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ABSTRACT
Shadows are crucial for the human perception of the 3D world. Hard shadows are produced

when a typical 011 definition of shadows is applied: if the light source can be seen from a

pixel, it is lit; otherwise, it is in shadow. However, in nature, most light sources have a

measurable size and hence they can be partially occluded. This fuzzy definition of shadows

introduces a new genre of shadow generation problem: soft shadow generation. Soft shadows

are obviously very important for realistic image rendering. But true soft shadow calculation is

a computation intensive problem which requires considering complicated receiver-occluder-

light source relation in three dimensions. So, to give real time graphics a realistic touch, we

must come up with approximation algorithms that produce almost physically correct shadow.

Of the main two trends of shadow algorithms, shadow map approach suffers from sampling

artifacts due to image space computation. Hence, to produce convincing shadows in real time,

a shadow volume algorithm is needed that can generate soft shadows. We have developed an

algorithm, under the shadow volume theme, to compute soft shadows for triangulated simple

three dimensional objects. We have introduced a double silhouette concept; we are

considering two silhouettes - umbra silhouette, responsible for the outline of the umbra

region; and the penumbra silhouette, responsible for the outline of the penumbra region of the

generated soft shadow. Our algorithm basically interpolates between these two extremes of

the penumbra region. We have devised a way to break up the occluders into silhouette rings,

and compute shadow contributions at any pixel based on only these structures. Our goal was

to produce smooth shadow, so we devised an interestingly innovative way of combining

contributions from overlapping projections of silhouette edges: 'edge shadows'. We have

compared the quality of the shadow generated from our algorithm with that of a few well

known recent algorithms. Our algorithm does not suffer from the artifacts previous

.algorithms had. On top of that, since we compute shadows only depending on the silhouette

edges, special cases like the idea of overlapping shadow and self shadow degenerated into the

common case of generating soft shadow from silhouette edges.
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Chapter 1. Introduction

1.1. Motivation

Shadows are crucial for the human perception of the 3D world.

With the emergence of computer graphics technology, researchers have developed

experiments to understand the impact of shadows on our perception of a scene.

Through different psychophysical experiments they established the importance of the

shadows in understanding:

• the position and size of the occluder [I], [2], [3], [4], [5] (see Figure I-I below);

• the geometry of the occluder [2] (see Figure 1-2 below);

• the geometry of the receiver [2] (see Figure I-I below).

Ca) Shadows provide information about
the relative positions of objects.
On the left-hand image, we cannot
determine the position of the robot,
whereas on the other three images we
understand that it is more and more
distant from the ground.

Cb) Shadows provide information about the geometry of
the receiver.
Left: not enough cues about the ground.
Right: shadow reveals ground geometry.

Figure 1-1. Shadows provide information about the geometry of the
occluder. This is extracted from [9].

Wanger [I] studied the effect of shadow quality on the perception of object

relationships, basing his experiments on shadow sharpness. Hubona et ar [3] discuss

the general role and effectiveness of object shadows in 3D visualization. In their

experiments, they put in competition shadows, viewing mode (mono/stereo), number

of lights (one/two), and background type (flat plane, "stair-step" plane, room) to

measure the impact of shadows.



(a) Robot holds nothing in its
left hand

(b) Robot holding a ring in its
left hand

(e) Robot holding a teapot in its
left hand

Figure 1-2. Shadows provide information about the geometry of the
occluder. This is extracted from (9).

Kersten et al [4], [5] and Mamassian et al [2] study the relationship between object

motion and the perception of relative depth. In fact, they demonstrate that simply

adjusting the motion of a shadow is sufficient to induce dramatically different

apparent trajectories of the shadow-casting object.

These psychophysical experiments convincingly establish that it is important to take

shadows into account to produce images in computer graphics applications. Shadows

in general help in our understanding of 3D environments and blurred soft shadows

take part in realism of the images.

1.2. Problem Definition
To generate real shadows in real time, instead of generating the computationally

correct true shadow, the shadow algorithms try to approximate the effects. The

different approaches explored by researchers are discussed in brief in Chapter 2.

To produce an almost perfect shadow in real time, the shadow volume approach must

be used as it does not suffer from any sampling artifacts. The best soft shadow

algorithm of this type published to date is the Penumbra Wedges algorithm (see

Section 2.4.1). It renders almost realistic soft shadows. But this algorithm has two

serious limitations:

• It uses the basic hard shadow algorithm to produce the soft shadow volumes.

This approximation results in an error called single silhouette artifact (see

Section 2.5).

1-2



• There is no mechanism as to how to combine overlapping shadow from two

separate objects.

To solve these limitations, we need to go back to the root of the problem and identify

the differences between hard shadows and soft shadows. In this thesis, we have tried

to produce an algorithm that explores this idea and tries to overcome the limitations

stated above.

1.3. Objective and Scope of the Work

We are designing an algorithm that

• is a soft shadow volume algorithm; and

• can render soft shadows in real time.

This algorithm fixes three important features not handled well in previous algorithms:

• it does not produce Single Silhouette Artifacts (see Section 2.5);

• it can combine shadows of multiple objects; and

• it can compute self shadows.

Previous shadow volume algorithms support only circular or square light sources. Our

algorithm can handle arbitrary shaped convex polygonal planar light sources. In case

of concave planar light sources, we suggest breaking up the light source into a

minimal number of convex polygons.

Although our algorithm can perform best if implemented in programmable graphics

hardware, for the purpose of this thesis, software simulation is used. We are

comparing visual output with soft shadow algorithms; only real time algorithms are

compared.

This algorithm is intended for convex planar light sources and triangulated, simple,

non-self-intersecting and hole-free objects (or occluders). For parametric smooth

curves and splines, a preprocessing step will be necessary. This preprocessing is

1-3
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required to construct a polyhedron composed of triangular facets that can approximate

the smooth object.

1.4. Outline

The remaining part of the thesis is organized as follows.

Chapter 2 discusses the existing algorithms, from general to specific to our problem.

The strengths and weaknesses of these algorithms are stated.

Chapter 3 contains the detailed description of how our algorithm generates soft

shadow.

Chapter 4 contains the outcome of our work. Discussions on several sets of snapshots

of rendered shadow explain different aspects of the algorithm. The artifacts are

presented and discussed. Our algorithm is compared to the existing algorithms in

terms of the quality of the shadow rendered.

Chapter 5 concludes the thesis and presents possible future trends of research in the

same field.

1-4
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Chapter 2. Literature Review

Probably the first thorough analysis of shadows was Leonardo Da Vinci's [6],

focusing on paintings and static images. Also of note is the work of Lambert [7] who

described the geometry underlying cast shadows.

Progress in computer graphics technology and the development of consumer-grade

graphics accelerators have made real-time 3D graphics a reality [8]. However,

incorporating shadows, and especially realistic soft shadows, in a real-time

application, has remained a difficult task (and is generating a great research field).

2.1.
2.1.1.

Basic Concepts
What is a Shadow

Consider a light source L illuminating a scene: receivers are objects of the scene that

are potentially illuminated by L. A point P of the scene is considered to be in the

umbra if it cannot see any part of L, i.e. it does not receive any light directly from the

light source.

If P can see a part of the light source, it is in the penumbra. The union of the umbra

and the penumbra is the shadow, the region of space for which at least one point of

the light source is occluded. Objects that hide a point from the light source are called

occluders.

Light source

~

Occluder

~

Figure 2-1.

Shadow Receiver --~

"

Basics of shadows.

Penumbra

Umbra

2-5
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2.1.2. Hard Shadows VS. Soft Shadows

The common-sense notion of shadow is a binary status, 1.e. a point is either "in

shadow" or not. This corresponds to hard shadows, as produced by point light

sources: indeed, a point light source is either visible or occluded from any receiving

point.

However, point light sources do not exist in practice and hard shadows give a rather

unrealistic feeling to images. Note that even the sun, probably the most common

shadow-creating light source in our daily life, has a significant angular extent and

does not create hard shadows. Still, point light sources are easy to model in computer

graphics and several algorithms let us compute hard shadows in real time.

On the other hand, the determination of the umbra and penumbra is a difficult task in

general, as it amounts to solving visibility relationships in 3D, a very hard problem.

Figure 2-2. Left: Illustration of hard shadow; Right: Illustration of soft
shadow. This is extracted from [9).

