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Abstract

The emergence of e-application has been creating extremely high volume of data
that reaches to terabyte threshold. Many ‘organizations are producing data that are doubling
every year. The conventibnal data management system is costlier in terms of storage space
and processing speed, and sometimes it is unable to handle such huge amount of data. New
algorithms and techniques need to develop to store and manipulate these data. The database

compression can be used for scalable storage and faster data access.

We propose compression based data management system architecture that can be
- used to handle terabyte level of relational data. The existing compression schemes e.g.
. HIBASE or Three Lallyler Database Compression Architecture work well for memory
resident data and provide good performance. These are low cost solution for high-

performance data management system but are not scalable to manage terabyte level of data.

We have developed a disk based columnar multi-block vector structure (CMBVS)
that can be used to store relational data in a compressed representation with direct
addressability. Parallel data access can be achieved by distributing the vector structure into

multiple servers to improve the scalability.

The lowest layer of the model is the block structure to store the compressed
representation of data. The next higher level is the vector-structure that relates the block
structure to an attribute of the relational data model. The structures are capable of carrying
out query directly on the compressed form of data. This reduces query time drastically. We
have compared our system with conventional relational DBMS. The experimental results
show that our system is about twenty five times efficient in storage cost and twenty-seven to
seventy-seven times faster in retrieval time performance than that of the conventional

systems.



Chapter 1
Introduction

Storage requirement for database system is a problem for many years. Though the
storage capacity has been increasing every year, in many cases, enterprise and service

provider data storage needs double every six to twelve months.

It is a great challenge to store and manage this ever-increasing data in an efficient
way. The amount of data reaches to terabyte threshold in many organizations. The
conventional data management system for these huge data sets is a costlier one in terms of

storage space and retrieval performance.

1.1 Motivation to Terabyte Data Management

Though the terabyte storage space is available, the price is high enough for
common use. The backup of the terabyte database instaﬁce is another troublesome issue and
time consuming matter. Accessing the terabyte database in highly concurrent environment
is a great problem in conventional database system. The reason is that the number of disk
accesses increase as database size grows, thus the response time of any query increases as
well. The transactional throughputs create a bottleneck due to /O intensive operations.

Complexity of join operations become more complicated as dataset size grows.

Most of the large databases are often in tabular form. The opérational database is
not routinely terabyte in size whereas the typical size of fact tables in a data warehouse is
generally terabyte in size. These data are write-once and read-many times category for
further analysis. The recent developments in storage technology make it easy to store large
volume of data in large disk space e.g. Network Attached Storage (NAS), Storage Area
Network (SAN) and Redundant Array of Independent Disk (RAID). Still problem remains
for high-speed access and high-speed data transfer. ‘

The conventional database technology cannot provide such performance. We need

to use new algorithms and techniques to get attractive performance and reducing storage



cost. High performance compression algorithm, necessary retrieval and data transfer

technique can be candidate solution for terabyte data management system,

Reducing the volume of data without losing any information is known as loss-less

data compression. This is potentially attractive in database system for two reasons:

L1 Reducing of storage cost without loss of information.

L1 Performance improvements.

It is difficult to combine a good compression technique that reduces the storage
cost while improving performance. The performance improvements arise because the
smaller volume of compressed data may be accommodated in faster memory than its
uncompressed counterpart. Only a smaller amount of compressed data needs to be

transferred and/or processed for a particular operation.

1.2 Aim and Objective of the Thesis

The objective of the thesis is to design a compression based system that can be
used to store and retrieve terabyte level relational data efficiently. The features of the

architecture are as follows: -

O Data clements will be directly addressable in compressed representation
irrespective of the location of compressed block in memory or disk. At the
same time the compressed representation will be same for data being memory
resident or in disk,

L1 Disk transfer time will be reduced c}ue to compression.

L) Decompression will be necessary only to get the final result. So decompression

overhead will be minimized.

We use columnar format rather than the conventional row-wise format. Our aim is
to develop disk based columnar multi-block vector structure for storage and querying of
relational data in compressed form. The scalability can be achieved by distributing the
structures among multiple servers in a shared nothing parallel architecture. The structure is

such that the unnecessary columns need not to access for a particular query processing.

A\



Every database system requires to support dynamic update. This requires a
restructuring operation to the vector. The restructuring cost can be reduced by using

columnar multi block vector structure (CMBVS).

Another aim is to design a multipart dictionary structure that can be easily used in

terabyte data management system. Each attribute is associated to a domain dictionary. Some

similar attributes may share the same dictionary.

1.3 Overview of the Compression Method

An overview of the compression and decompression method is given in Figure 1.1.
Input goes through a compression engine that splits the data into dictionary and compressed

representation of relational tables,

Input Decompressed
Data : Output
Decompression
- Manager
Compression ‘
Manager
' ] o
' Q
\:\ =
Y /#/ L1 |8
rd e ‘ ' e
/ A ]
. Vo o
/ Domain - &
. . . 1 o+
Dictionaries i i

Figure 1.1: Overview of the Compression Technique

~For input data, a dictionary is created per domain. Using the dictionary, a
compressed representation respective to input data is created. We have developed a
compressed representation that comprises of multiple blocks, which can be directly
accessible. After accessing the block very easily, we can access any element within the
block.

/>



Direct addressability to the element in compressed form is characterized by the
ability to retrieve an element without decompressing the whole structure. This allows the
query processor to make query on the compressed representation. The decompression is a
reverse process of the compression operation. Any element of the compressed
representation can be decompressed by using the corresponding dictionary. All processing
will be done on compressed form and decompression will be performed only when the

result is necessary. This reduces the decompression overhead.

1.4 Columnar Multi-block Vector Structure
(CMBYVS) and Management of Compressed
Data

The conventional database stores the relation in row wise format, which accesses
the whole tuple for any particular query. The multi-block vector structure stores the relation
in column wise format. Each attribute is associated to a domain dictionary and a dynamic
vector. The vector is partitioned into multiple blocks. The vector accommodates a certain
number of blocks in memory. When the number of blocks are increased, some blocks are
swapped to disk. The high cardinality of domain dictionaries are also partitioned into blocks
if necessary. The original tuple value is first searched in the dictionary, if the value is found
in dictionary corresponding token is returned. If the value is not is not found in the
dictionary, it will be inserted into the dictionary and corresponding token will be returned. It

will then be inserted into the vector.

The query can be carried out directly on the compressed form of data. The query
may be optimized if there are multiple attributes are accessed in the query. The query in the
CMBVS only accesses the associated vector and dictionary, so that the I/O access is

minimized and hence increased the query throughput.

1.5 Terabyte Data Management System Using
CMBYVS

The CMBVS is scalable to very large number of tuples in compressed form. Even
a microcomputer (with 120 GB hard disk) can host huge data sets in compressed form like

terabyte in size. However, the performance degrades as the database size increases.



The CMBYVS provides the infrastructure that can be used in distributed system to
manage multi-terabyte database. As the relations are stored in columnar format, the multij
block vectors can be distributed over column severs. The domain dictionaries are distributed
over multiple domain‘ servers. The system is scalable to virtwally unlimited number of
tuples, by increasing the number of disks in disk array 6f both column servers and domain -

Servers.

We have developed the CMBYVS structure and implemented it with Borland C++
5.02. It is compared with widely used Microsoft SQL Server. We generate the data for voter
relation -of Bangladesh Electoral Database using our own data generator. We produce
synthetic data for 85 million voters. The storage space occupied by the CMBVS is about 25
times smaller than that of SQL Server. Thé access speed is on an average 27 to 77 times

faster than the conventional uncompressed counterpart in SQL Sever.

1.6 Thesis Outlines

In chapter 2, a review of the research in terabyte storage technology, terabyte data
management and compression methods in database systems is presented. We have
considered the HIBASE as the basis of our compression method. The dictionary

. organization and compression structure of HIBASE is also discussed.

Chapter 3 describes the CMBYVS structure which is the basic building block of the
terabyte data nfanagement system architecture. The details analytical description of the

components of the system is also given.

Chapter 4 contains details of the experimental work that has been carried out and
the discussions on the experiment. The experimental evaluation has been performed using
various datasets. The experiment shows the performance of the terabyte data management

system.

Chapter 5 presents the comments on the compression model and terabyte data

management system. It also gives the suggestions for the future research.



Chapter 2
Literature Review

The terabyte problem emerges out very recently, as the information of some
company is growing so fast that the size of information becomes double within six to twelve
" months [1]. This vast information is not easy to handle. So the database researchers need to
think about how to solve this problem. This tends to make research on terabyte data

management.

It 1s possible that some will neglect that a terabyte database with an unnecessary
huge solution will have no practical use in normal life. The opposite is also true. In this age
of electronic business, banking and electronic life in general, data is being formed “on the

wire”, which is producing a mammoth amount of data.

2.1 Terabyte Data Management

High performance data managements are emerging as critical technologies.
Although it is becoming more common today to get a terabyte of disk, it is still an open
problem how to manage, mine and analyze a terabyte of information. The terabyte challenge
1s an evolving, open testbed that can be used to test new algorithms and software for high
performance and wide area management, mining and analysis of data. The first phase of
Terabyte Challenge culminatéd at a demonstration during the Supercomputing Conference
in San Diego, 1995 in which the Terabyte Cha]lenge team members illustrated management,

mining and analyzing a variety of large data sets totaling over 100 Gigabytes [2].

As information storage requirements continue to double and triple, companies of
all sizes are facing a dilemma in managing cofporate information, As multi-terabytes of
stored information become the norm, the issue of backing up or restoring very large
amounts of data in the shortest possible time has become increasingly urgent. Although
backup times are critical, restore times are even more critical when the time comes to
recover corporate data. Information recovery times are critical to the overall financial

bottom-line of the corporation in today’s competitive marketplace [3].



2.1.1 Terabyte Databases

The European organi%ation for nuclear and particle physics research center is
constructing a particle accelerator that will begin operating in 2006. The IT managers at the
laboratory are expecting to collect up to 20 petabytes of data from the accelerator every

year [4].

The SBC Communications Inc. in San Antonio runs a 20-terabyte NCR Teradata
database, up from 10.5 terabytes in 2004 [4]. SBC’§ data warehouse has nearly doublied in
size every year since it was built in 1994. Sears Roebuck & Co. is combining its customer
and inventory data warehouse t.:o create 70 terabyte system, the retailer will hit the 1
petabyte threshold within 4 years. It is expanding its database to make it more useful. It
wants 35-terabyte data warehouse of product-inventory and store-sale information for

retailer’s restructuring as it tries to rebound from a year of falling sales and profits.

Comscore, stores 9 terabytes of click-stream data on 27 terabytes of disk space
‘that's partitioned into two sections. One section holds aggregated data and the other stores
detailed data. Both are regularly backed up on tape, a process that takes several days, but
only the aggregated data is backed up within the database. That's because the aggregated

data has undergone more processing and would take more work to reconstruct if lost [4].

ACNielsen's data warehouse requires multiple servers with a single database
image [4]. That challenge prompted Sybase and Sun Microsystems last year to create the
iForce data warehouse reference architecture to handle more than 25 terabytes of raw data.
IForce is a blueprint that companies can use to assemble their own large data warehouses.
General Motors North America in Detroit operates a number of large databases, including
its engineering and product-development database, with 8 terabytes of raw data and 22

terabytes of disk space.

