
AN i-ExCLUSION ALGORITHM FOR

MOBILE AD Hoc NETWORKS

• i-~'~- --

1111111111111111111111111111111111
#100961#

by

Salahuddin Mohammad Masum

A Thesis Submitted to the Department of Computer Science and Engineering in the Partial
Fulfillment of the Requirements for the //

Degree of
Master of Science in Engineering ,

(Computer Science and Engineering) '--

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA,BANGLADESH

NOVEMBER 2005

The thesis "An [-Exclusion Algorithm for Mobile Ad Hoc Networks", submitted

by Salahuddin Mohammad Masum, Roll No. 040205051 P, Registration No. 94277,

Session April 2002, to the Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, has been accepted as

satisfactory for the partial ,fulfillment of the requirements for the degree of Master of

Science in Engineering (Computer Science and Engineering) and approved as to its

style and contents. Examination held on November 15, 2005.

Board of Examiners

1.

2.

3.

4.

5.

Dr. Md. Mostofa Akbar
Assistant Professor
Department of CSE
BUET, Dhaka-IOOO

~~JY(P{ ;fLr
Dr. Muhammad Masroor Ali
Professor and Head
Department of CSE

.~---
Dr. Abu Sayed Md. Latiful Hoque
Associate Professor
Department of CSE
BUET, Dhaka-,IOOO

~~~
Dr. Md. Saidur Rahman
Associate Professor
Department of CSE
University of Dhaka
Dhaka-IOOO

~~

Dr. M. Lutfar Rahman
Professor
Department of CSE
University of Dhaka
Dhaka-IOOO

Chairman
(Supervisor)

Member
(Ex-officio)

Member

Member

Member
(External)

•

C~;..r,
~

r '. -



DECLARATION

I, hereby, declare that the work presented in this thesis is the outcome of the

investigation performed by me under the supervision of Dr. Md. Mostofa Akbar,

Assistant Professor, Department of Computer Science and Engineering, Bangladesh

University of Engineering and Technology, Dhaka. I also declare that no part of this

thesis and thereof has been or is being submitted elsewhere for the award of any

degree or diploma.

Countersigned

~~.
(Dr. Md. Mostofa Akbar)

Supervisor

Signature

r\ ~~ .
(SalahUd~ammad Masum)

Candidate

. i. 1.~'.'



ACKNOWLEDGEMENT

First I express my heartiest thanks and gratefulness to Almighty Allah for His divine

blessings, which made me possible to complete this thesis successfully.

I feel grateful to and wish to acknowledge my profound indebtedness to Dr. Md.

Mostofa Akbar, Assistant Professor, Department of Computer Science and

Engineering, Bangladesh University of Engineering and Technology. Deep

knowledge and keen interest of Dr. Akbar in the field of system design influenced me

to carry out this project and thesis. His eridless patience, scholarly guidance, continual

encouragement, constant and energetic supervision, constructive criticism, valuable

advice, reading many inferior draflsand correcting them at all stage have made it

possible to complete this thesis.

I would like to thank the members of the graduate committee, Dr. Muhammad

Masroor Ali, Professor and Head, Dr. Abu Sayed Md. Latiful Hoque, Associate

Professor, Dr. Md. Saidur Rahman, Associate Professor, Department of Computer

Science and Engineering, Bangladesh University of Engineering and Technology, and

Dr. M. Lutfar Rahman, Professor, Department of Computer Science and Engineering,

University of Dhaka for their valuable suggestions.

I am also very much grateful to Professor Dr. Aminul Islam, Vice Chancellor,

Daffodil International University, who inspired me many times to complete this

thesis.

I would also like to express my heartiest gratitude to other faculty members, the staffs

of the CSE Department of BUET, and the same of Daffodil International University.

And last but not the least, I must acknowledge with due respect the constant support

and patience of my mother, my father, my father-in-law, my mother-in-law, my

wife, Sifat, and my younger brother, Mamun for completing the thesis.



ABSTRACT

With the proliferation of portable computing platforms and small wireless devices, ad

hoc mobile networks have received a substantial attention from the research

community as a means for providing data communications among devices regardless

of their physical locations. Much of the research attention has spanned the design and

standardization of routing, medium access control protocols, wireless channel

allocation algorithms, protocols for broadcasting and multicasting. Instead, this thesis

work addresses the [-Exclusion problem for mobile ad hoc networks. The [-

Exclusion problem, a generalization of distributed mutual exclusion problem, involves

a group of processes, each of which intermittently requires access to one of [ identical

resources or pieces of code called the critical section (CS). However, characteristics

of mobile ad hoc networks, such as concurrent and unpredictable topology changes

due to arbitrary mobility pattern of nodes, shared broadcast channel, dynamic wireless

link formation and removal, network partitioning and disconnections, location

dependent errors, highly variable message delay, bandwidth, energy and battery

power limitations, make devising of any distributed solution to the [-exclusion

problem in such networks very challenging and exciting.

In literature, few token-based solutions to this problem are available. Nevertheless,

these solutions suffer from poor failure resiliency, as these do consider failures

associated with mobile ad hoc networks, such as loss or regeneration of tokens, crash

or sudden recovery of nodes. This research work presents a consensus-based

mobility-aware [-exclusion (LE) algorithm that operates asynchronously and copes

explicitly with arbitrary (possibly concurrent) topology changes associated with such

networks. The algorithm is fault-resilient in the sense that it can tolerate loss of

messages, link changes or failures, sudden crashes or recoveries of at most [-I mobile

nodes. The algorithm is based on collection enough consensuses for a mobile node

intending to enter CS, and uses diffusing computations for this purpose. The

algorithm requires nodes to communicate only with their current neighbors, making it

well-suited for use in mobile ad hoc networks. This thesis presents proofs of

correctness to exhibit the fairness of the algorithm. This work is concluded by an

extensive simulation study considering several performance metrics that significantly

II



impact the behavior of such an algorithm in various ad hoc settings. Simulation study

demonstrates that the proposed algorithm is quite effective to variety of operating

conditions, and is highly adaptive to frequent and unpredictable topology changes due

to loss of messages, link changes or failures or formations, sudden crashes or

recoveries of at most 1-1 mobile nodes, under different mobility settings. This

research work also presents a simulation-based performance comparison between the

proposed l-exclusion (LE) algorithm and the k-Reverse Link (KRL) algorithm.

Simulation results sdemonstrate that our algorithm performs favorably at high

crash/merge rate in terms of Message Overhead, particularly when nodes are mobile.

The performance of our algorithm in terms of Average Waiting Time per CS Entry is

remarkable, particularly under mobility and vulnerability. Simulation results also

'shows that the l-exclusion algorithm always allows more than 90% of nodes

intending to enter CS to access and to control CS under a variety of vulnerable

mobility settings, where at most I-I node(s) can crash independently or concurrently,,
and/or crashed node(s) may recover from failures.

111



TABLE OF CONTENTS

ACKNOWLEDGEMENT I

ABSTRACT II

TABLE OF CONTENTS IV

LIST OF FIGURES VII

CHAPTER 1 1

INTR 0 DUCTI ON 1

1.1. MOTIV ATlON .............................................................................•..................... 1

1.2. PROBLEM DEFINITION ..............•.•..•..............................•.......•.......................... 5

1.3. RELATED WORK ...........•................................................................................. 9

104. SCOPE AND Focus OF THE THESIS ............•...................................•............... 10

1.5 . ORGANIZATION OF THE THESIS .....•............................................................... 11

CHAPTER 2 12

BACK GROUND 12

2.1. INTRODUCTION .............•.•...........................•.•...............................•............... 12

2.2. MOBILE AD Hoc NETWORKS (MANET) •.•...............................•................... 12

2.3. MAC LA YER.. .......•...•...•...............•............................................................... 15

204. ROUTING IN MANET 17

2.5. ADDRESSING IN MANET 19

2.6. MUL TICASTlNG IN MANET 20

2.7. QoS IN MANET .................................................................•.•....................... 21

2.8. MUTUAL EXCLUSION PROTOCOLS FOR FIXED NETWORK 21

2.9. STATIC MUTUAL EXCLUSION PROTOCOLS ADAPTED FOR MANET 26

2.10. MUTUAL EXCLUSION ALGORITHMS FORMANET ...................................•.•.. 28

2.10.1. B. R. Badrinath, A. Aeharya, and T. Imelinski Algorithm 28

2.10.2. J. E. Walter and S. Kini Algorithm 29

2.10.3. J. E. Walter, J L. Weleh, andN. H VaidyaAlgorithm 29

2.10.4. N. Malpani, Y. Chen, N. H Vaidya, andJ L. WelehAlgorithm 31

2.10.5. Y Chen and J L. WelehAlgorithm 31

IV



2.10.6. J. E. Walter, G. Cao, and M Mohanty Algorithm 32

2.11. DISCUSSIONS 32

2.12. MANET SIMULATORS 33

2.12.1. OPNET Modeler 33

2.12.2. NS-2 34

2.12.3. PARSEC 35

2.12.4. GloMoSim 36

2.13. CHAPTER SUMMARY 37

CHAPTER 3 ..............................................................•................................................ 38

THE t-EXCL USION ALGORITHM ................•...................................................... 38

3.1. INTRODUCTION : 38

3.2. SYSTEM MODEL AND ASSUMPTIONS ...........................•................................. 3 8

3.3. THE [-EXCLUSION (LE) ALGORITHM .........................•.............•.................. .40

3.3.1. Brief Outline 40

3.3.2. Data Structures 41

3.3.3. Pseudocode 42

3.3.4. State Diagram 45

3.3.5. Operations 49

3.3.6. Correctness 52

3.4. CHAPTER SUMMARy ..•..............•....................•..........................•..........•........ 59

CHAPTER 4 ............................................................................................•.................. 60

SIMULATION AND PERFORMANCE EVALUATION 60

4.1. INTRODUCTION .....•.•............•........•...........•...........•...........•...........•..........•.... 60

4.2. SIMULATION SETTING ........................................•.......................•.•................ 60

4.2.1. Performance Metrics 60

4.2.2. Simulation Environment and Parameters 61

4.3. SENSITIVITY ANALYSES: RESULTS VERSUS PERFORMANCE 63

4.3.1. Message Overhead. 64

4.3.1.1. Impact of request load 64

4.3.1.2. Impact of the number of identical resources 66

4.3.2. Average Waiting Timeper CS Entry 68

4.3.2.1. Impact of request load 69

V
c

Q(, .
-(~~r



4.3.2.2. Impact of crash-merge rate 70

4.4. PERFORMANCE COMPARISON WITH KRL ALGORITHM 73

4.4.1. Message Overhead. 73

4.4.2. Average Waiting Time per CS Entry 75

4.4.3. Success Rate 76

4.5. CHAPTER SUMMARY ..........................................................................•.......... 77

CHAPTER 5 79

CONe LunING REMARKS 79

5.i. MAl OR CONTRIB UTIONS .........•.............................•................•................•..... 79

5.2. SCOPE FOR FUTURE iNVESTIGATIONS ........•...............•.................................. 80

REFE RENeE S 82

VI



LIST OF FIGURES

Figure 1.1: Multiple links to reach a destination .3

Figure 1.2: Hidden Terminal Problem .4

Figure 1.3: Mobility causes route changes .4

Figure 1.4: Model Mutual Exclusion Problem in Distributed Process Management....7

Figure 2.1: A Mobile Ad Hoc Network .... :...............................................•.................. 13

Figure 2.2: Infrastructure and Ad Hoc Networks .16

Figure 3.1: Pseudocode for requesting CS .43

Figure 3.2: Pseudocode for handling incoming message .44

Figure 3.3: State Diagram for Mobile Node mj .46

Figure 3.4: Operation of the [-Exclusion algorithm on dynamic network

(where node moves, but links do not change) 50

Figure 3.5: Operation of the [-Exclusion algorithm on dynamic network

(where node moves, and links change) 53

Figure 4.1: Effect of request load (A.~q) on Message Overhead (M), for (a) [= 6, (b) [

= 9, when no node fail ure or merge occurs 65

Figure 4.2: Effect of the number of identical resources (l) on Message Overhead (M),
for (a) A.~q= 0.04, (b) A.~q= 0.08, when no node failure or merge occurs 67

Figure 4.3: Effect of the number of identical resources (l) on Message Overhead (M),
for (a) J."a,h .. merge= 0.04, (b) Acra'h_" ••rge=O.I, when node failures/merges occur, and

A.~q= 0.04 69

Figure 4.4: Effect of request load (A.~q) on Average Waiting Time (W), for (a) [= 6,

(b) [= 9, when no failures or merges occur 71

Figure 4.5: Effect of crash-merge rate (A."'",'h_",,,,,) on Average Waiting Time (W), for
(a) [= 3, A.~q= 0.1, (b) [= 9, A.~q= 0.02 72

Figure 4.6: Crash-merge rate (J."a'h_merge) versus Message Overhead (M), when [= 6

(LE), or k = 6 (KRL), and A.~q= 0.04 74

Figure 4.7: Crash-merge rate (J."a'h_merge) versus Average Waiting Time per CS Entry
(W), when [= 6 (LE), or k = 6 (KRL), and A.~q= 0.04 76

Figure 4.8: Crash-merge rate (J.""'h_merge) versus Sucess Rate (S), when [= 6 (LE),

or k = 6 (KRL), and A.~q= 0.04, for (a) Zero, (b) Low, (e) High Mobility 78

VII

c



To my beloved son

Mufrad Sharaf Bin Salah uddin

I



CHAPTER 1

INTRODUCTION

1.1. Motivation
Numerous factors associated with technology, business, regulation and social

behavior naturally and logically speak in favor of mobile ad hoc networking. Mobile

wireless data communication, which is advancing both in terms of technology and

usage/penetration, is a driving force of truly ubiquitous computing and

communication. In the near future, the role and capabilities of short-range data

transaction are expected to grow, serving as a complement to traditional large-scale

communication: most man-machine communication as well as oral communication

between human beings occurs at distances of less than 10 meters; also, as a result of

this communication, the two communicating parties often have a need to exchange

data. As an enabling factor, license--exempted frequency bands invite the use of

developing radio technologies (such as Bluetooth) that admit effortless and

inexpensive deployment of wireless communication. Traditional cellular and mobile

networks are still, in some sense, limited by their need for infrastructure (i.e., base

stations, routers). For mobile ad hoc networks, this final limitation is eliminated.

Mobile ad hoc networks are the key to the evolution of wireless networks [109].

But perhaps the most widespread notion of a mobile ad hoc network (MANET) is a

network formed without any central administration. This kind of network provides a

flexible way of developing ubiquitous broadband wireless access, allowing mobile

networks to be readily deployed unpredictably without using any previous network

infrastructure. Such networks are multi-hop wireless networks that consist of mobile

nodes using a wireless interface to send packet data. Since the nodes in a network of

this kind can serve as routers and hosts, they can forward packets on behalf of other

nodes and run user applications, but they may disappear from, appear into or move

within the network at any time.



2

Mobile ad hoc networks have' mainly been considered for military tactical

communications In automated battlefields, where a decentralized network

configuration is an operative advantage or even a necessity. However, interest in this

type of networks continues to grow. Applications such as rescue missions in times of

natural disaster recovery, law enforcement operations, crowd control, search and

rescue, commercial and educational use, home networking, personal area networking,

and sensor networks are just a few possible examples.

In recent years, the vision of nomadic computing with its ubiquitous access has

stimulated much research interest in the mobile ad hoc networking technology. Much

of this research activity has focused on the design and standardization of routing [30,

35, 43, 49, 63, 68, 70, 76-78, 113, 117, 118, 126] medium access control protocols

[14, 134] wireless channel allocation algorithms [53], protocols for broadcasting and

multicasting [30, 44, III, 125]. However, there has been a limited research works on

distributed algorithms designed for mobile ad hoc networks while implementing

distributed algorithms that ensure control and ordering is a critical point for many

specific problems (e.g. resource allocation; assigning channels, IP addresses;

autoconfiguration; logical structure; etc.). For traditional static and dynamic networks,

there is a rich history of works on distributed algorithms for various problems

including clock synchronization [81, 82], mutual exclusion [39, 84], leader election

[52], Byzantine agreement [41, 42] etc. In this research work, we intend to fill in this

gap for MANET, addressing a distributed protocol for the i-Exclusion problem,

which is a generalization of I-mutual exclusion [39, 84], first defined and solved by

Fisher et al. [45, 46] for static networks. The i-Exclusion problem involves a group of

n processes, each of which intermittently requires access to an identical resource or

piece of code called the critical section (CS). At most i, I :si:s n, processes may be in

the CS at any given time. Providing shared access to resources through mutual

exclusion is a fundamental problem in computer science, and is worth considering for

the ad hoc locale, where stripped down mobile nodes may need to share resources.

Nevertheless, implementing distributed algorithms (e.g. distributed i-Exclusion

algorithm) in mobile ad hoc wireless networks entails complications, as mobile ad hoc

networks inherit the traditional problems of wireless and mobile communications.



3

Following issues signif'y mobile ad hoc network as a challenging research domain for

implementing distributed algorithms:

• Networks don't (necessarily) have a pre--existing infrastructure.

• The topology is highly dynamic and frequent changes in the topology may be hard

to predict.

• The mobility pattern of nodes is arbitrary.

• Mobile ad hoc networks are based on wireless links, which will continue to have a

significantly lower capacity than their wired counterparts.

• Routes between nodes may potentially contain multiple hops.

• Messages may need to traverse multiple links to reach a destination (See Figure

1.1). Hence, some nodes may receive messages that are not intended for those

nodes.

• Broadcast nature of wireless medium causes hidden terminal problem (See Figure

1.2).

• Mobility causes route changes (See Figure 1.3).

• Mobility induces packet losses.

• Packets are lost due to transmission errors.

• Wireless link can be formed and removed dynamically.

• Wireless transmission ranges of mobile nodes are limited.

• Mobile nodes may have limited bandwidth.

A
B

o

Figure 1.1. Multiple links to reach a destination.

(
1



4

Figure 1.2. Hidden Terminal Problem. Nodes A and C cannot hear each other.

Transmissions by nodes A and C can collide at node B. Nodes A and C are hidden

from each other.

• Message delays may be highly variable.

• Physical security is limited due to the wireless transmission.

• Mobile ad hoc networks are affected by higher loss rates, and can experience

higher delays and jitter than fixed networks due to the wireless transmission.

• Snooping on wireless transmissions (security hazard) is easy.

• Network partitioning and potential disconnections may occur randomly.

• Mobile ad hoc network nodes rely on batteries or other exhaustible power supplies

for their energy. As a consequence, energy savings are an important system design

criterion. Furthermore, nodes have to be power-aware: the set of functions offered

by a node depends on its available power (CPU, memory, etc.).

D

Figure 1.3. Mobility causes route changes.

Therefore, resilient and adaptive distributed algorithms that can continue to perform

potentially and effectively under mobile ad hoc locale can significantly enhance

MANET operations from a user's perspective. Such algorithms can also significantly

(



5

ease the design pressure in complex engineering areas such as quality of service

(QoS) [89]. So, to design and to develop a fault-resilient and mobility aware

distributed I-Exclusion algorithm for mobile ad hoc domain has become a focus of
(

recent research and development efforts under mobile ad hoc domain.

1.2. Problem Definition
Mutual exclusion [39, 84] is one of most classical paradigms of distributed

computing. This problem consists in devising a protocol run by a set of

communicating asynchronous parallel processes which want to coordinate themselves

to access and to control intermittently a designated piece of code, namely critical

section (CS) that can be used only by one process at a time. Code of critical section

might manipulate a common resource, in which case access to the critical section

corresponds to allocation of the resource, such as non-sharable, reusable line printer

or a tape drive or other output device that requires exclusive access in order to ensure

that the output is sensible, or a database or other data structure that requires exclusive

access in order to avoid interference among the operations of different users.

Figure 1.4 shows a model that we can use for examining approaches to mutual

exclusion in a distributed context. We assume some number of systems

interconnected by some type of networking facility. Within .each system, we assume

that some function or process is responsible for resource allocation. Each such process

controls a number of resources, and serves a number of user processes. Any solution

to distributed mutual exclusion devises a protocol by which these processes may

cooperate in enforcing mutual exclusion.

The I-Exclusion problem, first defined and solved by Fisher et al. [45, 46], is a

generalization of mutual exclusion (I-mutual exclusion) for multiple entries to CS.

The I-Exclusion problem generalizes the mutual exclusion problem to the case where

some number 12: 1 of processes (but not more) are permitted to be simultaneously in

their critical sections. Regarded as a resource-allocation problem, we consider I

identical copies of a non-sharable reusable resource, where each process can request

at most one copy of that resource. Again entry to the critical section corresponds to

(
i

I



6

allocation of a resource copy, but the problem exciudes the questions of just how the

individual copies of the resource are managed.

For example, imagine that each process controls some device which from time to time

needs to enter a mode of high electrical power consumption. The main circuit breaker

can withstand at most E devices at high electrical power consumption. By allowing

each process to switch its device on only when it is in its critical section, an .[-

Exclusion solution will protect the circuit breaker from burning out. Applications of

'[-Exclusion include resource allocation, assigning channels, assigning IP addresses

etc.

To illustrate the problem, assume a system that consists ofn processes {I, ..., n}. Each

process can be described by a program that consists of two distinguished sections: a

remainder section and a critical section. Each process alternates between executing its

remainder and its critical section as follows:

Process i:

repeat forever

remainder_section,

critical_section,

end repeat

The '[-Exclusion problem is to guarantee that the system does not enter a state in

which more than .[ processes are in their CS. Roughly, if fewer than.[ processes are in

their critical sections, it is possible for another process to enter its critical section,

even though no process leaves its critical section in the meantime. To coordinate the

entrance to the critical section, entry and exit sections are added to the program of

each process:

Process i:

repeat forever

remainder_section,

entry,

critical_section,

exit,

end repeat

•



7

System 1
PlI P12••• Plk

\V

RlI R12 ••• RIm

Systemj
Pjl Pj2 ••• Pjk

\V

SystemN

PNl PNZ'" PNk

\V

RPj = Resource-Controlling process in systemj
Pj; = User process i in systemj
Rji= Resource i in systemj

Figure 104. Model Mutual Exclusion Problem in Distributed Process Management.

Following properties must be ensured by any solution to I-Exclusion problem [I]:

Definition I. I. (I-Exclusion): No more than I processes are ever concurrently in their

critical sections.

Definition I.2.(I-Lockout Avoidance): If fewer than I processes are faulty, any

requesting process that is notfaulty enters its critical section in afinite time.

In the context of mobile ad hoc networks, node movements may result in frequent and

unpredictable topological changes. Complications may arise due to sudden crash or

merge of the mobile nodes. Complications get extended since node failures or crashes



8

are not detectable. Hence, any solution to f-Exclusion problem for mobile ad hoc

networks must tolerate such issues. On the contrary, it is also important to realize that

no solution to the f-Exclusion problem for mobile ad hoc networks ever succeeds if

topology changes very rapidly (i.e. if node moves, fails, or merges very frequently).

Considering dilemmas associated with mobile ad hoc networks, we refine the f-

Exclusion problem for mobile ad hoc networks as: Given an ad hoc network of mobile

nodes each with a priority index, any connected component of the network whose

topology remains static sufficiently long does not enter a global state in which more

than f nodes are in their CS. We refine the properties that must be ensured by any

solution to the f-Exclusion problem in MANET as follows:

Definition 1.3. (f-Exclusion): No more than f mobile nodes are ever concurrently in

their critical sections.

Definition 1.4.(f-Lockout Avoidance): Let there be fewer than f mobile nodes in

failed or crashed state. Any mobile node succeeds to enter in ajinite time.

Note that if f or more nodes remain failed or crashed, the f-Exclusion condition

requires that no other node enters its critical section. Hence, the definition of f-

Lockout Avoidance only requires progress when less than f nodes remain failed or

crashed. However, f-Lockout Avoidance states that all requests for entry to the CS

are eventually satisfied. For static networks, Hadzilacos [57] notes that it may be

desirable to ensure a stronger fairness property, i.e. Requests for entry to the CS are

satisfied in the order in which they are made. Hence, we refine the First~ome-First-

Served (FCFS) property, first introduced by Lamport [80] for mutual exclusion in

static networks, as the First~ome-First-Guaranteed property for f-Exclusion in

mobile ad hoc networks:

Definition 1.5. (First~ome-First-Guaranteed): If any mobile node requests to enter

the critical section earlier than the other, then available entry to the critical section is

jirst guaranteedfor the node requested earlier.

"



9

1.3. Related Work
The problem of mutual exclusion has been extensively studied for static networks in

distributed systems. But, most of these algorithms may be inefficient for MANET.

However, complications arise in designing algorithm for mutual exclusion on

MANET, where topology can potentially change with every node movement, message

or token can be lost, communication links can be failed, nodes may be crashed or

failed node can be recovered, and network can be partitioned permanently.

In literature, few token-based algorithms exist to implement mutual exclusion

specially designed for mobile ad hoc or cellular networks. The solutions can be split

into two families: "Requesting Token" [139, 140, 142] and "Circulating Token" [4, 8,

28]. We now present a brief outline of those solutions. Note that we explore the

solutions extensively in the following chapter.

In 1993, Badrinath et al. [4] proposed two distributed mutual exclusion algorithms for

cellular networks. Both are adaptations for cellular networks of the algorithm

proposed by Lamport [83], and Le Lann [87]. These adaptations avoid

communicating frequently with hosts and finally reduce considerably the cost (for

circulating token) compared to [83, 87]. In 1997, Walter and Kini [142] proposed an

algorithm derived from [27, 36, 49, 120]. This algorithm defines a structure mapped

on real topology of the network, which is represented by a DAG of token-{)riented

pointers, maintaining multiple paths leading to the node holding the token. Later on,

Walter et al. [139] proposed a revised solution of [142], but used [120] as a basis. In

addition to previous assumptions, it assumed that communication channels are FIFO

with neither loss nor duplication of messages. Following that, Walter et al. [140]

