
, .

Study on Huffman Coding

Submitted By
Mohammad Nurul Huda

M. Sc. Engineering Student
Department of Computer Science and Engineering

Student Id: 100 I05006P

A thesis submitted to the Department of Computer Science and Engineering in
partial fulfillment of the requirements for the degree of

Master of Science in Engineering in
Computer Science and Engineering...-. . __ .

_ ,/~-;-~~~~l;~~~JI7~r,.'-,_
f' ,a.' --, ?~\
i ;~, ~o;b 9 1.. ~.~ \
'. I<!\:,;1~ 20 . /10 (j 1" /~_~_)
'. '\;:!~•••. '. ' . .)/'

S . db - ., "~.~ --.,' '*/upervlse y '1';, •. ~""\A\ .
- _ "cd I, ", ../

Dr. M. Kaykobad -'~"--
Professor, Department of CSE, BUET

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA, BANGLADESH
OCTOBER 2004

1111111111111111111111111111111111
#99681#

'._.-
I

~ -~-'-'- }

Certificate

This is to certifY that I have done the thesis entitled "Study on Huffman Coding",
under the supervision of Dr. M Kaykobad and it has not been submitted
elsewhere for the award of any degree or diploma.

(Dr. M. Kaykobad)
Professor
Department of eSE, BUET
Dhaka-IOOO, Bangladesh

(Mohammad Nurul Huda)
M. Sc. Engineering Student
Student Id: 100105006P
Department of eSE, BUET
Dhaka-IOOO, Bangladesh

STUDY ON HUFFMAN CODING

A thesis submitted by

Mohammad Nurul Huda
Student Id: 100105006P

for the partial fulfillment of the degree of
M. Sc. Engineering (Computer Science and Engineering).

Examination held on October': 2004.-
Approved as to style and contents by:

;?:z),pA.~
D: : Kaykobad
Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering andTechnology
Dhaka-J 000, Bangladesh

Dr. Md. Sham I Alam 1/1.,-(~
Professor and Head
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology
Dhaka-lOOO, Bangladesh

~/

Dr. Mostafa Akbar
Assistant Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology
Dhaka-l 000, Bangladesh

Dr. Muhammed Zafar Iqbal
Professor and Head
Department of Computer Science and Engineering
Shahjalal University of Science and Technology
Sylhet, Bangladesh

Chairman and
Supervisor

Ex-officio
(Member)

Member

External
(Member)

D

ABSTRACT

Since the discovery of the Huffman encoding scheme in 1952, Huffman codes
have been widely used in the efficient storing of data, image and video. Huffman
coding has been subjected to numerous investigations in the past 60 years. Many
techniques have been proposed since then. But still this is an important field as it
significantly reduces storage requin:ment and communication cost. In this thesis,
"Study on Huffman Coding", we have directed our works mainly to Repeated
Huffman Coding that is a lossless compression technique.

The application of Huffman coding technique again and again on a file, then it is
called Repeated Huffman coding. While it is expected that encoded message
length will be smaller in every pass of Repeated Huffman coding, nevertheless
encoding the tree itself will be an overhead in each pass. So repetition count will
.depend upon how efficiently we can represent a Huffman tree.

A memory efficient representation of a Huffman tree is suggested in this thesis.
This representation is very important in the context of Repeated Huffman coding
where ultimate compression ratio depends upon the efficiency of encoding the
Huffman tree. It reduces overhead which incurs in every pass of Repeated
Huffman coding. Because of reduction of overhead, the Huffman Coding scheme
can be applied effectively on a file for a larger number of iterations.

The proposed algorithms require less than 15n/4l memory spaces in the worst case
to represent a Huffman tree for n distinct symbols, which is an improvement over
the existing technique that requires at most 13n/2l memory spaces.

Such a saving in the representation of Huffman trees will improve the
performance of the Repeated Huffman coding as well as Block Huffman coding
where multiple tree headers must be stored for a file oflarge size.

The tree clustering algorithm is also analyzed to get an optimal clustering of a
Huffman tree so that along with reduction of memory requirement search process
.for a symbol in a Huffman tree is speeded up.

/1'

ACKNOWLEDGEMENTS

The author likes to express his heartiest and more sincere gratitude to the patrons
of this work, without whom it was impossible for him to accomplish this onerous
task.

This work is mostly indebted to Dr. M. Kaykobad, Professor, Department of
Computer Science and Engineering, BUET, who has supervised the whole work.
It is a great pleasure for the author to acknowledge his profound gratitude to his
supervisor for constant advice, constructive criticisms and valuable guidance. His
encouragement helped in every stage of accomplishment of this work. He also
provided the author with valuable research materials of this vast field of study.
His immense help guided the author to complete the work and to prepare this
thesis. Without his patience, concern, and efforts this thesis would have not been
attainable.

The author likes to thank Dr. Md. Sham suI Alam, Professor and Head,
Department of Computer Science and Engineering, BUET, for his valuable advice
and encouragement.

The author likes to thank Dr. Muhammed Zafar Iqbal, Professor and Head,
Department of Computer Science and Engineering, Shahjalal University of
Science and Technology, Sylthet, for agreeing to be an external examiner.

The author also likes to thank Dr. Mostafa Akbar, Assistant Professor,
Department of Computer Science and Engineering, BUET, for his prompt help
and valuable advice.

The author's ultimate tribute goes to the Almighty Allah for bringing this work on
light.

(Mohammad Nurul Huda)

Contents

ABSTRACT IV

ACKNOWLEDGEMENT V

LIST OF TABLES Vlll

LIST OF FIGURES x

CHAPTER 1 INTRODUCTION

1.1 Introduction to Data Compression Techniques I
1.2 Literature Review 2
1.3 Scopes and Objectives of the Thesis 3
1.4 Organization of the Thesis 4

CHAPTER 2 CODING TECHNIQUES

2.1 Introduction to Coding Techniques 5
2.2 Different Coding Techniques 5
2.3 Different Variable Length Coding Techniques 6

2.3.1 Shanon-Fano Coding Technique 6
2.3.2 Huffman Coding Technique 8

2.4 Arithmetic Coding Technique II
2.5 Variations of Huffman Coding 13

2.5.1 Static Huffman Coding 13
2.5.2 Dynamic Huffman Coding 14
2.5.3 Block Huffman Coding 18
2.5.4 Repeated Huffman Coding 19

2.6 Conclusion 22

CHAPTER 3 REPRESENTATION OF HUFFMAN TREES

3.1 Introduction to Huffman Tree Representation 23
3.2 Existing Representation Techniques 23

3.2.1 Circular Leaf node Technique 23
3.2.2 Code for Every External node 25

, 3.3 Proposed Methods of a Huffman Tree Representation 29
3.3.1 Level Order Technique 29
3.3.2 Modified Level Order Technique 32
3.3.3 Preorder Technique 36
3.3.4 Modified Preorder Technique 39
3.3.5 Single Side Growing Tree Technique 42 03.3.6 Balanced Binary Tree Technique 45

3.4 Conclusion 50

\

',-;

.CHAPTER 4 HUFFMAN TREE CLUSTERING

4.1 Introduction to Tree Clustering
4.2 Problems of Huffman Codes
4.3 Desirable Features of Huffman Codes
4.4 Solutions of Huffman Code Related Problems
.4.5 Problems of the Tree Clustering Algorithm
4.6 Example of Huffman Tree Clustering
4.7 Algorithms Related to Tree Clustering
4.8 Decision Regarding Top Cluster
4.9 Conclusion

CHAPTER 5 BLOCK HUFFMAN CODING

5. J Introduction
5.2 Proposed Algorithms for Block Huffman Coding
5.3 Conclusion

CHAPTER 6 DESIGN OF EXPERIMENTS AND RESULTS

6.1 Introduction
6.2 A Huffman Tree Storage Format in the Compressed File
6.3 Experimental Results

6.3.1 The Existing Technique
6.3.2 The Proposed Techniques
6.3.3 Experimental data for Benchmark file
6.3.4 Block Huffman Coding

6.4 Comparison among Experimental Results
6.5 Analysis of Experimental Results
6.6 Conclusion

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion
7.1.1 Huffman Tree Representation Techniques
7.1.2 Tree Clustering Technique
7.1.3 Block Huffman Coding

7.2 Recommendations

REFERRENCES

CONTENTS

51
51
51
52
52
53
59
60
60

61
61
63

64
65
67.
67
69
82
89
90
108
109

110
110
112
112
112

114

List of Tables

CHAPTER 2
2.1 Fixed Length Codes
2.2 Frequency Count for Shannon-Fano Coding
2.3 First Frequency Division for Shannon-Fano Coding
2.4 Second Frequency Division for Shannon-Fano Coding
2.5 Third Frequency Division for Shannon-Fano Coding
2.6 Fourth Frequency Division for Shannon-Fano Coding
.2.7 Frequency Count for Hullinan Coding
2.8 Huffman Code for Every Character
2.9 Probability Distribution for Arithmetic Coding
2.10 Arithmetic Encoding
2.11 Arithmetic Decoding

CHAPTER 3
3.1 Huffman Code Length for Every Symbol
3.2 Huffman Code for Every Symbol

CHAPTER 4

5
7
7
7
8
8
9
1 I
12
12
13

44
44

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
.4.13
4.14
4.15

Memory Efficiency at Different Levels of Hullinan tree
Frequency Count for Huffman Coding
Reduction Process in Hullinan Coding
Huffman Code Lengths for Every Symbol
Similar Huffman Code Length for Different Symbols
Huffman Codeword for Every Symbol
Memory Efficiency at Different Levels of Hullinan tree
Memory Space
Super Table for Clustered trees
Look-up Table for y Cluster
Look-up Table for a Cluster
Look-up Table for P Cluster
Look-up Table for 8 Cluster
Memory Mapping in Tree Clustering
Decoding in Tree Clustering

53
53
54
54
55
55
56
57
57
57
57
58
58
58
59

CHAPTER 6
6.1 Compression Ratio for Circular Leafnode Technique
6.2 Huffman tree Size for Circular Leafnode Technique
6.3 Standard Deviation for Circular Leafnode Technique
6.4 Compressed File Size for Circular Leaf node Technique
6.5 Average Code Length for Circular Leaf node Technique
6.6 Compression Ratio for Level order Technique
6.7 Huffman tree Size for Level order Technique
6.8 Standard Deviation for Level order Technique
6.9 Compressed File Size for Level order Technique
6.10 Average Code Length for Level order Technique
6.11 Compression Ratio for Modified Level order Technique
6.12 Hullinan tree Size for Modified Level order Technique
6.13 Standard Deviation for Modified Level order Technique

67
67
68
68
69
69
70
70
71
71
72
72
73

List of Tables

6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
.6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60

Compressed File Size for Modified Level order Technique 73
Average Code Length for Modified Level order Technique 74
Compression Ratio for Preorder Technique 74
Huffman tree Size for Preorder Technique 75
Standard Deviation for Preorder Technique 75
Compressed File Size for Preorder Technique 76
Average Code Length for Preorder Technique 76
Compression Ratio for Modified Pre order Technique 77
Huffman tree Size for Modified Preorder Technique 77
Standard Deviation for Modified Preorder Technique 78
Compressed File Size for Modified Preorder Technique 78
Average Code Length for Modified Preorder Technique 79
Compression Ratio for Balanced Binary Tree Technique 79
Huffman tree Size for Balanced Binary Tree Technique 80
Standard Deviation for Balanced Binary Tree Technique 80
Compressed File Size for Balanced Binary Tree Technique 81
Average Code Length for Balanced Binary Tree Technique 8 I
Data for WORLD95.TXT Benchmark File 82
Data for OHS.DOC Benchmark File 83
Data for FP.LOG Benchmark File 84
Data for FLASHMX.PDF Benchmark File 85
Data for ENGLISH.DIC Benchmark File 86
Data for A 1O.JPG Benchmark File 87
Data for RAFALE.BMP Benchmark File 88
Compression Ratio and Tree size for Block Huffinan(Level order) 89
Compression Ratio and Tree size for Block Huffinan(M. Level order) 89
Compression Ratio Comparison 90
Compressed File Size Comparison 90
Comparison between Pure and Repeated Huffman(Circular Leafnode) 91
Comparison between Pure and Repeated Huffman(Level order) 91
Comparison between Pure and Repeated Huffman(Modified Level order) 92
Comparison between Pure and Repeated Huffman(Preorder) 92
Comparison between Pure and Repeated Huffman(Modified Preorder) 93
Comparison between Pure and Repeated Huffman(Balanced Binary Tree) 93
Comparison between Pure and Block Huffman(Level order) 94
Comparison between Pure and Block Huffinan(M. level order) 94
Huffman Tree Size in Existing and Level order Technique 95
Huffman Tree Size in Existing and Modified Level order Technique 95
Huffman Tree Size in Existing and Preorder Technique 96
Huffman Tree Size in Existing and Modified Preorder Technique 96
Huffman Tree Size in Existing and Balanced Binary tree Technique 97
Repetition Count Comparison 97
Standard Deviation vs. Compression Ratio(Existing and Level) 98
Standard Deviation vs. Compression Ratio(Existing and M. Level) 98
Standard Deviation vs. Compression Ratio(Existing and Preorder) 99
Standard Deviation vs. Compression Ratio(Existing and M. Preorder) 99
Standard Deviation vs. Compression Ratio(Existing and Balanced Binary Tree) 100

List of Figures

CHAPTER!
1.1 Data encoding process

CHAPTER 2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
.2.12
2.13
2.14
2.15
2.16
2.17

Shannon-Fano tree after First Frequency Division
Shannon-Fano tree after Second Frequency Division
Shannon-Fano tree after Third Frequency Division
Shannon-Fano tree after Fourth Frequency Division
Huffman Tree Construction Process
Dynamic Huffman Tree-I
Dynamic Huffman Tree-II
Dynamic Huffman Tree-11l
Dynamic Huffman Tree-IV
Huffman Tree Update Operation-I
Huffman Tree Update Operation-II
Huffman Tree Update Operation-III
Structure of Compressed and Uncompressed File in Pure Huffman Coding
Structure of Compressed and Uncompressed File in Block Huffman Coding
Structure of Compressed and Uncompressed File
A Typical Huffman Tree-I from Given Message
A Typical Huffman Tree-II from Given Message

7
7
8
8
9-10
14
15
15
15
17
17
18
19
19
20
20
21

CHAPTER 3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

Circular Leafnodes in Huffman Tree
Structure ofHuffinan Tree Header for Circular Leaf node Technique
A Typical Huffman Tree
Structure of Huffman Tree Header in Code for Every External node Technique
Received Tree Header for Decoder
Reconstruction Process of Huffman Tree
Huffman Tree for Level order Technique
Huffman Tree for Modified Level order Technique
A Balanced Huffman Tree
A Right Side Growing Huffman Tree
Huffman Tree for Preorder Technique
Huffman Tree for Modified Preorder Technique
Left Side Growing Huffman Tree
A Huffman Tree for Best case of Preorder
A Huffman Tree
A Right Side Growing Huffman Tree
A Huffman Tree for II Symbols
A Balanced Huffman Tree
A Right Side Growing Huffman Tree
A Huffman Tree for 5 Symbols
A Huffman Tree for 6 Symbols
A Huffman Tree for 7 Symbols
A Huffman Tree for 8 Symbols

24
25
26
26
26
27-28
29
32
35
36
37
39
41
42
43
44
46
47
47
48
48
49
49

c (

List of Figures

CHAPTER 4
4.1 Huffman Tree Showing Levels
4.2 A Huffman Tree for 7 Symbols
4.3 A Single Side Growing Huffman Tree
4.4 A Huffman Tree for Clustering
4.5 Top Cluster
4.6 Cluster for a, P, Ii
4.7 Super Tree

CHAPTERS
5.1 Uncompressed and Compressed File for Pure Huffman Coding
5.2 Block Huffinan Coding Compressed File Structure

52
54
55
56
56
56
57

62
63

CHAPTER 6
6.1 Tree Header for Level order Technique 65
6.2 Tree Header for Modified Level order Technique 65
6.3 Tree Header for Preorder Technique 65
6.4 Tree Header for Modified Preorder Technique 66
.6.5 Tree Header for Circular Leafnode Technique 66
6.6 Tree Header for Balanced Binary Tree Technique 66
6.7 Chart for Compression Ratio in Pure and Repeated Huffman (.TXT File) 100
6.8 Chart for Compression Ratio in Pure and Repeated Huffman (.DOC File) 101
6.9 Chart for Compression Ratio in Pure and Repeated Huffman (.C File) 101
6.10 Chart for Compression Ratio in Pure and Repeated Huffman (.RTF File) 102
6.11 Chart for Compression Ratio in Pure and Repeated Huffman (.HTM File) 102
6.12 Repetition Count (Circular vs. Level order, Modified Level order) 103
6.13 Repetition Count (Circular vs. Preorder, Modified Preorder) 103
6.14 Repetition Count (Circular vs. Balanced Binary Tree Technique) 104
6.15 Standard Deviation vs. Compression Ratio(.TXT, .DOC, .C, .RTF) 104
6.16 Standard Deviation vs. Compression Ratio(.BMP, .EXE, .HTM, .PDF, .BACK) 105
6.17 Compression Ratio vs. Average Code Length(.TXT, .DOC, .C, .RTF) 105
6.18 Huffman Tree Size in Circular vs. Level order(.TXT File) 106
6.19 Huffman Tree Size in Circular vs. Modified Level order(.TXT File) 106
6.20 Huffman Tree Size in Circular vs. Preorder(.TXT File) 107
6.21 Huffman Tree Size in Circular vs. Modified Preorder(.TXT File) 107
6.22 Huffman Tree Size in Circular vs. Balanced Binary Tree(.TXT File) 108

INTRODUCTION

1.1 Introduction to Data Compression Techniques

The main objective of data compression techniques is to transform raw data into a
form which is in reduced size but from which original data can easily be
extracted. Mainly a compression technique focuses on reduction of storage
requirements and communication cost over the network.

Data compression techniques can be divided into two major categories.
i) Lossy data compression
ii) Lossless data compression

Lossy data compression concedes a certain loss of accuracy in exchange for
greatly increased compression. Lossy compression proves effective when it is
applied to graphical images and digitized voice. Most lossy compression
techniques can be adjusted to different quality levels, gaining accuracy in
exchange for less effective compression.

Lossless compression technique guarantees to generate an exact duplicate of the
input data stream after an encoding or a decoding cycle. This type of compression
is used when storing database records, spreadsheets, or word processing files. In
these applications, the loss of even a single bit could be catastrophic. All of the
techniques discussed in this thesis are lossless.

Data Compression =Modeling + Coding

Input Model Encoder Output
Stream ~

Stream
.

Figure 1.1: Data Encoding Process

.-.~

A model is simply a collection of data and rules used to process input symbols
and determine which code(s) to output. A program uses the model to accurately

.define the probability for each symbol and the coder to produce an appropriate
code based on those probabilities.

A statistical model with Huffman coding counts occurrence of each symbol in the
message, then constructs a Huffman tree based upon symbol probabilities and
generates a code for each input symbol. Using these codes, Huffman tree and
input symbols the encoder builds a compressed output stream.

Data compression enters into the field of Information Theory because of its
concern with redundancy. Redundant information in a message takes extra bits to
encode, and if we can get rid of that extra information, we will have reduced the
size of the message.

Information Theory uses the term entropy as a measure of how much information
is encoded in a message. The higher the entropy of a message, the more
information it contains. The entropy of a symbol is defined as the negative
logarithm of its probability (p).

Information content of a symbol = -log2P

.The entropy of an entire message is simply the sum of the entropy of all
individual symbols.

1.2Literature Review

Data can be compressed using variable length compression techniques whenever
some data symbols are more likely to appear than others. Shannon [28-29]
showed that for the best possible compression code in the sense of minimum
average code length, output length contains a contribution of -log2P bits from the
encoding of each symbol whose probability of occurrence is p. The term
redundancy has been defined by Shannon as a property of the code. D. A.
Huffman [16] first introduced a minimum redundancy method of source coding
called a "Huffman code". Connel [6] derived a Huffman-Shannon-Fano (HSF)
code by adopting a notion of Shannon-Fano [9] code and combining it with
Huffman code, wherein the code symbols appear lexicographically.

Huffman algorithm requires two passes over the text. This causes delay when
used for network communication. In file compression applications the extra disk
accesses can slow down the operation. Faller [8] and Gallager [10] independently

.proposed a one-pass scheme, which has been improved substantially by Knuth
[19] for dynamic Huffman codes, usually known as FGK codes. J. S Vitter [33]

2

has analyzed the dynamic Huffman codes and proposed an optimal algorithm. He
also derived a tight upper bound for the Dynamic Huffman codes.

There are some practical problems in using Traditional Huffman coding. One of
the most prominent problems is that the whole stream must be read prior to
coding. This is a major problem when file size is too large. Mannan and
Kaykobad [23] solved the problem through introducing the Block Huffman
coding.

In every pass of Repeated Huffman coding, a Huffman tree must be stored in
output stream. So an efficient representation of Huffman tree is required.
Hashemian [II] presented a tree clustering algorithm to avoid sparsity of
Huffman trees. Finding the optimal solution of this clustering problem is still
open. Chung [5] gave a data structure requiring memory size of only 2n-3 to
represent the Huffman tree, when n is the number of symbols. Chen et .al. [3]
improved the data structure to reduce the memory requirements to r3n12l +
r(n/2)logn l+ I. Chowdhury et al. [4] further improved the data structure to reduce
memory requirement to r3n12l by considering circular leaf nodes (node with two
external nodes).

