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ABSTRACT

Heat transfer characteristics for the heating of the dilute,

solutions of different types of Cellofas in straight tubes are

studied ,numerically in laminar condition with constant wall

temperature considering viscous dissipation. The scope of this

study is limited to numerical prediction of velocity profile,

temperature profile and the rate of heat transfer at steady fully

developed condition.

"TEACH-T", a general computer program has been used for this

purpose. After sufficient testing against bench-mark experimental

and analytical data, the computer program was used for the

prediction of flow and heat transfer data.

The present study is confined to a tube of fixed diameter 17.4

mm. Power law model describes the flow behaviour of the fluids

and the fluid consistency, K is temperature dependent. To study

the effect of heating on velocity profile, temperature profile

and the rate of heat transfer, three different temperature ratio

T./T., namely, 1.068, 1.13 and 1.233 were considered.

Present study indicates that velocity profile becomes flatter

with the increase of pseudoplasticity and temperature ratio, The
•

effect of pseudopastici ty on temperature profi Ie is small but the

effect of temperature ratio is significant. Effect of

pseudoplasticity and viscous dissipation on heat transfer rates

are interrelated. This combined effect is small because the

fluids considered do not have large values for consistency, K.
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viii
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CHAPTER-I

1.1 Background

The processing of non-Newtonian fluids is of great industrial
importance. These fluids are characterized by a nonlinear
rheogram or shear stress-shear rate relationship. Emulsions,
slurries, and polymeric melts, solutions, and dispersions are
mostly of .non-Newtonian nature. Of the many types of non-
Newtonian fluids considered in the literature, pseudoplastic
fluids are most commonly encountered.

The rheograms for most of these pseudoplastic fluids are quite
accurately represented by the equation suggested by Eyring et
al (1955).

(1.1)

where AI, BI and Yare constants, and S is shear rate.

The occurrence of the shear rate in both the linear and
inverse hyperbolic sine terms of eq. (1.1) makes this
relationship somewhat cumbersome for many engineering
purposes. Consequently the empirical Ostwald-de-Waele or power
law equation eq.(4.1) has often been used as an approximate
representation of pseudoplastic rheology (10, 13, 19, 31, 50).
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In some cases eq. (4.1) has been found to fit rheological data

as well as or better than eq. (1.1). In the present study,

eq.(4.l) is used to describe the fluid rheology.

1.2 Motivation Behind the Selection of the Study

The industrial importance of non-Newtonian behavior 1"C"->

generally known and the types of non-Newtonian behavior

encountered have been discussed by many authors; nevertheless,

not a single satisfactory method is available for the

prediction of heat transfer rates to highly non-Newtonian

fluids such as viscous slurries, gels, and polymeric melts and
solutions(38). A study of the literature indicates that,
methods for predicting heat transfer to pseudoplastic fluids

in laminar flow did not adequately incorporate ~he effect of

the viSCOSity-temperature dependency. Those who considered the

temperature-dependent rheology is specific to the fluids are,
•involved. One of the purposes of this investigation was to

determine a realistic viscosity-'temperature dependency of
Cellofas solutions and, based on this, to develop accurate

methods for the prediction of heat transfer coefficients for

the heating of these pseudoplastic fluids in laminar flow in
tubes of circular cross section with constant wall
temperature.

1.3 Importance of Numerical Investiga,t.;on

The emergence of computers together with the development of
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more versatile and efficient numerical solution method has led
•

to a substantial increase in the assembly of mathematical
modelling of flow prcess. Nowadays, in the engineering
design of heat transfer related problems, designers are
looking for computational investigations to seek the optimum
design, as experiments with either model or full scale
prototype are generally laborious, expensive, cmd time
consuming.

The theoretical prediction enables to operate an existing
equipment more safely and efficiently. Prediction of the
relevant process help in forecasting and even controlling
potential dangers. These predictions offer economic advantages
too.

1.4 The Present Contribution

The present study deals with the numerical investigation of
heat transfer with specific time-independent non-Newtonian
fluids. The fluids are dilute solutions of Cellofas of
different grades and concentrations.

The specific contribution of this study are

a. variation of velocity profile with pseudoplasticity, n;
temperature ratio, TwiT, ; and Graetz number, Gz.

•
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b. variation of temperature profile with pseudoplasticity',

n; temperature ratio, T./T, ; and Graetz number, Gz.

c. variation of heat transfer rate with temprature ratiCl,

T./T. and viscous dissipation.

1.5 Thesis Outline

The remaining part of the thesis is divided into eight
chapters. In Chapter II, relevant literature is briefly
reviewed in this area. The objectives of the present work are

listed in Chapter III.
•

Formulation of the problem is presented in Chapter IV.
Computer program used in this work is described in Chapter V
and the method of solution is in Chapter VI.

The results and discussions are presented in Chapter VII.
Finally in Chapters VIII and IX, the findings of the preslimt
work and suggestions for future work are preslm'ted

respectively.



CHAPTER-II
LITERATURE REVIEW

2.1 Introduction

The study of laminar heat transfer with non-Newtonian fluids is

of considerable industrial importance. Several studies have been

carried out on heat transfer to non-Newtonian fluids in tubes in

laminar condition(lO,ll,12,l9,20,35,36,38,50). These fluids are

characterized

relationship.

by a nonlinear shear stress-shear rate

There are different kinds of non-Newtonian fluids, but the mos:t

important type to-date from the industrial viewpoint is pseudCi-

plastic behaviour. Most of these pseudoplastic fluids are

satisfactorily represented by the empirical Ostwald-de-Waele or
power law equation.

. du n
r=-K( -)dr (2.1)

In section 2.2 literature on laminar heat transfer to Newtonian

fluids and subsequent developments are discussed. Heat tranSfE!r

to non-Newtonian fluids are presented in section 2.3.
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2.2 LaminarHeat Transfer to Newtonian Fluidll in C10BI.d

Conduits.

Whenheat transfer occurs during laminar flow of a fluid, thEl

transfer through the fluid is by conduction alone. Nomixing of

the fluid, like that occurring during turbulent flow, takes•

place. In practice' it is difficult to obtain truly laminar flo,w

during heat transfer except in very small passages. Natural

convection currents are usually present, and under these

conditions conduction alone is not the only modeof heat transfer

to be considered.

2.2.1 The Leveque Solution.

Oneof ,the simplest solutions for the laminar flow heat transfElr

coefficient in circular tubes _is that of Leveque(1928). The

,analysis applies directly to laminar flow heat transfer on a fl.Lt

plate, but the results maybe easily applied to circular tubee;.

The Leveque solution yields a solution in the region near the

wall considering a fluid flowing over a surface under the

following conditions(Figure 2.1):

(1) The fluid properties are constant.

(2) The surface temperature is uniform at Tw•

(3) The undisturbed fluid temperature is T•.

(4) Heat transfer is due to conduction alone.

(5) The velocity of the fluid is

u = cy , v = 0 , w = 0
•



.,
where y = direction outward normal to surface

c = constant

The fluid temperature T is a function of x and y. For small

values of y,

negligible. Using these simplifying assumptions, the differential
equation for laminar flow heat transfer without viscous
-dissipation becomes,

aT OZTcy-=a--ax iJy2

where, a=k/Cpp and boundary conditions are:

(2.2)

B. C. 1:
'.

B. C. 2.

At x = 0 and y > 0 ; T = T.
At x > 0 and y = 0 ; T = T.

Introducing a new variable X, where X=y(c/9ax)1/3

becomes,

and boundary conditions are:

eq.(2:.:!)

(2.3)

B. C. 1:

B. C. 2:

At X = 0 " T = T.

At X = '" , T = T.

The solution of eq.(2.3) is

T-T" 1 1, x -x'---=--- e dX
T=-T" 0.893 0

(2.4)
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Temperature profile, eq.(2.4), is used to derive the expression

for the local Nusselt number(Nux) on the surface. a distancl~ >t

from the leading edge and the Nusselt number(Nux) for laminar

flow in the entrance region of a circular tube as

hx x C 1/3

NUx~k~ 0.893 ( 9ax)

and

D 1/3
Nux~l. 077 (Pe) 1/3 (-)

x

(2.5)

(2.6)

In general, eq. (2.6) is applicable in the range 100<Pe(D/x)<5,OOO

and in this region it agrees with experimental data.

2.2.2 The Classical Graetz Solution.

One of the earliest analysis of laminar heat transfer with

Newtonian fluids in tubes was made by Graetz in 1885. It has bel~n

thoroughly described by Drew(1931) and Jakob(1949). The analysis

has been extended to include a variety of boundary conditions.

