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ABSTRACT

N

Héat transfer characteristics for the heating of the dilute
solutions of different types of Cellofas in straight tubes are
studied :numerically in laminar condition with bonstaﬁt wall
temperature considering viscous dissipation. The scope of this
study is limited to numerical prediction of velocity profile,

temperature profile and the rate of heat transfer at steady fully

developed condition.

"TEACH-T", a general computer program has been used for this
purpose. After sufficient testing against bench-mark experimental
and analytical data, the computer program was used for the

prediction of flow and heat transfer data.

The present study is confined to a tube of fixed diameter 17.4
mm., Power law model describes the flow behaviour of the fluids
and the fluid conéistency, K ié temperature depéndent. To study
the effect of heating on velocity profile, temperature profile
and the rate of heat transfer, three different temperature ratio

T./T,, namely, 1.068, 1.13 and 1.233 were considered.

Present study indicates that velocity profiie becomes flatter
with the increase of psquoplasticity and temperature fatio, The
effect of pseudopasticity on tempgrature profile is small but the
effect of temperature ratio is significant. Effect of
.pseudoplasticity and viscous dissipation on heat fransfer rates
are interrelated. This combined effect is small because the
fluids considered do not have large values for consistency; K.
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CHAPTER-1

INTRODUCTION

1.1 Background

The processing of non-Newtonian fluids is of great industrial
importance. These fluids are characterized by a nonlinear
‘rheogrém or shear stress—shear rate relationship. Emulsions,
slurries, and polymeric melts, solutions, and dispersions are
mostly of non-Newtonian nature. Of the many types of non-
Newtonian fluids considered in the -literature, pseudoplastic

fluids are most commonly encountered.

The rheograms for most of these pseudoplastic fluids are quite
accurately represented by the equation suggésted by Eyring et

al (1955).

B’try£%+sinh"1§% . (1.1)

where A/, B/ and Y are constants, and S is shear rate.

The occurrence of the shear rate in' both ther linear and
inverse hyperbolic sine terms of eq.(1.1) makes this
relétionship somewhat cumbersome .for many engineering
purposes. Consequently the empirical Ostwald-de-Waele or poﬁer
law equation eqg.(4.1) has often been used as a&an approximate

representation of pseudoplastic rheclogy (10, 13, 19, 31, 50).



P
In some cases eq. (4.1) has been found to fit rheological data
as well as or better than egq. (1.1). In the present study,

eq.(4.1) is used to describe the fluid rheology.

1.2 Motivation Behind the Selection of the Study

The industrial importance of non-Newtonian Dbehavior is
generally known and the types of non-Newtonian behavior
encountered have been discussed by many authors; nevertheless,_
not a single satisfactory method is available for the
prediction of heat transfer rates to highly non-Newtonian
fluids such as viscous slurries, gels, and polymeric melts and
solutions(38). A study of the literature indicates that
methods for predicting heat transfer to pseudoplastic fluids
in laminar flow did not adeQuately incorporate ‘the effect of
the viscosity-temperature dependency. Those‘who considered the
temperature-dependent rheology is specific to the fluids are
~involved. Bne of the purposes of this investigation was to
determine ar realistic viscosity-temperature dependency of
Cellofas solutions and, based on this, to develop accurate
methods for the prediction of heat transfer coefficieﬁts for
the heating of these pseudoplastic fluids in laminar flow in
tubes of clrcular Cross section with constant wall

temperature.
1.3 Importance of Numerical_Investigg;ion

The emergence of computers tdgether with the development of
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more versatile and efficient numerical solution method has led
tc a substantial increase in the assembly of mathematical‘
modelling of flow prcess. Now a days, in the engineering
design -of heat transfer. related problems, designers are
looking for computational investigations to seek the optimum

design, as experiments with either model or full scale

prototype are generally laborious, expensive, and time

consuming.

The theoretical prediction enables to operate an existing
equipment more safely and efficiently. Prediction of the
relevant process help in forecasting and even controlling

potential dangers. These predictions offer economic advantages

too.
1.4 The Present Contribution

The present study deals with the numerical investigation of
heat transfer with specific time-independent non-Newtonian
fluids. The fluids are dilute solutions of Cellofas of

different grades and concentrations.
The specific contribution of this study are

a. variation of wvelocity profile with pseudoplasticity, n;

temperature ratio, T./T, ; and Graetz number, Gz.
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b. variation of temperature profile with pseudoplasticity,

n; temperature ratio, T,/T, ; and Graetz number, Gz.

C. variation of heat transfer rate with temprature ratio,

T,/T, and viscous dissipation.
1.5 Thaesis Outline

The remaining part of the thesis is divided into eight
chapters. In Chapter I1, relevant literature is briefly

reviewed in this area. The objectives of the present work are

listed in Chapter III.

. *
Formulation of the problem is presented in Chapter IV.
.Computer program used in this work is described in Chapter V

and the method of solution is in Chapter VI.

The results and discussions are presented in Chapter VII.
Finally in Chapters VIII and IX, the findings of the present

work and suggesfions for future work are presented

respéctively.



CHAPTER-II

LITERATURE REVIEW

2.1 Introduction

The study of laminar heat transfer with non-Newtonian fluids is
of considerable industrial importance. Several studies have been
carried out on heat transfer to non-Newtonian fluids in tubes in
laminar condition(10,11,12,19,20,35,36,38,50). These fluids are
characterized by a nonlinear shear stress-shear rate

relationship.

There are different kinds of non-Newtonian fluids, but the most
important type to-date from the industrial viewpoint is pseudo—
plastic behaviour. Most of these pseudoplastic fluids are
satisfactorily represented by the empirical Ostwald—da—wéele or

power law equation.

n

i=—K(%i{- (2.1)

In section 2.2 literature on laminar heat transfer to Newtonian
fluids and subsequent developments are discussed. Heat transfer

to non-Newtonian fluids are presented in section 2.3.



2.2 Laminar Heat Transfer to Newtonian Fluids in Closed

Conduits.

When heat transfer occurs during laminar flow of a fluid, the
transfer through the fluid is by conduction alone. No mixing of
the fluid, like that occurring during turbulent flow, takes
place. In practice it is difficult to obtain truly laminar flow
during heat'transfer except in very small passages. Natural
convection currents are usually present, and under these
conditions conduction alone is not the only mode of heat transfer

to be considered.
2.2.1 The Leveque Solution.

One of the simplest scolutions for the laminar flow heat transfer
coefficient in c¢ircular tubes is that of Leveque(1928). The
~analysis applies directly to laminar flow heat t;ansfer on a flat
plate, but the results may be easily applied to circular tubes.
The Lgveque solution yields a solution in thé region near the
wall considering a fluid flowing over a surface under the

following conditions(Figure 2.1):

(1) The fluid properties are constant.

(2) The surface fémperature is uniform at T,.
(3) The undisturbed fluid temperature is T..
(4) Heat transfer is due to conduction aione.
(5) The velocity of the fluid is |

u=cy , v=0 , w=20



where vy direction outward normal to surface

i

9
t

constant

The fluid temperature T is a function of x and y. For small
values of vy, PT/ox*«FT/dy* . Blso &FT/0z? may be considered

negligible. Using these simplifying assumptions, the differential
equation for laminar flow heat transfef without viscous

-dissipation becomes,

cy2§=a253 ' | (2.2)

where, a=k/C,p and boundary conditions are:

=
[
=]

B. C., 1: At x =0 and vy > 0

B. C. 2. At x>0 and y =0 ; T =T,

Introducing a new variable X, where X=y(c/9ax)’ 'eq.(Z.Z)

becomes,

dr 2dT _ ‘
;E;5+3X :£§~0 (2.3)

and boundary conditions are:

B. C. 1: At X

0, T

It
)
x

«

T

H
=3

B. C. 2: At X

The solution of eq.(2.3) is

T"Tw_ 1 X -x?
T_-T '0.893fo e dx (2.4)

w
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Temperature profile, eq.(2.4),.is used to derive the expression
for the local Nusselt number(Nu,) on the surface . a distapce X
from the leading edge-and the Nusselt number(Nu,) for laminar

flow in the entrance region of a circular tube as

hx X c (13 ‘
_hx _ , 2.
MU= 57893 { Sax ) | . (2.5)
and
1/3
NuX:1.077(Pe)”3(wg) (2.6)

In general, eq.(2.6) is applicable in the range 100<Pe(D/x}<5,000

and in this region it agrées with experimental data.
2.2.2 The Classical Graetz Solution.

One of the earliest analysis of laminar heat transfer with
Newtonian fluids in tubes was made by Graetz in 1885. It has been
thoroughly described by Drew(1931) and Jakob(1949). The analysis

has been extended to include a variety of boundary conditions.

