
A NEW MODEL FOR RELIABLE WEB SERVICE
, '

.~:

MALIHA'SULT ANA

A thesis submitted to the Department of Computer Science and Engineering, Bangladesh

University of Engineering and Technology, in partial fulfillment of the requirements for the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA, BANGLADESH
~. ..,-'-
" "
"

,,
1111111111111111111111111111111111

,

<
,

~~ #104393#
;
," - . -,.--~._-- ~",-,"'

SEPTEMBER 2007

CERTIFICATE OF APPROVAL

The thesis titled "A New Model for Reliable Web Service System" submitted by Maliha Sultana,

Roll No: 100505055F, Session: October, 2005 to the Department of Computer Science and

Engineering of Bangladesh University of Engineering and Technology has been accepted as

satisfactory in partial fulfillment of the requirements for the degree of M.Sc. Engg. in Computer

Science and Engineering and approved as to its style and contents. The examination has been

held on September 24, 2007.

Board of Examiners

~
Dr. Md. Mostofa Akbar
Associate Professor
Department ofCSE, BUET, Dhaka.

~~$YDt¥ ~,
Dr. Muhammad Masroor Ali
Professor and HeadMLTDh

''''

Dr. M. Kaykobad
Professor
Department of CSE, BUET, Dhaka.

~~
Dr. Reaz Ahmed
Assistant Professor
Department of CSE, BUET, Dhaka.

Dr. ~,-te-r-H-as-i-n ------

Professor
Department of IPE, BUET, Dhaka

Chairman
(Supervisor)

Member
(Ex-officio)

Member

Member

Member
(External)

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology

September, 2007

II

"

•

CANDIDATE'S DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the

award of any degree or diploma.

Maliha Sultana

III

,

To the Almighty

To myfamily

IV

ACKNOWLEDGEMENT

All praIse to Allah, the most benevolent and the Almighty, for His boundless grace In

successful completion of this thesis.

I would like to express my sincere respect and gratitude to my thesis supervisor, Dr. Md.

Mostofa Akbar, Associate Professor of the Department of Computer Science and Engineering

(CSE), Bangladesh University of Engineering and Technology (BUET), Dhaka, for his

thoughtful suggestions, constant guidance and encouragement throughout the progress of this

research work. He was always more confident than I was about my being able to complete

this thesis.' The ever-interesting part of working with him was: whenever I almost devised a

solution, he was there to find a small new patch to the original problem; although the solution

part was hardly ever patchable and I had to endure the fun of doing re-research.

My husband, Mushfiqur Rouf, a graduate of the Department of CSE, BUET, Dhaka, helped

me a lot on several occasions by providing me an opportunity to learn how to debug critical

code segments. He loves to do critical coding, but not to debug his different 'features' that did

not quite match up to the original requirements.

I also express my profound thanks to Dr. Chowdhury Mofizur Rahman, Head and Professor,

Dept. of CSE and Pro-Vice Chancellor, United International University, Dhaka for granting

. me study leave, and helping me to complete this degree before leaving Bangladesh.

Finally, this thesis would not be possible if my father-in-law, Dr. Md. Abdur Rouf, Professor,

Dept of Civil Engg (CE) and Dean, Faculty of CE, BUET, Dhaka, were not there constantly

pushing, encouraging and inspiring me.

I would like to extend my sincere thanks to my parents, parents-in-laws and my husband

whose continuous inspiration, sacrifice and support encouraged me to complete the thesis

successfully.

v

l'- ,')

. ,

ABSTRACT

In this thesis a new model for a distributed web service system is presented. The proposed
"

system is composed of multiple web service components having multiple alternative versions

distributed among multiple servers. Each of the versions of a component has its own

multidimensional resource requirements. A request is placed by a client for a specific web

service component to a broker, which can allocate more than one version to increase

satisfaction of the client by redundant allocation. The satisfaction of a client depends on the

reliable service of redundant versions served by multiple servers. In the proposed model an

allocation is to be found that maximizes total client satisfaction subject to the resource

constraints of the servers.

A variant of the network flow maximization algorithm has been used to address the proposed

problem. The resource requirements and constraints can be mapped onto a multidimensional

flow model. Each augmenting path represents one allocation of a version of a web service

component at a server. Clearly, there is no scope for partial flows and the flow conservation

principle must not be broken. Considering these two algorithmic constraints, the basic Push-

Relabel algorithm is modified to solve the problem. The resource allocation problem

considered here is a Multidimensional Knapsack Problem which is NP hard and has

exponential time complexity. In the proposed algorithm this Multidimensional Knapsack

Problem has been reduced to a Single Knapsack Problem at each server with necessary

communications among the servers. This communication among the servers is achieved

through the flow of resources in the network. Thus the presented heuristic running with

polynomial time complexity and producing suboptimal solution is attractive for a web service,
system, a real time application,

The proposed heuristic algorithm has been compared with a Brute Force and a Greedy

algorithm. It is found that the solutions of the proposed algorithm are very close to the

optimal solutions provided by the Brute Force algorithm. On the other hand, the proposed

algorithm provides far better solutions than the Greedy algorithm. Since the running

components can not be allocated to another server in the middle of their execution, the new
'-',.

component requests must be allocated using the remaining free resources. That means each

VI

.,
\." .,

iteration is an independent problem to be solved using this heuristic algorithm. In addition to

that, the network flow model presented in this thesis inherently rules out the number of

requests from contributing in time complexity of the algorithm.

VB

Table of Contents

CERTIFI CATE OF APPRO VAL : ii

CANDIDATE'S DECLARA TI0 N iii

ACKN 0 WLEDG EMENT v

ABSTRA CT vi

Ta bIe 0f Con tents vii i

List 0f Figures xii

List 0f Ta bIes 1-1

List 0f Abbrevia ti0ns 1-2

List 0f Abbrevia tio ns 1-2

List 0f Sym boIs ,....................... 1-3

Ch apter 1. In trod uctio n.. 1-4

1.1. Motivation 1-4

1.2. Problem Definition 1-5

1.3. Objective and Scope of the Thesis 1-5

1.4. Outline 1-6

Ch apter 2. Litera ture Review 2-8

2.1. SOme Basic Definitions ; 2-8

. 2.1.1.

2.1.2.

2.1.3.

Web Service 2-8

Reliability 2-9

Redundancy 2-10

2.2. Reliability Optimization Models 2-11

2.2.1. Cost, Reliability Models _ _ _.._ 2-12

Vlll

2.2.2. Resource-Reliability Models .." ' 2-12

2.2.3. Reliability Models for Web Services 2-13

2.3. Reliability Optimization Algorithms 2-13

2.4. . Introduction to the Network Flow Maximization Problem 2-15

2.4.1. Flow Network 2-15

2.4.2. Networks with Multiple Sources and Sinks 2-16

2.4.3. Residual Networks 2-17

2A A. Network Flow Algorithms , 2-17

2.4A.I. Ford-Fulkerson Method 2-17

2A.4.2. Edmonds-Karp Method 2-18
•

2AA.3. Push-Relabel Method- Goldberg's Algorithm 2-18

2.4.5. Applications of Network Flow 2-21

2.5. Chapter Summary 2-21

Chapter 3. Proposed New Model 3-22

3.1. The Distributed Web Service System 3-22 ..

3.1.1. Working Principle of the Proposed Distributed Web Service System 3-23

3.1.2. Assumptions of the Model 3-24

3.1.3. Mathematical Formulation 3-25

3.2. Solving the Model by Mapping to Network Flow Maximization Problem 3-27

3.2.1. Mapping of the Proposed Model to Network Flow Graph 3-27

IX

3.2.2. The Set of Vertices in the Mapped Network 3-28

3.2.3. The Set of Edges in the Mapped Network 3-29

3.2A. Capacities of the Edges in the Mapped Network.. 3-29

3.3. A Simple Example of the Proposed System 3-31

3A. The Push Relabel Algorithm to Solve the Mapped Network Flow Graph 3-34

3A.I. Initial Flow 3-34

3A.2. Forward Push 3-35

3A.3. Backvmrd Push 3-37

3AA. Relabel 3-37

3A.5. Solving a Knapsack Problem at Each Server.. 3-38

3A.6. Snapshot 3-39

3.5. The Allocation of Versions to Requests 3-40

3.6. Stopping Criteria 3-44

3.7.' The Algorithm 3-45

3.7.1. Complexity Analysis 3-46

3.7.1.1. Complexity of the Push Operations 3-47

3.7.1.2. Complexity of Relabel Operations 3-49

3.7.1.3. Total Worst Case Complexity of the Algorithm 3-50

3.8. Chapter Summary 3-50

x

Chapter 4. Result Analysis 4-51

4.1. Brute Force Algorithm 4-51

4.2. Greedy Algorithm 4-51

4.3. Data Generation 4-53

4.4. Result Analysis : 4-55

4.5. Chapter Summary 4-64

Chapter 5. Con clusio n 5-65

5.1. Maj or Contribution 5-65

5.2. Future Works 5-66

Referen ces 5-67

Xl

•

List of Figures

Figure I-I The client server model ofa distributed web service system : 1-4

Figure 2-1 A simple example ofa flow network with source s and sink t 2-16

Figure 3-1 A typical architecture of the distributed web service system 3-22

Figure 3-2 An example of a network flow mapping of the proposed model. 3-28

Figure 3-3 An example of the proposed system with 2 servers and 2 components 3-31

Figure 3-4 Network flow graph for the example stated above 3-32

Figure 3-5 Flow network for the snapshot example , 3-39

Figure 3-6 An example of allocation of versions to requests 3-43

Figure 4-1 Comparison of Total Satisfaction for randomly generated data sets 4-57

Figure 4-2 Comparison of Total Number of Accepted Requests for randomly generated data

sets., , , , 4-5 S

Figure 4-3 Percentage increase in Total Satisfaction for different server capacities 4-59

Figure 4-4 Comparison of Total Satisfaction for randomly generated data sets with increasing

_requests , ,., 4-60

Figure 4-5 Total number of push operations performed by the proposed algorithm 4-61

Figure 4-6 Running times of the proposed algorithm for three different network sizes 4-62

Figure 4-7 Percentage increase in Total Satisfaction for three different source heights with

respect to source height I Jil 4-63

Figure 4-8 Running times of the proposed algorithm for the four different source heights.4-63

Xl!

List of Tables

Table 3-1 Resource requirements and containing servers of each of the versions of the

two components 3-31

Table 3-2 An example of satisfaction values and corresponding allocations for the

components 3-32

Table 3-3 Allocation count and the associated servers for each version of each

component. 3-33

Table 3-4 The optimal allocation and the satisfaction of the requests in the optimal

allocation 3-33

Table 3-5 Satisfaction and resource requirements of Component I .and Component 2.

.. 3-39

Table 3-6 Some possible allocation of three versions to two requests 3-41"

Table 3-7 Data for the allocation of Component I. 3-42

Table 4-1 Comparison of the proposed algorithm with Brute Force and a Greedy

algorithm 4-56

List of Abbreviations

COTS: Commercial Off-The-Shelf

GA: Genetic Algorithm

NVP: N-Version Programming

QoS : Quality of Service

RBS: Recovery Block Scheme

RPC: Remote Procedure Call

SA: Simulated Annealing

';SOAP: Simple Object Access Protocol

SORM: Service-Oriented Software Reliability Model

TS: Tabu Search

UDDI: Universal Description, Discovery and Integration

WS: Web Service

WSDL: Web Service Description Language

XML: Extensible Markup Language

1-2

•
•

List of Symbols

Qk,: Amount of Resource Type r available at the Server k.

C;: Version) of Component i

c(u, v): Capacity of the edge (u, v)

Cb(U, v): Basic capacity of the edge (u, v)

cf.,u, v): Residual capacity of the edge (u, v)

M: Total number of versions of all web service components

m; : Number of alternative versions of Component i

n :Number of requests

n; : Number of requests for Component i

N: Total number of web service components

S: Total number of Servers

w~,:Amount of resource type r required by C;

1-3

•.

Chapter 1. Introduction

•

1.1. Motivation

With the advances of the internet, web services are becoming more and more popular.

A web service performs a set of tasks and can be accessed via the network. When a

request comes for a service, the specific web service component is executed in the

server and the result is passed to the client. Because of the constraints of the servers

(for example, limited hardware resources) it is not always possible to provide service

to each incoming request. The following issues regarding web service systems

motivate the investigation of new models:

Redundant allocation of a component IS a way to provide clients with

uninterrupted reliable service.

• Distribution of the web service components to multiple servers is necessary to

serve more clients as the resources of a server are limited.