The assumptions of the classical Graetz problem for laminar-flow

heat transfer in circular tubes(Figure 2.2) are:

1. Steady state has been attained,

2. Heat conduc~ion in the x-direction is negligible in

comparison with heat transport in the x-direction by the

overall fluid flow,

3. The fluid properties are constant,

4. Heat produced by viscous dissipation is negligible,
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5. There are no external(body) forces acting on the fluid,
6. Laminar parabolic velocity profile is assumed to be

established before heating or cooling of the fluid,
7. At x = 0 the temperature of the tube wall chan~es from T.

to T. and is uniform at this value for x>O.
The continuity and momentum equations for this situati.on are,:
Continuity :

., ';

du ~O
dx

Momentum
dp 1 dO~-----(n)
dx rdr

The velocity profile obtained is

(2.7)

(2.8)

(2.9)

Assuming radial symmetry and neglecting heat conduction in x-

direction (the term containing (f-T/ ax2 ), energy balance equation

becomes,

(2.10)

Combining eqs. (2.9) and (2.10),

(2.11)

Boundary conditions:
B.C.1:

B.C.2:
At x = 0 and at any r;T = T.
At x > 0 and r = R T = T.

(
\
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Solution of eq. (2.11) gives T as a function of x and r. Thill

partial differential equation is solved by assuming that T-T. is

the product of two functions, one which is a function of x and

the other is the function of r. The solution takes th,e form o,f

an infinite series as follows:

(2.12)

where c. are coefficients, $.(r/R) are functions of (r/R)

determined by the boundary conditions, and a.' are exponen1:s

determined by the boundary conditions.

The local Nusselt number for laminar flow in circular tubl~s

predicted by the Graetz solution is

(2.13)

Hausen(1943) proposed the following equation for the meanNussel t

number .over a length of pipe x as representing the Graetz

'.solution for constant wall temperature and parabolic' veloci'ty

distribution.

Nu ;3.66+ O.0668[(x/D)/Per1

m 1+O.04[(x/D)/Per2/3

where Nu. = h.D/k for circular tubes.

(2.14)
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Application of eq.(2.13) requires the use of a large number of

terms when (x/D)/Pe is small. For this case Sellars, Tribus, and

Klein(1956) proposed the relation

x/R -1/3
Nux=1.357(-~) ;Pe for X/R';O.Ol

Pe (2.15)

which is essentially the same as that obtained by LevequE'
solution shown in eq.(2.6).

From eq. (2.13) the value of the local Nussel t number, Nu., as
(x/R)/Pe becomes large is

for X/R>0.25
Pe (2.16)

where Nu. is the asymptotic value of the Nussel t number when

(x/R)/Pe becomes greater than 0.25. Equation(2.13) is shown in

Figure 2.3 in the range 0.0001 < (x/D)/Pe <1.0.

2.2.3 Extension of the Graetz Problem; Velocity Profile Fully
Developed.

Sellars, Tribus, and Klein(1956) provided a useful extension of

the classical Graetz solution by considering boundary conditions
other than constant wall temperature.

Case 1. Constant Wall Heat Flux. The differential eq.(2.11) is
applicable. The boundary conditions are:
B.C.1 : At x = 0 and at any r; T = T.

B.C.2: At all x qw =const and
Aw

aTb--=constax
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The Nnsse1t number is

For small values of (x/R)/Pe

(2.17)

For large values of (x/R)/Pe

for X/R<O.Ol
Pe (2.18)

NU~~4.364 ; for xIR~O.25
Pe (2.19)

Equation (2.17) is plotted in Figure 2.3.
Case 2. Linear Wall Temperature. The differential eq. (2.11) i.s
applicable. The boundary conditions are:
B.C.1:
B.C.2:

At x = 0 and at any r; T = T.
At x > 0 and r = R ;

T = T. and T. -T. = ex, where c = const
The Nusselt number becomes

For small values of (x/R)/Pe

for XIR<O.OI
Pe (2.21)
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For large values of (x/R)/Pe

for X/R~O.5
Pe (2.22)

The limiting Nusselt number for case 1 is the same as for case
2; however; for the former the limiting Nusselt number is reached
when (x/R)/Pe = 0.25, while in the latter it is reached when
(x/R)/Pe = 0.5. This means that the thermal entrance length (a.t
constant Peclet number) for constant wall heat flux (case 1) is
one-half the thermal entrance length for linear wall temperature
(case 2). The thermal entrance length is that distance from the
beginning of heat transfer at which the Nussel t number becomE~s
independent of length.

2.2.4 Laminar Heat Transfer With Developing Flow.

Since heat transfer often occurs at the actual entrance of a
tube, the velocity profile is not parabolic but is develop5.nC:J.
The Graetz solutions based on the parabolic velocity distribution
are not valid in these circumstances. This problem was considered
by Kays(1955), who obtained a numerical solution of eq.(2.10) in
which the laminar velocity profile was assumed to develop
according to the relation derived by Langhaar(1942). Rays
considered three boundary conditions:

(1) Constant wall temperature (Pr = 0.7)
(2) Constant wall heat flux (pr = 0.7)
(3) Constant temperature difference (Pr = 0.7)
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The results of the numerical solution are shown in Figures 2.4

and 2.5. In Figure 2.4 values of the local Nussel t number are

plotted as a function of (x/D) /Pe for the three boundary

conditions. Experimental data of Kroll(1951) are included,

indicating good agreement with the numerical solution. Equation

(2.13), the classical Graetz solution is shown in Figure 2.4 for

comparison. Figure 2.5 is a plot of the mean Nusselt nuIDber over

a length of tube x versus (x/D)/Pe for two of the boundary

condi tions considered by Kays. Experimental data reported by

Kays(1951) are shown in Figure 2.5. Good agreement with the

numerical solution is found.

Kays also reported relationships for the mean and local Nussel.t

numbers for the boundary conditions. These relationships are

summarized bel.ow.

1. Constant wall temperature (Pr = 0.7):

0.104[(x/D)/Pe)-1
1+0.016 [ (x/D) /Pe )O.B

(2.23)

2. Constant temperature difference (Pr = 0.7):

Nu
m
=4.36+ 0.10[ (x/D)/Per1

1+0.016[ (X/D)/PerO.B

3. Constant wall heat flux (Pr = 0.7):

Nu =4 • 36 + 0 • 036 [ (x / D) / Pe r1
x 1+0.001l[ (x/D)/pe)-l

(2.24)

(2.25)

Equations (2.23) to (2'.25)may be used to predict Nussel t numbers
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for laminar flow in the entrance section of circular tubes. They
are strictly applicable to the flow of air or the common gases
since they were derived for a fluid with a Prandtl number of 0.7.

2.2.5 Empirical Correlations of Laminar flow Heat transfer
Data.

Experimental data are not plentiful; nor have all the available
data been obtained under conditions for which analytica.l
solutions are available, i.e. , constant wall temperature"
constant heat input, etc. Another difficulty encountered in
comparing analytical and experimental results is due to variable
fluid properties. Most theoretical work assumes constant fluid
properties, but in practice the assumption is valid only in the

•
limit where temperature differences approach zero ..In dealing
with experimental data the further question arises of whethElr
natural convection plays a significant role in the heat transfer.
Some experimental results are shown in Figures 2.4 and 2.5, and
a good agreement with theoretical work is obtained.

Boehm (1943) studied the laminar flow heat transfer for the
cooling of oil in a tube. The heat transfer was studied after the
velocity profile was established, and Nusselt numbers based on
the aritfu~etic mean temperature difference were determined over
a section having a length-to-diameter ratio x/O of 124. Since the
data were obtained at essentially constant wall temperature, they
may be compared with classical Graetz solution. FigurE~ 2.6 i.sa
plot of Nu•.•.versus (x/O)/Pe, where Nu•.•.= h•.•.O/k, in which h•.•.
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is defined as

q" =h (T -T )A a.m. w b oS.m.

"
(2.26)

Boehm's data fall muchbelow the curve for eq. (2.14) and agre.e

well with a curve for cooling obtained by Krausso1d(1931) ..•
Krausso1d's curve for heating 1ies above that for cool ing.

Nusse1t's laminar-flow data for air are plotted on Figure 2.6.

They were obtained at fairly high values of (x/D)/Pe and fall

close to eq. (2.14). The following equation, proposed by Siede,r

and Tate(1936), is also plotted on Figure 2.6:

/v -11) IJ 0.14
Nu =1. 86 (~) (......£ )'.m. Pe IJ"

(Properties evaluated at bulk temperature)

(2.27)

where IJb is the viscosity of the fluid at its arithmetic mecln

bulk temperature. Equation (2.27) gives Nusselt numbers somewhat

higher than the analytical Graetz solution.

The relatively poor agreement of experimental data with

theoretical results is probably due to natural-c:onvect.i()n

effects, which are difficult to eliminate.

2.3 L8IIIinarHeat Transfer to Non-Newtonian Fluids in Closed.

Conduit •.

This section presents theoretical and numerical analyses, and

empirical correlations on heat transfer with non-Newtonian

fluids. Analytical and theoretical results are comparedwith some

of the experimental data,
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2.3.1 The Graetz-Nusselt Problem for a Power law Non-Newtonian
Fluid.

Lyche and Bird(1956) showed how the Graetz-Nusselt problem can

be extended to non-Newtonian flow. They introduced a non-

Newtonian model, "Power Law", .for the fluid instead of the

Newtonian one.

