
DATA COMPRESSION TECHNIQUES
FOR

BANGLA TEXT

BY
S. M HUMAYUN

A THESIS SUBMI1TED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE IN ENGINEERING
(COMPUTER SCIENCE AND ENGINEERING)

)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA, BANGLADESH

AUGUST 1994

I
I

CERTIFICATE

This is to certify that this thesis work has been

done by me under the guidance of Dr. M. Kaykobad

and it has not been submitted elsewhere for the

award of any degree or diploma.

(\ .. 1
'-. ".

Countersigned

~ .
(DR. M. KAYKOBAD)
Supervisor

Signature of the Candidate

S. M. AYUN)
Roll no: 871802
SUET, Bangladesh.

,

DATA £OMPBESSION TE£IINIQIJES FOB BANGIA TEXT

BY
S. M. Humayun

Accepted as satisfactory for partial fulfillment of the

requirements for the degree of Master of Science in

Engineering (Computer Science and Engineering), Bangladesh

University of Engineering & Technology, Dhaka.

EXAMINERS

1. Dr. M. Kaykobad
Assistant Professor,
Department of Computer
Science & Engineering,
BUET, Dhaka.

Chairman and
Supervisor

~-w1 ~ ~~~Member
2. Prof. A.B.M. Siddique Hossain

Head, Dept. of CSE, BUET, Dhaka

3.
<)y,.
Prof.
Dept.

cd Mo... ltl &/9'1Md. Shamsul Alam I
of eSE, BUET, Dhaka

Member

4.
2t'Q!ry'1!h-

Prof. Shamsuddin Ahmed
Head, Dept. of EEE, ICTVTR

Member

ABSTRACT

In recent years BangIa has been being used in computers. For

efficient use of this language in computers it is very

important to be able to store texts economically so that in

terms of both storage requirement and transmission cost it is
!

competitive. In this study efforts have been made to obtain

economical coding of BangIa texts using static and dynamic

Huffman codes, arithmetic codes and other important coding
techniques. Performances of various coding techniques in

coding BangIa texts of different types and formats have been

considered in. terms of compression efficiency, coding and
decoding times.

Our result shows that arithmetic coding with scaling symbol

counts has outperformed all the remaining coding techniques

for off-line coding on general texts in BSCII format in term~
of coding efficiency. Compression efficiency for this
algorithm varies between 24.80% - for lkb file and 34.92% _
for 200kb file. Although Vitter algorithm is the slowest in

terms of coding and decoding times, it has been found best i~

terms of coding efficiency among all on-line coding algorithms

having efficiency 28.40% for lkb file and 34.84% for 200kb
file of general BSCII format texts.

(i)

1,\There is a significant variation of efficiency and coding ~nd

decoding times with respect to text formats. Non documellt

BSCII format texts have been found to be.the most efficielt
IIand fastest whereas document BNA format texts are the slowest

and most inefficient.

Static Huffman coding techniques have been

terms of coding and decoding times requiring

"!I

I
"found faster In

roughly 16% tile,
less than the arithmetic coding. Among the dynamic coding
algorithms Vitter algorithm, being the slowest, takes rouihly

28% time more than the fastest static Huffman algorithm.

(i i)

ACKNOWLEDGEMENT

It is a matter of great pleasure for the author to acknowledge
his profound gratitude to his supervisor, Dr. M. Kaykobad,
Assistant Professor, Department of Computer Science and
Engineering, BUET, for his advice, valuable guidance and
constant encouragement throughout the progress of this work.

The author is indebted to Dr. A.B.M. Siddique Hossain,
Professor and Head, Department of Computer Science and I,

Engineering, BUET, for his inspiration to complete the work.
He is grateful to Prof. Md. Shamsul Alam of the department of
Computer Science and Engineering, BUET and Prof. Shamsuddin
Ahmed of ICTVTR for serving as members of the board of
examiners.

He wishes to express his thanks and deep sense of gratitude
to Dr. Jeffrey Scott Vitter, Associate Professor, Department
of Computer Science, Brown University, USA, for his kind help
through providing papers and publications related to this
work.

Thanks are due to Dr. S.P. Majumder, Asstt. Prof., Electrical
& Electronic Engineering Department, BUET, Dr. N.C. Das, and
Dr. A.K.M. Mohiuddin, Assistant Professor, BIT Dhaka, R. A. A.
Abdullah and M.Shahidul Islam of the SAfeworks, Dhaka, Engr.
Sahjahan Sikder, Computer Engineer, NERP, Gulshan, and Engr.
S. M. Shah-Newaz" System Manager, Surface Water Modelling
Center, Gulshan for the ir help dur ing this work. He also
thanks all others who helped the author directly or indirectly
during this work.

(iii)

,

i,
Ii

CONTENTS

ABSTRACT

ACKNOWLEDGEMENT

CHAPTER ONE: INTRODUCTION

1.1 Importance of BangIa Text Compression

1.2 Objectives of the Present Work

1.3 Literature Survey

1.4 Organization of Thesis

CHAPTER TWO: ESSENCE OF DATA COMPRESSION

2.1 Compression Systems

2.1.1 Components of a Compression System

2.2 Classification of Coding Methods

2.2.1 Lossy Commpression
2.2.2 Lossless Compression

2.3 Variable Length Codes

2.3.1 Unique Decoding
2.3.2 Instantaneous Codes
2.3.3 Construction of Instantaneous Codes
2.3.4 The Kraft Inequality
2.3.5 Shortened Block Codes
2.3.6 The McMillan Inequality
2.3.7 Information Contents
2.3.8 Entropy
2.3.9 Entropy and Coding
2.3.10 Redundancy

(i v)

Pages

'! i

I!
2

:3
4

8

I
I
~J

Ii

1'3
i
1;5

1,5
18

22

24
2529
30
34
37
39
41
42
45

CHAPTER THREE: STATISTICAL LOSSLESS COMPRESSION TECHNIQUES
3.1 Shannon-Fano Coding 46

3.1.1 Conditions for variable length coding
3.1.2 Special Case of Variable Length Codes
3.1.3 Boundaries of Shannon-Fano Codes
3.1.4 Shannon-Fano Algorithm

3.2 Static Huffman Coding

46
49
50
51

54

3.2.1 Restrictions For Optimal Coding 54
3.2.2 Binary Huffman Coding 57
3.2.3 Basic Machine for Huffman Tree Construction 59
3.2.4 General Huffman Tree 67
3.2.5 Data Structure of r-ary Tree 68
3.2.6 Decoding Automata 72
3.2.7 Encoding Automata 75

3.3 Dynamic Huffman Coding

3.3.1 Strategy for Dynamic Huffman Coding
3.3.2 Sibling Property
3.3.3 Condition for Sibling Property
3.3.4 Maintaining Symbols with Zero-weights
3.3.5 Example of Dynamic Huffman Coding

3.4 Optimum Dynamic Huffman Coding

3.4.1 Types of Nodes Interchanges
3.4.2 Motivating Factors
3.4.3 Implicit Numbering
3.4.4 Invariant
3.4.5 Maintaining Invariant

3.5 Arithmetic Coding

3.5.1 Initial View of Arithmetic Coding
3.5.2 Basic Algorithm
3.5.3 Example of Arithmetic Coding
3.5.4 Implementation
3.5.5 Incremental Transmission
3.5.6 Under Flow Problem
3.5.7 Use of Integer Arithmetic

(v) •

77

79
80
82
84
85

90

90
91
92
93
94

96

97
100
103
107
107
110
112

CHAPTER FOUR: BANGLA TEXT ANALYSIS

4.1 Character Frequencies of BangIa Text

4.2 Redundancy in BangIa Text

4.3 n-Gram Statistics of BangIa Text

4.3.1 n-Gram Generation

CHAPTER FIVE: IMPLEMENTATION OF ALGORITHMS

5.1 Compression and Decompression

5.2 Classes for Data Compression

5.3 Members of ComDecom Class

5.4 Members of Utility Class

5.5 Static Variable Length Algorithms

5.6 Dynamic Variable Length Algorithms

5.7 FGK Algorithm

5.8 Knuth Algorithm

5.9 Vitter Algorithm

5.10 Arithmetic Algorithm

CHAPTER SIX: DESIGN OF EXPERIMENTS AND RESULTS
6.1 Design of Experiments

6.2 Results

CHAPTER SEVEN: DISCUSSIONS AND RECOMMENDATIONS
7.1 Discussons

7.2 Recommendations

REFFERENCES

APPENDIX A: BSCII Codes

APPENDIX B: Sample Listing of SOllrce Code
(v i)

116

124

125

134

138

139

141

143

144

153

154

157

159

161

165

166

21 5

220

221

228

229

S)'mbol/
Abbreviation

LIST OF SYMBOLS AND ABBREVIATIONS

Meaning

BSCII

FGK

- BangIa Standard Code for Information Interchange

- Fallar, Gallager and Knuth algorithm

STD - Star.dard IBSCII) format non-document general text

QSTD - Standard IBSCIII format non-document specific text

XFR - Non-document format IBarna word processor) general
text

QXFR - Non-document format (Barna wor"d processor)
specific text

BNA - Document format (Barna word processor) general
tex t

QBNA - DOCI,lmenl format {Barna word processor I specific
text

(vii)

Number

LIST OF GRAPHS

Title Pages

•

4.1 n-Gram Characteristics for BangIa Text 137

6.1 Compression Efficiency 174

6.2 Compression Time 175

6.3 Decompression Time 175

6.4 Compression Efficiency (10000 byte BSCII format
general text) 177

6.5 Compression Time (10000 byte BSCII format
general text) 178

6.6 Decompression Time (10000 byte BSCII format
general text) 178

6.7 Arithmetic Coding (Static O-order model
with scaling) 180

6.8 Arithmetic Coding Efficiency (Static O-order model
with scaling) 180

6.9 Arithmetic Coding Time (Static O-order model
with scaling) 181

6.10 Arithmetic Decoding Time (Static O-order model
with scaling) 181

6.11 Compression Efficiency (BSCII format general text) 188

6.12 Compression Time (BSCII format general text) 189

6.13 Decompression Time (BSCII format general text) 189

(viii)

Number

LIST OF TABLES

Title Pages
3.1 Five Symbols and Frequency Counts for Shannon-Fano

Coding 52

3.2 Reduction Process of the Probabilities 64

3.3 Splitting Process (Formation of Codewords) 64

3.4 Huffman Coding Procedure for D-ary (D = 4) 69

3.5 An Example of Huffman Code 72

3.6 Data Structure M(i,j) 72

3.7 Inverted Data Structure M-l(l) 73

3.8 Frequencies, Probabilities and Codewords for
4 Symbols Alphabet of an Arbitrary Message 98

3.9 Probability Distribution and Range of the Symbols
in Message "CSE DEPTT." 104

3.10 Result of the Arithmetic Coding of the Message
"CSE DEPTT." 106

3.11 Result of the Arithmetic Decoding Process
of the Message "CSE DEPTT." 106

3.12 Arithmetic Encoding Process of the Message
"CSE DEPTT." using Incremental Transmission 110

4.1(a) Frequency of BangIa Characters in Single Byte
Representation in Dictionary Order 117

4.1(bl Frequency of BangIa Characters in Single Byte
Representation in Decending Order of Frequency 118

4.2 Frequency of BangIa Characters in Multi-Byte
Representation in Decending Order of Frequency 119

4.3 Statistics of the Representative BangIa BSCII file 127

4.4(al Percentage of Occurrence of 25 1-5 grams for
Bangia Text with Single-byte Representation 129

(ix)

4.4(bl Percentage of Occurrence of 25 6-8 grams for
BangIa Text with Single-byte Representation 130

4.5(al Percentage of Occurrence of 25 1-4 grams for
BangIa Text with Multi-byte Representation 131

4.5(bl Percentage of Occurrence of 20 5-6 grams for
BangIa Text with Multi-byte Representation 132

4.5(c) Percentage of Occurrence of 20 7-8 grams for
BangIa Text with Multi-byte Representation 133

4.6 Most Frequent 25 BangIa Words from a Representable
26368 Bytes BSCll Text File 135

4.7(a) Natural BangIa Text Characteristics
with Multi-byte Representation

4.7(bl Natural BangIa Text Characteristics
with Single-byte Representation

136

136

5.1 Typical Source Symbol Counts and List of Runs
of the out counts() Function 149

6.1 Static Huffman Codes in Order of Symbol Number 169

6.2 Static Shannon-Fano Codes in Order of Symhol Number 170

6.3(al Coding Efficiency (%) for Fixed File Size 171

6.3(b) Compression Time (sec.) for Fixed File Size 172

6.3(c) Decompression Time (sec. I for Fixed File Size 173

6.4 Result of Shannon-Fano Algorithm: Scaled,
Static a-order Model, STD File Type

6.5 Result of Shannon-Fano Algorithm: Scaled,
Static O'-order Model, XFR File Type

6.6 Result of Shannon-Fano Algorithm: Scaled,
Static a-order Model, BNA File Type

6.7 Result of Shannon-Fane Algorithm: Scaled,
Static a-order Model, QSTD File Type

6.8 Result of Shannon-Fano Algorithm: Scaled,
Static a-order Model, QXFR File Type

182

182

183

183

184

(x)

6.9 Result of Shannon-Fano Algorithm: Scaled,
Static O-order Model, QBNA File Type 184

6.10 Result of Shannon-Fano Algorithm: Unscaled,
Static O-order Model, STD File Type 185

6.11 Result of Shannon-Fano Algorithm: Unscaled,
Static O-order Model, XFR File Type 185

6.12 Result of Shannon-Fano Algorithm: Unscaled,
Static O-order Model, BNA File Type 186

6.13 Result of Shannon-Fano Algorithm: Unscaled,
Stati.c O-order Model, QSTD File Type 186

6.14 Result of Shannon-Fano Algorithm: Unscaled,
Static O-order Model, QXFR File Type 187

6.15 Result of Shannon-Fano Algorithm: Unsealed,
Static O-order Model, QBNA File Type 187

6.16 Result of Huffman Algorithm: Scaled,
Static O-order Model, STD File Type 191

6.17 Result of Huffman Algorithm: Scaled,
Static O-order Model, XFR File Type 191

6.18 Result of Huffman Algorithm: Scaled,
Static O-order Model, BNA File Type 192

6.19 Result of Huffman Algorithm: Scaled,
Static a-order Model, QSTD File Type 192

6.20 Result of Huffman Algorithm: Scaled,
Static O-order Model, QXFR File Type 193

6.21 Result of Huffman Algorithm: Scaled,
Static O-order Model, QBNA File Type 193

6.22 Result of Huffman Algorithm: Unsealed,
Static O-order Model, STD File Type 194

6.23 Result of Huffman Algorithm: Unscaled,
Static O-order Model, XFR File Type 194

6.24 Result of Huffman Algorithm: Unscaled,
Static a-order Model,. BNA File Type 195

6.25 Result of Huffman Algorithm: Unscaled,
Static a-order Model, QSTD File Type 195

(xi)

6.26 Result of Huffman Algorithm: Unsealed,
Static O-order Model, QXFR File Type 196

6.27 Result of Huffman Algorithm: Unsealed,
Static O-order Model, QBNA File Type 196

6.28 Result of FGK Algorithm: Scaled,
Dynamic O-order Model, STD File Type 198

6.29 Result of FGK Algorithm: Scaled,
Dynamic O-order Model, XFR File Type 198

6.30 Result of FGK Algorithm: Scaled,
Dynamic O-order Model, BNA File Type 199

6.31 Result of FGK Algorithm: Scaled,
Dynamic O-order Model, QSTD File Type 199

6.32 Result of FGK Algorithm: Scaled,
Dynamic O-order Model, QXFR File Type 200

6.33 Result of .FGK Algorithm: Scaled,
Dynamic O-order Model, QBNA File Type 200

6.34 Result of FGK Algorithm: Unsealed,
Dynamic O-order Model, STD File Type 201

6.35 Result of FGK Algorithm: Unsealed,
Dynamic O-order Model, XFR File Type 201

6.36 Result of FGK Algorithm: Unsealed,Dynamic O-order Model, BNA File Type 202
6.37 Result of FGK Algorithm: Unsealed,

Dynamic O-order Model, QSTD File Type 202
6.38 Result of FGK Algorithm: Unsealed,

Dynamic O-order Model, QXFR File Type 203
6.39 Result of FGK Algorithm: Unsealed,

Dynami'e O-order Model, QBNA File Type 203
6.40 Result of Knuth Algorithm: Unsealed,

Dynamic O-order Model, STD File Type 205
6.41 Result of Knuth Algorithm: Unsealed,

Dynamic O-order Model, XFR File Type 205
6.42 Result of Knuth Algorithm: Unsealed,

Dynamic O-order Model, BNA File Type 206

(xii)

6.43 Result of Knuth Algorithm: Unsealed,
Dynamic O-order Model, QSTD File Type 206

6.44 Result of Knuth Algorithm: Unsealed,
Dynamic O-order Model, QXFR File Type 207

6.45 Result of Knuth Algorithm: Unsealed,
Dynamic O-order Model, QBNA File Type 207

6.46 Result of Vitter Algorithm: Unsealed,
Dynamic O-order Model, STD File Type 209

6.47 Result of Vitter Algorithm: Unsealed,
Dynamic O-order Model, XFR File Type 209

6.48 Result of Vitter Algorithm: Unsealed,
Dynamic O-order Model, BNA File Type 210

6.49 Result of Vitter Algorithm: Unsealed,
Dynamic O-order Model, QSTD File Type 210

6.50 Result of Vitter Algorithm: Unsealed,
Dynamic O-order Model, QXFR File Type 211

6.5] Result of Vitter Algorithm: Unsealed,
Dynamic O-order Model, QBNA File Type 211

6.52 Result of Arithmetic Coding: Scaled,
Static O-order Model, STD File Type 212

6.53 Result of Arithmetic Coding: Scaled,
Static O-order Model, XFR File Type 212

6.54 Result of Arithmetic Coding: Scaled,
Static O-order Model, BNA File Type 213

6.55 Result of Arithmetic Coding: Scaled,
Static O-order Model, QSTD File Type 213

6.56 Result of Arithmetic Coding: Scaled,
Static O-order Model, QXFR File Type .214

6..57 Result of Arithmetic Coding: Scaled,
Static O-order Model, QBNA File Type 214

(xii i)

Number

LIST OF FIGURES

Title Pages
2.1 Data Compression/Decompression with Storage Device 12

2.2 Digital Communication Link with Data Compression 12

2.3 Statistical Model with a Huffman Encoder 12

2.4 Decoding Tree for 4 Symbols with Codeword
Set (0, 10, 110, l1l} 28

2.5 Decoding Tree for 5 Symbols with Codeword
Set (0, 10, 110, 1110, ll1l} 28

2.6 Decoding Tree for 5 Symbols with Codeword
Set (00,01,10,110,111} 32

2.7 Proof of Kraft Inequality 32

2.8 Decoding Tree for Shortened Block Codes
after Dropping (001,011 and 101} 36

2.9 Decoding Tree for Shortened Block Codes
after Dropping (001,010 and OIl} 36

3.1 Step-by-step Procedures of Shannon-Fano Tree
Development 53

3.2 Weight Combination Function F(x,y) 62

3.3 Static Huffman Tree for Symbol Set
S = (si : i = 1, 2., ..., 5} with Probability
Set P = {O.l, 0.1, 0.2, 0.2, D.4}

3.4 Step-by-step Procedures of Static Huffman Tree
Construction

3.5 Different Huffman Trees for the Same set of
Probabilities P = {D.l, 0.1, 0.2, 0.2, D.4}

3.6 R-ary Huffman Tree (R = 4) with Symbol Set
Given in Table 3.5

(xiv)

62

65

66

78

3.7 Typical Directed Tree of r-ary Huffman Code

3.8 Different Huffman Trees for Weights {2,3,4,5}

3.9 Basic Idea of Dynamic Huffman Coding Algorithm

78

78

86

3.10 Dynamic Huffman Algorithm Operating
on the Message "abcd ..." 86

3.11 Example of Dynamic Huffman Algorithm
with Optimum O-node Encoding 88

3.12 The Huffman Tree Formed by FGK Algorithm
after Processing "abcdefghiaa" 95

3.13 Slide and Increment Operation of Vitter Algorithm 95

3.14 Static Huffman Tree for Source Alphabet
S = {a, b, c, d} with weight set W = {4, 2, 1, I} 99

3.15 Code Points of Codewords of Table 3.8 99
3.16 Subdivision of the Current Interval Based on theProbability of the Input Symbol a. that Occurs Next 1011

6.1 Static Huffman Tree for BangIa Text 167
6.2 Static Shannon-Fano Tree for BangIa Text 168

•

(xv)

'\

CHAPTER ONE

INTRODUCTION

Information theory is usually thought of as science of sending
information from here to there, i. e. , transmission of
information, but this is

information from now io then,
exactly the same as sending

i.e., storing information. Both
situations occur constantly when handling BangIa text as

source of information. Processing BangIa text with computers

is the same as representing, transmitting and transforming the

text. The processing of BangIa text using computers and other

modern information processing equipment grows explosively in

different fields of applications, especially in the Desk Top
Publication (DTP). Concurrent with this growth several

problem areas have developed which can result in major but

unnecessary economic expenditures. One of these is the

capacity of disk storage. The method that can be employed to

alleviate a portion of BangIa text storage and transfer

problems is through the representat ion of the text by-more
efficient codes.

The field of text compression requires a variety of back
grounds and theoretical analysis for its successful
application. This field has grown, wi th the field of

-1-

information theory and coding. The study of text compression

has grown considerably from its beginning in the work of

'I
"',"

Shannon [65] to the today' s large scale research programs
continuing in many centers and universities. The holding of
special conferences on data compression shows that the demand
of this field is tremendous.

1.1 Importance of BangIa Text Compression

If our language is to keep pace with the development of allied

technologies it is very important to be able to use these
technologies to its development. It can be noted with great
pleasure that researchers of our country, specially those
related to computing, understood the importance of

computerizing BangIa and started the ground work in the early
80's. Khan[43] has identified 434 characters in the BangIa

alphabet among which 302 are compound Byanjana Varnas. He has

presented 222 compound byanjana varnas with 2 byanjana varnas,

74 with 3 byanjana varnas and 6 with 4 byanjana varnas. A

schedule of Bengali characters and mechanism of generation of

the BangIa Graphic Symbol (BGS) set has been suggested, most

of them are represented by 2 or 3 bytes in computer

processing. BangIa word processors and DTP software are also

using multibyte representation of these compound characters.
So there should be high redundancy in BangIa text.

-2-

News papers and publication industries using BangIa DTP need

a huge disk storage to store their information. Transmission

of BangIa news between different cities would need excessive

transmission time. To use BangIa text economically in storage
and transmission, BangIa characters should be coded
efficiently. Efficient coding reduces redundancy if there is

any. As .weexpect higher redundancy in BangIa text, efficient

coding should reduce the storage requirement significantly.

1.2 Objectives of the Research

The objective of the present research is to obtain a set of

efficient standard variable length codes for BangIa text by

studying the characteristics of BangIa texts and its alphabet.

This study is also to suggest efficient real time data

compression techniques for BangIa text to facilitate economic

storing and transmission of BangIa text. In this study

various compression algorithms will be tested by sample BangIa

texts of different types to find out their efficiency in data
compression.

-3-

1.3 Literature Survey

The problems associated with the data compression cover so

wide a range that they must be classified in some way before

, '

any approach can be made. One simplified approach of

classification of data compression techniques has been given

by Held[29]. He discussed the different types of compression

methods and their benefits. Bookstein and Storer[6] have

given another classification reflecting the current state of

data compression research. Compression depends largely upon

the efficient representation of the source alphabet. A number

of Codes have been discussed by Shannon[65] and Hamming[26].

Aronson[4] gives the null suppression algorithms, a special

type of block coding technique used in IBM 3780 BISYNC

transmission protocol. Rubin[62], Ruth and Kreutzer[63]

present block code compression method that is a general work
of Aronson.

Data can be compressed using variable length compression
techniques whenever

appear than others.
some data 'symbols are more likely to

Shannon showed that for the best possible

compression code in the sense of minimum average code length,

the output length contains a contribution of,-lg(p) bits from

the encoding of each symbol whose probability of occurrence is

p. The term redundancy has been defined by Shannon as a

-4-

I.

property of the code. Huffman[35] first introduced a minimum

redundancy method of source coding called "Huffman code".

Norwood[56] proposed a recursive formula to count the number

of different compact codes. Even and Lempel[14] also

presented a similar recursive formula introducing a new

concept of "proper word". Connel [10] derived a Huffman-

Shannon-Fano (HSF) code by adopting a notion of Shannon-Fano

code[16,65] and combining it with the Huffman code, where in

the code symbols appear lexicographically. The HSF code is

unique if symbol probabilities are specified, and it is

compact code in the sense of Norwood and Even and Lempel.

Recently, Itai[37], Glassey and Karp[23] and Golumbic[24] have

presented new perspectives on how the algorithm works and how

it can be employed in new ways. Until then, all research has

concentrated on two variations of the algorithm,
respectively minimize:

(i) the weighted path length, and

(ii) measures akin to tree height,

of the constructed tree.

which

Modern applications for weighted path length minimization
include:

-5-

-

(1) construction of optimal search trees[24,34],

(2) merging of lists[49],

(3) minimization of absolute error bounds in the sum of

positive numbers and relative error bounds in

products[76],

(4) text file compression[62], and

(5) optimal checking for leaky pipelines and water

pollution[23] .

Applications of tree height minimization include the

determination of the minimum execution time for fanning-in

data and problems related to speed in parallel processing [24] .

Parker[57] characterized a wide class of weight combination

functions, the quasilinear functions, for which the Huffman

algorithm produces an optimum tree under correspondingly wide

classes of cost criteria. Application of information

divergence to Huffman codes is given by Longo and Galasso[51].

D-ary Huffman codes and their optimality are given by

Capocell i and Santis [8] and Cover[11]. The idea of local

redundancy and lower bounds on the redundancy of Huffman

codes is given by Yeung[84]. Geckinli[22] gives two

corollaries for D-ary Huffman codes with condition for

optimality of a block code. Ferguson and Rabinowitz[18] add

synchronizing property to Huffman codes.

-6-

"1.

Huffman algorithms require two passes over the text. For file

compression the extra disk accesses slow down the operation.

Faller[15] and Gallager[20] independently proposed a one-pass

scheme, that has been improved substantially by Knuth[44] for
dynamic Huffman codes, usually known as FGK codes.
Vitter[78-79] has analyzed the one-pas algorithm due to

Faller, Gallager and Knuth and proposed a new algorithm. He

also derived tight upper and lower bounds for the dynamic
Huffman codes.

Langdon [47] introduces arithmetic coding techniques. and

Howard and Vitter[30-32] has given a tutorial and analyzed
these coding techniques. Apiki[3] and Nelson[52-53] have
discussed and implemented the arithmetic coding technique.

A general algorithm for the minimum-redundancy encoding of a

discrete information source is proposed by Gauzzo[25]. The

problems associated with modeling of compression techniques
and their complexity are discussed by Rissanen and
Langdon[60]. Window based coding techniques are given by Ziv

and Lempel[86-87], Wetch[8l] and Nelson[43]. Compara.tive
studies on the commercial data compression tools are given by
Byrd[7], Simon[68], Nichols[54-55].

-7-

"

Static Huffman codes for the BangIa alphabet have been

presented by Humayun, Rahman and Kaykobad[36] on the basis of

character frequencies and variable length codes have been

suggested by Haque[27] on the basis of BangIa character sound
statistics. Data compression techniques on digital Chinese

character patterns have been studied by Ju, Jou and Tsay[40].

1.4 Organization of the Thesis

Chapter One introduces the area of current research work, and

states the importance and objective of the work. A discussion

on works related to the current one has also been presented.

Essence of data compression has been given in chapter Two. In
this chapter, compression systems, classification of

compression techniques and variable length codes have been
discussed in depth. Finally ideas of information contents,
entropy and redundancy of text have also been given. In
chapter Three, statistical lossless data compression
techniques have been presented. Shannon-Fano coding, Static
Huffman coding, Dynamic Huffman coding by Fallar, Gallager and

Knuth, Optimal Dynamic Huffman coding by Vitter and Arithmetic

coding techniques has been discussed in this chapter. BangIa

text analysis has been given in chapter Four. Idea of n-gram
statistics for BangIa text has also been given in this

-8-

'" ~'-

chapter. In chapter Five, implementation of compression
II.!".\ .

I';
II,.

to the design of experiments and presentation of results and
\

algorithms has been discussed. Chapter Six has been devoted

recommendation of future work have been given.

in chapter Seven over all discussion of results and

-9-

~i

<i~

CHAPTER TWO

ESSENCE OF DATA COMPRESSION

Data encoding is a process of mapping the representation o~

data from one group of symbols called source symbols to

another, a more precise series of symbols called code symbols.

The relationship between the source symbols and their

corresponding code symbols is called a codeword. If the
encoding is one-to-one then an inverse mapping exists and

decoding refers to the reversing process. The two primary
functions of data compression are as follows:

Storage: The storage capacity of mass storage device can be

effectively increased with data compression. Crucial to many

applications is the hardware or on-the-fly compressing

software that can in real time intercept and compress the data

on its way to the storage device and decompress it as it is

needed. Data compression/decompression system with storage is

shown in the Fig.~.l.

Communications: The bandwidth of a digital communication link

can be effectively increased by compressing the data at the

sending end and decompressing the data at the receiving end.

-10-

Here it 1S crucial that compression/decompression can be

performed in real time. Fig.2.2 shows the computer
communication link with data compression.

2.1 Compression Systems

Any data compression approach has a model that makes some

assumptions about the data and events encoded. The decision

to output a certain codeword for a certain source symbol or a

set of symbols is based on the model. The encoder itself can

be independent of the model. The model is simply a collection

of source symbols and rules used to process source symbols and

determine which codeword(s) to output. A program uses the

model to define the probabilities for each symbol accur.ately

and the encoder to produce an appropriate codeword based on
f'those probabilities.

Modeling and encoding are two distinctly different things.

Several different methods can be used to model the source

string, all of which can use the same encoding process to

produce their codewords. A simple statistical model used with

Huffman coding is shown in Fig.2.3. The encoder using Huffman

scheme would use the model that gave the raw probability of

each symbol occurring anywhere in the input stream. A more
sophisticated model might calculate the probability based on

-11-

Fig. 2.1: Data compression/decression with strorage device

,8<_~----_n.~
2.2: Digital communication link with data compression.

L._s_It"_r~_~_~_.--J T~"_O_ls_I __ M_O_d_e_I__ I_p_r_OI"_O_b_i_lit_ie_sElCodes
Fig. 2.3 A Stotisticol Model with a Huffman Encoder

-12-

Output
Stream

the last 10 symbols in the input stream. Although both the

models may use Huffman coding to produce their codewords,
their compression ratios would probably be radically
different.

A simple model is the memoryless model, where the source

symbols themselves are encoded according to a single code.

Another model is the first-order Markov model[47,82], which

uses the previous symbol as the context for the current

symbol. If the source message

language, and source symbol 'q'
is a sentence in English

is the previous symbol, the

model would expect the next symbol to be 'u'. The first-order

Markov model is a dependent model in which there is a

different expectation for each source symbol depending on the

context. The context is a state governed by the past sequence

of symbols. The purpose of a context is to provide a

probability distribution for encoding (decoding) the next
source symbol.

2.1.1 Components of a Compression System

The components of a compression system are

(a) the model structure,

(b) the statistical unit, and

(c) the encoder.

-13-

Model Structure: In practice, the model is a finite state

machine that operates successively on each source symbol and

determines the current event to be encoded and its context if

it is a first-order Markov model. Often, each event is the

source symbol itself, but the structure can define other

events from which the source string could be reconstructed.

For example, one could define an event such as the run length

of succession of repeated symbols, i.e., the number of times

the current symbol repeats itself.

Statistical Unit: This unit computes the relative frequency

distribution used for each context. The computation may be

performed beforehand, or may be performed during the encoding

process, typically by a counting technique. For Huffman

codes, the event statistics are predetermined by the length of

the event's codeword.

Encoder: This unit accepts the events to be encoded and

genera_~".iS.__the code string ..

The notions of the model structure and statistics are

important because they completely determine the compression

efficiency. In some complex systems, the compression problem

is equivalent to the modeling problem.

-14-

2.2 Classification of Coding Methods

Based on the consideration of encoding error, data compression

techniques can be divided into two major families.

(a) Lossy Compression, and

(b) Lossless Compression

2.2.1 Lossy Compression

Lossy data compression concedes a certain loss of accuracy in

exchange for greatly increased compression. These processes
are typically used for applications where there is a notion of
fidelity associated with the data. Such applications often
involve digitally sampled analog data (e.g., speech, still

image, video, etc.) where it is only necessary that the

decompressed data be acceptably close in quality to the
original. By their very nature, these digitized
representations of analog phenomena are not perfect to begin

with, so the idea of output and input not matching exactly is

a little more acc~ptable. Most lossy compression techniques

can be adjusted to different quality levels, gaining higher

accuracy in exchange for less effective compression. Until
recently, lossy compression has been primarily implemented
using dedicated hardware.

-15-

Lossy compression methods are primarily classified as:

(a) Scaler and vector quantization,

(bl Transform methods

(c) Fractal decomposition, and

(d) Temporal compensations.

Scaler and vector quantization: Vector quantization is the

process of partitioning a body of data into disjoint ordered

sets and replacing each vector by an index to a closest

matching vector in a dictionary of vectors. For example, with

image compression, vectors are typically subarrays of pixels

in the range 2x2 to 8x8 and dictionaries (often called tables

or codebooks) typically have sizes ranging from 256 to 64000

vectors. As another example, in the character recognition

from a half-tone or fax data where vectors are arrays of bits

that are positioned over the character positions and the

codebook is the alphabet of characters that is being

recognized. L"rger vectors and dictionaries yield higher

fidelity for a given amount of compression, but require

greater computational resources. Scaler quantization is the

special case where each vector consists of a ,single data

element.

-16-

Transform Methods: A typical transform method takes a block

of n input values and computes a new set of n values by

applying a transform that has the effect of concentrating the

important information non-uniformly in the new values. The

new values are then scaler quantized, with less important

values being either more coarsely quantized or discarded

entirely. One of the most widely used transforms, and the

basis of a number of data compression standards such as Joint

Photographic Expert Group (JPEG) Compression, is the discrete

cosine transform[2], but many others such as the Fourier,

Walsh-Hadamard, Haar, Hartley, and wavelet transform have also

been considered in the literature[28].

Fractal Decomposition: Fractals are recursively defined

curves that can be specified by integer parameters. Data may

be compressed by approximating it by a set of fractal curves.

The approximation can range from lossless to very lossy. In

fact, one of the most successful applications of fractals to

date has been very high compression of images that can amount

to replacing the image by a drawing of it.

Temporal Compensations: Digitized video is usually much more

compressible than single images because there is typically a

great similarity between successive frames.

-17-

Hence, in

addition to lossy compression of individual frames and

lossless compression of the resulting data stream,

displacement estimation algori thms that track groups of pixels

that remain identical or acceptably close from one frame to

the next can be crucial to achieve high degrees of

compression. Other forms of temporal compensations include

pan and zoom compensation, frame alignment and blending, and

reversible dynamic range compression. Proposed standards for

video compression are discussed in LeGall [48] ; also,
Sijstermans and van der Meer[67] discuss full motion video

encoding.