again proposed a token-based solution for multiple--entry mutual exclusion based on

[142]. This solution is a generalization of I-mutual exclusion algorithm presented in

[139]. Baldoni et al. [8] presented an algorithm based on a dynamic logical ring and

combined the best from "Requesting Token" and "Circulating Token". Under heavy

request load the number of hops traversed per CS is very close to an optimal value in

this algorithm. Very recently, Malpani et al. [90, 91] presented a parametric algorithm

with many variants. All these variants have the same framework, but differ in the

selection of the successor. A self-stabilizing algorithm based on [38, 91, 137] has



10

been proposed by Chen et al. (28]. It requires that the topology should be static while

the algorithm is converging.

The reader should note that all the aforementioned algorithms presented for MANET

may induce catastrophic recitals, as none of these do consider loss of messages or

tokens or communication links, crash failure or sudden recovery of nodes, and

partition of networks (96, 97].

1.4. Scope and Focus of the Thesis
This thesis work focuses on the following issues:

o To devise a consensus-based mobility aware algorithm for the l-Exclusion

problem in mobile ad hoc networks. The algorithm would have the following

characteristics:

•

•

•

To enter the l-entry CS, the algorithm would require mobile nodes to

communicate only with their immediate neighbors chosen dynamically,

The algorithm would ensure the fairness and the correctness defined In

Section 1.2),

The algorithm would operate asynchronously to tolerate loss of messages,

sudden crash or recovery of mobile nodes, and lossy communication links,

as long as the link failures do not partition the communication networks.

o To prove formally the correctness and the fairness properties of the l-Exclusion

algorithm (such as, l-Exclusion, l-Lockout Avoidance and First-Come-First-

Guaranteed properties defiried in Section 1.2).

o To simulate, to analyze, and to evaluate the sensitivity, behavior, and performance

of the algorithm using PARSEC (5] considering the following performance
indices-

• Message overhead to enter CS per request,

• Average waiting time to enter CS per request,

• Success rate to enter CS per request.



II

o To present the simulation results as a function of request load, the number of

identical resources, crash-merge rate under following variants-

• Zero, low, and high mobility without node failures/merges,

• Zero, low, and high mobility with node failures/merges.

1.5. Organization of the Thesis
The thesis is organized in chapters which span various topics related to the

background, design, analysis, implementation, and simulation issues of the {-

Exclusion algorithm. Outlines of different chapters are as follows:

The next chapter provides a precise sketch on mobile ad hoc networks, MAC layer

used for constructing a mobile ad hoc network, with an outline of routing, addressing,

multicasting and QoS in mobile ad hoc network. This chapter also reviews the

solutions to distributed mutual exclusion problem for both static and mobile ad hoc

networks. Then a preface on MANET simulators concludes the chapter.

Chapter 3 depicts the system model, assumptions on system, mobile nodes and

networks, to devise the {-Exclusion Algorithm. Next a brief outline of the algorithm

followed by a detailed description along with required data structures has been

illustrated. A state diagram and some operational examples of the algorithm have also

been presented in this chapter. At the end, the chapter proves the correctness of the

proposed algorithm.

In chapter 4, we evaluate the performance and sensitivity of the proposed algorithm in

a mobile ad hoc environment by carrying out an extensive simulation. Through our

simulation, we consider several performance metrics that can significantly impact the

behavior of such an algorithm in different ad hoc settings. We also discuss the

performance of the {-Exclusion Algorithm compared to the KRL algorithm, and

demonstrate that the performance of our algorithm is remarkable in several scenarios,

particularly under mobility and vulnerability.

Finally, chapter 5 concludes this thesis work with the discourse on major

contributions of this research work, followed by some thoughts related to future

extensions of this work.



CHAPTER 2

BACKGROUND

2.1. Introduction
This chapter presents a concise introduction on mobile ad hoc networks, followed by

an overview of MAC layer that can be used for constructing a mobile ad hoc network,

with an outline of routing, addressing, multicasting and QoS in mobile ad hoc

network. This chapter also presents a literature review on solutions to distributed

mutual exclusion problem for static networks. This chapter concludes an extensive

study on the existing solutions of distributed mutual exclusion for mobile ad hoc

networks, followed by a brief introduction on MANET simulators.

2.2. Mobile Ad Hoc Networks (MANET)
Mobile ad hoc network (MANET) is a collection of potentially mobile nodes that act

as processors to route messages or to forward packet data and to run user applications

either over a direct wireless interface, or over a sequence of wireless links including

one or more intermed{ate nodes (See Figure 2.1). Direct or indirect communication

between mobile nodes depends on their relative positions and transmission radius.

Communication topology may postpone spontaneously with time as the nodes move

into and go out of each other's transmission radius. In fact, mobile ad hoc networks

have the unique characteristic of being totally independent from any authority or

infrastructure, providing great potential for the users. Roughly speaking, two or more

users can become a mobile ad hoc network simply by being close enough to meet the

radio constraints, without any external intervention.

Applications ofMANET include-

o Personal area networking -

• Cell phone, laptop, ear phone, wrist watch.



13

Figure 2.1. A Mobile Ad Hoc Network.

o Military environments-

• Soldiers, tanks, planes.

o Civilian environments-

• Taxi cab network.

• Meeting rooms.

• Sports stadiums.

• Boats, small aircraft.

o Emergency operations-

• Search-and-rescuc.

• Policing and fire fighting.

Characteristics that distinguish mobile ad hoc networks from existing distributed

networks include concurrent and unpredictable topology changes. due to arbitrary

mobility pattern of nodes, shared broadc'ast channel, dynamic wireless link formation

and removal, network partitioning and disconnections, limited bandwidth and energy,

location dependent errors, and highly variable message delay. Despite these

characteristics, ease and speed of deployment, decreased dependence on infrastructure

signify mobile ad 'hoc networks exciting. Moreover, variations in capabilities &

responsibilities, variations in traffic characteristics, mobility models, and performance

criteria (e.g., throughput, energy, security) increases research activities on mobile ad

hoc networks significantly.

Variations ofMANET include-

o Fully Symmetric Environment-



14

• All nodes have identical capabilities and responsibilities.

o Asymmetric Capabilities-

• Battery life at different nodes may differ.

• Transmission ranges and radios may differ.

• Processing capacity may be different at different nodes.

• Speed of movement.

o Asymmetric Responsibilities-

• Only some nodes may route packets.

• Some nodes may act as leaders of nearby nodes (e.g., cluster head).

o Traffic characteristics may differ in different ad hoc networks-

• Timeliness constraints.

• Bit rate.

• Reliability requirements.

• Unicast / multicast / geocast.

• Host-based addressing/content-based addressing/capability-based

addressing.

o May co-exist (and c()-()perate) with an infrastructure-based network.

o Mobility patterns may be different-

• Taxi cabs.

• People sitting at an airport lounge.

• Kids playing.

• Military movements.

• Personal area network.

o Mobility characteristics-

• Speed.

• Predictability-

Direction of movement.

Pattern of movement.

• Uniformity (or lack thereof) of mobility characteristics among different

nodes.



15

2.3. MAC Layer
IEEE 802.11 is a digital wireless data transmission standard in the 2.4 GHz ISM band

aimed at providing wireless LANs between portable computers and a fixed network

infrastructure. This standard defines a physical layer and a MAC layer. Three

different technologies are used as an air interface physical layer for contention- based

and contention-free access control: infrared, frequency hopping, and direct sequence

spread spectrum. The most popular technology is the direct sequence spread

spectrum, which can offer a bit rate of up to II Mbps in the 2.4 GHz band, and, in the

future, up to 54 Mbps in the 5 GHz band. The basic access method in the IEEE 802.11

MAC protocol is the distributed coordination function (DCF) which is a carrier sense

multiple access with collision avoidance (CSMA/CA) MAC protocol.

802.1 I can be used to implement either an infrastructure-based W-LAN architecture

or an ad hoc W-LAN architecture (see Figure 2.2). In an infrastructure-based

network, there is a centralized controller for each cell, often referred to as an access

point. The access point is normally connected to the wired network, thus providing

the Internet access to mobile devices. All traffic goes through the access point, even

when it is sent to a destination that belongs to the same cell. Neighboring cells can use

different frequencies to avoid interference and increase the cell's capacity. All the

cells are linked together to form a single broadcast medium at the LLC layer. A sa-
called distribution system handles the packet forwarding toward destination devices

outside the cell across the wired network infrastructure. The distribution medium that

forwards packets among the access points is not defined by the standard. It is possible

to use a wireless link to connect the different access points, for example an 802.1I ad

hoc link in another frequency. Such a feature permits the implementation of a twa-

level, multihop architecture.

In the ad hoc mode, every 802.1I device in the same cell, or independent basic service

set (IBSS), can directly communicate with every other 802.1 I device within the cell,

without the intervention of a centralized entity or an infrastructure. In an ad hoc cell,

identified by an identification number (IBSSID) that is locally managed, all devices

must use a predefined frequency. Due to the flexibility of the CSMA/CA algorithm, it



16

is sufficient to synchronize devices to a common clock for them to receive or transmit

data correctly ..

Achieving synchronization is a scanning procedure used by an 802.11 device for

joining an existing lESS. If the scanning procedure does not result in finding any

IESSs, the station may initialize a new lESS. Synchronization maintenance is

implemented via a distributed algorithm, based on the transmission of beacon frames

at a known nominal rate, which is performed by all of the members of the lESS.

Additionally, given the constraints on power consumption in mobile networks, 802.11

offers power saving CPS) policies. The policy adopted within an lESS should be

completely distributed for preserving the selforganizing behavior.

The 802.11 standard is an interesting platform to experiment with multihop

networking. This standard cannot do multihop networking in the current format. The

development of a number of protocols is required.

Inlernd

lESS

Ad Hoc
Network

BSS

..L

1
Ethernet (or something else)

InfraSlrllClllI'C Nc(work

Figure 2.2. Infrastructure and Ad Hoc Networks.

It must be noted that, as illustrated via simulation in [20j, depending on the network

configuration, the standard protocol can operate very far from the theoretical

throughput limit. In particular, it is shown that the distance between the IEEE 802.11

and the analytical bound increases with the number of active networks. In IEEE

,



17

802.11 protocol, due to its back off algorithm, the average number of stations that

transmit in a slot increases with the number of active participants, and this causes an

increase in the collision probability. A significant improvement of the IEEE 802.11

performance can thus be obtained by controlling the number of stations that transmit

in the same slot.

2.4. Routing inMANET
Routing protocols fall into the class of interior gateway protocols, i.e., protocols used

to route within a (mobile wireless) network or a set of interconnected (mobile

wireless) networks under the same administration authority. Several of these protocols

[12, 18, 50, 64, 85, 112, 114, liS] have been implemented in prototypes [95] and,

although they are not yet available commercially, some of them are under commercial

consideration [47].

In [34], a list of desirable qualitative properties of mobile ad hoc networks routing

protocols for the Internet as well as a list of quantitative metrics that can be used to

assess the performance of any of these routing protocols has been presented. Thc

properties are distributed operation, loop-freedom, demand-based operation,

proactive operation, security, "Sleep" period operation, unidirectional link support.

And the metrics are end-to-end data throughput and delay, route acquisition time,

percentage out-of-order delivery, efficiency.

Routing protocols are generally categorized according to their method of discovering

and maintaining routes between all source-destination pairs, such as proactive

protocols, and reactive protocols.

Proactive protocols (also referred to as table-driven protocols) attempt to maintain

routes continuously, so that the route is already available when it is needed for

forwarding a packet. In such protocols, routing tables are exchanged among

. neighboring nodes each time a change occurs in the network topology. In contrast, the

basic idea of reactive protocols (also referred to as source-initiated protocols) is to

send a control message for discovering a route between a given source-destination

pair only when necessary.



18

Most of the existing protocols for mobile ad hoc networks are not univocally

proactive or reactive, as some of the protocols have a hybrid proactive and reactive

design or simply present elements of both approaches.

The proactive approach is similar to the connection less approach of traditional

datagram networks, which is based on a constant update of the routing information

[126]. Maintaining consistent and up-to-date routes between each source--{jestination

pair requires the propagation of a large amount of routing information, whether

needed or not. As a consequence, in proactive protocols, a route between any source-

destination pair is always available, but such protocols cannot perform properly when

the mobility rate in the network is high or when there are a large number of nodes in

the network. In fact, the control overhead, in terms of both traffic and power

consumption, is a serious limitation in mobile ad hoc networks, in which the

bandwidth and power are scarce resources [126]. The proactive approaches are more

similar in design to traditional IP routing protocols; thus, they are more likely to retain

the behavior features of presently used routing protocols. Existing transport protocols

and applications are more likely to operate as designed using proactive routing

approaches than on--{jemandrouting approaches [89].

A reactive protocol creates and maintains routes between a source-destination pair

only when necessary, in general when requested by the source (on--{jemand

approach). Therefore, in contrast to the proactive approach, in reactive protocols the

control overhead is drastically reduced. However, similar to connection-oriented

communications, a route is not initially available and this generates a latency period

due to the route discovery procedure. The on--{jemand design is based (1) on the

observation that in a dynamic topology routes expire frequently and (2) on the

assumption that not all the routes are used at the same time. Therefore, the overhead

expended to establish and/or maintain a route between a given source-destination pair

will be wasted if the source does not require the rollte due to topological changes.

As previously stated, some protocols can combine both proactive and reactive

characteristics in order to benefit from the short response time provided by the

proactive approach under route request and to limit the control overhead as in reactive

protocols. An obvious, advantageous approach is to proactively handle all the routes



19

that are known to be more frequently used and to create on demand all the other

routes. Achieving the right balance between reactive and proactive operation in a

hybrid approach may require some a priori knowledge of the networking environment

or additional mechanisms to adaptively control the mode of operation [89]. A general

comparison of the two protocols categories is presented in both [89] and [126].

2.5. Addressing in MANET
One critical aspect of Internet-based mobile ad hoc networks is the addressing. In

fact, the addressing approach used in wired networks, as well as its adaptation for

mobile IP [116], do not work properly. Approaches based on fixed addressing cannot

reflect the topological network for mobile networks. The approach used in mobile IP

networks is based on home use, and it is not suitable for ad hoc networks in which

there is no fixed infrastructure. Therefore, a new addressing approach for such

networks is required. Moreover, given that, in the foreseen topology of the addressing

approach, the interaction among different routing protocols could easily happen, a

common addressing approach is necessary. This issue is still a matter of ongoing

research. The IETF document describing Internet mobile ad hoc networks states that

[34]: The development of such an approach is underway, which permits routing

through a multi-technology fabric, permits multiple hosts per router and ensures

long-term interoperability through adherence to the IP addressing architecture.

Supporting these features appears only to require identifying host and router

interfaces with IP addresses, identifying a router with a separate Router ID, and

permitting routers to have multiple wired and wireless interfaces.

Geographical location of nodes, i.e., node coordinates in two- or three-dimensional

space, has been suggested, among other purposes, for simplifying the addressing issue

in combination with the Internet addressing scheme. The existing location-based

routing protocols propose to use location information for reducing the propagation of

control messages, thus reducing the intermediate system functions or for making

packet-forwarding decisions.



20

Geographical routing allows nodes in the network to be nearly stateless; the only

information that nodes in the network have to maintain is about their one-hop

neighbors.

There are also solutions that do not rely on Internet addresses. A solution in where

each node has a permanent, unique end system identifier and a temporary, location-

dependent address is proposed in [62]. The location-dependent addresses

management, which is based on the association of each end-system identifier to an

area of geographical coordinates that acts as a distributed location database. It allows

a node to obtain a probable location of any other node with a known end system

identifier [61,88].

The work proposed in the context of Internet mobile routing considers networks

traditionally classified as small networks. However, .even in networks of one hundred

nodes, scalability is an important performance. One approach for achieving scalability

in mobile ad hoc networks is clustering. With this approach, the network is partitioned

into subsets (clusters). Within a cluster, a traditional MANET algorithm is assumed,

and the communication between clusters is done by means of clusterheads and border

nodes. The clusterheads form a dominant set that works as backbone for the network.

In cluster-based algorithms, one of the main issues is the determination of the clusters

and, consequently, of the clusterheads in such a way that the reconfigurations of the

network topology are minimized. However, choosing clusterheads optimally is an

NP-hard problem [II]. Other strategies for dominating sets for ad hoc networks,

which are able to build better performing dominating sets than clustering, are

described in [144].

2.6. Multicasting in MANET
Multicast routing is a strategy that could allow optimization of resource usage; this is

seen to be as an important feature for energy and bandwidth constrained networks,

such as mobile ad hoc networks. Additionally, the underlying layer has a broadcast

nature that can be exploited by an integrated design, as done, for example, in [143].

Several multicast routing algorithms have been proposed and evaluated [86]..

Although there is the conviction that multicast mobile routing technology is a



21

relatively immature technology area and much of what is developed for unicast

mobile routing-if proven effective-can be extended to develop multicast mobile

routing variants [89], some work has assessed the definition of network protocols with

an integrated approach, thereby permitting improved energy efficiency [143].

However, shortest-path-based multicast algorithms require too much power

(quadratic network size), because they require that each node maintain a global view

of the network. Real power savings can be obtained only with localized algorithms in

which nodes only know their neighbors' information and make decisions based only

on that [131].

2.7. QoS in MANET
Mobile ad hoc networks do not provide QoS by design. Although there has been

controversial discussion about whether or not QoS mechanisms are needed in the

Internet, it is indisputable that some applications can be supported by wireless

networks only under QoS provisioning. Architecture for supporting QoS in mobile ad

hoc networks should have two primary attributes [35]:

• Flexibility. Necessary for the heterogeneity of the physical and MAC layers, as

well as multiple routing protocols.

• Efficiency. Necessary for the limited processing power and storage capabilities of

nodes, as well as the scarce bandwidth available.

In the literature, several approaches have been adopted for assessing the issue of QoS

in mobile ad hoc networks, such as the QoS routing protocol [29, 59, 119], and

signaling systems for resource reservation [85]. Although some work has been done

to date, more studies need to be conducted to further explore the problem of QoS

provisioning for mobile ad hoc networks.

2.8. Mutual Exclusion Protocols for Fixed Network
The [-Exclusion problem (k-mutual exclusion in some articles) is an extension of

mutual exclusion (where [ = I), a classic problem in concurrency control [39, 84].

This extension was first defined and solved by Fischer et al. [45, 46]. A solution is

required to withstand the slowdown or even the crash of processes (up to [-I of



22

them), and should not require the active collaboration of processes that are not

requesting a resource at that time.

Problem of mutual exclusion has been extensively studied in distributed systems [13].

Mutual exclusion solutions that have been proposed for fixed networks can be

classified in two types: centralized approach in which a node is designated as

coordinator to deliver permission to the other nodes to access their CS, and the

distributed approach in which the permission is obtained from consensus among all

network nodes. Due to the symmetry role of nodes and the characteristics of the

networks, the first approach is not suitable for mobile ad hoc networks.

The distributed mutual exclusion algorithms are mainly classified in two categories:

Permission based [2, IS, 17,24, 58, 92, 94, 102, 124, 132] and token based [9, 16,25,

32,36,98,99,100,104,104-107,120,122,127]. Permission based mutual exclusion

algorithms impose that a requesting node is required to receive permissions from

other nodes (a set of nodes or all other nodes). In the token based algorithms, a unique

token is shared among the set of nodes. The node holding the token is allowed to enter

its critical section. We now present a literature review of mutual exclusion protocols

for static networks, but we limit our discussion only within several distinguished ones.

In 1981, Ricart and Agrawala proposed a distributed algorithm [124] which needs

2x(N- I) messages for a node to enter the critical section. When a node wants to enter

the critical section, it broadcasts a request message to all other nodes. On receiving a

request message, a node sends back a reply message if it does not want to enter the

critical section; otherwise it may defer sending the reply message. Logical timestamps

[79] are attached to request messages for nodes to decide whether they should defer

replying or not. Only the node whose timestamp is earlier than that of the received

request message should defer replying. When a node receives reply messages from all

other N-I nodes, it may then enter the critical section. Although this algorithm is

deadlock-free and starvation-free, it is vulnerable to node and communication

failures and is expensive in communication cost because it requires a node to

communicate with all other nodes to enter the critical section.

'In 1986, Lamport [80] observed that a first-<:ome, first-served mutual exclusion

algorithm can be constructed by preceding a mutual exclusion mechanism with a



23

FIFO queue. The possibility of faults precludes the straightforward use of any such

first--<:ome,first-served mechanism-the first process to enter the mechanism may

fail, preventing progress by those following [40, 46]. To resolve this dilemma, the

notion of process enabling was introduced: a process is enabled to enter the critical

section if sufficiently many steps of that process carry it into the critical section,

independent of the actions of other processes. However, the first-in, first-enabled

condition was introduced as the natural fairness condition for [-Exclusion,

generalizing the first--<:ome,first-served condition for mutual exclusion.

Based on Ricart and Agarwala's algorithm, Raymond [121] proposed a distributed

algorithm which allows k nodes to access the critical section simultaneously. This

algorithm resembles Ricart and Agarwala's except that only N-k reply messages are

sufficient for a node to enter the critical section. So, the lower bound of the

communication cost for each entrance of the critical section is 2xN-k-l. However,

each request message will incur a reply message, and thus 2x(N-I) is the upperbound

of the communication cost. Raymond's algorithm also suffers the same drawbacks as

Ricart and Agrawala's.

There is a large class of algorithms using the token passing concept for the access

control of the critical section. The basic idea of this type of algorithms is simple - a

node must own the unique token (named privilege message in some papers) before

entering the critical section. So, in the best case, if a node has already owned the

token, it can enter the critical section immediately without any communication

overhead. Otherwise, a mechanism is needed to locate the token. In Suzuki and

Kasami's algorithm [132], a node sends out N-I request messages to all other nodes

and waits until the token is received. Raymond [120] utilized a spanning tree of the

network to locate the token and showed that the average communication cost is O(log

N). Singhal [129] tried to reduce the communication cost by using heuristics to locate

the token. The degree of fault-tolerance for token-based algorithms is low. If the

token is lost, complex token-loss detection and token regeneration algorithms must be

executed [103].

Based on Suzuki and Kasami's algorithm, Srimani et al. [130] proposed another

distributed algorithm which can allow k nodes to access the critical section



24

simultaneously. This algorithm uses k tokens and equates possession of any token

with the ability to access the CS. This algorithm requires a node seeking access to the

CS to send requests to n-I other nodes in order to gain access to the CS, if it does not

already hold a token. This flooding of requests makes it poorly suited to ad hoc low

energy demands. Thus, Srimani and Reddy's algorithm has shown low degree of

fault-tolerance like Suzuki and Kasami's algorithm. Another solution proposed by

Kakugawa et al. [73] is resilient to node failure and/or network partitioning, but, as

shown in [73], the degree of resilience (especially in terms of all entries to critical

sections being available) is unsatisfactory. Moreover, it incurs a large O(N) message

overhead.