The assumptions of the classical Graetz problem for laminar-flow
heat transfer in circular tubes(Figure 2.2) are:

1. Steady state has been attained,

2. Heat conduction in the x-direction .is negligible in
comparison with heat transport in the x-direction by the
overall fluid flow,

3. The fluid properties are constant,

4. Heat'produced by wiscous dissipétion is negligible,



5. There are no external(body) forces acting on the fluid,

6. Laminar parabolic velocity profile is assumed to be
established before heating or cooling of the fluidg,

7. At x = 0 the temperature of the tube wall chaﬁges from T,
to T; and is uniform at this value for x>0,

The continuity and momentum equations for this situation are:

Continuity :
du _ \
EE_O (2.7)
Momentum :
_.8p_ 1 d
pr dr(rt) | (2.8)

The velocity profile obtained is

I

u=2u,,[1-(£)%) : (2.9)

Assuming radial symmetry and neglecting heat conduction in x-
direction (the term containing &7/9x? ), energy balance equation
becomes,

or_ k 108 ,or .
Yo% Cpp[rar(rar)] ' (2.10)

Combining egs. (2.9) and (2.10),

Xy 9T_ k 1 9, 0OT |
2ug [1-( )15 cpp[Irar(rar)] (2.11)

Boundary conditions:

W
-

B.C.1: " At x =0 and at any r; T

B.C.2: At x > 0 and r = R ; T =T
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Solution of eqg.(2.11) gives T as a function of x and r. This
partial differential equation is solved by assuming that T—T. is
the product of two functions, one which is a funcfion of x and
the other is the function of r. The solutiog takes the form of

an infinite series as follows:

T-T, &= -B,2{x/R)
TT Eo Coba(L/R)eXp P o (2.12)

where ¢, are coefficients, ¢,(r/R) are functions of (r/R)
determined by the boundary conditions, and B8, are exponents

determined by the boundary conditions.

The local Nusselt number for laminar flow in circular tubes

predicted by the Graetz solution is

= C.%, (1) exp -B,%(x/R)

‘Nu =T Pe
R (1) ~B,2(x/R) (2.13)
n=9 2B 282 oxp pe

Hausen(1943) proposed the following equation for the mean Nusselt
number ‘over a length of pipe x as representing the Graetz
*

solution for constant wall temperature and parabolic velocity

distribution.

- 0.0668[ (x/D)/Pe]!
Nu _=3.66+
m 1+0.04[(x/D)/Pe]?/? (2.14)

where Nu, = hD/k for circulat tubes.
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Application of eq.(2.13) requires the use of a large number of

terms when (x/D)/Pe is small. For this case Sellars, Tribus, and

Klein(1956) proposed the relation

X/R A "1/3 X/R . :
Nu =1.357(— ; =0,
u, 7 P ) ; for Pa ¢.01 (2.15)

which is essentially the same as that obtained by Levegue

solution shown in eq.(2.6).

From eq.(2.13) the value of the local Nusselt number, Nu, as

(x/R)/Pe becomes large is

Nu,=3.656 ;  for :§é§>o.25 (2.16)

where Nu, is the asymptotic value of the Nusselt number when
(x/R)/Pe becomes greater than 0.25. Equation(2.13) is shown in

Figure 2.3 in the range 0.0001 < (x/D)/Pe <1.0.

2.2.3 Extension of the Graetz Problem; Velocity Profile Fully

Developed.

Sellars, Tribus, and Klein(1956) provided a useful extension of
the classical Graetz solution by considering boundary conditions
. other than constant wall temperature.

Case 1. Constant Wall Heat Flux. The differential eq.(2.11) is
applicable. The boundary conditions are:

B.C.1: At x = 0 and at any r; T =T

qw . aTb
B.C.2: At all x ; —=—=const and —— =const
A, ox
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. The Nusselt number is
1

11 1% exp([-B, (x/R)]/Pe) . (2.17)
AP R KL

Nu, =

X

For small values of (x/R)/Pe

x/R x/R

-1.639 (X/R ; X2
Nu,=1,639 y 7. for e <0-01 (2.18)
For large values of (x/R)/Pe

‘Nu_=4.364 ; for “;/fw 25 | (2.19)

Equation (2.17) is plotted in Figure 2.3.
Case 2. Linear Wall Temperature. The differential eq.(2.11) is
applicable. The boundary conditions are:
B.C.1: At x = 0 and at ahy r; T =T,
B.C.2: At x >0 and r = R ;
T =T, and T, -T, = cx, where Cc = const

The Nusselt number becomes

1., Z Cut' (1) o Pl (X/R).
2 % 28,2 Pe
Nu,= : (2.20)
mg_ E up'(L) o B2 (X/R) -
768 % 254 Pe

For small values of (x/R)/Pe

Nu,=2. 035("—”'1) ;  for %f-co 01 (2.21)
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For large values of (x/R)/Pe

Nu-4.364 ; for X/Raxo.s (2.22)

Pe

The limiting Nusselt number for case 1 is the same as for case
2; however, for the former the limiting Nusselt number is reached
whgn {(x/R)/Pe = 0.25, while in the latter it is reached when
(x/R)/Pe = 0.5. This means that the thermal entrance length (at.
constant Peclet number) for constant wall heat flux (case 1) is
one-half the thermal entrance length for linear wall temperature
(case 2). The thermal entrance length is that distance from the
beginning of heat transfer at which the Nusselt number becomes

independent of length,.
2.2.4 Laminar Heat Transfer With Developing Flow.

Since heat transfer often occurs at the actual entrance of a
tube, the velocity profile is not parabolic but is developing.
The Graetz solutions based on the parabolic velocity distribution
are not valid in these circumstances. This problem was coﬁsidered
by Kays(1955), who obtained a numerical solution of eg.(2.10) in
which the laminar velocity profile was assumed to develop
according to the relation derived by Langhaar(1942). Kays
considered'three boundary conditions:

(1) Constant wall temperature (Pr = 0.7)

(2) Constant wall heat flux (Pr = 0.7)

(3) Constant temperature difference (Pr = 0.7)
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The results of the numerical solution are shown in Figures 2.4
and 2.5. In Figure 2.4 values of the locél Nusselt number are
plotted as a function of (x/D)/Pe for the three boundary
conditions. Experimental‘ data of Kroll(l1951) are included,
indicating good agreement with the numeriqal solution. Equation_
é2.13), the classical Graetz solution is shown in Figqure 2.4 for
comparison.lFigure 2.5 is a plot of.the mean Nusselt number over
é length of tube x versus (x/D)/Pe for two of the boundary
conditions considered by Kays. Experimental data reported by
Kays(1951) are shown in Figure 2.5. Goqd agreement with the

numerical solution is found.

Kays also reported relationships for the mean and local Nusselt
numbers for the boundary conditions. These relationships are
summarized below.

1. Constant wall temperature {(Pr = 0.7):

Nu. =366+ .0.104[(x/D)/Pe]d

1+0.016[(X/D)/Pe]"m5 (2'23)_
2. Constant temperature d?fference (Pr = 0.7):
360 SO IOV R
-3. Constant wéll heat flux (Pr = 0.5):
Nu, =4.36+ 0.036[(x/D)/Pe]? (2.25)

1+0.0011[(x/D)/Pe]™?

Equations (2.23) to (2.25) may be used to predict Nusselt numbers
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for laminar flow in the entrance section of circular tubes. They
are strictly applicable to the flow of air or the common gases

since they were derived for a fluid with a Prandtl number of 0.7.

2.2.5 Empirical Correlations of Laminar flow Heat transfer

Data.

Experimental data are not plentiful; nor have all the available
data been obtained under conditions for which analytical
solutions are available, 1i.e., constant wall temperature,
constant heat input, etc. Another difficulty encountered in
comparing analytical and experimental results is due to variable
fluid properties Most theoretical work assumes constant flu:d
properties, but in practice the assumptlon is valid only in the
limit where temperature differences approach zero.  In dealing
with experimentel data the further questioe arises of whether
natural convection plays a significant role in the heat transfer.
~Some experimental results are shown in Figures 2.4 and 2.5, and

a good agreement with theoretical work is obtained.

Boehm{1943) studied the laminar flow heat transfer for the
cooling of oil in a tube. The heat transfer was studied after the
velocity profile was established, and Nusselt numbers based on
the arithmetic mean temperature difference were determined over
a section having a length-to-diameter ratio x/D of 124. Since the
data were obtained at essentially constant wall temperature, they
may be compared with classical Graetz solution. Figure 2.6‘is a

plot of Nu,, versus (x/D)/Pe, where Nu,,= h,,D/k, in which h,_
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is defined as

qv_
2 Haw ATy Tp)am. (2.26)

w

Boehm's data fall much below the curve fgr eq. (2.14) and agree
well with a curve for coocling obtained by Kraussold(1931).
Kraussold's curve f;r heating lies above that for co&ling.
Nusselt's laminar-flow data for air are plotted on Figure 2.6.
They were obtained at. fairly high values of {x/D)/Pe and fall
close to eq. (2.14). The following equation, proposed by Sieder
and Tate(1936), is also plottéd on Figure 2.6: A

x/D 13 Hy O
Nu, 5. =1.86( 5= (;9) (2.27)
W

(Properties evaluated at bulk temperature)

where py, is the viscosity of the fluid at its arithmetic mean

bulk temperature. Equation (2.27) gives Nusselt numbers somewhat

higher than the analytical Graetz solution.

The relatively poof agreement of experimental data with
theoretical results is probably due to natural-convection

effects, which are difficult to eliminate.

2.3 Laminar Heat Transfer to Non-Newtonian Fluids in Closed

Conduits.

This section presents theoretical and numerical analyses, and
empirical correlations on heat transfer with non-Newtonian
fluids. RAnalytical and theoretical results are compared with some

of the experimental data.
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2.3.1 The Graetz-Nusselt Problem for a Power law Non-Newtonian

Fluid.

Lyche and Bird(1956) showed how the Graetz-Nusselt problem can
be extended to non-Newtonian flow. They introduced a non-
Newtonian model, "Power Law", for the fluid instead of the
Newtonian one.

Using the assumptions, the equations of motion and energy in

cylindrical tubes become

. dp_ 1 d |
““ax rac'FY | (2.28)
and
T k .1 3, 0T
ua_cpp[rar rar)] (2.29)
where,
x| du midu
t= K'dr dr (2.30)

in which K and n are constants of the power law, obtainable from

experimental flowcurve.

