find

the detailed routing from the global routing that we obtained from our integrated

floorplanning and global routing algorithm. In Figure 1.7, a brief overview of the overall

technique is shown.

7
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8,

- B2

,.-----.

B3

Figure 1.7: (a) A circuit C (set of blocks and their
interconnections)

V3

Figure 1.7: (b) Multi-graph G for the circuit C

Figure 1.7: (c) A 3-graph G' equivalent to G
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Figure 1.7: (d) Floorplanning and global routing for
circuit C using orthogonal graph drawing

Figure 1.7: (e) Detailed routing R for circuit C

At first, the circuit blocks and the interconnections between them (Figure 1.7a) is

represented by an interconnection graph G (Figure 1.7b), which may be a multi-graph.

Then this multi-graph is converted to a 3-graph G' (Figure 1.7c) for which we can get an.

orthogonal graph drawing (Figure 1.7d). This orthogonal drawing gives the solution for

the floorplanning and global routing problems but the actual pin assignment remain

unsolved. Later, our detailed routing algorithm gives solution for the pin assignment and

thus gets the detailed routing R (Figure 1.7e) for the circuit C. The details of this approach

will be discussed at the later chapters.

9



1.5 Organization of the Thesis

Chapter 1 of this thesis gives a brief introduction of the floorplanning and routing

problems and how these problems are handled traditionally. Here we also give a very

brief overview of our approach to handle these problems. In Chapter 2 fundamentals of

graph theoretic terminologies and some graph drawing techniques have been defined. We

also stated some known results on graph drawing there. In Chapter 3 we developed an

algorithm that solves floorplanning and global routing in an integrated approach. An

algorithm for detailed routing of the global routing obtained in Chapter 3 is developed in

Chapter 4. Finally Chapter 5 concludes our works.

10



Chapter 2

Preliminary

In this chapter we present some basic terms and easy observations related to our work.

Definitions that are not included in this chapter will be introduced as they are needed. In

Section 2.1, we start with some definitions of the standard graph theoretic terminologies

used throughout the thesis. In Section 2.2, we define very common graph drawing

techniques. Finally, some known results on orthogonal graph drawings are described in

Section 2.3.

2.1 Basic Terminology

2.1.1 Graphs and Multigraphs

A graph is an ordered pair of (V, E) which consists of a finite set of vertices V and a finite

set of edges E; each edge is an unordered pair of distinct vertices. We call V(G) the

vertex-set of graph G and E(G) the edge-set of G. If e = (v, w) is an edge, then e is said to

join the vertices v and wand these vertices are said to be adjacent. In this case we also

say that w is a neighbour of v and that e is incident to v and w. If the graph G has no

multiple edge or loop then G is said to be a simple graph. Multiple edges join the same

pair of vertices, while a loop joins a vertex to itself. The graph in which loops and

multiple edges are allowed is called a multigraph. Sometimes a simple graph is simply

called graph, if doing so creates no confusion.

Figure 2.1: A simple graph.

11



The degree of a vertex v is the number of neighbors of v in G. We denote the maximum

degree of graph G by /;(G) or simply by /;. If every vertex of a graph G has degree three

or less then G is called a 3-graph. If every vertex of a graph G has degree exactly three

then G is called a cubic graph.

2.1.2 Subgraphs

A subgraph of a graph G = (V, E) is a graph G' = (V', E') such that V' c V and E' ~ E; we

write this as G' ~ G. If G' contains all the edges of G that join two vertices in V' then G'

is said to be the subgraph induced by V' and is denoted by G[V']. If V' consists of exactly

the vertices on which edges in E' are incident then G' is said to be the subgraph induced

by E' and is denoted by G[E'].

We often construct new graphs from old ones by deleting some vertices or edges. If v is a

vertex of a given graph G = (V, E) then G - v is a sub graph of G obtained by deleting the

vertex v and all the edges incident to v. More generally, if V' is a subset of V then G - V'

is subgraph of G obtained by deleting the vertices in V' and the edges incident to them.

Then G - V' is a subgraph of G induced by V - V'. Similarly if e is an edge of G then G-

e is the subgraph of G obtained by deleting the edge e. More generally, if E'~ E then G-

E' is a subgraph of G obtained by deleting all edges in E'.

VI

(a)

Figure 2.2: Subgraphs of G in Fig. 2. I: (a) vertex-induced and (b) edge-induced subgraph.
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2.1.3 Weighted Graphs

A graph where each of the edges has a positive weight associated with it is called a

weighted graph. Now if N is the set of all positive integers then we can define the weight

function for the edges as w: E --+ N. Figure 2.3 shows a weighted graph with five vertices

and six edges.
Vs

Figure 2.3: A weighted graph with five vertices.

2.1.4 Paths, Distances and Cycles

A VO-VI walk in G is an alternating sequence of vertices and edges of G, Vo, e" v" ..., VI_I,

el, VI, beginning and ending with a vertex, in which each edge is incident to two vertices

immediately preceding and following it. If the vertices Vo, Vi, ..• ,VI are distinct (except

possibly Vo, vD, then the walk is called a path and is usually denoted by Vo Vi, ... , VI. The

length of a .path in an unweighted graph is I, one less than the number of vertices on the

path. In a weighted graph, the length of a path is determined by weights of the edges

constituting the path. So the length w(P) of a path P is defined as w(P)=Lecp w(e).The

distance between any two vertices in agraph is the length of the shortest path in the graph

between the two vertices. We denote the distance from a vertex u to another vertex v by

dist(u, v). Now if the shortest path in G from u to V is P, then dist(u, v) = w(P) .

•
A path or walk is closed if Vo = VI. A closed path of length at least one is called a cycle

where Vo = VI is the only vertex repetition. An edge of G, which is incident to exactly one

vertex of a cycle C and located outside of C is called a leg of the cycle C. The vertex of C

to which a leg is incident is called a leg-vertex of C. A cycle in G is called a k-Iegged

cycle of G if C has exactly k legs in G.

13



Figure 2.4: C, and C3 are two 3-legged cycles.

2.1.5 Connectivity

The connectivity K(G) ofa graph G is the minimum number of vertices whose removal

results in a disconnected graph or a single vertex graph. We say that G is k-connected if

K(G) > k. We call a vertex of G a cut vertex if its removal results in a disconnected graph.

2.1.6 Planar Graph

A graph is planner if it can be embedded in the plane so that no two edges intersect

geometrically except at a vertex to which they both are incident. A plane graph is a planar

graph with a fixed embedding in the plane. A plane graph G divides the plane into

connected regions called faces. The unbounded region is called outer face. We regard the

contour of a face as a clockwise cycle formed by the edges on the boundary of the face.

We denote the contour of the outer face of the graph G by Co(G).

a

h

c

d
a

h

c

e

Figure 2.5: Two plane graphs of a same planar graph.
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Let G be a plane connected graph. For a cycle C in G, we denote by G(C) the plane

subgraph of G inside C (including C). We say that cycles C and C' in a plane graph G are

independent if G(C) and G(C') have no common vertex. A set S of cycles is independent

if any pair of cycles in S is independent.

2.1.7 Trees

A tree is a connected graph without any cycles. Figure 2.6 is an example of a tree. A

rooted tree is a tree in which one of the nodes is distinguished from others. This

distinguished node is called the root of the tree. The root of the tree is generally drawn at

the top. A tree is called binary tree if each node of the tree has at most two children. In

Figure 2.5, the root is node 1.

Figure 2.6: A binary tree with 9 vertices.

Every vertex u other than the root is connected by an edge to some other vertex p called

the parent of u. We also call u a child of p. We draw the parent of a node above that node.

For example, in figure 2.5, node 1 is the parent of node 2 and node 3. Alternately, nodes 6

and 7 are children of node 2. A lea/is a node of a tree that has no child. Thus every node

of a tree is either a leaf or an internal node, but not both. In figure 2.6, the leaves are 4, 6,

7, 8 and 9 and nodes 1, 2, 3 and 5 are internal nodes.

The parent-child relationship can be extended naturally to ancestors and descendants.

Suppose, u\, U2, .. :, u{ is a sequence of nodes in a tree such that Ul is the parent of U2,

which is the parent of U3 and so on. The node U I is called an ancestor of U3 and node U3 is

called a descendant of Ul. The root is the ancestor of every node in a tree and every node

15



is a descendant of the root. In Figure 2.6, all nodes other than node I are descendants of

node I and node I is an ancestor of all other nodes.

In a tree T, a node u together with all of its descendants, if any, is called a subtree of T.

Node u is the root of this subtree. Referring again to Figure 2.5, node 6 by itself is a

subtree, since node 6 has no descendant. Again, nodes 2, 6 and 7 form a subtree with root

2. Finally the entire tree of Figure 2.6 is a subtree of itself with root I. The height of a

node u in a tree is the length of the longest path from u to a leaf under u. The height of a

tree is the height of a root. The depth of a node u in the tree is the length of a path from

the root to u. In Figure 2.6, for example, node 3 is of height 2 and depth 1. The tree has

height 3.