Using the assumptions, the equations of motion and energy in

cylindrical tubes become

dP 1 dO=-----(n:)dx r dr

and

aTk 1 a aTu-=-[--(r-)]ax CpP r ar ar

where,

l:=-KI du (1 dudr dr

(2.<:8) ,

(2.29)

(2.30)

in which K and n are constants of the power law, obtainable from

experimental fl9wcurve.

Solution of eq. (2.28) gives the velocity profile as

(2.31)

where,R'=rjR, and the solution of eq.

temperature profile as

(2.29) gives the
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(2.32)

where B, are constants, ~i(R') are the eigenfunctions,and

Wi(~)=exp(-ci~) .c, are the eigenvalues.

Average outlet temperature and the local Nussel t nwnber for
laminar flow in circular tubes predicted by this solution are:

(2.33)

and

(2.34)

Lyche and Bird made the calculations for n=l, 1/2, 1/3, and 0 to
find the velocity and temperature distributions as a function of
dimensionless radial coordinate. Their calculations were the
first step in the study of heat conduction in non-Newtonian flow
systems. There were no experimental data to make comparisons wi.th
the theoretical data.

2.3.2 Eztension of the Leveque Approzimation to Non-Newtonia~
Systems.

The Leveque approximation for the average Nussel t number fOl~
laminar flow in a pipe has been given as
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(2.3!;)

where a' is the velcici ty gradient at the wall. For Newtonian fluid '

a' is 8u••/D and in this case it becomes

h.P we 113
Nu ~--~l. 75(~)

.v k kL

Pigford(1955) has rewritten this in the form

h n we 1/3
Nu ~_a_V-_~l75<51/3( --p).v k' kL

(2.36)

(2.37)

where <5is the ratio of the velocity gradient at the wall for the

non-Newtonian fluid, ai, to that for a Newtonian fluid,

8u••/D, i. e. <5is defined as

(2.:38)

Pigford has also shown that <5for Bingham plastics is given by

and in general, for all time-independent fluids by

<5 - (3n 1+ 1 )
4nl

(2.39)

(2.40)

Using this value of <5,eq.(2.37) applies for high flow rat:es,

(with Graetz numbers greater than 100) and values of n' above

0.1. These conditions will normally be encountered in practice;

so this restriction is not serious. For the rare case of flujLds

showing extreme pseudoplastici ty at low Graetz number!>,Met2:ner,
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Vaughn and Houghton(1957) have presented an empirical correction

in place of 0 which is in the form of an interpolation between

the two limiting theoretical solutions for n' = 0 and n' = 1.

It is worth noting here that the correction for dilatant fluids

is never very great, for in the limiting case of 'infini til

dilatancy' n' = "', and Eqn.(2.40) gives 0 = 3/4. Hence from

eq.(2.37) one gets for infinite dilatancy

I ~
'., ~)

h ,JJ we 1/3
Nu ~~'-=l 59(--p)

av k • kL (2.41)

which is slightly different from eq.(2.35) for Newtonian fluids.

The correction for pseudoplasticity could be greater as shown by

Figure 2.6 which shows the curves for a Newtonian fluid,

eq. (2.36), together with those for infinite dilatancy, E,q.(2.41) ,

and 'infinite pseudoplasticity' n'= 0, which is identical with

the case for piston flow.

Metzner et al.(l957) have also suggested an empirical correction

factor to take into account deviations from theory caused by the

distortion of the velocity profile by changes in viscosity due

to the radial temperature gradient. This is a generalization 'of

the Sieder-Tate viscosi ty ratio, (JilJiw) 0.14 , which is widely used

in heat transfer correlations for Newtonian fluids. The

denomin.ator in the generalized Reynolds number is k'an
"'1 and this

takeE the place of the viscosity in the conventional Reynolds

number. Therefore, in place of the Sieder-Tate correction Metzner

et ai. have suggested (m/m" )0.14 where m = k '.an
'-1. m is evaluat,ed
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at the mean bulk temperature and m. at the wall temperature. 1'hl~

final correlation for the average heat transfer coefficient then

becomes

h n we 113 1/3
Nu ~_.v-_~l75c51/3(~) (..E!..)

aVk' kL mw
(2.42)

This equation was tested experimentally( 38), ,and found to be
satis~actory, over the following range of variables:

n'
WC./kL

Re'

0.18 to 0.70
100 to 2050
0.65 to 2100

The inclusion of tne correction factor (m/m.),.14in eq. (2.42)
considerably improved the correlation of the experimen.tnl

results ..

2.3.3 Experimental Workon Heat Transfer to Non-Newtoloian

Fluids.

A number of analytical solutions of the equations of energy and
motion applicable to heat transfer to molten polymers have beeln
published. These include the work of Topper (1956), who considerEld
systems with a heat generation term constant across a tube both
for a parabolic velocity profile and potential flow; thai: of
Lyche and Bird(1956), who studied the Graetz-Nusselt problem for
an incompressible power law fluid without heat generation; and
various papers by Toor which dealt with the effect of expansion
on temperatures with little heat generation (1556), heat
generation and conduction in a viscous compressible fluid (1957),

i,



22

and heat transfer in forced convection with internal heat

generation (1958). None of forgoing studies presented any

experimental data other than calculated quantities.

Griskey and Wiehe (1966) developed a precise, reproducible method

for measuring temperature profi les in flowing mol ten polymers

with heat transfer. They carried out experiments on heat transfer

to mol ten polyethylene and polypropylene. Experimental data

determined by this method showed that viscous dissipation

occurred, but not at the level predicted theoretically. Nusselt

numbers calculated from the data checked theoretical Graetz-
Nusselt solutions.

.
2.3.4. Heat Transfer to Non-Newtonian Fluids with Temperature-'

Dependent Flowbehavior Characteristics.

Early experiments indicated that neither Graetz's nor Leveque's

solutions were capable of correlating experimental data owing to

failure to incorporate the effect of temperature on fluid

properties. Christiansen and Craig (1962) proposed a temperature
dependent equation

du !:ili nr~A[ -exp( -)]
dr BT (2.43)

to represent the rheological properties of pseudoplastic fluids.

In the analysis natural convection and thermal energy generation

are negligible. Problem was solved numerically for heating of

both Newtonian 'and non-Newtonian fluids in laminar flow in tubes

of circular cross section with constant wall temperature.

/
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The energy equation for steady laminar flow af.ter n<~glectin9

longitudinal heat conduction and frictional heat g,meration

terms, is

I •

(2.44)

The fluid enters the heating section with a fully developed

velocity profile given by

u= ~ =1 fR', (R ') line /lHIBTdR'

Uav 2 ('R' (' (R ') line -/lHIBTdR 'dR'
Jo JR,

(2.45)

The energy equation can be written in a dimensionless form as

(2.46)

Although. analytical solutions to this equation are unknown,

numerical solutions were obtained through standard fini'te

difference techniques. The general procedure was to divide the

reduced radius into j equal parts of oR' each and then to start

at a reduced length l/Gz equal to zero and to compute the

temperature distribution for steps of length o(l/Gz) Second-

order approximations were used to evaluate all partial

derivatives in eq. (2.46). The result of these second-order

approximations was a series of j simultaneous algebraic equations

in e(R',Gz) to be solved for each step of o(l/Gz) . This set of

simultaneous equations was found to be especially adaptable to

solution by the Crout reduction method. When the reduced
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the Nusselt number was determined from the solution of the

temperature distribution had been found at each reduced length,

(2.47)

r12R 'UedR'
Nu =lGz __ J_'O _

x IT l-lr12R'uedR'
2 J °

equation

The numerical solutions obtained are in good agreement with {
f.

experimental heat transfer data for heating of a 3% aqueous

suspension of CMC and a 0,75% aqueous suspension of CPM in

laminar flow in tubes. with LID ratios varying from 6 to 230,

fluid temperature increases up to 30'C, and temperature

potentials up to 70'C. The solutions are believed to be

essentially exact for plug flow for Nu < 1,000 and for Newtonian

and pseudoplastic flow at Nu < 100.

Christiansen, Jensen, and Tao (1966) extended the previous work

of Christiansen et al (1962) for the heating of non-Newtonian

fluids to the case of cooling at constant wall temperature. They

compared the numerical results with experimental data for the

cooling of 1.5 and 0.35% CPM solutions in water at constant tube

wall temperatures. The mean deviation of experimantal data from

the numerical solutions was ~8% .

Mizushimaet al (1967) performed experimental and analytical

studies in laminar horizontal flow heat transfer in non-Newtonian'

pseudoplastic fluids, under conditions of constant heat flux at

the wall. They have taken into account variation in viscosity

,
(

"/"
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with respect to temperature by including a correction term in the

consistency index. Their final correlation is of the form

3n+l 1/3 K 0_1/nO-7
Nu=1.41 ( -- ) Gz( - )

4n Kw
(2.48)

where K is the power law fluid consistency index, and Kw is the

value of K at wall temperature.

Mitsuishi and Miyatake (1966) applied the Ellis model to develop

analytical solutions and these solutions were subsequently

verified by them experimentally (1968), using a viscosity

correction of the form similar to that used by Mizushima et al.,
For the constant wall temperature case, analytical and
experimental data have been published by Christiansen et al (10,

11), Metzner et al (39].

