
A New Local SeaFchBased ACO Algorithm for

Solving Combinatorial Optimization Problems

By

Md. Rakib Hassan
Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology

June 2007

Submitted to

Bangladesh University of Engineering and Technology

In partial fulfillment of the requirements for

Master of Science in Engineering (Computer Science and Engineering) degree,

.
"

- - _."-'-"--~-~

I 1111111111111111111111111111111;lc'~c' l! f
i #104297# ;; ~.
~.~ .i-::"'~~- . :-__-_:;.:;;~~~-"_f" .~.~-/ '~~,.

-._.------~~:

The thesis titled "A New Local Search Based Ant Colony Optimization Algorithm for

Solving Combinatorial Optimization Problems" submitted by Md. Rakib Hassan,

Roll No. 040505023F, Session April 2005 has been accepted as satisfactory in partial

fulfillment of the requirements for the degree of Master of Science in Engineering

(Computer Science and Engineering) held on June OS, 2007.

BOARD OF EXAMINERS

I.

3.

5.

Dr. Md. MoniruJ Islam
Associate Professor
Department of CSE
BUET, Dhaka-IOOO

/fA ~SVI)O'V .~.2. ~ _
Dr. Muhammad Masroor Ali
Professor and Head
Department of CSE
BUET, Dhaka-J 000

~~
Dr. Md. Mostofa Akbar
Associate Professor
Department of CSE
BUET, Dhaka-) 000

4.~~/2POJC
Dr. Md. ~ayun Kabir
Assistant Professor
Department of CSE
BUET, Dhaka-IOOO

~('/~ 1_2OJT__
Dr. Mohammad Zahidur Rahman
Associate Professor and Head
Department of CSE
Jahangimagar University
Savar, Dhaka

Chairman
(Supervisor)

Member
(Ex-{)fficio)

Member

Member

Memb-er
(Exterilal)

J :,

!

~.

f

I, '

" ,
'\,

'I

I,
I

}
I

I
I

,I

DECLARATION

I, hereby, declare that the work presented in this thesis is the outcome of the investigation

performed by me under the supervision of Dr. Md. Monirul Islam, Associate Professor,

Department of Computer Science and Engineering, Bangladesh University of

Engineering and Technology, Dhaka. I also declare that no part of this thesis and thereof

has been or is being submitted elsewhere for the award of any degree or diploma.

Signature

(Md. Rakib Hassan)

Candidate

"

To

My Beloved Family

~.
(

ACKNOWLEDGEMENTS

Firstly, I would like to express my honor and gratefulness to Dr. Md. Monirul Islam,

Associate Professor, Department of Computer Science and Engineering, Bangladesh

University of Engineering and Technology, for his continuous support, advice and

care. His endless patience, scholarly guidance, continual encouragement, constant and

. energetic supervision, constructive criticism, valuable advice, reading many inferior

drafts and correcting them at all stage have made it possible to complete this thesis.

Secondly; I would like to thank Dr. Muhammad Masroor Ali, Professor and Head,

Department of CSE, BUET for his fruitful advice and suggestions. .

Thirdly, I would like to express my gratitude to all the members of the graduate

committee for their valuable suggestions.

I would also like to thank all the faculty members and staff of Department of CSE,

BUET, for their support and cooperation.

Finally, I would like to express my deep respect and gratitude to my parents, sister

and my wife, without whose sacrifice, support and encouragement, this work would

. have been impossible.

ABSTRACT

ACO algorithms are a new branch of swarm intelligence. ACO algorithms have been

introduced in the last decade. They have been applied to solve different combinatorial

optimization problems successfully. Their performance is very promising when they

solve small problem instances. When they try to solve large problems, their time

complexity increases and their solution quality decreases. They get stuck in local

optima due to improper balancing of exploration and exploitation of the search space.

When their solution quality is tried to improve using local search, their time

complexity is increased. When time complexity is tried to reduc'e, they produce poor

. quality solutions. So, it is crucial to reduce the time requirement and at the same time

to increase the solution quality produced by the algorithms for solving large

combinatorial optimization algorithms.

This thesis introduces Local Search based Ant Colony Optimization algorithm
•

(LSACO), a new ACO algorithm to solve large combinatorial optimization problems.

The basis of LSACO is to apply an adaptive local search method to improve the

solution quality. Adaptive local search automatically determines the number of edges

to exchange during the run time of the algorithm. LSACO also applies pheromone

updating rule and constructs solutions in a new way so as to decrease the convergence

. time. LSACO makes it possible to produce very good quality solutions for large

problem instances in a short time.

Performance of LSACO has been evaluated on a number of benchmark combinatorial

optimization problems and results are compared with several existing ACO

algorithms. Experimental results show that LSACO performs better optimization with

a higher rate of convergence for most of the problems in a reasonable amount oftime.

11

TABLE OF CONTENTS

Acknowledgements
Abstract
Table of Contents
List of Figures
List of Tables
List of Symbols

Chapter 1: Introduction
1.1 Introduction
1.2 Literature Survey
1.3 Aim ofthe Thesis
1.4 Thesis Organization

Chapter 2: Background
2.1 Introduction
2.2 Combinatorial Optimization Problem
2.3 Solving Combinatorial Optimization Problems

2.3.1 Exact Algorithms
2.3.2 Approximate Algorithms

2.3.2.1 Tour Construction Algorithms
2.3.2.2 Tour Improvement Algorithms
2.3.2.3 Composite Algorithms

2.4 ACO Metaheuristic
2.5 Ant System-The Basic ACO Algorithm

2.5.1 Artificial Ants
2.5.2 The AS Algorithm
2.5.3 Tour Construction of AS
2.5.4 Update of Pheromone Trails in AS
2.5.5 The Pseudo Code of AS Algorithm
2.5.6 Problems of AS

2.6 Ant Colony System
2.6.1 Differences with AS
2.6.2 The ACS Algorithm

2.7 Features of ACO Algorithm
2.8 Local Search
2.9 Conclusion

Chapter 3: Proposed Algorithm
3.1 Introduction
3.2 Overview of LSACO Algorithm
3.3 New Tour Construction Phase
3.4 New Local Pheromone Update
3.5 Adaptive Local Search

11l

11

11l-IV

V

VI

vii

1-7
1
2
6
7

8-30
8
8
11
11
12
12
12
13
13
15
17
18
19
21
22
22
23
23
24
27
28
30

31-46
31
31
33
35
36

3.5.1 Existing Local Search Methods
3.5.2 Proposed Adaptive Local Search

3.6 New Global Updating Rule
3.7 Time Complexity of LSACO
3.8 Differences with Existing Works
3.9 Conclusion

Chapter 4: Experimental Study
4.1 Introduction
4.2 Description of Data Set

4.2.1 Symmetric TSP
4.2.2 Asymmetric TSP
4.2.3 Hamiltonian Cycle Problems

4.3 Types of Data Formats Used
4.3.1 The Specification Part
4.3.2 The Data Part

4.4 Experimental Setup
4.5 Experimental Results and Analysis
4.6 Comparison
4.7 Discussions

Chapter 5: Conclusion
5.1 Conclusive Remarks
5.2 Recommendations for Future Research

References

IV

36
37
43
44
45
46

47-63
47
47
47
48
48
49
49
51
53
54
59
62

64
65

66-70

LIST OF FIGURES
===

Figure Figure Name Page

2.1 An example with real ants 16
2.2 An example with artificial ants 17
2.3 Flow chart of ACS algorithm 24
2.4 An example 2-opt move 29
2.5 An example 2.5-opt move 29
2.6 An Example 3-opt move 30
3.1 Flow chart of the LSACO Algorithm 32
3.2 Flowchart of the adaptive local search method 38
3.3 Edge exchanging process 39
3.4 Sharing common endpoints 40
3.5 Sets X and Y are disjoint 41
3.6 Try an untried edge 41

3.7 Replaced edges will not be added or added edges will not be
42deleted.

3.8 Cost(T2)<Cost(Tl) 42
4.1 Time requirement ofLSACO with respect to problem size 58

4.2 Comparison of error rates ofLSACO and other algorithms with
61respect to problem dimension

4.3 Comparison of required time to find the optimum solution 62

v r>
...• _"-..., .•., "';;.,

LIST OF TABLES

Table Table Name Page

4.1 Performance of LSACO on some problems of Symmetric TSP 54over 15 trials (Edge weight is in Geographical distance)

4.2 Performance of LSACO on some problems of Symmetric TSP 55over 15 trials (Edge weight is in matrix form)

4.3 Performance of LSACO on some problems of Symmetric TSP 55over 15 trials (Edge weight is in special form)

4.4 Performance of LSACO on some problems of Symmetric TSP 56over IS trials (Edge weight is in Euclidean distances in 2-D)

4.5 Performance of LSACO on some problems of Symmetric TSP 56(Edge weight is in Euclidean distances in 2-D)

4.6 Performance ofLSACO on some problems of Asymmetric TSP 57over IS trials (Edge weight is in matrix form)

4.7 Performance of LSACO for Hamiltonian Cycle Problems (over IS 57trials)

4.8
Experimental Results ofLSACO on some larger TSP problems 58(over IS trials)

4.9 Comparison between LSACO and ACS-3"opt on some symmetric 59TSP problems (over IS trials)

4.10 Comparison between LSACO and ACS-3-opt on some asymmetric 60TSP problems (over 15 trials)

4.11 Comparison between LSACO and STSP-GA on some symmetric 60TSP problems (over 15 trials)

4.12 Comparison between LSACO and ATSP-GA on some asymmetric 60TSP problems (over 15 trials)

4.13 Comparison ofLSACO with MMAS on symmetric problems of 61TSP (over IS trials) .

VI
t.r?
. (,

a

fJ

m

.q

qo

List of Symbols

relative importance of pheromone trail, 0 <a < I

relative importance of the distance or heuristic information, fJ > 0

heuristic value

the number of ants

it random number uniformly distributed in [0 .. I]

a parameter [0::; qo ::;I]

initial pheromone

pheromone decay parameter, 0 < c; < I

Vl1

I...•~
'0

1.1 Introduction

Chapter 1

Introduction

Artificial intelligence [1] is now a well-known term than it was a few years ago. At

present, it has been applied in many objects or in software so that the objects or

software can take decisions themselves and solve difficult problems intelligently

without the help of human beings. For this purpose, many intelligent algorithms are

present now. Among them, swarm intelligence [2] is of demand. It emerges from the

collective behavior of the social insect colonies and other animal societies.

Swarm intelligence exhibits a number of interesting properties such as flexibility,

robustness, decentralization and self-organization. It has attracted more attention from

computational intelligence researchers. Implementation of optimization and control

algorithms based on swarm intelligence such as Ant Colony Optimization (ACO) [3]

is of growing interest.

ACO algorithms have been applied to combinatorial optimization problems [4] such

as traveling salesman problem [5], job-shop scheduling [6] and other sophisticated

problems [7-16]. ACO algorithms are currently state-of-the-art for solving the

sequential ordering problem [7], the resource constraint project scheduling problem

[8] and the open shop scheduling problem [9].

In ACO, a number of artificial ants [2] are given a set of simple rules that take

inspiration from the behavior of real ants. Artificial ants are then left free to move on

an appropriate graph representation of the considered problem. They probabilistically

build a solution to the given problem and then deposit on the graph some artificial

pheromones that bias the probabilistic solution construction activity of future ants.

The amount of pheromone deposited and the way it is used to build solutions are such

that the overall search process is biased toward the generation of approximate

solutions of better quality.

- 1 -

The performance of ACO algorithms in solving difficult combinatorial optimization

problems is very promising [16]. But when the problem size grows, the solution

quality of ACO algorithms decreases [17-21].And the time requirement to solve these

large problems also increases. To improve the solution quality and to reduce the time

requirement, several ACO algorithms have been proposed so far. Among these ACO

algorithms, Ant Colony System (ACS) [22] is the best performing one.

ACS performs very well compared to other ACO algorithms. It produces very good

results for small problems in a reasonable time. But when it is applied to large

problems, its performance also decreases. Because the existing ACO algorithms get

stuck in local optima in a certain stage of the search process. Some ACO algorithms

stuck in local optima in the early stages of the search process and some get stuck in

later stages of the search process. Besides the problem of local optima, the existing

ACO algorithms require huge time to produce near optimum results for large problem

instances.

1.2 Literature Survey

In the early 1990s, ACO was introduced by M. Dorigo and colleagues as a novel

nature-inspired metaheuristic for the solution of hard combinatorial optimization

problems. ACO belongs to the class of metaheuristics which are approximate

algorithms used to obtain good enough solutions to hard combinatorial optimization

problems in a reasonable amount of computation time. Other examples of

metaheuristics are tabu search [23, 24], simulated annealing [25] and evolutionary.

computation [26].

The first ACO algorithm called Ant System (AS) [2] was published in 1991 by

Dorigo. It was applied to the traveling salesman problem [27-30]. Starting from AS,

several improvements of the basic algorithm have been proposed. Typically, these

improved algorithms have been tested again on the TSP. All these improved versions

of AS have in common a stronger exploitation of the best solutions found to direct the

ants' search process; they mainly differ in some aspects ofthe search control.

~.
-2-

Besides AS, other existing ACO algorithms are Elitist Ant System (Dorigo, 1992)

[31], Ant-Q (Dorigo and Gambardella, 1996) [32-33], Ant Colony System (Dorigo

and Gambardella, 1997) [22], Max-Min Ant System (Stutzle, 1997) [34], Rank-based

Ant System (Bullnheimer et el., 1999) [35], Approximate Nondeterministic Tree

Search (Maniezzo, 1999,2000) [36-37] and Hyper-cube Ant System (Blum & Dorigo,

2001,2004) [38-39].

In ant system, three different versions were proposed. These were called ant-density,

ant-quantity and ant-cycle [2]. In the ant-density and ant-quantity versions, the ants

updated the pheromone directly after a move from one node to an adjacent node. In

the ant-cycle version, the pheromone update was only done after all the ants had

constructed the tours and the amount of pheromone deposited by each ant was set to

be a function of the tour quality. Among these three versions, only ant-cycle is used

for AS and the other two versions were abandoned because of their inferior

performance. The two main phases of the AS algorithm constitute the ant's solution

construction and the pheromone update. The relative performance of AS when

compared to other metaheuristics tends to decrease dramatically as the size of the test-

instance increases.

