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Abstract

The emergence of e-application has been creating extremely high volume of data

that reaches to terabyte threshold. Many'organizations are producing data that are doubling

every year. The conventional data management system is costlier in terms of storage space

and processing speed, and sometimes it is unable to handle such huge amount of data. New

algorithms and techniques need to develop to store and manipulate these data. The database

compression can be used for scalable storage and faster data access.

We propose compression based data management system architecture that can be

used to handle terabyte level of relational data. The existing compression schemes e.g.

HIBASE or Three Layer Database Compression Architecture work well for memory

resident data and provide good performance. These are low cost solution for high-

performance data management system but are not scalable to manage terabyte level of data.

We have developed a disk based columnar multi-block vector structure (CMBVS)

that can be used to store relational data in a compressed representation with direct

addressability. Parallel data access can be achieved by distributing the vector structure into

multiple servers to improve the scalability.

The lowest layer of the model is the block structure to store the compressed

representation of data. The next higher level is the vector-structure that relates the block

structure to an attribute of the relational data model. The structures are capable of carrying

out query directly on the compressed form of data. This reduces query time drastically. We

have compared our system with conventional relational DBMS. The experimental results

show that our system is about twenty five times efficient in storage cost and twenty-seven to

seventy-seven times faster in retrieval time performance than that of the conventional

systems.



Chapter 1
Introduction

Storage requirement for database system is a problem for many years. Though the

storage capacity has been increasing every year, in many cases, enterprise and service

provider data storage needs double every six to twelve months.

It is a great challenge to store and manage this ever-increasing data in an efficient

way. The amount of data reaches to terabyte threshold in many organizations. The

conventional data management system for these huge 'data sets is a costlier ?ne in terms of

storage space and retrieval performance.

1.1 Motivation to Terabyte Data Management
Though the terabyte storage space is available, the price is high enough for

common use. The backup of the terabyte database instance is another troublesome 'issue and

time consuming matter. Accessing the terabyte database in highly concurrent environment

is a great problem in conventional database system. The reason is that the number of disk

accesses increase as database size grows, thus the response time of any query increases as

well. The transactional throughputs create a bottleneck due to I/O intensive operations.

Complexity of join operations become more complicated as dataset size grows.

Most of the large databases are often in tabular form. The operational database is

not routinely terabyte in size whereas the typical size of fad tables in a data warehouse is

generally terabyte in size. These data are write-once and read-many times category for

further analysis. The recent developments in storage technology make it easy to store large

volume of data in large disk space e.g. Network Attached Storage (NAS), Storage Area

Network (SAN) and Redundant Array of Independent Disk (RAID). Still problem remains

for high-speed access and high-speed data transfer.

The conventional database technology cannot provide such performance. We need

to use new algorithms and techniques to get attractive performance and reducing storage
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cost. High performance compression algorithm, necessary retrieval and data transfer

technique can be candidate solution for terabyte data management system.

Reducing the volume of data without losing any information is known as loss-less

data compression. This is potentially attractive in database system for two reasons:

o Reducing of storage cost without loss of information.

o Performance improvements.

It is difficult to combine a good compression technique that reduces the storage

cost while improving performance. The performance improvements arise because the

smaller volume of compressed data may be accommodated in faster memory than its

uncompressed counterpart. Only a smaller amount of compressed data needs to be

transferred and/or processed for a particular operation.

1.2 Aim and Objective of the Thesis
The objective of the thesis is to design a compression based system that can be

used to store and retrieve terabyte level relational data efficiently. The features of the

architecture are as follows:

o Data elements will be directly addressable in compressed representation

irrespective of the location of compressed block in memory or disk. At the

same time the compressed representation will be same for data being memory

resident or in disk.

o Disk transfer time will be reduced due to compression.

o Decompression will be necessary only to get the final result. So decompression

overhead will be minimized.

We use columnar format rather than the conventional row-wise format. Our aim is

to develop disk based columnar multi-block vector structure for storage and querying of

relational data in compressed form. The scalability can be achieved by distributing the

structures among multiple servers in a shared nothing parallel architecture. The structure is

such that the unnecessary columns need not to access for a particular query processing.
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Every database system requires to support dynamic update. This requires a

restructuring operation to the vector. The restructuring cost can be reduced by using

columnar multi block vector structure (CMBVS).

Another aim is to design a multipart dictionary structure that can be easily used in

terabyte data management system. Each attribute is associated to a domain dictionary. Some

similar attributes may share the same dictionary.

1.3 Overview of the Compression Method
An overview of the compression and decompression method is given in Figure 1.1.

Input goes through a compression engine that splits the data into dictionary and compressed

representation of relational tables.

Domain
Dictionaries

Decompression
Manager

Figure 1.1: Overview of the Compression Technique

For input data, a dictionary is created per domain. Using the dictionary, a

compressed representation respective to input data is created. We have developed a

compressed representation that comprises of multiple blocks, which can be directly

accessible. After accessing the block very easily, we can access any element within the

block.
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Direct addressability to the element in compressed form is characterized by the

ability to retrieve an element without decompressing the whole structure. This allows the

query processor to make query on the compressed representation. The decompression is a

reverse process of the compression operation. Any element of the compressed

representation can be decompressed by using the corresponding dictionary. All processing

will be done on compressed form and decompression will be performed only when the

result is necessary. This reduces the decompression overhead.

1.4 Columnar
(CMBVS)
Data

Multi-block Vector Structure
and Management of Compressed

The conventional database stores the relation in row wise format, which accesses

the whole tuple for any particular query. The multi-block vector structure stores the relation

in column wise format. Each attribute is associated to a domain dictionary and a dynamic

vector. The vector is partitioned into multiple blocks. The vector accommodates a certain

number of blocks in memory. When the number of blocks are increased, some blocks are

swapped to disk. The high cardinality of domain dictionaries are also partitioned into blocks

if necessary. The original tuple value is first searched in the dictionary, if the value is found

in dictionary corresponding token is returned. If the value is not is not found in the

dictionary, it will be inserted into the dictionary and corresponding token will be returned. It

will then be inserted into the vector.

The query can be carried out directly on the compressed form of data. The query

may be optimized if there are multiple attributes are accessed in the query. The query in the

CMBVS only accesses the associated vector and dictionary, so that the I/O access is

minimized and hence increased the query throughput.

1.5 Terabyte Data Management System Using
CMBVS
The CMBVS is scalable to very large number of tuples in compressed form. Even

a microcomputer (with 120 GB hard disk) can host huge data sets in compressed form like

terabyte in size. However, the performance degrades as the database size increases.
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The CMBVS provides the infrastructure that can be used in distributed system to

manage multi-terabyte database. As the relations are stored in columnar format, the multi-

block vectors can be distributed over column severs. The domain dictionaries are distributed

over multiple domain servers. The system is scalable to virtually unlimited number of

tuples, by increasing the number of disks in disk array of both column servers and domain

servers.

We have developed the CMBVS structure and implemented it with Borland C++

5.02. It is compared with widely used Microsoft SQL Server. We generate the data for voter

relation of Bangladesh Electoral Database using our own data generator. We produce

synthetic data for 85 million voters. The storage space occupied by the CMBVS is about 25

times smaller than that of SQL Server. The access speed is on an average 27 to 77 times

faster than the conventional uncompressed counterpart in SQL Sever.

1.6 Thesis Outlines
In chapter 2, a review of the research in terabyte storage technology, terabyte data

management and compression methods in database systems is presented. We have

considered the HIBASE as the basis of our compression method. The dictionary

organization and compression structure ofHIBASE is also discussed.

Chapter 3 describes the CMBVS structure which is the basic building block of the

terabyte data management system architecture. The details analytical description of the

components of the system is also given.

Chapter 4 contains details of the experimental work that has been carried out and

the discussions on the experiment. The experimental evaluation has been performed using

various datasets. The experiment shows the performance of the terabyte data management

system.

Chapter 5 presents the comments on the compression model and terabyte data

management system. It also gives the suggestions for the future research.



Chapter 2
Literature Review

The terabyte problem emerges out very recently, as the information of some

company is growing so fast that the size of information becomes double within six to twelve

months [I]. This vast infoffilation is'not easy to handle. So the database researchers need to

think about how to solve this problem. This tends to make research on terabyte data

management.

It is possible that some will neglect that a terabyte database with an unnecessary

huge solution will have no practical use in normal life. The opposite is also true. In this age

of electronic business, banking and electronic life in general, data is being formed "on the

wire", which is producing a mammoth amount of data.

2.1 Terabyte Data Management
High performance data managements are emerging as critical technologies.

Although it is becoming more common today to get a terabyte of disk, it is still an open

problem how to manage, mine and analyze a terabyte of information. The terabyte challenge

is an evolving, open testbed that can be used to test new algorithms and software for high

performance and wide area management, mining and analysis of data. The first phase of

Terabyte Challenge culminated at a demonstration during the Supercomputing Conference

in San Diego, 1995 in which the Terabyte Challenge team members illustrated management,

mining and analyzing a variety oflarge data sets totaling over 100 Gigabytes [2].

As information storage requirements continue to double and triple, companies of

all sizes are facing a dilemma in managing corporate information. As multi-terabytes of

stored information become the norm, the issue of backing up or restoring very large

amounts of data in the shortest possible time has become increasingly urgent. Although

backup times are critical, restore times are even more critical when the time comes to

recover corporate data. Information recovery times are critical to the overall financial

bottom-line of the corporation in today's competitive marketplace [3].
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2.1.1 Terabyte Databases

The European organi~ation for nuclear and particle physics research center is

constructing a particle accelerator that will begin operating in 2006. The IT managers at the

laboratory are expecting to collect up to 20 petabytes of data from the accelerator every

year [4].

The SBC Communications Inc. in San Antonio runs a 20-terabyte NCR Teradata

database, up from 10.5 terabytes in 2004 [4]. SBC's data warehouse has nearly doubled in

size every year since it was built in 1994. Sears Roebuck & Co. is combining its customer

and inventory data warehouse to create 70 terabyte system, the retailer will hit the I

petabyte threshold within 4 years. It is expanding its database to make it more useful. It

wants 35-terabyte data warehouse of product-inventory and store-sale information for

retailer's restructuring as it tries to rebound from a year of falling sales and profits.

Comscore, stores 9 terabytes of click-stream data on 27 terabytes of disk space

.that's partitioned into two sections. One section holds aggregated data and the other stores

detailed data. Both are regularly backed up on tape, a process that takes several days, but

only the aggregated data is backed up within the database. That's because the aggregated

data has undergone more processing and would take more work to reconstruct if lost [4].

ACNielsen's data warehouse requires multiple servers with a single database

image [4]. That challenge prompted Sybase and Sun Microsystems last year to create the

iForce data warehouse reference architecture to handle more than 25 terabytes of raw data.

IForce is a blueprint that companies can use to assemble their own large data warehouses.

General Motors North America in Detroit operates a number of large databases, including

its engineering and product-development database, with 8 terabytes of raw data and 22

terabytes of disk space.

Florida International University went live with a 20-terabyte database of high-

resolution aerial and satellite images of the entire United States provided by the U.S.