Mahalingam, Tilton, and Coulson (1975) developed analytical
solutions for heat transfer to non-Newtonian power law
pseudoplastic fluids in laminar flow in circular conduits. The

wall boundary conditions are constant heat fl~x and step change

in heat flux. Experimental data showed that the consistency index

as a function of temperature can be correlated as

K=aebt (2.49)

The energy equation remains the same as eq. (2.44). The flui_d

enters the heating section with a fully deveJoped velocity

profile given by

I' 1<



U=~=1:. fR,lR,l/ne btlndR'

Uav 2 1. lR 'J' lR ,line bt/ndR 'dR'
OR'
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(2.50)

The energy equation can be written in a non-dimensional form as

(2.51)

or as

(2.52)

In order to evaluate the Nusselt numbers, the mean bulk

temperature can be obtained from

J
' 1

Tav= 0 2R 'UTdR'

and the local Nusselt number from

Nu =2 __( q_J'_/_k_)
x Tw-Tav

(2.53)

(2.54)

The partial differential equation is solved using finite

difference solution technique. The' marching solution' method has

been used for the numerical solution. In order to calculate "the

wall temperature and center-line temperature, the temperature

profile is approximated to a power series. A 3-term series given

by

(2.:,5)



•

27

has been found to be adequate. For cases wherein step increase

in wall heat flux has to be studied, the step-change heat fluxes

are induced via this equation.

In numerical solutions Mahalingam et al consider the cases of low

heat fluxes wherein natural convection effects are negligible.

Effect of viscosity variation has been taken into account in the

numerical computation. Numerical results are good in agreement

with experimentally measured values.

Forreat arid Wilkinson (1973) investigated the heat transfer to

temperature dependent non-Newtonian fluid numerically. They used

a temperature dependent rheology given by the equation:

r

1:=1: +K(, y)ny

Consistency K is given by

(2.56)

K=
Ki

I +f3i (T-Ti)n

where K, is the value of K at the fluid inlet temperature T, and

8, is a constant which characterizes the temperature dependent

properties of the fluid. This model includes both power law and

Bingham plastic behavior. The two boundary condi tions of constant

wall temperature and constant wall heat flux are considered for

both heating and cooling.

The energy equation eq. (2.44) is applicable. The fluid enters the

heating section with a fully developed velocity profile given by

.'../ ,..



u = _u_ =1__j_~_l_( _1_+_p__e_) _(R_' _-R_' y_)__l_/ '_'_d_R~ _

Uav 2 j'lR'j'l(l+pe)(R'-R' )lI11dR'dR'
OR' . Y

2E1

(2.58)

The energy equation can be written in a dimensionless form as

eq.(2.5l). Nusselt numbers are

Constant wall temperature:

Nu = hajJ = Gz
dV k rr (2.59)

Constant wall heat flux:

Dh
Nu =--q =

q k

where

(2.60)

(2.61)

The equations are solved numerically to yield solutions as

functions of a number of dimensionless parameters, viz:

Constant wall temperature:

(2.62)

Constant wall heat flux:

(2.63)

The numerical technique used to solve the partial differential

equation consisted of a Crank-Nicholson, Thomas algorithm

,implicit fini te-di fference scheme using 100 radial increments and



\

29

an initial axial step length of 10-'. Numerical results obtained

by Forrest and Wilkinson are good in agreement with the previous

work of Jensen (11) and Hirai (28).

Faghri and Welty (1977) performed a complete solution for

laminar, fully developed flow in a circular pipe with uniform

entrance temperature subjected to a wall heat flux which is

uniform axially but circumferentially variable. Non-Newtonian

fluid behavior characterized by a power law constitutive

relationship was used in the analysis. The expressions for fluid

temperature, wall temperature, and local Nussel t number are given

in terms of the wall heat flux distribution. Any circumferential

distribution is a110wed so long as it may be expressed in Fourier

series form.

2.3.5 Heat Transfer to Non-Newtonian Fluids Considering
Viscous Heat Generation.

Popovska and Wilkin,son (1977) studied numerically the problem of

laminar heat transfer to Newtonian and non-Newtonian fluids in

tubes considering viscous dissipation. They used the power law

model for fluid rheology. Consistency index K is represented by

a polynomial of the form

(2.64)

In order to simplify the problem it is assumed that

1. The flow is laminar and steady and the radial component: of

velocity can be neglected.
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2. Conduction of heat in the axial direction is negligible,

which is justified when RePr»IOO.

3. The heat capacity, Cp, and the thermal conducti vity, k, are
constant.

4. The density, p, is independent of temperature and natural
convection effects can be ignored.

The initial and boundary conditions for the problem ar'e:

a) The velocity profile at the tube inlet is fully developed

and the temperature is uniform.

b) The tube wall temperature is constant.

On this basis the simplified equations of motion, energy and
continuity are as follows:

Equation of motion:

oP I 0--=--(n::)ox r or

Equation of energy:

oT k 0 oT oupC u-=--(r-)-'l:-
P ox r or or or

Equation of continuity:

W=2/Tp fa R rudr

(2.65)

(2.66)

(2.67)

The average Nusselt number is defined on the basis of a.naverage
heat transfer coefficient as

. hajJ Gz
Nu =--=-

av k IT

(To-Ti)

Tw-(To+Ti)/2
(2.68)
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The theoretical predictions have been confirmed by comparing them

with experimental temperature and velocity profiles obtained for

a Newtonian oil and non-Newtonian polymer solutions. Both heating

and cooling experiments have been carried out for a range of

Reynolds numbers from 2-700. The Graetz number variation was from

80-1600. The experimental Nussel t numbers were also compared with

the theoretical predictions and with those calculated from the

generally accepted design correlations of the Leveque form. 'The
agreement between the theoretical predictions and the
experimental results was good. Empirical design correlat:ions gave
poor predictions for cooling cases .

•

Dinh and Armstrong (1982) performed an approximate analytical

solutions for estimating the local temperature rise from viscous

heating in slit and tube flow of non-Newtonian fluids with small

Nahme-Griffith numbers, i.e., fluids whose viscosities are

independent of temperature. An arbitrary values of h as well as

the limiting cases of infinite h (isothermal wall) and h equal

to zero (insulated wall) are considered in the solution.
Assumptoins made in the solution are:

1. The physical properties of the fluid, in particular

the viscosity, are independent of temperature.

2. The velocity profile is fully developed prior to x=O.

3. Axial conduction is small compared to axial
convection.

For the assumptions given above, the equations of motion and

energy for this problem in rectangular coordinates are:
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(2.69)

(2.70)

These equations are solved analytically using the WKB-J method"

For the slit flow problem and the tube flow problem, the lowest

eigenvalues, which will be the least accurate, obtained by the

WKB-J method are in good agreement (-10% error in the worst case)

with numerical results. The higher eigenvalues are practically

indistinguishable from the numerical values.

2.3.6 Heat Transfer to Non-Newtonian Fluids Considering
Natural Convection.

In forced convection heat transfer problems, there are situations

where the natural convection effects are significant. For the

case of Newtonian fluids, the presence of natural convection may

increase the rate of heat transfer by a factor of 3-4. This

effect has been examined by Colburn(1933), Martinelli and

Boelter(1962), McComas and Eckert(1966), Shannon and Depew

(1969), and Pigford(1955). The natural convection correction term

is the group (GrPr (D/L) ), which is added to the forced convection

group. Jackson, Spurlock and Purdey (1961) were the first to

discard the factor (D/L) from the natural convection group, basE!d

on experimental data for flow in horizontal tubes. In addition

to natural convection, there is also viscosity varia.tion with

temperature. This causes veloci ty profi le distortion and has been
•
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considered by Sieder-Tate by including the bulk-wall viscosity

ratio. Oliver (1962) investigated the effects of natural

convection and radial viscosity variation in an experimen"tal

study of laminar heat transfer to water, glycerol, and ethyl

alcohol in a horizontal tube, with constant temperatu:re at the

wall. He concluded that the natural convection effects are

independent of D/L. His relationship is expressed as

(2.71)

In the case of non-Newtonian fluids, Metzner and Gluck (1960)

have'used the Eubank and Proctor (1951) relationship to correlate

data on ammonium alginate (n=0.5), apple sauce (n=0.65) and
banana puree (n=0.46). For conditions of constant wall
temperature , their final correlation is

It

h"D 11 0.14
_a_( effw) " =1.75[Gz +12.6(Gr.;>r"DIL)0.4]1/3
kE1/3 1/ bv r-effb

(2.72)

Oliver and Jensen (1964) correlated their data on pseudoplastic
fluids in the following form

(2.73)

and"suggested that the Metzner-Gluck correlation over-corrected

for'natural convection at large temperature differences.

Mahalingam et al. (1975) correlated their data on Newtonian

fluids using these equations
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(2.74)

(2.75)

Equation (2.75) which does not include the D/L term is, however,

more successful in correlating the data, if the constant term is

modified to 1.50. The success of eq.(2.75) also indicates th.e

insignificance of D/L ratio and is similar to the observations

of Oliver and Jensen, eq.(2.73). The criterion for the onset of

natural convection effects is the ratio Gr/Re. This ratio

expresses the buoyancy forces in relation to inertia forces.