Solution of eq. (2.28) gives the wvelocity profile as

1, 1
n

S

R" 1 dp tn

us——— ("5 =) (L17F) 7 Uy (1R

(2.31)

where,R'=r/R, and the solution of eq. (2.29) gives the

temperature profile as
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T-7, i .
O(R™, ¢) =5 =_‘L_‘i(-1)*‘131wi<z)¢i(fe'> (2.32)

where B, are constants, ®;(R") are the eigenfunctions, and

b;({)=exp(-c¢;{) . c, are the eigenvalues.

Average outlet temperature and the local ‘Nusselt number for

laminar flow in circular tubes predicted by this solution are:

av

“['o(R*, 2)u(R")R"dR "d
1,1, J, e Dury ¢

av’ TQFT 2 1 . . . (2.33)
v j; j;u(R )R *dR *do
and
Nu _1-8,,(0)
Y o lug/u,, (2.34)

Lyche and Bird made the calculations for n=1l, 1/2, 1/3, and 0 to
find the velocity and temperature distributions as a function of
dimensionless radial coordinate. Their calculations were the
first step in the study of heat conduction in hon-Newtonian flow
systems. There were no experimental data to make comparisons with

the theoretical data.

2.3.2 Extension of the Leveque Approximation to Non-Newtonian

Systems.

The Leveque approximation for the average Nusselt number for

laminar flow in a pipe has been given as
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h,.D o'c.pp? 3

= = — 5
Nu,, == =1.62 (—g27—) (2.35)

where a'is the velocity gradient at the wall. For Newtonian fluid ’

a' is 8u,,/D and in this case it becomes

h we 1/3
Nu,, = aVD;1.75(7L_2) (2.36)

-

Pigford(1955) has rewritten this in the form

h WC 1/3 ’
Nu,,= ;CVD=1.7551’3(T;1) (2.37)

where & is the ratio of the velocity gradient at the wall for the

‘non-Newtonian £fluid, a’ , to that for a Newtonian fluid,

8u,./D,i.e. 6 is defined as
!

6:_?.___ l P
8u, /D (2.38)

Pigford has also shown that & for Bingham plastics is given by

5= (l-r,/t,)

1-~g~(ty/tw)+--%(ty/tw)4 (2.39)

and in general, for all time-independent fluids by

_(3n'+1)
5'-—*‘——“, - (2.40)

Using this value of & ,eq.(2.37) applies for high flow rates,
(with Graetz numbers greater than 100) and values of n’' above
0.1. These conditions will normally be encountered in practice;
so this restriction is not serious. For the rare case of fluids

showing extreme pseudoplasticity at low Graetz numbers, Metzner,
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Vaughn and Houghton(1957) have presented an empirical correction
in place of 6 which is in the form of an interpolation between

the two limiting theoretical solutions for n' = 0 and n' = 1.

It is worth noting here that the correction for dilatant fluids
is never very great, for in the limiting case of 'infinite
dilatancy' n' = «, and Eqn.{(2.40) gives & = 3/4. Hence from

eq.(2.37) one gets for infinite dilatancy

ha Wwe 1/3
Nu,, = k"Dzl.sg(k—;) (2.41)

which ié slightly different from eq.(2.35) for Newtonian fluids.
The correction for pseudoplasticity could be greater as shown by
Figure 2.6 which shows the curves for a Newtonian fluid,
eq.(2.36), together with those for infinite dilatancy, eq.(2.41;,
and 'infinite pseudoplasticity' n' = 0, which is identical with

the case for piston flow.

Metzner et al.(1957) have also suggested an empirical correction
factor to take into account deviations from theory caused by the
distortion of the velocity profile by changes in viscosity due

to the radial temperature gradient. This is a generalization of

the Sieder-Tate viscosity ratio, (u/u,)?'* , which is widely used

in heat transfer correlations for Newtonian fluids. The
denominator in the generalized Reynolds number is k'8" "' and this
takes the place of fhe viscosity in the conventional Reynolds
number. Theréfore, in place of the Sieder-Tate correction.Metzne;

et al. have suggested (m/m,)}°'* where m = k'8""'. m is evaluated
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at the mean bulk temperature and m, at the wall temperature. The

final correlation for the average heat transfer coefficient then

becomes

WC_ 13 m;m 1/3
=1.7583(—£ =
8 (=7 (4 )

h,D
N - &
udV k

(2.42)

w

This equation was tested experimentally(38), and found to be
satisfactory, over the following range of variables:

n' : 0.18 to 0.70

WC,/kL : 100 to 2050

Re'  : 0.65 to 2100
The inclusion of thHe correction factor (m/m,)°** in eq. (2.42)
considerably improved the correlation of the experimental

results.

2.3.3 Experimental Work on Heat Transfer to Non~-Newtonian

' Fluida.

A number of analytical solutions of the equations of energy and
motion applicable to heat transfer to molten polymers have been
published. These include the work of Topper(1956), who considered
systems with a heat generétion term constant across a tube both
for a parabolic velocity profile and potential flow; that of
Lyche and Bird(1956), who studied the Graetz-Nusselt problem for
an incompressible power law fluid without heat generation; and
~various papers by Toor which déalt with the effect of expansion
on temperatures with 1little heat generation (1556), heat

generation and conduction in a viscous compressible fluid (1957),
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and heat +transfer in forced convection with internal heat
generation (1958). None of forgoing studies presented any

experimental data other than calculated quantities.

Griskey and Wiehe (1966) developed a precise, reproducible method
for measuring temperature profiles in flowing molten polymers
with heat transfer. They carried out experiments on heaf transfer
to molten polyethylene and polypropylene. Experimental data
determined by this method showed that viscous dissipation
occurred, but not at the level predicted theoretically. Nusselt
numbers calculated from the data checked theoretical Graetz-

Nusselt solutions.

2.3.4. Heat Transfer to Non-Newtonian Fluids with Temperatufe-
Dependent Flowbehavior Characteristics.

Early experiments indicated that neithef Graetz's nor Leveque's

solutions were capable of correlating experimental data owing to

failure to incorporate the effect of temperature on fluid

properties. Christiansen and Craig (1962) proposed a temperature

dependent equation

t=A[g%exp(%%)]n (2.43)

to represent the rheological properties of pseudoplastic fluids.
In the analysis natural convection and thermal energy generation
are negligible. Problem was solved numerically for heating of
both Newtonian and non-Newtonian fluids in laminar flow in tubes

of circular cross section with constant wall temperature.
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The energy equation for steady laminar flow after neglecting
longitudinal heat conduction and frictional heat generation

A

terms, is

g8tk Pt 10t -
ox PC, gr?: r or (2'44).

The fluid enters the heating section with a fully developed
velocity profile given by -

u 1
U: _ —_—
2

u,, 1LY o ng, -AH/BT 4D - 4R -
IR fR_(R )Hre dR "dR

1
f (R ')]Jne AH/BTdR .
R

(2.45)

The energy equation can be written in a dimensionless form as

36 Ty F6 , 1 ae) .
~+ 1L o U gr® R”GR" (2.46)
O(Gz) : '

Although analytical solutions to this equation are unknown,
numerical solutions were obtained through standard finite

difference techniques. The general procedure was to divide the

reduced radius into j equal parts of O6R’ each and then to start

at a reduced length 1/Gz equal to zero and to compute the
temperature distribution for steps of length &(1/Gz) . Second-
order approximations were used to evaluate all partial

derivatives in eqg.(2.46). The fesult of these second-order

approximations was a series of j simultaneous algebraic equatiocns

in 6(R",Gz) to be solved for each step of &6(1/Gz) . This set of

simultaneous equations was found to be especially adaptable to

solution by the Crout reduction method. When the reduced
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temperature distribution had been found at each reduced length,
the Nusselt number was determined from the solution of the

equation

folzR "UOdR "

Nu;%Gz

1 2.47;
1—_¥f 2R *U6dR * ( )
2Jo

The numerical solutions obtained are in good agreementrwith
experimental heat transfer data for heating of a 3% aqueous
suspension of CMC and a 0.75% aqueous suspension of CPM in
laminar flow in tubes with L/D ratios varying from 6 to 230,
fluid temperature increases up to 30°C, and temperature
potentials up to 70°C. The solutions -are believed to be
essentially exéct for plug flow for Nu < 1,000 and for Newtonian

and pseudoplastic flow at Nu < 100,

Christiansen, Jensen, and Tao (1966) extended the previous work
of Christiansen et al (1962) for the heating of non-~Newtonian
fluids to the case of cooling at constant wall temperature. They
cbmpared the numerical results with experimental data for the
cooling of 1.5.and 0.35% CPM solutions in water at constant tube

wall temperatures. The mean deviafion of experimantal data from

the numerical solutions was *8%

Mizushima et al (1967) performed experimental and analytical

studies in laminar horizontal flow heat transfer in non-Newtonian

pseudoplastic fluids, under conditions of constant heat flux at

the wall. They have taken into -account variation in viscosity
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with respect te temperature by including a correction term in the

consistency index. Their final correlation is of the form

3n+]1 1/3 0.1/n°7

Nu=1.41(

where K is the power law fluid consistency index, and K, is the

value of K at wall temperature.

Mitsuishi and Miyatake (1966) applied the Ellis model to develop
analytical solutions and these soiutions were subseguently
verified by them experimentally (1968), using a viscosity
correction of the form similar to that used by Mizushima et al.
For the constant wéll temperature case, analytical and
experimental data have been published by Christiansen et al (10,

11), Metzner et al (39).