2.2 Graph Drawing Conventions

Automatic graph drawings have numerous applications in VLSI layout, networking,

computer architecture, circuit schematics, etc [5, 17]. For the last few years many

researchers have concentrated their attention on graph drawings and introduced a number

of conventions. A drawing convention is some basic rules that the drawing must satisfy.

A list of widely used drawing conventions is [17]

• Orthogonal Drawing,

• Box-orthogonal Drawing,

• Rectangular Drawing,

• Box-rectangular Drawing, and

• Grid Drawing

2.2.1 Orthogonal Drawing

An orthogonal drawing of a plane graph G is a drawing of G in which each vertex is

drawn as a grid point on an integer grid and each edge is drawn as a sequence of alternate

horizontal and vertical line segments along grid lines as illustrated in Figure 2.7(b). Any

plane graph with maximum degree at most four has an orthogonal drawing [26], but may

need bends. Minimization of number of bends in an orthogonal drawing is a challenging

problem. Several works have been done on this issue [7, 8, 23, 25, 30]. In a VLSI

floorplanning problem, an input is often a plane graph of maximum degree 3 [12,24,25].

Rahman et al. gave an algorithm to find an orthogonal drawing of a given plane 3-graph
16



with minimum number of bends in linear time [27]. However, a plane graph with a vertex

of degree 5 of more has no orthogonal drawing. A plane graph G may have an orthogonal

drawing without bends [26]. However, not every plane graph has an orthogonal drawing

without bends. For example, the cubic plane graph in Figure 2.7(a) has no orthogonal

drawing without bends.

(a)

(b) (e)

Figure 2.7: (a) A plane graph G, (b) an orthogonal drawing ofG with 6 bends, (c) an orthogonal
drawing of G with 5 bends.

2.2.2 Box-Orthogonal Drawing

A box-orthogonal drawing of a plane graph G is a drawing of G on an integer grid such

that every vertex is drawn as a (possibly generated) rectangle, called a box, and each edge

is drawn as sequence of alternate horizontal and vertical line segments along grid lines, as

illustrated in Figure 2.8. Some of the boxes may be degenerated rectangles, i.e, points. A

box-orthogonal drawing is a natural generalization of an ordinary orthogonal drawing.
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Moreover, any plane (multi) graph has box-orthogonal drawing even if there is a vertex of

degree 5 or more.

Al-li]

(a)

,
B -

, ,

A -
, ,

.

C
,

, D"

(b)

Figure 2.8: (a) A plane multi-graph G, (b) A box-orthogonal drawing ofG.

2.2.3 Rectangular Drawing

A rectangular drawing of a plane graph is an orthogonal drawing in which there is no

bend and each face of the graph is drawn as a rectangle. The drawing in Figure 2.9 is an

example of a rectangular drawing.

I

Figure 2.9: A rectangular graph drawing.

2.2.4 Box-Rectangular Drawing

A box-rectangular drawing of a graph is a drawing such that each vertex is drawn as a

box, and the contour of each face is drawn as a rectangle. The drawing in Figure 2.10 is

18



an example of a box-rectangular drawing. Unfortunately, not every plane graph has a

box- rectangular drawing. Some works on box-rectangular drawing are done in [25].

Figure 2.10: A box-rectangular graph drawing.

2.2.5 Grid Drawing

A drawing of a graph in which vertices and bends are located at grid points of an integer

grid is called a grid drawing. The drawing in Figure 2.11 is an example of grid drawing.

It is a very challenging problem to draw a plane graph on a grid of the minimum size. In

recent years, several works have been done in this field [6, 23] .

...............j' ! ................r .

...............r / .

Figure 2.11: A grid drawing.
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2.3 Some Known Results on Orthogonal Drawing

In Chapter 3, we present a floorplanning algorithm using orthogonal drawing of plane

graph. Thus it is important to know some definitions and known results regarding

orthogonal drawing of plane graphs. We first have the following lemma [30]:

Lemma 2.1 Let G be a plane biconnected graph with maximum degree 1:1 :s: 3. Assume

that, four vertices of degree 2 on Co (G) are designated as the four corners of the outer

rectangle. Then G has a rectangular drawing if and only if G satisfies the following two

conditions:

(r1) every 2-legged cycle contains at least two designated vertices, and

(r2) every 3-legged cycle contains at least one designated vertex.

Furthermore, one can check in linear time whether a graph G satisfies the conditions

above, and if G does then one can find a rectangular drawing in linear time [22].

Figure 2.12: (a) 2-legged cycles. Figure 2.12: (b) 3-legged cycles.

In Figure 2.12, white circles are the four designated comer vertices and the black circles

are the non-designated vertices of each graph. Cycles C), Cz and C3 are 2-legged and

cycles C4, Cs and C6 are 3-legged. Cycles C3, Cs and C6 do not violate any of the two

conditions in lemma 2. I. On the other hand cycles C1, Cz and C4 violate the condition.

A cycle in G violating the condition (rl) or (r2) of Lemma 2.1 is called a bad cycle: a 2-

legged cycle is bad if it contains at most one designated vertex; a 3-legged cycle is bad if

it contains no designated vertex. Thus cycles C1, Cz and C4 are bad cycles.
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For a cycle C ina plane graph G, we denote by G(C) the plane subgraph of G inside C

including C. A bad cycle C in G is called a maximal bad cycle if G(C) is not contained in

G(C') for any other bad cycle C' of G. In Figure 2.13 C" C2, C4, Cs and C6 are bad cycles.

Cycles C" C4, Cs and C6 are maximal bad cycles. C3 is not a maximal bad cycle because

subgraph G(C3) is contained in a subgraph G(C4).

G= c,

G

Figure 2.13: The maximal bad cycles C1, C4, Cs and C6 in graph G.

Cycles C and C' in a plane graph G are independent of each other if G(C) and G(C') have

no common vertex. We have the following lemma [26]:

Lemma 2.2 Let G be a plane biconnected graph with maximum degree /}, :s; 3. Assume

that four vertices of degree 2 on Co (G) are designated as the four corners of the outer

rectangle. Then the maximal bad cycles in G are independent of each other.

An orthogonal drawing of a plane graph G is a drawing of G with the given embedding in

which each vertex is mapped to a point and each edge is drawn as a sequence of alternate

horizontal and vertical line segments and any two edges do not cross except at their

common end. A bend is a point where an edge changes its direction in the drawing. The

following results are known on the orthogonal drawing of a plane graph [26]:

Lemma 2.3 Let G be a plane bi-connected graph with maximum degree /}, :s; 3 andfour or

more vertices on Co (G) with degree two. Then G has an orthogonal drawing without

bend if and only if every 2-legged cycle in G contains at least two vertices of degree 2 and

every 3-legged cycle contains at least one vertex of degree 2.
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A subgraph H of G is a biconnected component of G if H is a biconnected subgraph of G.

having no cut vertex. A single edge (u, v) of G together with the vertices u and v is a

weakly biconnected component of G if either both u and v are cut vertex or one of u and v

is a cut vertex and the other is a vertex of degree one. The graph G in Figure 2.14(a) has

three biconnected components HI, H2 and H] as shown in figure 2.I4(b). Edges (UI, VI),

(U2, V2), (uJ, vJ) and (U4, V4) are weakly biconnected components.

", CV
H2

II)

v.@
G II) v) HI H)

Figure 2.14: (a) A plane graph G, (b) three bicormected components ofG.

We call two subgraph Hi and ~ of G are disjoint with each other if Hi and ~ have no

common vertex. The following lemma is known [26]:

Lemma 2.5 Let G be a plane bi-connected graph with maximum degree Ll. ::::; 3. Then the

bi-connected components in G are disjoint with each other.

A block of a connected graph G is either a bi-connected component or a weakly bi-

connected component of the graph. A tree called BC-tree of G can represent the blocks

and cut vertices of the graph. In the BC-tree of G each block is represented by a B-node

and each cut vertex is represented by a C-node. In Figure 2.15 the BC-tree of graph G in

Figure 2.14 is shown, where each B-node is represented by a rectangle and a circle

represents each C-riode.
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Figure 2.15: Be-tree of the graph G of Figure 2.16.
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Chapter 3

Floorplanning and Global Routing

3.1 Introduction

Floorplanning is one of the very important phases of the physical design cycle in

automated VLSI design. The input to physical design cycle is a circuit diagram and the

output is the layout of the circuit which is later been fabricated, packaged and tested. A

chip may contain several million transistors and is normally partitioned by grouping the

components into blocks. The output of partitioning is a set of blocks and the

interconnection required between the blocks. After the circuit partitioning phase, the area

occupied by each block can be calculated and the number of terminals (pins) required by

each block is known. A connection between two terminals of two blocks is called a net

and the set of all nets among all the blocks is called a netlist. Given a set of blocks and a

netlist the floorplanning problem is to assign each block a rectangular area on a plane

such that each net of the netlist could be routed through the space which is not occupied

by any block and no two nets intersect each other. Floorplanning is a key step in physical

design cycle. A poor floorplanning consumes larger areas and results in performance

degradation. It generally leads to a difficult or sometimes impossible routing task.

