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.Abstract

This thesis deals with area efficient straight-line drawings of planar graphs. It is well

known that a planar graph of n vertices admits a straight-line grid drawing on a grid of

area O(n2). A lower bound of n(n2) on the area-requirement for straight-line grid drawings

of certain planar graphs are also known. In this thesis, we introduce some classes of

planar graphs that admit straight-line grid drawing with sub-quadratic area. We introduce

"doughnut graphs", a subclass of 5-connected planar graphs as well as 3-outerplanar

graphs, which admits a straight-line grid drawing on a grid of area O(n). We introduce a

subclass of 4-connected planar graphs that admits straight-line grid drawing with linear

area. We also introduce a subclass of outerplanar graphs, which we call "label-constrained

outerplanar graphs," that admits straight-line grid drawings with O(n log n) area. We

give linear-time algorithms to find such drawings. We also give linear-time algorithms

for recognition of these classes of graphs. We have studied the k-partition problem for

newly introduced classes of graphs, and found some interesting results for "doughnut

graphs." We give a linear-time algorithm for finding k-partition of a "doughnut graph."

We also study the topological properties of these classes of planar graphs for finding their

suitable applications. We propose the class of "doughnut graphs" as a promising class of

interconnection networks due to its regularity, smaller diameter, maximal fault tolerance,

recursive structure and a very simple efficient routing scheme.

xiii



Chapter 1

Introd uction

A graph is an abstract structure that is used to model information. Many real-world

situations can conveniently be described by means of graphs. Graphs may be used to

represent any information that can be modeled as objects and connections between those

objects. Thus graph drawing addresses the problem of constructing geometric represen-

tations of conceptual structures that are modeled by graphs. For example, graphs are

used to represent social network where each node represents an actor (generally a per-

son or an object or an organization, etc.) and each edge represents a relationship or a

communication between the actors. These graphs are typically drawn as diagrams with

texts at the vertices and the line segments joining the vertices. Fig. 1.1 represents a social

network. Fig. 1.2 illustrates a pattern graph which represent a threatening pattern. To

understanding, monitoring and controlling different activity like terrorism, drug traffick-

ing etc., a social network analyst try to find a pattern graph as illustrated in Fig. 1.2 as

a subgraph in the social network as illustrated in Fig. 1.1.

Other than social networks, automatic graph drawings have important applications to

key computer technologies such as software engineering (data flow diagrams, subroutine-

call graphs, program nesting trees), real-time systems (state-transition diagrams), arti-

ficial intelligence (knowledge-representation diagrams) etc. Further application can be

1
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Car use
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Figure 1.1: A social network or activity graph.

found in other science and engineering disciplines, such as medical science (concept lat-

tices), chemistry (molecular drawings), civil engineering (floorplan maps), cartography

(map schematics).

In this chapter we provide the necessary background and motivation for this study on

graph drawings. In Section 1.1 we discuss' about some important drawing conventions that

have been studied in this thesis. We discuss different drawing aesthetics in Section 1.2.

In Section 1.4 we describe the scope of this thesis. We devote Section 1.5 to summarize

our new results together with known ones.

1.1 Graph Drawing Conventions

There are different graph drawing styles. The drawing styles are - planar drawing, straight-

line drawing, grid drawing, orthogonal drawing, convex drawing, Polyline drawing, rectan-

gular drawing, box-rectangular drawing, visibility drawing, etc. In the different drawing

('



1.1. Graph Drawing Conventions
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Figure 1.2: A threatening activity (pattern graph).

styles, vertices are represented by small circles, or points, or rectangular boxes, or hori-

zontal line segments; and the edges are represented by straight-line segments, or chain of

horizontal and vertical line segments, or horizontal line segments, or vertical line segments

etc. In this thesis, we address area efficient drawings of planar graphs. Planar drawing

style is very much relevant to the drawings of planar graphs which improves the readabil-

ity of the drawing. It is natural to draw each edge of a graph as a straight-line segment

between its end vertices. We need to draw the vertices on the integer coordinates when

we are going to compare the area requirement for two or more different drawings. Hence

grid drawing style is essential when the area of a drawing is concerned. We now discuss

the following drawing styles which we study in this thesis.

1.1.1 Planar Drawing

A planar drawing is a drawing of a graph in which no two edges intersect in the drawing

except at their common end vertex. Fig. 1.3(a) and Fig. 1.3(b) illustrate a planar drawing

and a non-planar drawing of the same graph respectively. It is always preferable to find

planar drawing if a graph has a planar drawing. Because planar drawings are relative
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easy to understand in comparison with the non-planar drawings. Unfortunately not every

graph has a planar drawing. A graph is called planar graph if it admits planar drawing.

(a) (b)

Figure 1.3: (a) A planar drawing, and (b) a non-planar drawing of the same graph.

To find a planar drawings of a given graph, it is needed to test whether the given graph

is planar or not. If the graph is planar, then he/she needs to find a planar representation

of the graph which is a data structure representing adjacency lists: lists in which the

edges incident to a vertex are ordered, all clockwise or all counterclockwise, according

to the planar representation. Kuratowski [Kur30J gave the first complete characteriza-

tion of planar graphs. Unfortunately Kuratowski's characterization does not lead to an

efficient algorithm for planarity testing. Linear-time algorithms for this problem have

been developed by Hopcroft and Tarjan [HT74], and Booth and Lucker [BL76]. Chiba

et al. [CNA085], Mutzel [Mut92J and Shin and Hsu [SH99Jgave linear-time algorithms

for finding a planar representation of a planar graph. A planar graph with a fixed planar

representation is called a plane graph.

1.1.2 Straight Line Drawing

Straight line drawing is the most typical and widely studied drawing styles. It is natural

to draw each edge of a graph as a straight line segment between its end vertices and a
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drawing of a graph in which each edge is drawn as a straight line segment is called a

straight line drawing. Fig. 1.4 depicts a straight line drawing of a graph.

Figure 1.4: A straight line drawing.

Wagner [Wag36]' Fary [Far48] and Stein [Ste51] independently proved that every pla-

nar graph has a straight line representation. Their proofs immediately yield polynomial-

time algorithms to find a straight-line drawing of a given plane graph. Many works have

been published on straight line drawings of planar graphs [DETT94j.

1.1.3 Grid Drawing

Grid drawing is a drawing of a graph in which vertices as well as bends are located at

integer coordinates. In this drawing style, the minimum distance between two vertices is

at least unit distance, and the integer coordinates of vertices allow such drawings to be

rendered on displays, such as computer screen, without any distortions due to truncation

and round-off errors. The size of an integer grid required for a grid drawing is measured

by the size of the smallest rectangle on the grid which encloses the drawing. The width

W of the grid is the width of the rectangle and the height H of the grid is the height of

the rectangle. The grid size is usually described as W x H. The grid size is sometimes

described by the half-perimeter W + H or the area W.H of the grid. Fig 1.5 illustrates a

straight line grid drawing.

c\
C'
't. ~._-
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Figure 1.5: A straight line grid drawing.

1.1.4 Straight-Line Grid Drawing

6

A straight-line grid drawing of a planar graph G is a straight-line drawing of G on an inte-

ger grid such that each vertex is drawn as a grid point. Wagner [Wag36],Fary [Far48]and

Stein [Ste51] independently proved that every planar graph has a straight line represen-

tation. Their proofs immediately yield polynomial-time algorithms to find a straight-line

drawing of a given plane graph. However, the area of a rectangle enclosing a drawing on

an integer grid obtained by these algorithms is not bounded by any polynomial of the

number n of vertices in G. In fact, to obtain a drawing of area bounded by a polyno-

mial remained as an open problem for long time. In 1990, de Fraysseix et al. [FPP90]

and Schnyder [Sch90l showed by two different methods that every planar graph of n ;:::3

vertices has a straight-line drawing on an integer grid of size (2n - 4) x (n - 2) and

(n - 2) x (n - 2), respectively.

1.2 Drawing Aesthetics

A graph has an infinite number of drawings. Some drawings are better than others in

conveying information on the graph. Various criteria have been proposed in the literature

to evaluate the aesthetic quality of a drawing. In this section we introduce some aesthetic
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criteria of graph drawings which we generally consider [NR04]. For example, we may

be interested in a area efficient drawing of planar graphs. The smaller area of drawing

improves the readability as well as reduces the cost of VLSI chip by proper utilization of

valuable space in the chip. It is difficult to define a nice drawing precisely, rather we can

specify some criteria of a drawing. The criteria of a drawing can be as follows.

Edge Crossings An edge crossing is a point where two edges intersect each other. Each

edge crossing of a graph is a source of confusion. Therefore, it is better to keep

the number of edge crossings of a graph minimum. Moreover, in case of VLSI

circuit design less number of edge crossings can minimize the number of layers of

semiconductors.

Area Area of a drawing means the area of the smallest rectangle that encloses the draw-

ing. If the area becomes too large, then we have to use many pages, or we must

decrease resolution, so either way the drawing becomes unreadable. Therefore one

major objective is to ensure a small area. For VLSI f100rplanning smaller area

drawing is preferred because it helps us to avoid wasting of valuable space in the

chip.

Aspect Ratio The aspect ratio of a drawing is the ratio of the length of the longest

side to the length of the shortest side of the smallest rectangle which encloses that

drawing. A drawing with high aspect ratio may not be conveniently placed on a

workstation screen, even if it has modest area. Hence, it is important to keep the

aspect ratio small.

Angular Resolution The angular resolution of a poly line drawing is the smallest angle

formed by two adjacent edges or two successive segments of an edge of that drawing.

It is desirable to maximize the angular resolution for displaying a drawing on a raster

device.
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Shape of Faces A drawing in which every face has a regular shape looks better than a

drawing having faces of irregular shape. For VLSI floorplanning it is desirable that

each face is drawn as a rectangle.

Symmetry Symmetry is an important aesthetic criteria in graph drawing. Symmetry

of a two-dimensional figure is an isometry of the plane that fixcs the figure. Where

possible, a symmetric view of the graph should be displayed. Because, increasing

the local symmetry displayed in a graph drawing increases the understandability of

the graph.

For most of the above cases, it is hard to achieve optimum. Garey and Johnson

showed that minimizing the number of crossings is NP-complete [GJ83]. Kramer and

van Leeuwen [KvL84] proved that to test whether a graph can be embedded in a grid of

prescribed size is NP-complete, and Formann and Wagner pointed out some corrections

to the proof [FW91]. Garg and Tamassia prove the N P-completeness of determining the

minimum number of bends for orthogonal drawing [GT95].

1.3 Motivation

In this thesis, we address the area efficient straight-line grid drawings of planar graphs.

Smaller area of a drawing increases the readability of the drawing. Compact drawing of a

circuit is preferable for VLSI fabrication since a compact drawing helps us to avoid wasting

of valuable wafer space. Rather than this practical importance, the motivation of our work

primarily comes from the theoretical point of view. Wagner [Wag36], Fary [Far48] and

Stein [Ste51] independently proved that every planar graph G has a straight-line drawing.

Their proofs immediately yield polynomial-time algorithms to find a straight-line drawing

of a given plane graph. However, the area of a rectangle enclosing a drawing on an integer

grid obtained by these algorithms is not bounded by any polynomial of the number n of

vertices in G. In fact, to obtain a drawing of area bounded by a polynomial remained as
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an open problem for long time. In 1990, de Fraysseix et al. [FPP90] and Schnyder [Sch90]

showed by two different methods that every planar graph of n ~ 3 vertices has a straight-

line drawing on an integer grid of size (2n-4) x (n-2) and (n-2) x (n-2), respectively.

A natural question arises: what is the minimum size of a grid required for a straight-

line drawing? de Fraysseix et al. showed that, for each n ~ 3, there exits a plane

graph of n vertices, for example nested triangles, which needs a grid size of at least

l2(n-1)/3J x l2(n-1)/3J for any grid drawing [CN98, FPP90]. It has been conjectured

that every plane graph of n vertices has a grid drawing on a i2n/31 x i2n/31 grid, but it

is still an open problem. For some restricted classes of graphs, more compact straight-line

grid drawings are known. For example, a 4-connected plane graph G having at least four

vertices on the outer face has a straight-line grid drawing with area (In/21 - 1) x (l n/2 J)

[MNN01]. Garg and Rusu showed that an n-node binary tree has a planar straight-line

grid drawing with area O(n) [GR02, GR04b]. Although trees admit straight-line grid

drawings with linear area, it is generally thought that triangulations may require a grid of

quadratic size. Hence finding nontrivial classes of planar graphs of n ~ertices richer than

trees that admit straight-line grid drawings with area o(n2) is posted as an open problem

in [BEGKLM04]. We address this open problem in this thesis.

1.4 Scope of this Thesis

In this section we introduce the topics of graph drawings, partitioning problems and

interconnection networks which fall in the scope of this thesis, and mention the previous

results and the results obtained by this thesis.

One of the objectives of graph drawings is to obtain a nice drawing of a given graph.

We thus assume that if a graph can be drawn without any pair of crossing edges, then we

draw accordingly. In this thesis we concentrate our attention to the drawings of planar

graphs. Our work is devoted to straight-line drawings of planar graphs. Area of drawing
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is one of the important aesthetics criteria. More specifically, our work is devoted to

straight-line grid drawings of planar graphs since our works address the area requirement

of drawings. In our works, we have identified some classes of planar graphs those admit

straight-line grid drawings with sub-quadratic area. Apart from the characterization as

well as drawing algorithm for the newly introduced classes of graphs, we also study their

k-partitioning problem and the topological properties for finding their other applications.

1.4.1 Straight-line Grid Drawings

The most typical and widely studied drawing style is the straight-line drawing of a planar

graph. It is well known that a planar graph of n vertices admits a straight-line grid drawing

on a grid of area O(n2) [FPP90, Sch90). A lower bound on l1(n2) on the area-requirement

for straight-line grid drawings of certain planar graphs are also known [CN98, FPP90).

It has been conjectured that every plane graph of n vertices has a grid drawing on a

f2n/31 x f2n/31 grid, but it is still an open problem. For some restricted classes of

graphs, more compact straight-line grid drawings are known. For example, a 4-connected

plane graph G having at least four vertices on the outer face has a straight-line grid

drawing with area (fn/21 - 1) x (In/2J) [MNN01]. Garg and Rusu showed that an n-

node binary tree has a planar straight-line grid drawing with area O(n) [GR02, GR04b].

Although trees admit straight-line grid drawings with linear area, it is generally thought

that triangulations may require a grid of quadratic size. Hence finding nontrivial classes

of planar graphs of n vertices richer than trees that admit straight-line grid drawings

with area o(n2) is posted as an open problem in [BEGKLM04). The problem of finding

straight-line grid drawings of outerplanar graphs with o(n2) area was first posed by Biedl

in [Bie02], and Garg and Rusu showed that an outerplanar graph with n vertices and

the maximum degree d has a planar straight-line drawing with area O(dn1.48) [GR04aJ.

Di Battista and Frati showed that a "balanced" outerplanar graph of n vertices has a

straight-line grid drawing with area O(n) and a general outerplanar graph of n vertices
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has a straight-line grid drawing with area O(n1.48) [DF06]. Recently Frati showed that a

general outerplanar graphs with n vertices admits a straight-line grid drawing with area

O(dnlogn), where d is the maximum degree of the graph [Fra07J.

In this thesis, we introduce a new class of planar graphs which has a straight-line

grid drawing on a grid of area O(n). We give a linear-time algorithm to find such a

drawing. We call the class "doughnut graph" since a graph in this class has a doughnut-

like embedding. The definition of the class is as follows. Let G be a 5-connected planar

graph, let r be any planar embedding of G and let p be an integer such that p ~ 4. We

call G a ~doughnut graph if the following Conditions (d1) and (d2) hold:

(dj) r has two vertex-disjoint faces each of which has exactly p vertices, and all the other

faces of r has exactly three vertices; and

(d2) G has the minimum number of vertices satisfying Condition (d1).

In general, we call a ~doughnut graph for p ~ 4 a doughnut graph. Fig. 1.6(d) illustrates

a straight-line grid drawing of a doughnut graph G with linear area in Fig. 1.6(a). We

describe our results on doughnut graphs in Chapter 3.

One can easily observe that any spanning subgraph of a doughnut graph also admits

straight-line grid drawing with linear area. But recognition of a spanning subgraph of

a given graph is an NP-complete problem in general [GJ79]. We establish a necessary

and sufficient condition for a 4-connected planar graph G to be a spanning subgraph of a

doughnut graph. We provide a linear-time algorithm to augment a 4-connected spanning

subgraph of a doughnut graph to a doughnut graph. Thus we have identified a subclass

of 4-connected planar graphs that admits straight-line grid drawing with linear area. We

deal with the spanning subgraphs of doughnut graphs in Chapter 4.

We introduce a subclass of outerplanar graphs which has a straight-line grid drawing

on a grid of area O(nlogn). We give a linear-time algorithm to find such a drawing.

We call this class "label-constrained outerplanar graphs" since a "vertex labeling" of the
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12

c

(c) (d)

Figure 1.6; (a) A planar graph G, (b) a straight-line grid drawing of G with area O(n2),

(c) a doughnut embedding of G and (d) a straight-line grid drawing of G with area O(n).

~.
. ...
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dual tree of this graph satisfies certain constraints. The "label-constrained outerplanar

graphs" are richer than "balanced" outerplanar graphs. The definition of the class is as

follows. Let G be a maximal outerplanar graph and let T be the dual tree of G. We call

G a label-constrained outerylanar graph if T can be converted to a rooted ordered binary

dual tree Tr such that Lr(Tr) is a "flat labeling." Fig. 1.7(d) illustrates a straight-line

grid drawing of a label-constrained outerplanar graph G in Fig. 1.7(a). We also give a

r

(a) (b)

1

(c) (d)

Figure 1.7: (a) A label-constrained outerplanar graph G, (b) the dual rooted ordered tree

Tr of G, (c) a straight-line grid drawing of Tr and (d) a straight-line grid drawing of G.

linear-time algorithm for recognition of a "label-constrained outerplanar graph." Chapter

5 covers the results on label-constrained outerplanar graphs.

c



Chapter 1. Introduction

1.4.2 Graph Partitioning

14

Given a graph G = (V, E), k natural numbers n}, n2, ... , nk such that 2::7=1ni = lVI,
we wish to find a k-partition VI, V2, ••• , Vk of the vertex set V such that IViI = ni and Vi

induces a connected subgraph of G for each i, 1 ::; i ::;k. A k-partition of a graph G is

illustrated in Fig. 1.8 for k = 5 where the edges of five connected subgraphs are drawn by

solid lines, and the remaining edges of G are drawn by dotted lines. Let B= UI, U2, ... , Urn

Figure 1.8: A 5-partition of a 5-connected planar graph G.

be a sequence of distinct vertices of G with m ::; k. A k-pariition of G with basis B is a

k-partition with the additional restriction that Ui E Vi, for 1 ::; i ::;m. A k-partltion of a

graph G with basis m is illustrated in Fig. 6.8 for k = 5 and m = 5.

nl= 4
n2= 2
n3= 3
n4= 2
n5= 5

Ul= b
u2=f
U3= i
U4= e
U5= 1

Figure 1.9: A 5-partition of a 5-connected planar graph G with basis 5.

The problem of finding a k-partitionof a given graph often appears in the load distri-

bution among different power plants and the fault-tolerant routing of communication net-

works [NRN97, NN01J. The problem is NP-hard in general even k is limited to 2 [DF85]'

and hence it is very unlikely that there is a polynomial-time algorithm to solve the prob-

lem. Although not every graph has a k-partition, Gyori and Lovasz independently proved
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that every k-connected graph has a k-partition [Gyr78, Lov77]. However, their proofs do

not yield any polynomial-time algorithm for finding a k-partition of a k-connected graph.

A linear-time algorithm is known for 4-partitioning of a 4-connected plane graph if the

four basis vertices are all on the boundary of one face [NRN97J. A linear-time algorithm

is also known for 5-partitioning of a 5-connected internally triangulated plane graph if

the five basis vertices are all on the boundary of one face [NN01]

We give a linear-time algorithm for k-partitioning of doughnut graphs in Chapter 6.

1.4.3 Interconnection Networks

An interconnection network is an important integral part of any parallel processing or

distributed systems. Performance of the distributed systems is significantly depends on

the choice of the network topology. An interconnection network usually modeled as an

undirected graph G where each vertex corresponds to a processor and an edge corresponds

to the communication channel between the two processors corresponding to the end ver-

tices of the edge. The popular interconnection networks are hypercube, mesh, butterfly

etc. We propose the class of doughnut graphs as a promising class of interconnection

networks due to their regularity, smaller diameter, maximal fault tolerance and recursive

structure. We also propose a simple routing algorithm in doughnut graphs. The topolog-

ical properties as well as an efficient routing scheme in the doughnut graphs are covered

in Chapter 7.