Mahalingam, Tilton, and Cbulson (1975) developed analytical
solutions for heat transfer to non-Newtonian power law
pseudoplastic fluids in laminar flow in circular conduits. The
wall boundary conditions are constant heat flux and step change
in heat flux. Experimental data showed that the consistency index

as a function of temperature can be correlated as

K-ae®* (2.49)

'The energy equation remains the same as eqg.(2.44). The fluid

enters the heating section with a fully developed velocity

profile given by

) Gz () (2.48) .

G
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. - f 1Rf1/ne bt/ngR ¢
_ 18 Jx

2 r1_ 1
u,, 2 f R'] R /% Pt/ngR 4R
0 R®

(2.50)

The energy equatioh can be written in a non-dimensicnal form as
X GrR? R R - (2.51)

or as

0X 5r*2 R'AR” (2.52)

In order to evaluate the Nusselt numbers, the mean bulk

temperature can be obtained from
v 1 . .
Tav=j0 2R "UTdR (2.53)

and the local Nusselt number from

_2(gqR/k)

Nux W (2.54)

The partial differential equation is solved using finite
difference solution technique. The 'marching solution’ method has
been used for the numericalﬁsolution. In order to calculate the
wall'temperature and center-line temperature, the temperature
profile is approximated to a power series. A 3-term series given
by

1 2AR g R .
Tw=§[4T{1-AR')7T(1'25R.)+_T] (2.55)
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has been found to be adequate. For cases wherein step increase

in wall heat flux has to be studied, the step-change heat fluxes

are induced via this equation.

In numerical solutions Mahalingam et al consider the cases of low
heat fluxes wherein natural convection effects are negligible.
Effect of viscosity variation has been taken into account in the
numerical computation. Numerical results are good in agreement

with experimentally measured values.

Forrest and Wilkinson (1973) investigated the heat transfer to
temperature dependent non-Newtonian fluid numerically. They used

a temperature dependent rheology given by the equation:

T=T, tK{v)"

(2.56)
Consistency K is given by
K P
= 2.5
1+ﬁj_(T_Tj_)n ( )7)

Where K, is the value of K at the fluid inlet temperature T, and
B3, is a constant which characterizes the temperature dependent
properties of the fluid. This mode; includes both power law and
Bingham plastic behavior. The two boundary conditions of constant
wall temperature and constant wall heat flux are considered for

both heating and cooling.

The energy equation eq.(2.44) is applicable. The fluid enters the

heating section with a fully developed velocity profile given by
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'l , Cp -y iin .
. JR.(I-WBG)(R R',)""dR

uav

1
PR -1 {2.58)
2] R'J (1+88)(R -R",)"dR "dR"

0 L’ .

The energy eguation can be written in a dimensionless form as

eg.(2.51}). Nusselt numbers are

Constant wall temperature:

Nu —""="% — —
a K n 1 2.59
(ew'_geﬂ) . ( )
Constant wall heat flux:
Dh 2
Nu =—9%=-
YTk T e, 65" (2.60)
where
‘1 " - .
902]0 2R "U6dR (2.61)

The eqguations are solved numerically to yield solutions as
functions of a number of dimensionless parameters, viz:

Constant wall temperature:

UR',XGR',X=f[szn!(ty/tw)_f.fﬁi(p] (2.6)2)

Constant wall heat flux:

UR‘,XQR',x:f[GZrnr(ty/tw)irﬁIW] ) (2.63)

The numerical technique used to solve the partial differential
equation consisted of a Crank-Nicholson, Thomas algorithm

.implicit finite-difference scheme using 100 radial increments and
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an initial axial step length of 10°°. Numerical results obtained
by Forrest and Wilkinson are gcod in agreement with the previous

work of Jensen (1l1) and Hirai (28).

Faghri and Welty (1977) perfqrmed a complete solution for
laminar, fully developed flow in a circular pipe with uniform
entrance temperature subjected to a wall heat flui which is
uniform axially but circumferentially variable. Non-Newtonian
fluid behavior characterized by a lpower law constitutive
relationship was used in the analysis. The expressions for fluid
temperature, wall temperatgre, and local Nusselt number are given
in terms of the wall heat flux distribution. Any circumferential

distribution is allowed so long as it may be expressed in Fourier

series form.

2.3.5 Heat Transfer to Non-Newtonian Fluids Considering

Viscous Heat Generation.

Popovska and Wilkinson {1977) studied numerically the problem of
laminar heat transfer tc Newtonian and non-Newtonian fluids in
tubes considering viscous dissipation. They used the power law
model for fluid rheclogy. Consistency index K is represented by

a polynomial of the form
logK=A+BT+CT%+.v.... (2.64)

In order to simplify the problem it is assumed that
1. The flow is laminar and steady and the radial compconent of

velocity can be neglected.
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2. Conduction of heat in the axial direction is negligible,
which is justified when RePr>>100,

3. The heat capacity, C,, and the thermal conductivity, k, are

constant.

4. The density, P, is independent of temperature and natural

convection effects can be ignored.

The initial and boundary conditions for the pfoblem are:
a) The velocity profile at the tube inlet is fully developed
and the temperature is uniform.

b) The tube wall temperature is constant.

On this basis the simplified equations of motion, energy and

continuity are as follows:

Equation of motion:

_0P_1 d
%L ar_(.r."]:) (2.65)

\ Equation of enerqgy:

or_k 3, 3T, _ou

oC u {r

Mok Tar e tar (2.66)

Equation of continuity:
;  W=2nm fﬁrudr 2 .67
P, (2.67)

The average Nusselt number is defined on fhe basis of an average

heat transfer coefficient as

g 2 Dal Gz (To-T;)
¥ Tk m T, (T,+T;)/2

(2.68)
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The theoretical predictions have been confirmed by comparing them
with experimental £emperature and velocity profiles obtained for
a Newtonian o0il and non-Newtonian polymer solutions. Both heating
and cooling,experiments have been carried out for a range of
Reynolds numbers from 2-700. The Graetz number variation was from
80-1600. The experimental Nusselt.numbers were also compared with
the theoretical predictions and with those calculated from the
generally accepted design correlations of tﬁe Leveque form. The
agreement between the theoretiéal predictions and the
experimental results was good. Empirical design correlations gave

poor predictions for cooling cases.
-

Dinh and Armstrong (1982) performed an approximate analytical
solutions for estimating the local temperature rise from viscous
heating in slit and tube flow of non-Newtonian fluids with small
Nahme-Griffith numbers, i.e., fluids whose viscosities are
independent of temperature. An arbitrary values of h as well as
the limiting cases of infinite h (isothermal wall) and h equal
to zero (insulated wall) are considered in the solution.
Assumptceins made in the.solution are:
1. The'physical properties of the fluid, in particular
the viscosity, are independent of temperature.
2. The velocity profile is fully developed prior to x=0.
3. Axial conduction is small compared to axial
convecticn.
For the assumptions given above, the equations of motion aﬁd

energy for this problem in rectangular coordinates are:
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..4p, d _du (2.69)
dx dz 'dz
aT _, &'T 5
PO =k =S (V) (V) (2.70)

These equations are solved analytically using the WKB-J method.
For the slit flow problem and the tube floﬁ problem, the lowest
eigenvalues, which will be the least accurate, obtained by the
WKB-J method are in good agreement (.10% error in the worst case)
with numerical results. The higher eigenvalues are pfactically

indistinguishable from the numerical values.

2.3.6 Heat Transfer to Non-Newtonian Fluids Considering

Natural Convection.

In forced convection heat transfer problems, there are situations
where the natural convection effects are significant. For the
case of Newtonian fluids, the presence of natural convection mey
increase the rate of heat transfer by a factor of 3-4. This
effect has been examined by Colburn(1933), Martinelli and
Boelter(1962), McComas and Eckert(1966), Shannon and Depew
{1969), and Pigford(1955). The natural convection correction term
is the group (GrPr(D/L)), which is added to the forced convection
group. Jackson, Spurlock and Purdey (1961) were the first to
discard the factor (D/L) from the natural convection group, based
on experimental data for flow in horizontal tubes. In addition
to natural convection, there is also viscosity variation with

temperature. This causes velocity profile distortion and has been
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considered by Sieder-Tate by including the bulk-wall viscosity
ratio. Oliver (1962) investigated the effects of natural
convection and radial viscosity variation in an experimental
study of laminar heat transfer fo water, glycerol, and ethyl
alcohol in a horizontal tube, with constant temperature at the
wall. He concluded that the natural convection effects are

independent of D/L. His relationship is expressed as

h 0.75 l
(—"’kf)b(%:) =1.75[Gz,+0.0083(Gr, pPr, )% 7513 (2.71)

In the case of non-Newtonian fluids, Metzner and Gluck (1960)
have'used the Eubank and Proctor (1951) relationship to correlate
data on ammonium alginate (n=0.5), apple sauce (n=0.65) and
banana puree (n=0.46). For conditions of constant wall

temperature , their final correlation is
t‘l

h v'D U £F 0.14 y
k;m }ng) - =1.75[Gz,+12.6(Gr Pr D/L)%%]1%? (2.72)
eliy

Oliver and Jensen (1964) correlated their data on pseudoplastic

fluids in the following form

0.14

He
2y [Gz,+0.0083(Gr Pr )0 75)!/3 (2.73)

Nu,=1.75(

eff

L4

and suggested that the Metzner-Gluck correlation over-corrected

for ‘natural convection at large temperature differences.