Soft shadows are obviously much more realistic than hard shadows; in particular the

degree of softness (blur) in the shadow varies dramatically with the distances involved

between the source, occluder, and receiver (see Figure 2-2 above). Note also that a

hard shadow, with its crisp boundary, could be mistakenly perceived as an object in

the scene, while this would hardly happen with a soft shadow.

In computer graphics, we can approximate small or distant light source as point

sources in a very small number of cases. When the distance from the light to the

occluder is much larger than the distance from the occluder to the receiver, the

penumbra region almost vanishes, so the hard shadow looks quite real. Also, if the

2-6
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resolution of the final image does not allow proper rendering of the penumbra, there

will be no point to render soft shadow. In all other cases great benefits can be

expected from properly representing soft shadows.

Figure 2-3. When the light source is significantly larger than the occluder,
the shape of the shadow is very different from the shape computed using a single

sample; the sides ofthe object are playing a part in the shadowing. This is
extracted from (9).

2.2. Shadow Computation

..'::\I/~
b !:.
."/~ \~

: ",

j ' ...•.•

Figure 2-4. Left: Study of shadows by Leonardo da Vinci (6);
Right: Shadow construction by Lambert (7).

This is extracted from 19).

2-7
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2.2.1. Geometry of Soft Shadows

Soft shadows can be considered as a combination of shadows, generated for all points

of an object. Since in computer graphics, all objects are polygonal, we can take

advantage by doing much less computation; by projecting the light source onto the

receiver through the vertices on the object.

Soft
Shadow

Penumbra

Area sourcePoint source\...•41----
II"

\\~~..
\ \ .. "
" \\",
\ \.. ..
\ ," ..
\ \ " "\ \ .. ..
\ \ .. ..
\L::::5::;1" ..,.....-

\ \ .. ..
\ \ \ ..
\ \ \ ..
I \ " "\ \ .. ..
\ \ , ..
\ \ .. ..
\ .. \ ..

Hard
Shadow

Figure 2-5. Demonstration of umbra and penumbra regions for light source.

2.3. Shadow Algorithms

In this section, we are describing the main two trends of (hard) shadow algorithms,

namely, shadow volume and shadow map. Both of these algorithms have been

extended in a number of ways [9] to produce soft shadow. In 2.4, we are going to

discuss a few such soft shadow generation algorithms developed using the shadow

volume approach. We will be presenting the algorithms, along with their

improvements and fundamental drawbacks inherent to the basic idea of the same.

Now, we will be trying to justify why we preferred the shadow volume approach.

2.3.1. Ray Tracing

Soft shadow generation is a difficult problem. Ray tracing can solve it perfectly, but it

cannot be used for real time rendering. This is because ray tracing traces back from

eye through each pixel to be rendered. The number of rays to be traced back can be

2-8



exponentially large, since at each incidence of the light source onto a surface, one of

three things can happen: transmission, absorption and reflection.

~
"

"

2.3.2.
2.3.2.1.

Shadow Map
Method

The basic operation for computing shadows is identifying the parts of the scene that

are hidden from the light source. Intrinsically, it is equivalent to visible surface

determination, from the point-of-view of the light source.

Computing shadows [10], [J I], [12] starts by computing a view of the scene, from the

point-of-view of the light source. When all objects are rasterized, the per pixel depth

information is stored for the purpose of executing the Z-buffer algorithm. We store

the z values of this image. This Z-buffer is the shadow map (see Figure 2-6 below).

Figure 2-6. Shadow map for a point light source. Left: view from the camera.
Right: depth buffer computed from the light source. This is extracted from [9].

The shadow map is then used to render the scene (from the normal point-of-view) in a

two-pass rendering process:

• First, a standard Z-buffer technique, for hidden-surface removal.

• For each pixel of the scene, we now have the geometrical position of the

object seen in this pixel. If the distance between this object and the light is

greater than the distance stored in the shadow map, (the object must have been

overwritten by another object nearer to the light source, and hence,) the object

is in shadow. Otherwise, it is illuminated.

2-9



• The color of the objects IS modulated depending on whether they are m

shadow or not.

Shadow mapping has been implemented in most of the currently available graphics

hardware. It uses an OpenGL library extension for the comparison between Z values,

GL_ARB_SHADOW. The OpenGL Architecture Review Board (ARB) is the

governing body of OpenGL. New extensions proposed by hardware vendors are tested

for conformance and then accepted as a GL_ARB_ * extension. The fact that

GL ARB SHADOW is an ARB extension implies this capability is not vendor

specific any more, any OpenGL 2.0 compatible hardware will accommodate this

extension.

2.3.2.2. Benefits and Limitations

Shadow mapping has many advantages:

i) it can be implemented entirely using graphics hardware;

ii) creating the shadow map is relatively fast, although it still depends on the

number and complexity of the occluders;

iii) it handles self-shadowing.

It also has several drawbacks:

i)

ii)

iii)

2.3.3.

it is subject to many sampling and aliasing problems;

it cannot handle omni-directionallight sources;

at least two rendering passes are required (one from the light source and

one from the viewpoint);

Shadow Volume

Another way to think about shadow generation is purely geometrical. This method

was first described by Crow [13], and first implemented using graphics hardware by

Heidmann [14].

2-10
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2.3.3.1. Method

The algorithm consists in finding the silhouette of occluders along the light direction.

The silhouette is the outline of the object when seen from the point of view of the

light source. Only the silhouette determines the shape of the shadow. Hence

computing the silhouette is the first step for computing the shadow.

Then this silhouette is extruded along the light direction, thus forming a shadow

volume. Objects that are inside the shadow volume are in shadow, and objects that are

outside are illuminated. The shadow volume is calculated in two steps:

• The first step consists in finding the silhouette of the occluder as viewed from

the light source. The simplest method is to keep edges that are shared by a

triangle facing the light and another in the opposite direction. This actually

gives a superset of the true silhouette, but it is sufficient for the algorithm.

• Then we construct the shadow volume by extruding these edges along the

direction of the point light source. For each edge of the silhouette, we build the

half-plane subtended by the plane defined by the edge and the light source. All

these half-planes define the shadow volume.

Viewer

1 2

Occluder 2

1 o

Figure 2-7. Determining whether a point is inside a shadow volume. This is
extracted from [9).

• For each pixel in the image rendered, we count the number of faces of the

shadow volume that we are crossing between the view point and the object

rendered. Front facing faces of the shadow volume (with respect to the view

point) increment the count; back-facing faces decrement the count (see Figure
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2-7 above). If the total number of faces is positive, then we are inside the

shadow volume, and the pixel is rendered using only ambient lighting.

The rendering pass is easily done in hardware using a stencil buffer [13], [15], [16];

faces of the shadow volume are rendered in the stencil buffer with depth test enabled

this way: in a first pass, front faces of the shadow volumes are rendered incrementing

the stencil buffer; in a second pass, back faces are rendered, decrementing it. Pixels

that are in shadow are "captured" between front and back faces of the shadow

volume, and have a positive value in the stencil buffer. This way to render volumes is

called zpass.

Therefore the complete algorithm to obtain a picture usmg the Shadow Volume

method is:

•
•
•

Render the scene with only ambient/emissive lighting;

Calculate and render shadow volumes in the stencil buffer;

Render the scene illuminated with stencil test enabled: only pixels which

stencil value is 0 are rendered, others are not updated, keeping their ambient

color.

2.3.3.2. Advantages and Disadvantages

The shadow volume algorithm has many advantages:

•
•
•

It works for omni directional light sources;

It renders eye-view pixel precision shadows;

It handles self-shadowing .

It also has several drawbacks:

•
•

•
•

The computation time depends on the complexity of the occluders;

It requires the computation of the silhouette of the occluders as a preliminary

step;

At least two rendering passes are required;

Rendering the shadow volume consumes jillrate of the graphics card .
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2.4. Soft Shadows
The simplest way to produce soft shadows with the shadow volume algorithm is to

take several samples on the light source, compute a hard shadow for each sample and

average the pictures produced. It simulates an area light source, and gives us the soft

shadow effect. However, the main problem with this method is the number of samples

it requires to produce a good-looking soft shadow, which precludes any real-time

application. Also, it requires the use of an accumulation buffer, which is currently not

supported on standard graphics hardware [9].