The floorplanning of blocks occur at three different levels: system level, board level and

chip level [4J. At system level, the floorplanning problem is to place all the PCBs together

so that area occupied is minimized. At board level, all the chips on a board along with

other solid-state devices have to be placed with in a fixed area of the PCB. The PCB

technology allows mounting of components on both sides. There is essentially no

restriction on the number of routing layers in PCB. The objectives of the board level

floorplanning algorithm is two fold: minimization of the number of routing layers and

satisfaction of the system performance requirements. The key difference between the

board level and chip level floorplanning problem is the limited number of layers that can

be used for routing on a chip. In addition, the circuit is fabricated only on one side of the

substrate.
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Let us formally state the floorplanning problem. Let Bt, B2, ... , Bn be the blocks to be

placed on the chip. Let N = {Nt, N2, ••• , Nm} be the set of nets representing the

interconnections between different blocks. The floorplanning problem is to find the

rectangular region for each block denoted by R = {Rt, R2, ... , Rn} on the plane such that

I. no two rectangles overlap each other, that is, Ri (1Rj =~, I ~ i, j ~ n; and

2. floorplanning is routable, that is, Q/s, I ~ i ~k, are sufficient to route all the

nets, where Q = {Qt, Q2, ... , Qk} represents the empty areas allocated for

routing between blocks.

Figure 3.1: Circuit blocks and pins after floorpIanning.

Spaces not occupied by the blocks during floorplanning can be viewed as a collection of

regions. These regions are used for routing and is called routing region. The process of

finding the geometric layout of all the nets through the routing region is called routing.

Nets must be routed within the routing region and also must not be short circuited, that is,

nets must not intersect each other. The entire process of routing is divided into two

phases: global routing and detailed routing. If the position of the connection terminals on

each block is flexible that is actual position of connection could be floated along the side

lines of the block then the routing problem is called global routing problem. It generates a

loose route for each net. But if the position of the connection terminals on each block is

fixed then the routing problem is called detailed routing problem. Detailed routing finds

the actual geometric layout of each net within the routing region. Figure 3.2 and Figure

3.3 show the global routing and detailed routing respectively.
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Figure 3.2: Global routing.

Figure 3.3: Detailed routing.

3.1.1 Traditional Approach of Floorplanning and Routing

A set of blocks and a netlist (as obtained from partitioning) is the input to the

floorplanning problem. A floorplanning algorithm generates a floorplan for the given

partitioning of the circuit. Then a global routing of the floorplan is determined if there is

any feasible global routing exists; otherwise we backtrack for any other alternative

floorplan. A feasible global routing is the base of the detailed routing phase. If no feasible

detailed routing is possible for a given global routing then we backtrack for alternative
26
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global routing. Thus the overall floorplanning and routing process may iterate for several

times. The traditional approach of handling floorplanning and routing problems is shown

in Figure 3.4.

Set of
Blocks
and

a Netlist

Infeasible

Floorplanning

Global Routing

Feasible

Detailed Routing

Feasible

Compaction

Infeasible

Figure 3.4: Traditional approach of floorplanning and routing.

3.1.2 Our. Integrated Approach of Floorplanning and Routing

We handle floorplanning and global routing problems in a single phase. The input to our

integrated floorplanning and global routing algorithm is a set of blocks and a netlist and

output is the floorplan and the global routing layout (except detail routing) for it. Global

routing layout is then used for detailed routing in the next phase. Our integrated algorithm

can find floorplan and global routing for a circuit if those exists in a plane. Thus no

iteration between floorplanning and routing is required.

In the rest of the chapter, we have presented the integrated approach of solving

floorplanning and global routing problems in a single phase. We have used orthogonal

graph drawing for this purpose. In Chapter 4, we have developed an algorithm to find

detailed routing for the floorplan and we would get global routing from our integrated

approach.
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Our approach of handling floorplanning and routing is shown in Figure 3.5. This is a

linear approach, that is, if there exists a feasible floorplan and global routing in a single

plane then our approach could find it without any backtracks.

Set of No
Blocks Floorplanning Infeasible Floorplan
and and and

a Netlist Global Routing Global routing
in

Feasible the Single Plane

Detailed Routing

Feasible

Compaction

Figure 3.5: Our integrated approach offloorplanning and routing.

3.2 Integrated Floorplanning and Global Routing

Unlike traditional approach we have integrated floorplanning and global routing in a

single phase. We have used orthogonal graph drawing for this purpose. The outline for

our algorithm is as follows:

Step-l Represent the circuit C using a multigraph G.

Step-2 Get a 3-graph G' from the graph G.

Step-3 Get an orthogonal drawing D for the 3-graph G'.

Step-4 Get a floorplan and global routing F for the circuit C from the orthogonal
drawingD.
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3.2.1 Representing a Circuit using Multigraph

We are given a circuit specification consisting of circuit elements (blocks) and the

connections between them called netlist. First we represent the circuit using a multigraph

G, where each block (circuit element) is represented by a vertex and interconnections

between blocks by edges. The resulting graph is a multigraph as there may be more than

one connection between two same circuit blocks.

AI.B3

(b)

4
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Figure 3.6: (a) A circuit specification, (b) The multigraph G for the circuit.

Assume that the graph G that obtained from the circuit specification as described above is

planar and has a fixed planar embedding. For real and complex circuit, where huge

number of circuit elements and the interconnection among them are involved, the graph G

may not be planar. Actually the routing of the nets is done in multiple layers and the nets

those reside in a particular layer do not intersect each other. Thus for a single layer the

assumption of being the graph plane does match with real circuits. In a VLSI

floorplanning problem, an input is often a plane graph of maximum degree 3 [12,24,25].

Distributing the nets in different routing layers is beyond the scope of this thesis.
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3.2.2 Converting Multigraph into a 3-Graph

We use orthogonal graph drawing technique to solve the floorplanning and routing

problems. Orthogonal drawings have attracted much attention due to their various

applications, especially in circuit schematics, entity relationship diagrams, data flow

diagrams etc. [5,28,30]. If G be a plane graph with maximum degree!'>. ~ 3, then G has a

bend minimum orthogonal drawing [26, 27]. There is a linear-time algorithm to find such

orthogonal drawing of G. It is desired to find an orthogonal drawing with a small number

of bends, because a bend corresponds to a "via" or "through-hole", and increase the

fabrication cost of VLSI circuit [12, 28]. But the graph we obtained from the circuit

specification as described in Section 3.2.1 may consist of vertices with degree one, two,

three, or more. Thus we need some conversion of the graph so that a bend minimum

orthogonal drawing could be obtained by keeping the meaning of the circuit specification.

Here we have described the process of getting a 3-graph G' (a graph with maximum

degree !'>.~ 3) from the multi graph G.

Let G be the graph obtained from the circuit specification as described in Section 3.2.1.

Then G may have vertices of varying degrees. We replace each vertex with degree three

or more with a cycle containing the number of vertices on the cycle equal to the degree of

the original vertex. Let u be a vertex of graph G with degree m and m? 3; then u should

be replace by a cycle C, with vertices {UI, Uz, ... , Um}, and let v be a vertex with degree n;

then v should be replace by a cycle Cv with vertices {VI, Vz, ... , v,,}. Now an edge between

U and v will be replaced by an edge between Ui and Vj, where I ~ i~m and I ~j ~n. The
graph G' that obtained in this way from the original graph G is a 3-graph.

A vertex of graph G represents a circuit element and such vertex with degree three or

more is replaced by a cycle in the 3-graph. So each vertex on the replaced cycle in the 3-

graph G' represents a pin of a circuit element. During this replacement of a vertex with its

equivalent cycle,' one important feature of circuit specification should be kept: the

clockwise orientation of the connecting pins on the circuit element and its equivalent

replaced vertices on the corresponding cycle in the 3-graph G' should be the same.
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Let the clockwise orientation of the connecting pins of the circuit element (block) B; is

{PiI, Pi2, "" P;",} where m is the number of connecting pins on block B; and m ;::3 and

block B; has been replaced by cycle C; and vertex vij represents pin Pij, where I 75.j 75. m.