Mahalingam et al. (1975) correlated their data on Newtonian

fluids using these equations
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0.14
Nub(fﬁ) =l.418[GZb+12.G(erper/L)OAO]lH (2.74)
b
Nu (uw)OJA-l 418[Gz,+0.0083 (Gr 0.75491/3
AT i btV WETy) ) (2.75)
b .

Equation (2.75) which does not include the D/L term is, however,
more successful in correlating the data, if the constant term is
modified to 1.50. The success of eq.(2.75) also indicates the
insignificance of D/L ratio and is similar to the observations
of Cliver and Jensen, eq.{2.73). The criterion for the onsét of
natural convection ef%ects is the ratio Gr/Re. This ratio
expresses the bucoyancy forces in relation to inertia forces.
Based on the reéults of Mahalingam et al{1975), the criteria may
be expressed as:

Gr/Re > 2.0

Gr/Re? > 30 x 10
They alsc correlated the data on non-Newtonian pseuvdoplastic

fluids conéidering natural convection wusing the following

relations
Kw 0.14 1 B / 0.41/3 i
Nub(}z) Erﬁg—l.46[sz+12.6(erPer L)y%* (2.76)
v ()" L1 46(62,+0.0083(G 0.75y1/3
b(Kb) AL [GZ,+0. (Gr pPr,) "] (2.77)

Equation (2.77) is seen to fit the data better than eq.{2,76).

As in the Newtonian case, the criteria for the significance of
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natural convection are

Gr/Re > 1.0

Gr/Re* > 7.0 x 10

2.3.7 Empirical Correlations of Laminar flow Heat transfer

Data of Non-Newtonian Fluids.

Joshi and Bergles (1981) studied the problem of heat transfer to

laminar flow pseudoplastic fluids in circular tubes with constant

heat flux. A correlation of these results includes temperature-

dependeht K effects for entrance and fully developed regioné. In

formulating the equation the following assumptions were made:

1.

2.

The flow is steady and axisymmetric.

Axial conduction is negligible.

Free convection effects are negligible.

The usual boundary layer approximations are valid: since
pseudoplastic fluids exhibit flat velocity and temperature
profiles near fhe tube centerline and sharp profile
gradients near the wall.

K is temperature-dependent according to the constitutive

equation of most industrial fluids as

* K-ae ®T (2.78)

With these assumptions, the general governing equations in

cylindrical coordinates reduce to

Continuity:

-

d d »
= . 7
5§(pur)+5;(pvr) 0 (2.79)
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Momentum (x-direction):

du__ du dp 1 d ‘
— —_— e T e 2'8
M Ver T Tax T ar(rt) : ( 9)
Energ&:
JaT oT _k JT du 2 :
OUC, G " OVC, L~ o (r ) i, () (2.81)

Far away from the tube inlet, fully developed velocity and

temperature profiles exist. In this region, v = 0, du/dx=0 ,

and JT/c0x=dT/dx . With these simplifications, eqgs.(2.79) to

(2.81) reduce to the fully developed governing equations.

The numerical method wutilizes a form of DuFort-Frankel
differencing which results in a scheme for which the axial step
» size is not severely constrained due to stability considerétion
of the axial pressure gradient for each axial Step. This 1is
accomplished by numerically integrating the finite-difference
form of the axial momentum equation over the tube cross-section
and employing the overall conservation of mass constraint to
eliminate the integral of the axial velocity from the equation.

The pressure gradient can then be evaluated explicitly.

The correlation strategy was to correlate various property
effects in the entrance region and in the fully developed region.
An interpolation formula was then devised to correlate both
regions with a single equation. The following general relation

is proposed for the thermal entrance region:

=
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(W}:if)e—(%)'" (2.82)
where m = 0.58 - 0.44n.
For the fully developed region,'the data are correlated as
HEﬂﬁE:l+(0.12392—0.0542n)yAF—(0.010133~0.0068n)(YAF)2
Nu, . - (2.83)

This equation is valid up to vAT=6 , which covers the range of

normally encountered heat fluxes.

The above two asymptotic correlations were combined by the

interpolation technique suggested by Churchill and Usagi (1972)

as

(Nu,, ,/Nu_ . ..)
NUV =Nu D, N cp,n 5 |
$=F] cp,n-l 30 1/30 (2.84)
1 ( (Nu,, /Nu, 3, -1y
(NUVPJH/NUCPM)” (Nuvp,n/Nucp,n)e

This equation represents an accurate, explicit correlation of the

numerical predictions, which is very convenient for design

purposes.

No experimental data are available in the fully developed region
and in the transition region from the thermal entrance region to
the fully developed region. Data are needed in these regions to

examine the accuracy of this correlation.
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2.3.8 Heat Transfer to Laminar Non-Newtonian Flow in Curved

Tubes.

Curved tubes are often used in different types of ﬁrocess
equipment. The study of flow and heat transfer in such tubes is
required for the proper design of the corresponding equipment.
Althougﬁ the Newtonian flow in curved tube has been extensively

analyzed, there appears to be little theoretical work on the non-

Newtonian flow in curved tubes.

Hsu and Patankar (1982) for the first time performed a numerical
solutions of the differential equations that govern the laminar
fully developed velocity and temperature fields of a power law
fluid flowing in a curved tube. Results for the velocity and
temperature fields, the friction factor, and the Nusselt number
are presented for different wvalues of the Deén number
(Re(R/R.)'?), the Prandtl number, and the power law index. For
largé radius of curvature, the non-Newtonian flow is governed by
the power law index and by thé modified Dean number. The heat
transfer is additionally governed by the Prandtl number. The
axial velocity profiles are distorted by the centrifugal force,
although they tend to be flatter for lower values of fhe power
law index. The secondarf flow in the tube cross section exhibits
an interesting boundary layer behavior, especially at high Dean
numbers. The friction factor increases with the Dean number and

also with the power law index.



The overall heat transfer coefficient also increases with the
Dean number. Indeed, the increase in the heat transfer
coefficient is more pronounced than that in the friction factor.
Thus a curved tube appears to be an attractive device for heat

transfer enhancemernt for all the values of the power law index

considered.

The local heat transfer coefficient varies significantly over the
circumference of the tube for low Prandtl numbers. The heat
[ ] .

transfer coefficient becomes more uniform as the Prandtl number

increages.



CHAPTER-III

STATEMENT OF THE OBJECTIVES

The objective of this work is to carry out a numerical analysis
of heat transfer to time-independent non-Newtonian fluids
considering viscous dissipation and temperature dependence of the

related physical and thermal properties.
The specific objectives are:

1. To predict the temperature and velocity porfiles for non-
Newtonian fluids during heat transfer in laminar flow in

tubes with constant wall temperature.

2. To predict the heat transfer rates for non-Newtonian fluids

with the same condition as mentioned above.

The fluids considered are:
* 1.00% Cellofas B-10

* 0.50% Cellofas B-300

%

0.15% Cellofas B-3500

0.27% Cellofas B-3500

»*»

-

*# 0.40% Cellofas B-3500
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"Cellcofas™ is the trade name of Sodium Carboxymehtyl Cellulose
produced by ICI(UK) and "B-10" etc. indicate different grades

based on molecular weight,

Rheological data of these fluids obey th% power law model,
Consistency index, K, depends on temperatufé and a polynomial
expression has been used to describe this effect. The temperature
dependent density, heat capacity and thermal conductivity data

of water are used in the analysis because the solutions are

dilute.



CHAPTER-IV

FORMULATION OF THE PROBLEM

This work is concerned with heat transfer to time-independent
non~Newtonian fluids in steady laminar flow in straight tubes.
The rheological equation used in this work is the well known

power law, vigz;

du .,

- ar (4.1)

where T,, is the shear stress, n is a temperature-independent

exponent which is less than unity in the present work and
consistency index, K, is temperature-dependent according to the

equation given below:

1og,K(T)=A+BT+CT*+..... (4.2)

This relationship is superior to the analytical forms previously

used (10,11) or the hyperbolic relationships(20).

The problem of heat transfer in laminar flow in straight tubes
is considered for the boundary condition of constant wall
temperatufe for heating (Fig. 4.1). The other conditions are:
1. The velocity profile at the inlet of heat transfer section
is fully developed.
2. The temperature at the inlet of heat transfer section is

uniform at T,.
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3. The flow is laminar and steady.

4. The axial velocity u, , hereafter designated as u,is only

- function of r while u, and u, are zero.

5. The fluid density, po, thefmal conductivity, 'k, and heat
capacity, C, , are temperature dependent. These are water
properties as the solutions are dilute.

6, The‘radial velocity profile within the heated section will

change as a result of changes in the rheological properties

with temperature.

For the assumptions stated above, the equations of continuity,

momentum and energy for this problem in cylindrical coordinates

are.

Continuity :

g

{pu)=0

0x _ (4.3)

Momentum :

_op_1 0
cxX r ar(rtrX’ (4.4)
Energy :

oF , 1 d,.or. &T. _ du .
pcpua_k[rar(ré?)+ax2] Trx 57 (4.5)

The expression for shear stress, T, , is given in eq.(4.1).
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Boundary conditions for eq.(4.2) and (4.3) are:

B.C.1: At r = 0 T,, = 0

B.C.2: At r = R u =0 (no slip at the wall)

Boundary conditions for eq.(4.5) are:

B.C.1: At x = 0 and at any r; T = T;

B.C.2 and 3: At x 2 0 and r

it

R ; T =T

Equations (4.3) to (4.5) are used in the present study. The
numerical methodology used for solving these equations are given

in chapter VI.