• Allocation of web service components to clients from appropriate servers is an

important function to be done by some entity.

The following figure depicts a typical distributed web service system.

Clients

Internet

Servers

Figure 1-1 The client server model of a distributed web service system.

1-4
~.:::

".'''Ii"

1.2. Problem Definition

In thIS thesis a new model is presented that addresses the problem of allocating

requested web service components to the clients in a distributed web service system.

The following points describe the problem:

•

•

•

•

•

1.3.

Multiple versions of a component: Each web serVIce component can have

multiple alternative versions. The versions of a component are developed by

separate group of programmers from the same initial specification. Thus they

provide similar functionality but different satisfaction values. Here the

satisfaction provided by a web service component can be considered as a

function of some non functional criteria such as reliability, performance, cost,

security etc of that component.

Components residing in multiple servers: The verSIOns of a web servIce

component are hosted by multiple servers.

Requests of the clients: The clients request for web servIces which are .

executed in the server using server's resources and the results are passed to the

clients over the network. A server can reject to serve a client if it can not

satisfY the resource requirement needed to serve that client.

Allocation of redundant versions: Multiple alternative verSIOns of a

component can be allocated to a client to provide more reliable service which

will increase the client's satisfaction.

Maximization of satisfaction: The allocation of services from multiple servers

is done in such a way so as to maximize the total satisfaction of all the clients

by providing reliable services allowing redundancy whenever possible.

Objective and Scope of the Thesis

The objective of this thesis is to design an optimization model for the decision making

process of adistributed web service system. The optimization model should maximize

the total satisfaction of all clients while respecting the resource constraints of the

servers. Also the optimization model should find a solution quickly since the decision

1-5

making process is executed at run time for each set of requests, keeping the clients

waiting for an answer.

The optimization model presented in this thesis is solved by a heuristic using network

flow maximization algorithm. The heuristic will not always provide an optimal

solution in all scenarios. However, the solution whether it is optimal or not, will be

generated in polynomial time. The time complexity of the algorithm does not even

depend on the number of requests.

The algorithm for an exact solution is out of scope of the thesis. The problem is NP

hard and .it is practically impossible to solve the problem for larger data sets. That is

why the proposed algorithm is compared with a simple greedy heuristic. Also to

determine the performance of the proposed algorithm, the proposed algorithm has

been compared with a Brute Force algorithm for smaller data sets. A detailed study of

. the optimality of the algorithm is out of scope of the thesis.

In the proposed model, the total service satisfaction of all clients is maximized. Here

the satisfaction of a client is considered as a function of reliability of the service but

there is no straight forward relationship between reliability and satisfaction. This

rel'ationship is also out of scope of this research.

A worst case complexity analysis has been presented lD the thesis. Finding the

complexity in the average case requires statistical analysis of the client's requests,

which is not studied in this phase of research.

1.4. Outline

The remaining part of the thesis is organized as follows.

Chapter 2 discusses some existing reliability optimization models and algorithms. An

overview of the network flow problem, its applications and algorithms are also

presented in this chapter.

1-6,

'-(

The proposed new model is described in Chapter 3, along with its mathematical

formulation. Section 3.2 is devoted to the description of the proposed network flow

heuristic for solving the model. A worst case complexity analysis of the algorithm

will be found in Section 3.7.1.

In Chapter 4, a comparative result analysis of the algorithm with a Brute Force and a

Greedy algorithm is presented.

Chapter 5 concludes the thesis and provides some directions for further research in

this field.

1-7

Chapter 2. Literature Review

Reliability optimization techniques have been used heavily in the literature for

component based software systems. Reliability optimization in this context means

finding an optimal set of components from alternatives for a software system so as to

maximize reliability of the whole system while maintaining some cost or resource

constraints. The model proposed in this thesis maximizes total satisfaction (which is

considered here as a function of reliability) while respecting multidimensional

resource constraints and is thus similar to these models. But the new part of the

proposed model is that it is not for "developing a single software system", rather it

deals with web services and finds an optimal set of redundant versions of each web

service component to satisfY each request over the network.

The chapter starts with some basic definitions needed to understand the proposed

model. Then some reliability optimization models from the literature are described

and finally some network flow algorithms and their applications are presented. The

Push-Relabel network flow algorithm has been described in detail since a variation of

this method is used to solve the model presented in this thesis.

2.1. Some Basic Definitions

Next few sections provide the definitions of some basic terms used to describe the

model presented in this thesis.

2.1.1. Web Service

A web service is an interface that describes a collection of operations that are network

accessible to remote users [1], [2]. Web services provide a standardized method of

communication among software applications and make software application resources

available over the network in a standardized way. Using web service technology, one

application can call on another to perform functions which can be anything from

simple processes to complicated business tasks, even if the applications are running

2-8

on different machines with different operating systems and are written in different I

languages. In other words a web service makes its .resources available in such a way

that any client application, regardless of its internal implementation can use it.

To be accessed easily, web services must adhere to a set of standards. Some of the

most frequently used standards are described in [I] and are presented below:

WSDL: WSDL is the Web Service Description Language. A service provider formally

describes its services through a WSDL file. It is an interface standard that abstracts

from any platform and programming language specific details of how application

code is actually invoked. WSDLs are generally publicly available and provide the

details that a client needs to interact with the service. For example, if a web service

translates English sentences into French, the WSDL file will explain how the English

sentences should be sent to the web service, and how the French translation will be

returned to the requesting client.

UDDl: The UDDI (Universal Description, Discovery and Integration) registry serves

as a means of discovering web services described using WSDL. The service vendors

register their services into an UDDI directory. The service consumers then search the

UDDI directory to find an appropriate service from a set of alternatives.

XML and SOAP: XML (Extensible Markup Language) messages provide the common

language by which different applications can interact. To operate a web service a

client sends an XML message containing a request for the web service to perform

some operation; in response to the request, the web serviCe sends back another XML

message containing the results of the operation. Typically these XML messages are

sent using SOAP, an acronym for Simple Object Access Protocol that specifies a

standard format for applications to call each other's methods and pass data to one

another.

2.1.2. Reliability

Reliability refers to the property that a system can run continuously without failure

[3]. Reliability is defined in terms of a time interval instead of an instant of time. The

2-9

formal definition of software reliability is "the probability that the software will be

functioning without failures under a given environmental condition during a specified

period of time" [4], [5]. Other approaches measure software reliability in terms of

percentage of failures for a given number of attempts [6]. Software reliability is one

of the important measures that guide a client while choosing a software system from a

set of alternative options.

Zo et. al. [6] consider web services as Remote Procedure Call (RPC) methods over the

internet. Considering this characteristic the approach that measures reliability as a

percentage of failures other than a probability that a failure will occur during a

specified period of time is adopted for the case of web services. For example a web

service that exhibits 99.1% reliability indicates that the service will perform

successfully (that is without failure) 991 times out of a 1000 attempts. Prior research

in Quality of Service (QoS) area has identified a set of criteria that plays significant

roles in web service selection process. The results of a survey shows the relative

importance of web service selection criteria and it has been revealed that reliability

and security plays the most important roles and are almost twice as much as important

than cost and performance criteria [7].

2.1.3. Redundancy

Redundancy is being used as a common technique for increasing the reliability of a

software system. The technique of redundancy can be applied when the software

system is decomposed into several modules or components each performing a

separate function and having its own reliability measures. For component based

software systems, redundancy means the employment of functionally equivalent

alternative components to improve reliability of software operations. The inherent

idea here is that if a component fails, its alternative version can take its place instantly

and the execution of the total sof1ware system is not interrupted. Recently two distinct

approaches have been investigated which employ alternate software components to

achieve software fault tolerance. The approaches are:

Recovery Block Scheme (RBS). The recovery blocks are organized in a manner similar

to the dynamic redundancy (standby sparing) technique in hardware. The primary

2-10

objective is to perform run time software error detection and to implement error

recovery by taking an alternative path of operation that is, by activating an alternative

stand-by module [8], [9], [10].

N- Version Programming (NVP): It is analogous to the static (replication and voting)

redundancy approach in hardware. NVP is defined as the independent generation of

N::,:2 functionally equivalent programs, called "versions" from the same initial

specification [8]. The "independency" in the generation of the programs is achieved

by developing the N-versions by N groups of software developers and using different

algorithms and/or programming languages and/or platforms whenever possible. The

inl)erent idea here is to execute all the versions in parallel and to employ a decision

maker to combine the results of the independent versions by majority voting

technique.

Since the redundant components require additional resources, additional costs in

terms of programming effort, hardware requirements and time, the redundancy level

to achieve fault tolerance in a software system must be carefully determined and if

possible, optimized.

2.2. Reliability Optimization Models

Reliability optimization models deal with the selection of an optimal set of

components for a software system that maximizes the reliability of the software

system as a whole. In these optimization models it is assumed that individual

reliability of each component is available, either from vendors or from published third

party sources. In many cases reliability varies inversely with cost and resource

consumption of software components. Since developing a highly reliable component

requires exhaustive design and testing effort, the cost of the component increases

automatically. Thus the reliability optimization models offer a trade off between

reliability and budget and other resource constraints. Two types of reliability

optimization problems arise in the literature: the first one attempts to minimize the

amount of resource consumption while maintaining the reliability of the system at a

given level, while the second one maximizes the overall system reliability considering

2-11

.'

the cost or resource constraints of the system. The model proposed in this thesis is a

generalization of the second type.

2.2.1. Cost-Reliability Models

The models described in this section attempt to maximize reliability while meeting

cost or budgetary constraints. Berman et. al. [II] present four different optimization

models for maximizing reliability of modular software systems while ensuring that

the expenditures remain within budget. Models I and 2 select an optimal set of

modules for one function system with and without redundancy respectively. Models 3

and 4 do the same for a system with K functions. The authors presented a Dynamic

Programming algorithm to solve the models. Another four models for optimizing

software and hardware reliability for fault tolerant distributed systems have been

presented in [12]. The models find the optimal system structure while considering

reliability and cost of available software and hardware components. A simulated

annealing approach is presented to solve this optimization problem. The optimization

models presented by Jung et. al. [13] optimizes quality of software while maintaining

a budgetary constraint by selecting the best Commercial Off-The-Shelf (COTS)

products among alternatives for each module of the software system.

2.2.2. Resource-Reliability Models

Belli et. al. [9], [14] present two different models for reliability optimization via

redundancy allocation; one using RBS method and one using NVP method. They also

present a model that uses a combination of both RBS and NVP methods. The authors

assumed that the software system is made up by independent modules connected in

series. The problem is reduced to finding the optimal redundancy level for each

module within the system while respecting the overall resource consumption. No

solution to the problems has been offered. Caserta et. al. propose a similar

optimization model in [15], [16] and offer a Tabu Search based metaheuristic

algorithm to solve the model.

2-12

2.2.3. Reliability Models for Web Services

20 et. al. [6] present a model for the selection of a set of appropriate web services to

support the tasks needed for the development of an application composed of web

services. The assumption here is that multiple web services are available for each task

and a single web service can support multiple tasks. Assuming a set of m tasks, with n

web services available for each task, the total number of viable combinations is given

by n"', which becomes combinatorially explosive and infeasible for an exhaustive

search. The authors present a Genetic Algorithm formulation for the above model.

Chang et. al. [17] present the formulation of an Evolutionary Algorithm to solve a

similar model that optimizes the composition of web service components based on

good quality and performance service components over different service providers.

Tsai et. al. [18] propose a Service-Oriented Software Reliability Model (SORM) that

evaluates the reliability of web serviccs (WS) in two steps: (1) the reliabilities of

atomic web services are computed using a group testing technique, where an atomic

service represents a service that does not call other WS and is thus treated as a unit

that is not to be broken. (2) The reliability of a composite service is evaluated based

on the reliabilities of the component services (they can be either atomic or composite

services) and the structure (relationships) among the component services.

2.3. Reliability Optimization Algorithms

1t is normally difficult to develop exact methods for reliability optimization problems

because such methods involve a large amount of computational effort and normally

require larger computer memory. For these reasons more emphasis has been given on

heuristic and metaheuristic approaches for solving various reliability optimization

problems. An overview of such algorithms will be found in [19].

Kim and Yum [20] present a heuristic algorithm for solving redundancy optimization

problems in complex systems. They allow excursions (examination of a series of

infeasible solutions generated by some rules) from a current solution in a bounded

2-13

infeasible region thus eliminating the chance of being trapped in a local optimum. At

each iteration the excursions eventually return to the feasible region with a possibly

improved solution than the starting one. This improved solution now becomes the

current solution and the algorithm proceeds in the same way. The problem of this

heuristic method is that it requires a large number of iterations and is thus very slow.