Mandai [22] introduced a universal, lossless data compression technique named
as Running Difference Method. R. Schack [27] proposed a bound regarding the
length of a typical Huffman codeword. Abu-Mostafa and McEliece [I] proposed a
maximum codeword length in Huffman codes. Vitter [13] gave a technique of
parallel lossless image compression using Huffman and Arithmetic coding. Hu
and Chang [15] proposed a new lossless compression scheme based on Huffman
coding for image compression. Turpin [31] introduced an efficient finite-state
machine implementation of Huffman decoders. Elabdalla and lrshid [7] proposed
an efficient bitwise Huffman coding technique based on source mapping.

Langdon [20] introduces Arithmetic coding technique, which was analyzed by
Vitter [12J and subsequently implemented by Apiki [2].

1.3 Scopes and Objectives of the Thesis

While it is expected that encoded message length will be smaller in every pass of
Repeated Huffman' coding, nevertheless encoding the tree itself will be an
overhead in each pass. Because of this overhead in every pass, compression ratio
cannot be indefinitely improved. An efficient representation of a Huffman tree is
required so that the scheme can be economically applied for a larger number of
iterations.

3

'L, '.. _~. -
(

The objectives of the thesis are:

• Efficient representation of Huffman tree through less than 13nJ21 memory
spaces, which is very important in the context of Repeated Huffman
coding.

• Determination of effective number of iterations for Repeated Huffman
coding.

• Improvement of performance of Huffman coding using Block Huffman
coding.

• Selecting L (Maximum level for each cluster) to do effective clustering of
a Huffman tree to speed up search process for a symbol in a Huffman tree
and reduce memory size.

1.4 Organization of the Thesis

Chapter One introduces the area of current research work, and states the
importance and objective of the work. A discussion on works related to the
current one has also been presented. This chapter also focuses on entropy, lossless
and lossy compression techniques.

Different Coding Techniques such as Shannon-Fano, Huffman Coding and
Arithmetic Coding are given in Chapter Two. This Chapter also concentrates on
variations of Huffman coding.

Chapter Three illustrates mainly the proposed methods of representation of a
Huffman tree. It also discusses existing techniques of this tree representation.

Chapter Four focuses on Huffman tree clustering algorithm. Reduction of sparsity
of Huffman tree, memory mapping, decoding by a clustered tree and optimal
cluster length.

Chapter Five illustrates Block Huffman coding. It also focuses on algorithms for
source and continuous data, and block size selection.

Chapter Six has been devoted to design of the experiments for the proposed
methods of Huffman Tree representation and Block Huffman Coding. It also
presents results of experiments, comparisons among different proposed methods
over existing methods.

Chapter Seven concentrates on conclusion of the thesis and recommendation for
future work

4

(

CHAPTER

2
CODING TECHNIQUES

2.1 Introduction to Coding Techniques

.Once Information Theory had advanced to where the number of bits of
information in a symbol could be determined, the next step was to develop new
methods for encoding information. To compress data it is required to encode
symbols with exactly the number of bits of information the symbol contains. If the
character 'e' only gives us four bits of information, then it should be coded with
exactly four bits. If 'x' contains twelve bits, it should be coded with twelve bits.

2.2 Different Coding Techniques

Every character can be coded with same number of bits or with the bits that are
required by the information content. Depending on this, coding can be done with
the two techniques i) Fixed length Coding ii) Variable length Coding.

Fixed Length Coding

In fixed length coding a character is coded with the same number of bits. By
encoding character using EBCDIC or ASCII, we clearly are not going to be very
close to an optimum method .

.Table 2.1 shows fixed length codes for each of the symbol of the message "CAB"

T bl 2 1 F' d L th C da e . : lXe en o es
Character Fixed Length Code

C 01000011
A 01000001
B 01000010

Variable Length Coding

The codes in which the source symbols are encoded with different lengths of code
symbols are considered as variable length codes. These codes are becoming

5

.•.
(

increasingly important as the costs of communication in distributed systems and
external storage are beginning to dominate the costs for internal memory and
computation. Variable length codes are more efficient in the sense that fewer bits
for representation of same piece of information are required on an average than
fixed length codes. This can yield tremendous savings in communication system
and file compression.

2.3 Different Variable Length Coding Techniques

Solving the problem of fixed length coding practitioners of Information Theory
use Shanon-Fano and Huffman coding techniques-two different ways of
generating variable length codes when given a probability table for a given set of
symbols.

The problem with Huffman or Shannon-Fano coding is that they use an integral
number of bits in each code. If the entropy of a given character is 2.5 bits, the
Huffman code for that character must be either 2 or 3 bits, not 2.5. Because of this
Huffman codes cannot be considered as an optimal coding method.

Though variable length coding does not necessarily achieve theoretical lower
bound of compression due to using an integral number of bits per code, it is
relatively easy to implement.

2.3.1 Shannon-Fano Coding Technique

Shannon-Fano coding technique produces instantaneous decodable code words.
This technique builds a decoding/encoding tree known as Shannon-Fano tree and
it can be built by the algorithm 2.1 from the list of source symbols with a
corresponding list of probabilities or frequency counts.

Step 1: Build a node with the total frequency count; this node is the root of the
tree.

Step 2: Divide the list of symbols into two parts, with the total frequency
counts of the upper half being as close to the total of the bottom half as
possible.

Step 3: The weight of upper half of the list is assigned to the right child of the
previous node, and the lower half to the left.

Step 4: Recursively apply the same procedure to each half, subdividing groups
and adding to preceding nodes until each symbol has become a leaf on
the tree. .

Algorithm 2.1: Shannon-Fano Tree Construction

6

The following Tables and Figure 2.1-2.4 describe the construction process of
Shannon-Fano tree

Assume source text is "ABCCDDEEE"

Step I: Count Frequency for Every Distinct Character

Table 2.2: Fre uencv Count
Symbol Count

A I
B I
C 2
D 2
E 3

Step 2: Shannon-Fano Tree Construction

Table 2.3: First Frequency Diyision
Symbol Count Code

A I 0
B I
C 2

Division I
D 2
E 3

DE

Figure 2.1: Tree after First Division

STable 2.4: econd Frequencv Division
Symbol Count Code

A I 0
B I
C 2

Division I
D I 2 I 10

Division 2
E I 3 II

Figure 2.2: Tree after Second Division

7

(

T bl 2 5 TI' d F D' ..a e .. nr requency IVlSlOn
Symbol Count Code

A 1 00
B 1

Division 3
C I 2 I 01

Division I
D I 2 I 10

Division 2
E I 3 11

Figure 2.3: Tree after Third Division

T bl 2 6 F h F D' ..a e : ourt requency IVlSlon
Symbol Count Code

A I 000
Division 4

B 1 001
Division 3

C 2 01
Division 1

D 2 10
Division 2

E 3 I II

Figure 2.4: Tree after Fourth Division

2.3.2 Huffman Coding Technique

Huffman coding achieves the minimum amount of redundancy possible in a fixed
set of variable-length codes. This does not mean that Huffman coding is an
optimal coding method. It means that it provides the best approximation for
. coding symbols when using fixed length coded."

It is a statistical data-compression technique. It produces variable iength codes for
the source symbols. In this technique, both encoding and decoding are done by a
decision tree which is popularly known as Huffman tree, devised by D. A.
Huffman. Its application reduces the average code length used to represent the
symbols of the source alphabet. Algorithm 2.2 describes how to construct a
Huffman tree from a list of symbols with their occurrences in the file.

8

Procedure Huffman(C)
N=lcl
Insert(Q, C)
For i= 1 to N-I do

X=MINIMUM(Q)
Y=MINIMUM(Q)
Z=CREATE _NODEO
Zj.LEFT=X
Zj.RlGHT=Y
Zj.FREQ= Xj.FREQ+ Yj.FREQ
Insert(Q, Z)

End for
End Procedure

Algorithm 2.2: Huffman Tree Construction

The Figure 2.5 and Tables 2.7-2.8 describe the construction process of Huffman
tree, generate code for each character of source text and then produce encoded bit
stream.

Assume source text is "ENGINEERING"

Step I: Count Frequency for Every Distinct Character

Table 2.7: Fre uencv Count
Symbol Count
R 1
1 2
G 2
N 3
E 3

Step 2: Huffman Tree Construction

Q: R:I 1:2 G:2 E:3 N:3

Q:

Figure 2.5: Huffman Tree Construction Process

9

•..

Q: E:3 N:3

G:2

Q:

G:2

Q:

1:2

N:3

Figure 2.5: Huffman Tree Construction Process (continued)

10

. l

Step 3: Code Generation

Table 2 8: Code for Each Character
Character Code

E 10
N 11
G 00
I 011
R 010

Step 4: Encoded Bit Stream
1011000111110100100111100

2.4 Arithmetic Coding Technique

Arithmetic coding is a viable successor to Huffman coding. It does not produce a
single code for each symbol. Instead, it produces a code for an entire message by
incrementally modifYing the output code. This is an improvement because the net
effect of each input symbol on the output code can be a fractional number of bits
instead of an integral number. Algorithm 2.3 shows encoding process in
Arithmetic coding technique.

Step 1: A current interval [L, H) initialized to [0, I).

Step 2: For each symbol of the file, it performs two steps

Step 2.1: Subdivide the current interval into subintervals, one for
each possible alphabet symbol. The size of a symbol's
subinterval is proportional to the estimated probability that
the symbol will be the next symbol in the file, according to
the model of the input.

Step 2.2: Select the sub"interval corresponding to the symbol that
actually occurs next in the file, and make it the new current
interval.

Step 3: Finally output enough bits to distinguish the final current interval from
all other possible final intervals.

Algorithm 2.3: Arithmetic Coding

II

Example

The Tables 2.9-2.11 describe the step by step procedure to get compressed code
from a source text.

Assume source text is "CSE DEPTT."

Step I: Probability Count and Distribution

Table 2.9: Probabilitv Distribution
Character Probability Range

Space 0.1 [0.00,0.10)
C 0.1 [0.10,0.20)
D 0.1 [0.20,0.30)
E 0.2 rO.30,0.50)
P 0.1 [0.50,0.60)
S 0.1 [0.60,0.70)
T 0.2 [0.70,0.90)

0.1 [0.90, 1.00)

Step 2: Result of the Arithmetic Coding of the Message "CSE DEPTT."

H'o LT able 2.1 : ow and jph Values

New Character Low Value High Value
0.0000000000 0.1000000000

C 0.1000000000 0.2000000000
S 0.1600000000 0.1700000000
E 0.1630000000 0.1650000000

Space 0.1630000000 0.1632000000
D 0.1630400000 0.1630600000
E 0.1630460000 0.1630500000
P 0.1630480000 0.1630484000
T 0.1630482800 0.1630483600
T 0.1630483360 0.1630483520

0.1630483504 0.1630483520

12

Step 3: Result of Decoding Process of the Encoded Message

Table 2.11: Arithmetic Decodin
Encoded Number Output Character Range
0.1630483504 C [0.10,0.20)
0.6304835040 S [0.60,0.70)
0.3048350400 E [0.30,0.50)
0.0241752000 space [0.00, 0.10)
0.2417520000 D [0.20,0.30)
0.4175200000 E [0.30,0.50)
0.5876000000 P [0.50,0.60)
0.8760000000 T [0.70,0.90)
0.8800000000 T [0.70,0.90)- 0.9000000000 [0.90, 1.00)
0.0000000000

Difficulties of Arithmetic Coding

• Arithmetic coding requires more CPU power than was available until
recently. Even now it will generally suffer from a significant speed
disadvantage when compared to other coding methods.

• The shrinking of the current interval requires the use, of high precision
arithmetic.

2.5 Variations of Huffman Coding

Traditional Huffman coding suffers from many problems such as slowness of disk
access and network communication. Besides it cannot be continued for an
effective number of iterations. As a result it degrades compression ratio. Different
variations of Huffman coding are available to improve the performance of
Traditional Huffman coding.

2.5.1 Static Huffman Coding

It is a traditional Huffman scheme that collects frequency of occurrence of
different symbols to be coded in the first pass, constructs a tree based upon which
symbols receive codes. Then in the second pass symbols are coded and sent to the
.receiver. However, along with codes corresponding to symbols the Huffman tree
is also sent.

13

Problems of Static Huffman Coding

• This technique requires two passes.
• Since it needs two passes, this causes delay when used for network

communication.
• In file compression applications the extra disk accesses can slow down

the algorithm.

Solutions of Problems of Static Huffman Coding

• Faller (an adaptive system for data compression) and Gallager
(Variations on a theme by Huffman) independently proposed a one-pass
scheme, later improved substantially by Knuth (Dynamic Huffman
coding), for constructing Dynamic Huffman codes. Dynamic Huffman
coding solves problems of Static Huffman coding.

• Scott J. Vitter gave an optimum solution of updating a Huffman tree
dynamically.

2.5.2 Dynamic Huffman Coding

In Dynamic Huffman coding both the sender and receiver start with the same
initial tree and thereafter stay synchronized; they use the same algorithm to
modifY the tree after each letter is processed. Thus there is never need for the
sender to transmit the tree to the receiver, unlike the case of Static Huffman
coding.

Example

Dynamic Huffman coding algorithm operates on the following message

"abed ... "

Figure 2.6: Huffman Tree after Receiving 'a'

14

Figure 2.7: Huffman Tree after Receiving 'b'

b:l

Figure 2.8: Huffman Tree after Receiving 'c'

Figure 2.9: Huffman Tree after Receiving 'd'

15

."

Sibling Properties

When a symbol comes, tree must be updated to maintain the following properties

• The n leaves have nonnegative weights w=(wil i=I .. n), and the weight of
each internal node is the sum of the weights of its children.

• The nodes can be numbered in non-decreasing order by weight, so that
nodes 2j-l and 2j is sibling, for l:Sj:Sn-l, and their common parent node is
higher in numbering.

Algorithm 2.4 shows how to update a dynamic Huffman tree for each symbol of
the message.

Procedure Update

Begin
q=leafnode corresponding to at+l
IF q is the O-node and k<n-l then

Begin
Replace q by a parent O-node with two leaf O-node
children, numbered in the order left child, right
child, and parent
q=right child just created

End

IF q is the sibling of a O-node then
Begin

Interchange q with the highest numbered leaf of the
same weight
Increment q' s weight by 1
q=parent of q

End

WHILE q is not the root of the Huffman tree
Begin

Interchange q with the highest numbered node of
the same weight
Increment q' s weight by I
q=parent of q

End
End

End Procedure

Algorithm 2.4: Dynamic Huffman Tree Construction

16

(

Tree Update Operation

The Figures 2.10-2.12 shows the update operation ofa Huffman tree.

Figure 2.10: Huffman Tree before Updating

Figure 2.11: Tree Processing to Update after Receiving another 'b'

17

Figure 2.12: Updated Huffman Tree by 'b'

2.5.3 Block Huffman Coding

Although Huffman coding is not the best among existing coding methods, it is the
most-cited coding method till present time. Huffman published his paper on
coding in 1952, and it instantly became the most imperative work in Information
Theory. Huffman's original work spawned many variations. And it dominated the
world of coding till the early 1980's.

But there are some practical problems in using Original Huffman coding. One of
the most important problems is that we have to read the whole stream prior to
coding. This is a major problem when

• File size is too large
• Source stream is continuous

When file size is large, it will take much longer time to build the Huffman header
for compression. This happens because it is required to read the whole file twice
from the source stream that is in most cases from hard disk. In the first read pass it
is required to build the Huffman tree to get a code for. each individual character.
In the second read pass we do the real work of compression. If file size, which is
small, can be stored in main memory, r.eading in second pass can be done from
main memory instead of hard disk. This will reduce overhead time of reading
from a slow speed device twice. But when file size is large, it cannot be stored in
.main memory. In this case it is unavoidable to read second time from hard disk
drive. Though currently hard disk drives with data transfer rate 3 to 5 KB/second
are available, still it will take significant time. With original method of Huffman
coding, there is no way through which we can avoid it. Algorithm 2.5 illustrates
how Block Huffman coding works.

18

•

Step 1: Read a block from the File into main memory.
Step 2: Build the Huffman tree and code for this Block.
Step 3: Compress this block by reading it from main memory.
Step 4: Put the header and compressed data to output file.
Step 5: If there is more data in input file, goto step I. Otherwise coding is

ended

Algorithm 2.5: Block Huffman Coding

How It Solves Our Problems

This method can handle both the drawbacks mentioned above. In the first case,
the file is read from hard disk only once; compression speed increases
significantly because second pass reading is done from the main memory that is
much faster than the hard disk. Now the file size may be as large as possible
without suffering double penalty for reading two times from hard disk drive. So
first problem mentioned above is solved.

Multiple Header Storage

There is a potential problem of increase in size of compressed data due to the
storage space of multiple headers for a single file. The problem may be shown
pictorially in the following way

Uncompressed File

Header Compressed Data

Figure 2.13: Uncompressed and Compressed File in Huffman Coding

Uncompressed Data

Header I Compressed data 1 I Header 2

Figure 2.14: Block Huffman Coding

Compressed data 2

In this method as the number of blocks increases, the overhead for storing
multiple headers becomes significant. This causes penalty in compression ratio.
That's why a redesign of the storage method of multiple headers is needed.

2.5.4 Repeated Huffman Coding

.If Huffman coding technique can be applied effectively on a file again and again,

19

then it is called Repeated Huffman coding. While it is expected that encoded
message length will be smaller in every pass of Repeated Huffman coding,
nevertheless encoding the tree itself will be an overhead in each pass. So
repetition count will depend upon how efficiently we can represent a Huffman
tree. If a Huffman tree can be represented efficiently in memory, Repeated
Huffman coding technique can be applied in an effective number of times. If we

.can do so, compression ratio will be increased.

Before compressed

Uncompressed File

After Compressed
I Tree Header Compressed data

Figure 2.15:Structure of Compressedand UncompressedFile

Example
Assume a file contains total 102 times A, 100 times Band 1 time C.

File content is given below
BB..BCAA ..A

Required bits to represent the file = (102+ I00+ I) x8
=1624

First Pass of Compression:

Huffman tree is just like as follow

Figure 2.16 Huffman tree for 100 n, I C and 102 A
Code for A, C and Bare 0, 10 and II respectively.
Bits to code the Huffman tree=3(Preorder sequenceandthendiscardrightmostO's)
Required bits for compressed code= (I 00x2+2+ 102) +Tree Header

= 304+ Code for Tree + Distinct Symbols
= 304+3+3x8
= 331

20

, .•. :

Format of compressed file in first pass of compression

Code for 100 B's Code for I C's Code for 102 A's Tree Code Distinct
Symbols

1111..1 lill 000 ..0 1101 1ABC 1

Sl, S2 and S3 symbols can be defined by taking 8 bits for each symbol where
Sl= 11111111, s2=10000000 and S3=00000000. Symbol S4is 101.

Second Pass of Compression:

There are 25 Sl, I S2, 12 S3, I S4,I A, I B and I C in the source file of second pass.

Huffman tree is just like as follow

Figure 2.17 Huffman tree for 25 51' 12 53' and 1 52' 1 54, J A,] B, 1 C

Code of Sl, S2,S3, S4,A, B,and C are 1,0000,01,0001,00110,00111, and 0010
respectively.

Bits to code the Huffman tree=9 (Pre order Sequence and then discard right most 0'5)
Required bits for Compressed code= (lx25+4xI+2xI2+4+5+5+4) +Tree Header

= 71+ Code for Tree + Distinct Symbols
= 71+9+7x8
= 136

21

Third Pass of Compression:
This pass cannot be continued because of degeneration ..

Compression ratio for Traditional and Repeated Huffman coding is 79.62% and
91.63% respectively. For mentioned text Repeated version compresses 12% more
than Traditional Huffman coding.

Problems of Repeated Huffman Coding

An efficient representation of a Huffman tree is needed because the performance
of the Repeated Huffman Coding depends on it.

Solution of these Problems

• Chung [5] gave a data structure requIrIng memory size only 2n-3 to
represent the Huffman tree, where n is the number of distinct symbols.

• Chen et al. [3] improved the data structure further to reduce memory
requirement to r3n/2l-+f n/2lgn l + I.

• Chowdhury et al. [4] improved memory requirements by considering
circular leaf nodes (nodes with two adjacent external nodes). Since a
Huffman tree has at most rn/2l circular leaf nodes, their memory
requirement is r3n/2l at worst case

2.6 Conclusion

Traditional Huffman coding has many problems that are solved by Dynamic
Huffman coding, Block Huffman coding and Repeated Huffman coding.
Arithmetic coding generates a single code for the whole source message. But this
coding technique needs high computational power as well as arithmetic precision.

22

t
(

CHAPTER

3
REPRESENTATION

OF
HUFFMAN TREES

3.1 Introduction toHuffman Tree Representation

Coding of a Huffman tree is needed to get the tree from decoder side; otherwise
extraction of data is not possible. Here coding of a Huffman tree means
representation of the tree so that it can be reconstructed by decoder with minimal
effort. There are many techniques to represent a Huffman tree. Next sections are
devoted to discuss to the existing and proposed techniques of a Huffman tree
representation.

3.2 Existing Representation Techniques

Two existing techniques of Huffman tree representation are discussed.

3.2.1 Circular Leaf node Technique

In this technique along with information symbols it is required to send
information of all circular leaf nodes (nodes with two adjacent external nodes)
that uniquely determines a Huffman tree .