Definition of Nusselt numbers
It is wuseful to represent the results of heat transfer
calculations by plotting Nusselt numbers against the Graetz

numbers,

Mean Nusselt Number: For constant wall temperature, a mean

Nusselt number may be defined as:

Nu,=h _D/k (4.6)

The mean heat transfer coefficient, h,, for a tube of length x 'is

defined in terms of the terminal temperatures as

WC (T,-T,
hm P( 10 1) ’ (4.7)
nDx (T, Q(TQITO))
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where T, is the bulk outlet (i.e. cup mixing) temperature, and W

is the fluid mass flow rate. Further we have

» R V
wc;(TofTi)=2ncppL}ru(T~Ti)dr

hence, )

R

2pcpj ru(T-T,)dr
J0

Nu_= -

m

kX(Tw*%(Ti+TO))

L)

(4.8)

(4.9)

Local Nusselt Number: Local Nusselt number for flow through a

tube with constant wall temperature can be defined as:

hD

Nux=—if

(4.10)

The local convection heat transfer coefficient, h, is defined as

_k 0T
© r,-T, dr’,
hence,
=B (L
- T, -7, odr

-where T, is the bulk temperature at x.

{4.11)

(4.12)



CHAPTER-V

COMPUTER PROGRAM

5.1 Description

The program used in this work is TEACH-T, a general computer
program for solving conservation equations for heat, mass,
momentum, etc. by finite difference method. The program is

written by A.D. Gosman and F.J.K. Ideriah (1976).

TEACH-T is a general program for steady, 2-dimensional flows. The
flow may be laminar or turbulent, and of variable properties. It
can be made to handle compressible flows. It should be noted that
the progrém can conveniently be used for unsteady, l-dimensional
cases, and it can easily be extended to encompass 3-D flows. The
program is for flows which can be represented in Cartesian or

cylindrical coordinates, and the grid may be non-uniform,

5.2 Contents of the Program.

There are six general subréutines relevant for any particular
variable to be solved : CONTRO, INIT, PROPS, PROMOD, LISOLV and
PRINT. 1In addition, there is a major set of CALC¢ subroutines,
where ¢ is the particular variable solved. The inter—connection

between the various subroutines is shown in Figure 5.1.
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The functions of different subroutines are described bellow:

CONTRO: Overall control is exerted by the main subroutine CONTRO.

The functions of this subroutine are

1.

CALC¢

Specification of grid, control parameters, constants of
problem, etc.

Calculation of grid parameters, initialization of arrays
(via INIT), prescription of fixed boundary values,
preliminary output, etc.

Initialization and control of iteration. It also gives
intermediate outputs.

Final operations, 1like calculation of shear  stress
coefficient, normalization of profiles, etc., as well as
the final output,.are carried out.

These'subroutines make the main calculations of the

finite difference equations for each variable ¢. Functions are

1.

2.

INIT

Calculation of the coefficients over the entire field.
Modification of the sources and boundary coefficients to
suit the particular problem through PROMOD.

Assemble all the coefficients and also caculates the

residual sources.

.‘Fihally'equations are solved by LBL(line~by-line) procedure

through LISOLV,

It performs initialization tasks. Functions are
Calculation of grid co-ordinates, inter-node distances,
cell dimensions and so on.

Initialization of the dependent variables. Specifically,

the starting variable fields (except density and viscosity)
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are set to zeroj

PROPS : Fluid properties (viscosipy, density, etc.) based on

user—supplied formula are calculated by this subroutine.

PROMOD : Modifications of sources and boundary conditions are

made in PROMOD,

LISOLV : This subroutine performs LBL (line-by-line) ;teratioq.

PRINT : Provides output of dependent variabile arrays,

INIT, LISOLV, PRINT, and the set of CALC¢ subroutines are
independent of problem type. Modifications to suit individual

problems are required only in CONTRO, PROMOD, and in rare

instances PROPS.
5.3 Verification of the Program.

The computer program used here is tailored by modifying TEACH-T
which can solve flow and heat transfer problems for Newtonian
fluids. A number of ‘tests were carried out by sclving a variety
of flow and heat transfer problems to assess the usefulness of

this tailored program. During the test runs, the flow condition

was always laminar.

The cases examined during the test runs inciude
a. developing laminar flow for a Newtonian fluid with flat
velocity profile at the inlet,
b. developing laminar flow for a power 1aw fluid with flat
velocity profile at the inlet,

Cc. classical Graetz problem,
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d. heat transfer with temperature dependent viscosity for
Newtonian fluid, and
e. heat transfer with temperature dependent K for a power law
fluid.
Computed results were graphically presented along with available
analytical solutions and experimental data. Figures 5.2 and 5.3
show the velocity profiles for Newtonian and non-Newtonian
fluids in the developing region respectively. Figure 5;4 shows
the Graetz problem in the form of a plot of Nu, (local Nusselt
number) against Pe/(x/D). Figures 5.5 and 5.6 show the plot of
velocity profiles for both Newtonian and non-Newtonian fluids for
the case ef heating respectively. Similarly figures 5.7 and 5.8

show the plot of temperature profiles.

Coﬁputed results are found to agree with the analytical solutiocon
and available data. The deviations observed in case of available
data are likely due to error in regression analysis to fit
viscosity and consistency index, K data and size of the grids

used for computation.

]



CHAPTER-VI

NUMERICAL SOLUTION

6.1 Introduction

This chapter represents.;he numerical solution procedure of the
governing differential equations presented in chapter IV, i.e.
eqg.(4.3) to (4.5). The general form of the governing differential
equations is:

o

1 IR "S- Y. R
r[ax(prutﬁ’) aX(JL“T‘BX) ar(1“1"81_)] Sy (6.1)

where, ¢ = variable of interest

unity for continuity

u for momentum

T for energy

du n-1

D = Heee(=K|- dr

) for momentum

k/C. for energy

n
1

= Source or generation term

zero for continuity (mass can't be generated)

cP
= -—=— for momentum
ax :

du
= _IEE/CP for energy



6.2 The Method of Discretization.

The governing differential equations can be discretized in many
ways. An overview of the discretization method for the numerical
solution of the fluid flow problems is given by Patankar(1980).
In the present study the finite volume approach, as described by
Gosman et al (1969) and others, is adopted. In this appreach, the
governing differential equations are discretized by integrating
them over a finite number of control volumes or computational
celis, into which the solution domain are divided. A typical
computational cell is shown in Figure 6.1. Typical discretized

transport equation (e.g. eg. 6.1) will take the following

quasilinear form.

(a,-b)¢,=Xa, ¢, +c (6.2)
where, the a,, are coefficients multiplying the values of ¢ at
the neighbouring ncdes surrounding the central node P. The number
of neighbour depends on the .interpolation practice or

differencing scheme used. The a,, contains combined convection and

diffusion contribution at the control volume faces, i.e.
c D |
a,,=@nptanp (6.3)
a, is the coefficient of ¢, given by
apzzanb ( 6.4 )

and, b and c are obtained by linearizing the source term as

follows.
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The source term, right hand term of eq.(6.1), is evaluated hy

intregrating the volumetric socurce S, over the volume of the

computational cell and expressed as

—fVS¢dV:b¢p+C' (6.5)

where, ¢ stands for the constant part of the source term where

b is the coefficient of ¢p and often a function of ¢p.

Since the direct solution methods (i.e. matrix inversion) require
very large computer storage and time and since the governiﬁg
transport equations are non-linear, (the discretized governing
transport equations are seemingly linear but a, being the

function of ¢p makes them virtually nonlinear) the discretized

equations are solved using the SIMPLE (Semi-Implicit Method forx
Pressure-Linked Equations) ~ algorithm of Patankar and
Spalding(1972) by repeated sweeps of a line-by-line application

of the Tri-Diagonal Matrix Algorithm (TDMA) {Patankar|[198017).
6.3 Differncing Scheme.

Central différenéing scheme (CDS) is used to describe the
diffusion terms in the present study. If a piece-wise linear
profile of ¢ is asssumed between P and E (Figure 6.6), the cell

face value ¢, is given by

¢’e=¢sfp+¢’p(1_fp)
(6.6)



53
where f, is a linear interpolation factor defined as

AXp \ (6.7)

f = ee———————
?Ax rAXg

Here- - Ax, and Ax; are the cell dimensions along X coordinate for

P and E cells (Figures 6.1 and 6.6).

In this scheme a. and a, are always negative and if the convection
process dominates this can cause the whole coefficient a,, to
assume negative value. As a result the Scarborough criteria fails
and produce unbounded solutions (Spalding[1972], Rahtby and
Torrance [1974]). At high Peclet number the CDS also violates the
transportive property by employing downstream nodes in
expressions given above. For These reasons application of CDS is

limited to low Reynclds number problems.

Upwind differencing scheme(UDS) is used to discretize convection 3

terms in the- present study. In the UDS convecticon term is
calculated assuming that the value of ¢ at an interface {see
Figure 6.7) is equal to the value of ¢ at the grid point of the

upwind side of the faces. Thus

¢, = ¢, 1f £, >0

= ¢, 1f £, <0

In this scheme all the coefficients contributing to a, are always
non-negative., As a result Scarborough criteria is satisfied. UDS

also satisfies the property of transportiveness, and thus the



boundness of the solution is guaranteed.