Detail classifications and implementation of lossy compression

techniques is done by Chowdhury[9].

2.2.2 Lossless Compression

Lossless data-compression techniques preserve all the
information in the data so that it can be reconstructed

without error. It consists of those techniques that guarantee

to generate an exact duplicate of the input data stream after

a compression/expansion cycfe. This type of compression is

typically used for applications where the loss of a single bit

can change the meaning of the data. This type of compression

is mandatory for transmission or storing computer programs,

-18-

documents, numerical information, database records,
spreadsheets etc. In these appl ications, the loss of even a

single bit could be catastrophic.

On the basis of the codeword length, Lossless compression
scheme can be classified as :

(a) Block or Fixed Length Coding, and

(b) Variable Length Coding.

Block Coding: In these schemes source messages are analyzed

and a group of source symbols are replaced by a fixed length

codeword or block of code symbols. Null Suppression, Bit

Mapping and Run Length coding are common block coding
techniques.

Variable Length Code: In these schemes the length of codewords

for different source symbols are different depending on the

statistics or any other property that comes from the model

used by the coding scheme. Huffman code is an example of a
variable length code.

On the basis of the mode of operation the coding schemes can
be classified as :

(a) Substitution/Dictionary Based Encoding, and
(b) Statistical/Entropy Encoding.

-19-

Depending on the model, both statistical and dictionary based

encodings can be (a) Static or (b) Dynamic/Adaptive.

Dictionary Based Encoding: Statistical schemes generally

encode a single symbol at a time, reading it in, calculating

a probability, then outputting a single codeword. Dictionary

The body of

based scheme maintains a table of matching string

source symbols) called dictionary.
(group of

data is
compressed by replacing substrings of the input message by the

corresponding indices of these substrings in the dictionary;

the indices are called pointers. Thus, the input is a stream

of source symbols and the output is a stream of pointers,

where most pointers specify strings of length greater than

one. Similarly, the input to the decoder is a stream of

pointers and output is a stream of source symbols. Various
heuristic can be employed to recognize new strings to be added

to the dictionary and to discard strings from the dictionary

when more space is needed; such modifications allow the

dictionary to adapt to changing characteristics of input
message. A nice aspect of textual substitution methods is

that commonly occurring substrings are more likely to be grown

to longer strings in the dictionary, and the distribution of

pointers is not needed, making textual substitution methods

very practical to implement.

-20-

Textual substitution methods have been implemented by the

following algorithms:

(a) LZ77 algorithms,

(b) LZ78 algorithms, and

(c) LZW algorithms.

All of the above methods are based on the important work of

Lempel and Ziv[86-87] and Welch[81], who made substantial

modifications. Reif and Storer[59] have developed massively

parallel hardware for high speed textual substitution.

Statistical Compression Techniques: Statistical encoding

schemes take advantage of the probabilities of occurrence of

single source symbols and a group of symbols. In these
schemes average codeword length relates to the probabilities

of the source symbols. Statistical compression techniques are
of the following types:

(a) Shannon-Fano Coding,

(b) Huffman Coding,

Static Huffman Coding

Dynamic Huffman Coding

FGK algorithm,

-21-

Knuth algorithm,

Optimum One pass (Vitter) algorithm, and

(c) Arithmetic Coding

Static Arithmetic Coding

Adaptive Arithmetic Coding

All statistical encodings produce optimal variable length

codewords.

2.3 Variable Length Codes

The codes in which the source symbols are encoded in different

length (no. of dig its) of code symbols are cons idered as

variable length codes. These codes are becoming increasingly

important as the costs of communication in distributed systems

and external storage are beginning to dominate the costs for

internal memory and computation. The advantage of a code in

which the encoded source. symbols are of variable length is

that the code is more efficient in the sense that fewer digits

(bits in the binary system) for representation of the same

piece of information are required on the average, than do

fixed length codes that require rlog (n)l bits per source

symbols, where n is the source alphabet size. This can yield

,,

tremendous savings in communication system and file
compression. Moreover, the buffering needed to support

-22-

("
\,.1"

variable length coding is becoming inherent part of many

systems. To accomplish this, the encoders need to know

something about the statistics of the messages being encoded.

If every symbol is as likely as every other one, then the

block codes are about as efficient as any code can be. But if

some symbols are more probable than others, then encoder can

take advantage of this to make the most frequent symbols

correspond to the shorter encodings, and the less frequent

symbols correspond to the longer encodings, so that the

message would take up less space. If the probabilities of the

frequencies of occurrence of the individual symbols are

sufficiently different, then variable-length encoding can be

significantly more efficient than fixed length encoding.

However, variable-length codes bring with them a fundamental

problem of identifying the codewords corresponding to the

source symbols from the encoded stream of codewords. The

decoder has to identify the beginning and end of the codeword.

To solve these problems, variable length codes must have the

following important properties:

Different codewords have different numbers of code
symbols (bits).

-23-

Codewords for source symbols with low probabilities have

more bits, and codewords for source symbols with high

probabilities have fewer bits.

Though the codewords are of different code lengths, they

can be uniquely decoded.

The decoding should be instantaneous.

2.3.1 Unique Decoding

In general, the source alphabet has q symbols,

S = {si : i = 1. 2•...•q}, and that the code's alphabet has r

symbols, r for the radix of the system.

In variable-length coding, the codeword must be uniquely

decodable, i.e., the encoded message must have a single,

unique possible interpretation. Consider a code in which the

source alphabet S has four symbols, and they are to be encoded

in binary as follows:

sl - 0

s2 = 01

s3 = 11

s, = 00

The particular coded message 0011 could be decoded as one of

these two source messages:

0011 = {SI' S3} or {St. sl' s3}
-24-

Thus the code is not uniquely decodable. Unique decodability

is usually highly desirable.

For unique decodabi 1ity, no two codewords can be the same.

Clearly, only if every distinct sequence of source symbols has

a corresponding unique codeword sequence, then the code

message is uniquely decodable.

sufficient condition.

2.3.2 Instantaneous Codes

This is a necessary and

Considering a source alphabet with four symbols,

s '" {si :

following

i = 1, 2. ••• t 4} , and coded in binary as in the

sl '" 0

s2 '" 10

s3 '" 110

8, '" 111
Now the coded message 0011011110 is to be decoded. Clearly
the decoder would decode the message from left to right as the
message appears to it. The decoder will emit source symbols

finite automaton, i.e., a decision tree shown in Fig.2.4.
Starting in the initial state the first binary digit received

will cause a branch, either to a terminal state 81 if the

-25-

-'
digit is 0, or else to a second decision point if it is a 1.

For the next binary digit this second branch would go to the

terminal state s2 if a ° is received, and to a third decision

point if it is a 1. The third would go to the terminal state

s3 if the third digit is a 0, and to the terminal state s, if
it is a 1.

Each terminal state would, of course, emit its source symbol

and then return control to the initial state. It is clear
that each bit, i.e., code symbol of the received stream is

examined only once, and that the terminal states of this tree

are the four source symbols sl' 82' s3 and s,.

In this example, the decoding is instantaneous since when a

complete codeword is received, the decoder immediately knowS

this, and does not have to look further before deciding what

message symbol it received. No codeword of this code message

is a prefix of any other codeword.

This shows the basic equivalence of the existence of the

decoding tree and the instantaneous decodabil ity; each impl ies

the other. It is also clear that using the decoding tree

means that each received codeword is looked at only once in

the decoding process.

-26-

Some of

.,

Now consider that the same source alphabet has been encoded in

binary as in the following:

sl = 0

Sz = 01

s] = 011

81 = 111

It is the previous codeword with the bits reversed.

these codewords are prefixes of other codewords; that is, they

are the same as the beginning part of some other symbol.

Now consider the same coded message 0011011110 is to be

decoded into its source symbols. If the decoder goes as the

message received, it cannot decide whether it received the

source symbol that corresponds to the prefix. In this

example, the first code symbol 0 of this message corresponds

to the source symbol 8, and prefix of the source symbols 8Z
and 8]. It can only be decoded by first going to the end and

then identi fying the symbol s backward. This codeword is

uniquely decodable but is not instantaneous because the

decoder does not know when one codeword is over without

looking further. The simplest way to decode messages in this

particular code is always to start at the back end of the

received message. This puts a severe burden on the storage

and also causes a time delay.

-27-

Initial state

o

o

o

Fig. 2.4 Decoding tree for 4 symbols
with codeword set {O, 10, 110, 111}.

o

o

o
,C{.3=110

Fig. 2.5 Decoding tree for 5 symbols with
codeword set {o, 10, 110, 1110, 1111}.

-28-

no code word si that is a prefix of another code word Sj'

both necessary and sufficient that

of the existence of the decoding tree, it is clear~y
I

an instantaneous code h~s
I
I

viewIn

2.3.3 Construction of Instantaneous Codes

It is clear that of all uniquely decodable codes,

instantaneous codes are preferable since they cost nothiJg
IIextra to decode the coded message. To construct instantaneous

source alphabet

coded

codes,

S = {s.
t

consider

i = 1,
a

... , 5} which is to be

of five

in

symbols

binary
alphabet. To get the instantaneous code the source symbols
can be assigned the following prefix codes.

sl = 0
ISz = 10
(s3 = 110

s. = 1110

s5 = 1111
And the corresponding decoding tree is as in Fig.2.5.

In this construction the use of o for the first symbol
reduced the number of possibilities available later.

of this, if the first two source
Instead

Isymbols are encoded using two
code symbols as sl = 00 and s2 = 01 then s3 can be encoded as

There are two source symbols yet to encode, so s.

-29-

-

-30-

discuss the code itself.

easily constructed as in Fig.2.6.

It tells when the lengths of the code

cannot use s4 = 11. Therefore, s4 must be encoded by 110
leaving 111 for s5' The complete codeword set is

sl = 00

s2 = 01

s3 = 10

s4 = 110

s5 = 111
This codeword set is clearly instantaneous since no codeword

Which of these two codes is better, i.e., more efficient

is a prefix of any other codeword, and the decoding tree is

2.3.4 The Kraft Inequality

depends on the frequency of occurrence of the source symbols

instantaneous codes.

words permit ,forming an instantaneous code, but it does not

The Kraft inequality gives the condition on the existence of

Theorem: A necessary and sufficient condition for the

existence of an instantaneous code S of q symbols

ofwordsencoded

<1 is- q

withq}••• Ii = I,S = {sl

lengths 11 :512 :513 :5

q 1
~-1:S1
~=l r i

where r is the radix (number of symbols) of the

alphabet of the code symbols.

This inequality is asserting that the encoder cannot have too
many short codewords. Most of the 1.

t
must be reasonably

large.

It is easy to prove the Kraft inequality from the decoding
tree, whose existence follows from the instantaneous
decodabil ity. Here the proof is given by induction. The
decoding tree is given in Fig.2.7. For simplicity consider
first the binary case. For a tree whose maximum height is 1,

the decoding tree contains one or two branches of height 1.

Thus the inequality should have either l:5 1 for one symbol

or l + l :51 for two symbols.

Now assume that the Kraft inequality is true for all trees of

height less than n. Now given a tree of maximum height n, the

-31-

SI-OO

o
1

o
1

Fig. 2.6

SS_lIl

Decoding tree for 5 symbols with
codeword set {OO, 01, 10, 110, Ill}.

K'

K

K"

(0) true for tree of length

(b) Assume true for length n-l

(c) Tree of length n

112K'+ 1 12K" =1{

Fig, 2,7 Proof of KI"oft inequolity

-32-

first node leads to a pair of subtrees of height at most

n - 1, for which the inequalities K' S 1 and K" S 1, where K'
and K" are the values of their respective sums. Each height

Ii in a subtree is increased by 1 when the subtree is joined

to the main tree, so an extra factor of ! appears. Therefore,

the. inequalities will be

l K I + l K" ~ 1

For radix r instead of binary, there are at most r branches at

each node-at most r subtrees each with an extra factor of l/r

when joined to the main tree. Again the theorem is true.

A moment's inspection shows that if every terminal node of the

tree is a code word, then K = 1. It is only when some

terminal nodes are not used that the inequality Occurs. But

if any terminal node is not used for a binary code alphabet,

the preceding decision is wasted and that corresponding digit

can be removed from every symbol that passes through this node

in its decoding. Thus if the inequality holds, the code is

inefficient, and how to correct this is immediately evident

for binary trees. Thus K = 1 for binary trees with all the

terminals used. It is only for radix r > 2 that it is

reasonable to have unused terminals and hence a K less than 1.

Since the theorem gives a condition on the heights only, the

main use is in questions of the existence of a code with a

given set of lengths.

-33-

Again the theorem refers to the existence of such a code, and

does not refer to a particular code. A particular code may

obey the Kraft inequality and still not be instantaneous, but

there will exist codes that have the same

instantaneous.
1.
I

and are

If the lengths of four source symbols in binary are 1, 3, 3,

3, the Kraft sum will be 1/2 + 3/B = 7/B, and an instantaneous

code with those lengths is possible.

length 3 could be shortened to 2 bits.
One of the words of

But if the lengths
were 1, 2, 2, 3, the sum would be 1/2 + 2(1/4) + l/B = 9/B,

and such an instantaneous code could not exist. In the above
two examples, only the code word lengths are given since this

is what matters in the theorem, not the actual code words.

2.3.5 Shortened Block Codes

In the fixed length codes, i.e., block codes if there are
exactly 2" code words in a binary system (r" in a radix r

system), exactly m digits could be used to represent each
symbol. But there does not have an exact power of the radix

but still need the maximum length to be as short as possible.

To see what can happen, consider the case of five symbols. Of

the eight binary symbols listed in the next page the encoder
can drop any three.

-34-

000

001

010

011

100

101

110

111

If 001, 011, and 101, dropped, then three branches of the

decoding tree can be shortened and still have instantaneous

decodability. The codewords would be

81 = 00

82 = 01

83 = 10

84 = 110

85 = 111

and corresponding decoding tree is given in Fig.2.8.

Instead of this choice, the decoder can drop 001, 010, and 011

and shorten only one branch of the tree to the code as in

Fig.2.9 and the codewords are

-35-

Fig. 2.8

0
"1 0
::(

"

Decoding tree for shortened block codes after
dropping {DOl, 011 and 101}.

o
1

o

Fig. 2.g Decoding tree for shortened block codes after
dropping {DOl, 010 and 011}.

-36-

sl = 0

s2 = 100

s3 = 101

s4 = 110

s5 = 111

In both cases there are now no unused terminals and therefore
K = 1. These codes are called shortened block codes; they are

essentially block codes with small modifications.

2.3.6 The McMillan Inequality

The Kraft inequality applies to instantaneous codes, which are

a special case of uniquely decodable codes. McMillan showed
that the same inequality applies to uniquely decodable codes.

The underlying idea of the proof of the necessity is that very

high powers of a number greater than 1 grow rapidly. If it is

possible to bound tightly this growth, then it is clear that
the number is not greater than 1. The proof of the
sufficiency follows from the fact that it can be done for

instantaneous codes which are special cases of uniquely
decodable codes.

The necessity part of the proof begins by taking the nth power
of the Kraft expression

-37-

l~_1 . j" " K"h1 r J J

If it is expanded, the left-hand terms will be a sum of many

terms having various powers: the exponents running from n, the

lowest possible power, to nl, the highest, where 1 is the

length of the longest symbol. Thus the expression becomes

where Nk is the number of code symbols (of radix r) of length

k. Since the code is uniquely decodable, Nk cannot be greater

than kr, which is the number of distinct sequences of length

k in the code alphabet of radix r. Therefore, the bound is

oj k
KO < ~ L ~nJ - n + 1 < nJ- k

-0 r

The +1 comes from the fact that both end terms in the sum are

counted. This is the inequality for decodable codes, since

for any x > 1 a sufficiently large n makes the number x' > nl.

But n can be chosen to be a very large value, and it follows,

therefore, that the number K (the Kr,aft sum) must be ::;1.

From this it is clear that there is very little to gain from

avoiding instantaneously decodable codes and using the more

-38-

general uniquely decodable codes; both have to satisfy the

same Kraft inequality on the lengths of the encoded symbols.

2.3.7 Information Contents

Suppose that the encoder has the source alphabet
s = {sl' s2' s3' .•.• Sq}, of q symbols with corresponding

probabilities P = {PI' P2' P3' ...• Pq}, such that Pi = P(si)'
When the encoder receives one of these symbols. how much

information does it get? For example, if PI = 1 (and all the

other Pi = 0), then there is no surprise, no information,

since it is already known what the message must be. On the

other hand, if the probabilities are all very different, then

when a symbol with a low probability arrives, the encoder

feels more surprised, gets more information, than when a

symbol with a higher probability arrives. Thus information is

somewhat inversely related to the probability of occurrence.

So there should be a function I(p), which measures the amount

of information - surprise, uncertainty - in the occurrence of

a source symbol of probability p. The function I(p) must obey

the following three assumptions:

(i) I(p) ~ 0 (a real non-negative measure).
(i i)

symbols.
=

-39-

for independent source

(iii) l(p) is a continuous function of p.

The second of these conditions is known as the Cauchy

functional equation for the function l(p), meaning that it

serves to define l(p). If PI and P2 are both the same number

p, not necessarily the same event, then

l(p2) = l(p) + l(p) = 21(p)

Now if PI = P and PI =. pI, then

l(p3) = lip) + 21(p) = 31(p)

and in general

That is, the standard law of exponents for positive integers

applies to the function lip). Following this, the function

can be adapted for the usual exponent extension to fractional

values. Assume

p' = y,

and hence
I (y) = nl (yl/.)

or, after some further manipulation,

Thus for the rational numbers the function l(p) obeys the same

formula as the log function.

-40-

The third assumption of continuity allows the function to

extend this to all numbers (0 ~ p ~ 1), rational or

irrational. Thus

l(p) = k log(p)

for some constant k and some base of the log system. From the

first assumption it is natural to pick the constant k as -1,
and finally, the function will be

l(p) = -log(p) = log(1/p)

for some base of the log system. It is convenient to use the

base 2 logs; the resulting unit of information is called a

bit.

2.3.8 Entropy

In practice we are often more interested in the average

information conveyed in some source symbol than in the

specific information in each source symbol. Since Pi is the
probability of getting the information l(si)' then the average

information for each symbol si'

p. I(s.)
1 1

From this it follows that on the average, over the whole

source alphabet, the information will be

-41-

,"'f~ 'I

\ /

For radix r,

It has become a convention to label this important quantity as

H,(S) and call it the entropy function for a distribution when

all that is considered are the probabilities Pi of the symbols

si' Corresponding to each distribution P = (PI' PZ' ...• Pq)

of symbols si' there is a single number called the entropy and
labelled H(S). This is analogous to the usual idea of an

average of a distribution - the average is a single number

which summarizes the distribution. The entropy H(S) 1S the
weighted average of the logs of the reciprocals of the

probabilities of the distribution. The entropy is a single

measure of a distribution; it is the average information of
the alphabet S.

2.3.9 Entropy and Coding

There exists a fundamental relationship between the average

code length La. and the entropy H,(S). Given any instantaneous

code it has some definite codeword lengths Ii represented in

some radix r. From the Kraft inequality,

-42-

K~f(_l)Sl
1-1 r J i

Assume a numbers Qi (pseudo probabilities):

where,

The Qi may be regarded as a probability distribution.

Therefore, the fundamental Gribbs inequality

Upon expanding the log term into a sum of logs, one term leads

to the entropy function,

-43-

By Kraft inequality K $ 1, so that 10g2K $ O. Dropping this

term can only strengthen the inequality. Therefore,

or,

where L is the average code length,

This is the fundamental result that the entropy supplies a

lower bound on the average code length L for any instantaneous
decodable system. By the McMillan inequality, it also

supplies to any uniquely decodable system.

For efficient binary codes K = 1 and we have log2K = O.

Therefore, the inequality occurs in binary case only

Huffman coding approaches the entropy in some .probabil ity

distribution.

-44-

.1

2.3.10 Redundancy

Redundancy 1S an important concept in information theory,

particularly in connection with language. It is the presence

of more code symbols in a message than is strictly necessary.

For example, in a binary coding of two source symbols A and B,

can be coded as 000 and B as 111, instead of A = 0 and B = 1.

This gives some protection against errors, since one binary

error in three digits could be tolerated.

defined as
Redundancy 1S.

Redundancy = maximum entropy - actual entropy

maximum entropy

Spoken and written languages usually have high redundancy,

permitting them to be understood in the presence of noise or
errors.

-45-

.'

CHAPTER THREE

STATISTICAL LOSSLESS COMPRESSION TECHNIQUES

A Lossless technique of data compression always produces the

decompressed file that is identical to the original without

losing even in a single bit. Most of the Lossless techniques

implemented in software use statistics of the source symbols.

In this chapter theoretical development of commonly used

Lossless compression techniques are discussed.

3.1 Shannon-Fano Coding

The first well-known method of efficient variable length

coding technique 1S known as

Shannon at Bell Labs and R. M.

method nearly simultaneously.

Shannon-Fano coding. Claude

Fano at M.I.T. developed this

It depends on simply knowing

the probability of each source symbol appearance in the
message.

3.1.1 Conditions for variable length coding

The basic requirements for the variable length encoding of the

source message are:

-46-

.,

(a) No two source symbols will consist of identical
arrangements of coding digits.

(bl. The coded message will be instantaneously decodable, that

is, the source message will be encoded so that no

additional information is necessary to specify where a

coded source symbol begins and ends once the starting

point of the sequence of a source symbol is known in the
encoded message.

(c) Though the codes are of different bit lengths, they can
be uniquely decoded.

The kth prefix of a codeword is the first k code symbols (bits

for binary code) of that codeword. Therefore, the condition

(b) could be restated as: No message shall be coded in such a

way that anyone of its codeword is a prefix of another

codeword, or that any of its prefixes are used elsewhere as a
codeword.

For optimal coding, the length of codeword for a given source

symbol can never be less than that of a more probable source
symbol.

Assume a source alphabet S = {so
1

particularin a

haveq},... ,2,

q}

1,i =
... ,2,1,=i=probability P

message and length set of codewords on the code alphabet

-47-

x = {x. I i = 1, 2 , ... , r} be L = {li i = 1, 2, ... , q} .1

Then for optimal codeword set,

PI ~ P2 ~ PJ ~ ~ Pq' and

11 :s 12 :s IJ :s :s lq
If both of the following conditions do not hold, then the code

is not optimal in the sense that there could have a shorter

average length by rearranging the codeword representation of

the source alphabet.

Suppose that for some source symbols s. & s. (for m > n) we
have both conditions,

In computing the average length, the expression has two terms

(i)

(i i)

By interchanging s. and s. with their codewords corresponding
terms could be

p.l. + p.l.

Subtracting the (i) from (ii), the change due to this
rearrangement be (ii) - (i)

From the forgoing assumptions this is a negative number; the

average code length will decrease if the codewords for s. and

s. are interchanged. Therefore, both of the above two running
inequalities must hold.

-48-

Any source symbols coding technique following the above

conditions will produce compact instantaneous codes.

3.1.2 Special Case of Variable Length Codes

There is an interesting special case[75], in which the symbol

probabili ties p.
1

are of the form where is

integral. Perfect coding can be obtained by setting the
lengths of codewords 1. = a ..

1 1 If the four symbols sl' s2' s3'
s(have probabilities 1/2, 1/4, 1/8, 1/8 respectively.

(
1)a,using Pi = 2" '

So a suitable code would be

s) = O. s = 10. s3 = 110. s4 = 111.

The average length of the codewords is L = Ep.l. = 1.75
1 1

Then

and the source entropy is H = -EpJog (Pi) = 1.75 bits per

symbols numerically equal to the average length. This is not
always possible.

-49-

3.1.3 Boundaries of Shannon-Fano Codes

Given the source symbols ••• t and their

corresponding probabilities PI' Pl' ••. , Pq' then for each Pi

there is an integer li such that

(3 . 1)

since the two extreme values just span a unit length.

Removing the logs, the inequality would be

Taking the reciprocal of each term, we obtain

Pi 2 (~ 1 > Pi
Pi r

Since ~ Pi = 1, when we sum this inequality, we get

which gives the Kraft inequali ty. Therefore, there is an
instantaneous

lengths.
decodable code having these Shannon-Fano

To ,get the entropy of the distribution of Pi' we mul tiply the

inequality (3.1) by Pi and sum:

-50-

In terms of the average length L" of the code, we have

Thus, for Shannon-Fano coding we again have the entropy as a

lower bound on the average length of the code.

part of the upper bound.

3.1.4 Shannon-Fano Algorithm

It is also

Shannon-Fano Coding technique produces instantaneous decodable
codewords. This technique builds a decoding/encoding tree

known as Shannon-Fano tree[53
1 and it can be built by following

a simple algorithm. If a list of source symbols with a

corresponding list of probabilities or frequency counts is

given 1n the sorted form on the frequency counts, the tree is

built by the following simple algorithm.

1. Form a node with the total frequency count, this node is
the root of the tree.

2. Divide the list of symbols into two parts, with the total

frequency counts of the upper half being as close to the

total of the bottom half as possible.

3. The weight of upper half of the list is assigned to the

right child of the previous node, and the lower half to
the left.

-51-

-\

4. Recursively apply the same procedure to each half,

subdividing groups and adding to preceding nodes until

each symbol has become a leaf on the tree.

The step by step procedures (as an example) of building a

Shannon-Fano tree and codewords is shown in Fig.3.1 from a

symbol set of five symbols and their frequency counts as in

the Table 3.1.

Table 3.1: Five symbols and frequency counts for Shannon-
Fano Coding.

Symbol Count

In the Fig.3.1(a) putting a dividing line between symbols s3

D

and s4 assign a count of 5 to the lower group and 4 to the
upper, the closest to exactly half. This means that 84 and

s5 will be in the right of the root and each having a code

that starts wi th a bit 1, and sl' s2 and s3 are all in the left

child of the root and going to start with a O.

Subsequently, the lower half of the table gets a new division

between s4 and s5 as in Fig.3.1(b) which puts s, on a leaf with

-52-

('"
, :-.-'::

-53-

code 10 and s5 in a leaf with code 11. After four divisions

the final tree is built and gets the codeword set for the

given symbol set. In the final codeword set, the three

symbols with the highest frequencies have all been assigned

2-bit codes, and two symbols wi.th lower counts have 3-bit

codes.

3.2 Static Huffman Coding

Huffman coding is a statistical data-compression technique.

It produces variable length codes for the source symbols. In

this technique, both encoding and decoding are done by

following an automata, i.e., a decision tree popularly known

as Huffman tree. Its employment reduces the average code

length used to represent the symbols of the source alphabet.

3.2.1 Restrictions for Optimal Coding

In addition to the conditions of variable length coding

discussed previously, optimum coding would have the following

restrictions.

Consider the maximum codeword length for the previous codeword

set is lq' If there is only one of such length, since the code

-54-

is instantaneous, then any shorter codeword of length (lq - 1)

or shorter is not a prefix of the maximum-length codeword.

Therefore, the last part of the longest codeword could be

dropped with no loss of information in decoding. Thus at

least two longest symbols must have the same length, and

because of the running inequalities, they must be the two

least probable.

Imagine an optimum coding in which. no two of the source

symbols coded with length 1. have identical prefixes of order

(1. - 1). Since an optimum coding has been assumed, then none

of these codewords of length 1. can have codewords or prefixes

of any order that correspond to other codewords. It would

then be possible to drop the last digit of all of this group

of codewords and thereby reduce the average code length.

Therefore, in an optimum coding, it is necessary that at least

two (and no more than r, the number of code symbols) of the

codewords with length 1. have identical prefixes of order

(1.-1-) .

Assume that there exists a source symbol s. with a codeword c.

of length 1. and a combination of r different code symbols of

length less than lq which is not a prefix of a codeword. Then

this combination of code symbols could be used as a codeword

-55-

for ~ replacing the codeword cn for the nth symbol with a

consequent reduction of the average code length. Therefore,

all possible sequences of (1, - 1) code symbols must be used

either as a codeword or must have one of their prefixes used
as codewords.

For a codeword set to be optimum for a particular source

alphabet the above restrictions must be maintained.

The restrictions for an optimum coding are summarized below:

(a) No two source symbols will consist of identical
arrangements of code symbols.

(b) No source symbol shall be coded in such a way that its

codeword is a prefix of any other codeword, or that any

of its prefixes are used elsewhere as a codeword.

(c) Fa r PI?: Pz ?: P3 ?: ?: Pq'

11 5 12 5 135 5 lq _ 1 = lq

(d) At least two and not more than r, (r is the number of

code symbols) of codewords with length 1 have codes that

are alike except for their final code symbol.

(e) Each possible sequence of (1 - 1) code symbols must be

used either as a codeword or as a pref ix of an,other
codeword.

-56-

3.2.2 Binary Huffman Coding

In the binary Huffman coding, previously mentioned source

alphabet S = {sl• s2' s3• ... , sql. with corresponding
probabilities P = {PI' P2' P3• • •• I Pql and length of the
codeword L = {II' 12• 13• ... , lql will be encoded into the code
alphabet X = {O, I} .

From the necessary restrictions for optimum codes, we show the

development of the Huffman coding procedure.

Restriction (c) makes it necessary that the two least probable

source symbols have codewords of equal length. Restriction
(d) places the requirement that, for binary Huffman coding r

is equal to two, therefore, be only two of the source symbols
with coded length lq are identical except for their last bits.

The final bits of these two codewords will be one of the two
binary digits 0 and 1. It will be necessary to assign these

two codewords to the qth and the (q-l)th source symbols since

at this point it is not known whether or not other codewords

of length lq exist. Once this has been done, these two source

symbols are equivalent to a single composit~ source symbol.

Its codeword (as yet undetermined) will be the common prefixes

of order (lq 1) of these two source symbols.

-57-

Its

probability will be the sum of the probabilities of the two

source symbols from which it was created. The source alphabet

containing this composite source symbol in the place of its

two component source symbols will be called the first

auxiliary source alphabet.

This newly created source alphabet contains one less source

symbols than the original. Its symbols should be rearranged

if necessary so that the source symbols are again ordered

according to the ir probabil ities. It may be considered

exactly as the original source alphabet was. The codeword for

each of the two least probable source symbols in this new

source alphabet are required to be identical except In their

final code symbols; 0 and 1 are assigned to these code

symbols, one for each of the two source symbols. Each new

auxiliary source alphabet contains one less source symbols

than the preceding source alphabet. Each auxiliary source

alphabet represents the original source alphabet with full use

made of the accumulated necessary coding requirements.

The procedure is applied again and again until the number of

source symbols in the most recently formed auxiliary source

alphabet is reduced to two. One of each of the binary digits

is assigned to each of these two composite source symbols.

These source symbols are then combined to form a single

-58-

composite source symbol with probability unity, and the coding

is completed.

From the above discussion, Huffman coding scheme is a process

of reduction of source symbols. At each stage 2 least

probable symbols (r for r-ary code alphabet) are reduced to

one symbol. Reversing the reduction process form the codeword

for the symbols. The least probable symbol gets the longest

codeword. Reversing process of reduction is called splitting

procedure.

3.2.3 Basic Machine for Huffman tree construction

In binary tree construction problem[57] one is given a set of

n leaves having corresponding weights W = {wi Ii = 1, 2, ... ,

n}. The weights need not to be normalized so that their sum

comes out to be unity; we require only that they be
non-negative and given, for convenience, sorted by index: wi ~

Wz ~ '" ~ wo' Construction of a binary tree on these leaves

is then effected by (n-l) merges of pairs of available nodes.

Each node in the pair is marked available, having as its

weight some function F of the weights of its sons. Leaves

are initially all marked available. Each internal node

defines the root of a binary subtree of the constructed tree,

which implies that tree construction can be defined

-59-

inductively in terms of forests in the obvious way. The

construction begins with a forest of n one-node trees and

repeatedly reduces the number of trees by 1 via root merge

operations until only one tree is left.

Weight Space U: A weight space of a weighted tree construction

problem is a connected interval of the nonnegative reals R
j
•

All weights in the tree are elements of U.

Weight Combination Function F:U2 -> U: A weight combination

function F:U2 -> U is any symmetric function that is closed as
a binary operator on U. F is used to produce the weight of
internal nodes generated by merge operation in tree
construction which is shown in Fig. 3.2.

Tree Cost Function G:UD -> R: A tree cost function G:UD -> R

for all trees having n internal nodes is any symmetric mapping

of UD into the real numbers R. For such a tree T, the cost of

T will be G(Wi i = 1,2, •.. ,n), i.e., the value of G applied
to the internal node weights of T.

Huffman algorithm for binary tree construction is now simple

to state: To build the Huffman tree given a weight

combination function F, merge at each step the two available

-60-

nodes of smallest weight with ties resolved arbitrarily, until

only one node is available.

In the use of file compression application, weight combination

function F(x,y) = x + y, and tree cost function G = sum with

U = Rj, which is ~Wj(T)lj(T) and is called the weighted path

length of T.

Different choice of two available nodes of smallest weight, if

their is a tie, form different Huffman trees and different

codeword for the same source alphabet, but the average code

length remains same. An example of reduction process and

formation of the codeword using the above weight combination

function and tree cost function is shown in the following:

Assume a source alphabet of 5 symbols S = {St' s2' s)' s4' s5}'
A message is to be encoded into binary code alphabet X = {O,

I}. The frequency count, i.e., the weight 0 f the source

symbols of the message is W = {20, 10, 10, 5, 5} with

corresponding probabilities P = {0.4, 0.2, 0.2,0.1, O.l}, The

reduction process and the formation of codeword are shown in

Table 3.2 and ,3.3.

-61-

Fig.3.2: Weight combination function F(x,y).

Fig.3.3: Static Huffman tree for symbols
set S = {Bt :,i = 1, 2, ...,5} with probability
set P = {0.1, 0.1, 0.2, 0.2, 0.4}.

-62-

This process forms a tree which is called Huffman tree. The

source symbols with their weights are labeled at each node of

the tree. The correspondence between the tree and the

codeword is simply to represent the path from the root to each

external node as a string of 0' and l's, where 0 represents to

a left branch and 1 represents to a right branch. An external

node at level 1 corresponds in this way to a string in code

alphabet of length 1. The Huffman tree for the above example

is shown in the Fig.3.3.

The tree formation steps from the above example is shown in

weighted available nodes in each merging step is solved by

Fig.3.4. In this example, the tie of selecting the smallest

inserting the new parent node into the list of available nodes

at the far end of the block of nodes with equal weights. In

this process produced codeword set has the minimum variance of
codeword length. Different choices of the smallest weighted

available node form different Huffman trees and corresponding

codeword set, when there is a tie, is also shown in Fig.3.5

for the above example.

A prefix code is a set of string 1n which no s1;ring is a

proper prefix of another. A minimal prefix code is a prefix

code such that, if a is a proper prefix of some string in the

-63-

set, then aO is either in the set or a proper prefix of some

string in the set, and so is a1. Binary trees with n external

nodes are in one-to-one correspondence with sets of n string
on {O, I} that form a minimal prefix code.

tree is an optimum minimal prefix code.
Binary Huffman

Table 3.2 Reduction process of the probabilities.
Probabilities of auxiliaryS P source symbols

sl 0.1 ~O.2 0.2 0.4 ~1.0

sa 0.1 0.2 0.4 O.
s3 0.2 0.2 0.4

s4 0.2 0.4

s 0.4

Reductions
Original First Second Third

Table 3.3: Splitting Process (formation of codeword)

S P Auxiliary codewords
100 ~ 0.11 n' n' 10 0 . 4' 0 ~1.0sl 100 _ ~ 0.2 00 ;1'0.2- .--1-_-/ 1-- -sa 101 -'--- 0.1) 101 O.~ 01/ """0.41 11-~0.6J 1

/

s3 00 ~0.2 00 0.2 10 0.4 0

s4 01 <7-0.2 01 0.4 11

s, 11 ~0.4 11

Final Splitting
Codes Third Second First

-64-

Probability distribution
of symbols

Reduction step 1

Reduction step 2

.•..