.If T is a Huffman tree of height h, then t, the truncated Huffman tree, is obtained
by removing all leaves (square nodes) and will have height h-1. t uniquely
determines the Huffman tree T since symbols correspond to left and right son
nodes of the circular leaf nodes and the other sons of other single-son circular
nodes. Then Huffman codes, representing circular leaf nodes of t uniquely
determine T. If there is m circular leaf nodes, m codewords corresponding to

23

them, and n symbols in order of appearance in the tree will suffice to represent the
.Huffman tree.
Consider the example of the following Figure. Let the leaf circular nodes of
Figure are denoted by C I, C2 and C3 respectively in order. Then corresponding
Huffman codes are 00, 0100 and 101. However, each of these codewords can be
represented uniquely by integers whose binary representations are these
codewords with I as prefix. The corresponding integers for C I, C2 and C3 are
respectively 4 for 100, 20 for 10100 and 13 for 1101. Along with A to J symbols
4, 20, and 13 are also sent as codes for circular leaf nodes. The receiver can obtain
Huffman codes 00, 0100 and 101 by deleting the attached prefix. These bit
patterns will enable the receiver to construct all paths to the circular leaf nodes,
and thus reconstruct the Huffman tree. So to reconstruct Huffman tree T, the
following theorem is used.

Figure 3.1: Circular Leaf nodes cl, e2 and e3

Theorem 3.1 Let S be the array of symbols in order of appearance in the
Huffman tree T and D be the set of integer codes, corresponding to circular leaf
nodes, sent to the receiver. Then the receiver can uniquely reconstruci the
Huffman tree T.

Proof. Let di be the integer corresponding to a circular leaf node i. By deleting the
appropriate prefix from the binary representation of di, one can reconstruct the
whole path leading to that node uniquely since bit 0 will take to the left and I to
the right, and there is no ambiguity. Since each internal node of the Huffman tree

24

will appear on the paths of some of these circular leaf nodes, each internal node of
the Huffman tree will appear in at least one of these paths. Now external nodes
will appear either as left or right sons of the circular leaf nodes, or as one of the
sons of circular nodes on the path to the circular leaf nodes. This will result in the
construction of a unique Huffman tree T since paths constructed for each dj are
.unique. Furthermore, the set of symbols S will label the external nodes in an
orderly fashion with appropriate symbols. -

Receiver will receive the following information with compressed data.

Tree Header

Tree header contains the following information

Compressed data

Information Symbols Codes of Circular leaf node

For the Huffman tree of Figure 3.1, tree header contains the following information

Information Symbols Codes of Circular leaf nodes
ABCDEFGHIJ 100 I 10100 I 1101

Figure 3.2: Structure of Tree Header

Space Complexity Analysis

Total number of distinct symbols~n
Maximum number of circular leaf node in a Huffman tree= In/2l
Space for circular leaf node representation= In/2l
Space for Huffman tree representation = distinct character+ circular leaf node

= n+l n/2l
= 13n/2l

3.2.2 Code for Every External node

In this method the sender sends a codeword of 0 and 1 for every distinct symbol.
The sender also sends all information symbols with codeword. After receiving the
tree header, the receiver reconstmcts the Huffman tree from information symbols
and codeword. Then it starts decoding using constructed Huffman tree.

25

Figure 3.3: A Huffman Tree

The sender sends the following tree header with compressed data to the receiver.

.Symbols A B C D E F G

Code 00 01 100 101 110 1110 IIII

Figure 3.4: Structure of Tree Header

A Huffman Tree Extraction Process

When the receiver receives a tree header from the sender, it follows the following
steps to reconstruct a Huffman tree

Example

Symbols A B ,C D E F G

Code 00 01 100 101 110 1110 1111

Figure 3.5: Received Tree Header

26

Figure 3.6: Reconstructing Huffman Tree

27

Figure 3.6: Reconstructing Huffman Tree (continued)

28

••

Space Complexity Analysis

Total number of distinct symbols=n
Space for all codes=n
Total space for Huffman tree representation = Symbols + codes

=n+n
=2n

3.3 Proposed Methods of a Huffman Tree Representation

This thesis has proposed a series of methods to represent a Huffman tree
efficiently in memory. Each of the methods takes space that is less than 13n/2l at
worst case. Every proposed method improves the existing methods.

3.3.1 Level Order Technique

In this method each internal and external node is represented by 'I' and '0'
respectively. After traversing the Huffman tree by level order, a bit stream of I's
and O's, and a character sequence (external node only) of n distinct symbols are
.obtained.

Figure 3.7: Huffman Tree for Level Order Technique

29

•

Level Order Bit Stream: 111111110000100010000

Level Order Character Sequence: BCDE FGAIJKL

Algorithm 3.1 shows how to represent a Huffman tree using level order technique.

Step I: Represent each internal node by 'I'

Step 2: Represent each external node by '0'

Step 3: Traverse Huffman tree by level order to get a bit stream of I's
(internal node) and O's (external node), and a character sequence of
n distinct symbols (external node only).

Algorithm 3.1: A Huffman Tree Representation in Level Order Technique

Theorem 3.2 Let Sand D be the array of symbols and set of characters (obtained
from bit stream of 1 's & 0 's) respectively, which have been obtained by traversing
the Hnffman Tree T level order, sent to the receiver. Then the receiver can
.uniquely reconstruct the Huffman tree T

Proof.

Here S = Set of n distinct symbols
D = Set of characters that is obtained from bit stream
B = Bit stream that is generated from D

Scan the bit stream B from left to right. For each bit of B, either an internal or an
external node will be created. If bit is '1', it will be an internal node; otherwise it
will be an external node. If it is external node, corresponding symbol will be
extracted from S. Both pointer of Band S is forwarded. Later internal node will
be expanded for current bit of B as prior. Since the receiver is scanning both
arrays from left to right always, there is no possibility to get more than one
Huffman tree for the same bit stream and array of symbols. It concludes that T is
a unique Huffman tree. _

30

Algorithm 3.2 describes Huffman tree reconstruction procedure.
i=0
r=CREATE_NODEO
Q<=r
While Q;tempty do

p=DELETE(Q)
If(t(++i] ='1') then

newnode= CREATE NODEO
pt.left=newnode -
Q<=newnode

Else
newnode= CREATE NODEO
newnode t .info=char~cter
pt .left=newnode
newnode t .left=NIL
newnode t .right=NIL

End if
If(t(++i] ='1 ') then

newnode= CREATE NODEO
pt.right=newnode -
Q<=newnode

Else
newnode= CREATE NOD EO
newnode t .info=char~cter
pt.right=newnode
newnodet.left=NIL
newnode t.right=NIL

End if
End While

Algorithm 3.2: Huffman Tree Reconstruction

Space Complexity Analysis

Number of distinct characters =n
So, number of internal nodes in a Huffman tree=n-I
And numper of external nodes in a Huffman tree=n
n external nodes and n- I internal nodes representation are required
:. Total required bits for internal and external nodes = n + (n-I)

= 2n-1

Total space required for a Huffman tree = n + (2n-1)/8
= n + n/4 -118
= 5n/4 -118

31

So, required memory in this method is less than existing method which takes at
most 13n/2l memory spaces for a Huffman tree of n distinct symbols.

3.3.2 Modified Level Order Technique

In this method each internal and external node is represented by 'I' and '0'
respectively. After traversing the Huffman tree by level order, a bit stream of I's
and O's, and a character sequence (external nodes only) of n distinct symbols are
got. The right most O's (zeros) of the bit stream is discarded to obtain the final bit
stream.

Figure 3.8: Huffman Tree for Modified Level Order Technique

Level Order Bit Stream: 11111111000010 OO!OOOO

Level Order Character Sequence: BCDE FGAlJKL

After Discarding Right Most Zeros Sequence: II!IIII! 0000 I0 00 I

32

\"'"
~".".

Algorithm 3.3 illustrates how to represent a Huffman Tree in Modified Level
order technique.

Step I: Represent each internal node by 'I'

Step 2: Represent each external node by '0'

Step 3: Traverse Huffman tree by level order to get a bit stream of I's
(internal node) and O's (external node), and a character sequence of
n distinct symbols (external node only).

Step 4: Discard the right most zeros from the bit stream.

Algorithm 3.3: A Huffman Tree Representation in Modified Level Order Technique

Theorem 3.3 Let Sand D be the array of symbols and set of characters (obtained
from bit stream of 1 's & 0 's after discarding right most zeros) respectively,
which have been obtained by traversing the Huffman Tree T level order, sent to
the receiver. Then the receiver can uniquely reconstruct the Huffman tree T.

Proof.

Here S = Set of n distinct symbols
D = Set of characters that is obtained from bit stream
B = Bit stream that is generated from D

Scan the bit stream B from left to right. For each bit of B, either an internal or an
external node will be created. If bit is 'I', it will be an internal node; otherwise it
will be an external node. If it is external node, corresponding symbol will be
extracted from S. Both pointer of Band S is forwarded. Later internal node will
.be expanded for current bit of B as prior. When bit stream has been finished, add
two external nodes for each of the internal node that is not expanded. Extract
symbol for each external node from S array. Since the receiver is scanning both
arrays from left to right always so, there is no possibility to get more than one
Huffman tree for the same bit stream and array of symbols. It concludes that T is
a unique Huffman tree .•

33

Algorithm 3.4 shows how to reconstruct a Huffman tree

i=0
r=CREATE_NODEO
Q<=r
While Q"empty do

p=DELETE(Q)
If tree bit stream is finished

Add an external node of corresponding character to
the left of p.

Else If (t[Hi] =' I') then
newnode= CREATE_NODEO
pt .left=newnode
Q<=newnode

Else
newnode= CREATE_NODEO
newnode t .info=character
pt .left=newnode
newnode t .left=NIL
newnode t .right=NIL

End if
If tree bit stream is finished

Add an external node of corresponding character to
the right of p.

Else If (t[Hi] =' I') then
newnode= CREATE_NODEO
pt .right=newnode
Q<=newnode

Else
newnode= CREATE_NODEO
newnode t .info=character
pt .right=newnode
newnode t .left=NIL
newnode t .right=NIL

End if
End While

Algorithm 3.4: Huffman Tree Reconstruction

Space Complexity Analysis

In this method best and worst cases are analyzed for the space complexity.

34

.Best Case Analysis

Best case occurs when the Huffman tree is fully balanced binary.

Figure 3.9: A Balanced Huffman Tree

Level Order Bit Stream: 111 11 110000 0000

After Discarding Right Most Zeros Sequence: 111 1111

No. of distinct characters=n
Number of internal nodes in a Huffman tree = n-1
Number of external nodes in a Huffman tree = n

There is no need to represent the external nodes

Total space for the Huffman tree =Symbols +internal nodes
= n + (n-1)/8
= n + n/8 -1/8
= 9n/8 - 1/8

Worst Case Analysis

Worst case occurs when a Huffman tree is like the Figure 3.10

35

Figure 3.10: A Right Side Growing Huffman Tree

Level Order Bit Stream: 1111111000000000 I00

.After Discarding Right Most Zeros Sequence: III 1111000000000 1

Number of internal nodes in a Huffman tree = n-I
Number of external nodes in a Huffman tree = n
Only (n-l) internal nodes and (n-2) external nodes representation are required
Total spaces for the Huffman tree =Symbols + node representation

= n + (2n-I-2)/8
= n + (2n-3)/8
= n + n/4-3/8
= 5n/4-3/8

So, required memory in this method is less than existing method which takes at
most 13n/2l memory spaces for a Huffman,tree of n distinct symbols

3.3.3 Preorder Technique

o

In this method each internal and external node is represented by 'I' and '0'
respectively. After traversing the Huffman tree by preorder, a bit stream of I's
and O's, and a character sequence (external node only) of n distinct symbols are
obtained.

36

Figure 3.11: Huffman Tree for Preorder Technique

Preorder Bit Stream: 111001001100100

Preorder Character Sequel).ce: ABCDEFGH

Algorithm 3.5 shows how to represent a Huffman tree in Preorder technique.

Step I: Represent each internal node by 'I'

Step 2: Represent each external node by '0'

Step 3: Traverse Huffman tree by pre order to get a bit stream of I ' s
(internal node) and O's (external node), and a character sequence
of n distinct symbols (external node only).

Algorithm 3.5: Huffman Tree Representation in Preorder Technique

Theorem 3.4 Let Sand D be the array of symbols and set of characters (obtained
from bit stream of 1 's & 0 's) respectively. which havf been obtained by traversing
the Huffman Tree T pre order, sent to the receiver. Then the receiver can uniquely
reconstruct the Huffman tree T

Proof.
Here S = Set of n distinct symbols
D = Set of characters that is obtained from bit stream
B = Bit stream that is generated from D

37

Scan the bit stream B from left to right. For each bit of B, either an internal or an
external node will be created. If bit is 'I', it will be an internal node; otherwise it
will be an external node. If it is an internal node, this node is expanded
recursively until a O's in B. Add an external node for this '0' and extract a
character from S. Pointer of B is forwarded for each I's of B. Pointer of S is
forwarded only for a O's in B. Since the receiver is scanning both arrays from left
to right always so, there is no possibility to get more than one Huffman tree for
the same bit stream and array of symbols. It concludes that T is a unique Huffman
tree. _

Algorithm 3.6 shows how to reconstruct a Huffman Tree.

Procedure Preorder(r, t, Cset)
Begin

i=O
if(t[++i]='1 ')then

Add an internal node "temp" to the left of r
Preorder(temp, t, Cset)

Else
Add an external node "temp" to the left of r
tempi .info=character

End if

if (t[++i]=' I ')then
Add an internal node "temp" to the right of r
Preorder(temp, t, Cset)

Else
Add an external node"temp" to the right of r
tempi .info=character

End if
End

Algorithm 3.6: Huffman Tree Reconstruction

Space Complexity Analysis

Number of distinct characters =n
So, number of in,ternal nodes in a Huffman tree=n-I
And number of external nodes in a Huffman tree=n
n external nodes and n-I internal nodes representation are required
:. Total required bits for internal and external nodes = n + (n-I)

= 2n-1
Total space required for a Huffman tree = n + (2n-I)/8

= n + n/4 -1/8
= 5n/4 -1/8

38

So, required memory in this method is less than existing method which takes at
most r3n/2l memory spaces for a Huffman tree of n distinct symbols. ,

3.3.4 Modified Preorder Technique

In this method each internal and external node is represented by 'I' and '0'
respectively. After traversing the Huffman tree by preorder, a bit stream of I's
and O's, and a character sequence (external nodes only) of n distinct symbols are
got. The right most O's (zeros) of the bit stream is discarded to get the final bit
stream.

A B C D E F G H

Figure 3.12: Huffman Tree for Modified Preorder Technique

Preorder Bit stream: 11100 100 1100100

Preorder Character Sequence: ABCDEFGH

After Discarding Right Most Zeros Sequence: 11100 100 11001
Algorithm 3.7 describes how to represent a Huffman Tree in Modified Preorder
.technique.
Step 1: Represent each internal node by '1'
Step 2: Represent each external node by '0'
Step 3: Traverse Huffman tree by Preorder to get a bit stream of

l's (internal node) and O's (external node), and a character
sequence of n distinct symbols (external node only).

Step 4: Discard the right most zeros from the bit stream.

Algorithm 3.7: Huffman Tree Representation in Modified Preorder Technique

39

••, .

Theorem 3.5 Let Sand D be the array of symbols and set of characters (obtained
from bit stream of 1 's & 0 's after discarding right most zeros) re"pectively,
which have been obtained by traversing the Huffman Tree T preorder, sent to the
receiver. Then the receiver can uniquely reconstruct the Huffman tree T

Proof.
Here S = Set of n distinct symbols
D = Set of characters that is obtained from bit stream
B = Bit stream that is generated from D

Scan the bit stream B from left to right. For each bit of B, either an internal or an
external node will be created. If bit is 'I', it will be an internal node; otherwise it
will be an external node. If it is an internal node, this node is expanded
recursively until a O's in B. Add an external node for this '0' and extract a
character from S. Pointer of B is forwarded for each I's of B. Pointer of S is
forwarded only for a O's in B. When bit stream has been finished, add two
external nodes for each of the internal node that is not expanded. Extract symbol
for each external node from S array. Since the receiver is scanning both arrays
from left to right always so, there is no possibility to get more than one Huffman
tree for the same bit stream and array of symbols. It concludes that T is a unique
.Huffman tree .•

Algorithm 3.8 illustrates a Huffman Tree reconstruction procedure
Preorder(r, t, Cset)

i= 0
if tree bit stream is finished

Add an external node of corresponding character to the left of r
Else if (t[++i]=I) then

Add an internal node "temp" to the left of r
Preorder(temp, t, Cset)

Else
Add an external node "temp" to the left of r
temp t .info=character

Endif
if tree bit stream is finished

Add an external node of corresponding character to the right of r
Else if (t[++i]= I) then

Add an internal node "temp" to the right of r
Preorder(temp, t, Cset)

Else
Add an external node "temp" to the right of r
tempt .info=character

End if
End Procedure
Algorithm 3.8: Huffman Tree Reconstruction

40

Space Complexity Analysis

In this method best and worst cases are analyzed for the space complexity .

.Best Case Analysis

This case occurs when the Huffman tree is left eccentric

o

Figure 3.13: A Left Side Growing Huffman Tree

Preorder Bit Stream: 1111 00000

After Discarding Right Most Zeros Sequence: IIII

n = no. of distinct characters
Number of internal nodes in a Huffman tree = n-I
Number of external nodes in a Huffman tree = n
There is no need to represent the external nodes

Total space for the Huffman tree =Symbols +internal nodes
= n + (n-I)/8
= n + n/8 -1/8
= 9n/8 - 1/8

Worst Case Analysis

Worst case occurs when a Huffman tree is like the Figure 3.14

41

Figure 3.14: A Huffmau Tree

Preorder Bit Stream: 111100001010100

After Discarding Right Most Zeros Seqnence: IIII 0000 I0 I0 I

Number of internal nodes in a Huffman tree = n-I
Number of external nodes in a Huffman tree = n
Only (n-I) internal nodes and (n-2) external nodes representation are required

Total spaces for the Huffman tree =Symbols + node representation
= n + (2n-I-2)/8
= n + (2n-3)/8
= n + n/4-3/8
= 5n/4-3/8

So, required memory in this method is less than existing method which takes at
most 13n/2l memory spaces for a Huffman tree of n distinct symbols

3.3.5 Single Side Growing Tree Technique

In this method a Huffman is made as eccentric as possible to reduce the number
of circular leaf nodes (internal node with two external nodes). Then apply the
technique of Chowdhury et a!. [4]. Since their technique requires at most 13n/2l
memory spaces by using the circular leaf node concept, it is required to reduce the
number of circular leaf nodes.

42

Algorithm 3.9 describes how to build an Eccentric Huffman Tree

Step I: Count the frequency of every distinct character.

Step 2: Follow the Huffman tree construction process to reduce into a
single root.

Step 3: Find all the code lengths of symbols occurring in each reduction
step. Construct a table.

Step 4: From the table of step3 find a code length of every distinct
character occurring in given text. Construct a table.

Step 5: Construct a code table using the following procedure

Step 5.1: Assign zero codeword to S] i.e. C] =0 ..0 Where S] is
first symbol of the table.

Step 5.2: When we changes rows, we have to expand the last
codeword, after being incremented, by placing extra
zeros to right, until the codeword length matches the
level.

Step 6: Construct an eccentric Huffman tree from the code table
Algorithm 3.9: Single Side Growing Huffman Tree Construction

Example
The Figure 3.15 shows a Huffman tree

Figure 3.15: A Huffman Tree

43

Table 3.1: Code Len~th for Everv Svmbol
ROW CL Symbol

i 2 G
2 3 E, F, H, I, 4 A, B,C, Dj

S blT bl 32 C d f Ea e .. o e or ~very ~ym 0

CL Codeword Symbol
2 00 G
3 010 E

011 F
100 H
101 I

4 1100 A
1101 B
1110 C
1111 D

Figure 3.16: Huffman Tree for Code of Table 3.2

44

i
\

Space Complexity Analysis

Best case space requirement to represent a Huffman tree=n+ I
Worst case space requirement to represent a Huffman tree=n+ In/2l
So, average case space complexity = (2n+l n/2l + I)/2

:<: L3n12J

In this case at most memory requirement is L3n12J

3.3.6. Balanced Binary Tree Technique

In our method we are always looking for fully balanced part of Huffman tree with
respect to its external nodes. For the balanced part of height greater than I(one)
requires only two spaces (one for height of the balanced part and another for code
of the root of balanced part) to store it. If the whole Huffman tree is fully
.balanced, only one space (height) is required to store it. Balanced part of height
I(one) needs one space (code of root of the balanced part).

Algorithm 3.10 describes how to represent a Huffman Tree in Balanced Binary
tree technique.

Step I: If the tree is fully balanced then
Store height of the Huffman tree
GOTO step 5

Endif

Step 2: Identify a balanced part of the tree with respect to its external nodes

Step 3: If the balanced part is height I (one) then
Store a code for the root of the balanced part

Else
Allocate two spaces one for code of root of this balanced part and
another for height of this part

End if

Step 4: If more balanced part exist then
GOTO step 2

End if

Step 5: Stop algorithm
Algorithm 3.10: Huffman Tree Representation in Balanced Binary Tree Technique

45

Space Complexity Analysis

Space for a Huffman tree presentation=S(T)

I if T = balance at first time
otherwise

SeT) = I
2
o
SeT,) + SeT!)

if T = balanced and h = I
if T = Balanced and h > I
if T = external node
otherwise

Total space for tree = n + SeT)

Examples

n is the number of distinct symbols of the message.

