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ABSTRACT

Because of the absence of any specific code, the process of design of a free standing stair is

dependent on some approximate analytical methods. These methods fail to recognise the

variation of stress resultants across any cross section of the stair slab and require a lot of

computational works. Amanat[4] made an extensive study on free standing stairs using the

idealisation of Ahmad's[2] thick shell element and proposed a simplified guideline for easy

analysis of free standing stairs. His approach also recognises the stress variation across

different sections of the free standing stair, based on finite element analysis, and developed

seven empirical design equations.

If the loadings and the geometric conditions of the free standing stairs are symmetric, then,

only two redundants, namely the lateral shear and the bending moment at the mid landing

section are present. Hence, the number of empirical equations can be reduced to two for

finding the values of these two redundants. The moments and forces at the other critical

locations can be calculated by using equilibrium equations. With a view to developing a more

rational and realistic approach by reducing the number of equilibrium equations, and also for

increasing the range of applicability of Amanat's equations, this research was undertaken.

Sensitivity analysis of the different geometric parameters is carried out over an extended

range for two cases of loading. It is found that, in the higher range, the linear equations

proposed by Amanat fail to represent the moments and forces as seen from the results of

finite element analysis. Based on this study, two sets of empirical equations are developed for

two cases of loadings. Other necessary design parameters are obtained from' equilibrium

equations which reduce the total number of empirical relations, developed iby Amanat, from

seven to four. In this research, detailed study is carried out to select the equations which

nearly represent the actual situation. Ten prototype stairs are solved by using the proposed

equations, Amanat's equations, and finite element analysis. These results establish the

acceptability of the proposed equations.

The proposed method has made the calculations for forces and moments, required for design

of free standing stairs, very easy, and its estimation is found to be in the acceptable limits for

commonly used dimensional ranges of stairs. Recommendations regarding the reinforcement

layout have also been made.
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LIST OF SYMBOLS

A Horizontal gap between flights

B Width of landing

C Width of flights

E Modulus of elasticity of concrete
c

E Modulus of elasticity of steel
s
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I. ~'

An important functional element in a building, whether tall or low rise, is the stair. It may

be defined as a series of steps arranged for the purpose of connecting different floors of a

building. At the time of any emergency evacuation, like an earthquake or a fire, stair is

subjected to its maximum loading. At the peak hour in a commercial, business centre or

market, a stair is used not only to facilitate transport of people between floors but also to

provide an elegant look to the building. Architecturally, it must be fascinating and

beautiful; structurally, it must be strong, stiff, and efficient; functionally it must allow

smooth and free transit of people from floor to floor; and seismically, it must be flexible

enough to withstand the shock load.

Depending on various architectural forms, stairs may be classified as (Fig. 1.1) :

• Free standing stair,

• Siabless stair,

• Helical stair, and

• Simple straight stair.

Compared with other structural components of a building, stairs have some unusual

characteristics. Stairs are an assemblage of interconnected plates in a three-dimensional

space and supported at the outer edges of these plates. Both in-plane and out-of-plane

forces may be predominant in the stair depending on the arrangement of supports. In

simple stairs, supports are provided at floor levels and at intermediate landing. Previous

investigations on this type of stairs revealed that load is transferred primarily through

bending of stairs slabs. In plane forces, although present, are of little significance. The

situation changes totally when the support at landing is removed and the stair is allowed

to stand freely between supports atfloor levels only. The structural functioning of this free

standing stair is completely different' from that of the simple stairs.

From architectural view-point, free standing stairs are more attractive than simple stairs.

Another architecturally fascinating stair of similar structural action is the helicoidal stair.

While the functioning of simple stairways can be approximated as a two dimensional

flexure problem, there is no way of similar, treatment to the free standing stair which is

truly a three dimensional problem. Consequently, the structural analysis of a free standing

stair is much more complex in comparison to that of the ordinary stairs.



(e)

(d)(b)

(a)

Fig. 1.1 Stairs of Different Types

a) Free standing stair

b) Siabless stair

e) Helical stair

d) Simple straight stair



But construction of a helicoidal stair is difficult because of its geometry. A considerable

part of the total cost goes to the construction of the formwork of a helicoid. On the

contrary, the formwork of a free standing stair is simple. Unlike simple stairs, a free

standing stair does not need a separate stair hall for its construction. Despite this,

construction of free standing stairs has been limited in the past. This is mainly due to the

lack of adequate knowledge about its complex three dimensional behaviour and absence

of a simple design procedure. Now, with the advent of finite element method along with

the availability of high speed digital computers, it is possible to analyse the free standing

stair more accurately and rationally.

1.2 BACKGROUND OF RESEARCH

Free standing stairs received the attention of a number of researchers in the past. The

methods of analysis developed by various authors indicate that it is a structure carrying

torsion and in-plane moments besides bending and shear. In their analysis they made

several assumptions to simplify the actual structural behaviour of the stair. Sauter [10).

Taleb [12] and Cusens et. al.[5] replaced the stair slab by an equivalent skeletal rigid

frame and then they solved for the redundants, similar to those occurring in a space

latticed structure. They did not account for any variation of stress resultants across the

sections of slab. Liebenberg [7] retained the space plate configuration of the stair. His

solution is based on assumption that primary load carrying system is produced by the

membrane forces caused by the interaction of plates, support, etc. These 'points' or 'lines'

of intersection of the slab elements become supports to the secondary load carrying

system of bending forces in the slab elements. Siev [11] suggested a method which is

similar to that applied in the analysis of folded plate. He introduced a support along the

flight landing junction and called the resulting structure as primary system where loads

are carried by bending and by reactions at support. Later the reaction at the kink is

applied in the reverse order and secondary stresses are found. Thus, in Siev's approach,

torsional stresses comes out as a secondary stress and it was Siev's conclusion that such

secondary quantity can be neglected in design. He assumed that the bending, torsion,

etc., are uncoupled. This is, in fact, not true.

While using the approximate methods, there is a general tendency of designing the stair

with an unnecessarily high factor of safety with an eventual loss of slenderness and

economy. An exact analysis of the problem by solving the differential equations of

equilibrium and compatibility in accordance with the theory of elasticity is beyond the

scope of existing rigorous mathematical methods. The only alternative is to employ a

numerical technique. Among the available numerical methods, finite element approach is

the most powerful one provided a high-speed digital computer is available. Rahman [8]
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and Adhikari [1] used finite element technique to analyse the problem. They used the

thick-shell element developed by Ahmad [2]. They studied the same prototype used by

Siev and Cusens et. al. to facilitate comparison. Their finite element study clearly

established the characteristic three dimensional action of the stair. But their study was

limited in scope, and no suggestions were made regarding the design of the stair.

Adhikari did however show an example of reinforcement design using the stresses found

from finite element analysis.

Amanat[4] carried out an extensive computational study on the free standing stair based

on finite element modelling. He used Ahmad's general thick shell finite element to model

the stair slabs. Based on a detailed parametric study, he proposed a few explicit

equations for its design. These equations are in terms of some geometric parameters of a

free standing stair. Once these geometric parameters are selected, various design forces

and moments at different critical sections of the stair can be directly estimated from these

equations. His study also revealed that bending moment at some critical locations are not

uniformly distributed across the cross sections, rather moments are concentrated at one

side of such critical sections in the lateral direction. These phenomena must be

acknowledged in the reinforcement design according to his suggestions. Once this non-

uniformity of stress distribution is taken into consideration, determination of the

reinforcement becomes a routine matter.

1.3 OBJECTIVE OF THE STUDY

Amanat's[4] proposed approach include every possible geometric parameters of this

stairs, each of which can be varied independently. However, in most practical cases it is

observed that some of these parameters are interdependent and thus the dependent

parameters could have been eliminated from the proposed equations, simplifying the

process of analysis. Also, under symmetric loading and boundary conditions it may be

argued that free standing stairs have only two redundants :

• Lateral Shear at Mid Landing Section, and

• Bending Moment at Mid Landing Section.

Once these two redundants are determined other forces and moments can be calculated

using the simple equations of static equilibrium. This eliminates the use of other

approximate equations of Amanat's approach. In most practical cases, stairways are

symmetrical in nature. So, there is scope for further simplification of Amanat's proposed

method for design of free standing stair which will be of great help to practising engineers

and designers.
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The objectives of this study are, therefore, as follows:

• To simplify the analysis and design procedure proposed by Amanat,

• To increase the applicable limit of Amanat's proposed design equations,

• To derive new emperical equations based on the sensitivity analysis of parameters,

and

• To develop a design guide-line for free standing stairs, simpler than the present ones.

1.4 SCOPE AND METHODOLOGY OF RESEARCH

In an attempt to simplify the existing methods of analysis for free standing stairs the steps

followed here are given below:

• The stair is modelled using Ahmad's[2] thick shell finite element. Validity and

correctness of the model are established through comparison with Amanat's[4]

results.

• A detailed parametric study is made under symmetric loading and boundary

conditions. Based on this study, simplifications of Amanat's equations are proposed.

• Through the analysing of (a) Full live load over the entire stairway, and (b) Full live

load only on the flights, over a larger applicable range, two sets of new equations are

proposed for Lateral Shear and Bending Moment at Mid Landing Section.

• Other necessary equilibrium equations are derived in order to calculate the forces and

moments at critical locations.

• Ten examples with varying range are solved and compared with both the Finite

Element Method Model and Amanat's equations for establishing the validity of the

proposed simplification, and

• A practical design example is presented to show the stepwise application of the

proposed simplified equations.
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CHAPTER 2

FREE STANDING STAIR PARAMETERS AND PROTOTYPE

STAIRS

2.1 INTRODUCTION

The first part of this chapter deals with the definition of the geometry of the free standing

stair, its loading, co-ordinate systems, sign convention, boundary conditions, redundants,

and material properties. The last part of this chapter contains the geometric data of the

ten prototype stairs, referred to in different chapters of this presentation.

2.2 GEOMETRY OF THE STAIR

Geometrically, a free standing stair is a structure composed of interconnected plates,

each located in different planes in a three dimensional space, like the one in Fig.1.1(a).

Usually it consists of three rectangular plates, namely,

• a lower flight,

• a landing, and

• a upper flight.

The upper end of the upper flight is held fixed at upper floor level. Similarly, the lower end

of the lower flight is held fixed at lower floor level. The other ends of the flights are

connected to a horizontal landing slab with no other support. Steps are provided on the

flights.

According to the relative position of the flights, a free standing stair may be right handed

or left handed, as illustrated in Figs. 2. 1 and 2.2, respectively. The front,! back, right, left

and inner sides of the stair are arbitrarily defined, as shown in Fig. 2.3. I
The geometry of a free standing stair may be symmetric or unsymmetric. In plan, if the

flights are identical, the stair is symmetric. Otherwise, the stair is unsymmetric. In the

present study, a right handed symmetric stair is considered.