Based on the results of Mahalingam et al(l975), the criteria may

be expressed as:

Gr/Re > 2.0

Gr /Re' > 30 x 10-'

They also correlated the data on non-Newtonian pseudoplasti.c

fluids considering natural convection using the following

relations

K 0.14 1
Nu (---"') --~1.46[Gz +0.0083(Gr Pr )0.75]1/3

b K 11 1/3 b w"" w
b w

(2.76)

(2.77)

Equation (2.77) is seen to fit the data better than eq.(2:76).

As in the Newtonian case, the criteria for the significance of



natural convection are

Gr IRe > 1. 0

Gr/Re' > 7.0 X 10-'

2.3.7 Empirical Correlations of Laminar flow Heat transfer
Data of Non-Newtonian Fluids.

Joshi and Bergles (1981) studied the problem of heat transfer to

laminar flow pseudoplastic fluids in circular tubes with constant:

heat flux. A correlation of these results includes temperature--

dependent K effects for entrance and fully developed regions. In

formulating the equation the following assumptions were made:

1. The flow is steady and axisymmetric.

2. Axial conduction is negligible.

3. Free convection effects are negligible.

4. The usual boundary layer approximations are valid: since

pseudoplastic fluids exhibit flat veloci ty and temperature

profiles near the tube centerline and sharp profile
gradients near the wall.

5. K is temperature~dependent according to the constitutive

" ", ,

• equation of most industrial fluids as

K=ae -bT (2.78)

With these assumptions, the general governing equations in

cylindrical coordinates reduce to

Continuity:

a a
-c;- (pur) +- (pvr) =0
ox ar (2.79)
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J(;

Momentum (x-direction):

au au _ dp 1 apu- +pv-- --~ - - - (n::)
ax ar dx r ar

Energy:

iJT iJT k a iJT au 2
QUC -+pvC -=--(r-)+/1 (-)
, p ax P or r or ar • ar

(2.80)

(2.81)

;
,. I

i
\ '
I

Far away from the tube inlet, fully developed velocity and l'
temperature profiles exist. In this region, v = 0, iJu/ax=o

and dT/iJx=dT/dx With these simplifications, eqs.(2.79) to

(2.81) reduce to the fully developed governing equations.

The numerical method utilizes a form of DuFort-Frankel

differencing which results in a scheme for which the axial step

size is not severely constrained due to stability consideration

of the axial pressure gradient for each axial step. Thi s is

accomplished by numerically integrating the finite-difference

form of the axial momentum equation over the tube cross-section

and employing the overall conservation of mass constraint to

eliminate the integral of the axial velocity from the equation.

The pressure gradient can then be evaluated explicitly.

The correlation strategy was to correlate various property

effects in the entrance region and in the fully developed region"

An interpolation formula was then devised to correlate both

regions with a single equation. The following general relation

is proposed for the thermal entrance regiop:

, -



37
/'

,

(2.82)

where m = 0.58 - O.44n.

For the fully developed region, the data are correlated as

Nu
Nuvp,n ~ 1 + ( 0 • 12392 - 0 • 0542 n )yL'.r - ( 0 • 010133 - 0 • 006 8n ) (yL'.r) 2 (2. 83)

cp,n

I

This equation is valid up to yL'.r ~6 , which covers the range of

normally encountered heat fluxes.

The above two asymptotic correlations were combined by the

interpolation technique suggested by Churchill and Usagi (1972)
as

NUvp,n =Nucp,n .-1 (2.84)

This equation represents an accurate, explicit correlation of the

numerical predictions, which is very convenient for design
purposes.

No experimental data are available in the fully developed region

and in the transition region from the thermal entrance region to

the fully developed region. Data are needed in these regions t:o

examine the accuracy of this correlation.
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2.3.8 Heat Transfer to Laminar Non-Newtonian Flow in Curved
Tubes. •

Curved tubes are often used in different types of process

equipment. The study of flow and heat transfer in such tubes is

required for the proper design of the corresponding equipment ..

Although the Newtonian flow in curved tube has been extensively

analyzed, there appears to be little theoretical work on the non-

Newtonian flow in curved tubes.

Hsu and Patankar (1982) for the first time performed a numerical

solutions of the differential equations that govern the laminar

fully developed velocity and temperature fields of a power la.w

fluid flowing in a curved tube. Hesults for the velocity and

temperature fields, the friction factor, and the Nusselt numbe,r

are presented for different values of the Dean numbe,r

(He(H/He)'/'), the Prandtl number, and the power law index. For

large radius of curvature, the non-Newtonian flow is governed by

the power law index and by the modified Dean number. The heat

transfer is additionally governed by the Prandtl number. The

axial velocity profiles are distorted by the centrifugal force,

although they tend to be flatter for lower values of the power

law index. The secondary flow in the tube cross section exhibi t:s

an interesting boundary layer behavior, especially at high Dean

numbers. The friction factor increases with the Dean number and

also with the power law index.
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The overall heat transfer coefficient also increases with the

Dean number. Indeed, the increase in the heat transfer

coefficient is more pronounced than that in the friction factor.

Thus a curved tube appears to be an attractive device for heat

transfer enhancemeii'tfor all the values of the power law index
considered.

The local heat transfer coefficient varies significantly over the

circumference of the tube for low Prandtl numbers. The heat•
transfer coefficient becomes more uniform as the Prandtl number
increases.



CHAPTER-III
STATEMENT OF THE OBJECTIVES

The objective of this work is to carry out a numerical analysis

of heat transfer to time-independent non-Newtonian fluids

considering viscous dissipation and temperature dependence of the

related physical and thermal properties.

The specific objectives are:

1. To predict the temperature and velocity porfiles for non.-

Newtonian fluids during heat transfer

tubes with constant wall temperature.
in laminar flow in

2. To predict the heat transfer rates for non-N~wtonian fluids

with the same condition as mentioned above.

The fluids considered are:

* 1.00% Cellofas B-10

* 0.50% Cellofas B-300

* 0.15% Cellofas B-3500

* 0.27% Cellofas B-3500

* 0.40% Cellofas B-3500
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"Cellofas" is the trade name of Sodium Carboxymehtyl CellulosE'

produced by ICI(UK) and "E-lO" etc. indicate different grades

based on molecular' weight.

Rheological data of these fluids obey the power law model.
~'

Consistency index, K, depends on temperature and a polynomial

expression has been used to describe this effect. The temperature

dependent density, heat capacity and thermal conductivity data

of water are used in the analysis because the solutions are

dilute.



CHAPTER-IV
FORMULATION OF THE PROBLEM

This work is concerned with heat transfer to time-independent

non-Newtonian fluids in steady laminar flow in straight tubes.

The rheological equation used in this work is the well known

power law, viz;

" ~K(_dU)n
rx dr (4.1)

where "= is the shear stress, n is a temperature-independent

exponent which is less than unity in the present work and

consistency index, K, is temperature-dependent according to the

equation given below:

( 4 • 2 )

This relationship is superior to the analytical forms previously

used (10,11) or the hyperbolic relationships(20).

The problem of heat transfer in laminar flow in straight tubes

is considered for the boundary condition of constant wall

temperature for heating (Fig. 4.1). The other conditions are:

1. The velocity profile at the inlet of heat transfer section

is fully developed.

2. The temperature at the inlet of heat transfer section is

uniform at T,.

- ,
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3. The flow is laminar and steady.
4. The axial velocity u, , hereafter designated as u,is only

function of r while u, and Us are zero.

5. The fluid density, P, thermal conductivity, k, and heat
capaci ty, C, , are temperature dependent. These are wa-ter
properties as the solutions are dilute.

6. The radial velocity profile within the heated section will
change as a result of changes in the rheological properties
with temperature.

For the assumptions stated above, the equations of continuity,
momentum and energy for this problem in cylindrical coordinates
are:

Continuity

Momentum

Energy

a~ (pu) ~oax

ap 1 a
-~=-~(n )ax rar rx

aT 1 a aT ifT aupC u~~k[-~(r--)+~-]-" ~
p ax r ar ar ax2 rx ar

(4.3)

(4.4)

(4.5)

The expression for shear stress, "=, is given in eq.(4.1).
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Boundary conditions for eq.(4.2) and (4.3) are:

B.C.1:

B.C.2:

At r = 0

At r = R u = 0 (no slip at the wall)

Boundary conditions for eq.(4.5) are:

B.C.1: At x = 0 and at any r; T = Ti

B.C.2 and 3: At x ~ 0 and r = R

Equations (4.3) to (4.5) are used in the present study. The

numerical methodology used for solving these equations are given

in chapter VI.

Definition of Nusselt numbers

It is useful to represent the results of heat transfer

calculations by plotting Nussel t numbers against the Graetz

numbers.