, The algorithm of [93] uses a single token with a counter to keep track of how many

processes are currently in the CS. In [21, 22], Bulgannawar and Vaidya showed that

under high load this system behaves like a single token system. Also, it requires all

nodes to communicate in certain stages of the algorithm, making it too message

inefficient for wireless ad hoc environments. Note that the algorithm presented in [21,

22] uses kseparate tokens in the system. Requests for a token follow one of k

dynamic spanning trees. As requests traverse a tree from leaf to root, path

compression is used to keep the tree as shallow as possible. While nodes request

tokens by unique token identifiers, the algorithm allows the substitution of any token

to grant access to the CS. However, presence of a complex data struture makes this

algorithm not scalable. Like other token-baesd algorithms, this algorithm also suffers

from poor fault-resiliency as this does not consider loss of token.

There is another class of algorithms using an 'elegant concept - quorum - to achieve

mutually exclusive access of the critical section. They are usually called quorum-

based algorithms. Quorum-based algorithms are resilient to node failures and/or

network partitioning and usually have lower communication cost. The basic idea of

this type of algorithms is "to collect enough permissions (votes) to form a quorum to

enter the critical section".

Mutual exclusion is guaranteed if we can assure that only one quorum can be formed

at any instance. Garcia-Molina and Barbara have proposed "coterie" to generalize the

concept of quorums [51]. A coterie is a set of sets with the property that any two



25

members of a coterie have a non--empty intersection. By the intersection properly, the

members in a coterie can be used as quorums to guarantee mutual exclusion in

distributed systems.

The majority quorum algorithm [136], the .IN algorithm [92], the tree quorum

algorithm [2], and the hierarchical quorum algorithm [79], are all quorum-based

algorithms. The communication cost of the quorum-based algorithm is proportional

to the quorum size, so all of the quorum-based algorithms try to reduce the qu'orum

size while keeping the high degree offault-tolerance.

To form a quorum in the majority quorum algorithm requires permissions from over

half of the nodes. It is easy to show that any two quorums in the majority quorum

algorithm have a non empty intersection and the size of a quorum isIN 2+ 11. In the

.IN algorithm [92], Maekawa used the concept of finite projective plane to assure

the intersection property and the fully distributed property - every quorum is of the

same size and every node bears an equal amount of responsibility for mutual

exclusion control. As the title ofthe algorithm suggests, the quorum in .IN algorithm

is of size.JN .

Some algorithms [2, 79, 128] utilize logical structures to assist in forming quorums.

Assuming the system is logically organized into a binary tree, the tree-quorum

algorithm [2] can have the size flog N 1 in the best case for a quorum. The quorum

forming in this algorithm is recursive. It can be regarded as attempting to obtain

permissions from nodes along a root-ta-Ieaf path. If the root fails, then the obtaining

permissions should follow two paths: one root-ta-leaf path on the left subtree and one

root-ta-leaf path on the right subtree. The largest tree-quorum, which is of

sizeIN; 11, is the one comprising all leaf nodes. The hierarchical quorum algorithm

uses multilevel tree to aid the quorum forming. The concept is simple - a quorum of a

node at level i is formed only if enough (over half) quorums of its child nodes at level

i+l are formed. As shown in [79], the hierarchical quorums may have size NO,63. By

logically organizing nodes in different levels, the level quorum algorithm [128] tries



26

to form a quorum by obtaining permissions from all hodes of some level (say level i)

and one node of each level before level i. In an extreme case, all nodes in the first

level can form a level quorum whose size is a constant independent of N.

To suit to the access control of k (k > 0) entries to a critical section, at least two papers

[48, 60] discussed the extension from coteries into k~oteries, which allow up to k

quorums to be formed simultaneously. The k~oterie concept sustains the advantages

of the coterie concept - fault-tolerance and low message cost. But [48] gave a more

restrict definition of the k~oterie than [60] did. Adopting the definition of [48], Jiang

et al. [67], modified the majority quorum as shown in [73], and proposed a structure

Cohorts for the construction of Cohorts quorums - quorums in a k~oterie, where

permissions from IN + Il nodes form a quorum. Cohorts quorums have size O(N).
I k+l

However, abovementioned permission-based algorithms are poorly suited to the

energy poor wireless environments since they require communication between each

node in networks for each access to CS, and nodes have symmetric characteristics.

Whereas each of the distributed, token based algorithms assumes that the network is

reliable and fully connected, allowing any processor to directly communicate with any

other. These assumptions make them poorly suited to the ad hoc environment, where

links form and fail as a consequence of mobility. On the other hand, quorum-based

algorithms don't suit ad hoc environment as fixed logical structures are unrealistic in

MANET.

2.9. Static Mutual Exclusion Protocols Adapted for

MANET
We now recall some algorithms developed in the literature for fixed networks on

which recent mutual exclusion algorithms for mobile ad hoc networks are based.

In the token based approach, two methods are usually used circulating token and

requesting token. [n the requesting token method, a node requesting the CS has to

obtain the token. The basic problem is how to reach the token holder. In some

algorithms, the request is sent to all the nodes because the token holder is unknown

[123], in others a logical structure is defined to point the token holder, for example a



27

Direct Acyclic Graph [120]: The request is sent over the branch of the DAG which

leads to the node holding the token.

In the solution proposed by Le Lann [87], all nodes are logically organized in a

unidirectional ring and the token circulates following this ring. When the token is

received by a node, it enters its CS if it is requesting, and after executing its CS, it

sends the token to its successor in the ring.

Ricart et al. [123] proposed an algorithm which requires at most N messages to

achieve mutual exclusion. The requesting node sends the request message to all the

other N-I nodes and waits for responses. When the process holding the token has to

send the token, the next process is chosen in a circular manner if any; otherwise, it

keeps the token in an idle state. Based on the Ricart-Agrawala's algorithm, Suzuki et

al. [132] proposed an algorithm in which the queue of requesting nodes is

piggybacked within the token. This queue is updated by a local queue of each visited

node in an ascending node number in order to ensure the liveness property. Singhal

[129] has improved the performance of the algorithm proposed in [132]. This

algorithm requires at most N messages in heavy loads. Singhal used some heuristics to

guess what nodes of the system are probably holding or are likely to have the token

and sends a token request message only to those nodes rather than to all the nodes. To

achieve this, the knowledge of each node about the requesting nodes is passed through

the token.

Raymond [120] developed an algorithm, based on a logical tree on the network rooted

by the token holder node, which requires at most O(LogN) messages to enter the CS.

The tree is maintained by the logical pointers distributed over the nodes and directed

to the node holding the token. When a node wants to access its CS, it enqueues its

identity and sends a request message to the next node in the direction of the token

holder, this message is then routed successively to the token holder. The token is sent

back over the reverse path to the requesting node. The direction of the link of the

token sending nodes must be reversed to point always the token holder. Chang et al.

[27] developed an algorithm which improves Raymond's algorithm which tolerates

link and node failures by maintaining multiple paths to search the token. The

algorithm tries also to avoid cycles when the token returns to the requester along the



28

reversal links. Dhamdhere et al. [36] developed an algorithm which aims to resolve

the problem of still remaining cycle in the algorithm presented in [27], and it is k-

resilient, that is it tolerates k nodellink failures.

2.10. Mutual Exclusion Algorithms for MANET
We now present existing distributed mutual exclusion algorithms developed for

mobile ad hoc and cellular networks.

2.10.1. B. R. Badrinath, A. Acharya, and T. Imelinski Algorithm

Badrinath et al. [4] proposed two distributed mutual exclusion algorithms for cellular

networks. The first one is an adaptation for cellular networks of the algorithm

proposed by Lamport [83], the second one is for cellular networks of the algorithm

proposed by Le Lann [87].

The Lamport algorithm is adapted to mobile computing environment by shifting the

communication and computation requirement of the algorithm to the static part of the

network, i.e. mutual exclusion is achieved with better message complexity because

the base station acts as proxy for nodes attached to it. Each host is replaced by its base

station which maintains necessary data structures. The base stations exchange time-

stamped requests, reply and release between them and ensure mutual exclusion on

behalf the hosts. Each host is then limited to send its request to only its base station,

receive the grant from only its base station, and sends a release message to its base

station when it exits its critical section. If the host disconnects prior to receiving the

grant request, the base station releases the resource to another host attached to it. If

. the host disconnects after receiving the grant request but without sending release

resource, it must reconnect to send release resource.

The adaptation ofLe Lann's algorithm to a mobile environment is made by arranging

the base stations (instead of hosts) in a logical ring and each base holds a FIFO queue

which contains the requests of hosts attached to it. The token circulates on the logical

ring and when it is received by base station, it is sent to the requesting hosts but to one

at a time until the queue is empty (the queue maintained by the base station), and then

it is passed to its successor in the ring. To ensure that a host enters its CS at most once



29

during one tour (and finally to ensure fairness), a counter of rounds is included in the

token message.

2.10.2. J. E. Walter and S. Kini Algorithm

J. Walter et al. [142] proposed a token based mutual exclusion algorithm derived from

several.other algorithms: the tree based routing protocol of Gafni et al. [49], the

algorithm presented in [27] and others ideas from [36, 120]. This algorithm defines a

structure mapped on real topology of the network which is represented by a Direct

Acyclic Graph (DAG) of token-oriented pointers, maintaining multiple paths leading

to the node holding the token. The algorithm is well suited to the distributed mobile

setting because it requires nodes to keep information only about their immediate

neighbors. In the absence of node's movement, the algorithm acts as Raymond's

algorithm [120] to forward requests to the node holding the token and sends back the

token to the requesting node. Moreover, each node keeps an elevation representing the

height of a node. Links are directed from nodes with higher height towards nodes with

lower height. This elevation is used to update the DAG structure in case of link failure

in order to have always the token holder node as a root of this tree. This algorithm

assumes that failures occur only due to node movement. It is assumed that the token

cannot be lost and communication links are bidirectional. The nodes move with a

limited speed so it can not disconnect from the network during activation of the

algorithm and during the message transmission.

2.10.3. J. E. Walter, 1. L. Welch, and N. H. Vaidya Algorithm

J. Walter et al. [139] again proposed an alternative solution of the algorithm described

in [142], but uses the Raymond algorithm [120] as a basis. The same assumptions as

the previous algorithm are done. In addition to that, it is assumed that communication

channels are FIFO with no loss and no duplication of messages. The proposed

algorithm uses a structure mapped on physical topology of the network which is

represented by a direct acyclic graph (DAG) of token-oriented pointers, maintaining

multiple paths leading to the node holding the token. Nodes keep information only

about their immediate neighbors. Each node dynamically chooses its neighbor with

lowest elevation as its preferred next link to the token holder. When a link fails, the

concerned node reroutes its request to another path. All requests reaching the token



30

holder are treated symmetrically. However, requests are forwarded to the token holder

over the tree, as in [142]. The token is delivered over the reverse tree path to the

requesting node. The token holder will always be the lowest node in the DAG.

Sometimes, Iinks may fail and may be created.

The reader should note that the main difference between this algorithm and the

algorithm presented in [142] is that in this algorithm when the process requires to send

a token, it finds necessary the return path (because no partitioning of the network

occurs). So, the failure is treated by the requesting node (because each node is aware

of its neighboring nodes). This eliminates the overhead introduced by the search

process. It can be noted that the partial rearrangement of the DAG may be necessary

when the token circulates or when links may be created or failed. We note also that

this algorithm uses less message types than in [142].

The algorithm proposed by Baldoni et al. [8] is based on a dynamic logical ring and

combines the two methods token-asking and circulating token. The algorithm aims to

maintain device power consumption as low as possible by reducing the number of

hops traversed per CS execution and by avoiding sending any control message when

no process requests the CS. Mobility is addressed by exploiting the information of the

routing table in order to send each message to the closest node in terms of number of

hops. In this algorithm, authors assume that processes do not crash and the network is

reliable. The network is not subject to permanent partitions. If a partition occurs, each

pair of processes will be eventually able to communicate, and finally, each process

may query at each time the information provided by the routing protocol. And the

disconnected processes are considered to be at infinite distance, and they are treated

with waits and tries to transmit.

The algorithm continuously executes transitions alternately between two states: Idle

and Coordinator-ehange and is executed in rounds. For each round, that is

materialized by circulating a token over all nodes, one process is designated to be a

coordinator to which processes have to send requests. The round is completed when

all nodes of the network are visited. The round is aimed to inform each process of the

ring on the new coordinator and to allow the receiving and requesting one to enter the

CS.



31

2.10.4. N. Malpani, Y. Chen, N. H. Vaidya, and J. L. Welch Algorithm

N. Malpani et al. [90, 91] proposed a parametric algorithm with many variants. It uses

a logical dynamic/variable size ring (on which the token circulates continuously

through all the nodes of the network): the size of the ring may vary at every round (in

which all nodes must be visited). Main idea of the algorithm resides in some variants

that are distinguished by the policies applied to determine the next node to which the

token will be sent. They are divided into two classes, those using only local.

neighborhood information (local algorithms), and those that uses information about

all the network nodes (global algorithms). In order to protect.against the potential loss

of the token, the proposed algorithm uses TCP connection to deliver the token. For

mobility, with some variants, nodes use "hello" messages to discover if neighbors

remain connected to them. In each variant of the algorithm, the token carries with it

some "count" information for each node in the system. The recipient node, before.

sending the token, uses the carried information to choose the next node to which it has

to send the token (most of the variants chooses the next recipient, among those

allowed, with the smallest value) and to update its own count information

piggybacked by the token. The different methods are:

o Local-Frequency (LF) variant: The token is sent to the least frequently visited

neighbor of the token-holder node.

o Local-Recency (LR) variant: The least recently visited neighbor is chosen.

o Global variants (GR and GF): The token is sent to the node that has been visited

the least recently (in GR) or least frequently (in GF) among all the nodes of the

network.

o Global variants with Next (GRN and GFN): All intermediate nodes in the route

chosen for the destination are visited by the token.

2.10.5. Y. Chen and J. L. Welch Algorithm

Y. Chen et al. [28] proposed a self-stabilizing mutual exclusion algorithm for mobile

ad hoc networks. It is based on the LRV (least recently visited) algorithm presented in

[90, 91], which presents good results in simulation, and on the self-stabilizing

concept defined by Dijkstra [38] and on the idea of "counter flushing" of [137]. The

algorithm uses dynamic virtual rings to reflect the changing topology formed by



32

circulating tokens. It requires that the topology to be static while the algorithm IS

convergmg.

2.10.6. J. E. Walter, G. Cao, and M. Mohanty Algorithm

A token based k-mutual exclusion (I-Exclusion) algorithm has been presented in

[140, 141]. The algorithm induces a directed acyclic graph (DAG) on the network,

dynamically modifying the logical structure to adapt to the changing physical

topology in the ad hoc environment. The algorithm combines ideas from many papers.

The partial reversal technique from [49], used to maintain a destination oriented DAG

in a packet radio network when the destination is static, is used in this algorithm to

maintain a token oriented DAG with k dynamic destinations. Like the algorithms of

[27,36, 120], each processor in this algorithm maintains a request queue containing

the identifiers of neighboring processors from which it has received requests for the

token. Like [36], this algorithm totally orders nodes. Based on [21, 22], the algorithm

maintains k tokens in the system. When k = I, the lowest node is always the current

token holder, making it a "sink" toward which all requests are sent. When k> I, there

may be multiple sinks in the system. However, we show that all non token holding

processors will always have a path to some token holding processor.

2.11. Discussions
Due to the differences on the approaches adopted by the existing protocols for

MANET, and the lack of methodology in complexity analysis for some of them, it is

difficult to address a simple evaluation on these protocols. So, we limit our discussion

to give some remarks about the presented solutions.

In [142], the proposed algorithm considers that node mobility is slow which is not

realistic. On the other hand, it does not consider token loss and network partitioning

and merging. In [139], the proposed algorithm acts with the same assumptions as

[142] and also uses fewer messages which lead to a comprehensive execution. The

simulation shows that the performance of the algorithm is comparable with those of

Raymond's algorithm. The other algorithms [8, 90, 91] are not aware of the node

mobility because of the use of the routing layer and consider that the network is not

subject to partitions. Algorithms in [140, 141] require each node to spend a vast data



33

structures to operate. Moreover, operational complexities are also high in [140, 141].

The algorithm presented in [28] assumes a strongly connected network, but links may

change.

Moreover, some of the solutions presented above consider that the links are uniform

(bidirectional), but in reality the machines may be from different manufactures and

consequently they may have different communication ranges, so the communication

channels may be unidirectional. So, the solutions in [139, 142] do not work in this

case.

It is important to realize that all of the above algorithms are token-based, and token-

based algorithms have poor failure resiliency [2]. Loss of the token (which can be

because a node which has the token crashes and does not remember that it had the

token when it recovers) is serious. All token-based mutual exclusion algorithms have

these problems for the following reasons [129]:

• Declaration of the token loss requires special care because if the declaration is

false and an additional token is generated, then the condition of mutual exclusion

will be violated.

• When the token is declared to be lost, exactly one node should generate the token.

In MANET, monitoring and regeneration of token may incur further complications.

Therefore, these algorithms may induce catastrophic recitals as none of these do

consider loss of regeneration of messages or tokens, crash failure or sudden recovery

of nodes, and partition of networks [96, 97].

2.12. MANET Simulators
This section gives a brief overview of simulators used for MANET. Its aim is to

summarize the different implementation approaches of each simulator.

2.12.1. OPNET Modeler

OPNET Modeler [110] is a powerful network simulator developed by OPNET. It can

simulate all kinds of wired networks, and an 802.11 compliant MAC layer



34

implementation is also provided. Although OPNET is rather intended for companies

to diagnose or reorganize their network, it is possible to implement one's own

algorithm by reusing a lot of existing components ..Most part of the deployment is

made through a hierarchical graphic user interface. Basically, the deployment process

goes through the following phases. Implementation and simulation under OPNET

Modeler consists ofthefollowing steps:

Step-I. To create and configure the node models (i.e. types) and, on top of it, an

application process user requires to use in the simulations - for example a

wireless node, a workstation, a firewall, a router, a web server, etc. A

process model is described as a state machine. Each state can have some

code that is executed when it gets active ..A transition th,!t links two states is

followed whenever a certain condition carried by the transition is true.

Step-2. To build and to organize user's network by connecting the different entities.

Step-3. To select the statistics that user requires collecting during the simulations.

The difficulty with OPNET Modeler is to build the state machine for each level of the

protocol. It can be pretty difficult to abstract such a state machine starting from a

pseudo-coded algorithm. But anyway, state machines are the most practical input for

discrete simulators. In summary, it is possible to reuse a lot of existing components

(MAC layer, transceivers, links, etc.) improving the deployment process. But on the

other hand, any new feature must be described as a finite state machine which can be

difficult to debug, extend and validate.

2.12.2. NS-2

NS-2 [108] is a discrete event network simulator that has begun in 1989 as a variant

of the REAL network simulator [135]. Initially intended for wired networks, the

Monarch Group at CMU have extended NS-2 to support wireless networking such as

MANET and wireless LANs as well [133]. Most MANET routing protocols are

available for NS-2, as well as an 802.1 I MAC layer implementation [56]. NS-2's

code source is split between C++ for its core engine and OTcl, an object oriented

version of TCL for configuration and simulation scripts. The combination of the two

languages offers an interesting compromise between performance and ease of use.

Implementation and simulation under NS-2 consists of 4 steps:



35

Step-I. Implementing the protocol by adding a combination of c++ and OTcl code

to NS-2's source base;

Step-2. Describing the simulation in an OTcl script;

Step-3. Running the simulation;

Step-4. Analyzing the generated trace files.

Implementing a new protocol in NS-2 typically requires adding c++ code for the

protocol's functionality, as well as updating key NS-2 OTcl configuration files to

recognize the new protocol and its default parameters. The C++ code also describes

which parameters and methods are to be made available for OTcl scripting. The NS-2

architecture follows the OSI model closely. An agent in NS-2 terminology represents

an endpoint where network packets are constructed, processed or consumed.

Somc disadvantages of NS-2 stem from its open source nature. First, documentation

is often limited and out of date with the current release of the simulator. Fortunately

most problems may be solved by consulting the highly dynamic newsgroups and

browsing the source code. Then code consistency is lacking at times in the code base

and across releases. Finally, there is a lack of tools to describe simulation scenarios

and analyze or visualize simulation trace files. These tools are often written with

scripting languages. The lack of generalized analysis tools may lead to different

people measuring different values for the same metric names. The learning curve for

NS-2 is steep and debugging is difficult due to the dual C++/OTcl nature of the

simulator. A more troublesome limitation of NS-2 is its large memory footprint and

its lack of scalability as soon as simulations of a few hundred to a few thousand of

nodes are undertaken.

2.12.3. PARSEC

PARSEC [5, 101] (for PARallel Simulation Environment for Complex systems) is a

C-based discrete--event simulation language. It adopts the process interaction

approach to discrete--event simulation. An object (also referred to as a physical

process) or set of objects in the physical system is represented by a logical process.

Interactions among physical processes (events) are modeled by timestamped message

exchanges among the corresponding logical processes. One of the important



36

distinguishing features of PARSEC is its ability to execute a discrete-event

simulation model using several different asynchronous parallel simulation protocols

on a variety of parallel architectures. PARSEC is designed to cleanly separate the

description of a simulation model from the underlying simulation protocol, sequential

or parallel, used to execute it. Thus, with few modifications, a PARSEC program may

be executed using the traditional sequential (Global Event List) simulation protocol or

one of many parallel optimistic or conservative protocols. In addition, PARSEC

provides powerful message receiving constructs that result in shorter and more natural

simulation programs. Useful debugging facilities are available. The PARSEC

language is derived from Maisie [6], but with several improvements, both in the

syntax of the language and in its execution environment.

2.12.4. GloMoSim

GloMoSim [7, 145] is a scalable simulation environment for wireless and wired

networks systems developed initially at UCLA Computing Laboratory. It is designed

using the parallel discrete-event simulation capability provided by PARSEC [5,101].

GloMoSim currently supports protocols for purely wireless networks. It is build using

a layered approach. Standard APls are used between the different layers. This allows

the rapid integration of models developed at different layers by users: To specifY the

network characteristics, the user has to define specific scenarios in text configuration

files: app.conf and Config.in. The first contains the description of the traffic to

generate (application type, bit rate, etc.) and the second contains the description of the

remainder parameters. The statistics collected can be either textual or graphical. In

addition, GloMoSim provides various applications (CBR, fip, telnet), transport

protocols (TCP, UDP), routing protocols (AODV, flooding) and mobility schemes

(random waypoint, random drunken).

With GloMoSim, the difficulty is to describe a simple application that bypasses most

OSI layers. The bypass of the protocol stack is not obvious to achieve as most

applications usually lie on top of it. Compared to OPNET, for example, GloMoSim

architecture is much less flexible.



37

2.13. Chapter Summary
In this chapter we have briefly explored mobile ad hoc networks, MAC layer that can