1.5 Summary

In this thesis we introduce some new classes of planar graphs which have beautiful area

efficient drawing properties. We have studied the k-partitioning problem for newly in-

troduced classes of graphs. We also study the topological properties of these classes of

planar graphs for finding suitable applications. In this section we summarize our main
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results. Our main results can be divided into three parts.

The first part of our result is to identify some new classes of planar graphs those admit

straight line grid drawings with sub-quadratic area. We characterize the new classes of

planar graphs and provide linear-time algorithms for finding such drawings. Our new

results together with the known ones are listed in Table 1.1.

Table 1.1: Classes of planar graphs and their area requirement.

Classes of planar graphs Area Reference

Binary Tree O(n) [GR04b]
"

O(dn1.48) [GR04a]Outerplanar graphs with the maximum degree d

Outerplanar graphs
,

O(n1.48) [DF06]

"Balanced" outerplanar graphs O(n) [DF06]

Outerplanar graphs with the maximum degree d O(dnlogn) [Fra07]

Doughnut graphs O(n) Ours

A subclass of 4-connected planar graphs O(n) Ours

Label-Constrained outerplanar graphs O(nlogn) Ours

The second part of the result is about the study of k-partitioning problem for our newly

introduced classes of planar graphs. We have found some interesting results for doughnut

graphs. We give a linear-time algorithm for k-partitioning of a doughnut graph. This new

result together with the known ones are listed in Table 1.2.

The third part of the result is about application of doughnut graph as an interconnec-

tion network. We have identified a set of topological properties of a doughnut graph those

can be exploited to design an efficient interconnection network. The class of doughnut

graphs is a maximal fault tolerant graphs since the members of this class is degree regular.

The degree of a vertex of a doughnut graph does not change with the increase the size of

the graph. This is the property which makes an interconnection network scalable. This

property is also important from the view point of VLSI implementation. We also give an

(; ~,
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Table 1.2: Results on graph partitioning

17

Classes of planar graphs Partitions Time Reference

General graphs k-partitioning NP-hard [DF85]

k-connected graphs k-partitioning Existential proof [Gyr78]

Biconnected graphs Bipartitioning G(n) [STN90]

Triconnected planar graphs tripartitioning G(n) [JSN94]

Four-connected planar graphs Four -partitioning G(n) [NRN97]

Five-connected plane graphs Five-partitioning G(n) [NNOIJ

Doughnut graphs k-partitioning G(n) Ours

efficient routing algorithm for a doughnut graph through exploiting its simple structure.

A topological comparison of different Cayley graphs, which are used as interconnection

networks, with doughnut graphs is given in the Table 1.3.

The rest of the thesis is organized as follows. In Chapter 2, we define some basic terms

of graph theory and algorithm theory. Chapter 3 provides the results on doughnut graphs

that admit straight-line grid drawing with linear area. Chapter 4 deals with the spanning

subgraphs of doughnut graphs. In Chapter 5, we introduce a subclass of outerplanar

graphs that admit straight-line grid drawing with G(n log n) area. We give a linear-time

algorithm to find such a drawing. We present a linear-time algorithm for k-partitioning

of doughnut graphs in Chapter 6. Chapter 7 deals with the application of doughnut

graphs. In this chapter, we present the topological properties of doughnut graphs and an

efficient routing scheme in doughnut graphs. We propose doughnut graphs as a promising

interconnection networks for their topological properties and efficient routing scheme.

Chapter 8 concludes the thesis.
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Table 1.3: Topological comparison of various Cayley graphs with doughnut graphs.
Topology number diameter degree connectivity maximal fault

of nodes tolerance

n-cycle n ln/2 J 2 2 yes

Cube-connected d2d l5d/2J -2 3 3 yes

-cycle [PV81]

Wrapped around d2d l3d/2J 4 4 yes

butterfly graph [Lei92]

d-Dimensional 2d d d d yes

hypercube [BA84]

k-degree d(k - l)d l5d/2J-2 k k yes

Cayley graph [HH06]

p-doughnut 4p lP/2J+2 5 5 yes

graphs [Ours]

r
• • ,



Chapter 2

Preliminaries

In this chapter we define some basic terms of graph theory and algorithm theory. Defi-

nitions which are not included in this chapter will be introduced as they are needed. We

start, in Section 2.1, by giving some definitions of standard graph-theoretical terms used

throughout the remainder of this thesis. We devote Section 2.2 to define terms related to

planar graphs. Finally in Section 2.3 we introduce the notion of time' complexity

2.1 Basic Terminology

In this section we give the definitions of those graph-theoretical terms, which we have

used throughout the remainder of this thesis. For readers interested in graph theory, we

refer to [Wes01].

2.1.1 Graphs

A graph G is represented by G = (V, E) where V be the finite set of vertices of G and

E be the finite set of edges of G. The finite set of vertices and edges of G are often

denoted by V(G) and E(G), respectively. Fig. 2.1 depicts a graph G where V(G) =

{Vj,V2,V3,V4,V5,VS}, and E(G) = {ej,e2,e3,e4,e5,eS,er,es}. Throughout this thesis the

19
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number of vertices of G is denoted by n, Le., n = I V I, and the number of edges of G is

denoted by m, Le., m = I E I. Thus for the graph G in Fig. 2.1 n = 6 and m = 8.

V2

Figure 2.1: A graph with six vertices and eight edges.

If more than one edges of a graph G join the same pair of vertices, then the edges

are called multiple edges. A loop is an edge which joins a vertex itself. If a graph G has

no multiple edges or loops, then G is called a simple graph. All the graphs, which we

consider in this thesis, are simple graphs.

We denote an edge between two vertices u and v of G by (u, v). If (u, v) E E, then

two vertices u and v of graph G are said to be adjacent; edge (u, v) is then said to be

incident to vertices u and v; u is a neighbor of v. The degree of a vertex v in G is the

number of edges incident to v, which we denote by d(v). In the graph in Fig. 2.1, vertices

V3 and Vs are adjacent, and d(v3) = 4, since 4 edges e2, e7, es and e3 are incident to V3'

The maximum degree of G is denoted by t>.(G) = maxVEV(G){d(v)}, and the minimum

degree of G is denoted by o(G) = minvEV(G){d(v)}.

2.1.2 Subgraphs

A subgraph of a graph G = (V, E) is a graph G' = (V', E') such that V' <;; V and E' <;; E;

We then write G' <;; G. If G' contains all the edges of G that join two vertices in V',

then G' is said to be the subgraph induced by V', and is denoted by G[V']. If G' contains



2.1. Basic Terminology 21

all the vertices of G, Le., V'(G') = V(G) and E'(G') <;;; E(G), G' is said to be spanning

subgraph' o/G. A spanning tree is a spanning subgraph that is tree. Fig. 2.2(b) illustrates

a subgraph induced by V' = {Vj,V3,V4,VS} ofG in Fig. 2.2(a), and Fig. 2.2(c) illustrates

a spanning subgraph of G in Fig. 2.2(a).

Figure 2.2: (a) A graph G, (b) an induced subgraph of G and (c) a spanning subgraph of

G

We often construct new graphs from old ones by deleting some vertices or edges. If

v is a vertex of a given graph G = (V, E), then G - v is the subgraph of G obtained by

deleting the vertex v and all the edges incident to v. More generally, if V'is a subset of

V, then G - V'is the subgraph of G obtained by deleting the vertices in V' and all the

edges incident to them. Then G - V'is a subgraph of G induced by V - V'. Similarly, if

e is an edge of G, then G - e is the subgraph of G obtained by deleting the edge e. More

generally, if E' <;;; E, then G - E' is the subgraph of G obtained by deleting the edges in

E'.

2.1.3 Connectivity

A graph G is connected if for any two distinct vertices u and v there is a path between u

and v in G. A graph which is not connected is called a disconnected graph. A (connected)

component of a graph is a maximal connected subgraph of the graph. The graph in
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Fig. 2.3(a) is a connected graph since there is a path for every pair of distinct vertices of

the graph. On the other hand the graph in Fig. 2.3(b) is a disconnected graph because

there exists no path between VI and Vg. The graph in Fig. 2.3(b) has two connected

components GI and G2 indicated by dotted lines.

<al

VOV2\ OJ
•. 1 .. .
". :

...... v~... ' .....-..

...... Vs
..... (b)

Figure 2.3: (a) A connected graph and (b) a disconnected graph.

The connectivity 11:(G) of a graph G is the minimum number of vertices whose removal

results in a disconnected graph or a single vertex graph KI. We say that G is k-connected

if 11:(G) ~ k. We call a set of vertices in a connected graph G a separator or a vertex-cut

if the removal of the vertices in the set results in a disconnected or single-vertex graph.

If a vertex-cut contains exactly one vertex then we call the vertex a cut-vertex ..

2.1.4 Paths and Cycles

A Va - VI walk, Va, el, VI, ... , VI-I, el, and VI in a graph G is an alternating sequence

of vertices and edges of G, beginning and ending with a vertex, in which each edge is

incident to two vertices immediately preceding and following it. If the vertices va, VI, ... ,

Vl are distinct (except possibly Va, VI), then the walk is called a path and usually denoted

either by the sequence of vertices Va, VI, ... , VI or by the sequence of edges el, e2, ... , el'

The length of the path is I, one less than the number of vertices on the path. A path or

walk is closed if Va = VI' A closed path containing at least one edge is called a cycle. If a
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closed path contains exactly one edge, then it is called a loop.

2.1.5 Trees

A tree is a simple connected graph which contains no cycle. The vertices in a tree are

usually called nodes. A rooted tree is a tree in which one of the nodes is distinguished

from others. The distinguished node is called the root of the tree. The root of a tree is

generally drawn at the top. The node VI in Fig. 2.4 is the root. If a rooted tree is regarded

as a directed graph in which each edge is directed from top to bottom, then every node U

other than root is connected by an edge from some other node p is called the parent of u.

We also call u a child of p. We draw the parent of a node above that node. For example,

in Fig. 2.4, VI is the parent of V2, V3 and V4, while V2 is the parent of vs, and V4 is the

parent of V6 and V7; V2, V3 and V4 are children of v}, while V6 and V7 are the children of V4'

A leaf is a node of a tree that has no children. An internal node is a node that has one

or more children. Thus every node of a tree is either a leaf or an internal node. Fig. 2.4

illustrates a tree in which vs, V3, V6 and V7 are the leaf nodes, and the nodes VI, V2, V4 are

the internal nodes.

Figure 2.4: A tree.

The parent-child relationship can be extended naturally to ancestors and descendants.

Suppose that u}, U2, ... , Ul is a sequence of nodes in a tree such that UI is the parent of

U2, which is a parent of U3, and so on. Then node UI is called an ancestor of Ul and node

Ul a descendant of UI' The root is an ancestor of every node in a tree and every node is

I'"
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a descendant of the root. In Fig. 2.4, all the nodes except VI is the descendant of VI, and

VI is the ancestor of all nodes.

The height of a node u in a tree is the length of a longest path from u to a leaf. The

height of a tree is the height of the root. The depth of a node u in a tree is the length of

a path from the root to u. The level of a node u in a tree is the height of the tree minus

the depth of u. In Fig. 2.4, for example, node V2 is of height 1, depth 1 and level 1. The

tree in Fig. 2.4 has height 2.

An ordered rooted tree is a rooted tree where the children of each internal vertex are

ordered from left to right. If v is a node in a tree T, then the subtree with v as its

root is the subgraph of T consisting of v and its descendants and all edges incident to

these descendants. By tree traversal, we mean a method for systematically visiting every

node of an ordered rooted tree. Three most commonly used such methods are - preorder

traversal, inorder traversal and postorder traversal. We define the preorder traversal of a

ordered rooted tree T as follows. If T consists only of r, then r is the preorder traversal

of T. Otherwise, suppose that TI, T2, ••• , Tn are the subtrees rooted at the children of

r from left to right. Then the preorder traversal begins by visiting r. It continues by

traversing TI in preorder, then T2 in preorder, and so on, until Tn is traversed in preorder.

In case of inorder traversal, if T consists only of r, then r is the inorder traversal of T.

Otherwise, the inorder traversal of T begins by traversing TI in inorder, then visiting r.

It continues by traversing T2 inorder, then Ta in inorder, ... , and finally Tn in inorder. In

case of postorder traversal, if T consists only of r, then r is the postorder traversal of T.

Otherwise, the postorder traversal of T begins by traversing TI in postorder, then T2 in

postorder, ... , then Tn in postorder, and ends by visiting r. For tree T in Fig. 2.4, .preorder

traversal of T gives VI, V2, Vs, Va, V4, V6, V7; inorder traversal of T gives vs, V2, VI, Va, V6,

V4, V7; and postorder traversal of T gives vs, V2, Va, V6, V7, V4, VI'

r' -
I ,
\\
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In this section we give some definitions related to planar graphs used in the remainder of

the thesis. For readers interested in planar graphs we refer to [NeSS].

2.2.1 Planar Graphs and Plane Graphs

A graph is planar if it has at least one embedding in the plane such that no two edges

intersect at any point except at their common end vertex. A planar graph may have

an exponential number of planar embeddings. Fig. 2.5 illustrates three different planar

embed dings of the same planar graph.

3

2

5

6

3

2

4

5

Figure 2.5: Three planar embeddings of the same graph.

A plane graph G is a planar graph with a fixed embedding in the plane as shown in

Fig. 2.6. A plane graph divides the plane into some connected regions called faces. The

shaded region of the graph G in Fig. 2.6 is an example of a face. A bounded region is

called an inner face and the the unbounded region of a plane graph is called the outer

face of the graph. If a graph is 2-connected and if it has at least three vertices, then the

boundary of each face of the graph is a cycle [NR04]. The boundary of the outer face

of G is called the outer boundary of G and denoted by Co(G). If Co(G) is a cycle, then

Co(G) is called the outer cycle of G. Any vertex v on Co(G) is called an outer vertex of

G; otherwise v is called an inner vertex of G. The vertices V7, Vs, and Vg of the graph
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G in Fig. 2.6 are the inner vertices and rest of the vertices are the outer vertices of G.

Similarly, any edge e on Co(G) is called an outer edge of G; otherwise e is called an inner

edge of G.

Figure 2.6: A plane graph G.

2.2.2 Euler's Formula

There is a simple formula relating the number of vertices, edges and faces in a connected

plane graph. It is known as Euler's formula because Euler established it in 1750 for those

plane graph defined by the vertices and edges of polyhedra. We now present Euler's

formula as the following lemma.

Lemma 2.2.1 Let G be a connected plane graph, let n, m, and f denote respectively the

number of vertices, edges and faces of G. Then n - f +m = 2

2.2.3 Outerplanar Graphs

A plane graph G is an outerplanar (l-outerplanar) graph if its all vertices of. G lie on

the outer face. A plane graph G is k- outerplanar (k > 1) if the graph G' obtained by

removing all the vertices of the outer face of G is (k - 1)-outerplanar graph. A graph is k-

outerplanar if it admits a k-outerplanar embedding. A planar graph G has outerplanarity

k ( k > 0) if it is k-outerplanar and it is not j-outerplanar for 0 < j < k. A maximal
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outerplanar graph is an outerplanar graph in which no edge can be added without losing

outerplanarity. (Note that all the maximal outerplanar graphs are biconnected.) Clearly,

each inner face of a maximal outerplanar graph has three edges. It is easy to see that any

outerplanar graph can be augmented in linear time to a maximal outerplanar graph by

adding only linear number of extra edges.

2.2.4 Dual Graphs

For a plane graph G, we often construct another graph G* called the (geometric) dual of

G as follows. A vertex vi is placed in each face of F'; of G; these are the vertices of G*.

Corresponding to each edge e of G we draw an edge e* which crosses e (but no other edge

of G) and joins the vertices vi which lie in the faces Pi adjoining e; these are the edges of

G*. The construction is illustrated in Fig 2.7(a); the vertices vi are represented by small

white circle, and the edges e* of G* by dotted lines. G* is not necessarily a simple graph

even if G is simple. Clearly the dual of G* of a plane graph G is also plane .. One can

~----,-- .
,",.- ,.." ':,:~::-:::~:::.-~'.-',
, , " . '.'. "" " ,. . ,. . ,. . .. . ,
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(b)

Figure 2.7: (a) A plane graph G and its dual graph G* and (b) a plane graph G and its

weak dual graph G'.

easily observe the following lemma.

Lemma 2.2.2 Let G be a connected plane graph with n vertices m edges and I laces, and
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let the dual G* have n* vertices, m* edges and f* faces; then n* = f, m,* = m, and f* =

n.

Clearly the dual of the dual of the plane graph G is the original graph C. However

a planar graph may give rise to two or more geometric duals since the plane embedding

is not necessarily unique. If we ignore the outerface, we call the graph C' as a weak dual

of G. Fig. 2.8(b) illustrates the weak dual graph G' of a graph C where the vertices of

G' are represented by small white circle and edges of C' are represented by dotted lines.

Clearly the weak dual of an outerplanar graph is a tree as illustrated in Fig. 2.8. Hence

we call the weak dual of an outerplanar graph is a dual tree.

Figure 2.8: An outerplanar graph G and its weak dual graph C/.

2.3 Algorithms and Complexity

In this section we briefly introduce some terminologies related to complexity of algorithms.

For interested readers, we refer the book of Garey and Johnson [GJ79j. The most widely

accepted complexity measure for an algorithm is the running time which is expressed by

the number of operations it performs before producing the final answer. The number of

operations required by an algorithm is not the same for all problem instances. Thus, we

consider all inputs of a given size together, and we define the complexity of the algorithm

i ,.r
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for that input size to be the worst case behavior of the algorithm on any of these inputs.

Then the running time is a function of size n of the input.

2.3.1 The Notations O(n), O(n), o(n)

In analyzing the complexity of an algorithm, we are often interested only in the "asymp-

totic behavior," that is, the behavior of the algorithm when applied to very large inputs.

To deal with such a property of functions we shall use the following notations for asymp-

totic running time. Let f(n) and g(n) are the functions from the positive integers to the

positive reals, then we write (i) f(n) = O(g(n)) if there exists positive constants c and

no such that 0 :s:: f(n) :s:: cg(n) for all n 2: no, (ii) f(n) = n(g(n)) if there exists positive

constants c and no such that 0 :s:: cg(n) :s:: f(n) for all n 2: no, and (iii) f(n) = o(n) for

any positive constant c > 0, there exists a no > 0 such that 0 :s:: f(n) < cg(n) for all

n 2: no. Thus the running time of an algorithm may be bounded from above by phrasing

like "takes time O(n2) or n(n2) or o(n2)."

2.3.2 Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomiaD if its complexity

is bounded by a polynomial of the size of a problem instance. Examples of such complex-

ities are O(n), O(nlogn),O(nIOO), etc. The remaining algorithms are usually referred as

exponential or nonpolynomial. Example of such complexity are O(2n), O(n!), etc.

When the running time of an algorithm is bounded by O(n), we call it a linear-time

algorithm or simply a linear algorithm.

2.3.3 NP-Complete

There are number of interesting computational problems for which it has not been proved

whether there is a polynomial time algorithm or not. Most of them are "NP-complete,"

(
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which we will briefly explain in this section.
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The state of algorithms consists of the current values of all the variables and the

location of the current instruction to be executed. A deterministic algorithm is one for

which each state, upon execution of the instruction, uniquely determines at most one of

the following state (next state). All computers, which exist now, run deterministically. A

problem Q is in the class of P if there exists a deterministic polynomial-time algorithm

which solves Q.

In contrast, a nondeterministic algorithm is one for which a state may determine

many next states simultaneously. We may regard a nondeterministic algorithm as having

the capability of branching off into many copies of itself, one for the each next state.

Thus, while a deterministic algorithm must explore a set of alternatives one at a time, a

nondeterministic algorithm examines all alternatives at the same time. A problem Q is in

the class N P if there exists a nondeterministic polynomial-time algorithm which solves

Q. Clearly P c NP.

Among the problems in N P are those that are hardest in the sense that if one can

be solved in polynomial-time them so can every problem in N P. These are called N P-

complete problems. The class of NP-complete problems has the very interesting proper-

ties.

(a) No NP-complete problem can be solved by any known polynomial algorithm.