Geological Survey [4]. The system is believed to be the largest publicly accessible database.

on the Internet. But data for individual images is distributed to avoid overloading any single

server in the event of a spike in demand for a particular image--say, as the result of a natural

disaster. To maintain the database's performance, the school is creating a hierarchy of data

caches to hold more frequently accessed images. The caches should reduce the primary
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database's workload. The typical American consumer now generates some 100 Gigabytes of

data during his or her lifetime, including medical, educational, insurance, and credit-history

data. If we multiply that by 100 million consumers and we get a whopping 10,000 petabytes

of data. A petabyte of data may seem like a lot to swallow today, but businesses' appetite for

information shows no signs of diminishing [4].

2.1.2 Terabyte Storage

Dataquest, another leading industry. analyst, reports the average desktop

consumption of storage space has grown from 1.4 GB in 1997 to 3.5 GB in 1999 and is

projected to reach 14 GB in 2003 [3]. Even though cost-per-megabyte for storage is

declining at the rate of 35% to 40% per year, the increase in complexity of storage systems,

such as mirroring, 24x7 backup, high-availability configurations, leads to increases in

storage management costs [3]. As the need for more efficient information management

grows, Internet, ecommerce, and digitization of data increase the requirement for more

effective communications bandwidth. With this ever-increasing information storage need,

comes an equally new level of complexity in the deployment and management of storage

devices. This complexity can be significantly reduced by employing SANfNAS (Storage

Area Network! Network Attached Storage) technologies into existing LAN/WAN

environment, is shown in Figure 2.1 and Figure 2.2.

NAS signifies a Network Attached Storage device that provides high availability

disk storage. It is attached to the network directly and not through a server. However SAN

is a separate high-speed network with fiber channel backbone for shared storage. Each

server on the LAN is also connected to the SAN, and these servers can be running anyone

wide variety of operating systems. These servers are directly connected to the storage

devices. These storage devices can be of any tape or RAID arrays [5].

Now-a-days even terabyte of storage is gradually coming to the market. Nano-

terabyte technology invent DVD up to 4.7GB and HD-DVD up to 20-25GB and enabling to

reach 100GB-1000GB [6].
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Figure 2.2: Fiber Channel Storage Area Network [3].

Maxtor's new external drive comes to market on the October, 2005, places a

terabyte of storage space on the desktop - that's 1000 gigabytes of digital real estate ready to

house business data, MP3s, digital images, video and just about any other electronic file that

might have. It is designed to plug in to one PC or Mac [8].

ATP projects (Advanced Technology Program) develop technologies to increase

the data storage density of existing magnetic tape data systems by a factor of 250, which lay

a foundation to store greater densities in future system for terabyte data storage [9].
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2.1.3 Terabyte Database Solutions

SGI Systems, Inc. in partnership with IBM Corporation, Legato Systems and

Computer Associates Corporation performed backup of a one-terabyte Oracle7TM database

in less than one hour [10].

A joint project of Microsoft, Dataware and HP has built up a terabyte data

warehouse on Microsoft SQL Server 2000 platform with access via a thin client using a web

browser with mobile access from a PDA computer or WAP telephone [7].

SQL Server 2005 is ready for the enterprise, offering exceptional data availability

and manageability, hardened security, and the ability to scale from handheld mobile devices

to the most demanding online transaction processing (OLTP) systems and multi-terabyte

data warehouses [II].

Oracle today announced that Oracle powers the world's largest commercial

database, according to the Winter Corporation 2005 TopTen (TM) Program [12]. The

customer database is a 100 terabyte (TB) data warehouse, and is more than triple the size of

the world's largest database (29.2 TB) in the previous TopTen Program (November 2003),

which was also powered by Oracle.

2.1.4 Terabyte Data Warehouse

Data warehousing and on-line analytical processing (OLAP) are essential elements

of decision support, which has increasingly become a focus of the database industry. Many

commercial products and services are now available, and all of the principal database

management system vendors now have offerings in these areas. Decision support places

some rather different requirements on database technology compared to traditional on-line

transaction processing applications. An overview of data warehousing and oL,;"p
technologies is given in [13], with an emphasis on the new requirements. This paper

describes the back end tools for extracting, cleaning and loading data into a data warehouse;

multidimensional data models typical of OLAP; front end client tools for querying .and data

analysis; server extensions for efficient query processing; and tools for metadata

management and for managing the warehouse. Typically, the data warehouse is maintained

separately from the organization's operational databases. There are many reasons for doing

this. The data warehouse supports on-line analytical processing (OLAP), the functional and
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II

performance requirements of which are quite different from those of the on-line transaction

processing (OLTP) applications traditionally supported by the operational databases. OLTP

applications typically automate clerical data processing tasks such as order entry and

banking transactions that are the bread-and-butter day-to-day operations of an organization.

These tasks are structured and repetitive, and consist of short, atomic, isolated transactions.

The transactions require detailed, up-to-date data, and read or update a few (tens of) records

accessed typically on their primary keys. Operational databases tend to be hundreds of

megabytes to gigabytes in size.
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Figure 2.3: A Typical Data Warehouse [IS].

Many organizations around the world have come to rely totally upon the essential

information asset stored in their corporate databases and data warehouses. A typical data

warehouse is shown in Figure 2.3. If the information is not available for any reason the

business may grind to a halt, and if it stays unavailable for a protracted period, serious

financial consequences may result. Making a data warehouse available is not easy.

Corporate data warehouses range from one terabyte to ten terabytes or more, with the

intention of giving users global access on a 24x365 basis. Data warehouses can take months

to set up, yet can fail in seconds. And to react to changing business requirements the data

warehouse will need to change in design, content and physical characteristics on a timely
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basis. The characteristics of the data warehouses and how to make it safe, available, perform

well, and be manageable is described in [15].

2.1.5 Terabyte Data Management Using Conventional DBMS

The Czech researchers manage 1.1 TB of dat~ in the SQL Server 2000 platform

[7]. The researchers use 2 servers, the first of them, HP Net-Server LT6000r with 6 Xeon-

700 MHz processors, 4 GB RAM and the Microsoft Windows 2000 Advanced Server

operating system was used for the relational data warehouse. The second, HP Net-Server

LXr8500DC with 8 Xeon-700 MHz processors, 4 GB RAM and the Windows 2000

Datacenter Server operating system had the task of creating multidimensional analytical .

data cubes and interacting with users. The HP SureStore XP512 disk array are used to

connect the two servers by a pair of fiber channels. The disk array consisted of 32 disks

with a capacity of 18 GB for applications demanding access to data at a maximum speed

and another 32 disks with a capacity of 73 GB for applications demanding maximum

capacity. The total gross capacity was therefore 2.8 TB. To protect against malfunction,

RAID-5 arrays have been created from the discs, making available disc capacity 2 TB. For

still more demanding applications, HP SureStore can be configured to a gross capacity of

92.6 TB when using disks sized to 181 GB. The system does not have any compression

mechanism so that the huge storage space is required to manage the terabyte data.

The problems and critical issues of migrating a multi-terabyte archive from object

to conventional relational database is discussed in [28]. This does not provide any general

solution of terabyte data management system.

A terabyte scale test is performed at IBM's Teraplex center that is described in

[30]. This test is done to make research on large scale data warehouse using conventional

DBMS. The test examined only the role of OLAP technology in large scale data

warehousing architecture, but the architecture does not apply any compression technique.

2.1.6 Tera-scale Architecture

An architecture for archiving and analyzing real-time scientific data [14] is given

in Figure 2.4. It isolates researchers from the complexities of data storage and retrieval.

Data access transparency is achieved by using a database to store metadata on the raw data,

and retrieving data subsets of interest using SQL queries on metadata. The second
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component IS a distributed web platform that transparently distributes data across web

servers.
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Figure 2.4: Data Archival Architecture for Real-Time Warehousing of Scientific

Data [14].

The amount of scientific data is growing rapidly that is a challenge to store it and

make query efficiently. The size becomes terabyte; and the archiving of such large-scale

data is a great problem in terms of access speed and storage space. The architecture [14]

provides a framework for archiving and retrieving the large-scale scientific data using web

server and warehousing technology. It uses a compression technique to minimize the

storage space, but the compression model does not allow query support directly on the

compressed form. The loader stores the data files in compressed form to the web servers.

The retrieval process retrieves the decompressed data and then applies any SQL query on

the decompressed form. As it cannot carry out query directly on the compressed form, the

query processing time is not the optimal one.

This architecture achieves the four design goals of scalability, extensibility, cost-

effectiveness, and usability. The architecture is scalable as new servers can be added to
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store data files as required, and the archive can efficiently process multiple terabytes of

data. The architecture is extensible as the metadata extraction process can be configured to

calculate different types of metadata, which allows the architecture to be applied to different

scientific domains.

The architecture provides the archiving mechanism only for the scientific domain.

This is not applicable to business oriented relational data, whereas most of the business data

are relational. Therefore, the architecture is failed to fulfill the market demands.

2.2 Data Compression
.Terabyte Database

for Management of

The Tera-scale Scientific Data Management [14] uses the compression to archive

the data files in web servers, the query cannot be processed directly in the compressed files.

The decompression is required to make any searching on the data.

Oracle uses block level dictionary based compression technique. The compression

model incurs some redundancy but a block itself contains all information that is required to

decompress. The compression of Oracle database is to manage large data sets. The details

of the compression model are discussed in section 2.3.

The K.xDatabase Technology uses columnar format [26] to store large database

but does not apply any compression mechanism. Though the columnar format really

exhibits high performance in data access, it is not as fast as the compressed columnar format

shows.

The architecture for multi terabyte, hierarchical data warehouse for continuous,

high-rate object stream archiving relational data in a hierarchical storage system composed

of serialized objects that have been binned and indexed is described in [16]. The

architecture does not apply any compression technique, so obviously the I/O access rate is

high and thus reduces the query performance.

A column oriented compression method C-Store [27] improves the performance of

the DBMS. It is designed mainly to support high performance query processing but has no

guideline about terabyte data management.
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A general purpose compression scheme for image, voice and text data is given in

[31]. This is not applicable to conventional relational DBMS. A high-performance data

structure is developed in [29] for mobile information. But this does not guide for terabyte

data management.

2.2.1 Compression Methods

It is better to apply a compression technique to manage a terabyte level database.

This will occupy small amount of storage space but performance is attractive one. It

is difficult to achieve both storage reduction and performance improvement

simultaneously in a database compression. However, a few compressIOn techniques have

the trade-off [18,21].

According to Shannon [17], it has been known that the amount of information is

not synonymous with the volume of data. Reducing the volume of data without losing any

information is known as loss-less data compression. Loss-less data compression can be

attractive for two reasons: data storage reduction and performance improvements. Storage

reduction is a direct and obvious benefit but performance improvement arise as follows:

o Main memory access time is inJhe range of nanoseconds while disk access is

in the range milliseconds. Only a smaller amount of compressed data needs to

be transferred and/or processed to effect any particular operation. Thus, it is

improving 1/0 processing and hence improving the overall performance.

o A further significant factor is now arising in distributed application using

mobile and wireless communication. Low bandwidth is a performance

bottleneck and data transfers may be costly. Both of these factors make data

compression well worthwhile.