The dimensions required to describe the geometry of the stair are shown in Fig. 2.4. In

this figure:

A = Horizontal gap between flights

5



Fig. 2.3 Orientation of Different Location

Right

Fig 2.2 Left Handed Stair

Upper Flight

Landing
Inner

Lower Flight

Front

Back

Left

Fig 2.1 Right Handed Stair



Fig. 2.4 Plan and Elevation of Free Standing Stair
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Global axes
system X,Y,Z

Local axes
system X ,Y z'

(b) Load case 2

Fig. 2.5 Load Cases

Fig. 2.6 Co-ordinate Systems

(0) Load case 1



1

M,. = Torsion

My = Bending moment

M, Inplane moment

Vi = Axial force

V' = Lateral sheary

~)(
V' = Transverse shearz

Fig. 2.7 Positive Direction of Moments with respect to Local Axes

Fig. 2.8 Positive Direction of Forces with respect to Local Axes



C = Width of flights

L = Horizontal span of flight

H = Floor to floor height

T, = Flight slab waist- thickness

T
2
= Landing-slab thickness

2.3 LOADS ON THE STAIR SLABS:

The stair is primarily a functional unit in a building. As a consequence, live loads may act

on it in several ways. But, for analysis and design, only those few possibilities are

considered which produce maximum design moments and shears at some critical

sections. In this study, only two possible load combinations are considered. These are,

a) Loading 1: Full live load over the entire stairway.

b) Loading 2: Full live load on the flights only

The above two loadings are schematically described in Fig. 2.5, shaded portions

indicating position of live load. Both the loadings are symmetric. There are other

arrangements of live load such as full live load only on one of the flights. Previous

findings of other investigators and of Amanat[4] revealed that such unsymmetric loadings

produce unsymmetric stress in the stair. It was, however, observed that the magnituds of

the stresses do not become critical for such unsymmetric loadings. Hence only the two

loadings as described earlier, are considered in this study.

2.4 CO-ORDINATE SYSTEMS

Two types of co-ordinate systems are used for the free standing stair: (i) the globed co-

ordinate system and (ii) the local system, as shown in Fig. 2.6. The geometry of the stair

is defined with respect to the global system. On the other hand, stresses, moments, etc.,

are calculated in local system. The global system for lower flight, landing and upper flight

and the local system for loWer flight are shown in Fig. 2.6.

2.5 SIGN CONVENTION

For consistency and for clarity of the analysis and of results presented in the subsequent

chapters, a unique sign convention for stresses, moments, etc., is followed throughout.
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Deflection is presented in global system and is positive in positive direction of axes. The

positive directions of moments, shears, etc., at a section are defined with respect to local

axes system. Stresses and forces are positive when they act in the positive direction of

respective local axis. For moments, right hand screw rule is followed. These are defined

in Figs 2.7 ar:1d 2.8.

2.6 BOUNDARY CONDITIONS AND REDUNDANTS

Although the free standing stair is a three dimensional plate structure involving 3-D

interaction of plates, the current practice is to simplify it into a space frame structure

consisting of linear bar elements. The boundary conditions are that the flight members

are held completely fixed at their floor level supports. With such linear bar idealisation and

boundary conditions, the stair slab becomes, in general, indeterminant of sixth degree.

The three moments and tension and two shear forces can be taken as redundants or

these actions at the mid landing section can be considered as redundants.

If both the stair and the loading are symmetric then, for the actual condition at mid landing

section, the readers may refer to the two examples of Irons and Ahmad [6J.

In free standing stair, the landing is unsupported, or considered as supported by the

upper and lower flights of stairs acting as beams in tension, torsion and bending. In Fig.

2.9, using mirror images, the deflection and the rotation in the YZ plane are zero in the

middle of the landing, proving that the stair is symmetric about this line.

In Fig. 2.10, the interaction between the two half-landings is considered. Since it is

monolithic, the bending and twisting moments and the tensile and shear stresses are

considered. After the two mirror images the loads are acting at original direction but these

four components are acting at opposite direction, summing these initial and final pictures,

the values of the four components are zero as load is doubled, which prove that they are

non existent. Thus, Fig. 2,10 shows that the tensile and vertical shear forces, ayy and ~YZ

are zero. Also the bending and twisting moments in the XZ and XY planes are zero.

In Fig. 2.11 the other two remaining components, lateral shear and bending moment at

mid landing section, after the two mirror images are not opposite. This proves the

existence of these two components at mid landing section.

From the above discussion it is understood that, if both the flights and the loading are

symmetric, the degree of static indeterminacy becomes two. Here, the bending moment

7



Fig. 2.9 Symmetry about Mid Landing Section

Fig. 2.10 Zero Forces and Moments at the Mid Landing Section



(a)

(b)

Fig. 2.11 Redundants at Mid Landing Section

(a) Lateral Shear

(b) Bending Moment
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Fig. 2.12 Planar Presentation of Redundants at Mid Landing Section

2.7 MATERIAL PROPERTIES:

~---+------'L B

2.8 THE PROTOTYPE STAIR SLABS:

Ten prototype stairs of different dimensions, but of common properties, are studied here.

These studies of stairs are compared later with their finite element results and with the

predictions of equations proposed by Amana!. The data used for the prototype stairs are

given in Table 2.1.

Mo and in-plane shear Vo at mid-landing section can be considered as the two redundants

(Fig. 2. 12).

The stair under study is a monolithic reinforced concrete structure, bLiilt integrally with

supports. Reinforced concrete is a non-homogeneous material. From past experience it is

found that no serious error occurs if reinforced concrete is considered homogeneous,

provided that the stresses are within allowable limits. Assumption of reinforced concrete

as a homogeneous material greatly simplifies the analysis of structures. Keeping this in

mind, in this study, it is assumed that the reinforced concrete used in the stair-slab is a

homogeneous, isotropic material and it obeys Hooke's law. In the proposed equations a

factor for I: (28 day cylinder strength of concrete) is introduced but for the prototype

stairs I: = 20.68 Mpa and the Poisson's ratio of concrete, v =0. 15 is used all through.



Table 2.1 Geometric Data of the Prototype Stairs

Horizontal Width of Width of Horizontal Floor Slab

Example
gap between landing fiight projection height thickness

flights of flight

A(mm) B(mm) C(mm) L(mm) H(mm) T(mm)

1 510 915 915 2290 2745 130
2 710 1525 1220 2540 3050 150
3 800 1175 1100 2800 3250 180
4 900 1700 1750 3250 3500 230
5 950 1475 1800 3450 4000 260
6 1100 2000 2000 3700 4500 290
7 1200 2200 2200 3800 4600 180
8 1300 2300 2300 3900 4700 300
9 1400 2400 2400 3950 4850 310
10 1500 2500 2500 4000 5000 330

9

= 0.15

= 4700R MPa

= 275.84 MPa
= 20.68 MPa

= 4786.4 Pa on horizontalprojection.
= as calculated

Concrete strength,f/
Yieldstrengthof steel,fy
Poisson's ratioof concrete,v

Modulus of elasticityof concrete,Ec

Dead load
liveload

Material properties

Loads



CHAPTER 3

LITERATURE REVIEW

3.1 INTRODUCTION

This chapter reviews the earlier analyses of free standing stairs by different researchers

with particular attention to the assumptions used in their analyses.

Shell or plate theories generally lead to considerable complexities in the analysis and

design of stairs. It is possible to analyse the stair using an analytical method or a modern

numerical technique such as finite element method. But practicing engineers eagerly look

for a simple and straight forward design procedure which may be somewhat approximate

but rational. Such demand resulted in approximation of the stair-slab as a space frame

structure composed of bar elements or as a determinate slab structure. A number of

papers on these approximate methods of solution of free standing stair are available in

the literature. Amanat[4) made an useful attempt to propose a simple and direct way of

finding the moments and forces required to design a free standing stair, based on finite

element approach.
,

3.2 CODES AND PRACTICES

The structural behaviour of a free standing stair is quite different from other ordinary two

flight stairs where the landings are supported by beams or side walls. In. the ACI and

British Code of Practices there are no specific guidelines for the design of a free standing

stair. It is true for the Indian and the other codes of practices. Absence of guidelines in

these codes discourages practicing engineers to design or construct a free standing stair.

Reynold's[9] handbook includes a design method for a free standing stair based on the

paper published by Cusens and Kuang [5). But the procedure described there is not very

straight forward and is somewhat abstract due to some simplification.

3.3 ANALYTICAL APPROACHES

The analytical approaches for the free standing stair slabs may be divided in to two main

types. The first type idealises the stair structure as a space frame of some type. The

methods of Sauter[10], Cusens and Kuang[5), Taleb[12) fall in this category. Idealisation

of a plate as a straight frame element can only be justified when the width to length ratio

of the plate is small. But this is not true for a free standing stair where width of plates is of

comparable magnitude with respect to its length. In such cases, space frame idealisation

10
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b) Cusens & Kuang
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Fig 3.1 Idealisation in Different Analytical Approaches



does not seem to be a good approximation. The second type retains the plate

configuration of the stair but considers the structure to be a determinate one based on

some assumptions. The overall structural rigidity resulting from the indeterminacy is lost

when such assumptions are made. The methods of Siev[11] and Liebenberg[7] are of this

type.

Of the various analytical approaches, those of Cusens and Kuang, and of Siev's are

preferred in design because of their relatively simple structural idealisation and analyses.

The analysis suggested by Siev is the most elaborate one. However, the analysis

becomes simple, only when, the secondary stresses are ignored. In Sauter's approach,

once the bar idealisation is made, the remaining treatment for analysis is rigorous which

is basically the same as the flexibility method of structural frame analysis. Some of the

useful approaches are discussed in the following articles.

3.3.1 CUSENS AND KUANG'S METHOD

Cusens and Kuang[5] analysed the free standing stair assuming that its structural

behaviour could be simulated by the skeletal rigid frame shown in Fig. 3.2. In their

procedure a cut is introduced at the mid landing section and the horizontal restraining

force Vyo and bending moment Myo are applied at the two halves of the frame. These

two quantities are taken as the redundants. Equations for bending moment, shear and

axial forces, etc., in the flights are then readily expressed in terms of these two

redundants .

Neglecting the effect of axial and shearing forces on deformation, the total strain energy

in the structure is evaluated in terms of Vyo and Myo' Following the concept of least work,

the first partial derivative of the strain energy with respect to Vyo and Myo are evaluated

and then they are equated to zero. This results in a set of two simultaneous equations in

terms of Vyo and Myo. Solving these two simultaneous equations, one can determine the

magnitudes of Vyo and Myo. Once these redundants are known, the structure becomes

statically determinate and the shear forces, bending moments and axial forces at any

point of the structure can be calculated using equations of static equilibrium. Cusens and

Kuang[5], in their paper, dealt only symmetrical stair cases under symmetrical loading.

3.3.2 SAUTER'S METHOD

Sauter's[10] method of analysis is based on considering the stair as a space frame

composed of linear bar elements. The idealised stair frame consists of two cantilevered
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straight members projecting out from the upper and lower floor supports and connected at

their ends by a horizontal bow girder representing the landing. In his method the two

redundants are the bending moments My at upper flight support and at mid-landing

section.

First, the equations of moments and forces are written for unit values of the redundants in

tum for the unloaded structure and corresponding deformations are calculated using work

integral. Next, considering the redundants to be zero, the structure is analysed as a

determinate structure for unit distributed load in flights and then on landing separately. '

Deformations are also evaluated for these loading in the usual manner. In evaluating the

work integrals, effect of shear and axial forces are neglected. Once the deformations are

determined for each separate case, the redundants can be calculated from compatibility

conditions of deformations (Fig.3.3). In his analysis, Sauter dealt only symmetric stair slab

with symmetric loading.

3.3.3 SIEV'S METHOD

Siev [11] developed methods for solving stresses in free standing stair slabs under

symmetrical and anti-symmetrical loading conditions based on the concept of statically

determinate structures. In his procedure the overall stress analysis is accomplished in two

stages. In the first stage, the line of intersection between flights and landing is considered

simply supported (Fig.3A). The resulting structure is referred to as the primary slab

structure. Bending moments and reactions at the supports are calculated under various

possible positions of live load. In the second stage, the flights and landing are considered

as interconnected plates. This is referred to as the secondary plate structure. The

reaction at the assumed kink line support will act as the only load in opposite direction on

this plate structure. This load is then resolved in the plane of flights, which develops in-

plane moment and axial forces in flight slabs. Due to these forces, in-plane deflection of

flights occur which is calculated using the ordinary flexure formulas. Assuming that the

landing slab is very rigid in its plane, compatibility in deformation requires that the kink

line will remain straight.