Soft shadows come from spatially extended light sources. To model properly the

shadow cast by such light sources, we must take into account all the parts of the

occluder that block light coming from the light source. This requires identifying all

parts of the object casting shadow that are visible from at least one point of the

extended light source, which is algorithmically much more complicated than

identifying parts of the occluder that are visible from a single point. Because this

visibility information is much more difficult to compute with extended light sources

than with point light sources, most real-time soft shadow algorithms compute

visibility information from just one point (usually the center of the light source) and

then simulate the behavior of the extended light source using this visibility

information (computed for a point).

Figure 2-8. Plateaus algorithm extends the shadow volume of an occluder
with cones and planes. This is extracted from 117).
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The first geometric approach to generate soft shadows ("Soft Planar Shadows Using

Plateaus") has been implemented by Haines [17]. It assumes a planar receiver, and

generates an attenuation map that represents the soft shadow. The attenuation map is

created by converting the edges of the occluders into volumes, and is then applied to

the receiver as a modulating texture (see Figure 2-8).

For extended light sources, it can be assumed that the influence of the shape of the

light source on a soft shadow is not directly perceptible. Most real-time soft shadow

methods use this assumption by restricting themselves to simple light source shapes,

such as spheres or rectangles:

• Single-sample soft shadows [18], [19], plateaus [17] and smoothies [20] assume a

spherical light source. Soft shadow volumes [21] also work with a spherical light

source.

• Visibility channel [22] was originally restricted to linear light sources.

• Subsequent implementation of the visibility channel works with polygonal light

sources [18].

• Other methods place less restriction on the light source. Multi-sample methods

[23], [24] can work with any kind of light source. Convolution [25] is also not

restricted. However, in both cases, the error in the algorithm is smaller for planar

light sources.

• Convolution [25] and soft shadow volumes [26], [21] work with textured

rectangles, thus allowing any kind of planar light source. The texture can even be

animated [26], [21].

2.4.1. Penumbra Wedges

Akenine-Mi:iller and Assarsson [27], Assarsson and Akenine-Mi:iller [26] and

Assarsson et al. [21] have developed the penumbra wedges algorithm to compute soft

shadows that builds on the shadow volume method and uses the programmable

capability of modern graphics hardware [28], [29], [30] to produce real-time soft

shadows. The algorithm starts by computing the silhouette of the object, as seen from

a single sample on the light source. For each silhouette edge, it builds a silhouette
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wedge that encloses the penumbra caused by this edge. Then in three passes, the final

image is rendered.

2.4.1.1. Method.

Figure 2-9. Left: Penumbra volumes. Right: Respective silhouette wedges.
This is extracted from [21).

The algorithm starts by computing the silhouette of the object, as seen from a single

sample on the light source. For each silhouette edge, a silhouette wedge is built that

encloses the penumbra caused by this edge (see Figure 2-9 above). The wedge can be

larger than the penumbra. Then, the shadow volume is rendered, using the standard

method (see 2.3.3) in a visibility buffer. After this first pass, the visibility buffer

contains the hard shadow.

<h,

Ion,;;,

D +

Figure 2-10. Splitting of shadow contribution for each wedge for a point p. A
and B are two silhouette edges of a shadow casting object. This is extracted from

[26].

2-15



In a subsequent pass, this visibility buffer is updated so that it contains the soft

shadow values. This is done by rendering the front-facing triangles of each wedge.

For each pixel covered by these triangles, the percentage of the light source that is

occluded is computed, using fragment programs [29]. For pixels that are covered by

the wedge but in the hard shadow (as computed by the previous pass), the percentage

of the light source that is visible is computed and added to the visibility buffer. For

pixels covered by the wedge but in the illuminated part of the scene, the percentage of

the light source that is occluded is computed and subtracted from the visibility buffer

(see Figure 2-10). After this second pass, the visibility buffer contains the percentage

of visibility for all pixels in the picture.

In a third pass, the visibility buffer is combined with the illumination computed using

the standard OpenGL lighting model, giving the soft shadowed picture ofthe scene.

2.4.1.2. Advantages and Disadvantages

The complexity of the algorithm depends on the number of edges in the silhouette of

the object, and on the number of pixels covered by each penumbra wedge. As a

consequence, the easiest optimization of the algorithm is to compute tighter penumbra

wedges [21].

The main advantage of this algorithm is its speed. It is reported in [9] that using

programmable graphics hardware for all complex computations, and tabulating

complex functions into pre-computed textures, frame rates of 150 frames per second

are obtained on simple scenes, 50 frames per second on moderately complex scenes

(1,000 shadow-casting polygons, with a large light source), with very convincing

shadows. Performance depends mostly on the number of pixels covered by the

penumbra wedges, so smaller light sources will result in faster rendering.

The weak point of the algorithm is that it computes the silhouette of the object using

only a single sample. It would fail on scenes where the actual silhouette of the object,

as seen from the area light source, is very different from the silhouette computed

using the single sample. Such scenes include scenes where a large area light source is
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close to the object (see Figure 2-3) and scenes where the shadows of several objects

are combined together (as in Figure 2-11).

In those circumstances, it is possible to compute a more accurate shadow by splitting

the light source into smaller light sources. The authors report that splitting large light

sources into 2x2 or 3x3 smaller light sources is usually enough to remove visible

artifacts. It should be noted that splitting the light source into n light sources does not

cut the speed of the algorithm by n, since the rendering time depends on the number

of pixels covered by the penumbra wedges, and smaller light sources have smaller

penumbra wedges. One key to the efficiency of the algorithm is its use of fragment

programs [29].

Light source

Octluder 1

Figure 2-11. The shadow of two occluder.s is not a simple combination of the
two individual shadows. Note in particular the highlighted central region which
lies in complete shadow (umbra) although the light source is never blocked by a

single occluder. This is extracted from [9].

The fragment programs take as input the projections of the extremities of the edge

onto the plane of the light source, and give as output the percentage of the light source

that is occluded by the edge. If several edges are projecting onto the light source, their

contributions are simply added (see Figure 2-10) - this addition is done in the frame

buffer. However, this simple addition can result in an object overlap approximation

error (see Figure 2-12 below)
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light source - light s-()urcc -

I'

Overlap problems due incorrect combination of coverage. The light gray shadow caster covers 16
percent of the light source, while the darker gray shadow caster over 4 percent. To the left, the shadow
casters together cover 20 percent, while to the right they cover 16 percent.

Figure 2-12. Overlap approximation: Penumbra Wedges compute equal light
source visibility proportion for both cases above. This is extracted from (21).

2.4.2. Smoothies

Chan and Durand (l8) present a variation of the shadow volume method that uses

only graphics hardware for shadow generation.

2.4.2.1. Method

We start by computing the silhouette of the object. This silhouette is then extended

using "smoothies", that are planar surfaces connected to the edges of the occIuder and

perpendicular to the surface of the occIuder.

We also compute a shadow map, which will be used for depth queries. The smoothies

are then textured taking into account the distance of each silhouette vertex to the light

source, and the distance between the light source and the receiver.

In the rendering step, first we compute the hard shadow using the shadow map, and

then the texture from the smoothies is projected onto the objects of the scene to create

the penumbra.

2.4.2.2. Advantages and Disadvantages

This algorithm only computes the outer penumbra. As a consequence, occluders will

always project an umbra, even if the light source is very large with respect to the

occIuders. As mentioned earlier, this makes the scene appear much darker than

anticipated, an effect that is cIearly noticeable except for very small light sources (see

Figure 2- I 3 below).
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Smoothies Ray Tracer

Figure 2-13. Smoothies algorithm always produces an umbra. This is
extracted from (18).

The size of the penumbra depends on the ratio of the distances between the occluder

and the light source, and between receiver and light source, which is perceptually

correct.

Connection between adjacent edges is still a problem with this algorithm, and artifacts

appear clearly except for small light sources.

The shadow region is produced using the shadow map method, which removes the

problem with the fill rate bottleneck experienced with all other methods based on the

shadow volume algorithm.

The weak point of this algorithm is that it produces fake shadows.

2.5. Single Silhouette Artifact

The hard shadow algorithms can act upon only one silhouette of a polyhedron since

the silhouette is merely the outline of the planar projection of the polyhedron when

viewed from the point light source.