In terms of Taylor Series Truncation Error(TSTE) analysis, the

UDS is first order apprcoximate.
6.4 Solution Prbcedure
6.4.1 Grid and Variable Arrangement |

In the present study, the numerical solution is acceomplished on
a variably spaced staggered mesh {see for example Caretto et al
(1972) and Patankar (1980)], in which the scalef quantities
{including pressure, density, viscosity, thermal conductivity)
are defined at the centre and the normal velocities at cell
faces, as shown in Figure 6.5. It has the advantage that the
variables u, v, p are stored such that the pressure gradients
which drive the velocities u and v are easy to evaluate and
moreover the velocities are located where they are needed for the

calculticn of convective flux.
6.4.2 Calcultion of Pressure

The pressure gradient forming part of the source term in the
momentum equation is to be obtained before the velocity field is
calculated and it is the pressure field through which the

continuity equation is satisfied.

-
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The SIMPLE method of Patankar and Spalding(1972) is used in Lthe

present study to obtain pressure,

6.5 Boundary Conditions

The forms of boundary conditions encountered in the present study

and their implementations are described below.

(1)

(11)

Inlet Boundaries : Fully deveoped velocity profile and
uniform temperature are specified.

Qutlet Boundaries : The gradients of all variables in

the axial direction are zero, i.e., —g%=0.

(iii) Wall Boundary : at the solid wall velocities are set to

(iv)

zero, and constant temperature is specified.

Symmetry-axis Boundary : The gradients of all wvariables

are zero, i.e.,-g%:O, at the axis of symmetry.

6.6 Solution Aigoritm

The important operation in the order of their execution are

(i)
(ii)

(iii)

(iv})

Initialise all field values by an initial guess.

Solve momentum gquations and abtain u. The u velocity at
this stage is not accurate because if is obtained with
guessed pressure field.

Sclve the continuity equation to obtain the pressure p.
This pressure field satisfies both the momentum and
continuity eqution, |

Calculate correct u from the values obtained in step(ii)

and newly calculated pressure p.
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(v) Solve the discretized equation for other variables if
they influence the flow field through fluid properties,
source terms etc.
(vi) Treat, the corrected pressure p as a new guessed pressure

and return to step (ii) and repeat the whole prccedure

until a converged solution is obtained.

In the present study, the convergence criterion is that the sum

of the normalised absolute residuals at all computational nodes,

defined
i i ;. il i it .
Ry =ZN‘(ap_b( l))‘ﬁ[(s )_Zanb ;(1; )_C{ll)|/Nf (6.8)

should fall below a specified level R;<103_ Here N is the total

number of nodes, r the iteration counter and N, the normalization

factor.



CHAPTER-VII

RESULTS AND DISCUSSIONS

7.1 Introduction

In this chapter, the results of the numerical ﬁrediction of
laminar heat transfer with time-independent non-Newtonian fluids
in straight tubes considering viscous dissipation are presented.
Cellofas (trade name of Sodium Carboxymethyl Cellulose) of
different grades and concentrations are used as working fluid in
the present work. Rheological data of these fluids obey the power
law model. Consistency index, K, is a strong function of
temperature. A polynomial expression has been used to describe
this effect. As the solutions are dilute, density, héat capacity

and thermal conductivity of water are used in the analysis.

7.2 Domain of Solution and Computational Grid

The solution domain shown in Figure A.l is bounded by the inlet
plane, exit plane, solid wail and the axis of symmetry. The
entire computational domain is divided into 20 vertical grid
lines and 20 horizontal grid lines. The grid distributioﬂ in the
calculation domain is uniform in the x-direction and non-uniform
in the y-direction. The mesh is contracted near the tube wall
region all over the whole calculation domain such that the ratio

between the two successive steps in space is constant and equal

to .90

P
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7.3 Grid Independence Test

To obtain a solution independeﬁt of the number and spacing of'the
grid nodes, grid dependence test was performed. The test was done
at Reynolds number 126 for_two grid sizes: 16X16 and 20X20. Each
time close spacing was maintained near the tube wall, where rapid
changes of the flow variables occur. For this test, predicted u-
velocity and T-profiles are compared at various axial digtances
fof two different grid sizes. Thé predictions for both the grid

sizes remain the same and hence the solution is independent for

any grid sizes.
7.4 Presentation of Results

7.4.1 Physical Property Used
In the present work five different non-Newtonian fluids are used.
These are cellofas of different grades and concentration such as:
1.00% cellofas B-10
0.50% cellofas B-300
0.15% cellofas B-3500
0.27% cellofas B-3500

0.40% cellofas B-3500

As the solutions are very dilute, physical properties such as
density,'thermal conductivity and heat capacity of water are used
in the calculation. Temperature dependent equations are used for

these properties. The equations are:

P
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Density:

0=1000.186+8.77X10 3T-5.98X10 *T2+2.15X10 *T* 4.50X10 °T"

Thermal Conductivity:

k=.5529+2.48X10 3T-1.47X10°T72+2.58X10 8T73+¢.77x 1274

Heat Capacity:

C,=4217.07-2.609T+4.99X10 *T%-3.46X10 T3+1.03Xx10Q °T*

The rheological data were taken from the work of Quader and
Wilkinson (59),see Table 7.1. The flow behavior index, n,lis
independent of temperature, whereas the consistency index, K, is
a strong function of temperature. K can be expressed’ as a

polynomial of the form

log,K=a+bT+cT? (4.2)

where K is in M.X.S unit and T is in °C. The values of constants

a, b and ¢ are found by regression analysis and are given in

Table 7.2.
7.4.2 Variables/Parameters Used in the Presentation

The computed results are presented graphically’in Figures 7.1-
7.34 and the main features are discussed in the subsequent
[ ]

section. 'Variables/parameters used in the presentation are

described below.



TABLE 7.1
The values of consistency index, K and flow

behavior index, n.

Temp. °C n K
(C.G.S5. units)

1.00% Cellofas B-10

8.5 1.000 0.099
16.0 1.000 0.076
27.5 1.000 0.0525

0.50% Cellofas B-300
21.0 . 0.835 0.558
40.8 0.835 0.335
58.5 0.835 0.218
0.15% Cellofas B-3500
21.0 0.850 0.241
40.8 0.850 0.158
58.9 0.850 0.101
0.27% Cellofas B-3500
19.0 0,705 1.085
43.8 0.705 0.635
58.5 0.705 0.410
0.40% Cellofas B-3500
17.8 0.64 3.04
41.8 0.64 1.80

58.3 0.64 1.27
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TABLE 7.2

Values of constants of eq.(4.2)

a bX10* cX10°

1.00% Cellofas B-10
-1.8646 -17.04 70.52

0.50% Cellofas B-300
-1.0113 -11.70 8.25

0.15% Cellofas B-3500
-1.4569 -6.85 -38.96

0.27% Cellofas B-3500

~—

~0.86096 -3.75 -89.69

0.40% Cellofas B-3500
-.34275 -9.93 7.49

61
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R : Dimensionless radius, r/R

8] : Dimensionless velocity, u/u,,

Théta: Dimensionless temperature, (T-T,)/T,

T./T, : Ratio of wall temperature and inlet fluid

temperature, T./T;>1 for heating

Gz : Graetz number, WC,/kx
Gz’ : Another form of Graetz number, (4/m)}Gz = Pe/(x/D)
Nu, : Local Nusselt number, hD/k= - b (EEH
. o T,-T, " or'*
R
2pCpf ru(Tr-r;)dr
Nu, : Mean Nusselt number, Nu,= 0 I
kX(Tb‘?i(Ti+To))
. ué’JlKi
Br : Brinkmann number, ———
kT.R™!

7.4.3 Description of the Graphs

Velocity profiles:

Figures 7.1-7.11 represent. the wvelocity profiles, i.e.
dimensionless velocity as a function of dimensionless radius.In
Figures 7.la-c parameter is concentration or pseudoplasticity,
n. These are plots at a particular dimensincless axial distance,

i.e. Graetz number, Gz, for different temperature ratios T,/T,.

Figures 7.2-7.6 represent the velocity profiles for individual
cellofas at a particular axial distance. T,/T, is the parameter
of these plots. Figures 7.7-7.11 represent the velocity profiles
for different types of cellofés at a particular temperature
ratio. Dimensionless axial distance, Gz, is the parameter of

these plots.
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T erature profiles:
Figures 7.12-7.22 represent the temperature profiles, 1l.e.
dimensionless temperh%ure,e, as a function of dimensionless
radial distance, R'. Figures 7.12a-c represent the temperature
profiles at particular Graetz ‘number, Gz, for different
temperature ratios, T./T;. Concentration of the solutions or

pseudoplasticity, n, is the parameters of these plots.

Figures 7.13-7.17 represent the temperature profiles for
individual cellofas at a particular axial distance. Temperature
ratio, T./T,, is the parameter of these plots. Figures 7.18-7.22
represent the temperature profiles for individual fluids at
constant temperature ratio, T,/T,=1.13. Here Graetz number, Gz,

is the parameter.

Heat transgfer rates:

Heat transfer data have been evaluated in the form of both local
Nusselt number, Nu, and mean Nusselt number, Nu,. Figures 7.23-
7.28 represent the local Nusselt number as a function of Gz’ or
Pe/(x/D). Figure 7.23 is a plot for different types of cellofas
at constant teﬁperature ratio, T,/T,=1.13. Here concentration of
the solutions or pseudoplasticity, n, or Brinkmann number, BR,
is the parameter. Figures 7.24-7.28 represent Nu, as a function
of Pe/(x/D) for individual fluids. Tempe;ature ratio, T,/T, and

Brinkmann number, Br, are the parameters.