In recent years, metaheuristics such as Genetic Algorithm (GA) [6], [21], [22],

Simulated Annealing (SA) [12] and Tabu Search (TS) [15], [16], [23] are being used in

solving reliability optimization problems with redundancy allocation. A Genetic

Algorithm (GA) is a heuristic search method that finds exact or approximate solutions

to optimization problems by implementing the techniques of evolutionary biology,

such as inheritance, mutation, selection and crossover. Usually the solution is encoded

as a binary string, called the population. In each iteration, the fitness of every

individual in the population is evaluated using a problem specific fitness function; a

set of individuals is selected from the current population (based on their fitness) and

modified by the application of evolutionary techniques to form a new population.

Unlike GA, where the objective value is improved continuously, Simulated Annealing

(SA) involves probabilistic transitions among the solutions of the problem. A superior

solution is always accepted; an inferior solution is accepted probabilistically based on

the difference in quality and a temperature parameter. Thus SA can encounter some

adverse changes in the objective value in the course of its progress. Such changes are

'.intended to lead to a global optimal solution other than the local one. Another

metaheuristic that avoids local optima is the Tabu Search (TS), originally proposed by

Fred Glover [24]. Tabu Search can simply be seen as a local search method with a

short time memory structure, called the Tabu List used to prevent cycling when

moving away from the local optima through non-improving moves.

The GA, SA and TS - all are heuristic algorithms, meaning that performance of these

search methods can not be guaranteed. Since the search space for the reliability

optimization problems with redundancy allocation often become comb inatori ally

explosive, exact methods are difficult to find and so metaheuristics can be a good

choice for this type of problems. However for a large solution space, the metaheuristic

2- 14

search methods often take a large number of iterations before convergence thus

making themselves unsuitable for systems where real time decision making is needed.

2.4. Introduction to the

Maximization Problem

Network Flow

A network flow maximization problem aims at the maximization of "jlow" through a

"network". Consider a network of pipes where valves allow flow in only one

direction. Each pipe has a capacity per unit time. Now this network can be modeled
,

with a set of vertices for the junctions and a set of edges for the pipes weighted by the

pipe capacity. Given two junctions, as the source (s) and the sink (I), the network flow

maximization problem finds the maximum amount of flow from s to I. The flow

network can be used to model many real life scenarios, for example, roads with traffic

capacities, parts through assembly lines, information through communication

networks and so forth.

2.4.1. Flow Network

As described in [25], [26] ajlow network G = (V, E) is a directed graph in which each

edge (u,v) E E has a non negative capacity c(u,v) ;;:O. If (u, v) 11' E, c(u, v) = O.Two

vertices are distinguished in a flow network: a source s and a sink I. A flow in G is a

real valued functionf: V x V -> R, that satisfies the following three properties:

Capacity Constraint: For all u, v E V, feu, v) :s c (u, v).

Skew Symmetry: For all u, VE V, feu, v) = - f(v, u).

Flow Conservation: For all UE V-{s, I},

Lf(u,v)=O
'EV

Here, f (u, v) is called the jlow from vertex u to vertex v. It can be positive, zero or

negative.

2-15

(

The value of a flow lis defined as,

That is, the total flow out of the source. In the maximum-flow problem, a flow

network G is given with a source s and a sink I, and a flow of maximum value is to be

found. Figure 2-1 shows a simple flow network along with the maximum flow

through the network. The first number above each edge denotes the capacity of that

edge and the second number denotes the amount of flow through that edge. Maximum

amount flow that can be passed trough this network is 10.

Figure 2-1 A simple example of a flow network with source s and sink t.

2.4.2. Networks with Multiple Sources and Sinks

A maximum flow problem may have several sources and sinks, rather than just one of

each. Let us consider a network with a set of m sources {s\, S2, ... , sm} and a set of n

sinks {I\, 12, ... , In}. This network can be reduced to an ordinary network by adding a

supersource s and a supersink I along with the following edges:

•
•

Directed edge (s, s;) with capacity c(s, s;) = 00 for each i = 1,2, , m.

Directed edge (I;, I) with capacity C(I;, I) = 00 for each i = 1,2, , n.

Any flow in the new network corresponds to a flow in the original network and vice

versa. The supersource s simply provides as much flow as desired for the multiple

2-16

sources Si, and the supersink I consumes as much flow as desired for the multiple

sinks Ii.

2.4.3. Residual Networks

Given a network and a flow, the residual network GJ consists of edges through which

more flow can be sent. Iffis a flow in G, then the residual capacity of an edge (u, v),

where u, v E V is,

cJ(u, v) = c(u, v) - feu, v).

When the flow f (u, v) is negative, the residual capacity CJ (u, v) is larger than the

original capacity c(u, v). This is because negative flow implies a flow in the opposite

direction which can be cancelled by sending a flow of the same amount in the original

direction.

2.4.4. Network Flow Algorithms

The first pseudo polynomial algorithm for the maxImum flow problem is the

augmenting path algorithm ofFord and Fulkerson [25], [26], [27]. Since then several

more-efficient algorithms have been developed. Edmonds and Karp [28] obtained a

polynomial version of the original augmenting path algorithm. The push relabel

methods originally developed by Goldberg [29] [30], [31] solve the network flow

problem from a different perspective other than the augmenting path methods. An

overview of these network flow algorithms can be found in [29]. Some of the most

frequently used network flow algorithms are described in the next few sections.

2.4.4.1. Ford-Fulkerson Method

The Ford-Fulkerson method is iterative. At each iteration, an augmenting path is

found which is simply a path from the source s to the sink I through which more flow

can be sent, that is all the edges on the path have positive residual capacities. Then the

maximum possible flow is augmented along this path. This process is repeated until

2-17'

no augmenting path can be found, Upon termination this process yields a maximum

flow,

The Ford-Fulkerson method is as follows:

PROCEDURE Ford-Fulkerson(G,s,t)

Initialize flowfto 0

WHILE there exists an augmenting path p

Augment flow f along path p .

END WHILE

RETURNf

END PROCEDURE

The time to find an augmenting path is O(E) if either Depth-First Search (DFS) or

Breadth-First-Search (BFS) is used, The WHILE loop is executed at most \I'I times,

where 1" is the maximum flow found by the algorithm, Each execution of the WHILE

loop takes O(E) time, Thus the total running time of the Ford-Fulkerson algoritlun

2.4.4.2. Edmonds-Karp Method

This method implements a Breadth-First-Search for computing the augmenting path

in the Ford-Fulkerson method, That is, the augmenting path here is the shortest path

from s to t in the residual network, where each edge has unit distance, Now the while

loop of the Ford-Fulkerson method is executed at most O(VE) time, With O(E) time

for each iteration, the total running time of the algorithm is O(VE'),

2.4.4.3. Push-Relabel Method- Goldberg's Algorithm

The original Push-Relabel algorithm is due to Goldberg eta\. [30] and runs in

O(V' E) time, thus improving over the O(VE') time of Edmonds-Karp algorithm, A

modified version of the Push-Relabel algorithm is used to solve the optimization

2-18

problem proposed in this thesis. That's why the Push-Relabel algorithm will be

described in more details than the other network flow algorithms.

The Push-Relabel algorithm does not compute an augmenting path at each iteration.

Rather it examines each vertex to find whether a flow can be sent from that vertex to

any of its neighboring vertices. The flow conservation property is not also maintained

through out the execution. A prejlow, which is a function! Vx V-+R, is maintained at

all time, that satisfies the capacity constraint, skew symmetry and the following

relaxation of the flow conservation:

I(V, u)::: 0, for all UE V-is)

The total net flow at a vertex U is called the excess jlow into u. A vertex is called

overflowing if it has an excess flow greater than z~ro. Each vertex is associated with a

height, where, height of source, h[s] = I VI and height of sink, h[t] = 0. For all other

vertices the height is initially zero, and gradually increases as flow is pushed from a

vertex. Flow can be pushed downhill only, meaning that a lower vertex can not push

its excess to a higher vertex.

Basic Operations:

As the name implies, the Push-Relabel algorithm has two basic operations:

Push: This operation is applied to an overflowing vertex u if for any other vertex v, cf

(u, v) > 0, and h[u] = h[v] +1.

Flow of amount Minimum (e[u]' cAu, v)) is pushed from u to v. After each push the

flow and excess at each vertex are updated correspondingly. No residual edges exist

between two vertices whose heights differ by more than I, so, excess flow is pushed

downhill only by a height differential of I.

A push operation is further distinguished as a saturating push and a non-saturating

push. If CJ (u, v) becomes zero after a push operation, then it is a saturating push,

otherwise it is a non saturating push.

2-19

Relabel: This operation is applied to an overfbwing vertex u if h[u] ~ h[v] for all

VE V where (u, v) E Ef. Relabeling is done when a vertex has excess flow but all of its

adjacent vertices are higher than it. Since flow can only be pushed downhill, the

height of the overflowing vertex must be increased to get rid of the excess flow.

The height of such an overflowing vertex u is increased to,

h[u] = I + min{h[v]: (u, v)EEf}

The generic Push-Relabel algorithm is as follows:

PROCEDURE Generic Push Relabel(G, s, t)- -

Initialize height and excess flow of each vertex to 0

Initialize a zero flow through each edge

h[s] = 1V1
FOR each vertex UE Adj[s]

Push a flow of value c(s, u) from s to U

Update excess flow at u as, e[u] = c(s, u)

END FOR

WHILE a push or relabel operation is possible

Select an operation and perform it

END WHILE

END PROCEDURE

The excess flow of each vertex that can not be pushed to sink eventually comes back

to the source. When the algorithm terminates, no vertex has excess flow, thus the

preflow becomes a flow that maintains the flow conservation property.

The complexity of the push relabel algorithm depends on the number of relabel,

saturating push and non-saturating push operations. Each of the three types of

operations has separate bounds. Since the maximum height of any vertex can be

21V1 -I, total number of relabel operations is O(V 2) where each relabel operation

takes O(V) time. Total number of saturating pushes is O(VE) and total number of

non-saturating pushes isO(V3 + V' E)= 0(V2 E). Each push operation takes 0(1)

2-20

,
!

time. Thus the total complexity of the Push,Relabel algorithm IS O(V 2E) and IS

dominated by the number of non-saturating pushes ..

2.4.5. Applications of Network Flow

Some combinatorial problems can easily be seen as maximum flow problems. The

maximum Bipartite Matching Problem [25] can easily be solved by the Ford-

Fulkerson algorithm on a graph G = (V, E) in O(VE) time. The problem is defined as

follows:

Given an undirected graph G = (V, E), a matching M is a subset of edges E, such that

for all vertices v belongs to V, at most one edge of M is incident on v. A vertex v is

said to be matched by a matching M, if some edge in M is incident on v; otherwise v is

unmatched. A maximum matching is a matching with maximum cardinality. The

problem can be reduced to a network flow problem by creating a supersource and a

supersink along with their corresponding edges and assigning unit capacity to each

edge.

Other applications of network flow maximization problem include Baseball

Elimination Problem, Matrix Rounding and Matching Supplies and Demands [25],

[26].

2.5. Chapter Summary

Some reliability optimization models for component based software systems have

been described in this chapter. Most of these models have been solved using

metaheuristics like GA, SA or TS. A brief introduction to the network flow

maximization problem and a few methods for solving the problem have also been

presented here. A modified version of Goldberg's Push-Relabel network flow

algorithm described in Section 2.4.4.3 has been used to optimize the model proposed

in this thesis. The mapping of the proposed model to a network flow graph along with.

the modifications to the original algorithm has been described in the next chapter.

2-21

Chapter 3. Proposed New Model

This chapter describes the proposed new web service system. A mathematical model

of the proposed system has also been presented here. The optimization technique

employed to solve the model is a heuristic algorithm that maps the model to a network

flow maximization problem. But any network flow algorithm can not be used as the

proposed model is significantly different from a typical network flow model. In this

thesis a modified version of Goldberg's Push-Relabel method has been used to solve

the proposed model. The modifications to the original algorithm have been presented

in this chapter. The chapter concludes by providing a worst case complexity analysis

of the proposed network flow heuristic algorithm.

3.1. The Distributed Web Service System

The proposed model is for a web service system where a set of web service

components are distributed among multiple servers and are accessible to the clients

through a broker that takes the decision of admission or rejection of a client into the

system. The decision process is based on the maximization of total satisfaction of all

clients. The broker notifies each server after a decision has been reached and the

servers then execute the requested components and sends the results to appropriate

clients. Figure 3-1 depicts the architecture of the Distributed Web Service System.