A first improvement on the initial AS is the elitist strategy for AS. It is called the

Elitist AS. The idea is to provide strong additional reinforcement to the edges

belonging to the best tour found since the start of the algorithm. This tour is called the

best-so-far tour. This additional feedback to the best-so-far tour can be viewed as

additional pheromone deposited by an additional ant called best-so-far ant. In Elitist

AS, pheromone evaporation is implemented as in AS.

Rank-based AS (ASrank)is another improvement over AS. In ASrank,each ant deposits

an amount of pheromone that decreases with its rank. As in Elitist AS, the best-so-far

ant always deposits the largest amount of pheromone in each iteration. Before

updating the pheromone trails, the ants are sorted by increasing tour length. The

quantity of pheromone on ant deposits is weighted according to the rank r of the ant.

Ties can be solved randomly. In each iteration, only the (w-I) best-ranked ants and

- 3 -

the ant that produced the best-so-far tour are allowed to deposit pheromone, where w

is the weight. The best-so-far tour gives the strongest feedback. AS"nk perfonns

slightly better than Elitist AS and significantly better than AS. It has some additional

computations to sort the ants in each iteration for ranking the ants. Since the number

of ants was equal to the number of nodes in the problem, sorting in each iteration is an

additional overhead.

Ant-Q is an algorithm that is based on AS and Q-learning algorithms. Q-learning is a

reinforcement learning technique that works by learning an action-value function that

gives the expected utility of taking a given action in a given state and following a

fixed policy thereafter. Reinforcement learning differs from the supervised learning

problem in that correct input/output pairs are never presented, nor sub-optimal actions

explicitly corrected. The strength of Q-learning is that it is able to compare the

expected utility of the available actions without requiring a model of the environment.

Although having a good perfonnance, Ant-Q was abandoned for the equally good but

simpler Ant Colony System.

Max-Min Ant System (MMAS) introduces four main modifications with respect to

AS. Firstly, it strongly exploits the best tours found. Only either the iteration-best ant,

that is, the ant that produced the best tour in the current iteration, or the best-so-far ant

is allowed to deposit pheromone. Secondly, to avoid local. optima, a second

modification introduced by MMAS is that it limits the possible range of pheromone

trail values to the interval [rmin' r m~)' Thirdly, the pheromone trails are initialized to

the upper pheromone trail limit, which, together with a small pheromone evaporation

rate, increases the exploration of tours at the start of the search. And last of all,

pheromone trails are reinitialized each time the system approaches stagnation or when

no improved tour has been generated for a certain number of consecutive iterations.

Ant Colony System (ACS) differs from AS in three main points. First, it exploits the

search experience accumulated by the ants more strongly than AS does through the

use of a more aggressive action choice rule. Second, pheromone evaporation and

pheromone deposit take place only on the edges belonging to the best-so-far tour.

Third, each time an ant uses an edge (i,j) to move from node i to node j, it removes

- 4 -

some pheromone from the edge to increase the exploration of alternative paths. There

are some similarities between MMAS and ACS: they both use pheromone trail limits,

although these are explicit in MMAS and implicit in ACS.

Approximate Nondeterministic Tree Search (ANTS) is an ACO algorithm that

exploits ideas from mathematical programming. In particular, ANTS computes lower

bounds on the completion of a partial solution to define the heuristic information that

is used by each ant during the solution construction. The name ANTS derives from

the fact that the proposed algorithm can be interpreted as an approximate

nondeterministic tree search since it can be extended in a straightforward way to a

branch & bound procedure. Apart from the use of lower bounds, ANTS also

introduces two additional modifications with respect to AS: the use of a novel action

choice rule and a modified pheromone trail update rule. The use of lower bounds to

compute the heuristic information has the advantage in that otherwise feasible moves

can be discarded if they lead to partial solutions whose estimated costs are larger than

the best-so-far solution. A disadvantage is that the lower bound has to be computed at

each single construction step of an ant and therefore a significant computational

overhead might be incurred.

The hyper-cube framework for ACO was introduced by Blum, Roli, & Dorigo (200 I)

to automatically rescale the pheromone values in order for them to lie always in the

interval [0, I]. This choice was inspired by the mathematical programming

formulation of many combinatorial optimization problems, in which solutions can be

represented by binary vectors. In such a formulation, the decision variables, which

can assume the values {O, I}, typically correspond to the solution components as they

are used by the ants for solution construction. A solution to a problem then

corresponds to one corner of the n-dimensional hyper-cube, where n is the number of

decision variables. The hyper-cube framework is a complex method compared to the

existing ACO algorithms and so, it has not been applied extensively like the other

ACO algorithms.

- 5 -
(1

1.3 Aim of the Thesis

Current ACO algorithms have shown very promising results in solving combinatorial

optimization problems [40]. They can find good quality solutions in a reasonable

time. But all the existing ACO algorithms have been applied in small-sized problems.

When they are applied in large problems, their performance degrades very much.

Their solution quality decreases and their time complexity also increase noticeably.

The existing ACO algorithms have applied 2-opt and 3-opt local search strategy [22,

38] to improve performance. But all these search strategies have to predefine the

number of edges to exchange. Predefining a fixed number of edges is a major

drawback because it is difficult to know in advance what to use in achieving the best

compromise between running time and quality of solution. If!1 is assumed to be the

number of edges to exchange, then if!1 increases, the number of operations to test all

!1-exchanges increases rapidly with problem dimension. Existing algorithms cannot

be applied for large problems because the time to check and exchange edges grows

exponentially.

Considering all the above mentioned problems and findings we have decided our

objectives as:

• To develop a new ACO algorithm that will automatically determine the

number of edges to be exchanged for finding good quality solutions.

• To introduce a number of control parameters that will prevent premature

convergence and will increase the probability of finding the global optima in a

reasonable time.

• To reduce the time complexity of the ACO algorithm so that it can be applied

to large problems.

• To evaluate and compare the performance of the new algorithm with the

existing ACO algorithms on different benchmark optimization problems.

- 6 -

1.4 Thesis Organization

The remaining chapters of this thesis are organized as follows:

• Chapter 2 provides background material for the rest of the thesis.

Combinatorial optimization problems and their solving techniques are

described first. Then ACO metaheuristic is discussed. Thereafter, the Ant

System, which is the first algorithm of ACO metaheuristic, is discussed with

the nature of the artificial ants, its pheromone model, solution construction

technique, pheromone updating rules and the solution quality obtained. Local

search is then described with its working method and its capability to improve

the performance of the ACO algorithms in solving combinatorial optimization

problems. Then the Ant Colony System, the best performing ACO algorithm,

is also described in short as our proposed algorithm is based on this ant colony

system algorithm.

• Chapter 3 presents the proposed algorithm LSACO: Local Search based ACO,

which is the main contribution of this thesis. Advantages of LSACO over

other conventional approaches are enlisted first. Algorithm of LSACO is then

elaborated; detailed description of different processes and methods used in

LSACO are then described.

• Chapter 4 presents a detailed experimental evaluation of LSACO. In the

reported experiments, LSACO is applied to solve combinatorial optimization

problems. This chapter evaluates LSACO's performance on several well-

known benchmark optimization problems. Types and sources of data,

experimental details, results, analysis and comparison with other ACO

algorithms are described.

• Chapter 5 presents the contribution and limitations of the research and the

proposed future research tasks aimed at addressing the limitations.

- 7 -

Chapter 2

2.1 Introduction

ACO algorithms were first described as Ant System [2]. After that, many

modifications and improvements were proposed. These ACO algorithms have been

applied in different combinatorial optimization problems. This chapter describes the

background necessary to understand the ACO algorithms. At first, combinatorial

optimization problems are briefly described with their types of solution techniques.

Ant System algorithm which is the first of its class of ACO metaheuristic, has been

applied to solve the combinatorial optimization problems. This basic algorithm is

described at first. Then the best performing ACO algorithm called Ant Colony System

[22] is described in short. Our proposed algorithm uses this ant colony system as the

basic framework of ACO.

2.2 Combinatorial Optimization Problem

Combinatorial optimization problems [4, 40] involve finding values for discrete

variables such that the optimal solution with respect to a given objective function is

found. A combinatorial optimization problem is either maximization or a

minimization problem which is associated a set of problem instances. The term

problem refers to the general question to be answered, usually having several

parameters or variables with unspecified values. The term instance refers to a problem

with specified values for all the parameters.

More formally, an instance of a combinatorial optimization problem II is a

triple (S, f,Q), where S is the set of candidate solutions, f is the objective function

which assigns an objective function value f(s) to each candidate solutions E S, and

Q is a set of constraints. The solutions belonging to the set S <;;; S of candidate

- 8 -

solutions that satisfy the constraints Q is caIled feasible solutions. The goal is to find a

globally optimal feasible solution s*.

For minimization problems this consists in finding a solution s' E S with minimum

cost, that is, a solution such that f(s') -:;,f(s) for all s E S; for maximization

problems one searches for a solution with maximum objective value, that is, a

solution with f(s')? f(s) for all s E S. It should be noted that an instance of a

combinatorial optimization problem is typically not specified explicitly by

enumerating all the candidate solutions (Le., the set S) and the corresponding cost

values, but is rather represented in a more concise mathematical form (e.g., shortest-

path problems are typically defined by a weighted graph).

A straightforward approach to the solution of combinatorial optimization problems

would be exhaustive search, that is, the enumeration of all possible solutions and the

choice of the best one. Unfortunately, in most cases, such a naive approach becomes

rapidly infeasible because the number of possible solutions grows exponentially with

the instance size n, where the instance size can be given, for example, by the number

of binary digits necessary to encode the instance.

For some combinatorial optimization problems, deep insight into the problem

structure and the exploitation of problem-specific characteristics allow the definition

of algorithms that find an optimal solution much quicker than exhaustive search does.

In other cases, even the best algorithms of this kind cannot do much better than

exhaustive search.

Finding an optimal solution of a combinatorial optimization problem is difficult. This

difficulty can be measured by the worst-case complexity. Worst-case complexity can

be explained as: a combinatorial optimization problem II is said to have worst-case

complexity O(g(n)) if the best algorithm known for solving II finds an optimal

solution to any instance of II having size n in a computation time bounded from above

by const. g(n).

- 9 -

A combinatorial optimization problem JI is solvable in polynomial time if the

maximum amount of computing time necessary to solve any instance of size n of JI is

bounded from above by a polynomial in n. If k is the largest exponent of such a

polynomial, then the combinatorial optimization problem is said to be solvable in

G(n') time.

Although some important combinatorial optimization problems have been shown to

be solvable in polynomial time, for the great majority of combinatorial problems no

polynomial bound on the worst-case solution time could be found so far. For these

problems, the run time of the best algorithms known increases exponentially with the

instance size and, consequently, so does the time required to find an optimal solution.

A notorious example of such a problem is the TSP.

An important theory that characterizes the difficulty of combinatorial problems is that

of NP-completeness. This theory classifies combinatorial problems in two main

classes: those that are known to be solvable in polynomial time, and those that are not.

The first are said to be tractable, the latter intractable.

The theory of NP-completeness distinguishes between two classes of problems of

particular interest: the class P for which an algorithm outputs in polynomial time the

correct answer ("yes" or "no"), and the class NP for which an algorithm exists that

verifies for every instance, independently of the way it was generated, in polynomial

time whether the answer "yes" is correct. It is clear that P <;;; NP while nothing can be

said on the question whether P = NP or not.

A polynomial time reduction is a procedure that transforms a problem into another

one by a polynomial time algorithm. The interesting point is that if problem JIA can be

solved in polynomial time and problem JIB can be transformed into JIA via a

polynomial time reduction, then also the solution to JIB can be found in polynomial

time.

A problem is said to be NP-hard, if every other problem in NP can be transformed to

it by a polynomial time reduction. Therefore, an NP-hard problem is at least as hard

- 10 -

as any of the other problems in NP. However, NP-hard problems do not necessarily

belong to NP. An NP-hard problem that is in NP is said to be NP-complete.

Therefore, the NP-complete problems are the hardest problems in NP: if a polynomial

time algorithm could be found for an NP-complete problem, then all problems in the

NP-complete class (and consequently all the problems in NP) could be solved in

polynomial time. Until today, a large number of problems have been proved to be NP-

complete, including the TSP.

2.3 Solving Combinatorial Optimization Problems

Two classes of algorithms are available for the solution of combinatorial optimization

problems:

• Exact algorithms

• Approximate algorithms.

2.3.1 Exact algorithms.

Exact algorithms are guaranteed to find the optimal solution and to prove its

optimality for every finite size instances of a combinatorial optimization problem

within an instance-dependent run time. Exact algorithms need, in the worst case,

exponential time to find the optimum in the case of NP-hard problems. The

application of exact algorithms to NP-hard problems in practice also suffers from a

strong rise in computation time when the problem size increases, and often their use

becomes infeasible.

For example, the most effective exact algorithms are cutting-plane or facet-finding

algorithms [30]. These algorithms are quite complex, with codes on the order of

10,000 lines. These algorithms are also very demanding of computer power. For

example, the exact solution of a symmetric traveling salesman problem with 2392

cities was determined over a period of more than 27 hours on a powerful super

computer. It took roughly 3-4 years of CPU time on a large network of computers to

determine the exact solution of the 7397-city problem.

- 11 -

2.3.2 Approximate algorithms

In contrast, the approximate algorithms obtain good solutions but do not guarantee

that optimal solutions will be found. These algorithms are usually very simple and

have (relative) short running times. Some of the algorithms give solutions that in

average differ only by a few percent from the optimal solution. Therefore, if a small

deviation from optimum can be accepted, it may be appropriate to use an approximate

algorithm. The class of approximate algorithms may be subdivided into the following

three classes:

• Tour construction algorithms

• Tour improvement algorithms

• Composite algorithms.

2.3.2.1 Tour Construction Algorithms

A simple example of a tour construction algorithm is the so-called nearest neighbor

algorithm. Start in an arbitrary node. As long as there are nodes, that have not yet

been visited, visit the nearest node that still has not appeared in the tour. Finally,

return to the first node. This approach is simple, but often too greedy. The first

distances in the construction process are reasonably short, whereas the distances at the

end of the process usually will be rather long. A lot of other construction algorithms

have been developed to remedy this problem.