Figure 3.17: A Huffman Tree for II Symbols

SeT) = SeT!) + SeT,)
= I+S(T!)+S(T,)
,;, 1+0+2
=3

Total space for a Huffman tree = n+ SeT)
=n+3
=11+3
= 14

46

Best ease Space Complexity Analysis

Best case occurs when a Huffman tree is like the Figure 3.18-3.19

a)

Figure 3.18: A Balanced Huffman Tree

Space = height
= I

Only one space for height is required.
To represent the tree total memory space = n+ I

b)

,,,,,,,,,,,
______________ 1

Space = code
= I

Figure 3.19: A Righi Side Growing Huffman Tree

Only one space for code of oc is required.
Total memory space to represent a Huffman tree = n+ 1

Worst case Space Complexity' Analysis

Worst case occurs when a Huffman tree is like the Figure 3.20

47

a)

Space for oc = height + code
= 1+ 1
=2

Figure 3.20: A Huffman Tree for 5 Symbols

Space = 2* height2 balanced subtree + 0
= 2*1+0 = 2

Total tree space = 5+2 = 7 = L3n/2J

b)

Space for oc = code
= 1

Space for ~ = height + code
= 1+1
=2

Figure 3.21: A Huffman Tree for 6 Symbols

Space = 2* height2 balanced subtree + I
= 2* 1+1
=3

Total tree space = n+3
=n+3
=6+3
= 9 = L3n/2J

48

c)

Space for ~ = code
= I

Space for ce = code + h
= 1+1
=2

Figure 3.22: A Huffman Tree for 7 Symbols

d)

Space = 2* height2 balanced subtree + I
= 2*1+1
=3

Total Tree space = n+3
=7+3
= 10
= L3n12J

Space for Ii= I

Space = code + h
= 1+1
=2

Figure 3.23: A Huffman Tree for 8 Symbols

49

Space for oc = 2*height2 balanced subtree +2
= 2* 1+2
=4

Total space for the tree = n +4
= 8+4
= 12
= L3n/2J

Worst case space complexity of this method = L3n/2J

So, required memory in this method is less than existing method which takes at
most r3n/2l memory spaces for a Huffman tree of n distinct symbols

Algorithm 3.11 illustrates reconstruction of a Huffman tree

Procedure RECONSTRUCTION(C)
Tree=empty
Repeat

Read a codeword from C
IdentifY the height and code of root of the subtree
Draw a subtree T using this information
Tree= Tree U T

Until all codewords for tree are not read from C
Return Tree

End Procedure
Algorithm 3.11: Huffman Tree Reconstruction

3.4. Conclusion

A memory efficient representation of a Huffman tree reduces the overhead of
every pass of Repeated Huffman Coding as well as compression ratio is increased.

50

CHAPTER

4
HUFFMAN

TREE
CLUSTERING

4.1 Introduction to Tree Clustering

A Huffman tree clustering means the partitioning of the Huffman tree effectively
to reduce the sparsity of the tree. Main objective of the clustering is to represent
.the Huffman tree efficiently to reduce the wastage of memory and to make search
process of most frequent symbol faster.

4.2 Problems of Huffman Codes

i) Due to variable-length coding, the Huffman tree gets progressively sparse
as it grows from the root.

• Wastage of memory
• A lengthy search procedure for locating a symbol.

ii) If k-bit is the longest Huffman code assigned to a set of symbols, the
memory size for the symbols may easily reach 2k words in size

4.3 Desirable Features of Huffman Codes

It is qesirable to reduce the memory size from the typical value of 2\ to a size
proportional to the number of the actual symbols. The following two things are
desired from the Huffman code. .

• Reduce memory size
• Quicker access

51

J'.

4.4 Solutions of Huffman Code Related Problems

Hashemian [II] presented an algorithm to speed up the search process for a
.symbol in a Huffman tree and reduce the memory size. He proposed a tree
clustering algorithm to avoid the sparsity of a Huffman tree.

• The search time for the more frequent symbols (shorter codes) is
substantially reduced compare to less frequent symbols, resulting in an
overall faster response.

• For long codewords the search for the symbol is also speed up. This is
achieved through a specific partitioning technique that groups the code
bits in a codeword, and the search for a symbol is conducted by
jumping over the groups of bits rather than going through the bit
individually.

4.5 Problems of the Tree Clustering Algorithm

Figure 4.1: Huffman Tree Showing Levels

The memory efficiency Bk for a k-Ievel binary Huffman tree is given below
NBk= - xlOO
2k

Where N is number of effective leaf nodes at level k.

52

T bl 4 I M Effi .a e . : emory J lClency
Level Number (k) Effective Leaf Nodes Memory efficiency (Bd

1 2 100%
2 3 75%
3 4 50%
4 6 37%
5 7 22%

Higher memory efficiency for the top levels (with smaller CL) is a clear indication
that partitioning the tree into smaller and less sparse clusters will reduce the
memory size. In addition, clustering also helps to reduce the search time for a
symbol.

Search time ex CJL

Where CL is code length of a symbol and L is the maximum level selected
for each cluster

Increasing L decreases search time and hence speeds up decoding but increases
memory space requirement. Decision regarding L is needed. Finding an optimal
.solution of this clustering is still open.

4.6 Example of Huffman Tree Clustering

Table 4.2: Frequency Count
Character Frequency

A 7
B 5
C 4
D 4
E 3
F 2
G 1

53

•

Figure 4.2: A Huffman Tree for 7 Symbols

Table 4.3: Reduction Process

A 7 A 7 A 7 a3 8 a4 11 as 15 a6 26
B 5 B 5 a2 6 A 7 a3 8 a4 11
C 4 C 4 B 5 a2 6 A 1
D 4 D 4 C 4 B 3
E 3 E 3 D 4
F 2 a1 3
G 1

Table 4.4: Code Length (CL)
s; S;., CL
G F 4
a1 E 3
C D 3
B a2 2
A a3 2
a4 as 1

54

Table 4.5: Same Code of Len~th for Different Symbols
CL Svmbol
1 -
2 A,B
3 C,D,E
4 G,F

Table 4.6: Codeword for Everv Symbol
CL Codeword Svmbol
1 0 -
2 00 A

01 B
3 100 C

101 D
110 E

4 1110 G
1111 F

Figure 4.3: Single side Growing Huffman Tree

55

'>

"

fTable 4.7: Memory E ficiency
Level Number (k) Effective leaf nodes Memory efficiency (Bk)

1 2 100%
2 4 100%
3 6 75%
4 7 44%

Figure 4.4: A Huffman Tree for Clustering

Figure 4.5: Top Cluster

Figure 4.6: Cluster for 0, p and 0

56

Table 4.8: Memory Space
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 A B C D E G F

Figure 4.7: Super-Iree

T bl 49 S T bla e .. uper a e
a ~ Ii Description
04 06 08 Base Address of each Cluster
00 00 00 Cluster length-I
I 2 3 Index Number

T bl 4 10 L k T bl f CI Ia e . : 00 up a e or Y I us er
For y cluster

4 5 I 2 4-(1 00)2, Address of A-(00)2, cluster length-2
5==(lQl)2, Address ofB=(01)2, cluster length=2
I=Index of a in super table
2=Index of ~ in super table

0 0 I I '0' External node
, I' internal node

0 1 2 3 Index Number

T bl 4 11 L k T bl f CI Ia e : 00 UP a e or a us er
For a cluster

2 3 2=(0IQ)2, Address of C-(0)2, cluster length-l
3=(01l)2, Address ofD=(I)2, cluster length=l

0 0 '0' External node

0 1 Index Number

57

Table 4.12: Look up Table for 6 Cluster
For p cluster

2 3 2=(0IQ)2, Address ofE=(0)2, cluster length=1
3=index of 8 in super table

0 I '0' External node
, I ' internal node

0 I Index Number

Table 4.13: Look up Table for 0 Cluster
For 8 cluster

2 3 2=(0IQ)2, Address ofG=(0)2, cluster length=1
3=(0Ilh, Address ofF=(I)2, cluster length=1

0 0 '0' External node

0 I Index Number

T bl 414 M Ma e . : emory applng
Entry Cluster length Mem [base+offset] Character

4=(100)2 2 Mem[OO+OO] 'A'
5-(101)2 2 Mem[OO+OI] 'B'
2-(010)2 I Mem[04+0] 'C'
3-(011)2 I Mern[04+1] 'D'
2=(010)2 I Mem[06+0] 'E'
2=(010)2 I Mem[08+0] 'G'
3=(011)2 I Mem[08+1] 'F'

58

T bl 41 D d' P3 e . 5: eeD tn{! rocess

• Received Code word= 10000 111a 1111
• Top cluster length, L=2

Selected Cluster Table If Found Next From super table
Bit stream Search Entry cluster Cluster length base

search
"lO"~2 y 1/1 x a 00+]-1 04
"0" ---to a 0/2 OOOOOOIQ x x x

CVI
Mem[04+01~'C'

"00" ---to y 0/4 00000100 x x x
CL~2
Mem[OO+OO]~'A'

"11" ---t3 y 1/2 x ~ 00+1-1 06
"l"---tl ~ 1/3 x 8 00+1-1 08
"0" ---to 8 0/2 OOOOOOIQ x x x

CL=1
Mem[08+0FG'

"11"-)03 y 1/2 x ~ 00+1 06
")"-d B 1/3 x 8 00+1 08
"1"---+) 8 0/3 00000011 x x x

CL=]
Mem[08+ Ij='F'

• Decoded word="CAGF"

4.7 Algorithms Related to Tree Clustering

We have discussed how to construct a single side growing Huffman tree from a
table of code length and then decoding process.

Algorithm 4. I illustrates how to construct a single side growing Huffman tree.

Step I: Start from the first row of the table and assign an all zero
codeword C1=OO...Oto the symbol.

Step 2:. Increment this codeword and assign the new value to the next
symbol ofthe same row of table code length.

Step 3: When we change rows, we have to expand the last codeword,
after being incremented, by placing extra zeros to the right, until
the codeword length matches the level (CL).

Algorithm 4.1: Single-side Growing Huffman Tree Construction

59

Algorithm 4.2 describes decoding process using clustered Huffman tree.
Step 0: base=O, i=1

Step 1: If Encoded bit stream is finished
GOTO step4

Else
Take L bit code (L=maximum length of top cluster) Cj

Step2: Use Cj as the address to the look-up table of corresponding
cluster.

Step3: Iflook-up table entry is zeroN AL
Corresponding character is found in the following
memory location:

Dec=8 bit stream of VAL
Offset=Value after discarding MSB 'I' from Dec
DecodedTxt(i]=Content[Mem(base+Offsetl]
i=i+ I
GOTO stepl

Else If look-up table entry is INAL
Search SuperTable(VAL]
Retri evedEntry=c/bas e
Cj=Next (c+ I) bits from encoded bit stream
GOTO step2

End if
End if

Step 4: Stop Algorithm
Algorithm 4.2: Decoding Process

4.8 Decision Regarding Top Cluster
"Average code length, AVG =LP,l,
i=l

Where p, is the probability of i'h symbol
And I, is the code-length of i'h symbol

Maximum length of top cluster, L=lA VGJ
This selection criterion of L will reduce wastage of memory as well as
searoh time.

4.9 Conclusion
Clustering of a Huffman tree will speed up search process as well as reducing
memory requirement. Optimal selection of top cluster length is required for this
purpose. Tree clustering reduces sparsity of Huffman tree.

60

CHAPTER

5
BLOCK

HUFFMAN CODING

5.1 Introduction

Traditional Huffman coding has some practical problems. One of the most
important problems is that we have to read the whole stream prior to coding. This
is a major problem when

• File size is too large
• Source stream is continuous

When file size is large, it will take much longer time to build the Huffman header
for compression. This happens because it is required to read the whole file twice
from the source stream that is in most cases from hard disk. In the first read pass it
is required to build the Huffman tree to get a code for each individual character.
In the second read pass we do the real work of compression. If file size, which is
small, can be stored in main memory, reading in second pass can be done from
main memory instead of hard disk. This will reduce overhead time of reading
from a slow speed device twice. But when file size is large, it cannot be stored in
main memory. In this case it is unavoidable to read second time from hard disk
drive. Though currently hard disk drives with data transfer rate 3 to 5 KB/second
are available, still it will take significant time. With original method of Huffman
coding, there is no way through which we can avoid it. Block Huffman coding
can solve the problems of Traditional Huffman coding that are mentioned.

5.2 Proposed Algorithms for Block Huffman Coding

Proposed method is pretty simple. The main idea is to break the input stream into
blocks of particular size and compressing each block separately. A block size
.must be chosen in such a way that it can be stored in main memory. Algorithm

61

,-. <::'
"

5.1-5.2 illustrates how the Block Huffman coding works for static and continuous
data.

Step I: Read a block from the File into main memory.
Step 2: Build the Huffman tree and code for this Block.
Step 3: Compress this block by reading it from main memory.
Step 4: Put the header and compressed data to output file.
Step 5: If there is more data in input file, go to step!. Otherwise coding is

ended

Algorithm 5.1: Block Huffman Coding for Static Data

Step I: Read a block from the stream into main memory.
Step 2: If the block is not completed, then goto step!.
Step 3: Build the Huffman tree and code for this Block.
Step 4: Compress this block by reading it from main memory.
Step 5: Put the header and compressed data to output stream.
Step 6: If there is more data in input file, go to step!. Otherwise coding is

ended.

Algorithm 5.2: Block Huffman Coding for Continuous Stream

How It Solves Our Problems

This method can handle both the drawbacks mentioned above. In the first case, as
we are reading the file from hard disk only once, compression speed increases
significantly because second pass reading is done from the main memory that is
much faster than the hard disk. Now the file size may be as large as we can
imagine without suffering double penalty for reading two times from hard disk
drive. So first problem mentioned above is solved.

Multiple Header Storage

There is a potential problem of increasing size of compressed data due to the
storage space of multiple headers for a single file. The problem may be shown
pictorially in the following way

Uncompressed File

Header Compressed Data

Figure 5.1: Uncompressed and Compressed File in Huffman Coding

62

,

Header 1

Uncompressed Data

Compressed data 1 I Header 2

Figure 5.2: Block Huffman Coding

Compressed data 2

In this method as the number of blocks increases, the overhead for storing
multiple headers becomes significant. This causes penalty in compression ratio.
That's why a redesign of the storage method of multiple headers is needed.

Block Size for Block Huffman Coding

The most important factor for Block Huffman coding is the selection of block
size. The main limiting factor here is the size of the usable main memory. If we
take block size to be as small as 1Kbyte there would be large number of blocks.
However this will incur very less memory overhead. But the storage overhead is
significant because of storing a tree header for each block. The storage overhead
decreases with the increasing size of block. But a large size block must be
accommodated in the main memory. So a moderate size of block is required for
Block Huffman coding .

.Advantages of Block Huffman Coding

• In some cases Block Huffman coding provides better compression
ratio than Traditional Huffman coding because of the locality
characteristics of the new method .

• In terms of reading time from the secondary devices Block
Huffman coding is more advantageous than traditional one.

5.3 Conclusion

Moderate block size provides better efficiency for the Block Huffman coding.
Block size does not depend on file types. So we can use this method as a general
method of coding.

63

..

CHAPTER

6
DESIGN OF

EXPERIMENTS
AND RESULTS

6.1 Introd uction

This chapter wants to establish effectiveness of Repeated and Block Huffman
coding, and impact of efficient representation of Huffman tree on repetition count.
The following files are used for the experiments.

• .C File
• .PDF File
• .TXT File
• .DOC File
• .RTF File
• .EXE File
• .HTM File
• .BAKFile
• .GIF File
• .BMP File
• .lPG File
• .LOG File
• .DIC File

For assessing effectiveness of methods compression ratio is used.
Compression ratio is defined as

C . . Original - Compressed 100ompreSSlOn ratlO= ---------x
Original

File containing Huffman tree has the format that is discussed in section 6.2.
Repeated Huffman coding was first used with normal coding of the tree and then
memory efficient coding was used to see whether repetition count increases.

64

A Huffman tree representation is also related to average code length for a symbol
in a message. Average code length can be defined as

n

Average code length, AL= IpJ;
i=l

Where Pi is the probability of ith symbol
And Ii is the code-length of ith symbol

The efficiency of Huffman coding in terms of size reduction is the result of
difference of frequencies of characters. When this difference is less, the
probability of degeneration of Huffman coding is more. Consequently
.compression ratio decreases. So compression ratio depends on standard deviation.

Standard deviation for a symbol from its average code length can be defined by
the following formula

n

I(AL -()'
Standard deviation, SD= j-l

n
Repetition count is also very important in the context of Repeated Huffman
coding. Repetition count is the number of times Repeated Huffman coding can be
continued on a file up to the time when it is no longer compressed significantly.

6.2 A Huffman Tree Storage Format in the Compressed File

Total number Tree Number of bits Total number Character
of tree representation for the last of distinct symbols
information information representation symbols in a

symbol of tree Huffman tree

Figure 6.1: Tree Header for Level order Technique

Total number Tree Number of bits Total number Character
of tree representation for the last of distinct symbols
information information representation symbols in a

symbol of tree Huffman tree

Figure 6.2: Tree Header for Modified Level order Technique

Total number Tree Number of bits Total number Character
of tree representation for the last of distinct symbols
information information representation symbols in a

symbol of tree Huffman tree

Figure 6.3: Tree Header for Preorder Technique

65

Total Tree Number of bits Total number Character
number of representation for the last of distinct symbols
tree information representation symbols in a
information symbol of tree Huffman tree

Figure 6.4: Tree Header for Modified Preorder Technique

Total Total number Character
number of B1 ... Bk of distinct symbols
tree C1 Ck symbols in a
information Huffman tree

Bj=Total number orbits for the code of the root of a circular leaf node
Cj= The code of the root of a circular leaf node

Fignre 6.5: Tree Header for Circular Leaf node Technique

Total number of
tree information EJ EJ ~ I_B_2__ C_2_

EJ EJ ~ I_B_I__ C2__

Total number of
distinct symbols in
a Huffman tree

HI = i1 Height Subtrees, N 1=Number of subtrees of HI height

H2= i1Height Subtrees, N2=Number of subtrees of H2 height

H3= b Height Subtrees, N3=Numher ofsuhtrees of H3 height

Bj=Total number of bits for the code of the root of that subtree

Ci"" The code of the root afthat subtree

Character symbols

Figure 6.6: Tree Header for Balanced Binary Tree Technique

66

6.3 Experimental Results

This section shows the experimental data such as compression ratio, tree size and
standard deviation of existing and proposed techniques of Huffman tree
representation. It also focuses on compression ratio and tree overhead for Block
Huffman coding.

6.3.1 The Existing Technique

Table 6.1-6.5 shows the experimental data of the existing technique.

TABLE 6.1: Compression Ratio for Circular Leaf node Technique
File Name Original Compression Ratio (%) Repeated

Size Passl Pass2 Pass3 Pass4 Pass5 Huffman
(Bytes) Compression

Ratio(%)
Test4.txt 01209956 65.174 11.053 1.514 N/A N/A 69.492
Test3.doc 03997184 46.184 0.616 0.004 N/A N/A 46.517
Test2.c 01000679 40.072 6.710 0.377 0.004 N/A 44.310
Test2.bak 01000679 40.072 6.710 0.377 0.004 N/A 44.310
Test5.rtf 07706903 38.670 1.939 0.0155 N/A N/A 39.870
Game.exe 04387088 16.561 0.349 N/A N/A N/A 16.853
Test7.htm 06196553 33.815 1.785 0.013 N/A N/A 35.000
Test8.pdf 13300157 24.790 1.373 0.008 N/A N/A 25.830
K1.bmp 01678134 80.222 56.885 21.959 4.558 O.? 15 93.660
Ast.gif 03159678 0.479 N/A N/A N/A N/A 0.479
Astha.gif 00496564 0.495 N/A N/A N/A N/A 0.495

TABLE 6 2 A H ff T S' f C" I L f d T h ... u man ree lze or Ireu ar ea no e ec moue

File Name Original Size A Huffman Tree Size(Bytes)
(Bytes)

Pass 1 Pass2 Pass3 Pass4 Pass5
Test4.txt 01209956 143 195 500 N/A N/A
Test3.doc 03997184 458 262 258 N/A N/A
Test2.c 01000679 138 324 310 325 N/A
Test2.bak 01000679 138 324 310 325 N/A
Test5.rtf 07706903 133 413 263 N/A N/A
Game.exe 04387088 258 315 N/A N/A N/A
Test7.htm 06196553 173 264 505 N/A N/A
Test8.pdf 13300157 571 388 497 N/A N/A
Kl.bmp 01678134 030 247 235 336 318
Ast.gif 03159678 444 N/A N/A N/A N/A
Astha.gif 00496564 461 N/A N/A N/A N/A

67

TABLE 6 3 St d d D . t' ~ C' I L f d T I ... an ar eVI3 IOn or Ifeu ar ea no e ec lnIQue
File Name Original Size Standard Deviation

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 8.228 1.818 0.473 N/A N/A
Test3.doc 03997184 6.110 0.492 0.153 N/A N/A
Test2.c 01000679 4.506 1.738 0.445 0.217 . N/A
Test2.bak 01000679 4.506 1.738 0.445 0.217 N/A
Test5.rtf 07706903 5.989 0.983 0.153 N/A N/A
Game.exe 04387088 2.705 0.347 N/A N/A N/A
Test7.htm 06196553 6.862 0.942 0.188 N/A N/A
Test8.pdf 13300157 3.657 0.766 0.188 N/A N/A
Kl.bmp 01678134 6.288 10.983 5.358 1.410 0.497
Ast.gif , 03159678 0.504 N/A N/A N/A N/A
Astha.gif 00496564 0.495 N/A N/A N/A N/A I

d F') S' ~ C') L f d T) .TABLE64 C.. ompresse I e lze or Ifeu ar ea no e ec tnlquc
File Name Original Size Compressed File Size(Bytes)

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 00421384 0374808 0369132 N/A N/A
Test3.doc 03997184 02151142 2137895 2137803 N/A N/A
Test2.c 01000679 00599687 0559446 0557339 557318 N/A
Test2.bak 01000679 00599687 0559446 0557339 557318 N/A
Test5.rtf 07706903 04726620 4634984 4634266 N/A N/A
Game.exe 04387088 03660526 3647734 N/A N/A N/A
Test7.htm 06196553 04101214 4028013 4027486 N/A N/A
Test8.pdf 13300157 10002995 9865591 9864775 N/A N/A
KI.bmp 01678134 00331907 0143101 0111678 106588 106359
Ast.gif 03159678 03144562 N/A N/A N/A N/A
Astha.gif 00496564 00494106 N/A N/A N/A N/A

68

TABLE6.5: Avera~eCode Len~th for Circular Leaf node Technioue
File Name Original Size Average Code Length

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 2.785 7.112 7.868 N/A N/A
Test3.doc 03997184 4.304 7.949 7.999 N/A N/A
Test2.c 01000679 4.793 7.459 7.966 7.995 NlA
Test2.bak 01000679 4.793 7.459 7.966 7.995 N/A
Test5.rtf 07706903 4.906 7.844 7.998 N/A N/A
Game.exe 04387088 6.675 7.971 N/A N/A N/A
Test7.htm 06196553 5.295 7.857 7.998 N/A N/A
Test8.pdf 13300157 6.017 7.890 7..999 N/A N/A
K1.bmp 01678134 1.582 3.443 6.230 7.611 7.959
Ast.gif 03159678 7.961 N/A N/A N/A N/A
Astha.gif 00496564 7.953 N/A N/A N/A N/A

.6.3.2 The Proposed Techniques

Table 6.6-6.30 shows the experimental data of the proposed techniques.