From this compatibility condition, the secondary stresses are determined. Torsional

moments are calculated as secondary stresses. The final solution is the combination of

primary and secondary stresses. Later it was Siev's conclusion that the secondary effects

can be ignored in design.
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3.4 FINITE ELEMENT APPROACH

The analytical approaches are not fully dependable for the analysis of free standing stair

as long as economy and efficiency in design are concerned. These methods fail to

simulate the actual interaction of plates in three dimension. Also, these approaches

cannot demonstrate the variation of stress resultants along the width of the stair.

Amanat[4] found that a free standing stair is a three dimensional plate structure whose

simplification to skeletal frame structure or to a determinate slab system is questionable.

The structural behaviour of the stairway shows that load is transferred predominantly

through in-plane bending and torsional moments, assisted by some axial forces. For a

symmetric stair under symmetric loading, both flights are equally stressed. That is,

stresses and deflections of one flight will be the mirror image of the same in other flight.

This implies that the bending moment diagram of both flights will be the same in

magnitude and in direction. Axial forces of equal magnitude but opposite sign will develop

in flights. In-plane moment of the same magnitude and direction will be developed in

flights while flights will be under equal and opposite torsion. The flights have usual

transverse shear and zero lateral shear.

In landing, the predominant forces are the bending moments in both X and Y direction,

lateral shear at mid-landing section and some torsion at quarter span. All the three

components of displacements are equally dominant. Along with the deflection occurring

vertically, the whole stairway experiences a horizontal sway towards upper flight.

Amanat demonstrated that the prediction of bending moments at different critical

locations by approximate analytical methods might not always be acceptable. Support

bending moment is overestimated in Cusens and Kuang's[5] approach and

underestimated in Siev's[11] approach. In predicting the in-plane moment in landing,

Siev's method seems to overestimate it. Sauter's[10] and Cusens and Kuang's

approaches give reasonably good values of in-plane moment. In case of flight torsion all

the analytical methods overestimate it substantially. For the mid-landing section, all the

analytical methods underestimate the bending moments. Despite all such inaccuracies

and approximations, some of these analytical methods have been used with success in

the past. Conservative design approach combined with high factor of safety is attributed

to be associated with such success.

With the advancement in the techniques of structural analysis it is now possible to

analyse virtually all types of structures employing the finite element technique. But for the

design of a small structure, like a stair, this technique seems to be too elaborate to be

13



used in each and every case. A straightforward method of analysis that will enable to

carry out the calculation more easily but with acceptable accuracy is preferable.

Amanat assumed that the stair is built of reinforced concrete. As a construction material,

concrete is widely used. Now, if it is possible to develop explicit expressions for a

conservative estimation of moments and forces at various critical locations within the

limiting inaccuracy of 15% to 20%, it will greatly reduce the effort necessary in

calculations and speed up the design process. Following the above discussion and the

arguments forwarded therein, a set of expressions for moments and forces [Table 3.1] at

the critical sections are suggested by Amanat. These expressions are valid within a

certain range of variation of the geometric parameters of the stairs.

The equations are valid for fully fixed support condition. With the above limitations and

assumptions, the equations are presented below. All of the following equations are of the

form,

Here K is a numeric constant. FA is factor corresponding to the geometric parameter 'A'

and so on. F,is the factor corresponding to J;' .

The uses of the above equations are straightforward. Values of forces and moments can

readily be calculated once the design values of geometric parameters are prescribed.
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Table 3.1 Equations Proposed by Amanat[4] (SI Unit)

PARAMETRIC FUNCTIONS OF STAIR

FA F, Fe Fe FH FT Ff

Design Parameters Const. Values of Design
150 < A(mm)< 1000 915 < B(mm) < 1875 915 <C(mm) < 1900 2030 <L(mm)< 3550 2440 < H(mm) < 4320 100 < T(mm) < 280 14 <1; (Mpa) < 40 Parameters

2.03 1+O.OO545(A_125)O.94 1+0.00114(8-914)1.1 1+0.00165(C_914)0.93 1_7.87x.1O-<S(L - 2030) 1-19.68xIO-<S(H-2440) 1-0.161 (T_lOO)O.334 1 - L074xlO-<s(i
c
' _14)"93Vertical deflection at

landing comer, mm

-4.712
1.555+0.000787(A-SO) 1.06-0.00022 (8-860) 1.2+O.00276(C-864) 1+O.OOO748(L-2030) 1+5.9xlO""(H-2440) 0.39+0.00173(T -90) 1.0Support negative

moment, kN-m

-1.526 1.1-31.48xl O-<S(A_150)1.52 . 1_70.11xlO-6(B_915)1.365 1.0 I +O.128xl O-<S(L.2030)2.66 I+O.899xl O.9(H.2440)2. 77 1_.OO165(T_IOO{17 IFlight midspan
positive moment,

kN-m

-3.447
1.23+0.000512(A~ 125) 1.01+0.00323(8.915) .85+0.000709(C-915) 0.95+0.oo447(T _100)1.031.0 1.0 INegative moment at

kink, kN-m

-6.14
1+0.000303(A-150) 1+0.00118(8-915) 1+0.ooI06(C-915) 1+0.000409(L-2030) 1+26.3 7xI0-6(H-2040) 1+0.00185(T-IOO) INegative moment at

midsection of
landing, kN-m

34.69
1+0.000236(A-125) 1+0.000787(8-915) 1+0.0OO827(C-915) 1+0.OO0354(L-2030) 1-0.000157(H-2440) 1+0.00276(T -100) IAxial force in flights,

kN

2.312
1+0.00177(A-125) 1+0.00063(8-915) 1+0.00268(C-91 5) 1-8.0xl 0-6(L_2030)"75 1.0 1+0.00358(T-I 00) 1Torsion in flights,

kN-m.

-14.35
1.1+0.000866(A-150) 1+0.000984(8-915) 1+0.00157(C-915) 1+0.00059(L-2030) 1-0.000197(H-2440) 1+0.0026(T-lOO) 1Inplane moment in

flights, kN-m

30.17
1-0.oo0276(A-150) 1+0.00138(8-915) 1+0.000709(C-915) 1+0.000669(L-2030) 1-0.00024(H-2440) 1+0.000746(T-100) 1.3 ILateral shear in mid-

section of landing,
kN



CHAPTER 4

FINITE ELEMENT AND ANALYTICAL ANALYSES OF FREE

STANDING STAIR

4.1 INTRODUCTION

Finite element technique is a powerful and versatile tool for the analysis of problems of

structural and continuum mechanics. Analysis of the free standing stair using this

technique is discussed here following that of simplified equilibrium approach.

The element-wise discretization procedure in finite element process reduces a continuum

problem of infinite number of variables to one of a finite number of unknowns. The

analysis of a continuum by finite element technique has three basic steps : structural

idealisation which is the subdivision of the actual continuum into an assemblage of

discrete structural elements, evaluation of element characteristics such as stiffness,

stress and mass matrices and structural analysis of the element assemblage.

4.2 FINITE ELEMENT APPROACH

4.2.1 Choice of Element

In finite element technique, selection of a suitable element shape and type is important.

There are various types of elements that is beam elements, frame elements, plate

elements, shell elements, solid elements, etc. Each of these elements is suitable for

some particular types of structures. For example, frame elements are suitable for ordinary

beam-column latticed structures. Similarly, shell elements are suitable for shell structures.

There are many variations of shell elements, each with their own characteristics. The free

standing stair is a space structure composed of interconnected plates. Hence, shell

elements are preferred for this structure.

4.2.2 Shell Elements

There are various types of shell elements developed so far. All of them fall in either of the

two general categories, namely the thin shell elements and thick shell elements. In the

thin shell elements, it is assumed that the normal to the middle surface before

deformation remains normal after deformation. This means that the out of plane shear,

that is, transverse shear stress is neglected in this type of elements. The thick shell

elements include bending as well as shear deformations. In these elements, nodal lines

are straight and 'normal' to the undeformed middle surface. They are inextensible and
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remain straight after deformation. However, they are in general not normal to the

deformed middle surface after deformation, allowing the calculation of transverse shear

stresses and strains. Consequently, this type of elements is suitable for modelling plates

and shells where transverse shear is important. For the free standing stair under study,

the 8 noded general thick shell element developed by Ahmad [3] is adopted.

4.2.3 Features of the Computer Program

Ahmad developed a computer program, which can analyse any shell or plate structure

using the thick shell elements. The program was written in FORTRAN language and is

quite general. It requires a considerable amount of data for input. This is the obvious

consequence of a program, which is general in nature. The output of the program gives

deflections and stresses at nodes with respect to global co-ordinate system. To simplify

the input output process, separate computer programs were developed which can

generate necessary data for the Ahmad's program from minimum input and can calculate

the necessary design parameters such as bending moments, shear forces, etc., from the

output of the general thick shell program.

4.2.4 Assumptions and Limitations

The thick shell elements developed by Ahmad are based on some assumptions such as

the material within an element is isotropic and elastic and obeys Hooke's law. However

such elastic properties are allowed to differ from element to element, which allows the

program to handle structures made of composite materials. Besides these global

assumptions, the additional assumptions, particular to the free standing stair are as

follows:

• Waist-slab of flight and landing-slab the have same thickness.

• The additional stiffening effect provided by the steps to the waist-slab of flights is

neglected. They only contribute to dead weight.

• The slab thickness is assumed to be sufficient to withstand the stresses developed

and no account was given to slenderness.

• The supports at floor levels are assumed to be rigidly fixed.

4.2.5 Modification of the Thick Shell Program

Both the 8-noded and 12-noded thick shell elements of Ahmad(2) give very good results

in predicting the normal stresses at nodes. But the out of plane shear stress at the nodal
•....
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points is not very good. In fact, transverse shear is not very important in ordinary curved

shell structures, as because such out of plane shear in doubly curved shell structures are

usually low. But in free standing stair the transverse shear is important. So, in Amanat's

work, some modifications were incorporated in the stress output routines. The program

uses Gauss integration technique to evaluate the stiffness matrix of the elements and it

was observed that Gauss points within the elements were the best sampling points for

stress calculation with excellent accuracy. Details about the Gauss points of an element

are given in the appendix. Shear and torsion are, therefore, calculated on the basis of the

stresses at these Gauss points.

4.3 FINITE ELEMENT IDEALISATION OF THE FREE STANDING STAIR

4.3.1 The Thick Shell Element

The thick shell elements may be curved about either one or both of its planes and may

have variable thickness along its axes. The edges of elements may thus be either curved

or straight. The program allows the users to use any of the two types of elements, that is,

either the 8-noded parabolic element or the 12-noded cubic element. In the present study

the 8-noded elements are used.

Proper idealisation of a structure into an assemblage of finite number of elements is

important in the analysis. The process involves division of the structure into elements in a

suitable manner, numbering the elements and nodes in an efficient way, selection of local

and global axes system, etc. Efficiency in these steps is necessary for optimal utilisation

of the computer memory and computational speed. Some of these aspects of finite

element idealisation of the stair slab are discussed in the following articles.,
I

4.3.2 Element Mesh Configuration

A structure can be subdivided into elements in many possible ways. It depends on many

factors such as the element characteristics, accuracy needed, available computer

memory, etc. It is in general accepted that the finer the subdivision the better the

idealisation. However, with proper choice of elements, the rate of gain in accuracy

decreases after a certain degree of fineness in subdivision. Element mesh can be finer

near points of stress concentration in comparison to the other parts of the structure.