2.3.2.2 Tour Improvement Algorithms

Tour improvement algorithms are also called local search methods [3, 22]. Local

search starts from some initial solution and repeatedly tries to improve the current

solution by local changes. The first step in applying local search is the definition of a

neighborhood structure over the set of candidate solutions. The neighborhood

structure defines for each current solution the set of possible solutions to which the

local search algorithms can move.

- 12 -

One common way of defining neighborhoods is via k-exchange moves that exchange

a set of k components of a solution with a different set of k components. Its most

basic version is often called iterative improvement, or sometimes hill-climbing or

gradient-descent for maximization or minimization problems, respectively.

The local search algorithm searches for an improved solution within the neighborhood

of the current solution. If an improving solution is found, it replaces the current

solution and the local search is continued. These steps are repeated until no improving

solution is found in the neighborhood and the algorithm terminates in local optima. A

disadvantage of tour improvement is that the algorithm may stuck at very poor-quality

local optima.

2.3.2.3 Composite Algorithms

The composite algorithms combine the features of tour construction and tour

improvement algorithms. Tour construction algorithms are too greedy and tour

improvement algorithms stuck in local optima. Combining these two algorithms, the

solution quality is increased in composite algorithms. ACO algorithms can be loosely

classified as composite algorithms. Because ACO algorithms first construct tours

using some probabilistic rules and then use local search to improve the solution

quality.

2.4 ACO Metaheuristie

Combinatorial optimization problems are often easy to state but very difficult to

solve. Many of the problems arising in applications are NP-hard, that is, it is strongly

believed that they cannot be solved to optimality within polynomially bounded

computation time. Hence, to practically solve large instances one often has to use

approximate methods which return near-optimal solutions in a relatively short time.

Algorithms of this type are loosely called heuristics. They often use some problem-

specific knowledge to either build or improve solutions.

- 13 -

Recently, many researchers have focused their attention on a new class of algorithms,

called metaheuristics. A metaheuristic is a set of algorithmic concepts that

can be used to define heuristic methods applicable to a wide set of different problems.

The use of metaheuristics has significantly increased the ability of finding very high-

quality solutions to hard, practically relevant combinatorial optimization problems in

a reasonable time. Metaheuristic can also be defined as a master strategy that guides

and modifies other heuristics to produce solutions beyond those that are normally

generated in a quest for local optimality.

A particularly successful metaheuristic is inspired by the behavior of real ants.

Starting with AS, a number of algorithmic approaches based on the very same ideas

were developed and applied with considerable success to a variety of combinatorial

optimization problems from academic as well as from real-world applications. ACO is

a metaheuristic framework which covers the algorithmic approach mentioned above.

The ACO metaheuristic has been proposed as a common framework or the existing

applications and algorithmic variants of a variety of ant algorithms. Algorithms that

fit into the ACO metaheuristic framework are called ACO algorithms. The application

of ACO is particularly interesting for:

1. NP-hard problems which cannot be efficiently solved by more traditional

algorithms

2. Dynamic shortest-path problems in which some properties of the problem's

graph representation change over time concurrently with the optimization

process

3. Problems in which the computational architecture is spatially distributed.

Besides ACO metaheuristic, other metaheuristics exist including simulated annealing,

tabu search, guided local search, iterated local search, greedy randomized adaptive

search procedures, and evolutionary computation. Several characteristics make ACO

a unique approach: it is a constructive, population-based metaheuristic which exploits

an indirect form of memory of previous performance. This combination of

characteristics is not found in any of the other metaheuristics.

- 14 -

\

2.5 Ant System-The Basic ACO Algorithm

Ant System (AS) is the basic ACO algorithm and it was the first algorithm proposed

in the class of ACO algorithms in 1991. The main characteristics of this model are

positive feedback, distributed computation, and the use of a constructive greedy

heuristic. Positive feedback accounts for rapid discovery of good solutions, distributed

computation avoids premature convergence, and the greedy heuristic helps find

acceptable solutions in the early stages of the search process.

In AS, the search activities are distributed over so-called "ants," that is, agents with

very simple basic capabilities which, to some extent, mimic the behavior of real ants.

One of the problems studied by ethologists was to understand how almost blind

animals like ants could manage to establish shortest route paths from their colony to

feeding sources and back. It was found that. the medium used to communicate

information among individuals regarding paths, and used to decide where to go,

consists of pheromone trails. A moving ant lays some pheromone (in varying

quantities) on the ground, thus marking the path by a trail ofthis substance.

While an isolated ant moves essentially at random, an ant encountering a previously

laid trail can detect it and decide with high probability to follow it, thus reinforcing

the trail with its own pheromone. The collective behavior that emerges is a form of

autocatalytic behavior! where the more the ants following a trail, the more attractive

that trail becomes for being followed. The process is thus characterized by a positive

feedback loop, where the probability with which an ant chooses a path increases with

the number of ants that previously chose the same path.

- 15 -

E

A
(a)

E

~~

ID'\
F Obstacle C F"B*

~

A
(b)

E

A
(c)

Fig 2.1: An example with real ants: (a) Ants follow a path between points A
and E, (b) An obstacle is interposed; ants can choose to go around it
following one of the two differentpaths with equal probability, (c) On the
shorter path more pheromone is laid down. .

Consider for example the experimental setting shown in Fig. 2.1. There is a path

along which ants are walking (for example from food source A to the nest E, and vice

versa, see Fig. 2.l.a). Suddenly an obstacle appears and the path is cut off. So at

position B the ants walking from A to E (or at position D those walking in the

opposite direction) have to decide whether to tum right or left (Fig. 2.1.b). The choice

is influenced by the intensity of the pheromone trails left by preceding ants.

A higher level of pheromone on the right path gives an ant a stronger stimulus and

thus a higher probability to tum right. The first ant reaching point B (or D) has the

same probability to tum right or left (as there was no previous pheromone on the two

alternative paths). Because path BCD is shorter than BFD, the first ant following it

will reach D before the first ant following path BHD (Fig. 2.l.c). The result is that an

ant returning from E to D will find a stronger trail on path DCB, caused by the half of

all the. ants that by chance decided to approach the obstacle via DCBA and by the

already arrived ones coming via BCD: they will therefore prefer (in probability) path

DCB to path DFB.

As a consequence, the number of ants following path BCD per unit of time will be

higher than the number of ants following BFD. This causes the quantity of pheromone

on the shorter path to grow faster than on the longer one, and therefore the probability

- 16 -

with which any single ant chooses the path to follow is quickly biased towards the

shorter one. The final result is that very quickly all ants will choose the shorter path.

The AS model is derived from the study of real ant colonies.

2.5.1 Artificial ants

The AS uses artificial ants (ants for short). These ants behave almost similarly with

the real ants. But there are also some differences. The properties that are possessed by

the artificial ants other than the real ants are:

• Artificial ants have some memory,

• They are not be completely blind,

• They live in an environment where time is discrete.

Consider the graph of Fig. 2.2.a, which is a possible AS interpretation of the situation

of Fig. 2.l.b. Suppose that the distances between D and F, between Band F, and

between Band D, via C, are equal to 2, and let C be positioned half the way between

D and B (see Fig. 2.2.a). Now let us consider what happens at regular discretized

intervals of time: t=O, 1, 2, and so on.

E

D

A

c

E

130 ants
D

j30 ants
A

t=l E

fO ants

(a) (b) (e)
Fig. 2.2: An example with artificial ants: (a). the initial graph with distances. (b).
at time t=O there is no trail on the graph edges; therefore, ants choose whether to
tum right or left with equal probability. (c) At time t=1 trail is stronger on shorter

edges, which are therefore, in the average, preferred by ants.

- 17 -

r

Suppose that 30 new ants come to B from A, and 30 to D from E at each time unit,

that each ant walks at a speed of I per time unit, and that while walking an ant lays

down at time t a pheromone trail of intensity I, which, to make the example simpler,

evaporates completely and instantaneously in the middle of .the successive time

interval (t+l, t+2). At t=O there is no trail yet, but 30 ants are in Band 30 in D. Their

choice about which way to go is completely random. Therefore, on the average 15

ants from each node will go toward F and 15 toward C (Fig. 2.2.b).

At t=1 the 30 new ants that come to B from A find a trail of intensity 15 on the path

that leads to F, laid by the 15 ants that went that way from B, and a trail of intensity

30 on the path to C, obtained as the sum of the trail laid by the 15 ants that went that

way from B and by the 15 ants that reached B coming from D via C (Fig. 2.2.c). The

probability of choosing a path. is therefore biased, so that the expected number of ants

going toward C will be the double of those going toward F: 20 versus 10 respectively.

The same is true for the new 30 ants in D which came from E.

This process continues until all of the ants will eventually choose the shortest path.

The idea is that if at a given point an ant has to choose among different paths, those

which were heavily chosen by preceding ants (that is, those with a high trail level) are

chosen with higher probability. Furthermore high trail levels are synonymous with

short paths.

2.5.2 The AS Algorithm

The AS algorithm was the first ACO algorithm. Its performance was poor compared

to the recent ACO algorithms. Besides, it didn't incorporate local search to improve

the solutions. So, the basic AS algorithm was able to find good solutions only for very

small sized problems. The AS was first applied to the traveling salesman problem

(TSP). TSP can be divided into two classes: symmetric TSP or normally known as

TSP and asymmetric TSP, known as ATSP.

- 18 -

TSP:
Let V={a, ... ,z} be a set of cities, A={(r,s):r,sEV} be the edge set, and

o(r,s)=o(s,r) be a cost measure associated with edge(r,s)EA. The TSP is the

problem of finding a minimal cost closed tour that visits each city once. In the case

cities rEV are given by their coordinates(x"Y,), and oCr,s) is the Euclidean

distance between r and s, then we have an Euclidean TSP.

ATSP:
If o(r,s);to o(s,r) for at least one edge(r,s), then the TSP becomes an asymmetric

TSP (ATSP).

AS utilizes a graph representation which is the same as that of TSP augmented as

follows: in addition to the cost measure o(r,s), each edge (r,s) has also a

desirability measure .•(r, s), called pheromone, which is updated at run time by

artificial ants (ants for short). When AS is applied to symmetric instances of the TSP

.•(r,s) = .•(s,r), but when it is applied to asymmetric instances it is possible that

.•(r,s);to .•(s,r).

Informally, AS works as follows. Each ant generates a complete tour by choosing the

cities according to a probabilistic state transition rule: Ants prefer to move to cities

which are connected by short edges with a high amount of pheromone. Once all ants

have completed their tours a global pheromone updating rule (global updating rule,

for short) is applied. A fraction of the pheromone evaporates on all edges (edges that

are not refreshed become less .desirable), and then each ant deposits an amount of

pheromone on edges which belong to its tour in proportion to how short its tour was

(in other words, edges which belong to many short tours are the edges which receive

the greater amount of pheromone). The process is then iterated.

2.5.3 Tour Construction of AS

In AS, m artificial ants concurrently build a tour the TSP. Initially, ants are put on

randomly chosen cities. At each construction step, ant k applies a probabilistic action

- 19 -

choice rule, called random proportional rule [2, 41], to decide which city to visit next.

In particular, the probability with which ant k, currently at city i, chooses to go to city

j is:

k
Pij

0,

if. Nk
I } E i

otherwise
(2.1)

where 1]ij = 1/ d ij is a heuristic value that is available a priori, a and jJ are two

parameters which determine the relative influence of the pheromone trail and the

heuristic information, and N;k is the feasible neighborhood of ant k when being at city

i, that is, the set of cities that ant k has not visited yet. The probability of choosing a

city outside N; is O.By this probabilistic rule, the probability of choosing a particular

edge (i, j) increases with the value of the associated pheromone trail T ij and of the

heuristic information value 1]ij. The role ofthe parameters (l and ~ is as follows [2]:

• If a=O, the closest cities are more likely to be selected. This corresponds to a

classic stochastic greedy algorithm with multiple starting points since ants are

initially randomly distributed over the cities.

• If jJ=O, only pheromone amplification is at work, that is, only pheromone is

used, without any heuristic bias. This generally leads to rather poor results

and, in particular, for values of a> I, it leads to the rapid emergence of a

stagnation situation, that is, a situation in which all the ants follow the same

path and construct the same tour, which, in general, is strongly suboptimal.

Each ant k maintains a memory M which contains the cities already visited, in the

order they were visited. This memory is used to define the feasible neighborhood N;
in the construction rule given by equation (2.1). In addition, the memory Mallows

ant k both to compute the length of the tour T' it generated and to retrace the path to

deposit pheromone.

- 20-

There are two different ways of implementing solution construction: parallel and

sequential solution construction. In the parallel implementation, at each construction

step the entire ants move from their current city to the next one, while in the

sequential implementation an ant builds a complete tour before the next one starts to

build another one. In the AS, both choices for the implementation of the tour

construction are equivalent in the sense that they do not ~ignificantly influence the

algorithm's behavior.

2.5.4 Update of Pheromone Trails in AS

After all the ants have constructed their tours, the pheromone trails are updated. This

is done by first lowering the pheromone value on all edges by a constant factor, and

then adding pheromone on the edges the ants have crossed in their tours. Pheromone

evaporation is implemented by:

(2.2)

where 0 < p $1 is the pheromone evaporation rate. The parameter P is used to avoid

unlimited accumulation of the pheromone trails and it enables the algorithm to

"forget" bad decisions previously taken. In fact, if an edge is not chosen by the ants,

its associated pheromone value decreases exponentially in the number of iterations.

After evaporation, all ants deposit pheromone on the edges they have crossed in their

tour:

m

Tij+-Tij+L>~Tt, V(i,j)EL,
k""l

(2.3)

where !'>. TD is the amount of pheromone ant k deposits on the areas it has visited. It is

defined as follows:

k _ {I/Ck ,!'>.Tij-
0,

if edge (i, j) belongs to rk
otherwise

- 21 -

(2.4)

where Ck , the length of the tonr Tk built by the k-th ant, is computed as the sum of

the lengths of the edges belonging to Tk• By means of equation (2.4), the better an

ant's tour is, the more pheromone the edges belonging to this tonr receives. In

general, edges that are used by many ants and which are part of short tonrs, receive

more pheromone and are therefore more likely to be chosen by ants in futnre

iterations ofthe algorithm.