(b) If there is a polynomial algorithm for any NP-complete problem, then there are

polynomial algorithm for all NP-complete problems.

Some times we may be able to show that, if problem Q is solvable in polynomial time,

all problems in N P are so, but we are unable to argue that Q E N P. So Q does not

qualify to be called NP-complete. Yet, undoubtedly Q is as hard as any problem in NP.

Such a problem Q is called NP-hard.
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When designing algorithms on graphs, we often need a method for exploring the vertices

and edges of a graph. In this section we introduce such a method named depth first search

(DFS). In DFS each edge is traversed exactly once in the forward and reverse directions

and each vertex is visited. Thus DFS runs in linear time. We now describe the method.

Consider visiting the vertices of a graph in the following way. We select and visit a

starting vertex v. Then we select any edge (v, w) incident on v and visit w. In general,

suppose x is the most recent visited vertex. The search is continued by selecting some

unexplored edge (x, y) incident on x. If y has been previously visited, we find another new

edge incident on x. If y has not been previously visited, then we visit y and begin a new

search starting at y. After completing the search through all paths beginning at y, the

search returns to x, the vertex from which y was first reached. The process of selecting

unexplored edge incident to x "iscontinued until the list of these edges is exhausted. This

method is called depth-first search since we continue searching in the deeper direction as

long as possible.
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Doughnut Graphs

In this chapter, we introduce a new class of planar graphs, which we call doughnut graphs,

has a straight-line grid drawing on a grid of area O(n). It is well known that a planar

graph of n vertices admits a straight-line grid drawing on a grid of area O(n2). A lower

bound of !1(n2
) on the area-requirement for straight-line grid drawings of certain planar

graphs are also known. It has been conjectured that every plane graph of n vertices has

a grid drawing on a f2n/31 x f2n/31 grid, but it is still an open problem. For some

restricted classes of graphs, more compact straight-line grid drawings are known. For

example, a 4-connected plane graph G having at least four vertices on the outer face has

a straight-line grid drawing with area (f n/21 - 1) x (l n/2 J) [MNNOl]. Garg and Rusu

showed that an n-node binary tree has a planar straight-line grid drawing with area O(n)

[GR02, GR04bJ. Although trees admit straight-line grid drawings with linear area, it is

generally thought that triangulations may require a grid of quadratic size. Hence finding

nontrivial classes of planar graphs of n vertices richer than trees that admit straight-line

grid drawings with area o(n2) is posted as an open problem in [BEGKLM04]. Garg

and Rusu showed that an outerplanar graph with n vertices and the maximum degree d

has a planar straight-line drawing with area O(dn1.48) [GR04aJ. Di Battista and Frati

improved the result by showing that a "balanced" outerplanar graph of n vertices has a

32
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straight-line grid drawing with area O(n) and a general outerplanar graph of n vertices

has a straight-line grid drawing with area O(n1.48) [DF06]. Recently Frati showed that

any outerplanar graph with the maximum degree d has a straight-line grid drawing with

O(dnlogn) area [Fra07]. In this context, we introduce this class of graphs. We also give a

linear-time algorithm to find such a drawing. Our new class of planar graphs is a subclass

of 5-connected planar graphs, and we call the class "doughnut graphs" since a graph in

this class has a doughnut-like embedding as illustrated in Fig. 3.1(c). In an embedding of

a doughnut graph of n vertices there are two vertex-disjoint faces each having exactly n/4

vertices and each of all the other faces has exactly three vertices. Fig. 3.1(a) illustrates

a doughnut graph of 16 vertices where each of the two faces FI and F2 contains four

vertices and each of all other faces contains exactly three vertices. Fig. 3.1(c) illustrates a

doughnut-like embedding of G where FI is embedded as the outer face and F2 is embedded

as an inner face.

This chapter is organized as follows. In Section 3.1, we give some definitions. Section

3.2 provides some properties of the class of doughnut graphs. Section 3.3 deals with

straight-line grid drawings of doughnut graphs. Finally Section 3.4 concludes the chapter.

Our results presented in this chapter are published in [KR07].

3.1 Preliminaries

In this section we give some definitions.

Let G = (V, E) be a connected simple plane graph with vertex set V and edge set E.

For a face F in G we denote by V (F) the set of vertices of G on the boundary of face F.

We call two faces Fland F2 are vertex-disjoint if V(FI) n V(F2) = 0. Let F be a face in

a plane graph G with n ~ 3. If the boundary of F has exactly three edges then we call F

a triangulated face. One can divide a face F of p (p ~ 3) vertices into p - 2 triangulated

faces by adding p - 3 extra edges. The operation above is called triangulating a face. If

"
\
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a

(a)

b

b

(b)

34

(c)

c

(d)

Figure 3.1: (a) A planar graph G, (b) a straight-line grid drawing of G with area O(n2),

(c) a doughnut embedding of G and (d) a straight-line grid drawing of G with area O(n).

•
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every face of a graph is triangulated, then the graph is called a triangulated plane graph.

We can obtain a triangulated plane graph G' from a non-triangulated plane graph by

triangulating all of its faces. Fig. 3.2(b) illustrates a triangulated plane graph obtained

from the plane graph in Fig. 3.2(a).

a

(a)

a

(b)

Figure 3.2: (a) Input graph G and (b) a triangulated plane graph G' of graph G where

extra edges are drawn by dotted lines

A maximal planar graph is one to which no edge can be added without losing planarity.

Thus in any embedding of a maximal planar graph G with n ~ 3, the boundary of every

face of G is a triangle, and hence an embedding of a maximal planar graph is often called

a triangulated plane graph. It can be derived from the Euler's formula for planar graphs

that if G is a maximal planar graph with n vertices and m edges then m = 3n - 6, for

more details see (NR04J.

For any 3-connected planar graph the following fact holds [Whi33].

Fact 3.1.1 Let G be a 3-connected planar graph and let rand r' be any two planar

embeddings of G. Then any facial cycle of r is a facial cycle of r' and vice versa.

Let G be a 5-connected planar graph, let r be any planar embedding of G and let p

be an integer such that p ~ 4. We call Gap-doughnut graph if the following Conditions

(d1) and (dz) hold:

(d1) r has two vertex-disjoint faces each of which has exactly p vertices, and all the other

faces of r has exactly three vertices; and
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(d2) G has the minimum number of vertices satisfying Condition (dj).
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In general, we call a p-doughnut graph for p ::::4 a doughnut graph. Since a doughnut

graph is a 5-connected planar graph, Fact 3.1.1 implies that decomposition of a doughnut

graph into its facial cycles is unique. Throughout the thesis we often mention faces of

a doughnut graph G without mentioning its planar embedding where description of the

faces are valid for any planar embedding of G.

3.2 Properties of Doughnut Graphs

In this section we will show some properties of a p-doughnut graph. We have the following

lemma on the number of vertices of a graph satisfying Condition (dj).

Lemma 3.2.1 Let G be a 5-connected planar graph, let r be any planar embedding of

G, and let p be an integer such that p ::::4. Assume that r has two vertex-disjoint faces
each of which has exactly p vertices, and all the other faces of r has exactly three vertices.
Then G has at least 4p vertices.

Proof. Let Fj and F2 be the two faces of r each of which contains exactly p vertices.

Let x be the number of vertices in G which are neither on Fj nor on F2• Then G has

x + 2p vertices.

We now calculate the number of edges in graph G. Faces Fj and F2 may not be

triangulated. If we triangulate Fj and F2 of r then the resulting graph G' is a maximal

planar graph. Using Euler formula, G' has exactly 3(x + 2p) - 6 = 3x + 6p - 6 edges. To

triangulate each of Fj and F2, we need to add p - 3 edges and hence the number of edges

in G is exactly

(3x + 6p - 6) - 2(p - 3) - 3x + 4p (3.1)
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Since G is 5-connected, using the degree-sum formula we get 2(3x + 4p) ~ 5(x + 2p).

This relation implies

Therefore G has at least 4p vertices.

x ~ 2p (3.2)

o

Lemma 3.2.1 implies that a p-doughnut graph has 4p or more vertices. We now show

that 4p vertices are sufficient to construct a p-doughnut graph as in the following lemma.

Lemma 3.2.2 For an integer p, (p ~ 4), one can construct a p-doughnut graph G with

4p vertices.

To prove Lemma 3.2.2 we first construct a planar embedding r of G with 4pvertices

by the construction Construct-Doughnut given below and then show that G is a p-

doughnut graph.

Construct-Doughnut. Let 0" O2, 03 be three cycles such that 01 contains p ver-

tices, O2 contains 2p vertices and 03 contains p vertices. Let x" X2, .. " xp be the vertices

on 0" YI, Y2, ... , YP be the vertices on 03, and Z" Z2, .. , Z2p be the vertices on O2. Let RI, R2

and R3 be three concentric circles on a plane with radius rl, r2 and r3, respectively, such

that rl > r2 > r3' We embed 0" O2 and 03 on R" R2 and R3 respectively, as follows.

We put the vertices x" X2 ... Xp of 01 on RI in clockwise order such that XI is put on the

leftmost position among the vertices XI, X2, ..• , xp' Similarly, we put vertices z" Z2, ... , Z2p

of O2 on R2 and Y" Y2, ... , YP of 03 on R3. We now add edges between the vertices on 01

and O2, and between the vertices on O2 and 03• We have two cases to consider.

Oase 1: k is even in Zk'

In this case, we add two edges (Zk, Xk/2), (Zk, Xi) between O2 and 01, and one edge

(Zk, Yi) between O2 and 03 where i= 1 if k = 2p, i= k/2 + 1 otherwise.

Case 2: k is odd in Zk.

In this case we add two edges (Zk, Yrk/2]), (Zk, Yi) between O2 and 03, and one edge

(Zk, Xrk/2]) between 01 and O2 where i = 1 if k = 2p - 1, i = rk/21 + 1 otherwise.



Chapter 3. Doughnut Graphs 38

We thus constructed a planar embedding r of G. Fig. 3.3 illustrates the construction

above for the case of p = 4.

We now have the following lemma.

(a)
'"
(b) (c)

o

Figure 3.3: Illustration for the construction of a planar embedding r of a p-doughnut

graph G for p = 4; (a) embedding of the three cycles C1, C2 and C3 on three concentric

circles, (b) addition of edges for the case where k is even in Zk and (c) r.

Lemma 3.2.3 Let r be the plane graph of 4p vertices obtained by the construction Construct-

Doughnut. Then r has exactly two vertex-disjoint faces F1 and F2 each of which has

exactly p vertices, and the rest of the faces are triangulated.

Proof. The construction of r implies that Cycle C1 is the boundary of the outer face

F1 of r and Cycle C3 is the boundary of an inner face F2• Each of F1 and F2 has exactly

p vertices. Clearly the two faces F1 and F2 of r are vertex-disjoint. Thus r has exactly

two vertex-disjoint faces F1 and F2 each of which has exactly p vertices.

We now show that the rest of the faces of r are triangulated. The rest of the faces

can be divided into two groups; (i) faces having vertices on both the cycles C1 and C2

and (ii) faces having the vertices on both the cycles C2 and C3•

We only prove that each face in Group (i) is triangulated, since similarly we can prove

that each face in Group (ii) is triangulated.

From our construction, each vertex Zi with even i has exactly two neighbors on C1

and the two neighbors of Zi on C1 are consecutive. Hence we get a triangulated face for
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each Zi with even i which contains Zi and the two neighbors of Zi on Ct.

We now show that the remaining faces in Group (i) are triangulated. Clearly each of

the remaining faces in Group (i) must contain a vertex z. with odd i since a vertex on a

face in Group (i) is either on C] or on C2 and a vertex on C2 has at most two neighbors

on Ct. Let Zi, ZH] and ZH2 be three consecutive vertices on C2 with even i. Then Zi and

ZH2 has a common neighbor x on Ct. One can observe from our construction that x is

also the only neighbor of Zi+l on Ct. Then exactly two faces in Group (i) contains ZHI

and the two faces are triangulated. This implies that for each Zi on C2 with odd i there

are exactly two faces in Group (i) which contain z., and the two faces are triangulated.

Therefore each face in Group (i) is triangulated.

Thus r has exactly two vertex-disjoint faces F] and F2 each of which has exactly p

vertices, and the rest of the faces are triangulated. 0

We are now ready to prove the Lemma 3.2.2.

Proof of Lemma 3.2.2

We first construct a planar embedding r of a graph G with 4p vertices by the con-

struction Construct-Doughnut. We now show that G is a p-doughnut graph. To prove

this claim we need to prove that G satisfies the following properties (a )-( c);

(a) the graph G is a 5-connected planar graph;

(b) any planar embedding r' of G has exactly two vertex-disjoint faces each of which

has exactly p vertices, and all the other faces are triangulated; and

(c) G has the minimum number of vertices satisfying (a) and (b).

(aJ G is a planar graph since it has a planar embedding r as illustrated in Fig. 3.3(c).

To prove that G is 5-connected, we show that the size of any cut-set of G is 5 or more.

We first show that G is 5-regular. From the construction, one can easily see that each of

the vertex of C2 has exactly three neighbors in V(C]) UV(Ca). Hence the degree of each
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vertex of C2 is exactly 5. We now only prove that the degree of each vertex of CI is exactly

5 since the proof is similar for the vertices of C3. Each even index vertex v of C2 has two

neighbors on CI and the two neighbors of v are consecutive on CI by construction. Since

C2 has p even index vertices, CI has p vertices, and r is a planar embedding, each vertex

u of CI has at most two even index neighbors on C2• Assume that a vertex u of CI has

two even index neighbors Yi and Yi+2 on C2. Since r is a planar embedding Yi+1 can have

only one neighbor on CI which is u. Thus a vertex u on CI has at most three neighbors

on C2. Since there are exactly 3p edges each of which has one end point on CI and the

other on C2, and a vertex on CI has at most three neighbors on C2, each vertex of CI has

exactly three neighbors on C2. Hence the degree of a vertex on CI is 5. Therefore G is

5-regular. We now show that G is 5-connected. Assume for a contradiction that G has

a cut-set of less than five vertices. In such a case, G would have a vertex of degree less

than five, a contradiction. (Note that Gis 5-regular, the vertices of G lie on three vertex

disjoint cycles CI> C2 and C3, none of the vertices of CI has a neighbor on C3, each of the

faces of G is triangulated except faces FI and F2.) Hence G is 5-connected.

Therefore the graph G is a 5-connected planar graph.

(b) By Lemma 3.2.3, G has a planar embedding r such that r has exactly two vertex-

disjoint faces FI and F2 each of which has exactly p vertices, and the rest of the faces are

triangulated. Since G is 5-connected, Fact 3.1.1 implies that any planar embedding r' of
G has exactly two vertex-disjoint faces each of which has exactly p vertices, and all the

other faces are triangulated.

(c) We have constructed the graph G with 4p vertices and proofs for (a) and (b) imply

that G satisfies properties (a) and (b). G is a 5-connected planar graph and hence satisfies

(dl) of the definition of ap-doughnut graph. By Lemma 3.2.1, 4p is the minimum number

of vertices of such a graph. Since we have constructed G with 4p vertices, G has the

minimum number of vertices satisfying properties (a) and (b). 0
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Lemma 3.2.1 and 3.2.2 imply that a p-doughnut graph G has exactly 4p vertices.

Then the value of x in Eq. (3.2) is 2p in G. By Eq. (3.1), G has exactly 3x + 4p =

lOp edges. Since G is 5-connected, every vertex has degree 5 or more. Then degree-sum

formula implies that every vertex of G has degree exactly 5, since G has 4p vertices and

lOp edges. Therefore the following theorem holds

Theorem 3.2.4 Let G be a p-doughnut graph. Then G is 5-regular and has exactly 4p

vertices.

For a cycle C in a plane graph G, we denote by G(C) the plane subgraph of G

inside C excluding C. Let CI>C2 and C3 be three vertex-disjoint cycles in G such that

V(C,) UV(C2) UV(C3)=V(G). Then we call an embedding r of G a doughnut embedding

of G if C, is the outer face and C3 is an inner face of r, G(C,) contains C2 and G(C2)

contains C3. We call C, the outer cycle, C2 the middle cycle and C3 the inner cycle of r.
We next show that a p-doughnut graph has a doughnut embedding. To prove the claim

we need the following lemma.

Lemma 3.2.5 Let G be a p-doughnut graph. Let F, and F2 be the two faces of G each of

which contains exactly p vertices. Then G - {V(F,) UV(F2)} is connected and contains

a cycle.

Proof. Since G is 5-connected, G' = G - {V(F,) U V(F2)} is connected; otherwise, G

would have a cut-set of 4 vertices - two of them are on F, and the other two are on F2, a

contradiction. G' contains 2p vertices and at least 2p edges; if there is no edge between

a vertex on F, and a vertex on F2 in G then G' contains exactly 2p edges, otherwise G'

contains more than 2p edges. Since G' is connected, has 2p vertices and has at least 2p

edges, G' must have a cycle. 0

We now prove the following theorem.

Theorem 3.2.6 A p-doughnut graph always has a doughnut embedding.
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Proof. Let F1 and F2 be two faces of G each of which contains exactly p vertices.

Let r be a plane embedding of G such that F1 is embedded as the outer face. By

Lemma 3.2.5 G - {V(F1) U V(F2)} is connected and contains a cycle. Let C' be a cycle

in G - {V(F1) U V(F2)}. One can observe that if G(C') does not contain F2, then there

would be edge crossings among the edges from the vertices on C' to the vertices on Fj

and F2, and hence r would not be a plane embedding of G. Therefore G(C') contains

F2. Furthermore, G - {V(F1) UV(F2)} contains exactly one cycle C', and C' contains all

vertices of G - {V(F1) U V(F2)}; otherwise, r would not be a planar embedding of G, a

contradiction. Therefore in r,G(F1) contains C' and G(C') contains F2 and hence r is a

doughnut embedding. 0

A 1-outerplanar graph is an embedded planar graph where all vertices are on the outer

face. It is also called 1-outerplane graph. An embedded graph is a k-outerplane (k > 1)

if the embedded graph obtained by removing all vertices of the outer face is a (k - 1)-

outerplane graph. A graph is k-outerplanar if it admits a k-outerplanar embedding. A

planar graph G has outerplanarity k ( k > 0) if it is k-outerplanar and it is not j_

outerplanar for 0 < j < k.

We now show that the outerplanarity of a p-doughnut graph G is 3. Since none of the

faces of G contains all vertices of G, G does not admit 1-outerplanar embedding. We now

need to show that G does not admit a 2-outerplanar embedding. We have the following

fact.

Fact 3.2.7 A graph G having outerplanarity 2 has a cut-set of four or less vertices.

Proof. Deleting vertices from the outer face of a 2-outerplanar graph leaves a 1-

outerplanar graph. A 1-outerplanar graph has a cut-set of at most 2. From the definition

of 2-outerplanar graph and the cut-set size of 1-outerplanar graph, one can observe that

a graph G having outerplanarity 2 has a cut-set of four or less vertices. 0
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Since G is 5-connected graph, G has no cut-set of four or less vertices. Hence by

Fact 3.2.7 the graph G has outerplanarity greater than 2. Thus the following lemma

holds.

Lemma 3.2.8 Let G be a p-doughnut graph for p ~ 4. Then G is neither an l-outerplanar

graph nor a 2-outerplanar graph.

We now prove the following theorem.

Theorem 3.2.9 The outerplanarity of a p-doughnut graph G is 3.

Proof. A doughnut embedding of G immediately implies that G has a 3-outerplanar

embedding. By Lemma 3.2.8 G is neither an l-outerplanar graph nor a 2-outerplanar

graph. Therefore the outerplanarity of a p-doughnut graph is 3. 0

Based on the properties of doughnut graphs shown in this section, one can recognize a

doughnut graph as follows. A planar graph G is a doughnut graph if (i) G has 4p-vertices

where p (~ 4) is an integer, (ii) it is 5-regular, and (iii) for any planar embedding r of G,
r has two vertex disjoint faces each of which has exactly p-vertices and all the other faces
has exactly three vertices. The verification of Properties (i) and (ii) are trivial. Using an

efficient algorithm for face traversing of G, one can easily verify the Property (iii). Thus

one can recognize a doughnut graph in linear time using a linear-time face traversing

algorithm.

3.3 Straight-Line Grid Drawings of Doughnut Graphs

In this section we give a linear-time algorithm for finding a straight-line grid drawing of

a doughnut graph on a grid of linear area.