~\
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On the other hand, the soft shadow algorithms cannot use only one silhouette since

the same object looks different from different points of the lights source (see Figure 2-

14 below).

Area Light Source I,;
" ,, ,, ,

" ,, ,, ,, ,
" ,, ,

. , ," ,, ,,,,,,,,,,
" . I

, ', ,
, ', ', ,-

Occluder

Silhouette

~ ~I"•
", ., ., ., ., ., ., ., ., ., ., ., ,

,,, ., ., ., ., ., ., ., ., ., ., .-
Figure 2-14. Different points on the area light source sees different silhouette.

Current soft shadows algorithms follow typical hard shadow approaches, so they rely

on only one silhouette. But this may not lead to correct shadow computation at all

times (see Figure 2-15 below).

<X,'" \
, , I '

, ", ,, ,, ,, ,,
•

A single-silhouette artifact produced
by Penumbra Wedges

Our proposed algorithm makes better.
approximation

Figure 2-15. Single Silhouette Artifact.
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Chapter 3. Soft Shadow Volume Algorithm

3.1. Introduction
The previous chapter described current well known algorithms along with their

strengths and weaknesses. We now present the central part of this thesis - the

algorithm we have developed to compute soft shadows.

3.2.
3.2.1.

The Algorithm
Basic Principle of the Algorithm

The proposed shadow algorithm uses two sets of silhouette edges:

I. Penumbra Silhouettes, responsible for the outer boundary of the penumbra;

2. Umbra Silhouettes, responsible for the outer boundary of the umbra (see

Figure 3-1 below).

Area Light

Penumbra
silhouette

Umbra
silhouette,,,

,
,

Penumhra Umhra Penumhra

Figure 3-1. Double Silhouette.

Computing a perfect soft shadow requires three dimensional volume intersections.

This is highly computation intensive and not applicable for soft shadow generation in

real time. The proposed algorithm produces a shadow with the same shape as the true

shadow and interpolates between the two extremes of the soft shadow area.
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The proposed algorithm has two phases. In Phase I, the silhouette edges are identified

and the soft shadow volumes, edge shadows, are computed. In Phase 2, each pixel's

illumination level is determined.

3.2.2. Computing the Silhouette Edges

It is obvious that computing shadows using the whole object is costly. To improve

time performance, we use the silhouette edges to complete the shadow.

In traditional shadow algorithms, due to point light sources, the facets of an object are

either lit or in shadow. However, since we are considering area light sources, some of

the facets now can be partially lit, that is, from any point on any of these facets, only

a fraction of the light source can be seen.

For any convex object, the facets facing the light source are fully lit, the back facing

facets are in shadow and the facets in between are partially lit.

o -- Light Source

Penumbra
Silhouette

Partially lit

Umbra
Silhouette

Fully lit

Same edge shared
by both silhouettes

In shadow

Figure 3-2.

Occluder

Penumbra and Umbra Silhouettes.

The boundary of the fully lit area is the penumbra silhouette. The boundary of the

shadowed area is the umbra silhouette. A single edge can be a part of both silhouettes

(see Figure 3-2 above).

It should be noted that afully lit facet may not be truly fully lit - the light source may

be obscured by another part of the same object or by another object. Hence by the
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term fully lit, we mean the facet is potentially fully lit provided no other facet is

obscuring the light source.

Computing the silhouette requires traversing through all the facets and checking with

the adjacent facets.

The proposed algorithm assumes:

1. AlI/aeels are triangular. Facets are the smallestplaner polygons that make up

the surface of the objects to be rendered. Any object input to the algorithm

must be broken into triangular facets. Parametric smooth surfaces or curves

must be approximated by triangulated polyhedra. There cannot be any edge

that has a facet on one side only;

2. The occluders are simple polyhedra; they do not have holes or do not self-

intersect. If any complex object does have holes, it has to be broken into two

pieces.

3.2.3. Computing the 'Edge Shadows'

Each silhouette edge is then projected backwards from the light to produce a semi-

infinite volume. It is semi-infinite since it is extended up to infinity away from the

light source but the volume can be bounded by a front plane, a back plane and two'

corner planes. This volume contains all points from which the edge is blocking a part

of the light source.

Without loss of generality, we can assume the planar light is placed at z = L= and

minimum z coordinate of all of the occluders is O. Then each edge shadow can be

safely cut by the z = 0 plane to make it finite along the direction away from the light

source.

n'.,
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I

I
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[Side View]
The occluder is not shown.

Projection of the
silhouette edge is
the outline of the

edge shadow

[Top View]

Light Source

•..

Front plane

Silhouette
edge

Silhouette

Light
Source

Silhouette

Figure 3-3. 'Edge Shadow': A Penumbra Volume.

c ~_-- Light Source

Umbra

Penumbra

Umbra edge
\\~dOWS (red)

Penumbra
edge shadows
(green)

y

/

Figure 3-4. Edge Shadows and the generated shadow.

Each edge shadow has a mid quadrilateral area and two corner areas. Clearly, these

corners areas are due to the two end points of the silhouette edge (see Figure 3-3

above). These two endpoints are shared by two other neighboring silhouette edges
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(see Figure 3-5 below). Clearly, the two corner areas are shared by the neighboring

edge shadows.

left comer area
,,,,,,,

Figure 3-5. An edge shadow has mid and corner areas.

Since the corner areas are shared by two edge shadows, light source visibility at

different point inside the corners become difficult to compute. Sirice we are trying to

interpolate light visibility proportion, we have to come up with a mechanism to

compute the light visibility at these shared areas in such a way as the shadow may not

be perfect, but it must be pleasing to the eye.
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3.2.3.1. Direction of Edge Shadows

We define the direction of an edge shadow as an imaginary vector representing the

projection of the silhouette edge from a center point of the light. As the silhouette' is

connected, these projections also form a loop. Furthermore, the directions of edge

shadows are assigned in a counter clockwise orientation.

This edge shadow direction information help interpolate the visibility of the light

source. The direction dictates which part of the light source is obstructed by the

respective silhouette edge.

The interpolated value merely says how much of the light source is visible. But to

determine which part is visible, we actually need to project the silhouette edge onto

the light source. Instead, we do a rough estimate using the direction (see Figure 3-6

below).

Actual
directions

Approximated
directions, along
X DrY axis

Figure 3-6. Edge shadow directions: Actual and Approximated.

At the corners areas, the visibility determination is tricky. Two silhouette edges give

two proportion values. We need to take union of these to proportions, we cannot

simply add them. For example, consider two neighboring silhouettes each allowing. .,
50% visibility from some point. If these silhouettes are at 90° with one another, J;e I:, .
should be able to see 75% of the light source, not 100% (see Figure 3-7 below). II

\

\
I I

l_.,!
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The direction is approximated to nearest multiple of 90° (see Figure 3-6 above). This

way the light visibility problem degenerates from complicated area intersection

problem into rectangular shape intersection problem.

Light source

1

u
Occluder

The left silhouette edge
allows seeing the left 50%

The right silhouette edge
allows seeing the right 50%

When the contributions are
combined, 75% can be seen.

Figure 3-7. Light source visibility combination using directions.

3.2.3.2. The Edge Shadows Are Organized in Rings

,,,,,,,

", ,
, ', ', ',,,,,

Light
Source

Penumbra
Silhouette

Umbra
Silhouette

Figure 3-8. Silhouettes form rings.

The silhouette edges always surround the object. Since the light source is assumed

omni directional, the points on the occluder, which constitute the periphery of the

fully lit region, must be connected. These points constitute the penumbra silhouette.

Same goes for the umbra silhouette.

3-27



A convex object will have exactly one umbra silhouette and exactly one penumbra

silhouette. Both of these silhouettes will be of the form of a ring; surrounding the

whole object.

For more complex objects, there can be more than just the two rings. Now the

problem becomes more complicated as the rings can intersect one another. It is worth

mentioning that a vertex of a silhouette edge always is connected to an even number

of silhouette edges [31]. In our case, there are two types of silhouettes ~ the umbra

silhouettes and the penumbra silhouettes. At some vertex, the umbra silhouette edges

are due to one vertex on the light source and the penumbra silhouette edges are due to

another vertex of the light source. Clearly, applying the previous observation, any

vertex is connected to even number of umbra silhouettes and even number of

penumbra silhouettes. It can be further proved that equal number of them will be

incoming and equal number will be outgoing. Since indegree and outdegree at each

vertex are equal, we can decompose the whole silhouette graph into simple cycles or

in other words, silhouette rings.