",

CReQUest N --=:>

Request for service

- ~ .., Placing order to provide
service to client

••e. Server K
Camp I Version 1
Como 2 Version 3

Sending statistics .. - ::.~... y.-
\

Server 2
Comp 1 Version 3
Como 2 Version 1

\
"-...........•.

Server 1
Camp 1 Version 1
Comp 2 Version 2

'V.:'- .

...............•..
..........•• ", "'. .(1 + -

II Broker

. //'V./:'Response to
// ~Ir--:.---"':---'=-- -- the request

~eauest 1 ~ Reauest 2 •• "

Figure 3-1 A typical architecture of the distributed web service system.

3-22

3.1.1. Working Principle of the Proposed Distributed Web

Service System

The following points demonstrate the working principle of the proposed distributed

web service system:

•

•

•

•

•

Each web service component IS capable of performing a separate task

. requiring some input parameters and producing some outputs. In response to

the request of a client, a component is executed in the server using server's

resources and the outputs are passed to the client.

To perform a specific task, a client requests a component to the broker.

Considering the available resources of the servers the broker takes the decision

of acceptance or rejection of a client.

Each component has multiple alternative versions, each performing the same

task, but providing separate reliability and having different multidimensional

resource requirements. The difference in reliability and resource requirements

arises from the use ofN-Version Programming which states that the versions

should be developed using separate platform and/or technology by separate

developers. While a single version of a component suffices, providing more

than one version of the same web service component to a client increases the

reliability of the service by means of redundant allocation. This difference in

reliability brings the variation of client satisfaction definitely.

The versions of the components are distributed among multiple servers. Each

server contains a set of versions for a set of components. The sets of versions

of a component stored in different servers are not disjoint, that is, more than

one server can contain the same version of a component. Allocating the same

version of a component multiple times from multiple servers does not improve

total satisfaction of a client, since these versions will fail identically.

The servers have multidimensional resources. Possible resource types are

memory, CPU cycles, I/O bandwidth etC. Each server notifies the broker about

the amount of available resource of each type and this information varies from

server to server.

3-23

• In response to the request for a component of a client, the broker either rejects

it or allocates a set of versions from different servers to the client. The set of

versions are allocated to clients in such a way that maximizes total satisfaction

of all clients while maintaining the resource constraint of the servers.

• When a decision has been made for a set of requests, the broker delegates the

rest of the work to the servers, i.e., it redirects the requests to the assigned

servers and starts the decision making process for a new set of requests. Each

server processes the requests sent to it, and sends the results to the clients over

the network.

3.1.2. Assumptions of the Model

The following points are assumed to simplify the model in the context of real or

practical situation.

•

•

•

•

•

•

Server reliability IS assumed to be very high for each server and IS not

incorporated in the model.

Multidimensional resource requirement of each version of each component is

known to the broker. Also, the set of versions of a component hosted by a

server is known to the broker.

The versions of a component are independent of each other. This

independency can be achieved by developing the versions separately from the

same specification.

Clients do not want to know which version is allocated from which server.

Only the allocated set of versions for a component and the total satisfaction is

of concern to them.

Though a particular version of the requested component can be served to a

particular request multiple times from multiple servers, but this sort of

redundancy will not increase total satisfaction of that client.

Satisfaction of a service can be a function of reliability, cost, performance and

security. In the distributed web service system satisfaction of the client for a

particular service will increase if more than one component is allocated to the

client. The satisfaction value might be the reliability of that service, if the

3-24

client thinks so. In this model it is assumed that satisfaction of the service is a

user-defined input parameter and it must be different for different set of

versions used for a particular service.
• Providing reliable web services to the clients requires the maximization of

satisfaction of the clients.

3.1.3. Mathematical Formulation

For the formulation of the model for reliable distributed web servIce system the

following parameters are defined:

mi= Nurhber of versions of Component i

L = Maximum number of versions per component = max(mi),

n = Number of Requests

S = Number of Servers

R = Dimension of Resources

N = Number of Components

C; = Version} of Component i

Wi" = Amount of Resource Type r required by C,
, j

Qk, = Amount of Resource Type r available at the Server k,

A:'i
k

= 1, if C; is allocated for request q at Server k

= 0, otherwise.

X;ii = 1, if C; is allocated for Request q

= 0, otherwise.

y; '"= 1, if Component i is required by Request q

= 0, otherwise,

3-25

U~"h, ,.",indicates the satisfaction of a combination of versions for Component i, Each

of the subscripts indicates the inclusion of a version, i,= {OJ}, implying the absence

or presence of the I-th version in the combination of the versions of Component i,

"u'i"h". ,h = 0, where Ii, > 0 as Component ihas only mi components,
I=rnj+l

Here,

i = 1, 2, , .. , N

i= 1,2, ." , mi

k = 1,2, ... , S

q=1,2, ,n

r=1,2, ,R

The objective is to maximize total satisfaction of all clients served, which is computed

as the sum of the satisfaction values of the requested components. Thus, the objective

function is:

IJ N
Maximize, I I y;u <,.x:" ,.'~I subject to the following constraints:

. q=1 1",1

Constraint 1:VrV k[I I w'i,A;,k 0; ak,,], indicating the limitations of resources of
q J

different types in the servers.

N

Constraint 2:I Y;J = 1, indicating that a client can request for at most one
i=l

component.

3-26

3.2. Solving the Model by Mapping to the Network

Flow Maximization Problem

A heuristic using the network flow maximization algorithm has been presented to

solve the proposed model of resource allocation problem in a distributed web service

system. If there were no limitation of resources of the servers then all the requests

could have been served with the highest possible satisfaction, which is not a possible

case in reality. Thus the assigned web service components must not overuse the

amount of available resources at the servers. That is, the consumption of resources

must not exceed the server capacity, which forms the basic idea of using a network

flow model in the proposed scenario. But the typical flow maximization approach will

not be suitable in this case, since flow in this model means a resource flow and

maximization of resource consumption from each server does not always guarantee

maximization of total satisfaction. Thus the original network flow approach is

modified so as to allow resources to flow through the servers, which are represented

as vertices of the network flow graph in as much quantity as possible. But when the

server capacity is not sufficient the resources are allowed to make room for them by

pushing back other flows from the servers, thus trying different combinations of

allocations. Whenever an allocation is modified in which total satisfaction may

increase, a snapshot of the current allocation is taken and .is saved if it is better than

the last best allocation.

3.2.1. Mapping of the Proposed Model to Network Flow

Graph

The maximization problem defined in the model can be mapped to a graph G = (V, E)

where Vis the set of vertices and E is the set of edges as shown in Figure 3.2. A brief

description of the mapping is presented below:

•. The versions of the web service components (C~) and the servers (Srvk) form

the vertex set V.

3-27

• An edge is created from the version node to the server node if the version is

hosted by that server.

• All the resource requirements of the verSIOns (w;,) and the resource

constraints of the servers (ak,.) are mapped to the capacities of the edges.

• Thus a flow through the network indicates a flow of resources constrained by

the server capacities.

An example of a network flow graph for the model is presented in Figure 3-2 and

the detailed description of the mapping is given in the next few sections.

Versions

Super
Source

/
Capacity, c(s, C;) = n, x w;,

e,' is hosted by
Srvl and Srv2.

Servers
Super
Sink

i
Capacity,
C(Srvk,t) = ak,.

Basic capacity, Cb(C~,Srvk) = w;,
Capacity, c(C; ,Srvk) = (fJ

Figure 3-2 An example of a network flow mapping of the proposed model.

3.2.2. The Set of Vertices in the Mapped Network

The set of vertices of the network flow graph do not include the set of requests.

Number of requests will playa role when declaring the capacities of the (source,

version) edges. Thus. the flow network size ([VI) and hence the complexity of the

algorithm does not depend on the number of requests.

3-28

The vertices are divided into two sets:

The version set: Each vertex of this set represents a version of a component. Since
N

component i has miversions, total number of vertices in this set isM = Im, . Each
i=l

version is denoted asC; meaning Version} of Component i for i = 1,2, ... , Nand

}= 1,2, ... , mi'

The server set: A vertex is created for each server. So, total number of vertices in this

set is S. Each server is denoted as Srvi, i= I, 2, ... , S.

Here the version set represents the set of sources and the server set represents the set

of sinks. To convert this multiple-source multiple-sink network to a single-source

single-sink network, a supersource and a supersink must be added.

3.2.3. The Set of Edges in the Mapped Network

There are three sets of edges, among which two sets of edges are created along with

the supersource and supers ink. The remaining set of edges represents the availability

of the versions in the servers. If version C; is available at server Srvk then there will

be an edge from vertex C; to vertex Srvk. If a flow through this edge can be passed to

sink, then it is guaranteed that the amount of resource required by the version C; is

available at server Srvk. Since there is no meaning of pushing flows from one version

to another or from one server to another, there are no such edges in the network flow

graph. Thus the graph represented by the versions and the servers is bipartite.

3.2.4. Capacities ofthe Edges in the Mapped Network

Since a flow represents a resource flow, the capacity of each edge represents

resources and is multidimensional. Let c(u, v) denotes the capacity of the edge (u, v).

Each capacity c(u, v) represents the resource values in all dimensions. Since resource

dimension is R in the proposed model, each c(u, v) represents an R-tuple. 0

3-29

The capacities of the edges are defined as follows:

c(s, C;) = ni x (resource requirement of C:)

c(C; , Srvkl = 00

Basic capacity Cb(C; , Srvk) = resource requirement of C;
C(Srvk,t) = amount of resource available at server k

!J;l
Here,

i= component index,

j = version index,

k = server index,

i=I,2, ... ,N

j= 1,2, ... ,mi

k=1,2, ... ,S

ni = total number of request for Component i

The capacity constraint c(s, C') is imposed so that Version C.; is allocated no more.I

than ni times, where ni is the total number of requests of Component i. This is because

there is nothing to gain by allocating the same version twice to a request.

The edge (C;, Srvk) has two types of capacities. The actual capacity c(C; , Srvk) is

infinity, whereas the basic capacity Cb(C; , Srvk) represents the resource requirement

of C;. Any flow through this edge must be a multiple of the basic capacity

Cb(C;, Srvk) since a flow through this edge means allocation of a version and to

allocate a version the resource requirement must be fulfilled completely. A multiple

flow through this edge indicates multiple allocation of the version C: for multiple

requests. For example, basic capacity, Cb(C;, Srvk) = 5 and amount of flow through

this edge, j(C; , Srvk) = I5 means that version C; is allocated 3 times from Server k,

and there are at least 3 requests for this version. If there were less than 3 requests then

the version C; would not have been allocated 3 times.

3-30

(j

The capacity constraint C(Srvk, I) is imposed so that the total amount of re'source

consumption of all allocated versions from Server k 'does not exceed the resource

available at Server k.

3.3. A Simple Example of the Proposed System

Let there be 2 components (Cl and C) with 2 alternative versions for Component I

(C
I
I and C;) and a single version for Component 2 (Ci), Consider 2 servers in the

system with Server 1 (Srvl) containing versions ci and C,' and Server 2 (Srv2)

containing versions C; and CI', Here the Version CI' is hosted by both servers,

Figure 3-3 depicts the architecture of this eXall1ple, Specification of the components is

presented in Table 3-1,

Server 1
C1 and C'1 ,

Request

forC

Figure 3-3 An example of the proposed system with 2 servers and 2 components.

Table 3-1 Resource requirements and containing servers of each of the versions of the

two components.

CI CI C2
1 , I

Resource requirement: Resource requirement: Resource requirement:
1 -4 I '- 3 I -4 ,- 3 '-4 2-3WI! - , w12 - W21- , W22- W11- , W12-

Hosted By: Srvl Hosted By: Srv2 Hosted By: Srvl, Srv2

3-31

Here w'i' denotes the roth resource requirement ofC; . In the above example r = {I, 2}

since there are two resource types, namely Resou,ce 1 and. Resource 2. C1 has two

versions, thus each request for C1 can be served in one of the four ways. The satisfaction

values for the four combinations along with the allocations are given in Table 3-2.

Table 3-2 An example of satisfaction values and correspoudiug allocations for the

components.

Satisfaction (Random Value) Corresponding Allocation

U~.a= 0.0 {}

U~.I=8.0 {Ci}

UI
I
•a = 9.,0 {CI

I
}

UI
I
•I =3.2 {CI

I
, Ci}

U; = 0.0 {}

UI' = 8.8 {CI' }

The network flow graph for this system requires 3 vertices to represent the versions and 2

vertices to represent the servers. The network flow mapping is shown in Figure 3-4. The

first set of parentheses for each edge denotes the capacity of that edge where the second

set denotes the amount of flow through that edge in the optimal allocation of versions.