Florida International University went live with a 20-terabyte database of high-
resolution aerial and satellite images of the entire United States provided by the U.S.
Geological Survey [4]. The system is believed to be the largest publicly accessible database -
on the Internet. But data for individual images is distributed to avoid overloading any single
server in the event of a spike in demand for a particular image--say, as the result of a natural
disaster. To maintain the database's performance, the school is creating a hierarchy of data

caches to hold more frequently accessed images. The caches should reduce the primary



database's workload. The typical American consumer now generates some 100 Gigabytes of
data during hié or her lifetime, including medical, educational, insurance, and credit-history
data. If we multiply that by 100 mzllion consumers and we get a whopping 10,000 petabytes
of data. A petabyte of data may seem like a lot to swallow today, but businesses' appetite for

information shows no signs of diminishing [4].

2.1.2 Terabyte Storage

Dataquest, another leading industry. analyst, reports the average desktop
consumption of storage space has grown from 1.4 GB in 1997 to 3.5 GB in 1999 and is
projected to reach 14 GB in 2003 [3]. Even though cost-per-megabyte for storage is
declining at the rate of 35% to 40% per year, the increase in complexity of storage systems,
such as mirroring, 24x7 backup, high-availability configurations, leads to increases in
storage management costs [3]. As the need for more efficient information management
grows, Internet, ecommerce, and digitization of data increase the requirement for more
effective communications bandwidth. With this ever-increasing information storage need,
comes an equally new level of complexity in the deployment and management of storage
devices. This complexity can be significantly reduced by employing SAN/NAS (Storage
Area Network/ Network Attached Storage) technologies into existing LAN/WAN

environment, is shown in Figure 2.1 and Figure 2.2.

NAS signifies a Network Attached Storage device that provides high availability
disk storage. It is attached to the network directly and not through a server. However SAN
is a separate high-speed network with fiber channel backbone for shared storage. Eéch
server on the LAN is also connected to the SAN, and these servers can be running any one
wide variety of operating systems. These servers are directly connected to the storage

devices. These storage devices can be of any tape or RAID arrays [5].

Now-a-days even terabyte of storage is gradually coming to the market. Nano-
terabyte technology invent DVD up to 4.7GB and HD-DVD up to 20~25GB and enabling to
reach 100GB~1000GB [6].
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Figure 2.2: Fiber Channel Storage Area Network [3].

Maxtor's new external drive comesr to market on the October, 2005, places a
terabyte of storage space on the desktop - that's 1000 gigabytes of digital real estate ready to
house business data, MP3s, digital images, video and just about any other electronic file that

might have. It is designed to plug in to one PC or Mac [8].

ATP projects (Advanced Technology Program) develop technologies to increase
the data storage density of existing magnetic tape data systems by a factor of 250, which lay

a foundation to store greater densities in future system for terabyte data storage [9].

A
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2.1.3 Terabyte Database Solutions

SGI Systems, Inc. in partnership with IBM Corporation, Legato Systems and
Computer Associates Corporation performed backup of a one-terabyte Oracle7TM database

in less than one hour [10].

A joint project of Microsoft, Dataware and HP has built up a terabyte data
warehouse on Microsoft SQL Server 2000 platform with access via a thin client using a web

" browser with mobile access from a PDA computer or WAP telephone [7].

SQL Server 2005 is ready for the enterprise, offering exceptional data availability
and manageability, hardened security, and the ability to scale from handheld mobile devices
to the most demanding online transaction processing (OLTP) systems and multi-terabyte

data warehouses [11].

Oracle today announced that Oracle powers the world's largest commercial
database, according to the Winter Corporation 2005 TopTen (TM) Program [12]. The
customer database is a 100 terabyte (TB) data warehouse, and is more than triple the size of
the world's largest database (29.2 TB) in the previous TopTen Program (November 2003),

which was also powered by Oracle.

2.1.4 Terabyte Data Warehouse

Data warehousing and on-line analytical processing (OLAP) are essential elements
of deciston support, which has increasingly become a focus of the database industry. Many
commercial products and services are now available, and all of the principal database
management system vendors now have offerings in these areas. Decision support places
some rather different requirements on database technology compared to traditional on-line
transaction processing applications. An overview of data warchousing and OLAP
technologies is given in [13], with an emphésis on the new requirements. This paper
describes the back end tools for extracting, cleaning and loading data into a data warehouse;
multidimensional data models typical of OLAP; front end client tools for querying and data
analysis; server extensions for efficient query processing; and tools for metadata
management and for managing the warehouse. Typically, the data warehouse is maintained
separately from the organization’s operational databases. There are many reasons for doing

this. The data warehouse supports on-line analytical processing (OLAP), the functional and
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performance requirements of which are quite different from those of the on-line transaction
processing (OLTP) applications traditionally supported by the operational databases. OLTP
applications typically automate clerical data processing tasks such as order entry and
banking transactions that are the bread-and-butter day-to-day operations of an organization.
These tasks are structured énd repetitive, aﬁd consist of short, atomic, isolated transactions,
The transactions require detailed, up-to-date data, and read or update a few (tens of) records
accessed typically on their primary keys. Operational databases tend to be hundreds of
megabytes to gigabytes in size. |
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Figure 2.3: A Typical Data Warehouse [15].

Aepreatens

Many organizations around the world have come to rely totally upon the essential
information asset stored in their corporate databases and data warehouses. A typical data
warehouse is shown in Figure 2.3. If the information is not available for any reason the
business may grind to a halt, and if it stays unavailable for a protracted period, serious
financial consequences may result. Making a data warehouse available is not easy.
Corporate data warehouses range from one terabyte to ten terabytes or more, with the
intention of giving users global access on a 24x365 basis. Data warehouses can take months -
to set up, yet can fail in seconds. And to react to changiné business requirements the data

warehouse will need to change in design, content and physical characteristics on a timely
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basis. The characteristics of the data warehouses and how to make it safe, available, perform

well, and be manageable is described in [15].

2.1.5 Terabyte Data Management Using Conventional DBMS

The Czech researchers manage 1.1 TB of data in the SQL Server 2000 platform
[7]. The researchers use 2 servers, the first of them, HP' Net-Server LT6000r with 6 Xeon-
700 MHz processors, 4 GB RAM and the Microsoft Windows 2000 Advanced Server
| operating system was used for the relational data warehouse. The second, HP Net-Server
LX:8500DC with 8 Xeon-700 MHz processors, 4 GB RAM and the Windows 2000
Datacenter Server operating system had the task of creating multidimensional analytical -
data cubes and interacting with users. The HP SureStore XP512 disk array are used to
connect the two servers by a pair of fiber channels. The disk array consisted of 32 disks
with a capacity of 18 GB for applications demanding access to data at a maximum speed
and another 32 disks with a capacity of 73 GB for applications demanding maximum
capacity. The total gross capacity was therefore 2.8 TB. To protect against malfunction,
RAID-5 arrays have been created from the discs, making available disc capacity 2 TB. For
still more demanding applications, HP SureStore can be configured to a gross capacity of
92.6 TB when using disks sized to 181 GB. The system does not have any compression

- mechanism so that the huge storage space is required to manage the terabyte data.

" The problems and critical issues of migrating a multi-terabyte archive from object
to conventional relational database is discussed in [28]. This does not provide any general

solution of terabyte data management system.

A terabyte scale test is performed at IBM’s Teraplex center that is déescribed in
[30]. This test is done to make research on large scale data warehouse using conventional
DBMS. The test examined only the role of OLAP technology in large scale data

warehousing architecture, but the architecture does not apply any compression technique.

2.1.6 Tera-scale Architecture

An architecture for archiving and analyzing real-time scientific data [14] is given
in Figure 2.4. It isolates researchers from the complexitiés of data storage and retrieval.
Data access trahsparency is achieved by using a database to store metadata on the raw data,

and retrieving data subsets of interest using SQL queries on metadata. The second
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component is a distributed web platform that transparently distributes data across web

SEIvers.
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- files
Lm Client . —b
Program i~ C Library
Retrieve e
Weh Jites g
Interface (4 —

Figure 2.4: Data Archival Architecture for Real-Time Warehousing of Scientific
Data [14].

The amount of scientific data is growing rapidly that is a challenge to store it and
make query efficiently. The size becomes terabyte; and the archiving of such large-scale
data is a great problem in terms of access speed and storage space. The architecture [14]
provides a framework for archiving and retrieving the large-scale scientific data using web
server and warehousing technology. It uses a compression technique to minimize the
storage space, but the compression model does not allow query support directly on the
compressed form. The loader stores the data files in compressed form to the web servers.
The retrieval process retrieves the decompressed data and then applies any SQL query on
the decompressed form. As it cannot carry out query directly on the compressed form, the

query processing time is not the optimal one.

This architecture achieves the four design goals of scalability, extensibility, cost-

effectiveness, and usability. The architecture is scalable as new servers can be added to
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store data files as required, and the archive can efficiently process multiple terabytes of
data. The architecture is exfensible as the metadata extraction process can be configured to
calculate different types of metadata, which allows the architecture to be applied to different

scientific domains.

The architecture provides the archiving mechanism only for the scientific domain.
This is not applicable to business oriented relational data, whereas most of the business data

+ are relational. Therefore, the architecture is failed to fulfill the market demands.

2.2 Data Compression for Management of
‘Terabyte Database

The Tera-scale Scientific Data Management [14] uses the compression to archive
the data files in web servers, the query cannot be processed directly in the compressed files.

The decompression is required to make any searching on the data.

Oracle uses block level dictionary based compression technique. The compression
model incurs some redundancy but a block itself contains all information that is required to
decompress. The compression of Oracle database is to manage large data sets. The details

of the compression model are discussed in section 2.3,

The Kx Database Technology uses columnar format [26] to store large database
but does not apply any compression mechanism. Though the columnar format really
exhibits high performance in data access, it is not as fast as the compressed columnar format

shows.

The architecture for multi terabyte, hierarchical data warehouse for continuous,
high-rate object stream archiving relational data in a hierarchical storage system composed
of serialized objects that have been binned and indexed is described in [16]. The
architecture does not apply any compression technique, so obvicusly the I/O access rate is

high and thus reduces the query performance.

A column oriented compression method C-Store [27] improves the performance of
the DBMS. It is designed mainly to support high performance query processing but has no

. guideline about terabyte data management.
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A general purpose compression scheme for image, voice and text data is given in
[31]. This is not applicable to conventional relational DBMS. A high-performance data
structure is developed in [29] for mobile information. But this does not guide for terabyte

data management.

2.2.1 Compression Methods

It 1s better to apply a compression technique to manage a terabyte level database.
This will occupy small amount of storage space but performance is attractive one. It
is difficult to achieve both storage reduction and performance improvement

simultaneously in a database compression. However, a few compression techniques have
the trade-off [18, 21].

According to Shannon [17], it has been known that the amount of information is
not synonymous with the volumerof data. Reducing the volume of data without losing any
information is known as loss-less data compression. Loss-less data compression can be
attractive for two reasons: data storage reduction and performance improvements. Storage

reduction is a direct and obvious benefit but performance improvement arise as follows:

0 Main memory access time is in.the range of nanoseconds while disk access is
in the range milliseconds. Only a smaller amount of compressed data needs to
be transferred and/or processed to effect any particular operation. Thus, it is

improving IO processing and hence improving the overall performance.

O A further significant factor is now arising in distributed application using
mobile and wireless communication, Low bandwidth is a performance
bottleneck and data transfers may be costly. Both of these factors make data

compression well worthwhile.