Considering all these factors the subdivision shown in Figs.4.1 and 4.2 were adopted for

the study. The floor level supports, flight-landing junction and the mid-landing section are
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the places of possible stress concentration and hence the element sizes there are taken

to be smaller in these areas in comparison to the other parts of the stair.

4.3.3 Element and Node Numbering Scheme

The thick shell finite element program uses frontal solution technique to evaluate the

displacement vectors of elements. Front width is dependent on the numbering sequence

of elements. To keep the front width minimum the following two general rules are followed

while numbering the elements:

• Numbering should preferably start at one end of the structure and terminate at the

other end.

• The difference in element numbers between two adjacent elements should be kept

minimum.

Following the above concept, the element numbering scheme shown in Fig.4.1 is adopted

here for the stair.

The original program requires the global co-ordinates of the nodes as input data. It is

rather troublesome to enter the co-ordinates of all the nodes. However, the program

offers one advantage in this regard. If only the corner nodes data are given, the program

can automatically generate the co-ordinates of mid-side nodes assuming a straight line

interpolation between the corner nodes. As the elements of the stair slab are perfectly

rectangular, advantage of this feature of the program has been utilised in the study. First,

the corner nodes are numbered from left to right starting from the front towards the back

of the stair. There are 44 such corner nodes. Then the mid-side nodes are numbered in a

systematic sequence as shown in Fig.4.1. Although nodes can be numbered in any

arbitrary way, the regular pattern of Fig.4.1 is adopted for ease in developing the data

generation program.

4.3.4 Adjusted Unit Weight for Gravity Loading

The general thick shell program can accept loading data in many ways - depending upon

the nature of loading. For the present study, live load due to transiting people is assumed

uniformly distributed on horizontal plane. In this case the easiest way to incorporate the

load is to increase the weight density of the material. The weights of the steps and

uniformly distributed live load have been included in the stair slab by properly increasing
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Fig. 4.1 Element and Nodal Numbering of the Stair(Horizontal Plane)
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Fig. 4.2 Element anti Nodal Numbering of the Stair(Vertical Plane)
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4.3.5 Transformation of Stresses

3 3

L L aik oO"kloalj j=1,3]
k=1 1=1

and O"ij

the unit weight of slab material. It is observed that the flight slabs are inclined at an angle

a whereas the landing slab is horizontal. For this reason the thickness measured

vertically is different in flight slabs and in landing slab. Hence adjusted unit weight for

flight slab and landing slab differ although the slab thickness is same everywhere.

[ a'] = [A][oj[A]T

The original finite element program gives stresses as output with respect to global co-

ordinate system. The global stresses cannot be used directly for design. These are to be

transformed into local stresses with respect to local axes system for determining forces

and moments, which will subsequently be required for design.

[a'] = Stress tensor in X',Y' ,Z' system

[0-] = Stress tensor in X,Y,Z system

[A] = Direction cosine matrix of X',Y',Z' system with

respect to X,Y,Z system

[A]T = Transpose of [A]

The stress output is in tensor form with respect to global axes. The state of stress at any

point can completely be defined by the stress tensor with respect to a set of three

mutually perpendicular axes. If the stress tensor corresponding to X, Y, Z system is

known, it can readily be transformed to any other X', Y', Z' axes system with the help of

the well known stress transformation rule,

This transformation rule can best be represented by the index notation as,

where,

Here uij and aij are the element at i-throw and j-th column of [cr] and [cr'] respectively.

The direction cosine matrix is :

[ i=1,3



all al2 al3

[A]= a2l a22 a23

a3l a32 a33

where,

(811,812,813) = Direction cosines of X' axis w.r.t. X,Y, Z axes

(821,822,823) = Direction cosines of Y' axis w.r.t. X,Y,Z axes

(831,832,833) = Direction cosines of Z' axis w.r.t. X,Y,Z axes

4.3.6 Determination of Forces and Moments at a Section

The forces and moments that act on a transverse section are described in article 2.5.

These quantities are required for design and calculated from the local nodal stresses. The

procedure described below demonstrates how to calculate these forces from stresses. A

transverse section with three nodes, numbered 1, 2 and 3, are shown in Fig. 4.3. where

the stresses are:

(J = normal stress

T = lateral shear stress

.p= transverse shear stress

The stresses in Fig. 4.3 have two subscripts. The first subscript indicates whether it is, at
the top or bottom of the node, and the second subscript indicates the node. For example

(Jb1 means the normal stress at bottom of node 1. The calculation is carried out in two

steps. First the nodal stress resultants are calculated as follows:

v = (O'tl +O'hl) t
xl 2

V = ('tl + 'hI) t
y1 2

V = (Pt] + Ph]) t
zl 2
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Fig 4.3 Calculation of Forces from Nodal Stresses

Fig 4.4 Calculation of Moments from Nodal Stresses
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4.4 EQUILIBRIUM APPROACH
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Fig.4.5 Critical Sections ofthe Stair

The above equations are for node 1 (Fig.4.3). Such quantities at other nodes can be

calculated in a similar way. The forces and moments from stress resultants are calculated

as follows. For a three noded section the variation of stress resultants across the width of

the section can be assumed parabolic so that Simpson's integration rule can be applied.

Thus:

c
Vx =(Vxl +4Vx2 +Vx3)'6

cVy =(Vy1 +4Vy2 +VY3).6

c
Vz =(Vz1 +4Vz2 +Vz3). 6

C c2
Mx =(Mx1 +4Mx2 +Mx3).6+(VZ1 -Vz3)'12

C
My =(My1 +4MY2 +MY3)'6

c2
M z =(Vx3 - Vx1)'12

If there are more than three nodes, a similar approach can be used with appropriate

integration rule.

The critical sections for the analysis and design of free standing stair slab is shown in Fig.
4.5.



When both the stair slab and the loading are symmetric then the degree of static

indeterminacy becomes two. The bending moment Mo and in-plane shear H at mid-
o

landing section can only be considered as redundants(Section 4). The relevant quantities

used in the equilibrium equations are shown below:

Live Load:

In the following process the Live Load is assumed as 4786.4 Pa which is equivalent to

100 psf, as used by Amanat[4].

Average Dead Load from Slab:

T(Thickness of slab in mm) x 0.024 x 10' (Pa)
1000

Average Dead Load from Steps:

.!ex Rise x Tread x_l~xO.024x106 (Pa)
2 J (Rise' + Tread' ) 1000

W, ( The load acting on mid point of flight):

[ . L ] 1L,ve Load xLx C + (Dead Load from Slab +Dead Load from Steps) x Cx-- x -(kN)
Cosa 109

W,( The load acting on mid point of landing):

Loading 1:

(A)C+-
(Live Load + Dead Load from Slab) x B x 9

2 (kN)
10

Loading 2:

(A)C+-
(Dead Load from Slab) x B x 9

2 (kN)
10

After calculating the values of the bending moment Mo and in-plane shear H at mid-
o

landing section by the empirical equations the equation of forces and moments at other
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Fig. 4.6' Free Body of Free Standing Stair at Equilibrium State
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critical location can be found from the equations of equilibrium(Fig.4.6). The required
equationsare statedbelow:

(4.1 )

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)(c A) . A= Ho -+- Cosa+W2Sznax-+MoSina224

2) Flight Midspan Positive Moment

1) Support Negative Moment

23

H (TY; +W,)L TY; L .= -M -H x-+------x-(From left side)
b 0 4 2 2 4

3) Negative Moment at Kink

B=Wx-
2 2

4) Axial Force in Flights

= H'(Horizontal Force) Cosu +V(Vertical Force) Sinu

= HoCosa+(TY; +W,) Sin a

5)Torsion In Flights

= {M +W x A}cosa-H Sina(C + A)
o '4 0 2 2

6) In Plane Moment in Flights



CHAPTERS

SENSITIVITY ANALYSIS

5.1 INTRODUCTION

The approximate analytical approaches and the finite element approach for the analysis

of the free standing stairway have been discussed in chapters three and four,

respectively. A stairway of most common dimensions is used throughout, as the model of

analysis. Changing one dimension within the selected range and keeping the other

dimensions constant the sensitivity analysis is done in order to analysed the effect of

these parameters and find some new sets of equations for a new design rationale.

5.2 STAIR DESIGN PARAMETERS

To determine the forces and moments at every section it is possible to analyse the free

standing stair using any suitable method, but in this equilibrium approach, because of

symmetry, only two redundants required are:

• Lateral shear at mid-landing section, and

• Bending moment at mid-landing section.

The other necessary quantities at the critical locations can be derived from the equations

of equilibrium. So extensive parametric study is done to verify the change in these two

design parameters with the change of geometric parameters. The study is made for the

two cases of loading. The general arrangements and boundary conditions defined in

chapter two are maintain"ed throughout this study.

5.3 GEOMETRIC PARAMETERS OF THE STAIR

The effects of geometric parameters studied here are:

• Horizontal gap between flight, A

• Width of landing, B

• Width of flights, C

• Horizontal span of flights, L

• Total height of stairway, H

• Slab thickness, T1 and T2
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In this study the thickness of the flight waist-slab and landing-slab are kept the same

(T 1 = T 2)' Each of these parameters is varied independently keeping the other remaining

parameters constant at their most usual values. The most usual values are taken as:

Horizontal gap between flight (A) = 300mm

Width of landing (B) = 1250mm

Width of flights(C) = 1250mm

Horizontal span of flights (L) = 2800mm

Total height of stairway (H) = 3350mm

Slab thickness (T= T 1,T2 ) = 100mm

Rise = 150 mm

Tread = 150ITana =250.75 mm

The range of the data, which is used in this sensitivity analysis, is presented in table 5.1.

Table 5.1 Range of Geometric Parameters Used in Sensitivity Analysis.

Geometric Range

parameters

A 150 to 1500 mm

B 915 to 2500 mm

C 915 to 2500 mm

L 2030 to 4000 mm

H 2440 to 5000 mm

T 100 to 350 mm

Ie' 14 to 40 MPa

5.4 RESULTS OF PARAMETRIC STUDY

In the following sections the findings of the parametric study are discussed.

a) The effect of variation of horizontal gap between flights (A), on lateral shear and

bending moment at mid landing section, for both the loading cases, is presented in Figs.