Combining compression with data processing improves performance. Database

systems require providing efficient addressability for data, and generally must provide

dynamic update. It has proved difficult to combine these with good compression

technologies. Much research work has been done in database systems to exploit the benefit

of compression in storage reduction and performance improvement [18].
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2.2.2 Dictionary Based Methods

The compression scheme for database permits operations directly on the data in its

compressed representation. It should allow for the data representation of any specific tuple

of a relation to be directly addressable. To translate the compressed form, it is necessary to

go through a dictionary. In its simplest form, a dictionary can be a list of unique values that

occur in the domain [18].

2.2.3 The Implication of Compression on Database Processing

Compressionhas become now an essential part of many large information systems

where large amount of data need to be processed stored or transferred. The data may be of

any type e.g. voice, video, text, XML, table, etc. No single compression technique is

suitable for all types of data. Lossy compression is use for voice or video data whereas loss-

less compression is for most other data types. A common feature of all these types of data is

that the data redundancy occurs in columns instead of rows. The basics of compression

model, i.e. a column oriented dictionary based architecture is described in [18].

2.2.4 Compression of Relational Structure

Relational structure can be benefited using compression as follows:

Significant improvement occurs in index structures such as B-tree and R-tree by

reducing the number of leaf pages. Reduction in transaction turnaround time and user

response time as a result of faster transfer between disk and main memory in I/O bound

system. In addition, since this will reduce I/O channel loading, the CPU can process many

more I/O systems and thus channel utilization is increased [20].

Improvement in the efficiency of backup since copies of the database could be kept

in compressed form. This reduces the number of tapes required to store the data and reduces

the time of reading from, and writing to, these tapes [19].

Processing data in compressed form makes it possible for the whole, or the major

part of a database to be memory resident. Main memory access time several orders of

magnitudes faster than the secondary storage access time. Thus improves performance.

The horizontal organization has the advantage that a single disk access fetches all

attribute values in a tuple. Even for non-compressed memory resident databases, where
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memory access speeds are much faster, the implementation simplicity is appreciable. A

relation can also be represented as a sequence of column vectors in which corresponding

attribute values in successive tuples is stored adjacently [21].

In a main memory database system (MMDB) the data resides permanently in main

physical memory and memory resident data may have a back up copy on the disk. In

conventional disk based database systems the primary copy of the data resides in the disk

and a small portion of data is memory resident. The distinguishing features of MMDB

described in [22] are the access time of main memory is several orders of magnitude less

than for disk storage. Disk has a high fixed cost per access that does not depend on the

amount of data that is retrieved during the access.

2.2.5 Table Data Compression

Effective exploratory analysis of maSSIve, high-dimensional tables of alpha-

numeric data is a ubiquitous requirement for a variety of application environments including

corporate data warehouses, network traffic monitoring or large socio-economic or

demographic surveys. Compression and decompression are not symmetric but are based on

the concept of compress once decompress many times. An example of massive data tables is

Call Detail Records (CDR) of large telecommunication systems. A typical CDR is a fixed

length record structure comprising several hundred bytes of data that capture information on

various attributes of each call. These include network level infonnation (e.g., end point

exchanges), time-stamp information and billing information. These CDRs are stored in

tables that can grow' to truly massive sizes, in the order of several terabytes per year.

Database compression differs from table compression in many ways.

Database compression stresses the preservation of indexing-the ability to retrieve

an arbitrary record under compression. Table compression does not require indexing to be

preserved.

Database records are often dynamic but the table data are write-once discipline.

Databases consist of heterogeneous data whereas table data are more homogeneous, with

fixed field lengths. Unlike table data, databases are not routinely terabytes in size.

The approach to database compression requires either lightweight techniques such

as compressing each tuple by simple encoding or compression of the entire table. These
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approaches are not appropriate for table compression: the former is too wasteful and the

latter is too expensive.

Table compression was introduced by Buchsbaum et.a!. [23], as a UnIque

application of compression based on several distinguishing characteristics. They have

introduced a system called pzip. The basis of the method is to construct a compression plan

studying a very small training set off-line. The plan is based on data dependency. They have

defined two types of data dependency: combinational and differentia!' If two data intervals

have the compressed size in separate intervals larger than the compressed size in a

combined single interval, the intervals are combinational dependent. Differential

dependency is an explicit dependency between columns. Though pzip outperforms gzip by a

factor of two, partitioning the data determining the dependency is a problem. Optimum

partitioning is not possible using the training data set. The primary focus is to optimize the

compression ratio within a user defined error bound. However none of these methods can be

applied to databases where no loss of information is permissible.

Sparsely-populated table data arises when sometimes data is represented using a

single horizontal table. An example is the sparse bit-map for a digital library, the electronic

marketplace in and the news-portal system in IBM-Almaden [24]. Sparsely populated data

can be compressed using run-length encoding method given in [18].

2.3 Compression in Oracle Database
The Oracle RDBMS recently introduced an innovative compression technique for

reducing the size of relational tables [25]. By using a compression algorithm specifically

designed for relational data, Oracle is able to compress data much more effectively than

standard compression techniques. More significantly, unlike other compression techniques,

Oracle incurs virtually no performance penalty for SQL queries accessing compressed

tables. In fact, Oracle's compression may provide performance gains for queries accessing

large amounts of data, as well as for certain data management operations like backup and

recovery.

In past commercial database systems have not heavily utilized compression

techniques on data stored in relational tables. A standard compression technique may offer
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space savings, but only at a cost of much increased query elapsed time. Hence, this trade-off

has made compression not always attractive for relational databases.

Meikel Poess and Dmitry Patapov et.a!. [25] recently describe ho,,; to compress

Oracle table data in [25], that is an attractive solution for large relational data warehouses. It

can be used to compress tables, table partitions and materialized view.

The compression algorithm used in Oracle for large data warehouse tables

compresses data by eliminating duplicate values in database block (or page). The algorithm

is lossless dictionary-based compression technique. The compression window for which a

dictionary (symbol table) is created consists of one database block. Therefore, compressed

data stored in a database block is self contained. That is, all the information needed to

recreate the uncompressed data in a block is available within that block.

Figure 2.5 illustrates the differences between compressed versus non-compressed

block. The top part of the Figure 2.5 shows a typical data warehouse like fact table with row

ID, invoice rd, customer first name, customer last name and sales amount. There are entries

for five customers showing six purchases. For data warehouse fact table it is very common

to have this highly denormalized structure.

Compressed Block vs. Noncompressed Block
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Figure 2.5: Oracle Database Compression [25].
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The bottom right part shows how the same data is stored in a compressed block.

Instead of storing all data, redundant information is replaced by links to a common

reference in the symbol table, indicated by the black. dots. For each column value in all

columns, based on length and number of occurrences in one block, the algorithm decides

whether to create an entry into the symbol table for this column value. If column values

from different columns have the same vaiues, they share the same symbol table entry. This

is referred to as cross-column compression. Only entire column values or sequences are

compressed. Sequences of columns are compressed as one entity if a sequence of column

values occurs multiple times in many rows. This is referred to as multi-column

compression. This optimization is particularly beneficial for OLAP type materialized views

using grouping sets and cube operators. For instance a cube of a table often repeats the same

values along dimensions creating many potential multi-column values. Multi-column

compression can significantly increase the compression factor and query performance. In

order to increase multi-column compression, columns might be reordered within one block.

For short column values and those with few occurrences no symbol table entry is created

limiting the overhead of the symbol table and ensuring that compressing a table never

increases its size. However, this is transparent to any application. This method improves I/O

performance but the query processing requires a decompression"on page by page basis.

2.4 Dictionary
Approach

based HIBASE Compression

The HIBASE [21] approach is a more radical attempt to model the data

representation that is supported by information theory. The architecture represents a relation

table in storage as a set of columns, not a set of rows. Of course, the user is free to regard

the table as aset ofrows. However, the operation of the database can be made considerably

more efficient when the storage allocation is by columns.

The database is a set ofrelations. A relation is a set of tuples. A tuple in a relation

represents a relationship among a set of values. The corresponding values of each tuple

belong to a domain for which there is a set of permitted values. If the domains are D"

D2, •..•..• , Dn respectively. A relation r is defined as a subset of the Cartesian product of the

domains. Thus r is defined as r £;; D, x D2 X •••••••• x Do'

r:"
. 'I, ~
))i
l' '~",- ,7.
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Table 2.1: An Example of Simple Voter Information

First Name Last Name Village Sex District
Abdur Rahim Rampur M Tangail
Nasir Uddin Fulpur M Mymansing
Based Mia Rampur M Tangail
Abdur Rouf Fulpur M Mymansing
Nasir Mia Vuralia M Gazipur
Hasina Begum Rupganz F Gazipur
Saleha Begum Rupganz F Narayngonj
Parvin Begum Rampur F Tangail

An example of a relation is given in Table 2.1. In the conventional database

technology, we have to allocate enough space to fit the largest value of each field of the

records. When the database designer does not know exactly how large the individual values

are, he/she must err on the side of caution and make the field larger than is strictly

necessary. In this instance, a designer should specify the width in bytes as shown in Table

2.2. Each tuple is occupying 104 bytes, so that 8 tuples occupy 832 bytes.

Table 2.2: Field Lengths and Tuple Size for the Voter Relation.

Attribute Attribute Name Bytes
0 First Name 20
1 Last Name 20
2 . Village 30
4 Sex 4
3 District 30

Total 104

2.4.1 HIBASE Compression Architecture

The architecture given in Figure 2.6 is a compact representation that can be derived

from a conventional record structure using the following steps:

o A dictionary per domain is employed to store the string values and to provide

integer identifiers for them. This achieves a lower range of identifier, and

••
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hence a more compact representation than could be achieved if a single

dictionary was provided for the whole database.

o Replace the original field value of the relation by identifiers. The range of the

identifiers is sufficient to distinguish string of the domain dictionary. The

example given in Figure 2.6 shows that there are only seven distinct first name,

so only a 3-bit can represent this attribute.

Hence in the compressed table each tuple resume only 3 bits for First Name, 3 bits

for last Name, 2 bits for village, 2 bit for district and I bit for sex forming total of II bits.

This is not the overall storage; however, we must take account of the space occupied by the

domain dictionaries and indexes. Typically, a proportion of domain is present in several

relations and this reduces the dictionary overhead by sharing it by different attributes.

Firsl Last Village Sex DistrictName Name
000 000 00 0 00
001 001 "' 0 "'010 OW "" 0 00
000 01' 01 0 "'Compression Engine ""' 010 '" 0 "'0" HlO " 1 '"100 '"0 " 1 "'"' '"0 00 1 00

First Last Original Table
Name Name Village Sox

Abdur R. '"' Rompur M langall
Nasir Uddin full'u. M Myrnensing
Based Mia Rampur M Tanga,l
Abdur Rouf full'ur M Mymensing
Na.<ir Mia Vuralia M Ga1.ipur
lias;"" Mia !tupgallz F ;>."'pur
Salcha Begum Rupganz F NamyngollJ
l'arvin Degum Rampur F Tangail

Id First Last Village Sox DistrictName Name Domain0 Abdur Rahim Rampur M TMgail
Diactionary1 Nasir Uddin FuiPu. F Mymcnsing

2 Based Mia Vun:alia Gazipur
3 lIasinn Roof Rupganz N<lrayngonj

4 Salcha Begum

S Parvin

Figure 2.6: Compression of a Relation Using Domain Dictionaries.