TABLE6.6: Comorcss;onRatio for LevelOrder Technioue
File Name Original Compression Ratio (%) Repeated

Size Passl Pass2 Pass3 Pass4 Pass5 Huffman
(Bytes) Compression

Ratio (%)
Test4.txt 01209956 65.176 11.024 1.560 N/A N/A 69.500
Test3.doc 03997184 46.187 00.613 N/A NlA N/A 46.517
Test2.c 01000679 40.075 06.712 0.383 N/A N/A 44.311
Test2.bak 01000679 40.075 06.712 0.383 N/A N/A 44.311
Test5.rtf 07706903 38.671 01.941 0.013 N/A N/A 39.870
Game.exe 04387088 16.560 00.349 N/A N/A N/A 16.851
Test7.htm 06196553 33.817 01.777 N/A N/A N/A 34.990
Test8.pdf 13300157 24.792 01.375 0.0107 N/A N/A 25.834
K1.bmp 01678134 80.222 57.090 22.089 4.289 0.381 93.690
Ast.gif 03159678 0.482 N/A N/A N/A N/A 0.482
Astha.gif 00496564 0.523 N/A N/A N/A N/A 0.523

69

TABLE 6.7: A Huffman Tree Size for Level Order Technioue
File Name Original Size A Huffman Tree Size(Bytes)

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 115 323 322 N/A N/A
Test3.doc 03997184 323 323 N/A N/A N/A
Test2.c 01000679 108 323 323 N/A N/A
Test2.bak 01000679 108 323 323 N/A N/A
Test5.rtf 07706903 103 322 323 N/A N/A
Game.exe 04387088 323 322 N/A N/A N/A
Test7.htm 06196553 054 322 N/A N/A N/A
Test8.pdf 13300157 322 322 322 N/A N/A
Kl.bmp 01678134 025 156 300 323 322
Ast.gif 03159678 323 N/A N/A N/A N/A
Astha.gif 00496564 323 N/A N/A N/A N/A

TABLE 6.8: Standard Deviation for Level Order Technioue
File Name Original Size Standard Deviation

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 8.228 1.818 0.473 N/A N/A
Test3.doc 03997184 6.110 0.492 N/A N/A N/A
Test2.c 01000679 4.506 1.815 0.471 N/A N/A
Test2.bak 01000679 4.506 1.815 0.471 N/A N/A
Test5.rtf 07706903 5.989 0.983 0.108 N/A N/A
Game.exe 04387088 2.705 0.347 N/A N/A N/A
Test7.htm 06196553 6.862 0.942 N/A N/A N/A
Test8.pdf 13300157 3.657 0.766 0.188 N/A N/A
Kl.bmp 01678134 6.288 10.951 5.063 1.307 0.512
Ast.gif 03159678 0.504 N/A N/A N/A N/A
Astha.gif 00496564 0.518 N/A N/A N/A N/A

70

F'I S' ~ L I 0 d T h .B 6 CTA LE .9: omnressed I e lze or eve r er ec moue
File Name Original Size Compressed File Size(Bytes)

(Bytes)
Pass I Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 00421356 0374907 0369058 N/A N/A
Test3.doc 03997184 02151007 2137818 NlA N/A N/A
Test2.c 01000679 00599657 0559407 0557265 N/A N/A
Test2.bak 01000679 00599657 0559407 0557265 N/A N/A
Test5.rtf 07706903 04726590 4634861 4634271 N/A N/A
Game.exe 04387088 03660591 3647806 N/A N/A N/A
Test7.htm 06196553 04101056 4028193 N/A N/A N/A
Test8.pdf 13300157 10002746 9865231 9864172 N/A N/A
Kl.bmp 01678134 00331902 0142419 0110959 106199 105795Ast.gif 03159678 03144441 N/A N/A N/A N/A
Astha.gif 00496564 00493968 N/A N/A N/A NlA

TABLE 6.10: Aver'ee Code Leneth for Level Order Techniaue
File Name Original Size Average Code Length ,

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5Test4.txt 01209956 2.785 7.112 7.868 N/A N/A

Test3.doc 03997184 4.304 7.949 N/A N/A N/A
Test2.c 01000679 4.793 7.459 7.965 N/A N/A
Test2.bak 01000679 4.793 7.459 7.965 N/A N/ATest5.rtf 07706903 4.906 7.844 7.999 N/A N/A
Game.exe 04387088 6.675 7.972 NlA N/A N/ATest7.htm 06196553 5.295 7.857 7.997 N/A N/A
Test8.ndf 13300157 6.017 7.889 7.998 N/A N/A
KI.bmn 01678134 1.582 3.443 6.216 7.634 7.945Ast.gif 03159678 7.961 N/A N/A N/A N/A
Astha.gif 00496564 7.953 N/A N/A N/A N/A

71

TABLE 6.11: Comoression Ratio for Modified Level Order Technioue
FileName Original Compression Ratio (%) Repeated

Size Pass 1 Pass2 Pass3 Pass4 Pass5 Huffman
(Bytes) Compression

Ratio (%)
Test4.txt 01209956 65.176 11.024 1.553 N/A N/A 69.500
Test3.doc 03997184 46.187 00.613 N/A N/A N/A 46.517'
Test2.c 01000679 40.075 06.712 0.383 N/A N/A 44.312
Test2.bak 01000679 40.075 06.712 0.383 N/A N/A 44.312
Test5.rtf 07706903 38.671 01.941 0.014 N/A N/A 39.870
Game.exe 04387088 16.560 00.349 N/A N/A N/A 16.851
Test7.htm 06196553 33.817 01.784 0.022 N/A N/A 35.010
Test8.pdf 13300157 24.792 01.375 0.011 N/A N/A 25.834
K1.bmp 01678134 80.222 56.916 21.895 3.837 N/A 93.600
Ast.gif 03159678 0.482 N/A N/A N/A N/A 0.482
Astha.gif 00496564 0.523 N/A N/A N/A N/A 0.523

M 'fi LsfE6TABL .12: A Hu fman Tree ize for od"ed evel Order Techniaue
File Name Original Size A Huffman Tree Size(Bytes)

(Bytes)
Pass1 Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 114 323 322 N/A N/A
Test3.doc 03997184 313 318 N/A N/A N/A
Test2.c 01000679 108 323 324 N/A N/A
Test2.bak 01000679 108 323 324 N/A N/A
Test5.rtf 07706903 103 322 322 N/A N/A
Game.exe 04387088 324 322 N/A N/A N/A
Test7.htm 06196553 054 322 322 N/A NlA
Test8.pdf 13300157 322 322 322 N/A N/A
K1.bmp 01678134 025 156 310 324 N/A
Ast.gif 03159678 324 N/A N/A N/A N/A
Astha.gif 00496564 323 N/A N/A N/A N/A

72

,"

TABLE 6.13: Standard Deviation for Modified Level Order Technioue
FileName OriginalSize StandardDeviation

(Bytes)
Pass1 Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 8.228 1.818 0.473 N/A N/A
Test3.doc 03997184 6.110 0.492 N/A N/A N/A
Test2.c. 01000679 4.506 1.815 0.471 N/A N/A
Test2.bak 01000679 4.506 1.815 0.471 N/A N/A
Test5.rtf 07706903 5.989 0.983 0.108 N/A N/A
Game.exe 04387088 2.705 0.347 N/A N/A N/A
Test7.htm 06196553 6.862 0.942 0.188 N/A N/A
Test8.pdf 13300157 3.657 0.766 0.188 N/A N/A
Kl.bmp 01678134 6.288 10.983 5.284 1.270 N/A
Ast.gif 03159678 0.504 N/A N/A N/A N/A
Astha.gif 00496564 0.518 N/A N/A N/A N/A

. S' f M d'fi d L 10 d TT BLE614 CA : ompressed File Ize or o I Ie eve r er echniQue
FileName OriginalSize Compressed FileSize(Bytes)

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 00421355 0374906 0369082 N/A N/A
Test3.doc 03997184 02150997 2137803 NlA N/A N/A
Test2.c 01000679 00599657 0559407 0557265 N/A N/A
Test2.bak 01000679 00599657 0559407 0557265 N/A N/A
Test5.rtf 07706903 04726590 4634860 4634198 N/A N/A
Game.exe 04387088 03660592 3647807 N/A N/A N/A
Test7.htm 06196553 04101095 4027946 4027080 N/A N/A
Test8.pdf 13300157 10002746 9865231 9864172 N/A N/A
Kl.bmp 01678134 00331902 0142997 0111688 107402 N/A
Ast.gif 03159678 03144442 N/A NlA N/A N/A
Astha.gif 00496564 00493968 N/A N/A N/A N/A

73

TABLE 6.15: Average Code LenQth for Modified Level Order Technioue
FileName Original Size Average Code Length

(Bytes)
Pass1 Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 2.785 7.112 7.869 N/A N/A
Test3.doc 03997184 4.304 7.949 N/A N/A N/A
Test2.c 01000679 4.793 7.459 7.965 N/A N/A
Test2.bak 01000679 4.793 7.459 7.965 N/A N/A
Test5.rtf 07706903 4.906 7.844 7.998 N/A N/A
Game.exe 04387088 6.675 7.971 N/A N/A N/A
Test7.htm 06196553 5.295 7.857 7.998 N/A N/A
Test8.pdf 13300157 6.017 7.889 7.999 N/A N/A
Kl.bmp 01678134 1.582 3.443 6.231 7.669 N/A
Ast.gif 03159678 7.961 N/A N/A N/A N/A
Astha.gif 00496564 7.953 N/A N/A N/A N/A

TABLE 6.16: Comnression Ratio for Preorder Technioue
File Name Original Comuession Ratio (%) Repeated

Size Pass1 Pass2 Pass3 Pass4 Pass5 Huffman
(Bytes) Compression

Ratio (%)
Test4.txt 01209956 65.176 11.084 1.562 0.014 N/A 69.524
Test3.doc 03997184 46.187 00.624 0.013 N/A N/A 46.530
Test2.c 01000679 40.075 06.734 0.419 0.017 N/A 44.354
Test2.bak 01000679 40.075 06.734 0.419 0.017 N/A 44.354
Test5.rtf 07706903 38.671 01.942 0.020 N/A N/A 39.874
Game.exe 04387088 16.561 00.349 N/A N/A N/A 16.853
Test7.htm 06196553 33.817 01.788 0.018 N/A N/A 35.010
Test8.pdf 13300157 24.792 01.376 0.012 N/A N/A 25.840
Kl.bmp 01678134 80.222 56.945 22.117 3.329 0.339 93.610
Ast.gif 03159678 0.483 N/A N/A N/A N/A 0.483
Astha.gif 00496564 0.526 N/A N/A N/A N/A 0.526

74

TABLE 6.17: A Huffman Tree SIze for Preorder Technique
File Name Original Size A Huffman Tree Size(Bytes).

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 115 68 315 96 N/A
Test3.doc 03997184 322 89 71 N/A N/A
Test2.c 01000679 108 197 122 142 N/A
Test2.bak 01000679 108 197 122 142 N/A
Test5.rtf 07706903 103 279 75 N/A N/A
Game.exe 04387088 258 315 N/A N/A N/A
Test7.htm 06196553 21 136 319 N/A N/A
Test8.pdf 13300157 317 241 312 N/A N/A
Kl.bmp 01678134 23 59 130 211 278
Ast.gif 03159678 324 N/A N/A N/A N/A
Astha.gif 00496564 306 N/A N/A N/A N/A

TABLE 6.18: Standard Deviation for Preorder Technioue
File Name Original Size Standard Deviation

(Bytes)
Pass1 Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 8.228 1.818 0.473 0.188 N/A
Test3.doc 03997184 6.110 0.492 0.153 N/A N/A
Test2.c 01000679 4.506 1.815 0.458 0.153 N/A
Test2.bak 01000679 4.506 1.815 0.458 0.153 N/A
Test5.rtf 07706903 5.989 0.983 0.153 N/A N/A
Game.exe 04387088 2.705 0.347 N/A N/A N/A
Test7.htm 06196553 6.862 0.942 0.153 N/A N/A
Test8.pdf 13300157 3.657 0.766 0.188 N/A N/A
Kl.bmp 01678134 6.288 11.027 5.206 1.104 0.534
Ast.gif 03159678 0.504 N/A N/A N/A N/A
Astha.gif 00496564 0.518 N/A N/A N/A N/A

75

TABLE 6.19: CamDressed File Size far Prearder Technique
File Name Original Size Compressed File Size(Bytes)

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 00421356 0374652 0368801 368750 N/A
Test3.doc 03997184 02151006 2137585 213.7309 N/A N/A
Test2.c 01000679 00599657 0559279 0556933 556839 N/A
Test2.bak 01000679 00599657 0559279 0556933 556839 N/A
Test5.rtf 07706903 04726590 4634818 4633887 N/A N/A
Game.exe 04387088 03660526 3647734 N/A N/A N/A
Test7.htm 06196553 04101062 4027726 4026983 N/A N/A
Test8.pdf 13300157 10002741 9865147 9863988 N/A N/A
K1.bmp 01678134 00331900 0142899 0111294 107589 107224
Ast.gif 03159678 03144409 N/A N/A N/A N/A
Astha.gif 00496564 00493951 N/A N/A N/A N/A

TABLE 6.20: Avera~e Cade Len~th far Prearder Technioue
File Name Original Size Average Code Length

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 2.785 7.112 7.868 7.997 N/A
Test3.doc 03997184 4.304 7.949 7.999 N/A N/A
Test2.c 01000679 4.793 7.459 7.965 7.997 N/A
Test2.bak 01000679 4.793 7.459 7.965 7.997 N/A
Test5.rtf 07706903 4.906 7.844 7.998 N/A N/A
Game.exe 04387088 6.675 7.971 N/A N/A N/A
Test7.htm 06196553 5.295 7.857 7.997 N/A N/A
Test8.pdf 13300157 6.017 7.889 7.999 N/A N/A
K1.bmp 01678134 1.582 3.443 6.223 7.718 7.952
Ast.gif 03159678 7.961 N/A N/A N/A N/A
Astha.gif 00496564 7.953 N/A N/A N/A N/A

76

TABLE 6.21: Comnression Ratio for Modified Preorder Technique
File Name Original Compression Ratio (%) Repeated

Size Pass1 Pass2 Pass3 Pass4 Pass5 Huffman
(Bytes) Compression

Ratio (%)
Test4.txt 01209956 65.176 11.084 1.615 0.0317 N/A 69.546
Test3.doc 03997184 46.187 0.624 0.012 N/A N/A 46.529
Test2.c 01000679 40.075 6.734 0.416 0.005 N/A 44.346
Test2.bak 01000679 40.075 6.734 0.416 0.005 N/A 44.346
Test5.rtf 07706903 38.671 1.942 0.019 N/A N/A 39.873
Game.exe 04387088 16.561 0.349 N/A N/A N/A 16.853
Test7.htm 06196553 33.817 1.788 0.Ql8 NlA N/A 35.010
Test8.pdf 13300157 24.792 1.376 0.0116 N/A N/A 25.840
Kl.bmp 01678134 80.222 56.933 22.081 3.644 0.443 93.633
Ast.gif 03159678 0.483 N/A N/A N/A N/A 0.483
Astha.gif 00496564 0.526 N/A N/A N/A N/A 0.526

d'fi d P dff T S' fTABLE 6 22 : AHu man ree Ize or Mo I Ie rear er Technique
File Name Original Size A Huffman Tree Size(Bytes)

(Bytes)
Pass1 Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 113 068 067 072 N/A
Test3.doc 03997184 322 089 071 N/A N/A
Test2.c 01000679 108 197 146 320 N/A
Test2.bak 01000679 108 197 146 320 N/A
Test5.rtf 07706903 103 279 077 N/A N/A
Game.exe 04387088 258 315 N/A N/A N/A
Test7.htm 06196553 012 136 319 N/A N/A
Test8.pdf 13300157 317 241 312 N/A N/A
Kl.bmp 01678134 022 103 121 157 284
Ast.gif 03159678 291 N/A N/A N/A N/A
Astha.gif 00496564 306 N/A N/A N/A N/A

77

623 S d d D . . ~ M d'fi d PdT h .TABLE. : tan ar eVl3hon or o I Ie reor er ec llIQue
File Name Original Size Standard Deviation

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 8.228 1.818 0.334 0.217 N/A
Test3.doc 03997184 6.110 0.492 0.153 N/A N/A
Test2.c 01000679 4.506 1.815 0.440 0.109 N/A
Test2.bak 01000679 4.506 1.815 0.440 0.109 N/A
Test5.rtf 07706903 5.989 0.983 0.108 N/A N/A
Game.exe 04387088 2.707 0.347 N/A N/A N/A
Test7.htm 06196553 6.862 0.942 0.187 N/A N/A
Test8.pdf 13300157 3.657 0.766 0.188 N/A N/A
Kl.bmp 01678134 6.288 10.972 5.197 1.176 0.543
Ast.gif 03159678 0.504 N/A N/A N/A N/A
Astha.gif 00496564 0.518 N/A N/A N/A N/A

. S' ~ MT BLE 6 CA .24: amoressed FIle Ize or odified Preorder Technioue
File Name Original Size Compressed File Size(Bytes)

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 00421354 374650 0368601 368484 N/A
Test3.doc 03997184 02151006 2137585 2137331 N/A N/A
Test2.c 01000679 00599657 0559279 0556951 556922 N/A
Test2.bak 01000679 00599657 0559279 0556951 556922 N/A
Test5.rtf 07706903 04726590 4634818 4633919 N/A N/A
Game.exe 04387088 03660526 3647734 N/A N/A N/A
Test7.htm 06196553 04101053 4027717 4027001 N/A NlA
Test8.pdf 13300157 10002741 9865147 9864006 N/A N/A
Kl.bmp 01678134 00331899 00142939 0111377 107319 106844
Ast.gif 03159678 03144409 N/A N/A N/A N/A
Astha.gif 00496564 00493951 N/A N/A N/A N/A

78

M 'n PdTTABLE 6.25: AveraQe Code LenQth for ad. led reor er echnlque

File Name Original Size Average Code Length
(Bytes)

Pass 1 Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 2.785 7.112 7.869 7.996 N/A

Test3.doc 03997184 4.304 7.949 7.999 N/A N/A

Test2.c 01000679 4.793 7.459 7.964 7.995 N/A

Test2.bak 01000679 4.793 7.459 7.964 7.995 N/A

Test5.rtf 07706903 4.906 7.844 7.998 N/A N/A

Game.exe 04387088 6.674 7.971 N/A N/A N/A

Test7.htm 06196553 5.295 7.856 7.997 N/A N/A

Test8.pdf 13300157 6.017 7.889 7.998 N/A N/A

K1.bmp 01678134 1.582 3.443 6.227 7.697 7.943

Ast.gif 03159678 7.961 N/A N/A N/A N/A

Astha.gif 00496564 7.953 N/A N/A N/A N/A

TABLE 6.26: Comoression Ratio for Balanced Binarv Tree TechniQue

File Name Original Compression Ratio (%) Repeated

Size Pass 1 Pass2 Pass3 Pass4 Pass5 Huffman

(Bytes) Compression
Ratio (%)

Test4.txt 01209956 65.173 11.057 1.569 N/A N/A 69.511

Test3.doc 03997184 46.184 0.622 0.015 N/A N/A 46.527

Test2.c 01000679 40.072 6.712 0.397 N/A N/A 44.316

Test2.bak 01000679 40.072 6.712 0.397 N/A N/A 44.316

Test5.rtf 07706903 38.670 1.939 0.020 N/A N/A 39.872

Game.exe 04387088 16.560 0.348 N/A N/A N/A 16.850

Test7.htm 06196553 33.815 1.785 0.019 N/A N/A 35.010

Test8.pdf 13300157 24.792 1.374 0.012 N/A N/A 25.840

K1.bmp 01678134 80.222 56.922 21.981 3.661 0.008 93.600

Ast.gif 03159678 0.481 N/A N/A N/A N/A 0.481

Astha.gif 00496564 0.509 N/A NlA N/A N/A 0.509

79

TABLE 6.27: A Huffman Tree Size for Balanced Binarv Tree TechniQue

File Name Original Size A Huffman Tree Size(Bytes)
(Bytes)