2.5.5 The Pseudo Code of AS Algorithm

The pseudo code of the basic AS algorithm is as follows:

Initialization

Loop

Each ant ispositioned on a starting node

Loop

Apply Tour Construction

Apply Local Updating

(Local Search was not applied in AS)

Until all ants have built a complete solution

Apply Global Updating

Until End condition

2.5.6 Problems of AS

Although AS was useful for discovering good or optimal solutions for small TSPs (up

to 30 cities), the time required to find such results made it unfeasible for larger

problems. Because of the poor performance of AS, it is not used commonly but it is

still considered as the basic foundation of the Ant Algorithms. Among the ACO

algorithms, two improvements and modifications of the AS are Ant Colony System

(ACS) and Max-Min Ant System (MMAS). These two algorithms are the best

performing ACO algorithms. And since onr proposed thesis is based on ACS, the

following sections briefly describe the basics of ACS.

- 22-

I.'

2.6 Ant Colony System

Ant colony system (ACS) is built on the previous AS in the direction of improving

efficiency of the algorithm. ACS outperforms other nature-inspired algorithms such as

simulated annealing and evolutionary computation.

The main idea is that of having a set of agents, called ants, search in parallel for good

solutions and cooperate through pheromone-mediated indirect and global

communication. Informally, each ant constructs a solution in an iterative way: it adds

new nodes to a partial solution by exploiting both information gained from past

experience and a greedy heuristic. Memory takes the form of pheromone deposited by

ants on the edges, while heuristic information is simply given by the edge's length.

2.6.1 Differences with AS

ACS differs from the previous AS in three main aspects [42]: (i) the state transition

rule provides a direct way to balance between exploration of new edges and

exploitation of a priori and accumulated knowledge about the problem, (ii) the global

updating rule is applied only to edges which belong to the best ant tour, and (iii) while

ants construct a solution a local pheromone updating rule (local updating rule, for

short) is applied.

- 23 -

2.6.2 The ACS Algorithm

The flowchart of the ACS algorithm is given below:

Set parameters,
initialize pheromone trails

Construct Tours using
State Transition Rule

. LocalU pdate

Apply Local Search

GlobalUpdate .

Yes

Fig 2.3: Flow chart of ACS algorithm

The steps [3] that ACO uses for solving combinatorial optimization problems are:

I. Tour Construction: There is several numbers of ants each of which

constructs their tours. While constructing tours, ants choose the path based on

the deposited pheromone and the problem-dependent parameter. The

deposited pheromone is initialized during the initialization phase.

In ACS, when located at node i, ant k moves to a node I chosen according to

the pseudorandom proportional rule, given by

otherwise

- 24-

(2.5)

where q is a random variable uniformly distributed in [0, I], qo(O:<;; qo :<;; 1) is

a parameter, and J is a random variable selected according to the probability

distribution given by equation (2.1) (with a = 1). In other words, with

probability qo the ant makes the best possible move as indicated by the learned

pheromone trails and the heuristic information (in this case, the ant is

exploiting the learned knowledge), while with probability (1- qo) it performs

a biased exploration of the edges. Tuning the parameter qo allows modulation

of the degree of exploration and the choice of whether to concentrate the

search of the system around the best-so-far solution or to explore other tours.

n. Local Update: Local update is applied to the edges which are used by the ants

while constructing a solution. Local updating decreases some pheromone on

the edges in which it is applied. It is done so that the edges will be less

desirable for the future ants. Thus, the local updating makes the search for

new, possibly better tours in the neighborhoods of the previous best tour.

In addition to the global pheromone trail updating rule, in ACS the ants use a

local pheromone update rule that they apply immediately after having crossed

an edge (i, j) during the tour construction:

(2.6)

where c;,O < c; < 1, and '0 are two parameters. The value of '0 is set to be the
same as the initial value for the pheromone trails. A good value for C;, is 0.1,
while a good value for '0 was found to be 1/ ncnn , where n is the number of

nodes in the problem instance and cnn is the length of a nearest-neighbor

tour. The effect of the local updating rule is that each time an ant uses an edge

(i, j) its pheromone trail 'ij is reduced, so that the edge becomes less

desirable for the following ants. In other words, this allows an increase in the

exploration of edges that have not been visited yet and, in practice, has the

effect that the algorithm does not show a stagnation behavior (i.e., ants do not

converge to the generation of a common path).

- 25-

Ill. Local Search: The local search of ACO is used to reduce the chance of

getting stuck in local optima and to optimize the solutions found by the local

updating rule. Existing local search strategy cannot find optimum solution for

larger problems. So, it is necessary to devise a new adaptive local search

strategy that will increase the chance of finding optimum solution and reduce

the required time.

IV. Global Update: A Global Updating Rule is used to deposit pheromone. Since

it increases the pheromone of edges, more ants in the future will prefer these

edges. So, this rule biases the ants to exploit the visited edges.

In ACS only one ant (the best-so-far ant) is allowed to add pheromone after

each iteration. Thus, the update in ACS is implemented by the following

equation:

(2.7)

where I'J.r;" = 1/ C". It is important to note that in ACS the pheromone trail

update, both evaporation and new pheromone deposit, only applies to the

edges of Tb' , not to all the edges as in AS. In this way the computational com-

plexity of the pheromone update at each iteration is reduced from O(n2) to

O(n), where n is the size of the instance being solved. As usual, the parameter

p represents pheromone evaporation; unlike AS's equations (2.3) and (2.4),

in equation (2.7) the deposited pheromone is discounted by a factor p; this

results in the new pheromone trail being a weighted average between the old

pheromone value and the amount of pheromone deposited.

- 26-

2.7 Features of ACO Algorithm

Features of the ACO algorithms are [43):

• Flexible: The colony can respond to internal and external challenges

• Robust: Tasks are completed even if some individuals fail

• Decentralized: There is no central control(ler) in the colony

• Self-organized: Paths to solutions are emergent rather than predefined

It was found that the media used to communicate among individuals information

regarding paths and used to decide where to go consists of pheromone trails. A

moving ant lays some pheromone (in varying quantities) on the ground, thus marking

the path it follows by a trail of this substance. While an isolated ant moves essentially

at random, an ant encountering a previously laid trail can detect it and decide with

high probability to follow it, thus reinforcing the trail with its own pheromone.

The collective behavior that emerges is a form of autocatalytic behavior where the

more the ants are following a trail, the more attractive that trail becomes for being

followed. The process is thus characterized by a positive feedback loop, where the

probability with which an ant chooses a path increases with the number of ants that

previously chose the same path.

An autocatalytic, i.e. positive feedback, process is a process that reinforces itself, in a

way that causes very rapid convergence and,.if no limitation mechanism exists, leads

to explosion. Ants are also given a heuristic to guide the early stages of the

computational process, when experience hasn't yet accumulated into the problem

structure. This heuristic automatically loses importance as the experience gained by

ants, and memorized in the problem representation, increases.

- 27-

2.8 Local Search

Local search is a general approach for finding high-quality solutions to hard

combinatorial optimization problems in reasonable time. It is based on the iterative

exploration of solutions trying to improve the current solution by local changes. The

types of local changes that may be applied to a solution are defined by a

neighborhood structure.

A neighborhood structure is a function N: S~ 28 that assigns a set of neighbors

N(s) ~ S to every s E S. N(s) is also called the neighborhood of s.

Once ants have completed their solution construction, the solutions are taken to their

local optimum by the application of a local search routine. Then pheromones are

updated on the edges of the locally optimized solutions. Local search methods that

were used in ACO algorithms are: 2-opt, 2.5-opt and 3-opt.

2-opt move

The 2-opt algorithm is a special case of the A-optalgorithm [15], where in each step A

links of the current tour are replaced by A links in such a way that a shorter tour is

achieved. In other words, in each step a shorter tour is obtained by deleting A links

and putting the resulting paths together in a new way, possibly reversing one ore more

of them.

The 2-opt neighborhood consists of those tours that can be obtained from a tour s by

replacing two of its edges. This local search strategy starts with a given tour and

replaces 2 links of the tour with 2 other links in such a way that the new tour length is

shorter. Searching is continued in this way until no more improvements are possible.

The figure 2.4 below gives an example of one specific 2-exchange: the pair of edges

(b, c) and (a, j) is removed and replaced by the pair (a, c) and (b, j).

- 28-

~->

Fig 2.4: An example 2-opt move

2.S-opt move

2.5-opt is a local search algorithm that includes a strongly restricted version of a 3-opt

move on top of a 2-opt local search. When checking for an improving 2Copt move, it

is also checked whether inserting the city between a node i and its successor, as

illustrated. in fig 2.5, results in an improved tour. 2.5-opt leads only to a small,

constant overhead in computation time over that required by a 2-opt local search but,

as experimental results show, it leads to significantly better tours. However, the tour

quality returned by 2.5-opt is still significantly worse than that of3-opt.

h-l

i+\

h h+l

3-opt move

Fig 2.5: An example 2.5-opt move

The 3-opt neighborhood consists of those tours that can be obtained from a tour s by

replacing three of its edges. The removal of three edges results in three partial tours.

that can be recombined into a full tour in eight different ways. The figure 2.6 below

gives one particular example of a 3-opt exchange move.

- 29-

Fig 2.6: An Example 3-opt move

Problems of Local Search

The local search methods that were used had to predefine the number of edges to

exchange. As a result, the time complexity grew with the size of the given problem.

Besides, fixed number of edge exchanges did not produce good solutions.

2.9 Conclusion

AS is the predecessor of ACO algorithms. After AS, several works have been

reported among which ACS is the best-performing one. Since our LSACO uses the

ACS as the guideline, this chapter describes both the AS and the ACS algorithms.

ACO algorithms have been used to solve several combinatorial optimization

problems. ACO algorithms use pheromone model to guide the search and local search

strategy to improve the solution quality. But the pheromone model and local search

that are used are not efficient for solving large problems. The existing ACO

algorithms get stuck in local optima when they are applied in large problem instances

and their time complexity is also increased.

- 30-

Chapter 3

Proposed Algorithm

3.1 Introduction

ACO has been applied successfully to a large number of difficult combinatorial

optimization problems including traveling salesman problems [27], quadratic

assignment problems 15], and scheduling problems [6, 8, 9], as well as to dynamic

routing problems [44] in telecommunication networks. Starting from the AS, different

improvements and modifications of it have been proposed till now. But all the

existing ACO algorithms have their shortcomings which have been described in

chapter I. The problems were mainly the stagnation behavior or the local optima

problem and the higher time complexity to solve larger problems. The proposed

algorithm addresses these problems. The previous chapter deals with the basics of

ACO necessary to understand the background of the proposed algorithm. This chapter

describes our proposed algorithm. The proposed algorithm differs with the existing

algorithms in several aspects. It applies new updating rules, different tour construction

techniques and an adaptive local search method. These strategies make our proposed

Local Search based ACO (LSACO) algorithm a promising one.

3.2 Overview of LSACO Algorithm

The proposed LSACO algorithm differs with the existing ACO algorithms in many

aspects. LSACO will first map the problem into a graph like the other ACO

algorithms. The pheromone in the edges of the graph will be then initialized based on

the problem. Ants in the proposed algorithm will use a new state transition rule based

on the pheromone in an edge and the distance of that edge in constructing tours.

The pheromone level in edges will be changed by using a new local updating rule.

Unlike conventional ACO, the proposed algorithm will use a variable edge changing

search strategy for finding good quality solution by exploiting and exploring the

search space. The search of an edge for entering a tour will be limited to an

- 31 -

appropriate number of nearest neighbors. Pheromone is then updated on the tour that

will found after applying the search strategy using a new global updating rule.

Set Parameters,
. Initialize Pheroinone Trails

NewTour Construction
Phase

NewLoca/ Update 2

ApplyAdaptiveLocalSearch 3

. Nelj;Global Update 4

Yes

Fig 3.1: Flow chart of the LSACO Algorithm

Figure 3.1 shows the flowchart of the LSACO algorithm. The proposed algorithm

makes it possible to find optimal solutions to large-scale problems, in reasonable

running times. Although this algorithm is approximate but it can produce optimal

solutions in high frequency. It can produce optimal solutions for many large problems

whereas other approximate algorithms cannot.

- 32- ,

3.3 New Tour Construction Phase

The proposed LSACO constructs tours or create solutions in different but effective

way to improve the solution quality in a less amount oftime. Initially, LSACO places

m ants on randomly chosen nodes. In AS, the number of ants was equal to the number

of nodes in the given problem. But when the problem size grows large, it becomes

infeasible to use large number of ants. Moreover, limiting the number of ants from 10

to 20 does not decrease the quality of solution. So, LSACO uses approximately 15

numbers of ants because it will be used to solve very large problem instances which

cannot be solved by the existing ACO algorithms.

Pheromone initialization plays an important role in solution quality [45]. In MMAS, .

pheromone is initialized to a maximum value so as to increase the exploration rate at

the start of the search. In AS and other ACO algorithms, pheromone is initialized to a

lower value so as to reduce the exploration rate at the start of the search. But in

LSACO, pheromone is initialized to 1/ enn where enn is the length of a nearest-

neighbor tour of problem size n. This initial pheromone value is not too low or too

high. As a result, at the start of the search, all edges will be good candidates for

exploration but not for too explorative. Thus, this pheromone value avoids early local

optima and also avoids low convergence.

The ants will choose the next state/node from the nodes that are not visited yet. A

state transition rule which is a probability distribution rule based on heuristic

information about the problem will be used to choose the next node. This rule is used

in ant colony system which is given as follows:

. {argmax N' {T;u [1];uy},) = UE I

J,

if q ~ qo (exploitation)

otherwise (biased exploration)
(3.1)

where Nt is the feasible neighborhood of ant k when being at node i, that is, the set

of nodes that ant k has not visited yet, q is a random variable uniformly distributed in

- 33 -

[0,1], qo(O ~ q6 ~ 1) is a parameter, and J is a random variable selected according to

the probability distribution of AS given by the following equation:

[ryrb]p if' Nk

k LUEN' ku nl]JP ,
I } E j

Py (3.2),

0, otherwise

. Here, 1]ij = 1/ du is a heuristic value that is available a priori where dij is the cost of

the edge (i, j), a and,B are two parameters which determine the relative influence of

the pheromone trail and the heuristic information. The probability of choosing a node

outside Ni' is O. By this probabilistic rule, the probability of choosing a particular

edge (i, j) increases with the value of the associated pheromone trail T ij and of the

heuristic information value 1]ij .