2.4.2 Dictionary Structure in HIBASE

HIBASE used two alternative representation of the values stored in attribute: token

and lexemes. A token is a sub-range of integers represented in its minimal binary encoding.
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Lexemes are a sequence of 0 or more 8-bit characters. The translation of string value to

token is optimized using the minimal number of stored bits. String of decimal digit can be

directly converted into binary at the database designer's discretion. Other data, which can

not be represented directly as an integer, such as character string or real, are translated using

dictionaries although in principle, real can be encoded as primitive data type.

A Dictionary must have Three Characteristics:

o It should map attribute value to their encoded representation during the

compression operation: encode (lexeme)-7token.

o It should perform the reverse mapping from codes to literal values when parts

of the relation are printed out.

o Decode (token)-7lexeme.

o The mapping must be cyclic such that x=encode (decode (x)).

The structure is attractive for low cardinality data. For high cardinality and primary

key data, the size of the string heap grows considerably and contributes very little or no

compression. The HIBASE compression does not support Unicode which is essential for

current database applications.

2.5 Summary
This chapter described the different existing terabyte databases, database scenario

in data warehouse and compression methods with an emphasis on dictionary techniques for

database applications. We have discussed the relationship between compression and

database representation. The HIBASE compression method has been described in detail as

we have considered this approach as the basis of our architecture. But there are fundamental

differences with our methods. As for example, the dictionary structure, the compressed

representation and the query processing.



Chapter 3
Terabyte Data Management System

This chapter describes the detail analytical model of Columnar Multi-Block Vector

Structure (CMBVS) for storage of compressed representation of relational data. CMBVS is

the basic component of Terabyte Data management System. We develop the system for

single processor and extend it to a parallel architecture.

3.1 Basic Compression Technique
We extend the basic HIBASE compression model to facilitate multi-block vector

,

stmcture with disk support. The vector is column oriented rather than the conventional row-
,

wise format. Each attribute is associated to a domain dictionary and a column vector. Using

the HIBASE Compression method described in section 2.5, we can represent a sample

relation given in the Table 2.1 as a column stmcture as shown in Figure 3.1.

The column stmcture represents a table in storage as a set of columns, not a set of

rows. This makes certain operation on the compressed database considerably more efficient.

The columns are organized as a linked list, each of which points to the dictionary that is

used to compress the column. The vertical slices through the tuples are then stored in

compressed, bit-aligned vectors.

Representation by column can be processed more efficiently than representation

by row. A column wise organization is much more efficient for dynamic update of the

compressed representation. A general database system must support dynamic incremental

update, while maintaining efficiency of access.
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Figure 3.1: Column Organization of Relation Rather than Row Wise Format.

The processing speed of a query is enhanced because, a typical query specifies

operation on only a subset of domains. In a column wise database, only those specified

values need to be transferred, stored and processed.

The HIBASE model uses single block column vector, the whole vector has the

same size of compressed element. It is costlier to restructure the whole vector in single

block structure. We use the multi-block vector structure that partitions the vector into

multiple blocks. Each block has a fixed number of elements and the block can be

restructured independently. So the restructuring affects only the blocks that are involved.

The blocks are independently addressable so the structure is suitable for large

database. In the architecture we use the multi-block vector structure. We call the structure

CMBVS (for Columnar Multi Block Vector Structure) through out the chapter. The

HIBASE structure was designed for memory resident data but we have designed CMBVS

for disk support. So the ever-increasing data can be easily stored in the structure. The Three

Layer Model by Hoque A.S.M. et. al. [18] uses also multi-block structure but does not have

disk support.
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Vector

The CMBVS is the container of compressed tuple value of an attribute. The

CMBVS is divided into multiple blocks. A block is the lowest layer of the system. The

CMBVS is the next higher level. First of all we discuss the block structure.

3.2.1 Block Structure

The block structure is the lowest layer of the system. This is a logical block of

compressed elements. A block is a collection of multiple machine words that accommodate

a fixed number of compressed elements of same size in compact form. It maximizes the

utilization of storage space and minimizes retrieval time. A typical structure of a block is

given in Figure 3.2.

Block Structure

Element Index in a word

A 32-bit machine word

I 0 I
I 1 I

00
I 2 I

I m-1 I

Figure 3.2: A Typical Block Structure

Each block has a header that represents the properties and some important aspects

of the block like:

(i) Block number: It is the identification number of the block.

(ii) Pointer to word list : This pointer points to a wordlist that contains the

compressed elements.

(iii) Current word index: This identify the current word from the wordlist.

(iv) Number of elements in the block: Specify the number element per block.
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(v) Number of elements per word: Specify the number of elements per word.

(vi) Element size: Indicate the element size of the block.

(vii) Element index in word: This specify the element in a word.

Block Operations:

The class block performs the following main operations:

i) insert_token(token, element_size): insert a new token to the block. The

insertion always occurs at the end of the block. The element size of the

inserting element should be same as the element size of the block. If the

element size of the token is larger than the element size of the block then

widening operation is issued.

ii) Get_token(i): This operation returns the i'h token from the block and imust

be smaller than or equal to total number of elements in the block.

iii) Widening (old_element_size, new_element_size): Widening operation is

issued when the element-size of inserting token is larger than that of existing

element-size. During the widening operation, all the elements in the block

are reorganized and element size is set to new element size. To perform this

operation, all the existing tokens are inserted to a temporary wordlist with

new element size then the new element is added to the temporary wordlist.

The old wordlist is deleted and the properties of the block are set with new

element size.

iv) Get_Tuple_Id (token): This operation returns a set of record-ids from the

block that is matched to the token. If no matching is found in the block then

it returns minus one. This function returns an enumerated list of record-ids.

3.2.2 Multi-Block Vector

The vector consists of multiple blocks. This is the next higher level than the block

structure. Any operation in the vector ultimately propagated to the block. The following

sections describe the details about the vector structure and operation. Multi-block structure

reduces reorganization cost of vector and also reduces the wastage of space.
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A general database system must support dynamic incremental update, while

maintaining efficiency of access. We have considered a database as a set of columns instead.

of rows. In order to accommodate additional tuples, and additional lexemes in domains,

each column requires being dynamically adjustable in width as well as length. To do this

efficiently: it must allow easy adjustment of the number of tuples in relations.

It must also allow alteration in the length of the identifiers in use. When a

compressed representation is in use, from time-to-time as updating proceeds, the range of

element identifiers and hence their size must be altered. Incremental update of a column-

oriented organization has a lower cost than for incrementally altering elements in a row-

oriented representation. In the row-oriented case, all attribute values must be copied, not

just the value being updated. This does not occur with a column-oriented representation.

It must be possible to address efficiently and directly each attribute value without

requiring accessing preceding or succeeding tuples or values. 111is is called direct

addressability.

In the single block organization, the worst-case temporary additional storage

needed for the widening operation is the size of the widest vector in the database. There are

two more problems: copying and wastage of space.

The followings are some significant featnres of multi-block structure:

Blocks can be added or removed to accommodate addition, or restructuring of the

vector. During evolution of the database, elements of some attributes may need

'broadening'. Each block can be adjusted dynamically and incrementally to accommodate

changes in the size of element being stored in it. This block-at-a-time reorganization is the

key to enabling the DBMS designer to meet deterministic maximum update time

constraints, and hence to achieve scalable update performance.

Without this independence of update for individual blocks, the storing of a longer

identifier would require ildjustments of the vector width (and hence copying) of the entire

storage of the vector, a task proportionate to the size of the vector. This is one of the most

important aspects in the use of this structure in database systems.

The independence of each block permits data compression to be applied within the

block. A base-and-offset representation can be used; each element being stored as its offset
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from a base element for the block. This could be the minimum element stored in the block.

The situations in which the elements are in fact ordered, or partially ordered this may be

particularly effective in reducing the size of each stored element. The base element may be

a minimum, average, .ormaximum value.

The maximum and minimum values are also particularly useful in rapid searching

of a vector for an element with a particular value, elements within a range, elements

belonging to a set of elements specified by a query.

The vectors are used to provide basic storage units from which relations,

dictionaries etc. are constructed.

There are two options for organization of block: fixed number of elements per

block or fixed size. According to [18], the fixed number of elements offer better

performance than the fixed size.

In a fixed number of element option, each block contains a fixed number of

elements and hence the memory requirement for different block is different and depends on

the size of elements in that block. This may be fixed when the system designer fixes the

number of elements per block. In practice it does not appear to be a parameter to which the

system's performance is sensitive. To achieve the full space utilization the number of

elements in each block is to be a multiple of word size. This decision also reduces the

computational complexity. The size of element stored in the vector is uniform within any

block, but may vary between blocks. This arrangement though slightly less convenient to

manage in terms of memory allocation, it provides direct addressability to the ith element by

means of few simple operations.

A multi-block vector structure is shown in Figure 3.3. It contains m blocks in

memory and the remaining others are in disk. If we consider that the vector contains kXm

blocks in total and n elements per block, the total number of elements in memory is mxn.

3.2.2.1 Providing Disk Support

As the main memory is limited, the entire vector of large database could not be

accommodated in memory. A certain number of blocks reside in memory, the others are

kept in backing store. Figure 3.3 shows that m blocks can reside in memory. Let ith block is

mapped to jth position of vector and there are total kxm blocks in vector. If ith block is
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referred, it is first searched in j'h vector position. If the database block number of jth block in

vector is same as i, then jth block in vector is the target block other wise issue a disk access

to load the ith block form disk.

The blocks reside in

Vector block number

0

1
IJl
0

2 (l

'":J
0.
(ii'

'"

m-1

Figure 3.3: Multi-Block Vector Structure

3.2.2.2 Vector Operations

A vector represents a column of relational database. The main attributes of the

vector class is :

i) total number of blocks: represents the total number of blocks that can reside

in memory

ii) total number of elements: total number of elements that are in a vector

iii) current block pointer: a pointer to current block

iv) database block number: the last block index number of database.
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Main Vector Operations:

i) insert token(token, token size): The vector insertion is always propagated to

the insertion to the current block. If the block is full new block is added (with

yy block number) to vector. The token is inserted to new block and the current

block is stored to disk with yy identification number. The flow chart of the

insertion operation is given in Figure 3.4.