be used for constructing a mobile ad hoc network, with an outline of routing,

addressing, multicasting and QoS in mobile ad hoc network. We have also presented a

literature review on solutions to distributed mutual exclusion problem for both static

and mobile ad hoc networks. This chapter has been concluded by a brief discussion on

MANET simulators.



CHAPTER 3

THE f-ExCLUSION ALGORITHM

3.1. Introduction
This chapter explores the system model, assumptions on system, mobile nodes and

networks, to design the proposed {-Exclusion Algorithm. We present a brief outline

of the proposed algorithm, followed by detailed description along with required data

structures. A state diagram of the proposed algorithm followed by operational

examples of the algorithm has also been demonstrated in this chapter. And the chapter

ends with proofs of correctness to establish the validity of the proposed algorithm.

3.2. System Model and Assumptions
We consider a distributed system composed by a set of n 2: 1 processes p; (where 1 :s i
:s n) running each on different mobile nodes m; (where 1 :s i :s n) that follows an

arbitrary mobility pattern, and exists in the network for a sufficiently long period. We

represent the system as a directed graph G, in which every vertex v; represents a

mobile node m; and there is a directed link from v; to Vj if and only if mobile node mj

is within transmission range of m;. Our {-Exclusion Algorithm borrows some ideas

for assumptions from [8, 28, 101, 129, 138-142]. Assumptions on system, mobile

nodes and networks are:

• G is a message-passing asynchronous system with an upper bound d on the point-

to-point message delay .

• Each node has unique integer identifier that is fixed throughout the node's lifetime.

Identifiers are used to identify participants during the {-Exclusion process. They

are also used to break ties among nodes which have the same requesting

timestamp.



39

• Each node stays in the network for a sufficiently long period, i.e. each node has a

minimum lifetime: Because, no distributed algorithm for mobile ad hoc networks

can succeed, if node failures occur very repeatedly .

• Each node is aware of the (possibly changing) set of neighbors with which it can

currently communicate directly by providing indications of link formation and

failures .

• Communication links are reliable and FIFO.

• Message propagation delay is finite but unpredictable .

• Message delivery is guaranteed only when the sender and the receiver remain

connected (not partitioned) for the entire duration of message transfer .

• Messages are received by an entity in their timestamp order. Messages of a single

type with the same timestamp from a common source are received in the order they

are sent; however no a priori ordering can be assumed for messages with the same

timestamp received from multiple sources .

• We assume that an underlying routing protocol exists to deliver messages between

two nodes via a separate secure channel, so that other nodes don't even detect a

packet transmission not intended for them. The reason is that transmissions and

receptions consume energy, and if it requires many transmissions and receptions, it

may not be practical for energy-limited networks .

• Nodes can crash/recover arbitrarily at any time. Moreover, nodes holding message

of other node or originator (node) of message may fail. Mobile nodes use timeout

(a designated time threshold, or an upper bound on message expiry) to detect

message losses. While a node holding request message of other node fails, after

timeout, originator (node) of message presumes that message expires and it re-

originates that message. And when originator (node) of message fails, instead

returning back to the originator, message expires after the designated time

threshold (timeout) .

• One or multiple concurrent changes (either a link failure or a link formation) may

occur at a time, i.e. we do not require the next change (after one link change) to

occur after the entire network has recovered from the previous change .

• After a single or multiple concurrent link changes, topology remains static for a

sufficiently long period. A substantial i-Exclusion algorithm requires this



40

assumption as no distributed algorithm for mobile ad hoc networks can succeed, if

topology changes very frequently .

• Any node not in es may have at most one outstanding request for es. We consider

that a requesting node waits until its last pending request succeeds or expires .

• Each node, executing es, eventually releases es. We also presume that no slow or

crashed node stays forever in es. We consider a node recovered from crash failure

resets, i.e. acrashed node never exists in es.
• Partitions of the network do not occur. We consider link failures as long as the link

failures do not partition the communication networks .

• Each node has a sufficiently large receive buffer to avoid buffer overflow at any

point in its lifetime .

• We impose neither restrictions on the speed and direction of node movements, nor

on the number of participating nodes.

3.3. The I-EXCLUSION (LE) Algorithm

We now present the brief outline of the proposed algorithm followed by a detailed

description of the pseudocode along with a state diagram of the proposed algorithm.

3.3.1. Brief Outline

The algorithm employs diffusing computations [37] to initialize a mechanism to

collect enough consensuses for a mobile node intending to enter es. We refer to this

computations-initiating node as the requesting node. Each requesting node requires

only one message (viz. Request) to enter es. The algorithm defines a mechanism for a

requesting node by circulating its Request message among other nodes of the

MANET. Final decision is based on the consensus of these nodes. Elaborately, the

algorithm considers two stages of Request message, I.e. Request message can be

originated from a requesting node, or Request message of one requesting node may

arrive to another mobile node. When a node requires entering es, it generates a

Request message and forwards to its nearest neighbor. On receipt of a Request

message, a node forwards the message to its least recently visited (LRV) neighbor.

This forwarding mechanism is repeated in a recursive fashion. However, Request is

eventually forwarded to its originator node. On receipt of own Request, the originator

node takes one ofthe following actions-



41

o To enter CS (if one or more entries is/are free), or

o To discard Request and originate Request again (if no entry to CS is

available and all nodes are visited by Request), or

o To forward Request to the unvisited alive nodes (if no entry to CS is

available and there are still unvisited nodes). Note that this forwarding

aid Request to collect more permission from unvisited nodes, as entry

to CS is not yet available.

However, complications arise when two or more requesting nodes originate their own

Requests concurrently to enter CS. Complications are extrapolated when the number

of Requests is larger than that of available { identical copies of resource. Moreover,

communication links may change due to unpredictable mobility pattern of nodes,

and/or nodes can crash or merge or recover from failure during the {-Exclusion

process. Therefore, we extend our {-Exclusion protocol to serve several simultaneous

Requests, to tolerate dynamic change of links, and to allow at most {-I nodes to fail

concurrently.

3.3.2. Data Structures

We now sketch the data structures required for mobile nodes and message employed

by our algorithm. Each node mi maintains the following data structures:

• LastRequestID: integer; indicates the identifier of the last request (for CS) sent by

the node.

• LastRequestTS: time; indicates the local timestamp of the last request (for CS) sent

by the node .

• RequestQueue: FIFO queue; holds the incoming messages.

• TS_oLRacer: array [L.n] of time; holds timestamp of request arrival from

JI_nodes. Detail of JI_node will be explored in the next section.

Each node mi sends the following message(s) to adjacent node(s):

o Request (ProcessID, RequestlD, RequestTS, Time, Visited, Next, {_Count): sent by

a node mi for requesting CS and forwarded by nodes m/s (i"# j) to their neighbor;

where,

• ProcessID: integer; indicates the identifier of the node requesting for CS.



42

• RequestlD: integer; indicates the identifier of the request message .

• RequestTS: time; indicates the local timestamp when the request message is

originated .

• RecipientlD: integer; indicates the identifier of the recipient node .

• Time: integer; indicates a counter incremented by mi on receipt of the request

message .

• Visited: array [L.n] of integer; Visited[i] is updated by node mi using Time

variable of the request message. Any node mk uses Visited[ ], hold by its

Request to select its least recently visited (LRV) neighbor, and to recognize

/1_nodes. Detail of /1_node will be explored in the next section .

• Next: array [L.n] of boolean; NextU] +- TRUE, set by mi, ifm/s are /1_nodes.

Any node mk uses Next[ ], hold by its Request to identify /1_nodes .

• 'CCount: integer; a counter incremented by each mi executing CS. Any node mk

uses this counter hold by its own Request to enter CS or not.

3.3.3. Pseudocode

This section presents the formal pseudocode for I-Exclusion algorithm (see Figure

3.1, and Figure 3.2) followed by detailed explanation. Throughout this section,

subscripts on data structures (to indicate a particular node) are only included when

needed. For example, we denote Request'nd" as a request message of any mobile node

mind" to enter CS; and Request'nd,,' as a request message (of any mobile node mind,,)

that has been already served in the earlier steps; and CCountind" as the counter

associated with Requestind".

We split the operation of this algorithm into two procedures. We present a brief

outline of those procedures in the following:

Forwarding Request for CS: When a node requires entering CS, it calls the procedure

in Fig. I. The node initializes data structures associated with Request (in line 1-11).

Then the node recognizes the possible candidates for /1_nodes. Here, we define

/1_node (for a particular ReqUestk) as the unvisited node mj that is directly reachable

from a node m, holding Requestk (where i of j), but is not selected as immediate



43

neighbor of m, to send/forward RequeS!k from m,. Now, Next[] is set to TRUE for ail

fl_nodes (in line 12), and sends Request to selected immediate neighbor (in line 14).

Procedure Request Jor _CS ( ):

1. Request.ProcessID +- Current.ProcessID;
2. Initialize Request.RequestID;
3. Current.LastRequestID +- Request.RequestID;
4. Current. TS_oLRacer[i] +- +00, where I :'Si:'S n;
5. Set Request.RequestTS;
6. Current.LastRequestTS +- Request.RequestTS;
7. Request. Time +- I;
8. Request. Visted[i] +- 0, where 1 :s i:'S n;
9. Request.Next[i] +- FALSE, where I :'Si:'S n;
10. Request. Visted[Current.ProcessID] +- Request. Time;
11. Request.l_Count +- 0;
12. Request.NextU] +- TRUE, where m/s are fl_nodes;
13. Select immediate neighbor mn;
14. Send Request to mn;

Figure 3.1. Pseudocode for requesting CS.

Handling Request: Nodes enqueue the received Request(s) in the RequestQueue, and

calls the procedure in Fig. 2. Several cases for handling Request(s) are in the

following:

Case I: When node m, receives a Requestk, where i if. k, i.e. m, isnot the originator of

RequeS!k. We consider two cases:

Case la: If the receiving node m, is in CS, or if it is a requesting node and timestamp

of its Request, is less than that of incoming Requestk, it increments l_Countk'

Therefore, originator of Requestk becomes ll_node of m, for Request,. We define

ll_node as a requesting node mj, if l_ Count} is incremented by a requesting node m" or

by a node m, executing CS, when Request} visits m,. (Note that the algorithm requires

ll_node for each Request to mark the other requesting nodes that are competing to

enter CS concurrently with the originator of the Request.) If receiving node is a

requesting node, and timestamp of its Request, and that of incoming Requestk are

equal, then it increments l_ Coun!k, if its identifier is smaller than that of incoming

Request originator.



44

Case Ib: If originator of Requestk is a ll_node of m, for Request,', and m, is not in CS,

f _Countk is decremented by one.

Procedure Handle_Request():

IS. if (Request.ProcessID #- Current.ProcessID) then
16. if «RequestYisted(Current.ProcessID] = 0) and

(InCS(Current.ProcessID) or CompareTimeStamp(Current, Request))) then
17. Request. f _Count ++;
18. Current. TS_oL Racer[Request.ProcessID] <- Request.RequestTS;
19. elseif «Request.RequestTS < Current.LastRequestTS) and

(Current. TS_oL Racer[Request.ProcessID]=Request.RequestTS») then
20. Request.f_Count-;
21. Current. TS_01_Racer[Request.ProcessID] <- +00;
22. endif;
23. Request.Next[Current.ProcessID] <- FALSE;
24. Request. Time ++;
25. Request. Visted(Current.ProcessID] <- Request. Time;
26. Select immediate LRV neighbor mn;
27. Request.NextU] <- TRUE, where m/s are Jl_nodes;
28. Forward Request to mn;
29. else
30. if «Current.LastRequestID = Request.RequestID) and

ValidTimeStamp(Request.RequestTS») then
31. if (Request.Next[ ] #- FALSE) then
32. if «Request.f_ Count + (n -Ivisited nodesl)) < f) then IILEConditionl
33. Enter CS; l'Entering CS'I
34. else
35. Select immediate LRV neighbor mn;
36. Forward Request to mn;
37. endif;
38. else
39. Current.LastRequestID <- NULL;
40. Current.LastRequestTS <- +00;
41. if (Request. f Count < f) then IILEConditionII
42. Enter CS; l'Entering CS'I
43. else IILEConditionIIl
44. Request Jor _CS (); I'Requesting for CS again'l
45. endif;
46. endif;
47. else
48. Do nothing; I'Discarding duplicate permissions'l
49. endif;
50. endif;

Figure 3.2. Pseudocode for handling incoming message.

,.



45

Next node m, increments Time variable, and updates Visited[i] (in line 23-,-25). It also

sets Next[i] to FALSE, if it were a fl_node. It selects immediate least recently visited

(LRV) neighbor mn, updates Next[ ] for its fl_nodes, and forwards Request to mn (in

line 26-28).

Case II: When a node m, receives its own Request" (Note that Request, must have a

valid timestamp, because if Request, holds a timestamp higher than a designated time

threshold (timeout), Request, expires, and m, discards Request,), node m, takes action

to enter CS only under two cases:

Case IIa: If Request, has unvisited nodes (i.e. fl_nodes), and (CCount, + number of

unvisited nodes) is less than l (i.e. LEConditionI holds in line 32). Otherwise, m,
forwards Request, to a least recently visited (LRV) neighbor again.

Case lIb: If Request, has no unvisited nodes (i.e. fl_nodes), and l_Count, is less than l

(i.e. LEConditionlI holds in line 41). Otherwise, m, discards Request" regenerates new

Request" and sends this Request, to its least recently visited (LRV) neighbors (i.e.

LEConditionIII holds in line 43).

3.3.4. State Diagram
We now present our protocol via a state diagram for any mobile node m,. Node m,
operates in one of eight states: WHITE, BLUE, YELLOW, RED, SKY, ORANGE,

GREEN, or PURPLE at any stage (see Figure 3.3). Similar to Section 3.3.3, we denote

Request'nd" as a request message of any mobile node m'nd,x to enter CS; and

Request'nd,; as a request message (of any mobile node m'nd,,) that has been already

served in the earlier steps; and l_ Count'nd,x as the counter associated with Request'nd,x'

Initially current state of node m, is in WHITE state, i.e. node m, is idle in WHITE state.
For simplicity, we divide the action of node m, into two cycles: one is cycle of

requesting for CS, and another is cycle of receiving request.



46

States:
• WHITE(W) ~ Node m; is idle

. • YELLOW(Y) ~ Node m; is a Requesting node
• GREEN(G) ~ Reques~.f_Count is incremented, where i oF j
• PURPLE(P) = Requestjof_Count is decremented, where i oF j, i is the requesting node
• ORANGE(O) ~ Node m; receives Request;
• RED(R) ~ Node m; is in CS
• SKY(S) =Node m; receives Requestj or, Request; for re-circulating, where i oF j
• BLUE(B) = Request}.f_Count is decremented, where i oF j

•

•
•

•

•

•

•

Inputs:
• J = Sending Request; to least recently visited (LRV) neighbor
• 2 = Received Reques~ is older than Request;, and forwarding Request} to least

recently visited (LRV) neighbor, where i oF j
3 = Received Request} is younger than Request;, where i oF j
4 = Forwarding Reques~ to least recently visited (LRV) neighbor, where i oF j
5 =Originator of Requestj is JI_node of node m, for Request;', and Requestj revisits
node m;, where i oF j
6 = Receiving Request; from neighbor
7 ~ (Request;.f_Count + n -Ivisited nodes I) < f
8 = (Request;.f_ Count + n -Ivisited nodes I)~ f
9 = Exiting CS
J 0 ~ Discarding Request; if Request; expires or, if no entries available

•

Figure 3.3. State Diagram for Mobile Node m;.

We first explore the node m/s cycle of requesting for CS. Our protocol allows only an

idle node to request for CS, i.e. node m; only in WHITE state can request for CS. To

initiate requesting for CS, node m; executes the following steps:

• Sends Request to its nearest neighbor, putting the other immediate neighbors as

fl_node(s),



47

• Switches to YELLOW state, and turns into a requesting node (as node m, has an

outstanding Request).

In YELLOW state, requesting node m, can receive Request(s) from its neighbor(s).

Originator of this Request(s) m'ay be either m" or any other node. Node m;'s receipt of

other nodes' Request can be classified into four categories:

Case I: Let node m, receives other node m/s unvisited Requeslj (i.e. Request never

visits node m, before). If Request} is older than node m;'s own Request (Request) holds

a timestamp earlier than that of node m;'s outstanding Request,), node m, forwards that

Request} to its least recently visited (LRV) neighbor, putting the immediate neighbors

that is/are not visited by Requeslj yet, as fl._node(s).

Case 2: Suppose node m, receives other node m/s visited Request} (i.e. Requeslj

revisits node m,). If originator of Request} is JI_node of node m, for Request,', node m,

carries out the following operations:

• Switches to P URP LE state,

• Decrements t_Counlj (hold by that Request}) by one, (As t_Count) was

incremented by node m" when m, was a requesting node and m} was a JI_node of

m;'s Request,'. In this state, m, is done with its CS, and it must allow other to enter

into CS by decrementing t_Count}, which was previously incremented by m,),

• Forwards that Request} to its least recently visited (LRV) neighbor, putting the

immediate neighbors that is/are not visited by Request} yet, as fl._node(s),

• Switches back to YELLOW state.

Case 3: When node m, receives other node's Request} younger than its own (i.e.

Request) holds a timestamp later than that of node m;'s outstanding Request,), node m,

executes the following steps:

• Switches to GREEN state,

• Increments t_Count} (hold by that Request}) by one,

• Forwards that Request} to its least recently visited (LRV) neighbor, putting the

immediate neighbors that is/are not visited by Request} yet, as fl._node(s),

• Switches back to YELLOW state.

n



48

Case 4: When node m, receives its own outstanding Request" node m, switches to

ORANGE state. Now if Request, has a invalid timestamp, i.e. if Request, holds a

timestamp higher than a designated time threshold (timeout), Request, expires by the

code; Therefore m, discards Request" switches back to WHITE state and becomes

idle. Other actions of node m" in ORANGE state, can be divided into three cases:

Case 4a: When entry to CS is available, i.e. LEConditionl holds as sum of t_Count
(hold by Request,) and total unvisited nodes (hold by visited[ ] of Request,) is less than

t, or LEConditionII holds as there are no unvisited nodes (Request, visits the entire

network), and t_Count (hold by Request,) is less than t, node m, switches to RED state

(i.e. enters CS). On exiting CS, node m, (in RED state) switches back to WHITE state,

and becomes idle.

Case 4b: When Request, visits the entire network (all node), but entry to CS is

unavailable, node m, discards its Request" switches back to WHITE state, and turns

into idle.

Case 4c: When entry to CS is unavailable, and Request, visits a subset of the entire

network (i.e. some nodes are not visited), node m, switches to SKY state. We explicate

the operations of m, node a bit later.

In WHITE state, when node m, receives other nodes' Reques'J, it switches to SKY

state, and starts the receiving request cycle. Note that node m, is not a requesting node

at this cycle.

To explore the operations node m, takes in SKY state, we consider some cases:

Case I: When node m, receives a visited Request} older than its own last Request;',

such that, most recent visit of received Request to node m, took place, when node m,

was requesting node, and timestamp of Request} is older than that of its own last

Request;', i.e. originator of Request} is Jl_node of m, for Request;', node m, performs

the following actions:

• Switches to BLUE state,



49

• Decrements [_Count} (hold by received Requeslj) by one, (As [_Count} was

incremented by node m;, when mi was a requesting node and m} was a ll_node of

m;' s Request; '),

• Forwards that Requeslj to its least recently visited (LRV) neighbor, putting the

immediate neighbors that is/are not visited by Request} yet, as Il_node(s),

• Switches back to WHITE state.

Case 2: When node mi receives a visited Request} younger than its own last Request;,

or receives an unvisited Requeslj (Requeslj never visits node m; before), node m; takes

the following steps:

• Forwards that Request to its least recently visited (LRV) neighbor, putting the

immediate neighbors that is/are not visited by Request} yet, as Il_node(s),

• Switches back to WHITE state to become idle.

3.3.5. Operations

This section illustrates a sample execution of the algorithm. For simplicity, we

describe the protocol in a somewhat synchronous manner, even though all the

activities are in asynchronous manner. Moreover, we assume that the [-Exclusion

problem involves six mobile nodes A, E, C, D, E, which want to coordinate

themselves to access and to control intermittently two' single, non-sharable, and

reusable designated piece of code called critical section CS (Le. [ = 2). Throughout

this section, subscripts on data structures to indicate a particular node are only

included when needed. For example, we denote RequestA as a request message of any

mobile node index to enter CS; RequestA' as a request message (of any mobile node

A) that has been served in finite number of steps; [_ CountA as the counter associated

with RequestA; VisitedA as Visited[ ] associated with RequestA; and NextA as Next[ ]

associated with RequestA;

Let consider an illustration of the algorithm on a dynamic network (in which node

moves, but links do not change) in Figure 3.4. Snapshots of the system configuration

during algorithm execution are shown, with time increasing from Figure 3.4(a) to

Figure 3.4(1). In this figure and for the other following figures in this section, each

dashed line indicates the direct physical communication link connecting two



50

circulating nodes, each thin line represents the direct physical communication link

over which messages flow for once, each thin line (thin communication link) becomes

thicker when more messages flow over that link. Solid and dashed arrows indicate

Request, the number adjacent to Request represents 'CCount. A requesting node

(originator of Request) is represented by an intensely shaded node, while a slightly

shaded node stands for a node executing CS.

y.@ ,::.:.::.~
@ ..,./ ([)\,@

..\(gJ ,

(a)

(d)

(g)

[Q]
.~@@ ~iii' ~

..\ @
•••..••~ .........•....

I.!iJ
(b)

(e)

(h)

(k)

(c)

(f)

(i)

(I)

Figure 3.4. Operation of the [-Exclusion algorithm on dynamic network (where node

moves, but links do not change).



51

In Figure 3.4(a), node A intends to enter CS, and sends RequestA to its nearest

neighbor B. Note that A is now requesting node, and -CCounlA = O. In part (b), node D

moves, node B, on receipt of RequestA, forwards RequeslA to its neighbor C, as node C

is the B's one of two neighbors that is least recently visited (LRV) by RequestA' Now

node E moves, and node C, receiving RequestA, sets node D as fl_ node for RequestA,

and forwards RequestA to node F, as shown in part (c). Part (d) depicts the system

configuration where node F, afterreceiving RequestA, forwards it to node C, and node

E, to enter CS, sends RequestE to its nearest neighbor A. Note that both A and E are

now requesting node, and [_CountA = [_CountE = O.

In part (e), node F moves, node C forwards RequestA to node D, and node A forwards

RequestE to node B accordingly. Observe that node D is no longer fl_node for

RequestA, and [_CountE = 1, as node E is now A_node of node A for RequestA'

RequestE, after arriving node B, visits node C and F, and reaches node C, while

RequestA, after reaching node E, visits node E, and returns back to the originator node

A, as depicted in part (f)-(h). At this point in the execution, node C and D are in their

new positions, and node A, on receipt of RequestA, enters CS, as LEConditionlI holds.

However, node F and B moves from their positions, and RequestE, after visiting node

C and D, returns back to the originator node E, as in part (i)-o). Part (k)-(I) shows

that node A releases CS, and node Centers CS, as LEConditionI holds. At this time,

there are no pending Requests, no requesting nodes.

In Figure 3.5, we now explore the execution of the [-Exclusion algorithm on a

dynamic network (in which nodes moves, and links change). Figure 3.5(a) depicts the

same snapshot of the system execution as shown in Figure 3.4(a), with time

increasing for Figure 3.5 (a) to Figure 3.5(1). Figure 3.5(b)-(c) depicts system

configuration where node E, after dropping its link with node A, moves to a new

position, resulting in a link formation between node E and F. Meanwhile, RequestA

visits node Band C, and is forwarded to node F. Note that node D is now a fl_ node

for RequestA' In part (d), node C intends to enter CS, and forwards Requestc to node

B. Now node A and C both are requesting node. A link is formed between node Band

D, -due to movement of node D, following a link removal between node C and F, as

shown in Figure 3.5(e)-(f). By this time, Requeslc visits node A, and is forwarded to

I i I



52

node D, while RequestA is forwarded to the originator node A by node D. At this

moment, -f.Countc = I, as node C is a Jl node of node A for RequestA' Figure 3.5(g)- -
demonstrate a system configuration in which node A enters CS, as LEConditionll

holds, and node F disappears, due to its crash-failure, followed by a link formation

between node E and C, due to movement of node E. Requestc is now forwarded to

node E by node D. Node B moves resulting in two link removalsbetween node Band

D, and between node Band C, while node C receives its own Requestc, as can be seen

in part (h). As LEConditionl or LEConditionll or LEConditionIIl does not hold, Node

C forwards Requestc to its least recently visited (LRV) neighbor node E once again.

Figure 3.5(i)-(k) demonstrate the movement of node A, resulting in a link formation

between node A and C. This link formation is followed by the recovery of node F

from failure, with two link formations between node F and D, and between node F

and D accordingly. In the mean time, link between node D and E breaks, and

Requestc return to its originator node C. Part (I) shows node C in CS, node E in a

changed position.

3.3.6. Correctness

To establish the correctness of the -f.-Exclusion algorithm, we now demonstrate that

the algorithm guarantees the -f.-Exclusion, -f.-Lockout Avoidance and First-Come-

First-Guaranteed properties defined in Section 1.2.

For this section, we presume that the -f.-Exclusion problem involves several mobile

nodes to control access to -f. identical copies of an indivisible, non-sharable,

designated piece of code called critical section (CS), and in the combination of our-f.-

Exclusion algorithm and any collection of mobile nodes, there is no reachable system

state in which more than -f.mobile nodes are in CS. We also recall the assumptions

mentioned in Section 3.2. In addition, we assume that no Request expires, i.e.

Request never holds a timestamp higher than a designated time threshold (timeout),

and originator of Request never fails. We view a node failure as the failure of links

between the nodes and each of its neighbors, and similarly, a node recovery is

viewed as the recovery of links between the recovering nodes and its neighbors, i.e.

we assume failure or recovery of nodes as link change(s).We don't consider the

failures of node holding message of other, or originator (node) of message.



y.@ :.:.::.~
@.... .../ 0
\ @\@ .

(a)

(d)

(b)

(e)

53

(c)

(f)

(g) (h)