[2x4, 2x3J [8,6J

2x5, 2x2] [5,2J

[3x6, 3x4J [6,4J

[oo,ooJ[8,6J

Figure 3-4 Network flow graph for the example stated above.

3-32

The number of allocations of each version of each component is found by executing

the proposed network flow algorithm on the above graph. Table 3-3 shows the

number of allocations (Allocation Count) of each version:

Table 3-3 Allocation connt and the associated servers for each version of each

component.

Component Allocation Count Allocated From

CI 2 Server 1
I

CI 1 Server 2,
C' 2 Server 1, Server 2

I

Now, these allocated components can be distributed among the five requests in many

different ways. In the proposed system the optimal allocation of the requests to the

allocated versions is one that maximizes total satisfaction of the service. The optimal

allocation for the above example is given in Table 3-4.

Table 3-4 The optimal allocation and the satisfaction of the requests in the optimal

allocation.

R.equests Allocated Versions Satisfaction

Request I {Ci, C;} 3.2

Request 2 {CI' } 0.88

Request 3 {CI
I
} 0.90

Request 4 {CI' } 0.80

Request 5 Rejected 0.0

Since the server capacities are limited all the requests can not be accepted. In the

above example Component 2 is allocated twice from two different servers though

there were three requests for it. So, one request for Component 2 must be rejected.

> •

3-33

3.4. The Push Relabel Algorithm to Solve the

Mapped Network Flow Graph

In the original push relabel algorithm there were two types of operations: Push and

Relabel. A significant difference of the proposed algorithm from the typical flow

algorithm is that, in the typical method, there is no need to push back any flow from

the sink. But in the proposed method, since it is not known previously which

~llocation is better, at each iteration a new allocation is tried and compared with the

last best allocation. Now to try a new allocation a previous allocation may have to be

cancelled, since the capacities of the servers are limited. To perform the cancellation

process, a new type of operation is defined, called the Backward Push Operation and

the normal push is called the Forward Push Operation. These push operations are

described in detail in Section 3.4.2 and in Section 3.4.3. Each vertex is associated

with a height and a push can only take place from a higher vertex to a lower vertex.

The purpose of the height function is to allow pushes in new directions rather than

using the same direction again and again. Initially the height of all vertices except the

source is zero. This height increases gradually with each relabel operation described

later in Section 3.4.4.

3.4.1. Initial Flow

A typical flow algorithm starts with a zero flow through each edge of the network

flow graph. But the proposed algorithm performs significantly better if an initial flow

rather than the zero flow is assigned to each edge. That is, the proposed network flow

-algorithm starts from an initial allocation of components and moves towards ,a better

allocation by performing push and relabel operations whenever possible. The initial

allocation presented in this thesis is a greedy solution of the problem. In the first

phase of initialization all possible requests are served with the best available version

at that moment. In this phase at most one version is allocated to each request. In the

next phase, if there are still available resources the requests are served with a

redundant version that maximizes total satisfaction of a request. This process is

continued until no more versions can be allocated to any request. To make the

3-34

complexity of this initialization process independent of the number of requests, the

initial flow is computed separately for each component. For each component the

requests for that component are processed group by group and for each group a

version is selected and is assigned from one of its containing servers. A queuing

strategy described later in Section 3.5 is used to find the allocation for each

component.

3.4.2. Forward Push

All normal push operations are called the forward push operations. Even the pushes

from the versions to the source are also forward push operations. The forward push

operations are:

Source --7 Version: This push operation takes place in the initialization phase. A push

from the source to each version is performed such that the (source, version) edge is

saturated for all versions.

Version --7 Source: This push operation is performed when the excess flow of a

version can not be passed to sink. To maintain the flow conservation property the

excess flow must be returned to the source when the algorithm terminates. With the

iterations, the height of each overflowing vertex will be increased and eventually will

be greater than the height of the source. At this time, the excess of the version will be

pushed to the source.

Version --7 Server: Since the versions are not directly connected to the sink, the excess

of a version must be pushed to sink via a server meaning the allocation of that version

from that server. A version can reside in more than one server, so the requests for that

version can be served from a set of multiple servers. Thus a version tries to push its

excess flow (which includes the number of requests for that version) to multiple

servers to find a path to sink. To push the excess, a version must be raised to a height

that is greater than at least one of its adjacent servers. When the version's height

becomes greater than the source's height, it is assumed that the remaining excess of

3-35

that version can not be passed to sink and is returned to the source, thus completing

the push operations from that version.

Server ~ Sink: A push from the server to the sink implies the allocation of one or

more components that reside in that server and it is possible only when the server has

sufficient resources to execute those versions. In terms of the flow network, it can be

said that the excess flow of a server that can be pushed to sink must be less or equal to

the residual capacity of the (server, sink) edge. After each push to sink, the number of

allocations of each version is updated.

Server ~ Version: All the excess flows of the servers can not be passed to the sink,

because of the limited capacities of the (server, sink) edges. When there is an

overflowing server, but the residual capacity of the (server, sink) edge is not enough

to push the excess, the excess must be returned to the version from where it has come,

so that the version can try a new sever to push its excess.

Sink ~ Server: This push operation is performed for the de-allocation of a version.

Since a version is not directly connected to the sink, the de-allocation of a version

requires two pushes one after another: one from Sink ~ Server and the other from

Server ~ Version.

The push operation from vertex u to vertex v is performed as follows:

Push (u, v, d(u, v))

II d(u, v) = Amount of flow that can be pushed from vertex u to vertex v

II d(u, v) = minimum of e[uJ and clu, v)

Ilclu, v) denotes the residual capacity of the edge (u, v)

Applies when: u is overflowing and h[uJ > h[v]

Action:

e[uJ = e[uJ - d(u, v)

e[vJ = e[vJ + d(u, v)

.f(u, v) =.f(u, v) + d(u, v)

.f(v, u) =j(v, u) - d(u, v)

II Decrease excess of vertex u

II Increase excess of vertex v

II Increase flow from vertex u to vertex v

II Decrease flow from vertex v to vertex u

3-36

CAu, v) = cAu, v) - d(u, v)

cAv, u) = cAv, u) + d(u, v)

II Decrease residual capacity of edge (u, v)

II Increase residual capacity of edge (v, u)

3.4.3. Backward Push

Backward push means the cancellation of the allocation of one or more components.

It is actually performed by using a combination of forward pushes. When there is

excess flow in a server, but the residual capacity of that (server, sink) edge is not

enough to push the excess flow, a backward push takes place in which one or more

previously allocated versions are de-allocated. De-allocation of a version means that

the resource flow for that version is pushed back from the sink to the version via the

s'erver. The backward push thus results in an increase of the residual capacity of the

corresponding (server, sink) edge.

Applies when: There is excess flow in Server k but the residual capacity of the (Server

k, sink) edge is less than the excess flow of Server k.

Action:

REPEAT

v -<-next adjacent vertex of Server k

d(v) = min(e[kJ, amount of flow that can be pushed back to version v)

IlPush d(v) amount of flow from the sink to the version v via Server k

IIThese push operations are normal forward push operations

Push(t, k, d(v»

Push(k, ~, d(v»
UNTIL cAk, t) ~ elk] OR all the adjacent vertices have been checked

3.4.4. Relabel

Each vertex is ,associated with a height as in the original push relabel algorithm

described in Section 2.4.4.3. The excess flow of a vertex can only be pushed to a

3-37

lower adjacent vertex. When there is an overflowing vertex but all of its adjacent

vertices are higher than it, then a relabel operation takesplace.

Action:

Update height of overflowing vertex u to h(u], such that,

h(u] = 1+ min{h(v]: v E ADJ(u]},

3.4.5. Solving a Knapsack Problem at Each Server

Since the capacity of each server is limited all the requested versions hosted by that

server cannot be allocated. Determining the optimal set of versions to allocate from a

server considering all other requests and all other servers become a Multi Knapsack

Problem which is computationally very expensive. Rather, a Knapsack Problem at

each server is solved to find the optimal set of versions for that specific server without

considering allocations from other servers. To solve the Knapsack Problem greedily

all the versions hosted by a specific server are sorted in decreasing order by their

(satisfaction/aggregate resource requirement) values, where aggregate resource

requirement is computed as follows:

A . I II 2ggregate resource reqUIrement = I (w ',.)
~ ,.1)

Thus when an overflowing server will be pushed (that is when an allocation is found)

the versions with greater satisfaction values and smaller resource requirements. will be

considered first. Though this process does not guarantee optimal allocation from a

server, it considers both satisfaction and resource constraints. The best part of this

optimization technique is that it requires some additional work only in the graph

construction phase. After the graph has been constructed in the above mentioned

sorted order, each server will automatically consider the versions for allocation in that

order. The graph even need not be updated for different set of requests.

3-38

(

3.4.6. Snapshot

When the network flow algorithm terminates it is not guaranteed that the allocation at

the termination time is the best allocation. Consider the following example with two

.components, a single server and two requests. Satisfaction and resource requirements

of the components are given in Table 3-5.

Table 3-5 Satisfaction and resource requirements of Component 1 and Component 2.

Component I (e') Component 2 (eL
)

Satisfaction = 0.8 Satisfaction = 0.9

Resource Requirement = 5 Resource Requirement = 4

Number of request for el= I Number of request for e2 = I

The network flow mapping for this problem is as follows:

lxS
co

Figure 3-5 Flow network for the snapshot example.

Here, resource available at server Srvl: 5 .
. ,
Since the server is able to execute either el or e2, but not both, the system should

chose to serve e2
, since it will maximize the satisfaction of the client admitted to the

system. When the network flow algorithm is run in the above scenario, at first a flow

through e[will be passed to t via Srvi' Then e2 will make its way to sink by a
backward push, de-allocating e[. Now again e[will try to reach sink by pushing back
e2 and after some oscillations, excess of e2 will come back to source, which means
that el is served to Request 1, which is not a desirable situation.

3-39

In this simple example, the final allocation depends only on the indexing of the

version nodes, but in a large network, backward pushes explore different allocations

and it can not be said conclusively that the allocation that is found at the time of

termination is the best. That is why, after each push to the sink, a snapshot of the

current allocation is taken and the allocation that gives the maximum total satisfaction

is saved.

Operation Snapshot:

Applies when: A forward push from Server ~ Sink is performed.

Action:

Find an allocation of the selected versions to the request set.

Current satisfaction = total satisfaction of the current allocation.

IF current satisfaction> the last best satisfaction THEN

Save current satisfaction as the best satisfaction

Save current allocation as the best allocation.

A snapshot is to be taken whenever a push may result in a better allocation. Since

none of the pushes other than the Server ~ Sink forward push results in the allocation

of a new component, the snapshot is taken only after the Server ~ Sink forward push

operation.

3.5. The Allocation of Versions to Requests

Whenever there is a push to sink, a new component is allocated and the total

satisfaction of the service is to be computed considering this new allocation. The

network flow algorithm computes only the number of allocation of each version of

each component. Since, the request set is decoupled from the flow network, at each

snapshot to compute the total satisfaction an allocation of the selected versions to the

requests is to be found. Since redundancy is allowed each request is served with a set

3-40

•

of versions, where the empty set denotes the rejection of the request. If a request for

Component i is not rejected then at least one version and at most mj versions are

allocated to it, where mj is the number of versions of Component i.

The computation for the allocation of selected versions of a component to requests is

totally independent to the allocation of other components. So the allocation for the

requests of each component can be considered separately.

Let us consider a simple case of two requests (ql and q2) for Component I, where

Component I has three different versions namely ci ,C; and C; . Some of the possible

allocations of these three versions to two requests are shown in Table 3-6.

Table 3-6 Some possible allocation of tbree versions to two requests.

Allocation I Allocation 2 Allocation 3

ql = { ci, C;, C; } ql = { C,'} ql = { C,', C; }

q2= {} q2 = { C;, C;} q2 = { C;}

There are many other such allocations. Among the all possible allocations, the

allocation that maximizes total satisfaction should be chosen in the proposed model.

In the proposed algorithm, a greedy strategy is implemented to find the

allocation. In this greedy strategy, the allocation for each component is computed

separately. The allocation thus computed may be sub-optimal but its complexity is

less than that of the optimal allocation and is thus capable to allocate in real time.