Combining compression with data processing improves performance. Database
systéms require providing efficient addressability for data, and generally must provide
dynamic update. It has proved difficult to combine these with good compression
technologies. Much research work has been done in database systems to exploit the benefit

of compression in storage reduction and performance improvement [18].
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2.2.2 Dictionary Based Methods

The compression scheme for database permits operations directly on the data in its
compressed representation. It should allow for the data representation of any specific tuple
of a relation to be directly addressable. To translate the compressed form, it is necessary to

go through a dictionary. In its simplest form, a dictionary can be a list of unique values that

occur in the domain [18].

223 The Implication of Compression on Database Processing

Compression has become now an essential part of many large information systems
where large amount of data need to be processed stored or transferred. The data may be of
any type e.g. voice, video, text, XML, table, etc. No single compression technique is
suitable for all types of data. Lossy compression is use for voice or video data whereas loss-
less compression is for most other data types. A common feature of all these types of data is
that the data redundancy occurs in columns instead of rows. The basics of compression

model, i.e. a column oriented dictionary based architecture is described in [18].

2.2.4 Compression of Relational Structure
ﬁ Relational structure can be benefited using compression as follows:

Significant improvement occurs in index structures such as B-tree and R-tree by
reducing the number of leaf pages. Reduction in transaction turnaround time and user
response time as a result of faster transfer between disk and main memory in IO bound
system. In addition, since this will reduce I/O channel loading, the CPU can process many

more I/O systems and thus channel utilization is increased [20].

Improvement in the efficiency of backup since copies of the database could be kept
in compressed form. This reduces the number of tapes required to store the data and reduces

the time of reading from, and writing to, these tapes [19].

Processing data in compressed form makes it possible for the whole, or the major
part of a database to be memory resident. Main memory access time several orders of

‘magnitudes faster than the secondary storage access time. Thus improves performance.

The horizontal organization has the advantage that a single disk access fetches all

attribute values in a tuple. Even for non-compresséd memory resident databases, where



17

memory access speeds are much faster, the implementation simplicity is appreciable. A
relation can also be represented as a sequence of column vectors in which corresponding

attribute values in successive tuples is stored adjacently [21].

In a main memory database system (MMDB) the data resides permanently in main
physical memory and memory resident data may have a back up copy on the disk. In
conventional disk based database systems the primary copy of the data resides in the disk
and a small portion of data is memory resident. The distinguishing features of MMDB
described in [22] are the access time of main memory is several orders of magnitude less
than for disk storage. Disk has a high fixed cost per access that does not depend on the

amount of data that is retrieved during the access.

2.2.5 Table Data Compression !

Effective exploratory analysis of massive, high—di'mensional tables of alpha-
numeric data is a ubiquitous requirement for a variety of application environments including
corporate data warchouses, network traffic monitoring or large socio-economic or
demographic surveys. Compression and decompression are not symmetric but are based on
the concept of compress once decompress many times. An example of massive data tables is
Call Detail Records (CDR) of large telecommunication systems. A typical CDR is a fixed
length record structure comprising several hundred bytes of data that capture information on
various attributes of each call. These include network level information (e.g., end point
exchanges), time-stamp information and billing information. These CDRs are stored in
tables that can grow to truly massive sizes, in the order of several terabytes per year.

Database compression differs from table compression in many ways.

Database compression stresses the preservation of indexing-the ability to retrieve
an arbitrary record under compression. Table compression does not require indexing to be

preserved.

Database records are often dynamic but the table data are write-once discipline.
Databases consist of heterogeneous data whereas table data are more homogeneous, with

fixed field lengths. Unlike table data, databases are not routinely terabytes in size.

The approach to database compression requires either lightweight techniques such

as compressilng each tuple by simple encoding or compression of the entire table. These
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approaches are not appropriate for table compression: the former is too wasteful and the

latter is too expensive.

Table compression was introduced by Buchsbaum etal. [23], as a unique
application of compression based on several distinguishing characteristics. They have
introduced a system called pzip. The basis of the method is to construct a compression plan
studying a very small training set off-line. The plan is based on data dependency. They have
+ defined two types of data dependency: combinational and differential. If two data intervals
have the compressed size in separate intervals larger than the compressed size in a
combined single interval, the intervals are combinational dependent. Differential
dependency is an explicit dependency between columns. Though pzip outperforms gzip by a
factor of two, partitioning the data determining the dependency is a problem. Optimum
partitioning is not possible using the training data set. The primary focus is to optimize the
compression ratio within a user defined error bound. However none of these methods can be

applied to databases where no loss of information is permissible.

Sparsely-populated table data arises when sometimes data is represented using a
single horizontal table. An example is the sparse bit—ma‘p for a digital library, the electronic
marketplace in and the news-portal system in IBM-Almaden [24]. Sparsely populated data

can be compressed using run-length encoding method given in [18].

2.3 Compression in Oracle Database

The Oracle RDBMS recently introduced an innovative compression technique for
reducing the size of relational tables [25]. By using a compression algorithm specifically
designed for relational data, Oracle is able to compress data much more effectively than
standard compression techniques. More significantly, unlike other compression techniques,
Oracle incurs virtually no performance penalty for SQL queres accessing compressed
tables. In fact, Oracle’s compression may provide performance gains for queries accessing
large amounts of data, as well as for certain data management operations like backup and

recovery.

In past commercial database systems have not heavily utilized compression

techniques on data stored in relational tables. A standard compression technique may offer
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space savings, but only at a cost of much increased query elapsed time. Hence, this trade-off

has made compression not always attractive for relational databases.

Meikel Poess and Dmitry Patapov et.al. [25] recently describe how to compress
Oracle table data in [25], that is an attractive solution for large relational data warchouses. It

can be used to compress tables, table partitions and materialized view.

The compression algorithm used in Oracle for large data warehouse tables
compresses data by ¢liminating duplicate values in database block (or page). The algorithm
is lossless dictionary-based compression technique. The compression window for which a
dictionary (symbol table) is created consists of one database block. Therefore, compressed
data stored in a database block is self contained. That is, all the information needed to

recreate the uncompressed data in a block is available within that block.

Figure 2.5 illustrates the differences between compressed versus non-compressed
block. The top part of the Figure 2.5 shows a typical data warehouse like fact table with row
ID, invoice Id, customer first name, customer last name and sales amount. There are entries
for five customers showing six purchases. For data warehouse fact table it is very common

to have this highly denormalized structure.

Compressed Block vs. Noncompressed Block

inveice ID Cusi_Nama Cust, Addr Salas_ami
1233033 Meyer 11 Homestend Rty 1399
1212300 Meyer 11 Hamestead itd 199
1242012 Meryer 11 Homostoad Rd 1.3
4923032 MeGryen 3 Main Street 1.99
8013020 MeGryen 3 Maln Sirect 159
2133050 MeGryen 3 tdain Sirect 192
o
//
Not Compressed 2 Compressed
v
Block » Biock

/
Header Information

Symbol Table

; - 123303
Raw Data —— juste
23023

Figure 2.5: Oracle Database Compression [25].
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The bottom right part shows how the same data is stored in a compressed block.
Instead of storing all data, redundant information is replaced by links to a common
reference in the symbol table, indicated by the black dots. For each column value in all
columns, based on length and number of occurrences in one block, the algorithm decides
whether to create an entry into the symbol table for this column value. If column values
from different columns have the same values, they share the same symbol table entry. This
. is referred to as cross-column compression. Only entire column values or sequences are
compressed. Sequences of columns are compressed as one entity if a sequence of column
- values occurs multiple times in many rows. This is referred to as multi-column
compression. This optimization 1s particularly beneficial for OLAP type materialized views
using grouping sets and cube operators. For instance a cube of a table often repeats the same
values along dimensions creating many potential multi-column values. Multi-column
compression can significantly increase the compression factor and query performance. In
order to increase multi-column compression, columns might be reordered within one block.
For short column values and those with few occurrences no symbol table entry is created
limiting the overhead of the symbol table and ensuring that compressing a table never
increases its size. However, this is transparent to any application. This method improves 1/O

performance but the query processing requires a decompression on page by page basis.

2.4 Dictionary based HIBASE Compression
Approach

The HIBASE[21] approach is a more radical attempt to mode! the data
representation that is supported by information theory. The architecture represents a relation
table in storage as'a set of columns, not a set of rows. Of course, the user is free to regard
the table as a set of rows. However, the operation of the database can be made considerably

more efficient when the storage allocation is by columns.

The database is a set of relations. A relation is a set of tuples. A tuple in a relation
represents a relationship among a set of values. The corresponding values of each tuple

belong to a domain for which there is a set of permitted values. If the domains are D,

Ds,....... , D respectively. A relation r is defined as a subset of the Cartesian product of the
domains. Thus ris definedas r ¢ D, x D, x.....xD,. —
£t
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Table 2.1: An Example of Simple Voter Information

First Name | Last Name | Village | Sex | District
Abdur Rahim | Rampur | M Tangail
Nasir Uddin Fulpur M | Mymansing
Based Mia Rampur | M Tangail
Abdur Rouf Fulpur M | Mymansing
Nasir Mia Vuralia M Gazipur
Hasina Begum | Rupganz F Gazipur
Saleha Begum | Rupganz{ F | Narayngonj
Parvin Begum Rampur F Tangail

An example of a relation is given in Table 2.1. In the conventional database
technology, we have to allocate enough space to fit the largest value of each field of the
rtecords. When the database designer does not know exactly how large the individual values
are, he/she must err on the side of caution and make the field larger than is strictly
necessary. In this instance, a designer should specify the width in bytes as shown in Table

2.2, Each tuple is occupying 104 bytes, so that 8 tuples occupy 832 bytes.

Table 2.2: Field Lengths and Tuple Size for the Voter Relation.

Attribute Attribute Name Bytes
0 First Name 20
1 Last Name 20
2 - Village 30
4 Sex 4
3 District . 30
Total 104

2.4.1 HIBASE Compression Architecture

The architecture given in Figure 2.6 is a compact representation that can be derived

from a conventional record structure using the following steps:

Q A dictionary per domain is employed to store the string values and to provide

integer identifiers for them. This achieves a lower range of identifier, and
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hence a more compact representation than could be achieved if a single

dictionary was provided for the whole database.

0 Replace the original field value of the relation by identifiers. The range of the
identifiers is sufficient to distinguish string of the domain dictionary. The
example given in Figure 2.6 shows that there are only seven distinct first name,

so only a 3-bit can represent this attribute,

Hence in the compressed table each tuple resume only 3 bits for First Name, 3 bits
for last Name, 2 bits for village, 2 bit for district and 1 bit for sex forming total of 11 bits.
This is not the overall storage; however, we must take account of the space occupied by the
domain dictionaries and indexes. Typically, a proportion of domain is present in several

relations and this reduces the dictionary overhead by sharing it by different attributes.

- Original Table

First Last Village | Sex | District /

Name | Name

Abdur Ruhim Raompur M Tangail

Nasir Uddin FulPur M My mensing]

Based Mia Rampur M Tangail

Abdur Rouf Ful Pur M Mymensing]

Nasir Mia Vuralia M Gazipur .