Pass1 Pass2 Pass3 Pass4 Pass5
Test4.txt 01209956 145 177 308 N/A N/A.
Test3.doc 03997184 441 124 53 N/A N/A
Test2.c 01000679 140 314 173 N/A N/A
Test2.bak 01000679 140 314 173 N/A N/A
Test5.rtf 07706903 135 395 59 N/A N/A
Game.exe 04387088 380 348 N/A N/A N/A
Test7.htm 06196553 175 240 303 N/A N/A
Test8.pdf 13300157 340 351 288 N/A N/A
Kl.bmp 01678134 030 123 225 199 259
Ast.gif 03159678 378 N/A N/A N/A N/A
Astha.gif 00496564 391 N/A N/A N/A N/A

TABLE 6.28: Standard Deviation for Balanced Binarv Tree Technioue
File Name Original Size Standard Deviation

(Bytes)
Pass 1 Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 8.228 1.818 0.473 N/A N/A
Test3.doc 03997184 6.110 0.492 0.188 N/A N/A
Test2.c 01000679 4.506 1.738 0.458 N/A N/A
Test2.bak 01000679 4.506 1.738 0.458 . N/A N/A
Test5.rtf 07706903 5.989 0.983 0.153 N/A N/A
Game.exe 04387088 2.707 0.347 N/A N/A N/A
Test7.htm 06196553 6.862 0.942 0.188 N/A N/A
Test8.pdf 13300157 3.657 0.766 0.188 N/A N/A
Kl.bmp 01678134 6.288 10.929 5.223 1.083 0.463
Ast.gif 03159678 0.504 N/A N/A N/A N/A
Astha.gif 00496564 0.518 N/A N/A N/A N/A

80

S'TABLE6.29:CompressedFile Izefor BalancedBinary Tree Technioue
File Name Original Size Compressed File Size(Bytes)

(Bytes)
Passl Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 00421386 0374792 0368910 N/A N/A
Test3.doc 03997184 02151125 2137740 2137415 N/A N/A .,

Test2.c 01000679 00599689 0559438 0557217 N/A N/A
Test2.bak 01000679 00599689 0559438 0557217 N/A N/A
Test5.rtf 07706903 04726622 4634968 4634046 N/A N/A
Game.exe 04387088 03660648 3647891 N/A N/A N/A
Test7.htm 06196553 04101216 4027992 4027210 N/A N/A
Test8.pdf 13300157 10002764 9865284 9864123 N/A N/A
Kl.bmp 01678134 00331907 0142978 0111550 107466 107457
Ast.gif 03159678 03144496 N/A N/A N/A N/A
Astha.gif 00496564 00494036 N/A N/A N/A N/A

TABLE6.30: Ayera!!eCode Len!!lhfor BalancedBinary Tree Technioue
File Name Original Size Average Code Length

(Bytes)
Pass 1 Pass2 Pass3 Pass4 Pass5

Test4.txt 01209956 2.785 7.112 7.868 N/A NlA
Test3.doc 03997184 4.304 7.949 7.999 N/A N/A
Test2.c 01000679 4.793 7.459 7.966 N/A N/A
Test2.bak 01000679 4.793 7.459 7.966 N/A N/A
Test5.rtf 07706903 4.906 7.844 7.998 N/A N/A
Game.exe 04387088 6.675 7.971 N/A N/A N/A
Test7.htm 06196553 5.295 7.857 7.998 N/A N/A
Test8.pdf 13300157 6.017 7.889 7.999 N/A N/A
K1.bmp 01678134 1.582 3.443 6.229 7.693 7.979
Ast.gif 03159678 7.961 N/A N/A N/A N/A
Astha.gif 00496564 7.953 N/A N/A N/A N/A

81

r •

-,t-.... .

6.3.3 Experimental Data for Benchmark File

TABLE6.31:Data for WORLD95.TXTFile
File Name: WORLD95.TXT
File Size: 2988578 Bytes

Technique of Pass! Pass2 Pass3 Pure Huffman Repeated
Huffman Tree Compression Huffman
Representation Ratio(%) Compression

Ratio (%)

OJ SD 6.726 0.652 N/A
OJ OJ TSIZE 166 325 N/A"d •..•::l

OJ t-< cT
CFSIZE 1919984 1903815 N/A 35.756 36.300g c'2

cd ro ..c: CRATIO 35.756 0.842 N/A•........• J:: Uro...... 0illillt-< ACL 5.139 7.931 N/A

•... SD 6.726 0.652 N/A
OJ OJ TSIZE 4 322 N/A"d ::l•..•cTo ._

CFSIZE 1919822 1903644 N/A 35.761 36.300
.~ ~ CRATIO 35.762 0.843 N/AOJ OJ-It-< ACL 5.139 7.931 N/A

•... SD 6.726 0.652 N/A
OJ OJ TSIZE 4 322 N/A"d"d::lOJ •..•cT~ 0 CFSIZE 1919822 1903644 N/A 35.762 36.300

.- - <::""'Cj~...c:: CRATIO 35.762 0.843 N/Ao ;> <.)2: OJ OJ-It-< ACL 5.139 7.931 N/A
SD 6.726 0.652 N/A

OJ TSIZE 3 224 N/A•..•::lOJ cT CFSIZE 1919821 1903545 N/A 35.762 36.310"d .-•...]
o <.) CRATIO 35.762 0.848 N/A~ OJ~t-< ACL 5.139 7.931 N/A

SD 6.726 0.652 N/A
OJ TSIZE 3 224 N/A"d •..•::lOJ OJ cT CFSIZE 1919821 1903545 N/A 35.762 36.310L;:: "'d .-

._ I-< 0:::"dO..c: CRATIO 35.762 0.848 N/Ao OJ <.)2: OJ~t-< ACL 2988578 7.931 N/A
SD 6.726 0.652 N/A

OJ OJ TSIZE 274 338 N/A"d ::l. ::a 0 cr' CFSIZE 1920423 1904254 N/A 35.741 36.280-- 0:::-2::l4-<..c:8 ro U CRATIO 35.741 0.842 N/A.•...• (1) 0,)U-lt-< ACL 5.139 7.931 N/A

ACL=Average Code Length, SD=Standard Deviation,TSIZE= Huffman trec size in
Bytes, CFSIZE= Compressed File Size in Bytes, CRATIO= Compression ratio

82

TABLE 6.32: Data for OHS.DOCFile
File Name: OHS.DOC
File Size: 4168192 Bytes

Technique of Passl Pass2 Pass3 Pure Huffman Repeated
Huffman Tree Compression Huffman
Representation Ratio (%) Compression

Ratio (%)

" SD 2.878 0.710 0.188
" " TSIZE 370 395 71"d l-< ;:l" f-< cr'

u >-"""'" CFSIZE 3540362 3504612 3503204 15.063 15.954
8~..a_ ~ u CRATIO 15.063 1.009 0.040. ro.= v~~f-< ACL 6.794 7.918 7.997

l-< SD 2.878 0.710 0.217
" " TSIZE 323 322 323"d ;:ll-< cr'o .~ CFSIZE 3540315 3504482 3503437 15.064 15.950_ <::
""<:: CRATIO 15.064 1.012 0.030;> u
" "...:If-< ACL 6.794 7.918 7.997

l-< SD 2.878 0.710 0.188

" " TSIZE 317 322 322"d"d;:l
" l-< cr't,:::: 0_;:::: CFSIZE 3540309 3504474 3503277 15.064 15.952
~"ii.B CRATIO 15.064 1.012 0.034o ;> u
:2 " "...:If-< ACL 6.794 7.918 7.997

SD 2.878 0.710 0.188

" TSIZE 265 295 84l-< ;:l
" cr' CFSIZE 3540257 3504392 3503188 15.065 15.954"d .~l-< <::0"<:: CRATIO 15.065 1.013 0.035" ul-< "p.,f-< ACL 6.794 7.918 7.997

SD 2.878 0.710 0.188

" TSIZE 265 295 84"d l-< ;:l
" " cr' CFSIZE 3540257 3504392 3503195 15.065 15.954. ~ "'d .•...•

•~ l-<..a"d 0 u CRATIO 15.065 1.013 0.034o ":2o':~ ACL 6.794 7.918 7.997
SD 2.878 0.710 0.217

" " TSIZE 429 442 266"d ;:l~ o.g' CFSIZE 3540421 3504728 3503473 15.060 15.947
-<::..a;:l ••••••

15.060e ro t) CRATIO 1.008 0.036 v (J)U...:If-< ACL 6.794 7.918 7.997

83

TABLE6.33: Data for FP.LOG File
File Name: FP.LOG

File Size: 20617071 Bytes
Technique of Passl Pass2 Pass3 Pure Repeated
Huffman Tree Huffman Huffman
Representation Compression Compression

Ratio (%J Ratio (%)

0) SD 8.580 1.095 0.217
0) 0) TSIZE 3 259 272-0 •..• "

0) f-< 0'
g e] CFSIZE 14006944 13730227 13726141 32.062 33.424
OJ oj CRATIO 32.062 1.976 0.029- 0: <.)ro._ (1)COCOf-< ACL 5.435 7.842 7.997
•... SD 8.580 1.095 0.217
0) 0) TSIZE 4 323 322."E 5-o ._

CFSIZE 14006945 13730292 13726256 32.062 33.423_ ::l
0)..0:

CRATIO 32.062 1.975 0.029> <.)0) 0)....If-< ACL 5.435 7.842 7.998
•... SD 8.580 1.095 0.217
0) 0) TSIZE 4 323 322-0-0"

" •..•0'~ 0._ CFSIZE 14006945 13730292 13726256 32.062 33.423.- - lJ'"d~u CRATIO 32.062 1.975 0.02900)0)~....lf-< ACL 5.435 7.842 7.997
SD 8.580 1.096 0.217

0) TSIZE 3 146 285•... "0) 0'
CFSIZE 14006944 13730114 13726073 32.062 33.424-0 .-15lJ0) <.) CRATIO 32.062 1.977 0.029•..•0)Il-.f-< ACL 5.435 7.842 7.998

SD 8.580 1.096 0.217
0) TSIZE 3 146 285-0 •..•"0) 0) 0'

CFSIZE 14006944 13730114 13726073 32.062 33.424~ -0 .-.- •...lJ
-0 0 <.) CRATIO 32.062 1.977 0.02900)0)
~d::f-< ACL 5.435 7.842 7.998

SD 8.580 1.096 0.217
0) 0) TSIZE 5 317 353-0 "fil 0 .Sf CFSIZE 14006944 13730276 13726231 32.0614 33.423-::llJ

"4-<e ro u CRATIO 32.0614 1.975 0.029.•...• 0) 0)U....lf-< ACL 5.435 7.842 7.998

84

TABLE6.34' Data for FLASHMXPDF File
File Name: FLASHMX.PDF
File Size: 4526946 Bvtes

Technique of Passl Pass2 Pass3 Pure Huffman Repeated
Huffman Tree Compression Huffman

Representation Ratio (%) Compression
Ratio (%j

0) SD 0.735 0.188 N/A
0) 0) TSIZE 236 290 N/A"0 •..•'"0) f-o 0-

g ~] CFSIZE 4439692 4439475 N/A 1.928 1.932
~ c: u CRATIO 1.928 0.005 N/Aro ._ ll)CQCQf-o ACL 7.845 7.999 N/A
•... SD 0.735 0.188 N/A
0) 0) TSIZE 323 322 N/A
"0 '"•..•0-o ._

CFSIZE 4439779 4439594 N/A 1.926 1.930
- <::0)..<:1 CRATIO 1.926 0.004 N/A;> 0
0) 0).....If-o ACL 7.845 7.999 N/A

•... SD 0.735 0.188 N/A
0) 0) TSIZE 313 322 N/A"0"0'"0) •..•0-

t;:: 0._ CFSIZE 4439769 4439583 N/A 1.926 1.930
.- - ..a'"d~0 CRATIO 1.926 0.004 N/A
00)0)::S.....lf-o ACL 7.845 7.999 N/A

SD 0.735 0.188 N/A
0) TSIZE 213 313 NlA•... '"0) 0- CFSIZE 4439669 4439474 N/A 1.928 1.932"0 .-•... <::0..<:1 CRATIO 1.928 0,004 N/A0) 0•..•0)o...f-o ACL 7.845 7.999 N/A

SD 0.735 0.188 N/A
0) TSIZE 213 313 N/A

"0 •..•'"0) 0) 0-
CFSIZE 4439669 4439474 N/A 1.928 1.932to '"d ..•..•

.....• H c:
"00..<:1 CRATIO 1.928 0.004 N/A00)0::s •... 0)o...f-o ACL 7.845 7.999 N/A

SD 0.735 0.188 N/A
0) 0) TSIZE 386 498 NlA

I-< '"d ~
(Ii 0 ._ CFSIZE 4439842 4439832 N/A 1.924 1.924
- <:: <::
"''-..<:I8 ro u CRATIO 1.924 0.0002 N/A

•••.•• <U vU.....lf-o ACL 7.845 7.999 N/A

85

TABLE6.35:Data for ENGLISHDie File
File Name: ENGLISH.DIC
File Size: 4067439 Bytes

Technique of Passl Pass2 l'ass3 Pure Huffman Repeated
Huffman Tree Compression Huffman
Representation " Ratio (%) Compression

Ratio (%)

0) SD' 6.561 0.864 N/A
0) 0) TSlZE 70 355 N/A"0 •..•'"

0) f- CT{) c'- CFSIZE 2212619 2167792 N/A 45.602 46.700a oj..2 CRATIO 45.602 2.026 N/A- '" {)ro...... Ij,)iJliJlf- ACL 4.352 7.837 N/A
•... SD 6.561 0.864 N/A
0) 0) TSIZE 55 322 N/A"0 '"•..• CTo ._

CFSIZE 2212604 2167744 N/A 45.602 46.710
"..2;> {) CRATIO 45.602 2.028 N/A
0) 0)....If- ACL 4.352 7.999 N/A

•... SD 6.561 0.864 N/A
0) 0) TSIZE 54 322 N/A"O"O;:l

0) •..•CT
I..;:l 0._ CFSIZE 2212603 2167743 N/A 45.602 46.710.- - ..2"8 ~ u CRATIO 45.602 2.028 N/A
::s~~ ACL 4.352 7.837 N/A

SD 6.561 0.864 N/A
0) TSIZE 55 253 N/A•..•;:l

0) CT CFSIZE 2212604 2167675 N/A 45.602 46.710"0 .-
•... '"0"<:: CRATIO 45.602 2.031 N/A0) {)
•..•0)o-<f- ACL 4.352 7.837 N/A

SD 6.561 0.864 N/A
0) TSIZE 54 253 N/A"0 •..•'"0) 0) CT CFSIZE 2212603 2167674 N/A 45.602 46.710t;::: "0 .-.•...• ~ l::"00"<:: CRATIO 45.602 2.031 N/Ao 0) {)::s....0)o-<f- ACL 4.352 7.837 N/A

SD 6.561 0.864 N/A
0) 0) TSIZE 69 391 N/A

l-< -0 g..ro 0 ._ CFSIZE 2212618 2167827 N/A 45.602 46.700- '" '"'" 'H ..<:: 45.602~ ro u CRATIO 2.025 N/A••.•.• (1) (j)U....lf- ACL 4.352 7.837 N/A

86

TABLE 6.36: Data for AIO.JPG File
File Name: A10.JPG
File Size: 713569 Bvtes

Technique of Pass1 Pass2 Pass3 Pure Huffman Repeated
Huffman Tree Compression Huffman
Representation Ratio (%j Compression

Ratio (%)

'"
SD 0.408 N/A N/A

'" '" TSIZE 182 N/A N/A"0 '-< 0'" f-< 0-
<.) c'- CFSIZE 712190 N/A N/A 0.193 0.1931iJ oj ..2 CRATIO 0.193 N/A N/A- '" <.)Cd ._ <1)o:lo:lf-< ACL 7.983 N/A N/A
'-< SD 0.408 N/A N/A
'" '" TSIZE 323 N/A N/A"0 0'-< 0-o ._

CFSIZE 712331 N/A N/A 0.174 0.174_ '""'..0 CRATIO 0.174 N/A N/A;> <.)
v '"..-If-< ACL 7.983 N/A N/A

'-< SD 0.408 N/A N/A
'" v TSIZE 324 NlA NlA"0"00'" '-< 0-t;:: 0._ CFSIZE 712332 N/A N/A 0.173 0.173.- _ '""0"'..0 CRATIO 0.173 N/A N/Ao ;> <.)

2: '" '"..-If-< ACL 7.983 N/A N/A
SD 0.408 N/A N/A

'" TSIZE lIS NlA N/A'-< 0
'" 0- CFSIZE 712123 N/A N/A 0.203 0.203"0 .-'-<..2o <.) CRATIO 0.203 N/A N/A
~ '"p.,f-< ACL 7.983 N/A N/A

SD 0.408 N/A N/A
'" TSIZE lIS N/A N/A"0 '-< 0

'" '" 0- CFSIZE 712123 N/A N/A 0.203 0.203tP "'d ••••••

.- '-<..2"0 0 <.) CRATIO 0.203 N/A N/Ao v '"2:d::f-< ACL 7.983 N/A N/A
SD ' 0.408 N/A N/A

'" '" TSIZE 282 N/A N/A1-0 "'d g..
C'\l 0 .•...• CFSIZE 712290 N/A N/A 0.179 0.179- '" '"04-<..02 Cd (,) CRATIO 0.179 N/A N/A
.- Ij) (\)U..-lf-< ACL 7.983 N/A N/A

87

TABLE6.37: Data for RAFALE.BMPFile
File Name: RAFALE.BMP
File Size: 4149414 Bytes

Technique of Pass 1 Pass2 Pass3 Pure Huffman Repeated
Huffman Tree Compression Huffman
Representation Ratio (%) Compression

Ratio (%)

'"
SD 4.387 0.582 N/A

'" '" TSIZE 86 323 N/A.,,; •..• ;:I
'" f-< 0-
<J i':'.- CFSIZE 2822479 2803598 N/A 31.979 32.434<:1",]

~ J:::: 0 CRATIO 31.979 0.669 N/Aro._ (1)I!ll!lf-< ACL 5.442 7.946 N/A
•... SD 4.387 0.582 N/A
'" '" TSIZE 96 323 N/A.,,; ;:I
•..• 0-o ._

CFSIZE 2822489 2803606 N/A 31.979 32.434_ <:1
"'..0 CRATIO 31.979 0.669 N/A;> <J
'" '"-If-< ACL 5.442 7.946 N/A

•... SD 4.387 0.582 N/A
'" '" TSIZE 95 319 N/A.,,;"';;:1

'" •..• 0-t+:: 0 .- CFSIZE 2822488 2803601 N/A 31.979 32.434.- -]
'"0 ~ () CRATIO 31.979 0.669 N/A
o '" '"~-lf-< ACL 5.442 7.946 N/A

SD 4.387 0.582 N/A
'" TSIZE 61 231 N/A•..•;:I

'" 0- CFSIZE 2822454 2803479 N/A 31.979 32.437.,,; .-•... <:10..0 CRATIO 31.979 0.672 N/A'" <J•... '"o...f-< ACL 5.442 7.946 N/A
SD 4.387 0.582 N/A

'" TSIZE 61 231 N/A. .,,; ;:I
(l) ~ cr'

CFSIZE 2822454 2803479 N/A 31.979 32.437t;:::::: "'d .-._ ~ s:::::
"';0..0 CRATIO 31.979 0.672 N/Ao '" <J~ •... '"o...f-< ACL 5.442 7.946 N/A

SD 4.387 0.582 N/A
'" '" TSIZE 87 383 N/A

l-o '"0 g.
ro 0 CFSIZE 2822480 2803658 N/A 31.979 32.433- <:1 <:1;:I 4-< ..02 ro u CRATIO 31.979 0.667 N/A.- (1) (1)U-lf-< ACL 5.442 7.946 N/A

88

6.3.4 Block Huffman Coding

This section provides experimental data such as compression ratio and tree size
'for Block Huffman coding when tree is represented by level order and its
modified version.

TABLE6.38:CompressionRatio and Tree sizefor BlockHuffman Codin2 (LevelOrder)
Level Order Tree Representation

File Name Block Size Source File Compressed Compression Tree size
(Kbytes) (Bytes) File (Bytes) Ratio(%) (Bytes)

Test4.txt 10 01209956 0432446 64.259361 12562 .
Test3.doc 10 03997184 2170875 45.689891 25634
Test2.c 10 01000679 0609746 39.066774 10582

Test2.bak 10 01000679 0609746 39.066774 10582
Game.exe 10 04387088 3686404 15.971505 28741
Test7.htm 10 06196553 4184803 32.465630 84695

TABLE6.39:CompressionRatio and Tree sizefor BlockHuffman Codin2 (M. LevelOrder)
Modified Level Order Tree Representation

File Name Block Size Source File Compressed Compression Tree size
(Kbytes) (Bytes) File (Bytes) Ratio(%) (Bytes)

Test4.txt 10 01209956 0432400 64.263163 12516
Test3.doc 10 03997184 2168747 45.743128 23506
Test2.c 10 01000679 0609,714 39.069971 10550

Test2.bak 10 01000679 0609714 39.069971 10582
Game.exe 10 04387088 3685784 15.985638 28121
Test7.htm 10 06196553 4184583 32.469181 84475

89

6.4 Comparisons among Experimental Results

This section shows different tables and figures to compare data between existing
and proposed techniques of a Huffman tree representation. It also compares Block
Huffman coding and Traditional Huffman coding.