However, the edge shadows corresponding to the concave silhouette edges are left out

from the per pixel umbra and penumbra calculation step.

3.2.3.3. Dividing the Edge Shadows

Each shadow has to be divided into simpler 3D geometry, such as pyramids and

prisms. This way computing a point's shade should become easy.

Determining the light source visibility is easy at the front plane and the back plane of

an edge shadow. From the front plane, the whole light source is visible (see Figure 3-

3). From the back plane, the whole light source is invisible. We can now linearly

interpolate the area between the front and back faces to guess the light source

visibility at different points in the central area (see 0 below).

The rest of the outline edges around the corner areas are colored. in a way to assist

combining the shadow contributions from each part (described in the following

sections). The shade at any point inside the edge shadow is then linearly interpolated
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using the edge colors. The silhouette edge colors on the comer depends on the corner

type - whether it is convex, concave or straight.

Front face is white

Edge shadow
Interpolated Light
source visibility
proportions at
different points

Figure 3-9.

Back face is black
due to zero light visibility

Light source visibility at the mid area of an edge shadow.

To assist the interpolation operation at the corner areas, we divide the corner areas

into simpler 3D geometry.

The mid section is easily colored. The back face is black (i.e., light source is totally

invisible from any point) and the front face is white (i.e., light source is fully visible

from all points).

Pyramids

- -----

Figure 3-10. Light Corner areas are divided for easy interpolation.
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Given an edge shadow, we need to find the proportion of light visible from a point

inside it. Rather than producing a prefect shadow, we can simply interpolate the

visibility factor.

3.2.3.4. Convex Corners

/f!...~-A: :: •.. ~ ...,~
II. ,," : ' •.••".. .. .• •. .. ., . ., ., ., ., :, .

B !,__1 ,/
I~ " I

t 'I ": >/
, ',---'

Figure 3-11. Convex corner division and Light source visibility.

Since the direction of shading with the neighboring edge is perpendicular at the corner

area, to make smooth transition from one edge shadow to the next one the outline

edges that fall within the neighboring edge shadow need to be black. The outer outline

edges need to be white, as before, due to full light source visibility.

Consider the combination in Figure 3-11 above. Edge shadow B, having an upward

direction contributes a light visibility proportion like [], without loss of generality.

Now, as we move upward and enter into edge shadow A, this new interaction should

not produce any drastic change in visibility proportion computation so that the

shadow remains smooth enough. If edge shadow A contributes starting from zero

gradually up to I, the visibility proportion will gradually increase from [], through

[], [], []I, ...,Q, to D. Hence we can generate a combined smooth shade as

we enter into a neighboring edge shadow.

A similar transition can be found if we move from A to B. Now we have found how

to shade the convex corner areas smoothly.
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After the outline is colored properly, the corner area is divided such that opposite

edges/points in each simpler shape have different colors. Otherwise the interpolation

will break down.

3.2.3.5. Concave Corners

,,
L, "

"\-___ B',
'\ -~-----....... ~

..... '1' / ", \ .,," , ..
•• " ~ I I I,"

." t I G ••• A '/~ f ••, ,,~ .."'7.../ ,...:':'=-- ""•
• ' _- - - - - Obtuse edges'---"

set to black

)
,

Figure 3-12. Concave corner division and Light source visibility.

Since the direction of shading with the neighboring edge is perpendicular, to make

smooth transition from one edge shadow to the next one, the outline edges that fall

within the neighboring edge shadow need to be white. The obtuse edges are

automatically set to black, since they represent the back plane.

Consider the combination above. Say, edge shadow B contributes a [] light source

visibility, without loss of generality. Now, as one moves downward and enters into

the edge shadow A, this new interaction should not produce any drastic change in

light source visibility proportion value. If the edge shadow A contributes starting from

full visibility and gradually down to zero visibility, the visibility proportion will

gradually decrease from U, through ~, ~, ~, ... , ~, to ~ .

Clearly, this is what happens, since on the edge shadow A, the more downward one

goes the lesser proportion of the light should be visible, as is evident from the fact that

one is approaching the back plane.
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Again, at the intersection of the two white outer outline edges, the visibility.

proportion is approaches 1. Hence this division of the edge shadow produces smooth

shading.

3.2.3.6. Straight Corners

Straight corners are actually a joining area of two equi-directional edge shadows.

Since we are approximating the directions, it may be the case that actually the corner

is convex or concave, but for the sake of shadow calculations, assuming the joint is

straight is enough.

Front outline

I
Back outline

Connected to the
front outline, so
colored white

Connected to the
back outline, so
colored white

Common portions

Opposite
edges/points have
opposite colors

Cut lines Discarded portions

Figure 3-13. Straight corner with common vertices.

In the figure above, note the shaded area in both cases. This area is a part of corners of

both the edge shadows. The common portion of the corners will agree at how to shade

a point since the bordering edges will have identical colors on both instances of the

common portion.

Hence, the edge shadows are effectively cut off at straight corners. The common

portions are kept. The dangling portion protruding into the other edge shadows mid

area is cut off.

Note that there may not be any common portion at all. If one edge shadows corner

area completely protrudes into the others mid area, the whole corner area will be cut
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off. This means both of them will be sharing a cut line only. However, both the edge

shadows must agree at this cut line too, since the cut line has identical colors at both

edge shadows.

The corner areas usually help us smooth out the transition from one edge shadow to

the next. However, in this case the transition is automatically smooth (since both edge

shadows agree at the cut line or the common portion).

The remaining outline edges of the corner section are colored white if connected to

the front outline, and colored black, if connected to the back outline.

Back outlines are
clipped at this point

The remaining part of the hack outline is
considered just another outline edge

The remaining part of the front outline is
considered just another outline edge

Figure 3-14. Straight corner without common vertices.

However, if actually the corner is convex, there may not be any common vertex. In

these cases, the black back outline edge intrudes into the neighboring edge shadow,

disrupting the smooth shading. To prevent this, the back edges are clipped with

respect to one another and broken into two parts. The left part continue to be the back

plane, but the other part is treated as just another outline edge. See Figure 3-14 above,

now we do have a common vertex so that we can proceed as discussed before.
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Similar scenario occurs if the edge shadows are slightly concave. As before, the front

edges are clipped with respect to one another.

3.2.4. Combining the Shadow Contributions

If a point falls within a single edge shadow, the shade of that point can be uniquely

determined. However, if more than one shadow edges are involved, these

contributions need to be combined.

In the following sections, we first describe how to combine contributions from two

adjacent edge shadows. After that, we will describe more complex situations

3.2.4.1. Collaborative Edge Shadow Contribution

The adjacent edges are collaborative. We call them collaborative because each of the

participating collaborative edges gives parts of the same truth.

Consider two neighboring edges with a common convex corner. If a point within the

corner needs to be shaded, both of these two edge shadows have to be interpolated.

However, one of these replies with a ~ visibility proportion and the other replies

with a [] visibility proportion. Clearly, the total visibility proportion needs to be

computed by OR-iug the visibility proportions Q (see Figure 3-7).

Obviously this definition seems to be not working for concave contribution

combinations. We will be presenting an even more elaborate definition of the term

collaborative in upcoming sections.

•
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Figure 3-15. Adding up contributions from collaborative edge shadows.

3.2.4.2. Competing Edge Shadow Contribntion

Edge shadows from different rings compete. They give different statements about the

visibility of the light source; all of them cannot be simultaneously true. First consider

two competing edge shadows.

Figure 3-16. Adding up contributions from competitive edge shadows.

Clearly, taking the minimum smoothly mixes up the two contributions. To prove thi\)
approach is correct, we need to simulate how the light source disappears. .
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Note that, the edge shadow with the larger width must belong to a penumbra edge

shadow. This is because the penumbra silhouette must be closer to the light source, so

it should have a larger shadow. The other one is an umbra edge shadow.

As we move from outside to inside the penumbra region, the light source begins to

disappear. In the beginning, we can see both silhouette edges. Clearly, at that point the

penumbra silhouette edge is responsible for the disappearance of the light source (see

Figure 3-18 below). At some point the penumbra silhouette edge is no longer visible.