Then the clock wise orientation of the vertices on cycle C; starting from vertex Vii should

be {Vii. va, , v;",}; which is same as that of the clockwise orientation of the pins on block

B;. This relation is shown in Figure 3.7,

Pi! Pi2 Pa
• . • P;4

P;s .. B; .
P;s. •

• Po P;6

Va

Figure 3.7: Clockwise orientation of pins and vertices,

The 3-graph G' obtained in this way mayor may not be bi-connected as original graph G

may have vertices of degree one or two also. The conversion of the multi graph G of

Figure 3.8(a) to a 3-graph G' has been shown in Figure 3,8(b).

AHlJ
A _-----

Figure 3.8: (a) Original multi-graph G, (b) 3-graph G',
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The 3-graph G' obtained in Figure 3.8 is bi-connected, but it is not always true. The 3-

graph G' obtained in this way may not be bi-connected. Figure 3.9(c) shows such an

instance.

I I
B1 B2 I B3

- B4 - l B~ -Bs
---'-

- B7 Bs B9
I

Figure 3.9: (a) A circuit specification.

Figure 3.9: (b) Multigraph G for the circuit.
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Figure 3.9: (c) A 3-graph G'.

3.2.3 Handling Multi-Terminal Net

The circuit specifications we have considered so far did not have multi-terminal net. A

net is called multi-terminal net if it has a single source at one end and more than one

destination at the other end. A multi-terminal net is shown in Figure 3.1O.

p

Figure 3.10: A multi-terminal net.
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If the circuit containing multi-terminal net is represented by a graph as described in

Section 3.2.1, we get a non-planar graph. To avoid this situation we replace the common

point P by a vertex u in the multigraph G that represents the circuit. Then u has degree at

least 3 and thus later be replaced by a cycle while converting the multi-graph G into a 3-

graph. Handling a multi-terminal net is shown in Figure 3.11.

u

Figure 3.11: Representing multi-terminal net (a) in multi graph, (b) in 3-graph.

3.2.4 Handling Multi-Headed Pin

A multi-headed pin is a pin on any circuit block from where more than one connection

goes outward. We can replace a multi-headed pin by its equivalent multi-terminal net.

Once we get a multi-terminal net, the rest of the process is same as in Section 3.2.3. This

process is shown in Figure 3.12.

Block B BlockB

Figure 3.12: Replacing multi-headed pin by a multi-terminal net.
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3.2.5 Orthogonal Drawing of a Plane 3-Graph

In this section, we describe how to get an orthogonal drawing for the plane 3-graph as

obtained for the circuit specification using the techniques described in Sections 3.2.1,

3.2.2, 3.2.3 and 3.2.4. If G is a plane graph with maximum degrey fj, $; 3, then there is a

linear time algorithm to find bend minimum orthogonal drawing 'of G [24, 25, 27]. We

have the following theorem for the orthogonal graph drawing of a plane 3-graph [27]:

Theorem 3.1: Let G be a connected plane 3-graph and let H be a biconnected component

a/G. Then there is a bend minimum orthogonal drawing D(H)/or H. There is a linear

time algorithm to find such orthogonal drawing.

In the rest of this section, we describe some preliminaries and the approach of getting

orthogonal drawing for a plane 3-graph using the results described in [26, 27]. Let C be a

cycle in G and let v be a cut vertex of G on C. We call van out-cut vertex for C if v is a

leg vertex of C in G; otherwise we call van in-cut vertex for C (Figure 3.13). Any in-cut

vertex for C is not a convex comer (having interior angle 900
) of the drawing of C in any

orthogonal drawing of G. Similarly, any out-cut vertex of C is not a concave comer

(having interior angle 270°) [26].

v'

v

v'

v

Figure 3.13: (a) In-cut vertices v at a concave comer and v'at a non-comer, (b) Out-cut
vertices v at a convex corner and v'at a non-corner.

The plane 3-graph G represents the circuit specification is not necessarily biconnected. So

it can be decomposed into a set of biconnected and weakly biconnected components.

There is a minimum bend orthogonal drawing for each of the biconnected components

using the algorithm in [27]. The orthogonal drawing of a weakly biconnected component

is either a horizontal line segment or a vertical line segment.' In order to get the
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orthogonal drawing for the whole plane 3-graph G, we need to merge all the orthogonal

drawings of the (weakly) biconnected components.

We construct a BC-tree of G to merge the orthogonal drawings of individual biconnected

components. Let Bo, BI, ... , Bb be the ordering of the blocks following the depth-first

search starting from the root Bo of the BC-tree. Assume that we have already obtained an

orthogonal drawing Di by merging the orthogonal drawings of the blocks Bo, BI, ... , Bi•

Now we are going to obtain an orthogonal drawing Di+I, by merging Di with the

orthogonal drawing of the block Bi+l. Let V, be the cut-vertex corresponding to the C-node

which is the parent of Bi+1 in the BC-tree of G. Let block Bx be the parent of v(in the BC-

tree. Then both Bx and Bi+1 contain the vertex Vb and Di contains the drawing of Bx• We '

have the following three cases to consider [26]:

Case A: Bx is a bi-connected component and Bi+1 is a weakly bi-connected component.

In this case VI is either a non-comer or a concave comer. Bi+1 is an edge and will be

drawn inside an inner face of the drawing Di as shown in the Figure 3.14.

Figure3.14: Embedding of v,when Bx is a biconnected component and Bi+1 is a
weakly biconnected component.

Case B: Both Bx and Bi+1 are weakly bi-connected components.

! "

In this case VI is drawn in an inner face of Di and has degree 1 or 2 in Di• We first

consider the case where V, has degree one. Then VI in Di has the embedding in Figure

3.l5(a) or a rotated one. We draw Bi as the dotted line in Figure 3.l5(a). We next
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consider the case where v, has degree two in D,. Then v, has degree 3 in G and let x,
I

y, and z be the three neighbours of v, in G. We may assume without loss of generality

that edges (v" x) and (v" y) are already drawn in D, and we now merge the drawing of

the edge (v" z)= B/+1 to DI• It is evident from the drawing described above that (v" x)

and (v" y) are drawn on a (horizontal or vertical) straight line segment. We draw the

edge (v" z) as a dotted line as in Figure 3.15(b).

.z
•••••

••••••••••• ••v, •• • •X VI Y(a)

(b)

Figure 3.15: Embeddings of v, when both Bx and BI+1 are weakly biconnected components.

Case C: Bx is a weakly biconnected component and Bi+1 is a biconnected component.

In this case v, is drawn in D; as the end of a horizontal or vertical line segment

inside an inner face of DI. Vertex v, has degree 2 in B/+I and is an out-cut vertex

for Co(BI+I) and v, is either a non-corner or a convex corner in D(BI+J. Therefore

D(BI+1) can be easily merged with D, by rotating D(B,+J by 90° or 180° or 270°

and expanding the drawing DI if necessary.

"
.- ~.. ..:. .'. : :,,:, i.. .'. .:ex: :..:.... :.. :.i

VI : .,

". .
".~:.~...~..-.-.~.

,--~--,,-----~....•-.-... " .......
..•': ~h: .. 'r.':'.: ~~'. :'.';. .. .

. ,). ,~•. •. ,.
••••• _.'0" ._._••.• _."

- .: ~ VI. '.. '.'

Figure 3.16: Embeddings of v,when Bx is a weakly biconnected component and BI+1

is a biconnected component.
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The overall process of getting bend minimum orthogonal drawing of a plane 3-graph is

shown in figure 3.17.

II)G

(a) (b)

",

"4

>--- T

(d)

(c)

IE
D(H,)

V4
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v,

() bend

II)

Figure 3.17: (a) A plane 3-graph G, (b) Three biconnected components HI. H, and H3,(c) Be-tree for
G,(d) Minimum bend orthogonal drawing of HI, H, and H3,(e) Orthogonal drawing ofG.
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3.2.6 The Overall Process of Getting Floorplan and Global Routing

Orthogonal drawing D of plane 3-graph G' almost give the floorplan and global routing of

the circuit leaving very little processing undone. Each of the cycle of the plane 3-graph G'

that represents each circuit block or a multi-terminal net's common point is drawn as a

rectangle in the orthogonal drawing. We replace each rectangular box in orthogonal

drawing D that corresponds to the common point of a multi-terminal net by a single point.

The overall process of getting floorplan and global routing for a given circuit

specification is shown in Figure 3.18.

81 82 83

,

- 84 - I 8~ f-85

=-

87 88 89

I

Figure 3.18: (a) A circuit specification.
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Figure 3.18: (b) Multigraph G for the circuit.

Figure 3.18: (c) A 3-graph G',
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Figure 3.18: Cd)Biconnected components BC" BCz, BC3and weakly bi-connected
components BC4 and BCs.

Figure 3.18: (e) Be-tree for the 3-graph G'.
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Figure 3.18: (f) Orthogonal drawing of biconnected component BCl.