Let G be a p-doughnut graph. By Theorem 3.2.6 G has a doughnut embedding. Let

r be a doughnut embedding of G as illustrated in Fig. 7.5(a). Let 01, O2, and 03 be
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the outer cycle, the middle cycle and the inner cycle of r, respectively. We now have the

following facts.

Lemma 3.3.1 Let G be ap-doughnut graph and let r be a doughnut embedding ofG. Let

C], C2, and C3 be the outer cycle, the middle cycle and the inner cycle ofr, respectively.

For any two consecutive vertices Zi, zi+] on C2, one of Zi, Zi+] has exactly one neighbor

on C] and the other has exactly two neighbors on Ct.

Proof. In r G(C]) contains C2 and G(C2) contains C3• By Theorem 3.2.4 G is

5-regular, and hence each vertex on C] has exactly three neighbors on C2• Since each of

the faces which contains vertices on both C] and C2 is triangulated, one can observe that

one of Zi, Zi+l has exactly one neighbor on C] and the other has exactly two neighbors on

o

Lemma 3.3.2 Let G be a p-doughnut graph and let r be a doughnut embedding of G. Let
C1, C2 and C3 be the outer cycle, the middle cycle and the inner cycle of r, respectively.
Let Zi be a vertex on C2, then either the following (a) or (b) holds.

(aJ Zi has exactly one neighbor on C] and exactly two neighbors on C3.

(bJ Zi has exactly one neighbor on C3 and exactly two neighbors on Ct.

Proof. In r G(C]) contains C2 and G(C2) contains C3• By Theorem 3.2.4 G is

5-regular, and hence each vertex on C2 has exactly three neighbors on C] and C2. These

neighbors are on C] or on C3 or on both. Lemma 3.3.1 yields Zi has either one or two

neighbors on Ct. If Zi has one neighbor on C] then (a) holds. Otherwise, (b) holds. 0

Before describing our algorithm we need some definitions. Let Zi be a vertex on C2

such that Zi has two neighbors on Ct. Let x and x' be the two neighbors of Zi on C] such

that x' is the counter clockwise next vertex to x on Ct. We call x the left neighbor of Zi

on C] and x' the right neighbor of Zi on Ct. Similarly we define the left neighbor and the
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right neighbor of Zi on C3 if a vertex Zion C2 has two neighbors on C3. We are now ready

to give our algorithm.

We now embed Cr, C2 and C3 on three nested rectangles Rj, R2 and R3, respectively

on a grid as illustrated in Fig. 7.5(b). We draw rectangle Rj on grid with four corners on

grid point (0,0), (p + 1, 0), (p+ 1, 5) and (0, 5). Similarly the four corners of R2 are (1,

1), (p, 1), (p, 4), (1,4) and the four corners of R3 are (2,2), (p - 1, 2), (p - 1, 3), (2,3).

We first embed C2 on R2 as follows. Let Zj, Z2, ... , Z2p be the vertices on C2 in counter

clockwise order such that Zj has exactly one neighbor in Cj• We put Zj on (1, 1), zp on

(p, 1), zp+! on (p, 4) and Z2p on (1, 4). We put the other vertices of C2 on grid points of

.R2 preserving the relative positions of vertices of C2•

We now put vertices of Cj on Rj as follows. Let Xj be the neighbor of Zj on Cj and

let Xj, X2, ... , xp be the vertices of Cj in counter clockwise order. We put Xj on (0, 0) and

xp on (0, 5). Since Zj has exactly one neighbor on Cj, by Lemma 3.3.1, Z2p has exactly

two neighbors on Cj since Z2p and Zj are consecutive vertices on C2.. Since Zj and Z2p is

on a triangulated face of G having vertices on both Cj and O2, Xj is a neighbor of Z2p'

One can easily observe that xp is the other neighbor of Z2p on Cj. Clearly the edges (Xj,

zJl, (Xj, Z2p), (xp, Z2p) can be drawn as straight-line segment without edge crossing as

illustrated in Fig; 7.5(b). We next put neighbors of zp and zp+!' Let Xi be the neighbor of

zp on Cj if Zp has exactly one neighbor on Cj, otherwise let Xi be the left neighbor of zp

on Cj. We put Xi on (p + 1, 0) and Xi+! on (p + 1, 5). We now show that the edges from

Zp and zp+! to Xi and Xi+! can be drawn as straight-line segments without edge crossings.

We first consider the case where zp has exactly one neighbor on Cj. In this case Xi is the

only one neighbor of zp on Cj• Then, by Lemma 3.3.1, Zp+! has two neighbors on Cj•

Since each face having vertices on both Cj and C2 is triangulated, Xi and Xi+! are the

two neighbors of zp+! on Cj• Clearly the edges (zp, Xi), (Zp+!, Xi) and (zp+!, XHj) can be

drawn as straight-line segments without edge crossings, as illustrated in Fig. 7.5(b). We

next consider the case where zp has two neighbors on Cj. In this case let Xi and XHj be
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(p+J,5)
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X)(O, 0)
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(p+J.O)

X;
(p+I,O)
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Figure 3.4: (a) A doughnut embedding of a p-doughnut graph of G, (b) edges between

four corner vertices of R1 and Rz are drawn as straight-line segments, (c) edges between

vertices on R1 and Rz are drawn, (d) edges between four corner vertices of Rz and R3 are

drawn as straight-line segments and (e) a straight-line grid drawing of G.
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the two neighbors of zp on CI. By Lemma 3.3.1, zp+l has exactly one neighbor on CI.

Since the face of G containing zp, zp+l and the neighbor of zp+l on CI is triangulated,

Xi+1 is the neighbor of Zp+l. Clearly the edges (zp, Xi), (zp, Xi+I) and (Zp+l, Xi+I) can be

drawn as straight-line segments without edge crossings as illustrated in Fig. 3.5. We put

the other vertices of CIon grid points of RI arbitrarily preserving their relative positions

on CI.

(0,5)
x,

x,
(0,0) .

R,

(p-l,3) .
(Ji-l,2) .

(p+l,5

x,
(p+l,O)

Figure 3.5: Illustration of case where zp has two neighbors on CI.

Since vertices Z2, Zg, ... , Zp_1 are put in counter clockwise order on the horizontal

segment between points (1,1) and (p, 1) on R2 preserving the relative positions of vertices

on C2 and X2, Xg, .. , Xi-I are put on the horizontal segment between points (0,0) and

(p + 1,0) of RI preserving the relative positions of the vertices on CI, all edges of G

connecting vertices in {Z2, Zg, ... , Zp_l} to vertices in {X2, Xg, .. , Xi_I} can be drawn

as straight-line segments without edge crossings. Similarly, the edges of G connecting

vertices in {Zp+b zp+2, ... , Z2p-l} to vertices in {Xi+2, Xi+g, .. , Xp_l} can be drawn as

straight-line segments without edge crossings. See Fig. 7.5(c).

We now put the vertices of Cg on Rg as follows. Since ZI has exactly one neighbor on

CI, by Lemma 3.3.2(a), ZI has exactly two neighbors on Cg• Then, by Lemma 3.3.2(b),

Z2p has exactly one neighbor on Cg since Z2p has exactly two neighbors onCI. Let YI, Y2,

... , Yp be the vertices on Cg in counter clockwise order such that YI is the right neighbor

of ZI. Then YP is the left neighbor of ZI' We put YI on (2, 2) and Yp on (2, 3). Clearly
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the edges (Yl, Zl), (Yl, Z2p), (yP' Zl) can be drawn as straight-line segments without edge

crossings, as illustrated in Fig. 7.5(d). We next put neighbors of zp and Zp+l on C3. Let

Yi be the neighbor of zp on C2 if zp has exactly one neighbor on C3, otherwise Yi be the

left neighbor and Yi+l be the right neighbor of zp on C3. We put Yi on (p - 1, 2) and Yi+l

on (p - 1, 3), and hence the edges of G from zp and zp+l to Yi and Yi+l can be drawn

as straight-line segments without edge crossing as illustrated in Fig. 7.5(d). We put the

other vertices of C3 on grid points of R3 arbitrarily preserving their relative positions on

C3•

Since vertices Z2, Z3, ... , Zp-l are put in counter clockwise order on a horizontal segment

between points (1,1) and (p, 1) on R2 preserving the relative positions of vertices and Y2,

Y3, .. , Yi-l are put on a horizontal segment between points (2,2) and (p - 1,2) of R3,

all edges of G connecting vertices in {Z2, Z3, ... , Zp-l} to vertices in {Y2, Y3, .. , Yi-d

can be drawn as straight-line segments without edge crossings. Similarly, the edges of

G connecting vertices in {zP+l, zp+2, ... , Z2p-l} to vertices in {Yi+2, Yi+3, .. , Yp-d can

be drawn as straight-line segments without edge crossings. Fig. 7.5(e) illustrates the

complete straight-line grid drawing of a p-doughnut graph.

The area requirement of the straight-line grid drawing of a p-doughnut graph G is

equal to the area of rectangle R1 and the area of R1 is = (p + 1) x 5 = (n/4 + 1) x 5 =

O(n), where n is the number of vertices in G. Thus we have a straight-line grid drawing

of a p-doughnut graph on a grid of linear area. Clearly the algorithm takes linear time.

Thus the following theorem holds.

Theorem 3.3.3 A doughnut graph G of n vertices has a straight-line grid drawing on a

grid of area O(n). FUrthermore, the drawing of G can be found in linear time.
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In this chapter we introduced a new class of planar graphs, called doughnut graphs, which

is a subclass of 5-connected planar graphs. A graph in this class has a straight-line grid

drawing on a grid of linear area, and the drawing can be found in linear time. We also

showed that a doughnut graph is a 5-regular graph and the outerplanarity of a doughnut

graph is 3. Thus we identified a subclass of 3-outerplanar graphs that admits straight-line

grid drawing with linear area. Although the class doughnut graphs contains exactly one

graph for each integer p ~ 4, the class contains an infinite number of graphs. Using a

linear-time face traversing algorithm, one can recognize a doughnut graph in linear time.



Chapter 4

Spanning Subgraphs of Doughnut

Graphs

In this chapter, we deal with the straight-line drawing of the spanning subgraphs of

doughnut graphs. In Chapter 3, we have seen that a doughnut graph admits a straight-

line grid drawing with linear area. One can easily observe that a spanning subgraph of

a doughnut graph also admits a straight-line grid drawing with linear area. Fig. 4.1(f)

illustrates a straight-line grid drawing with linear area of a graph G' in Fig. 4.1(d) where

G' is a spanning subgraph of a doughnut graph G in Fig. 4.1(a). Using a transformation

from the "subgraph isomorphism" problem [GJ79] one can easily prove that recognition

of a spanning subgraph of a given graph is an NP-complete problem in general. Hence

recognition of a spanning subgraph of a doughnut graph is not a trivial problem. We thus

restrict ourselves only in 4-connected planar graphs. In this chapter, we give a necessary

and sufficient condition for a 4-connected planar graph to be a spanning subgraph of a

doughnut graph which immediately gives a sufficient condition for a 4-connected planar

graph that admit straight-line grid drawing with linear area.

This chapter is organized as follows. In Section 4.1, we give some definitions. Sec-

tion 4.2 provides a necessary and sufficient condition for a 4-connected spanning subgraph

50
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<aJ
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c

a
(e)

a

(d)
f a

(I)

Figure 4.1: (a) A doughnut graph G, (b) a doughnut embedding of G, (c) a straight-line

grid drawing of G with linear area, (d) a spanning subgraph G' of G, (e) an embedding

of G' where face PI is embedded as the outerface and (f) a straight-line grid drawing of

G' with area O(n).
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of a doughnut graph. In Section 4.3, we give a sufficient condition for a 4-connected planar

graph that admits straight-line drawing with linear area. Finally Section 4.4 concludes

the chapter. Our results presented in this chapter are published in [KROSJ.

4.1 Preliminaries

In this section we give some definitions.

Let G = (V, E) be a connected simple plane graph with vertex set V and edge set E.

A path in G is an ordered list of distinct vertices V1,V2, ... ,Vq E V such that (Vi_I, Vi) E E

for all 2 ::; i ::;q. Vertices VI and vq are end-vertices of the path V" V2, ... , vq. Two paths

are vertex-disjoint if they do not share any common vertex except their end vertices. The

length of a path is the number of edges on the path. We call a path P an even path if the

number of edges on P is even. We call a path P an odd path if the number of edges on P

is odd. For a face F in G we denote by V(F) the set of vertices of G on the boundary of

face F. We call two faces F, and F2 are vertex-disjoint if V(FJl nV(F2) = 0. We call a

face a quadrangle face if the face has exactly four vertices.

An isomorphism from a simple graph G to a simple graph H is a bijection f : V(G) -+

V(H) such that (u, v) E E(G) if and only if (f(u), f(v)) E E(H). Let GI and G2 are

two graphs. The subgraph isomorphism problem asks to determine whether G2 contains

a subgraph isomorphic to G,. Subgraph isomorphism is known to be an NP-complete

problem [GJ79]. It is not difficult to prove that recognition of a spanning subgraph of

a graph is an NP-complete problem using a transformation from subgraph isomorphism

problem.
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In this section, we give a necessary and sufficient condition for a 4-connected planar graph

to be a spanning subgraph of a doughnut graph as in the following theorem.

Theorem 4.2.1 Let G' be a 4-connected planar graph with 4p vertices where p > 4 and

let C:.(G) :s:5. Let r be a planar embedding of G. Assume that r has exactly two vertex

disjoint faces F1 and F2 each of which has exactly p vertices. Then G zs a spanning

subgraph of a p-doughnut graph if and only if r holds the following conditions.

(a) G has no edge (x, y) such that x E V(F1) and y E V(F2).

(b) Every face f ofr has at least one vertex v E {V(F1) U V(F2)}.

(c) For any vertex x ~ {V(F1) U V(F2)}, total number of neighbors of x on faces F1

and F2 are at most three.

(d) Every face f of r except the faces F1 and F2 has either three or four vertices.

(e) For any x-y path P such that V(P) n {V(F1) U V(F2)} = 0 and x has has exactly

two neighbors on face F1 (F2). Then the following conditions hold.

(i) If P is even, then the vertex y has at most two neighbors on face F1 (F2) and at

most one neighbor on face F2 (F1).

(ii) If P is odd, then the vertex y has at most one neighbor on face F1 (F2) and at

most two neighbors on face F2 (F1).

Fact 3.1.1 implies that decomposition of a 4-connected planar graph G into its facial

cycles is unique. Throughout the section we thus often mention faces of G without

mentioning its planar embedding where description of the faces are valid for aily planar

embedding of G, since K(G) 2: 4 for every graph G considered in this section.

Before proving the necessity of Theorem 4.2.1, we have the following fact.
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Fact 4.2.2 Let G be a 4-connected planar graph with 4p vertices where p > 4 and let

l1.(G) ::s; 5. Assume that G has exactly two vertex disjoint faces FJ and F2 each of which

has exactly p vertices. If G is a spanning subgraph of a doughnut graph then G can

be augmented to a 5-connected 5-regular graph G' through triangulation of all the non-

triangulated faces of G except the faces FJ and F2•

One can easily observe that the following fact holds from the construction Construct-

Doughnut given in Section 3.2 of Chapter 3.

Fact 4.2.3 Let G be a doughnut graph, and let P be any x-y path such that V(P) n

{V(FJl UV(F2)} =0 and x has exactly two neighbors on face FJ (F2). Then the following

conditions hold.

(i) If P is even, then the vertex y has exactly two neighbors on face FJ(F2) and exactly

one neighbor on face F2(FJl.

(ii) If P is odd, then the vertex y has exactly one neighbor on face FJ(F2) and exactly

two neighbors on face F2(FJ).

We are now ready to prove the necessity of Theorem 4.2.1.

Proof for Necessity of Theorem 4.2.1

Assume that G is a spanning subgraph of a p-doughnut graph. Then by Theorem 3.2.4

G has 4p vertices. Clearly l1.(G) ::s; 5 and G satisfies the Conditions (a), (b), and (c),

otherwise G would not be a spanning subgraph of a doughnut graph. The necessity of

Condition (e) is obvious by Fact 4.2.3. Hence it is sufficient to prove the necessity of

Condition (d) only.

(d) G does not have any face of two or less vertices since G is a 4-connected planar

graphs. Then every face of G has three or more vertices. We now show that G has no face

of more than four vertices. Assume for a contradiction that G has a face f of q vertices

such that q > 4. Then f can be triangulated by adding q - 3 extra edges. These extra

edges increase the degrees of q - 2 vertices, and the sum of the degrees will be increased
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by 2(q - 3). Using pigeon hole principle one can easily observe that there is a vertex

among the q(> 4) vertices whose degree will be raised by at least 2 after triangulation of

f. Then G' would have a vertex of degree six or more where G' is a graph obtained after

triangulation of f. Hence we cannot augment G to a 5-regular graph through triangulation

of all the non-triangulated faces of G other than the faces Fj and F2• Therefore G can

not be a spanning subgraph of a doughnut graph by Fact 4.2.2, a contradiction. Hence

each face f of G except Fj and F2 has either three or four vertices. 0

In the remaining of this section we give a constructive proof for the sufficiency of

Theorem 4.2.1. Assume that G satisfies the conditions of Theorem 4.2.1. We now have

the following lemma.

Lemma 4.2.4 Let G be a 4-connected planar graph satisfying the conditions in Theo-

rem 4.2.1. Assume that all the faces of G except Fj and F2 are triangulated. Then G is

a doughnut graph.

Proof. To prove the claim, we have to prove that (i) G is 5-connected, (ii) G has two

vertex disjoint faces each of which has exactly p, p > 4 vertices, and all the other faces of

G has exactly three vertices, and (iii) G has the minimum number of vertices satisfying

the properties (i) and (ii).

(i) We first prove that G is a 5-regular graph. Every face of G is a triangle except

Fj and F2• Furthermore each of Fj and F2 has exactly p, p > 4 vertices. Then G has

3(4p) - 6 - 2(p - 3) = lOp edges. Since none of the vertices of G has degree more than

five and G has exactly lOp edges, each vertex of G has degree exactly five. We now prove

that vertices of G lie on three vertex-disjoint cycles CJ, C2 and Ca such that cycles Cj,

C2, Ca contain exactly p, 2p and p vertices, respectively. We take an embedding r of G

such that Fj is embedded as the outer face and F2 is embedded as an inner face. We

take the contour of face Fj as cycle Cj and contour of face F2 as cycle Ca. Then each of

Cj and C2 contains exactly p, p > 4 vertices. Since G satisfies Conditions (a), (b) and
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(c) of Theorem 4.2.1 and all the faces of G except FI and F2 are triangulated, the rest

2p vertices of G form a cycle in f. We take this cycle as C2. G(C2) contains C3 since G

satisfies Condition (b) in Theorem 4.2.1. Clearly CI, C2 and C3 are vertex-disjoint and

cycles CI, C2, C3 contain exactly p, 2p and p vertices, respectively. We now prove that G

is 5-connected. Assume for a contradiction that G has a cut-set of less than five vertices.

In such a case G would have a vertex of degree less than' five, a contradiction. Hence G

is 5-connected.

(ii) The proof of this part is obvious since G has two vertex disjoint faces each of

which has exactly p vertices and all the other faces of G has exactly three vertices.

(iii) The number of vertices of Gis 4p. Using Lemma 3.2.1, we can easily proof that

it is the minimum number of vertices required to construct a graph G that satisfies the

properties (i) and (ii).

Therefore G is a doughnut graph. 0

We thus assume that G has a non-triangulated face I except faces FI and F2• By

Condition (d) of Theorem 4.2.1, I is a quadrangle face. It is now sufficient to show that

we can augment the graph G to a doughnut graph by triangulating each of the quadran-

gle faces of G. However, we can not augment G to a doughnut graph by triangulating

each quadrangle face arbitrarily. For example, the graph G in Fig. 4.2(a) satisfies all the

conditions of Theorem 4.2.1 and it has exactly one quadrangle face !J(a, b, c, d). If we

triangulate II by adding an edge (a, c) as illustrated in Fig. 4.2(b) the resulting graph

G' would not be a doughnut graph since a doughnut graph does not have an edge (a, c)

such that a E V(FI) and c E V(F2). But if we triangulate !J by adding an edge (b, d)

as illustrated in Fig. 4.2(c) the resulting graph G' is a doughnut graph. Hence every

triangulation of a quadrangle face is not always valid to augment G to a doughnut graph.