As we know from chapter 2 that a ~ 0 is the relative importance of the trail and

,B ~ 0 is the relative importance of the visibility. If a = 0, the closest nodes are more

likely to be selected. If ,B = 0 , only pheromone is used, without any heuristic bias. It

generally leads to rather poor results. When ,B = 0 is used with a > 1, it leads to the

rapid emergence of a local optima, that is, a situation in which all the ants follow the

same path and construct the same tour.

In existing ACO algorithms, a = 1 was used to increase the chance of convergence.

But in LSACO, a = 0.1 is used to increase the exploration and decrease the

exploitation rate. Because LSACO uses adaptive local search that exploits the search

space to find optimal solution quickly. So, to discover the promising areas of the

-search space, it is very necessary to give importance to exploration in the tour

construction phase.

LSACO also makes use of the candidate list in this construction phase for problems

larger than 1000 nodes. Candidate list is computed by the nearest neighbor heuristic .

. - 34-

It is a list of preferred nodes to be visited. Candidate list is pre-computed and remains

the same throughout the algorithm. Without candidate lists, the complexity of LSACO

algorithm would be D(n') where n is the number of nodes. For large problem

instances, it is very. infeasible. When LSACO is used with candidate list, its

complexity nearly reduces to D(n) which is very effective in solving large problems

in reasonable time.

In LSACO, for problem size greater than 1000 nodes, candidate lists keep 50

preferred nodes to be visited for each node. It is generally ordered by increasing

distances. LSACO first considers the nodes belonging to the candidate list to move to.

Only if none of the nodes in the candidate list can be visited then it considers the rest

of the nodes. Thus LSACO's construction phase is a nice balance between exploration

and exploitation of search space and its time complexity is also feasible for finding

good quality solutions for big problem instances in less time.

3.4 New Local Pheromone Update

Local pheromone updating means to decrease pheromone on the edges of a graph. It

is done so as to simulate the evaporation of pheromone in real world. Pheromone

evaporation decreases the attraction towards an edge. In AS, pheromone was

decreased on all edges by a constant factor. This was done as follows:

(3.3)

where 0 < p :;;1 is the pheromone evaporation rate. The more the value of P, the

more the pheromone evaporation rate. Pheromone is evaporated so that the ants will

follow new edges to explore for better solution. Since pheromone is decreased in all

edges by AS and other ACO algorithms, these algorithms cannot be applied in large

problems because of D(n2) complexity. In ACS, the pheromone is decreased by all

ants immediately after having crossed an edge (t, j) during the tour construction.

- 35-
c

In LSACO, pheromone is not dec\-eased in all edges. Although like ACS, LSACO

allows only the ants to decrease pheromone, but LSACO uses different pheromone

evaporation rule. In ACS, a small amount of pheromone was also deposited while

evaporation during local updating. But LSACOonly evaporates a small amount of

pheromone. This is done to reduce the desirability of the visited edges by the ants in

each iteration so that all the ants do not follow the same path. Since pheromone of all

the edges are not updated, LSACO is very effective for solving large problems. The

local pheromone updating rule ofLSACO is as follows:

(3.4)

where ;,0 < ; < I is the pheromone decay parameter. This local updating rule reduces

the pheromone of the visited edges in each iteration so that the edges become less

desirable for the next iteration. This will allow the exploration of unvisited edges. As

a result, LSACO's chance of getting stuck in local optima is greatly reduced and the

time required is linear with problem size, i.e., O(n) where n is the number of nodes of

the given problem.

3.5 Adaptive Local Search

3.5.1 Existing Local Search Methods

As we know from the previous chapter, local search methods are used to improve the

tours found by the ants. When ants have completed their solution construction, local

search is applied to take .the solutions to their local optimum. Then pheromone is

updated on the edges of the locally optimized solutions. Local search methods that are

generally used in ACO algorithms are 2-opt and 3-opt.

2-opt and 3-opt local search methods can be stated as /)-opt for simplicity. In /)-opt

local search, /) edges of the current tour are replaced by /) edges in such a way that a

shorter tour is achieved. In other words, in each step a shorter tour is tried to obtain by

deleting /) edges and putting the resulting paths together in a new way. ~i!: "0

- 36-

f

Disadvantages of Existing Locaf Search Methods:

These existing local search algorithms have two disadvantages such as:

• Although larger the value of (j, better the possibility of finding an optimum

solution. But when (j increases, the number of operations to check the tour also

increases. As a result, the algorithm will suffer from time complexity for

larger problems. In a naive implementation, the operations of a (j-exchange

have a time complexity of O(nO). Although any value for (j can be used, but to

keep the time complexity low, only (j=2 and (j=3 are used.

• The existing local search algorithms are not adaptive. That is, they use fixed

value of (j exchange. Since (j is fixed, the solution obtained by local search

may not be optimal. Because, it is not possible to know in advance what value

of (j to use to achieve the best compromise between running time and quality

of solution.

3.5.2 Proposed Adaptive Local Search

The proposed algorithm uses an adaptive local search with new control parameters

that not only improves the solution quality but also reduces the required time. The

proposed LSACO changes the value of (j during the runtime of the algorithm deciding

in each step what the value of (j should be. At each iteration, the increasing values of(j

are examined whether an exchange of (j edges may result in a better solution. That is,

when (j exchanges yield better tour, then (j+I exchange is considered.

Given a feasible tour, the local search method repeatedly performs exchanges that

reduce the length of the current tour, until a tour is reached for which no exchange

yields an improvement. This process is applied after the tour construction and local

pheromone updating phase occurs. Fig 3.2 shows the flowchart of the adaptive local

search method.

The local search starts with (j=2. Then it is checked and it is also checked for (j>2.

- 37 -

These exchanges are chosen in such a way that a feasible tour may be formed at any

stage ofthe process. If the exploration succeeds in finding a new shorter tour, then the

actual tour is replaced with the new tour.

. Choose iour with
minimum cost

Find two sets of .
edges:

X={X1, X2, ...• xnl

No Replace edges of X with edges of Y

.New tour better than
Previous tour?

Yes

Fig 3.2: Flowchart of the adaptive local search
method

In LSACO, the ants first construct tours. Then the tour with the minimum cost is

chosen. Suppose, Tm1n is the tour with the minimum cost. Then at each iteration step

the searching attempts to find two sets of links, X = {x"x2, ••• ,xnl

and Y = {Y"Y2" .. ,Y.}, such that, if the links of X are deleted from Tm1n and replaced

by the links of Y, the result is a better tour. Figure 3.3 illustrates a sample edge

exchanging process.

- 38 -

,,,,,,, ,
____ L J _, ,

, ', ', ,, ', ', ', '

• •, ,
, ', ', ,
, ', ,

Fig 3.3: Edge exchanging process

The search for better tours is stopped when the current tour is similar to a previous

tour or when all the alternatives are searched.

Modifications to Improve Performance:

To reduce the number of comparisons and thus to reduce time complexity and to

improve the performance of the algorithm, several measures have been taken in

LSACO. These new improvements make the LSACO a promising algorithm. The

major new steps that are incorporated in this new algorithm are given below:

• To speed up the computation time, the concept of don't look bit [46] is used

here. Suppose, XI = (1
1
,12) • Starting from IJ, there may be several choices for

Xl. If for a given choice of IJ, the algorithm previously failed to find an

improvement, and if II's tour neighbors have not changed since that time, then

it is unlikely that an improving move can be made if the algorithm again looks

at (J. To incorporate this technique, each node has a don't look bit, which

initially is O. The bit for node IJ is set to 1 whenever a search for an improving

move with IJ fails, and it is set to 0 whenever an improving move is made in

which it is an end node of one of the its edges, In considering candidates for (J

all nodes whose don't look bit is 1 are ignored. This is done in maintaining a

- 39 -

queu~ of nodes whose bits are zero. Thus runnmg time is significantly

reduced.

• The existing ACO algorithms use a nearest neighbor heuristic to compute the

candidate edges to work with. The heuristic rule is built on the assumption that

the shorter an edge is, the greater is the probability that it belongs to an

optimal tour. This heuristic rule thus directs the search against short tours and

reduces the search effort substantially.

Our proposed LSACO algorithm uses a dynamic ordering of the candidates to

speed up the search even more. Each time a shorter tour is found, all edges

shared by this new tour and the previous shortest tour become the first

candidate edges among the list of candidate edges.

• Backtracking was required in the existing local searches of ACO algorithms.

In the proposed LSACO, since adaptive local search is used, backtracking is

not required. As a result, the algorithm is simplified and the runtime is reduced

a lot.

• The new edge must have a common endpoint with the old edge. That is, Xi and

Yi must have a common endpoint and so must Yi and XH/' This condition helps

to maintain the chain oflinks. Fig 3.4 illustrates this condition.

,,,,,,,,,
:Yi,,,,,,,,,,

/
/

/

Fig 3.4: Sharing common endpoints

- 40-

b..........•

• The new tour that will be obtained by replacing edges must also be a closed

tour.

• Every resulting final tour after exchanging edges must be better than the

original one. Otherwise, the original tour is not replaced.

• SetsX and Y must be disjoint so as to reduce running time. Figure 3.5 shows

that sets X = {XI'X2,X3} and Y = {YI'Y2'Y3} are disjoint.

, ,, ,, ,, ,
: y3:
: y2 :, ,-----r-----------r----, ,, ,
: yl :, ,, ,, ,, ,

xl

Fig 3.5: Sets X and Y are disjoint

• If there is more than one edge to select as a new edge, then an untried edge is

chosen. In figure 3.6, Xl and X2 are part of the original tour. Edges G, band c

are candidate edges to replace edge X2. If c was already tried in pre~ious

iterations, then G or b will be checked .. If there are more than one alternative

for an edge, the one where the cost is minimum, is chosen. This reduces the

running time.

a•

x

,,,,,,,,
c '.

Fig 3.6: Try an untried edge

• In 2-opt or 3-opt strategy, the algorithm continues its steps by adding fixed

number of potential exchanges in order to find an even shorter tour. When no

more exchanges are possible, the search stops and the current tour T is

replaced by the most advantageous tour. This results in more running time.

- 41 -
\

But in LSACO, a tour T is replaced by a shorter tour as soon as an

improvement is found. As a result, time complexity is reduced.

• If an improvement of the tour is found, all the other edges are marked as

untried alternatives and is tried for 0+ 1 edge.

• Replaced edges must not break the closed tour.

• To reduce search time, replaced edges will not be added or added edges will

not be deleted. Figure 3.7 shows such an example.

--
Fig 3.7: Replaced edges will not be added or added edges will not be deleted.

• New edges will be chosen such that cost is reduced in the new tour.

TourTl
TourT2

Fig 3.8: Cost(T2)<Cost(Tl)

• The search for a link to enter the tour is limited to maxImum 5 nearest

neighbors and the search starts from 0=2 edges. If 0>5 is considered, the time

complexity increases very much for larger instances but the solution quality

remains the same.

• The search for improvements is stopped if the current tour is the same as a

previous solution tour. It saves a lot of running time and it does not affect

- 42-

quality of solutions. If a tour is the same as a previous solution tour, there is no

point in attempting to improve it further. The time needed to check that no

more improvements are possible is therefore saved.

• The proposed LSACO uses maximum 5-opt move. As a result, it broadens the

search and increases the algorithm's ability to find good tours. Although 5-opt

move requires more computation, but due to the adaptive measures and the use

of above mentioned techniques, run time is significantly reduced.

3.6 New Global Updating Rule

Global updating is used to deposit pheromone. Deposited pheromone will attract more

ants to exploit the visited edges. So, exploitation of the search will be used. LSACO

updates the pheromone globally in a new way. In LSACO, exploration is used both in

the local pheromone updating and in local search phase. In global updating phase,

LSACO exploits the search space in an effective way than the existing ACO

algorithms.

In AS, all the ants deposit pheromone on the edges they cross in their tour. The

deposited pheromone was dependent of the quality of the tour of an ant. The better the

tour, the more pheromone was deposited by an ant. As a result, the edges that are

shorter and chosen by many ants receive more pheromone and therefore they are more

likely to be chosen by the ants in the future iterations of the algorithm and thus it

becomes prone to be stuck in local optima. In AS, the global updating rule was

implemented as follows:

m

Tij ~ 1:lj +L~ri~;
b,t

V(i, j) E L,

if edge (i, j) belongs to r'
otherwise

-43 -

(3.5)

(3.6)

where b.ri is the amount of pheromone ant k deposits on the areas it has visited and

ek , the length of the tour rk built by the k-th ant, is computed as the sum of the

lengths of the edges belonging to rk .

In ACS, pheromone deposition is always performed in the best-so-far tour. But when

pheromone updates are always performed by the best-so-far ant, the search focuses

very quickly around best-so-far tour. This results in local optima. Other ACO

algorithms also suffer from local optima problem.

To reduce computational complexity, LSACO applies global updating rule only by a

single ant instead of al1 the ants as in AS. This single ant may bethe iteration-best ant

or the best-so-far ant. As we know that if the best-so-far ant is al10wed to deposit

pheromone each time, the search fal1s in local optima. And if the iteration-best ant is

al10wed to deposit pheromone each time, then the number of edges that receive

pheromone is larger and the search is less directed. So, LSACO applies both the best-

so-far and iteration-best update rules alternatively. The global updating rule of

LSACO is given below:

(3.7)

where t..r~= 11 eb., or t..r~= l/e'b. eb' is the length of the best-so-far tour and C
b

is the length of the iteration-best tour. Since only single ant is al10wed to deposit

pheromone in each iteration, the computational complexity is only O(n). And also the

LSACO is less prone to local optima.

3.7 Time Complexity of LSACO

Each tour construction has complexity of O(n2), which would lead to substantial run

times for larger instances. So, like ACO algorithms, LSACO makes use of a nearest

neighbor heuristic to decrease the initial search space. This is done by comprising a

fixed number of nearest neighbors for each node in order of increasing distances. This

list of nodes is cal1ed candidate list. When constructing a tour an ant chooses the next (2),
I

- 44-
(~

\

node among those of the candidate list, if possible. Only if all the members of the

candidate list of a node have already been visited, one of the remaining nodes is

chosen. So, the time complexity reduces to O(n).

In ACO algorithms, pheromone trails are stored in a matrix with O(n2) entries. All the

entries of this matrix are updated at each iteration. This is a very expensive operation

for large problems. So, LSACOupdates pheromone only to the edges connecting a

node i to nodes belonging to i's candidate list. Hence, the pheromone trails can be

updated in O(n).