Flasina Mia Rupganz F Gazipur .
Sulcha Begum Rupganz F Marayngon) Compre ed Relation
Parvin Begum Rampur F Tangail

First Last

illa, : District
Name | Name Village Sex istric
00 000 H 0 [i3]
Qo1 001 01 0 0}
010 Q10 00 [ (X)
Q00 13 01 Q gl
R ’ [ ool 010 0 3 o1
Compression Engine 1Y) o0 T 1 T
100 100 [ 1 11
101 100 ) 1 [i]
g | FirstoroLast fyiiae | Sex | Distrier
Name | Name Domain
0 Abdur Rohim Rampur M Tangait p .
1 Nasit | Uddin | FulTur F Mym:nsing/ Diactionary
2 Based Mia VYuralia Gazipur
3 lasina Rouf Rupganz Narayngory
4 Salchy Begum
5 Parvin

Figure 2.6: Compression of a Relation Using Domain Dictionaries.

2.4.2 Dictionary Structure in HIBASE

HIBASE used two alternative representation of the values stored in attribute: token

and lexemes. A token is a sub-range of integers represented in its minimal binary.encoding.
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Lexemes are a sequence of 0 or more 8-bit characters. The translation of string value to
token is optimized using the minimal number of stored bits. String of decimal digit can be
directly converted into binary at the database designer’s discretion. Other data, which can
not be represented directly as an integer, such as character string or real, are translated using

dictionaries although in principle, real can be encoded as primitive data type.

A Dictionary must have Three Characteristics:

U It should map attribute value to their encoded representation during the

compression operation: encode (lexeme)—> token.

O It should perform the reverse mapping from codes to literal values when parts

of the relation are printed out.
U Decode (token)->lexeme.
(' The mapping must be cyclic such that x=encode (decode (x)).

The structure is attractive for low cardinality data. For high cardinality and primary
key data, the size of the string heap grows considerably and contributes very little or no
compression. The HIBASE compression does not support Unicode which is essential for

current database applications.

2.5 Summary

This chapter described the different existing terabyte databases, database scenario
in data warehouse and compression methods with an emphasis on dictionary techniques for
database applications. We have discussed the relationship between compression and
database representation. The HIBASE compression method has been described in detail as
we have considered this approach as the basis of our architecture. But there are fundamental
differences with our methods. As for example, the dictionary structure, the compressed

representation and the query processing.

.\JJ



Chapter 3
Terabyte Data Management System

. i

This chapter describes the detail analytical model of Columnar Multi-Block Vector
. Structure (CMBVS) for storage of compressed representation of relational data. CMBVS is
the basic component of Terabyte Data management System. We develop the system for

single processor and extend it to a parallel architecture.

3.1 Basic Compression Technique

We extend the basic HIBASE compression model to facilitate multi-block vector
structure with disk support. The vector is column oriented rather than the conventional row-
wise format. Each attribute is associated to a domain dictionary and a column vector. [ising
the HIBASE Compression method described in section 2.5, we can represent a sample

relation given in the Table 2.1 as a column structure as shown in Figure 3.1.
I

The column structure represents a table in storage as a set of columns, not a set of
rows. This makes certain operation on the compressed database considerably more efficient.
The columns are organized as a linked list, each of which points to the dictionary that is
used to compress the column. The vertical slices through the tuples are then stored in

compressed, bit-aligned vectors.

Representation by column can be processed more efficiently than representation
by Tow. A column wise organization is much more efficient for dynamic update of the
compressed representation. A general database system must support dynamic incremental

update, while maintaining efficiency of access.
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Figure 3.1: Column Organization of Relation Rather than Row Wise Format.

The processing speed of a query is enhanced because, a typical query specifies
operation on only a subset of domains. In a column wise database, only those specified

values need to be transferred, stored and processed.

The HIBASE model uses single bloci( column vector, the whole vector has the
same size of compressed element. It is costlier to restructure the whole vector in single
block structure. We use the multi-block vectbr structure that partitions the vector into
multiple blocks. Each block has a fixed number of elements and the bilock can be

restructured independently. So the restructuring affects 6nly the blocks that are involved.

The blocks are independently addressable so the structure is suitable for large
datat;ase. In the architecture we use the multi-block vector structure. We call the structure
CMBVS (for Columnar Multi Block Vector Structure) through out the chapter. The
HIBASE structure was designed for memory resident data but we have designed CMBVS
for disk support. So the ever-increasing data can be easily stored in the structure. The Three
Layer Model by Hoque A.S.M. et. al. [18] uses also multi-block structure but does not have
disk support.
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3.2 Column Oriented Multi Block Vector
Structure

The CMBYVS is the container of compressed tuple value of an attribute. The
CMBYVS is divided into multiple blocks. A block is the lowest layer of the system. The
CMBVS is the next higher level. First of all we discuss the block structure.

- 3.2.1 Block Structure

The block structure is the lowest layer of the system. This is a logical block of
compressed elements. A block is a collection of multiple machine words that accommodate
a fixed number of compressed elements of same size in compact form. It maximizes the
utilization of storage space and minimizes retrieval time. A typical structure of a block is

given in Figure 3.2.

Block Structure

Iapeay yaoig

[ Element Index in a word |

KERNENEN

f 0 }
| 1 |
A 32-bit machine word I 2 |
g :
(=9 -
& :
v | m-1

Figure 3.2: A Typical Block Structure

Each block has a header that represents the properties and some important aspects

of the block like:

(i) Block number: It is the identification number of the block.

(i) Pointer to word list : This pointer points to a wordlist that contains the
compressed elements.

(iii) Current word index: This identify the current word from the wordlist.

(iv) Number of elements in the block: Specify the number element per block.
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)
(vi)

Number of elements per word: Specify the number of elements per word.

Element size: Indicate the element size of the block.

(vil) Element index in word: This specify the element in a word.

Block Operations:

The class block performs the following main operations:

i)

iii)

insert_token(token, element_size): insert a new token to the block. The
insertion always occurs at the end of the block. The element size of the
inserting element should be same as the element size of the block. If the
element size of the token is larger than the element size of the block then

widening operation is issued.

Get_token(i): This operation returns the i token from the block and i must

be smaller than or equal to total number of elements in the block.

Widening (old_element_size, new_element size): Widening operation is
issued when the element-size of inserting token is larger than that of existing
element-size. During the widening operation, all the elements in the block
are reorganized and element size is set to new c]en_lent size. To perform this
operation, all the existing tokens are inserted to a temporary wordlist with
new element size then the new element is added to the temporary wordlist.
The old wordlist is deleted and the broperties of the block are set with new

element size.

Get_Tuple_Id (token): This operation returns a set of record-ids from the
block that is matched to the token. If no matching is found in the block then

it returns minus one. This function returns an enumerated list of record-ids.

3.2.2 Multi-Block Vector

The vector consists of multiple blocks. This 1s the next higher level than the block

structure. Any operation in the vector ultimately propagated to the block. The following

sections describe the details about the vector structure and operation. Multi-block structure

reduces reorganization cost of vector and also reduces the wastage of space.



28

Y

A pgeneral database system must support dynamic incremental update, while
maintaining efficiency of access. We have considered a database as a set of columns instead -
of rows. In order to accommodate additional tuples, and additional lexemes in domains,
each column requires being dynamically adjustable in width as well as length. To do this

efficiently: it must allow easy adjustment of the number of tuples in relations.

It must also allow alteration in the length of the identifiers in use. When a
- compressed representation is in use, from time-to-time as updating proceeds, the range of
clement identifiers and hence their size must be altered. Incremental update of a column-
oriented organization has a lower cost than for incrementally altering elements in a row-
oriented representation. In the row-oriented case, all attribute values must be copied, not

just the value being updated. This does not occur with a column-oriented representation.

It must be possible to address efficiently and directly each attribute value without

requiring accessing preceding or succeeding tuples or values. This is called direct

addressability.

In the single block organization, the worst-case temporary additional storége
needed for the widening operation is the size of the widest vector in the database. There are

two more problems: copying and wastage of space.
The followings are some significant features of multi-block structure:

Blocks can be added or removed to accommodate addition, or restructuring of the
vector. During evolution of the database, elements of some attributes may need
"broadening’. Each block can be adjusted dynamically and incrementally to accommodate
changes in the size of element being stored in it. This block-at-a-time reorganization is the
key to enabling the DBMS designer to meet deterministic maximum update time

constraints, and hence to achieve scalable update performance.

Without this independence of update for individual blocks, the storing of a longer
identifier would require adjustments of the vector width (and hence copying) of the entire
storage of the vector, a task proportionate to the size of the vector. This is one of the most

important aspects in the use of this structure in database systems.

The independence of each block permits data compression to be applied within the

block. A base-and-offset representation can be used; each clement being stored as its offset
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from a base element for the block. This could be the minimum element stored in the block.
The situations in which the elements are in fact ordered, or partially ordered this may be
particularly effective in reducing the size of each stored element. The base element may be

a minimum, average, or maximum value.

The maximum and minimum values are also particularly useful in rapid searching
of a vector for an element with a particular value, elements within a range, elements

belonging to a set of-elements specified by a query.

The vectors are used to provide basic storage units from which relations,

dictionaries etc. are constructed.

There are two options for organization of block: fixed number of elements per
block or fixed size. According to [18], the fixed number of elements offer better

performance than the fixed size.

In a fixed number of element option, each block contains a fixed number of
elements and hence the memory requirement for different block is different and depends on
the size of elements in that block. This may be fixed when the system designer fixes the
number of elements per block. In practice it does not appear to be a parameter to which the
‘system’s performance is sensitive. To achieve the full space utilization the number of
elements in each block is to be a multiple of word size. This decision also reduces the
computational complexity. The size of element stored in the vector is uniform within any
block, but may vary between blocks. This arrangement though slightly less convenient to
manage in terms of memory allocation, it provides direct addressability to the i™ element by

means of few simple operations.

A multi-block vector structure is shown in Figure 3.3. It contains m blocks in
memory and the remaining others are in disk. If we consider that the vector contains kxm

blocks in total and n elements per block, the total number of elements in memory is mxn.

3.2.2.1 Providing Disk Support

As the main memory is limited, the entire vector of large database could not be
accommodated in memory. A certain number of blocks reside in memory, the others are
kept in backing store. Figure 3.3 shows that m blocks can reside in memory. Let i" block is

mapped to j™ position of vector and there are total kxm blocks in vector. If i™ block is

Y
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referred, it is first searched in j'" vector position. If the database block number of j™ block in

vector is same as i, then j™ block in vector is the target block other wise issue a disk access
to load the i™ block form disk.

The blocks reside in

LDatabase block number—l

memory
Vector block number /“ / >\
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Figure 3.3: Multi-Block Vector Structure

3.2.2.2 Vector Operations

A vector represents a column of relational database. The main attributes of the

vector class 15 :

i)  total number of blocks : represents the total number of blocks that can reside
in memory
ii)  total number of elements: total number of elements that are in a vector
iii)  current block pointer: a pointer to current block

iv)  database block number: the last block index number of database.



Main Vector Operations:

i) insert token(token, token size): The vector insertion is always propagated to

the insertion to the current block. If the block is full new block is added (with

yy block number) to vector. The token is inserted to new block and the current

block is stored to disk with yy identification number. The flow chart of the

insertion operation is given in Figure 3.4,

If (current block is full)

add new block to vector;

endif;

Insert Token
to Vector

No

disk_write{current block) with yy identification number;

0Old Token size==New
Token size

Is Current
Block Full?