If (current block is full)

add new block to vector;

disk_write(current block) with yy identification number;

endif;

Insert Token
to Vector

No

Yes
Yes

Add new Block to
Vector

No

Widening the
Current Block

Insert the Token in
New Block

Insert in Current
Block

Total Number of Elements++ end

Figure 3.4: Flow Chart of the Insertion Operation in Dynamic Vector
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ii) get token(i): Find the ith element in the vector. At first identify the block

where the ith element is. Thenjust issue get token(block_tuple_id) operation to

that block in following way:

geUoken(i)

begin

block_to_be_search +--- 1DIV number_of_element_per_block;

II Identify the block number

block_tuplejd +---1MOD number_of_element_per_block;

II Identify the tuple id in the specified block

vector_blockJocation +--- block_to_be_search MOD

total_ num ber_oC blockjn_ vector;

IIBlock location of vector in memory

if (block_to_be_search<> database_block_number)

vector_blockJocation +--- disk_read (block_to_be_search)

else

search in vector;

token +--- block[vector _block Jocation ].get_ token (block_tuple jd);

return(token);

endif;

end get_token;

iii) get tuple id(token): This function takes a token as an argument and search all

the blocks one after another to find the matching token in the blocks and return

the tuple ids.

3.3 Terabyte Data Management System Using
Parallel CMBVS
This section describes an overview of the terabyte data management system using

a parallel implementation of CMBVS structure. The conventional uncompressed data

management system is slower in processing and in some cases unable to handle massive

data sets.
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There are two main assumptions about the architecture:

o Database applications where mainly relational data is stored.

o Shared nothing parallel database architecture.

3.3.1 An Overview of the Architecture

The main components of the architecture are as follows:

o Input Manager

o Terabyte Data Management System

o Compression Manager

o CMBVS Server Manager

o Column Servers

o Domain Dictionary Server Manager

o Domain Servers

o Query Compressor and Optimizer

o Decompression Manager

o Query Manager

The architecture is given in Figure 3.5. The details of each of the components of

the architecture are described in the following sections.

3.3.2 Detailed Architecture of the Terabyte Data Management
System

The Architecture provides an infrastructure to manage terabyte level of data in

compressed form. The following sections describe the components of the architecture.

•
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Figure 3.5: The Architecture of Terabyte Data Management System

3.3.2.1 Input Manager

This component is responsible to take input from various sources for storing data

in compressed form. The architecture stores data in most homogenous and fixed format. It is

responsible to process the data come from various sources and send to the compression

manager for storing in compressed form. All the data must go through the input manager to

marshal in a format that supported by the compression manager.

3.3.2.2 Compression Manager

The compression manager takes input from Input Manager. Taking the original

data as input (lexeme) it issues a dictionary search and return the corresponding token. The

Compression Manager then sends the token to CMBVS Manager to store in compressed

form.
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3.3.2.3 CMBVS Server Manager and Data Storage into Column Server

The CMBVS Manager is the middle level decision making unit (Figure 3.G). It

distributes 'the column vectors over multiple column servers. It receives input from

compression manager and route the compressed token to a specified Column Server.

Compression
Manager

Domain Dictionary Manager

CMBVS Manager

Column
Server 1

Column
Server n

Figure 3.6: Data Insertion into Column Server

CMBVS Manager is also responsible for replying any query come from query

processor. CMBVS Manager accumulates the compressed query results from Column

Severs and reply the compressed output to Decompression Manager.

3.3.2.4 Column Servers

Column servers are the storage area of the compressed form of data. It takes the

compressed token of each attribute from CMBVS manager. Each Column Server can store

and manage one or more column vectors. Column vector is the lowest layer of the

compressed data phase. Each column vector is partitioned into multiple blocks; each block
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contains a fixed number of elements. Detail of the block structure is described in section

3.2.1.

3.3.2.5 Decompression Manager

Decompression manager shown in Figure 3.7 does the following works:

It gets the compressed form of query results from the CMBVS Manager. This

compressed data then decoded with help of Domain Dictionary Manager, the original

decompressed results are finally returned to Query Manager.

Decompression
Manager

Query
Manager

--Io
"CD
OJ

Domain
Dictionary
Manager

Figure 3.7: Decompression Manager

3.3.2.6 Domain Dictionary Server Manager

Dpmain Dictionary Server Manager distributes the domain dictionary over

multiple domain servers. The main operations of a dictionary are as follows:

i) insert (Iexeme): This operation insert the "lexeme' to a domain server. The

dictionary manager decides the domain server where the domain is located.

ii) search_token (lexeme): This operation is propagated to the domain to find

out the corresponding token associated to "lexeme".
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iii) search_lexeme (token): This operation is propagated to ith domain to find

out the corresponding "lexeme" associated to the "token". This is an inverse

operation of search _token operation.

iv) delete (lexeme): When a user wants to delete a tuple value completely from

the database then at first the corresponding token of the lexeme is deleted.

Then the dictionary issue a delete(lexeme) operation if no other token exists

corresponding to the lexeme.

3.3.2.7 Domain Server

Each domain server stores one or more domain dictionaries. Domain server also

stores the index file if the attribute is a search key. We store {lexeme, token} pair in a

domain server. Though there is some storage wastage we store two instances of {lexeme,

token} pair (Figure 3.8):

o <lexeme, token>: This instance store the lexeme in sorted order. It performs

better during compression process.

o <token, lexeme>: This instance is sorted against token. It performs better

during decompression.

Multipart Concept in Domain Dictionary:

During evolution of database the size of domain dictionary may be large enough to

handle as a whole. So that we make partition to the domain dictionary and accommodate

some partitions to memory and remaining others are in disk. They will be fetched on

demand basis.
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Original
Attribute
Values
(District)

Dhaka

Tangail <tokelJ, lexemc>
Mymensing Token Sorted
Dhaka Token Lexeme
Sylhet 0 Dhaka

I Tangail
Mymcnsing

2 Mymensing
Dhaka 3 Sylhet
Tangail 4 Gazipur
Gazipur 5 Narayngonj

Dhaka

Gazipur

Mymensing

Dhaka

Tangail

Mymensing

Sylhet

Narayngonj

Figure 3.8: Two Instance of Dictionary Storage.

3.3.2.8 Index Structure

<Iexeme, token>
Lexemc Sorted
Lexeme Token
Dhaka 0
Gazipur 4

Mymensing 2
Narayngonj 5
Sylhet 3
Tangail I

An index file is created if the attribute is a search key. The index structure is

associated to <Iexeme, token> instance. We use the strategy < Search-Key, Row-Id List>

for indexing. If Row-Id list is very large in size, we can apply multi-block vector structure

algorithm to store the list.

3.4 Analysis of CMBVS
Element to Word Mapping:

There are two possibilities of element to wordmapping:

o Map the bit string contiguously to the underlying word units (overlapping

elements).
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o Map the elements of the vector to words in such a way that no vector element

ever overlaps a word boundary of underlying hardware (non-overlapping

elements).

The second option appears to first sight to have a lower level of complexity since

element will be sought only within one hardware defined word. It does, however, suffer

from wastage of space at the word boundary. Depending on the number of elements in the

block, there is another space overhead at the boundary of the block. With overlapping word

boundaries, no space is wasted at the word boundaries. But there is still wastage of space at

the block boundaries. This wastage ranges from 0 to a maximum of (wordSize-I).

The Three Layer Model evaluates that non-overlapping mapping technique is more

efficient than overlapping in context of retrieval performance [18]. So we use the non-

overlapping technique for our thesis.

Space Efficiency of Non-overlapping Element Mapping:

Let

n = total number of elements in the vector

m = total number of elements in a block

Vi = width of each element in the ith block (bits)

w = word size (bits)

Total number of blocks in the vector = In / ml
For block i where, 1:'0 i :'01n/ ml
The number of elements per word

The number of words per block

The size of the block,

s, = w (I (m/Lw/v,J)l)
Hence the size of the vector,

f,lml
s= Lw(l(m/Lw/v,J)l)

j",1

=Lw/v,J

=1 (m/Lw/v,J) l

(3.1 )

(3.2)
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When word size is a multiple of the element size, the percentage of space overhead

is zero. The maximum wastage in the case of 64-bit word size is for a 33-bit element with

almost half the space wasted.

Equation 3.2 shows the space needed for a vector. This represents the logical

space. Physically the vector storage also includes the block overhead. The disk space

occupied is higher than the physical storage because there are some fragmentations between

disk blocks.

Insertion Time Complexity:

Insertion time includes the time of widening operation of a block, the time to store

the block into secondary storage (disk) and time dictionary search time.

Time for widening operation

Where

n=Number of elements in the vector

m=Number of elements in a block

U=The number of widening operation in a block

In worst case U = log, m

Time to store the blocks into disk

(3.3)

Where

T,=The average time to write a block in disk

Time to insert the lexemes into dictionary

G(e,xLJ
Where

C; =Cardinality of ith domain

Lj=Average length oflexemes in the dictionary

Insertion time complexity

(3.4)
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Widening Operation:

It requires an additional temporary storage because the existing elements need to

add to temporary block with new element size. After the completion of widening the storage

will be released.

Temporary storage needed for widening operation:

S" = o(w(f m/Lw/v,J1))
Where

w=Size of word (bits)

vi=Element size of the ith block (bits)

Searching in Vector:

There are two types of searching in vector:

(3.5)

Finding the token value of specified tuple _id done by the function geUoken(i).

This operation is a faster operation, because the vector can easily find out the token of a

given tuple id. The function finds out the token after three steps:

o Finding the desired block where the tuple is located.

o Find the desired word.

o Find the desired element in the word using few basic CPU operations (SHIFT,

AND,OR).

The time complexity depends on the element search in word. First two steps takes

2 CPU cycles. Complexity of third step depends on the number of elements per word.

So time complexity of get_token:

(3.6)

Finding the all tuple_ids in the vector whose value is matched to a specified token.

This operation is complex operation and takes more time than the above. The given token is

compared to every element of each block of whole vector. It will return a list of tuple ids.

To perform the operation vector executes Get_tuple_id of each block. It may return all the

tuple ids if the whole block contains similar value. So to hold the tuple id the operation
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needs a storage of O(m). The get_tuplejd actually issue get_token(i) where i=O....m, i.e.

get_token is perfomled m times.

Time complexity of get_tuple_id:

(3.7)

Where

T,=Average time to read a block from disk

Analysis of Domain Dictionary:

Space Complexity:

Let

C, = Cardinality of ith domain

Li = Average length oflexeme of ith domain

Total storage of lexeme and token of ith domain

= Ci XLi + 4Ci ; if token is stored as 4 byte integer

As we store two instance of domain dictionary. So total Domain Dictionary

Storage(SDD):

p

SDD= 2 xL ( Ci XLi + 4Ci ) ; for p attributes
j ••l

If the size of index file storage is= I

The Dictionary and Index Storage (Sm):

P

SDI = 2x L (C, XLi +4Ci )+1 bits
;",1

Time Complexity of Dictionary Search:

(3.8)

Searching time in dictionary:

To search in dictionary we can easily apply hash searching technique.

Searching time in Dictionary

To =O( I )+C{&) ; where [= average length of bucket chaining (3.9)

I
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3.4.1 Analysis of the CMBVS Storage Capacity

This section is analytical study between conventional data warehouse and the

proposed architecture:

Let a table T with p attributes:

p = Number of attributes = Number of columns

d = Distinct Domain Dictionary

. As some similar attributes share a dictionary,

d5,p

Total Size of Compressed Relation:

SCR= number of attributes x Size of vector

= pxS

rnlml
=px 2:w(l(m/Lw/v,J)l) bits

;=\

rnl ",1
Since, S = 2:w (I (miL wlv,J)l)

i=\

Total Size of Compressed Information (SCI)

P

SCI =(pxS)+2x2: (C,xL,+4C, )+1
;",1 .