Time complexity of 2-opt and 3-opt local search methods are approximately O(n
2
.2).

Since our adaptive local search reduces the number of comparisons and uses different

approaches to reduce running time, its time complexity reduces to O(n).

So, the average time complexity of our proposed LSACO algorithm is O(n).

3.8 Differences with Existing Works

Our proposed LSACO algorithm differs from the existing ACO algorithms in many

aspects. First, pheromone is initialized in different way. This new pheromone

initialization avoids early local optima and also avoids low convergence. Second, it

applies new state transition rule to construct tours.

Third, both the local and global pheromone updating strategy is different from the

other existing ACO algorithms. In local pheromone updating, pheromone is not

decreased in all edges. LSACO allows only the ants to decrease pheromone instead of

updating in all edges. So, computational complexity ofLSACO is lower than the AS.

Fourth, it applies adaptive local search. The existing local search algorithms are not

adaptive. That is, they use fixed value of edge exchange. Since the number of edges is

fixed, the solution obtained by local search may not be optimal because it is not

possible to know in advance what number of edge exchange to use to achieve the best

compromise between running time and quality of solution.

- 45-

.~

.'

r
C'.,

Fifth, to speed up the computation time and to find good quality solutions, several

other techniques have been applied in LSACO. For example, in adaptive local search,

the concept of don't look bit is used to avoid fruitless search. Sixth, our proposed

LSACO algorithm uses a dynamic ordering of the candidates to speed up the search

even more. It means that each time a shorter tour is found, all edges shared by this

new tour and the previous shortest tour become the first two candidate edges among

the list of candidate edges.

Seventh, our proposed LSACO algorithm uses maximum 5-opt move. So, LSACO

widens the search and increases the probability of finding optimum solutions. Finally,

LSACO also updates the pheromone globally in a new way. LSACO applies global

updating rule only by a single ant instead of all the ants as in AS. This single ant may

be the iteration-best ant or the best-so-far ant.

Due to these differences with the existing ACO works, LSACO finds good solutions

in a reasonable amount of time. Its computational complexity is also significantly low

than the other ACO algorithms. As a result, LSACO can be successfully applied in

larger problem instances which were not possible with the existing ACO algorithms.

3.9 Conclusion

The existing ACO algorithms get stuck in local optima when applied to large

problems. The time complexity of the existing ACO algorithms is also high. The

proposed LSACO algorithm addresses the problems of existing ACO algorithms.

LSACO adopts several changes and modifications to improve the performance in

solving large combinatorial optimization problems. The proposed LSACO differs in

many aspects with the existing ACO algorithms.

- 46-

Chapter 4

xpenmenta
4.1 Introduction

This chapter evaluates the performance of LSACO on several well-known benchmark

problems such as symmetric traveling salesman problems [22, 49], asymmetric

traveling salesman problems [22, 49] and Hamiltonian cycle problems [47]. These

problems have been used to experiment the nature and performance of the existing

ACO algorithms. This chapter also describes the format of the datasets that were

taken and the source of the datasets. Experiments were done to evaluate the

performance of LSACO and to compare it with the existing ACO algorithms.

4.2 Description of Data Set

The choice of the test problems was dictated by published results found in the

literature ofthe existing ACO algorithms. The test problems can be found in TSPLIB.

TSPLIB is a library of sample instances for the TSP, asymmetric TSP, Hamiltonian

problems and related problems from various sources and of various types. The

TSPLIB problems can be obtained from [47] and [48].

4.2.1 Symmetric TSP

A salesman is required to visit each of n given cities once and only once, starting from

any city and returning to the original place of departure and the distance of the travel

should be minimum. The distances between any pair of cities are assumed to be

known by the salesman. Distance can be replaced by another notion, such as time or

money. In the following the term 'cost' is used to represent any such notion. This

problem, the traveling salesman problem (TSP), is one of the most widely studied

problems in combinatorial optimization. The problem is easy to state, but hard to

solve. Mathematically, the problem may be stated as follows:

- 47-

Given a cost matrix C = (cij)' where cij represents the cost of going from city i to city

j, (i,j = I, ... ,n)" find a permutation (i"i"iJ, ••• , in) of the integers from I through n

that minimizes the quantity cili2 + c;2iJ + C;3;4 + c;nil •

The types of TSP problems that were considered here are drilling problem, bridge

tournament problem, clustered random problem, programmed logic array and city

problems. Many ofthese symmetric problems are used to evaluate the performance of

LSACO.

4.2.2 Asymmetric TSP

Given a set of n nodes and distances for each pair of nodes, find a roundtrip of

minimal total length visiting each node exactly once. In this case, the distance from

node i to node j and the distance from node j to node imay be different. The types of

ATSP problems that were considered here are stacker crane application and city

problems.

4.2.3 Hamiltonian Cycle Problem

Let G be a finite graph with V(G) the set of vertices and E(G) the set of edges. A

Hamiltonian cycle c of G is a cycle that goes through every vertex exactly once. The

Hamiltonian cycle problem (HCP) asks whether a given graph G has a Hamiltonian

cycle. The Hamiltonian path problem for graph G is equivalent to the Hamiltonian

cycle problem in a graph H obtained from G by adding a new vertex and connecting it

to all vertices of G. At present, the TSPLIB includes 9 Hamiltonian cycle problems

ranging in size from 1000 to 5000 nodes. Every instance of the problems contains a

Hamiltonian cycle.

- 48-
(

4.3 Types of Data Formats Used

Each data file consists of a specification part and of a data part. The specification part

contains information on the file format and on its contents. The data part contains

explicit data.

4.3.1 The Specification Part

All entries in this section are of the form <keyword>:<value>, where <keyword>

denotes an alphanumerical keyword and <value> denotes alphanumerical or

numerical data, respectively. The following keywords are used:

I. NAME: <string>

Identifies the data file.

11. TYPE: <string>

Specifies the type of the data. Possible types are

a. TSP: Data for a Symmetric Traveling Salesman Problem

b. ATSP: Data for an Asymmetric Traveling Salesman Problem

c. HCP: Hamiltonian Cycle Problem data

d. TOUR: A collection of tours

111. COMMENT: <string>

Additional comments are given here.

IV. DIMENSION: <integer>

For a TSP or ATSP, the dimension is the number of its nodes. For a TOUR

file it is the dimension of the corresponding problem.

v. EDGE_ WEIGHT_TYPE:<string>

Specifies how the edge weights (or distances) are given. The values are:

a. EXPLICIT: Weights are listed explicitly in the corresponding

problem

- 49-

b. EUC 2D:

c. CEIL 2D:

d. GEO:

e. ATT:

Weights are Euclidean distances in 2-D

Weights are Euclidean distances in 2-D rounded up

Weights are geographical distances

Special distance function for problems att48 and att532

VI. EDGE_ WEIGHT]ORMAT: <string>

Describes the format of the edge weights if they are given explicitly. The

values are:

a. FUNCTION: Weights are given by a function

b. FULL_MATRIX: Weights are given by a full matrix

c. UPPER_ROW: Upper triangular matrix (row-wise without diagonal

entries)

d. LOWER_ROW: Lower triangular matrix (row-wise without diagonal

entries)

e. UPPER_DIAG_ROW: Upper triangular matrix (row-wise including

diagonal entries)

f. LOWER_DIAG_ROW: Lower triangular matrix (row-wise including

diagonal entries)

VII. EDGE_DATA]ORMAT: <string>

Describes the format in which the edges of a graph are given, if the graph

is not complete. The values are:

a. EDGE_LIST: The graph is given by an edge list

b. ADJ LIST: The graph is given as an adjacency list

VIII. NODE_COORD_TYPE: <string>

Specifies whether coordinates are associated with each node. The values

are:

a. TWOD COORDS:

b. NO COORDS:

Nodes are specified by coordinates in 2-D

The nodes do not have associated coordinates

The default value is NO COORDS.

- 50-

IX. DISPLAY_DATA_TYPE:<string>.

Specifies how a graphical display of the nodes can be obtained. The values

are:

a. COORD DISPLAY: Display is generated from the node coordinates

b. TWOD_DISPLAY: Explicit coordinates in 2-D are given

c. NO DISPLAY: No graphical display is possible

The default values is COORD_DISPLAY if node coordinates are specified

and NO DISPLAY otherwise.

x. EOF:

Terminates the input data.

4.3.2 The Data Part

Depending on the choice of specifications some additional data may be required.

These data are given in corresponding data sections following the specification part.

Each data section begins with the corresponding keyword. The length of the section is

either implicitly known from the format specification, or the section is terminated by

an appropriate end-of-section identifier.

1. NODE COORD SECTION:- -

Node coordinates are given in this section. Each line is of the form:

<integer> <real> <real>

if NODE COORD TYPE is TWOD COORDS.- - -

The integers give the number of the respective nodes. The real numbers

give the associated coordinates.

11. EDGE DATA SECTION:

Edges of a graph are specified in either of the two formats allowed in the

EDGE_DATA]ORMAT entry. If the type is EDGE_LIST, then the

edges are given as a sequence oflines of the form:

<integer> <integer>

- 51 -

each entry giving the terminal nodes of some edge. The list is terminated

by a -1. If the type is ADJ_LIST, the section consists ofa list of adjacency

lists for nodes. The adjacency list of a node x is specified as

<integer> <integer> ... <integer> -I

where the first integer gives the number of node x and the following

integers (terminated by -I) the numbers of nodes adjacent to x. The list of

adjacency lists is terminated by an additional -1.

lll. DISPLAY DATA SECTION:- -
If DISPLAY_DATAJYPE is TWOD_DISPLAY, the 2-dimensional

coordinates from which a display can be generated are given in the form

(per line)

<integer> <real> <real>

The integers specify the respective nodes and the real numbers give the

associated coordinates.

IV. TOUR SECTION:

A collection of tours is specified in this section. Each tour is given by a list

of integers giving the sequence in which the nodes are visited in this tour.

Every such tour is terminated by a -1. An additional -I terminates this

section.

v. EDGE WEIGHT SECTION:

The edge weights are given III the format specified by the

EDGE_WEIGHT]ORMAT entry. At present, all explicit data is integral

and is given in one of the (self-explanatory) matrix formats with implicitly

known lengths.

- 52 - .

4.4 Experimental Setup

The datasets may be in different forms like Euclidean distance, geographical distance

or other forms. The distances between the nodes are processed to take it into a 2-

dimensional matrix form. For each dataset, 15 trials were taken to compute the result.

The experiments have been computed on a Pentium 4 machine of 1.8 GHz processor

speed. The parameters considered here are:

• a: relative importance of pheromone trail, 0 < a.< I

• fJ : relative importance of the distance or heuristic information, fJ > 0

• 77": heuristic value

• m: the number of ants

• q: a random number uniformly distributed in [0 .. I]

• qo: a parameter [0 ~ qo ~ I]

• '0: initial pheromone

• ,;: pheromone decay parameter, 0 < ,; < I

The heuristic value 77 ij is set to 77 ij = II d ij' where d ij is the distance between the

nodes i and j. The initial pheromone value set to '0 = II en", where e"" is the tour

length produced by the nearest neighbor heuristic and n is the number of nodes.

During the tour construction the ants. use a candidate list of size 20. And the adaptive

local search uses a candidate list of size 50. All the parameter values presented here

were found to be optimum for yielding better solutions quickly.

The results are compared with the optimum result that is given in the TSPLIB [47,

48]. The best result is computed for each data set and the percentage error is

d (
best-optimum 100) H ... h I h f.h hcompute as . x. ere, oplimum IS t e engt 0 t e s ortest

optimum ..

possible tour found in [47]. Best means the best length distance found over 15 trials

by our proposed LSACO algorithm.

- 53 -

4.5 Experimental Results and Analysis

Tables 4.1-4.9 show the results of LSACO over 15 independent trials on several

different problems. The time is given in seconds. The averaged results are computed

over 15 trials. It can be observed from tables 4.1-4.9 that our proposed LSACO

produces very good results in a very short time. For example, for pla7397 dataset of

symmetric traveling salesman problem, the best length produced by the LSACO

algorithm is found to be optimal.

In all the experiments of the following sections, the numeric parameters are set to

a = 0.1, fJ = 2, qo = 0.9 and q = 0.1. The number of ants is set to 10 to 20

depending on the problems. For small problems,m is set to 20 and for large problems

m is set to 10. For problem dimension less than 1000, candidate list is not used. For

problem dimension more than 1000, candidate list 50 is used during adaptive local

search. These values help getting near optimum results in a reasonable time.

Table 4.1: Performance ofLSACO on some problems of Symmetric TSP over 15

trials (Edge weight is in Geographical distance)

Name Dimension Type Optimum Best % Error Best Time
Len~th (Seconds)

bayg29
.

29 GEO 1610 1610 0.0 0

Bays29 . 29 GEO 2020 2020 0.0 0

gr96 96 GEO 55209 55209 0.0 0

gr137 137 GEO 69853 . 69853 0.0 0

gr202 202 GEO 40160 40160 0.0 0

gr229 229 GEO 134602 134602 0.0 I

ali535 535 GEO 202309 202309 0.0 I

gr666 666 GEO 294358 294358 0.0 4

Table 4.1 shows the performance of LSACO on some problems of symmetric TSP.

The results were taken over 15 trials. The edge weights of these problems are given in

geometric distances. In geographical problems [47], the nodes correspond to points on

the earth and the distance between two points is their distance on the idealized sphere

with radius 6378.388 kilometers. The node coordinates give the geographical latitude

- 54-

and longitude of the corresponding point on the earth. Latitude and longitude are

given in the form DDD.MM where DDD are the degrees and MM the minutes.

Positive latitude is assumed to be "North", negative latitude means "South". Positive

longitude means "East", negative longitude is assumed to be "West". First the input is

converted to geographical latitude and longitude given in radians. The distance

between two different nodes in kilometers is then computed from these values.

Table 4.2 shows the performance of LSACO on some symmetric TSP problems of

edge weights given in matrix form. LSACO produces optimum results for all these

problems. Time required to find the best solution is also very low. Table 4.3 shows

the performance of LSACO on some symmetric TSP problems of edge weights given

in special form. The datasets that are used here are att48 and att532.

Table 4.2: Performance of LSACO on some problems of Symmetric TSP over 15

trials (Edge weight is in matrix form)
.