Since the model is proposed for real time web services, the clients should not be kept

waiting too long for the responses. And since the allocation is to be computed for each

snapshot and a snapshot is to be taken for each push to sink; total complexity of the

algorithm will be increased significantly with the increased complexity of the

allocation.

Let allocationCountij denote the number of allocations of Version} of Component i.

Number the requests of Component i is nj. Clearly, allocationCountij:S nj.

3-41

A queue structure (Q) is implemented to store the ni requests of Component i. At each

iteration, a set of requests is popped from the front of Q, assigned a new version and

sent back to the rear of Q for further allocation of versions. Processing a set of

requests QJron! from the front of Q includes the following steps:

• The current allocation of the set Qfron! is determined.

• The version that will yield maximum increase in satisfaction considering the

current allocation of the requests of QJron! is computed. Let this version be C; .
• Now C; is allocated to the first aliocationCountij requests of QJronl' These

requests are now moved to the rear of the Q.
• Rest of the requests of Qfronl remains at the front of Q.

• The whole process is repeated until no more allocation is possible.

Thus the ni requests for Component i are processed group by group. Before allocating

a redundant version to a group, it is ensured that each of the ni requests has got at least

one version of the requested component. This restriction is imposed to avoid

allocations like "Allocation 1" in Table 3-6.

An example: Consider the allocation for Component 1 with 4 alternative versions

where 5 requests have been placed for this component. Table 3-7 shows the data

needed for finding the allocation and Figure 3-6 shows the steps to find the allocation

from the given data.

Table 3-7 Data for the allocation of Component 1 to five requests.

Versions of Component 1:

Requests for Component 1:

Number of allocations of each version:

C,', C;, C; and C;

q1, q2, ... , qs

allocationCount11 = 3

aJ.locationCount12 = 2

allocationCount13 = 2

allocationCountl4 = 1

3-42

,
!

Allocate
c'to4

ql q4
q2 q5
qJ

{c;} {c;}

q2 q. ql
qJ q5

{c,' } {c;} {C,',C;}

Qjronl

..,,--~~/...---/-.

ql Allocate q4 ql Allocate
q2 C' to q5 q2 C; to,
q3 ql, q2, q3 qJ q4, q5
q. ~ ~
q5 {} {C,'}

{}

q. ql q2
q, qJ

{c; } {C,',C;} {c,',c;} "

Allocate
c'to3

q2, q3
~

'\curren!
Allocation

Figure 3-6 An example of allocation of versions to requests.

Requests are shown separately in the queue for better understanding of the process.

Actually the queue holds only the number of requests of each group. In this example

the following is assumed.

Satisfaction(ei) 2: Satisfaction(ei)2: Satisfaction(e;) 2: Satisfaction(e;)

Thus the allocation for component 1 has been started from the highest satisfaction

version that is from Version 1. Also at the third iteration e; is allocated before e;,
because the following is assumed in this example.

Satisfaction{ el', e;} > Satisfaction{ e,',e;}

Since Component i has mj alternative versions, the maximum number of groups that

can reside in the Queue is 2"" for Component i. Now, each group can be pushed to

the Queue only once and so can be popped only once. At most O(mj) time is required

to process each group. Thus finding the allocation of Component i requires no more

3-43

than O(mi 2"")time. For N components the complexity of finding an allocation is at

3.6. Stopping Criteria

In the typical flow maximization algorithm, the iteration stops when no more flow can

be pushed to the sink, i,e, when the heights of the vertices become greater than the

height of the source. In the original Push Relabel algorithm by Goldberg, the height of

the source is maintained at IV], the number of vertices in the flow network. The excess

of any vertex that can not be pushed to sink ultimately comes back to the source.

In a typical flow network it is sufficient to determine whether a push can be possible,

that is whether more flow can be pushed through a potential path. But in the proposed

model, it also has to be determined whether a push is possible by canceling a previous

push. The flow that is pushed back, now tries to find another path to sink. Because of

these backward push operations some flow can always be pushed to the sink. Since

the maximum number of push operations is directly related to the height of the source,

the height of source must be chosen in such a way so that no excess should come back

to the source immaturely, that is without exploring other possible options. On the

other hand, since the number of iterations of the proposed algorithm increases with

the increase in source's height, source height can not be raised too high. This is why

the source height is considered as a user defined parameter in the p~oposed algorithm.

Figure 4-7 and Figure 4-8 of Chapter 4 show the variation in performance and running

times of the proposed algorithm with the variation in the height of the source. While

executing the proposed algorithm the source height is maintained at 2[V I, because

after that a small increase in total satisfaction causes a very large increase in total

running time of the algorithm.

3-44

3.7. The Algorithm

The proposed network flow heuristic algorithm is as follows:

PROCEDURE Push Relabel(G, s, t)

FOR each vertex v other than s

h[v] = 0 II Height of vertex v is initialized to 0

e[v] = 0 II excess flow at vertex v is initialized to 0

END FOR

h[s] = 2 x (M+S+2) II Total number of vertices =M+S+2

e[s] = 00

FOR each vertex v adjacent to s

/= c(s, v)

Push(s, v,/) IIPush/amount of flow from s to v

END FOR

Assign an initial flow to each edge of the network

WHILE there is an overflowing vertex

u ~ lowest height vertex among all overflowing vertices

Relabel(u)

IF Type(u) = "Version" THEN

. v ~ Lowest height vertex among all adjacent vertices of u

/= e[u]

Push(u, v,/)
ELSE II Type(u) = "Server"

/= min (e[u]' cju,t»

Push(u, t,/)

Update the number of allocations of each version

SnapshotO

IF u is still overflowing THEN Ilperform backward push

FOR each v where h[u] > h[v]

/ = amount of flow that can be pushed back to v

Push(t, u,f)

3-45

Push(u, V,/)

END FOR

END IF

f= min (e[uj, clu,t)

Push(u, I,/)

Update the number of allocations of each version

SnapshotO

IF u is still overflowing THEN

FOR each v

f = amount of flow that can be pushed back to v

Push(u, v,/)

END FOR

END IF

END IF

END WHILE

Return the best allocation saved by Snapshot operation

END PROCEDURE

The assignment of initial flow to each edge and the Push, Relabel and snapshot

operations are described in detail in Section 3.4.

3.7.1. Complexity Analysis

The complexity of the proposed network flow heuristic algorithm depends on the

network flow graph construction process and on the Push-Relabel algorithm. Since

the requests set is decoupled from the flow network, the graph need not be

reconstructed for each set of requests. Only the (source, version) edge capacities vary

with the number of requests and need to be updated for each set of requests.

For N components each with mj (i = I, 2, ... ,N) alternative versions, there are a total
N

of M = L:m; vertices in the versions set. Thus total O(M) time is required to update

the capacities of the M edges of (source, version) type.

3-46

Before applying the network flow algorithm an initial flow is assigned to the network.

This initialization procedure uses the queuing strategy described in Section 3.5.

However in the initialization phase, processing each group of request requires

O(m,S) time to find the current best version and the server from which to assign the

version. The complexity of the initialization procedure is thus o(t m,S2 m,).

The complexity of the Push-Relabel network flow algorithm depends on the number

of push and relabel operations. A worst case complexity analysis of the algorithm is

presented in the next section.

3.7.1.1. Complexity of the Push Operations

In the worst case scenario the following will happen in several iterations:

• Total excess flow of a version will be pushed to the server, but may not be .

pushed to the sink due to the unavailability of server resources.

• A Server ~ Version push will take place because of this lack of server

capacity which will increase the excess flow of the corresponding version.

• The version now will look for other servers to push its excess flow ..

In each iteration the version height is increased by at least 2. This height increase is

required for the next iteration so that the version can perform further pushes to the

servers. A simple example makes it clear. Initially the height of a version is O. In the

first iteration it will be I to make a Version ~ Server push effective. Then, the server

height must be 2 to push the excess flow to the version that can not be pushed to sink.

Now, to perform another push the version height must be 3. Thus to attain the

maximum height of a version which is 21VI + I, at most [Vi + I iterations will be

needed.

3-47

o

-/

The number of push operations for different types pushes is computed as follows:

Source --+ Version Push.

Since there are total M versions, the number of pushes of this type is O(M) .

.version --+ Source Push:

In the worst case some amount of excess from each version will be returned to source,

thus requiring a total of O(M) pushes.

Version --+ Server Push:

In each iteration at most S Version --+ Server push operations are possible, since a

version of a component can reside in at most S servers. Thus the total number of push

operations for ~VI+ I) iterations is~VI+ 1)S. For M versions, the total complexity

becomesM~VI + I)S = o(MIVIS).

Server --+ Sink Push:

In each iteration a Server --+ Sink push might not be possible due to the unavailability

of resources. But the complexity does not change since resource availability checking

need to be performed in each iteration. For each Server --+ Sink push O(M)search is

required to update the number of allocations of each version. Thus. the total

complexity of all pushes from all servers is o(SIVIM) for the O~VI) iterations. After

each push to sink, a snapshot is taken whose complexity is o(tm, 2m,) as described

in Section 3.5. Multiplying with this factor, the Server --+ Sink push complexity

becomeso(SlvlMtm;2m, l

3-48

Server -> Version Push:

A push from a server to a version can be part of either a forward push or a backward

push. Total complexity of all Server -> Version push operations is the same as

Server -> Sink push operations and is O(SIVIM). Complexity of backward push

operations also include the number of pushes from the sink to the server which is

also O(S[VIM).

Total complexity of all push operations

3.7.1.2. Complexity of Relabel Operations

The relabel operations are applied to the versions and to the servers only. The source

.;'and sink can not be relabeled. The maximum number of relabel operation per server

and per version isO~VI).

At each relabel operation, the height of a vertex is raised to (1+ the minimum height

of all of its adjacent vertices). Thus each server relabel operation performs 0(1 +M)

search and each version relabel operation performs 0(1 +S) search to find the'

minimum height adjacent vertex.

Total complexity of all server relabel operations is O(SIVIM) and

Total complexity of all version relabel operations is O(MlvIS).

Total relabel complexity = O(SMlvl)

= O(SM(S+M +2)) = O(S'M +SM')

3-49

3.7.1.3. Total Worst Case Complexity of the Algorithm

Total complexity of the algorithm includes the time for graph update process, for

initialization and for push and relabel operations. Thus total complexity of the

algorithm is:

The total complexity IS dominated by the term

o(s~VI+ 2)Mtm,2"") = o(S(M + S)Mtm, 2'",) = O((SM2 + S2M)tm,2'"')

Here, mi , the number of alternative versions of Component i, is assumed to be very

small, since developing alternative versions require more effort and cost. In this

thesis, mi is assumed to be at most 5, thus 2"', = 32, for the maximum value of mi.

This is why the snapshot complexity does not contribute much to the complexity of

the proposed algorithm. The total complexity of the algorithm as computed above

depends on the number of versions and on the number of servers and is independent

of the number of requests, n.

3.8. Chapter Summary

In this chapter the mapping of the proposed model to the network flow maximization

problem along with the heuristic algorithm to solve the model has been described. The

optimization techniques that have been implemented to improve the performance

and/or running time of the proposed algorithm are also presented in this chapter. The

chapter concludes by providing a worst case complexity analysis of the proposed

algorithm. The next chapter confirms this complexity analysis by testing the running

times of the proposed heuristic for randomly generated data sets. Experimental results

showing the improvement of the proposed algorithm over a Greedy algorithm have

also been presented in the next chapter.

3-50

Chapter 4. Result Analysis

The proposed network flow heuristic algorithm will not always produce the optimal

solution. To compare the output of the proposed algorithm a Brute Force program is

written that explores all possible solutions and picks up the optimal one. The proposed

heuristic has also been tested with a Greedy algorithm. These algorithms along with

the experimental results are presented in the next sections.

4.1. Brute Force Algorithm

Since the Brute Force algorithm explores all possible solutions the solution space of

this algorithm grows exponentially with the problem size. Thus the optimal solution

using Brute Force algorithm can not be found even for moderate size of problems. For

example, if there are 3 alternative versions of each component, then each request can

be served in 23 ways, since multiple versions of a component can be served to the

same request. This information can be encoded in 3 bits. Now, for 10 requests the size

of the solution will be 30 bits. And the total number of all possible solutions among

which an optimal one is to be selected is thus 230. This is why the proposed algorithm

is compared with the Brute Force algorithm for only smaller data sets. To compare the

performance of the proposed algorithm a Greedy algorithm is presented in this thesis

and is described in detail in Section 4.2. The results obtained from the proposed

algorithm, the Brute Force algorithm and the Greedy algorithm are presented in

Section 4.4.