We call a triangulation of a quadrangle face I of G is a valid triangulation if the resulting

graph G' obtained after the triangulation of I does not contradict any condition of The-

orem 4.2.1. We call a vertex v on the contour of a quadrangle face I a good vertex if v is
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one of the end vertex of an edge which is added for a valid triangulation of f.
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(a) (b) (c)

Figure 4.2: (a) fl(a,b,c,d) is a quadrangle face, and (b) and (c) are two different trian-

gulations of fJ.

We call a quadrangle face f of G an a.-face if f contains at least one vertex from each

of the faces FI and F2• Otherwise we call a quadrangle face f of G a.(3-face. In Fig. 4.3,

h(a,b,c,d) is an a.-face whereas 12(P,q,T,s) is a (3-face.

Figure 4.3: fl (a, b, c, d) is an a.-face and 12(p, q, T, s) is a (3-face.

In a valid triangulation of an a.-face f of G no edge is added between any two vertices

x, y E V(J) such that x E V(FI) and y E V(F2). Hence the following fact holds on an

a.-face f.
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Fact 4.2.5 Let G be a 4-connected planar graph satisfying the conditions in Theorem 4.2.1.

Let f be an a-face in G. Then f admits an unique valid triangulation and the triangu-

lation is obtained by adding an edge between two vertices those are not on FI and F2.

Faces fJ (a, b, c, d) and h(p, q,r, s) in Fig. 4.4(a) are two a-faces and Fig. 4.4(b) illustrates

the valid triangulations of fJ and h. Vertices band d of fJ, and vertices q and s of 12,
are good vertices.

p

(a)
p

(b)

Figure 4.4: (a) fJ(a, b, c, d) and h(p, q, r, s) are two a-faces, and (b) valid triangulations

of fl and h

We call a {3-facea {31-face if the face contains exactly one vertex either from FI or from

F2. Otherwise we call a {3-face a {32-face. In Fig. 4.5, fJ(a, b, c, d) is a {3rface whereas

h(p, q, r, s) is a {32-face.We call a vertex v on the contour of a {31-facef a middle vertex

of f if the vertex is in the middle position among the three consecutive vertices other

than the vertex on FI or F2• In Fig. 4.5, vertex c of fl and vertex r of 12 are the middle

vertices of fl and 12 respectively.

In a valid triangulation of a {31-facef of G no edge is added between any two vertices

x, y E V(J) such that x, y ~ V(FI) U V(F2). Hence the following fact holds on a {31-face
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Figure 4.5: !J (a, b, c, d) is a 13]-faceand h(p, q,r, s) is a 132-face.

f.
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Fact 4.2.6 Let G be a 4-connected planar graph satisfying the conditions in Theorem 4.2.1.

Let f be a 13]-faceofG. Then f admits an unique valid triangulation and the triangulation

is obtained by adding an edge between the vertex on F] or F2 and the middle vertex.

Faces !J (a, b, c, d) and h(p, q, r, s) in Fig. 4.6(a) are two 13]-facesand Fig. 4.6(b) illustrates

the valid triangulations of !J and h. Vertices a and c of !J, and vertices p and r of h,
are good vertices.

In a valid triangulation of a f32-face f of G no edge is added between any two vertices

x, y E V(J) where x E V(F])(V(F2)), Y if. {V(Fd U V(Fd} and G has either (i) an

even q-y path P such that q has exactly two neighbors on F2(F]) and V(P) n {V(F]) U

V(F2)} = 0, or (ii) an odd q-y path P such that q has exactly two neighbors on F] (F2)

and V(P) n {V(Fd U V(F2)} = 0. Hence the following fact holds on a 132-facef.

Fact 4.2. 7 Let G be a 4-connected planar graph satisfying the conditions in Theorem 4.2.1.

Let f be a 132-faceof G. Then f admits an unique valid triangulation and the triangu-

lation is obtained by adding an edge between a vertex on face F] or F2 and a vertex

Z if. V(F]) U V(F2).
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p

(a)
p

(b)

Figure 4.6: (a) f,(a,b,c,d) and h(p,q,r,s) are two ,8,-faces and (b) valid triangulations

of j, and h-

Face j,(a,b,c,d) in Fig. 4.7(a) is a ,82-face and G has an even u-d path P such that u

has exactly two neighbors 9 and h on F2, and V(P) n {V(F,) U V(F2)} = 0. Fig. 4.7(c)
illustrates the valid triangulation of j,. Vertices a and c are the good vertices of f,.

Face 12(1,m, n, 0) in Fig. 4.7(b) is a ,82-face and G has an odd v-a path P such that v

has exactly two neighbors s and t on F" and V(P) n {V(F,) U V(F2)} = 0. Fig. 4.7(d)

illustrates the valid triangulation of h. Vertices I and n are the good vertices of h.
We now have the following Lemmas 4.2.8 and 4.2.9.

Lemma 4.2.8 Let G be a 4-connected planar graph satisfying the conditions in Theo-

rem 4.2.1. Then any quadrangle face f of G admits an unique valid triangulation such

that after triangulation d(v) ::;5 holds for any vertex v in the resulting graph.

Proof. By Facts 4.2.5, 4.2.6 and 4.2.7, f admits an unique valid triangulation. Since

a valid triangulation increases the degree of a good vertex by one, it is sufficient to show

that each good vertex of f has degree less than five in G. Assume for a contradiction that

a good vertex v has degree more than four in G. Then one can observe thatG would

violate a condition in Theorem 4.2.1.

o
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t
(b)

t
(d)
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Figure 4.7: Illustration for valid triangulation of 132-face;(a) It (a, b, c, d) is a 132-face and

G satisfies condition (i), (b) h(l, m, n, 0) is a 132-faceand G satisfies condition(ii), and (c)

and (d) illustrate the valid triangulations of II and h respectively.
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Lemma 4.2.9 Let G be a 4-connected planar graph satisfying the conditions in Theo-

rem 4.2.1. Also assume that G has quadrangle faces. Then no two quadrangle faces !J

and 12 have a common vertex which is a good vertex for both the faces!J and h.

Proof. Assume that faces !J and 12 have a common vertex u. If u is neither a good

vertex of h nor a good vertex of 12, then we have done. We thus assume that u is a good

vertex of h or h. Without loss of generality we assume that u is a good vertex of h.
Then u is not a good vertex of 12, otherwise u would not be a common vertex of hand

12, a contradiction. Thus faces h and 12 can not have a common vertex which is a good

vertex for both the faces. 0

We are now ready to give a proof for the sufficiency of the Theorem 4.2.1.

Proof for Sufficiency of Theorem 4.2.1

Assume that the graph G satisfies all the conditions of Theorem 4.2.1. If all the faces

of G except F1and F2 are triangulated, then by Lemma 4.2.4 G is a doughnut graph.

Otherwise, we triangulate each quadrangle face of G, using its valid triangulation. Let G' .

be the resulting graph. For each vertex v in G' d( v) ::;5, since according to Lemma 4.2.8

degree of each vertex of the graph remains five or less after valid triangulation of each

quadrangle face and by Lemma 4.2.9 no two quadrangle faces of G have a common vertex

which is a good vertex for both the faces. Since G satisfies the conditions in Theorem 4.2.1,

G' is obtained from G using valid triangulations of quadrangle faces and d( v) ::; 5 for each

vertex v in G', G' satisfies the conditions in Theorem 4.2.1. Hence G' is a doughnut graph

by Lemma 4.2.4. Therefore G is a spanning subgraph of a doughnut graph. 0

4.3 A Sufficient Condition for Linear Area Drawings

In this section we give a sufficient condition for a 4-connected planar graph that admits

straight-line grid drawing with linear area.
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In Theorem 4.2.1 we have given a necessary and sufficient condition for a 4-connected

planar graph to be a spanning subgraph of a doughnut graph. We now have the following

lemma.

Lemma 4.3.1 Let G be a 4-connected planar graph satisfying the conditions in Theo-

rem 4.2.1. Then G can be augmented to a doughnut graph in linear time.

Proof. We first embed G such that F! is embedded as the outer face and F2 is

embedded as an inner face. We then triangulate each of the quadrangle faces of G using

its valid triangulation if G has quadrangle faces. Let G' be the resulting graph. As shown

in the sufficiency proof of Theorem 4.2.1, G' is a doughnut graph. One can easily find all

quadrangle faces of G and perform their valid triangulations in linear time, hence G' can

The proof of Lemma 4.3.1 immediately gives us a linear-time algorithm to augment

a 4-connected planar graph G to a doughnut graph if G satisfies the conditions in The-

orem 4.2.1. We have thus provided a sufficient condition for a 4-connected planar graph

that admits straight-line grid drawings with linear area as stated in the following theorem.

be obtained in linear time. o

Theorem 4.3.2 Let G be a 4-connected planar graph satisfying the conditions in Theo-

rem 4.2.1. Then G admits a straight-line grid drawing on a grid of area O(n). Further-

more, the drawing of G can be found in linear time.

Proof. Using the method described in the proof of Lemma 4.3.1, we augment G to a

doughnut graph G' by adding dummy edges (if required) in linear time. By Theorem 3.3.3,

G' admits a straight-line grid drawing on a grid of area O(n). We finally obtain a drawing

of G from the drawing of G' by deleting the dummy edges (if any) from the drawing of

G'. By Lemma 4.3.1, G can be augmented to a doughnut graph in linear time and by

Theorem 3.3.3, straight-line grid drawing of a doughnut graph can be found in linear time.

Moreover, the dummy edges can also be deleted from the drawing of a doughnut graph

in linear time. Hence the drawing of G can be found in linear time. o
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4.4 Conclusion

64

In this chapter, we established a necessary and sufficient condition for a 4-connected

planar graph G to be a spanning subgraph of a doughnut graph. We also gave a linear-time

algorithm to augment a 4-connected planar graph G to a doughnut graph if G satisfies the

necessary and sufficient condition. By introducing the necessary and sufficient condition,

in fact, we have provided a sufficient condition for a 4-connected planar graph that admits

straight-line grid drawings with linear area.



Chapter 5

Label-Constrained Outerplanar

Graphs

In this chapter, we introduce a subclass of outerplanar graphs which has a straight-line

grid drawing on a grid of area O(nlogn). We give a linear-time algorithm to find such a

drawing. We call this class label-constmined outerplanal' gmphs since a "vertex labeling"

of the dual tree of this graph satisfies certain constraints. Fig. 3.1(a) illustrates a label-

constrained outerplanar graph G, and a straight-line grid drawing of G with O(nlogn)

area is illustrated in Fig. 3.1(b). It is well known that a planar graph of n vertices admits

a straight-line grid drawing on a grid of area O(n2) [Sch90, FPP90]. A lower bound of

fl( n2) on the area-requirement for straight-line grid drawings of certain planar graphs are

also known [CN98, FPP90J. Garg and Rusu showed that an n-node binary tree has a

planar straight-line grid drawing with area O(n) [GR02, GR04bj. Although trees admit

straight-line grid drawings with linear area, it is generally thought that triangulations

may require a grid of quadratic size. Hence finding nontrivial classes of planar graphs of

n vertices richer than trees that admit straight-line grid drawings with area o(n2) is posted

as an open problem in [BEGKLM04]. The problem of finding straight-line grid drawings

of outerplanar graphs with o(n2) area was first posed by Biedl in [Bie02]' and Garg and

65
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Rusu showed that an outerplanar graph with n vertices and the maximum degree d has a

planar straight-line drawing with area O(dnI.48) [GR04a]. Di Battista and Frati showed

that a "balanced" outerplanar graph of n vertices has a straight-line grid drawing with

area O(n) and a general outerplanar graph of n vertices has a straight-line grid drawing

with area O(nI.48) [DF06]. Recently Frati showed that a general outerplanar graphs

with n vertices admits a straight-line grid drawing with area O(dnlogn), where d is the

maximum degree of the graph [Fra07].

This chapter is organized as follows. In Section 5.1, we give some definitions. Sec-

tion 5.2 provides the drawing algorithm. Section 5.3 presents a linear-time algorithm

for recognition of a label-constrained outer planar graph, and Section 5.4 concludes the

chapter. Our results presented in this chapter are going to appear in [KAR09].

5.1 Preliminaries

In this section we introduce a labeling of a tree, give some definitions and define a class

of outerplanar graphs which we call "label-constrained outerplanar graphs."

We now define a vertex labeling of a rooted binary tree. Let T be a binary tree and

let r be the root of T. Then the labeling of a vertex U of T with respect to r, which we

denote by Lr(u), is-defined as follows:

(i) if u is a leaf node then Lr(u) = 1;

(ii) if u has only one child q and Lr(q) = k then Lr(u) = k;

(iii) if u has two children s and t, and Lr(s) = k and Lr(t)=k' where k > k', then Lr(u)

= k; and

(iv) if u has two children sand t, and Lr(s) = k and Lr(t)=k then Lr(u) = k+ 1.

This vertex labeling is similar to Horton-Strahler number [Hor45, Str52) which was orig-

inally introduced to classify the river systems.
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We denote by Lr(T) the labeling of all the vertices of T with respect to r. Fig. 5.1

illustrates the vertex labeling of a binary tree T rooted at r where an integer value

represents the label of the associated vertex. The following lemma is immediate from the

r

1

I

Figure 5.1: Vertex labeling of a binary tree T.

labeling defined above.

Lemma 5.1.1 Let T be a binary tree and let r be the root of T. Let u and v be two

vertices ofT such that u is an ancestor of v. If Lr(u) = k and Lr(v) := k', then k ~ k'.

The following lemma gives an upper bound on the value of the vertex labeling.

Lemma 5.1.2 Let T be a binary tree with n vertices and let r be the root ofT. Assume

that Lr(r) = k. Then k = O(logn).

Proof. We first show that T has at least 2k - 1 vertices using an induction on k.

The claim is obvious for k = 1. Assume that k ~ 2 and the result is true for all trees T'

with root of label k' such that k' < k. Let T be a tree with the root of label k. We first

. consider the case where r has a single child. In this case r has a successor q such that

each of the left and the right children of q is labeled with k - 1, and hence by induction

hypothesis each of the subtrees of q has at least 2k-1 - 1 vertices. Then T has at least

2k vertices. We now consider the case where r has two children. In this case, either (i)

each of the children of r has label k - 1 or (ii) one of the children of r has label k and the

other one has label k' where k' < k. In case of (i), by induction hypothesis, each of the
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subtrees of r of T has at least 2k-1 - 1 vertices, and hence T has at least 2k - 1. In case

of (ii), we assume that the subtree of r of T rooted at a vertex p is labeled with k. Then

p has a successor s such that each of the left and the right children of s is labeled with

k - 1, and hence by induction hypothesis each of the subtrees of s has at least 2k-1 - 1

vertices. Then T has at least 2k vertices. Therefore T has at least 2k - 1 vertices. Hence

n ~ 2k - 1, i.e., k = O(logn). o

We have the following lemma also.

Lemma 5.1.3 Let T be a binary tree and let r be the root of T. Assume that all the

vertices of T are labeled with respect to r using vertex labeling. Let V(k) be a set of

vertices such that for all v E V(k), Lr(v) = k. Then any connected component of the

subgraph ofT induced by V(k) is a path.

Proof. Let a connected component of the subgraph induced by V(k) in T be T'(k).

Assume for a contradiction that T' (k) is not a path. Then a vertex vET' (k) has degree

three. In such a case, v and the two children of v have the same label in T which is a

contradiction to the definition of vertex labeling of T. Hence any connected component

of the subgraph of T induced by V(k) is a path. 0

A binary treeT is ordered if one child of each vertex v of T is designated as the left

child and the other is designated as the right child. (Note that the left child or the right

child of a vertex may be empty.) Let T be a rooted ordered binary tree. For any vertex

VET, we call the subtree of T rooted at the left child (if any) of v the left subtree of v.

Similarly we define the right subtree of v. We call an u-v path of T a left-left path if u

is an ancestor of all the vertices of the path and each vertex except u of this path is the

left child of its parent. Similarly we define a right-right path of T. We call a path of T a

cross path if the path is neither a left-left path nor a right-right path. In Fig. 5.2(a) the

path Po= Vb V2, v3, V4 is a left-left path; P1=vo, VB,Vg is a right-right path;and P2=V5,

V6, Vl6 is a cross path. We call a maximal left-left path of T the leftmost path of T if
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one of the end vertex of the path is the root of T. Similarly we define the rightmost path

of T. In Fig. 5.2(b) the path Vo, VI, ... , V7 is the leftmost path; and the path vo, VB, Vg

is the rightmost path of T, where Vo is the root of T. For any vertex x E T, we call a

(a) (b) (c)

Figure 5.2: Illustration for different types of paths in a ordered binary tree T rooted at

Vo.

path x, VI, ... , Vm is the left-right path of x such that VI is the left child of x, and Vi+1 is

the right child of Vi where 1 ::; i ::;m - 1. Similarly we define the right-left path of x.

The path VS,V6, VI6 is the left-right path of vertex Vs, and the path V4, V12, V14, VI6 is the

right-left path of V4 in Fig. 5.2(c).

We call Lr(T) a fiat labeling if any path induced by the vertices of T of the same label

is either a left-left or a right-right path. We now have the following fact.

Fact 5.1.4 Let T be an ordered binary tree and let r be the root ofT. Let Lr(T) be a fiat

labeling. Then for any vertex x E T, each of the vertices of the left-right (right-left) path

of x except the left (right) child of x has a smaller label than the label of x .

Let G be a maximal outerplanar graph and let T be the dual tree of G. We convert

T as a rooted ordered binary tree Tr by assigning its root r and ordering of the children

of each vertex of T, as follows. Let r be a vertex of T such that r corresponds to an

inner face fr of G containing an edge (u, v) on the outerface. (Note that the degree of r

is either one or two.) We regard r as the root of T. Let w be the vertex of fr other than
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U, v such that u, v and w appear in the clockwise order on fr' We call u and v the poles

of fr and w the central vertex of fr. We also call u the left vertex of fr and v the right

vertex of fro The vertex of T corresponding to the face sharing the vertices v and w (if

any) of fr is the right child of r and the vertex of T corresponding to the face sharing

the vertices u and w (if any) of fr is the left child of r. Let p and q be two vertices of T

such that p is the parent of q, and let fp and fq be the two faces of G corresponding to p

and q in T. Let v" V2 and V3 be the vertices of fq in the clockwise order such that v, and
V2 are also on fp- Then v, and V2 are poles of fq, and V3 is the central vertex of fq. The

vertex v, is the left vertex of fq and the vertex V2 is the right vertex of fq. The vertex

of T corresponding to the face sharing the vertices V2 and V3 (if any) of fq is the right

child of q and the vertex of T corresponding to the face sharing the vertices v, and V3 (if

any) of fq is the left child of q. Thus we have converted the dual tree T of a maximal

outerplanar graph G to a rooted ordered dual tree Tr.

We are now ready to give the definition of "label-constrained outerplanar graphs."

Let G be a maximal outerplanar graph and let T be the dual tree of G. We call G

a label-constrained outerplanar graph if T can be converted to a rooted ordered binary

dual tree Tr such that Lr(Tr) is a flat labeling. Fig. 5.3(a) illustrates a label-constrained

outerplanar graph G since G is a maximal outerplanar graph and Lr(Tr) a flat labeling

as illustrated in Fig. 5.3(b).The Lp(Tp) is not a flat labeling since Tp has a cross path

induced by the label 2 vertices as illustrated in Fig. 5.3(c).

5.2 Drawings of Label-Constrained Outerplanar Graphs

In this section we give a linear-time algorithm for finding a straight-line grid drawing of

a label-constrained outerplanar graph with O(nlogn) area.

Let G be a maximal outerplanar graph and let Tr be the rooted ordered binary dual

tree of G taking a vertex r of Tr as the root. In [DF06], Di Battista and Frati defined
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(a)

r

Figure 5.3: (a) A maximal outerplanar graph G, (b) a rooted ordered binary dual tree

dual tree Tr of G where the vertex r of Tr corresponds to the face ir of G, and (c) another

rooted ordered binary dual tree Tp of G where the vertex p of Tp corresponds to the face

ip of G.

a bijection function 'Y between the vertices of Tr and vertices of G except for the poles

of the face ir corresponding to the root of Tr where each of the vertex of Tr is mapped

to the central vertex of the corresponding face of G. We immediately 'have the following

lemma from [DF06].

Lemma 5.2.1 Let G be a maximal outerplanar graph and let Tr be the rooted ordered

binary dual tree of G. Then G contains a copy of Tr which is a spanning tree T' of

G - {u, v}, where u and v are the poles of the face fr corresponding to the root of Tr.