TABLE 6.40: Com ression Ratio Comoarison amon~ All Reoresenlation Methods
File name Original Compression Ratio (%)

Size(Bytes) Repeated Huffman Codin~ Technioue
Level Modified Preorder Modified Balanced Circular
order Level Preorder Binary node

order tree Tech.

Test4.txt 01209956 69.500 69.500 69.524 69.546 69.511 69.492
Test3.doc 03997184 46.517 46.517 46.530 46.529 46.527 46.517
Test2.c 01000679 44.311 44.312 44.354 44.346 44.316 44.310

Test2.bak 01000679 44.311 44.312 44.354 44.346 44.316 44.310
Test5.rtf 07706903 39.870 39.870 39.874 39.873 39.872 39.870
Game.exe 04387088 16.851 16.851 16.853 16.853 16.850 16.853
Test7.htm 06196553 34.990 35.010 35.010 35.010 35.010 35.000
Test8.pdf 13300157 25.834 25.834 25.840 25.840 25.840 25.830

TABLE 6.41: Comoressed File Size Comoarison amon~ All Reoresentation Methods
File name Original Compressed File Size(Bytes)

Size(Bytes) Reoeated Huffman Codina Technioue
Level Modified Preorder Modified Balanced Circular
order Level Preorder Binary node Tech.

order tree

Test4.txt 01209956 0369058 0369082 0368750 0368484 0368910 0369132
Test3.doc 03997184 2137818 2137803 2137309 2137331 2137415 2137803
Test2.c 01000679 0557265 0557265 0556839 0556922 0557217 0557318

Test2.bak 01000679 0557265 0557265 0556839 0556922 0557217 0557318
Test5.rtf 07706903 4634271 4634198 4633887 4633919 4634046 4634266
Game.exe 04387088 3647806 3647807 3647734 3647734 3647891 3647734
Test7.htm 06196553 4028193 4027080 4026983 4027001 4027210 4027486
Test8.pdf 13300157 9864172 9864172 9863988 9864006 9864123 9864775

90

TABLE 6.42: Cornoarison between Pure and Reoeated Huffman (Circular node Tech.)
Circular node TechniQue

File name Original Pure Huffman Cod in!!: Reneated Huffman Coding
Size(Bytes) Compressed Compression Compressed Compression

File Size Ratio (%) File Size Ratio (%)
(Bytes) (Bytes)

Test4.txt 01209956 0421384 65.174 0369132 69.492
Test3.doc 03997184 2151142 46.184 2137803 46.517
Test2.c 01000679 0599687 40.072 0557318 44.310
Test2.bak 01000679 0599687 40.072 0557318 44.310
Test5.rtf 07706903 4726620 38.670 4634266 39.870
Game.exe 04387088 3660526 16.561 3647734 16.853
Test7.htm 06196553 4101214 33.815 4027486 35.000
Test8.pdf 13300157 10002995 24.790 9864775 25.830

TABLE 6.43: Cornoarisoo between Pure and Reoeated Huffman (Level Order)
Leye1 Order TechniQue

File name Original Pure Huffman Codin!!: Reneated Huffman Coding
Size(Bytes) Compressed Compression Compressed Compression

File Size Ratio (%) File Size Ratio (%)
(Bytes) (Bytes)

Test4.txt 01209956 0421356 65.176 0369058 69.500
Test3.doc 03997184 2151007 46.187 2137818 46.517
Test2.c 01000679 0599657 40.075 0557265 44.311
Test2.bak 01000679 0599657 40.075 0557265 44.311
Test5.rtf 07706903 4726590 38.671 4634271 39.870
Game.exe 04387088 3660591 16.560 3647806 16.851
Test7.htm 06196553 4101056 33.817 4028193 34.990
Test8.pdf 13300157 .10002746 24.792 9864172 25.834

91

toO. oil," ". ,

TABLE 6.44: Comnarison between Pure and Reneated Huffman (Modified Level Order)
Modified Level Order Techniaue

File name Original Pure Huffman Codinl! Repeated Huffman Codinl!
Size(Bytes) Compressed Compression Compressed Compression

File Size Ratio (%) File Size Ratio (%)
(Bytes) (Bytes)

Test4.txt 01209956 0421355 65.176 0369082 69.500
Test3.doc 03997184 2150997 46.187 2137803 46.517
Test2.c 01000679 0599657 40.075 0557265 44.312

Test2.bak 01000679 0599657 40.075 0557265 44.312
Test5.rtf 07706903 4726590 38.671 4634198 39.870
Game.exe 04387088 3660592 16.560 3647807 16.851
Test7.htm 06196553 4101095 33.817 4027080 35.010
Test8.pdf 13300157 10002746 24.792 9864172 25.834

TABLE 6.45: Comparison between Pure and Reneated Huffman (Preorder)
Preorder Technioue

File name Original Pure Huffman Codinl! Repeated Huffman Codinl!
Size(Bytes) Compressed Compression Compressed Compression

File Size Ratio (%) File Size Ratio (%)
(Bytes) (Bytes)

Test4.txt 01209956 00421356 65.176 0368750 69.524
Test3.doc 03997184 02151006 46.187 2137309 46.530
Test2.c 01000679 00599657 40.075 0556839 44.354

Test2.bak 01000679 00599657 40.075 0556839 44.354
Test5.rtf 07706903 04726590 38.671 4633887 39.874
Game.exe 04387088 03660526 16.561 3647734 16.853
Test7.htm 06196553 04101062 33.817 4026983 35.010
Test8.pdf 13300157 10002741 24.792 9863988 25.840

92

•

TABLE 6.46: Comnarison between Pure and Repeated Huffman (Modified Preorder)
Modified Preorder Technic ue

File name Original Pure Huffman Coding Reveated Huffman Codin!!:
Size(Bytes) Compressed Compression Compressed Compression

File Size Ratio (%) File Size Ratio (%)
(Bytes) (Bytes)

Test4.txt 01209956 0421355 65.176 0368484 69.546
Test3.doc 03997184 2150997 46.187 2137331 46.529
Test2.c 01000679 0599657 40.075 0556922 44.346
Test2.bak 01000679 0599657 40.075 0556922 44.346
Test5.rtf 07706903 4726590 38.671 4633919 39.873
Game.exe 04387088 3660592 16.561 3647734 16.853
Test7.htm 06196553 4101095 33.817 4027001 35.010
Test8.pdf 13300157 10002746 24.792 9864006 25.840

TABLE 6.47: Comparison between Pure and Repeated Huffman (Balanced Binarv Tree)
Balanced Binary Tree Technique

File name Original Pure Huffman Coding Reveated Huffman Codin!!:
Size(Bytes) Compressed Compression Compressed Compression

File Size Ratio (%) File Size Ratio (%)
(Bytes) (Bvtes)

Test4.txt 01209956 00421386 65.173 0368910 69.511
Test3.doc 03997184 02151125 46.184 2137415 46.527
Test2.c 01000679 00599689 40.072 0557217 44.316
Test2.bak 01000679 00599689 40.072 0557217 44.316
Test5.rtf 07706903 04726622 38.670 4634046 39.872
Game.exe 04387088 03660648 16.560 3647891 16.850
Test7.htm 06196553 04101216 33.815 4027210 35.010
Test8.pdf 13300157 10002764 24.792 9864123 25.840

93

TABLE 6.48: Comnarison between Pure and Block Huffman (Level Order)
Level Order Technique

File name Original Pure Huffman Coding Block Huffman Coding
Size(Bytes) Compressed Compression Compressed Compression

File Size Ratio (%) File Size Ratio (%)
(Bytcs) (Bytes)

Test4.txt 01209956 0421356 65.176 0432446 64.259361
Test3.doc 03997184 2151007 46.187 2170875 45.689891
Test2.c 01000679 0599657 40.075 0609746 39.066774
Test2.bak 01000679 0599657 40.075 0609746 39.066774
Game.exe 04387088 3660591 16.560 3686404 15.971505
Test7.htm 06196553 4101056 33.817 4184803 32.465630

TABLE 6.49: Comnarison between Pure and Block Huffman (Modified Level Order)
Modified Level Order Techniaue

File name Original Pure Huffman Coding Block Huffman Coding
Size(Bytes) Compressed Compression Compressed Compression

File Size Ratio (%) File Size Ratio (%)
(Bytes) (Bytes)

Test4.txt 01209956 0421355 65.176 0432400 64.263163
Test3.doc 03997184 2150997 46.187 2168747 45.743128
Test2.c 01000679 0599657 40.075 0609714 39.069971
Test2.bak 01000679 0599657 40.075 0609714 39.069971
Game.exe 04387088 3660592 16.560 3685784 15.985638
Test7.htm 06196553 4101095 33.817 4184583 32.469181

94

TABLE 6.50: A Huffman Tree Comnarison between Existin~ and Pronosed Method (contd.)
A Huffman Tree Sizc(Bvtes).

File Name Original Existing Method Proposed Method
Size (Circular Leaf node Tcch.) (Lcvel Order Technique)
(Byte) Pass Pass Pass Pass Pass Pass Pass Pass

One Two Three Four One Two Three Four
Test4.txt 01209956 143 195 500 N/A 115 323 322 N/A
Test3.doc 03997184 458 262 258 N/A 323 323 N/A N/A
Test2.c 01000679 138 324 310 325 108 323 323 N/A
Test2.bak 01000679 138 324 310 325 108 323 323 N/A
Test5.rtf 07706903 133 413 263 N/A 103 322 323 N/A
Game.exe 04387088 258 315 N/A N1A 323 322 N/A N/A
Test7.htm 06196553 173 264 505 N/A 54 322 N/A N/A
Test8.pdf .13300157 571 388 497 N/A 322 322 322 N/A

TABLE 6.51: A Huffman Tree Comnarison between Existin~ and Proposed Method (eontd.)
A Huffman Tree Size(Bytes)

File Name Original Existing Method Proposed Method
Size (Circular Leaf node Tech.) (Modified Level Order)
(Byte)

Pass Pass Pass Pass Pass Pass Pass Pass
One Two Three Four One Two Three Four

Test4.txt 01209956 143 195 500 N/A 114 323 322 N/A
Test3.doc 03997184 458 262 258 N/A 313 318 N/A N/A
Test2.c 01000679 138 324 310 325 108 323 324 N/A
Test2.bak 01000679 138 324 310 325 108 323 324 N/A
Test5.rtf 07706903 133 413 263 N/A 103 322 322 N/A
Game.exe 04387088 258 315 N1A N/A 324 322 N/A N/A
Test7.htm 06196553 173 264 505 N/A 54 322 322 N/A
Test8.pdf 13300157 571 388 497 N/A 322 322 322 N/A

95

TABLE 6.52: A Huffman Tree ComDarison between Existin~ and ProDosed Method (contd.)
A Huffman Tree Size(Bvtes)

File Name Original Existing Method Proposed Method
Size (Circular Leaf node Tech.) (Preorder TechniQue)
(Byte) Pass Pass Pass Pass Pass Pass Pass Pass

One Two Three Four One Two Three Four
Test4.txt 01209956 . 143 195 500 N/A 115 68 315 96
Test3.doc 03997184 458 262 258 N/A 322 89 71 N/A
Test2.c 01000679 138 324 310 325 108 197 122 142
Test2.bak 01000679 138 324 310 325 108 197 122 142
Test5.rtf 07706903 133 413 263 N/A 103 279 75 N/A
Game.exe 04387088 258 315 N/A N/A 258 315 N/A N/A
Test7.htm 06196553 173 264 505 N/A 21 136 319 N/A
Test8.pdf 13300157 571 388 497 N/A 317 241 312 N/A

TABLE 6.53: A Huffman Tree ComDarison between Existin~ and ProDosed Method (contd.)
A Huffman Tree Size(Bvtes)

File Name Original Existing Method Proposed Method
Size (Circular Leaf node Tech.) (Modified Preorder)
(Byte) Pass Pass Pass Pass Pass Pass Pass Pass

One Two Three Four One Two Three Four
Test4.txt 01209956 143 195 500 N/A 113 68 67 72
Test3.doc 03997184 458 262 258 N/A 322 89 71 N/A
Test2.c 01000679 138 324 310 325 108 197 146 320
Test2.bak 01000679 138 324 310 325 108 197 146 320
Test5.rtf 07706903 133 413 263 N/A 103 279 77 N/A
Game.exe 04387088 258 315 N/A N/A 258 315 N/A N/A
Test7.htm 06196553 173 264 505 N/A 12 136 319 N/A
Test8.pdf 13300157 571 388 497 N/A 317 241 312 N/A

96

TABLE 6.54: A Huffman Tree Comnarison between ExistinQ and PrOI)OsedMethod
A Huffman Tree Size(Bvtes)

File Name Original Existing Method Proposed Method
Size (Circular Leaf node Tech.) (Balanced Binary Tree)
(Byte)

Pass Pass Pass Pass Pass Pass Pass Pass
One Two Three Four One Two Three Four

Test4.txt 01209956 143 195 500 N/A 145 177 308 N/A
Test3.doc 03997184 458 262 258 N/A 441 124 53 N/A
Test2.c 01000679 138 324 310 325 140 314 173 N/A
Test2.bak 01000679 138 324 310 325 140 314 173 N/A
Test5.rtf 07706903 133 413 263 N/A 135 395 59 N/A
Game.exe 04387088 258 315 N/A N/A 380 348 N/A N/A
Test7.htm 06196553 173 264 505 N/A 175 240 303 N/A
Test8.pdf 13300157 571 388 497 N/A 340 351 288 N/A

TABLE 6.55: Renetition Count Comnarison amonQ All ReDresentation Methods
File name Original Repetition Count

Size(Bytes) ReDeatedHuffinan Coding Technique
Level Modified Preorder Modified Balanced Circular
order Level Preorder Binary node

order tree Tech.
Test4.txt 01209956 3 3 4 4 0 3J

Test3.doc 03997184 2 2 3 3 3 0
J

Test2.c 01000679 3 3 4 4 3 4
Test2.bak 01000679 3 3 4 4 0 4J

Test5.rtf 07706903 3 3 3 3 3 3
Game.exe 04387088 2 2 2 2 2 2
Test7.htm 06196553 2 3 3 0 0 3J J

Test8.pdf 13300157 3 3 3 3 0 3J

97

TABLE 6.56: Standard Deviationvs.CompressionRatio (Contd.)

Method File Original Standard Deviation vs. Compression Ratio
Name Size(Bytes) Passl Pass2 Pass3 Pass4 Repeated Huffman

Compression Ratio ('Yo)

~..d Test4.txt 01209956 8.228 1.818 0.473 N/A 69.492
"0 <.) Test3.doc 03997184 6.110 0.492 0.153 N/A 46.517.0 <l)-£if-< Test2.c 01000679 4.506 1.738 0.445 0.217 44.310
" <l)::2"8 Test2.bak 01000679 4.506 1.738 0.445 0.217 44.310
bIl" Test5.rtf 07706903 5.989 0.983 0.153 N/A 39.870
" H.- oj-- Game.exe 04387088 2.705 0.347 N/A N/A 16.853.~ ;:Jx <.)

Test7.htm 06196553 6.862 0.942 0.188 N/A 35.000W.:::~u
Test8.pdf 13300157 3.657 0.766 0.188 N/A 25.830
Test4.txt 01209956 8.228 1.818 0.473 N/A 69.500

~ Test3.doc 03997184 6.110 0.492 N/A N/A 46.517"0 .
0"""" <.) Test2.c 01000679 4.506 1.815 0.471 N/A 44.311_ <l)

"f-< Test2.bak 01000679 4.506 1.815 0.471 N/A 44.311::2H<l)
"0"0 Test5.rtf 07706903 5.989 0.983 0.108 N/A 39.870
" H"'0 Game.exe 04387088 2.705 0.347 N/A N/A 16.851&-o <l) Test7.htm 06196553 6.862 0.942 N/A N/A 34.990H ;>
~ <l)
~>-l Test8.pdf 13300157 3.657 0.766 0.188 N/A 25.834

TABLE 6.57: Standard Deviationvs.ComnressionRatio(Contd.)
Method File Original Standard Deviation vs. Compression Ratio

Name Size(Bytes) Passl Pass2 Pass3 Pass4 Repeated Huffman
Compression Ratio ('Yo)

~..d
Test4.txt 01209956 8.228 1.818 0.473 N/A 69.492

"0 <.) Test3.doc 03997184 6.110 0.492 0.153 N/A 46.517o "-£if-< Test2.c 01000679 4.506 1.738 0.445 0.217 44.310
<l) "::2"8 Test2.bak 01000679 4.506 1.738 0.445 0.217 44.310
bIl" Test5.rtf 07706903 5.989 0.983 0.153 N/A 39.870.5 til
.~ "3 Game.exe 04387088 2.705 0.347 N/A N/A 16.853
x <.)

Test7.htm 06196553 6.862 0.942 0.188 N/A 35.000W.:::~u
Test8.pdf 13300157 3.657 0.766 0.188 N/A 25.830

~ Test4.txt 01209956 8.228 1.818 0.473 N/A 69.500
"0_ Test3.doc 03997184 6.110 0.492 N/A N/A 46.517o """;> • Test2.c 01000679 4.506 1.815 0.471 N/A 44.312- <l)""">-l <.)::2"O~ Test2.bak 01000679 4.506 1.815 0.471 N/A 44.312
"0 <l) H

Test5.rtf 07706903 5.989 0.983 0.108 N/A 39.870Il) t;:; Q.)
1;1} ._ "'"d
0"0 H Game.exe 04387088 2.705 0.347 N/A N/A 16.8510.008::2 Test7.htm 06196553 6.862 0.942 0.188 N/A 35.010~~

Test8.pdf 13300157 3.657 0.766 0.188 N/A 25.834

98

TABLE 6.58: Standard Deviation vs. Comoression Ratio (Contd.)
Method File Original Standard Deviation vs. Compression Ratio

Name Size(Bytes) Pass1 Pass2 Pass3 Pass4 Repeated Huffman
Compression Ratio (%)

~..ci Test4.txt 01209956 8.228 1.818 0.473 N/A 69.492
"0 0 Test3.doc 03997184 6.110 0.492 0.153 N/A 46.517o 0,)';::;1-< Test2.c 01000679 4.506 1.738 0.445 0.217 44.3100,) 0,)

~"8 Test2.bak 01000679 4.506 1.738 0.445 0.217 44.310on<=: Test5.rtf 07706903 5.989 0.983 0.153 N/A 39.870<=: •..•
•- oj
.~ '"3 Game.exe 04387088 2.705 0.347 N/A N/A 16.853-:< 0

Test7.htm 06196553 6.862 0.942 0.188 N/A 35.000~ .~~u
Test8.pdf 13300157 3.657 0.766 0.188 N/A 25.830

~ Test4.txt 01209956 8.228 1.818 0.473 0.188 69.524
"0 Test3.doc 03997184 6.110 0.492 0.153 N/A 46.530o ...<::..<::

4.506
_ 0

Test2.c 01000679 1.815 0.458 0.153 44.3540,) 0,)~I-< Test2.bak 01000679 4.506 1.815 0.458 0.153 44.354•..."0 0,)
Test5.rtf 07706903 5.989 0.983 0.153 N/A 39.8740,)"0'" •...o 0 Game.exe 04387088 2.705 0.347 N/A N/A 16.853o.~

20., Test7.htm 06196553 6.862 0.942 0.153 NlA 35.0100.,~
Test8.pdf 13300157 3.657 0.766 0.188 N/A 25.840

TABLE 6.59: Standard Deviation vs. Compression Ratio (Contd.)
Method File Original Standard Deviation vs. Compression Ratio

Name Size(Bytes) Pass1 Pass2 Pass3 Pass4 Repeated Huffman
Compression Ratio (%)

~..ci Test4.txt 01209956 8.228 1.818 0.473 N/A 69.492
"0 0 Test3.doc 03997184 6.110 0.492 0.153 N/A 46.517o 0,)
';::;1-< Test2.c 01000679 4.506 1.738 0.445 0.217 44.3100,) 0,)

~"8 Test2.bak 01000679 4.506 1.738 0.445 0.217 44.310- on <=: Test5.rtf 07706903 5.989 0.983 0.153 N/A 39.870<=: •..•
•- oj
.~ "3 Game.exe 04387088 2.705 0.347 N/A N/A 16.853:< 0

Test7.htm 06196553 6.862 0.942 0.188 NlA 35.000l:.Ll .~~u
Test8.pdf 13300157 3.657 0.766 0.188 N/A 25.830

~ •... Test4.txt 01209956 8.228 1.818 0.334 0.217 69.546
"0 0,) Test3.doc 03Q97184 6.110 0.492 0.153 N/A 46.5290"0..<:: •..•

Test2.c 01000679 4.506 1.815 0.440 0.109 44.346- 00,) 0,)

~d::..ci Test2.bak 01000679 4.506 1.815 0.440 0.109 44.346"0"00
0,) 0,) Test5.rtf 07706903 5.989 0.983 0.108 N/A 39.873C5~E-
0. .- Game.exe 04387088 2.707 0.347 N/A N/A 16.8530"0
•..•0 Test7.htm 06196553 6.862 0.942 0.187 N/A 35.010o.,~~

Test8.pdf 13300157 3.657 0.766 0.188 N/A 25.840

99

TABLE 6.60: Standard Deviationvs. ComnressionRatio
Method File Original Standard Deviation vs. Compression Ratio

Name Size(Bytes) Pass1 Pass2 Pass3 Pass4 Repeated Huffman
Compression Ratio (%)

~..d Test4.txt 01209956 8.228 1.818 0.473 N/A 69.492
"0 () Test3.doc 03997184 6.110 0.492 0.153 N/A 46.517o "-;Sf-< Test2.c 01000679 4.506 1.738 0.445 0.217 44.310" "~"O Test2.bak 01000679 4.506 1.738 0.445 0.217 44.310001)<: Test5.rtf 07706903 5.989 0.983 0.153 N/A 39.870<: •..•
.- '".~ ""3 Game.exe 04387088 2.705 0.347 N/A N/A 16.853>< ()

Test7.htm 06196553 6.862 0.942 0.188 N/A 35.000eLl .=~u
Test8.pdf 13300157 3.657 0.766 0.188 N/A 25.830

~ Test4.txt 01209956 8.228 1.818 0.473 N/A 69.511
15 c Test3.doc 03997184 6.110 0.492 0.188 N/A 46.527
..<:: '" Test2.c 01000679 4.506 1.738 0.458 N/A. +-' =..d 44.316tl).,...; ()

~CQ" Test2.bak 01000679 4.506 1.738 0.458 N/A 44.316"O"Of-<
" " " Test5.rtf 07706903 5.989 0.983 0.153 N/A 39.872Ul () "o ~ $-; Game.exe 04387088 2.707 0.347 N/A N/A 16.8500. _ f-<
o '" 06196553d:CQ Test7.htm 6.862 0.942 0.188 N/A 35.010~

Test8.pdf 13300157 3.657 0.766 0.188 N/A 25.840

Compression Ratio(%)

g 7000
;; 6900
~ 6800,
& 6700 ~
g 6600
'iii 6500 I:I
[6400" I
E 6300 1<1,
<3 6200 +'

~
.j!,
{

u.!