Figure 3.18: (g) Orthogonal drawing of biconnected component BC2.
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Figure 3.1 8: (h) Orthogonal drawing of biconnected component BC).
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Figure 3.18: (i) Orthogonal drawing for the 3-graph G'.

So we can describe the floorplanning and global routing process using orthogonal graph

drawing for a given circuit specification in the following manner:
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Algorithm FloorPlanning( Circuit C)

begin

Step 1 Represent the circuit C using a multigraph G.

each block (or multi-terminal net's common point) will be represented by a

vertex and interconnections between blocks by edges;

Step 2 Convert G into a 3-graph G'.

replace each vertex with degree three or more with a cycle containing the

number of vertices on the cycle equal to the degree ofthe original vertex;

the clockwise orientation of the connecting pins on the circuit element and its

equivalent vertices on the corresponding cycle in the 3-graph G' should be the

same;

Step 3 for each biconnected component H (not weakly bi-connected component) of the

3-graph G' do

find a bend minimum orthogonal drawing using algorithm in [27];

Step 4 Develop aBC-tree T for the 3-graph G'.

Step 5 Visit BC-tree Tin depth-first-search order and combine the orthogonal drawings

of the biconnected components obtained in Step3 with the drawing of weakly

biconnected components those are either a horizontal or a vertical line segment.

Thus get an orthogonal drawing D for the 3-graph G'.

Step 6 Replace the rectangular areas obtained for each cycle of 3-graph G' with circuit

block except rectangular box for those cycles which corresponds to the common

point of multi-terminal nets.

end
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3.3 Time Complexity of the Integrated Floorplanning and Global

Routing Algorithm

In this section we find the time complexity of the floorplanning and global routing

algorithm.

The input to the floorplanning and global routing algorithm is a circuit specification and

output is its floorplan together with global routing. The entire process is accomplished

with the following phases one after another:

i) To represent the circuit specification using a multigraph G.

ii) To convert the multigraph G into 3-graph G'.

iii) To get orthogonal drawing for each individual biconnected component.

iv) To merge the orthogonal drawings of the biconnected components and hence

get the floorplan and global routing.

Thus the cost of the algorithm is the summation of the costs of the above mentioned

phases. Here we will define the problem size as N, where N is the number of nets.

(interconnections between the blocks in the circuit specification).

Let, B1, B2; ••• , Bb be the blocks after the partitioning of the circuit and C(Bi) be the

number of connections going outward of the block Bi, where l~ I~ b. A net is made up of

two terminal connections. Then

Let G be the multigraph that represents the circuit and VI, V2, ... ,vb are the set of vertices.

Then

d(V,) = C(Bi), l~ i ~ b, and

r,1~i~bd(Vi) = 2N.

In the 3-graph G', each vertex Vi of graph G is replaced by a cycle Ci with d( Vi) vertices,

where d( Vi) is the degree of the vertex Vi. So the number of vertices in the 3-graph G' is

r,1~i~bd(Vi) = 2N.
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The algorithm in [27] finds orthogonal drawing of a biconnected graph in linear time. So

the cost of finding orthogonal drawing of the bi-connected component Hi with 0(1V(Hi) I)

vertices is also 0(1V(Hi)l). Thus the total cost of getting orthogonal drawing of all the

biconnected components is

Merging of an orthogonal drawing of a biconnected components with the drawing of a

weakly biconnected component (a horizontal or vertical line segment) can be done in

0(1) time. So merging all the drawings of the biconnected components can be done in

O(N) times.

Thus the overall complexity of getting the floorplan and global routing of a circuit with N

nets is O(N).
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Chapter 4

Detailed Routing
In this chapter we present a linear-time algorithm for detailed routing with emphasis on

minimizing the routing distance. In Section I we discuss on preliminaries for routing

algorithm. Then in Section 2 we present the detailed routing algorithm. In Section 3 we

find the time complexity of the algorithm.

4.1 Introduction

Given a floorplan of the circuit and a global routing of the nets as obtained in Chapter 3,

we are required to bend the nets so that they connect at the actual pin positions of the

circuit elements (or blocks). This operation is called detailed routing and the drawing thus

obtained after detailed routing is called routed layout for the input circuit specification

that will later be fabricated in the next phase of a VLSI design cycle.

In Chapter 3, we have seen how floor planning of a circuit can be obtained together with

the global routing of the nets using the orthogonal graph drawing. If a vertex v has degree

d(v) in the multigraph G representing the circuit specification (see Section 3.2.1), then

after floorplanning we will get a box corresponding to the vertex v with same number of

connections to other circuit elements and each connections on a box is a pin on that

circuit element. During graph representation of the circuit, connection on each vertex of

graph obtained from circuit specification are considered clock wise. After floorplanning

those connections maintain same clockwise ordering, but the exact pin positions on the

actual circuit elements (or blocks) and the positions of the corresponding vertices on the

floorplan may not be the same. That is why, the edges connected to the boxes need to

bend to position exactly on the pin positions of the circuit elements.

4.2 Detailed Routing Algorithm

In VLSI design, timing consideration is one of the most critical factors and it is very

much related to the length of the nets those connect the circuit elements. So routing
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algorithm should. set its sight on minimizing the net length during bending the nets to fit

to the actual pin positions of the circuit elements. A net in orthogonal drawing that subject

to route to actual pin position, can either be directed clockwise or anti-clockwise to get

there. But we should choose the path that ensures minimum distance of routing. In our

algorithm, we classify vertices into two classes: left vertices and right vertices and has

been described in Section 4:2.1.

During detailed routing, there may have a number of nets across a particular position and

no two nets should intersect each other. In our algorithm, we associate a tuple of three

values with each terminal vertex of the net, one for each side of the block that the net

should move around, to ensure that nets are not unnecessarily farther from the side lines

of the block. The process of determining the 3-tuple for each vertex has been described in

Section 4.2.2.

In Section 4.2.3, the way the nets are to be bended has been described. The outline of the

detailed routing algorithm is as follows:

Algorithm DetailedRouting (Floorplan F)

begin

Step 1Classify each vertices into left-vertex or right-vertex;

Step 2 Determine a 3-tuple for each vertex that would later guide the net to move from

its vertex position to pin position;

Step 4 Minimize number tuple for each vertex;

Step 3 Bend each net according to its leftness/rightness and tuples associated with its

two tem1inal vertices;

end
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4.2.1 Classifying vertices into Left and Right

Depending upon the relative position of vertex (on the box of floorplan) and their exact

pin position (on the circuit element) each vertex is classified as either left vertex or right

vertex.

Let, the left-top and bottom-right comer of a box (e.g. each circuit element) in floorplan

be (XI, YI) and (X2, Y2) respectively. We assume that, X coordinate is increasing

horizontally from left to right and Y coordinate is increasing vertically from top to

bottom. There are four side lines for each box. Those are top horizontal line L" right

vertical line L2, bottom horizontal line L] and left vertical line L4. Let, P(xp, Yp) be the

exact pin position of the vertex positioned at V(x" Yv) on box of the floorplan. Then there

are following three cases:

Case 1 If P(xp, Yp) and V(xv, Yv) are on the same line (LI or L2 or L] or L4) then vertices can

be classified into left and right vertex in the following manner:

On L): When pin position P(xp, Yp) and its corresponding vertex position V(xv, Yv)

both are on line L I then:

if xp ::: Xv then

vertex V(xv, Yv) is a right vertex;

else

vertex V(xv, Yv) is a left vertex;

On L2: When pin position P(xp, Yp) and vertex position V(xv, Yv) both are on line L2

then:

if YP :::Yv then

vertex V(xv, Yv) is a right vertex;

else

vertex V(x" Yv) is a left vertex;

On L3: When pin position P(xp, yp) and vertex position V(xv, Yv) both are on line L3

then:

if xp ::: Xv then

vertex V(xv, Yv) is a left vertex;
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else

vertex Vex"~Yv) is a right vertex;

On L4: When pin position P(xp, yp) and vertex position V(xv, Yv) both are on line L2

then:

if YP :::Yv then

vertex V(xv, Yv) is a left vertex;

elsc

vertex V(x" Yv) is a right vertex;

Case-I classification is shown in Figure 4.1. Here a small bold circle on the side line

represents a vertex position and a small horizontal or vertical line is a pin position on the

box. In Figure 4.1, VI, V), Vs and V7 are right vertices and V2, V4, V6 and Vs are left vertices.

PI P2

p)
P4

Ps
P7

P6 Ps
Vs

Figure 4.1: Classification of vertices (Case-I).