Best Best TimeName Dimension Type Optimum
Len2th

0/0 Error (Seconds)
Swiss42 42 MATRIX 1273 1273 0.0 0
.gr48 48 MATRIX 5046 5046 0.0 0
brazil58 58 MATRIX 25395 25395 0.0 0
gr120 120 MATRIX 6942 6942 0.0 0
si175 175 MATRIX 21407 21407 0.0 0
brgl80 180 MATRIX 1950 1950 0.0 0
si535 535 MATRIX 48450 48450 0.0 I
pa561 561 MATRIX 2763 2763 0.0 I
sil032 1032 MATRIX 92650 92650 0.0 I

Table 4.3: Performance of LSACO on some problems of Symmetric TSP over IS

trials (Edge weight is in special form)

Name Dimension Type Optimum Best
0/0 Error Best Time

Len2th (Seconds)
att48 48 ATT 10628 10628 0.0 0
att532 532 ATT 27686 27686 0.0 I

- 55-

(f'

Table 4.4 shows some symmetric TSP problems whose edge weights are given in

Euclidean 2-dimensional format. The largest problem of this type that is used here is

fnl4461. Its dimension or the number of nodes is 4461. LSAeO found the optimal

. solution for this dataset in 41 seconds.

Table 4.4: Performance ofLSAeO on some problems of Symmetric TSP over 15

trials (Edge weight is in Euclidean distances in 2-D)

Name Dimension Type Optimum Best 0/0 Best Time
Len2th Error (Seconds)

eil51 51 EUe 2D 426 426 0.0 0
eil76 76 EUe 2D . 538 538 0.0 0

kroAIOO 100 EUe 2D 21282 21282 0.0 0
rat195 195 EUe 2D 2323 2323 0.0 0
dl98 198 EUe 2D 15780 15780 0.0 0
a280 280 EUe 2D 2579 2579 0.0 0
lin318 318 Eue 2D 42029 42029 0.0 0

Linhp318 318 EUe 2D 41345 41345 0.0 0
fl417 417 EUe 2D 11861 11861 0.0 0
. pr439 439 EUe 2D 107217 107217 0.0 1
pcb442 442 EUe 2D 50778 50778 0.0 0
rat575 575 EUe 2D 6773 6773 0.0 1
rat783 783 EUe 2D 8806 8806 0.0 0
pcb1173 1173 EUe 2D 56892 56892 0.0 1
u1432 . 1432 EUe 2D 152970 152970 0.0 4
dl655 1655 EUe 2D 62128 62128 0.0 5
u1817 1817 EUe 2D 57201 57201 0.0 6
rl1889 1889 EUe 2D 316536 316536 0.0 3
pcb3038 3038 Eue 2D 137694 137694 0.0 19
fnl4461 4461 EUe 2D 182566 182566 0.0 41

The edge weight type eEIL ~2D requires that the 2-dimensional Euclidean distances

. are rounded up to the next integer. Table 4.5 shows this type of input data types.

Table 4.5: Performance of LSAeO on some problems ofSymmetricTSP

(Edge weight is in Euclidean distances in 2-D)

Name Dimension Type Optimum Best %Error Best Time
Len2th (Seconds)

dsj 1000 1000 eEIL 2D 18659688 18659688 0.0 9
pla7397 7397 eEIL 2D 23260728 23260728 0.0 185

-56 -

Table 4.6: Performance ofLSACO on some problems of Asymmetric TSP over 15

trials (Edge weight is in matrix form)

Name Dimension Type Optimum Best %Error Best Time
Length (Seconds)

P43 43 MATRIX 5620 5620 0.0 0
Ry48p 48 MATRIX 14422 14422 0.0 0
Ft53 53 MATRIX 6905 6905 0.0 0
Ft70 70 MATRIX 38673 38673 0.0 0
Krol24 124 MATRIX 1776 1776 0.0 0
Ftvl50 150 MATRIX 1530 1530 0.0 0
Ftvl70 170 MATRIX 1613 1613 0.0 I
Rbg323 323 MATRIX 1326 1326 0.0 3
Rbg358 358 MATRIX 1163 1163 0.0 4
Rbg40J 403 MATRIX 2465 2465 0.0 2
Rbg443 443 MATRIX 2720 2720 0.0 I

Table 4.6 shows the performance of our LSACO algorithm for asymmetric TSP

problems. It can be observed from the tables 4.1-4.6 that LSACO can find optimal

results for problem size up to 10,000 nodes. Table 4.7 shows the results ofLSACO on

. all the Hamiltonian cycle problems found in [47]. The existing ACO algorithms can

also find good results for these Hamiltonian cycle problems. But our proposed

LSACO finds Hamiltonian cycles in all the trials. That is, the success rate of LSACO

is 100%.

Table 4.7: Performance of LSACO for Hamiltonian Cycle Problems (over 15 trials)

Name Dimension Min. Time Avg. Time Success(Seconds) (Seconds)
. AlblOOO 1000 0.0 0.1 15/15
Alb2000 2000 0.1 0.1 15/15
Alb3000a 3000 0.1 0.1 15/15
Alb3000b 3000 0.1 0.1 15/15
Alb3000c 3000 0.1 0.1 15/15
Alb3000d 3000 0.1 0.1 15/15
Alb3000e 3000 0.1 0.1 15/15
Alb4000 4000 0.1 0.1 15/15
Alb5000 5000 0.2 . 0.2 15/15

- 57- ,

Table 4.8: Experimental Results of LSACO on some larger TSP problems

(over 15 trials)

Problems Dimension Optimum Best Average
(Error %) (Error %)

01655 1655 62128 62128 (0.00%) 62129 (0.00%)

U1817 1817 57201 57201 (0.00%) 57228 (0.05%)

02103 2103 80450 80450 (0.00%) 80473 (0.03)

Pr2392 2392 378032 378032 (0.00%) 378057 (0.01 %)

pcb3038 3038 137694 137694 (0.00%) 137712 (0.01%)

F13795 3795 28772 28772 (0.00%) 28781 (0.03%)

fnl446 I 4461 182566 182566 (0.00%) 182569 (0.002%)

RI5915 5915 565530 565530 (0.00%) 565693 (0.03%)

pla7397 7397 23260728 23260728 (0.00%) 23265210 (0.02%)

Rll1849 11849 923288 923362 (Om %) 923437 (0.02%)

015112 15112 1573084 1573282 (0.01%) 1573362 (0.02%)

100
"iii" 80
'tl
l:
0 60(J
Q)
(f)

e. 40
Q)

E 20i=

0
0 2000 4000 6000

Problem Size (No. of Nodes)

Fig 4.1: Time requirement ofLSACO with respect to problem size

Table4.8 shows the performance of LSACO on some large problems ofTSP. LSACO

finds very near optimum results for problem size of 15 thousands. And the average

.result and the percentage of error rate are very impressive for these large problems .

. Fig. 4.1 shows that LSACO finds optimum solutions nearly in O(n) time.

- 58 - ,

4.6 Comparison

. This section compares experimental results of LSACO with the best-performing ACO

algorithms [3] which are ACS [22] and MMAS [34]. ACS-3-opt [22], MMAS-2-opt

[34] and MMAS-3-opt [34] are the ACO algorithms when they incorporate local

search. ACS-3-opt, MMAS-2-opt and MMAS-3-opt perform better than ACS and

MMAS. Our proposed LSACO compares its results with those of ACS-3-opt,

MMAS-2-opt and MMAS-3-opt.

Tables 4.9-4.13 shows the companson results between LSACO and other best-

performing ACO algorithms. All these results were obtained Over 15 independent

trials. Table 4.9 and 4.10 shows the comparison between LSACO and ACS-3-opt on

. some well-known symmetric and asymmetric TSP problems. LSACO obtains

optimum results every time whereas ACS-3-opt obtains good results for small

problems like dl98 and ry48p. But when the problem size increases, the error rate of

ACS-3-opt also increases.

Table 4.9: Comparison between LSACO and ACS-3-opt on some symmetric TSP

problems (over 15 trials)

ACS-3-opt LSACO % Error
(Best Length)

Problem OptimumName Best Average Best Average ACS-3-Integer Integer Integer Integer opt LSACO
Length Length Length Length

0198 15780 15782 15780 15780 15780 0.01% 0.00%
Pcb442 50782 50792 50778 50778 50778 0.01% 0.00%
Att532 27693 27718 27686 27687 27686 0.11% 0.00%

Rat783 8818 8838 8806 8806 8806 0.36% 0.00%
fi1577 22352 22484 22249 22262 22249 0.46% 0.00%

The performance of ACS-3-opt and LSACO onthe asymmetric problems is nearly the

same. Because the asymmetric TSP problems contain small sized problems. Although

- 59- ,

for these small problems LSACO and ACS-3-opt obtains the same quality solution,

LSACO requires less time to find the optimum.

Table 4.10: Comparison between LSACO and ACS-3-opt on some asymmetric TSP

problems (over 15 trials)

ACS-3-opt LSACO
Problem OptimumName Avg. Avg. Avg. Avg.

(Ieugth (sec) %Error (length) (sec) %Error

Ry48p 14422 1 0.00% 14422 0 0.00% 14422

Ft70 38679 0 0.02% 38673 0 0.00% 38673

Kro124p 36230 2 0.00% 36230 0 0.00% 36230

. Ftv170 2755 4 0.00% 2756 0 0.04% 2755

Table 4.11: Comparison ofLSACO with MMAS on symmetric problems ofTSP

(over 15 trials)

Problem MMAS LSACO
Name Best Length %Error Best Length %Error

Optimum

0198 15790 0.06% 15780 0.00% 15780
Lin318 42225 0.46% 42029 0.00% 42029
Pcb442 51305 1.03% 50778 0.00% 50778
Att532 28101 1.49% 27686 0.00% 27686
Rat783 9010 2.31% 8806 0.00% 8806
U1060 225997 0.84% 224094 0.00% 224094

Pcbl173 57898 1.76% 56892 0.00% 56892
01291 52202 2.75% 50801 0.00% 50801
Fll 577 23109 3.86% 22249 0.00% 22249

Table 4.12: Comparison of LSACO with MMAS-2-opt on synimetric problems of

TSP (Over 15 trials)

Problem MMAS-2-opt LSACO

Name Optimum
Best Length %Error Best Length %Error

KroalOO 21282 0.00% 21282 0.00% 21282
0198 15786 0.04% 15780 0.00% 15780

Lin318 42195 0.39% 42029 0.00% 42029
Pcb442 51212 0.85% 50778 0.00% 50778
Att532 27911 0.81% 27686 0.00% 27686
Rat783 8976 1.93% 8806 0.00% 8806

- 60-

-"'"'"-.1 \...••

Table 4.13: Comparison of LSACO with MMAS-3-opt on asymmetric problems of

TSP (Over 15 trials)

Problem MMAS-3-opt LSACO

Name Best Length %Error
Optimnm

Best Length %Error

P43 5623.8 0.07% 5621 0.02% 5620

Ry48p 14494 0.50% 14422 0.00% 14422

Ft70 38707 0.09% 38673 0.00% 38673

Kro124p 36655 1.17% 36230 0.00% 36230

Flv170 2807 1.89% 2755 0.00% 2755

. Tables 4.11-4. I 3 show the experimental results of MMAS, MMAS-2-opt, MMAS-3-

opt [50] and our proposed LSACO. MMAS performs poor when applied to problems

size more than 100. But our proposed LSACO obtains optimum result every time. It

can be observed from these tables that our proposed LSACO performs better than all

these ACO algorithms and this LSACO can even perform well for problems of size

more than 10 thousand nodes.

500 1000 1500 2000 2500 3000 3500

7

6
5•..

0 4•..•..w 3~c
2 ,.
1 ;
0
0

./-~----

./..-/".•.... ./

.- - -

/ ACS-3-opl

- .. - MMAS-3-opl

- - - LSACO

Problem Dimension

Fig 4.2: Comparison of error rates of LSACO and other algorithms with respect to

problem dimension

Fig. 4.2 shows the error rate of LSACO and other algorithms. The error is computed

with respect to the best length found in any of the 15 trials. For small problem sizes,

. ACS-3-opt and MMAS-3-opt can find near optimum solutions. When the problem

size increases, the performance of MMAS-3-opt and ACS-3-opt decreases gradually.

The proposed LSACO algorithm can find very good optimum solutions even for large

.61 -

. problem instances. This figure also shows that MMAS-3-opt produces inferior

solutions compared to ACS-3-opt. But our proposed LSACO algorithm finds best

results among these algorithms.

500 100015002000250030003500

/

/ ..'. /" ./:.' .
,/,'; .

/ .'~ .• -
<""'- - ••--"" -.

...... ACS-3-opl

- .. - MMAS-3-opl

- - - LSACO

3500,----------------,
Ul 3000
"0g 2500
~ 2000
2. 1500
.~ 1000
i= 500

o
o

Problem Dimension

Fig 4.3: Comparison of required time to find the optimum solution

Fig. 4.3 shows the best time of LSACO and other algorithms to produce the optimum

result among 15 trials. ACS-3-opt produces good quality solutions more quickly than

MMAS-3-opt. It can be also observed from this figure that LSACO requires less and

nearly linear time to produce the optimum solution.

Based on the above comparisons, it is clear that LSACO performed better than other

algorithms in most cases. Although such comparisons may not be entirely fair due to

different experimental setups, we have tried our best to make our experimental setup

as close to the previous ones as possible.

4.7 Discussions

This section briefly explains why the performance of LSACO is better than the

existing ACO algorithms. There are some major differences that might contribute to

better performance by LSACO in comparison with other existing ACO algorithms.

The first and the most important reason is that LSACo. uses adaptive local search to

improve the solution quality. Since the local search used by the existing ACO

algorithm uses fixed number of edges to exchange, they get stuck in local optima

- 62-

when applied to large problems. To speed up the adaptive local search, LSACO uses

. the concept of don't look bit to avoid fruitless search and thus reduces the time to find

better solutions. Our proposed LSACO also uses a dynamic ordering of the candidates

to speed up the search even more.

Second, LSACO uses different exploration and exploitation phase compared to the

. other ACO algorithms. LSACO initializes pheromone in different way by setting it to

a medium value so as to balance exploration and .exploitation at the start of the

algorithm. Third, the state transition rule that is used by the LSACO helps to avoid

early stage oflocal optima.