Yes

Add new Block to
Veqtor

Yes

No

Y

Widening the
Current Block

i

X

Y

Insertin
Block
™

Current

Insert the Token in
New Block

Y

»{ end )

k ]

Total Number of Elements++

Figure 3.4: Flow Chart of the Insertion Operation in Dynamic Vector
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ii) get token(i): Find the i™ element in the vector. At first identify the block
where the i element is. Then just issue get token(block_tuple_id ) operation to

that block in following way:

get_token(i)
begin
block_to_be_ search « i DIV number_of element_per_block;
/f dentify the block number
block_tuple_id «iMOD number_of_element_per_block;
// Identify the tuple id in the specified block
vector_block_location « block_to_be_search MOD
total number_of block in_vector;
//Block location of vector in memory
if {block_to_be_search<> database_block_number})
vector_blocK_location « disk_read {block_to be_ search}
else '
search in vector;
token « block[vector_block_location].get_token(block_tuple_id);
return{token); '
endif;

end get_token;

iii) get tuple id(token): This function takes a token as an argument and search all
the blocks one after another to find the matching token in the blocks and return

the tuple ids.

3.3 Terabyte Data Management System Using
Parallel CMBVS

This section describes an overview of the terabyte data management system using
a paraltel implementation of CMBVS structure. The conventional uncompressed data

management system is slower in processing and in some cases unable to handle massive

data sets.



33

" There are two main assumptions about the architecture:

(0 Database applications where mainly relational data is stored.

0O Shared nothing parallel database architecture.

3.3.1 An Overview of the Architecture
The main components of the architecture are as follows:

Input Manager

Terabyte Data Management System
Compression Manager

CMBYVS Server Manager

Column Servers

Domain Dictionary Server Manager
Domain Servers

Query Compressor and Optimizer

Decompression Manager

(o Y i Y o Y o A o A

Query Manager .

The architecture is given in Figure 3.5. The details of each of the components of

the architecture are described in the following sections.
3.3.2 Detailed Architecture of the Terabyte Data Management
System

The Architecture provides an infrastructure to manage terabyte level of data in

compressed form. The following sections describe the components of the architecture.
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Figure 3.5: The Architecture of Terabyte Data Management System

3.3.2.1 Input Manager

This component is responsible to take input from various sources for storing data
in compressed form. The architecture stores data in most homogenous angd fixed format. It is
responsible to process the data come from various sources and send to the compression
manager for storing in compressed form. All the data must go through the input manager to

marshal in a format that supported by the compression manager.

3.3.2.2 Compression Manager

The compression manager takes input from Input Manager. Taking the original
data as input (lexeme) it issues a dictionary search and return the corresponding token. The
Compression Manager then sends the token to CMBVS Manager to store in compressed

form. -
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3.3.2.3 CMBYS Server Manager and Data Storage into Column Server

The CMBVS Manager is the middle level decision making unit (Figure 3.6). It
distributes ‘the column vectors over multiple column servers. It receives input from

compression manager and route the compressed token to a specified Column Server.

Compression
Manager

{vxo1}

p
2,
Gomain Dictionary ManageD

CMBVS Manager

Send the token to i
Column Server

Column
Server i
Figure 3.6: Data Insertion into Column Server

CMBVS Manager is also responsible for replying any query come from query
processor. CMBVS Manager accumulates the compressed query results from Column

Severs and reply the compressed output to Decompression Manager.

3.3.2.4 Column Servers ‘

Column servers are the storage area of the compressed form of data. It takes the
compressed token of each attribute from CMBVS manager. Each Column Server can store
and manage one or more column vectors. Column vector is the lowest layer of the

compressed data phase. Each column vector is partitioned into multiple blocks; each block
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contains a fixed number of elements. Detail of the block structure is described in section

3.2.1.

3.3.25 Decompression‘ Manager

Decompression manager shown in Figure 3.7 does the following works:

It gets the compressed form of query results from the CMBVS Manager. This

compressed data then decoded with help of Domain Dictionary Manager, the original

decompressed results are finally returned to Query Manager.

Decompression - Query
Manager / "\ Manager

Compressed
Query Results

.—{ L
2 :
1]
> 2
LM
=
Y
Domain
Dictionary
Manager

Figure 3.7: Decompression Manager

3.3.2.6 Domain Dictionary Server Manager
Domain Dictionary Server Manager distributes the domain dictionary over
multiple domain servers. The main operations of a dictionary are as follows:
i}  insert (lexeme): This operation insert the “lexeme’ to a domain server. The
dictionary manager decides the domain server where the domain is located.
ii) search_token {lexeme): This operation is propagated to the domain to find

out the corresponding token associated to “lexeme”.
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iii) search_lexeme (token): This operation is propagated to ith domain to find
out the corresponding “lexeme” associated to the “token”. This is an inverse
operation of search_token operation.

iv) delete (lexeme): When a user wants to delete a tuple value completely from
the database then at first the corresponding token of the lexeme is deleted. -
Then the dictionary issue a delete(lexeme) operation if no other token exists

corresponding to the lexeme.

3.3.2.7 Domain Server

Each domain server stores one or more domain dictionaries. Domain server also
stores the index file if the attribute is a search key. We store {lexeme, token} pair in a

domain server. Though there is some storage wastage we store two instances of {lexeme,

token} pair (Figure 3.8):

L1 <lexeme, token>: This instance store the lexeme in sorted order. It pérforms
better during compression process.
L1 <token, lexeme>: This instance is sorted against token. It performs better

during decompression.
Multipart Concept in Domain Dictionary:

During evolution of database the size of domain dictionary may be large enough to
handle as a whole. So that we make partition to the domain dictionary and accommodate

some partitions to memory and remaining others are in disk. They will be fetched on

demand basis.
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Original
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(District)
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Figure 3.8: Two Instance of Dictionary Storage.

3.3.2.8 Index Structure

An index file is created if the attribute is a search key. The index structure is
associated to <lexeme, token> instance. We use the strategy < Search-Key, Row-Id List>
for indexing. If Row-Id list is very large in size, we can apply multi-block vector structure

algorithm to store the list.

3.4 Ahal‘ysis of CMBVS

Element to Word Mapping:
There are two possibilities of element to word mapping:

QO Map the bit string contiguously to the underlying word units (overlapping

elements).
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0 Map the elements of the vector to words in such a way that no vector element
ever overlaps a word boundary of underlying hardware (non-overlapping

elements).

The second option appears to first sight to have a lower level of complexity since
element will be sought only within one hardware defined wor_d. It does, however, suffer -
from wastage of space at the word boundary. Depending on the number of elements in the
block, there is another space overhead at the boundary of the block. With overlapping word
_ boundaries, no space is wasted at the word boundaries. But there is still wastage of space at

the block boundaries. This wastage ranges from 0 to a maximum of (wordSize-1).

The Three Layer Model evaluates that non-overlapping mapping technique is more
efficient than overlapping in context of retrieval performance [18]. So we use the non-

overlapping technique for our thesis.

Space Efficiency of Non-overlapping Element Mapping:

Let

n = total number of elements in the vector

m = total number of elements in a block

v; = width of each element in the i™ block (bits)
w = word size (bits)

Total number of blocks in the vector = |_n/ m~|
For block 1 where, 1<i an/rrfl

The number of elements per word =|w/v, |
The number of words per block =|_ (m/[w/ vf_l ) 1
The size of the block,

5, =w([ (milwiv]))) G

Hence the size of the vector,
rn / m-l

8= le ([ (mi|wiv, 1)]) | (3.2)



40

When word size is a multiple of the element size, the percentage of space overhead
1s zero. The maximum wastage in the case of 64-bit word size is for a 33-bit element with

almost half the space wasted.

Equation 3.2 shows the space needed for a vector. This represents the logical
space. Physically the vector storage also includes the block overhead. The disk space

occupied is higher than the physical storage because there are some fragmentations between
. disk blocks.

Insertion Time Complexity:
Insertion time includes the time of widening operation of a block, the time to store
the block into secondary storage (disk) and time dictionary search time.

Time for widening operation

[z}o)

m

Where
n=Number of elements in the vector
m=Number of elements in a block
U=The number of widening operation in a block

In worst case U = log, m

Time to store the blocks into disk

Azh ,

Where
T,=The average time to write a block in disk
Time to insert the lexemés into dictionary
0(c,xL,)
Where
C; =Cardinality of i"™ domain
Li=Average length of lexemes in the dictionary

Insertion time complexity

:O(lr?’?ﬂxlog;')+0("%}<ﬂJ+O(C,><L,-) ' " (3.4)



Widening Operation:
It requires an additional temporary storage because the existing elements need to
add to temporary block with new element size. After the completion of widening the storage

will be released.

Temporary storage needed for widening operation:
S, =0w(miwiv, _ﬂ)) (3.5)
Where

“ w=8ize of word (bits)

vi=Element size of the i" block (bits)
Searching in Vector:
There are two types of searching in vector:

Finding the token value of specified tuple_id done by the function get_token(i).
This operation is a faster operation, because the vector can easily find out the token of a

given tuple id. The function finds out the token after three steps:

O Finding the desired block where the tuple is located.

O Find the desired word.

0 Find the desired element in the word using few basic CPU operaﬁons (SHIFT,
AND, OR).

The time complexity depends on the element search in word. First two steps takes

2 CPU cycles. Complexity of third step depends on the number of elements per word.

So time complexity of get_token:

A

Finding the all tuple ids in the vector whose value is matched to a specified token.
This operation is complex operation and takes more time than the above. The given token is
compared to every element of each block of whole vector. It will return a list of tuple ids.
To perform the operation vector executes Get_tuple_id of each block. It may return all the

tuple ids if the whole block contains similar value. So to hold the tuple id the operation

N
s
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needs a storage of O(m). The get tuple_id actually issue get token(i) where i=0....m, 1e.

get token is performed m times.

Time complexity of get tuple_id:

REHREL

Where

T~=Average time to read a block from disk

Analysis of Domain Dictionary:

Space Complexity:
Let
C

Cardinality of i"" domain

L, = Average length of lexeme of i domain

[}

Total storage of lexeme and token of i domain

=C,x L, +4C, ; iftoken is stored as 4 byte integer

G.7)

As we store two instance of domain dictionary. So total Domain Dictionary

Storage(Sop):

P
Spp=2x% ( C,xL, +4C ) ; for p attributes
i=1

If the size of index file storage is=1I

The Dictionary and Index Storage (Spy):
Fid
Sy =2xY. ( CxL+4C, )+ bits
i=1
Time Complexity of Diétionary Search:

Searching time in dictionary:
To search in dictionary we can easily apply hash searching technique.