Fig. 5.4(b) illustrates the dual tree of G in Fig. 5.4(a) where the root r ofTr corresponds

to the face ir of G containing vertices u, v and w in the clockwise order. G contains a

copy of Tr, which is a spanning tree T' of G - {u, v}, such that each of the vertices of Tr

is mapped to the central vertex of the corresponding face of G as illustrated in Fig. 5.4(c)

where the edges of T' are. drawn by solid lines.

Our idea is as follows. We first draw the rooted ordered binary dual tree Tr of a label-

constrained outerplanar graph G, and then we put the poles of the face fr corresponding

to the root r of T" and add each of the edges of G which are not in the drawing of Tr.
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,

(b) (c)

Figure 5.4: (a) A maximal outerplanar graph G, (b) the dual rooted ordered tree Tr of G

and (c) a spanning-tree T' of G - {u, v} is drawn by the solid lines.

The x-coordinates of the vertices of Tr are assigned in the order of the inorder traversal

of Tr in the increasing order starting from 1. The y-coordinate of a vertex of Tr is the label

. of the vertex minus one. We now put the vertices of Tr at the calculated coordinates and

add the required edges to complete the drawing ofTr• Fig. 5.5(c) illustrates a straight-line

grid drawing of Tr in Fig. 5.5(b).

We now put the pole vertices of the face of G corresponding to the root of Tr. The left

vertex and the right vertex of the face corresponding to the root of Tr are put at (0, k)

and at (n - 1, k), respectively where k is the label of the root of Tr• We now add each

of the edges of G which are not in the drawing of Tr using straight-line segments, and

thus we complete the drawing of G. We call the algorithm described above for drawing

an outerplanar graph Algorithm Draw-Graph. We now have the following theorem.

Theorem 5.2.2 Let G be a label-constrained outerplanar graph. Then Algorithm Draw-

Graph finds a straight-line grid drawing of G with O(nlogn) area in linear time.

In the rest of the section, we give a proof of Theorem 5.2.2. We first show that

Algorithm Draw-Graph produces a straight-line drawing of G. The following lemmas

are immediate from the assignment of x-coordinates and y-coordinates of the vertices of

Tr•
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(a)

u

: ~:
... ' ~.,..

(c)

r

(b)

(d)

1

Figure 5.5: (a) A label-constrained outerplanar graph G, (b) the dual rooted ordered tree

Tr of .0, (c) a straight-line grid drawing of Tr and (d) a straight-line grid drawing of G.



Chapter 5. Label-Constrained Outerplanar Graphs 74

Lemma 5.2.3 Let G be a label-constrained outerplanar graph and let Tr be a rooted or-

dered binary dual tree of G. Let u be a vertex of Tr, and let sand t be the left and the

right child of u, respectively. Then the x-coordinate of any vertex of the subtree rooted at

s is less than the x-coordinate of any vertex of the subtree rooted at t.

Lemma 5.2.4 Let G be a label-constrained outerplanar graph and let TT be a rooted or-

dered binary dual tree of G. Let u and v be vertices of Tr where u is an ancestor of v.

Then the y-coordinate of u is greater than or equal to the y-coordinate of v.

We also have the following lemma.

Lemma 5.2.5 Let G be a maximal outerplanar graph and let TT be a rooted ordered binary

dual tree of G. Let q be any vertex ofTT' and let x and y be the left and the right child

of q, respectively. Let fq, f. and fy be the faces of G corresponds to the vertices q, x and

y in TT' Then the left vertex of fq is the left vertex of f. and the right vertex of fq is the

right vertex of fy.

Proof.

G.

Immediate from the definition of the left and the right vertex of a face in

o

The drawing of Tr is a straight-line grid drawing immediate from the Lemmas 5.2.3

and 5.2.4. We now show that each of the edges of G those are not in TT can be drawn

using straight-line segments without any edge crossings. An edge between the two pole

vertices of the face corresponding to the root of TT can be drawn using a straight-line

segment without any crossings with the existing drawing of TT since each of. the pole

vertices is placed above all the vertices of Tr. By Lemma 5.2.5, the left vertex of the

face corresponding to the root of TT is the left vertex of the faces corresponding to the

vertices of the leftmost path of TT' Therefore the left vertex of the face corresponding to

the root of TT is adjacent to all the vertices of the leftmost path of Tr in G. These edges

can be draw? using straight-line segments without any edge crossings since the left vertex
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of the face corresponding to the root of Tr is placed strictly to the left and above of all the

vertices on the leftmost path of Tr. Similarly, we can draw the edges between the right

vertex of the face corresponding to the root of Tr and the vertices on the rightmost path

of Tr using straight-line segments without any edge crossings. In a maximal outerplanar

graph, the rest of the edges are between any vertex v E Tr and a vertex on the left-right

or the right-left path of v. From the x-coordinate of any vertex v E Tr and by Fact 5.1.4,

one can see that a vertex v E Tr is placed strictly to the left (right) and above of all

the vertices of the right-left (left-right) path of v except the right (left) child of v. Thus

all such edges can be drawn using straight-line segments without any edge crossings and

hence the following lemma holds.

Lemma 5.2.6 Let G be a label-constrained outerplanar graph. Then Algorithm Draw-

Graph finds a straight-line grid drawing of G.

Fig. 5.5(d) illustrates the straight-line grid drawing of G in Fig. 5.5(a).

Proof of Theorem 5.2.2: By Lemma 5.2.6, the drawing of G is.a straight-line grid

drawing. The height of the drawing of G is the label of the root of the dual tree of G.

By Lemma 5.1.2, the height of the drawing of Gis O(logn). The width of the drawing

is O(n). Therefore the area of the drawing is O(nlogn). One can easily see that the

drawing of G can be found in linear time.

5.3 Recognition of Label-Constrained Outerplanar Graphs

In this section we give a linear-time algorithm for recognition of a label constrained

outerplanar graph ..

Let G be a maximal outerplanar graph and let Tr be a rooted ordered binary dual

tree of G taking a vertex r as the root. (Note that r corresponds to an inner face fr

of G having an edge on the outer face.) From the definition of the vertex labeling of a

binary tree in Section 5.1, one can easily see that Lr(Tr) can be done by a bottom-up
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computation in linear time. The verification whether Lr(Tr) is a flat labeling can also be

done in linear time. In case Lr(Tr) is not a flat labeling, Lp(Tp) might be a flat labeling

where Tp is a rooted ordered binary dual tree of G rooted at a vertex p of degree one or two

other than r. Therefore to examine whether G is a label-constrained outerplanar graph

or not, we have to compute the vertex labeling of the rooted ordered binary dual tree of

G rooted at each vertices of degree one or degree two of the dual tree T of G and verify

whether each such a labeling of vertices is a flat labeling or not: Hence the recognition of

a label-constrained outerplanar graph requires O(n2) time by a naive approach.

Before presenting our linear-time recognition algorithm, we present the following ob-

servation. Fig. 5.6(b) illustrates Tr of a maximal outerplanar graph G in Fig. 5.6(a) where

r corresponds to the face fr of G, and Fig. 5.6(c) illustrates Tp of G in Fig. 5.6(a) where

p corresponds to the face fp of G. Note that the vertex q is the right child of p in T
r
in

Fig 5.6(b); but it is the left child of pin Tp as illustrated in Fig 5.6(c). Thus we can not

get the rooted ordered binary dual tree Tp of G immediately from Tr by simply choosing

the vertex p of Tr as the new root without taking care about the ordering of the children

of each vertices. However from a close observation of the ordering of the children of a

vertex in Tr and Tp, one can see that the ordering of the children is changed only for

the vertices on the r-p path of Tr. For the rest of the vertices of Tr, the ordering of the

children is unchanged in Tp. This change in the ordering of the children is presented in

the following three lemmas which are immediate from the definition of the ordering of the

children of a vertex in the rooted ordered binary dual tree.

Lemma 5.3.1 Let G be a maximal outerplanar graph and let Tr be a rooted ordered binary

dual tree ofG. Let s be the right (left) child ofr in Tr. Letp be a vertex ofT other than

r such that the degree of p is one or two, and the vertex s is remained as a child of r in

Tp- Then s is the left (right) child of r in Tp.

Lemma 5.3.2 Let G be a maximal outerplanar graph and let Tr be a rooted ordered binary

dual tree of G. Let s be a vertex of Tr other than r such that the degree of vertex s is one
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(a) (b) (e)

Figure 5.6: (a) A maximal outerplanar graph G, (b) the rooted ordered binary dual tree

Tr of G and (c) the rooted ordered binary dual tree Tp of G.

or two, and let t be the right (left) child of s in Tr. Then t is the left (right) child of s in

Ts•

Lemma 5.3.3 Let G be a maximal outerplanar graph and let Tr be a mated ordered binary

dual tree of G. Let x be a degree three vertex such that s is the parent of x, and p and q

are the left and the right children of x in Tr. Let y be a descendant of x in the left (right)

subtree of x in Tr such that the degree of y is one or two. Then s (p) is the right child of

x and q (s) is the left child of x in Ty•

We now can compute the labeling of a rooted ordered dual tree Tx of a maximal out-

erplanar graph G from a given labeling of a rooted ordered dual tree Ty of G using the

Lemmas 5.3.1, 5.3.2, 5.3.3, where vertex x and y corresponds to the faces fx and fy of

G, as in the following lemmas.

Lemma 5.3.4 Let G be a maximal outerplanar graph and let Tr be a mated ordered binary

dual tree of G. Then Lp(Tp) can be computed in constant time if Lr(Tr) is given where p

is a child of 1" in Tr and the degree of p is either one or two.

Proof. Without loss of generality, we may assume that p is the left child of 1" in Tr.

We also assume that q is the right child of 1" (if any) in Tr, and p has the right child s
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(if any) in Tr. The labeling of the vertices of the subtrees rooted at q and s is the same

in both of the Lr(Tr) and the Lp(Tp) since the labeling is done by bottom-up approach.

Therefore we need to compute the label of rand p with respect to p to compute Lp(Tp).

By Lemma 5.3.1, q becomes the left child of r in Tp, and the label of r is same as the

label of q. A cross path is detected at r in Tp if q has the same label as its right child.

By Lemma 5.3.2, s becomes the left child of pin Tp. Then r becomes the right child of p

in Tp. The label of p is computed from the label of rand s. A cross path is detected at

p in Tp if the label of p is same as the label of r (s) and the label of r (s) is the same as

the label of its right (left) child. Thus Lp(Tp) can be computed in constant time. Fig. 5.7

illustrates the computation of Lp(Tp) from Lr(Tr). 0

r

<al

p

Figure 5.7: (a) Lr(Tr) and (b) Lp(Tp).

Lemma 5.3.5 Let G be a maximal outer planar graph and let Tr be a rooted ordered

binary dual tree of G. Then Lx(P) can be computed in constant time if Lr(Tr) is given

where p is a child of r, and x is a descendant of p and the degree of x is either one or

two.

Proof. Without loss of generality, we assume that p is the left child of r in Tr• We

also assume that q is the right child of r (if any) in Tr. We need to compute the label of

rand p with respect to x to compute Lx(p). By Lemma 5.3.1, q becomes the left child of
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r in Tx, and the label of r is same as the label of q. A cross path is detected at r if q has

the same label as its right child. We now have two cases to consider.

Case 1: The degree of p is two.

In this case, we assume that s is the child of p in Tr• The label of p would be same as

r since r is the only child of p. However, if s is the left child of p in T., then r is the right

child of pin Tx and there is a cross path at p as illustrated by thick line in Fig. 5.8(i)(b).

Otherwise, r is the left child of p in Tx and there is no cross path at p as illustrated in

Fig. 5.8(i)(d). Then Lx(p) can be computed from the labeling of r.

Case 2: The degree of p is three.

In this case, we assume that sand t are the left and the right child of p in Tr. If x is

in the left subtree of p in T., then by Lemma 5.3.3, r is the right child and t is the left

child of pin Tx as illustrated in Fig. 5.8(ii)(b). Fig. 5.8(ii)(d) illustrates the case where

x is in the right subtree of pin Tr. Then Lx(P) can be computed from the labeling of r

and t (s).

Thus we can compute Lx(p) in constant time. Furthermore, one can determine in

constant time whether there is a cross path at p or not. o

(d)

s

••
t "

4(p)
x .•,,

4(7;) 4(p) Lr(T,.)
"'

~

x', s p(z1(i) r,
•.i s ',.x

x",,

i:ll,

M(ii) s t~ t r ,,, x••.x q

(a) (b) (e)

Figure 5.8: Illustration of different cases of computing Lx(p) from given Lr(Tr).



Chapter 5. Label-Constrained Outerplanar Graphs 80

We are now ready to present our algorithm. Let G be a maximal outerplanar graph

and let Tr be a rooted ordered binary dual tree of G. We first compute Lr(Tr). We have

done if Lr (Tr) is a flat labeling. Then G is a label-constrained outerplanar graph. We

thus assume that Lr(Tr) is not a flat labeling. We now have the following lemma.

Lemma 5.3.6 Let G be a maximal outerplanar graph and let Tr be a rooted ordered

binary dual tree of G. If Lr(Tr) is not a fiat labeling and there exists a vertex x E Tr

such that both of the subtrees of x contains a cross path, then G is not a label-constrained

outerplanar graph.

Proof. Consider first the case where x is the root of Tr. Then we can have another

rooted ordered dual tree Tq of G such that q corresponds to an inner face fq of G. (Note

that the degree of q is either one or two.) The vertex q is either form the left or from the

right subtree of r in Tr• Without loss of generality, we may assume that q is in the left

subtree of r. Then Lq(Tq) is not a flat labeling since the labeling of vertices as well as

the cross path of the right subtree of r in Tr remain unchanged in Tq• Consider next the

case x is an internal vertex in Tr and the degree of x is three. Then for any vertex v of

Tr which is not a descendant of x in T" Lv(Tv) can not be a flat labeling since labeling

is done by a bottom-up computation. We can prove that there exists no descendant s of

x in Tr such that Ls(Ts) is a flat labeling using the same reasoning as we have used to

prove that Lq(Tq) is not a flat labeling. Therefore G is not a label-constrained outerplanar

graph. o

We thus assume that Lr (Tr) is not a flat labeling and there exists no vertex x E Tr
such that both the subtrees of x contain a cross path. In this case, each of the vertices'

of Tr at which a cross path is detected lies on a single path and r is an end vertex of this

path. Let us assume that u is the other end vertex of this path, i.e., u is the farthest

vertex from r at which a cross path is detected. Then for any vertex v of Tr which is

neither u nor a descendant of u in Tr, Lv(To) can not be a flat labeling since labeling is
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done in a bottom-up approach. We thus concentrate our attention only on the vertices

of the subtree rooted at u in Tr as a probable new root for computing labeling. We now

have two cases to consider.

Case 1: u is not the root in Tr.

In this case, we have two subcases to consider.

Subcase 1(a): The degree of u is two.

By Lemmas 5.3.4 and 5.3.5, we can compute L,,(T,,) in the 0(1) time where 1 is the

length of the r-u path. If a cross path is detected at any ancestor x of u in Tr during this

step then for any descendant y of x in T., Ly(Ty) can not be a flat labeling. Since u and

all the descendants of u are also descendants of x in T., for any vertex v in T., Lv (Tv)

can not be a flat labeling. Hence G is not label-constrained. Thus we assume that no

cross path is detected at any ancestor x of u. We have done if L,,(T,,) is a flat labeling.

Otherwise, a cross path is detected at u. In this case, we have to compute Lx(Tx) for

any descendant x of u in Tr with degree one or two and verify whether Lx (Tx) is a flat

labeling for recognizing G a label-constrained outerplanar graph, and this can be done in

linear time by Lemma 5.3.4 and Lemma 5.3.5.

Subcase 1(b): The degree of u is three.

Let v be any vertex on the r-u path other than u then for all the descendants x of

u in Tr the value of Lx(v) is the same. We can compute Lx(v) for all such vertices v on

the r-u path other than u in O(l) time where 1 is the length of the r-u path and x is

any degree one or two descendant of u. Again, for any ancestor y of u, if a cross path is

detected at y, then G can not be a label-constrained outerplanar graph. Otherwise, we

have to compute Lx(Tx) for any descendant x of u in Tr with degree one or two and verify

whether Lx(Tx) is a flat labeling for recognizing G a label-constrained outerplanar graph,

and this can be done in linear time by Lemma 5.3.4 and Lemma 5.3.5.

Case 2: u is the root in Tr•

In this case, we have to compute Lx(Tx) for any descendant x of r in Tr with de-
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gree one or two and verify whether Lx(Tx) is a flat labeling for recognizing G a label-

constrained outerplanar graph, and this can also be done in linear time by Lemma 5.3.4

and Lemma 5.3.5.

Thus one can recognize a label-constrained outerplanar graph in linear time. We have

the following theorem.

Theorem 5.3.7 Let G be a maximal outerplanar graph and let T be the dual tree of G.

Then one can decide in linear time whether there exists a vertex r ofT such that L~(Tr)

is a flat labeling where Tr is the rooted ordered binary dual tree of G. Furthermore, one

can find such a vertex r of T in linear time if such a vertex exists.

5.4 Conclusion

In this chapter we introduced a subclass of outerplanar graphs, which we call label-

constrained outerplanar graphs. A graph in this class has a straight-line grid drawing on a

grid of O(n log n) area, and the drawing can be found in linear time. We gave an algorithm

to recognize a label-constrained outerplanar graph in linear time. Our drawing algorithm

is based on a very simple and natural labeling of a tree. The labeling is bounded by

O(logn), and the labeling might be adopted for solving some other tree-related problems.

The previously best known area bound for an outerplanar graph is O(dnlogn) due to

[Fra07J, where d is the maximum degree of the outerplanar graph G. This immediately

gives an O(nlogn) area bound if the maximum degree of G is bounded by a constant.

But the maximum degree of an outerplanar graph is not always bounded by a constant. A

trivial outerplanar graph may have the maximum degree n -1 although it requires O(n)

area for straight-line grid drawing as illustrated in Fig. 5.9. However, there are an infinite

number of outerplanar graphs, as one illustrated in Fig. 5.10 which have the maximum

degree O(nO.5). A straight-line grid drawing of such a graph in this class obtained by the

algorithm of Frati [Fra07J requires O(n1.5Iogn) area whereas our algorithm produces the



5.4. Conclusion

(a)

u

(b)
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Figure 5.9: (a) A trivial outerplanar graph G with maximum degree n - 1 and (b) a

straight-line grid drawing of G with O(n) area.

drawing with O(nlogn) area.

Figure 5.10: An example of an outerplanar graph G which has maximum degree O(nO.5).



Chapter 6

Partitioning of Doughnut Graphs

In this chapter we give a linear-time algorithm for finding a k-partition of a doughnut

graph G. Our algorithm is based on finding the Hamiltonian path between any pair of

vertices of a doughnut graph. We exploit the simple structure of a doughnut graph for

finding Hamiltonian path between any pair of vertices of a doughnut graph. Our algorithm

is also applicable for finding k-partition of a doughnut graph with basis two.

This chapter is organized as follows. Section 6.1 presents some definitions and prelimi-

nary results. In Section 6.2, we give an algorithm for finding a Hamiltonian path between

any pair of vertices of a doughnut graph. Section 6.3 provides a linear-time algorithm for

finding k-partition of a doughnut graph. Finally Section 6.4 concludes the chapter.

6.1 Preliminaries

In this section we give some definitions and preliminary results. Let G = (V, E) be a

connected simple planar graph with vertex set V and edge set E. A path in G is an ordered

list of distinct vertices v), V2, , vq E V such that (Vi-I, Vi) E E for all 2 :::;i :::;q. Let

PI = Xi, ..• , Xk and P2 = Xm, , Xo be two paths. We denote by PIP2 the concatenation

of two paths PI and P2 where the last vertex of PI and the first vertex of P2 are adjacent,

84
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i.e, PIP2 = Xi, ... , Xk, Xm, ... , Xo where Xm is a neighbor of Xk.