~~~ ..........0
(k)

(i)

(I)

.f
.••.(/)

Figure 3.5. Operation of the l-Exclusion algorithm on dynamic network (where node

moves, and links change).

Throughout this section, subscripts on data structures to indicate a particular node are

only included when needed. For example, we denote m;nda as a mobile node;

Reques/;ndox as a request message of any mobile node m;nd", to enter CS; Reques/;nd",'

as a request message (of any mobile node m;nd,x) that has been served in finite

number of steps; l_ Coun/;ndox as the counter associated with Reques/;nd"'; Visi/ed;ndox

54

as Visited(] associated with Request'nd",; and Next'ndex as Next[] associated with

Requestindex;

Lemma 3.1. Each and every Request eventually returns back to its originator node.

Proof. We show by the way of contradiction that each and every Request visits the

active nodes (i.e. alive nodes) until LEConditionl or LEConditionIl or LEConditionIll

holds, and eventually returns back to its originator node. We now consider some

cases:

Case 1 (Nodes move, but no link changes): Let n nodes are active. Assume that

Request, arrives node nlk in some reachable system state, where i'* k, and mk forwards

Request, to its least recently visited (LRV) neighbor, say mg, putting the immediate

neighbors that is/are not visited by Request, yet, as fl_node(s). By the code, mg may be

a visited node, or an unvisited node, or a fl_ node for Request" and nlg does the same

as nlk did. However, as each fl_ node or unvisited node is in the neighborhood of other

visited node(s) or unvisited node(s) or fl_node(s), each one eventually becomes the

least recently visited (LRV) neighbor of other nodes. Now by contradiction, assume

that Request, may visit the originator nI, before LEConditionI or LEConditionII or

LEConditionIll holds, but Request, does never eventually returns back to its originator

node nI,. We now consider two cases:

Case 1a: Consider an execution that leads to a system state where Request, arrives m,
after visiting n-l nodes except the originator nI,. By the code, nI, forwards Request, to

its least recently visited (LRV) neighbor. As m, is in the neighborhood of one or more

visited nodes, m, eventually becomes the least recently visited neighbor of any other

visited node, and Request, reaches nI" a contradiction.

Case 1b: Consider an execution that leads to a system state where Request, arrives nI"

after visiting n active nodes including its originator m,. By the code, m, forwards

Request, to its least recently visited (LRV) neighbor. As nI, is in the neighborhood of

one or more visited nodes, nI, eventually becomes the least recently visited neighbor

of any other visited node, and Request, reaches nI" a contradiction.

55

Case 2 (Nodes move and links change): Assume that n nodes are active. Assume that

Request; arrives node mk in some reachable system state, where i* k, and mk forwards
Request; to its least recently visited (LRV) neighbor (chosen dynamically), say mg,

putting the immediate neighbors that is/are not visited by Request; yet, as fl_node(s).

By the code, mg may be a visited node, or an unvisited node, or a fl_node for Request;,

and mg does the same as mk did. However, as each fl_ node or unvisited node remains

static in the neighborhood of other visited node(s) or unvisited node(s) or fl_node(s)

for a sufficiently long time, each one eventually becomes the least recently visited

(LRV) neighbor of other nodes, and is visited by Request;. In case of failure, any

fl node or unvisited node becomes inactive (i.e. not alive). On recovery from failure,

any unvisited node eventually becomes active, and eventually becomes fl_ node and/or

the least recently visited neighbor of other visited node, as each recovered node

remains static in the neighborhood of other active visited node(s) or unvisited node(s)

or fl_ node(s) for a sufficiently long time. Now by contradiction, assume that Request;

may visit the originator m; before LEConditionI or LEConditionII or LEConditionIII

holds, but Request; does never eventually returns back to its originator node m;. We

now consider two cases:

Case 2a: Consider an execution that leads to a system state where Request; arrives m,

after visiting n-l nodes except the originator m;. Rest of this case is similar to Case

lao

Case 2b: Consider an execution that leads to a system state where Request; arrives m"

after visiting n active nodes including its originator m;. Rest of this case is similar to

Case lao 0

Lemma 3.2. The' f-Exclusion algorithm allows f-l mobile nodes to fail or crash.

Proof. We show by the way of contradiction that the f-Exclusion algorithm allows at

least one requesting node to enter CS, when f-I mobile nodes are inactive (i.e. failed,

or crashed). By contradiction, assume that the f-Exclusion algorithm allows one

requesting node m; to enter CS in some reachable system state, when f mobile nodes

are inactive. Consider an execution that leads to this system state. Let m; sends

- - ~,

56

Request, to its nearest neighbor, putting the other immediate neighbors as lJ_node(s),

and switch from WHITE to YELLOW state. Imagine that Request, visits all active

nodes, and eventually returns back to m" by Lemma 3.1. However, by the code,

LEConditionl or LEConditionll don't hold for m,. Therefore, m} discards Request},

switches to WHITE state and becomes idle, a contradiction. 0

Lemma 3.3. The l-Exclusion algorithm satisfies the l-Exclusion property forl = 1.

Proof. By Lemma 3.2, the l-Exclusion algorithm allows no node to fail or crash when

l = 1. Hence, we only consider the case where nodes move, but no link changes. By

contradiction, assume that mobile nodes m, and mi' i *j, are simultaneously in CS in

some reachable system state. Consider an execution that leads to this system state. Let

both m, and m} send Request, and Request} accordingly to their nearest neighbors,

putting the other immediate neighbors as lJ_node(s), and switch from WHITE to

YELLOW state before entering CS. By the code, both Request, and Request} require to

visit the entire network. We now consider four cases:

Case A: Let assume that Request, has earlier timestamp than Requeslj. So, on receipt

of Request" m} forwards Request, to m/s least recently visited (LRV) neighbor,

putting the immediate neighbors that is/are not visited by Request, yet, as lJ_node(s)

for Request" and hangs on YELLOW state. On the other hand, on receipt of RequeSIj;

m, switches to GREEN state, increments l_ Count} (hold by that Request}) by one, and

forwards Request} to m;'s least recently visited (LRV) neighbor, putting the immediate

neighbors that is/are not visited by Request} yet, as lJ_node(s) for Requestjo and

switches back to YELLOW state. By Lemma 3.1, Request, and Request} both

eventually return back to m, and m} accordingly, and m, and m} both switch to

ORANGE state. On receipt of Request" mi switches to RED state as LEConditionll

holds, and enters CS. Similarly, on receiving Request}, m} intends to switch to RED

state. However, by the code, it is impossible as LEConditionll holds only for mi.

Therefore, m} discards Request}, switches to WHITE state and becomes idle, a

contradiction.

57

Case B: Let assume that Request} has earlier timestamp than Request,. Rest of this

case is similar to Case A.

Case C: Let Request, has same timestamp than Request}> such that i>), i.e. identifier

of node m, is larger than that of mi. So, on receipt of Request" m} forwards Request, to

m/s least recently visited (LRV) neighbor, putting the immediate neighbors that is/are

not visited by Request, yet, as f.J node(s) for Request" and hangs on YELLOW state.

On the other hand, on receipt of Request}> m, switches to GREEN state, increments

-{_Count} (hold by that Request}) by one, and forwards Request} to m;'s least recently

visited (LRV) neighbor, putting the immediate neighbors that is/are not visited by

Request} yet, as f.J_node(s) for Request}, and switches back to YELLOW state. By

Lemma 3.1, Request, and Requeslj both eventually return back to m, and m}

accordingly, and m, and m} both switch tb ORANGE state. On receipt of Request" m,

switches to RED state as LEConditionll holds, and enters CS. Similarly, on receiving

Request}, n'J intends to switch to RED state. However, by the code, it is impossible as

LEConditionll holds only for m,. Therefore, m} discards Requeslj, switches to W.HITE
state and becomes idle, a contradiction.

Case D: Let Request} has same timestamp than Request" such that) > i, i.e. identifier

of node n'J is larger than that of m,. Rest of this case is similar to Case C. 0

Theorem 3.1. The -{-Exclusion algorithm satisfies the -{-Exclusion properly.

Proof. We show by induction on -{ that no more than -{ mobile nodes are

simultaneously in their CS.

Basis: Letf=J, the statement holds by Lemma 3.2.

Induction: By inductive hypothesis, assume that the statement holds for l-I mobile

nodes in a system having -{ identical copies of CS, i.e. system reaches a system state

where (-{+I) mobile nodes intending to enter CS, send their Request to their nearest

neighbors, and switches to YELLOW state; in next system state, -{-J mobile nodes, ml,

m2, ... , m" ... , m{ are now simultaneously in their CS, i.e. l- J nodes simultaneously

hang on RED state. Now other two requesting nodes m, and m} hang on YELLOW

58

state. By Lemma 3.3, one of m, and mj switches to RED state, and enters CS. And the

other one discards its Request, switches to WHITE state and becomes idle. 0

Theorem 3.2. The [-Exclusion algorithm satisfies the [-Lockout Avoidance properly.

Proof. We show by the way of contradiction that no requesting node waits forever to

enter CS, i.e. each and every requesting node eventually succeeds to enter CS.

Imagine a system that consists of n mobile nodes, and a system state where ([+1)

nodes intend to enter CS (where £ < n), switch to YELLOW state, and send Request"

Request2, ... , Request" ... , Requestt, Requestt+, to their nearest neighbors accordingly.

Suppose that Request" has the youngest timestamp among these (£+1) Requests. Now

by contradiction, assume that originator of Requesth never succeeds, i.e. mh waits

forever to enter CS. However, by Lemma 3.1, Request" Request2, ... , Request" ,

Requeste, Requestt+, eventually return back to their originator node m" m2, ... , m" ,

m{, me+, accordingly, and m" m2, ... , m" ... , me, and me+, switch to ORANGE state.
We now consider two cases:

Case A (Nodes move, but no link changes): By Theorem 3.1, [mobile nodes switch to

RED state, and enter CS, as LECondition1 or LEConditionII holds for those [nodes.

However, on receipt of Requesth, mh discards Requesth, and switches back to WHITE

state. As LEConditionIlI holds for m,,, m" regenerates Requesth, switches to YELLOW

state, and sends Request" to m,,'s nearest neighbor. Under our assumptions, those £

mobile nodes release CS in the mean time, .and switch back to WHITE state. By

Lemma 3.1, Request" eventually returns back to their originator node mh, and switches

to ORANGE state. This time, on receiving Requesth, m,,, as LEConditionl or

LEConditionII holds, switches to RED state, and enters CS, a contradiction.