From that point the umbra silhouette takes over.

Intuitively, the light source visibility portions need to be AND-ed to get the resultant

value. Consider a case when two competing contributions are claiming to have a light

visibility of 50% of the light from the left, i.e., [J, and a light visibility of 50% of

the light from the right, i.e., rn, respectively. Now, since these two contributions do

not belong to the same ring, one must be covering another's view. In the end, the

resulting visibility is zero.

If the competing rings are of same type, they belong to different objects or different

convex parts of the object - which never collaborate, since the idea of collaboration is

that they both are telling parts of the same truth. In case of different objects, only one

can be right at a time.

Similar phenomenon occurs at corners from different nngs. Some examples of

combining the competing contributions are given below.

Figure 3-17. Competing Interactions at the corners.
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Light Source

Umbra

Penumbra

Approximated
Light Source
Visibilities

Penumbra
Silhouette
Umbra
Silhouette

Actual
Scenario
o
-Light source is
fully visible

Light source is
partially visible,
both silhouettes
can be seen

Silhouettes
are on the
same line

Umbra
silhouette has
taken over

Light
totally
invisible

Figure 3-18. As we move iI/side the shadow, the light gradually disappears.

3.2.4.3. Coinbining More than Two Contributions

More than two edge shadows can participate too. In concave objects and in small

convex objects, edge shadows not adjacent to one another .can overlap. There may be

cases when three, four or more edge shadows of the same edge shadow ring overlaps.

The proposed algorithm assumes the silhouettes form rings. We first describe how the

edge shadows from one ring combine their contributions. In the next section we are

going to present how contributions from multiple rings can be combined.

, .
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Light Source

This portion is
common to all

three edge
shadows

Actual visibility - compare
with the approximated

visibility (right)

Occluder

Figure 3-19. More than two edge shadows may overlap.

Not all edge shadows of one ring contribute to the same point. For the ones that

contribute, we draw connected visibility boundaries, No portion of the light source

that falls on the right side of this visibility line can be seen from that point.

-.I 08 1+

Combination of A and B,
Combining C pending

If A were alone, this part
would not be seen

Potion of the light not
visible (Shaded)

Portion of the light
visible (Not Shaded)

Approximated
Silhouette edge
projection

A occludes how far, it
cannot be determined
without B's information

'",,,

B
' 0,6

glVeSanyinterpolated T
value of
about 0,6

A gives an interpolated
value of about 0,15

We are computing visibility
at this point

-.11+
0,15

Figure 3-20. Computing light source visibility proportion using visibility lines.
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We start with a full visibility: D.As we move along the edge shadows, the visibility
line is being drawn depending on the visibility proportion computed from each edge

shadow.

In Figure 3-20, consider the first visibility curve. This curve is an approximation of

light source visibility at the point on the picture on the left where three edge shadows

are interacting. To find the actual light source visibility, we need to project the

corresponding silhouette edges onto the light source to determine the occluded

portion. Instead, in our algorithm, we are approximating this by using the direction

and visibility value parameters. The visibility value is the interpolated shading value

at any point. There might be four possible directions of a shadow after 90°

approximation. Using this information from all of the interacting edge shadows, we

can approximate the projection of the silhouette edges.

Note that, C appears to be not collaborating with A and B. However, A and B did not

commit about any visibility proportion. Instead, A and B produced a visibility curve

that would be true if only two of them interacted.

An ever more complicated example is given below.

Figure 3-21. Computing light source visibility proportion using visibility lines.

3.2.4.4. Combining Contributions from Different Rings

Different rings are competitive. So the visibility portions need to AND-ed, as

discussed in 3.2.4.2. However, due to the complex shape of the light source visibility,
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finding the intersection analytically is very tricky. Instead, we have used a numerical

solution.

We have a benefit however; all the edges are parallel to X- or Y-axis. This enables us

to utilize slicing. Slicing is quantization with unequal steps. We quantize at x and y

values available from the visibility curves, then populate a 2D buffer using visibility

information and finally compute total visibility.

The difficulty with this approach is that the number of different x and y values can be

very high for complicated occluders with many rings and many silhouettes with a

high degree of overlapping. The possible way out is: we can set the highest number of

quantization levels, say 8, in both X and Y dimensions. That way, we will be

populating an 8x8 grid, and we need to test for 64 points only.

The problem with this approach is that we need to be satisfied with only 64 different

shades. In addition to that, shadow areas with no overlap will have only 8 different

shades.

Visibility
Curves

Quantization --+ 00 Visibility
Buffer

\rt1
/

Total
Visibility

Bitmap

Figure 3-22. Slicing to combine visibility curves.

Instead of doing a variable quantization, we could do a fixed quantization; but then

we would lose two benefits:
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1. We would have to work 64 times as much even if no overlap occurs at a

point.

2. In case all different x and y values are different but falls in only a few

quantization steps, we lose accuracy.

On the other hand, fixed level quantization is fast - since we do not need to search for

all different values and group them up for optimality.

3.2.5. Computing the Hard Shadow

If a point falls behind all back planes of any umbra ring, the point is in hard shadow.

However, computing this in 3D requires solving a difficult plane intersection problem

in three dimensions. To complicate this even more, a shadow may not have any hard

shadow portion (i.e., from all points on the receiver a fraction of the light source is

visible.

This problem can be easily solved in 2D by angle sweeping. Taking the intersections

of the backplanes with z = zp plane, the problem degenerates into a 2D problem. This

approach even works with self intersecting polygons, as shown in Figure 3-23 below.

Total Angle ~ 2"
Plies inside the

polygon.

Total Angle = 0
P lies outside the

polygon.

Total Angle ~ -2"
P lies outside the

polygon (and inside the
inverted portion).

Figure 3-23. Point-is-inside check in 2D, for different shapes.
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Consider the case when there is no hard shadow. In that case, all the edge shadows

must overlap each other, making the whole backplane curve oriented clockwise. No

point will have an angular sum of 271: now.

3.3. Approximations in the Algorithm

As discussed before, the true shadow generation algorithm is a difficult problem. The

proposed algorithm approximates the true solution at a number of points. These

approximations are detailed below.

However, interestingly, the benefit with soft shadows is: we do not always have a

precise idea how the soft part of the shadows should look. We need not incorporate

edge-like sharp discontinuities in the shadow. Throughout the algorithm, all we are

doing is producing and combining interpolated visibility proportion in such a way as

two neighboring pixels do not disagree at a large extent. Some observations in this

regard are presented in Chapter 4.

Firstly, the shading is assumed linear. However, this is only true with linear lights and

also with rectangular lights when the visibility is considered along a direction parallel

to one of its edges.

In most other cases, the visibility does not drop linearly.

c__::>

Circular Light Source

\~/

Rectangular Light Source

o

Rhombic Light Source

Figure 3-24. Light visibility function is not linear.

Secondly, true light-visibility proportion is not used; instead we are interpolating the

value. True edge shadow directions are not used either; we are using one of four

possible direction values parallel to the X- or Y-axis.
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Thirdly, we are computing with silhouettes only. That means we are discarding most

of the information on the objects. The intermediate edges between the two silhouette

edges are ignored, essentially making the object look like a prism. However, this

modified object cannot produce exactly the same shadow.
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We discard
intermediate
information

The intermediate node dictates how
much of the light source is visible

Visibility produced by our algorithm
is more than the actual value

Figure 3-25. Light visibility deviation.

More specifically, an intermediate protruding edge between the umbra and penumbra

silhouette edges can take over before the umbra silhouette can take over finally.

Obviously, both shadows will not be the same; even with linear lights.
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3.4.
3.4.1.

Complexity Analysis
Generating the Edge Shadows

We consider the following to do complexity analysis of our algorithm:

f = number of facets;

n = number of vertices "" f; and

L = number of vertices on the shape of the light source.

We assume the adjacency between neighboring facets will be the inputs to the system.

With any arbitrary list of facets, it would require us D(n2
) time complexity to compute

the adjacency. This costly operation can be easily resolved at scenario building time.

At first, our algorithm will compute the silhouettes. If temporal coherence is not

utilized, we need to traverse through all the facets. For each facet, for each neighbor,

if the neighboring facet's lighting status (fully lit, partially lit, in shadow) is different

from this facet's lighting status, clearly the shared edge is a silhouette edge. For the

partially lit test, we need to consider all vertices on the light source. Thus, the time

complexity for computing the silhouettes: D(nL).