Case 2 If pin position P(xp, yp) and vertex position V(x" Yv) are on two neighboring side

lines then vertices can be classified into left and right vertex in the following manner:

if V is on LI and P is on L2 then

V is a right vertex;

elseif V is on L I and P is on L4 then

V is a left vertex;

elseif V is on L2 and P is on L) then

V is a right vertex;
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elseif V is on L2 and P is on LI then

V is a left vertex;

elseif V is on L3 and P is on L4 then

V is a right vertex;

else if V is on L3 and P is on L2 then

V is a left vertex;

elseif V is on L4 and P is on LI then

V is a right vertex;

elseif V is on L4 and P is on L3 then

V is a left vertex;

Case-2 classification is shown in Figure 4.2. Here, VI, V2, V3 and V4 are right vertices and

vs, V6, V7 and Vs are left vertices.

P3

P4

V3

VI

Pl

PI ps

Vs

P6

Ps

Figure 4.2: Classification of vertices (Case-2).

Case 3 If pin position P(xp, Yp) and vertex position V(xv, Yv) are on two opposite side lines

then vertices can be classified into left and right vertex in the following manner:

(A) if V is on L 1 and P is on L3 then

if Xp-X I+xv-x I > Xl-XI i.e. xp+xv > X,+Xl then

V is right vertex;

else

V is left vertex;

(B) if V is on L3 and P is on LI then

if Xp-XI+Xv-XI > Xl-XI i.e. xp+xv > XI+Xl then

V is left vertex;

else
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V is right vertex;

(C) if V is on L2 and P is on L4 then

if Y,,-YI+Yv-YI >Y2-YI i.e. Yp+Yv >YI+Y2 then

V is right vertex;

else

V is left vertex;

(D) if V is on L4 and P is on L2 then

if Y,,-YI+Yv-YI > Y2-YI i.e. Y,,+Yv > YI+Y2 then

V is left vertex;

else

V is right vertex;

Case-3 classification is shown in Figure 4.3. Here, VI, V2, V3 and V4 are right vertices and

vs, V6, V7 and Vg are left vertices

P2

VI

PI

P4 pg

Vs

Ps

P7

P6

Figure 4.3: Classification of vertices (Case-3).

All three cases of vertex classification are illustrated in Figure 4.4. Here L or R in the

parenthesis with each vertex indicates whether the vertex is left or right vertex.

52



y

R
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X
PI P2

L

PJ

L

L

R Vs

PJ

P6

ps
Figure 4.4: Illustration of vertex classification.

4.2.2 Finding Routing Parameters

After classifying the vertices into left and right kinds, we are left with the task of

determining the number of grids a net to be away from the side lines of the block to reach

from the vertex position to the corresponding actual pin position of the block. We have

seen in Section 4.2.1 that a vertex and its corresponding pin may be situated on the same

line or on two neighboring lines or on two opposite lines. If a vertex and its actual pin are

on the same line then during detailed routing the net needs to move along only one side

line of the block to reach from the vertex position to the pin position. A net needs to move

along two neighboring side lines of the block if vertex and its corresponding pin are on

two neighboring side lines of the block. In the worst case, net needs to move along three

neighboring side lines if vertex and its corresponding pin are on two opposite side lines of

the block. So we are required to determine a tuple ofthree values namely (S, N, 0); where

S represents the number

of grids the net need to be away from the line on which the vertex is situated during

moving towards the actual pin. Nand 0 are both zero if the vertex and its actual pin are

on the same line of the block. N is the number of grid lines the net to be away from the
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neighboring side line during its move from the vertex to actual pin; if vertex and actual

pin is either on neighboring side lines or on opposite side lines of the block. The value of

o is nonzero only if vertex and actual pin are on two opposite side lines of the block and

then it represents the number of grids the net should be away from the opposite side lines

during its move from the vertex to actual pin. Figure 4.5 illustrates the (S, N, 0) tuple.

s

N

Figure 4.5: Illustration of (S, N, 0) tuple.

The determination of the routing parameter (S, N, 0) for each vertex of each block of the

floorplan is done with emphasis on minimizing the total route. In order to determine the

tuples for all vertices of a block or circuit element, we need to move twice around the

block. First move is clock wise and it determines tuples for the right vertices only and it is

accomplished by the algorithm InitiaIRiglltRoute(B) for block B. Next move is anti-clock

wise to determine number tuples for the left vertices and is done by the algorithm

InitiaILcftRoutc(B).

4.2.2.1 Finding Routing Parameters for Right Vertices

The clockwise ordering of vertices obtained in the floorplan is same as the clockwise

ordering of the pins of the actual circuit block. Thus during clockwise move around the

block, the order of occurrence of the right vertices and its correspondence pin will be the

same. That is, it is never be the case that a late coming right vertex reaches its pin earlier

than an early coming right vertex during the move. We keep the right vertices in a
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QUEUE those have not reach their pins yet. During the move it is sure that the first vertex

of the queue reaches its pin first thus needs to go away only one grid away from the side

lines of the block and next vertex in the queue reaches its pin next and needs to go away

two grids away from the side lines and so on. We use a right grid counter (RGC) in our

algorithm. When a vertex reaches its pin we delete that vertex from the queue and assign

number tuple to the vertex based on RGC and whether the position of the vertex and pin

are on the same line or on the neighboring lines or on the opposite lines of the block. On

the clockwise move when we get a left vertex, it is sure that all the pins of the previous

right vertices have been reached; because during clockwise move all pins of the early

right vertices will be found first before reaching the left vertex. Thus when we encounter

a left vertex on this clockwise move we reset RGC to zero. Again, when our queue

becomes empty; means all the right vertices seen so far has get their pin; we reset the

RGC to zero again. The algorithm blitiaIRiglttRoute(B) for block B to find routing

parameters for right vertices is given below:

Algorithm JllitiaIRightRoute(B)

begin

RGC:=O

Start from left top comer and find a left vertex by moving clockwise. The next available

right vertex u will be the starting right vertex.

Move clockwise around the block starting from u until each right vertex v gets (S, N,

0) tuple

if v is a right vertex then

add v to QUEUE

else

RGC:=O

endif

ifpin ?Ifor first vertex vlofQUEUE is reached then

beginif

RGC:=RGC+l

Delete vlofQUEUE

if vertex Vf and pin PI are on same line then
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Number[vj][S]= RGC

Number[vj][N]= 0

Number[vj] [0]= 0

elseif vertex vjand pin Pj are on neighboring lines then

Number[vj][S]= RGC

Number[vj][N]= RGC

Number[vj][O]= 0

elseif vertex vjand pin Pj are on opposite lines then

Number[vj][S]= RGC

Number[ Vj][N]= RGC

Number[vj] [0]= RGC

endif

endif

if QUEUE is Empty then

RGC:=O

endMove

end

Figure 4.6 illustrates the use of algorithm InitiaIRightRoute(B).

(3,3,0) (4,0,0)

I(R) 2(R)

(1,0,0) (2,2,0) (3,3,3)

3(L) 4(R) 5(R) 6(R)

12 123 4

(2,2,0)
II

7(R) (4,4,0)

12(R)
8(R) (5,5,0)

5
10 9 8 7 6

II (R) 9(R) (6,6,0)

(1,1 ,0) lO(L)

Figure 4.6: Illustration of the InitiaIRightRoute(B) algorithm.
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4.2.2.2 Finding Routing Parameters for Left Vertices

The anti-clockwise ordering of vertices obtained in the floorplan is same as the anti-

clockwise ordering of the pins of the actual circuit block. Thus during anti-clockwise

move around the block, the order of occurrence of the left vertices and its correspondence

pin will be the same. That is, it is never be the case that a late coming left vertex reaches

its pin earlier than an early coming left vertex during the move. We keep the left vertices

in a QUEUE those have not reach their pins yet. During the move it is sure that the first

vertex of the queue reaches its pin first thus needs to go away only one grid away from

the side lines of the block and next vertex in the queue reaches its pin next and needs to

go away two grids away from the side lines and so on. We use a left grid counter (LGC)

in our algorithm. When a vertex reaches its pin we delete that vertex from the queue and

assign number tuple to the vertex based on LGC and whether the position of the vertex

and pin are on the same line or on the neighboring lines or on the opposite lines of the

block. On the anti-clockwise move when we get a right vertex, it is sure that all the pins

of the previous left vertices have been reached; because during anti-clockwise move all

pins of the early left vertices will be found first before reaching the right vertex. Thus

when we encounter a right vertex on this anti-clockwise move we reset LGC to zero.

Again, when our queue becomes empty; means all the left vertices seen so far has get

their pin; we reset the LGC to zero again. The algorithm IllitialLejiRoute(B) for block B

to find routing parameters for right vertices is given below:

Algorithm IllitialLeflRoute(B)

begin

LGC:=O

Start from left top comer and find a right vertex by moving clockwise. The next

available left vertex u will be the starting left vertex.