Mean Nussel t Number: For constant wall temperature, a mean

Nusselt number may be defined as:

( 4 . 6 )

The mean heat transfer coefficient, h., for a tube of length xis

defined in terms of the terminal temperatures as

(4.7)
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where To is the bulk outlet (i.e. cup mixing) temperature, and W

is the fluid mass flow rate. Further we have

hence,

'R
WC (To-T) =2rrC pj ru(T-Ti }dr

p ~ p 0

"',
(4. B)

( 4.9 )

Local Nusselt Number: Local Nusselt number for flow through a

tube with constant wall temperature can be defined as:

hJJNu = _.0-
X k (4.10)

The local convection heat transfer coefficient, h., is defined as

k aTh =------(-)
x T~-Tb ar w

hence,

D aTNu._=----- (-,-)
.. T.",,-Tb Clr w

where Tb is the bulk temperature at x.

(4.11)

(4.12)



CHAPTER-V
COMPUTER PROGRAM

5.1 Description

The program used in this work is TEACH-T, a general compu.ter

program for solving conservation equations for heat, mass,

momentum, etc. by finite difference method. The program is

written by A.D. Gosman and F.J.K. Ideriah (1976).

TEACH-T is a general program for steady, 2-dimensional flows. 'ThE!

flow may be laminar or turbulent, and of variable properties. It

can be made to handle compressible flows. It should be noted that

the program can conveniently be used for unsteady, I-dimensional

cases, and it can easily be extended to encompass 3-D flows. 'The

program is for flows which can be re~resented in Cartesian or

cylindrical coordinates, and the grid may be non-uniform.

5.2 Contents of the Program.

There are six general subroutines relevant for any particula.r

variable to be solved: CONTRO, INIT, PROPS, PROMOD, LISOLV and

PRINT. In addition, there is a major set of CALC~ subroutines,

where ~ is the particular variable solved. The inter-connection

between the various subroutines is shown in Figure 5.1.
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The functions of different subroutines are described bellow:

CONTRO: Overall control is exerted by the main subroutine CONTRO.

The functions of this subroutine are

1. Specification of grid, control parameters, constants of
problem, etc.

2. Calculation of grid parameters, initialization of arrays

(via INIT), prescription of fixed boundary values,
preliminary output, etc.

3. Initial ization and control of iteration. It also gives
intermediate outputs.

4. Final operations, like calculation of shear stress

coefficient, normalization of profiles, etc., as well as

the final output, are carried out.

CALCq:. These' subroutines make the main calculations of the

finite difference equations for each variable q:.. Functions are

1. Calculation of the coefficients over the entire field.

2. Modification of the sources and boundary coefficients t.O

suit the particular problem through PROMOD.

3. Assemble all the coefficients and also cacu1ates th,~
residual sources.

4., finally equations are solved by LBL (line-by-1ine) procedure
through LISOLV.

INIT : It performs initialization tasks. Functions are

1. Calculation of grid co-ordinates, inter-node distances,

cell dimensions and so on.

2. Initialization of the dependent variables. Specifically,

the starting variable fields (except density and viscosi ty)
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are set to zero.

PROPS Fluid properties (viscosity, density, etc.) based on

user-supplied formula are calculated by this subroutine.

PROMOD : Modi fications of sources and boundary conditions are
made in PROMOD.

LISOLV
PRINT

This subroutine performs LEL (line-by-line) iteration.

Provides output of dependent variable arrays,

INIT, LISOLV, PRINT, and the set of CALC<t> subroutines are

independent of problem type. Modifications to suit individual

problems a.re required only in CONTRO, PROMOD, and in rare
instances PROPS.

5.3 Verification of the Program.

The computer program used here is tailored by modifying TEACH-.T

which can solve flow and heat transfer problems for Newtonian

fluids. A number of 'tests were carried out by solving a variet:y

of flow and heat transfer problems to assess the usefulness of

this tailored program. During the test runs, the flow condition
was always laminar.

The cases examined during the test runs include :

a. developing laminar flow for a Newtonian fluid with flat
velocity profile at the inlet,

b. developing laminar flow for a power law fluid with flat
velocity profile at the inlet,

c. classical Graetz problem,
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d. heat transfer with temperature dependent viscosi ty for

Newtonian fluid, and

e. heat transfer with temperature dependent K for a power law

fluid.

Computed results were graphically presented along with available

analytical solutions and experimental data. Figures 5.2 and 5.3

show the velocity profiles for Newtonian and non-Newtonian
fluids in the developing region respectively. Figure 5~4 shows

the Graetz problem in the form of a plot of Nu. (local Nusselt

number) against Pe/(x/D). Figures 5.5 and 5.6 show the plot of

velocity profiles for both Newtonian and non-Newtonian fluids fOlC

the case of heating respectively. Similarly figures 5.7 and 5.8

show the plot of temperature profiles.

Computed results are found to agree with the analytical solution

and available data. The deviations observed in case of available

data are likely due to error in regression analysis to fit

viscosity and consistency index, K data and size of the grids
used for computation.

\



CHAPTER-VI
NUMERICAL SOLUTION

6.1 Iutroduction

This chapter represents the numerical solution procedure of the

governing differential equations presented in chapter IV, i.e.

eq. (4.3) to (4.5). The general form of the governing differential
equations is:

la a aep a aep~- [ - ( pruep ) - - ( rr - ) - - (rr - ) ]~s
r ax ax ax ar ar •

where, ep : variable of interest
: unity for continuity

,
: U for momentum
: T for energy

du n-1r : !Jeff( :KI ~dr I ) for momentum

: k/C, for energy

S.: source or generation term

: zero for continuity (mass can't be generated)

(6.1)

:

:

ap for momentumax
au-"l/ep for energycr
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6.2 The Method of Discretization.

The governing differential equations can be discretized in many

ways. An overview of the discretization method for the numerical

solution of the fluid flow problems is given by Patankar(1980).

In the present study the finite volume approach, as described by

Gosmanet al (1969) and.others, is adopted. In this approach,the

governing differential equations are discretized by integrating

them over a f ini te number of control volumes or computational

cells, into which the solution domain are divided. A typical

computational cell is shown in Figure 6.1. Typical discretized

transport equation (e. g. eq. 6.1) wi11 take the following

quasilinear form.

(6.2)

where, the anb are coefficients multiplying the values of 1> at

the neighbouring nodes surrounding the central node P. The number

of neighbour depends on the .interpolation practice or

differencing scheme used. The anb contains combined convection and

diffusion contribution at the control volume faces, i.e.

(6.3)

a, is the coefficient of 1>p given by

(6.4)

and, band c are obtained by linearizing the source term as

follows.

•
,~,.
\



The source term, right hand ter~ of eq.(6.1), is eval.uated by

intregrating the volumetric source 81 over the volume of the

computational cell and expressed as

(6.5)

where, c stands for the constant part of the source term where

b is the coefficient of ~p and often a function of ~p'

Sinc~ the direct solution methods (i.e. matrix inversion) require

very large computer storage and time and since the governing

transport equations are non-linear, (the discretized governing

transport equations are seemingly linear but a, being the

function of ~p makes them virtually nonlinear) the discretized

equations are solved using the SIMPLE (~emi-~mplicit ~ethod for
,Eressure-1inked ~quations) algorithm of Patankar and
Spalding(1972) by repeated sweeps of a line-by-line application

of the Tri-Diagonal Matrix Algorithm (TDMA) (Patankar[1980]).

6.3 Differncing Scheme.

Central differencing scheme (CDS) is used to describe the

diffusion terms in the present study. If a piece-wise linear

profile of ~ is asssumed between P and E (Figure 6.6), the cell

face value ~e is given by

(6.6)

li".~
'j "
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where fp is a linear interpolation factor defined as

(6.7)

Here~p and ~E are the cell dimensions along x coordinate for

P and E cells (Figures 6.1 and 6.6).

In this scheme a,and a.are always negative and if the convection

process dominates this can cause the whole coefficient a"b to

assume negative value. As a result the Scarborough criteria fails

and produce unbounded solutions (Spalding[1972], Rahtby and

Torrance [1974]). At high Peclet number the CDS also violates the

transporti ve property by employing downstream nodes in

expressions given above. For These reasons application of CDS is

limited to low Reynolds number problems.

Upwind differencing scheme(UDS) is used to discretize convection

terms in the. present study. In the UDS convection term is

calculated assuming that the value of 1> at an interface (see

Figure 6.7) is equal to the value of 1> at the grid point of the

upwind side of the faces. Thus

= 1>E if fe < 0

In this scheme all the coefficients contributing to a, are always

non-negative. As a result Scarborough criteria is satisfied. UDS

also satisfies the property of transportiveness, and thus the

(,
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boundness of the solution is guaranteed.

In terms of Taylor Series Truncation Error(TSTE) analysis, the

UDS is first order approximate.

6.4 Solution Procedure

6.4.1 Grid and Variable Arrangement

In the present study, the numerical solution is accomplished on

a variably spaced staggered mesh [see for example Caretto et al

(1972) and Patankar (1980)], in which the scaler quanti ties

(including pressure, density, viscosity, thermal conductivity)

are defined at the centre and the normal velocities at cell

faces, as shown in Figure 6.~. It has the advantage that the

variables u, v, p are stored such that the pressure gradients

which drive the velocities u and v are easy to evaluate and

moreover the velocities are located where they are needed for the

calcultion of convective flux.