85

Let r be a doughnut embedding of a doughnut graph G. Let Zi be a vertex on C2

such that Zi has two neighbors on CI. Let X and x' be the two neighbors of Zi on CI such

that x' is the counter clockwise next vertex to X on CI. We call x the left neighbor of Zi

on CI and x' the right neighbor of Zi on CI. Similarly we define the left neighbor and the

right neighbor of Zi on Ca if a vertex Zi on C2 has two neighbors on Ca. Then the cycle

CI contains p vertices, cycle C2 contains 2p vertices and cycle Ca contains p vertices. Let

ZI, Z2, ... , Z2p be the vertices of C2 in counter clockwise order such that ZI has exactly one

neighbor on CI. Let XI be the neighbor of zion CI, and let XI, X2, ... , Xp be the vertices

of CI in the counter clockwise order. Let YI, Y2, ... , YP be the vertices on Ca in counter

clockwise order such that YI and YP are the right neighbor and the left neighbor of Zl,

respectively. Fig. 6.1(b) illustrates the labeling as mentioned above. In the rest of the

thesis, we consider a doughnut embedding r such that the vertices of cycles CI, C2 and

Ca are labeled as mentioned above where XI, ZI and YI are the leftmost vertex on CI, C2

and Ca, respectively.

(a)
-'i
(b)

Figure 6.1: (a) G is a p-doughnut graph where p = 4 and (b) doughnut embedding of G.

We now have the following lemmas.

Lemma 6.1.1 Let G be a p-doughnut graph and let r be a doughnut embedding of G. Let

Zi be.a vertex of C2• Then the following conditions hold.
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(a) Zi has exactly two neighbors on CI and exactly one neighbor on C3 if i is even. The

neighbors of Zi on CI are xp and XI if i = 2p otherwise Xi/2 and Xi/2+1 in a counter

clockwise order, and the neighbor of Zi on Ca is YP if i = 2p otherwise Yi/2'

(b) Zi has exactly two neighbors on Ca and exactly one neighbor on CI if i is odd. The

neighbors of Zi on C3 are YI and YP if i = 1 otherwise Yri/21-1 and Yri/21 in a counter

clockwise order, and the neighbor of Zi on CI is xfi/21'

Lemma 6.1.2 Let G be a p-doughnut graph and let r be a doughnut embedding of G.

Let Xi be a vertex of CI. Then Xi has exactly three neighbors Z2p, ZI, Z2 if i = 1 otherWise

Z2i-2, Z2i-l, Z2i on C2 in a counter clockwise order.

Lemma 6.1.3 Let G be ap-doughnut graph and let r be a doughnut embedding ofG. Let

Yi be a vertex of Ca. Then Yi has exactly three neighbors Z2p_l, Z2p, ZI if i = p otherwise

Z2i-l, Z2i, Z2i+l on C2 in a counter clockwise order.

A Hamiltonian cycle (path) of a graph G is a cycle (path) which contains all the

vertices of G. We call a graph G Hamiltonian if G contains a Hamiltonian cycle. The

Hamiltonian cycle problem asks whether a given graph contains a Hamiltonian cycle, and

the problem is NP-complete even for 3-connected planar graphs [GJT76]. However the

problem becomes polynomial-time solvable for 4-connected planar graphs: TUtte proved

that a 4-connected planar graph necessarily contains a Hamiltonian cycle [TUt56]. We

call a graph G is Hamiltonian-connected if G has a Hamiltonian path between any pair

of vertices of G. Thomassen proved that 4-connected planar graphs are Hamiltonian-

connected [Tho83J.

6.2 Finding Hamiltonian Path in Doughnut Graphs

A doughnut graph G is Hamiltonian-connected since G is 5-connected. One can find a

Hamiltonian path in a doughnut graph using algorithm proposed by Chiba and Nishizeki
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[CN89]. In their paper, they gave a proof of Thtte's theorem based on Thomassen's short

proof avoiding decomposition of a 4-connected planar graph into nondisjoint subgraphs.

Their proof is constructive and yields an algorithm for finding Hamiltonian path. Their

algorithm clearly runs in O(nZ) time, since one step of divide-and- conquer can be done

in O(n). The key idea for linear implementation of this algorithm is to use, in place of the

Hopcroft and Tarjan's algorithm [HT73J, a new algorithm to decompose a plane graph

into small subgraphs by traversing some facial cycles. Although a sophisticated analysis

shows that each of the edge is traversed at most constant time during one execution

of Hamiltonian path finding algorithm and hence the algorithm runs in linear time, the

linear-time implementation of the algorithm looks non-trivia!' In this section we present

a very simple linear-time algorithm for finding Hamiltonian path betwee~ any pair of

vertices of a doughnut graph. In our algorithm we exploit the simple structure of a

doughnut graph.

We have the following theorem on a doughnut graph.

Theorem 6.2.1 Let G be a doughnut graph. Then a Hamiltonian path between any pair

of vertices of G can be found in linear time.

Proof. We first show a Hamiltonian path between any pair of vertices of a doughnut

graph. Let r be a doughnut embedding of G and let 01, Oz and 03 be the outer cycle,

the middle cycle and the inner cycle of r. We have the following four cases to consider.

Case 1: Both the vertices u, v are either on 01 or on 03•

We assume that both of u and v are on 01, since the case where both of u and v are

on 03 is similar. Let u = Xi and v = Xj' Without loss of generality, we assume that i < j.

We take the following paths. (i) PI = Xi, ZZi-1o ZZi, Xi+I, ZZi+!, ZZi+Z, ... , Xj_lo ZZj-3,

Z2j_2; (ii) P2 = Yj-l, Yj-2, .. ') Yj; (iii) P3=Z2j-ll Z2j, .. OJ Z2i-2; and (iv) P4 ~ Xi-I, Xi-2,

... , Xj' The path PI contains vertices of 01 and Oz. By Lemma 6.1.2, ZZi-1 is a neighbor

of Xi' By Lemma 6.1.1, Xi+! is a neighbor of ZZi since 2i is even. The path Pz' contains
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all the vertices of C3. The path P3 contains all the vertices of C2 those are not appear in

PI and the Path P4 contains vertices of CI those are not appear in the path PI. We can

concatenate the paths PI and P2 since Yj_1 is a neighbor of Z2j-2 by Lemma 6.1.1. The

paths P2 and P3 can be concatenated since Z2j-1 is a neighbor of Yj by Lemma 6.1.3. The

paths P3 and P4 can also be concatenated since Xi_I is a neighbor of Z2i-2 by Lemma 6.1.1.

Thus we can concatenate the four paths and the resulting path is H Px;,x; where HPx"x;

= PI P2 P3 P4• The path HPx;,x; is a Hamiltonian path since PI, P2, P3 and P4 contain all

the vertices of G. Fig. 6.2 illustrates the case where u = X2 and v = X5' In this example

Pl .
~ .,.'.'.'."
P3-
~ ."' ..".,'"
4

Figure 6.2: Illustration for Hamiltonian path between two vertices on cycle CI.

Case 2: Both vertices u, v are on C2•

Let U = Zi and v = Zj. Without loss of generality we may assume that i < j. We have

two sub cases to consider.

Subcase 2(a): i is odd.

We take the following paths. (i) PI = Zi, xri/21, Xri/21+1, ... , Xri/21-1; (ii) P2 = Zi-J,

Y(i-I)/2, Zi-2, Zi-3, Y(i-3)/2, ... , Y(j+J)/2 if j is odd, otherwise P2 = Zi-I, Y(i-l)/2, Zi-2, Zi-3,

Y(i-3)/2, ... , Zj+J; (iii) P3 = Y(j+J)/2 - 1, Y(j+J)/2-2, ... , Yri/21 if j is odd, otherwise P3 =
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Yr(j+1)/21-1,Yf(j+1)/21-2, ... , Yri/21;and (iv) p. = ZHI, Zi+2, ... , Zj. By Lemmas 6.1.1,

6.1.2, 6.1.3, we can prove the adjacency between two consecutive vertices of each path.

We can also prove the adjacency between the end vertex and the starting vertex of paths

PI and P2, P2 and P3, P3 and P.using the Lemmas 6.1.1, 6.1.2, 6.1.3. Therefore we

can concatenate the paths Pi> P2, P3, p.; and the resulting path HPX;,Xj = PI P2 P3 p.

is a Hamiltonian path since the paths PI, P2, P3, p. contain all the vertices of the graph.

Fig. 6.3 illustrates the case where u = Z3 and v = zs. In this example (i) PI = Z3, X2, X3,

Zs. The Hamiltonian path is HPz"zs = HPZp3p •.

Pt .
~.,.,.,.,.,

~=

Figure 6.3: Illustration for Hamiltonian path between two vertices on Cz where one of the

vertex index is odd.

Subcase 2(b): i is even.

We take the following paths. (i) PI = Zi, Xi/2+1, Xi/2+2 , ... , Xi/Z; (ii) P2 = Zi_i> Zi_2,

Y(i-Z)/Z, Zi-3, ..• , Y(j+1)/z if j is odd, otherwise Pz = Zi-I, Zi-Z, Y(i-Z)/Z, Zi-3, ... , Zj+I;

(iii) P3 = Y(j+I)/Z, Y(j+J)/z-i> ... , Yri/zl and (iv) p. = ZHI, ZHZ, ... , Zj' Using the same

arguments as in Sub case 2(a), we can prove that HPX;,Xj = PIPZP3P. is a Hamiltonian

path. Fig. 6.4 illustrates the case where u = Zz and v = zs. In this example (i) PI = Zz,
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X2

ll .
Pz.,.,.,.,.,
R-
~."'-"'-""

Figure 6.4: Illustration for Hamiltonian path between two vertices on C2 where one of the

vertex index is even.

Case 3: The vertex u either on C1 or on C3 and v on C2.

We assume that u is on C1 and v is on C2, since the case where u is on C3 and v is on

C2 is similar. Let u = Xi and v = Zj'

We take the following paths. (i) PI = Xi, XH)' ... , Xi-I; (ii) P2 = Z2i-3, Z2i-2, Yi-l,

Z2i-l1 ""' Zj-l if j is even, otherwise P2 = Z2i-3, Z2i-21 Yi-ll Z2i-b .. " Z(j-l)/2; (iii) P3 =

Yj/2, Yj/2+), ... , Yi-,2 if j is even, otherwise P3 = Y(j-l)/2+1, Y(j-l)/2+2, ... , Yi-2; and (iv)

P4 = Z2i-4, Z2i-S, ... , Zj. Using the same arguments as in Subcase 2(a), we can prove

that HPX;,Xj = PI P2 P3 P4 is a Hamiltonian path. Fig. 6.5 illustrates the case where

u = Xs and v = Z2. In this example (i) PI = Xs, X), X2, X3, X4; (ii) P2 = Z7, ZS, Y4, Zg,

ZlO, Ys, ZI; (iii) P3 = Yl, Y2, Y3; and (iv) P4 = Z6, Zs, Z4, Z3, Z2' The Hamiltonian path is

HPX5,z, = P1P2P3P4.

Case 4: The vertex u on C1 and v on C3.

We assume that u is on C1 and v is on C3 since the case where u is on C3 and v is on

C, is similar. Let us assume that u = Xi and v = Yj. We take the following paths. (i) PI

= Xi, XHl, ... , Xi-I; (ii) P2 = Z2i-3, Yr(2i-3)(21, Z2i-4, Z2i-S, Yr(2i-S)(2, ... , Z2j-l; (iii) P3
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Pr .
?z ,.,.,.,
p-
~.",.",.",.

Figure 6.5: Illustration for Hamiltonian path between a vertex on CI and a vertex on C2•

= Z2j, Z2j+I, ... , Z2i-2; and (iv) P4 = Vi-I, Yi-2, ... , Yj. Using the same arguments as in

Subcase 2(a), we can prove that Hp••,Xj = PI P2 P3 P4 is a Hamiltonian path. Fig. 6.6

illustrates the case where u = X5 and v = Y2. In this example (i) PI = X5, Xl, X2, X3, X4;

Pr .
?z.,.,.,.,.,

~=

Figure 6.6: Illustration for Hamiltonian path between a vertex on CI and a vertex on C3•

Therefore G has a Hamiltonian path between any pair of vertices. One can find such
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a path in linear time easily.

6.3 k-Partition of a Doughnut Graph

92

o

Given a graph G = (V, E), k natural numbers nl, nz, ... , nk such that 2::7=1ni = lVI,
we wish to find a k-partition Vi, Vz, ... , Vk of the vertex set V such that IViI = ni and Vi

induces a connected subgraph of G for each i, 1 ::; i ::; k. A k-partition of a graph G is

illustrated in Fig. 6.7 for k = 5 where the edges of five connected subgraphs are drawn by

solid lines, and the remaining edges of G are drawn by dotted lines. Let B= UI, Uz, ... , Urn

nl=4
'. . . nz= 2

:/?:...:.e".. n 3.' "'. p,:::: .. i,: m . 3=..~ .•' ~, 2
'. .1. :'0. ". n4=

::: :::: .k.:" :::.",::::::::...... ns= 5b I ,

Figure 6.7: A 5-partition of a 5-connected planar graph G.

be a sequence of distinct vertices of G with m::; k. A k-partition of G with basis B is a

k-partition with the additional restriction that Ui E Vi, for 1 ::;i ::;m. A k-partition of a

graph G with basis m is illustrated in Fig. 6.8 for k = 5 and m = 5.

nl=4
n2= 2
n3= 3
n4= 2
ns= 5

a

~ ..c.....:.:~:.. :.... ~..o,.:.:.:.:.;.~.:.~

Ul= b
u2=f
U3= i
U4= e
Us= I

Figure 6.8: A 5-partition of a 5-connected planar graph G with basis 5.

The problem of finding a k-partition of a given graph often appears in the load distri-

bution among different power plants and the fault-tolerant routing of communication net-
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works [NRN97, NNOl]. The problem is NP-hard in general even k is limited to 2 [DF85]'

and hence it is very unlikely that there is a polynomial-time algorithm to solve the prob-

lem. Although not every graph has a k-partition, Gy6ri and Lovasz independently proved

that every k-connected graph has a k-partition [Gyr78, Lov77]. However, their proofs do

not yield any polynomial-time algorithm for finding a k-partition of a k-connected graph.

For the case of k = 2, 3, 4 and 5, the following algorithms have been known:

(i) a linear-time algorithm to find a bipartition of a biconnected graph [STN90, STNMU90];

(ii) an algorithm to find a tripartition of a triconnected graph in O(n2) time, where n

is the number of vertices of a graph [STNMU90];

(iii) a linear-time algorithm to find a tripartition of a triconnected planar graph [JSN94];

(iv) a linear-time algorithm to find a 4-partition of a 4-connected plane graph G when

four basis vertices Uj, U2, U3, U4 are located on the same face of G [NRN97]; and

(iv) a linear-time algorithm to find a 5-partition of a 5-connected internally triangulated

plane graph G when five basis vertices Uj, U2, U3, U4, Us are located on the same face

of G [NNOIJ;

A p-doughnut graph is a 5-connected planar graph. One may think that a p-doughnut

graph G where p > 4 can be partitioned using Nagai and Nakano's [NNOl] algorithm after

triangulation of one of the face of G with p-vertices. But it is not possible since after

removing the dummy edges used for triangulation the partition may not be connected. In

this section, we give an algorithm for finding k-partition of a doughnut graph. We have

the following theorem.

Theorem 6.3.1 Let G be a doughnut graph. Then G admits k-partitioning whe.rek ~ n.

Furthermore, one can find such a partition in linear time.
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Proof. By Theorem 6.2.1, G has a Hamiltonian path between any pair of vertices.

We first find a Hamiltonian path H Pu,v between any pair of vertices u and v of G. Then

starting form one end vertex of H Pu,v, we divide the path into k subpaths where each

subpath contains the number of vertiCes exactly equal to the natural number associated

with the corresponding partition. Each of the partition is a subgraph induced by the

vertices of the corresponding subpaths. Fig. 6.9 illustrates k-partitioning of G. Fig. 6.9(a)

illustrates a Hamiltonian path of G between vertices X2 and Z6' Fig. 6.9(b) illustrates k-

partition of G for k = 7 where the natural numbers are 3, 2, 5, 3, 2, 4, 1, respectively.

Fig. 6.9(c) illustrates k-partition of G for k=4 where the natural numbers are 4, 6, 3, 7,
\

respectively. The edges of Hamiltonian path and the connected subgraphs are drawn by

thick lines, and the remaining edges are drawn by thin lines. One can find a Hamiltonian

path by Theorem 6.2.1 in linear time and a subgraph induced by the vertices on a subpath

can also be obtained in linear time.

Xs (b) Xs
(c)

Figure 6.9: (a) Hamiltonian path H PX2,z, of G, (b) a 7-partition of G and (c) a 4-partition

ofG.

o

Our k-partition algorithm is based on finding a Hamiltonian path between any pair of

vertices of a doughnut graph. The two end vertices of a Hamiltonian path can be used as

two basis vertices of a k-partition. So, the following theorem also holds.

Theorem 6.3.2 Let G be a doughnut graph. Then k-partitioning of G with basis two can
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be found in linear time.

By using the Chiba and Nishizeki's [CN89J algorithm, we now have the following re-

sult for any 4-connected planar graph.

Theorem 6.3.3 Let G be a 4-connected planar graph. Then G admits k-partitioning with

the basis at most two.

6.4 Conclusion

In this chapter, we gave a linear-time algorithm for finding a k-partition of a doughnut

graph. A doughnut graph G is a fault tolerant graph since the vertices of G lies on three

vertex disjoint cycles and G is 5-regular. Therefore k-partitioning of G is interesting. We

can also have a k-partition for a 4-connected planar graph using the same method.



Chapter 7

Doughnut Graphs for

Interconnection Networks

An interconnection network provides communication among processors in parallel pro-

cessing and distributed systems. An interconnection network is usually modeled as an

undirected graph G where each nodes of G corresponds to a processor and an edge cor-

responds to the communication channel between the two processors corresponding to the

end vertices of the edge. Thus, the terms graph and network, node and processor, and

edge and channel are used interchangeably throughout this chapter. In parallel processing

or distributed systems, the design of interconnection networks is an important issue and

many networks have been proposed [ARK87, AK89, CFFOOJ. The performance of such

systems significantly depends on the choice of network topology. Several parameters like

connectivity, degree, diameter, symmetry and fault tolerance for building interconnec-

tion networks are discussed in [XuOl]. A class of Cayley graphs based on permutation

groups has proven to be suitable for designing interconnection networks. One of the

most efficient and widely used interconnection network is hypercubes (which are also Cal-

ley graphs) [BA84J. These graphs are regular and symmetric but the degree of vertices

changes as the size of the graph is increased. Therefore using these graphs is prohibitive in
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network with a large number of nodes [CAB93]. There are applications where the comput-

ing nodes in an interconnection network only have fixed number of 1/0 ports. Moreover,

fixed degree networks are important from the viewpoint of VLSI implementation [SP89].

In this chapter, we propose a new family of graphs called doughnut graphs for building

interconnection networks. A graph of this class is regular and has maximal fault toler-

ance, smaller diameter and recursive structure. Moreover, the graphs of this class admits

linear area drawing. The proposed family of graphs offers a better alternative for VLSI

implementation interms of regularity, greater fault tolerance and area efficiency. We also

give an efficient routing scheme in a doughnut graph.

This chapter is organized as follows. In Section 7.1, we give some parameters for

performance evaluation of an interconnection networks. Section 7.2 provides a simple

routing scheme. A recursive structure of a doughnut graph is presented in Section 7.3.

Section 7.4 summarizes the topological properties of doughnut graphs. Finally Section 7.5

concludes the chapter.

7.1 Parameters of Interconnection Networks

The following parameters [XuOl] are used to compare different interconnection networks.

Number of vertices The number of vertices represent the number of processor.

Diameter In a network, information needs to travel from one processor to another. It

will take d steps to communicate between two processors if the distance between two

processor is d. Naturally we are interested in the maximum distance between any

pair of processors. We call this maximum distance the network diameter. Network

with smaller diameter is preferable.

Vertex degree The vertex degree is a very important factor. There are applications

where the computing nodes in interconnection network only have a fixed number of
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I/O ports. Moreover, it is important that the degree of each vertex is fixed from

the view point of VLSI implementation.

Connectivity The fault tolerance of a vertex of an undirected graph G is measured by

the vertex connectivity of G. A graph G is said to have a vertex connectivity k if

the graph G remains connected when an arbitrary set of less than k vertices are

removed.

Fault tolerance A graph G is said to have maximal fault tolerance if its vertex connec-

tivity equals the minimum degree of G. Any degree regular graph is a maximal fault

tolerant graph.

Embedding It is another important factor. We can apply the algorithm of sirnple net-

work to a richer one if the richer one contain simple one as a subgraph. For example,

array of any size and dimension can be embedded in hypercubes. Therefore any al-

gorithm design for simple array is also applicable for hypercube.

Recursive Structure A network has recursive structure if every instance of it can be

created by connecting smaller instances of the same network. For example, a network

with n vertices is created by connecting in some fixed way four networks of n/4

vertices such" that each of the network has a recursive structure. This property

often makes scalable computers, an important feature of successful machines.