Move anti-clockwise around the block starting from u until each left vertex v gets (S,
N, 0) tuple

if v is a left vertex then

add v to QUEUE
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else

LGC:=O

endif

ifpin PJfor first vertex vJofQUEUE is reached then

beginif

LGC:=LGC+l

Delete vJofQUEUE

if vertex V f and pin PJ are on same line then

Number[ vJH5']= LGC

Number[vJ][N]= 0

Number[vJ][O]= 0

elseif vertex vJand pin PJ are on neighboring lines then

Number[ vJ][5']= LGC

Number[ vJ][N]= LGC

Number[ vJH0]= 0

elseif vertex vJand pin PJ are on opposite lines then

Number[ vJ][5']= LGC

Number[ vJ][N]= LGC

Number[ vJ][0]= LGC

endif

endif

if QUEUE is Empty then

LGC:=O

endMove

end

Figure 4.7 illustrates the use of algorithmlnitiaILejiRoute(B).
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(6,0,0)

6(L)

234 5 6 7 8
(1,0,0) 13(L)

9
13 7(L) (5,5,0)
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8(L) (4,4,0)

(1,1,1) II
II (L)

9(L) (3,0,0)

10(L)

(2,2,0)

Figure 4.7 Illustration of the InitialLeftRoute (B) algorithm.

4.2.2.3 Minimizing Routing Parameters

In InitiaIRightRoute(B) or IniliaILeflRoute(B) algorithm, we have assigned same grid

count value (RGC or LGC) to thc Sand N if vertex and pin are on the neighboring side

lines of the block' and same value to S, Nand 0 if vertex and pin are on the opposite

side lines of the block. But this is not always necessary. Value of Nand 0 can be less

than that of the value of S that means reduction of the number of grids the net should be

away from the corresponding side line; thus minimizing the overall layout area. Figure

4.8 illustrates the feasibility of the minimization of routing parameters.
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(6,0,0)

(4,4,0)

(5,5,5)

Figure 4.8: (a) Routing parameters before niinimization.

(2,0,0)

(2,1,0) (3,2,1)

(3,2,0)

(4,3,1)

Figure 4.8: (b) Routing parameters after minimization.

In order to minimize routing parameter, we move clockwise for the right vertices. Let VI

and V2are two successive right vertices on a block. Then the following three cases may

occur:

Case 1 If Vi and V2 are on the same line then Number[v2][S] will be one greater than

Number[vi][S] and Number(v2](N] will be one greater than Number(vI][N] if

Number[v2][N] is non-zero and Number[V2] (0] is one greater than

Number(vi](O] if Number(V2][0] is non-zero.

Case 2 If VI and V2are on two neighboring side lines then Number[v2][S] will be one

greater than Number[vJl[N] and Number[v2][N] will be one greater than
60
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Number[vl][O] if Number[v2J[NJ IS non-zero and Number[v2J[0] IS one if

Number[v2J[0] is non-zero.

Case 3 If VI and V2 arc on two opposite side lines then Number[v2][S] will be one greater

than Number[vtl[O] and Number[v2J[N] will be one if Number[v2J[N] is non-

zero and Number[v2][0] is one if Number[v2] [0] is non-zero.

Figure 4.9 shows the minimization of routing parameters for right vertices.

(3,3,0) (4,0,0)

I(R) 2(R)

(2, I ,0) (3,2, I)
(1,0,0) (2,2,0) (3,3,3)

3(L) 4(R) 5(R) 6(R)

12 I 2 3 4
(4,3,0)

(2,2,0)
II

7(R) (4,4,0)

(5,4,0)

12(R)
8(R) (5,5,0)

5
10 9 8 7 6 (6,5,0)

II (R) 9(R) (13,13,0)
(1,1,0) IO(L)

(1,0,0)

Figure 4.9: Illustration of the MinimizeRightRoute(B) algorithm.

The algorithm to minimize the routing parameters for the right vertices is as follows:

Algorithm MinimizeRightRoute( B)

begin

VI = First Right Vertex as is determined in InitialRightRoutealgorithm

Move clockwise around the block B

if a Left vertex is reached then

vl=Next available right vertex

endif
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end

V2 = Next right vertex of Vt

if VI and V2areon the same line then

if Number[v2][N] > 0 then

Number[ V2][N] = Number[ Vt][N] +1

endif

if Number[vz][O] > 0 then

Number[ V2][ 0] = Number[ VI][0] +1

endif

end if

if Vt and v2are on two neighboring lines then

if Number[v2J[S] > = Number[vt][N] +1 then

Number[v2][S] = Number[vtJ[N] +1

endif

if Number[v2][N] > Number[vt][O] +1 then

Number[vz][N] = Number[vtJ(O] +1

endif

if Number(v2J[0] > 0 then

Number[v2](0] = 1

endif

endif

if VI and vlare on two neighboring lines then

if Number[vl](S] >=Number[vt][O] +1 then

Number(vlJ[S] = Number[vt](O] +1

endif

if Number[vl](N] > 0 then

Number( Vl][N] = 1

endif

if Number(vl][O] > 0 then

Number(v2](0] = 1

end if

endif
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Similarly, Figure 4.10 shows the minimization of routing parameters for left vertices.

(2,0,0) (1,0,0) (6,0,0)
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13 7(L) (5,5,0) (5,2,0)
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12(R) gel) (4,4,0) (4, I ,0)

(1,1,1) II(L)
II

9(L) (3,0,0)

JO(L) (2,2,0)

Figure 4.JO: Illustration of the MinimizeLejiRoule(B) algorithm.

The algorithm to minimize the (S,N, 0) values for the left vertices is as follows:

Algorithm MinimizeLejiRoule( B)

begin

v, = First Left Vertex as is determined in InitialLeftRoute algorithm

Move anti-clockwise around the block B

if a Right vertex is reached then

vl=Next available left vertex

endif

V2= Next left vertex of VI

if viand v2are on the same line then

if Numbcr( V2] (N] > 0 then

Number(v2J[N] = Number(vI](N] +1

endif

if Number(V2] (OJ > 0 then

Number(v2](OJ = Number(vIJ[OJ + I

endif

endif
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if v] and v2are on two neighboring lines then

if Number[v2][S] > = Number[vJl[N] +1 then

Number[v2][S] = Number[vJl[N] +1

endif

if Number[ V2][N] > Number[ vJl[0] +I then

Number[v2][N] = Number[v]][O] +1

endif

if Number[v2][0] > 0 then

Number[ V2][ 0] = I

endif

endif

if v] and v2are on two neighboring lines then

if Number[v2][S] >=Number[v]][O] +1 then

Number[v2][S] = Number[v]][O] +1

endif

if Number[ V2][N] > 0 then

Number[v2][N] = I

end if

if Number[v2][0] > 0 then

Number[v2][0] = I

endif

end if

endMove

end

4.2.3 Bending the Edges

After classifying and finding routing parameters for each vertex, we bend the edges so

that edges are connected to the box at the actual pin position. We bend the edges using (8,

N, 0) values as calculated in previous subsection. (8, N, 0) values define how many grids

the net is needed to go away from different box sidelines and leftness and rightness says

in which direction (clockwise or anti-clockwise).

64



Here we have shown only the bending operation of vertices those are on line L,.

Similarly, we can bend the edges connected to other lines of the box. The process of

bending the edges is given below (For line LI only):

Let, V(x" y,) is a vertex and its corresponding pin is P(xp, yp), For simplicity, we have

denoted V(xv, Yv) as Vand P(xp, yp) as P in the rest of this section. There arise following

distinct cases:

Case 1 Vand P both are on line L I

Number[V1][S]

Figure 4.11: V and P both are on line L,.

If Vis a left vertex then edge goes Number[V][S] grids up from line LI and move left until

the top of pin is reached and then move down to pin. Otherwise V is a right vertex and

move Number[V][S] grids up from line LI and move to right until the top of pin and then

move down to pin. Figure 4.11 illustrates such two bending.

Case 2 V is on L I and P is on L2

Move the edge Number[ V][S] grid up from line L I and move to" the right until

Number[V][N] grid away from line L2, then go down up to the top of pin and connect tei

the it. Figure 4.12 is an example of Von LI and P on L2•
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Number[V][S]

v

Number[V][N]
•.....•.

p

Figure 4.12: V is on LI and P is on L2.

Case 3 V is on L I and P is on L4

1
Number[V][S]

Number[V][N]

•.....•.
P

V

Figure 4.13: Vis on LI and P is on L4.

Bend the edge Number[V][S] grid up from line LI and move to the left until

Number[V][N] grids away from line L4, then go down along the line up to the top of pin

and then connect to it. Figure 4.13 is an example of Von LI and P on L4•
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Case 4 Vis on LI and P is on L3

Depending on the relative position of V and P on line LI and L3 respectively, vertex V

may be a left vertex or a right vertex.