Reduction step 3

Final tree

Fi€.3.4: Step-by-step procedures of static Huffman tree construction.

-65-

'\

1.0

;0.4
85

(a) New node is at the front of the block of nodes with same weight.
Codeword set = {l100, 1101, 111, 10, O},
E w111 = 2 •2, E 11 = 14, max{11}=4 .

(b) New node is at the end of the block of nodes with same weight.
Codeword set = {l00, 101, 00, 01, 11},
Ew111=2.2, E11=12, max{11}=3.

Fig.3.5: Different Huffman trees for the same set of probabilities
P = {0.1, 0.1, 0.2, 0.2, 0.4}.

-66-

As weight set W of n source symbols forms a Huffman tree which

is a binary tree with n external node and (n-1) internal

nodes, where external nodes are labeled with the weight set W
in some order. Huffman has minimum value of weighted path
length over all such binary trees.

The average length of the encoded message over as alphabet of
q symbols is

q

Lav : LPi1i
i=l

where

Pi = the probability of the ith source symbol, and
Ii = the length of its coded symbol.

3.2.4 General Huffman Tree

Optimum coding of the source symbols with code alphabet of

radix r can be done by modification of binary Huffman coding

scheme. To satisfy the restriction (e) of the optimum coding

scheme, always combine r symbols into a single symbol in each

reduction stage, with the probability that is the sum of the

probabilities of the individual symbols. Thus merging of r

symbols reduces the number of symbols by (r-l). Therefore,. if
is the number of symbols in the first auxil iary source

symbols, then (nj-l)/(r-l) must be an integer. However, 01 =

-67-

n - no + 1, where no is the number of least probable symbols

to combine at the first reduction stage. Therefore, nO must
be such that (n-no)/(r-l) is an integer and 2 r.

Reduction process for code alphabet X = (O,I,2,3} for the

previous example is shown in the Table 3.4 and corresponding

tree is shown in the Fig.3.6.

3.2.5 Data Structure of r-ary Tree

The data structure of Huffman codes is a directed tree in

which each branch represents a code symbol and each terminal
node a codeword. The terminal nodes are all occupied in the

case of binary codes, but in the case of r-ary codes, some

terminal nodes with the longest paths may be empty The number

of empty nodes is less than or equal to (r - 2), and dummy

symbols with probability zero are assigned to them.

The information source is defined by a pair (S;P) of source

symbols S = {si I i = 1, 2, .•., q} and a set of probabilities
P = {po i = I, 2, ••• J q} (PI ~ P2 ~ ~ Pq) • The code1

alphabet 1S decoded by X = {xi i = I, 2 , ••• J r} . In
general, S and X may be any set of symbols, but their
homomorphic images S' = {I, 2, ,

..., q} and X = (1, 2, .. , r}

is used to treat the data structure more conveniently.

-68-

.~.

Table 3.4: Huffman coding procedure for D-ary (D = 4).
Merge Probabilities Code

Lengths Code-
Original Probabilities of Auxiliary L(i) words

p source symbols
..--; 1.00

~ O.40}0.22 0.22 0.22,_ I 1
0.20 0.20 0.20 1 2
0.18 0.18 0.18 1 3
0.15 o 15} 2 00
0.10 0.10 2 01
0.08 0.08 2 02

0.05}I 0.07
3 030

0.02 3 031

The tree structure of r-ary Huffman codes can be completely

specified by a two-dimensional array

[
(Q-l)1xr
(r-l)

where ~l denotes the smallest integer greater than or equal to

Consider a directed tree of an r-ary Huffman code and assign

an ordinal number i (i=I,2, ••• 1 a) to each non-terminal

node and a code symbol j (j = 1,2, ... , r) to each branch in

an orderly manner as depicted in Fig.3.7. To each terminal

node is assigned a negative number k (k = -I, -2,

-69-

... , -q)

whose absolute value corresponds to a source symbol. A two-
dimensional a x r array M(i, j) (l~ i ~ a, 1 ~ j ~ r) can be

formed such that l corresponds to a non-terminal node and j to

a code symbol on each branch.

nodes a will be evaluated later.
The number of non-terminal

Each element of M(i,j) is
determined by the following rule. If a code symbol j is

assigned to a branch which combines the ith non-terminal node

and the kth node, then M(i,j) = k where if k is positive

(negative), the kth node, is a non-terminal (terminal) node.

By applying this rule to all pairs (i,j), M(i,j) can be

determined. The number of non-terminal nodes a is obtained as
follows. Since a is equal to the number of reduction times

and (r-l) nodes are reduced at a time in constructing the

Huffman code, a is the smallest integer which satisfies the

inequality a(r - 1) + 1 ~ q. Hence a=f(q-l)/(r-l)l.

Finally, as the number of dummy symbols is

(r-l)r(q-l)] + l-qsr-2,
(r - 1)

the elements M(a,j) (r - Nd + 1 :Sj ~ r) are all empty, but

for convenience these empty elements are filled with dummy

symbols -(q + 1), -(q + 2), ..• , -(q + Nd), respectively. It

is noted here that the necessary and sufficient. storage
capacity is given by

-70-

N=r(q-1)1r-N =rr(q-1)1:52(q-1)
(r-1) d (r-1)

where each storage location consists of flog2ql bits. The

inversion of the data structure is accomplished as follows.

First the number

l(i,j) = k - 1, if k is positive, or

l(i,j) =r(q-1)1-k-1,
(r-1) .

if k is negative, (a)

is associated to the element M(i,j) = k of the array. Then

the numbers computed using the equation

and ordered them according to increasing l(i,j) in a one

dimensional array. The ordinal numbers

1 (1 :5 1 :5 r (q - 1) 1 - 1)
(r - 1)

correspond to the non-terminal nodes and

Iff(q-1)1:51:5
~(r - 1) r

r (q - 1) 1)
(r -1)

to the source symbols. It is interesting to notice that the

necessary and sufficient storage capacity for the inverted

data structure M-1(1) is also equal to N given previously.

-71-

As an example, consider a small source Y = (S, PI with a six

symbols S, its homomorphic image SI, and a set of six symbol

probabilities P given in the Table 3.5. Then using the above

scheme of Huffman tree representation, a binary Huffman code
Iover X = {l, 2} can be constructed and given in Table 3.5.

The data structure and its inversion can be determined as

shown in the Table 3.6 and 3.7.

Table 3.5 An example of Huffman Code

S SI P C

sl 1 0.4 2
s2 2 0.3 11
s3 3 0.1 122
Sj 4 0.1 1211
s5 5 0.06 12121
s6 6 0.04 12122

Table 3.6 Data Structure M (i, j)

j

i 1 2

1 2 -1
2 -2 3
3 4 -3
4 -4 5
5 -5 -6

3.2.6 Decodi~g Automata

The automata[72,74] concept is applied to decoding the Huffman

code. The input to the automaton is a semi-infinite sequence

-72-

,
11"

of code symbols, and the output is a semi-infinite sequence of

source symbols. The automaton reads each input sequence of

input symbols makes up a codeword, and if it does, produces a

source symbol corresponding to the codeword.

Table 3 .7: Inverted Data Structure M-1(l)

1 M-1(1)

1 0
2 3
3 4
4 7
5 1
6 2
7 5
8 6
9 8

10 9

The data structure M(i, j) specifies the next state k when the

present state is i, the input is j, and M(i,j) = k is

positive. Then the automaton changes the state to k, and the

process is repeated. If M(i,j) = k is negative, the truncated

input sequence is accepted as a codeword and the source symbol

-k E S* is produced. The automaton then changes the state to

the initial state 1. The decoding automaton can be summarized
as follow:

-73-

A = <Q, ~, 5, ~, F>,

Huffman codes can be decoded by a finite-state automaton[72]

with output k E S*,

where

~ = X*, an input-alphabet,

F = {-k: k E S*}, a set of final states,

Q = {i; 1 $ i $ r(q - 1)/(r - 1n} U F, a set of sates,

qo = {1}, an initial state,

5:Q x ~ -> Q, a state transition function.

The mapping 5 means that if 5(i,j) = M(i,j) = k > 0, then k

shows the next state, and if 5(i,j) = M(i,j) = k < 0, then-k

E F shows the decoded source symbol. The automaton then goes

into the initial state qO'

A decoding automaton for the binary Huffman code in Table 3.5
is given by

A = <Q, ~, 5, qo' F>

where

~ = {1, 2},

F = {-1, -2, -3, -4, -5, -6},

Q = {l, 2, 3, 4, 5 } U {-1, -2, -3, -4, -5, -6} ,

~ = {1}, and

5(i,j) = M(i,j) = k > 0 is the data structure in Table 3 .6 .

The performance of the mapping 5 is subject to the same remark

as in the statement of the finite state automaton.

-74-

"!J
'".

3.2.7 Encoding Automata

In general, Huffman encoding can be performed using a table in

which the address number corresponds to a source symbol and

the content to a codeword. Unfortunately, however, due to the

variable length property of this code, it is difficult to

read a codeword from a fixed-length storage without extra

information, such as its codeword length.

Here, using an inverted data structure of Huffman code, an

encoding automaton is introduced to overcome this difficulty.

The encoding procedure is as follows. First, prepare an

inverted data structure M-1(l) (1 ~ 1 ~ Ir(q - 1)/(r - 1)1) and

a push-down stack whose depth is not less than the maximum

codeword length. The input to the automaton IS a source

symbol -k E S', which specifies the initial state 1 of M-l(ll,

i.e., a certain address number calculated from k by the

Eqaticn (a). Next,if theantEnt of M"l(l)forsare1 is 211og,rlxi + (j -1),

then push down symbol j, jump to address i, and repeat the

process. When i = 0, push down symbol j and then pop up the

sequence of code symbols in the stack, which makes up the

codeword corresponding to the input source symbol.

concept of encoding automata is summarized as follows.

-75-

This

/,
.I '
\"

The encoding of Huffman codes is accomplished by a

semiautonomous finite sequential machine.

B = <Q, z. Z. 6. w)

where

Z = U;r(q-l)/(r-l)ls 1 :,Jr(q-l)/(r-l)ll, an input alphabet.

Q = U; 1 s 1 s l(q-I)/(r-l)l-IIUE. a set of sates.

Z = Xl = {j; 1 $ j $ r), an output alphabet.

6:6(1) = i, a next-state function,

w:w(l) = j. an output function.

= 21109,rlX i (j-l). and by a push-down stack[45]

whose depth is not less than the maximum

codeword length.

By semiautonomous we mean that the sequential machine is

autonomous until a codeword is completed. The storage

capacity and the average number of steps for encoding a source

symbol are equal to those of the decoding automaton.

An encoding automaton of the binary Huffman code In Table 3.6

and 3.7 is a five-tuple

B = <Q. z. z. 6. w)

where

Z = {5, 6. 7.8.9. lO},

-76-

Q = { 1, 2, 3, 4} U {5, 6, 7, 8, 9, lO}
Z = { 1, 2}

6:6(1) = i

w:w(1) = J

M-l (1) = 2 x i + (j - 1)

and by a push-down stack whose depth is not less than five.

3.3 Dynamic Huffman Coding

In static Huffman method of variable length coding, the

encoder makes two passes over the message. In first pass, it

collects the weights, i.e., the frequency counts of the source

symbols of the message and then constructs the Huffman tree.

The second pass encodes the source symbols into the code

symbols to make the codewords based on the static Huffman tree

structure. Both tree structure information and codewords have

to be given to the decoder to decode to the original message.

First the decoder makes the static Huffman tree from the tree

structure information, then decodes the message. This causes

extra disk accesses slowing down the algorithm for file

compression application and causes delay when used for network

communication.

In the dynamic coding, the coding IS based on a dynamically

varying Huffman tree instead of a single static tree. The

-77-

Fig.3.6: r-ary Huffman tree (r = 4) with symbol set given In
Table 3.5.

• y'~1) r~,-~-(i 1""')o'Y1 ~ VlO L
Y"' Q d ''2__

j\
'f,'K
'I-

I

Fig.3.7: Typical directed tree of r-ary Huffman code.

(a) (b)

Fig.3.8: Different Huffman trees for weights {2, 3, 4, 5}.

-78-

(t + 1)st symbol of the message is encoded to its codeword

based on the Huffman tree constructed for the weights of the

previously processed portion of the message ~ of t symbols

and learns the frequency of symbols of the message. The

encoder encodes the (t + l)st symbol in the message by a

sequence of O's and l's that specify the path from the root to

the leaf corresponding to the (t + 1)st symbol and makes

dynamically varying prefix codes, then update the tree for the

new frequency counts of the message Mt 1\'

3.3.1 Strategy for Dynamic Huffman Coding

The Huffman algorithm combines the two smallest weights wi and
replacing them by their sum w. + W.

l J and repeats this
process until only one weight is left. For example, given the

leaf weights (2,3,4,5), the first step combines 2 + 3 = 5 and

the remaining weights are (4,5,5). The next step combines 4
+ 5 = 9, and then 5 and 9 are combined to form 14. There is
some ambiguity about the nodes with equal weights, in this

example, nodes with weight 5. Depending upon the selection,

these procedures might form two different trees as in Fig.3.8.

However, if the given weight 5 of the leaf node increase to 6,

then the tree of Fig.3.8(a) is better, while if the weight 2

increase to 3 the tree of Fig.3.8(b) is better.

-79-

A procedure

for updating Huffman trees dynamically must, therefore, be

able to convert from each of these possibilities to the other.

The weight combination process of Huffman algorithm with n

leaf nodes leads to a nondecreasing sequence of node weights

U = (ui : i = 1, 2, •.• , 2n-1) for the internal and external

nodes, and this sequence is the same for all Huffman trees on

the given leaf weights W = (wi: i = 1, 2, ... , n). The n - 1

internal nodes of each Huffman tree that correspond to a

particular sequence U have the weights (ul + ul' u3 + ul' ... ,

~n-3 + ~n-Z)'

3.3.2 Sibling Property

A binary tree with n leaves of nonnegative weight is a Huffman
tree if and only if

(i) the n leaves have nonnegative weights W = (wi' i = 1,

2, ... , n), and the weight of each internal node is the

sum of the weights of its children; and

(ii) the nodes can be numbered in nondecreasing order by

weight, so that nodes 2j - 1 and 2j are siblings, for

1 S j S n - 1, and their common parent node is higher in

the numbering.

-80-

The node numbering corresponds to the order in which the nodes

are combined by Huffman algorithm.

Suppose that the message ~ = fil~"'3"'" IIlt; has already been

processed. The next source symbol IIlt; I 1 is encoded and decoded

using a. Huffman tree for ~. The main di fficulty is how to

modify this tree quickly to get a Huffman tree for Ht I I' An

example of the modification process is shown in the Fig.3.9,

for the case t = 32, mtl 1 = 'b'. Fig.3.9(a) shows the current

status for message Ht, it is not good enough to simply

increase by 1 the weights of fit 11' s leaf and its ancestors,

because the resulting tree will not be a Huffman tree, as it

may violate the sibling property. The node will no longer be

numbered in nondecreasing order by weight; node 4 will have

weight 6 but node 5 will still have weight 5. Such a tree
could, therefore, not be constructed by Huffman algorithm.

The solution can most easily be described as a two-phase
process. In the first phase, the algorithm transforms the
given into another Huffman tree for ~, as shown in
Fig.3.9(b). The incrementing process described above can be

applied to this tree successfully in second phase and can be

obtained a Huffman tree for ~ I I as in Fig. 3.9 (c).

-81-

3.3.3 Condition for Satisfying Sibling Properties

Given a tree satisfying sibling properties, with a sequence of

nodes leading from some external node of weight wi to the root

If wi is replaced by (wi + 1), then each of the

be Qi = (qi

node wi)'

j = O. 1. 2, • •• J 1; 1 be the path length of

weight Ui = (u.
I j = 0,1 •... ,1) must be increased by unity;

the resulting tree will still satisfy sibling property
provided that we had

U.
1 for o S j < 1, (3 .2)

in the original tree. Thus, the same tree will be optimum

both for wi and wi + I, whenever condition (3.2) holds.

If all leaf weights are positive, then it is always possible

to transform a given Huffman tree into another one that

satisfies the condition (3.2), by interchanging subtrees of

equal weight by the following procedure:

First let i'O be maximum such that ui = ui' and when i'k has

been defined let i'kI I be maximum such that ij.
f 1-+-1 has the

weight of the parent of qJl' If i'k = 2n - I, however, let l'

= k and terminate the construction. Now the tree can be
permuted by interchanging the subtree rooted at qio with the

-82-

subtree rooted at qio' Then interchanging the subtree at the

parent of qio with the subtree rooted at q i,' and so on. The

final tree will satisfy the sibling properties, where the path

from the character with weight wi to the root is

and where for 0 S j S 1'. It is

clear that ij S i'j for 0 S j S l' hence l' S 1; in other

words, at most 1 interchanges are necessary to obtain a

Huffman tree satisfying (3.2).

The construction in the preceding paragraph is the key to an

efficient algori thm for maintaining optimal Huffman trees. In

the previous example of Fig.3.9(a), the leave weight sequence

of the processed portion of the message Mt is W = (wi i = 1,

Then

2, ..., 6) = (2, 3, 5, 5, 6, 11) and the label set Q = (qi

i= 1, 2, ..., 6) = (1, 2, ..•, 6). Now the sequence of nodes

from the leaf node of the symbol mtl I = 'b' with weight 3 from

the original Huffman tree be Qi = (2, 4, 7, 10, 11) and that

of the transformed tree would be Qi' = (2, 5, 9,11) and l' =

3. After selecting the nodes transformation of the tree for

Mt beings from the leaf node mt lIas the current node.

repeatedly interchange the contents of the current node,

including the subtree rooted there, with that of the largest

numbered node.of the same weight from Qi', and make the parent

-83-

of the latter node the new current node. The current node in

Fig.3.9(a) is initially node 2. No interchange is possible,

so its parent node 4 becomes the new current node. The

content of nodes 4 and 5 are then interchanged, and node 8

becomes the new current node. Finally, the contents of nodes

8 and 9 are interchanged, and node 11 becomes the new current
node. The first phase halts when the root is reached. The
resulting tree is shown in Fig.3.9(b). Since each interchange

operation has done on nodes of the same weights, the new tree

will be a Huffman tree for the message Mt• In the second
phase this tree turns into the desired Huffman tree for the

message Mtf 1 by increasing the weights of mtf l's leaf and its
ancestors by 1. The final tree is shown in the Fig.3.9(c).
These two phases can be combined into one in the
implementation in the algorithm.

3.3.4 Maintaining Symbols with zero-weights

If the number of distinct symbols processed so far is less

than the total number of symbols in the alphabet, then a zero

weight leaf node is present in the dynamic Huffman tree. In

this situation there is a chance that a node and its parent
both have same weight. If current (t + l)st symbol is not in

the message ~, the O-node is split to create a leaf node for

it, as illustrated in the Fig.3.10.

-84-
The (t+l)st symbol is

.1
I;;;.

encoded following the path from the root to the zero leaf node

followed by an extra code that will represent the (t+1)th

symbol. The rep~esentation of this (t+1)st symbol can be the

ASCII code, but is even more appropriate to use minimal prefix

code for the first appearance of the symbol in the message.

When there are m symbols (a!' llz' •••• Bg) of weight zero,
assume that m = 2" + r, and 0 :Sr < 2". Symbol ak is encoded

as the (e + l)-bit binary representation of k - 1, if 1 :Sk :S

2r, otherwise as the e-bit binary representation of (k - r -

1). For example, if m = 5' then e = 2, r = 1, and the
encoding are:

al -) 000. aa -) 001. al -) 01. a, -) 10. a5 -) 11.

This encoding is optimum when all letters have the weight e,
for any e) O.

3.3.5 Example of Dynamic Huffman Coding

The methods sketched above lead to a real-time algorithm for

maintaining Huffman trees as the weights change. Here an

example of dynamic Huffman coding is given showing the

detailed constructions of the codes.

Before encoding or decoding begins, both encoder and decoder

know onl y the size n of the alphabet be ing encoded. Assume

there are just 27 symbols namely a. b •

-85-

... , z, and!; the last
r-
\

-1

,

@.
"

Co)

~J
e

(a)

i'-.;l
i.lJ,
b

@
o

(e)
e

bJ
f •

Fig.3.9; Basic idea of dynamic Huffman coding algorithm.

(al
(b)

Fig.3.10: Dynamic Huffman algorithm operating on the message
"abed ...", (a) The Huffman tree immediately before the
fourth letter "d' is processed. The encoding for "d" is
specified by the path to the O~node, namely 100, (b) Afterupdating the tree_

-86-

\ symbol will be used only as the final character of the

message. Since the adaptive encoding scheme seems to have a

somewhat magic flavor, the encoder shall attempt to encode an

arbitrary message abracadabra!.

Initially all weights are zero, so the first letter is encoded

by the O-weight scheme described at the end of section 2,

where m = 27 = 24 + 11:

a -) 00000.

Now a has weight 1 and the other letters (!, b, ... , z) have

weight O. In the list of remaining letters, has swapped

places with a so that minimal changes need to be made to the

data structure. The coding scheme at this point is

represented by the tree in Fig.3.11(a), therefore the second

letter of our message would be encoded simply as 1 if it were

another a. However, it is a b, which comes out as an encoded

O-weight letter, prefixed by 0:

b -)000001

At this point the Huffman tree in shown by Fig.3.11(b). The

third letter is, therefore, encoded as

r -)0010001

after which the Huffman tree has changed, to Fig. 3.11 (c) ,

assuming that the algorithms of section 5 have been used. The

encodings continue as

-87-

\

,~

(!,b,C, ... ,Z)@j W'"

(Or)

illdAa~ll,,\I I~'?0b
._'

f' v) U' '71.,-.,',Z.C Ai l.,U.

(0)

(d.:)

Fig.3.11: Example of Dynamic Huffman Algorithm with optimum O-node
encoding.

-88-

a -) 0

c -) 10000010

a -) 0

d -) 110000011

a -) 0

b -) 110

r -) 110

a -) 0

and by this time the tree has grown to Fig.3.11(d). The final

symbol is now transmitted:

! -) 100000000.

If fixed length code (ASCII) is used to represent the new

symbol preceding with code specifying the path from the root

to the zero leaf node then the codes for the above symbols

would be as in the followings:

a -) a,

b -) 0 b

r -) 00 r

a -) 0

c -) 100 c

a -) 0

d -) 1100 d

a -) 0

-89-

I'
\

b -) 110

r -) 110

a -) 0

-) 1000

Here the character itself is shown instead of the ASCII bit

streams.

3.4 Optimum Dynamic Huffman Coding

Optimum Dynamic Huffman coding is a one pass Huffman algorithm

des igned and analyzed by Vitter[79-80J. He called it a
Algorithm A. Binary tree produced by Huffman's algorithm

among allthe weighted external path length E.w.l.
J J J

binary trees, but the binary Huffman tree produced by the this

minimizes

algorithm also minimizes Ejlj and maxj{IJl so produces optimal

coding uses fewer bits optimal coding possible in anyone pass
algorithm.

3.4.1 Types of Node Interchanges

During the update operation of the tree in FGK algorithm, the

current node is 'to interchange with another node in the tree.

There are many types of interchanges possible and identified
as in the following:

-90-

I: Interchange in which the current node moves up one

level in the tree.

1: Interchange in which the current node moves down one

level in the tree.

~: Interchange is in the same level.

II: Interchange of the current node with another node that

is two levels up in the tree.

Interchanges of type ~in which the current node is to move

left in the same levels and of type 11 in which the current

node is to move down two level is not possible in dynamic
Huffman coding. In Fig.3.9 node 8 and 9 are of type I,

whereas that of nodes 4 and 5 are of type ~

3.4.2 Motivating factors

There are two motivating factors to improve the dynamic
Huffman coding as:

(1) The number of I'S should be bounded by some small

number (in this case 1) during each call to tree update
procedure.

(2) The dynamic Huffman tree should be constructed to

minimize not only l:jWjlj' but also l:jlj and maxj{lj},
which intuitively has the effect of preventing a

lengthy encoding of the next source symbol in the

message.

-91-

3.4.3 Implicit Numbering

Implicit numbering is a method in which the nodes of the tree

are numbered in increasing order by level. The nodes on one

level are numbered lower than the nodes on the next higher

level. Nodes on the same level are numbered in increasing

order from left to right. In this scheme the node numbering

corresponds to the visual representation of the tree.

The node numbering used by the Algorithm FGK does not always

correspond to the implicit numbering. For example, the

numbering of the nodes in Fig. 3.9 and 3.10 does agree with

the implicit numbering, whereas the numbering in Fig. 3.12 is

quite different.

With the implicit numbering, interchanges of type ~ cannot
occur.

type
Also, if the node that moves up in an interchange of

t is an internal node, then the node that moves down

must be a leaf.

The above result is obvious from the definition of implicit

numbering. Suppose that an interchange of type t occurs

between two internal nodes a and b, where a is the node that

moves up one level. In the initial tree, since a and b are on

different levels, it follows from the sibling property that

-92-

(\

f'".,1'

both a and b must have two children each of exactly half their

weight. During the previous execution of the loop in the tree

update routine q is set to a's right child, which is the

highest numbered node of its weight. But this contradicts the

fact that b's children have the same weight and are numbered

higher in the implicit numbering.

3.4.4 Invariant

The key to minimizing difference between coded message length

in dynamic and static Huffman code is to make i's impossible,

except the first iteration of the while loop in the update

routine. It can be done by the following invariant:

(3 . 3) For each weight w, all leaves of weight w precede

(in implicit numbering) all internal nodes of

weight w.

Any Huffman tree satisfying (3.3) also minimizes Sjlj and
1181max.{l.} .

J J

If the invariant (3.3) is maintained,. then interchanges of

type ii are impossible, and the only possible interchanges of

type i must involve the moving up of a leaf.

-93-

(\\)

This can be proved by contradiction. It established in the

dynamic Huffman tree that no two nodes of the same weight can

be two or more levels apart in the tree except the sibling of

the O-node. The effect of the invariant (3.3) is to allow

conside.ration of the O-node' s sibling. Suppose p is the

sibling of a O-node with a weight wand another node of

weight w two levels higher in the tree. By invariant, node q

must be an internal node, since it follows p's parent, which

also has weight w, in the implicit numbering, thus
contradicting the sibling property. For the second assertion,

suppose there is an interchange of type I in which an internal

node moves up one level. The node that moves down must be a
leaf node. But this violates the invariant, since the leaf

initially follows the internal node in the implicit numbering.

3.4.5 Maintaining Invariant

To maintain the invariant (3.3) the update procedure must keep

separate blocks for internal and leaf nodes. Blocks are

equivalence classes of nodes defined by v = x if and only if

nCldes v and x have the same weight and are either both

internal nodes or both leaves. The leader of a block is the

highest numbered node in a block by the implicit numbering.

-94-

n1 .,
'~ __ L

Fig.3.12: The Huffman tree formed by FGK algorithm after processing
"abcdefghiaa" .

(I) Gp~ . . . 000 (:) @p[B 0[B~. . .
(2) 00 . . . 0~m (2) 00 0~p~p

.

(3) 00 . . . 8mm (31 00 00p~p ...
(4) 00 . . . ~mm (4) [~r0 .~0@..

(al .
(bl

Fig.3.13: Slide and increment operation of Vitter algorithm. All the
nodes in a given block shift to the left one spot to make
room for node p, which slides over the block to the right.
(a) Node p is a leaf of weight 4. The internal nodes of
weight 4 shift to the left. (b) Node p is an internal node
of weight 8. The leaves of weight 9 shift to the left.

-95-

CL

The blocks are linked together by increasing order of weight;

a leaf block always precedes an internal block of the same

weight. The main operations of the algorithm needed to

maintain invariant (3.3) are the sliding and incrementing the

current node. The possible situation is given in Fig.3.12.

3.5 Arithmetic Coding

Arithmetic coding is a statistical loss less data compression

technique that encodes a source message by creating a code

string which represents a fractional value on the number line

between 0 and 1. It treats the code string as a magnitude

which will be less than 1. The number of bits required to

encode each symbol in a Huffman code is a whole number. But

Shannonl65! showed that for best possible compressed code, in

the sense of minimum average code length, the output length

contains a contribution of -log2P bits from encoding of each

symbol whose probability of occurrence is p. If there is an

accurate model for probability of occurrence of each possible

symbol at every po int in a file, then ar ithmetic coding

encodes the symbols that actually occurs; the number of bits

used by arithmetic codihg to encode a symbol with probability

p is very nearly -log2P, so the encoding ~s very nea,rly

optimal for the given probability estimates. So arithmetic

coding can be thought of as a generalization of Huffman coding

-96-

in which probabilities are not constrained to be integral

power of 2, and code lengths need not be integers. Arithmetic

coding bypasses the idea of replacing an input symbol with a
specific code. It replaces a stream of input symbols with a
single floating-point number which is the merging of

probabilities of symbols in the source message string. More
bits are needed in the output number for longer, complex
messages. This single fractional number IS carefully

constructed so that it may be uniquely decoded to create the
exact stream of source symbols that went into its
construction.

3.5.1 Initial View of Arithmetic Coding

Considering a four-symbol source alphabet S = (a, b, c, d)

with their frequency of occurrence in a source message is

w = {4, 2, I, I}. So the probability P = {l/2, 1/4, 1/8,

1/8}. The static binary Huffman tree is shown in the

Fig. 3.14. The source symbols in order of frequency of

occurrence, with codeword is shown in the Table 3.8.

The encoding for the data string "a abc" is 0 0 10 110. The
codeword has a prefix property. Decoding is performed by a

matching or comparison process starting with the first bit of
the code string. For decoding code string 0010110, the first

-97-

symbol is decoded as "a" as the code string begins with the

codeword o. The remaining code string is 010110 after

removing the codeword O. The second source symbol is

similarly decoded as "a" leaving 10110. the only codeword

sta~ting with 10 is "b", so the code 110 is left for IT "C •

Table 3.8 Frequencies, Probabilities and Codewords for 4
symbols alphabets of an arbitrary message.

Probability
Frequency

DecimallBinary
Code Cumulative

ymbol Count Codeword Length Probabilitys

a
b
b
d

4
2
1
1

1/2
1/4
1/8
1/8

.1

.01

.001

.001

a
10
110
111

1
2
3
3

.a

. 1

. 11

. 111

The Table 3.8 is described in terms of Huffman coding scheme.

Arithmetic coding scheme can be viewed as a process of

subdivision of the current interval with the aid of Table 3.8

and considering the following two points[47]:

Point 1: Each codeword (codepoint) is the sum of the

probabilities of the preceding symbols.

Point 2: The width or size of the sub-interval to the right

of each code point corresponds to the probability

of the symbol.

-98-

8

Fig.3.14 Static Huffman tree for source alphabet
S = {a, b, c, d} with weight set W = {4, 2, 1, 1} .

a .100
.6

.110
c

.111 1
d

(i)

c d
.110 .111 1

. I
t c d I

,b

b
.100

I
I
!I

cld
!

b I

a 010
I

a 00.10 I
, I
i I

a b 'c ,d I
i

a
a

i ... I

(i i)

Fig.3.15 Code points of codewords of
interval, (ii) Successive
interval for data string "a

Table 3.8. (i) on
subdivision of
a b ... ".

unit
unit

-99-

From the Table 3.8, the codeword can be viewed as the binary

fractional values (.0, .1, .11, .111l the these are the

cumulative probabilities P = ~p, of the source symbol s),as
))

stated in the point 1.

Now the codeword can be viewed as points i.e., code points on

the number line from 0 to 1, or the unit interval, as shown in

the Fig. 3.15. The four code points corresponding to the four

source symbols divide the unit interval into four sub-

intervals. Each sub-interval is identified by the symbol

corresponding to its left most point. The interval for symbol

"a" goes from .0 to .1, and for the symbol "c" goes from .11

to .111. The width of the subinterval to the right of each

code point corresponds to the probability of the symbol as

stated in the point 2. The codeword for the symbol " "a .

Initially the interval will be from 0 to 1 in the number line.

3.5.2 Basic Algorithm

The algorithm for encoding a source message using arithmetic

coding works conceptually as follows:

1. The algorithm begins with a "current interval"

initialized to [0,1).

-100-

[L, H)

Old interval [----I'--- [J
o L H 1

Decomposition [-_-_-_ ~_- ~ I probability of u []
,o 1

New interval

Fig.3.16 Subdivision of the current
probabilitiy of the input
next.

-101-

interval based on the
symbol a~ that occurs

(
!. :

2. For each symbol of the file, it performs two steps

(Fig.3.16):

(a) Subdivide the current interval into subintervals,

one for each possible alphabet symbol. The size of

a symbol's sub-interval is proportional to the

estimated probability that the symbol will be the

next symbol in the file, according to the model of

the input.

(b) Select the sub-interval corresponding to the symbol

that actually occurs next in the file, and make it

the new current interval.

3. Finally output enough bits to distinguish the final

current interval from all other possible final intervals.

The length of the final subinterval is clearly equal to the

product of the probabilities of the individual symbols, which

is the probability p of the particular sequence of symbols in

the source message. The final step uses almost exactly

-lg2(P) bits to distinguish the file from all other possible

files. We need some mechanism to indicate the end of the

file, either a special end-of-file symbol coded just once, or

some external indication of the file's length.

-102-

In the step 2, the algorithm need to compute only the

subinterval corresponding to the symbol a- that actually
l

occurs. To do this we need two cumulative probabilities,

and

The new subinterval is [L + Pc (H - L), L + PN (H - L)).

The need to maintain and supply cumulative probabilities

requires the model to have a complicated data structure;

Moffat[61] investigates this problem, and concludes for a

multi-symbol alphabet that move-to-front lists give a good

balance between speed and simplicity.

3.5.3 Example of Arithmetic Coding

Here is an illustration of a non-adaptive arithmetic code,

encoding the message "CSE DEPTT.". The message have a

probability distribution given in Table 3.9.

Once the character probabilities are-known, individual symbols

need to be ass igned a range along a probability line,

normally 0 to 1. It does not matter which characters are

assigned which segment of the range, as long as it is done in

the same manner by both the encoder and decoder. The range of

-103-

{l
•

nine-character symbol set used in the example is also shown in

Table 3.9.

Each character is assigned the portion of the 0 to 1 range

that corresponds to its probability of appearance. The

character owns everything up to but not including the higher

number of the range. So the letter S in fact has the range

0.60 to 0.69999 ...

Table 3.9: Probability distribution and range of the
symbols in message "CSE DEPTT."