Figures 7.29-7.33 show the plots of mean Nusselt number, Nu,, as

a function of Graetz number, Gz, for individual fluids..T,fTLand
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Br are the parameters for these plots. Figure 7.34 show the plot

of Nu, vs Gz for the heating of B-3500 with different
ti‘

concentration at constant temperature ratio, T./T,=1.13.

Pseudoplasticity, n, and Brinkmann number, Br, are used as the
parameters.
7.5 Discussion of Results.

7.5.1 Velocity:?rofiles

Effect of Pseudopalsticity, n, on Velocity Profile:;

Figures 7.la-c show the velocity profiles for five céllofas
solutions for different T,/T, at constant Gz. It is seen that at
a given value of T.,/T,, as n decreases, the velocity profile
becomes flatter, 1i.e. velocity gradients are increased in the

tube wall region and decreased near the tube centre.

Effect of T./T, on Velocity Profile:

Figures 7.2-7.6 show the velocity profiles for each of five
cellofas solutions at different T,/T,. It can be seen that for
particular fluid at a given Graetz number, 6z, as T,/T,
" increases, the velocity profile becomes flatter, i.e. velocity
gradients are increased near £he tube wall region and decreased
near the tube centre. The increase in temperature in the wall
region dedreases the fluid consistency. This leads to increased

velocity gradients near the wall.



Effect of Gz on Velocity Profiles:

Development of velocity profiles for heating of Cellofas
solutions are shown in Figures 7.7-7.11. It is seen that at a
given temperature ratio, as the Graetz number decreases, the
velocity profile becomes flatter, i.e. velocity gradients are
\incfeased in the tube wall region and decreased near the tube
centre. For a particular temperature, as the Graetz number
decreases, the temperature gradients near the wall decreases,
Figure 7.18, i.e. the temperature of the streams near the tube
wall is high in comparison to the streams near the tube centre.

At higher temperature fluid consistency decreases, which leads

to increased velocity gradients near the wall at low Graetz

number.
7.5.2 Temperature Profiles

Effect of Pseudoplasticit n, on Temperature Profile:

Figures 7.12a-c show the temperature profiles for five cellofas
solutions for different T,/T, at constant Gz. At low temperature
ratio, i.e. at T./T;=1.068, temperature profiles remain almost
same. At higher temperature ratio, it is seen that at a given
dimensionless axial distance, i.e. the Graetz number, temperature
gradients near the wall increase as the value of n decreases,

Figures 7.12b-c.

Effect of T./T, on Temperature profile :

Temperature profiles for individual fluid at different T,/T, are

shown in Figures 7.13-7.17. It is seen and obvious that at a
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given Graetz number, temperature gradients are high for higher
temperature ratio near the wall. As temperature increases,

consistency index of fluid decreases, which leads to increased

temperature gradient.

Effect of Graetz Number, Gz, on Temperature Profile:

Figures 7.18~7.,22 present the temperature profiles for individual
fluid at different Graetz number, Gz. It is clear that for any
of five fluids, as the Graetz number increases, the temperature
gradients near the wall increase, 1i.e. at entrance region
temperature gradients near the tube wall are higher than that of
the region away from the entrance. For this reason, at the

entrance region, i.e. at large Graetz number, heat transfer rate

is high, Figure 7.23.
7.5.3 Heat Transfer Rates.

Heat transfer data have been evaluated in the fqrm of both local
Nusselt number, Nu,, and mean Nusselt number, Nu,. These are

shown in Figures 7.23-7.34.

Effect of Pseudoplasticity and Viscous Dissipation on_ Heat
Transfer:

Local Nusselt numbers for different types o0of cellofas as a
function of Gz’ are shown in Figure 7.23. It is seen from the
figure that at a given temperature, as pseudoplasticity
increases, i.e. n decreases, rate of heat transfer increases

slightly. It is also seen that Brinkmann number, Br, i.e. shear
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heating effect increases with the increase of pseudoplasticity.
As the solutions are not so viscous, the value of Br is small and
the viscous dissipation effect is also small. As pseudoplasticity
increases, velocity gradients near the tube wall region increase
slightly, Figure 7.1b, which enhances the heat transfer rate

slightly by the increase in Nu,, Figure 7.23.

Figure 7.34 shows Nu, as a function of Gz for the heating of
Cellofas B-3500 with d;fferent concentration. It is seen that at
a constant temperature ratio, as n decreases, Br increases, which
" results in high heat transfer at large Gz, i.e. near the
entrance. At a constant temperature ratio, velocity gradients
near the tube wall region increase as the pseudoplasticity
increases, i.e. n decreases. These increased velocity gradients
result in high viscous dissipation. It is evident that
consistency of fluid increases with the decrease of n, which

results in high viscous dissipation.

Effect of Temgeraturg Ratio on Heat Transfer:

Local Nusselt number for individual fluids at different
temperature ratio are presented in Figures 7.24-7.28. It is clear
from the figures that for any of five fluids, Nu, or rate of heat
transfer increases with the increase of temperature ratio. As the
temperature increases, cdnsistency of fluid decreases, which
increases velocity gradients near the tube wall region. This

results in high heat transfer at higher temperature ratio.
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Mean Nusselt number as a fﬁnction of Graetz number for individual
fluid at different temperature ratio ére presented in Figures
7.29-7.33. It is also seen that Nu, or rate of average heat
transfer increases with temperature ratio at large Graetz number
but it remains same at very low Graetz number. At entrance
region, i.e. at large Graetz number temperature gradients are
high at higher temperature ratio and hence the higher rate of
heat transfer, Velocity gradients are also high near the tube
wall region at higher temperature ratio in the entraﬁce region.
This leads to high viscous dissipation and consequently high heat
transfer. Far away from the entrance, i.e. at very small Graetz
number, temperature profiles are fully developed and these remain
same at different temperature ratio. For this reason heat"
transfer rates remain constant at low Graetz number for different

temperature ratio.

Range of variables in the investigation are:
n :0.64 - 1.0
Re :0.88 - 24.0
Pr :40 - 1300
Gz :2 - 10000
Br 14.0X10°°% - 1.74X10°
T,/T, :1.068 - 1.233



CHAPTER-VIII

CONCLUSIONS

This study of heat transfer with time-independent non-Newtonian
fluids in laminar flow condition in tubes with constant wall

temperature for heating leads to the following conclusions:

1. For a particular temperature ratio velocity profile becomes

flatter as the pseudoplasticity increases, i.e. value of n

decreases.

2. For a particular fluid, ~velocity profile also becones

flatter as the value of temperature ratio, T./T,, increases,

3. The effect of pseudoplasticity on temperature profile is
small. For a particular temperature ratio, T./7T;,
temperature gradients near the wall increase slightly as the

pseudoplasticity increases.

4. The effect of temperature ratio on temperature profile is
significant. For a particular fluid, temperature gradients

are high for higher-temperature ratio near the wall.

5. Temperature profile is also a strong function of Graetsz
number, Gz. Temperature gradients near the wall increase

markedly with the increase of Graetz number.
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Efféct of pseudoplasticity and viscous dissipation'onnheat
transfer rate are interrelated. Viscous dissipation is a
direct function-of fluid consistency, ‘K, and K increases
with the pseudoplasticity. This combined efféct is small
because these fluids do not have large values for K. Heat

transfer rate increases slightly with the increase of

pseudoplasticity.

Effect of temperature ratio on heat transfer is significant

at higher Graetz number. At low Graetz number effect is

small.



CHAPTER-IX

SUGGESTIONS FOR FUTURE WORK

The scope of extension and development of the present study are

given below:

The same prediction can be carried out with large number of

fine grids which may produce more accurate results.
Similar study can be made in developing region.

Present work can be extended for the flow through concentric

tubes, and also for the flow through helical tube.

The same prediction can be made for cooling with constant

temperature at the tube wall.

Present work can be extended with constant heat flux at the

tube wall both for heating and cooling.

Experimental measurements are reguired to verify the

theoretical prediction.
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APPENDIX-A

Finite Difference Form of Equation

The finite difference form of energy equation used in this study is
presented here. Due to similar nature and method of discretization, other
equations are not shown. The energy equation , eq.(4.5), can be written in
the following form

oT 3T koT 3'T _ ou

Cu—mk—0t——+k— -1, —
P ot T roar ox  ™ox

This equation is solved by a finite difference method. A system of grid
lines running in x and r directions, i.e. m and n lines, are imposed on the
solution domain as shown in Figure A.1. The line at n=1 is located on the
centre line and at n=N on the tube wall. The axial grid line at m=1 line is
lying on the inlet boundary, x=0. The grid spacing are defined as:

Ar,=r., T,
Arymr,-r,

Ax=x,—-x,

The last term of the energy equation is source term, and is evaluated by

integrating the volumetric source over the volume of the computational

cell, eq.(6.5). The finite difference forms of the other terms are written as

follows:
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So, the final equation obtained is

(Tmn _Tm- A
(pcp)m,,um-—l.n\ Ax l ) -
Ar,

o ,[Ar1 Ar, +Ar ) mret = Tona)* Ar,(Ar, +Ar,)(T""" 'T"'~’§"

(E_) [ Ar, (

-T
r ,,,,,,lAr,(Ar,+Ar,)\T'"""" """) Ar‘,(l!\r‘,ﬂsr2

2 [Tapu=Tay Tpa-T,

+k mR __mna m,n-l ]

~*(Ar, +Ar)| A Ar, ]

r m+ln 2Tm,n + Tm-l,n ]
"'km. Ax® 1

where, §, is the source term.
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