Searching time in Dictionary

T :O( 1 )+ O(%] ; where /= average length of bucket chaining

(3.8)

(3.9)
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3.4.1 Analysis of the CMBYVS Storage Capacity

This section is analytical study between conventional data warehouse and the

proposed architecture:
Let a table T with p aftributes:
p = Number of attributes = Number of columns
d = Distinct Domain Dictionary
" As some similar attributes share a dictionary,
d<p
Total Size of Compressed Relation:

Scr = number of attributes x Size of vector

= pxS
I-rrlm]
= px Zw(f(m/l_w/vjj ﬂ) bits (3.10)
i=l
I-m'm-l )
Since, § = Zw ( [ ( m/Lw/v,_l ﬂ ) ' ; Using equation 3.2
i=1

Total Size of Compressed Information (Scy)

Se =(pxS)+2xi (C,xL +4C, )+1 (3.11)

i=t
Storage for Row-wise Format:
Let n=number of tuple

x=size of each tuple

Total Storage of Uncompressed Format (Syr):

Svus=n x x bytes
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Compression Factor (CF):

form,

34.2

Using the Equation 3.8, 3.10 and 3.11

CF = SU}" — SUF — nxxx8 (3]2)

Sﬂ SCR+SDI ((PXS)'*‘zxi (C,.XL‘.+4C,- )+I )
i=1|

If we estimate that the dictionary and index file is about 30% of total storage, then

Spr=0.3%S¢;

Sca=0.7 %S¢y

Hence Spr=0.42x8cp

CF = Sue _ Sup - Syr __ Sur

- = - (3.13)
Sey  Sea+Spy S +0428., 1428, _

S, = CFx1.42% Sz

If the compressed relation is 40 GB and CF=20 then
Total uncompressed information is

Syr =20x1.42%x40GB =1136GB =1.1097B

i.e. A simple house hold PC can handle a terabyte of information in compressed

Mathematical Derivation of Storage of Terabyte Data
Management System

If the column vectors are distributed to q column servers and domain dictionaries

are distributed to d domain servers

Total Storage of Column Server (Scs)

Scs=q*Scr

We assume that dictionary and indices are approximately 30% of total data
So total size of the database (Spg):

Spg=CF % (q % Scg + 0.42 (q x Scg)) =1.42 x CF x (g * Scg) (3.14)
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If each column server has an array of 10 disks each 80GB, total disk capacity is
800GB for each server. -

If consider there are 5% storage overhead in each server,
total usable storage capacity= 760GB/column server.
Hence using Equation 3.14

Sps =1.42xCF xqx760GB =1079.2x CF x ¢

if CF=10~25 and q=10 then

S s =105.397B ~ 2634878

This amount is sufficient for any current terabyte data management application.

As we assume that the size of dictionary and indices are 42% of the size of
compressed vector (and 30% of total information). So to manage such amount of
information we need 0.42xq Domain Dictionary Servers with same configuration of column

server. That is 5 domain servers and each has an array disk of total size is 800GB.

3.4.3 Analysis of Query Time

Query time for conventional row-wise format (SQL Server, Oracle 8 and other

Conventional Database System):
Consider the following query:
SELECT Ay, ....., A, | FROM Table[0] WHERE A,="XXX";
The query is accessing z attributes among p attributes.

Number of disk access:
D4, = rTa ; If a disk page is 8KB in size. (3.15)

Number of CPU comparisons:

Most of the time in uncompressed format use string comparison, which is slower

than integer comparison, because a string comparison is multiple integer comparisons.

Let average speed-up for Integer Comparison =ic

W
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Query time for Compressed Column-Wise Format (Ter):
Query time includes:
QO Time to find the token value of search key from dictionary (7p) -
O Time of vector search in compressed form (73)
QO Time of decompression (Tperomr)
_ Dictionary Access Time (7Tp):

Time taken for Coding and Decoding from Domain Dictionary depends on
cardinality of the Domain Dictionary. If we apply hash technique search on domain

dictionaries then Tpy is the time of i" domain (using equation 3.9) :

Tprihy=0 1)+ 0 [ —é—J , Where ! is the average length of bucket chain
1(__
Total Dictionary Search Time (Tp): E
:
P -
Tp= > T (3.16)
i=|
Vector search time (7)) is summation of individual vector search time (Tvw): (
P
T, =T, (3.17)
i=]

Decompression time (Tpeconp) includes the time of decompression of individual

domain (Tpecomenm):

P
T, DECOMP = Z T, DECOMP{}) (3.18)

i=l
Total Query Time in Single Processor System:

Combining the equations 3.16, 3.17 1 and 3.18 we find the following time equation for

single processor system :

Ilserver(l) =T, +T, + TDECQWP . (3.19)
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Total Query Time in Multi Processor System:

TSERVER(n) = Max(TD(i)) + Max(Max(TV(i))’Max(TDEC()MP(i))) (3.20)

Comparison of Query time between Uncompressed and Compressed format:
Number of disk access for accessing vectors:
xS
( ) zx§

Z
DA, =L - (3.21)
8K px8K

Where
z=Number of attributes are accessed in the query
S=Vector size .
p=Total attributes
The disk block size= 8K

Total Speed-Up:
=Speed-up for Integer Comparison+ Speed-Up in Disk-Access

_mxi, DA

1

+
n DA, +T,

1

. DA
=i+

et ; Ignoring dictionary access time due to hash search

2

XXX
SIXXXP

T (3.22)
Now let

i=5, p=11, z=4, nxx=200MB, S=10MB
Total speed-up using the equation 3.22:

SU =5+20xL=60

3.4.4 Complexity of Joining Operations

The term join refers to the form » x,,_,, s , where A and B are attributes or set of

attributes of relations r and s respectively. The relation r is called outer relation and the
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relation s is called outer relation. Let the number of tuples in the outer relation is n, and the

number of tuples in the inner relation is ng

i)

Block nested-loop join in CMBYVS: Every block of the inner relation is paired
with every block of outer relation. Within each pair of blocks, every tuple in
one block is paired with every tuple in the other blocks. To generate all pairs of

tuples that satisfy the join condition are added to the result. The time

m m m

complexity of block access in CMBVS is OU”—"—‘ x F—’:‘ J{n—’—D whereas in

uncompressed format requires at least

O(CF, XU’I_:‘ >{C‘F2 XP_SU_PPL—DJ , where CF; is compression factor of
m mn m

relation r and CF; is compression factor relation s.

Merge join in CMBYVS: In merge join both the relations must be sorted. Each
sorting requires’ O(nlogn) time complexity. If both the relations are sorted on
join attributes, the time require to access the blocks in CMBVS is

nf ns

OU——‘+[—U , whereas uncompressed format requires the time to access
m T

n

the blocks is O(CF, xF—’:‘ +CF, x{ U To make merge join, it requires
m

m

the relation s to fit in memory. For large database it is not always possible. We

may use hybrid merge join. It uses indexing on join attributes.

iii) Indexed nested-loop join in CMBYVS: If an index available on join éttributes

of relation s, index lookups can be replace file scans. For each tuple t, in r the

index of s is used to look up tuples in s that satisfy the join condition with tuple
t,. The cost of the join operation in CMBVS is 0[{%—‘+n,xc} , where ¢ is a
constant time cost ot: selection on s using join condition. The uncompressed
form need O(Cﬁx[%—‘+n,xc} time complexity if CF, is the compression

factor of relation r.
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In CMBVS each of result need to decompress, so the time of decompression 1s
added to each type of join operations. However CMBVS provides cheaper join
operation due to compression. As it needs fewer number of I/O access than that of

uncompressed format.

3.5 Comparison with other Systems

Comparison with Tera-Scale Scientific Data: The tera-scale data warehouse in
[14] designed for the scientific domain. This architecture also uses compression in file level.
The compressed data file is stored in web server but the query can not be processed directly
on compressed form. The SQL corhmz;nd is executed in the decompressed form. The query
time obviously will be larger than our compressed data warehouse because our architecture
can process the query in compressed form. Qur architecture is applicable to wide variety of

business or scientific relational data.

Comparison with DBMS on the Microsoft SQIL Server 2000 Platform: The
platform is housing terabyte of data in conventional manner. The hardware is
multiprocessing environment with array of disk. Nevertheless, our system can handle
terabyte of compressed data simply in a household PC, attached with 80 to 100GB of disk
space. If we use array of disk in our proposed architecture, it can handle several hundreds of

terabyte of data.
Comparison with Oracle Table Compression:
Let total storage in uncompressed format:
Syp =nXxx
Average compression factor in Oracle is =3.11
Total storage in Oracle Compressed Data (Sop):

_nxx Sy 1ALxCFxSq,
311 311 3.11

Son _ 0.46x CF hence Sop = 0.46x CF x 8,

cR

if Compression Factor (CF) is 20 then Spp=9.2%Scr
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Since Oracle applies compression in block level and maintain a single dictionary
per block, which incurs some redundancy. But our system use individual dictionary for each

attribute.

3.6 Summary .

The terabyte data management .system is really an attractive one in comparison
. with any existing data manageﬁlent system powered by SQL Server or Oracle or other
conventional database system. The compression model in our architecture is better than
compression in Oracle, because Oracle applies block level compression that has some
redundancy [25]. The Tera-scale architecture [14] also compresses data file but can not
applies query in compressed form, so query time obviously is larger than our architecture.
The query throughput in our proposed architecture may be affected by the communication
between components of the Terabyte DBMS but if we use high speed, reliable optic fiber

network this degradation will be reduced.



Chapter 4
Results and Discussions

The objective of the experimental work is to verify the feasibility and scalability of
the design of multi-block vector, the dictionary and data model of the architecture. The
experimental evaluation has been performed with large synthetic data. The storage and
retrieval (query) time is compared with widely used Microsoft SQL Server 2000. Qur target
was to handle a large table and justify the storage trends and query time in comparison with
SQL Server. Throughout the chapter we call our system “CMBVS” for Columnar Multi-
Block Vector Structure.

4.1 Experimental Setup

The structure of the CMBVS model and the domain dictionaries have been
implemented over Borland C++ 5.02 compiler (a 32 bit compiler) running on 1.6GHz
Pentium IV processor with 256MB memory. The operating system is Microsoft XP. The
results are compared with Microsoft SQL Server 2000 on the same hardware configuration.

The Operating System is Microsoft Windows 2000 Professional.

4.2 The Data Sets

We have chosen the Electoral Database of Bangladesh. The voter information is
the largest relation in the database. We consider approximately 85 million voters in
Bangladesh. We assume eleven attributes in the relation that are given in the Table 4.1.
Each tuple is estimated as 255 bytes. The estimated size of the relation is 8.5%x10°%x255 bytes
i.c.20.19GB.



52

Table 4.1: The Attributes and Length in Bytes

Attribute Name Data Type Length in bytes
Voter Id Integer 4
Dist Varchar 30
Thana - Varchar 30
First Name Varchar 30
Last Name Varchar 30
Father First Name Varchar 30
Father Last Name Varchar 30
Sex Char ' 1
Marital Status Varchar 10
Union Parishad - Varchar 30
Village Varchar 30

Total . 255 bytes

4.2.1 Synthetic Data Generator

It is quite a hard task to gather the real data sets for the voter relation. We, instead
deign a data generator that generates the data that resembles the real data sets for voter
relation. We assume an approximate cardinality of the domain values of each attribute is

given in the Table 4.2,

To create synthetic data, we generate a random number within a value equal to the
domain cardinality of an attribute and write the number in a text file with a fixed width.

Each line of the text file contains a tuple of a voter relation.

The input manager load the text file to extract raw data and read each attribute

value from the file and send the value to compression manager.
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Table 4.2: The Approximate Cardinality of Attribute Domain Values of Voter Relation

SL Attribute Appro'xim_ate Bits Required to

No. Name Cardmalfty Represent
of Domain

0 Voter Id Primary key 32

1 Dist. 64 6

2 Thana 507 9

3 First Name - 5000 13

4 Last Name 5000 13

5 Father First Name 5000 13

6 Father Last Name 5000 13

7 Sex 7 2 1

8 Marital Status 4 2

9 Union Parishad 5007 13

10 Village 50000 16

Total 131 b1:1=61l3)1t+e§ bytes

4.3 Storage Performance and Compression
Factor (CF)

Our data generator generates 85 million voter records. Each coinpressed record
occupies at most 16 bytes (last column of Table 4.2), whereas cach uncompressed record
occupies 255 bytes. The record level compression ratio is 15.93. The gross size of 85
million tuples in uncompressed raw data is 20.19GB. We generate various number of tuples
and transform them in compressed form. Various tests are performed on the compressed

data. The similar data is inputted to SQL Server 2000 using its import tool.