Character Probability Range

space 1/10 [0.00, 0.10)
C 1/10 [0 .10 , 0.20)
D 1/10 [0.20, 0.30)
E 2/10 [0.30, 0.50)
P 1/10 [0.50, 0.60)
S 1/10 [0.60, 0.70)
T 2/10 [0.70, 0.90)

1/10 [0.90, 1.00)

The most significant portion of an arithmetic-coded message

belongs to the first symbol C in the message CSE DEPTT .. To
decode the first character properly, the final coded message

has to be a number greater than or equal to 0.10 and less than

0.20. To encode this number, track the range it could fall

in. After the first character is encoded, the low end for

this range is 0.10 and the high end is 0.20. During the rest

of the encoding process, each new symbol will further restrict

-104-

the possible range of the output number. The next character

to be encoded , the letter S, owns the range [0.60,0.70) in

the new sub-range of [0.10, 0.20). So the new encoded number

will fall somewhere in the 60th to 70th percentile of the

currently established range. Applying this logic will further

restrict our number to [0.16, 0.17). Following this process

to its natural conclusion with the example message results in

the Table 3.10.

So the final low value, .1630483504, will uniquely encode the

message CSE DEPTT. using arithmetic.coding scheme.

Given this encoding scheme, it is easy to see how the decoding

process operates. Find the first symbol in the message by

seeing which symbol owns the space our encoded message falls

in. Since .1630483504 falls between .1 and .2, the first
character must be C. Then remove the effect of C from the
encoded number. Since we know the low and high ranges of C,

remove their effects by reversing the process that put them

in. First subtract the 'low value of C, giving .0630483504.

Then divide by the width. of the range of C ,i.e., .1. This
gives a value of .630483504. Then calculate where that lands,

which is in the range of the next letter, S. The decoding

process for above encoded message is given in the Table 3.11.

-105-

Table 3.10 Result of the Arithmetic coding
of the message "CSE DEPTT."

New character Low value High value
0.0 1.0

C 0.1 0.2
S 0.16 0.17
E 0.163 0.165

space 0.1630 0.1632
D 0.16304 0.16306
E 0.163046 0.163050
P 0.1630480 0.1630484
T 0.16304828 0.16304836
T 0.163048336 0.163048352

0.1630483504 0.1630483520

Table 3.11: Result of decoding process of the encoded
message "CSE DEPTT."

Encoded number Output character Range
0.1630483504 C [0 .1, 0.2)
0.630483504 S [0.6, 0.7)
0.30483504 E [0.3, 0.5)
0.0241752 space [0.0, 0.1)
0.241752 D [0.2, 0.3)
0.41752 E [0 .3, 0.5)
0.5876 P [0.5, 0.6)
0.876 T [0.7, 0.9)
0.88 T [0.7, o . 9)
0.9 [0.9, 1.0)
0.0

In summary, the encoding process is simply one of narrowing

the range of possible numbers with every new symbol. The new

range is proportional to the predefined probability attached
to that symbol. Decoding is the inverse procedure, in which

-106-

the range is expanded proportionally to the probability of

each symbol as it is extracted.

3.5.4 Implementation

The basic implementation of arithmetic coding described above

has two major difficulties:

(i) The shrinking of the current interval requires the

use of high precision arithmetic, and

(ii) No output is produced until the entire message has

been read.

The most straight forward solution to both of these problems

is to output each leading digit as soon it is known, and then

multiply the length of the current interval by the radix of

the base number. so that it reflects only unknown part of the
final interval.

3.5.5 Incremental Transmission

Arithmetic coding is best accomplished using standard 16-bit

and 32-bit integer math. Floating-point math is neither

required nor helpful. Mechanisms for incremental transmission

and a fixed precision arithmetic have been developed by

Rubin[61-62J. Rissanen and Langdon[60], and Guazzo[25]. In

this mechanism, fixed-size integer state variables receive new

-107-

\

digit at the lower end and shift them out at the high end,

forming a single number that can be as long as the number of

bits on the computer.

Earlier, we saw that the algorithm works by keeping track of

a high and low number that brackets the range of the possible

output number. When the algorithm first starts, the low value

is set to .0 and the high value is set to 1. The first
simplification made to work with integer math is to change
the 1 to .9999 ... (or .1111 ... in binary). To store these
numbers in integer registers, first justify them so the

implied decimal point is on the left side of the word. Then

load as much of the initial high and low values as will fit

into the word size we are working with. Implementation with
16-bit unsigned math, the initial low value and high value

will be 0 and OxFFFF respectively. The high value continues

For the previouswith OxFs and low value with Os forever.
example,

HIGH: 99999 implied digits => 9999999 .
LOW: 00000 implied digits => 0000000 .

The initial range between the low and high will be 100000, not
99999. This is because we assume the high has an infinite

number of 9s added to it, so we need to increment the.

values following the previous techniques.

calculated difference. We then compute the new low and high

In the example,

-108-

\

\

the new high value was 0.20, which gives a new value for high

of 20000. Before storing the new value of high, we need to

decrease it, again because of the implied digits appended to

the ihteger value. So the new value of high is 19999. The

calculation of the low value follows the same procedure, with

a resulting new value of 10000. So the new high and low would

be:

HIGH: 19999 (19999 ...)

LOW: 10000 (10000 ...)

At this point, the most significant digits of high and low

match. Due to the nature of the algorithm, high and low can

continue to grow closer together without quite ever matching.

So once they match in the most significant digit, that digit

will never change. So the that digit can output as first

digit the encoded number. This is done by shifting both high

and low left by one digit and shifting in a 9 in the least

significant digit of high. The encoding process for the

given message of the previous example is shown in Table 3.12.

After all the symbols are accounted for, two extra digits need

to be shi fted out of either from the high or low value to

finish the output word. This is so that the decoder can

properly track the input data. The final result of encoding

of the message is .1630483504 by considering the next two

digits from low value register. Part of the information about

-109-

\

\

the data stream is still in the high and low registers, and

that values should be passed to the decoder to use later.

Table 3.12 : Arithmetic Encoding process of the message
"CSE DEPTT." using incremental transmission.

Current values Input symbol New values CumulativeHigh Low Range with interval High low Output
99999 00000 100000 C [a .1 , 0.2) 19999 10000 .199999 00000 100000 S [a .6 , a .7) 69999 60000 .1699999 00000 100000 E [0.3, o . 5) 49999 3000049999 30000 20000 sp [0.0, O. 1) 31999 30000 .16319999 00000 20000 D [0.2, 0.3) 05999 04000 .163059999 40000 20000 E [0 .3 , O. 5) 49999 46000 .1630499999 60000 40000 P [0.5, 0.6) 83999 80000 .16304839999 00000 40000 T [0.7, 0.9) 35999 2800035999 28000 8000 T [0 .7 , 0.9) 35199 33600 .163048351999 36000 16000 [0.9, 1.0) 51999 50400 .16304835

3.5.6 Under F~ow Problem

Incremental transmission scheme works well ln arithmetic
coding. Enough accuracy 1S retained during the double-

precision inter. calculations to ensure that the message is
accurately encoded. But there is potential for a loss of
precision under certain circumstances. If the encoded word
has a string of as or 9s in it, the high and low values will

slowly converge on a value, but they may not see their most

significant digits match immediately. High may be 700004 and

low may be 699995. At this point, the calculated range will

-110-

(:.'

\

be only a single digit long, which means the output word will

not have enough precision to be accurately encoded. Worse,
after a few more iterations, high could be 70000 and low could

be 69999.

At this point, the values are permanently stuck. The range

between high ~nd low has become so small that any iteration

through another symbol will leave high and low at their same

values. But since the most significant digits of both high

and low are not equal, the algorithm cannot output the digit

and shift. To overcome this underflow problem the algorithm

should modify as

If the most significant digits of low and high match then

shift it out

else if the high and low are one apart and second most

significant digit of low is 0 and that of high is 9 then

there is an underflow and take action.

When an underflow occurs, instead of shifting the most

significant digit out of the word, the algorithm delete the

second digits from,high and low and shifts the rest of the

digits left to fill the space. The most significant digit

stays in place. Then it sets underflow counter to remember

number of digits deleted. This process is shown bellow:

-111-

HIGH
LOW

Underflow:

40344

39810

o

Before After

43449

38100

1

After every recalculation, the algorithm checks for underflow

digits again if the most significant digits do not match. If

underflow digits are present, the algorithm shifts them out

and increment the counter. When the most significant digits

do finally converge to a single value, it outputs the value,

and then outputs the underflow digits previously discarded.

The underflow digit will all be 9s or Os, depending on whether

high and low converged on the higher or lower value.

3.5.7 Use of Integer Arithmetic

In practice, the arithmetic coding can be done by storing the

current interval in sufficiently long integers rather than in

floating point. Also frequency counts can be used to estimate
symbol probabilities. The subdivision process involves
selecting non overlapping intervals of at least 1 with lengths

appropriately proportional to the total counts. To encode
symbol ai we need two cumulative counts C and N, and the sum

T for all counts r as in the following:

-112-

,

where n is the alphabet size. And

would be the

scheme.
new subinterval for integer arithmetic coding

-113-

Chapter Four

BANGLA TEXT ANALYSIS

The mother tongue of over 200 million people of Bangladesh,

West Bengal and some parts of Assam is BangIa. After the

independence of Bangladesh it has been decided to use BangIa

as the official language and medium of instruction for
schools, college and universities. In modern times
transmission of information is totally dependent on modern

technology. Specially without the use of telex, teleprinter,

fax and computer no nation can advance. To use BangIa in all

spheres of life it is important to be able to adapt BangIa for

use in those technologies. The first BangIa typewriter

'Remington' was introduced to the market as early as in
1940's. Later Shahid Munir Chowdhury recommended some
structural changes in the BangIa typewriter under the
patronage of BangIa Unnayan Board. 'Munir Optima' came to the

market in 1970's based on those recommendations. Although it

was much more improved than the Remington typewriter BangIa

Academy took a project on developing an electronic typewriter

to remove various limitations. In the final report, of the

project it was recommended to use 138 key three layer keyboard

with absolutely different layout. Afterwards, to modernize

typewriter and use BangIa in computer National Computer

-114-

Committee, later renamed as National Computer Board, and other

government organizations took different steps.

Parallel to government efforts various commercial
organizations came forward to us'e BangIa in computers and

designed their own keyboard layout. As a result several BangIa

word processors like Onirbaan, Barna, Shahid Lipi, Basundhara,

etc. were developed. To use BangIa in computers, typewriters

and teleprinters, it was felt that standardization of both the

keyboard layout and codes is important. With this aim

Rahman[58] and later Khan[43] proposed a 131-key keyboard.

Considering the importance of standardization a task force

consisting of 5 members headed by the Honorable Vice

Chancellor of the Bangladesh University of Engineering and

Technology was formed which very recently approved

standardization of both the keyboard and codes of letters.

Now-a-days BangIa is being used in Desk Top Publishing in mass

scale. This language is being used for transmission of

information from one town to another using computers. In these

applications for compound letters multibyte representation is

being used, and as a result both the length of the transmitted

code and redundancy have increased. Under these circumstances

it has become very important to be able to compress BangIa

-115-

text for improving efficiency of both storing and transmitti.ng

BangIa texts.

4.1 Character Frequencies of BangIa Text

For designing keyboard layout and code for BangIa character

set, several statistics of the characters have been made.

Khan[43], in 1986, made a survey of letter frequencies based

on 16,090 no, of occurrence. Mr. Khan has also presented the

survey report on the frequency of BangIa characters done by

Das[12] and another survey of Das[13] with some correction of

the frequency of space using Poison distribution as these

surveys did not include space character. Another survey was

made by Kuraisi[46] in 1988 and in his report he has given

frequency of BangIa characters done by Saheed Munir Chowdhuri

(1965),

[46]) .

BangIa Unnayan Project

Monoj Kumar Mi tra (see,
Jamil Chowdhuri (1987), and

During the present work,
another survey has been made on the frequency of occurrence of

BangIa characters and BangIa akkharas based on number of
occurrenCe from representative texts of various disciplines.
These frequency distributions of occurrence of" BangIa
characters in single byte representation and akkharas in

multibyte representation have been given in the Table 4.1 and
4.2 respectively.

-116-

Table 4.1(a): Frequency of BangIa characters in single byte
representation in dictionary order.
Total characters 25024 and unique character 100.

Symbol Symbol
Number Symbol Frequency Number Symbol Frequency

32 Sf""coo 3792 15.153 105 :s 73 0.292
33 I 31 0.124 106 ?J 489 1.954
39 •.' 89 0.356 107. ?i 913 3.849~o
44 264 1.055 108 \2 13 0.052
45 73 0.292 109 0- 5 0.020
46 2 0.008 110 :>J 386 1.543
48 0 1 0.004 111 '> 27 0.108
49 1 0.004 112 , 181 0.723
50

~
1 0.004 113 , 8 0.032

52 1 0.004 114 J 23 0.092
54 "'" 1 0.004 121 I 229 0.915
55 9 1 0.004 127 , 113 0.452
56 cr- 1 0.004 194 ,- 2826 11.293
59 , 29 0.116 195 or 1274 5.091
63 ? 31 0.124 196 <'1- 210 0.839
65 t,ir 163 0.651 197 do., 244 0.975
66 ~ 331 1.323 198 Co.. 93 0.372.67 2- 340 1.359 199

"-
88 0.352

68 :Z/ 31 0.124 200 L 1248 4.987
69 :s 74 0.296 201 C 3 0.012
70 ::z; 2 0.008 202 t.1 282 1.127
72 c. 178 0.711 203 G"" 2 0.008~
74 '" 176 0.703 204 "'. 15 0.060
76 ~, 1083 4.328 205 oJ 1 0.004
77 '11 138 0.551 206 ~r 21 0.084
78 5'1 157 0.627 207 ,J 1 0.004
79 '" 22 0.088 209 s 21 0.084
80 <5 21 0.084 210 ~- 15 0.060
81 5 51 0.204 211 0 10 0.040£0

82 ~- 207 0.827 213 " 16 0.064
83 uo 158 .0.631 214 2 46 0.184
84 2}~ 5 0.020 215 ~ 4 0.018
85 'l;2, 4 0.016 216 Co> 4 0.016.-,
86

~
51 0.204 218 G 19 0.076

87 9 0.036 219 ••• 133 0.531
90 M 122 0.488 220 2 12 0.048
91 \5 1166 4.660 221 " 27 0.108
92 Qf 72 0.288 222 4, 21 0.084
93 " 511 2.042 223 ~ 25 0.100
94 ~ 68 0:272 224 ;J 33 0.132
95 i'T 934 3.732 226 ~ 116 0.464
96 r>f 441 1.762 227 ~ 6 0.024
97 'if 46 0.184 226 oM 46 0.184
98 4 699 2.793 229 J 218 0.871
99 (f,. 87 0.268 230~ 225 0.899
100 ~ 674 2.693 231 ,J 93 0.372
101).J 260 1.039 232 ",! 14 0.058
102 <J 1628 6.506 233 ,j 62 0.248
103 M 529 2.114 235 p 144 0.575
104 ->il 208 0.831 252 "- 2 0.008

-117-

~

Table 4.1(b): Frequency of BangIa characters in single byte
representation in decending order of frequency.
Total characters 25024 and unique character 100.

Symbol Symbol
Number Symbol Frequency Number Symbol Frequency

32 _S DOCQ... 3792 15.153 233 ,) 62 0.248
194 "I 2826 11.293 81 "5 51 0.204
102 :;;l 1628 6.506 86 -=c 51 0.204
195 l' 1274 5.091 228 J 46 0.184
200 , 1248 4.987 97 >r 46 0.164
91 -6 1166 4.660 214 j? 46 0.184
76 -;q; 1063 4.328 224 « 33 0.132
95 "T 934 3.732 68 ~ 31 0.124
107 2.- 913 3.649 63 ? 31 0.124
98 "'f 699 2.793 33 31 0.124
100 '.>1 674 2.693 59 29 0.116
103 <Y1 529 2.114 111 " 27 0.108~
93 ~ 511 2.042 221 - 27 0.108"106 ?-1 489 1.954 223 J 25 0.100
96 P!" 441 1.762 114 '" 23 0.092
110 ~ 386 1.543 79 '<) 22 0.088
67 3'. 340 1.359 206 5' 21 0.084
66 ~ 331 1.323 209 21 0.084b
202 C'- 282 1.127 222 21 0.064.',44 264 1.055 60 \8- 21 0.084
101 2J 260 1.039 218 " 19 0.076
197 244 0.975 213 .. 16 0.064'" .~;121 I 229 0.915 210 ~~ 15 0.060
230-J 225 0.899 204 4. 15 0.060
229 J 218 0.871 232 -,,;' 14 0.056
196 'l- 210 0.639 108 G 13 0.052
104 -i\ 208 0.831 220 " 12 0.048
82 ~ 207 0.627 211 "'" 10 0.040
112

"-
181 0.723 87 '1l 9 0.036

72 ~ 178 0.711 113 . 8 0.032•74 (3 176 0.703 227 '" 6 0.024
65 \oJ 163 0.651 84 41 5 0.020
83 \?i 158 0.631 109 G 5 0.020
76 sf 157 0.627 215 '" 4 0.016
235 ;>l 144 0.575 216 ,5 4 0.016
77 "1[138 0.551 85)l' 4 0.016
219 0 133 0.531 201 C 3 0.012
90 c4' 122 0.488 70 .;s 2 0.006
226 - 116 0.464 203 (1 2 0.008'"127 '" 113 0.452 46 2 0.008
231 ~ 93 0.372 252 / 2 0.008
198 '" 93 0.372 205 '" 1 0.004
39 , 89 0.356 54 '" 1 0.004
199 <- 88 0.352 207 1 0.004

0 "69 74 0.296 55 cot 1 0.004
45 73 0.292 56 >- 1 0.004
105 "zJ 73 0.292 48 0 1 0.004
92 :>T 72 0.288 49 :;:, 1 0.004
94 So 66 0.272 50 :Z. 1 0.004
99 '& 67 0.268 52 8 1 0.004

-118-

Table 4.2: Frequency of BangIa characters in multi-byte
representation in decending decending order of
frequency. Total characters 16534 and unique
character 407.

Frequency Frequency Frequenoy
Akkhara Count (%)Akkhara Count (%)Akkhara Count (%)

3790 22.922 1il 163 0.986 i{ 72 0.435
tr 742 4.488 til 161 0.974 ~ 70 0.423
~ 514 3.109 11 135 0.816 11\: 70 0.423
~ 509 3.079 ~ 126 0.762 1f. 69 0.417
if 397 2.401 15 126 0.762 I> 68 0.411
trl 361 2.183 ~ 121 0.732 ~ 66 0.399
;r 355 2.147 'It 119 0.720 'If 65 0.393
't 340 2.056 'If 116 0.702 f(l 56 0.339.1 331 2.002 (Irt 111 0.671 ~ 52 0.315
~ 326 1.972 ~ 110 0.665 , 51 0.308
11 286 1.730 ill 104 0.629 iii 50 0.302
i! 274 1.657 ftl 100 0.605 ill 44 0.266
lit 245 1.482 'If 97 0.587 ~ 40 0.242
Ii 217 1.312 1Il 97 0.587 ~ 39 0.236
llt 217 1.312 t1l 94 0.569 llf 37 0.224
til 217 1.312 t1f 89 0.538 I 34 0.206
I(194 1.173 til 88 0.532 If 32 0.194
t" 193 1.167 l; 85 0.514 '1 32 0.194
1(' 190 1.149 [<lif. 84 0.508 III 32 0.194
ti31 189 1.143 • 82 0.496 I 31 0.187
~ 181 1.095 til 81 0.490 "t 31 0.187

-fit 179 1.083 lit 77 0.466 lit 29 0.175
•• 178 1.077 It 77 0.466 ~ 28 0.169
if 177 1.071 ii 75 0.454 • 28 0.169
'6 176 1.064 '1 74 0.448 f(l 28 0.169

-119-

Table 4.2 (Continued).

Frequency Frequency Frequency
Akkhara Count (%)Akkhara Count (%)Akkhara Count (%)

Of 27 0.163 • 17 0.103 of 12 0.073
~ 27 0.163 '- 17 0.103 'It: 12 0.073
'It 26 0.157 !I 17 0.103 ~ 12 0.073
;Jt 26 0.157 ~ 17 0.103 , 11 0.067
~ 25 0.151 \5l 16 0.01l7 ~ 11 0.067
lit 25 0.151 •• 16 0.01l7 1\;t 11 0.067
~ 25 O. 151 •• 16 0.01l7 ~ 11 0.067
A 24 0.145 11 15 0.01l1 tlIIt 11 0.067
!I 23 0.131l ill 15 0.01l1 ~ 11 0.067
11 23 0.131l r;r 15 0.01l1 ~ 10 0.060
tt 23 O.131l t1I 14 0.085 r;r 10 0.060
't 22 0.133 wt 14 0.085 ~ 10 0.060
It 22 0.133 t"I 14 0.085 111 10 0.060
~ 21 0.127 • 14 0.085 ~ 10 0.060
~ 21 0.127 ~ 13 0.079 ~ 10 0.060
'if 21 0.127 'If 13 0.079 tiii 10 0.060
~ 20 O. 121 \!U 13 0.071l ~ 10 0.060
~ 20 0.121 vm 13 0.079 !II 9 0.054
or 20 0.121 ~ 12 0.073 III 9 0.054
t;r 20 0.121 <Iqt 12 0.073 Ii;t 9 0.054• 19 0.115 Ii; 12 0.073 Ii;. 9 0.054
fiB 19 0.115 .~ 12 0.073 1ll 9 0.054
t1l 11l 0.115 i 12 0.073 ~ 9 0.054
tolt 18 0.101l liit 12 0.073 If Il 0.054
III 18 0.109 f<'l 12 0.073 tI 9 0.054
~ 18 0.109 ,tt; 12 0.073 ~ 9 0.054
01 17 0.103 ~ 12 0.073 1!1. 9 0.054
rlit 17 0.103 , 12 0.073 ~ 9 0.054

-120-

;',
.'.

Table 4.2 (Continued).

Frequency Frequency Frequency
Akkhara Count (%)Akkhara Count (%)Akkhara Count (%)

11; 9 0.054 Ii; 6 0.036 "'\; 5 0.030
'l 9 0.054 t!I 6 0.036 t!l 5 0.030
~ 9 0.054 II 6 0.036 t'6 4 0.024
iii> 8 0.048 \ 6 0.036 ~ 4 0.024
"" 8 0.048 't 6 0.036 , 4 0.024
••• 8 0.048 f5 6 0.036 ~ 4 0.024
i[8 0.048 1i 6 0.036 'Il\ 4 0.024
~ 8 0.048 1\. 6 0.036 ~ 4 0.024
~ 8 0.048 II 6 0.036 1il 4 0.024
1{ 8 0.048 ~ 6 0.036 ~ 4 0.024
ro 8 0.048 illt 6 0.036 ~ 4 0.024
• 8 0.048 ;1/ 6 0.036 III 4 0.024
tot 8 0.048 tifiI 6 0.036 iii 4 0.024
i 8 0.048 l,II 6 0.036 ~ 4 0.024
~ 8 0.048 I' 6 0.036 '{ 4 0.024
'l 7 0.042 'II 5 0.030 if 4 0.024
If 7 0.042 1iit 5 0.030 t;l; 4 0.024
~ 7 0.042 l5,I 5 0.030 ig 3 0.018
tIf 7 0.042 • 5 0.030 t'ii 3 0.018
lit 7 0.042 II" 5 0.030 t1I 3 0.018
~ 7 0.042 ~ 5 0.030 'Ii 3 0.018
1If 7 0.042 '" 5 0.030 ;r; 3 0.018
~ 7 0.042 ifO 5 0.030 Ii 3 0.018
1f. 7 0.042 ~ 5 0.030 _.'11 3 0.018
'lin 7 0.042 ~. 5 0.030 ;:$lt 3 0.018
~ 7 0.042 11 5 0.030 t'JI 3 0.018
'1 7 0.042 ~ 5 0.030 ~ 3 0.018
llf 6 0.036 ••• 5 0.030 'Ill 3 0.018

-121-

Table 4.2 (Continued).

Frequency Frequency Frequency
Akkhara Count (%)Akkhara Count'(X) AkkhilraCount (X)

• 3 0.018 ill 2 0.012 ~ 2 0.012•
11ft 3 0.018 ~ 2 0.012 ll,I 2 0.012

" 3 0.018 ~ 2 0.012 lIl.l 2 0.012
l\1 3 0.018 tilii 2 0.012 lit 2 0.012
If 3 0.018 I4lt 2 0.012 'Gt 2 0.012
1J 3 0.018 • 2 0.012 ~ 2 0.012
• 3 0.018 'i 2 0.012 til 2 0.012
t'ii 3 0.018 ~ 2 0.012 til; 2 0.012
-.t 3 0.018 tlll 2 0.012 t'5l 2 0.012
fio 3 0.018 ~ 2 0.012 III 2 0.012
~ 3 0.018 til 2 0.012 ~ 2 0.012
om 3 0.018 8 2 0.012 'l; 2 0.012
~ 3 0.018 1. 2 0.012 ~ 2 0.012
~ 3 0.018 Gl 2 0.012 " 2 0.012
$ 3 0.018 ~ 2 0.012 ~ 2 0.012
iii 3 0.018 R 2 0.012 lI; 2 0.012
~ 3 0.018 "Ilil 2 0.012 It 2 0.012
~ 3 0.018 <II 2 0.012 III 2 0.012
-B 3 0.018 '" 2 0.012 1il 1 0.006
til; 3 0.018 l'\" 2 0.012 'Il(1 0.006
'lit 3 0.018 at 2 0.012 •• 1 0.006
~ 3 0.018 •• 2 0.012 Iil 1 0.006
lIIl" 3 0.018 ~. 2 0.012 ~ 1 0.006
lit 3 0.018 00 2 0.012 ~ 1 0.006
~ 3 0.018 ~ 2 0.012 Ill; 1 0.006

'"' .2 0.012 CI 2 0.012 '1. 1 0.006
1!t 2 0.012 ~ 2 0.012 " 1 0.006
It 2 0.012 f<'q 2 0.012 ~---- 1 0.006

-122-

Table 4.2 (Continued).

Frequency Frequency Frequency
Akkhara Count (%)Akkhara Count (%)Akkhara Count (%)

'It 1 0.006 ~ 1 0.006 \{ 1 0.006
Wi 1 0.006 ilT 1 0.006 ron 1 0.006
~ 1 0.006 til 1 0.006 00 1 0.006
~ 1 0.006 ;w 1 0.006 I!'JI 1 0.006
21 1 0.006 ~ 1 0.006 Il 1 0.006
1l" 1 0.006 ~ 1 0.006 til 1 0.006
"lit 1 0.006 , 1 0.006 ItlI 1 0.006
~ 1 0.006 &'I 1 0.006 [If 1 0.006
sJ. 1 0.006 ~ 1 0.006 a. 1 0.006
lit 1 0.006 tTl 1 0.006 ;C 1 0.006
~ 1 0.006 ••• 1 0.006 'l 1 0.006
~ 1 0.006 tt 1 0.006 r.a 1 0.006
1ft 1 0.006 <li;I 1 0.006 11;1 1 0.006
• 1 0.006 II; 1 0.006 ~ 1 0.006
•• 1 0.006 'll 1 0.006 i;I 1 0.006
ill 1 0.006 51 1 0.006 "l 1 0.006
ill 1 0.006 ~ 1 0.006 iii. 1 0.006
~ 1 0.006 ~ 1 0.006 t6 1 0.006
lit 1 0.006 'CI 1 0.006 ~ 1 0.006
~ 1 0.006 tl1t 1 0.006

'"
1 0.006

liil 1 0.006 li 1 0.006 "f 1 0.006
llr 1 0.006 l'6" 1 0.006 tit 1 0.006
~ 1 0.006 t-.r 1 0.006 , 1 0.006
1\1 1 0.006 1Il 1 0.006 ill 1 0.006
1ft 1 0~006 ~-- . 1 0.006 Ii 1 0.006
CI 1 0.006 11; 1 0.006 em 1 0.006
ttl 1 0.006 Wit 1 0.006

-123-

4.2 Redundancy in BangIa Text

Natural language is highly redundant and it would, therefore,

be beneficial if some of this redundancy could be removed.

Most data compression techniques are based on information

theoretic concepts and take advantages of the statistical

properties of natural language.

Symbols of BangIa alphabet are stored in secondary storage and

processed in computer as pattern of binary digits.
Redundancy exists when portion of these patterns are

predictable and, therefore, carry little or no information.

Redundancy typically exists in one of the following forms:

Symbols have widely different probabilities, and

Strong inter symbol influence exists over adjacent

symbols.

Most of the word processors and DTP use multibyte

representation of some or all compound symbols of the BangIa

alphabet. So for the existence of a group of bytes for a

single symbol, BangIa text is more redundant than any other

language in which single byte representation is used for their

symbols. Inter symbol influence is not only over the adjacent

symbols but also over the whole group of symbols.

-124-

Suppose we imagine that a word of BangIa text is being

transmitted through digital communication line. There is a

choice of 46 symbols for the first letter providing about 5

bi ts; suppose it was a II (89). The choice for the next

letter is restricted, because of the construction of the

BangIa language, to about 15 letters, providing about 4 bits;

assume it was an t (194). There is only 5 choice for the

next letter contributing 2 bits; say the letter is 'I' (76).

Now the word could reasonably guessed to be say ~ ~

or tiI<tiI The last few letters clearly provide very little

information, because the probability of the next letters after

the sequence approaches unity.

Similarly, words are not equiprobable and intersymbol

influence extends over groups of words I phrases l sentences

etc. and as a result the information content of the language

is much less than the ideal value for equiprobable and

independent symbols.

4.3 n-Gram Statistics of BangIa Text

An n-gram is a string of n symbols occurring sufficiently

frequently in a text to justify its being considered as a

symbol in its own right in addition to the conventional

symbols that comprise text. We have taken 26368-byte text as

a representative text in BSCII format to generate a list of

-125-

frequencies of all strings up to 8-character long. Multiple

occurrences of spaces being reduced to a single occurrence.

The symbols considered were all symbols except punctuation

marks. Average length of the sentence and words are found

from the representative text is given in the Table 4.3.,

Yannakoudakis[83] give the n-gram statistics of the title from

31369 records in a 1975 British National Bibliography file.

Suen[70] gives n-gram statistics from English words. But no

such statistics is found for BangIa Text. A comparison

between the top 25 bigrams to octagrams derived from the

present study with single-byte and multibyte representation of

the symbol is given in the Table 4.4 and 4.5 respectively. It

can be shown from the Fig. 4.1 that as the length of the

n-grams increases the maximum n-gram frequency decreases.

By assuming that text of any language can be generated by

n-grams of symbols from an alphabet of K symbol types of that

language, Shannon[66] estimated the nth order entropy as

K'
HJl - L PC xl) 1 ogzp(xl)

J -1

where p(x/> is the probability of the jth n-gram. If we write

the entropy of the nth symbol as H, then Shannon has shown
that H, = H' - H('-li.

-126-

Shannon also defined the nth order redundancy as

Table 4.3: Statistics of the representative BangIa BSCII file.
Total characters 25410, Total words: 4238 and
Total sentences : 291.

(a) Words Size in Characters: (Average 4.94 characters/word).

5
2
2
2
1

13
14
15
16
17

440
194
150
83
27
17

7
8
9

10
11
12

138
302
754
813
648
660

1
2
3
4
5
6

Character Number of Character Number Character Numberper word words per word of words per words of words

(b) Sentences Size in words: (Average 14.56 words/sentence).

3
3
2
1
1
1
1
1
1
1
1

36
37
39
40
42
46
47
48
53
63
74

7
3
2
7
4
2
1
1
4
1
1

23
24
25
26
27
28
31
32
33
34
35

12
16
19
11
7

12
7
7
7
3
6

12
13
14
15
16
17
18
19
20
21
22

1
7
6
7
23
16
14
14
23
11
13

1
2
3
4
5
6
7
8
9

10
11

Words per Number of Words per Number of Words per Number of Words per Number of
sentence sentence sentence sentence sentence sentences sentence sentences

-127-

(c) Sentences Size in Characters:
(Average 85.54 characters/sentence).

7 1 51 6 88 1 145 18 3 52 2 90 4 147 111 1 53 2 92 6 150 112 2 54 2 93 2 152 114 2 55 1 94 1 153 116 2 56 3 95 1 155 119 2 57 3 97 1 157 120 3 58 4 98 2 158 121 3 59 4 99 3 161 222 2 60 1 101 1 162 123 3 61 5 102 3 169 124 3 62 2 103 1 171 126 1 65 4 104 2 172 127 3 66 4 105 2 177 129 5 67 3 106 3 185 230 5 68 5 108 2 188 131 2 69 2 110 2 190 232 8 70 2 112 1 201 133 2 71 2 113 1 208 134 1 72 1 114 1 212 135 2 73 3 115 1 216 137 3 74 4 116 3 221 138 1 75 3 119 2 223 139 4 76 3 121 2 230 140 2 77 3 124 2 231 141 3 78 1 127 1 236 142 3 79 4 128 1 254 143 6 80 3 132 2 261 144 2 81 1 133 1 286 145 1 82 3 135 2 297 146 4 83 1 136 1 299 147 2 84 2 137 1 368 148 1 85 1 142 2 370 149 1 86 2 143 2 465 150 2 87 3 144 5

Characters Nu,ber uf Characters Nu,ber uf Characters Number of Characters Number of
per sentence sentence per sentence sentence per sentefJce sentences per sentence sentences

Table 4.6 and Graph 4.1 show natural characteristics of BangIa text
as derived from the sample text.

-128-

c

Table 4.4(a) : Percentage of occurrence of 25 1-5 grams for BangIa
text with single byte representation.

l-grams 2-grams 3-grams 4-grams 5-grams

18.58 T~ 3.60 1'U 3.28 - 1.88 - 1.81
T 13.85 c~ 3.46 ~<l'if 2.22 ~~ 1.50 cnm= 1.63
<f 7.98 fq: 3.33 m= 2.00 cnm 1.49 ~~ 1.12
f 6.24 <f= 3.21 rn~ 1.98 r.rt= 1.40 ~ 1.n
c 6.12 ou 3.15 0U<f 1.72 ntrlil: 1.24 ~~ 1.10
••••• 5.31 = ••••.3 .09 <l'iff 1.40 '"'l""'-= 1.09 ~'"'l""'-~ 1.07
q: 4.48 T<f 2.43 r.rt 1.30 ~ 1.08-.mn 0.96,

0.88<f 3.43 m :2.24 1m 1.28 "RIT~ 1.04 Rmo:r
"'f 3.30 .flj2. 07 m-o< 1.14 =~~ 0.90 ~~ 0.86.., 2.59 rn 1.75-c= 1.13 ~ 0.89 ~ 0.86.., 2.40 ~..,1.55 T<f~ 1.06 ~"'l1<!: 0.88 = "'lt0\llT 0.74
"II" 1.89 m 1.52 '"'l"""- O.9a "'It"\lIT 0.87 ~ 0.73
~ 1.67 ~'<lIt 1.47 ou= 0.90 ..rt'<= 0.86 ~= 0.66
'<lit 1.62 ~<f 1.38 -.r1fT 0.89 'llT1<T 0.80 ~= 0.64
'"' 1.27 "'ft 1.34 """-= 0.86 .mn 0.80 ntr1il:c 0.60

1.20 m 1.34 "'l1<!: 0.85 ~ 0.76 ./T">:~ 0.56
1.12 r,;- 1.24 =~ 0.78 1'U~ 0.76 ...-- 0.46
1.10-c 1.20 =...-T 0.77 ='<lIt"\ll 0.61 -~0.43

r 1.07 =,", 1.18 T=••••. 0.74 ~ 0.57 ~ 0.41
-r 1.02 m 1.02 fq:~ 0.73 "Il"NC 0.56 ~~~ 0.37
-..: 1.01 t-..: 0.91 ='"'l<f 0.71 ~-rr.0.56 r.rt~<f 0.36

"-
0.•.8.9____.•,'"'l o .8.L-...""L"iLO..7.L ~ 0.54 ~~ 0.36

,~ 0.87 =q: 0.87 ./T">: 0.70 0U<f= 0.54 m~<l'if a . 34
'3 0.86 Fvt 0.87 =<f"10.70 ~~ 0.52 ~~ 0.34
"'l 0.80 ~"'l a . 84 "\IIT= O.7a "1<I'C= 0.50 =~ 0.32

Total 20402. 16148 12736 9989 7832
Unique 63 629 1730 2642 3057

-129-

.\

Table 4.4(b): Percentage of occurrence of 25 6-8 grams for BangIa
text with single byte representation.