Case B (Nodes move and links change): By Lemma 3.2 and Theorem 3.1, each of

Request" Request2, ... , Request" ... , Request{, Requestt+, visits at least (n-l+1)

mobile nodes, switches to RED state, and at least one of those nodes enters CS, as

LEConditionI or LEConditionIl holds for the node(s). However, on receipt of

Request}" mh discards Request}" and switches back to WHITE state. As LEConditionIlI

holds formh, mh regenerates Requesth, switches to YELLOW state, and sends Requesth

to mh's nearest neighbors. Under our assumptions, node(s) in CS release(s) CS in the

(

59

mean time, and switch back to WHITE state. By Lemma 3.1, Request" eventually

returns back to their originator node m", and switches to ORANGE state. This time, on

receipt of Request!" LEConditionI or LEConditionII holds for m" by Lemma 3.2.

Therefore, m" switches to RED state, and enters CS, a contradiction. 0

Theorem 3.3. The [-Exclusion algorithm ensures the First-Come-First-Guaranteed

property.

Proof. We show by the way of contradiction that no node requesting later than node

mi can enter CS before mi, when only one entry is available. By Lemma 3.2, the [-

Exclusion algorithm allows no node to fail or crash when [= 1. Hence, we only

consider the case where nodes move, but no link changes. Let assume a system where

one entry to CS is available. Consider a system state where each of mobile nodes m,
and mj switches to YELLOW state, and send Request, and Requestj accordingly to their

nearest neighbors, such that Request, has an earlier timestamp than that of Requestj.

By contradiction, presume that in some reachable system state Requeslj succeeds to

enter CS before Request, does. Consider an execution that leads to this system state.

By Lemma 3.1, Request, and Requeslj eventually return back to their originator node

m, and mj accordingly, and both switch to ORANGE state. On receipt of Request"

LEConditionI or LEConditionII holds for m, by the code. Therefore, m" switches to
RED state, and enters CS. However, on receipt of Requestj, LEConditionI or

LEConditionII doesn't hold for mj by the code, and m" discards Requeslj, and switches

back to WHITE state, a contradiction. 0

3.4. Chapter Summary
In this chapter, we have sketched the system model, assumptions on system, mobile

nodes and networks, to design the proposed [-Exclusion Algorithm. We have also

presented a brief outline followed by detailed description along with required data

structures, a state diagram of the proposed algorithm, and operational examples of the

algorithm in this chapter. The chapter has been ended with proofs of correctness to

establish the proposed algorithm.

CHAPTER 4

SIMULATION AND PERFORMANCE EVALUATION

4.1. Introduction
In this chapter, we study the performance of the proposed algorithm in a mobile ad

hoc setting by a simulation technique since the operations of mutual exclusion

algorithms are very complex and quite difficult to analyze mathematically [55].

Through our. simulation, we consider several performance metrics that can

significantly impact the behavior of such an algorithm in different ad hoc settings. We

also compared the performance of the proposed algorithm to the k-Reverse Link

(KRL) algorithm presented in [140,141].

4.2. Simulation Setting
We simulate our algorithm using PARSEC [5,101], a parallel C-based discrete--event

simulation language, developed in UCLA Parallel Computing Library. The main

objective of our simulations is to gain a better understanding of how to learn in detail

how various simulation parameters impact the performance of the .f.-Exclusion

algorithm, and also to observe different performance metrics when mobile node

crashes or merges.

4.2.1. Performance Metrics
The performance metrics that we consider in our simulations are the Message

Overhead (M), Average Waiting Time per CS Entry (W), and Success Rate (S).

Message Overhead (M) is the average communication Complexity (per request) to

enter CS, i.e. the average number of messages transmitted or forwarded against a

single request of a node that intends to enter CS. Suppose Request messages of r

61

originator nodes traverse XI, X2,X), ... X, number of nodes accordingly. So, Message

, (x -I)
Overhead, M = I p •

p=1 r

Average Waiting Time per CS Entry (W) is defined as the average fraction of time

units that a node spends in waiting for CS after its request. Let r number of nodes

forwards Requests for CS, and q number of nodes succeeds to enter CS after delay of

tl, t2, t), ... tq time units accordingly, where q :s r. Requests of the rest of the nodes,

i.e. Requests of (r - q) expires after timeout. So, Average Waiting Time per CS Entry,

Iqt"W- -- .
p=l r

We define Success Rate (S) as the percentage of the successful requests, i.e. the

percentage of the requesting nodes succeeding to enter CS. Imagine that r number of

nodes forwards Requests for CS, and q number of nodes succeeds to enter CS, where

q:S r. So, Success Rate, S = 'Lx 100%.
r

4.2.2. Simulation Environment and Parameters
The simulation environment is composed by 30 mobile nodes randomly spread over

an obstacle-free terrain of IOOOx1000 meters. The transmission radius of each node is

250 meters. The dimension of the mobility area and the transmission radius of each

node have been chosen after several trials as a tradeoff between node mobility and

Message Overhead to enter CS. A 30 node system has been chosen, in part, because

for networks larger than 30 nodes the time needed for simulation was very high. Also,

ad hoc networks are generally envisioned to be much smaller scale than wired

networks like the Internet. Typical numbers of nodes used for simulations of ad hoc

networks range from 10 to 50 [10,19,26,69,76,77,125].

In our simulation, each run of the simulation has been triggered for 5000 time units,

and each request message has expired after its traversal for 600 time units. Each CS

execution has taken one time unit, and each message transmission time was one time

unit. Requests for the CS have been modeled as a Poisson process with arrival

62

rate A"q' which represents the number of requests (per second) generated by a single

node. Thus the time delay between when a node left the CS, and another node made

its next request to enter the CS is an exponential random variable with

mean 1~ time units.
/ il,cq

Mobility of node is modeled with a random-waypoint behavior [70], i.e. a node

moves towards a randomly selected point inside the area and then pauses for a

selected amount of time (pause time) before moving again. Nodes move at various

speed inside the 1OOOx1000 meters area. Each link change associated with each node

movement has been considered as the deletion of a link chosen at random (whose loss

did not disconnect the graph) and the formation of a link chosen at random. The

simulation has been carried out under three different mobility settings, chosen by

adjusting the pause time so that the percentage of the total simulation time the node

does move and link does change (calculated considering the average time required for

a movement) is 100% (high mobility), 10% (low mobility), and 0% (zero mobility)

respectively. Rationally, our choice for the value of the low mobility parameter

corresponds to the situation where nodes remain stationery for up to a few of ten

seconds after moving and prior to making another movement, whereas our choice for

the value of high mobility parameter represents the most volatile network, where

nodes never remain static between moves. During periods of mobility, node is

allowed to move into a new point inside the IOOOx1000 meters area, only when this

new point is in the transmission radius of any other node, and thus nodes are never

allowed to disconnect the entire network due to mobility. Node failures and node

recoveries from failures modeled as a Poisson process with crash-merge

rateA"u.'h_m"K" which represents the number of nodes (per second) failed or recovered

from failures. Thus the time delay between each node failure and/or node recovery

from failure is an exponential random variable with mean I~ . time units.
/ A.craJh_mcrge

Each link change associated with each node failure has been considered as the

deletion of the link of failed node with other node(s), and merge as the formation of a

link between merged node and other node(s) chosen at random.

63

In each run of the simulations, we have considered the number of available copies of

identical resources (t) to be lesser than the number of mobile nodes (n) to demonstrate

mutual exclusive access of nodes to CS, as system never requires mutual exclusion if

it has at least one resource for each node (i.e. l2: n). We denote x% available copies

of identical resources as l=nxoo' i.e. at most .nxoo nodes can concurrently execute

their CS, when x% resources are available. For example, if a homogeneous system

consists of 50 nodes with 30% available identical resources, at most 15 nodes can

enter CS simultaneously.

In our simulations, collected performance measures (viz. Message Overhead, Average

Waiting Time per CS Entry, and Success Rate) are probabilistic in nature. To increase

the accuracy of results, we have taken each of the plotted point of the graphs from the

average of five to ten repetitions of the simulation.

Our l-Exclusion (LE) simulation starts with initializing a connected graph whose

vertices indicate mobile nodes, and edges represent initial communication links

among nodes. Based on the transmission range of nodes, initial links among nodes

have been chosen randomly, such that no node has been initialized at a position

outside the IOOOxlOOOmeters area, or out of transmission radius of all other nodes.

4.3. Sensitivity Analyses: Results versus Performance
In simulations, we have varied the request load on the system (Areq), the number of

identical resources (t), the degree of crash-merge rate (A,ro .•h mug,) under different

mobility settings (zero, low, and high mobility) to observe the behavior of our

predefined performance metrics (i.e., Message Overhead (M), and Average Waiting

Time (7)) as the function of request load (A",), or crash-merge rate (A" •.•h _m"g,)' or

the number of identical resources (t). To limit the illustrations, we now depict only

some particular simulation-based scenarios, where subtle changes in various

parameters (e.g., request load, number of identical resources, crash-merge rate etc.)

result in salient differences in the behavior of our performance metrics.

64

4.3.1. Message Overhead

We first learn the impact of the request load (Are,,), and the number of identical

resources (£) on the Message Overhead (M) under an ad hoc environment where no

node failures or merges occur. The impact of the crash-merge rate (A"",'h_m"g,)' and

the number of identical resources (£) on the Message Overhead (M) are also

investigated for an ad hoc environment where at [-I nodes can fail and failed nodes

may merge.

4.3.1.1. Impact a/request load

Figure 4.I(a) and (b) plot Message Overhead (M) against request load (A"q) for three

mobility settings (high, low, and zero). We varied the values of Areq increasing from

10-2 (the time units between requests is 102) to 10-1 (the mean time units between

requests is 10). We chose 0.1 for the high load value ofA"", because at this rate each

node would have a request pending almost all the time, whereas the low load value of

A"" = 10-2 represents a much less busy network, with requests rarely pending at all

nodes at the same time.

Plots are shown for runs under two variants of number of identical resources (£), i.e.

in part (a), [= 6, and [= 9, in part (b). We chose the lower ([= 6) value of [to

observe the effect ofA"" on M, when system has 20% identical copies of resources to

serve. Similarly, we chose the higher value ([= 9) of [to observe the same, when

system has 30% identical copies of resources than it has earlier.

The plots show that Message Overhead (against increasing request load) increases

linearly under various mobility settings, when resources are limited (20%). As request

load increases, request messages require traversing more unvisited nodes, causing

Message Overhead to increase proportionally. Due to mobility, request messages

traverse some nodes more than once, while the rest of the nodes remain unvisited for

long time. As a result, Message Overhead increases. However, the impact of request

load on Message Overhead under zero mobility is closer to that under high mobility.

Ul 50 -- .- ... --'" - ~..~. _..
~ -<Il(l)-- ;:l
<Il 0'
(l)

~;:l 400'-.
(l)

<Il - - - - Zero Mobility~ (l)... bJl - - Low Mobility(l) ro 30 -0.. <Il

-- High Mobility<Il

'" (l)

ro 8(l)

-€ "-<0 20(l)
<Il> <::0 .S

(l) <Il
OJ) .~ 10~ 8
<Il <Il
(l) <::
:::s ro...- 0'-'

0 0.Q2 0.04 0.06 0.08 0.1
Request Load, A.req
(requests / time unit)

(a)

65

50
~~

'"- "- =~ go 40= .:if .
>=: ~
••• OIl
<U ~ 30
C. ~

~ E" .•..of 0 20

" '"6 .~~.ra 10•• E
'" '"'" =" .•~ t:

~ 0
o

----------~~---------~-----~--

0.02 0.04 0.06 0.08 0.1
Request Load, }.req
(requests I time unit)

(b)

- - - - Zero Mobility
Low Mobility

--High Mobility

Figure 4.1. Effect of request load (A"q) on Message Overhead (M), for (a) l = 6, (b) l

= 9, when no node failure or merge occurs.

Observe that increasing rate of Message Overhead (against increasing request load)

reduces to nil under all mobility settings, when there are more resources (30%). This

66

is due to the fact that, at this time, request messages require visiting less number of

unvisited nodes to collect votes. As a less number of request messages remain

pending, Message Overhead remains constant when request load increases. For the

same reason, the impact of mobility on Message Overhead is almost nothing, if 30%

resources are avaiable. Hence, when 30% or more resources are avaiable, there is

absolutely no impact of request load on Message Overhead even in a highly mobile

environment.

4.3.1.2. Impact a/the number a/identical resources

Figure 4.2(a) and (b) plot Message Overhead (M) against the number of identical

resources (t). We varied the values of l increasing from 3 (system has 10% resources

to serve) to 24 (system has 80% resources to serve).

We chose 24 for the high resource value of l, because at this time each node would

access CS very promptly, because a request would require fewer votes to succeed.

The low load value (l = 3) of l represents a much busy network with requests pending

at all nodes at the same time, because each node would require its request to traverse

the entire network to fulfill its demand. Plots are shown for runs under two variants of

request load (A",), i.e. in part (a), A", = 0.04, and A", = 0.08, in part (b).We chose

the lower value (A", = 0.04) of A", to observe the effect of l on M, when system may

have a small number of pending requests. Similarly, we chose the higher value (Are, =

0.08) of Are, to look the effect of l on M closely, when system may have a large

number of pending requests.

The plots focus that Message Overhead reduces considerably against increasing

number of identical resources. Because, the more available resources increase, the

lesser number of unvisited nodes request messages require visiting. In case of high

request load in part (b) of Figure 4.2, the reduction in Message Overhead is more

radical than that in case of lower request load in part (a) of Figure 4.2. This is due to

the fact that request messages require visiting more unvisited nodes under high

request load than under low request load, when limited resources are available. As

available resources increase, Message Overhead decreases due to visiting lesser

67

number of nodes by request messages. However, when enough resources are

available, the decreasing rate of Message Overhead is reduced as the number of

available reaches to saturation against the request load.

•••. Zero Mobility

- - Low Mobility
-- HighMobility

252015105

•..........................•.................•.......... ~
~, _ .. _- ..--- -;;." ..---";;....7_"7.-=

70
';;;
(l) 60

~
OJ)
OIl
<Il

"0 <Il 50OIl (l)
(l) S ,-..

{J4-< <Il
(l) 0- 40<Il;> <Il (l)

0 ~ ;:l
Q) .9 cr' 30(l)
OJ) <Il •••OIl <Il
<Il .- 20<Il S
(l) <Il

:;E @ 10•••....-'-'
0
0
Number of identical resources, e

(a)

,-..
<Il 70....-<Il
<U

'"0"' 60
~ ~--"0- <Il 50
eel <U
(l) ~-E <Il 40<Il<U <U;> E0 4-< 30<U 0
~ '"'" t:: 20'" 0<U .u;:;E '"'s 10

'"~ 0.t:J
'-' 0 5 10 15 20 25

- - - . Zero Mobility
- - Low Mobility
-- High Mobility

Number of identical resources, l
(b)

Figure 4.2. Effect of the number of identical resources (t) on Message Overhead (M),

for (a) A,," = 0.04, (b) A,," = 0.08, when no node failure or merge occurs.

68

Observe that the impact of the increasing resources on Message Overhead under zero

mobility is always little lower than that under high mobility, i.e. scarce resource has

small additional impact on Message Overhead due to high mobility. This is because,

request messages require visiting some nodes more than once due to mobility, causing

increase in Message Overhead. But, the rate of increase in Message Overhead

increases proportionally.

So far, we have not tolerated node failures or merges during simulation. Figure 4.3(a)

and (b), demonstrate the effect of the number of identical resources (f) on Message

Overhead (M), where we allow at most f-I node(s) to fail individually or

simultaneously and failed node(s) to merge (at any instance) during simulation.

Plots are shown for runs under two variants of crash-merge rate ("erash_rn"g,), i.e. in

part (a), Acmsh_",,,g,= 0.04, and "erash_""rg,=O.1 in part (b). We chose 0.1 as the higher

value of crash-merge rate ("emsh ",,,g,), because at this rate, the network is much

vulnerable. Similarly, we chose 0.04 as the lower value of crash-merge rate

("emsh_rn"g,), because at this rate, the network is less vulnerable.

Plots in Figure 4.3 point to akin effect of the number of identical resources (f) on

Message Overhead (M) as shown in Figure 4.2. In addition, due to high rate of

crash_merge in part (b) of Figure 4.3, the reduction in Message Overhead is more

radical than that in part (a) of Figure 4.3. This is due to the fact that request messages

require visiting more nodes under high crash_merge rate, when limited resources are

available. As available resources increase, Message Overhead decreases due to

'visiting lesser number of nodes by request messages. However, when enough

resources are available, the decreasing rate of Message Overhead is reduced as the

number of available resources reaches to saturation against the crash_merge rate.

4.3.2. Average Waiting Time per CS Entry

We now study the impact of the request load (iI.",) on the Average Waiting Time per

CS Entry (fII) under various vulnerable ad hoc environments.

69

E--.Zero Mobility- - Low Mobility
--High Mobility

252015105

..••....•.•..
.... ""::"' ..---........ .:---:.-. ,

o
Number of identical resources, -e

(a)

- - - . Zero Mobility

- - Low Mobility
-- High Mobility

o
o 5 10 15 20 25

Number of identical resources, -e
(b)

::::00 Figure 4.3. Effect of the number of identical resources (f) on Message Overhead (M),

for (a) Ac'"'''_",,,g, =0.04, (b) Aaa,h_",,,g, =0.1, when node fails/merges, and A.mq=0.04.

4.3.2.1. Impact a/request load

Figure 4.4(a) and (b) illustrate Average Waiting Time per CS Entry (W) against

varying request load (A.mq) under ad hoc environment. The plots show that Average

Waiting Time per CS Entry (against increasing request load) increases proportionally

70

under various mobility settings, when resources are limited (20%). Observe that the

impact of request load on Average Waiting Time per es Entry under zero mobility is

closer to that that under high mobility, i.e. request load has small impact on the

behavior of Average Waiting Time per es Entry under high mobility. This is due to

the fact that, as request load increases, the number of pending requests increases as

well as requests messages require more traversals resulting in increase in delay in

granting CS.

When resources increase to more (30%) than earlier (20%), increasing rate of Average

Waiting Time per es Entry (against increasing request load) reduces to nil under all

mobility settings. As resources increases, request messages require less number of

traversals in granting CS. During mobility, a slight increase in Average Waiting Time

per es Entry is realized, but increasing rate of Average Waiting Time per es Entry
remains constant as system has less number of pending requests due to aV,ailabilityof

resources. Hence, when resources are 30% (of users) or more, Average Waiting Time

per es Entry is independent of request load.

4.3.2.2. Impact of crash-merge rate

Figure 4.5(a) and (b) illustrate Average Waiting Time pereS Entry (W) against crash-

merge rate (A.",",h_",,;g,) for a vulnerable ad hoc environment where at l-I nodes can

fail or failed nodes may merge. We varied the values of A.",",'h_m"g, increasing from

0.02 to 0.1.

We chose 0.1 for the high load value of A.,',n"h_m"g,' because at this rate, the network is

much vulnerable. Similarly, we chose 0.02 as the lower value of Acm,h_m"g" because

at this rate, the network is much less vulnerable. Plots in Figure 4.5 have been shown

for runs under two variants of the number of identical resources (t), and request load

(A.,,"), i.e. in part (a), l ~ 3, A.,," ~ 0.1, and l ~ 9, A.,," ~ 0.02, in part (b). In part (a), we

look the effect of ACra'h_m"gc on W closely, when system may have a large number of

pending requests against the 10% available identical resources. In part (b), we observe

the effect of Ac,'a,h_m"gc on W, when system may have a small number of pending

requests against the 30% available identical resources.

71

"..-...... •... •- .-#.

0.12

- - - - Zero Mobility
Low Mobility

High Mobility

0.10.080.06

/'
/'

/' .',. .'
/' .'... .

0.040.02o

Request Load, Areq (requests I time unit)
(a)

40

- - .. .•. - .. .- .. -

0.120.10.080.06

• - - - Zero Mobility
Low Mobility

High Mobility

0.040.02

25
o

Request Load, Areq (requests I time unit)
(b)

Figure 4.4. Effect of request load (,1".) on Average Waiting Time (W), for (a) f = 6,

(b) f = 9, when no failures or merges occur.

72

... . . .

0.12

• ••• Zero Mobility
Low Mobility
High Mobility

. .

0.08 0.1

0.02 0.04 0.06o

Crash_Merge Rate, A.crash_merge
(crash_merge / time unit)

•••• Zero Mobility
Low Mobility
High Mobility

100

50

o
o

(a)

=~~.~.=.~.~•.••_._.~.=.-....c=. =-.~~_

0.02 0.04 0.06 0.08 0.1

Crash_Merge Rate, A.crash_merge
(crash_merge / time unit)

0.12

(b)

Figure 4.5. Effect of crash-merge rate (A"a.," m"g,) on Average Wailing Time(W), for

(a)l=3, A~q=O.1,(b)l=9, A~q=O.02.

73

From these plots, we can view that the impact of crash-merge rate on Average

Waiting Time per CS Entry is quite similar to effect of request load on Average

Waiting Time per CS Entry presented in Figure 4.4. This is due to the fact that request

messages need to visit some nodes frequently, while some nodes remain unvisited

with the increasing crash_merge rate, when system has limited (10%) resources.

Therefore, some requests traverse for long time, increasing the average delay in

granting CS. Mobility causes these requests to wait more to reach unvisited nodes,

causing further increase in waiting for granting CS. While resources increase to 30%,

request messages need to traverse lesser number of nodes. Hence, increasing rate of

average delay in granting CS remain constant despite high mobility and high

vulnerability.

4.4. Performance Comparison with KRL Algorithm
This section discusses the static and dynamic performance of the '[-Exclusion (LE)

algorithm compared to the token-based k-Reverse Link (KRL) algorithm [140, 141]

designed to operate on mobile ad hoc networks. To limit the illustrations, we depict

some particular simulation-based scenarios for both algoithms under different

mobility settings in a vulnerable ad hoc environment, where nodes can fail or failed

nodes may merge.