6.4.2 Calcultion of Pressure

The pressure gra;dient forming part of the source term in the

momentum equation is to be obtained before the velocity field is

calculated and it is the pressure field through which the

continuity equation is satisfied.
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The SIMPLE method of Patankar and Spalding(1972} is used in the

present study to obtain pressure.

6.5 Boundary Conditions

The forms of boundary condi tions encountered in the present study

and their implementations are described below.

(i) Inlet Boundaries: Fully deveoped velocity profile and

uniform temperature are specified.

(ii) Outlet Boundaries : The gradients of all variables in
the axial direction are zero, i .e . , dep ~O

dx .

(iii) Wall Boundary : at the solid wall velocities are set t:o
zero, and constant temperature is specified.

(iv) Symmetry-axis Boundary: The gradients of all variables
are zero, i.e., ~~~o,at the axis of symmetry.

6.6 Solution Algoritm

The important operation in the order of their execution are

(i) Initialise all field values by an initial guess.

(ii) Solve momentum equations and abtain u. The u velocity at

this stage is not accurate because it is obtained with

guessed pressure field.

(iii) Solve the continuity equation to obtain the pressure p.

This pressure field satisfies both the- momentum and

continuity eqution.

(iv) Calculate correct u from the values obtained in step(ii}

and newly calculated pressure p.
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(v) Solve the discretized equation for other variables if

they influence the flow field through fluid properties,

source terms etc.

(vi) Trea~ the corrected pressure p as a new guessed pressure

and return to step (ii) and repeat the whole procedure

until a converged solution is obtained.

In the present study, the convergence criterion is that the sum

of the normalised absolute residuals at all computational nodes,
defined

(6.8)
,

t- '.

should fall below a specified level Rt<I03. Here N is the total

number of nodes, r the iteration counter and Nf the normalization
factor.

(,
i ":
\',,",
'Ii



CHAPTER-VII
RESULTS AND DISCUSSIONS

~ 7.1 Introduction

In this chapter, the results of the numerical prediction of

laminar heat transfer with time-independent non-Newtonian fluids

in straight tubes considering viscous dissipation are pre$ented.

Cellofas (trade name of Sodium Carboxymethyl Cellulose) of

different grades and concentrations are used as working fluid in

the present work. Rheological data of these fluids obey the power

law model. Consistency index, K, is a strong function of

temperature. A polynomial expression has been used to describe

this effect. As the solutions are dilute, density, heat capacity

and thermal conductivity of water are used in the analysis.

7.2 Domain of Solution and Computational Grid

The solution domain shown in Figure A.I is bounded by the inlet

plane, exit plane, solid wall and the axis of symmetry. The

entire computational domain is divided into 20 vertical grid

lines and 20 horizontal grid lines. The grid distribution in th.e

calculation domain is uniform in the x-direction and non-uniform

in the y-direction. The mesh is contracted near the tube wall

region allover the whole calculation domain such that the ratio

between the two successive steps in space is constant and equal

to .90 .

. l.
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7.3 Grid Independence Test

•To obtain a solution independent of the number and spacing of the

grid nodes, grid dependence test was performed. The test was don'e

at Reynolds number 126 for two grid sizes: l6X16 and 20X20. Each

time close spacin~ was maintained near the tube wall, where rapid

changes of the flow variables occur. For this test, predicted u-

velocity and T-profiles are compared at various axial distances

for two different grid sizes. The predictions for both the grid

sizes remain the same and hence the solution is independent :Eor
any grid sizes.

7.4 Presentation of Results

7.4.1 Physical Property Used
In the present work five different non-Newtonian fluids are used.

These are cellofas of different grades and concentration such as::
1.00% cellofas B-lO

0.50% cellofas B-300

0.15% cellofas B-3500

0.27% cellofas B-3500

0.40% cellofas B-3500

As the solutions are very dilute, physical properties such as

density, thermal conductivity and heat capacity of water are used

in the calculation. Temperature dependent equations are used for

these properties. The equations are:
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Density:

p=IOOO.186+8.77X103T-5.98X10 2T2'2.15X10 'T3 4.50X10 6T4

Thermal Conductivity:

Heat Capacity:

The rheological data were taken from the work of Quader and

Wilkinson (59), see Table 7.1. The flow behavior index, n, is

independent of temperature, whereas the consistency index, K, is

a strong function of temperature. K can be expressed as a

polynomial of the form

(4.2)

where K is in M.K.S unit and T is in °C. The values of constants

a, band c are found by regression analysis and ar~ given in

Table 7.2.

7.4.2 Variables/Parameters Used in the Presentation

The computed results are presented graphically in Figures 7.1-

7.34 and the main features are discussed in the subsequent
•

section. .Variables/parameters used in the presentation are

described below.



TABLE 7.1
The values of consistency index, K and flow

behavior index, n.

60

Temp. °c n K
(C.G.S. units)

1.00% Ce1lofas B-10
8.5 1.000 0.099

16.0 1.000 0.076
27.5 1.000 0.0525

0.50% Cellofas B-300
21.0 0.835 0.558
40.8 0.835 0.335
58.5 0.835 0.218

0.15% Cellofas B-3500
21.0 0.850 0.241
40.8 0.850 0.158
58.9 0.850 0.101

0.27% Ce110fas B-3500
19.0 0.705 1.085
43.8 0.705 0.635
58.5 0.705 0.410

0.40% Ce110fas B-3500
17.8 0.64 3.04
41. 8 0.64 1.80
58.3 0.64 1.27



TABLE 7.2
Values of constants of eq. (4.2)

a bX10' cX10'

1.00% Cellofas B-10
-1.8646 -17.04 70.52

0.50% Cellofas B-300
-1.0113 -11.70 8.25

.•......

~

0.15% Cellofas B-3500
-1.4569 -6.85 -38.96

\xJ
\'xJ 0.27% Cellofas B-3500

-0.86096 -3.75 -- -89.69

0.40% Cellofas B-3500
-.34275 -9.93 7.49

61

I, ~
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R' Dimensionless radius, rlR

U Dimensionless velocity, u/u,.

Theta: Dimensionless temperature, (T-T,l/T,

TwiT, : Ratio of wall temperature and inlet fluid

temperature, Tw/T,>1 for heating

Gz
Gz/

Nu.

Nu.

Graetz number, WCp/kx

Another form of Graetz number, (4/rr)Gz ~ Pe/(xlD)

D aTLocal Nusselt number, h.D/k= - T -T (ar)w
w b

2PCpJoR ru (T-T i )dr
Mean Nusselt number,NUm~--------I---------

kX(T"-"2 (Ti+To»

Br Brinkmann number,

7.4.3 Description of the Graphs

Velocity profiles:
Figures 7.1-7.11 represent the ve10ci ty prof iles, 1.e.

dimensionless velocity as a function of dimensionless radius.In

Figures 7.1a-c parameter is concentration or pseudoplastici i:y,

n. These are plots at a particular dimensinoless axial distance,

i.e. Graetz number, Gz, for different temperature ratios TwiT,.

Figures 7.2-7.6 represent the velocity profiles for individual

cellofas at a particular axial distance. TwiT, is the parameter

of these plots. Figures 7.7-7.11 represent the velocity profiles

for different types of cellofas at a particular temperatun~

ratio. Dimensionless axial distance, Gz, is the parameter of

these plots.



Temperature profiles:
Figures 7.12-7.22 r~resent

dimensionless temperature,e,

the temperature profiles, i.e.

as a function of dimensionll~ss

radial distance, RO. Figures 7.l2a-c represent the temperature

profiles at particular Graetz number, Gz, for different

temperature ratios, T./T,. Concentration of the solutions or

pseudoplasticity, n, is the parameters of these plots.

Figures 7.13-7.17 represent the temperature profiles for

individual cellofas at a particular axial distance. Temperature

ratio, T./T" is the parameter of these plots. Figures 7.18-7.22

represent the temperature profiles for individual fluids at

constant temperature ratio, T./T,=1.13. Here Graetz number, Gz,

is the parameter.

Heat transfer rates:
Heat transfer data have been evaluated in the form of both local

Nusselt number, Nu. and mean Nusselt number, Nu•. Figures 7.23-

7.28 represent the local Nusselt number as a function of Gz/ or

Pe/(x/D). Figure 7.23 is a plot for different types of cellofas

at constant temperature ratio, T./T,=1.13. Here concentration of

the solutions or pseudoplasticity, n, or Brinkmann number, BR,

is the parameter. Figures 7.24-7.28 represent N~ as a function

of Pe/(x/D) for individual fluids. Temperature ratio, TwIT, and

Brinkmann number, Br, are the parameters.

Figures 7.29-7.33 show the plots of mean Nussel t number, Nu., etS

a function of Graetz number, Gz, for individual fluids. TwIT, and
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Br are the parameters for these plots. Figure 7.34 show the plot

of No. vs Gz

concentration

for the heating of B-3500 with differlmt,,-
at constant temperature ratio, T.lT I=1. 13 .

Pseudoplasticity, n, and Brinkmann number, Br, are used as the

parameters.