The storage space occupied by SQL Sever and by the CMBVS shows a significant
factor of compression. The SQL Server occupies more than the estimated amount of storage

due to overhead.
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Table 4.3: Storage Space Comparison between SQL Server and CMBVS

Estimated Actual Estimated Actual
Number Storage .
of | e | S | e | or | Gomoreesn
(rTn‘i']Il’i‘;;) Record (Ss) CMBVS CI:;I;V S| (ss/80)
(GB) (GB) (GB) (GB)
1 0.24 0.61 0.02 0.02 30.50
2 0.47 1.19 0.05 0.05 23.80
3 0.71 1.80 0.07 0.08 22.50
5 1.19 3.10 0.13 0.13 23.85
10 2.37 6.41 0.24 0.26 24.65
15. 3.56 9.73 0.35 0.39 2495
20 475 13.06 (.46 0.53 24.64
25 5.94 16.38 0.56 0.66 24.82
30 . 7.12 19.71 0.70 0.79 2495
40 9.50 26.38 0.92 1.06 24.89
50 11.87 33.04 1.12 1.33 24.84
60 14.25 39.70 1.33 1.60 24.81
70 16,62 46.35 1.51 1.87 24.79
75 17.81 49.68 1.62 2.00 24.84
80 19.00 53.68 1.72 2.16 2485
85 20.19 56.34 1.80, 2.27 24.82

We insert up to 85 million tuples in CMBVS. For SQL Server we insert few

millions of tuples and then extrapolate the result up to 85 million tuples. The SQL Sever

occupies 56.34GB whereas CMBVS occupies only 2.27GB for 85 million tuples. The

storage space occupied by uncompressed form and compressed form for different numbers

of tuple 1s given in Table 4.3. The storage comparison between SQL Sever and CMBVS is

shown in Figure 4.1. The average compression ratio is 24.90.
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Figure 4.1: The Comparison of Storage Space between SQL Sever and CMBVS

(logarithmic scale)

The Figure 4.1 shows that the storage space increases linearly as the number of
tuples increase. The space occupied by CMBVS is very small in comparison with SQL

Server.

The trends of storage space of dictionary and dynamic vector is depicted in Figure
'4.2. The average storage space of vector is 66.98% of total storage in compressed form. On
the other hand, the dictionary occupies 33.01% of total storage. For the 85 million tuples,
the size of the vector is 1.52GB and the dictionary is 0.75GB. The storage estimated for
dynamic vector is 1.27GB and for dictionaries is 0.5334GB. The actual storage space is
more than the estimation. The extra storage for vector. is needed for block overhead and

dictionary partitions overhead. Extra space need for fragmentation in disk between blocks.
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Figure 4.2: Storage Trends of Vector and Dictionary in Compressed Database

The CMBYVS occupies storage space is only 4% of uncompressed countérpart in
SQL Server. The CMBYVS shows about 25 times better performance on storage space. This

18 a significant achievement of the architecture.

4.4 TInsertion Time Trends

The time of insertion in CMBYVS is longer than that in SQL Server. During the
conversion of raw data to CMBVS includes the time of dictionary search, insertion time in
dictionary, time taken for restructuring the block when the token size increases and the time
needs to write the blocks in disk. The insertion process is slower than that of SQL Server.

The trend of insertion time is shown in Figure 4.3.

From the Equation 3.3, the number of element per block (m) is fixed, average
length of lexéme (L; ) is also fixed. So m, the number of tuples and C;, the cardinality of
domain dictionary is the main factor of time trends. In Figure 4.3, the number of tuple (n) is
gradually increasing and the cardinality of dictionary (C; ) may also increase, so the

insertion time curve depends on only n and C;.
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4.5 Access Performance

We present here four types of access time performance:

O Time comparison of projection operation
Q Time comparison of 50% selectivity
QO Time comparison of single predicate select queries

0 Time comparison of compound predicate select queries

4.5.1 Time Comparison of Projection Operations

Projection operation just accesses the specified attributes from database. To
' c;ompare the access speed up we choose 4 queries shown in Table 4.4. Query Q1, Q2, Q3
and Q4 represents the projection operation of 1, 2, 3 and 4 attributes respectively. The
average speed is 55 to 110. The Figure 4.4 shows the comparison of trends of elapsed time
for projection operation. The difference of elapsed time between two trend lines is
maximum at the beginning, and decreases as the number of attributes increase. The access
speed decreases with number of attributes increase. Because the conventional database
system accesses the entire tuple for any type of query, so the number of attributes has no
significant effect in the query time. Whereas the CMBVS accesses only the information
related to the attributes used in query, so that number of attributes increases and query time

also increases.
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Table 4.4: Comparison of Access Speed on Projection Queries

Figure 4.4: Access Speed Comparison on Project Queries

Average Elapsed Time
_ {sec)
S| Access
No. SQL Command SQL CMBVS Speed
Server (T.) (TJ/Te)
(Ts) )
SELECT Ai
Q1 FROM VoterlnfoTable, 285 2.57 110.89
(Single attribute projectionand 1<i<11)
SELECT Ai, Aj
FROM VoterlnfoTable;
&2 (Two attribute projection, 1<1i,j <11 and 313 4.04 78.96
1#j)
SELECT Ai, Aj, Ak
FROM VoterIinfoTable;
Q3 (Three attribute projection, 1<1i,j, k <11 373 392 63.01
andiZj#£k)
SELECT Ai, Aj, Ak, Al
FROM VoterInfoTable;
Q4 (Four attribute projection, 1<i,j, k, 1 <11 . 430 7.70 33.84
andi¢j#k#D
. 500
8
0 400
g 300 7 B SQL Server
= 2 81 CMBVS
B 200 %
o.p
100- ,
o 7
m = )
O H ' ; “,
Q1 Q2 Q3 Q4
Projection Queries
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4.5.2 Time Comparison of 50% Selectivity

This query returns almost 50% of tuples from the relation. We choose the attribute
“Sex”. Sex has only two values (male or female). Among all the tuples about 50% is male

and remaining 50% is female.

Q5: SELECT * FROM voterInfoTable WHERE Sex="X’;

(Here X may be either “Male” or “Female™)

The query QS5 is actually finding almost half of the tuples from the vector and
decomprésses them. So we can say the query Q5 as 50% selectivity. The elapsed time
comparison between SQL Sever and CMBVS for the query Q5 is shown in Figure 4.5. The
figure shows that the average speed ratio is 88.93. When the number of tuple is 1 million the
query Q5 takes comparatively less time than for 2 or 3 million tuples. The reason is, during
1 million tuple the whole database can be accommodated in memory so the query time

becomes lower,

SQL Server B CMBVS
,-.‘ 200- o 72
g_ 150 1 156 Z”? %2
% 1001 %g %é
& sof”| 18 7 B
1 2 3
Number of Tuples {million)

~ Figure 4.5: Elapsed Time Comparison for 50% Selectivity

4.5.3 Time Comparison of Single Predicate Select Query

- The SQL commands that find out the complete tuple value when the query satisfy
single predicate (associated to one attribute). A set of queries are listed up in the Table 4.5

that operated on 3 million tuples. Query Q6 has predicate on the primary key, the query. Q7
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is associated to the village in WHERE clause and returning 0.0015% of tuples, the qﬁery Q38
is associated to union and returning 0.019% of tuples, Q9 is associated to thana and shows
. 0.18% os selectivity and the Q10 is showing 1.54% selectivity. Though the queries in Table
4.5 are associated to one aftribute in WHERE clause but access the complete tuple, the

chosen queries are representative of query performance.

The Figure 4.6 shows the compérison between SQL Server and CMBYVS for five
_ queries associated to one aftribute in WHERE clause. The result shows that the access
performance in CMBVS is 36.23 times faster than that of SQL Server. The access time of
predicated SELECT query takes more time in CMBVS than the project queries, because
predicated query has to filter out the un-matching tuples, which takes significant time in

large datasets. Whereas, in the projection queries do not need to filter out the result.

Table 4.5: A Set of Single Predicate Select Queries

Average
Query SQL Command Number of % of
No. (Single attribute used in WHERE clause) Tuples Selectivity
: ' Returned
06 SELECT * FROM voterInfoTable | Single
WHERE Voterld="XXXXXX” - Tuple
SELECT * FROM voterInfoTable
Q7 46 0.0015%

WHERE Village="YYYYY”

SELECT * FROM voterlnfoTable

Q8 _ 599 0.019%
WHERE Union="2Z777" |

SELECT * FROM voterInfoTable 5407

Q9 0.18%
WHERE Thana="WWWW?”

SELECT * FROM voterInfoTable

Qlo0 . 46465 _ 1.54%
WHERE Dist="VVVVV”

The queries in Table 4.5 (Q6~Q10) actually accessing the value of all the
attributes. The query like “SELECT * FROM voter_info_Table WHERE Ai="XXXX’ "
ultimately accessing all the attributes where the tuple satisfying the criteria. This is another

cause of degradation of speed ratio than the project queries.
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4.5.4 Time Comparison of Compound Predicate Select Queries

The compound predicate SELECT queries include multiple attributes in the
WHERE clause. We take here four queries given in Table 4.6. Query Q11, Q12, Q13 and
Q14 has one, two, three and four attributes respectively in the WHERE clause. We run the
same query in SQL Server and CMBYVS. Different ten experiments carried out and the |

average of all elapsed time is used in the Figure 4.7.

SQL Server 8 CMBVS

60, 54 5233 4567 50
50 / /

40 _ .
301 ] ', /

204 |14 7 ) - |
10 %77 A6V 041 15/ 1304015

@6 Q7 a8 a3 Qo
Single Predicate Select Query

) rl

Elapsed Time (sec)

Figure 4.6: Comparison of Elapsed time for Single Predicate Select Queries

Table 4.6: List of the Cdmpound Predicate SELECT Queries

Q:Tzry SQL Command

Q11 SELECT * FROM voterInfoTable WHERE Ai="XXX’ ;
(ig11)
SELECT * FROM voterInfoTable WHERE Ai="XXX’ AND AIEYYY’,

A2 1 1<ij<ilandiz)

O13 | SELECT * FROM voterlnfoTablc WHERE AFXXX" AND A= YTV
AND Ak="Z7Z ; (11,}, k< 11 and i ] # K)

ot4 | SELECT * FROM voterinfoTable WHERE Ai="XXX* AND Aj="YYY’

AND Ak="Z77’ AND Al="WWW’; (1<i,j,k,1<11 and i£j#k#)D
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"Figure 4.7. Elapsed Time Comparison of Compound Predicate SELECT Queries

The elapsed time comparison for the compound predicate select queries given in
 Table 4.6 1s depicted in Figure 4.7. The result shows that the CMBVS is 27.29 times faster
than that of SQL Server. The query optimizer optimizes compound predicate SELECT
queries. The query optimizer reduces the access of number of column vectors and
minimizes the retrieval latency. The secrets of the optimizer are very simple. The optimizer
just decides the attributes which contains most information. Then retrieve the column vector

associated to the attribute and continue searching until the last block of vector reach.