The KRL simulation starts with nodes with indentifiers ranging from a to k-1 holding

tokens. We initially adjusted the the height (a three-tuple representing the height of a

node, such that links are directed from nodes with higher height towards nodes with

lower heights) of each token holder to ensure that it had one incoming link. A

connected graph whose initial edges were chosen at random, node heights and link

directions were then initialized. However, all other parameters are identical to those

described in the LE simulations.

4.4.1. Message Overhead

Figure 4.6 plots the average number of messages required to enter CS against values

of crash-merge rate (ol"a,"_m"8') increasing from 0.01 to 0.05. Plots are shown for

runs of LE simulation with number of identical resources, .[= 6, and request load,

74

A", = 0.04, and for runs of KRL simulation with number of tokens, k = 6, and request

load, A", = 0.04.

Figure 4.6 illustrates that Message Overhead increases as crash_merge rate increaSes

in all simulations. But, in dynamic networks, the increasing rate ofMessage Overhead

of KRL simulation is steeper than that of LE simulation. In static environment, KRL

algorithm shows enhanced performance than LE algorithm at all rate of crash_merge.

During low mobility, performance improvement of LE algorithm is .realized at high

crash_merge rate. As mobility increases, LE algorithm shows significant performance

gain over KRL algorithm at medium to high crash_merge rate.

120

100
2~~=C"

:;;; ~ 80.-"0 ~

~ ~
.c "•• ::l~ e 60
0 ...
~ 0.. ~" =~ 0
~ .~ 40;; .-

S~=::
~ 20

--......-•.•.•.•.•...

--

• • • - Zero Mobility (LE)

- - Low Mobility (LE)

-- High Mobility (LE)

• - •... Zero Mobility (KRL)

-..... Low Mobility (KRL)

-- High Mobility (KRL)

•...........•............• - _ .. - •............•
o
o 0.01 0.02 0.03 0.04 0.05

Crash_Merge Rate,1craslt_merge
(crash_merge I time unit)

Figure 4.6. Crash-merge rate (?c,a,h_",,,g,) versus Message Overhead (M), when f = 6

(LE), or k = 6 (KRL), and A", = 0.04.

In static networks, KRL algorithm requires mobile nodes to transmit messages only to

collect token by following directed links towards token holder nodes. Moreover, due

to unfair pattern of token use, KRL algorithm can serve requesting nodes without

following any order. For example, in a particular execution of KRL with a single

75

token, when two nodes are competing to enter CS, node that requested later than other

can get the token along the token-returning path from token holder, and can enter CS

earlier. Whereas, in similar execution, Message Overhead is greater in LE algorithm

than it is in KRL algorithm, as LE algorithm ensures fairness in granting CS (see

Theorem 3.3), it requires the potentially larger number of hops to collect enough votes

to enter CS.

As mobility increases, KRL algorithm requires mobile nodes to transmit messages to

maintain a DAG, and to adjust the direction of links among nodes towards token

holder nodes. Moreover, due to unfair pattern of token use and high mobility, request

paths may not be updated as execution continues. As a result, some tokens are used by

a few nodes very frequently, causing few or no messages to be sent for these tokens,

and allowing a few nodes to make tens of thousands ofCS entries while the rest of the

nodes make only thousands of CS requests. In addition, as KRL algorithm may lose

some or all tokens due to sudden crash of nodes, the overall average is increased. On

the contrary, during high mobility and high vulnerability, as LE algorithm requires no

tokens and no directed links among nodes, it requires less number of messages to find

unvisited nodes and to collect votes against any request. Hence, LE algorithm suits

the spontaneous nature of the ad hoc environment well than KRL algorithm in terms

of Message Overhead.

4.4.2. Average Waiting Time per CS Entry

Figure 4.7 shows the average delay in granting CS (after request) against values of

crash-merge rate (A'cm"_merge)' Plots are shown for runs of LE simulation and KRL

simulation with parameters similar to those mentioned in Section 4.4.1.

From Figure 4.7, we perceive that Average Waiting Time per CS Entry increases

roughly as crash_merge rate increases in all simulations. With the increasing rate of

crash_merge, KRL algorithm performs better, in terms of Average Waiting Time per

CS Entry, than LE algorithm in static environment. However, during mobility, LE

algorithm attains significant performance improvement over KRL algorithm at all

crash_merge rate.

76

200

........ Zero Mobility (LE)

- - Low Mobility (LE)

....•.• Zero Mobility (KRL)

-H;gh Mobil;ty (LE)

- •.••• Low Mob;l;ty (KRL)

0.050.040.030.02

..=:: ..--: =-..-:-_""1:""" •• -:"' •• -: _-: -:~_ .

'... II

/
/
/

__ .I....•--•-
,-,-.r

... ----- •..........•..•• -~.• .•
0.01

50

25

175

o
o

i:'t
t'-=~ ~ 150(3£
~ ~ 125

"'''''" u.5"";;; 100E-o .~
bJl == =:.c dol 75.; e?;S

Crash_Merge Rate, Acras!z_merge
(crash_merge / time unit)

Figure 4.7. Crash-merge rate ('<"a,".m"g,) versus Average Waiting Time per CS Entry

(W), when -e = 6 (LE), or k = 6 (KRL), and A.
m
, = 0.04.

In static environment, the decrease in Average Waiting Time per CS Entry at all

crash_merge rates for KRL simulation is caused by the unfair pattern of token used

mentioned earlier. This skewed pattern of token-use results in zero waiting time for

some CS entries bringing down the Average Waiting Time per CS Entry in static

networks. In dynamic networks, when crash_merge rate increases, KRL simulation

requires some of the requesting nodes to wait long in granting CS due to loss of

directed links, loss of tokens, and sudden crash or recovery of nodes. On the other

hand, as LE algorithm has no directed links or tokens, it performs significantly better,

in terms of Average Waiting Time per CS Entry, than KRL algorithm under high
mobility and high vulnerability.

4.4.3. SuccessRate

This section show the impact of the crash-merge rate (A.,'m.," _m"x,) on the Success Rate

(S) in a vulnerable ad hoc environment Plots are shown for runs of LE simulation and

77

KRL simulation with parameters similar to those !nentioned in Section 4.4.1. Plots in

Figure 4.8 show that, in LE simulations, more than 90% of requesting nodes succeed

to enter CS under variety of ad hoc environment. Whereas Success Rate of KRL

algorithm reduces radically with the increasing crash_merge rate. Hence, increasing

vulnerability of ad hoc network has no very small impact on Success Rate of LE

algorithm, as compared to KRL algorithm. Note that with the increasing rate of

crash_merge rate Success Rate of KRL algorithm degrades due to loss of tokens and

directed links under high mobility and high vulnerability.

4.5. ChapterSummary
This chapter presented the simulation of the proposed algorithm. Description of

simulation settings, parameters and mobility model has been followed by an intense

investigation through an extensive simulation study. Simulation results confirmed that

the proposed algorithm is quite effective to variety of operating conditions, and is

highly adaptive to frequent and unpredictable topology changes due to loss of

messages, link changes or failures or formations, sudden crashes or recoveries of at

most [-I mobile nodes, under different mobility settings. In addition, performance of

our algorithm has been compared to KRL algorithm. Our algorithm performs

favorably at high crash/merge rate in terms of Message Overhead, particularly when

nodes are mobile. The performance of our algorithm in terms of Average Waiting

Time per CS Entry is remarkable, particularly under mobility and vulnerability.

78

II Low Mobility (LE)

" Low Mobility (KRL)

IDZero Mob~ity (LE)

~ Zero Mobility (KRL)

100
90
80

'" 70
oS
~ 60
"~ 50~
"" 40
""'" 30

20
10
0

0.01 0.02 0.03 0.04 0.05
Crash_Merge Rate,).,cfash_merge

(crnsh_mergc I time unit)

(a)
100 . . - - ----_.-."

90
80

'" 70
oS
~ 60

"~ 50~
"" 40
""'" 30

20
10
0

0.01 0.02 0.03 0.04 0.05
Crash_Merge Rate,lcrasl,-merge

(crash_merge I time unit)

(b)
100
90
80

'" 70
£ 60""~ 50~
"" 40""'" 30

20
10
0

.• High Mob~ity(LE)

~ High Mob~ity(KRL)

0,01 0.02 0,03 0.04 0,05

Crash_Merge Rate,;'crash_merge
(cr.lsh_mcrge I time unit)

(e)

Figure 4.8. Crash-merge rate (Ac,","_m"g,) versus Success Rate (S), when l = 6 (LE),

or k = 6 (KRL), and A", = 0.04, for (a) Zero, (b) Low, (e) High Mobility.

CHAPTERS

CONCLUDING REMARKS

5.1. Major Contributions
In this research work, we present a consensus-based mobility-aware [-exclusion

algorithm that explicitly copes with arbitrary (possibly concurrent) topology changes

associated with such networks. The algorithm is based on collection enough

consensuses for a mobile node intending to enter CS, and uses diffusing computations

for this purpose. Contributions of this thesis are summarized in the following:

o We devise a consensus-based mobility-aware [-Exclusion algorithm that operates

asynchronously, and accommodates arbitrary topology changes induced by node

mobility. To enter the [-entry CS, the algorithm requires mobile nodes to

communicate only with their immediate neighbors chosen dynamically. Thus the

algorithm suits well in ad hoc locale.

o The algorithm is fault-resilient in the sense that it can tolerate loss of messages,

link changes or failures, sudden crashes or recoveries of at most [-I mobile nodes,

and lossy communication links, as long as the link failures do not partition tlie

communication networks.

o We develop an improved understanding of how to design and implement a

distributed algorithm, such as [-Exclusion algorithm, that accounts for .the

mobility found in an ad hoc network. In the context of [-Exclusion, we observe

that making subtle design changes in ad hoc settings can greatly affect the

performance of our algorithm. In our context, this results in an algorithm that

ensures that more than 90% of requesting nodes succeeds to access and to control

CS under a variety of vulnerable operating conditions, where at most [-1 node(s)

80

can crash independently or concurrently, and/<;Jrcrashed node(s) may recover from

failures.

o We present a formal verification to exhibit the correctness and the fairness of the

algorithm, such as [-Exclusion, [-Lockout Avoidance and First-Come-First':"

Guaranteed properties, using theory of distributed computing.

o We present a thorough simulation study using PARSEC [5, 101] to analyze and

evaluate the performance and the behavior of the algorithm as a function of

request load, the number of identical resources, crash-merge rate. During

simulation we consider some performance indices, such as Message overhead per

request, Average waiting time per request, Success rate. We present the

simulation results under following variants-

• Zero, low, and high mobility without node failures/merges,

• Zero, low, and high mobility with node failures/merges.

o We also study the performance of the [-Exclusion algorithm compared to the KRL

algorithm. Simulation results significantly demonstrates that, as compared to the

KRL algorithm, the proposed algorithm is quite effective to variety of operating'

conditions, and is highly adaptive to frequent and unpredictable topology changes

due to loss of messages, link changes or failures or formations, sudden crashes or

recoveries of at most [-1 mobile nodes, under different mobility settings.

5.2. Scope for Future Investigations
Based on our analyses on current design and the results of simulations presented in

this thesis, we are under-way to investigate the extension of our frame works in the

following directions:

o When nodes are mobile, frequent transmissions of messages for route discovery to

originator node hurt the overall performance since transmissions and receptions of

messages consume battery power and result in reduced energy savings, while

battery power is an important resource to be managed carefully in ad hoc

networks [146]. Hence, we are investigating to optim ize the [-Exclusion

81

algarithm with respect to. cammunicatian camplexity per CS (Message Overhead)

under heavy request laad withaut any campromise with impulsive behaviars af ad

hac networks.

0. As the energy cast af a protacal is an impartant quantity to. assess, further study is

required to. reduce the infarmatian size (data structures) assaciated with Request

message and mabile nades, and thus to. minimize the energy utilizatian far

handling these data structures.

0. Future scapes also. include emplaying same mechanisms to. shrink the aperatianal

camplexity o.f the {-Exclusion algarithm to. handle mability and to. talerate

intermittent failures mare efficiently under variaus aperatianal environments.

0. To. make aur {-Exclusion protacal mare scalable, we are interested to. impase

upper baunds an Message Overhead, Average Waiting Time with respect to.

cardinality af the netwark (number af nades), netwark laad (request laad),

cannectivity (transmissian range), valume af identical resaurces, and crash-merge

rate.

0. The {-Exclusion algarithm daes nat can sider the netwark 2-partitian. We hape

that this research wark will trigger the future investigatians an {-Exclusion

problem for mabile ad hac netwarks to. a mare fault-resilient directian by

adapting this algarithm to.talerate netwark 2-partitian.

0. Our {-Exclusion algarithm may be extended to. devise an energy-efficient

algarithm far asynchranaus graup mutual exclusian in mabile ad hac netwarks.

Nate that asynchronaus group mutual exclusian [3, 23, 57, 65, 66, 71, 72, 74, 75],

a natural generalizatian af the classieal mutual exclusian, was reeently identified

and salved by Jaung [72] far static netwarks.

0. This {-Exclusion algarithm may be refined far SMANET [31]. Nate that

SMANET is a secure MANET system that accepts anly thase packets whase

MAC addresses are in the Linux iptable firewall rules. Detailed af ip table set up

and the performance afthe firewall are available in [31].

82

REFERENCES

[1] Y. Afek, D. Dolev, E. Gafni, M. Merrit, and N. Shavit, "A Bounded First-In,

First-Enabled Solution to the l-exclusion Problem", ACM Transactions on

Programming Languages and Systems, Vol. 16,NO.3, pp. 939-953, May 1994.

[2] D. Agarwal and A. EI Abbadi, "An Efficient and Fault-Tolerant Solution for

Distributed Mutual Exclusion", ACM Transactions on Computer Systems, Vol.

9, No.1, pp. 1-20, February 1991.

[3] K. Alagarsamy and K. Vidyasankar, "Elegant solutions for group mutual

exclusion problem", Unpublished manuscript, 1999.

[4] B. R. Badrinath, A. Acharya, and T. 1mielinski, "Structuring Distributed

Algorithms for Mobile Hosts", Proceedings of the 14th International

Conference on Distributed Computing Systems, May 1994, pp. 21-28.

[5] R. Bagrodia, R. Meyerr, et aI., "PARSEC: A Parallel Simulation Environment

for Complex System", UCLA Technical Report, 1997.

[6] R. Bagrodia and W. Liao, "Maisie: A Language for Design of Efficient

Discrete-Event Simulation", IEEE Transactions on Software Engineering,

April 1994.

[7] L. Bajaj, M. Takai, R. Ahuaja, K. Tang, R. Bagrodia, and M. Gerla,

"Glomosim: A scalable network simulation environment", Technical Report

990027, UCLA Computer Science Department, May 1999,

[8] R. Baldoni, A. Virgillito, and R. Petrassi, "A Distributed Mutual Exclusion

Algorithm for Mobile Ad-Hoc Networks", Proceedings of the flo IEEE

International Symposium on Computers & Communications, pp. 539-544,

2002.

[9] S. Banerjee and P. K. Chrysanthis, "A New Token Passing Distributed Mutual

Exclusion Algorithm", Proceedings of the 16th ICDCS, pp. 717-724, 1996.

[10] S. Basagni, l. Chlamtac, and V. R. Syrotiuk, "A distance routing effect

algorithm for mobility (DREAM)", Proceedings of the 4th ACM/IEEE

International Conference on Mobile Computing and Networking, pp. 76-84,

1998.

83

[11] S. Basagni, 1.Chlamtac, and A. Farago, "A generalized clustering algorithm for

peer-ta-peer networks", Proceedings of the Workshop on Algorithmic Aspects

of Communication, Bologna, Italy, July 1997.

[12] B. Bellur, R. Ogier, and F. Templin, "Topology broadcast based on reverse-

path forwarding (TBRPF)", IETF Internet-Draft draft-ietf-manet-tbrpf-OO.txt,

August, 2000.

[13] M. Benchaiba, A. Bouabdallah, N. Badache, and M. Ahmed-Nacer,

"Distributed Mutual Exclusion Algorithms in Mobile Ad Hoc Networks: An

Overview", ACM Operating Systems Review, Vol. 38, NO.1, pp. 74-89, 2004.

[14] V. Bharghavan, A. Demers, S. Shenker, L. Zhang, "MACAW: a media access

protocol for wireless LANs", Proceedings of ACM SIGCOMM'94, pp. 212-

225, 1994.

[15] A. Bouabdallah, "On mutual exclusion in faulty distributed systems", ACM

Operating Systems Review, Vol. 28, No. I, pp. 80-87, 1994.

[16] A. Bouabdallah, J. C. Konig, and M. B. Yagoubi, "A fault-tolerant algorithm

for the mutual exclusion in real-time distributed systems", Journal of

computing and Information, Vol. I, NO.1, pp. 438-454, 1994.

[17] A. Bouabdallah and J. C. Konig, "A distributed algorithm for the mutual

exclusion problem", Parallel and Distributed Computing in engineering

systems, Tzafestas et al. (Editeurs), Elsevier Science Publisher B.V, North-

Holland, pp. 285-290, 1992.

[18] J. Broch, D. Johnson, and D. Maltz, "The dynamic source routing protocol for

mobile ad hoc networks", IETF Internet-Draft draft-ietf-manet-{]sr-03.txt,

October, 1999.

[19] J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu and J. Jetcheva, "A performance

comparison of multi-hop wireless ad hoc network routing protocols",

. Proceedings of the 4'10 ACM/IEEE International Conference on Mobile

Computing and Networking, pp. 85-97, 1998.

[20] R. Bruno, M. Conti, and E. Gregori, "Bluetooth: Architecture; protocols and

scheduling algorithms", Proceedings ofHicSs, Maui, Hawaii, 2001.

[21] S. Bulgannawar, and N. H. Vaidya, "A Distributed K-Mutual Exclusion

Algorithm", Proceedings of 15th IEEE International Conference on Distributed

Computing Systems, pp. 153-160, May-June 1995.

84

[22] S. Bulgannawar and N. H. Vaidya, "A distributed k-mutual exclusion

algorithm", Tech. Rep. 94-066, Department of Computer Science, Texas A&M

University, College Station, November 1994.

[23] S. Cantarell, A. K. Datta, F. Petit, and V. Villain, "Token based group mutual

exclusion for asynchronous rings", Proceedings of the 21st IEEE International

Conference on Distributed Computing Systems, 2001.

[24] J. Cao, J. Zhou, D. Chen, and J. Wu, "An Efficient Distributed Mutual

Exclusion Algorithm Based on Relative Consensus Voting", Proceedings of the

18th IEEE International Parallel and Distributed Processing Symposium, 2004.

[25] O. Carvalho and G. Roucairol, "On mutual exclusion in computer networks,

Technical Correspondence", Communications of the ACM, Vol. 26, NO.2, pp.

146-147,Feb.1983.

[26] R. Castefieda and S. R. Das, "Query localization techniques for on-demand

routing protocols in ad hoc networks", Proceedings of the 5th ACM/IEEE

International Coni on Mobile Computing and Networking, 1999, pp. 186-194.

[27] Y. Chang, M. Singhal, and M. Liu, "A Fault Tolerant Algorithm for Distributed

Mutual Exclusion," Proceedings of the rjh IEEE Symposium on Reliable

Distributed Systems, pp. 146-154, 1990.

[28] Y. Chen and J. 1.Welch, "Self-Stabilizing Mutual Exclusion Using Tokens in

Mobile Ad Hoc Networks", Proceedings of the 6th .Annual International

Workshop on Discrete Algorithms and Methods for Mobile Computing and

Communication, pp. 34-42, September 2002.

[29] T. W. Chen, M. Gerla, and T. C. Tsai, "QoS routing performance in multihop

Wireless networks", Proceedings of IEEE ICUPC97, San Diego, 1997.

[30] C. Chiang and M. Gerla, "Routing and multicast in multihop, mobile wireless

networks", Proceedings ICUPC '97, pp. 546-551,1997.

[31] C. E. Chow, P. J. Fong, and G. Godavari, "An exercise in constructing Secure

Mobile Ad hoc Network (SMANET)", Proceedings of the 18th IEEE

International Conference on Advanced Information Networking and Application

(AINA '04), 2004.

[32] M. Choy, "Robust Distributed Mutual Exclusion", Proceedings of the 16th

ICDCS, pp. 760-767,1996.

[33] M. S. Corson and A. Ephremides, "A distributed routing algorithm for mobile

wireless networks", Wireless Networks, Vol. I, No. I, pp. 61-81,1997.

85

[34] S. Corson and 1. Macker, "Mobile ad hoc networking (MANET)", IETF RFC

2501, January 1999.

[35] M. S. Corson and A. T. Campbell, "Towards supporting quality of service in

mobile ad-hoc networks", Proceedings of the First Conference on Open

Architecture and Network Programming, San Francisco, April 1998.

[36] D. M. Dhamdhere and S. S. Kulkarni, "A Token Based K-Resilient Mutual

Exclusion Algorithm for Distributed Systems", Information Processing Letters,

Vol. 50, pp. 151-157, 1994.

[37] E. W. Dijkstra and C. S. Scholten, "Termination detection for diffusing

computations", Information Processing Letters, Vol. 11, No.1, pp. 1--4, 1980.

[38] . E. W. Dijkstra, "Self-Stabilizing Systems in Spite of Distributed Control",

Communication of the ACM, Vol. 17, No. 11, pp. 643-644,1974.

[39] E. W. Dijkstra, "Solution of a Problem in Concurrent Programming Control",

Communication of the ACM, Vol. 8, No.9, pp. 569,1965.

[40] D. Dolev, E. Gafni, and N. Shavit, "Towards a non-atomic era: l--{:xclusionas a

test case", Proceedings of the 20th Annual ACM Symposium on the Theory of

Computing, New York, pp. 78-92,1988.

[41] D. Dolev, M. J. Fischer, R. Fowler, N. A. Lynch, and H. R. Strong, "An

efficient Byzantine agreement without authentication", Information and

Control, Vol. 52, No.3, pp. 257-274, March 1982.