6-grams 7-grams 8-grams

. =m~ 2.05 =c:r'ilfilill'(1.24 ~.....tmr.:r0 .86
q~ 1.38 ~q~ 1.20 q~~ 0.72
~~ 1.10 "'lI~~ 0.88 ~q~ 0.70
•••"ffi,,,,, 1.10 •••" l'i1'li,r O.82 ~"'lI~~ 0.62
~~0.95 "'lI~ 0.67 •••" ffi , ""Fo't 0.62
ffi 1i.:Fo't 0.77 ~~ 0.63 ~~~ 0.59
~"'l1'U~ 0.72 ~~ 0.57 -<fi:<Afil i tii(C 0.56"\I!tr>'~0.72 =m~"f 0.52 =m~ •••••. 0.51
"ffi,,,,r 0.64 "Rfill1l'(~ 0.48 rnn.:F~ 0.51
~ 0.52 ~~ 0.46 "f..,ru I""Fo't 0.45
~T 0.51 <r'tlfillvu 0.46 ~••..,ffi, ",r 0 .40
<>BrT~"f 0.44 ..mo.~ 0.44 ~~~ 0.32
.(flRf~ 0.44 <>BrT~•••••. 0.40 ='i1q:filI Il(t 0.32
~"'l1'U..- 0.41 fil i ii(~ I 0.40 ..-T~"'l1'U~ 0.32
~fiJ I tliiX 0.36 ~~ 0.38 "'IIQ.~I~ 0.29
JI'iiiJi91 0.34 .., ffi , ""Fo't 0.38 T~""~ 0.29
T~ 0.34 =m~ ••• 0.36 ~~~ .•.•.. 0.29
~ 0.34 ••..,ffi'''''r 0.36 ~~ .•.•. 0.29~.....-ffiT 0.33 ..-T~=0.34 -.fi>I;t",.~ ••• 0.29T..-T~"f'1 0.31 -<iC1FiJ I Ci(0.31 <>BrT~"f'1T" 0.27runu-~ 0.31 'ftCifi1 i lite 0.31 <tlfilill(~1 0.24~CI1"I;T. 0.29 =m~~ 0.27 'i:1Cifi1I •• ' 0.24~-r0.29 'i1Cifi1 i Ii(0.27 "'lI~~"'f 0.24
-:avt fill Ci(0.28 "f'ilo, >1 0.27 c~"'II"\I!tr>' 0.24<>BrT~••• 0.28 T~"'l1'U~ 0.25 <>BrT~"f'1C 0.24

Total 6108 4766 3739Unique 3048 2820 2517

-130-

Table 4.5(a): Percentage of occurrence of 25 1-4 grams for BangIa
text considering multibyte representation.

I-grams 2-grams 3-grams 4-grams

22.92 1if~ 3.38 ~~ 1.56 '-~~= 0.83
1if 4.48 ~"" 2.06 C"1'f~ 1.25 ~~ 0.72
<l' 3.11 ~ 1.81 ~.mt 1.06 =~~ 0.68
tU 3.08 ill~ 1.67 tU1l1~ 0.90 ~~ 0.68
" 2.40 ~'"'II 1.55 =,-'!:I~ 0.81 C'bi i:l"fll- 0.64
ill 2.18 ~~ 1.50 ~ 0.78 'b iCiIC"1'$t 0.62
<f --' 2.15 ,,~ 1.46 =~= 0.77 ~~ 0.58
It 2.06 C"1'f 1.26 -.r.tt~ 0.73 ~~ 0.53
'"'II 2.00 .mt 1.16 ~~ 0.70 ~~ 0.51
~ 1.87 tU1l1 0.97 =~<f 0.63 ~=tt"f 0.49
"f 1.73 C<f'~ 0.84 t'6l ",,>I 0.63 ~t'5T"f1if1 0.46
'" 1.66 ~'-" 0.92 ~~ 0.62 ~ '"'IIC\I[1'>: 0.43
m 1.48 ~~ 0.89 ~ 0.60 ('61 ~iC...,~ 0.40
~ 1.31 ~"'f 0.87 "'l1C\1[1'>: 0.58 Ii'<'>ft"I' ~ 0.38
m 1.31 •.~ 0.87 \!) ,q: Ie'" 0.57 ~~~ 0.34
c..- 1.31 "'~0.86 ~ 0.53 1if~~Rs 0.33
'>: 1.17 ='>: 0.85 mt<t1f 0.53 "'l1C\1[1'>:= 0.32
C<f' 1.17 '3= 0.84 ~~0.51 1if 'Si*TI 0.32
~ 1.15 ~<f 0.81 ~<!"1f 0.51 ~'Si*TI= 0.30
'" 1.14 ="'1" 0.78 == 0.42 =~ 0.30•. 1.08 <f"- 0.78 =~ 0.41 ..,..,.,.~ 0.30
F-t 1.D8--

,-~<f 0.76 0.40 -C\.5Iiilll"t 0.30='3~

'-" 1.08 '>:T= 0.75 -= 0.40 ~ 0.30., 1.07 -.r.tt 0.74 ="IFvl 0.38 ,,~= 0.30
'3 1.06 ~ 0.71 1i'<'>ft"I' O.38 =C-~"'= 0.27

Total 16534 15304 14183 13125
Unique 407 -1878 4047 5843

-131-

Table 4.5(b): Percentage of occurrence of 20 5-6 grams for BangIa
text considering multibyte representation.

5-grams 6-grams

=~~= 0.69 ="b iQ.iC't"A- 0.51
~=rm~0.65 ~=~~ 0.30
\b Ittic...,. 'iI- 0.60 ..~~~ 0.26
='biCdC"11"1 0.53 t:"1'if~~~ 0.22
-(\61 ii'i"fll- 0.46 ~">fC<l'~ 0.20
(\51~i'..,'A 0.39 ~"'ll"\llT'8l~ 0.19
- C\51 :t:llC....f'i1 0.32 ••~~<>f1<'f 0.18..~~~ 0.31 ~~">fC<l' 0.17
~~~ 0.30 ~"''''''~= 0.14..~~ 0.27 ~"'ll~~ 0.14
••• Al •• ifit 0.26 ~"''''''~~0.13
~~~ 0.26 ="~">fC<l'~ 0.13
"'ll"\llT'8l~ 0.22 t:"1'if~~ 0.13
t:"1'if~~ 0.22 ~~<of"l"C"r4' 0.12~~-~0.21 ~.,~.•..•• 0.12
~"'ll"\llT'8l 0.21 ~ >;t...,,-., ~ "'ll 0.12
~">fC<l'~ 0.21 =<t"H1i1it~ 0.12
~"<tC<t'" 0 .20 ~"'.l'!HI"'""'~ 0.12
"'ll~~ 0.19 •..~~'>1"'if1~ 0.11
~"'ll0\lll"f~ 0.19 ~=...-mf">fC<l'0 .11

Total 12125 11232
Unique 7278 8044

-132-

Table 4.5(b): Percentage of occurrence of 20 7-8 grams for BangIa
text considering multibyte representation.

7-grams 8-grams

\bitil1\i~= 0.16 '"'l"f'C~~~ 0.09
<:"'n'f~f.'t<l<U~ 0.12 =~~~ 0.09
"~~'"11C'f<l<0.12 ~=~~ 0.09
='"'l~~~ 0.12 'blt:(it""'ft ~ 0.09
~...,i6'jt'<l''$I 0.10 ="'l1~=~0.08
~~'>tt<I'= 0.10 ~=~= 0.08
=..!.:t~-\5ltil'i1l 0.10 =~....,iV1t<r'i1 0.08
f.'t<l<U=~= 0.10 \!) Itilt..,.'$1-~= 0.08
~ ~"",= 0.09 "'l1~~ Fr-O< 0.07
"f'C=~m= 0.09 '"'l~~~1'>1'i'Il0.07
~~= ••!t 0.09 ~=~~ 0.07
~~Fr ..•.v 0.09 ,,=~~ ••!t 0.07
"'l"{;~••.~~ 0.09 ,.=~~<fif 0.07
~-,.~ f.l<l<0.09 ~1~ "'f<l\!5'11'10.07
<:"'n'f~~""'o'f0.09 =~~~'SR\' 0.06
R••••,""-~ 0.08 c-<f~on='"'l<1"-= 0.06
=~""'VIt"<fif0.08 ~= "'f<l~<fl=0.06
=NIT'''1<f~~0.08 ~=~= 0.06
~~="'l1f.'l 0.08 =~=~~= 0.06
¥~IJI~V1I;q 0.08 ~•••~'i'ITl'I= 0.06

Total 10405 9639
Unique 8372 8312

. -133-

4.3.1 n-Gram generation

The n-gram encoding technique represents an attempt to convert the

normal hyperbolic distribution of single letters to a rectangular

or equiprobable distribution of symbol groups (n-grams) by

considering frequently occurring strings of up to n letters in

length. Equiprobabi 1ity increases entropy and hence decreases

number or variety of

redundancy.

considered,

As

the

character strings of increasing length

symbols increases but

are

the
greatest frequency decreases.

A sliding window of 8 characters length starting from the beginning

of the representative text to the end moving along a character at

a time. The n-grams produced were written to a file. We produce

different files for different n-grams depending on the value of n.

Then the n-grams are counted and written in another file and sorted

in a third file. The n-gram can be produced and counted in a

single pass using an n x m matrix, where m is the size of the

alphabet. But it would require a huge amount of memory.

-134-

Table 4.6: Most frequent 25 Bangia words from a representable
26368 bytes BSeII text file. Total words = 4236,
and unique words = 1238.

Words Frequency Frequency (%)

,~.•... 115 2.715
'biCHo:::ll 101 2.384
(\51 ~'fti 85 2.007
on 83 1.959
'b ltite""$! 81 1.912
~ 76 1.794
'3 70 1.653
-.nl>1 56 1.322
C\!)I:t:::IIC'1'fl 51 1.204
""'G\lI1lO: 48 1.133
<f'@ 46 1.086
'Sf"!> 43 1.015
.•.~ 42 0.992
'Of'</O'f 41 0.968
~ 38 0.897
~ 38 0.897
C'>f 38 0.897
~ 31 0.732
'>fll>:11n 30 0.708
G4i~Iq:'f:I 28 0.661
@1>:T 24 0.567
'bitiifif~ 24 0.567
~ 24 0.567
~ 24 0.567
f'lI> 24 0.567

-135~

Table 4.7(a): Natural BangIa Language Characteristics
with multi-byte representation.

Number of n-grams
order
n
1
2
3
4
5
6

-7
8

Total
16534
15304
14193
13125
12125
11232
10405
9639

I Unique
407
1979
4047
5943
7278
8044
8372
8312

]------]-----_._------_.-Hn Hn %Redunduncy
In294=6.554.11 ----"4-:TC- 37.30

6.21 2.10 67.96
7.37 1.16 82.30
8.04 0.67 89.78
8.48 0.44 93.29
8.77 0.29 95.58
8.91 0.14 97.86
8~95 0.04 99.39

Table 4.7(b): Natural BangIa Language Characteristics
with single-byte representation.

%Redunduncy
In294=6.55~--5~OT---------
68.88
83.07
90.08
94.51
97.10
98.63
99.69

,------_._-----

3.08
2.04
1.11
0.65
0.36
0.19
0.09
0.02

3.08
5.12
6.23
6.88
7.24
7.43
7.52
7.54

63
629
1730
2642
3057
3048
2820
2517

20402
16148
12736
9989
7832
6108
4766
3739

1
2
3
4
5
6
7
8

Number of n-grams
order

Total=J Hn Hn
n Unique ---- _ .._--"-_._---

-136-

B

*

*'
-.6:

Entropy (MB)

Entropy (8 B)

Redundancy (MB)

Redundancy (8 B)

.--..
*'"-"
~c
~
C
::l
"'0
Q:I
II

-
4,0-+ ' ~ ~90

3,5+ \ "" .

~803, 0-1 ~ / .
\ \/'~ 2,54 \ l 1-70

o'- I '&J 2,01)1; '\: t-60

1 ,5-1 1. [\ .

j .~ r50
1 ,0-+ ~~~ .

.o.5+L..~..... r40
.:::::::--------.

~'~--, I
0,0 1 I I I I I I ~ 30

12345678
Order of n-G ram

I•....
w...,
I

G rar4.1 :n-Gram Characteristics for Bang la Text
(MB for Multi-byte, SB for Single Byte)

4,5, . -=* ,100

Chapter Five

IMPLEMENTATION OF ALGORITHMS

In this thesis algorithms related to different data
compression techniques have been implemented as Object
Oriented Programming in Boarland C++. In addition, some
utility routines have been developed for data analysis.
Objects and their variations for all data compression
techniques have been presented in this chapter.

5.1 Compression and Decompression

Compression and decompression techniques that we have been
implemented can be classified as two general categories:

a) Variable length coding
b) Arithmetic coding

Variable length coding techniques are of two types
1) Static variable length coding, and
2) Dynamic variable length coding

We have implemented two algorithms for static variable
length coding:

a) Shannon-Fano algorithm, and
b) Huffman algorithm.

-138-

\~
\

~I

For dynamic variable length coding, the following algorithms
have been considered:

a) FGK algorithm,

b) Knuth algorithm, and

c) Vitter algorithm.

Among the above variable length algorithm, Shannon-Fano,

Huffman and FGK algorithms have been implemented both in
scaled and unscaled symbol counts. Arithmetic coding
algorithm has been considered only in static coding scheme
with scaled symbol counts.

5.2 Classes for Data Compression

We have considered compression and decompression techniques
in three classes. These three classes and their
hierarchical relationship have been given below.

__ U_t_i_l_i_t_y~ I 'ec" iqn,
1 c_o_m_D_e_c_o_m__

Among these three classes, Utility and ComDecom are common

to all compression and decompression techniques. The class

-139-

r-
."~'

Technique is different for different coding algorithms. The

Utility and ComDeoom classes are given in the following:

class Utility {
private:

int dx1, dx2, dy1, dy2, dy3; II Co-ordinates on screen
protected:

II Bit 110 data.
FILEUile;
unsigned char mask;
int rack;
long int ccount;

p.Jblic:
Utility(void) {dx1 = 14; dx2 = 28; dyl = 2; dy2 = 3; dy3 = 9;}

II Commonutility functions.
void disp_scr(const char *act, const char *fnt, canst char *fnc,

canst char *tech, canst char *scaled, const char *model);
char* getfname (const char *path);
void usage(char *cc:mn);
void report (clock_t stime, clock_t etime,

long tcount, long scount, long ccount);
void error (canst int flag, const char *message);
void outcode (canst long scount, const long ccount);
void outtcount (const long tcount);
long int getccount(void);

II Bit oriented 110 functians
FILE *bfopen(canst char *name,const char *mode);
void fp.Jtb (int bit);
void fp.Jtbs (unsigned long code, int count);
int fgetb. (void);
unsigned long fgetbs (int bit_count);
void bfclose (void);
void bfflush (void);
void fprintbs (FILE*file, unsigned int code, int bits),

};

class CanDec:crn: p.Jblic Technique {
protected:

char *tfspec, *cfspec;
FILE *tfp, *cfp;
long tcount, scount, ccount;
clock_t stime, etime;

-140-

public:
ComDecan(enumacticn_t act, int margc, char* margv[]);
"'CanDecan(void) {};
void oper1_canp(void); II Files open for canpression
void oper1_decanp(void);11 Files open for decompression
void canpress (void);
void decanpress (void);
void report (void);

);

Some functions of Utility class are used for common house
keeping operations and others are used for bit oriented
input and output operations. Functions of the class
ComDeoom are used to compress the text file to cOde file and
to expand the compressed code file to the original text
file. All these functions are given in the program Util.CPP

and ComDeoom.CPP respectively with proper documentation.

5.3 KeRbers of CoRDecoR Class

The functions of coding and decoding of all techniques have
some common routines as implemented in the ComDeoom and
Utility classes. Some of these are used in compression or
decompression or in both. The data member and member
functions in ComDeoom class are common to all coding
techniques. The tfspeo and ofspeo are the source and code
file specifications respectively. The pointer variables tfp

and ofp are file pointers for text and code file. Variables
toount, soaunt and aoaunt are size of the text file, the

-141-

....
~;J

the text file to the code file and the actualstatistics of

code for the source message. The variables saaunt and

the compressed binary file as input and a text

the decoded BangIa text symbols as output

aaaunt makes the code file size. These data are used to

calculate coding efficiency of the algorithm. The

variables stime and etime hold the starting and ending time

of the compression or decompression function.

Common steps for all types of compression algorithms are

Opening the input BangIa text file to read text symbols

and an output codeword file to write binary bit
streams.

Call a function to compress the text file to a binary
file.

Report the compression ratio and time used.
Close both files.

Similarly the common steps for all the types of
decompression algorithms are:

Opening

file for

file.

Call a function to decompress the code file into a text
file.

Report the compression ratio and time used.
Close both file.

-142-

The first steps of compression and decompression routines
are implemented by open_oomp() and open_deoomp(). Third
step is implemented by a report() for both compression and
decompression program. This function gives the result of
compression. In the second step, the member functions
oompress() and deoompress() call the compression and
decompression routine of the corresponding Teohnique class.

5.4 He.hersof Utility Class

Some of the member functions of Utility class are used for
house keeping and others for unconventional bit oriented
input/output operations.

COBmon House Keeping: The function disp_sor() gives a screen
for progress report of compression or decompression.
Variables dxl, dx2, dyl, dy2 and dy3 track the positions of
these reports. Function getfname() give the true file name
froml;J!!Lfu.llfile specification. Message for syntax error
if any is traced by usage() while processing error message
or any other message is traced by errore). The functions
outoode(), outtoount() and getooount() are used to give and
take the statistics of the files. The result of compression
and decompression is reported by report().

-143-

Bit oriented Input/Output: Data compression programs
perform a lot of input/output that needs a single bit at a
time. The standard C++ I/O library accommodates only I/O on
even numbers of bytes boundaries. The library offers no
help for single bit I/O at a time. The functions bfopen(),

bfclose(), fputb(), fgetb(), fputbs() and fgetbs() are
written to support this unconventional bit oriented I/O.
Function bfflush() writes the remaining bit in the rack to
the code file before leaving the compression routine. The
function fprintbs() gives binary bit pattern of a given
integer.

5.5 Static Variable Length Algorithms

-144-

5. Encode the source message in the second pass of the
message to the code message.

Similarly the decoder must have the following steps in
static variable length coding:

1. Retrieve the symbol counts saved by encoder.
2. Build the model for decoder from the symbol count.
3. Decode the coded message to the source message.

Steps 1 to 3 in the encoding algorithm and step 1 in the
decoding algorithm are same for all static versions of
coding and decoding algorithms. Step 4 in encoding and 2 in
decoding are the same for a particular variable length
coding technique. Step 5 in encoding and step 3 in decoding
are the same for the two mentioned static variable-length
coding algorithms.

Implementations of the class Technique for Shannon-Fano and
Huffman algorithms with scaled and unsealed counts are
almost similar. The data members which keep the weight
field of the tree nodes and the member functions that count
the symbols ~re different. The function soale_oounts() is
an additional member function for scaled count version of

-145-

the implementation of the algorithms.

scaled symbol counts is given below:

typedef stn.tet tree_node {
unsigned int count;
int no;
int left;
int right;
int parent;

} nede_t;

typedef stn.tet code {
unsigned int cede;
int ccxJe_bits;

} OJIJE;

This class with

class Technique : public Utility (
private:

unsigned long *counts;
ncde_t *nodes;
CllJE *cOOes;
int root_node;

protected:
char tech[50], scaled[5], model [50];

public:
Technique(void);
int build_tree (void);
void ccmpress (FILE*fi, FILE *fa, long Hc, long *sc, long *cc);
void deccmpress(FILE*fi ,FILE *fa, long Hc, long *sc, long *cc);

long int count_bytes (FILE *fi);
void scale_counts (void);
long int output_counts (FILE *fa);
void tree2t:ode (unsigned int ccxJe_so_far,int bits, int ncde);
void text2t:ode (FILE *fi);

long int input_counts (FILE *fi);
long code2text (FILE*fo); .

};

void fput_tree (FILE*fo, int root, int depth);
void fsave_tree (FILE*fi, FILE *fa);
int index_ccxJes(int *index);
void fsave code (FILE*fi, FILE *fa);
unsigned int index_nodes (unsigned int *index);

-146-

Function:Compression and Decompression
prototypes

void co.pre•• (FILE 'fi,FILE 'fo,long ltc, long 'sc,long 'cc);

void deco.pre •• (FILE 'fi, FILE Ifo, long ,tc, long 'sc, long Icc);

The function

of Teohnique class are common to all coding techniques but
their implementations are different. Function oompress()

calls from the object of class ComDeoom with the text and
code file pointers fi and fo. This function compresses the
source text file to the code file and return the statistics
to the parent program. The statistics are (i) text file
size, (ii) size of static tree statistics passed to the code
file for static algorithms and (iii) actual code for the
source message. These statistics can be used to find the
coding efficiency of the algorithm. The function
deoompress() do the opposite action of oompress(), i.e.,
this function actually decompresses the code file to the
original text file.

Counting symbols: The member function oount_bytes() counts
the frequency of BangIa characters of the source text file.
The frequency count for individual symbol is stored in a
unsigned integer array element indexed by the symbol number.

-147-

Scaling Counts: The frequency counts of the symbols are
stored in the unsigned long integer array. The file size of
the compressed file can be reduced by scaling the counts to
unsigned character which is single byte. This is done by
the member function scale_counts() of the scaled version of
the corresponding algorithm. This function finds the
maximum value of the frequency counts and scales all the
counts to an unsigned byte boundary.

Saving Frequency Counts: A copy of the static model
identical to the one used by encoder must be passed to the
decoder as a header of the code stream to decode correctly
the code stream to the original source stream. The easiest
way for the decoder is to get these as the entire model is
passed in the header of the code stream. Many alternative
methods that copy far less space in code stream can be
possible. We have saved the frequency counts as a series of
count-runs followed by a O. A count-run consists of the
value of the first symbol in the run, followed by the value
of the last symbol in the run, followed by the counts
(scaled counts) for all symbols in the run from first to
last. This is repeated until each run has been stored in
the header of the code stream. A typical source counts with
corresponding saved list of runs is given in Table 5.1. The

-148-

Table 5.1 : Typical source symbol counts and list of runs

of the output _countsO function.

First index

last index

counts

counts

first index

last index

first index

last index

counts

first index

last index
counts

zero

5
9
7
3
0
9
2
17
21

1
7
0
4
23
30

32

2
4
4
46
46
9
0

I

1-

l~t
run

run

run

2nd

3rd

terminate

4th
run

(bl Header of code file

0
0
0
0
2
4
4
0
0
0
0
0
0
0
0
0
0
0
0
0
9

0
0
0
0

31

26

27
28
29
30

32

33
34

35
36
37
38
39
40
41
42
43

44
45
46

47
48
49
50

(al Source symbol counts

0
0
0
0
7
3
0
9

"~
0
0
0
0
0
0
0
1

7
0
4

23
0
0
0
0

24
25

1

2
3
4
5
6

7
8
9
10
11

12
13
14
15
16
17
18

19
20
21
22
23

-149-

member function output_oounts() saves the counts as a header

of the code message.

Retrieve the Counts: The decoder retrieves the frequency

counts from the header and builds the model. The member

function input_oounts() retrieves the counts to the weight

field of the nodes array of the tree and returns the

non-zero symbols.

Building Static Variable Length Coding Kadel: The model for

static variable length coding techniques are the coding and
decoding automata. These automata. are the trees
corresponding to the coding techniques. The models

corresponding to the static variable length coding

techniques, we have implemented, are the Huffman tree and
Shannon-Fano tree. The tree corresponding to the technique

is built from the (scaled) symbol frequency counts. The

tree is implemented as an array of nodes.

consists of

- node number,

- weight of the node,

- parent index,

- left index,

- right index.

-150-

Each node

.-:;
:"f

The node indexed by the symbol number is the leaf node

corresponding to the symbol. If the total number of symbols

of the alphabet including the end of message symbol is CSIZ

then the number of node of the tree would be NSIZ=2xCSIZ-1.

So the leaf node indexes would be from 1 to CSIZ and the

internal node indexes would be from (CSIZ + 1) to NSIZ. The

member function build_tree() builds the model. Shannon-Fano

coding techniques need the nodes to be arranged in order of

increasing weights of the nodes. So, build_trees() function

needs another function index-nodes() that arranges the nooes

in the required order by indexing the weight field.

Kncoding Sourc~ Message: Encoding source message to code

string with the static variable length coding scheme has two
steps :

converting the model, i.e., decoding binary tree to an

array of codes, and

encoding each symbol of the source message to the code
string.

The functions tree2oode() and text2oode() do these two jobs.

The function tree2oode() traverses the tree and collects bit

stream for the symbol corresponding to each leaf node and

assigned to the element of the array of CODE structure. The

-151-

function text2oode() reads the text file and saves the

codeword corresponding to the symbol.

Saving Static Trees Structure and Codes: The static Huffman

and Shannon-Fano trees for a source message can be saved in

the disk text file. Similarly the static codes for these

two algorithms can be saved. Two classes SaveCode and

SaveTree has been derived from Teohnique class.

classed are given here.

class SaveCode : public Technique {
private :

FILE *fi, *fo;
char finame[50], foname[50];

public:
SaveCode (int margc, char *margv[]);
void open(void);
void svcode(void);

};

class SaveTree : public Technique {
private :

FILE *fi, *fo;
char finame[50], foname[50];

public:
SaveTree (int marge, char *margv[]);
void open(void);
void svtree(void);

};

These

The member function svoode() of SaveCode class uses the

member functions index_oodes() and fsave_oode() of the class

Teohnique to save the codes. Similarly the member function

-152-

svtree() of SaveCode class uses the member functions

fput_tree() and fsave_tree() of the class Technique to save

the tree corresponding to the algorithm. Function open()

of class SaveCode and SaveTree simply open the source text

file and corresponding output files for code or tree.

5.6 Dynaaic Variable Length Coding

All dynamic algorithms encode the current symbol with the

model built from the message just encoded, modify the model

to adapt the effect of the current symbol. The coding and

decoding algorithm for each of the dynamic variable length

coding schemes are as follows:

Coding :

Cl. Initialize model;
C2. while (not end of source text file) do
C3. read a symbol from source text file;
C4. Encode the symbol;
C5. Update the model for the symbol;
C6. end while;

Decoding:

D1. Initialize model;
D2. while (not end of code file) do
D3. Decode code bit string to a symbol;
D4. write the symbol to the text file;
D5. Update the model for the symbol;
D6. end while;

-153-

Functions implementing these steps are different for

different dynamic variable length coding techniques but the

steps C1 - D1 and C5 - D5 should be the same in compression

and decompression for a definite coding technique. The

member functions of the class Technique corresponding to the

steps C1-D1 and C5-D5 are initialize() and update() while

the steps C3 and D3 are encode() and decode().

The implementations of class Technique for different dynamic

coding algorithms are given in the following articles.

5.7 FGK Algorithm

It is an adaptive Huffman coding technique. Like any

adaptive technique, both the encoder and decoder of the FGK

algorithm start from same initial model and update the model

for the symbol just processed. For FGK coding technique,

the model is a binary tree, which must have properties that

have in a Huffman tree with their weights in every node.

The tree must follow the sibling properties and be

maintained by implementing the FGK algorithm.

The FGK algorithm uses

the dynamically varying
linked-list structures to represent

binary tree. The tree is an array

-154-

of nodes. Each node of the tree represents (a) weight of

the node, (b) parent node index and (c) child with lowest
index. The correspondence between leaf node and the symbol
is maintained by an array. Data structures and functions
required for FGK algorithm are implemented in the following
class.

class node_class {
p.Jblic:

unsigned int weight;
int parent;
int child; II child with lowest index

};

[NSIZ); II tree node array
II leaf node corresponding symbol
II next free node of the node array
II tree rebuilding counter-

class Technique: p.Jblic Utility {
private:

node_class nodes
int leaf [SSIZ];
int free_node;
int I;

protected:
char- tech[50], sealed[5], lOCldel[50];

p.Jblic:
Technique (void);
void initialize(void);
void encode(unsigned int c);
int decode(void);
void update(int c);
void rebuild (void);
void swap_nodeslint i, int j);
void add_node (int c);
void c~ess. (FlUE*fi, FILE *fo, long *tc, long *se, long *cc);
void deccmpress(FlLE*fi, FILE *fo, long *tc, long *se, long *cc);

};

Initialize the Kodel: Initially the model is tree with

three nodes. One of the leaf node corresponds to the end of

stream symbol and the other one represents all zero-weight

symbols marked by ESC. The correspondence between character

-155-

and leaf nodes is maintained by an array of integers that is

also initialized.

Encoding Symbols: The leaf node corresponding to the symbol

is found from the array data member leaf[]. The path of the

tree from root to the leaf node corresponding to the symbol

represents the codeword. The bit streams of the codeword is

collected inversely from the leaf node to the root in an

unsigned long integer. The symbol with zero weight is

encoded by the leaf node corresponding to the ESC character

and add the symbol to the model tree with the member

function add-node().

Decoding Code Stream: The decoder gets a bit from the coded

message and branch left or right node of the tree depending

on the value of the bit. If the node is a leaf the

character corresponding to the leaf node outputs as source

symbol. This is done by the member function encoder) and

similar for each of the dynamic algorithms.

Updating the Hodel: The most complicated part of the

dynamic algorithms is qpdating the model which is done by

the member function update(). This routine increases the

weight of the leaf nodes corresponding to the symbol just

-156-

processed and takes care of the side effect to maintaine the
sibling property. In scaled version of the FGK algorithm

the maximum value of the root node weight is maintained by

rebuilding the tree by scaling the weights of all leaf nodes

by the member function rebuild(). The updating routine

finds the node with higher node number with equal weight to

the current node weight and swap them and then increase the
weight by 1. Node swapping is done by member function

};

5.8 Knuth Algorithm

In this algorithm, dynamic Huffman coding algorithm has been

implemented as a group of array data structures. The class

for this algorithm is given in the following.

class Technique : public Utility {
private:

unsigned sen], p[n+l], c[2*n], a[n+l], b[2*n], w[2*n], 1[2*n];
unsigned g[n*2], d[2*n], m, e, r, h, v, z, code, len, max len;
unsigned testval, end;

protected:
char tech[50], scaled[5], model [50];

public:
Technique(void) ;
void initialize(void);
void exchange(unsigned q, unsigned t);
void update(int k);
void encode(int k);
unsigned decode(void);
void compress (FILE *fi, FILE *fo, long *tc, long *sc, long *cc);
void decompress(FILE *fi, FILE Uo, long *tc, long *sc, long kc);

-157-

Initialize Kodel: The model is initialized as a single zero

weight leaf node.

initialize the tree.

The function initiBlize() is use to

Kncoding Symbols: The leaf node corresponding to the
correct symbol is found from the data structure. The bit
stream representing the path from the leaf to the root is
kept in a stack. Then codeword is the reverse order of this
bit stream which can be written from the stack to the code
file. The zero weight symbol is encoded as an optimal
encoding scheme. The encoding algorithm is implemented in
the function enoode().

Decoding Code Stream: Decoding procedure is easier than the
encoding procedure. Starting from the root of the tree,

follow a path to the leaf according to the bit getting from

the bit stream and emit the symbols corresponding to the

leaf. If the leaf node is a zero weight node then some of

the next bit stream interprets the symbol.

implemented in the function deoode().

This is

Updating Tree: The update procedure is to adapt the Huffman

tree for new counts of symbols. This can be done by

maintaining the sibling properties. This function is also

-158-

r..".):"
l.'J)

has to maintain the zero weight symbols. The sibling
properties are maintained in two steps. In first step, it
finds the highest numbered node with the same weight and

interchange the current node with that node and in the

second step, increment the weight of the node. The current
node is the parent of the node in which weight is increased.

The function updste() is written to do this job by calling

functions exchsnge().

5.9 Vitter Algorithm

The steps to implement the Vitter algorithm, i.e., the

optimal dynamic Huffman coding technique are similar to the

Knuth algorithm. But the main difference is to maintain the
invariant with implicit numbering scheme discussed
previously in the algorithms. This is done by the updating
and routine. Initialization,
encoding and decoding routines are implemented similar to

the FG~a~gorithm, but maintained the node blocks and leader

of the block. The class for the Vitter algorithm is given
in the following.

-159-

r~I ..
\.

} ;

class Technique: public Utility (
private:

int m, r, e, z;
int alpha[N1], rep [N1];
int block[N2];
long int weight[N2];
int parent[N2],parity[N2],rtChild[N2],first[N2], last[N2];
int prevBlock[N2], nextBlock[N2];
int availBlock;
int stack [N1];
int q, leafToIncreament, bq, b, oldParent, oldParity;
int slide, nbq, par, bpar;

protected:
char tech[50], scaled[5], model[50];

public:
Technique(void);
void initialize(void);
void update(int k);
void encode(int k);
unsigned decode(void);
int FindChild (int j, int parity);
void InterchangeLeaves (int e1, int e2);
void FindNode (int k);
void SlideAndIncreament (void);
void compress (FILE *fi, FILE *fo, long *tc, long *sc, long *cc);
void decompress(FILE Hi, FILE *fo, long *tc, long *sc, long *cc);

Updating Tree: Updating routine maintain the tree with a

floating tree data structure. This tree use only right child

and parent pointer to the leader of the block. A list of leaf

and internal block of nodes are maintained using arrays of

integer discussed in the algorithm section of the thesis. The
main procedures used the updating routines are
s1ide~and_increment(), find node(), find child(), and
interchange leaves(). Using these functions, update routine

maintains the invariant (3.3).

-160-

,\

'I

Sliding node and Incrementing weight: The main routine which

maintain invariant (3.3) with implicit numbering is the

function slide_and~increment(). The current node IS to be

made a member of the block of node whose weight is one higher

than the current node. So this node is interchanged with the

leader of current block and is to move to the block whose

weight is higher. This can cause the nodes implicit numbering

to slide past the numberings of the nodes in the next block.

5.10 Arithmetic Coding

Arithmetic coding algorithm is implemented as .static ,dth

scaled symbol counts. The implementation of the Technique

class uses the almost similar member function for counting

symbols, scaling symbol counts, saving scaled symbol counts

and retrieve symbol ccounts as those of the scaled version of
Shannon-Fano and Huffman algorithm.
bellow.