Silhouette Sizes of Some Common Models

1 -, ----, -----
10 100 1000 10000 100000 1E+06 1E+07

triangles <fl

Figure 3-26. Log-log graph offvs s. The dashed line is thef= s\\ trend for
convex models and the thick line is thef= 0.7s0.8 trend observed over all data.

This is extracted from [34).
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Although the maximum number of silhouette edge can be as large as O(n), according

to a study [34] over currently available models, the average number of silhouette

edges varies as approximately 0(nD8) for complex models and O(..Jn) for convex

objects (see Figure 3-26). It is reported in [35] that O(..Jn) is quite often the case.

However, for our complexity analysis, we are assuming the number of silhouette

edges varies as 0(nD8).

We will be doing our search through the facets such that we use the adjacency

information to keep connecting the silhouette edges. When all the silhouette edges are

found, there will be rings and even graphs. The even graphs can be split into rings in

linear time with respect to number of silhouette edges.

Step I

~---",---~._-
(" " ,_:.::-- ..•.,
, '" •.
, I' "

"~/[ j, ,, ,,

Step 2

,,"--- .•,-------
( 'I _::.::'- ••, ,
',t ",

" ,,,

Step 3

,,
(,,,

,,, ,, ,
) /, ,,,,

,,

Step 6

,,
(,,,,

,,, ,, ,
) (', ,,,,

,,

Step 7 Step 10

Figure 3-27. Computing the edge shadow with L = 8.

Now, for each silhouette edgeE = (a,b;, we need to produce an edge shadow. We

start with projecting a. Finding the vertex on the light source that projects a to

produce the left end of the back outline edge requires O(L) time. Then at each step,

either we advance to the next light vertex, or to b, always maintaining a convex

outline. At each step, we have two options to choose from. Either the current light

vertex projects the other silhouette edge node (b, if now we are at a, vice versa); or

the next light vertex projects the current silhouette edge node. A few steps are shown

in Figure 3-27.
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After finding the outline, the edge shadow must be divided. To assist fast division, the

edge shadows have to be sorted for fast searching. The division procedure will run

linear number of iterations (O(L)). At each iteration it will check whether an outline

edge is shared by a neighboring edge shadow's outline (O(lgL». Thus the following

complexities could be easily derived:

Computing an edge shadow: 0(2L+2) == O(L)

Sorting outline for fast searching: O(L IgL)

Dividing the edge shadow: O(L IgL)

Average Total Complexity = Time complexity of Silhouette Computation + Time

complexity of 0(n08
) edge shadow computation = O(nL + n08 L IgL)

Since usually n is in thousands and L < 100, Average Total Complexity""' O(nL)

3.4.2. Computing Per Pixel Shadow

To determine a point's illumination, we need to combine the shadow contributions

from edge shadows of all rings. In the worst case, all of the edge shadows will be

searched, and the match will be found in the last division searched. Worst case

complexity of determining contribution from each edge shadow: 0(n08 L). After the

visibility curve is prepared, a bounded slicing algorithm is run, with a complexity

approximately at 0(n08 L) in the worst case. Hence the total complexity in this step is

0(n08 L).

This per pixel shadow determination step is the bottleneck of this algorithm. In

particular, we do need to process all of the pixels to be drawn. But, the total

processing time will increase if the edge shadows are too large. If edge shadows are

large, more edge shadows will interact at each pixel, resulting in a more complicated

visibility curve and higher time requirement for visibility proportion determination.
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Chapter 4. Implementation and Observations

We have implemented the algorithm described m the prevIOus chapter. The

implementation details are given here.

We will be briefly describing different aspects of our implementation in the next

section. Then several observations of generated shadow will be presented followed by

a discussion on the artifacts produced. Our algorithm will be compared with two well

known real time soft shadow algorithms, namely, Penumbra Wedges and Smoothies.

We will be comparing the outputs in terms of quality.

4.1. Implementation

The algorithm is implemented in Visual Studio 6.0. The written program is a console

application. We worked on an Intel Centrino 1.5GHz machine with a graphics card

with no advanced capabilities. The operating system is Windows XP SP2.

4.1.1. API Related to This Implementation

OpenGL and GLUT was used for Graphics manipulation.

Standard Template Library (STL) is used for flexible data container support. The

algorithm maintains several lists of structures, which were held using vectors when

appropriate. To minimize thrashing like behavior, a minimum size of 100 is set to

these containers during initialization.

4.1.2. Data Structures Used

The occluders are represented by polygonal meshes. A simple, efficient data structure

is used that can answer to the following queries in constant time:

I. Given a triangular facet, find the neighbors adjacent to a given edge.

2. Given two triangular facets, find the shared edge, if any.
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4.1.3. Hardware Implementation

I

~

This algorithm is perfect for hardware implementation. This is because all shadow

decisions are made locally, on a per pixel basis. Today's OPU pipeline supports

vertex and fragment shading.

This algorithm can be implemented using Cg on NVIDIA OeForce FX senes or

compatible OPU based hardware.

Hardware acceleration can improve performance in several folds:

1. The algorithm can be run for only the visible pixels/vertices. The first pass of

rendering can be run only for populating the depth buffer, simply by disabling the

pixel/vertex shader. In the next pass, the shadow algorithm is run, but only for the

pixels which have equal depth value as stored in the depth buffer.

2. Costly functions, such as sin and cos, can be approximated using the texturing

capabilities of the OPU instructions. Furthermore, the built in hardware

interpolation capabilities can be easily utilized to interpolate the function to

arbitrary parameter values with acceptable precision.

3. The basic data type of OPUs is float4. Point or color can be manipulated in a

single instruction, all dimensions in parallel.

4. Several graphics computation functionalities are built in the hardware of

OPUs. For example, the linear interpolation instruction lerp (a, b, t) ,

equivalent to a + (b - a) x t, can perform the operation in a single cycle. Linear

interpolation is heavily used throughout the algorithm.

We did not do a hardware implementation because such programmable graphics

hardware was not available at our laboratories .

. ' ,"
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4.2.
4.2.1.

Observation of Generated Shadow
Snapshot Set 1

y

x

Figure 4-1. The general output.

In the left, the generated shadow is presented. The image on the right shows the

contours with almost same intensity value.

The outermost contour contains pixels with intensity>0.95. The central contour

contains pixels with intensity <=0.05. All remaining contours contain pixels with

intensity value lying within 0.1 boundaries (0.05, 0.15], (0.15, 0.25], ... , (0.85, 0.95].

The contours show whether the generated shadow is good enough. Since visual

acceptability is the ultimate factor, distorted shadow contours may still produce quite

pleasing shadows.

In the shadows produced here, an ambient intensity of 0.3 is assumed if not stated

otherwise.
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4.2.2. Snapshot Set 2
c O::> c O::>

Figure 4-2. Sharp angle in the contours.

This snapshot has the same object-light pair, but the light source slightly rotated. The

image on the right shows the sharp angles in the contour. Fortunately this discrepancy

is not visible to naked eye (left).

The sequence of shadow contours generated for light rotation is provided below:

~

I

Figure 4-3. Appearance and disappearance of sharp angle in the contours.
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4.2.3. Snapshot Set 3

x

y

Figure 4-4. A simple Concave Object Up: The light source is far from the
occluder. Down: The light source is near to the occluder.

This snapshot shows a simple 3D concave object. The light source is right above the

object. Note the curvature on the inside of the concave points.
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4.2.4. Snapshot Set 4

Figure 4-5. A combination of two objects.

In the images above, shadows from two different objects are rendered.

On the right snapshot, the complex interplay between the silhouette edges is shown.

Note the grayish slit in the above image. This appears because a thin part of the light

source is visible from those points (see the figure below)

Figure 4-6. A thin portion of the light source can be seen through a slit.
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4.2.5. Snapshot Set 5

Ixl Sampling of visibility curves

y

x

x

2x2 Sampling of visibility curves

4x4 Sampling of visibility curves 8x8 Sampling of visibility curves

Figure 4-7. Numerical computation of visibility proportion from the visibility
curves produces sampling artifacts.

Numerical computation of the visibility function provides an upper limit to the

computation time. However, as the number of sample points decreases, the smooth

penumbra appears stepped.