[42] D. Dolev, M. J. Fischer, R. Fowler, N. A. Lynch, and H. R. Strong, "An

efficient Byzantine agreement without authentication", IBM Research Report

RJ3428 (40914), Computer Science, IBM Research Division, Yorktown

Heights, NY, March 22, 1982.

[43] R. Dube, C. D. Rais, K. Wang, and S. K. Tripathi, "Signal stability based

adaptive routing (SSA) for ad-hoc mobile networks", IEEE Personal

Communications, pp. 36--45,February 1997.

[44] A. Ephremides and T. V. Truong, "Scheduling broadcasts in multihop radio

networks", IEEE Transactions on Communications, Vol. 38, No.4, pp. 456-

460,1990.
[45] M. Fisher, N. Lynch, J. Burns, and A. Borodin, "Distributed FIFO allocation of

identical resources using small shared space", ACM Transactions on

Programming Language and Systems, Vol. 11, No.1, pp. 90-114, Jan. 1989.

86

[46] M. Fischer, N. Lynch, J. Burns, and A. Borodin, "Resource Allocation with

Immunity to Limited Process Failure", Proceedings of the 20th A~nual IEEE

Symposium on Fountains of Computer Science, pp. 78-92, 1979.

[47] W. Ford, Computer Communications Security, Principles, Standard Protocols

and Techniques, Upper Saddle River, NJ: Prentice Hall, 1994.

[48] S. Fujita, M. Yamashita, and T. Ae, "Distributed k-Mutual Exclusion Problem

and k-Coteries", Proceedings of the 2nd International Symposium on

Algorithms, Lecture Notes in Computer Science 557, pp. 22-31, Berlin:

Springer, 1991.

[49] E. Gafni and D. Bertsekas, "Distributed Algorithms for Generating Loop-Free

Routes in Networks with Frequently Changing Topology", IEEE Transactions

on Communications, Vol. 29, No.1, pp. 11-18, May 1981.

[50] J. Garcia-Luna and M. Spohn, "Source tree adaptive routing (STAR) protocol",

IETF Internet-Draft, October 1999.

[51] H. Garcia-Molina and D. Barbara, "How to Assign Votes in a Distributed

Systems", Journal of the ACM, Vol. 32, No.4, pp. 841-860, October 1985.

[52] H. Garcia-Molina, "Elections in a distributed computing system", IEEE

Transactions on Computers, Vol. C-31, NO.1, pp. 48-59,1982.

[53] M. Gerla and T.-C. Tsai, "Multicluster, mobile, multimedia radio network",

Wireless Networks, pp. 255-265, 1995.

[54] D. K. Gifford, "Weight voting for replicated data", Proceedings of the 7'h ACM

SIGOPS Symposium Operating Systems Principles, Pacific Grove, CA, pp.

150-159, Dec. 1979.

[55] A. Gravey and A. Dupis, "Performance evaluation of two mutual exclusion

distributed protocols via Markovian modeling", Proceedings of the 6th IFfP

Workshop Protocol Specification, Testing, Verification, Montreal, P.Q., Canada,

June 10-13, 1986.

[56] I. W. Group, "Wireless LAN medium access control (MAC) and physical layer

(PHY) specifications", IEEE specification. (http://standards.ieee.org/getieee802/

download/802.11b-1999.pdf), Sep 1999. Work in Progress.

[57] V. Hadzilacos, "A note on group mutual exclusion", Proceedings of the 20th

Annual Symposium on Principles of Distributed Computing, pp. 100-106, 2001.

http://standards.ieee.org/getieee802/

87

[58] J. Helary, N. Plouzeau, and M. Raynal, "A Distributed Algorithm for Mutual

Exclusion in an Arbitrary Network", Computer Journal, Vol. 31, No.4, pp.

289-295, 1988.

[59] Y. C. Hsu, T. C. Tsai, and Y. D. Lin, "QoS Routing in multihop packet radio

environment", Proceedings of IEEE ISCC '98, 1998.

[60] S. T. Huang, J. R. Jiang, and Y. C. Kuo, "K-Coteries for Fault-Tolerant K

Entries to a Critical Section", Proceedings of International Conference on

Distributed Computing Systems, pp. 74-81, May 1993.

[61] J.-P. Hubaux, J.-Y. Le Boudec, S. Giordano, M. Hamdi, L. Blazevic, L.

Buttyan, and M. Vojnovic, "Towards mobile ad-hoc WANs: Terminodes",

Proceedings of the IEEE Wireless Communications and Networking Conference

(WCNC '00), Chicago, September 2000.

[62] J.-P. Hubaux, J.-Y. Le Boudec, S. Giordano, and M. Hamdi, "The nodes

project: Towards mobile ad-hoc WANs", Proceedings of the International

Conference on Mobile Multimedia Communication (MOMUC99), November

1999.

[63] A. Iwata, C. C. Chiang, G. Pei, M. Gerla, and T. W. Chen, "Scalable routing

strategies for ad hoc wireless networks", IEEE Journal on Selected Areas of

Communications, Vol. 17.NO.8, pp. 1369-1379, August 1999.

[64] P. Jacquet, P. Muhlethaler, A. Qayyum, et aI., "Optimized link state routing

protocol", IETF Internet-Draft draft-ietf-manet-olsr-02.txt, July 2000.

[65] P. Jayanti, S. Petrovic, and K. Tan, "Fair group mutual Exclusion", Proceedings

of the ACM Symposium on Principles of Distributed Computing, pp. 51-60,

2003.

[66] P. Jayanti, S. Petrovic, and K: Tan, "Fair group mutual exclusion (full paper)",

Technical Report TR 2003 447, Dartmouth College Computer Science

Department, 2003.

[67] J.-R. Jiang, S.-T. Huang, and Y.-C. Kuo, "Cohorts Structures Fault-Tolerant k

Entries to a Critical Section", IEEE Transactions on Computers, Vol. 46, No.2,

February 1997.

[68] M. Joa-Ng and I. T. Lu, "A peer-to-peer zone-based two-level link state

routing for mobile ad hoc networks", IEEE Journal on Selected Areas of

Communications, Vol. 17,NO.8, pp. 1415-1425, August 1999.

88

[69] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark,

"Scenario-based performance analysis of routing protocols for mobile ad-hoc

networks", Proceedings of the 5'h ACM/IEEE International Conference on

Mobile Computing and Networking, pp. 195-206, 1999.

[70] D. B. Johnson and D. A. Maltz, "Dynamic source routing in ad hoc wireless

networks", Mobile Computing, edited by Tomasz Imielinski and Hank Korth,

chapter 5, pp. 195-206, Kluwer Academic Publishers, Seattle, WA, 1996.

[71] Y. Joung, "Asynchronous group mutual exclusion", Distributed Computing,

Vol. 13, pp. 189-206, 2000.

[72] Y. Joung, "Asynchronous group mutual exclusion", In Yehuda Afek, editor,

Proceedings of the 17'h ACM Symposium on Principles of Distributed

Computing, pp. 51-60, June 1998.

[73] H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae, "Availability of k-Coterie",

IEEE Transactions on Computers, Vol. 42, NO.5, pp. 553-558, May 1993.

[74] P. Keane and M. Moir, "A simple local-spin group mutual exclusion

algorithm", IEEE Transactions on Parallel and Distributed Systems, Vol. 12,

No.7, pp. 673-685, July 2001.

[75] P. Keane and M. Moir, "A simple local-spin group mutual exclusion

algorithm", Proceedings of the Symposium on Principles of Distributed

Computing, pp. 23-32, 1999.

[76] Y.-B. Ko and N. H. Vaidya, "Location-added routing (LAR) in mobile ad hoc

networks", Wireless Networks, Vol. 6, No.4, pp. 307-321, July 2000.

[77] Y.-B. Ko and V. H. Vaidya, "Location-aided routing (LAR) in mobile ad hoc

networks", Proceedings of the 4th ACM/IEEE International Con! on Mobile

Computing and Networking, pp. 66-75, 1998.

[78] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan, "A cluster based

approach for routing in dynamic networks", Proceedings of the ACM

SIGCOMM Computer Communication Review, pp. 372-378,1997.

[79] A. Kumar, "Hierarchical quorum consensus: A new algorithm for managing

replicated data", IEEE Transactions on Computers, vol. 40, no. 9, pp. 996-

1004, Sept. 1991.

[80] L. Lamport, "The mutual exclusion problem: Part ll-statements and solutions",

Journal of the ACM, Vol. 33, No.2, pp. 327-348,1986.

89

[81] L. Lamport and P. M. Smith. "Synchronizing clocks in the presence of faults",

Journal of the ACM, Vol. 32, No.1, pp. 52-78,1985.

[82] L. Lamport and P. M. Smith. "Byzantine clock synchronization", Proceeding of

the 3'd ACM Symposium on Principles of Distributed Computing, New York,

pp.68-74,1984.

[83] L. Lamport, "Time, Clocks and the Ordering of Events in a Distributed

System", Communication of the ACM, Vol. 21, NO.7, pp. 558-565,1978.

[84] L. Lamport, "A new solution of Dijkstra's concurrent programming problem",

Communication of the ACM, Vol. 17, NO.8, pp. 453-455, August 1974.

[85] S. B. Lee, G. S Ahn, and A. T. Campbell, "Improving UDP and TCP

performance in mobile ad hoc networks", IEEE Communication Magazine, June

2001.
[86] S. J. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia, ."A performance

comparison Study of ad hoc wireless multicast protocols", Proceedings of the

IEEE Infocom, March 2000.

[87] G. Le Lann, "Distributed Systems: Towards A Formal Approach", IFfP

Congress, Toronto, pp. 155-160, 1977.

[88] J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris, "Scalable location

service for geographic ad hoc routing", MobicomOO,Boston 2000.

[89] J. P. Macker, V. D. Park, and M. S. Corson, "Mobile and wireless Internet

services: Putting the pieces together", IEEE Communication Magazine, June

2001.

[90] N. Malpani, Y. Chen, N. H. Vaidya, and J. L. Welch, "Distributed Token

Circulation in Mobile Ad Hoc Networks", IEEE Transactions on Mobile

Computing, Vol. 4, No.2, pp. 154-165,2005.

[91] N. Malpani, Y. Chen, N. H. Vaidya, and J. L. Welch, "Distributed Token

Circulation in Mobile Ad Hoc Networks", Proceedings of the rjh International

Conference on Network Protocol, November 2001.

[92] M. Maekawa, "A ..IN Algorithm for Mutual Exclusion in Decentralized

Systems", ACM Transaction on Computer Systems, Vol. 3, No.2, pp. 145 -

159,1985.

[93] K. Makki, P. Banta, K. Been, N. Pissinou, and E. Park, "A Token Based

Distributed K-Mutual Exclusion Algorithm", Proceedings of the 4th IEEE

f -- .•.•

90

Symposium on Parallel and Distributed Processing, pp. 408--411, December

1992.

[94] Q. E. K. Mamun, M. Ali, S. M. Masum, and M. A. R. Mustafa, "A Two-Layer

Hybrid Algorithm for Achieving Mutual Exclusion In Distributed Systems",

WSEAS Transactions on Systems, Vol. 3, Issue 3, pp. 1193 - 1198, May 2004.

[95] MANET mailing list, ftp:ffmanet.itd.nrl.navy.mil/pubfmanet.archive,

Discussion on applications for mobile ad-hoc networking with Subject:

MANET application scenarios.

[96] S. M. Masum, A. A. Ali, and M. M. Akbar, "Design of An [-Exclusion

Algorithm for Mobile Ad Hoc Networks", To appear in Proceedings of the First

IEEE International Conference on Next-Generation Wireless Systems

(ICNEWS'06), Dhaka, Bangladesh, January 2--4, 2006.

[97] S. M. Masum, A. A. Ali, and M. M. Akbar, "A Fault-Resilient [-Exclusion

Algorithm for Mobile Ad Hoc Networks", Proceedings of the IEEE Pacific Rim

Conference on Communications, Computers and Signal Processing 2005

(PacRim '05), Victoria, B.C., Canada, pp. 586 - 589, August 24-26, 2005.

[98] S. M. Masum, M. A. Al-Mamun, and M. M. Akbar, "A Fault-Tolerant Ring-

Based Algorithm for Achieving Mutual Exclusion in Distributed Systems",

Asian Journal of Information Technology, Vol. 4, NO.2, pp. pp. 185 - 193,

February 2005.

[99] S. M. Masum, and M. M. Akbar, "An Optimal and Fault-Tolerant Solution for

Distributed Mutual Exclusion", Proceedings of the 7''' International Conference

on Computer and Information Technology, pp. 698 - 704, 26-28 December

2004.

[100] S. M. Masum, M. A. Al-Mamun, K. T. Islam, S. M. S. Mostafa, and M. M.

Akbar, "A Fault-Tolerant Ring-Based Algorithm for Achieving Mutual

Exclusion in Distributed Systems", Proceedings of the 16/10 lASTED

International Conference on Parallel and Distributed Computing and Systems,

pp. 205 - 210, November 9-11, 2004.

[101] R. A. Meyer, "PARSEC User Manual", UCLA Parallel Computing Laboratory,

http://pcl.cs.ucla.edu.

[102] S. Mishra and P. Srimani, "Fault-tolerant mutual exclusion algorithms",

Journal of Systems software, Vol. II, NO.2, pp. 111-129, February 1991.

http://pcl.cs.ucla.edu.

91

[103] J. Misra, "Detecting termination of distributed computations using markers",

Proceedings of the 2nd ACM Annual Symposium on Principles of Distributed

Computing, pp. 237-249, August 1985.

[104] M. Mizuno, M. L. Neilsen, and R. Rao, "A token based distributed mutual

exclusion algorithm based on quorum agreements", Proceedings of the ii
th

international Conference on Distributed Computing Systems, pp. 361-368, May

20-24,1991.
[105] F. Mueller, "Prioritized Token-Based Mutual Exclusion for Distributed

Systems", Proceedings of the Joint Workshop on Parallel and Distributed Real

Time System, pp. 72-80, 1997.
[106] M. Naimi and M. Trehel, "An improvement of the logn Distributed Algorithm

for Mutual Exclusion", Proceedings of the 7'h IEEE International Conference

on Distributed Computing Systems, pp. 371-375, 1987,

[107] M. L. Neilsen and M. Mizuno, "A DAG-Based Algorithm for Distributed

Mutual Exclusion", Proceedings of the il'h International Conference on

Distributed Computing Systems, pp. 354-360, May 20-24, 1991.

[108] Network simulator - NS-2, http://www.isi.edu/nsnam/ns.

[109] NFS Wireless and Mobile Communications Workshop, Northern Virginia,

March 1997.

[110] OPNET Modeler, http://www.opnet.com/products/modeler/home.html.

[111] E. Pagani and G. P. Rossi, "Reliable broadcast in mobile multihop packet

networks", Proceedings of the 3,d ACM/IEEE International Conference on

Mobile Computing and Networking, pp. 34-42, 1997.

[112] V. Park and M. S. Corson, "Temporally-ordered routing algorithm (TORA)

Version 1 Functional Specification", IETF Internet-Draft draft-ietf-manet-

tora-spec-02.txt, October, 1999.

[113] V. Park and M. S. Corson, "A highly adaptive distributed routing algorithm for

mobile wireless networks", Proceedings of the INFOCOM'97, pp. 1405-1413,

1997.
[114] C. Perkins, E. Royer, and S. Das, "Ad hoc on demand distance vector (AODV)

routing", lETF Internet-Draft draft-ietf-manet-aodv-06.txt, July, 2000.

[115] C. Perkins, Ad Hoc Networking, Reading, MA: Addison-Wesley, 2000.

[116] C. Perkins (Ed.), "IP mobility support", IETF RFC 2002, October 1996.

http://www.isi.edu/nsnam/ns.
http://www.opnet.com/products/modeler/home.html.

92

[117] C. E. Perkins and P. Bhagwat, "Highly dynamic destination-sequenced

distance-vector routing for mobile computers", Proceedings of the ACM

SIGCOMM Symposium on Communication, Architectures and Protocols, pp.

234-244, 1994.
[118] C. E. Perkins and E. M. Royer, "Ad-hoc on-demand distance vector routing",

Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and

Applications, pp. 90-100, 1999.
[119] R. Ramanathan and M. Streenstrup, "Hierarchically-organized, multihop

mobile wireless networks for quality-of service support", Mobile Networks and

Applications, January 1998.
[120] K. Raymond, "A Tree based Algorithm for Distributed Mutual Exclusion",

ACM Transactions on Computer Systems, Vol. 7, No.1, pp. 61-77, February

1989.
[121] K. Raymond, "A Distributed Algorithm for Multiple Entries to a Critical

Section", Information Processing Letters, vol. 30, pp. 189-193, February

1989.
[122] M. Raynal, "Prime numbers as a tool to design distributed algorithms",

Information Processing Letters, Vol. 33, No.1, pp. 53-58, October 1989.

[123] G. Ricart and A. K. Agrawala, "Author response to 'on mutual exclusion in

computer networks', by Carvalho and Roucairol", Communication of the ACM,

Vol. 26, NO.2, pp.147-148, Feb. 1983.

[124] G. Ricart and A. K. Agrawala, "An Optimal Algorithm for Mutual Exclusion in

Computer Networks", Communications of the ACM, Vol. 24, NO.1, pp. 9-17,

January 1981.
[125] E. M. Royer and C. E. Perkins, "Multicast operation of the ad~hoc on demand

distance vector routing protocol", Proceedings of the 51h ACWIEEE

International Conference on Mobile Computing and Networking, pp. 207-218,

1999.
[126] E. M. Royer and C.-K. Toh, "A review of current routing protocols for ad hoc

mobile wireless networks", IEEE Personal Communication Magazine, pp. 46-

55, April 1999.
[127] B. Sanders, "The information structure of distributed mutual exclusion

algorithms", ACM Transactions on Computer Systems, Vol. 5, NO.3, pp. 284-

299, August 1987.

,"

93

[128] D. Shou and S.. D. Wang, "An Efficient Quorum Generating Approach for

Distributed Mutual Exclusion", Journal of Information SCience and

Engineering, Vol. 9, pp. 201-227, June 1993.

[129] M. Singhal, "A Heuristically-Aided Algorithm for Mutual Exclusion in

Distributed Systems", IEEE Transactions on Computers, Vol. 38, NO.5, pp.

651-662, May 1989.

[130] P. K. Srimani and R. L. Reddy, "Another Distributed Algorithm for Multiple

Entries to a Critical Section", Information Processing Letters, vol. 41, pp. 51-

57, January 1992.

[131] 1. Stojmenovic', "Location updates for efficient routing in ad hoc networks",

Chapter 23, Handbook of Wireless Networks and Mobile Computing, John

Wiley & Sons Inc., 2002.

[132] 1. Suzuki and T. Kasami, "A Distributed Mutual Exclusion Algorithm"., ACM

Transactions on Computer Systems, Vol. 3, No.4, pp. 344-349, 1985.

[133] T. C. M. Project, "The CMU Monarch Project's wireless and mobility

extensions to ns", August 1998. Available from

http://www .monarch .cs.cm u.edu.

[134] Z. Tang and J. J. Garcia-Luna-Aceves, "Hop reservation multiple access for

multichannel packet radio networks", Computer Communications, Vol. 23, No.

10, pp. 877-886, May 2000.

[135] The REAL network simulator.http://www.cs.comell.edu/skeshav/realloverview.htm.

[136] R. H. Thomas, "A majority consensus approach to concurrency control", ACM

Trans. Database Systems, Vol. 4, no. 2, pp. 180-209, June 1979.

[137] G. Varghese, "Self-stabilization by computer flushing", Proceedings of the 13th

ACM International Symposium on Principles of Distributed Computing, August

1994.

[138] S. Vasudevan, J. Kurose, and D. Towsley, "Design and Analysis of a Leader

,Election Algorithm for Mobile Ad Hoc Networks", Proceedings of the J2th

International Con! Network Protocols, pp. 350-360, October 2004.

[139] J. E. Walter, J. L. Welch, and N. H. Vaidya, "A Mutual Exclusion Algorithm

for Ad Hoc Mobile Networks", Wireless Networks, Vol. 7, pp. 585-600, 2001.

[140] J. E. Walter, G. Cao, and M. Mohanty, "A k-Mutual Exclusion Algorithm for

Wireless Ad Hoc Networks", Proceedings of the 1't Annual Workshop on

Principles of Mobile Computing, 200 I.

http://simulator.http://www.cs.comell.edu/skeshav/realloverview.htm.

94

[141] J. E. Walter, "A k-mutual exclusion algorithm for ad hoc mobile networks",

Technical Report TROO-022, Texas A&M University, College Station, TX

77843-3112,2000.

[142] J. E. Walter and S. Kini, "Mutual exclusion on Multi-Hop, Mobile Wireless

Networks", Technical Report TR97-014, Texas A&M University, College

Station, TX 77843-3112, December 1997.

[143] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, "Energy-efficient

multicast of session traffic in bandwidth and transceiver-limited wireless",

Cluster Computing, 2002.

[144] J. Wu, M. Gao, and I. Stojmenovic', "On calculating power-aware connected

. dominating sets for efficient routing in ad hoc wireless networks", Proceedings

of the JCPP '01, Valencia, Spain, September 3-7, 2000.

[145] X. Zeng, R. Bagrodia, and M. Gerla, "GloMoSim: a Library for Parallel

Simulation of Large-scale Wireless Networks", Proceedings of the 12th

Workshop on Parallel and Distributed Simulations, Alberta, Canada, May 1998.

[146] R. Zheng and R. Kravets, "On-demand power management for ad hoc

networks", Ad Hoc Networks, Vol. 3, No. I, pp. 51-68, January 2005.

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105