5.1 and 5.2. In both the loading cases, the lateral shear at mid landing section decreased
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Fig. 5.2 Variation of Mid Landing Bending Moment Due to Variation of Horizontal
Gap Between Flight(A)
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Fig. 5.1 Variation of Mid Landing Lateral Shear Due to Variation of Horizontal Gap
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Fig. 5.8 Variation of Mid Landing Bending Moment Due to Variation of Horizontal
Span of FlIghl(L)
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Fig. 5.10 Variation of Mid Landing Bending Moment Due to Variation of Floor to
Floor Height(H)

Fig. 5.9 Variation of Mid Landing Lateral Shear Due to Variation of Floor to Floor
Height(H)
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with the increasing values of 'A'. Similarly, the bending moment at mid landing section

also increased with the increasing values of 'A'.

b) The effect of variation of landing width (B), on lateral shear and bending moment at

mid landing section, for both the loading cases, is presented in Figs. 5.3 and 5.4. For both

the loading cases these two quantities increased with the increasing values of 'B'. The

variation is not linear: In the higher range of values for 'B' the values of Ho and Mo

increase at an increasing rate.

c) The influence of width of flights (C), on lateral shear and bending moment at mid

landing section is presented in Figs. 5.5 and 5.6. Both the values increased with the

increasing values of 'C'. For the lateral shear it shows almost a linear variation throughout

the range but for bending moment, at the higher values of 'C', the moments increased in

a decreasing rate.

d) Figs. 5.7 and 5.8 show the behaviour of lateral shear and bending moment at mid

landing section in response to the variation of horizontal span of flights (L). In both the

loading cases, the values of Ho and Mo increase with the increasing values of 'L'. The

natures of the curves are nearly linear.

e) Figs. 5.9 and 5.10 show the behaviour of Ho and Mo in response to the variation of

floor-to-floor height (H). When 'H' increases the lateral shear Ho decreases under both the

cases of loading. For bending moment Mo, the values are nearly constant through out the

range of H.

f) The effect of slab thickness (T) on lateral shear and bending moment at mid landing

section is presented in Figs. 5.11 and 5.12. The lateral shear values and moment values,

in both the loading cases, show almost a linearly increasing trend.

Amanat[4] studied the influence of concrete strength f: on different design parameters.

He found that concrete strength has no effect on stresses. That is, forces and moments at

different sections remain unchanged for any variation of f:. At first instance, this may

seem iliogical but actually f: is a material property and only contributes to the evaluation

of modulus of elasticity E. The differential equation of equilibrium at a point, as derived in

the theory of elasticity, does not contain any term related to material properties. Hence

stresses are independent of material properties as long as we are concerned with small

deflection theory. However, f: does have an effect on deflection. Because, strains are

related to stresses through material properties such as modulus of elasticity E and

Poisson's ratio v.
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CHAPTER 6

DEVELOPMENT OF SIMPLIFIED DESIGN RATIONALE

6.1 GENERAL
Considering the characteristics of the free standing stairway and the equilibrium

equations in chapter four it is required to find suitable empirical equations for finding the

bending moment Mo and in-plane shear Ho at mid-landing section for both the loadings. In

the following articles the method of adapting the empirical equations and comparison of

results with the finite element methods and method by Amanat[4] is done. Finally a

complete design of a prototype stair is presented.

6.2 DEVELOPMENT OF EMPIRICAL EQUATIONS:

Amanat presented a table (table 3.1) for finding the quantities required in the design of

free standing stair. From the table, negative moment at support and positive moment at

flight midspan are calculated directly for the maximum values at loading two, whereas the

bending moment Mo and in-plane shear Ho at mid-landing section are calculated for

loading one. In the present method, the bending moment Mo and in-plane shear H ato

mid-landing section are the two required quantities, which have to be determined from the

empirical equations. To achieve this objective, two sets of empirical equations for the two

cases of loading are required.

By analysing the results of sensitivity study it is easily found that, within the specified

range of Amanat(table 3.1) these two quantities almost varied linearly but when the range

is increased higher order functions must be introduced to incorporate this change in

range. Amanat in his method presented some empirical equations but the basis of

selecting these equations was not specified. In the present study a model equation was

developed as:

Y = a + b (X- Lower Range)"

y= stands for either Ho or Mo, and

X= values of the concerned geometric parameters

The results of finite element analysis were fitted with this function and error was

minimised to find the values of a, band c. This finally lead to an optimum empirical

equation for each governing factor. The results of this analysis are presented in Figs. 6.1

to 6.6. in order to find the equations for lateral shear in loading one.
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but the corresponding contributory equation (Fahl in equation 6.4)is written as:

(6.2)1+0.000051(B-915)'45

The equations obtained from fitting the finite element results for different geometric

parameters give directly the corresponding values of Ho and Mo in each case. However,

these equations are used only to visualise the contribution of different geometric

parameters on the values of Ho and Mo. The exact value from the equations are not

needed, rather the nature of the graph is used to determine the contribution of different

parameters. These equations, obtained from finite element results are, therefore,

modified by dividing the values of 'a' and 'b' with the value of 'a' in each equation and

thus converting the value of 'a' into one for all the equations. The modification proposed is

explained through an example.

For the calculation of Ho, the effect of width of landing slab (B) in the case of loading one,

the equation of the graph representing the finite element results (Fig 6.2) is actually:

40.92+0.00206(B-915) 145 (6.1)

Equation 6.1 is divided by 40.92 to get equation 6.2, which is used in the subsequent

analysis to find the contribution of Width of Landing Slab (B) on the value of Ho under

loading one. This term, which is used to divide the equations obtained from plotting finite

element results, is termed 'factor' and presented in Figs. 6.1 to 6.6.

Based on this scheme, two tables (Tables 6.1 and 6.2) are presented for finding the

values of the bending moment Mo and lateral shear Ho at mid-landing section. Similarly

other modified equations are obtained and presented in the appendix B.

The expressions are explicit and of empirical nature. Hence, care must be taken to use

proper units of measurements. In these equations, the unit of force is kilo Newton (kN)

and that of length is mm. The unit of moment is 'kN-m' for convenience. The range of the

different geometric parameters in the proposed equations is similar to that of table 5.1.

One limitation of the proposed guideline is that the thickness of the flight and landing

slabs are assumed to be equal. The equations are derived for individual loading

condition. The equations give values of moments and forces corresponding to Live Load

of 4786.4 Pa and appropriate dead load of slab and steps. The Live Load is taken

equivalent to 100 psf, as used by Amanat, to facilitate the comparison between the two

methods. Since elastic analysis is made throughout, it is possible to calculate forces and

moments for other values of live load by simple proportioning. The equations are valid for

fully fixed support condition only.



Table 6.1 Equations for Calculating H. and M. under Loading-1

PARAMETRIC FUNCTIONS OF STAIR

Loading-! FA FB Fe Fe FH FT Ff

--_._-----
Design Parameters Const. Values of

150 < A(mm)< 1500 915 < 8(mm) < 2500 915 < C(mm) < 2500 2030 <L(mm)< 4000 2440 < H(mm) < 5000 100 < T(mm) < 350 14<f,'(Mpa)<40 Design
Parameters

-5.75 I+0.000078(A-50)'." 1+0.000142(8-915)'-" 1+0.009069(C-9 I5)'." 1+0.000589(L-2030)'"' 1-0.00OO071(H-2440) 1+0.00931 1(T-100)' " 1
Negative moment at

midsection of
landing,
(kN-m)

30.97 1-0.000462(A-150)'."" 1+0.000051(8-915)'"" 1+0.002283(C-915)'"' I+0.000227(L-2030)f.fS 1-0.003359(H2440)'." 1+0.004528(T-I 00)'." 1
Latera! shear in mid-
section oflanding,

(l<N)



Table 6.2 Equations for Calculating Ho and Mo under Loading-2

PARAMETRIC FUNCTIONS OF STAIR

Loading~2 FA F. Fe FL FH FT F,
_._-_._-- .

Design Parameters Const
14<I: (Mpa) < 40

Values of
150 < A(mm)< 1500 915 < 8(mm) < 2500 915 < C(mm) < 2500 2030 <L(mm)< 4000 2440 < H(mm) < 5000 100 < T(mm) < 350 Design

Parameters

-3.70 1+0.000095(A-150)'"' 1+0.000 143(8-915)'." 1+0.009144(C-915)'." I+0.000578(L-2030) 1-0.00000 1(H-2440) 1+0.013 I69(T-100)';o INegative moment at
midsection of

landing,
(kN-m)

22.77 1-0.001144(A-150)'." 1+0.000025(8-915)'''' 1+0.003693(C-915)'.78S I+0.000154(L-2030)'" 1-0.Ql748(H-2440)'." 1+0.00685 I (T-IOO)'." ILateral shear in mid-
section of landing,

(kN) -



With the above mentioned limitations and assumptions, all the proposed equations are of

the form:

here K is a numeric constant. FA is factor corresponding to the geometric parameter 'A'

and so on. F, is the factor corresponding to f: .
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B) LOADING 2

i) Negative Moment at Mid-section of Landing

M02 = Km2 FAm2F Bm2 F cm2FLm2 F Hm2F Tm2 F'm2 (kN-m) ... (6.5)

Km2
= -3.70

FAm2
= 1.0 + 0.000095 (A _150)"

FBm2 = 1.0 + 0.000143 (8 - 915)'21

FCm2
= 1.0 + 0.009144 (C - 915)°.74

FLm2 = 1.0 + 0.000578 (L - 2030)

FHm2
= 1.0 - 0.000001 (H - 2440)

FTm2 = 1.0 + 0.013169 (T _100)°76

F'm2 = 1.0

ii) Lateral Shear at Mid-section Landing

H02 = Kh2FAh2FBh2 FCh2FLh2 FHh2FTh2 Ffh2 (kN) (6.6)

Kh2 = 22.77

FAh2 = 1.0 - 0.001144 (A _150)°8'

FBh2 = 1.0 + 0.000025 (8 - 915)'475

FCh2 = 1.0 + 0.003693 (C - 915)°785

FLh2 = 1.0 + 0.000154 (L - 2030)'2'

FHh2 = 1.0 - 0.01748 (H - 2440)°44

FTh2 = 1.0 + 0.006851 (T _100)°93

Ffh2 = 1.0

The use of the above equations is straightforward. Values of forces and moments can

readily be calculated once the design values of geometric parameters are known. Using

these equations a computer program in 'Microsoft Excef is developed to carry out the

calculation in a more convenient way on a worksheet, in tabular form, to get the values of

forces or moments.
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6,3 COMPARATIVE ASSESSMENT OF THE PROPOSED METHOD

The geometric data of the ten prototype stairs (Table 2.1) are used to verify the

applicability of the present design equations. The values of the bending moment Mo and

in-plane shear Ho at mid-landing section are calculated by using proposed equations 6.3

to 6.6.

From the analysis of Amanat it is found that the other required quantities for the analysis

and design of the free standing stair slabs are:

• Support Negative Moment

• Flight Midspan Positive Moment

• Negative Moment at Kink

• Axial Force in Flights

• Torsion In Flights

• In Plane Moment in Flights

These quantities are calculated from the equilibrium equations 4.1 to 4.7. The ten

prototype stairs are analysed by finite element method and also by the equations

proposed by Amanat. All three sets of results are then compared in Figs. 6.7 to 6.14.

6.4 DISCUSSION ON THE RESULTS

In Figs. 6.7 to 6.15, the geometric parameters of the first five examples are within the

range of Amanat's proposed equations. The geometric parameters of examples six to ten

are outside the range of Amanat's equations. The values of moment and shears in these

examples are obtained after linear extrapolation of his proposed equations.

From Fig. 6.7 it is found that the proposed equations give comparable values with finite

element results in all the ten examples for negative moment at support. In examples six to

ten, the values obtained from Amanat's equations, after linear extrapolation are lower

than those of the finite element.

Fig. 6.8 shows that flight mid span positive moments are well above the finite element

results. For example three it is slightly low, but the difference is less than 1 kN-m, which

can be balanced by the other reinforcements. Equation 4.2 shows that the effect of

Lateral shear at mid section landing (Hol is prominent on flight mid span positive moment.

In finding the equation for Ho under loading two, emphasis was given to keep the results
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Fig. B.1 in appendix B shows that, for 'A' between 250 to 450 mm, the values of

horizontal shear at mid section landing (Ho) are overestimated in loading two. Ho is

negative for calculating the values of support negative moment from equation 4.1. This

higher estimation of Ho, in this range, reduces the value of support negative moment by a

considerable amount. In Fig. 6.7 for example one, the similar phenomenon is observed.