For only Ixl sample point, the shadow degenerates into a hard shadow, as expected.

Numerical computation also puts unnecessary burden on points where a small number

of edge shadows interact and so solving analytically is easy. This observation is

illustrated in the next set of snapshots.
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4.2.6. Snapshot Set 6

The following image pair show fixed sampling vs. variable sampling (slicing) In

solving the problem of visibility proportion determination from visibility curves.

~ X ."X
Figure 4-8. Left: 8x8 Sampling; Middle: 16x16 Sampling; Right: Slicing.

As can be seen in Figure 4-8, slicinl produces much better result than sampling

strategies. When the occJuder geometry is not very complex and the light size is

small, hence the edge shadows do not overlap much and slicing works better than

sampling - since slicing will determine visibility as fewer number of sample points.

Sampling has its own benefits over slicing: as number of overlapped edge shadows

increases at a pixel, the number and complexity of different visibility curves

increases. Clearly, in the worst case, all different x andy coordinates of the edge curve

lines will be different, resulting in a quadratic number of slices.

The result is obvious: combine the power of slicing and that of sampling. In our

implementation, we considered two coordinate values equal is they differ by less than

0.01. Increasing this threshold introduces sampling artifacts within the shadow.
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4.3. Artifacts

-y -y

Figure 4-9. Artifact due to a thin light source.

The shadow is generated for a thin light source. The light source is shown as a white

line in the sky right above the occluder.

Note the thin edge-like white artifact at the penumbra region. The edge shadows on

either side of the white patch have convex perpendicular directions. These two

portions collaborated at the common corner, as if they can see orthogonal portions of

the light source.

The dark patch just above the thin white artifact has similar explanation. In that

region, two edge shadows have concave orthogonal directions, so they are acting as if

they are creating a concave corner, resulting in a much less total visibility proportion

that it really is. The neighboring areas have equidirectional edge shadow contributions

so these areas are behaving as expected.

The algorithm's inherent property is to avoid these edges. However, due to extreme

thin shape of the light source, the corner areas have become very thin, leaving little or

no space for a smooth change to occur, resulting in a visible artifact.
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4.4. Comparison with Well-known Algorithms

In this section, we are going to compare the quality of shadow produced by our

algorithm with a few well known soft shadow volume algorithms.

4.4.1.
4.4.1.1.

The algorithms
Penumbra Wedges Algorithm

Penumbra Wedges algorithm attempted to produce soft shadows by extending the

hard shadow algorithm only (see 2.4.1).

Penumbra Wedges shows single silhouette artifact. The proposed algorithm does not

show this.

4.4.1.2. Smoothies

Smoothies algorithm produces fake shadows. This algorithm simply adds a smooth

area around the hard shadow (see 2.4.2). Shadows always contain a hard shadow part,

which may not be the case always.

The proposed algorithm obviously produces better shadoWs.

4.4.1.3. Ray Tracing

Ray Tracing produces excellent shadow but it is not a real time algorithm. That is why

we are not comparing the outputs here.

4.4.2. Testing Code

We have implemented a rudimentary versIOn of all three algorithms for the

comparison purpose. However, the discrepancies stated are fundamental to the

algorithms and hence can be observed in this implementation as well.

Supporting images extracted from original publications are presented as appropriate.
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4.4.3. Comparison

In the first comparison snapshots, the same object rendered using three different

algorithms are given below. The snapshots are taken from light's point of view.

Our algorithm produces the right shadow. The other two suffer from single silhouette

artifact shown below. Because of using only one silhouette, the outline of the shadow

appears to be concave. But a convex object must have convex shadow.

Our algorithm Penumbra Wedge Smoothies

Figure 4-10. Single Silhouette Artifact: The concave portion of the outline of
the shadow is indicated by a rectangular box.

The reason behind this is depicted in the following set of snapshots. Among the three

points on the silhouette, A, Band C, B is below the imaginary line AC. That is why B

has a smaller projection than both A and B, resulting in a concave comer. The same

reason applies for Smoothies also.

Penumbra Wedge Smoothies

Figure 4-11. The wedges due to a single silhouette.

Figure 4-12 shows this same image, rendered from a different point' of view.
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Penumbra Wedge Smoothies

Our Algorithm

Figure 4-12. Smoothies produce a large umbra.

The above set of images produce another comparison with Smoothies. Smoothies

always produce an umbra. That is why the umbra portion of the shadow produced will

always be a lot bigger than that produced by Penumbra Wedges algorithm or our

algorithm.

In the following images, we are demonstrating that our algorithm does not show the

overlap approximation artifact, as shown by the Penumbra Wedges algorithm.
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Our Algorithm

_ ...~ ,...

Penumbra Wedge
(Extracted from [26])

1024 Sample
(Extracted from [26])

Figure 4-13. Overlap Approximation.

Due to overlap approximation, a visible edge-like discontinuity is seen at the corner of

the shadow generated by Penumbra Wedges. Our algorithm is free from this

approximation and the output produced is quite similar to the output from a 1024

sample shadow.
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Chapter 5. Conclusion

5.1. Conclusion

In this thesis, we have virtually reinvented the soft shadow volume algorithms.

Instead of modifYing an existing hard shadow algorithm, we built a totally new

algorithm under the basic theme of shadow volume approach. In particular, our work

has following original contributions:

• Double silhouette approach. We have shown that using only penumbra and

umbra silhouettes is enough to produce excellent shadows.

• We have utilized linear interpolation to interpolate visibility of the light

source. We have come up with a mechanism to smoothly combine interpolated

visibility information from different silhouette edge; with little artifact.

• Relying only on silhouettes has made combining shadows of multiple objects

trivial. Also from this perspective, self shadowing is no more a special case.

5.2. Future Works

It has been almost three decades since Crow published the first paper on shadow

generation in computer graphics [13]. Both the algorithm and the hardware took over

two decades to evolve. It was not until very recently that hard shadows have become

an integral part of graphics consumer products, including computer games and CAD

software.

5.2.1. Reducing the Complexity of Occluder Geometry

Occluder geometry is very important in shadow generation. But, when the occluder to

receiver distance is large compared to the light to occluder distance, the shadow

becomes so blurred out that the geometry of the occluder becomes almost irrelevant.

A mechanism to compute hierarchical occluder geometry (as in [35]) can be devised

to produce almost the same shadow. It should be noted that with a lower geometry
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complexity, the number of silhouette edges will drop dramatically, resulting in an

increase in performance of our algorithm.

5.2.2. Supporting More General Objects

We believe we can incorporate support for more general objects, for example, objects

with holes or self intersections.

To hide a silhouette ring's penumbra contribution to a point on the receiver when the

light source is completely occluded by another object, the umbra regions must be

identified correctly. In our algorithm, each point is first tested whether it lies within

any umbra region produced by the penumbra rings. In case of objects with holes, a

ring representing the silhouette edges inside the hole will fall completely within the

umbra region for an outside ring. A kind of inclusion-exclusion principle may be

utilized to solve this.

5.2.3. Shadow Map Version

Each variation of shadow volume algorithm has a similar shadow map version. The

difficulty of our algorithm to readily come up with a shadow map version is that a

single point is not being used to produce the shadow which could be used to populate

the Z-buffer used in shadow map algorithms.

However, for regular shaped polygonal light sources, a central bending point can be

computed through which all light rays pass while producing the penumbra outline.

5.2.4. GPU Implementation

Many object-based algorithms suffer from the fact that they need to compute the

silhouette of the occluders, a costly step that can only be done on the CPU. Wyman

and Hansen [32] report that computing the silhouette of a moderately complex

occluder (5000 polygons) uses 10 ms in their implementation. IUhe next generation

of graphics hardware would include the possibility to compute this silhouette entirely

on the graphics card [33], object-based algorithms [20], [21], [26], [27], [32] and our

algorithm would greatly benefit from the speedup.
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5.2.5. Concave Light Sources

This thesis gives no idea on how to handle the concave light sources without breaking

them up. We believe the concave light source can be accommodated in the algorithm

through a small modification in edge shadow generation.

It should be noted that the shadow produced by concave light sources are almost like

convex sources, except at the corners of the penumbra outline, where the light

source's shape can be perceived. Things get even more complicated when concave

occluders are considered.
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