-161-

This class .is given

class Techlique : public Utility {
private:

short int totals [258]; / / range table.
/ / range and code of tt-e encoder.
unsigned short int code;
unsigned short int I"",;
unsigned short int high;
long underfl"",_bits; / / under fI"", count
/ / range of tt-e current symbol.
unsigned short int l"",_count;
unsigned short int high_count;
unsigned short int scale;

unsigned long *counts;
unsigned char *scaled_counts;

protected:
char tech[50], scaled[5], model [50];

public:
Techlique (void);
void build_model (FILE*fi, FILE*fo, long Hc, long *sc);

void scale_counts (void);
void build_totals (void);

long int count_bytes (FILE*fo);
10"1gint output_counts (FILE*fo);
long int input_counts (FILE*fi);

};

void int2symbol (int symbol);
void get_scale (void);
int symbo12int (int count);
void initialize_encoder (void);
void encode (void);
void flush_encoder (void);
short int get_count (void);
void initialize_decoder (void);
void remove_symbol(void);
void compress (FILE*fi, FILE*fo, long Hc, long *sc, long' *cc);
void deconpress(FILE *fi, FILE*fo, 10"1gHc, long *sc, long *cc);

Compression: We implement the arithmetic coding algorithms
as the integer arithmetics with incremental transmission
method. The compression function performs three different

-162-

,I

jobs: (i) initialize the model and encoder, IiiI encoding and

(iii) flushing the encoder.

It counts the all symbols of the source text,

The model is

build 'model().

initialized with the member function

scaled the counts and save the counts to the code file.

Finally builds the range table for the coder. This functions

use the function count_bytes(). scale_counts() ,

output_counts() and build totals(). The encoder is

initialized by function initialize_encoder() just by setting

up the low and high value of the range and the under flow bit
counter.

The compression function sets up loop to encode each symbol of

the text file. It get a symbol, cover the symbol to the code

rage by i.nt2symbol(), and encode the symbol using encode().

Finally the arithmetic encoder is flushes to the code file
using flush_encoder().

Expanding: The model is rebuild from the symbol counts from

the header of the code file. The decoding routing retrieve

the symbol counts and build the range table using

input_counts(). The decoder initializes with a word from the

code message and the low and high range.

-163-

This is done

by initialize_decoder(). The expansion routine then sets up

a loop and gets scale and counts of the symbol, convert the

symbol range to the symbol (character) and remove the effect

of the symbol from the range. These is done by

get_scaler), get_country, symbo12int() and remove_symbol()

functions.

-164-

_.

DESIGN OF EXPERIMENTS AND RESULTS

6.1 Design of Experiments

In this study we would like tb analyze performance of various

coding algorithms applied to BangIa texts.

text in the following formats:

(i) Document BNA format

We have selected

(j i)

(iii)

Non-document XFR format

Non-document standard STD (BSCII) formaL

and for" each fOI"mat of the text input llas been considered for

general as well as special BangIa text.

Following different lengths (1000. 2000,

Files of the

10,000, 20,000,

... , 200,000) in bytes has been considered For ascertaining

differences of efficiency of

algorithms considered for coding

vat~ious algorithms. The

and decoding ar'e Shannon-

Fano, Huffman - static, Huffman - dynamic (Faller & Gallager,

Knuth, Vitter) and Arithmetic coding. Most of these also have

been run on both scaled and unsealed counts. As a rneasu Ie of

coding efficiency, coding and decoding tirnes and also

compression efficiencies have been considered x Observation on

these quanti ties for different algori thms wi th general and

specific types of texts stored in different formats has been

-165-

,\

made. Lengths of statistics and actual codes in compressed

file also shown separately for static version of each of these

algorithms.

6.2 Results

Results, obtained by applying different compression algorithms

to different texts, have been presented in tables and graphs.

Static Huffman Codes and Shannon-Fano codes for BangIa text

are given in order of symbol numbers in Tables 6.1 and 6.2
respectively. The Huffman tree and Shannon-Fano tree "'-!'

...;~

corresponding to the codes are shown in Figs.6.1 and 6.2.

coding is better than Shannon-Fano coding. The tables showing

The Tables 6.1 - 6.2 and Figs. 6.1 - 6.2 show that Huffman
,',

the results of compression techniques are arranged in order of

varying text formats and file types, with scaling or without
scaling status, static or dynamic models and types of
algorithms. For each file length, we show performance of

various algorithms once for scaled counts and once for

unscaled counts to compare performance of these algorithms on
fixed length files.

Tables 6.3(a) to 6.3(c) show the compression efficiency,

coding and decoding times of different algorithms for fixed

length files for general and specific texts of different text
formats. In Graphs 6.1 to 6.3, the compression efficiency,

-166-

L I L I '---["f,IJ' 127 :'
[149'28J
'--[125,14J,229: :5

[197'449JL,-[182'108J'102: <l
[191,209J •

I

~~

'\,,-
w~,

,-[124'14J,196 :9-
[148,27J

1 '---[123'13J'104 : "'r
[166,52J

L ,-[122, 13J'82 C "l.
[147,25]

L ,-[70,3J,228:
[96'6J

1 '---[69,3] ,214 : ~
[121'12JL,----[68,3J,97: ~

[95,6J "
'---[67, 3J,86 : U

-[181, 101J

L,-[146 25],110: 'iI
[165'49J

L ,-[94,6J'231: J
[120,12J

1 '---[93,6],198: C"

[145,24]
L-[119, 12J' 112: '"

''0

" "+J •. ro,~ .
IDC.L<'1j
+J"Q)O

'.0 ".~"~ ~..tlIItIlc;«l". .. .~
<Xl"'0

, 0 •
~ a c.c:
0'" .,
4-l In II

w

f-
a
:.i

-[201,1653J
,.---[190,188J'194: T
[196,364]

,

. ,.---[164,46J,98; <J
[180,90]

1 L ,-[118, 11J,74 : \~I [144,22]

I
1'-[117'11J,72 :'9

[163:44J
L-[143:22J,67: of

[189,176J

L ,-[162,44J: 100: "'
[179,86]

L ,-[142:22J,66: ~.n
[16L42J

,--[66,3J:81:]; .
. [92:5J ".

IL,-[40,1]'252:~
[65:2J
'-[39, 1]: 232: J

[116,10]
1 '---[91, 5J,199; ~

[141,20]
'--[115, 10J,83: ""

[199,681J

L ,.---[178,84J;195: l'
[188;167J

1'--[177'83J ,200: 7.
[195,317J

L,.---[176,77J' 91: '5
[187:150J

,-[114,10J,78: sr

1[140;20]
L-[113:10J:65 : 'C.,

[160,38J
. ,[90'5j'39: ' _

[112,9]

L ,.---[38'1];227:J
[64,2J

1 '--[37: 1J, 223: ,I
. [89,4J

Lr-[36' 1J;222:
[63;2J _
'---[35'1],221: ,

[139,18J
'--[111:9J'235: '"[175,73)

L,.---[138,18J'202 :''f
[159,35J

L,-[110'9],77: ':r
[137,17]

,-[34; 1]; 220 . '.
,--[62,2]
I '---[33'1]'218:"

'

[88'4]

L ,.---[32:1] ,216: :,
[610 2] _
'-[31,1],215: .,

[109,8]

L ,-[30;1],213:\,
,--[60,2) _
I '-[29'1]:211;":

[87,4] _

L ,-[28,1],210: G
[59:2]
'---[27,1] ,209::.'".,

'"

"III IJJC'.-I..".. . ..
+JID.j.J(I).",.0Cl-l'tlOS
ro+J ..-l~

" ."4-l'W :t.. '" ~:::l.j..J II 0
X .0..,"
o 0 '". .-f Q) til., ...
ro-aIDII"0'"(fJZ:tCll

~--e

I

[134,16J

,

I

[155,32J
-::.r

s
2

.~'"

'.:

.1 r-(174,72),76: 'P
(186,141)

'[L,-(156,35), 103: '"(173,69)

L ,-(136, 17),101; 'J
(157,34)
'---(135,17),44: ,

(194,271)
r-(158,34) ,93; "
(172,66)

r-(26,1),207: ,j
-(56,2)
I '-(25'1),208:J

'

(66'4)

I r-(24,1),205: ,I
-(57,2)

'-(23,1),204 : ~
(108,6)

L
r-[22'1),203 cf
(58,2]

1'-(21,1),201 ?
[S5,4)

Lr-(20'1)'1l4: .'"
(55,2)
~(19,1),113 : :

,

-'

,

':
'z>

,,>r

'S

l%

,r

s
v

: •......\>

2

r-(1S, 1), III
(54,2)

1 '-[17,1)'109

I
(S4'4)

L,-(16'1)'10S
(53,2)
~[15, 1),S7

(107,S)

L r-(14,1),65
(52,2)

1 '-(13'1),S4
(S3,4)

Lr-[12'1)'SO
(51,2)
'-(11,1) ,79

(134,16)

[155,32) _
r-[10'1),70~_.- -[50,2J - ._,

1'---[9, 1) ,59 : .
[S2,4) ,

1Lr-(6'1),56 : .,..
(49,2)
'-[7,1],55 cr

(106,S)L r-(6,1),54
(4S,2)

1 '-(5,1),52
(SI,4)

L,-(4'1),50
(47,2)
'-(3,1),49 : "

:I.

(IS5,130)

-

--." . ~---.

L(133'16). L r-(2,1)'4S: 0
r-(46,2)
I '-(1,1),46
(SO,4)

1 '-(45,2),224 : .,[
[105,S) .

Lr-[44'2)'6S: .:J:
[79,4)
'-(43,2),83: ?

r-(7S,4),233 . ~
(104,S)

1'-[77,4)'105 : 2f
(132,16)1Lr::-::(76,4) ,99 '"

lI03,S)
'-(75,4),94 : 'if

(154,32)

[L
r-(74,4),92 ~

, (102,S)
1'-(73,4),69 : d-

. (131,16)
'-(101,S),219 : ~

(171,64)
\-(153,32),106 : ~

r-(19S,523)
I '-[193: 252]: 32 : .s~"'("o!.

(200,972) ,
r-(170,62)'95 : ••
(IS4,123)

r-(130,16),197 : e-
(152,31)

i
l. -,-=(100'S) ,90 ; "

I:..=l129,15) .

Lr-(72,4),45: -
. (99,7)

Lr-(42'2)'33 :
(71,3)
'-(41,1),256: "''Of

(169,61)

L r-(12S, 15),230 :~
(151,30)
'-(127,15)'121: ,

(192,240)

iLr-[166'80)'107: l.:
(IS3,117)

L r-(150,29),96: .".
(167,57)

\. v

..< ,--(174,72),76: 'P
(166,14IJ

IL ,-(156,35), 103; iil
(173'69J

L,--(136, 17),101: 'i1
(157,34)
'--(135d7) ,44 : ,

[194,27IJ
,--(156,34),93: "
(172,66)

,--(26, 1),207 ; ,J
-(58,2)
I '--(25,1),206:,J
(86,4JII ,--[24,1),205: ,I
-(57,2)

~[23,1),204 : ~
(108,6) ,

L ,--(22,1),203 (1
[56,2J

1'--(21'1),201 ?
[85,4)

L
,--(20,IJ,114: '.J

[55,2)
~(19,IJ,113 : :

"\

(134,16)
,--(18,1],111 : ,
(54,2)

1 ~(17,1),109 : :\>
(84,4) ...•IL.-[16'1)'108 : 'f

(53,2)
~(15,1),67 ~

(107,8)L ,--[14,1),85: ""
(52,2)

1 ~(13,1),84 : ar
(83,4)
L ,--(12,1),80 '"[51,2)

~(11,1),79 : ~r
[155,32] . ~ /

I ,--(10,1],70 .•••
-_.-. - _.- -[50,2) --

1 '--(9,1],59 : .
(82,4) ,IL,--(8,1),56: "...

(49,2)
'-[7,1),55 : <f

[106,8)L ,-[6,1),54: v
[48,2)

1 '-(5,1),52 : S
[81,4].

I . I I I I
L ,-(4, I) ,50 : 2

I. (47,2)
'-(3'1)'49 : ;)

(185,130]

,
...:.

~-~.~ -I •.•.••

L[133,16]. L ,--(2,1),48:0
(46,2]1 '--(I, I] ,46

(80,4]
1 '--(45,2],224 : .,[

(105,8) .

L,--(44, 2) ,68 <k.
[79,4)
'--(43,2),63 ?

,--(78,4)'233 ~
(104,8)1 '--(77,4), lOS 2f

(132,16)

IL [78,4),99 '"
[103,8)
'-(75,4),94 : '%

(154,32)

IL
,--(74,4],92 ~
(102,8)I"'--[73,4),69 : q.

. (131,16)
; '--(101,8) ,219 : ~

(171,84)
'--.--.(153,32),108 : ~

(198,523)
1'-(193,252),32: "fA«.

(200,972)
,--(170,62),95 :"
(184,123)

,--(130,18)'197 : e-
(152,31)

r
I .r.=[100'8) ,90 : r:.-

'~lI29,15]' .

L,--[72'4)'45: -
. (99,7)

L,--(42'2)'33 ;
(71,3)
'--(41, I) ,258: eof

(189,61]

L
,--(128,15)'230 :~

(151,30)
'--[127,15],121: ,

'

[192' 240J

L,.--[168: 60): 107 : ::
(183,117)

L,--(150'29)'96; ?r
[187,57)

1-"

L L ,--[98,7J,226:,
[126,14J, I '---[97,7J,127 :'

[149,28J
'--[125,14J ,229 : :5

[197,449J

L ,-[182, 108J,102: <J
[191,209J •

I

,

,,,.
co~,

,--[124, 14J' 196 :9-
[148,27JI L-[123,13J' 104 ; ""

[166,52JL ,--[122,13J,82 : ~
[147,25J

L ,--[70,3J,228:'
[96,6J1L-[69,3J,214: ~

[121,12J '

L,-[68'3J'97: '<J'
[95,6J "
1--[67,3J,86: 1l

[139'18]
'--[111,9J,235: /<'

[175,73J

L~[138, 18],202: '--r
[159,35J

L,--[110'9],77: or
[137'17J

,-[34, 1],220
[62,2]

I L-t33'1]'218:"

,

[88'4J

L ,-[32, 1],216::'
[61,2] .
'-[3L1J,215: ,

[109,8]

L ,--[30,lJ,213: Is
[60,2J _

I L-[29,1]'211: ,<
[87'4J _

L ,--[28,lJ,210: k
[59,2]
L-..-(27: 1]; 209: :y.

-[181,101J •

L ,--[146,25J,110: "J
[165,49J .

L ,--[94'6J'231:,J
[120,12J1L-[93,6],198: '''.

[145,24]
1--[119,12]'112; '"

"0
me

+oJ •• ttl,~ ID
lPCI-l"'O
+oJ •• Q.l 0

, -" c.~s
~ ""'aOOOca:lc. ID
• ID ~

'" C-o, 0 ID
I-lOc..t:0-" __

CI-< rn Ii
C

Q) lJJ c.'"
ID'"
" ."+.JQ;I+JID

ID-" -"
l: '-' 'tJJl S
ltI +.J.,.,::J
• ID C
4.< 'w :l""-,, ~
:::J +.J II 0

'" -""",so 0 >-
.,., Q) Cil__ ID"
Cll"'O ill II__0-"

U1Z:Jtn

co

'"-"
'"

f-
a
:L
-[201,1653J

~[190, 188]'194 : 'r'
[196,364J

"

~[164,46J,98:<J
[180,90J'L ,-[118,l1J,74 ',\3I [144,22J

I
1 '-[117,l1J '72, :,~
[163,44J '
1--[143,22J,67: 'i

[189,176J

L ,--[162,44J' 100; "f
[179,86JL,--[142,22J' 66: cOOSl

[161,42J '
,--[66,3J,81: ~
[92,5J

IL~[40,1],252:~
[65,2J
'-[39, 1], 232:J

[116,10J1L-[91,5J,199: <-
[141,20J
'--[115'lOJ,83: "'t

[199,681J

L ,--[178,84J' 195: '!
188,167J

IE[177'83J'200; r.
[195,317J

L,--[176,77J' 91: '5
[187,150J

,-[114,10J,78; '"
[140,20Jr 1--[113, 10J,65: '$J

[160,38J
,[90,5.j'39: '.__ , _~_
[112,9J

L ,--[38, 1J,227 :J,
[64,2J1 L-[37, 1J' 223: ,I

, [89,4J

L,-[36'lJ'222 :
[63,2J
1--[35'lJ,221: "

~
-C

1__ - -I

I
I

,---[508: 252J:32: ~Frr_
[512:792J

L,---[505: 188J :194: ";-
[509:540]

L ,---[502:108J:I02: 21
[506:352J .

L ,---[499:84J:195: 'I'
[503:244J'L ,---[498: 83J :200 : G:

[500:160J
L--[497:77J:91: ~

t-
O

~
-[513:1653J

, .

I

fe,,,, 12],112,'"
[442:23]

1'--[439: 11] :74 : l~
[444:54]

L,.--[436: 11] :72 : ~
[441:31]

L ,.--[435: 10] :83: 0(
[437:20]
'-[434:10]:78: Si

[446:112]
,.--[429: 10] :65 : \?J

,

[433:28J

L,.--[428:9]:235: -"
[430:18]
'--[427:9]:77 : 'l.r

[443:58]

L,-[424:8]:219 : ~
[432:30]

L,-[421:8] :90: rl
[425:22J

(-[420:7] :226 : :J
-[422:14]

'--[419: 7]: 127 •

,--[490:72J:76: ~
[494:194JIL,.--[489:62J:95:~

[491:122J
L-[488: 60]: 107 : ~

[496:414J

L ,.--[485:46J:98:<r
[487:90J

1.L-[484:44]:100: ar
[493:220J

L ,--[481: 35]: 103: "iYI
[486:130]

L .--[478: 34J: 93 : Y,
. [482:95J

L ,--[477:32J: 106: ~
[479:61]
'--[476:29]:96: 9

, ,--[469: 25]: 110: '5:l
[471:47J .I L--[468:22J:67: Z

[473:104J

I ,--[465:22] :66: 'e<1l
-[470:57]

L,--[464:18]:202: t;"
[466:35]
'--[463: 17]: 101 : ~

[475:221]

I ,.--[458: 17] :44: ,
[462:48] .I L,--[457: 16]: 197: 0-I [459:31]

.. , .,. - .:-'-[456: 15J: 230 : '-'
[472:117]

L ,.--[453:15]:121: I
. [455:29].

1'--[452: 14]: 229 : 3
[461:69]

L,.--[449: 14] :196 : '.:\'
[454:40]

L,.--[448:13]:104: ""-:-
[450:26]
'--[447: 13J:82 : 1i:..[495:447]

[511: 861]

[474:226]

L-[445:114J

I
<Xl
to...•
I

;--[298: 1]: 55: 9
,-[300:2]
I "--[297: 1]: 54 : 01

1
[302:4]

L;--[296: 1] :52 : S
[299:2]

" '--[295: 1]: 50 ; 2.
[316:"7]

L {_[292:1]:49: d
-" [294:2]I '_[291:1]:48:0
[301:3]
'_[290:1]:46

,--[357: 1]: 222: ~"
r--[359:2]
I '---[356: 1]: 221 : -"
[361:4] . --

ILr-[355:1]:220: ~
[358:2]
'----[354:1] :218 :-~

[374:7]

L ;--[351: 1]: 216: :-
r--[353:2]
I '----[350:1]:215:3,
~360:3]
-[~49: 1]: 213 : IS

~[340:1]:211 :~
r;-l342: 2]
I' '-[339:1]:210:t

1
[344:4] -

L,-[338: 1]: 209 : i!>
[341:2]
\-[337: 1]: 207: J

[346:8]

L
,---[334:1]:206:;.(

r--[336:2]
. I '--[333:1]:205:J
[343:4]

L,-[332: 1]: 204:},
[335:2] ~
'-[331: 1]: 203: ,'1

..-[326: 1] :201: t
,-[328:2] "
I '--[325: 1] :114: '"

\

[330:4]

Lr-[324: 1] :113 : ~
[327:2]
'----[323: 1]: 111: S

[34.5:7]
r-[320: 1]: 109: 9

f
[322:Z]

. '----[319: 1] :108: ~

[329:3]
'_[318:1]:87: b

,-[311: 1] :85 : "'l>
[313:2]I"'--[310: 1]: 84: -as-

[315:4]

1L;--[309: 1] :80 : ~
[312:2]

: '--[308:1] :79 : 'iJ
[317:7]

~[305:1]:70 :~
l307:2]

1'_[304:1]:59: ;
-[314:3]

'-[303:1] :56 : 0-
[347:14]

[348:15]

[388:29]

,---[383: 3] :97 : ?..t>
r--[385:6] .
I '----[382:3] :86 . ..:J
[387:15] . 19

L ,---[379: 3]: 81: i;I
r--[381:5]
1'----[378:2] :224: ;J
[384:9]

Lr-[377:2]:68 : ~
[380:4]
'----[376:2]:63 : ?

,.-[369:2] :33: 1

1[373:4] .

L;--[368: 1J:256: eot
[370:2]

".. ---- '-[367: 1] :252: "
[375:7]

L ,---[364: 1]: 232: .J
r--[366:2]
I '----[363: 1]: 227: :::v

~372(~~2:1]: 223: J
[386:14]

[389:29]

[417:58]

N

.
bO...
ex..

.
to

....,
x
W...., ,"

1JJ 10
III •• III..-i...... W
tlIJC,","
10 •• W 0
III :x..o 10

OJ •...••S

~""'
'"' 1JJ 10 IIIo III W

""' W ..-iC"W :x 0 WWoc.<:
'"'.<:,
+J Ul II

C0(1) C.r-!
C'"
III ,,",
t«W"",W
I W.<:..o

'C,",tlIJSo 4-J.,... :i
C W C
C W :x
III .<: ..-i

..c J.J II 0
r.f) ..0••.• :xEl
00 >.

.1""4 Q) til
...., W '"'
cd '"C (D II....,0.<:

r.f)Z:xlJJ

Table 6.1(a) Static Huffman Codes in order of symbol number.

Symbols Counts Codes Symbols Counts Codes

32 252 110 106 -:~.r 32 111000
33 2 1011010001 107 .~) 60 10101
39 5 00001011 108 ¥ 1 11101010101
44 17 1111000 109 , 1 11101010110
45 4 101101001 110 , 25 100001-;j .

46 1 11101000110 111 ~ 1 11101010111
48 0 1 .11101000111 112 ,:;{ 12 1000000~
49 co 1 11101001000 113 , 1 11101011000
50 " 1 11101001001 114 "" 1 11101011001
52 3 1 11101001010 121 15 1011000
54 ", 1 11101001011 127 , 7 10100010
55 '1 1 11101001100 194 188 011
56 b- 1 11101001101 195 co- 84 0011
59. ; 1 11101001110 196 ~- 14 1000111
63 ? 2 1110100000 197 o. 16 1011011
65 I9F 10 0000110 198 6 10000010
66 ISll 22 010001 199 <. 5 01000010
67 .~ 22 010100 200 __.r:, 83 0010
68 Q 2 1110100001 201 1 11101011010
69 ~ 4 111001010 202 18 000001;y G "C-

70 ~ 1 11101001111 203 GI- l 11101011011
72 ~ 11 0101010 204 ~j., 1 11101011100
74 \3 11 0101011 205 ..'11' 1 11101011101
76 <P 72 11111 206 ~;,' 1 11101011110
77)~ 9 0000001 207 £! 1 11101011111
78 ST 10 0000111 209 '.:. 1 0000000000
79 £J 1 11101010000 210 o' 1 0000000001z.80 '0 1 11101010001 211 ;i. 1 0000000010
81 l' 3 010000111 213 'v. 1 0000000011
82 7~ 13 1000101 214 G 3 100010010
83 = 10 0100000 215 ~ 1 0000000100
84 , 1 11101010010 216 - 1 0000000101<Ii "85 013 1 11101010011 218 1 0000000110
86 ~ 3 100010000 219 - 8 1110010015 "87 b 1 11101010100 220 1 0000000111
90 " 8 10110101 221 1 0000101000
91 v:!i 77 0001 222 " 1 0000101001
92 'Zr 4 111001011 223 ~ 1 0000101010
93 11: 34 111011 224 ? 2 1110100010
94 ~ 4 111001100 226 .J 7 10100011
95 62 10111 227 - 1 000010101161 096 \Ii 29 101001 228 I 3 100010011"'97 <l' 3 100010001 229 }" 14 1010000
98. <l 46 01011 230

J
15 1011001

99 \9 4 111001101 231 6 10000011
100 ¥ 44 01001 232 ~I 1 0100001100
101 :cr- 17 1111001 233 -..J 4 111001111
102

~
108 1001 235 9 0000100

103 35 111101 252 1 0100001101
104 0S1 13 1000110 256 eof 1 1011010000
105 ':q- 4 111001110

-169-

Table 6.2(a) Static Shannon-Fano codes in order of symbol
number.

Symbols Counts Codes Symbols Counts Codes
32 252 11 106 ".r 32 0100001
33 2 0000010111 107 <: 60 01100
39 5 000011001 108 '~;' 1 00000010010
44 17 001011 109 ~ 1 00000010011
45 4 000010001 110 • 25 001111:p46 1 0000000000 111 , 1 00000010100048 ') 1 00000000010 112 2. 12 0001111
49 0' 1 00000000011 113 , 1 00000010101050 ,', 1 00000000100 114 ,~ 1 00000010110L

52 S 1 00000000101 121 15 0010011
54 0 1 00000000110 127 G 7 000100000
55 '1 1 00000000111 194 "~- 188 101
56 v- 1 0000000100 195 r-, 84 10001I59 1 00000001010 196 o. 14 0010001• j63 ? 2 0000011000 197 o~ 16 0010101
65 I9f 10 0001011 198 v, 6 00001110
66 \£J! 22 001101 199 <, 5 00001101
67 "0 22 001110 200 7 83 100001,..:::;- '068 0/. 2 0000011001 201 (, 1 0000001011169 '" 4 000010010 202 18 0011001~ ~-:70 1 00000001011 203 - :...? 1 00000011000w "" ,72 ~ 11 0001101 204 ..,' 1 00000011001
74 S 11 0001110 205 ?J 1 0000001101076 72 0111 206 .. 1 000000110111', ;0-,

77 :.J- 9 00010100 207 ,[1 0000001110078 ? 10 00011000 209 \!' 1 00000011101
79 £r 1 00000001100 210

'" 1 0000001111080 '" '?- 1 00000001101 211 -, 1 00000011111v'81 -l? 3 0000011011 213 ~\ 1 000001000082 "51 13 00100000 214 :6 3 000010000083 '" 10 00011001 215 1 000001000109. ."84 , 1 '00000001110 216 1 00000100011<1r "85 1 00000001111 218 .. 1 000001001000:B ;J
86 :;:> 3 000001110 219 '" 8 0001001
87 ~ 1 0000001000 220 .. 1 00000100101~,90 ",' 8 00010001 221 .. 1 00000100110~91 vJ' 77 100000 222 "" 1 0000010011192 s:r 4 000010011 223 .{ 1 000001010093 7i 34 010001 224 J. .2 0000011010
94 ~ 4 000010100 226 -1 7 000100001
95 61 62 01101 227 ,C- 1 0000010 101096 7f 29 0100000 228) 3 000010000197 ?P 3 000001111 229 :; 14 001001098 :;1 46 01011 230 '--' 15 0010100
99 \3 4 000010101 231 ...I 6 00001111100 <-f 44 01010 232 J 1 00000101011
101 '2J' 17 0011000 233 ,I 4 000011000102 ? 108 1001 235::'1. 9 00010101
103 M 35 01001 252 , 1 00000101100104 as"; 13 00100001 256 eof 1 00000101101
105 C1 4 00001011

-170-

Table 6.3(a) : Coding efficiency (%) for fixed file size.

File Coding SCaled General Text Specific Text
Size Technique Count STD XFR BNA STD XFR BNA

Shannon-Fano Yes 24.00 19.60 13.00 20.50 19.70 13.50
. No .5.10 -15.00 .32.00 -13.40 -13.60 .26.50

Huffman Yes 24.70 20.70 13.60 22.00 21.00 14.10
No -4.40 .14.10 -31.40 .11.00 -12.30 .27.00

1000 FGK Yes 28.70 27.60 22.00 27.20 27.30 21.10
No 26.70 27.60 22.00 27.20 27.30 21.10

Knuth No 27.50 26.60 20.60 26.10 26.30 19.70
Vilter No 26.40 27.40 21.70 26.60 27.00 21.10
Arithmetic Yes 24.80 20.00 13.70 22.10 21.00 14.20
Shannon-Fano Yes 33.16 31.40 29.11 32.80 31.66 28.84

No 29.61 26.76 23.46 28.96 26.61 23.06
Huffman Yes 33.70 32.42 29.93 33.96 33.02 29.68

No 30.42 27.88 24.42 30.47 28.15 24.12
10000 FGK Yes 34.07 33.22 30.67 34.41 33.99 30.49

No 34.07 33.22 30.67 34.41 33.99 30.49
Knuth No 33.90 33.16 30.51 34.27 33.88 30.35
Vilter No 34.03 33.30 30.68 34.36 33.99 30.52
Arithmetic Yes 34.18 32.00 30.20 34.39 33.39 30.02
Shannon-Fano Yes 33.58 31.30 27.83 32.35 31.69 31.29

No 33.65 31.23 30.97 32.23 31.76 30.97
Huffman Yes 34.58 32.67 30.17 33.98 . 33.51 32.12

No 34.47 33.24 29.96 34.15 34.05 31.88
200000 FGK Yes 34.96 33.88 31.23 34.30 34.09 32.90

No 34.84 33.158 30.97 34.17 33.96 32.83
Knuth No 34.83 33.67 30.97 34.16 33.96 32.62
Vilter No 34.84 33.69 30.99 34.17 33.96 32.63
Arithmetic Yes 34.92 33.03 30.47 34.33 33.73 32.61

Note: STD = BSCII format, XFR = Non-document format and BNA = Document formal

-171-

Table 6.3(b) : Compression time (sec.) for fixed file size.

File Coding Scaled General Text Specific Text
Size Technique Count STD XFR BNA STD XFR BNA

Shannon-Fano Yes D.99 1.04 1.04 1.04 1.04 1.1D
No 1.04 1.04 1.15 1.1D 1.04 1.15

Huffman Yes D.99 D.99 1.1D 1.1D 1.1D 1.15
No 1.04 l.lD 1.21 1.10 1.1D 1.151000 FGK Yes 1.04 1.04 1.1D 1.04 1.04 1.1D
No l.lD 1.10 1.15 1.1D 1.1D 1.10

Knuth No D.99 1.04 D.99 1.04 D.99 1.1D
Vitter No 1.21 1.26 1.32 1.21 1.26 1.32
Arithmetic Ves 1.1D 1.1D 1.10 1.15 1.10 1.1D
Shannon-Fano Yes 9.D7 9.18 9.29 9.18 9.12 9.45

No 9.23 9.40 9.67 9.29 9.12 9.52
Huffman Yes 9.D7 9.18 9.51 9.12 9.12 9.51

No 9.18 9.29 9.56 9.23 9.18. 9.5210000 FGK Yes 10.00 lD.16 lD.38 ,D.16 1D.ll lD.60
No lD.22 lD.33 lD.60 lD.33 lD.33 lD.77

Knuth No 9.95 lD.OO 10.22 lD.OO 9.95 lD.38
Vitter No 11.81 '11.98 12.25 11,87 11,76 12.31
Arithmetic Yes 10.55 10.71 10.77 10.71 10.60 10.88
Shannon-Fa no Yes 193,es 1116.43 201.43 195.77 195.48 197.75

No 197.09. 199.62 198.68 195.71 196.32 198.68
Huffman Yes 193.57 195.49 199.29 193,02 193,24 196.48

No 194.01 195.74 201.43 194.22 194.53 197.40200000 FGK Yes 212,53 215.27 219.89 214.95 215.55 218.13
No 214.95 216.92 221.81 216.32 217.03 219.67

Knuth No 212.53 211.92 217.75 213,24 213.08 218.28
Vitter No 247.75 248.es 254.56 248.41 248.79 252.58
Arithmetic Yes 226,32 227.75 230.77 228.54 226,76 228,35

Note: STD = SSCII format, XFR = Non-document format and BNA = Document format.

-]72-

Table 6.3(c) : Decompression time (sec.) for fixed file size.

File Coding Scaled General Text . Specific Text
Size Technique Counl STD XFR BNA STD XFR BNA

Shannon.Fano Yes 0.93 0.99 1.10 0.99 0.99 1.04

No 0.99 1.04 1.10 1.04 1.04 1.15

Huffman Yes 0.99 1.04 1.10 1.04 0.99 1.10

No 0.99 1.04 1.15 1.04 1.94 1.21

1000 FGK Yes 1.04 1.04 1.10 1.04 0.99 1.10

No 1.04 0.99 1.15 1.04 1.10 1.15

Knuth No 0.99 0.99 1.04 0.99 0.99 1.04

Vitter No 1.21 1.21 1.26 1.26 1.21 1.26

Arithmetic Yes 1.26 1.37 1.37 1.32 1.32 1.37

Shannon-Fano Yes 9.12 9.23 9.45 9.18 9.18 9.45

No 9.18 9.34 9.56 9.23 9.34 9.62

Huffman Yes 9.07 9.18 9.4 9.01 9.12 9.45

No 9.12 9.4 9.62 9.18 9.29 !;i.62

10000 FGK Yes 9.73 9.95 10.05 9.73 9.78 10.05

No 9.95 10.11 10.33 10.05 10 10.33

Knuth No 9.89 10 10.22 9.78 9.84 10.11

Viller No 12.03 12.09 12.36 11 .!l2 12.03 12.36

Arithmetic Yes 13.19 13.3 13.88 13.3 13.35 13.74

Shannon-Fano Yes 197.31 200.55 208.02 199.34 200.49 200.99

No 197.80 201.37 194.80 201.04 201.26 194.89

Huffman Yes 195.05 197.86 202.36 195.22 196.10 100.08

No 195.80 196.28 203.11 195.58 196.50 198.00

200000 FGK Yes 208.24 210.60 215.n 208.85 209.67 212.31

No 211.59 213.85 218.30 211.76 212.47 214.78

Knuth No 213.46 214.84 220.33 212.31 212.64 214.95

Vitter No 253.46 254.45 260.93 253.96 254.23 257.36

Arithmetic Yes 281.59 248.84 291.81 263.35 284.23 288.68

Note: STD = BSCII format, XFR = Non-document format and BNA = Document format.

-) 73-

Graph 6.1:. Compression Efficiency
(8 for scaled and U for unsealed)

V:ttGI, {U) ;;'jWf#;';';V(;t\iiWtWOh\lli\«ll\W)'_~_m~~
~
",r,.' .. , .. "I" ".-,""" "'", ,..., "",""._.,. -.-..-•.-.~.,,""777,Knuth (U) m!!m"\W!!!!!!!"'\\\\\\\\\\\\\t'!l"m\\\Wi\~\\\\'""", ~

Fall er -Gall ag e r, (U) ~!!-!!-!!-!\-i!-\\-h-\-,\-!,-!!-n-\$-\\-~\-i\-.\\\\\W~'.-.-»-t-'¥-p-'\\!!!!-' -. "-'~-. -.. -.. . .. ~\\\>"\\\\\\\\\m,,
~ .