These values of support negative moments within the permitted range of 'A' are small in

magnitude in comparison to the magnitude of moments for other examples. To increase

the moment values in this range of horizontal gap between flights, a factor of 1.8 is used

in equation 4.1 to obtain the design moments in this range (Equation 6.8).

Design Support Negative Moment:

The proposed design flight mid span positive moment is then given by equation 6.7 and

the results are plotted in Fig. 6.15.

Design Flight Mid Span Positive Moment:

higher than finite element results. As Ho was on higher side, positive moment at flight mid

span is more conservative side for most of the examples. Considering this, a factor of 0.9

is used as a multiplier in equation 4.2 to bring back the higher estimation of the results.
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Fig. 6.9 shows that the negative moment at kink, calculated by the proposed method, is

lower than the values of other two methods. Amanat calculated kink moment at node

seven in place of node eight (Fig. 4.2). The use of node seven increased the moment-

arm, which resulted in higher estimation of moments. The present approach finds the kink

moment at the junction between flight and landing, with reduced moment arm, which

results in its lower values compared to the other two methods.

Fig. 6.10, 6.11, and 6.12 presented flight axial forces, torsion and flight in plane moments,

respectively. The values presented are very much comparable with those of finite element

methods.

Negative moments at mid section landing (Mol are maximum in load case one. Fig. 6.13

shows the values of negative moments at mid section landing (Mol from different

methods. Results of the proposed method are very much comparable with those of finite

elements. Amanat's method overestimated Mo in comparison to proposed and the finite

element methods.

Lateral shear at mid landing section (Hol is maximum under loading one. Fig. 6.14

showed the values of lateral shear at mid landing section (Hol from different methods. The

results of the proposed method are close to finite element results. Amanat's equations

over estimate Ho in comparison to finite element results for examples one to five and

underestimate it in examples six to ten.

6.5 PROPOSAL FOR A DESIGN GUIDE

The structural design procedure of a free standing stair may be divided into three stages,

namely:

al Analysis for stresses (forces and moments l

bl Checking of the thickness and calculation of the reinforcements

cl Detailing of the reinforcement layout.

These steps are described in the following sub-sections.

6.5.1 Analysis

The values of forces and moments at the critical locations are obtained for equations 6.3

to 6.8 and 4.1 to 4.7. These equations are valid within certain range of the geometric

parameters and concrete strength. Effort has been made to increase their usefulness by

increasing the range of the previous methods.
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Loads

.'

= 305 mm

= 1220 mm

= 1220 mm

= 2550 mm

= 3050 mm

= 125 mm

= 150 mm

= 150ITana = 250 mm

It should be noted here that T is initially assumed.

Rise

Tread

6.5.3 Design Example

The application of the proposed analysis and design guide is shown here through an

example. A prototype stair model is used for the design. The input data for design is

shown below,

Geometry

Horizontal gap between flight (A)

Width of landing (B)

Width of f1ights(C)

Horizontal span of flights (L)

Total height of stairway (H)

Slab thickness (T= T T )
" 2

The theoretical details of the reinforcement calculation are not given here. They are found

in any standard text book on reinforced concrete design. Since WSD method does not

treat torsion adequately, USD method is preferred to WSD method in this study. The

equations presented in the previous sections give working values of moments and forces.

Since elastic analysis is followed throughout, these forces and moments are directly

proportional to load. To convert these working values to ultimate design values they are

to be multiplied by some factor. This factor can be calculated as the ratio of factored

ultimate load to working load. Details of these design aspects are shown later through a

design example.

Four types of reinforcements are to be determined for the stair. These are:

• Longitudinal steel for bending moments.

• Longitudinal steel for axial force.

• Longitudinal steel for in-plane moment.

• Transverse stirrup for the torsion or for the combined effect of torsion and shear.

6.5.2 Calculation of Reinforcement



Forces and moments are calculated using equation 6.1 to 6.4 and 4.1 to 4.7, as given

below. The calculations are also shown in the worksheet on the next page.

The calculated values of forces and moments are working stress values, which do not

include the effect of load due to floor finish. They should be multiplied by an appropriate

factor so that ultimate design values can be obtained including the effect of floor finish.

The procedure is straight forward and is shown below:

= 3.51 kN-m.

= 6.04 kN-m.

= 7.95 kN-m.

= 66.78 kN.

= 7.63 kN-m.

= 42.00 kN-m.

= 15.48 kN-m.

= 51.25 kN.

= 4786.4 Pa (on horizontal projection)

= 718 Pa

= as calculated.

t -1 H/2an --
L

Live load

Floor finish

Dead load

_13050/2= tan ---
2550
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Lateral shear at mid-section of landing

Negative moment at mid-section of landing

Torsion in flight

In-plane moment in flight

Axial force in flight

f: = 20.68 MPa

fy = 275.84 MPa

Support negative moment

Flight midspan positive moment

Flight landing junction negative moment

a =

Inclination of flight slab:

Multiplying Factor for ultimate design values

Analysis

Material properties



Table 6.3 Tabular Presentation of Proposed Method
Input Line I --->,
A(mm) = 305 H(mm}= 3050 W1(KN}= 31.365 Sina= 0.513 DLSlab(Pa)= 3000,

B(mm) = 1220 T(mm)= 125 L-1W2(KN}= 13.038 Cosa = 0.858 DLStep(Pa)= 1544.82
C(mm} = I 1220 fC(Mpa}= 20.68 a(Radian} = 0.5390 Tread(mm}= 250.82 L-2W2(Kn= 5.02
L(mm} = 2550 ThicknessSlab(mm)= 125 Il:<ise(mm)~ 1lIa150llil yconcrele(M~aii1i~.0,02;jJ11 .1!1!(~}]I~i8_6r.

, L~ad. <:ase:2--~ '1 (150<A<1500) 915<8<2500 915<C<2500 2030<L<4000 2440<H<5000 100<T<350 14<fc<40 Value
CONST. 305 1220 1220 2550 3050 125 20.68

LC-2(Mo)(KN-m) -3.70 1.0244 1.1450 1.6303 1.3006 0.9990 1.1521 1.0000 -10.59
LC-2(Ho)(KN) 22.77 0.9320 1.1154 1.3293 1.3592 0.7062 1.1367 1.0000 34.33

Load Case -1=> , (150<A<1500) 915<8<2500 915<C<2500 2030<L<4000 2440<H<5000 100<T<350 14<fc<40 Value
CONST. 305 1220 1220 2550 3050 125 20.68

LC-1(Mo)(KN-m) -5.75 1.0258 1.2275 1.6251 1.2105 0.9957 1.0915 1.0000 -15.48

LC-1(Ho)(KN) 30.97 0.9559 1.2041 1.2788 1.3016 0.7964 1.0847 1.0000 51.25
LoadCase-1 Load Case-2

Ho= 51.25 He= 34.33
Me -15.48 (Equllibrium.Valuesl Mo -10.59

SNM(Kn-m) SNM 3.51 MAXLDCASE-2

FMPM(Kn-m) FMPM 6.04 MAXLDCASE-2

. NMAK(Kn-m) NMAK 7.95 -
AFF(KN) AFF 66.78

TiF(KN-m) TiF 7.63

IPMIF(KN-m) IPMIF 42.00

NMAMSL(KN-m) Mo(LC-1) 15.48

LSIMSL(KN) Ho(LC-1) 51.25



Dead load without floor finish:

Dead load with floor finish:

= 5297 Pa.

= 6133.8 Pa.
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30.880

are,

without floor finish = 4544.82/cosa

with floor finish = 5262.82/cosa

.. a =

The above dead loads are on inclined surface of flights. On horizontal projection, these

= 1544.82 Pa.

=! x Rise x Tread x _1_ x0.024 x106 (Pa)
2 ~(Rise2 + Tread') 1000

= 3000+1544.82 = 4544.82 Pa.

= 4544.82+718 = 5262.82 Pa.

150=--(mm)
tana

=!x 150x250.82 x_1_x 0.024 x 10' (Pa)
2 ~(l50' + 250.82') 1000

125= -- x 0.024 X 10' = 3000 Pa
1000

=250.82mm

_ T(Thickness of slab in mm) x 0.024 xl 0' (Pa)
1000

Dead load of slab on inclined surface of flights:

Average dead load from steps:

The steps are 150 mm high. Hence the tread is:
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4786.4 + 6133.8 = 1.083
4786.4 + 5297

= 8136.88 Pa.= 1.7 x 4786.4

Tota! Load With FF
Tota! Load Without FF

factored live load

Therefore, Pmax = 0.75Pb = 0.0277

Hence final multiplying factor is = 1.531x1.083 = 1.658

16724.2 = 1.531
10920.2

Therefore multiplying factor for conversion to ultimate value is

factored dead load = 1.4 x 6133.8 = 8587.32 Pa.

Total factored load = 8136.88+ 8587.32= 16724.2 Pa.

Checking of thickness requirement

Now, 50% of the ultimate moment =~x1.7xI5.48 = 13.158 kNcm.
2

One third of the width = 1220 =406.67 mm.
3

For ultimate values:

Therefore, the correction factor for floor finish becomes,

Total unfactored load = 4786.4 + 6133.8 = 10920.2 Pa.

Adequacy of slab thickness should be checked using the maximum bending moment

which is, for the present case, the moment at mid landing section. Amanat[4] mentioned

that the inner one-third of the width of the section carries 50% of the total moment. Hence

the thickness should be checked accordingly.

/.' 600
Balanced steel ratio, Pb = .85/31--"----

fy 600+ fy

For 20.68 MPa concrete, J3, =0.85 , hence Pb = 0.037



Through similar calculations as made above, the bending steel at other critical sections

dprovided = Total thickness - clear cover - stirrup dia - t main bar dia.

[ assuming a = 12mm ]

[ assumed main bar size = #3]

1.7 x 1.8x 3.51 x 10'=----------
.9 x 275.84 x (85.31-12/2)

As = 545.50 mm2.

As = 528.91 mm2

_ AJy _ 545.50 x 275.84 702
a - , -. mm .

.85Ie b .85 x 20.68 X 1220

I= 125 - 25.4 - 9.525--.9.525 mm
2

= 85.31 mm.

:. revised

check,

provide q>12 mm bar 5 nos.

A 528.91 1 4
. p = -' -------O.00508>~ OK.
.. bd 1220 x 85.31 I

y
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:. 13.158x1 06 = 0.9xO.0277x275.84x406.67xd2(1-0.59 0.0277 x 275.84 )
20.68

Solving, drequired = 77.57 mm

:. dprovided > drequired OK.

Negative steel at support

A - M"
s- rrf/d-a/2)

are, .

Positive steel at midspan of flights

As= 503.73 mm2, provide q>12 mm 4 nos.



Dimension of flight cross section is 1220 mm x125 mm

[assumed a = 5 mm]1.7 x 42.0 x 106

.9 X 275.84 x (1120 - 5/2)

= 257.36 mm2

257.36 x 275.84
check, a = ------ = 32.31

.85 x 20.68 x 125

= 0.66 + 0.33 1170
75

= 5.81 > 1.5
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at = 0.66 + 0.33Y' :0; 1.5x,

:. x =125 mm, y = 1220 mm, x1 = 75 mm, Y1 = 1170 mm.

Axial force = 66.78 Nt.

I

revised As = 260.6 mm2, provide q>12 mm 3 nos.

.. As = 1.7 x 66.78 x 10' = 411.56 mm2
.275.84

provide q>12 mm bar 4 nos.