The Figure 4.8 shows the comparison of elapsed time for the query like SELECT *
FROM voterInfoTable WHERE VoterId="XXXXXX" in both indexed and non-indexed
form of the compressed database. The indexing reduces query time satisfactorily. The

estimated time is also plotted in the figure. The estimated time trends show that it is less

than experimental time. The reason is, the estimated time considers only the disk access

time of dictionary and vector is taken. It also includes a fixed decompression time. We don’t
consider the processing time inside the block. As the database grows, the processing will

take substantial amount of time.

{

' WE‘-
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Figure 4.8: Trace of Elapsed Time on Indexed and Non-Indexed Form of
Compressed Database

4.6 Comparison of Terabyte Data Management
System  with other - Existing Terabyte
Architecture |

The Tera-scale architecture [14] (discussed in section 2.2.4) is deployed on a dual
PowerG5 processor attached with-l.S TB RAID for management of scientific data. The
average archiving rate per day is 3GB in compressed form whereas in uncompressed data
stream is about 15 GB/day; that is compression ratio is about five. The system can not
make query in compressed form, so the query processing is obviously slower than our

architecture.

The Oracle table compression for managing large data warehouse has the
compression ratio approximately 3.11. It applies compression to every block, The SQL
Server 2000 platform is warchousing terabyte of data in uncémpressed form [7]. The Table
4.7 shows the estimated storage space requirements in different systems to store different.

millions of tuples. The Figure 4.9 is the pictorial representation of the Table 4.7.
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Table 4.7. The Estimated Storage Space Requirements for Different number of Tuples

in Different Architecturé.

Number . Oracle
of Tuples SQL Server Terzf—Scale Compressed TDMS
A, 2000 Platform Architecture
(million) (TB) (TB) Database (TB)
(TB)
10 0.0064 0.00047 0.00076 0.00026
100 0.0537 0.00474 0.00763 0.00263
300 0.1613 0.01422 0.02286 0.00648
500 0.2690 0.0237 0.03810 0.01081
1000 0.5383 0.0474 0.0762 0.02162
1500 0.8060 0.0711 0.1140 0.0324
2000 1.075 0.095 0.152 0.0432
2500 1.346 0.188 0.190 0.054
3000 1.615 0.142 0.228 0.065
4000 2.153 0.189 0.304 0.086
5000 2.962 0.237 0.381 0.1081
3 /
—=—SQL
2.5 / ' Server
—~ —x~ Tera-scale
m
S5 /'/
Q- /-/ —— Oracle
n 1 ./'/ :
—o— CMBVS
0.5
e ———
0 BT —— 0
CWROWALANNNWLWWSE ALOO
COONUIXE~JOWDON NI = A
CO000O0O0O0OOOOOOOOOO
COCCOO0O00O00OoOOOOD
Number of Tuples (million)

Figure 4.9: Estimated Storage Space Comparison in Different Architecture
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Simulated query processing time using the CMBVS in single processor system is
given in Table 4.8 and query time for parallel processor architecture is given in Table 4.9. In

both the system we take the query like:

Q15: SELECT * FROM voterInfoTable WHERE Distld=’ZZZZ’ and
Thana="YYYY’ ‘

The query Q15 finds out the voter list of a “Thana” of a particular “District”. The
paralle]l processor architecture can execute search in different dictionaries in concurrent
manner, so that the total dictionary search time is the maximum time of individual domain
search time. Similarly, search in compressed column vectors can be carried out
simultaneously in different vectors, and total time will be the maximum time of individual

column search.

The decompression of different domain can be done concurrently and are pipeline
with block search in compressed vector. So the query time in parallel processor system
follows the equation 3.20 and single processor system follows the equation 3.19. The Table

4.8 and 4.9 show the simulated time of query processing in single and parallel processor

system respectively.

Table 4.8 : Query Time for Single Server Terabyte Data Management System Architecture

Query Time in Single Processor Architecture

(sec)

Number

of tuples Dicti SVectlt:l: Time of Decompression

(million) | - \cH0nArY earciin and Combining the Total

Search | Compressed Result (T: )
(Tp) Form SERVER(1)
(TV) HDECOMP)

10 0.174x10° 7.52 24.82 32.34
20 ] 0.233x10° 14.79 42.89 57.684
30 0.247x10™® 27.01 86.63 113.648
40 0.254x10° 35.93 138.5 174.494
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Table 4.9: Simulated Query Time for Parallel Processor System

Query Time in Paraliel Processor
(sec)
Number "~ Vector
of Dictionary | Searchin | Decompression
Tl.lp.les Search Compress | and Combining Tatal
(million) Mm-(TD(j)) ed form the Result (Tserverp)
Max(T,,) | Max(T, DECOMP(i))
10 0.090x10° 6.54 13.62 13.73
20 0.094x10° | 12.92 25.33 25.93
30 0.105%10°® 23.15 41.58 41.85
40 0.113x10° | 3048 56.61 56.94

The Table 4.10 shows simulated query time comparison between single processor

and parallel processor system at a glance. The response time in parallel processor system is

also high enough for any application. To solve this problem the compression in vertical

column format is not sufficient. We need to maintain the indexing in horizontal manner and

to distribute the data in horizontally fragmented way in different small TDMS systems. This

will increase the parallelism of the architecture and hence the query throughput will be

higher.

Table 4.10: Query Time Comparison between Single Sever and

Paralle] Server Architecture

Sinele Pro Parallel
Number of '“gs S:e::ssor Processor
, tl.ll{l'le ) y System
million
(se) (sec)
10 32.34 13.73
20 57.684 25.93
30 113.648 41.85
40 174.494 56.94
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Figure 4.10: Simulated Query Time Comparison between Single and

Parallel Processor System.

4.7 Summary

In this chapter we presented the experimental evaluation of the CMBYVS, the main
component of the Terabyte Data Management System. We evaluated mainly the storage
performance which is achieved in compare with Microsoft SQL Server, a widely used
database system. The storage performance that is achieved in CMBVS is 24.90 times
cheaper than that of SQL Server The projection queries show great access speed compared
with SQL Server. The investigation finds out that CMBVS is 77 times faster than SQL
Server. The other types of select queries are 27.29~36.23 times faster than that of SQL
Server. The indexing on CMBYVS also affects the query time. The indexing reduces query
time almost half of the non-indexed form of the compressed data. The scalability we tested
up to 85 million tuples. In compressed form it occupies only 2.27GB whereas the SQL
Server needs 56.34GB. The simulated storage space comparison for terabyte data is
computed using the interpolation. The query time in parallel processor system is simulated

using parallel algorithms.
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Conclusion and Further Research

Data compression in database system is attractive for two reasons; storage

. reduction and performance improvement. The both factor is essential for terabyte data

management system.

Literature survey shows that compression techniques have been adopted in

memory resident database systems that are not suitable for managing very large database

ranges to terabytes. We have developed a disk-based multi-block vector structure for

storage and querying of terabyte level of data.

We have improved the basic HIBASE compression model (by McGregor et. al.

[21]) and Three Layer Model ( by Latiful Hoque A. S. M. et.al. [18]) for disk support. Thus

the architecture can be used in terabyte data management system.

3.1

Fundamental Contributions of the Thesis

O The main contribution of this research is the columnar multi block vector

structure with very small restructuring overhead.

Compressed data are stored using the CMBVS structure with disk support. This
overcomes the limitations of the memory resident DBMS for scalability with

high performance

Multipart domain dictionaries are used to support high cardinality of domain

values

A preat storage reduction is achieved using the CMBVS structure. The
experimental results show that CMBVS structure is 22 ~ 25 times space
efficient than that of SQL Server. '

We have shown that a PC-based system can handle a terabyte level of data. The
performance for projection decreases linearly with the size of the database. The

size of 1 TB of conventional database is 43 GB in CMBVS.



69

5.2

L We have achieved a very high order of performance improvement using
CMBYVS structure. Performance improvement for projection operation is in the
order of 55 to 110 compared to conventional DBMS like SQL Server. The

same is 27 to 36 for selection operation.

L We have proposed a terabyte data management system architecture that works
on the CMBVS structure. The architecture can scale up to multi-terabytes of
data by distributing the column vectors to the column severs and domain

dictionaries to the domain servers.

Summary of the Thesis

The following sections summarize the thesis:

QO The single block vector incurs huge restructuring cost, whereas the CMBVS
needs very small restructuring overhead. Multi block structuring makes it easy
to swap in memory and swap out to disk, Thus CMBVS can manage very large
size of vector. We have used fixed number of elements per block for CMBVS, -
so that its size depends on element size in that block. The logical storage of
block is imposed to physical disk block for permanent storage. As the size of
the logical block is not fixed, it causes some fragmentation wastage of storage

between two disk blocks.

U A domain dictionary is created per attribute. If the size of the domain is such
that it can not be kept in memory, we use multi part domain dictionary. The
dictionary is partitioned into fixed number of lexemes. One partition is
swapped in memory. A single dictionary may be shared by multiple similar

attributes if it is specified during designing the database.

QO The experimental result shows that the storage cost of the CMBVS for 85
million tuples is only 2.27 GB whereas the SQL Server needs 56.34GB. The
CMBYVS is about 25 times efficient in storage space than that of SQL Server.
The CMBYVS considers the storage for vector structure, the dictionary and the
index structure. CMBVS supports a compact index for both primary and
secondary index. We could achieve higher compression factor in case of

primary and secondary indices.
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Q Access performance is very high for a particular query where a few number of
attributes are involved in the query. Because the architecture accesses only the
related column vectors and dictionaries, whercas the conventional DBMS
accesses the entire tuple for any query. Another reason behind the higher
access performance is the reduced I/O access due to compression. The
projection queries are 55 to 110 times faster than that of SQL Server. The
access speed degrades as the number attributes increased in where clause. The

selection (o) query is 27 to 36 times faster than that of SQL Server.

0 We have proposed a shared nothing parallel architecture for multi-terabyte data
management system (section 3.2). The column vectors can be distributed over
column servers on the supervision of CMBVS manager. The domain
dictionaries can be distributed over domain servers on the supervision of
domain dictionary manager. This provides a parallel computing environment to
achieve high performance for multi-terabyte database. The architecture can
store and manage virtually unlimited number of tuples with linear scale up of
resources. The architecture may suffer some communication delay while
interacting with different components. If we use gigabit range fiber optic
communication interface, the delay will be negligible. Though the qLiery time
in this architecture is significantly improved than any uncompressed
counterpart, the response time is still high for any typical terabyte database. To
overcome this problem we should make hybrid fragmentation of the database

and the use of parallel algorithm which was beyond our scope.

5.3 Future Plan

The CMBVS has been implemented in a single processor system and achieved
significant performance improvement over conventional DBMS. We have proposed a
shared-nothing architecture for further improvement in performance by parallel access to

the vectors and dictionaries.

The CMBVS is a disk based compressed database architecture and extended to
parallel architecture. This provides an easy way to use it in terabyte database system. The

future work of this research is to explore on the following other areas:
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The architecture can be used for storage of fact table of data warehouse and parallel

computation of datacube for QLAP system.

U The architecture can be used for parallel mining and analyzing of very large database.

U We have not considered any back-up and recovery mechanism to the CMBVS database,

So the designing of commit protocol and redo-undo operations for compressed vectors

and domain dictionaries need to be explored.

To achieve concurrent access to CMBVS structure, a multi-threaded algorithm needs to

be considered.
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