Huffman, (U) ~~I\\j\h\B"\i\\lih_\\\\\\l!Ul\\\\\\\",.~~
8hannon-F ano, (U)-in\\h\W@mtij,*Il\\\\\\\\\\)\\Wd\",~

Arith metic, (8) J\\it\\Wifii@I!\i_l\\\\fu\>A\\\)\\\\\\\\\i\\m\\~ .•.•
,

Faile r-Gall ag er, (8) @@£{t!m«illimilii\\W£hw.)~\\\\\\\\!\\\\.\\ •••••••~
i '.. . .'---'-"~~19uffrnan, (S) ,i"i;;r];;;'i;;;;Wim+;W"ill\u'l'\miiMm~t\\\\\~\\\W.\i\~«wc,

. - 'r'''' ~i!~','_,_._,,_,_._.._,_,,_,,_.._._.'_"_,_,,_,_,,_,_,_,,_,_,-,-.-' -.'.-,,'-.-.. '~. '
~hannon-t-ano, (~) AA'j()NSI\\\\tN»>,,"M\\\'\\\\\AAl~\\\~ ••I • • - -------

20 25 30 35
Compression Efficiency(%). General text

_ BSCII _ Nondocument

-174-

,----..-,-,
Document

Graph 6.2: Compression Time
(8 for scaled and U for unsealed)

Wter, (U) ~ii\"@'iiiM\\\\lUUU\\\\\Jm.~wi\m'\\\\\~:~-
Knuth,(U) It\\tN!i>m~~" .,

Faller -Gallager, (U) ~U!!Bi*""m'Uli!\\\U\\\\W',-c'

Huffman,(U) hiU)';h"'l"
-l :

Shannon-Fano,(U) "M:hij!l,@ll,

Arithmetic, (8) ~\'r,'6'n'jl((I'.'l"6Q\U\\(ftY\\m'"A'j'
~: .

Falier-Gallager,(S))ii'iiUil\Wtjm~nr
Huffman,(S) bml.\\\W!!

-j .

Shannon-F ano, (S) J~~u~h~i\~i'~!1~"~':'~'--- ~ ~~~ ,
8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5

Time in seconds, General text

Graph 6.3: Decompression Time
(8 for scaled and U for unsealed)

Vitter, (U) j\imU1i\Q\"'Qt'1)n'\\\\\\W.\\\\\\\\\\\.\\n'W;\\f -
Knuth, (U) $iUHB'''''iss*,,,$',,t''." .

Faller-Gallager I (U) i"'il\'M\nW',"OOh'
" .Huffman,(U) J"HhUhHhHhK

Shannon-Fano,(U) ji#&iti'@'.: "
Arithmetic, (S) k',111j'11Vf'lll')j6'#iv.)N(v6',l\tt'tY'W,tY,-"io'i\,iW\\\\\iI .!

oj

Faller-Gallager, (S) WjiiUlIi'WW\I\t!ti.

Huffman,(S) "l.rmw'\\\'"
"

Shannon-F ano, (S) JI~H~Ii~ii~\!~ij~i'~\.~'(.':.,,=------~-_---------------J
, ,
8 9 10 11 12 13 14

Time in seconds, General text

_ BSCII • Nondocument f///%: Document
~ . . ---.J

-175-

coding and decoding times for different coding techniques for

different text formats on a fixed length general text are

general text varies

given. Compression efficiency of different algorithms for

from 27.83% - for Shannon-Fano algorithm

with scaled symbol count for general document IBNA) format

texts, to 34.92% - for arithmetic coding with scaled symbol

count for general standard BSCI I (STD) format texts for

200000-byte file. Compression time varies from 193.24 sec. -

for Huffman algorithm with scaled symbol count for non-

document XFR format specific text, to 254.56 sec. - for Vitter

algori thm without scaled count document BNA format general

text for the same size text. Decompression time also varies
from 195.05 sec. - for Huffman algorithm with scaled symbol

count for standard non-document BSCII format general text, to

291.81 sec. - for arithmetic coding with scaled symbol count

for non-document format general text for the same size file.

Effects of scaling the symbol counts of various coding

techniques for standard non-document BSCII format general text

are shown in Graphs 6.4 to 6.6. Shannon-Fano, Huffman and FGK

algorithm have been tested for both scaled and unsealed symbol

counts. In the Table 6.3 (a) and Graph 6.4, coding

efficiencies of all algorithms have been found better by

-176-

.,~

~
()
c:
Q)

II_~OX
.- Q)~:w~

Q)cc0&.-
C/)roCJ)E
<Do~-0..=
E~oen
()~
' . .0~o
.0c.oo

..c:~0..-
CO
'-Q1

0 c ~ ..c-c CO C) :JCO E LL CLL '+- ~'+-,
:JC

0 Ic
c
CO
..c
(/)

-177-

----'., LD
;,- (1)
I

,
, 1
(1)
(1) >,oc

Q)

'0

~w
co
Ul
Ul
Q)
L-

a..
Eoo

D
Q)

<Uo
(/)

D
Q)

CO
U
Ul
c
:::>
~.":
;,'-//,','
~'\:,':,,:
~,.\:),...;
\{.j»i

Graph 6.5:Compression Time
(10000 byte SSGII format general text)

9.5 10 10.5 11
Time in Second

11.5 12

@';;:ii Unsealed l :Scaled

Graph6.6:Decompression Time
(10000 byte SSGII format general text)

~
: 1j

Shannon-FanoL~ •
! '

Huffman ~\,.
t,'- •
, --._- _.',..,- '.
I .:>i

FGK I. - •
. ", '''i' 1""\"" .._. :
A :,lXx,/.;~\',:W)' , ,

:1
Knuth !_''/_,''\';,~I''/'i_V,y)~;~:,,;,i~.

I",,'b:)"f.'!,)'("'~
It

Vi tte r ~;\;";:>'~}~';.';:<!\:>~',::<-};_;\:):,,:}\:;!'~~::;,\;~\?(0;..~,;,;::::,:::,>~,::~;::>:::~F'~;:Z;;:::.{' I
---~~-_ .. >.~-- " .. ~ I

Arithmetic h--~,--~~~,~-,-~~,~~~t ~~(~--(~'P j
9 9.5 10 10.5 11 11.5 12 12.5 13 13.5

Time in Second

,
------------------~

-178-

scaling the symbol counts for BSCII format general text.
From Table 6.3(a) and 6.3(b) and Graph 6.5 and 6.6, coding
and decoding times of all algorithms have been found faster
by scaling symbol counts for all text formats both for
general and specific text.

Variation of compression efficiency, coding and decoding
times of a specific algorithm (Arithmetic coding) with
different file size for a aSCII format general BangIa text
has been shown in Graph 6.7. The variation of compression
efficiency, coding and decoding times with file length for
different text formats of the mentioned coding technique are
given in Graph 6.8 to 6.10. And these variations for
different coding techniques for general text in BSCII format
are shown in Graph 6.11 to 6.13. It has been shown from
these Graphs that the compression efficiency varies very
slowly after 4kb file size and both coding and decoding
times increase very fast after 10kb file size and their
variation are linear. These results from the implementation
of different techniques with varying file length has been
shown in Table 6.4 to 6.57. Table 6.4 to 6.9 shows the
result of Shannon-Fano algorithm with scaled symbol counts
and Table 6.10 to 6.15 shows the results of the same
algorithm with unscaled symbol counts. It has been found
from the Table 6.4 to 6.9 that BSCII format

-179-

, V>

:-200 <:J
c
0

I ()
Q)

+150 V>,
C

Q)

-100 E,
~

- - -(50
,
0

160 200120

/

'"/7/ __ . _
JL'

)::):E ~'(¥' ..- ,

7 8 9 10 40 80
File size (x1000)bytes

Graph 6.7: Arithmetic Coding
(Static O-order model with scaling)

36 1--' ------------------300

I ------ ------------~ i34+ ----- ------ - -- - ---.--:iii.::-- __ ~ •••:-----1IIl _> ••<IIt---- _,l. i-250
I .-_- ----III

?i 32 ~------.f
- I I>. I ,.
(,) I .:

C 30t---.------ ---------------
2 I Iw 28t--r--"'-

I j
! l26+__~IL------- ...,--.-----.--.-------------------.-

I !

24J ~ -:- 'IE):'), --
123456

---- Efficiency (%) --+-- Compression Time --+-- Expantion Time
-- ----_._-- -------_. __ .._--------

Graph 6.8: Arithmetic Coding Efficiency
. (Static O-order model with scaling)

-+-

Document (G)
--~

BSCII format (G)

Nondocument (S)
---A-

Document (S)

BSCII format (S)

Nonducument (G)

, - --

160 200
Iii I

6 7 8 9 10 40 80 120
File size (x1000) bytes

40 I

35r-------:=-=-:::-- -~~I!~I
, • • 1:::::i,
! - '

30+--'1,---"" ~ ~'\;; :;:,::;ii=~""'="'!?i I F~...--- . -. -
~ i !~'t// ,~ 25t1!1r------------------- --------- '
~ 2Qj(t ' _
15jj~~-----~--.....