Storage for Row-wise Format:

Let n= number of tuple

x=size of each tuple

Total Storage of Uncompressed Format (SUF):

Surn x x bytes

; Using equation 3.2

(3.10)

(3.11 )
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Compression Factor (CF):

Using the Equation 3.8,3.10 and 3.11

CF = SUF = Su~ = n_x_x_x_8 _

SCI SCR+SDI ((pxs)+2xf (C,xL,+4C, )+1)
;=d

(3.12)

If we estimate that the dictionary and index file is about 30% of total storage, then

SD/=0.3 xSCI

Hence SD/=0.42xSCR

(3.13)

SUF =CFxl.42xSCR

If the compressed relation is 40 GB and CF=20 then

Total uncompressed information is

SUF = 20 x 1.42x 40GB = 1136GB = 1.109TB

i.e. A simple house hold PC can handle a terabyte of information in compressed

form.

3.4.2 Mathematical Derivation of Storage of Terabyte Data
Management System

If the column vectors are distributed to q column servers and domain dictionaries

are distributed to d domain servers

Total Storage of Column Server (Scs)

We assume that dictionary and indices are approximately 30% of total data

So total size of the database (SDB):

SDB=CF x (q x SCR + 0.42 (q x ScW) =1.42 x CF x (q x SCR) (3.14)
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If each column server has an array of 10 disks each 80GB, total disk capacity is

800GB for each server.

If consider there are 5% storage overhead in each server,

total usable storage capacity~ 760GB/column server.

Hence using Equation 3.14

SDB ~1.42xCFxqx760GB=1079.2xCFxq

ifCF~10-25 and q~IO then

SDB = 105.39TB - 263.48TB

This amount is sufficient for any current terabyte data management application.

As we assume that the size of dictionary and indices are 42% of the size of

compressed vector (and 30% of total information). So to manage such amount of

information we need 0.42xq Domain Dictionary Servers with same configuration of column

server. That is 5 domain servers and each has an array disk of total size is 800GB.

3.4.3 Analysis of Query Time

Query time for conventional row-wise format (SQL Server, Oracle 8 and other

Conventional Database System):

Consider the following query:

SELECT AI, ..... , A, FROM Table[OJ WHERE A2="XXX";

The query is accessing z attributes among p attributes.

Number of disk access:

DAJ = n x x ; If a disk page is 8KB in size.
8K

Number of CPU comparisons:

(3.15)

Most of the time in uncompressed format use string comparison, which is slower

than integer comparison, because a string comparison is multiple integer comparisons.

Let average speed-up for Integer Comparison =ic

.,
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Query time for Compressed Column-Wise Format (TcR):

Query time includes:

o Time to find the token value of search key from dictionary (TD)

o Time of vector search in compressed form (Tv)

o Time of decompression (TDECOMP)

Dictionary Access Time (TD):

Time taken for Coding and Decoding from Domain Dictionary depends on

cardinality of the Domain Dictionary. If we apply hash technique search on domain

dictionaries then TD(i) is the time ofi1hdomain (using equation 3.9):

T D (i) = 0 (I) + 0 ( +-) ,where I is the average length of bucket chain

Total Dictionary Search Time (TD):

P

TD = LTD(i)
i=]

(3.16)

Vector search time (Tv) is summation of individual vector search time (Tv(i)):.

I'

Tv = LTv(i)
i::oJ

(3.17)

Decompression time (TDECOMP) includes the time of decompression of individual

domain (TDECOMP(i)):

P

TDECOMP = LTtJECOMP{l)
j=1

Total Query Time in Single Processor System:

(3. I 8)

Combining the equations 3.16, 3.17 I and 3.18 we find the following time equation for

single processor system:

(3.19)
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Total Query Time in Multi Processor System:

Comparison of Query time between Uncompressed and Compressed format:

Number of disk access for accessing vectors:

":'x(s)
DA =~p~_= zxS

, 8K px8K

Where

z=Number of attributes are a.ccessedin the query

S=Vector size

p=Total attributes

The disk block size= 8K

Total Speed-Up:

=Speed-up for Integer Comparison+ Speed-Up in Disk-Access

11 X i, DAJ=--+----
11 DA, +TD

(3.20)

(3.21)

DAJ"'i +--, DA,

. llXXXP"'I +--- -, zxS

Now let

; Ignoring dictionary access time due to hash search

(3.22)

ic=5, p=ll, z=4, nxx=200MB, S=IOMB

Total speed-up using the equation 3.22:

SU =5+20xl!=60
4

3.4.4 Complexity of Joining Operations

The term join refers to the form r X,.A"'.8 s , where A and B are attributes or set of

attributes of relations rand s respectively. The relation r is called outer relation and the
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relation s is called outer relation. Let the number of tuples in the outer relation is nr and the

number of tuples in the inner relation is ns

i) Block nested-loop join in CMBVS: Every block of the inner relation is paired

with every block of outer relation. Within each pair of blocks, every tuple in

one block is paired with every tuple in the other blocks. To generate all pairs of

tuples that satisfy the join condition are added to the result. The time

complexity of block access in CMBVS is o(r: 1x r :; 1+ r : 1) whereas in
uncompressed format requires at least

o( CF, x (r f~ 1x (CF, x r :,; 1)+ r: 1)}, where CF 1 is compression factor of

relation rand CF2 is compression factor relation s.

ii) Merge join in CMBVS: In merge join both the relations must be sorted. Each

sorting requires O(nlogn) time complexity. If both the relations are sorted on

join attributes, the time require to access the blocks in CMBVS is

o(r: 1+ r :~ 1) , whereas uncompressed format requires the time to access

the blocks is o( CF, x r :~ 1+ CF, x r f~ 1), To make merge join, it requires

the relation s to fit in memory. For large database it is not always possible. We

may use hybrid merge join. It uses indexing onjoin attributes.

iii) Indexed nested-loop join in CMBVS: If an index available on join attributes

ofrelation s, index lookups can be replace file scans. For each tuple tr in r the

index of s is used to look up tuples in s that satisfy the join condition with tuple

tr. The cost of the join operation in CMBVS is o(f ~ l+nrxc) ,where c is a

constant time cost of selection on s using join condition. The uncompressed

form need o( CF;xf ~ l+nrxc) time complexity if CFJ is the compression

factor of relation r.



49

In CMBVS each of result need to decompress, so the time of decompression is

added to each type of join operations. However CMBVS provides cheaper join

operation due to compression. As it needs fewer number of I/O access than that of

uncompressed format.

3.5 Comparison with other Systems
Comparison with Tera-Scale Scientific Data: The tera-scale data warehouse in

[14] designed for the scientific domain. This architecture also uses compression in file level.

The compressed data file is stored in web server but the query can not be processed directly,
on compressed form. The SQL command is executed in the decompressed form. The query

time obviously will be larger than our compressed data warehouse because our architecture

can process the query in compressed form. Our architecture is applicable to wide variety of

business or scientific relational data.

Comparison with DBMS on the Microsoft SQL Server 2000 Platform: The

platfoml is housing terabyte of data in conventional manner. The hardware is

multiprocessing environment with array of disk. Nevertheless, our system can handle

terabyte of compressed data simply in a household PC, attached with 80 to 100GB of disk

space. Ifwe use array of disk in our proposed architecture, it can handle several hundreds of

terabyte of data.

Comparison with Oracle Table Compression:

Let total storage in uncompressed format:

SUF = nxx

Average compression factor in Oracle is "'3.11

Total storage in Oracle Compressed Data (SOD):

SOD = nxx = SUF = 1.42xCFxScR
3.11 3.11 3.11

S
-.QQ. = 0.46 x CF hence SOD = 0.46 x CF x SeR
SeR

if Compression Factor (CF) is 20 then SOD=9.2 xSCR
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Since Oracle applies compression in block level and maintain a single dictionary

per block, which incurs some redundancy. But our system use individual dictionary for each

attribute.

3.6 Summary
The terabyte data management system is really an attractive one in comparison

with any existing data management system powered by SQL Server or Oracle or other

conventional database system. The compression model in our architecture is better than

compression in Oracle, because Oracle applies block level compression that has some

redundancy [25]. The Tera-scale architecture [14] also compresses data file but can not

applies query in compressed form, so query time obviously is larger than our architecture.

The query throughput in our proposed architechlre may be affected by the communication

between components of the Terabyte DBMS but if we use high speed, reliable optic fiber

network this degradation will be reduced.

f.



Chapter 4
Results and Discussions

The objective of the experimental work is to verify the feasibility and scalability of

the design of multi-block vector, the dictionary and data model of the architecture. The

experimental evaluation has been performed with large synthetic data. The storage and

retrieval (query) time is compared with widely used Microsoft SQL Server 2000. Our target

was to handle a large table and justify the storage trends and query time in comparison with

SQL Server. Throughout the chapter we call our system "CMBVS" for C~lumnar Multi-

Block Vector Structure.

4.1 Experimental Setup
The structure of the CMBVS model and the domain dictionaries have been

implemented over Borland C++ 5.02 compiler (a 32 bit compiler) running on 1.6GHz

Pentium IV processor with 256MB memory. The operating system is Microsoft XP. 11)e

results are compared with Microsoft SQL Server 2000 on the same hardware configuration.

The Operating System is Microsoft Windows 2000 Professional.

4.2 The Data Sets
We have chosen the Electoral Database of Bangladesh. The voter information is

the largest relation in the database. We consider approximately 85 million voters in

Bangladesh. We assume eleven attributes in the relation that are given in the Table 4.1.

Each tuple is estimated as 255 bytes. The estimated size of the relation is 8.5x 106x255bytes

i.e. 20.19GB.
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Table 4.1: The Attributes and Length in Bytes

Attribute Name Data Type Length in bytes
Voter Id Integer 4

Dist Varchar 30
Thana Varchar 30

First Name Varchar 30
Last Name Varchar 30

Father First Name Varchar 30
Father Last Name Varchar 30

Sex Char I

Marital Status Varchar 10
Union Parishad. Varchar 30

Village Varchar 30
Total 255 bytes

4.2.1 Synthetic Data Generator

It is quite a hard task to gather the real data sets for the voter relation. We, instead

deign a data generator that generates the data that resembles the real data sets for voter

relation. We assume an approximate cardinality of the domain values of each attribute is

given in the Table 4.2.

To create synthetic data, we generate a random number within a value equal to the

domain cardinality of an attribute and write the number in a text file with a fixed width.

Each line of the text file contains a tuple of a voter relation.