Case 4a) Vertex V is a Right Vertex

Number[ V][S]

V

...............~ Number[V][N]

p

•
Number[ V][OJ

Figure 4.14: V is on LJ, P is on L3 and V is a right vertex.

Move the edge Number[V][S] grids up from line LI and move to right until

Numbering[V][N] grids away from line L2 then move to the down along L2 and

reach Numbering[ V][OJ grids below from the line L3 and move to the left up to

the pin and connect to it . Figure 4.14 is such an example.

Case 4b) Vertex V is a Left Vertex

Bend the edge Number[V][S] grid up from line LI and move to left until

Numbering[V][N] grid away from line L4 then move to the down along L4 and

reach Numbering[V][OJ grid below from the line L3 and move to the right up to

the pin and connect to it . Figure 4.15 is such an example.
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Number[V][S]

v

Number[V][N]

p

•
Number[V] [OJ

Figure 4.15: V is on LI and P is on L3 and V is left vertex.

4.3 Time Complexity of Detailed Routing Algorithm

In this section we find out the time complexity of the detailed routing algorithm discussed

in the Section 4.2. The input to the detailed routing algorithm is the floorplan and global

routing of a circuit specification as obtained in Chapter 3 and output is the physical layout

for it. The entire process of getting physical layout from a given floorplan is

accomplished with the following four phase's one after another:

i) To classify the vertices into left and right vertices.

ii) To assign initial (S, N, 0) values to the left vertices using InitiaILeftRoute(B)

and to right vertices using InitiaIRightRoute(B) algorithms.

iii) To assign initial (S, N, 0) values to the left vertices using InitiaILeftRoute(B)

and to right vertices using InitiaIRightRoute(B) algorithms.

iv) To minimize (S, N, 0) values of the left vertices using InitiaIMinimizeRoute(B)

and of right vertices using MinimizeRighiRoute(B) algorithms.

v) To bend the net using vertex classification (left or right) and the minimized (S,

N, 0) values of two terminal vertices.

Thus the cost of the detailed routing algorithm is the summation of the costs of the above

mentioned phases. Here we define the problem size N as the number of nets

(interconnections between the blocks in the circuit specification). Let, M is the number of
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vertices in the floorplan drawing obtained in Chapter 3; then M is less (multi-terminal

nets) or equal to the twice of N .

During classifying the vertices into left and right, we need to compare each vertex

coordinate V(xv, Yv) with its actual pin coordinate on the block P(xp, yp) only once. Thus to

classify M vertices into left or right we need M such comparisons. So the cost of

classifying the vertices into left and right is OeM) and as M=2*N we can say it is O(N).

The next step of our routing algorithm is to get initial routing parameters that is the initial

values of (S, N, 0) tuples for each left and right vertices using the InitiaILejiRoute(B) and

InitiaIRightRoute(B) algorithms.

Let, L is the number of left vertices and R is the number of right vertices after

classification then M=L+R.

The only iterative statement in the InitiaILeflRoute(Bj) algorithm is to move anti-

clockwise around the block to calculate (S, N, 0) values for left vertices of the block.

Within this move statement there is only sequential or conditional statements which has

cost 0(1). Let, Mj is the number vertices on the block Bj among them Lj is the number of

left vertices. Then the cost of getting initial routing parameters for Lj left vertices of block

B; is O(Lj ). So the total cost of getting initial routing parameters for all L left vertices of

the entire floorplan is L(O(Lj)) = O(L(Lj)) = O(L).

Similarly, the only iterative statement in the InitialrightRoute(Bj) algorithm is to move

clockwise around the block to calculate (S, N, 0) values for right vertices of the block.

Let, M, be the number vertices on the block Bj among them Rj is the number of right

vertices. Then the cost of getting initial routing parameters for Rj right vertices of block Bj

is O(Rj ). So the total cost of getting initial routing parameters for all R right vertices of

the entire floorplan is L(O(Rj)) = O(L(Rj)) = OCR).

So the total cost of getting initial routing parameters of all left and right vertices is O(L) +

OCR)= O(L+R) = OeM); which cal also be written as O(N).

MinimizeLejiRoute(Bj) and MinimizeRightRoute(Bj) algorithms individually minimiZeS

the routing parameters of the left and right vertices of block Bj respectively. The former
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one moves anti-clockwise around the block B; and considers each left vertex once. Thus

the cost is O(Li). The later one moves clockwise around the block B; and considers each

right vertex once. Thus the cost is O(Ri). So the cost of minimization for block B; is O(Li)

+ O(Ri) = O(Li + Ri) = OeM;}. So the total cost of this minimization for all blocks is

'£(O(M;)) = O('£(Mi)) = OeM).

After the minimization of the routing parameters routing algorithm starts to bend each net

to position from the vertex coordinates to the actual pin coordinates using the left/right

classification and the minimized (S, N, 0) values of the two terminals of the net as

described in Section 4.2.3. The cost of bending each tem1inal ofa net is constant thus has

the cost 0(1). So to bend about 2*N terminals of N nets we have the cost O(N).

As each of the four phases of detailed routing algorithm has the cost O(N) and they

operates sequentially one after another so the total cost of this algorithm is O(N). Thus

we have the following theorem.

Theorem 4.1 Algorithm DetailedRouting(Floorplan F) finds a detailed routing for a

given floorplan F in linear time.

70



Chapter 5

Conclusion

Integrated circuits (ICs) consist of a number of electronic components built by

layering several materials in a well defined fashion on a silicon base. The designer of

an IC transfonns a circuit description into a geometric description (layout). The

process of converting the specification of an electrical circuit into a layout is the

physical design process. Due to the tight tolerance requirements and the extremely

small size of the individual components, physical design is an extremely tedious and

error prone process. As a result, all phases of physical design process need

automation.

There are four phases in physical design. Those are partitioning, floorplanning,

routing (global routing and detailed routing) and compaction. This thesis presents

linear time algorithms for the automation of floorplanning and routing phases.

Traditionally, floorplanning and global routing are handled in two successive phases

and may need several iterations. Our algorithm handles these two in a single phase

and avoids any backtracking from routing to floorplanning phase. The time

complexity of our algorithm is linear.

We also develop a linear time algorithm for detailed routing. One important thing of

this algorithm is that it always finds a detailed routing for the given result as obtained

from our previous integrated algorithm for floorplanning and global routing. Thus we

need no backtracking here also.

Scope of Future Work

In this thesis, we use orthogonal drawing of plane graph to get floorplanning and

global routing. We first represent a circuit description into a graph. We assume that

71
,.



the graph is planar and the graph has floorplanning and global routing for the circuit

in a 2D plane. That is our algorithm solves the single layer floorplanning and routing

problems. In the rest of this chapter we describe some open problems related to

floorplanning and routing.

If we present a complex circuit using multigraph as described in Chapter 3, we may

obtain a nonplanar graph. Then, floorplanning and routing need multiple layers. An

efficient algorithm for multi-layer floorplanning and routing in 3D planes may be a

good work.

A non-planar graph may be partitioned into a set of planar graphs such that their

union will give the original non-planar graph and the planar graphs are edge disjoint

[13]. Then the floorplanning and routing of each planar graph can be obtained by

using our single layer floorplanning and routing algorithm. But the difficulty is that

the orthogonal drawing algorithm, used as the part of our floorplanning and global

routing algorithm, do not assume the position of the vertices of the planar graph as

fixed. Thus in different layer same vertex may be placed in different position and we

need to map them on a single 3D pillar. One can try them in the following two ways:

I. One may try to develop an algorithm that will give intersection free connections

between the two places of the same vertex on two successive planes.

2. One may try to develop an efficient orthogonal drawing of a plane graph when

the positions of the vertices are fixed.

During detailed routing we introduced a number of bends in order to reach from the

vertex position to the actual pin position. Again, the nets move around the side lines

of a single block in a way that ensure local area minimization for that block; but it

does not ensure the overall area optimization for the total layout. Bend minimization

during detail routing can be an interesting research area. Area compaction may be

another challenging problem for research.

In our algorithm, we gave same importance to all the blocks and to all the nets. But in

practice, some blocks and connections of a circuit are more important than the others.

Introducing the unequal priority levels to different blocks and nets and then solving

the floorplanning and routing problem to optimize some objective function may be a

72



challenging problem. For example, among all the blocks only a few blocks

communicate most of the times during the operations of a circuit. Then giving higher

priority to those blocks and the nets among those blocks and bringing them closer

during floorplanning and routing will minimize the overall delay of the circuit.

Similarly, the width of all nets may not be the same. Taking count of the unequal

width of different nets is another challenge in floorplanning and routing problems.

Finally, we can conclude that there is a huge scope of research on the field of

automated VLSI layout design, especially on the physical design cycle.
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