Fourth, the local and global pheromone updating strategies that are used by the

proposed LSACO are different from the other existing ACO algorithms. In LSACO,

pheromone is not decreased in all edges in local pheromone updating. Only the ants

are allowed to decrease pheromone. Moreover, in LSACO global updating rule is

used by only a single ant to increase pheromone.

Thus, LSACO requires less time in all the phases throughout the algorithm compared

to the existing ACO algorithms. The solution quality is also better due to the balanced

exploration and exploitation ofthe search space. Thus, LSACO shows a great stability

in finding good quality solutions in a reasonable time. So, LSACO can be very good

alternative for the existing ACO algorithms for its capability of applying to larger

problems.

- 63 -

Chapter 5

5.1 Conclusive Remarks

ACO algorithms have been introduced to the swarm intelligence community for

nearly a decade. Since then several ACO algorithms have been proposed ~d they

were successfully applied to a large number of difficult combinatorial optimization

problems. But all the existing ACO algorithms were applied to small problem

instances. For larger problem instances, their performance degrades in finding good

quality solutions. Their time requirement also increases exponentially with the

problem size. This thesis proposes a new adaptive local search based ACO algorithm

that addresses these issues.

Our new algorithm LSACO adopts several modifications and enhancements to

mcrease the accuracy of the solution and to decrease the time complexity. The

LSACO algorithm is described in chapter 3. LSACO applies new adaptive local

search to avoid local optima and thus to obtain optimum solution in a reasonable time.

The pheromone updating rules are applied in such a way so as to balance the

exploration and exploitation of the search phase. Several other strategies have been

adopted to increase the overall performance of the LSACO algorithm.

Extensive experiments have been carried out in this thesis to evaluate how well

LSACO performed on different problems in comparison with other existing ACO

algorithms. These results are shown in chapter 4 of this thesis. In almost all cases,

LSACO outperformed the others. The results have showed clearly the advantages of

LSACO. For example, LSACO's solution quality was better than the best-performing

ACO algorithm ACS. The time required to find the optimum solutions was also very

impressive for all the problems.

- 64-

'Il.'""

Although LSACO has performed very well for almost all problems we tested, our

experimental study appeared to have revealed a weakness of LSACO in dealing with

the very large problems containing nodes more than fifteen thousand. In these large

problems, LSACO produced a small amount of error. This error was generated

because of getting stuck in local optima for very large problems. However, the results

from LSACO were actually better than the existing ACO algorithms.

5.2 Recommendations for Future Research

There are many ways in which the research work may be enhanced or expanded. It

would be interesting in the future to analyze LSACO further and identitY its strength

and weakness. Potential hybridization between LSACO and other evolutionary

algorithms would also be an interesting future research topic. The other possible fields

in which the LSACO can be applied in near future are as follows:

• To increase the number of edges that is to be exchanged while not increasing

the time complexity.

• To combine other strategies to get even better results for very large problems.

• To apply LSACO in new applications those have not been applied yet.

• To parallelize the whole algorithm using multiple processors.

• The proposed LSACO can be applied more efficiently than the existing

genetic i.e., evolutionary programming in various optimization problems.

So, the proposed LSACO algorithm may be very useful for the researchers in doing

experiments in different fields.

.rc
/" 'J.
'-"'''-1

':.1

- 65 -

~- ".
\,

REFERENCES
[I]. Russell, S. and Norvig, P., "Artificial Intelligence: A Modern Approach",

Prentice Hall, 2003.

[2]. Dorigo, M., Maniezzo, V. and Colorni, A., "The Ant System: Optimization by a

colony of cooperating agents," IEEE Transactions on Systems, Man, and

Cybernetics, Vo1.26, No.1, pp ..I-l3, 1996.

[3]. Dorigo, M. and Stiitzle, T., "Ant Colony Optimization," MIT Press, 2004.

[4]. Zlochin, M. and Dorigo, M., "Model-Based Search for Combinatorial

Optimization: A Comparative Study," Parallel Problem Solving from Nature -

PPSN VII: 7th International Conference, Vol. 2439 of Lecture Notes III

Computer Science, pp. 651-661, Springer-Verlag, Berlin, Germany, 2002 .

. [5]. Tsai, c., Tsai, C. and Tseng, C., "A New Approach for Solving Large Traveling

Salesman Problem," Proceedings 0/ the Congress on Evolutionary

Computation, Vol. 2, pp. 1636-1641, 2002.

[6]. Liouane, N., Saad, 1., Hammadi, S. and Borne, P., "Ant systems and Local

Search Optimization for flexible Job Shop Scheduling Production,"

International Journal o/Computers, Communications & Control, Vol. 2, NO.2,

pp. 174-184,2007.

[7]. Gambardella, L.M. and Dorigo, M., "Ant Colony System Hybridized with a

New Local Search for the Sequential Ordering Problem," INFORMS Journal on

Computing, Vol. 12, No.3, pp. 237-255, 2000.

[8]. Merkle, D., Middendorf, M. and Schmeck, H., "Ant Colony Optimization for

Resource-Constrained Project Scheduling," IEEE Transactions On Evolutionary

Computation, Vol. 6, No.4, pp. 333-346, August 2002.

[9]. Blum, C., "Beam-ACO-Hybridizing Ant Colony Optimization with Beam

Search: An Application to Open Shop Scheduling," Computer Operations

Research, Vol. 32, pp. 1565-1591,2005.

[10]. Handl, J., Knowles, J. and Dorigo, M., "Ant-Based Clustering and Topographic

Mapping," Artificial Life, Vol. 12, No. I, pp. 35-61, 2006.

[II]. Zecchin, A.C., Simpson, A.R., Maier, H.R., and Nixon, J.B., "Parametric Study

for an Ant Algorithm Applied to Water Distribution System Optimization,"

- 66-

IEEE Transactions On Evolutionary Computation, Vol. 9, No.2, pp.175-191,

April 2005.

[12]. Nouyan, S., Ghizzioli, R., Birattari, M. and Dorigo, M., "An insect-based

algorithm for the dynamic task allocation problem," Kilnstliche Intelligenz, No.

4/05, pp. 25-31, 2005.

[13]. Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo M. and Nolfi S.,

"Self-Organized Coordinated Motion in Groups of Physically Connected

Robots," IEEE Transactions on Systems, Man, and Cybernetics, Vol. 37, No.1,

pp.224-239, February 2007.

[14]. Labella, T.H., Dorigo, M. and Deneubourg, J.L., "Division of Labour in a Group

of Robots Inspired by Ants' Foraging Behaviour," ACM Transactions on

Autonomous and Adaptive Systems, Vol. I, No. I, pp. 4-25, 2006.

[15]. Gambardella, L.M., Taillard, E.D. and Dorigo, M., "Ant Colonies for the

Quadratic Assignment Problem," Journal of the Operational Research Society,

Vol. 50, No.2, pp.l67-176, 1999.

[16]. Dorigo, M., Birattari; M. and StUtzle, T., "Ant colony optimization: Artificial

ants as a computational intelligence technique," IEEE Computational

Intelligence Magazine, Vol. I,No.4, pp. 28-39, 2006.

[17]. Dorigo, M. and Blum. C., "Ant Colony Optimization Theory: A Survey,"

Theoretical Computer Science, VoL344, pp. 243-278, 2005.

[18]. Blum, C. and Dorigo M., "Search Bias in Ant Colony Optimization: On the Role

of Competition-Balanced Systems," IEEE Transactions on Evolutionary

Computation, Vol. 9, No.2, pp. 159-174, April 2005.

[19]. Dorigo, M., Bonabeau, E. and Theraulaz, G., "Ant Algorithms and Stigmergy,"

Future Generation Computer Systems, Vol. 16, No.8, pp. 851-871,2000.

[20]. Blum, C. and Dorigo, M., "Deception in ant colony optimization," Proceedings

of ANTS 2004, Fourth International Workshop on Ant Colony Optimization and

Swarm Intelligence, Lecture Notes in Computer Science, Vol. 3172, pp. 119-

130,2004.

[21]. Blum, C., "Theoretical and Practical Aspects of Ant Colony Optimization,"

Dissertations in Artificial Intelligence, Vol. 282, 2004.

[22]. Dorigo M. and Gambardella L.M., "Ant Colony System: A Cooperative

Learning Approach to the Traveling Salesman Problem," IEEE Transactions on

Evolutionary Computation, Vol.!, No.1, pp. 53"66, April, 1997.

- 67-
/

j

~ I c..,...
. }
-..••.•1'-" ...•...

[23]. Glover, F., "Tabu Search-Pan 1," ORSAJournal on Computing, Vol. I, NO.3,

pp. 190-206, 1989.

[24]. Glover, F., "Tabu Search-Pan 2," ORSA Journal on Computing, Vol. 2, NO.1,

pp. 4-32,1990.

[25]. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., "Optimization by Simulated

Annealing," Science Journal, Vol. 220, pp. 671-680, 1983.

[26]. Mitchell, M., "An Introduction to Genetic Algorithms," Cambridge, MA, MIT

Press, 1996.

[27]. Tsai, H.K., Yang, J.M. and Kao, C.Y., "Solving Traveling Salesman Problems

by Combining Global and Local Search Mechanisms," Proceedings of the 2002

Congress on Evolutionary Computation, Vol. 2, pp. 1290-1295, May 2002.

[28]. Padberg, M.W. and Rinaldi, G., "A branch-and-cut algorithm for the resolution

oflarge-scale symmetric traveling salesman problems," SIAM Review, Vol. 33,

pp. 60-100, 1991.

[29]. Grotchel, M. and Holland, 0., "Solution of large scale symmetric travelling

salesman problems," Math. Programming, Vol. 51, pp. 141-202, 1991.

[30]. Applegate, D., Bixby, R., Chvittal, V. and Cook, W., "Finding cuts in the TSP,"

DIMACS, Tech. Report, pp. 95-105,1995.

[31]. Dorigo, M., Maniezzo, V. and Colorni, A., "Positive Feedback as a Search

Strategy," Technical Report 91-016, Dipartimento di Eiettronica, Politecnico di

Milano, Milan.

[32]. Gambardella, L.M. and Dorigo, M., "Ant-Q: A Reinforcement Learning

approach. to the traveling salesman problem," .Proceedings of Twelfth

International Conference on Machine Learning, pp. 252-260, 1995.

[33]. Dorigo, M. and Gambardella, L.M., "A Study of Some Properties of Ant-Q,"

Proceedings of Fourth International Conference on Parallel Problem Solving

from Nature, Vol. 1141 of Lecture Notes in Computer Science, pp. 656-665,

Berlin, Springer-Verlag, 1996.

[34]. Stutzle, T. and Hoos, H., "MAX-MIN Ant System and Local Search for

Combinatorial Optimization Problems," 2nd International Conference on

Metaheuristics, 1997.

[35]. Bullnheimer, B., Hanl, R.F. and Strauss, C., "A New Rank-Based Version of the

Ant System: A Computational Study," Central European Journal. for

Operations Research and Economics, Vol. 7, NO.1, pp. 25-38,1999.

- 68-

[36]. Maniezzo, V., "Exact and Approximate .Nondeterministic Tree-Search

Procedures for the Quadratic Assignment Problem," INFORMS Journal on

Computing, Vol. 11,No.4, pp. 358-369,1999.

[37]. Maniezzo, V. and Carbonaro, A., "An ANTS Heuristic for the Frequency

Assignment Problem," Future Generation Computer Systems, Vol. 16, No.8,

pp. 927-935, 2000.

[38]. Blum, C. and Dorigo, M., "The Hyper-Cube Framework for Ant Colony

Optimization," IEEE Transactions on Systems, Man, and Cybernetics - Part B:

Cybernetics, Vol. 34, No.2, pp. 1161-1172,April 2004.

[39]. Blum, C., Roli, A. and Dorigo, M., "HC-ACO: The Hyper-Cube Framework for

Ant Colony Optimization," Proceedings of MIC'200I - Metaheuristics

International Conference, Vol. 2, pp. 399-403,2001.

[40]. Colomi, A., Dorigo, M., Maffioli, F., Maniezzo, V., Righini, G. and Trubian,

M., "Heuristics from Nature for Hard Combinatorial Problems," International

Transactions in Operational Research, Vol. 3, No.1, pp. 1-21, 1996.

[41]. Birattari, M., Pellegrini, P. and Dorigo, M., "On the Invariance of Ant System,"

5th International Workshop, ANTS 2006, Vol. 4150, pp. 215-223, Germany,

2006.
[42]. Dorigo, M., Caro, G.D. and Gambardella, L.M. "Ant Algorithms for Discrete

Optimization," Artificial Life, Vol. 5, No.2, pp. 137-172, 1999.

[43]. Sttitzle, T. and Dorigo, M., "A Short Convergence Proof for a Class of ACO

Algorithms," IEEE Transactions on Evolutionary Computation, Vol. 6, No.4,

pp. 358-365, 2002.
[44]. Caro, G.D. and Dorigo, M., "AntNet: Distributed Stigmergetic Control for

Communication Networks," Journal of Artificial Intelligence Research, Vol. 9,

pp. 317-365,1998.

[45]. Sun, J., Xiong, S. and Guo, F., "A new pheromone updating strategy in ant

colony optimization," Proceedings of the third International Conference on

Machine Learning and Cybernetics, Shanghai, 26-29 August 2004.

[46]. Bentley, J.L., "Fast Algorithms for Geometric Traveling Salesman Problems,"

ORSA Journal of Computing, Vol. 4, pp. 347-411,1992.

[47]. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB951, date of

last visited: June 01, 2007.

- 69-

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TS

[48]. http://elib.zib.de/pub/mp-testdataltsp/tsplib/tsplib.html, date of last visited: June

01,2007

[49]. Freisleben, B. and Merz, P., "Genetic Local Search Algorithm for Solving

SYl1ll1letric and Asymmetric Traveling Salesman Problems," Proceedings of

IEEE International Conference on Evolutionary Computation, IEEE Press, pp.

616-621, 1996.

[50]. Stutzle, T. and Hoos, H., "Max-Min Ant System and Local Search for the

Traveling Salesman Problem," Proceedings of IEEE 4th International

Conference on Evolutionary Computation, pp. 308-313,1997.

- 70-

.c,
'.: ~

http://elib.zib.de/pub/mp-testdataltsp/tsplib/tsplib.html,

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081