The input manager load the text file to extract raw data and read each attribute

value from the file and send the value to compression manager.
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Table 4.2: The Approximate Cardinality of Attribute Domain Values of Voter Relation

81. Attribute Approximate Bits Required toCardinalityNo. Name of Domain Represent

0 Voter Id Primary key 32
1 Dist. . 64 6
2 Thana 507 9
3 First Name 5000 13
4 Last Name 5000 13
5 Father First Name 5000 13
6 Father Last Name 5000 13
7 Sex 2 I
8 Marital Status 4 2
9 Union Parishad 5007 13
10 Village 50000 16

Total 131 bits=131+ 8 bytes
:::::16bytes

4.3 Storage Performance
Factor (CF)

and Compression

Our data generator generates 85 million voter records. Each compressed record

occupies at most 16 bytes (last column of Table 4.2), whereas each uncompressed record

occupies 255 bytes. The record level compression ratio is 15.93. The gross size of 85

million tuples in uncompressed raw data is 20.l9GB. We generate various number of tuples

and transform them in compressed form. Various tests are performed on the compressed

data. The similar data is inputted to SQL Server 2000 using its import tool.

The storage space occupied by SQL Sever and by the CMBVS shows a significant

factor of compression. The SQL Server occupies more than the estimated amount of storage

due to overhead.
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Table 4.3: Storage Space Comparison between SQL Server and CMBVS

Estimated Actual Estimated Actual
Number Storage for Storage for Storage Storage Compressionof for
Tuples Uncompressed SQL Server for CMBVS Factor (CF)

(million) Record (Ss) CMBVS (Sc) (Ss/Sc)
(GB) (GB) (GB) (GB)

i 0.24 0.61 0.02 0.02 30.50
2 0.47 1.19 0.05 0.05 23.80
3 0.71 1.80 0.07 0.08 22.50
5 1.19 3.10 0.13 0.13 23.85
10 2.37 6.41 0.24 0.26 24.65
15 3.56 9.73 0.35 0.39 24.95
20 4.75 13.06 0.46 0.53 24.64
25 5.94 16.38 0.56 0.66 24.82
30 . 7.12 19.71 0.70 0.79 24.95
40 9.50 26.38 0.92 1.06 24.89
50 11.87 33.04 1.12 1.33 24.84
60 14.25 39.70 1.33 1.60 24.81
70 16.62 46.35 1.51 1.87 24.79
75 17.81 49.68 1.62 2.00 24.84
80 19.00 53.68 1.72 2.16 24.85
85 20.19 56.34 1.80 2.27 24.82

We insert up to 85 million tuples in CMBVS. For SQL Server we insert few

millions of tuples and then extrapolate the result up to 85 million tuples. The SQL Sever

occupies 56.34GB whereas CMBVS occupies only 2.27GB for 85 million tuples. The

storage space occupied by uncompressed form and compressed form for different numbers

of tuple is given in Table 4.3. The storage comparison between SQL Sever and CMBVS is

shown in Figure 4.1. The average compression ratio is 24.90.

o
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Figure 4.1: The Comparison of Storage Space between SQL Sever and CMBVS

(logarithmic scale)

The Figure 4.1 shows that the storage space increases linearly as the number of

tuples increase. The space occupied by CMBVS is very small in comparison with SQL
Server.

The trends of storage space of dictionary and dynamic vector is depicted in Figure

.4.2. The average storage space of vector is 66.98% of total storage in compressed form. On

the other hand, the dictionary occupies 33.01% of total storage. For the 85 million tuples,

the size of the vector is 1.52GB and the dictionary is 0.75GB. The storage estimated for

dynamic vector is 1.27GB and for dictionaries is 0.5334GB. The actual storage space is

more than the estimation. The extra storage for vector. is needed for block overhead and

dictionary partitions overhead. Extra space need for fragmentation in disk between blocks.

-.•.
f"'.
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Figure 4.2: Storage Trends of Vector and Dictionary in Compressed Database

The CMBVS occupies storage space is only 4% of uncompressed counterpart in

SQL Server. The CMBVS shows about 25 times better performance on storage space. This

is a significant achievement of the architecture.

4.4 Insertion Time Trends
The time of insertion in CMBVS is longer than that in SQL Server. During the

conversion ofraw data to CMBVS includes the time of dictionary search, insertion time in

dictionary, time taken for restructuring the block when the token size increases and the time

needs to write the blocks in disk. The insertion process is slower than that of SQL Server.

The trend of insertion time is shown in Figure 4.3.

From the Equation 3.3, the number of element per block (m) is fixed, average

length of lexeme (Li ) is also fixed. So n, the number of tuples and C;, the cardinality of

domain dictionary is the main factor of time trends. In Figure 4.3, the number of tuple (n) is

gradually increasing and the cardinality of dictionary (Ci ) may also increase, so the

insertion time curve depends on only nand Cj.
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4.5 Access Performance
We present here four types of access time performance:

o Time comparison of projection operation

o Time comparison of 50% selectivity

o Time comparison of single predicate select queries

o Time comparison of compound predicate select queries

4.5.1 Time Comparison of Projection Operations

Projection operation just accesses the specified attributes from database. To

compare the access speed up we choose 4 queries shown in Table 4.4. Query QI, Q2, Q3

and Q4 represents the projection operation of I, 2, 3 and 4 attributes respectively. The

average speed is 55 to 110. The Figure 4.4 shows the comparison of trends of elapsed time

for projection operation. The difference of elapsed time between two trend lines is

maximum at the beginning, and decreases as the number of attributes increase. The access

speed decreases with number of attributes increase. Because the conventional database

system accesses the entire tuple for any type of query, so the number of attributes has no

significant effect in the query time. Whereas the CMBVS accesses only the information

related to the attributes used in query, so that number of attributes increases and query time

also increases.



Table 4.4: Comparison of Access Speed on Projection Queries
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Average Elapsed Time
(sec)

SI. Access
No. SQLCommand SQL CMBVS Speed

Server (T,) (T,/T,)
(T,)

SELECT Ai
Ql FROM VoterInfoTable; 285 2.57 110.89

(Single attribute projection and IS: i s: 11 )
SELECT Ai , Aj

Q2 FROM VoterInfoTable;
319 4.04 78.96(Two attribute projection, IS:i,j s: 11 and

i ;f j)
SELECT Ai , Aj , Ak

Q3 FROM VoterInfoTable;
373 5.92 63.01(Three attribute projection, IS: i, j, k s: 11

and i ;f j ;f k)
SELECT Ai , Aj , Ak, Al

Q4 FROM VoterlnfoTable;
430 7.70 55.84(Four attribute projection, 1s: i, j, k, I s: 11

and i ;f j ;f k ;f I)

500~
tJ

~400
Ql

E 300
i=al 200
IIIg. 100
w o

01 02 03 04

~ SOL Server
EJCMBVS

Projection Queries

Figure 4.4: Access Speed Comparison on Project Queries
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4.5.2 Time Comparison of 50% Selectivity

This query returns almost 50% of tuples from the relation. We choose the attribute

"Sex". Sex has only two values (male or female). Among all the tuples about 50% is male

and remaining 50% is female.

QS: SELECT * FROM voterInfoTable WHERE Sex='X';

(Here X may be either "Male" or "Female")

The query Q5 is actually finding almost half of the tuples from the vector and

decompresses them. So we can say the query Q5 as 50% selectivity. The elapsed time

comparison between SQL Sever and CMBVS for the query Q5 is shown in Figure 4.5. The

figure shows that the average speed ratio is 88.93. When the number oftuple is I million the

query Q5 takes comparatively less time than for 2 or 3 million tuples. The reason is, during

I million tuple the whole database can be accommodated in memory so the query time

becomes lower.

~
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Q)

E
i= 100
"0
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w
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123
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Figure 4.5: Elapsed Time Comparison for 50% Selectivity

4.5.3 Time Comparison of Single Predicate Select Query

. The SQL commands that find out the complete tuple value when the query satisfY

single predicate (associated to one attribute). A set of queries are listed up in the Table 4.5

that operated on 3 million tuples. Query Q6 has predicate on the primary key, the query Q7
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is associated to the village in WHERE clause and returning 0.0015% of tuples, the query Q8

is associated to union and returning 0.019% of tuples, Q9 is associated to thana and shows

0.18% os selectivity and the QIO is showing 1.54% selectivity. Though the queries in Table

4.5 are associated to one attribute in WHERE clause but access the complete tuple, the

chosen queries are representative of query performance.

The Figure 4.6 shows the comparison between SQL Server and CMBVS for five

queries associated to one attribute in WHERE clause. The result shows that the access

performance in CMBVS is 36.23 times faster than that of SQL Server. The access time of

predicated SELECT query takes more time in CMBVS than the project queries, because

predicated query has to filter out the un-matching tuples, which takes significant time in

large datasets. Whereas, in the projection queries do not need to filter out the result.

Table 4.5: A Set of Single Predicate Select Queries

Average
Query SQL Command Number of %of

No. (Single attribute used in WHERE clause) Tuples Selectivity
Returned

SELECT * FROM voterInfoTable SingleQ6 I
WHERE VoterId="XXXXXX" Tuple

SELECT * FROM voterInfoTable
Q7 46 0.0015%

WHERE Village="YYYYY"

SELECT * FROM voterInfoTable
Q8 599 0.019%

WHERE Union="ZZZZZ"

SELECT * FROM voterInfoTable 5407Q9 0.18%
WHERE Thana="WWWW"

SELECT * FROM voterInfoTable
QIO 46465 1.54%

WHERE Dist="VVVVV"

The quenes in Table 4.5 (Q6-QIO) actually accessing the value of all the

attributes. The query like "SELECT * FROM voterjnfo_Table WHERE Ai='XXXX' "

ultimately accessing all the attributes where the tuple satisfYing the criteria. This is another

cause of degradation of speed ratio than the project queries.
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4.5.4 Time Comparison of Compound Predicate Select Queries

The compound predicate SELECT queries include multiple attributes in the

WHERE clause. We take here four queries given in Table 4.6. Query QII, Q12, Q13 and

QI4 has one, two, three and four attributes respectively in the WHERE clause. We run the

same query in SQL Server and CMBVS. Different ten experiments carried out and the
average of all elapsed time is used in the Figure 4.7.

E:;]SQL Server 13CMBVS

60 45.67~
()
Ql 50
~
Ql 40
E
i= 30
'C
Ql 20
l/)
Co
..!!! 10
w o

Q6 Q7 Q8 Q9 Q10
Single Predicate Select Query

Figure 4.6: Comparison of Elapsed time for Single Predicate Select Queries

Table 4.6: List of the Compound Predicate SELECT Queries

Query
SQLCommandNo.

QII SELECT * FROM voterInfoTable WHERE Ai-'XXX' ;
(I<i<ll)

QI2 SELECT * FROM voterInfoTable WHERE Ai='XXX' AND Aj='YYY';
(I < i, i< II and i;t i)

Q13 SELECT * FROM voterInfoTable WHERE Ai='XXX' AND Aj='YYY'
AND Ak='ZZZ' ; (l<i,j,k< II and i;tj ;tk)

QI4 SELECT * FROM voterInfoTable WHERE Ai='XXX' AND Aj='YYY'
AND Ak='ZZZ' AND AI='WWW'; (I:::;i,j, k, I:::;II and i;t j;t k;t I)
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Figure 4.7: Elapsed Time Comparison of Compound Predicate SELECT Queries

The elapsed time comparison for the compound predicate select queries given in

Table 4.6 is depicted in Figure 4.7. The result shows that the CMBVS is 27.29 times faster

than that of SQL Server. The query optimizer optimizes compound predicate SELECT

queries. The query optimizer reduces the access of number of column vectors and

minimizes the retrieval latency. The secrets of the optimizer are very simple. The optimizer

just decides the attributes which contains most information. Then retrieve the column vector

associated to the attribute and continue searching until the last block of vector reach.