7.2 A Simple Routing Scheme

In this section, we present a simple routing scheme of a doughnut graph for interconnection

network. We have the following lemmas.

Lemma 7.2.1 Let G be a p-doughnut graph and let r be a doughnut embedding of G. Let
C" C2 and C3 be the three vertex disjoint cycles of r such that C, is the outer cycle, C2
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is the middle cycle and Ca is the inner cycle. Then the the shortest path between any two

vertices on cycle CI or Ca contains only the vertices of cycle CI or Ca, respectively.

Proof. We only prove the case where both of the vertices are on CI since the case

is similar if both of the vertices are on Ca. Let Xi and Xj be two vertices of CI. For

contradiction, we assume that P is a shortest path between Xi and Xj which contains

vertices other than vertices of cycle CI. Then (i) G would have a non-triangulated face

other than FI and F2 or (ii) a vertex of C2 would have degree more than five or (iii) the

graph G would be non-planar, a contradiction to the properties of a doughnut graph.

Therefore the shortest path between any two vertices of CI contains only the vertices of

~~~. 0

Lemma 7.2.2 Let G be a p-doughnut graph and let r be a doughnut embedding of G. Let

CI, C2 and Ca be the outer, the middle and the inner cycle ofr, respectively. Let Zi and Zj

be two non-adjacent vertices on the C2 cycle of r and the length of the shortest (between

clockwise and counter clockwise) path between them along C2 is l. Then the length of any

path between Zi and Zj is at least rt/21 + 1.

Proof. Without loss of generality we assume that i < j and the shortest path between

Zi and Zj along O2 is in the counter clockwise direction. We prove the claim by induction

on l. Since Zi and Zj are non-adjacent, then I :2: 2. The claim is true for I = 2 where

j = i + 2 and the shortest path between these two vertices has length r2/21 + 1= 2.
Assume that I > 2 and the claim is true for all pairs of vertices of C2 with the shortest

distance I' < I between them along C2. In this case j = i+ l. Let P be any path between

Zi and Zj. We now show that the length of P is at least rt/21 + 1.
We first consider the case where P contains some vertex Zk of cycle C2 such that

i < k < j. If Zk is adjacent to Zi, then by induction hypothesis, the length of any path

between Zk and Zj has length r(l- 1)/21 + 1 and therefore the length of P is at least

1 + r(l - 1)/21 + 1 :2: rt/21 + 1. From the same line of reasoning, we can show that if
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Zk is adjacent to Zj, then the length of P is at least fl/21 + 1. Thus we assume that Zk

is adjacent to neither Zi nor Zj. Then from induction hypothesis, the length of any path

between Zi and Zk is at least f(k - i)/21 + 1 and the length of any path between Zk and

Zj is at least f(j - k)/21 + 1. Therefore the length of P is at least fl/21 + 1. Hence, no

path containing vertices of cycle C2 other than Zi and Zj has length less than fl/21 + 1.

Thus we assume that P does not contain any vertices of C2 other than Zi and Zj.

Therefore there are only two different paths to consider for each pair of vertices Zi and

Zj, one containing only vertices of C1 and the other containing only vertices of Ca other

than Zi and Zj. If P contains only the vertices of C1 other than Zi and Zj, then by

Lemma 6.1.1, we find that the rightmost neighbor of Zi and the leftmost neighbor of

Zj on C1 are Xli/2J+l and xfJ/21 respectively and therefore the length of P is at least

1+ rj/21-li/2J -1 + 12: fl/21 + 1. On the other hand, ifP contains only the vertices

of Ca other than Zi and Zj, then by Lemma 6.1.1, we find that the rightmost neighbor of

Zi and the leftmost neighbor of Zj on Ca are Yli/2J and Yrj/21 respectively and therefore

the length of P is at least 1 + rJ/21 - li/2 J + 1 2: rl/21 + 1.

Fig. 7.1 illustrates different cases of shortest path between two vertices of C2 where

Fig. 7.1(a) illustrates a shortest path between Za and Z7, Fig. 7.1(b) illustrates a shortest

path between z•. and zs, Fig. 7.1(c) illustrates a shortest path between Zz and Z7, and

Fig. 7.1(d) illustrates a shortest path between Za and zs.

o

We now have the following Theorem.

Theorem 7.2.3 Let G be a p-doughnut graph and let r be a doughnut embedding of G.
Let C1, C2 and Ca be the three vertex disjoint cycles of r such that C1 is the outer cycle,

C2 is the middle cycle and Ca is the inner cycle. Then the shortest path between any pair

of vertices u and v of G can be found in linear time.
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(a)

(b)

(d)

(c)
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Figure 7.1: Illustration for shortest path between two vertices on C2 of a doughnut graph.
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Proof. The vertices of G lie on three vertex disjoint cycles CI, C2 and C3 where CI

is the outer cycle, C2 is the middle cycle and C3 is the inner cycle. we have four cases to

consider.

Case 1: Both the u and v are either on CI or on C3•

Without loss of generality, we assume that both the u and v are on CI, since the case

where both of u and v are on C3 is similar. Let Xi = u and Xi = v. Without loss of

generality, we may assume that i < j. The shortest path may be in a clockwise direction

or in a counter clockwise direction. The shortest path between Xi and Xi is in a counter

clockwise order of vertices of CI if (j - i) < rp/21 otherwise in an clockwise order of

vertices. We take the path PI = Xi, Xi+l, ... , Xi if (j -i) < rp/21 otherwise PI = Xi, Xi_I,

... , Xi' By Lemma 7.2.1, PI is the shortest path between Xi and Xi' Fig. 7.2(a) illustrates

the case where u = X2 and v = X4, and Fig. 7.2(b) illustrates the case u = X2 and v = Xs

X2

(a) (b)

Figure 7.2: Illustration for shortest path between two vertices on Cycle CI.

Case 2: Both the u and v are on cycle C2•
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We assume that Zi = u and Zj = v, respectively. Without loss of generality, we also

assume that i < j. In this case, the shortest path between Zi and Zj may be along the

cycle C2 only or it may contain vertices of either from cycle C1 or from cycle Ca along

with the vertices of cycle C2• We have the following two subcases.

Subcase 2{a): Zi and Zj are adjacent.

In this case, the shortest path between these two vertices consists of the edge (Zi, Zj).

Subcase 2(b): Zi and Zj are not adjacent.

If both i and j are even, take P = (Zi, Xi/2+1, ... , Xj/2, Zj). If both i and j are odd, take

P = (Zi, Yri/21, ... , Yfjj21-b Zj). If i is even and j is odd, take P = (Zi, Xi/2+1, ... , Xfj/21, Zj).

If i is odd and j is even, take P = (Zi, xri/21,"', Xj/2, Zj). It is easy to verify that all these

paths have length fl/21 + 1 and by Lemma 7.2.2, these paths are the shortest paths

between Zi and Zj.

Case 3: One of the u and v is on C2, and the other one is on C1 or Ca.

We assume that u is on C2 and the v is on C1. Let Zi = u and Xj = v. We also assume

that fi/21 < j. We take path (i) Pa = Zi, xfi/21, xfi/21+1, ... , Xj if j - fi/21 < fp/21 in

case of i is odd, otherwise Pa = Zi, xfi/21, Xri/21-1, ... , Xj' (ii) Pa = Zi, Xi/2, Xi/2+1, ... , Xj if

j - fi/21 < fp/21 in case of i is even otherwise Pa = Zi, Xi/2, Xi/2-1, ... , Xj' we can prove

that both of the paths are the shortest path since each of them are the subpaths of .the

shortest path of Subcase 2(b). Fig. 7.3(a) illustrates an example where Z4 = u and Xs =

v. The shortest path Pa = Z4, Xa, X4, Xs. Fig. 7.3(b) illustrates an example where Za = u

and X4 = v. The shortest path Pa = Za, X2, Xa, X4'

Case 4: One of the u and v on CI, and the other one is on Ca.

We assume that the u is on CI and the v is on Ca. Let Xi = u and Yj = v. Without

loss of generality, we assume that i < j. We take the path P4 = Xi, Z2i, Yi, Yi+1> ... , Yj if

j -i < fp/21 otherwise P4 = Xi, Z2i-2, Yi-l, Yi-2, ... , Yj. Note that in Case 3, the length of

the shortest path between Zi and Yj is j - fi/21 + 1. We now prove that P4 is the shortest

path between Xi and Yj. We prove only for the case where Yj is to the counter clockwise
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Xz

(a) (b)

Figure 7.3: Illustration for shortest path between a vertex on cycle C2 and a vertex on

cycle C!.

direction of Xi' In this case, we prove that P4 is the shortest path and the length of the

shortest path is I + 2 using induction on length I = j - i. The claim is obvious for I = O.

Thus we assume that I > 0 and for any I' < I, the claim is true. If P4 is not the shortest

path between Xi and Yj then there is a path p' with length less than I + 2. Since Yj is to

counter clockwise direction from Xi, the second vertex of P' is either Xi+! or Z2i' If Xi+! is

the second vertex then by induction hypothesis, the shortest path between Xi+! and Yj has

length 1+ 1 and the length of P' is at least 1+2 which contradicts our assumption. Thus

we assume that the second vertex is Z2i' Since P4 contains the shortest path between Z2i

and Yj by Case 3, the length of P' can not be less than P4 in this case also. Fig. 7.4(a)

illustrates an example where X2 = u and Y4 = v. The shortest path P4 = X2, Z4, Y2, Y3, Y4'

Fig. 7.4(b) illustrates an example where X2 = u and Ys= v. The shortest path'P4 = X2,

Z2, Y!, Ys. Thus we can find a shortest path between any pair of vertices of a doughnut

graph. One can see that the shortest path between any pair of vertices can be found in
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(a)
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(h)

Figure 7.4: Illustration for shortest path between a vertex on C1 and a vertex on Ca.

linear time. o

The above theorem gives a simple routing scheme between any pair of vertices of a

doughnut graph by using the shortest path between the source and destination to route.

Moreover, this path can be found in linear time.

7.3 Recursive Structure of Doughnut Graphs

A graph G has a recursive structure if every instances of it can be created by connecting

the smaller instances of the same graph. We now show that the doughnut graphs have

recursive structure. We use the straight-line grid drawing of a p-doughnut graph with

linear area. Let r be a doughnut embedding of a p-doughnut graph as illustrates in

Fig. 7.5(a) where vertices of cycles C1, C2 and Ca are labeled using the labeling method

as mentioned in Chapter 6 Section 6.1. Let Zi be a vertex on C2 such that Zi has two

neighbors on C1• Let x and xf be the two neighbors of Zi on C1 such that xf is the counter
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clockwise next vertex to x on Cj. We call x the left neighbor of Zi on Cj and x' the right

neighbor of Zi on Cj. Similarly we define the left neighbor and the right neighbor of Zi on

C3 if a vertex Zi on C2 has two neighbors on C3. In the drawing algorithm, the cycles Cj,

C2 and C3 are embedded on the three nested rectangles Rj, R2 and R3, respectively. The

four corner vertices of R2 are the Zj, zP' zp+! and Z2p in counter clockwise order. The four

corner vertices of rectangle Rj are Xj, Xi, Xi+j, xp in counter clockwise order such that Xi

is the neighbor of zp if zp has exactly one neighbor on Cj, otherwise Xi is the left neighbor

of zp and Xi+! be the right neighbor of zp' The four corner vertices of R3 are Yj, Yi, Yi+ I

and YP in counter clockwise order such that Yi is the neighbor of zp if zp has exactly one

neighbor on C3, otherwise Yi is the left neighbor and Yi+j be the right neighbor of Zp on

C3. Fig. 7.5(b) illustrates the straight-line grid drawing of G in Fig. 7.5(a) where the label

of four corner vertices of the rectangles Rj, R2 and R3 are shown. We now need some

(a) (b)

Figure 7.5: (a) A doughnut embedding of a p-doughnut graph of G and (b) straight-line

grid drawing of G with linear area.

definitions. Let D be a straight-line grid drawing of a p-doughnut graph with linear area.

We partition the edges of D as follows. The left partition consists of edges - (i) (XI, xp), (ii)

(Zj, Z2p) , (iii) (Yj, Yp), (iv)(xj, Z2p) and (v) (zj, Yp); and the right partition consists of edges

- (i) (zp, Zp+!) , (ii) the edge between two neighbors of zp on Rj if zp has two neighbors
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on RI otherwise the edge between two neighbors of zp+J on RI, (iii) the edge between

two neighbors of zp on R3 if zp has two neighbors on R3 otherwise the edge between two

neighbors of Zp+1 on R3, (iv) the edge between zp and its right neighbor on RI if zp has

two neighbors on RI otherwise the edge between Zp+1 and its left neighbor on RI, and (v)

the edge between zp and its right neighbor on R3 if zp has two neighbors on R3 otherwise

the edge between Zp+J and its left neighbor on R3. The other two partitions of edges we

call the top partition and the bottom partition. Fig. 7.6(b) illustrates four partitions of

edges (indicated by dotted line) of a p-doughnut graph G in Fig. 7.6(a) where p=4.

x,
Xi+! x,

;+/

Z'p

: Left

Right

z,
x, xi x, Xi

(a) (b)

Figure 7.6: (a) A p-doughnut graph G where p=4 and (b) illustration for four partitions

of edges of G.

We now construct a (PI +P2)-doughnut graph G from apI-doughnut graph GI and a

P2-doughnut graph G2 as follows.

We construct the graph G; from GI as follows. We identify the vertex Xi+1 of the top

partition to the vertex Yi of the right partition, vertex ZPl +J of the top partition to the

vertex ZPl of the right partition, and vertex Yi+J of the top partition to the vertex Xi of

the right partition. Fig 7.7(c) illustrates G; of GI in Fig. 7.7(a) where PI = 4. We now

construct the graph G~ from G2 as follows. We identify the vertex Y~2 of left partition

to the vertex x; of the bottom partition, vertex z~P2of the left partition to the vertex zi
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of the bottom partition, and the vertex X~2 of left partition to the vertex yi. Fig 7.7(f)

illustrates G~ of G2 in Fig. 7.7(d). We put G; left to the G~.Finally, we identify the

vertices Yi+l, zp,+1> Xi+1 of G; to the vertices of X~2' Z~P2' Y~2 of G~,respectively; and

identify the vertices of Yi, ZPl' Xi of Gi to the vertices of xi, zi, Yi of G~,respectively; and

we get a (PI +P2)-doughnut graph G as illustrated in Fig. 7.7(h).

We now have the following theorem.

Theorem 7.3.1 Let GI be a PI-doughnut graph and let G2 be a P2-doughnut graph. Then

one can construct (PI + P2)-doughnut graph G by combining GI and G2.

7.4 Topological Properties of Doughnut Graphs

Let G be a p-doughnut graph. By Theorem 3.2.4, the number of vertices of G is 4p where

p( > 3) is an integer. A p-doughnut graph is maximal fault tolerant since it is 5-regular by

Theorem 3.2.4. By Theorem 3.2.6, every p-doughnut graph G has a doughnut embedding

r where vertices of G lie on three vertex disjoint cycles. In r, the vertices are lie on three

cycles 01, O2 and 03 such that 01 is the outer cycle containing p vertices, O2 is the middle

cycle containing 2p vertices and 03 is the inner cycle containing 2p vertices. Then, one

can easily see that the diameter of a p-doughnut graph is lP/2 J + 2.

Hypercube [BA84], the most efficient and widely used, is a popular interconnection

network. It has logarithmic diameter. It is not a scalable network since the degree of a

node of this network changes with the changes in the dimension of the network. It has

maximal faultolerance, Hamiltonian embedding and recursive structure. Wrapped around

butterfly [Lei92J is another popular interconnection network which is scalable. The degree

of each node of this network does not change with the size of the network. It has' maximal

fault tolerance and Hamiltonian embedding but the diameter is higher than the hypercube

for same size of network. The k-degree Cayley graph [HH06] is another family of graph

for interconnection networks. It has maximal fault tolerance, logarithmic diameter and
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xp,
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.\i+1 Yi+\
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'e,
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(.) (b) (0)
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42PZ
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(d) (e) (f)
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X;+ I x ••
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(g)

(h)

Figure 7.7: Illustration for construction of a (PI + P2)-doughnut graph.G from a Pr

doughnut graph GI and a P2-doughnut graph G2 where PI = 4 and P2 = 5.
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the degree of each node is fixed. It has also Hamiltonian embedding.

7.5 Conclusion

110

In this chapter we presented the topological properties of doughnut graphs. We proposed

a very simple routing scheme for doughnut graphs. Doughnut graphs have beautiful

recursive structure. One of the limitation is the diameter which is linear but the coefficient

is 1/8. We may have a scalable interconnection network using doughnut graphs since the

degree of a vertex of a doughnut graph does not change with the size of a doughnut graph.

This is also important for VLSI implementation point of view as well as applications where

the computing nodes in an interconnection networks only have fixed number ofI/O ports.

Thus doughnut graphs may have nice application as the interconnection networks.



Chapter 8

Conclusion

This thesis deals with classes of planar graphs that admit straight-line grid drawings with

sub-quadratic area. We have introduced some classes of planar graphs that admit area-

efficient drawings. We have provided linear-time algorithms for finding straight-line grid

drawings of newly introduced classes of planar graphs with sub-quadratic area. We have

studied k-partitioning problems for newly introduced classes of planar graphs and found

some interesting results for doughnut graphs. We have also studied topological properties

of doughnut graphs and identified some beautiful features so that we propose this class

as a promising class of interconnection networks.

We first summarize each chapter and its contributions. In Chapter 1 we have intro-

duced different drawing styles, different aspects of graph drawings, motivation of this

study of graph drawing and summary of our results with the existing results.

In Chapter 2 we have introduced graph theoretical terminologies which have been used

in this thesis.

In Chapter 3 we have presented doughnut graphs, a subclass of 5-connected as well

as 3-outerplanar graphs, that admit straight-line grid drawings with linear area. We also

give a linear-time algorithm for finding a straight-line grid drawing with linear-area.

In Chapter 4, we have given a necessary and sufficient condition for a 4-connected

III
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planar graph to be a spanning subgraph of a doughnut graph. We also present a linear-

time algorithm for augmenting a 4-connected spanning subgraph of a doughnut graph to

a doughnut graph. Thus we have introduced a subclass of 4-connected planar graphs that

admits straight-line grid drawing with linear area.

In Chapter 5, we have introduced label-constrained outerplanar graphs that admit

straight-line grid drawings with O(n log n) area. We give a linear-time algorithm for

finding such a drawing of a label-constrained outerplanar graph. We also give a linear-

time algorithm for recognition of a label-constrained outerplanar graph.

In Chapter 6, we have given a linear-time algorithm for finding a k-partition of a

doughnut graph. Our algorithm is based on finding a Hamiltonian path between any

pair of vertices of a doughnut graph. We also give a linear-time algorithm for finding a

Hamiltonian path between any pair of vertices of a doughnut graph.

In Chapter 7, we have proposed the class of doughnut graph as a promising class for

interconnection networks. We have identified a set of topological properties of a doughnut

graph like regularity, smaller diameter, maximal fault tolerance, recursive structure etc.

We have also proposed a very simple and efficient routing scheme in a doughnut graph.

In the course of thesis, we have raised the following open problems.

(a) Finding classes of planar graphs richer than binary trees, and other than the dough-

nut graphs and "balanced" outerplanar graphs, that admit straight-line grid draw-

ings with linear area.

(b) Recognition of a 4-connected spanning subgraph of a doughnut graph where two

vertex disjoint faces F1 and F2 remain unaffected is a non-trivial problem. We have

solved this problem. Recognition of a 4-connected spanning subgraph of a doughnut

graph without any restriction on face even harder than the solved one. Hence

recognition of a 4-connected spanning subgraph of a doughnut graph without any

restriction on faces is an interesting problem. Moreover, recognition a 3-connected or
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a 2-connected spanning subgraph of a doughnut graph are also interesting problems.

(c) A doughnut graph is a 5-connected planar graph. We know that every k-connected

planar graph admits a k-partition with k basis vertices. We provide the solution for

k-partitioning of a doughnut graph with basis at most two. Hence 5-partitioning of

a doughnut graph with 5 basis vertices is an interesting problem.

(d) Finding a lower bound on area requirement of an outerplanar graph is another

interesting problem.

(e) Finding other classes of planar graphs that admit straight-line grid drawing with

sub-quadratic area.
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