Tree Representation

[J Pure Huffman
• Repeated Huffman

FIGURE6.7:Test4.txtCompressionRatios

100

~I

~ 4657
~ 4651
,g 4645
&. 4639
t: 4633 1
.2 4627 l
~ 4621 I
Co 4615 -
g 4609
u

0'
~ 4490
~ 4420
"" 4350&. 4280 ,
t: 4210 ~
.~ 4140 ~
~ 4070
is. 4000
E 3930ou

Compression Ratio(%)

LTIPure Huffman
GilRepealed Huffman

Tree Representation

FIGURE 6.8: Test3.doc Compression Ratios

Compression Ratio(%)

o Pure Huffman

• Repealed Huffman

Tree Representation

FIGURE 6.9: Test2.c Compression Ratios

101

0' 4000 -o~ 3980 -
:s 3960 -o
:;:l 3940 -
&. 3920 ~
<: 3900 -
.2 3880-
~ 3860' r
5. 3840c lIi
E 3820 - ~i!
<3 3800 -' l£

Compression Ratio(%)

Ii:€JPure Huffman

fII Repeated Huffman

Tree Representation

FIGURE 6.10: TestS.rtfCompression Ratios

Compression Ratio{%)
0'
~ 3550 -~
"0 3500
~ j
&. 3450
<:
o 3400 I

.~ 3350 j ~ ~
c. . £3 :;;
E 3300 .:-'11 -,

(5

Tree Representation

-,-,

~ Pure Huffman

1m Repeated Huffman

FIGURE 6.11: Test7.htm Compression Ratios

102

•,.

5 l
4 l

""'3 JC I::::l I
o 2 J() i

1 j,
Io i~

Repetition Count

954 1154 3812 5910 7350

File Size(1/1000) Mbytes

IiII Le\el

o M. Le\el

[]!J Circular

FIGURE 6.12: Repetition Count for C, txt, doc, htm and rtf files (Contd.)

Repetition Count

:;~;

5 ~

4

1: 3
::::l

<3 2
1

o
954 1154 3812 5910 7350

File Size(1/1000) Mbytes

• Preorder

CJ M. Preorder

o Circular

FIGURE 6.13: Repetition Count for C, txt, doc, htm and rtf files (Conld.)

103

Repetition Count

5
4-s:::: 3

::l
o 2u

1
o JI~I_I~I

1:21 Circular

III B. Tree

954 1154 3812 5910 7350

1-------
I

70
i
I,

60 ,
~ IQ- ,
0 50 j:;:;
III
0::

40 jc:
.2
<J) 30 j<J)
Ql•..

!Co
E 20 i
0 i
()

10j

io +
0

File Size(1/1000) Mbytes

FIGURE 6.14: Repetition Count for C, txt, doc, htm and rtf files

Standard Deviation Vs. Compression Ratio

'--+- .txt

." .doc
-111- .c

, -111- .rtf

-. -'--~--. ----;------ -.---,-----r--r---- ,-.--

0.75 1.5 2.25 3 3.75 4.5 5.25 6 6.75 7.5 8.25 9

Standard Deviation

FIGURE 6.15: Change of Compression Ratio (.txt, .doc, .C, .rtt) in preorder technique

104

Standard Deviation Vs. Compression Ratio

o 0.75 1,5 2.25 3 3.75 4.5 5.25 6 6.75 7.5 8.25 9 9.75 10.5 11.3 12

90

1
80 -

0
70

+:l
60 ~'"0:: ic 50.9 ,

III JIII 40Ql

I
...
Co
E 30
0
0 20

10

o -- -,-.--.-.r-.----c-----~ --, -"...•_.. _ ..

-_.....:-1
-+- .bmp I
-lll-.exe i

I
--.$- html '

• I

-.,- .pdf [

c-:*:"b_~~

Standard Deviation

FIGURE 6.16: Change of Compression Ratio (.bmp, .exe, .htm, .pdf" .back) in preorder technique

Average Code Length VS. Compression Ratio

[jill .rtf
D.c

!i .doc
Ed] .txt

7Q605040302010
2. 79 -'==""""''''''''''''''''''''''''':'''''''''''''''''''''~'''''''''_''''''''''''''''~''''''i===='-

o

.r: 7.99•..
Cl
~ 7.99
..J
Ql 7.95

:3 7.85 ~
Ql F-==-

~ 7.11~~~======
~4.791-=~~~~--~~~-
« J==:~~-~~~~~-

Compression Ratio(%)

FIGURE 6.17: Change of Compression Ratio (.txt, .doc, .C, .rtt) in preorder technique

105

Huffman Tree Size(Bytes)

500:_ 450 -,
1/1 '~ 400-!
>- 350 '
!£ 300 J
.~ 250 ~

i~gg~,
I- 50 Jo +----,------------,--------~-r--- -------,

--+-Circular

-- Level Order

o 1 2 3 4

Pass of Repeated Huffman

FIGURE 6.18: Huffman tree Size in Circular Leaf node and Level order (Test4.txt)

Huffman Tree Size(Bytes)

500 -
Ul 450 ~
oS! 400 -
>. 350 -
~ 300 -
.~ 250
en 200

150
~ 100 c
I- 50o ~---------~--, ------

,-------
-+- Circular
1--M_Level Order
, - _ .._._-- - - -- :

o 1 2 3 4

Pass of Repeated Huffman

FIGURE 6.19: Huffman tree Size in Circular Leafnode and Modified Level order(Test4.txt)

106

Huffman Tree Size(Bytes)

Vi' 500 c
.l!l
~ 400
m 300
N 200 ~en
Q) 100-,
~ a -;---~-~---I----~----~r---------:'--'--_.'------I
I-

i -+- Circular '

-lili- Preorder:
. _J

o 1 2 3 4

Pass of Repeated Huffman

FIGURE 6.20: Huffman tree Size in Circular Leaf node and Preorder(TesI4.lxl)

Huffman Tree Size(Bytes)

....•.600
til
~ 500 •
OJ 400 ~
~ 300 J
en 200 J
Q) I
~ 100
I- Oc----r----,----- _-_

--- Circular
-llll- M. Preorder

o 1 2 3 4 5

Pass of Repeated Huffman

FIGURE 6.21: Huffman lree Size in Circular Leaf node and Modified Preorder (TesI4.lxl)

107

Huffman Tree Size(Bytes)

-I/)
2
>-
OJ-Ql
N.-m
Ql

~
I-

500 -

400 -

300 -

200
100 -

o -------,--------1----- r -,-. ----- -- - ...,. ----~- - -I

-+- Circular.
--B.Tree :____.. . J

o 1 2 3 4 5

Pass of Repeated Huffman

FIGURE 6.22: Huffman tree Size in Circular Leaf node and Balanced B. Tree (Test4.txt)

6.5 Analysis of Experimental Results

Table 6.40 presents compression ratios in existing (circular leaf node) and
proposed methods of Huffman tree representation. Compression ratios for
preorder and its modified version are higher than all other remaining methods.
Table 6.42-6.47 compares Pure and Repeated Huffman with respect to
compression ratios. Repeated Huffman shows better performance_ Table 6.50-
6.54 shows reduced form of Huffman tree compared to existing methods. From
Table 6.55 it may be mentioned that Pre order and its modified version also
increase repetition count because of memory efficient representation of a
Huffman tree that is necessary for Repeated Huffman coding. Table 6.56-6.60
shows change of compression ratio with standard deviation. If change of standard
deviation is slowed down, repetition count is increased. Abrupt fall of standard
deviation makes Repeated Huffman coding to be degenerated.

108

Figure 6.7-6.11 compares compression ratios using chart. These figures consider
TXT, DOC, C, RTF and HTM files for existing and proposed methods of
Huffman tree representation. Figure 6.12-6.14 visualizes the repetition count for
each of the proposed techniques compared to existing technique. Change of
.compression ratio with standard deviation is shown in Figure 6.15-6.16 for
different files using preorder technique. Figure 6.17 shows change of compression
ratio with respect to average code length. A Huffman tree size in every pass of
Repeated Huffman in existing and proposed methods is also compared in figure
6.18-6.22. In almost all of the cases proposed methods show memory efficient
tree representation.

6.6 Conclusion

Experimental results show that the proposed methods provide a memory-efficient
representation of a Huffman tree over existing methods. Because of this efficient
representation overall compression ratio is increased.

109

CHAPTER

7
CONCLUSION

AND
RECOMMENDATIONS

7.1 Conclusion

In this thesis different techniques of Huffman tree representation have been
studied and implemented. Clustering of a Huffman tree is also discussed. It also
concentrates on Block Huffinan coding. This thesis has mainly focused on how
efficiency of Huffman coding technique can be improved through the Repeated
Huffman coding. Optimal cluster length regarding tree clustering is also studied.
Block Huffman coding improves the performance of Pure Huffman coding with
respect to speed of compression.

7.1.1 Huffman Tree Representation Techniques

Level order technique

Theoretically level order technique requires less than 15n/4l memory spaces at
any cases to represent a Huffman tree which is less than existing method (Circular
node) that requires at most 13n/2l memory spaces for the Huffman tree of n
distinct symbols. Experimental results show compression ratio and tree size for
the level order technique. Especially for the single side growing Huffman tree,
circular node technique shows better performance than level order technique. For
the fully balanced Huffman tree the performance of level order technique shows
excellent performance.

110

Modified Level Order Technique

Modified level order technique requires less than 19nJsl memory spaces at best
case. It needs less than 15nJ4l memory spaces at worst case to represent a
Huffman tree, which is less than existing method (Circular node) that requires at
most 13nJ2l memory spaces for the Huffman tree of n distinct symbols.
Experimental results show compression ratio and tree size for the Modified level
order technique. Especially for the single side growing Huffman tree, circular
node technique shows better performance than Modified level order technique.
For the fully balanced Huffman tree the performance of Modified level order
technique shows excellent performance because only internal node representation
is required .

.Preorder Technique

Theoretically Preorder technique requires less than 15nJ4l memory spaces at any
cases to represent a Huffman tree which is less than existing method (Circular
node) that requires at most 13nJ2l memory spaces for the Huffman tree of n
distinct symbols. Experimental results show compression ratio and tree size for
the Preorder technique. Especially for the single side growing Huffman tree,
circular node technique requires n+ I memory spaces. For the fully balanced
Huffman tree the performance of Preorder technique shows excellent performance
than existing method.

Modified Preorder Technique

Modified Preorder technique requires less than 19nJsl memory spaces at best
case. It needs less than 15nJ4l memory spaces at worst case to represent a
Huffman tree, which is less than existing method (Circular node) that requires at
most 13nJ2l memory spaces for the Huffman tree of n distinct symbols.
Experimental results show compression ratio and tree size for the Modified
Preorder technique. Especially for the left eccentric Huffman tree, Circular Leaf
node and Modified Preorder techniques show same performance. For the fully
balanced Huffman tree the performance of Modified Preorder technique shows
excellent performance than existing technique.

Balanced Binary Tree Technique

Balanced binary tree technique requires n+ I memory spaces at best case. It needs
L3nJ2J memory spaces at worst case to represent a Huffman tree which is less than
existing method (Circular Leaf node) that requires at most 13nJ2l memory spaces
for the Huffman tree of n distinct symbols. Experimental results show

111

compression ratio and tree size for the Modified Preorder technique. Especially
for the eccentric or the fully Balanced Huffman tree, Balanced Binary tree
technique shows better performance. For the fully Balanced Binary tree existing
technique (Circular Leaf node) provides worse performance.

7.1.2 Tree Clustering Technique

Clustering of a Huffman tree is required to reduce the sparsity of a Huffman tree.
It also reduces the wastage of memory and makes search process faster for a
symbol. Since search time is proportional to I+CdL, so increasing value of L (top
cluster length) minimizes search time but memory wastage is increased. Therefore
a decision regarding L is needed. Length of top cluster can be selected as close to
average code length so that in first chance most of the symbols can be found in
look-up table of top cluster and wastage of memory can be kept minimal.

7.1.3 Block Huffman Coding

Block Huffman coding is used to speed up Pure Huffman coding in the case of
'large file. Block Huffman coding cannot improve the compression ratio
significantly. Because of locality characteristics this method sometimes provides
better compression than traditional one. Block size must be selected such a way
that it does not hamper the compression ratio significantly.

7.2 Recommendations

In this thesis work lossless, variable length and repeated version of static Huffman
coding is studied, implemented and tested for each method of Huffman tree
representation. Future works on Huffman tree representation and tree clustering
algorithm can be carried on

• An optimal representation technique for a Huffman tree of n distinct
symbols to get more compression ratio for the Block Huffman coding
using Repeated Huffman coding technique.

• An efficient decoding technique for the Repeated Huffman Coding. This
decoding technique will extract the original information quickly. Less
complex data structure for this technique is required.

• An effective clustering for the Huffman tree is also required. This,
clustering technique makes memory mapping faster, speed up search
process and reduces memory wastage.

112

• Repeated Huffman Coding Scheme for the BangIa text Compression-
Decompression to reduce the redundancy of text. Coding and decoding
time can be studied.

• Repeated Huffman Coding Scheme for image, video and audio data so that
compression ratio will be higher. Embedded the Repeated Huffman
Coding with Arithmetic coding to get better compression ratio.

• Huffman code optimization by biasing a Huffman tree. Reduce the
external path length for each symbol. Optimized code for each symbol will
provide better compression ratio.

113

REFERRENCES
[1] Abu-Mostafa, Y.S. and McEliece, R. J., "Maximal Codeword Lengths in

Huffinan Codes", Computers and Mathematics with Applications 39(2000)129-
134.

[2] Apiki, S., "Lossless Data Compression", BYTE (March 1991), 309-314, 386-
387

[3] Chen, H. -C., Wang, Y. -L. and Lan, Y. -F., "A memory -efficient and fast
Huffman decoding algorithm", Inform. Process. Lett. 69(1999)119-122.

[4] Chowdhury, Rezaul Alam, Kaykobad, M. and King, Irwin, "An efficient
decoding technique for Huffman codes", Inform. Process. Lett. 81 (2002)305-
308.

[5] Chung, K. L., "Efficient Huffinan decoding", Inform. Process. Lett.
61(1997)9799.

[6] Connel, J. B., "A Huffman-Shannon-Fano Code", Proc. IEEE 61 (Jul. 1973),
1046-1047.

[7] Elabdalla, Abel-Rahman and 1. Irshid, Mansour, "An efficient bitwise Huffman
Coding technique based on source mapping", Computer and Electrical
Engineering 27(2001)265-272.

[8] Faller, N., "An adaptive system for data compression", in record of the 7'h
Asilomar Conference on Circuits, Systems, and Computers. 1973, pp. 593-597.

[9] Fano, R. M., "Transmission of Information", Cambridge, MA; MIT Press and
New York; Yiley, 1961.

[10] Gallager, R. G., "Variations on a theme by Huffman", IEEE Trans. Inr Theory
IT-24, 6(Nov. 1978),668-674.

[II] Hashemian, R., "Memory efficient and high-speed search Huffman coding",
IEEE Trans. Comm. 43(10)(1995)2576-2581.

[I 2] Howard, P.G. and Vitter, J.S., "Analysis of Arithmetic Coding for Data
Compression", in Proe. Data Compression Conference, J. A. Storer and J. H.
Reif, eds., Snowbird, Utah, Apr. 8-11,1991,3-12, invited paper, also to appear
as an in the special issue of Information Processing and management, also
appears as Brown University Technic~1 Report No. CS-9I-03.

[13] Howard, P.G. and Vitter, J. S., "Parallel loss less image compression using
Huffman and arithmetic coding", Inform. Process. Lett. 59(1996)65-73.

[14] Howard, P.G, and Vitter, J. S" "Design and analysis offast text compression
based on quasi-arithmetic coding, Infonn. Process. Management

30(6)(1994)777-794.

114

[15] Hu, Yu-Chen and Chang, Chin-Chen, "A new lossless compression scheme
based on Huffman coding scheme for image compression", Signal Processing:
Image Communication 16(2000)367-372.

[16] Huffman, D. A, "A method for construction of minimum redundancy codes,
Proc.lRE 40(1952) 1098-1101.

[17] Humayun, S. M., Rahman, S. H. and Kaykobad M., "Static Huffman code for
BangIa Text", 15th Annual Conference of BAAS, Section Ill, AERE, Savar,

. March 5-8, 1990

[18] Katona, G. O. H. and Nemetz, T. O. H., "Huffman codes and self-information",
IEEE Trans. Inform. Theory IT-22, 337-340 (May 1976)

[19] Knuth, D. E., "Dynamic Huffman Coding", Journal of Algorithms 6,163-
180(1985).

[20] Langdon, G.G., "An Introduction to Arithmetic Coding", IBM J. Res. Develop.
28,2(Mar. 1984), 135-149.

[21] Longo, G. and Galasso, G., "An Application of Informational Divergence to
Huffman Codes", IEEE Trans. Inform. Theory, IT-28(1) (Jan. 1982),36-43.

[22] MandaI, J. N., "An approach towards development of efficient data
compression algorithms and correction techniques", Ph. D. Thesis,
Jadavpur University, India, 2000.

[23J Mannan, Mohammad Abdul and Kaykobad, M., "Block HLiffman Coding",
Computers and Mathematics with Applications 0(2003)1-0.

[24] Moffat, A., "Word-Based Text Compression", Software-Practice and
Experience, 19 (Feb. 1989), 185-198.

[25] Parker, D. S., "Conditions for Optimality of the Huffman Algorithm", SIAMJ.
Computer 9(3), (Aug. 1980),470-489.

[26] Rissanen, J. J. and Mohiuddin, K. M., "A multiplication-fTee multialphabet
arithmetic code, IEEE Trans. Comm. 37(2)(1989)93-98

[27] Schack, R., "The length of a typical Huftrnan codeword", IEEE Trans. Inform.
Theory 40(4)(1994)1246-1247.

[28] Shannon, C. E., "A Mathematical Theory of Communication", Bell Syst. Tech.
J. 27 (July 1948), 398-403.

[29] Shannon, C. E., "Prediction of Entropy of Printed English", Bell Syst. Tech.
J. 30 (1951), 50-64.

[30] Tanaka, H., "Data Structure of Huftrnan Codes and Its Application to Efficient
Encoding and Decoding", IEEE Trans. Inform. Theory IT-33 (Jan. 1987), 154-
156.

[31] Turpin, Andrew and Moffat, Alistair, Comment on "Efficient Huffman
decoding" and "An efficient finite-state machine implementation of Huffman
decoders", Inform. Process. Lett. 68(1998) 1-2.

[32] Voorhis, D.C. Van, "Constructing codes with bounded codeword lengths, IEEE
Trans. Inform. Theory. 20(2) (1974)288-290.

[33] Vitter,J. S., "Design and analysis of Dynamic Huffman Codes", J. ACM
34(4)(1987)825-845.

[34] Welch, T., "A Technique for High Performance Data Compression", IEEE
Computer, 17(6), (1984), 8-19.

[35] Wells, M., "File Compression Using Variable Length Encoding", Computer
Journal, 15,4(1973),308-813.

[36] Yannakoudakis, E. J., Goyal, P. and Huggill, J. A. , "The Generation and Use
of Text Fragments for Data Compression", Information Processing and
Management, 18, 1(1982), 15-21.

[37] Yeung, R. W., "Local Redundancy and Progressive Bounds on the Redundancy
of a Huffman Code", IEEE Trans. Inform. Theory, IT-37, 3(May 1991),687-
690.

[38] Zimmermann, S., "An Optimal Search Procedure", Amer. Math. Monthly, 66,
(1959),690-693.

[39] Ziv, J. and Lempel, A., "Compression of Individual Sequences via Variable-
Rate Coding", IEEE Trans. Inform. Theory. IT-24, 5(Sep 1978),530-536.

[40] Ziv, J. and Lempel, A., "A Universal Algorithm for Sequential Data
Compression", IEEE Trans. Inform. Theory. 1T-23, 3(May 1977),337-343.

116

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127