Stirrup for torsion in flights

Steel for axial force (tensile) in upper flight

Negative steel at mid-section of landing

As = 1271 mm2, provide q>12 mm 12 nos.

Steel for in-plane moment in flight

Negative steel at kink

As = 671.43 mm2, provide q>12 mm 6 nos.
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= 501.5 mm.

OK.

rpa,A,x,yJys=-------
Tu - 0.07rp.[J; x' Y

0.34 bws = 0.34 x 125 x 280 - 43.14<129
fy 275.84

stirrup spacing,

Vc = O.17.[J;bd= 0.17J20.68 x 125 x 560 = 54115.6 Nt.

now,

:. AI = 1005.69 mm2. This steel will be added to other longitudinal steels.

maximum spacing permitted by code is x, : Y, (311.25)or 305 mm ok.

= 309.7 mm clc

b s
check minimum web reinforcement, (2At + Av) :2:0.34-w

-

fy

.85 x 1.5 x 78.53 x 75 x 1170 x 275.84
:. spacing, S =

1.7 x 7.63 X 10' - 0.07 x .85 x J20.68 x 125' x 1220

:. use closed rectangular stirrups of <p 10 mm bar @ 305 mm clc.

using <p 10 mm bar, At = 78.53 mm2

Stirrups for landing

. . . x + y 75 + 1170
longitudinal steel for torsion, AI = 2A, 1 I = 2 x 113.09 x ---

s . 280

.85 x (2 x 78.53) x 275.84 x 560 [U . 10 1= ----------- sing <p mm
87125 - .85 x 54115.6

stirrup spacing, S = rpAvlyd
Vu - rpv"

Taking half of the width of section as effective in shear, the shear capacity of the section

is,

Ultimate lateral shear in landing, Vu= 1.7x51.25x 103 = 87125 Nt.



but Smax"; d/2 . Hence stirrup spacing = 280 mm.

:. use closed rectangular stirrups of <p 10 mm bar @ 280 mm clc.

The layout of the reinforcement is shown in Figs. 6.16 and 6.17.

Reactions on supporting beam at floor level

The free body of upper flight plus landing cut at mid-section is shown in Fig. 4.6. With

reference to this figure:

W1 ( The load acting on mid point of flight):

[Live Load x L x C + (Dead Load from Slab +Dead Load from Steps) x C x _L ] x _1_ (kN)
Cosa 10'

= 31.365 kN

Wz(The load acting on mid point of landing):

Load Case 1:

(A)C+-
(Live Load + Dead Load from Slab)x B x 2 (kN)

10 '

W2=13.038 kN

Load Case 2:

( AJC+-
(Dead Load from Slab) x B X 10,

2
(kN)

W2= 5.02 kN.

Hence by ~ Fz=0 ,

v = (W, + W,) = (31.365+13.038) = 44.403 kN.

~ Fx=O

H' = Ho = 51.25 kN.
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1. Three cp 12 mm bars, top, equally
spaced within outer 610 mm
2. Two cp 12 mm bars, top, equally
spaced within inner 610 mm
3. Four cp 12 mm bars at bottom.

4. Two", 12 mm bars, top, continuous.

5. Two", 12 mm bars, equally spaced
within outer haWof the width.

6. Four", 12 mm bars, top, equally
spaced within inner half of the width.

7. Six '" 12 mm bars, placed within
inner one third of the width of landing.

8. Six '" 12 mm bars, placed within
outer two third of the width of landing.

I- 638 mm -+- 610 mm --I- ..- . 'M. __

-, -0 -
-(l

[-0 -0
I -1'1'1

f-<D --
- "->r~OY«-~ (vcufix full_ •••••"'''''''''''with the fJocx'-s1Bb steel

-0 -
l-r.\ IUUIUU

-{J)

-(i)

~
~

l

r- 638 mm ---j
I SIOmm I I

r
~
'"'"~

1---- 2550mm ------_1 1220mm .1

Fig. 6.16 Layout of Flexural Steel
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1. Four <p12 mm bars, bottom.
2. Four <p 12:run bars. top.
3. <p 10mm bar, closed stirrup@305 mm c1e.
(Landing)
4. <p10 mm bar, closed stirrup@ 280 mm c1e.
(Fligbt)

, : l-0' I , , , I, . , I , , , I

T ! , , ! ! , , !- ---, , , , ., , , , I, , , , , , , , _ L ---
«l (, --------- ---

, , , , , , , I --r ---, , , , , , , , ,
i ---! ! , ! i ! ! , i ,r ! T i : T r , i

E

L --I~ 1220mm---1I 25S0mm

r
~a

L

r
~

Fig. 6.17 Layout of Stirrups and Longitudinal Steel



CHAPTER 7

CONCLUSIONS
7.1 GENERAL:

The findings of this thick-shell finite-elements study of the behaviour of free standing

stairs and the brief reviewing of the earlier works on it are summarised in this chapter.

The generalised computer program is capable of dealing with the arbitrary geometry,

loadings and boundary conditions. Conclusions are drawn from the study of the

prototypes, the sensitivity analysis, the results obtained from the finite element method,

Amanat's[4] method and the proposed method. Unless otherwise specified, the

conclusions listed here refer to the free standing stair slab held fixed at upper and lower

floor levels and acted upon by uniformly distributed symmetrical loading.

Chapter one contains the previous works done on free standing stairs and the objectives,

scope and methodology of the present research.

Chapter two deals with the geometry of the free standing stair slabs, required loading

conditions, co-ordinate systems, sign convention, boundary conditions, redundants, and

material properties.

Codes and practices, existing analytical methods and Amanat's method are described in

chapter three.

Chapter four deals with the finite element model and the required modification done on

the thick shell program. The proposed approach, load calculation scheme and other

required equations for calculating moments and shears at the critical locations are

presented at the end of this chapter.

Lateral shear and bending moment at the mid section of landing are the two redundants

for the symmetrical condition of the free standing stair. Sensitivity analysis was carried

out in chapter five with a view to understand the effect of geometric parameters on these

two redundants. Changing one parameter at a time, while keeping others constant, the

sensitivity analysis is done for all the geometric parameters.

The basis of adopting the proposed equations is stated in chapter six. Comparison of the

results obtained from finite element analysis, Amanat's method and proposed method are

presented here in graphical form. To show the necessary calculation details of the

proposed approach, a sample calculation and reinforcement details of an example is

presented at the end.
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A computer program in 'Microsoft Excel' is developed to facilitate the necessary

calculation of this rnethod in tabular form.

7.2 FINDINGS OF THE PRESENT STUDY

Amanat's equations give values of different design parameters, corresponding to that

case of loading in which the parameter is maximised. For example, negative moment at

support and positive moment at flight mid span are maximised in loading two but lateral

shear and bending moment at mid section landing are maximised in loading one. His

equations give directly the design values of negative moment at support and positive

moment at flight mid span for loading two and lateral shear and bending moment at mid

section landing for loading one. But in this present approach, to calculate negative

moment at support and positive moment at flight mid span, values of lateral shear and

bending moment of mid landing section are required in loading two rather than loading

one. This fact initiated the need to propose two equations for lateral shear and bending

moment at mid landing section in each case of loading. This leads to solving the stair as

an equilibrium problem for individual loading case in a more realistic way.

From the results of sensitivity analysis it is found that within Amanat's range it varied

almost linearly but when the range is increased certain parameters changed nonlinearly.

To accommodate this behaviour higher order functions are introduced replacing the linear

equations. Amanat, in his method, presented some empirical equations but the basis of

selecting these equations was not specified. A model equation is introduced and modified

later to find optimum empirical equations for each governing factor. In order to obtain

more rational values for positive moment at flight mid span and negative moment at

support, some multiplying factors are introduced in the equilibrium equations to find the

design equations.

7.3 THE DESIGN RATIONALE:

Based on this study, a simple design example is presented in chapter six. The range of

validity of the method covers the most frequently occurring cases. The main advantages

of the proposed method are:

a) The number of empirical equations proposed by Amanat[4] for individual stair was

seven. Here it is reduced to four. The effects of loading one and two are

considered separately in these equations. The required forces and moments are

obtained easily from the suggested equations. There is no need for an elaborate
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structural analysis. This relieves the designer from the rigorous calculation

required even in the approximate analytical methods.

b) The basis for selecting the equations is defined and the range of geometric

parameters is increased which make the approach more realistic and useful.

7.4 SCOPE FOR FUTURE INVESTIGATION

Consistent with the objectives of the present study, the overall behaviour of the free

standing stair, held fixed at supports and acted upon by symmetric loading, has been

analysed and specific design guidelines have been formulated. However, further works

remain to be done, some indications of which are given below.

• For gaining confidence in the application of the proposed equations, a physical model

may be constructed and tested.

• The stairs analysed are considered fixed at supports. Equations can also be derived

for stairs partially fixed conditions. A detailed study may be made considering partially

flexible supports at floor levels.

• This study was primarily limited to stair of symmetric geometry. It can be extended to

cover non.symmetric geometry.

• Linear elastic analysis was made throughout. A finite element analysis with non.linear

material properties can be attempted in future.

• Two possible symmetric loadings were used in the analysis. Investigation for

unsymmetric loading, such as live load only on upper flight, may be carried out.
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APPENDIX

A.1 BRIEF DESCRIPTION OF THICK SHELL ELEMENT

The thick shell program used here is a FORTRAN code, a modified version of the general

thick shell element code developed by Ahmad [3]. A brief description of the program is

given in art.A.2.

Typical thick shell elements are shown in Fig.A.1.1. In thick shells, bending effect can be

expected to be significant. The transverse shear deformation is also significant. From a

three dimensional point of view the elements have two degeneracies. Firstly, the original

normals to the middle surface are assumed to remain straight. Secondly, the distance of

a point along the normal from the middle surface remains unaffected.

Geometric Definition of the Element:

The external faces of the element are curved, while the lateral faces are planes. Pairs of

points itop and ibottom ' each with given Cartesian co-ordinates, describe the shape of

the element.

If q, 1J be the two curvilinear co-ordinates in the middle plane of the shell element

(Fig.A.1.2) and C; be the normal to the middle surface and further if it is assumed that q,
1J and C; vary between +1 and -1 on the respective faces of the element then a

relationship can be written between the Cartesian co-ordinates of any point of the shell

and the curvilinear co-ordinates in the form,

x x. X.
I I

Y - L:Ni(~,11)l+~ Yi + L:Ni ( ~ , 11) 1 ; ~ Yi
2

z Z. top Z.
bottomI I

Here N/~q, 1J ) is a shape function taking a value of unity at the nodes i and zero at all

other nodes. If the basic functions Ni are derived as 'shape functions' of a 'parent' two

dimensional element, square or even triangular in plan and are so designed that

compatibility is achieved at interfaces. then the curved shape elements will fit into each

other. Arbitrarily curved shapes of the element can be achieved by using shape functions

of different orders. Only parabolic and cubic types are shown in Fig.A.1.1. For the

purpose of present analysis a parabolic element has been used. By placing a larger
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number of nodes on the surfaces of the element more elaborate shapes can be achieved

if so desired. It should be noted that the co-ordinate direction is only approximately

normal to the middle surface. The relationship between the Cartesian co-ordinates and

the curvilinear co-ordinates can be written conveniently in a form specified by the 'vector'

connecting the upper and lower points (i.e. a vector of length equal to the shell thickness,

t) and mid-surface co-ordinates (shown in Fig.A.1.3).

here v3, is a vector whose length is the shell thickness.
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Displacement Field

Since the strains in the direction normal to the mid-surface is assumed to be negligible,

the displacement throughout the element will be taken to be uniquely defined by the three

Cartesian components of the mid-surface node displacements and two rotations of the

nodal vector V3' about orthogonal directions normal to it. If two such orthogonal directions

are given by vector v2' and v Ii of unit magnitude, with corresponding scalar rotation ai

and Pi ' it can be written, similar to the previous equation, but now dropping the suffix mid

for simplicity,

A.2 GENERAL FEATURES OF THE PROGRAM

The general thick shell finite element program is a generalised program. The geometry of

a structure is defined in a global system. The loading and boundary conditions must be
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given in the same unit as the nodal displacements of an element. The stresses are

usually calculated at the nodal points in the global system.