The Figure 4.8 shows the comparison of elapsed time for the query like SELECT *
FROM voterlnfoTable WHERE VoterId="XXXXXX" in both indexed and non-indexed

form of the compressed database. The indexing reduces query time satisfactorily. The

estimated time is also plotted in the figure. The estimated time trends show that it is less

than experimental time. The reason is, the estimated time considers only the disk access

time of dictionary and vector is taken. It also includes a fixed decompression time. We don't

consider the processing time inside the block. As the database grows, the processing will

take substantial amount of time.
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Figure 4.8: Trace of Elapsed Time on Indexed and Non-Indexed Form of
Compressed Database

The Tera-scale architecture [14] (discussed in section 2.2.4) is deployed on a dual

PowerG5 processor attached with 1.5 TB RAID for management of scientific data. The

average archiving rate per day is 3GB in compressed form whereas in uncompressed data

stream is about 15 GB/day; that is compression ratio is about five. The system can not

make query in compressed form, so the query processing is obviously slower than our
architecture.

4.6 Comparison of
System with
Architecture

Terabyte Data Management
other Existing Terabyte

The Oracle table compression for managing large data warehouse has the

compression ratio approximately 3.\1. It applies compression to every block. The SQL

Server 2000 platform is warehousing terabyte of data in uncompressed form [7]. The Table

4.7 shows the estimated storage space requirements in different systems to store different

millions of tuples. The Figure 4.9 is the pictorial representation of the Table 4.7.



Table 4.7: The Estimated Storage Space Requirements for Different number of Tuples

in Different Architecture.
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Number SQL Server Tera-Scale Oracle
of Tuples 2000 Platform Architecture Compressed TDMS
(million)

(TB) (TB) Database (TB)
(TB)

10 0.0064 0.00047 0.00076 0.00026
100 0.0537 0.00474 0.00763 0.00263
300 0.1613 0.01422 0.02286 0.00648
500 0.2690 0.0237 0.03810 0.01081
1000 0.5383 0.0474 0.0762 0.02162
1500 0.8060 0.0711 0.1140 0.0324
2000 1.075 0.095 0.152 0.0432
2500 1.346 0.188 0.1<j(j 0.054
3000 1.615 0.142 0.228 0.065
4000 2.153 0.189 0.304 0.086
5000 2.962 0.237 0.381 0.1081

3

2.5 -
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Figure 4.9: Estimated Storage Space Comparison in Different Architecture
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Simulated query processing time using the CMBVS in single processor system is

given in Table 4.8 and query time for parallel processor architecture is given in Table 4.9. In

both the system we take the query like:

Q15: SELECT * FROM voterInfoTable WHERE Distld='ZZZZ' and

Thana='YYYY'

The query QI5 finds out the voter list of a "Thana" of a particular "District". The

parallel processor architecture can execute search in different dictionaries in concurrent

manner, so that the total dictionary search time is the maximum time of individual domain

search time. Similarly, search in compressed column vectors can be carried out

simultaneously in different vectors, and total time will be the maximum time of individual

column search.

The decompression of different domain can be done concurrently and are pipeline

with block search in compressed vector. So the query time in parallel processor system

follows the equation 3.20 and single processor system follows the equation 3.19. The Table

4.8 and 4.9 show the simulated time of query processing in single and parallel processor

system respectively.

Table 4.8 : Query Time for Single Server Terabyte Data Management System Architecture

Query Time in Single Processor Architecture
(sec)

Number
Vectorof tuples Time of Decompression

(million) Dictionary Search in and Combining the TotalSearch Compressed Result (TsERVER(I))(Tn) Form
(TnEcoMP)(Tv)

10 0.174xI0-o 7.52 24.82 32.34
20 0.233xI0-b 14.79 42.89 57.684
30 0.247xI0-6 27.01 86.63 113.648
40 0.254xI0-b 35.93 138.5 174.494
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Table 4.9: Simulated Query Time for Parallel Processor System

Query Time in Parallel Processor
(sec)

Number . Vector
of Dictiouary Search in Decompression

Tuples Search Compress and Combining Total
(million) Ma«I;J(i)) ed form the Result (TSERVER(n))

Mm(Tv(i) Max(TDEcOMP(i))

10 0.090x I0.6 6.54 13.62 13.73
20 0.094xI0.6 12.92 25.33 25.93
30 0.105xI0.6 23.15 41.58 41.85
40 0.113xlO.6 30.48 56.61 56.94

The Table 4.10 shows simulated query time comparison between single processor

and parallel processor system at a glance. The response time in parallel processor system is

also high enough for any application. To solve this problem the compression in vertical

column format is not sufficient. We need to maintain the indexing in horizontal manner and

to distribute the data in horizontally fragmented way in different small TOMS systems. This

will increase the parallelism of the architecture and hence the query throughput will be

higher.

Table 4.10: Query Time Comparison between Single Sever and

Parallel Server Architecture

Single Processor Parallel
Number of Processor

tuple System
System

(million) (sec)
(sec)

10 32.34 13.73
20 57.684 25.93
30 113.648 41.85
40 174.494 56.94
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Figure 4.10: Simulated Query Time Comparison between Single and

Parallel Processor System.

4.7 Summary
In this chapter we presented the experimental evaluation of the CMBVS, the main

component of the Terabyte Data Management System. We evaluated mainly the storage

performance which is achieved in compare with Microsoft SQL Server, a widely used

database system. The storage performance that is achieved in CMBVS is 24.90 times

cheaper than that of SQL Server The projection queries show great access speed compared

with SQL Server. The investigation finds out that CMBVS is 77 times faster than SQL

Server. The other types of select queries are 27.29-36.23 times faster than that of SQL

Server. The indexing on CMBVS also affects the query time. The indexing reduces query

time almost half of the non-indexed form of the compressed data. The scalability we tested

up to 85 million tuples. In compressed form it occupies only 2.27GB whereas the SQL

Server needs 56.34GB. The simulated storage space comparison for terabyte data is

computed using the interpolation. The query time in parallel processor system is simulated

using parallel algorithms.

•



Chapter 5
Conclusion and Further Research

Data compressIOn III database system is attractive for two reasons; storage

reduction and performance improvement. The both factor is essential for terabyte data

management system.

Literature survey shows that compression techniques have been adopted in

memory resident database systems that are not suitable for managing very large database

ranges to terabytes. We have developed a disk-based multi-block vector structure for

storage and querying of terabyte level of data.

We have improved the basic HIBASE compression model (by McGregor et. al.

[21]) and Threc Layer Model (by Latiful Hoque A. S. M. et.al. [18]) for disk support. Thus

the architecture can be used in terabyte data management system.

5.1 Fundamental Contributions of the Thesis
o The main contribution of this research is the columnar multi block vector

structure with very small restructuring overhead.

o Compressed data are stored using the CMBVS structure with disk support. This

overcomes the limitations of the memory resident DBMS for scalability with

high performance

o Multipart domain dictionaries are used to support high cardinality of domain

values

o A great storage reduction is achieved using the CMBVS structure. The

experimental results show that CMBVS structure is 22 - 25 times space

efficient than that of SQL Server.

o We have shown that a PC-based system can handle a terabyte level of data. The

performance for projection decreases linearly with the size of the database. The

size of I TB of conventional database is 43 GB in CMBVS.

•
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o We have achieved a very high order of performance improvement usmg

CMBVS structure. Performance improvement for projection operation is in the

order of 55 to 110 compared to conventional DBMS like SQL Server. The

same is 27 to 36 for selection operation.

o We have proposed a terabyte data management system architecture that works

on the CMBVS structure. The architecture can scale up to multi-terabytes of

data by distributing the column vectors to the column severs and domain

dictionaries to the domain servers.

5.2 Summary of the Thesis
The following sections summarize the thesis:

o The single block vector incurs huge restructuring cost, whereas the CMBVS

needs very small restructuring overhead. Multi block structuring makes it easy

to swap in memory and swap out to disk. Thus CMBVS can manage very large

size of vector. We have used fixed number of elements per block for CMBVS,

so that its size depends on element size in that block. The logical storage of

block is imposed to physical disk block for permanent storage. As the size of

the logical block is not fixed, it causes some fragmentation wastage of storage

between two disk blocks.

o A domain dictionary is created per attribute. If the size of the domain is such

that it can not be kept in memory, we use multi part domain dictionary. The

dictionary is partitioned into fixed number of lexemes. One partition is

swapped in memory. A single dictionary may be shared by multiple similar

attributes if it is specified during designing the database.

o The experimental result shows that the storage cost of the CMBVS for 85

million tuples is only 2.27 GB whereas the SQL Server needs 56.34GB. The

CMBVS is about 25 times efficient in storage space than that of SQL Server.

The CMBVS considers the storage for vector structure, the dictionary and the

index structure. CMBVS supports a compact index for both primary and

secondary index. We could achieve higher compression factor in case of

primary and secondary indices.
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o Access performance is very high for a particular query where a few number of

attributes are involved in the query. Because the architecture accesses only the

related column vectors and dictionaries, whereas the conventional DBMS

accesses the entire tuple for any query. Another reason behind the higher

access performance is the reduced va access due to compression. The

projection queries are 55 to 110 times faster than that of SQL Server. The

access speed degrades as the number attributes increased in where clause. The

selection (cr) query is 27 to 36 times faster than that of SQL Server.

o We have proposed a shared nothing parallel architecture for multi-terabyte data

management system (section 3.2). The column vectors can be distributed over

column servers on the supervision of CMBVS manager. The domain

dictionaries can be distributed over domain servers on the supervision of

domain dictionary manager. This provides a parallel computing environment to

achieve high performance for multi-terabyte database. The architecture can

store and manage virtually unlimited number of tuples with linear scale up of

resources. The architecture may suffer some communication delay while

interacting with different components. If we use gigabit range fiber optic

communication interface, the delay will be negligible. Though the query time

in this architecture is significantly improved than any uncompressed

counterpart, the response time is still high for any typical terabyte database. To

overcome this problem we should make hybrid fragmentation of the database

and the use of parallel algorithm which was beyond our scope.

5.3 Future Plan
The. CMBVS has been implemented in a single processor system and achieved

significant performance improvement over conventional DBMS. We have proposed a

shared-nothing architecture for further improvement in performance by parallel access to

the vectors and dictionaries.

The CMBVS is a disk based compressed database architecture and extended to

parallel architecture. This provides an easy way to use it in terabyte database system. The

future work of this research is to explore on the following other areas:
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o The architecture can be used for storage of fact table of data warehouse and parallel

computation of datacube for OLAP system.

o The architecture can be used for parallel mining and analyzing of very large database.

o We have not considered any back-up and recovery mechanism to the CMBVS database.

So the designing of commit protocol and redo-undo operations for compressed vectors

and domain dictionaries need to be explored.

o To achieve concurrent access to CMBVS structure, a multi-threaded algorithm needs to

be considered.

"- ../
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