4.2. Greedy Algorithm

The greedy algorithm takes decision locally based on the requests. At the first

iteration the algorithm assigns no more than I version to each request. The greedy

algorithm always tries to allocate the version with the highest satisfaction. Since each

version can reside in multiple servers, from the list of containing servers the first one

that has sufficient resource to execute the version is selected for that request. If the

4-51

highest satisfaction version is already allocated to the same request or no server has

the resource to execute it, then the version with the next highest satisfaction is

considered. After scanning all the requests once, the algorithm gives a second pass

and allocates a second version to the requests whenever possible. This phase increases

the satisfaction of any request by means of redundant allocation of versions. The

procedure is continued until no more versions can be allocated to any request. The

inherent idea here is to maximize satisfaction by serving more requests and allowing

redundancy when the total number of accepted requests can no more be increased.

The Greedy Algorithm:

REPEAT

FOR each request q,

c = Component requested by qi

V = Find_ Version_To_Allocate(c, qi)

IF v '=NIL

Add v to the set of allocated versions for qi

END IF

END FOR

UNTIL (there is no change in Total Satisfaction)

The Find_ Version_To_Allocate(c, qi) procedure finds a version v of the component c

such that,

•
•

•

v is not already allocated to qi

Resource requirement of v can be satisfied by any of its containing servers,

and

Allocation of v to qi results in the maximum increase of satisfaction among all

other versions of component c that satisfies the above two constraints.

If no such versIOn can be found the Find_ Version_To_Allocate(c, qi) procedure

returns NIL.

4-52

4.3. Data Generation

Random data are generated to compare the performance of the proposed algorithm.

To generate data the following parameters are defined:

MAX_ COMP =Maximum number of components

MIN _ COMP = Minimum number of components

MAX SERVER =Maximum number of servers

ML/If SERVER =Minimum number of servers

MAX_VER = Maximum number of versions per component

MIN_VER= Minimum number of versions per component

MAX_REI =Maximum reliability

MIN_REI = Minimum reliability,

MAX DIM =Maximum resource dimension

MAX_ REQ =Maximum number of requests

MIN REQ =Minimum number of requests

MAX RS = Maximum resource requirement per version

MIN _RS =Minimum resource requirement per version

Let Va.x denote a random floating point number in the range [0, xl

LetJa. b denote a random integer in the range [a, b).

Random data are generated as follows:

Number of Requests, n =MIN_REQ + IO,(MAX_REQ.MIN_REQ)

Number of Components, N =MIN_ COMP + IO,(MAX_COMP-MIN_COMP)

Number of Servers, S =MIN_SERVER + IO,(MAX_SERVER-MINeSERVER)
For each component i, the number of alternative versions m, is generated at random

using the following formula:

mj = MIN_VER + IO,(MAX_VER-MIN_VER)

For each version} of each component i (C;) the following data are generated:

Reliability of C;, Rij =MIN_REI + (MAX_REI - MIN_REI) * VO,I

Resource requirement of C;. =MIN_RS + IO,(MAx_RS-MINRS)

4-53

Number of servers containing C. : A random number in the range [30% of S,
J

70% of SJ

The servers that contain the version C; are generated as random numbers in

the range [1, S).

The server capacities a'k are generated so as to satisfY 30%-100% of the requests n,

from a total of S servers. Thus,

a'k= (Average resource (of type k) requirement of the versions stored in server

i) x (x% ofn)/S, Here x = {25, 50, 80,100}

The satisfaction values of the combinations of allocations are generated from the

reliabilities of the versions as follows:

• When a single version is allocated the satisfaction is the same as the reliability.

• When exactly two versions (C;, and C;,) are allocated,

Satisfaction of the combined allocation,'

= Sum(R;" R;,)+ Average(R;" R;,) x UO•05

• When more than two versions (e'" C., ' ... , C,) are allocated,
J.I .I

Satisfaction of the combined allocation,

= Sum (R;, ,R;" ... , R:,) - Average (R;, ,R;" ... , R;/) x Uo,os

The observation here is that the satisfaction of a client increases by a great amount

when the first redundant version is allocated to the client. After that the allocation of

more redundant components increases satisfaction by a very small amount.

The following quantities are assumed for all randomly generated data sets.

MAX eOMP=20

MIN eOMP=IO

MAX REL=O.99

MIN REL=O.70

MAX SER VER=20

MIN SERVER= 10

MAX RS=20

MIN RS=5

MAX VER=5

MIN VER=1

MAX DlM=2

The other parameters are defined separately for different data sets and will be

introduced in the next section.

4-54

The generated data sets are fed to the proposed network flow heuristic, to the Brute

Force algorithm and to the Greedy algorithm. Table 4-1 provides a comparison of all

three algorithms for randomly generated small data sets. Figure 4-1 and Figure 4-2

compares the proposed algorithm and the Greedy algorithm for randomly generated

large datasets. Figure 4-3 shows how the difference in total satisfaction of the

proposed algorithm and the Greedy algorithm varies with varying server capacities.

Figure 4-4 compares the same for varying number of requests. Figure 4-5 shows that

the maximum number of iterations needed by the proposed algorithm does not

increase with increasing number of requests. However this number varies with the

number of different web service components and servers and this variation is depicted,
by. Figure 4-6. Figure 4-7 and Figure 4-8 shows how the performance of the proposed

algorithm varies with different source heights.

4.4. Result Analysis

Table 4-1 shows the results obtained from the Brute Force algorithm, Greedy

algorithm and the proposed algorithm for 10 randomly generated data sets. Here,

M= Total number of Version nodes

S = Total number of Servers

n = Total number of Requests

Accpt = Total number of Accepted Requests

Sat = Total Satisfaction

Efficiency denotes the Total Satisfaction of the proposed algorithm with respect to the

Brute Force algorithm and is computed as follows:

E'ffi
. Sat proposed a/x. X 100lczency = -------

Sat I1rule Force alX.

4-55

Table 4-1 Comparison of the proposed algorithm with Brute Force and a Greedy

algorithm.

Brute Force Proposed
Data Sets Greedy Algorithm

Algorithm Algorithm Efficiency

M S N Accpt Sat Accpt Sat Accpt Sat
(%)

7 2 8 8 8.00 6 9.7 7. 9.4 97
8 2 10 9 7.70 8 10.9 9 10.5 96
9 2 10 10 12.47 7 13.23 8 13.01 98
9 4 15 13 11.50 13 16.72 13 16.61 99
10 2 12 12 17.15 12 18.21 12 18.21 100
II 4 14 13 10.99 9 13.22 10 11.97 91
12 5 12 8 7.18 7 8.81 8 7.94 90
12 " 15 12 10.54 14 13.00 12 12.48 96~

12 4 II 10 8.75 9 12.19 9 11.92 98
13 8 14 11 9.64 10 14.67 12 11.68 80

The efficiency of the proposed algorithm is more than 90% of the Brute Force

algorithm for almost all input data sets. Here efficiency 90% means that the Total

Satisfaction obtained from the proposed algorithm is 90% of that obtained from the

Brute Force algorithm which provides the optimal solution. Though these input data

sets are not realistic, they provide a measurement of the optimality of the solution of

the proposed algorithm. The Brute Force algorithm can not be applied in real life

scenarios, because it can not produce a solution even for moderate size of data sets,

for example, datasets with more than 15 requests and more than 15 versions can not

be handled by the Brute Force algorithm. On the contrary, the proposed network flow

heuristic algorithm can handle thousands of requests in a distributed system with

hundreds of versions of web service components. Thus the applicability of the

proposed algorithm makes up for the fact that it produces suboptimal solutions.

4-56

For larger data sets the proposed algorithm is compared with the Greedy algorithm

and the results are presented below.

Figure 4-1 shows the Total Satisfaction values for both the algorithms. Here server

capacities are maintained so as to accept almost 50% of all requests and the total

number of requests is varied from 300 to 800. Each data point in the graph represents

the average output of 50 randomly generated data sets.

350

o 300
"B
'""~.:;j 250
[JJ

Eo
f- 200

eo . ". -'. -e o _. o.
• •

• - -ell '.e 0 .• •
--+-- Proposed

Algorithm
.• . Greedy

150

o 2 4 6 8 10 12 14 16

Random Data Set

Figure 4-1 Comparison of Total Satisfaction for randomly generated data sets.

As expected, the proposed heuristic provides much better satisfaction values than that

of the greedy algorithm. For most of the cases Total Satisfaction obtained from the

proposed algorithm is almost 20% better than the Greedy algorithm. However this

percentage varies greatly with the amount of available resources at the servers. This

variation is depicted by Figure 4-3.

Figure 4-2 compares the Total Number of Accepted Requests generated by both the

proposed algorithm and the Greedy algorithm for the same Random Data Sets of

Figure 4-1.

4-57

'" 300~
""0- 280"~!(1

260
"""~ 2404-
0~
" 220J:>
E
"Z 200

0 2 4

•

6 8 10

•

12

/

14 16

~Proposed
Algorithm

" "Greedy

Random Data Set

Figure 4-2 Comparison of Total Number of Accepted Requests for randomly generated

data sets.

For a few cases the proposed algorithm provides better satisfaction values by rejecting

more requests than the Greedy algorithm. Such scenarios are not unexpected since the

proposed algorithm is designed to maximize total satisfaction. It can also be noticed

that for more than 50% of the input cases the proposed algorithm accepts more

requests as well as provides better satisfaction values compared to the Greedy

algorithm.

Figure 4-3 shows the variation of percentage increase in Total Satisfaction of the

proposed algorithm from the Greedy algorithm with respect to the variation of the

amount of available resources at the servers" The percentage increase is computed as

follows:

% increase = (Satisfaction proposed aiR. - SatisfactionGreedyaIX.) X 100

Satisjactionr;reedyalg

4-58

The % increase is computed for randomly generated 15 data sets for the following two

cases:

High Resource: Amounts of available resources at the servers are generated so as to

satisfy almost 80% to 100% requests.

Low Resource: Amounts of available resources at the servers are generated so as to

satisfy almost 25% requests.

For each data set only the amounts of available resources are varied while all other

parameters are held constant. Each data point in the graph represents the average

output of 50 randomly generated data sets.

0 __•. - e . o ., ..8 ... 8 -e. -0 - -0 - -& - C

50

40

"<n 30oj

"~u
"- 20"?l-

10

0
0

••
..
2

••

4 6 8 10 12 14

-+-Low
Resource

-.- High
Resource

16

Random Data Set

Figure 4-3 Percentage increase in Total Satisfaction for different server capacities.

From Figure 4-3 it is clear that when the servers have very limited resources but there

are many requests, the allocation found by the proposed algorithm is much better than

that found by the Greedy algorithm. This is because now there are many different

options to choose and the proposed algorithm performs a much better search than the

Greedy algorithm. For most of the cases 20% to 30% improvement from the Greedy

solutions have been achieved. On the other hand when the servers have huge

resources and almost 80% to 100% requests can be satisfied; there is not much scope

4-59

for the proposed algorithm to find much better solutions than the Greedy algorithm.

Still in this case the solutions obtained from the proposed algorithm are almost 8%-

10% better than the Greedy solutions.

:Figure 4-4 shows how Total Satisfaction varies with increasing number of requests

provided all other parameters are held constant.

1200

.2 1000
u • •~ 800 • • o .•. 0 . 0 •~ • --+-- Proposed.~

Algorithmif! 600S ..- e. .. Greedy
0
f- 400

200 i

0 200 400 600 800 1000 1200 1400 1600
Requests

Figure 4-4 Comparison of Total Satisfaction for randomly generated data sets with

increasing requests.

,Since the numbers of requests are small for the first few data sets, all the requests are

accepted and both the proposed algorithm and the Greedy algorithm produce similar

results. The difference in Total Satisfaction values obtained from the proposed

algorithm and the Greedy algorithm increases with increasing number of requests.

This is because number of options increases with increasing requests and the proposed

algorithm can explore the options more efficiently than the Greedy algorithm.

Complexity of the proposed algorithm depends on the number of push operations

which in turn depends on the network flow graph size and on the height of the source.

The most attractive part of the proposed algorithm is that its worst case complexity

does not depend on the number of requests. The proposed algorithm has been

executed for 12 data sets with increasing number of requests while keeping all other

4-60

parameters of the data sets constant. Figure 4-5 shows the total number of push

operations in the main while loop of the proposed algorithm for the input data sets.

When the number of requests is small, all the excess flows of most of the servers are

passed to the sink. Thus there are no push back operations for most of the servers and

total number of iterations is small. Though the total number of push operations

increases with increasing requests, its upper bound is determined by the size of the

network and not by the number of requests.