The top and bottom co-ordinates of each node with respect to Cartesian co-ordinate are

fed into the program. Co-ordinates for non-corner nodes lying on straight edges are not

required to be given. If these co-ordinates of the nodes are fed into the program, then the

shape of the element is automatically defined in the program. Therefore the thickness of

the element can vary from node to node and the edges may be curved parabolically and

cubically depending upon the type of element used. The program as at present can

handle isotropic elastic material. The material properties are defined for every element

separately, thus allowing the program to deal with materials varying from element to

element. The temperature and pressure can be varied from node to node.

Output from the Program

The displacements are calculated and printed against each node in the ascending order

for every loading case. Stresses are first calculated in the local orthogonal system and

then transformed to the global Cartesian system. For every node the top surface stresses

are followed by the bottom surface stresses.

The global stresses are also stored separately for top and bottom surfaces against nodal

numbers and at the end a simple averaging is performed on them. The average stresses

are then printed out in the ascending order of the nodal numbers. The top surface

stresses for all the loading cases are followed by the bottom surface stresses.

Division of Structure into Elements

The structure is first of all divided into suitable elements and the nodes are numbered in

any suitable way as shown for example in Fig.A.2.1. The elements are also suitably

numbered in some sequence on which they are fed in the computer. Two probable

sequences are shown in Figs.A.2.1 a and A.2.1 b. Each element is topologically defined by

its nodal numbers in a consistent right hand screw system shown in Fig.A.2.2a and

A.2.2b.

Front Width and Selection of Order of Elimination

To carryout the analysis of a structure using minimum possible computer storage, the

elements selected in such a sequence that the maximum number variables to be handled

at any particular time (the front width) is minimum. For example, the prescribed order of
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elements in Fig.A.2.1 a gives the smallest front width. This is evident even from

inspection in a simple structure.

The thick shell program uses the frontal solution technique. Here the assembly of an

element stiffness and the corresponding right hand sides is immediately followed by the

process of elimination of the variables corresponding to nodes which occur for the last

time. This is indicated to the program by inserting a -ve sign before these nodes. This can

easily be put in most shell structures once the element sequence has been selected.

A.3 EVALUATION OF STRESSES AT GAUSS POINTS

Formulation of the element stiffness matrix involves integration of complex polynomial

shape functions of the elements and their derivatives. Exact integration of such functions

are very troublesome and numerical integration becomes essential. Numerical

integration of any function involves evaluation of the function at some representative

points within the element. The number of representative points required for a certain

degree of accuracy depends on the technique of integration employed. It is found that

number of sampling points are minimum when Gauss' quadrature is applied. For this

reason virtually all finite element programs uses Gauss' quadrature. The Gauss

quadrature formula is,

I = f!(~)d~-
In the above formula integration is performed over the range -1 to +1, ai is the abscissa of

the Gauss points, f(ai) is the ordinate, Hi is the weight coefficient and n is the number of

sampling points. Value of ai and Hi depends on the value of n. The following table lists

these values for n upto 3.

I I eta I H I
n = 1 0.0 2.0

n=2 0.577350269 1.0

0.774596692 0.5555555555
n=3

0.000000000 0.8888888888

In Ahmad's program 2-point and 3-point Gauss' quadratures are applied for the 8-noded

and 12-noded elements respectively. Integration is performed in the local element co-

ordinate (q , 1] , 1;) system. The co-ordinates of the points within the element varies
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between +1 and -1. If 2-point (n = 2) integration is performed then, on the middle surface,

there are four Gauss points because integration is carried out in both'; and 1] direction.

The co-ordinates of these four points with respect to .; ,1] system will be (:to.577350269,:t

0.577350269). These points are shown in Fig.A.3.1

In finite element analysis using displacement methods, the stresses are discontinuous

between elements, because of the nature of the assumed displacement variation. For this

reason stress at a node is calculated by averaging the stresses obtained at that node

from the elements common to that node. Experience has shown that in the case of

isoparametric elements the Gauss integration points are the best stress sampling points.

The element nodes, which are the most useful points for output and interpretation of

stresses, appear to be the worst sampling points. However, it has been observed that

shape function derivatives (and hence stresses) evaluated at interior of the elements are

more accurate than those calculated on the element boundary.

The thick shell elements developed by Ahmad [2] are good for analysing singly or doubly

curved shell structures where load is carried by bending as well as inplane forces. In most

shell structures transverse shear is not a very important quantity. It has been found from

previous experience that out-of-plane shear in such ordinary shell structures are small in

magnitude and they can safely be neglected in design. Consequently, while formulating

element characteristics, less importance was given to the evaluation of transverse shear

stresses. For this reason, the thick shell program of Ahmad gives somewhat erroneous

nodal transverse shear stresses. However, stresses at Gauss points are predicted with

good accuracy. In shell or plate structures, like a free standing stair, transverse shear is

important. Total torsion on a given section can correctly be determined only if shear

stresses are correctly known. For this reason determination of stresses at Gauss points

becomes essential if one uses Ahmad's program to analyse any structure where shear

and torsion are important.

51



Tj

7 7""+7
6

5
00 Co

4
~

~

A Bo +
II

~ 0
"-VI

II
7)=-1.cv

2 3

Gauss poirlts
A,B,C.D

Fig. A.3.1 Gauss Points in a 8-Noded Element



APPENDIX B



0 200 400 600 800 1000 1200 1400 1600

••• •-16
•

E -17
Z ,
'" y=:a+b(X-915)

~ -18 ,1

'5 b 0.00078 •., C 1.15
=> Factor -15,32 •rn -19

~

>

-20

2500

2500

2000

2000

Value of B(mm)

Value of C(mm)

1500

1500

•

Y=a+b(X-91S{
, 1
b 0,009069

C 0,74

Factor -9.57

1000

1000

Value of A(mm)

Fig 8.1 Equation of A for Mo(Load Case 1)

Fig B.2 Equation of B for Mo(Load Case 1)

Fig B.3 Equation of C for Mo(Load Case 1)

-10

-15
.-.~~

E
Z -20

'"~ Y=a+b(X-91st

'5 -25 , 1

" b 0.000142
=>rn c 1.29
> -30 Factor -12.06

-35

-10

-15

rz
'"
~ -20

'5
"=> -25rn
>

-30



5000

350

4000

4500

300

3500

4000

250

3000

3500

Value of L(mm)

200

Value ofT(mm)

2500

3000

150

•

Y=a+b(X-2030t
, 1

b 0.000589

c 0.94
faclor-l1.85

Value of H(mm)

Y=3+b(X-2440t
,1
b -0.0000071
,1
Factor -15.56

2500

Y=a+b(X_l00)C

,1
b 0.009311

c 0.71
Factor -15.34

2000

•

100

Fig 8.4 Equation of L for Mo(Load Case 1)

Fig 8.6 Equation of T for Mo(Load Case 1)

Fig 8.5 Equation of H for Mo(Load Case 1)

-22

-20

-12

-14
E
Z~ -16:f
'0
~ -18~
rn
>

-20

-14

-16

-22

E
Z~ -18

:f
'0
~~
~

2000

-16.4

-16.2

-16.0
E
Z -15.8~
:f -15.6
'0
~ -15.4~
rn

-15.2>

-15.0

-14.8



36
•

34
32 • •

Z 30 •
"'-I 28 Y = a+b(X-150t

•
a ,1 •" 26 •=> b -0,001144ro •> 24 c 0.81

Factor 34.64

22
~

20 •
0 200 400 600 800 1000 1200 1400 1600

Value of A(mm)

Fig B.7 Equation of A for Ho( Load Case 2)

70

60 Y=a+b(X-91st
,1
b 0,000025

Z 50 C 1.475
~ Factor 27.69
'"5'
I
a 40" .//=>ro
>

30 .-------•
20

1000 1500 2000 2500
Value of B(mm)

Fig B.8 Equation ofB for Ho( Load Case 2)

55

50 //"
y= a+b(X-91S{

45 ,1
b 0.003693

Z
c.78S~

'"5' 40 factor 23.47I
a
" 35=>ro
> 30

25

1000 1500 2000 2500
Value of C(mm)

Fig B.9 Equation of C for Ho( Load Case 2)



350

4000

300

3500

250

3000

200

2500

150

"
"

Y=a+b(X-2030{

,1
b 0.000154

c 1.24
Factor 19.94

----"
"

,
Y=a+b(x-2440)

"b -0.01748
cD.44
Factor 48.668

2000

100

Value ofT (mm)

Fig B.12 Equation of T for Ho(Load Case2)

Value of L (mm)
Fig B.10 Equation of L for Ho(Load Case2)

40

20
2000 2500 3000 3500 4000 4500 5000

Value of H (mm)

Fig B.11 Equation of H forH6(Load Case2)

20

30

50

60

45

40

Z 35-'"I
'0 30"=>ro
>

25

70

60 Y=a+b(X-1oot

Z ' 1

-'" b 0.006851

-.- 50 cO.93
I Factor 31.52'0
"=>ro 40>

30



I

-' \

•

'.

•

2500

•

,

.sou

•

•

•

2000

••. -.•.

•

. " .

1500

•
••

200 400 600 800 1000 1200 1400 1600

•

1000

•-.

'.;';:;0 .!lOO

Value.ofB(mm»)

fF,~~@:~~ !~~~~pV9~~,tqrIM~l~~",~d&~~et~

2500 JOCO 3ro \ 4000

V~,~,~g!-1(~m~1)
Fl'gB.13';EquatiOTf'df~f6rJI\I16(L!0aarGase2~)

1000 1500 2000 2500-----...-..-.--.-----~-------------==n
-6 ,
.10 1
-8 , i

.~..
-16 I..(;~

I
I

-18- ;
- !lOO

•.•. &- ,
-14 I

.W'
-8 I

.';11

-10
.1G \l

0

-9.5

-10~ .

~r;
-10.5~:fi ~.\ ..

'0'.'-\:2U
'f5~ -11.0
')Ill -I,2.3
~~ -11.5

-1216-

"

•

.':.

r
i

'>,.



.'

4000350030002500

Value of T(mm)

,
Y==a+b(X-2030)

"bO,OOO578
"factor -6,66

2000

Fig. B.17 Equation of H for Mo(Load Case 2)

Fig. B.18 Equation ofT for Mo(Load Case

Value of H(mm)
Fig. B.16 Equation of L for Mo(Load Case 2)

-8

-14

-10

~
-12

E
Z -14
"":f ,

Y=a+b(X-l00)

'0 ,1

Q) -16 b 0,013169

~ cO.76
1ii factor-9.54>

-18 '"
100 150 200 250 300 350

-10.4

-10.2

-10.0

E -9.8Z
"" •:f ...-----------------. • • • • •-9.6 •'0 •
Q) Y"a+b(X-2440j"~ -9.4
1ii "> b-O.OOOOOl

-9.2 "factor-9.Gl

-9.0
2000 2500 3000 3500 4000 4500 5000

Value of L(mm)


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107