7.5 Discussion of Results.

7.5.1 Velocity.Profiles

Effect of Pseudopalsticity, n, on Velocity Profile;
Figures 7.la-c show the velocity profiles for five cellofas

solutions for different TwiT, at constant Gz. It is seen that at

a given value of TwiT., as n decreases, the velocity profile

becomes flatter, i.e. velocity gradients are increased in the

tube wall region and decreased near the tube centre.

Effect of T~LI~on Velocity Profile;
Figures 7.2-7.6 show the velocity profiles for each of five

cellofas solutions at different TwiT,. It can be seen that for

particular fluid at a given Graetz number, Gz, as T..ITi

increases, the velocity profile becomes flatter, i.e. velocity

gradients are increased near the tube wall region and decreased

near the tube centre. The increase in temperature in the wall

region decreases the fluid consistency. This leads to increase,d

velocity gradients near the wall.
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Effect of Gz on Velocity Profiles:

Development of velocity ,profiles for heating of CellofaB

solutions are shown in Figures 7.7-7.11. It is seen that at a

given temperature ratio, as the Graetz number decreases, the

veloci ty prof i Ie becomes flatter, 1. e. velocity gradients ar'e

increased in the tube wall region and decreased near the tube•
centre. For a particular temperature, as the Graetz number

decreases, the temperature gradients near the wall decreases,

Figure 7.18, i. e. the temperature of the streams near' the tube

wall is high in comparison to the streams near the tube cent,rH.

At higher temperature fluid consistency decreases, which leads

to increased velocity gradients near the wall at low Graetz

number.

7.5.2 Temperature Profiles

Effect of Pseudoplasticity. n. on Temperature Profile:

Figures 7.l2a-c show the temperature profiles for five cellofas

solutions for different TwIT,at constant Gz. At low temperature

ratio, 1. e. at TwIT,=1. 068, temperature profiles remain almost

same. At higher temperature ratio, it is seen that at a given

dimensionless axial distance, i.e. the Graetz number, temperature

gradients near the wall increase as the value of n decrease,s,

Figures 7.12b-c.

Effect of TwL1ion Temperature profile:- - '

Temperature profiles for individual fluid at different TwIT,are

shown in Figures 7.13-7.17. It is seen and obvious that at, a
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given Graetz number, temperature gradients are high for higher

temperature ratio near the wall. As temperature inCreaSE!S,

consistency index of fluid decreases, which leads to increased

temperature gradient.

Effect of Graetz Number,Gz, on Temperature Profile:

Figures 7.18-7.22 present the temperature profiles for individual

fluid at different Graetz number, Gz. It is clear that for any

of five fluids, as the Graetz number increases, the temperature

gradients near the wall increase, i.e. at entrance region

temperature gradients near the tube wall are higher than that of

the region away from the entrance. For this reason, at the

entrance region, i.e. at large Graetz number, heat transfer rate

is high, Figure 7.23.

7.5.3 Heat Transfer Rates.

Heat transfer data have been evaluated in the form of both local

Nusselt number, Nux, and mean Nusselt number, Num• These are

shown in Figures 7.23-7.34.

Effect of Pseudoplastici ty and Viscous Dissipation on Heat

Transfer;

Local Nussel t numbers for different types of cellofas as a

function of GZI are shown in Figure 7.23. It is seen from the

figure that at a given temperature, as pseudoplasticity

increases, i.e. n decreases, rate of heat transfer increases

slightly. It is also seen that Brinkmann number, Br, i.e. shear
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~ heating effect increases with the increase of pseudoplasticity.

As the solutions are not so viscous, the value of Br is small and

the viscous dissipation effect is also small. As pseudoplastici ty

increases, velocity gradients near the tube wall region increase

slightly, Figure 7 .1b, which enhances the heat transfer rate

slightly by the increase in N~, Figure 7.23.

Figure 7.34 shows Nu,.as a function of Gz for the heating of

Cellofas B-3500 with different concentration. It is seen that at:

a constant temperature ratio, as n decreases, Br increases, which

resul ts in high heat transfer at large Gz, i.e. near "the

entrance. At a constant temperature ratio, velocity gradients

near the tube wall region increase as the pseudoplastici ty

increases, i.e. n decreases. These increased velocity gradients

result in high viscous dissipation. It is evident that

consistency of fluid increases with the decrease of n, which

results in high viscous dissipation.

Effect of Temperature Ratio on Heat Transfer:
Local Nusselt number for individual fluids at different

temperature ratio are presented in Figures '7.24-7.28. It is c:J.ear

from the figures that for any of five fluids, Nux or ra1:eof heat

transfer increases with the increase of temperature ratio. As the

temperature increases, consistency of fluid decreases, which

increases velocity gradients near the tube wall region. Thi.s

results in high heat transfer at higher temperature ratio.
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Mean Nussel t number as a function of Graetz number for individual
fluid at different temperature ratio are presented in Figures
1.29-7.33. It is also seen that Nu. or rate of average heat
transfer increases with temperature ratio at large Graetz number
but it remains same at very low Graetz number. At entrance
region, i.e. at large Graetz number temperature gradients are
high at higher temperature ratio and hence the higher rate of
heat transfer. Velocity gradients are also high near the tube
wall region at higher temperature ratio in the entrance region.
This leads to high viscous dissipation and consequently high heat
transfer. Far away from the entrance, i.e. at very small Graetz
number, temperature profiles are fully developed and these remain
same at different temperature ratio. For this reason heat
transfer rates remain constant at low Graetz number for different
temperature ratio.

Range of variables in the investigation are:
n :0.64 - 1.0
Re :0.88 - 24.0
Pr :40 - 1300
Gz :2 - 10000
Br :4.0X10-8 - 1.74X10-'
TwiT, :1.068 - 1.233
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CHAPTER-VIII
CONCLUSIONS

This study of heat transfer with time-independent non-Newtonian

of fluids in laminar flow condition in tubes with constant wall

temperature for heating leads to the following conclusions:

1. For a particular temperature ratio velocity profile becomes

flatter as the pseudoplasticity increases, i.e. value of n
decreases.

2. For a particular fluid, velocity profi Ie also becomes

flatter as the value of temperature ratio, T./Ti, increases.

3. The effect of pseudoplasticity on temperature profile is
small. For a particular temperature ratio, T./,r"

temperature gradients near the wall increase slightly as the
pseudoplasticity increases.

4. The effect of temperature ratio on temperature profile is

significant. For a particular fluid, temperature gradients

are high for higher temperature ratio near the wall.

5. Temperature profile is also a strong function of Graet,;

number, Gz. Temperature gradients near the wall increase

markedly with the increase of Graetz number.
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6. Effect of pseudoplasticity and viscous dissipation on heat

transfer rate are interrelated. Viscous dissipation is a

direct function. of fluid consistency, oK, and K increases

with the pseudoplasticity. This combined effect is small

because these fluids do not have large values for K. Heat

transfer rate increases slightly with the increase of
pseudoplasticity.

7. Effect of temperature ratio on heat transfer is significant

at higher Graetz number. At low Graetz number effect is
small.

•



CHAPTElt-IX
SUGGESTIONS FOR FUTURE WORK

The scope of extension and development of the present study are

given below:

1. The same prediction can be carried out with large number of

fine grids which may produce more accurate resul t:s.

2. Similar study can be made in developing region.

3. Present work can be extended for the flow through concentric

tubes, and also for the flow through helical tube.

4. The same prediction can be made for cooling with constant

temperature at the tube wall.

5. Present work can be extended with constant heat flux at the

tube wall both for heating and cooling.

6. Experimental measurements are required to verify the

theoretical prediction.
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Fig. 7.32 .NUrn vs Gz for the Heating of 0.27% Celiofas 8-3500
with Constant Temperature at the Tube Wall.
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APPENDIX-A

Finite Difference Form of Equation

The finite difference form of energy equation used in this study is

presented here. Due to similar nature and method of discretization, other

equations are not shown. The energy equation, eq.(4.5), can be written in

the foIlowing form

This equation is solved by a finite difference method. A system of grid

lines running in x and r directions, i.e. m and n lines, are imposed on the

solution domain as shown in Figure A.!. The line at n=1 is located on the

centre line and at n=N on the tube wall. The axial grid line at m=1 line is

lying on the inlet boundary, x=O.The grid spacing are defined as:

The last term of the energy equation is source term, and is evaluated by

integrating the volumetric source over the volume of the computational

ceIl, eq.(6.5).The finite difference forms of the other terms are written as

foIlows:

i" ,



(
k 82T\l _ k rT"+I" - 2T••.•+T"_'.•1

8:iJ ••.•L 1U2 J
.'

So, the final equation obtained is

(k) r !!.r2 (T T). AT, (T T )1'\;- tAT (AT +AT) ••.•+1 - •••• + I!.T. (AT + AT.) ••.• - ••.• -1 J ."I," _ I 1 2 2 1 2 .
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T••.•- T••.•_1 1
!!.r2 j

rT -2T +T 1+~ ,"+1,11 m,ll ,"-I,1t _ IS dv
••••.• L A:i J v ~

where, S~ is the source term.
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