-+-- Numberof
Push
Operations

o 1000 2000
Request

3000 4000

Figure 4-5 Total uumber of push operatious performed by the proposed algorithm.

Figure 4-6 shows the running times of the proposed algorithm for three different

network sizes. For all three networks the height of the source is held constant at 21VI,

where IVI denotes the number of vertices in the network. The algorithm has been run

on a Personal Computer having Intel Pentiu:TI- 4 processor and 512Mb of RAM.

Each data point in the graph represents the average output of 50 randomly generated

data sets of same network size. As indicated by Figure 4-5 the total number of push

operations and hence the running time of the proposed algorithm is small when the

number of requests in the system is smaller compared to the total capacity of the

system. With increasing requests running time of the algorithm increases because the

system capacity becomes insufficient and finding an optimal allocation requires more

and more pushback .operations. However the running time becomes constant when the

4-61

total number of push operations reaches its maximum and after that point the running

time does not increase with increasing number of requests.

1800]
...••. -----lI.--.--- ••..'

~
>500 j ,"~ -<>-- 25 Versions 8

--0

g ,.'
u 1200 .' Servers
<l)

E 900 -.' 44 Versions 10

E Servers
~

<l) 600E --,.--,65 Versions 12

f= • -+-._. -+- _ . •
'. -+------ Servers

300 •
0

0 1000 2000 3000 4000

Requests

Figure 4-6 Running times of the proposed algorithm for three different network sizes.

With the increasing height of the source, total number of push operations increases

and the proposed network flow heuristic algorithm explores more options before

returning the excess flow of any version to the source. Thus the algorithm provides

better satisfaction valueS if the source height is increased. However increasing number

of push operations also increases the running time of the algorithm, So, a trade off

between the performance and the running time of the algorithm becomes necessary.

Figure 4-7 and Figure 4-8 show how the performance and the running time of the

algorithm varies with increasing source height. For each randomly generated data set

the algorithm is run for four different source heights: 1VI, 21 VI, 31 VI and 41VI, where I VI
is the total number of vertices in the flow network. Figure 4-7 shows the percentage

increase in Total Satisfaction for source height 21V1, 31V1 and 41 VI with respect to the

Total Satisfaction obtained for source height I VI. If source height is increased from

21 VI to 31V'1' Total Satisfaction increases by 0.6% on the average. On the other hand,

time required by the algorithm increases by almost 50% for the same increase in

source height. In the proposed algorithm the source height is maintained at 21VI, this is

4-62

because the proposed model deals with real time services and so more emphasis has

'been given for reducing the running time of the proposed heuristic algorithm,

4

= 3.5 "

'E 3 ~ Height 2[V[u

S! , ,', ,
2,5

. Height 31V[.~ . . .,, " '. : . "
en ...•.. ' I

"
'.' - __.I '" ,', Height 41VI.:= 2 ---JL---~~

~ 1.5~
u=
~0
o~ j

0 2 4 6 8 10 12 14 16

Random Data Set

Figure 4-7 Percentage increase in Total Satisfaction for three different source heights

with respect to source height IVI.

.. - - .. .- . - .•...
"."''''''-.'''.- ."- .'--.--''''-

~Height[V[

. Height 21VI
- ,- . Height 31VI
"'.',. Height 4[Vj

,

..-.---' '-.'" -.-----.---- ...- -.,_ ..- -.
, .

,f,---' .••••.,-

- .--'
".'.- -.,..",•

-.,.,_ ..._---.----.

1800 l

~
1400~

'Dc:
0
u
"~ 1000
E~
"E 600f=

200
o 2 4 6 8 10 12 14 16

Random Data Set

Figure 4-8 Running times of the proposed algorithm for the four different source

heights. Q
4-63

........,
,. '"').

\ ~I

4.5. Chapter Summary

In this chapter the proposed network flow heuristic algorithm has been compared with

a Brute Force algorithm and a Greedy algorithm. The results show that the proposed

algorithm provides near optimal solutions when compared with the Brute Force

algorithm and also provides far better solutions than the Greedy algorithm. It is also

clear from the result analysis that the running time of the proposed network flow

heuristic algorithm does not depend on the number of requests since after a certain

level the running time becomes almost constant for a given network size. The

following chapter concludes this thesis and also presents some suggestions to further

improve this research.

4-64
- --.,

Chapter 5. Conclusion

This chapter starts with describing some major contributions of this thesis and finally

presents some options for future research in this area.

5.1. Major Contribution

The prevIOus reliability optimization models aim at the optimal "integration" of

components in developing a single component-based software application. In this

thesis a new optimization model is presented that aim at the optimal "allocation" of

web service components to multiple clients in a distributed web service system. In the

optimal allocation, not only the total satisfaction of all clients will be maximized, but

also the number of clients admitted to the system will be maximized. This will happen

automatically, since the allocation strategy implemented here assigns at least one

version of a specific component to each client before assigning a redundant version to

any client already admitted to the system.

Also, this thesis explores the idea of applying network flow models to optimization

problems, which has not been done previously. The network flow approach presented

.here not only finds the optimal solution in polynomial time, but also is independent of

the number of requests, the varying parameter of the system. The worst case

complexity depends only on the total number of versions of all components and on the

total number of servers in the system. These parameters define the size of the network

flow graph and are fixed and known previously. Since running time increases heavily

with increasing network sizes, the proposed network flow heuristic algorithm is best

suitable for a small number of web service components and a small number of servers

with huge capacity to accept a large number of requests.

Since the algorithm proposed in this thesis solves the resource allocation problem in a

distributed system, it can be implemented in any system that incorporates distributed

resources, for example, a server finn. The model on which the proposed algorithm is

built perfectly fits today's web services architecture. Nowadays all applications are

5-65

moving towards the zero-installation web services based approach. Besides regular

web applications like webmail and search engines, there are now web services based

applications such as office suites (Googlc Docs and Spreadsheets), online anti-virus

checks and custom information systems (Google Earth, Google Maps). To ensure the

best possible service with limited resources, the resource allocation must be optimized

for maximum gain. This is exactly what the proposed algorithm is designed to solve.

5.2. Future Works

Pushing the excess from a server to the sink means the allocation of a set of versions

from that server. To give higher priority to versions that have higher satisfaction

values and lower resource requirements, the adjacent versions of a server are s0l1ed in

decreasing order by their (satisfaction/aggregate resource requirement) values. This

Greedy Knapsack strategy does not always guarantee the optimal allocation from a

server. Some research work can be directed in this area to find the optimal set of

versions for each Server --+ Sink push. The same cai1 be applied for the backward

pushes as well. Though the complexity of the proposed algorithm does not depend on

the number of requests, it depends heavily on the total number of web service

components along with their alternative versions. Reducing the complexity even more

requires further research in this area. The network flow approach can also be used for

existing reliability optimization models and its performance can be compared with

that of the existing reliability optimization algorithms.

5-66

References

[I] Gottschalk, K., Graham, S., Kreger, H. and Snell, 1., "Introduction to web
services architecture", IBM Systems Journal, Vol-4l, NO.2, 2002.

[2] Kreger, H., "Fulfilling the web services promise", Communications of the
ACM, Vol-46, NO.6, pp 29-34, June 2003.

[3] Tanenbaum, A. S. and Steen, M., "Distributed Systems", pp 362-364, 2002.

[4] Xie, M., "Software reliability modelling", World Ssientific Publishing Co.,
Singapore, 1991.

[5] Mura, J. D., "A Theory of software reliability and its applications", IEEE
Transaction on Software Engineering, SE-I (3), 1975.

[6] Zo, H., Nazareth, D. L. and Jain, H. K., "Measuring reliability of
applications composed of web services", Proceedings of the 40th Annual
Hawaii International Conference on System Sciences, pp 278-287, 2007.

[7] Zo, H., "Supporting intra- and inter-organizational business processes with
web services", Ph.D. Thesis, the University of Wisconsin-Milwaukee,
August 2006.

[8] Chen, 1. and Avizienis, A., "N-Version Programming: a fault tolerance
approach to reliability of software ofJ~ration", IEEE Proceedings of FTCS-
25, Vol-3,pp 113-119,1996.

[9] Belli, F., and Jedrzejowicz, P., "Fault tolerant programs and their
reliability", IEEE Transactions on Reliability, Vol-39, NO.2, pp 184-192,
1990.

[10] Randell, B., "System structure for software fault tolerance", IEEE
Transaction on Software Engineering, Vol-SE-13, pp 582-592,1987.

[11] Berman, O. and Ashrafi, N., "Optimization models for reliability of
modular software systems", IEEE Transaction on Software Engineering,
Vol-19,No.ll,pp 1119-1123, 1993.

[12] Wattanapongsakorn, N. and Levitan, S., "Reliability optimization models
for fault tolerant distributed systems", In Proceedings of Annual Reliability
and Maintainability Symposium, pp 193-199,2001.

[13] Jung, H. and Choi, B., "Optimization models for quality and cost of
modular software systems", European Journal of Operational Research,
Vol-112, No.3, pp 613-619,1999.

[14] Belli, F. and Jedrzejowicz, P., "An approach to the reliability optimization
of software with redundancy", IEEE Transactions on Software
Engineering, Vol-17, No.3, pp 310-312, 1999.

[15] Caserta, M., and Uribe, A. M., "Tabu search-based metaheuristic algorithm
for software system reliability problems", submitted to Computers and
Operations Research, July 2007.

5-67

[21]

[16]

[17]

,{.q.--I.~ "~<1?f-...,,,,?~~.

l:C~'~~
~'j('1~.J!Y.f2fl?;..\7h'l
\1;'\~j"2?/Ibftft-) ,}},

Caserta, M. and Ryoo, H. S., "Efficient tabu search-base ~~me~.fQ:r:;:;8/
optimal redundancy allocation in complex system rel~~~ij~n-- .
Proceedings of the 5th International Conference QI1 Optimization:
Techniques and Applications, Vol-2, pp 592-599, 2001.

Chang, W. C, Wu, C S. and Chang, C., "Optimizing dynamic web service
component composition", Proceedings of the 2005 IEEE/WIC/ACM
International Conference on Web Inteliigence, 2005.

Tsai, W. T., Zhang, D., Chen, Y., Huang, H., Paul, R. and Liao, N., "A
software reliability model for web services", the 8th lASTED International
Conference on Software Engineering and Applications, pp 144-149,2004.

Kuo, W. and Prasad, V. R., "An annotated overview of system-reliability
optimization", IEEE Transactions on Reliability, Vol-49, No.2, pp 176-

187,2000.
Kim, 1. H. and Yum, B. 1., "A heuristic method for solving redundancy
optimization problems in complex systems", IEEE Transactions on
Reliability, Vol-42, No.4, pp. 572-578.1993.
Painton, L. and Campbell, 1., "Genetic algorithms in optimization of
system reliability", IEEE Transactions on Reliability, Vol-44, Issue. 2, pp
172-178, 1995.
Marseguerra, M. and Zio, E., "System design optimization by genetic
algorithms", In Proceedings of Annual Reliability and Maintainability
Symposium, pp 222-227, 2000.

[23] Glover, F., "Tabu search - part I", ORSA Journal on Computing, Vol-I,
NO.3, pp 190-206, 1989

[22]

[20]

[19]

[18]

[24] . Glover, F., "Tabu search and adaptive memory programming-advances,
applications and challenges", Interfaces in Computer Science and
Operations Research, 1996.

[25] Cormen, T H., Leiserson, C E., Rivest, R 1. and Stein, C, "Introduction
to algorithms, 2nd edition", pp 651-668, 2001.

[26] West, D. B., "Introduction to graph theory, 2nd edition", pp 183-187,2001..

[27] Ford, 1. R and Fulkerson, D. R, "Maximal flow through a network", Can.
J. Math, Vol-8, pp 399-404, 1956.

[28] Edmonds, J. and Karp, R M., "Theoritical improvements in algorithmic
efficiency for network flow problems", J. Assoc. Comput. Mach., Vol-19,
pp 248-264, 1972-

[29] Goldberg, A. V., Tardos, E. and Tarjan, R E., "Network flow algorithms",
Algorithms and Combinatorics, Vol-9, pp 100-164, 1990.

[30] Goldberg, A. V., "A new max flow algorithm", Technical Report
MlT/LCS/TM-291, Laboratory for computer science, M.lT, 1985.

[31] Goldberg, A. V., Tarjan, R E., "A new approach to the maximum flow
problem", Proceedings of the 18th ACM STOC, pp 136-146, 1986.

o
•

5-68

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080