I
10 Ii, j i i

1 234 5

-180-

Graph 6.9: Arithmetic Coding Time
(Static O-order model with scaling)

~~~---~~~~_.-----~---....-,--.--
2 34-5 6 7 8 9 10 40 80 120 160 200

File size (x1000) bytes

250~,-- ---------------
i

I
200-j----~---------

(j
<D

: iE 1501--------------------
i-= !
25 i -

-~ 1001--
~ !

~ I
u 50 ~--------------

!

i
!

0' _
1

----~----~-

SSGII format (G)
--+--

Nonducument (G) -

Document (G)

SSGII format (S)
--x-
Nondocument (S)
-&-

Document (8)
----~- --

Graph 6.10: Arithmetic Decoding Time
(Static O-order model with scaling)

300~,---------------.-------------

~250t--------f
;- 200+-----------.----------------------------- -----1------
~ ! I

c: !
.~ 150 i----------------------- ---
~ Ig- 100 ~-------- ------------
oo
<D
Cl

50+-- ----

o I", '? '!' ~ ~~ ~ • • ."~, -:---r-,------- __,_
1 2 3 4 5 6 7 8 9 10 40 80 120 160 200 -

File size (x1000) bytes

-181-

--m-

BSGII format (G)
--+--

_Nonducument (G) _

: Document (G)

- BSGII format (S)
,-x-
- Nondocument (8)
- .....•-
, Document (8)



Table 6.4 . . Techniques: Shannon-Fano .
Scaled Yes.
Hodel Static O-order model.
File type STD

I

I Code file Size
Text file ~ I ,--- CompressionSize I Total I St.atist.ics I Codes Efficiency
1000 760 114 646 24.00%
2000 1431 125 1306 28.45%
3000 2100 125 1975 30.00%
4000 2747 125 2622 31.32%
5000 3410 126 3284 31.80%
6000 4072 129 3943 32.13%
7000 4744 134 4610 32.23%
8000 5398 134 5264 32.52%
9000 6039 134 5905 32.90%

10000 6684 134' 6550 33. 16%
20000 13348 140 U208 33.26%
40000 26615 144 26471 33.46%
60000 39871 144 39727 3:J.55%
80000 53574 150 53424 33.03%
100000 67051 150 66901 32.95%
120000 80055 150 79905 33.29%
140000 93092 153 92939 33.51%
160000 106499 153 106346 33.44%
180000 119846 156 119690 33.42%
200000 132870 156 132714 33.56%

I ,.O,===O.-----~~='7==

I 1'ime in seeDIIdsi----------~--.--------.
~:ornp.l.'essiOll I Expans j,on

- - 0.99 0.-93
1.87 1.87
2.75 2.80
3.68 3.68
4.56 4.56
5.44 5.55
6.43 6.43
7.25 7.42
8.19 8.19
9.07 9.12

18.52 18.68
37.69 37.91
56.54 57.09
75.93 76.65
94.78 96.21

114.40 116.04
133.74 135.77
153.79 155.99
174.07 176.59
193.85 197.31

Table 6.5 .. Techniques: Shannon-Fano.
Scaled Yes.
Hodel : Static O-order model.
File type : XFR

I I I
I Code file size I Compression

I Time in secondsI

Text file I I I f---- ISize ITotal I Statistics I Codes I Efficiencv I Compress ion I Expansion
1000 802 151 651 19.80% 1.04 -0.99
2000 1479 164 1315 26.05% 1.92 1.923000 .2155 170 1985 28.17% 2.75 2.804000 2822 173 2649 29.45% 3.68 3.74
5000 3505 174 3331 29.90% 4.62 4.676000 4184 183 4001 30.27% 5.55 5.607000 4871 191 4680 30.41% 6.43 6.488000 5533 193 5340 30.84% , 7.36 7.429000 6213 193 6020 30.97% 8.30 8.3010000 6860 193 6667 31.40% 9.18 9.2320000 13655 207 13448 31.73% 18.63 18.8540000 27210 222 26988 31.98% 37.80 38.4160000 41223 225 40998 31.30% 57.20 58.2480000 54623 225 54398 31.72% 76.21 77.53100000 67859 226 67633 32.14% 95.22. 96.81120000 82120 226 81894 31.57% 115.38 117.42140000 95556 228 95328 31.75% 134.89 137.58160000 109050 228 108822 31.84% 155.16 158.35180000 123033 229 122804 31.65% 175.77 179.23200000 137396 234 137162 31.30% 196.43 200.55

-182-



Table 6.6

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

" Techniques: Shannon-Fano,
Scaled Yes.
Model Static O-ordel' model,
File type BNA

I -. : •• ~=.==.=~.::c=.::.-:::-.::-=r=-"='--=---:::::::::=--::::::-,,=:,="=""'~=-=--==

I Code file size I I Time in seconds1--~-----I----1 Compress ion I---'-- ..--T~- ..----
I Total I Statistics I Codes I Efficiencv .... I Compression I Expansion

870 187 683" 1'3'-00% " -'1.04 :r:TO
1556 195 1361 22.20% 1.98 1.98
2265 197 2068 24.50% 2.91 2.91
2911 201 2710 27.23% 3.79 3.79
3657 204 3453 26.86% 4.78 4.73
4364 204 4160 27.27% 5.7J 5.71
5062 207 4855 27.69% 6.54 6.70
5793 215 5578 27.59% 7.58 7.58
6504 216 6288 27.73% 8.46 8.57
7089 221 6868 29.11% 9.29 9.45
14072 229 13843 29.64% 18.96 19.18
28150 244 27906 29.62% 38.46 38.96
43653 258 43395 27.25% 59.01 60.59
58748 258 58490 26.57% 79.23 81.26
72611 258 72353 27.39% 98.35 108.52
87050 258 86792 27.46% 118.79 121.92
102750 258 102492 26.61% 139.89 144.84
116157 259 115898 27.40% 160.11 165.38
130160 259 129901 27.69% 181.21 186.76
144331 259 144072 27.83% 201.43 208.02

Table 6.7 :: Techniques:
Scaled
Model
File type:

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

Shannon-Fano.
Yes.
Static O-order model.
QSTD

I Code file si ze 1I'---J I-'--~iCompression
i Total Statistics I Codes I Efficiencv,

795 134"" 661 20-.50%
1466 137 1329 26.70%
2122 137 1985 29.27%
2788 137 2651 30.30%
3444 137 3307 31.12%
4106 140 3966 31.57%
4764 141 4623 31.94%
5417 143 5274 32.29%
6071 143 5928 32.54%
6720 143 6577 32.80%
13208 143 13065 33.96%
~6623 145 26478 33.44%
40332 145 40187 32.78%
54354 146 54208 32.06%
67724 146 67578 32.28%
81094 146 80948 32.42%
94732 146 94586 32.33%

108025 146 107879 32.48%
121277 146 121131 32.62%
135291 146 135145 32.35%

-183-

,--
I Time in seconds
I -,-----
I Compression [ Expansion

1.04 0.99
1.92 1.92
2.80 2.80
3.68 3.74
4.62 4.62
5.49 5.55
6.43 6.43
7.42 7.36
8.24 8.24
9.18 9.18

18.63 18.57
38.08 37.91
57.47 57.53
76.81 77.42
95.27 96.81

114.89 116.76
134.84 137.14
155.00 157.64
175.44 178.08
195.77 199.34



Table 6.8 Techniques: Shannon-Fana.
Scaled Yes.
Model Static O-order' model.
File type QXFR

I I ' '-o~===~r======~"---'-'-=

! Code file size I I Time in seconds
Text f'de I" I I Codes I Compress j on 1--------;

Size ITotal I Statistics_ I f:fficiencv I Compeesslon I ExpansIon
, --,,==-...=--'==.=-=-::=-""=-=1000 803 146 657 19.70% 1.04 0.99

2000 1504 169 1335 24.80% 1.87 1.92
3000 2168 170 1998 2 '7.73% 2.86 2.86
4000 2860 171 2689 28.50% 3.74 3.74
5000 3501 177 3324 29.98% 4.62 4.676000 4180 184 3996 30.33% 5.55 5.55
7000 4888 187 4701 30.17% 6.43 6.54
8000 5563 192 5371 30.46% 7.42 7.47
9000 6249 201 6048 30.57% 8.30 8.41

10000 6834 203 6631 31.66% 9.12 9.18
20000 13416 208 13208 32.92% 18.52 18.74
40000 26974 215 26759 32.56% 37. 75 38.19
60000 40712 215 40497 32.15% 57.03 57.97
80000 54523 221 54302 31.85% 76.26 77.80
100000 68468 221 68247 31 .53% 95.71 97.53
120000 81775 221 81554 31.85% 115.88 117.47
140000 95293 221 95072 :n .93% 135.33 137.75
160000 108851 221 108630 :3 1 . 97% 155.49 158.24
180000 122474 221 122253 31.96% 175.99 179.12
200000 136617 221 136396 31.69% 1.96.48 200.49

Table 6.9 :: Techniques:
Scaled -
Model
File type :

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000 '
80000
100000
120000
140000
160000
180000
200000

I
Ir--
I Total

865
1575
2274
2975
3682

,4349
5040
5737
6398
7116
14007
27782
41413
55061
68675
82055
95900

109813
123695
137421

Shannon-Fano.
Yes.
Static O-order model.
QBNA -r- - , .. 00 .-00

Code file size I
I .. ~-[ Compression
I Statistics I Codes I Efficiencv

177 688 13.50%
199 1376 21.25%
207 2067 24.20%
212 2763 25.62%
220 3462 26.36%
222 4127 27.52%
.223 4817 28.00%
223 5514 28.29%
223 6175 28.91%
225 6891 28.84%
229 13778 29.96%
238 27544 30.55%
240 41173 30.98%
240 54821 31.17%
244 68431 31.32%
246 81809 31.62%
247 95653 31.50%
247 109566 31.37%
248 123447 31.28%
248 137173 31.29%

-184-

'-'I f'ime in1-----
I Compression

]:10
1.98
2.97
3.85
4.84
5.77
6.70
7.69
8.57
9.45

19.23
38.90
58.24
77.86
97.64

]17.80
138.24
159.01
]79.51
197.75

seconds
I
IExpansion

1.04'
2.03
2.97
3.90
4.84
5 • .7 7
6.70
7.58
8.52
9.45
19.12
38.74
58.35
78.24
97.80

117.75
138.08
159.23
180.11
200.99



Table 6.]0::

Text f de
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Techniques: Shannon-Fano.
Scaled No.
Model Static O-ordel" model.
File type: STD

c~-'-~-.--I~ I :'-:::==-r:='::::"":"'==":--::;:---"::=":::::""'=::-=.~---=::::'=

I Code file size! I Time in seconds
t----~----~~~~I Compression r-----7-1~-~-------
I Tot~:.:':~Statistics I Codes I Efficiencv~ompression .... i Expansion
1051 405 64'6 -5.10% -- - 1.04 -rT.99
1740 437 1303 13.00% 1.98 1.87
2406 437 1969 ]9.80% 2.86 2.86
3056 437 2619 23.60% 3.74 3.74
3724 44] 3283 25.52% 4.73 4.67
4420 465 3955 26.33% 5.60 5.60
5091 479 4612 27.27% 6.54 6.48
5745 479 5266 28.19% 7.47 7.36
6381 479 5902 29.10% 8.35 8.30
7039 479 6560 29.61% 9.23 9.18

13692 497 13]95 31.54% 18.90 18.79
27055 525 26530 32.36% 38.19 38.30
40306 525 39781 32.82% 57.47 57.58
54183 543 53640 32.27% 77.31 77.47
67385 543 66842 32.62% 96.65 96.70
80353 543 79810 33.04% 116.54 116.65
93488 555 92933 33.22% 136.26 136.65
106322 555 105767 33.55% 155.93 156.65
119846 585 11926] 33.42% 176.65 177.80
132692 585 132107 33.65% 197.09 197.80

Shannon-Fano.
No.
Static O-order model.
XFR

Table 6.11::

- -'--'
\ Time ill secolldsI Compression t-------~--r---~_:_.----

I Effi,ciencv I CompLc"sslon 1Expans.l.on
~15 ..00%---.------.--1 ~Or-----l:-04

6.75% 1.98 1.98
14.73% 2.86 2.86
19.32% 3.85 3.79
21.76% 4.73 4.73
23.07% 5.66 5.66
23.87% 6.59 6.59
25.09% 7.53 7.53
25.90% 8.46 8.46
26.76% 9.40 9.34
29.25% 19.01 18.96
29.32% 38.85 38.90
30.26% 58.24 58.52
30.92% 77.69 78.13
31.12% 97.20 97.47
31.52% 117.25 117.75
31.66% 137.36 138.08
31.81% 158.24 158.57
31.74% 178.52 179.67
31.23% 199.62 201.37

size
[
I Codes

651
1314
1977
2640
3321
3995
4670
5320
5996
6651
13420
27454
41012
54435
68049
81345
94821

108250
122001
136644

Techniques:
Scaled
Model :
File type :

t

I Code filer-- I
I Total I Statistics
i150 499
1865 551
2558 581
3227 587
3912 591
4616 621
5329 659
5993 673
6669 673
7324 673
14149 729
28273 819
41843 831
55266 831
68884 835
82180 835
95676 855

109105 855
122866 865
137535 891

Text fi Ie
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

-185-



Table 6.12

Text file
Sizeiooo

2000
3000
4000
5000
6000
7000
8000
9000
10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

.. Techniques: Shannon-Fano.
Scaled No.
Model Static a-order model.
File type BNAT ._-.::-i-=-----::-=::-=o"::.===:::o-..::::=-.- I -=-::;==--=:::7'::::::'-.~~ __ ~=.=_='::"'--'=""-==:_:::

I Code file size I I Time in secondsI I I -~ Compression .-----.--------1 --~---~~~-
I Total ~tatistics I Codes I Efficiency i Compression I Expansion
1320-' 637 683 '-32.00% -o=---T:15===T-:-Too

2024 663 136] -].20% 2.03 2.03
2743 677 2066 8.57% 3.02 2.97
3410 699 2711 ]4.75% 3.96 3.85
4157 705 3452 ]6.86% 4.95 4.84
4864 705 4159 ]8.93% 5.82 5.82
5568 711 4857 20.46% 6.76 6.76
6329 743 5586 20.89% 7.75 7.69
7036 747 6289 21.82% 8.68 8.68
7654 785 6869 23.46% 9.67 9.56

14677 829 13848 26.61% 19.18 19.34
28813 919 27894 27.97% 38.68 39.62
42175 923 41252 29.74% 59.12 58.96
55718 923 54795 30.38% 78.74 78.85
69562 925 68637 30.44% 98.90 98.63
83154 933 8222] 30.70% 119.18 1]9.0]
96805 937 95868 30.85% 139.62 139.56

110578 937 109641 30.89% 160.60 160.38
124316 940 123374 30.94% 180.93 173.][
138069 940 137127 30.97% 198.68 J94.80

------.-~I--.".~-=:::=.:..~.=..==~:=::-==,:::-_-==

i Time ill secondsi--~-------r----'--'---
I Compression ~Expansio.I_'_

,- 1-'-1 a ---I'-Cf4
1.98 1.98
2.9] 2.86
3.79 3.79
4.73 4.67
5.66 5.60
6.48 6.54
7.42 7.47
8.35 8.41
9.29 9.23
18.79 ]8.74
38.24 38.35
58.02 58.02
76.81 78.13
94.95 97.86

115.11 118.13
134.89 ]38.35
154.95 158.79
174.45 179.45
195.71 201.04

Shannon-Fano.
No.
Static a-order model.
QSTD

I
Code file size I
I I I CompressionIStatistics Codes I Efficiency

473 66'1-- --13.40%
491 1327 9.10%
491 1989 .17.33%
491 2654 21.38%
491 3310 23.98%
497 3965 25.63%
507 4628 26.64%
515 5274 27.64%
515 5924 28.46%
515 6589 28.96%
515 13097 31.94%
529 26457 ,32.53%
529 40127 32.24%
533 54116 31.69%
533 67473 31.99%
533 80942 32.10%
533 94310 32.26%
533 107355 32.57%
533 120844 32.57%
533 135013 32.23%

Techniques:
Scaled
Model :
File type :

I
I
II Total
1134
1818
2480
3145
3801
4462
5135
5789
6439
7104

13612
26986
40656
54649
68006
81475
94843

107888
121377
135546

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Table6.13 ..

-186-



----'j==~== ,===~~~~=~~=
I I Time in seconds
1 Compr'essionr-- 1::-------
I jlf f iciency I Compression [J0pansJOn

-13.60% - 1.04 1.04
5.35% 1.98 1.98
14.70% 2.86 2.91
18.57% 3.79 3.85
21.68% 4.67 4.73
23.10% 5.55 5.82
23.56% 6.43 6.65
24.66% 7.42 7.47
26.11% 8.24 8.46
26.61% 9.12 9.34
30.34% 18.46 19.01
31.34% 37.47 38.52
31.30% 56.54 58.41
31.05% 76.04 78.46
31.41% 94.73 98.30
31.68% 115.71 118.30
31.77% 135.49 138.63
31.96% 155.55 160.00
31.92% 175.60 179.89
3L.76% 196.32 201.26

Shannon-Fano.
No.
Static O-order model.
QXFR

Techniques:
Scaled
Nodel
File type

I
I Code fiLe size
I I I[Total-.-JStatistics I Codes
1136 479 657
1893 559 1334
2559 563 1996
3257 573 2684
3916 597 3319
4614 625 3989
5351 649 4702
6027 669 5358
6650 705 5945
7339 725 6614

13931 745 13186
27463 785 26678
41217 785 40432
55158 821 54337
68588 821 67767
81986 821 81165
95515 821 94694

108859 821 108038
122545 821 121724
136488 821 135667

Text. file
Size

1000--
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Table 6.14

Table 6.15 :: Techniques;
Scaled
Model ;
File type :

Shannon-Fano.
No.
Static O-order model.
QBNA-,- I I

I Code file size I I Time in seconds
Text file r-- I I Codes ! Compression I ISize I Total~tatistics I Efficiencv I Compression I Expansion
1000 1285 597 688 -28.50% 1.-1[) 1.1-5
2000 2049 673 1376 -2.45% 2.09 2.03
3000 2771 705 2066 7.63% 3.08 3.02
4000 3496 725 2771 12.60% 4.07 3.96
5000 4227 769 3458 15.46% 5.00 4.95
6000 4926 783 4143 17.90% 5.93 5.82
7000 5612 793 4819 19.83% 6.81 6.81
8000 6311 793 5518 21.11% 7.75 7.75
9000 6996 793 6203 22.27% 8.79 8.68

10000 7694 801 6893 23.06% 9.62 9.62
20000 14608 829 13779 26.96% 19.56 19.40
40000 28433 889 27544 28.92% 39.45 39.01
60000 42155 903 41252 29.74% 59.12 58.96
80000 55698 903 54795 30.38% 78.74 78.85
100000 69562 925 68637 30.44% 98.90 98.63
120000 83154 933 82221 30.70% 119.18 119.01
140000 96805 937 95868 30.85% 139.62 139.56
160000 110578 937 109641 30.89% 160.60 160.38
180000 124315 941 123374 30.94% 180.93 175.11
200000 138068 941 137127 30.97% 198.68 194.89

-187-



Graph 6.11 :Compression Efficiency
(BSCII format general text)

--I

Arithmetic/Scaled
x

Knuth,Unscaled
-~

Vitter, Scaled

.--f~f-

Shannon-Fano,Scaled

- ... '

.-+"I

I Huffman,Scaled
i--,tc--
FGK,Scaled

I
. I

36
34l .. '- '-- --------------I

... . . _... . 7;~;;: , c -' .- .'~~~:f>+ •...', ....~.~l,''!
, "..+.++ .--.. .:;; __ 32 ;;~ I ./-.'/ ."...... .• IlDI!!iI-IlIlI&

• ,0' ...• - -I 0" ' . ~~ .... .;: ,. '. I
u i j; ,
~ 30-j ... J.T't~~ d /
w _~ /28{" .

XII

!
26 _1,1

I
.~--'I . -'T'--' r'-"--T~--r-' 1----T - 'T- "-1- I - r--'T - I I "I -I I I' I '

1 2 3 4 5 6 7 8 9 10 40 80 120 160 200
File size (x1000) bytes



Graph 6.12:Compression Time
(BSCII format general text)

250 i

• =I!.'~:,~:200-1....--------- ---------------- -.---~."..;
1 .' />i.~!
I, i I I ,

7V. i
VI I A/l't/ i

g 150~---------------------------At./--1
(J !
Q) ,~.
W ~j:;
C ~.E 1001- - , ._._______-:..;~L.---

~ Ii'
50 t-.-------------- --i~------~------i
, wi' ,
i ,....... _~.. _~io ~I,'I , , , ; I , ' • ----;--r---, -------
1 2 3 4 5 6 7 8 9 10 40 80 120 160200

File size (x1000)bytes

i -a-

Shannon-Fano,Scaled i. ,
--+--

Huffman,Scaled

FGK,Scaied

Arithmetic,Scaled---Knuth,Unscaled

i -.- I

I Vitter,Scaled . .J

Graph 6.13:Decompression Time I
(BSCII format general text)

300 i '
I wi
i - !

250~-.----------------------------- --t6~~-1
I ,. ./ 1

IJj, i
i -D,/ ~i

~ 2001---------------------------.---p,.:~1Ii

] 150L-------------------_/:'li __I!
I ' •c , !;O; ./. I
I 1/ "I ,/fA.!Q) I _. . I

E i [j}/). 1
f= 100 -j---------------------------!f --------1

, ~/ I

i If,' i, " I

501------------------------ --I
I I

i ~ II iiliF' ,O., •• '~¥lliilii! i 1;1

1 2 3 4 5 6 7 8 9 10 40 80 120 160 200
File size (x1000)bytes

------------- ,---Shannon-Fano,Sc~led i
I i

~ '!
Huffman, Scaled I

FGK,Scaied

Arithmetic,Scaled.---Knuth,Unscaled
-A- "[

Vitter,Scaled



text would be the efficient text format for this algorithm and

the BNA format text is the most inefficient text format. The

efficiency vari"es from 24.00% to 33.56% for BSCII format

general texts and from 20.50% to 32.35% for specific texts

whereas the variation of efficiency for BNA format general

texts can be found to vary from 13.00% to 27.83% for general

texts and from 13.50% to 31.29% for specific texts. Coding

208.02 sec. for general BNA format texts.

times vary from 0.99 sec. to 193.85 sec. for general BSCII

text format and from 1.04 sec. to 201.43 sec. for general BNA

format text. Decoding times also vary from 0.93 sec. to 197.31

sec for general BSCII format texts and from 1.10 sec. to

The decoding timls
Ihave been found less for small files and more for large filqs

than coding time for all texts formats both In general and

specific texts. Similar relations of coding efficiency,

coding and decoding times have been found for the same

algorithms with unsealed symbol counts from Tables 6.10 to

6.15. Coding efficiency has been found negative for small

size files with unsealed symbol counts.

The results of static Huffman algorithm have been given in

Tables 6.16 to 6.21 with scaled symbol counts and in Tables

6.22 to 6.27 with unsealed symbol counts for different text

formats and text types. The variations of coding efficiencYI

coding and decoding times have been found similar to the

Shannon-Fano algorithm. BSCII text format has been found the

-190-



Table 6.16 Techniques:
Scaled
Model
File type

Huffman Algorithm.
Yes.
Static O-order model.
STD

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

I

I
I Total

763
1406
2059
2702
3356
4020
4689
5350
5985
6630
13190
26330
39323
52937
65982
78826
91782

104637
117862
130883

----"--T===~-------I"==-
Code file size I I Time in secondsi----r---I Comp['CSS10n r-- ---,.--,------
I Statlstic~L Codes I Eff-!SJ.encv I Compression i Expansion

114 639--24.70% 0.99 0.99
125 1281 29.70% 1.87 1.87
125 1934 31.37% 2.80 2.86
125 2577 32.45% 3.74 3.68
126 3230 32.88% 4.62 4.56
129 3891 33.00% 5.55 5.44
134 4555 33.01% 6.48 6.37
134 5216 33.12% 7.36 7.31
134 5851 33.50% 8.13 8.13
134 6496 33.70% 9.07 9.07
140 13050 34.05% 18.5218.52
144 26186 34.17% 37.80 37.42
144 39179 34.46% 56.59 56.54
150 52787 33.83% 75.7776.21
150 65832 34.02% 94.8495.33
150 78676 34.31% 114.29 114.78
153 91629 34.44% 133.74 134.62
153 104484 34.60% 153.46 154.45
156 117706 34.52% 173.68 174.89
156 130727 34.56% 193.57 195.05

Huffman Algorithm.
Yes.
Static O-order ,nodel.
XFR

Table 6.17 :: Techniques:
Scaled
Model
File type : I=--.-i.- Time i~,-seconds

Compress.lon r i
Efficiencv I CompressioI2 I Expansion

20'.70% 0.99 1.04
27.45% 1.92 1.92
29.43% 2.80 2.86
30.70% 3.74 3.68
31.32% 4.67 4.56
31.42% 5.49 5.60
31.43% 6.48 6.54
31.68% 7.42 7.36
32.14% 8.30 8.24
32.42% 9.18 9.18
32.27% 18.74 18.79
31.83% 38.08 38.30
31.86% 57.42 57.86
32.27% 76.37 77.31
32.74% 95.44 96.37
32.68% 115.11 116.32
32.75% 134.73 136.32
33.18% 154.34 156.10
33.07% 174.84 176.92
32.67% 195.49 197.86

Codes
642

1287
1947
2599
3260
3932
4609
5273
5914
6565
13340
27046
40662
53959
67030
80563
93928

106689
120253
134421

Code file size
I Statistics

151
164
170
173
174
183
191
193
193
193
207
222
225
225
226
226
228
228
229
234

Total
793

1451
2117
2772
3434
4115
4800
5466
6107
6758
13547
27268
40887
54184
67256
80789
94156

106917
120482
134655

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
2'0000
40000
60000
80000
100000
120000
140000
160000
180000
200000

-191-



--,=--------------------

I
I Time in seconds

II Compression i Expansion
1.10 1.10
2.03 1.98
2.91 2.91
3.85 3.85
4.73 4.73
5.71 5.66
6.59 6.59
7.53 7.53
8.46 8.46
9.51 9.40
19.01 19.01
38.46 38.68
58.74 59.23
78.63 79.56
97.80 99.40

117.80 119.56
137.91 139.84
158.35 160.77
178.96 181.65
199.29 202.36

Huffman Algorithm.
Yes.
Static O-order model.
BNA

Techniques:
Scaled
Model
File type

-, r
i Code file size I
I
~-:-l r-::-:- I Compression
Totalj Statistics I~~fficiencv
864 187 677 ---13.60%

1543 195 1348 22.85%
2209 197 2012 26.37%
2888 201 2687 27.80%
3561 204 3357 28.78%
4231 204 4027 29.48%
4914 207 4707 29.80%
5627 215 5412 29.66%
6314 216 6098 29.84%
7007 221 6786 29.93%
13890 229 13661 30.55%
27823 244 27579 30.44%
42716 258 42458 28.81%
57075 258 56817 28.66%
70912 258 70654 29.09%
84659 258 84401 29.45%
98426 258 98168 29.70%

112202 259 111943 29.87%
125844 259 125585 30.09%
139658 259 139399 30.17%

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Table 6.18

Code file size

Table 6.19 .. Techniques:
Scaled
Model :
File type :

1 --
! Time itl secollds

Compression 1--- ---r-
Efficiencv I Compression IExpansion
2Z:00%-----1~-- ---- 1.04
28.35% 1.87 1.87
30.77% 2.80 2.80
31.80% 3.79 3.63
32.66% 4.62 4.56
32.90% 5.49 5.44
33.33% 6.48 6.32
33.69% 7.31 7.31
33.84% 8.24 8.19
33.98% 9.12 9.01
35.09% 18.52 18.30
34.87% 37.69 37.31
34.26% 56.87 56.48
33.64% 76.10 76.04
33.79% 94.18 95.05
33.99% 113.41 114.78
34.09% 132.80 134.45
34.23% 152.64 154.23
34.21% 172.64 174.56
33.98% 193.02 195.22

Codes
646

1296
1940
2591
3230
3886
4526
5162
5811
6459
12838
25909
39300
52942
66063
79061
92124

105088
118283
131887

Huffman Algorithm.
Yes.
Static O-order model.
QSTD

Statistics
134
137
137
137
137
140
141
143
143
143
143
145
145
146
146
146
146
146
146
146

I
I

I Total
780

1433
2077
2728
3367
4026
4667
5305
5954
6602
12981
26054
39445
53088
66209
79207
92270

105234
118429
132033

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

-10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

-192-



Table 6.20 Techniques:
Scaled
Model
File type

Huffman Algorithm.
Yes.
Static O-order model.
QXFR

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

-'=~~-~~~='='.r-----

f-
I Total

790
1470
2119
2767
3416
4086
4734
5372
6039
6698
13147
26271
39706
53388
66602
79666
92794

105904
119256
132974

--'l'"--=..-::::=-.==:..~._--------.::.-::=..-==-~.=

Code file slZe I 1__ TIme in sec':!.nd~__
I l "'1 compressionJ I
~~atistics Codes I Efficiencv Compression 1 Expan_sion

I4b 644 21.00% 1.10 - Cf:"gg-
169 1301 26.50% 1.92 1.98
170 1949 29.37% 2.80 2.86
171 2596 30.82% 3.74 3.74
177 3239 31.68% 4.62 4.67
184 3902 31.90% 5.49 5.55
187 4547 32.37% 6.37 6.43
192 5180 32.85% 7.31 7.31
201 5838 32.90% 8.13 8.19
203 6495 33.02% 9.12 9.12
208 12939 34.27% 18.30 18.41
215 26056 34.32% 37.20 37.53
215 39491 33.82% 56.15 56.87
221 53167 33.27% 75.38 76.48
221 66381 33.40% 94.23 95.55
221' 79445 33.61% 113.57 115.44
221 92573 33.72% 133.19 135.05
221 105683 33.81% 152.97 156.10
221 119035 33.75% 173.08 175.27
221 132753 33.51% 193.24 196.10

I I
1 Code file size I
I I I .~ Compression
I Total Statlstics I Codes I Efficiencv

859 177 6~2 --1a.lo~
1554 199 1355 22.30%
2243 207 2036 25.23%
2939 212 2727 26.52%
3629 220 3409 27.42%
4313 222 4091 28.12%
4984 223 4761 28.80%
5672 223 5449 29.10%
6347 223 6124 29.48%
7032 225 6807 29.68%
13790 229 13561 31.05%
27399 238 27161 31.50%
40966 240 40726 31.72%
54356 240 54116 32.05%
67815 244 67571 32.19%
81280 246 81034 32.27%
94845 247 94598 32.25%

108471 247 108224 32.21%
122129 248 121881 32.15%
135765 248 135517 32.12%

1.10
2.09
2.97
3.90
4.84
5.77
6.70
7.58
8.52
9.45
18.90
38.35
57.75
77.14
96.32

116.26
136.48
156.81
177.25
198.08

"- _ ••_----_._-------_ .._---------,
1 Time in secondsI ---r-------
I Compression I Expansion

1.15
2.09
3.08
3.96
4.89
5.82
6.76
7.64
8.63
9.51
19.23
38.79
58.24
77.64
97.31
117.25
137.53
158.13
178.30
196.48

Huffman Algorithm.
Yes.
Static O-order model.
QBNA

Techniques:
Scaled
Model
File type

Text file
Size

1000
2000
3000
4000
5000
6000
7000.
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Table 6.21

-193-



Table 6.22

Text file
_ Size
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Techniques: Huffman Algorithm.
Scaled No.
Model Static O-order model.
File type STD

I ,~=~==~"_,====~==~~=~=~~~~~-=o~=c-=
I f?de file size

l
~ Compression 1 1:-101<o_1n sl_ec':'!-1d~ _

I Total I Statistic~ Code:" I EfficiencL-l- Co-",pre~ssion I Expan-'3~c!'~__
1044 405 639 -4.40% -------1.0-;r-----O:-~r~r
1717 437 1280 14.15% 1.98 1.92
2369 437 1932 21.03% 2.86 2.86
3011 437 2574 24.73% 3.74 3.74
3665 441 3224 26.70% 4.73 4.67
4351 465 3886 27.48% 5.60 5.55
5026 479 4547 28.20% 6.54 6.48
5685 479 5206 28.94% 7.42 7.42
6318 479 5839 29.80% 8.30 8.35
6958 479 6479 30.42% 9.18 9.12
13494 497 12997 32.53% 18.57 18.68
26644 525 26119 33.39% 37.6437.97
39615 525 39090 33.98% 56.54 56.92
53163 543 52620 33.55% 76.04 76.70
66164 543 65621 33.84% 95.05 95.82
78967 543 78424 34.19% 114.67 115.82
91899 555 91344 34.36% 134.23 135.66

104957 564 104393 34.40% 154.05 L55.04
118006 564 117442 34.44% L73.97 175.02
131055 564 130491 34.47% 194.01 195.80

Algorithm.

-,---"~------r---~-======-~=CO==~=====~
i I Time ill seconds1 Compression r----- - -~------------
I Ef f igje1lcv _.J __~?mpr~ss iOI~__ i ~xpan.~~~ ..__.

- 14 . 10% - 1. lO--------T-:-OT
8.20% 1.98 1.98
15.83% 2.91 2.86
20.48% 3.79 3.85
23.18% 4.67 4.73
24.30% 5.60 5.66
24.97% 6.54 6.70
25.94% 7.47 7.53
27.08% 8.35 8.41
27.88% 9.29 9.40
30.03% 18.79 18.85
31.00% 38.19 38.68
31.43% 57.36 58.24
32.09% 76.54 77.75
32.64% 95.55 97.03
32.97% 115.38 117.03
33.09% 134.95 137.09
33.24% 154.62 157.42
33.20% 175.00 178.46
33.24% 195.74 198.28

O-order model.

Huffman
No.
Static
XFR

Code file size

I Statistics I Codes
499 642
551 1285
581 1944 -
587 2594
591 3250
621 3921
659 4593
673 5252
673 5890
673 6539
729 13265
819 26783"
831 40310
831 53500
835 66526
835 79602
855 92821
855 105960
865 119383
873 132647

Techniques:
Scaled
Model
File_type:

II Total
1141
1836
2525
3181
3841
4542
5252
5925
6563
7212

13994
27602
41141
54331
67361
80437
93676

106815
120248
133520

Table 6.23 ::

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

-194-



Table 6.24 Techniques: Huffman Algorithm.
Scaled No.
Model Static O-order m6del.
File type BNA

=.,-=-.....:::-.::---=== ..-.=-r----- I:::::=:-~:::::=-_==:.;::;===-.~:=:::..-==--:;-=== ..:-====----=--=;:-:--:;'=.,.;

I Code file size I I Time in seconds
Text f i Ie 1---1----~-----1Compression r---.---r-----.----.

Size _.I Tota.l..J. Statisti~~od_es i EJfi.£i.~JlcY__i_C'?!'1P..!:.':'3_~i~~~~~"__
1000 1314 637 677 ---31.40%-'-------T;--:[C 1.1f>-
2000 2011 663 1348 -0.f>5% 2.14 2.03
3000 2686 677 2009 10.47% 3.08 3.02
4000 3383 699 2684 If>.43% 3.96 3.96
5000 4056 705 3351 18.88% 4.89 4.84
6000 4727 705 4022 2].22% 5.77 5.82
7000 5409 711 4698 22.73% 6.70 6.76
8000 6148 743 5405 23.15% 7.64 7.69
9000 6834 747 6087 24.07% 8.68 8.63

10000 7558 785 6773 24.42% 9.56 9.62
20000 14447 829 13618 27.77% 19.18 19.45
40000 28372 919 27453 29.07% 38.85 39.12
60000 43017 1017 42000 28.30% 59.07 59.73
80000 57203 1017 56186 28.50% 78.52 79.89
100000 70827 10]7 69810 29.17% 98.08 99.78
120000 84448 1017 83431 29.63% 117.86 119.89
140000 98357 1021 97336 29.74% 138.06 139.87
160000 112262 1021 111241 29.83% 159.14 161.35
180000 126167 1021 125146 29.90% 179.39 182.13
200000 140072 1021 139051 29.96% 201.43 203.11

Table 6.25 :: Techniques:
Scaled
Model :
File type :

Huffman Algorithm.
No.
Static O-order model.
QSTD

Text fi Ie
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

[

I
I-
I Total
1119
1786
2429
3077
3719
4375
5024
5666
6308
6953
13315
26380
39739
53332
66377
79360
92342

105459
118574
131689

----f

Code file size ii
~ Compression
I Statist~~odes Efficiencv ..

473 646 ~11.90%
491 1295 10.70%
491 1938 19.03%
491 2586 23.07%
491 3228 25.62%
497 3878 27.08%
507 4517 28.23%
515 5151 29.18%
515 5793 29.91%
515 6438 30.47%
515 12800 33.42%
529 25851 34.05%
529 39210 33.77%
533 52799 33.34%
533 65844 33.62%
533 78827 33.87%
533 91809 34.04%
535 104924 34.08%
535 118039 34.12%
535 131154 34.15%

--195--

-r--
I Time ill secondsi--- .....---r--.----.
ICompressi_o.n__.lE)(pa_"sion._
.. 1.10 . 1.oT

1.98 1.98
2.91 2.86
3.79 3.79
4.78 4.67
5.66 5.60
6.54 6.48
7.47 7.36
8.30 8.24
9.23 9.18
18.74 18.57
38.02 37.64
57.36 57.14'
76.59 76.87
94.84 96.26

114.73 115.93
134.56 135.93
153.78 155.34
173.00 174.76
194.22 195.58



Table 6.26 .. Techniques: Huffman Algorithm.
Scaled No.
Model Static O-order model.
File type QXFR-.----- ..--r----- ..-----='='====j ,~c_,=--,=_ c~-.,==='===.=r=~=~=====-=======

I Code file si.ze I I Time in seconds

TexL;~le I Total I StatiSti~~~j~~~~~~:_r~~;~:-J~-:-~-:r;~;-~~--
1000 1123 479 644 -12.-30% 1.10- 1.04
2000 1859 559 1300 7.05% 1.98 2.03
3000 2509 563 1946 16.37% 2.91 2.91
4000 3163 573 2590 20.93% 3.79 3.85
5000 3833 597 3236 23.34% 4.67 4.73
6000 4515 625 3890 24.75% 5.60 5.66
7000 5181 649 4532 25.99% 6.48 6.48
8000 5837 669 5168 27.04% 7.31 7.42
9000 6513 705 5808 27.63% 8.30 8.35

10000 7185 725 6460 28.15% 9.18 9.29
20000 13609 745 12864 31.95% 18.35 18.85
40000 26721 785 25936 33.20% 37.14 37.97
60000 40079 785 39294 33.20% 56.26 57.75
80000 53177 785 52392 33.52% 75.51 77.00
100000 66304 814 65490 33.69% 94.76 96.25
120000 79402 814 78588 33.83% 114.52 115.70
140000 92589 903 91686 33.86% 134.27 135.75
160000 105687 903 104784 33.94% 153.12 157.00
180000 118785 903 117882 34.00% 174.78 176.25
200000 131883 903. 130980 34.05% 194.53 196.50

Table 6.27 ::

Text fi Ie
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Techniques: Huffman Algorithm.
Scaled No.
Model Static O-order model.
File type: QBNA

I ! -,--'-====="===C_='==C~=
I Code flle SlZe I I Time in seconds
r-T-o-t-a-l]~tati-stics ~odes-1 ~~~1~1;_~~~nr~~n~~-re-s~~;;~-r-EX-P:;;~-io-r-l-

1279 597 682 .. . -2'7-:-90% --- -- 1 . 1:r=--~=---Dr
2028 673 1355 -1.40% 2.14 2.09
2737 705 2032 8.77% 3.13 3.02
3450 725 2725 13.75% 4.12 4.01
4173 769 3404 16.54% 5.00 5.00
4867 783 4084 18.88% 5.99 5.88
5541 793 4748 20.84% 6.87 6.76
6230 793 5437 22.12% 7.80 7.69
6902 793 6109 23.31% 8.74 8.74
7588 801 6787 24.12% 9.62 9.62
14477 903 13574 27.61% 19.54 19.24
28051 903 27148 29.87% 39.48 38.48
41625 903 40722 30.62% 58.72 57.72
55217 921 54296 30.97% 77.96 76.96
68791 921 67870 31.20% 98.20 96.80
82379 935 81444 31.35% 117.94 116.64
95953 935 95018 31.46% 138.28 137.48

109531 939 108592 31.54% 158.92 157.32
123105 939 122166 31.60% 179.16 177.89
136679 939 135740 31.66% 197.40 198.90

-196~



most efficient format and BNA format the most inefficient

format also for this algorithm hoth for scaled and unsealed

symbol counts. Efficiency for this algorithm has been found

(about 2.5%) better than the Shannon-Fano algorithm for all

text format and text types. Coding and decoding times have

been found very little smaller in this algorithm relative to

the Shannon-Fano algorithm. The coding efficiency has been

found 24.70% to 34.56% for general STD format text and 13.60%

to 30.17% for BNA format general text with scaled symbol

counts, whereas -4.40% to 34.47% for STD format general text

and -31.40% to 29.96% for BNA format general text with

unsealed symbol counts. The variation of coding and decoding

times have been found from 0.99 sec. to 193.57 sec. and 0.99

sec. to 195.05 sec. respectively for general STD format text

whereas the coding and decoding times for BNA format general

text have been found from 1.10 sec to 199.29 sec. and 1.10

sec. to 202.36 sec. respectively.

Similar variation of coding and decoding times has been found

with unsealed symbol counts.

The results for FGK algorithm have been given in Tables 6.28

to 6.33 for scaled symbol counts and Tables 6.34 to 6.39 for

unsealed symbol counts. In these algorithm with scaled symbol

counts for general text the coding efficiencies haven found

from 28.70% to 34.96% for STD format text and from 22.00% to

31.23% for BNA format texts. With unsealed symbol counts,

-197-



Table 6.28 Techniques: FGK algorithm.
Scaled Yes.
Model Dynamic O-order model.
File type STD

I I Time in secondsText file Code file Compression 1----- 1~~-------
___ Size Size Efficiencv Compression I Expans~on

1000 713 28.70% 1.04 1.042000 1367 31.65% 2.03 1.983000 2025 32.50% 3.02 2.974000 2670 33.25% 4.07 3.965000 3323 33.54% 5.11 4.956000 3990 33.50% 6.10 5.887000 4656 33.49% 7.14 6.818000 5316 33.55% 8.08 7.919000 5952 33.87% 9.12 8.7410000 6593 34.07% 10.00 9.7320000 13127 34.37% 20.38 19.8440000 26253 34.37% 41.32 40.2760000 39205 34.66% 62.09 60.6080000 52691 34.14% 83.57 81.54100000 65675_ 34.33% 104.40 101.98120000 78439 34.63% 125.27 122.86140000 91301 34.78% 146.59 143.85160000 104062 34.96% 168.35 164.73180000 117186 34.90% 190.44 186.76200000 130077 34.96% 212.53 208.24

Table 6.29 .. Techniques: FGK algorithm.
Scaled Yes.
Model Dynamic O-order model.File type XFR---- ----- -----

I Time in secondsText file Code file Compression --T-----
Size Size Efficiencv Compression I Expansion__

1000 722 27.80% 1.04-- 1.042000 1379 31.05% 2.03 2.033000 2046 31.80% 3.08 2.974000 2699 32.52% 4.07 3.965000 3360 32.80% 5.05 4.956000 4036 32.73% 6.15 5.937000 4724 32.51% 7.14 6.988000 5386 32.67% 8.19 7.918704 6352 27.02% 9.22 9.0710000 6678 33.22% 10.16 9.9520000 13325 33.38% 20.55 20.0040000 26705 33.24% 41.87 40.5560000 40006 33.32% 62.97 61.4380000 53709 32.86% 84.40 82.47100000 66905 33.09% 105.60 102.97120000 79884 33.43% 127.09 124.29140000 92930 33.62% 148.74 145.38160000 106136 33.66% 170.38 166.81180000 119224 33.76% 192.53 188.85200000 132289 33.86% 215.27 210.60

-198-



Table 6.30

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

.. Techniques: FGK algorithm.
Scaled Yes.
Model Dynamic O-order model.
File type BNA __ ~ ..
T I '-T-j-me-'. i,:l seco~~-----

Codefile Compression1------..'-~I ---. _.-.--
Size Efficienc ~ Compress~n i Exp-anslon _
780 22.00% 1.10 1.1-0~

1464 26.80% 2.14 2.09
2133 28.90% 3.]3 3.13
2816 29.60% 4.]8 .4.12
3486 30.28% 5.22 5.11
4161 30.65% 6.21 6.04
4840 30.86% 7.25 7.09
5557 30.54% 8.35 8.13
6241 30.66% 9.40 9.07
6933 30.67% 10.38 10.05
13799 31.00% 20.99 20.38
27649 30.88% 42.69 41.54
42035 29.94% 64.56 63.19
56183 29.77% 86.65 84.67
66905 33.09% 107.64 103.08
83401 30.50% 130.22 127.64
96917 30.77% 152.14 149.07
110488 30.95% 174.51 171.10
123909 31.16% 197.14 193.52
137538 31.23% 219.89 215.77

Table 6.3]

Time in seconds
f-co-m-p-r~ss~;~~pans ion

1'-04 1. 04
2.09 1.98
3.08 2.91
4.07 3.95
5.16 4.95
6.15 5.93
7.14 6.87
8.13 7.80
9.23 8.74

10.16 9.73
20.60 19.78
41.92 40.00
63.30 60.71
84.34 81.59
104.95 102.03
126.54 123.08
148.30 144.18
169.89 165.22
192.03 186.92
214.95 208.85

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

.. Techniques: FGK algorithm.
Scaled Yes.
Model Dynamic O-order model.
File type QSTD

I

I Codefile Compression
Size Efficiencv
728 27.20%
1389 30.55%
2038 32.07%
2690 32.75%
3335 33.30%
3988 33.53%
4629 33.87%
5268 34.15%
5912 34.31%
6559 34.41%
12928 35.36%
25987 35.03%
39313 34.48%
52834 33.96%
55898 34.10%
78847 34.29%
91806 34.42%

104720 34.55%
117871 34.52%
131401 34.30%

-199-



Table 6.32 .. Techniques: FGKalgorithm.
Scaled Yes.
Model Dynamic O-order model.

T File tr»-e ~~=-==~:=~;-seconds-==

Texii~~le 1_ Cod~i;~le I i~~l~~~~~r~;~~~eSSiO~~~~~o;;-~~~
1000 727 27.30%' '1.04 0:99--:-
2000 1405 29.75% 2.03 2.03
3000 2055 31.50% 3.13 3.02
4000 2705 32.38% 4.12 3.96
5000 3356 32.88% 5.16 4.95
6000 4014 33.10% 6.15 5.93
7000 4659 33.44% 7.09 6.92
8000 5300 33.75% 8.13 7.86
9000 5946 33.93% 9.18 8.79

10000 6601 33.99% 10.11 9.78
20000 13018 34.91% 20.44 19.78
40000 26110 34.73% 41.48 40.16
60000 39447 34.26% 62.75 60.93
80000 52985 33.77% 84.18 81.59
100000 66077 33.92% 105.49 102.25
120000 79041 34.13% 127.14 123.57
140000 92005 34.28% 148.46 144.40
160000 104985 34.38% 170.38 165.82
180000 118193 34.34% 192.75 187.75
200000 131823 34.09% 215.55 209.67

model.

FGKalgorithm.
Yes.
Dynamic O-ordec
QBNA

.. Techniques:
Scaled
Model
File type

I I
I J Ttme in secondsI Code file Compression------------.~-~T--~----------
I Size EfJiciencv ~mpresslon I Expansion

789 21.10% 'T.lO 1.1,0
1478 26.10% 2.20 2.09
2166 27.80% 3.24 3.13
2867 28.32% 4.29 4.18
3553 28.94% 5.38 5.11
4237 29.38% 6.43 6.15
4904 29.94% 7.47 7.09
5595 30.06% 8.46 8.08
6268 30.36% 9.51 9.18
6951 30.49% 1.0.60 10.05
13696 31.52% 21.32 20.33
27225 31.94% 43.08 41.21
40688 32.19% 64.67 61.98
53980 32.52% 86.43 82.64
67294 32.71% 107.86 103.68
80622 32.81% 130.05 124.95
93950 32.89% 152.42 146.21

107307 32.93% 175.05 167.97
120723 32.93% 197.64 190.00
134196 32.90% 218.13 212.31

Table 6.33

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

-200-



FGK algorithm.
No.
Dynamic O-order model.
STD

I

i Time in seconds
Compression I . I
Efficienc Compression I Expansion
28.70~- 1.10 - 1.0;r-
31.65% 2.09 2.03
32.50% 3.08 3.08
33.25% 4.18 4.07
33.54% 5.11 5.05
33.50% 6.15 6.04
33.49% 7.25 7.03
33.55% 8.24 8.02
33.87% 9.29 8.96
34.07% 10.22 9.95
34.37% 20.77 20.27
34.35% 42.14 41.15
34.60% 63.02 61.92
34.02% 84.89 83.13
34.21% 105.82 103.85
34.50% 127.47 124.95
34.63% 149.01 146.32
34.82% 170.44 167.64
34.77% 192.53 189.67
34.84% 214.95 211.59

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Table 6.34 Techniques:
Scaled
Model

_~c~~~ "__ F=:~1e type-,-
I
I Code file
I Size

713
1367
2025
2670
3323
3990
4656
5316
5952
6593
13127
26261
39239
52785
65791
78596
91519
104290
117413
.l:l0326

model.

Table 6.35

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
8704
10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Techniques: FGK algorithm.
Scaled No.
Model Dynamic O-order
File type XFR

I ~--~~~I------:1 Time in seconds
Compression - 1
Efficienc - Compression Expansion
27.80% - 1.10 0.99
31.05% 2.09 2.03
31.80% 3.08 3.08
32.52% 4.23 4.07
32.80% 5.22 5.11
32.73% 6.21 6.10
32.51% 7.31 7.14
32.67% 8.41 8.13
27.02% 9.43 9.34
33.22% 10.33 10.11
33.38% 20.93 20.49
33.22% 42.47 41.54
33.26% 63.90 62.64
32.68% 85.60 84.18
32.95% 106.87 105.11
33.25% 128.68 126.59
33.44% 150.55 147.80
33.50% 172.42 169.73
33.60% 194.89 191.70
33.68% 216.92 213.85

-201-



Table 6.36 Techniques: FGK a 1.go,'ithill.
Scaled No.
Model Dynamic O-order model.
File type BNA

--==:::;::;::---=-'=-" ----_ .._-_._""--::::-===.,
i ! Ti.me in seconds,

file 'Code file Compression L--____

I ----Text I
Size Size Efficiency Compression i Expansion

1000 780 22.00% 1.15 1.-lr"=
2000 1464 26.80% 2.25 2.143000 2133 28.90% 3.24 3.24
4000 2816 29.60% 4.34 4.29
5000 3486 30.28% 5.38 5.22
6000 4161 30.65% 6.43 6.217000 4840 30.86% 7.42 7.25
8000 5557 30.54% 8.57 8.35
9000 6241 30.66% 9.51 9.29

10000 6933 30.67% 10.60 10.33
20000 13799 31.00% 21.37 21.04
40000 27664 30.84% 43.30 42 .•12
60000 42287 29.52% 65.71 64.84
80000 56484 29.39% 88.08 86.48
100000 67049 32.95% 108.74 105.00
120000 83739 30.22% 131.70 129.89140000 97309 30.49% 154.01 151.48160000 110965 30.65% 176.59 173.52
180000 124426 30.87% 198.96 .196.10
200000 138056 30.97% 221.81 218.30

1
I Time in seconds1--------1 -------..------
I Compression I Expansion __
- l.To-" r-:04-

2.09 2.03
3.13 3.08
4.18 4.07
5.27 5.05
6.26 5.99
7.25 7.03
8.30 8.02
9.34 9.07
10.33 10.05
20.93 20.11
42.31 40.99
64.01 61.87
85.60 83.19
106.26 104.18
127.75 125.00
149.18 145.99
171.37 167.58
193.85 189.73
216.32 211.76

FGK algorithm.
No.
Dynamic O-order' model.
QSTD

Techniques:
Scaled
Model
File type

t I
Code file I Compression

Size I Efficiency
728 27. 20%

1389 30.55%
2038 32.07%
2690 32.75%
3335 33.30%
3988 33.53%
4629 33.87%
5268 34.15%
5912 34.31%
6559 34.41%
12928 35.36%
25991 j5.02%
39356 34.41%
52954 33.81%
66002 34.00%
78987 34.18%
91973 34.30%

104912 34.43%
118084 34.40%
131668 34.17%

Table 6.37

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

-202-



FGK algorithm.
No.
Dynamic O-order
QXFR

Table 6.38

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

.. Techniques:
Scaled
Model
File type

I
Compl'ession
Efficienc
27.30%
29.75%
31.50%
32.38%
32.88%
33.10%
33.44%
33.75%
33.93%
33.99%
34.91%
34.72%
34.20%
33.66%
33.84%
34.05%
34.19%
34.28%
34.23%
33.98%

model.
r---_C~==-==-'~="-~===

I 'rime In seCollctsI-------------~ ---------
Compression I Expansioll

i.10 --r.fo
2.09 2.03
3.19 3.13
4.23 4.07
5.22 5.lJ.
6.26 6.10
7.25 7.03
8.24 8.08
9.34 9.07
10.33 10,00
20.71 20.33
41.92 41.10
63.46 62,09
85.05 83.19
106.54 103.90
128.19 125.22
149.89 146.54
171.87 168.02
194.07 190.11
217.03 212.47

Table 6.39 FGK algorithm.
No.
Dynamic O-order
QBNA

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000'
9000
10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Techrliques:
Scaled
Model
File typeI 1---

I Code file I Compression
I Size Efficiencv

789 21.10%
1478 26.10%
2166 27.80%
2867 28.32%
3553 28.94%
4237 29.38%
4904 29.94%
5595 30.06%
6268 30.36%
6951 30.49%
13696 31.52%
27234 31.91%
40711. 32.15%
54024 32.47%
67371 32.63%
80711 32.74%
94174 32.73%
107675 32.70%
121201 32.67%
134745 32.63%

lllodel.

r --
I Time in seconds1--------1'---------
i Compression---.-LExpansion

---1.-(0 --=r: r5--"
2.20 2.14
3.30 3.19
-4.40 4.18
5.44 5.27
6.59 6.32
7.58 7.31
8.63 8.35
9.67 9.34
10.77 10.33
21.59 20.82
43.46 42.03
65.38 63.02
87.20 83.85
109,01 104.95
131.32 126.59
153.46 148.24
176.43 170.44
198.68 192.64
219.67 214.78

-203-



this variation has been found from 28.70% to 34.84% for STD

format text and from 22.00% to 30.97% for BNA format texts.

No variation of coding efficiency for scaled and unsealed text

have been found up to 20000 bytes file length for any format

text and both for general and speci fie text. With scaled

symbol counts, coding times have been found for same text

types from 1.04 sec. to 212.53 sec. for STD format and from

1.10 sec. to 219.89 sec. for BNA format and decoding times

have been found from 1.04 sec. to 208.24 sec. and from 1.10

sec. to 215.77 sec. respectively for the mentioned text
formats and types. That is, the decoding operation has been

found faster than coding operation. For unsealed symbol
counts the coding and decoding times for all text formats and

text types have been found higher than those, of scaled counts.

The results for Knuth algorith have been given in Tables 6.40
to 6.45. The variation of coding efficiency for general

texts of this algorithm have been found from 27.50% to 34.83%

for STD text formats and from 20.60% to 30.97% for BNA format

texts. The coding times vary from 0.99 sec. to 21.53 sec. for

STD format and from 0.99 sec. to 217.75 sec. for BNA format.

Similarly the decoding times have been found from 0.99 sec. to

213.46 sec. and from 1.04 sec. to 220.33 sec. for STD and BNA
format texts respectively.

-204-

'.



Table 6.40 Techniques:
Scaled
Model
File type

Knuth Algorithm.
No.
Dynanlic O-order inodel.
STD

Text fde
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

I
I Code file
I Size

725
1380
2039
2684
3338
4006
4672
5333
5969
6610
13144
26279
39256
52803
65808
78614
91537

104308
117431
130345

T
I Time in secondsCompression :-----------1----

_Efficiencv _.~o_mpress.ion I Expansion
27. 50%-- ---O~99- O. 99
31.00% 2.03 1.92
32.03% 3.02 3.02
32.90% 4.01 3.96
33.24% 5.00 5.00
33.23% 5.99 5.99
33.26% 6.98 6.98
33.34X 7.97 7.97
33.68% 9.01 8.96
33.90% 9.95 9.89
34.28% 20.27 20.33
34.30% 41.32 ~1.26
34.57% 62.14 62.20
34.00% 83.41 83.68
34.19% 104.23 104.73
34.49% 125.71 1.26.04
34.62% 146.92 147.64
34.81% 168.19 169.23
34.76% 190.16 191.65
34.83% 212.53 213.46

Knuth Algorithm.
No.
Dynamic O-order model.
XFR

Table 6.41 Techniques:
Scaled
f10de 1
File type

! Time in secondsI----~-----I -------
IComp,'ession ! Expansion
- - -- 1 -:64-'~=~-~-('f'---91-9-

1.98 1.98
2.97 3.02
3.96 4.01
5.00 .1.95
5.99 5.99
7.03 7.03
8.02 8.02
9.01 9.01

10.00 10.00
20.16 20.44
41.04 41.65
61.92 62.86
83.24 84.51

103.63 105.44
124.73 127.03
145.88 148.85
167.64 171.43
189.78 192.86_
211-.92 214.84

- --_._~..::::.=---r _..

Compression
Efficiency

26.60%
30.35%
31.37%
32.20%
32.54%
32.52%
32.44%
32.60%
32.97%
33.16%
33.30%
33.19%
33.23%
32.66%
32.94%
33.24%
33.43%
33.49%
33.59%
33.67%

I
I
I Code file
I Size

734
1393
2059
2712
3373
4049
4729
5392
6033
6684
13339
26726
40060
53871
67063
80110
93199

106421
119532
132655

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

-205-

-, , ;
'".' .

, '~'.:...~



Table 6.42 Techniques: Knuth Algorithm.
Scaled No.
Model Dynamic O-order model.
File type BNA

l r-_.-;=.-:::.=----- ------

I Time in seconds
Text file Code file Compression 1--- I

Size Size Efficiency I Co;n~eession I Expansion
1000 794 20.60% 0.99 1.O;r
2000 1479 26.05% 2.09 2.03
3000 2148 28.40% 3.08 3.08
4000 2831 29.23% 4.12 4.07
5000 3502 29.96% 5.11 5.05
6000 4177 30.38% 6.10 6.10
7000 4855 30.64% 7.09 7.14
8000 5573 30.34% 8.13 8.13
9000 6257 30.48% 9.29 9.18

10000 6949 30.51% 10.22 10.22
20000 13817 30.91% 21.15 20.82
40000 27682 30.80% 42.97 42.4260000 42291 29.52% 65.33 65.1680000 56487 29.39% 87.58 88.57
100000 70117 29.88% 107.64 108.19
120000 83742 30.21% 129.56 129.67140000 97312 30.49% 151.37 151.98
160000 110967 30.65% 174.12 176.04180000 124428 30.87% 195.44 196.81
200000 138058 30.97% 217.75 220.33

Table 6.43 Knuth Algod.thm.
No.
Dynamic O-order model.
QSTD

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Techniques:
Scaled
Model
File type

---,- . I

I Code fiIe I Compeession
I S~ Efficiency

739 26.10%
1401 29.95%
2051 31.63%
2703 32.42%
3348 33.04%
4001 33.32%
4643 33.67%
5281 33.99%
5926 34.16%
6573 34.27%
12942 35.29%
26005 34.99%
39371 34.38%
52969 33.79%
66017 33.98%
79002 34.16%
91987 34.30%

104926 34.42%
118099 34.39%
131683 34.16%

i Time in secondsI-----------r-~---
I C~.mpression I Expansion _

-"T:Cf4'-0.99-
2.03 1.98
3.02 2.97
4.01 3.90
5.05 4.95
6.04 5.88
7.03 6.92
8.08 7.91
9.07 8.85
10.00 9.78
20.38 20.00
41.48 40.60
62.91 61.87
84.07 83.13
103.85 103.52
125.33 125.16
146.76 146.32
168.30 168.08
190.33 191.10
213.24 212.31

-206-



Code file
Size
737

1415
2G65
2714
3366
4025
4670
5311
5957
6612
13029
26124
39488
53080
66169
79153
92148
105159
118388
132046

Table 6.44

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Table 6.45

Text file
Size-1-000

2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Techniques: Knuth Algorithm.
Scaled No.
Model Dynamic O-order model.
File type QXFR. .. _

I ~l--- Time ~-~second~. I

Campress ion ------"'.---.-~-'-----------~--
Efficienc lsomp~ession I Expansion:
26.30% 0.99 0.99
29.25% 1.98 1.98
31.17% 3.02 2.97
32.15% 4.01 3.96
32.68% 5.00 4.95
32.92% 5.99 5.93
33.29% 6.98 6.92
33.61% 7.86 7.91
33.81% 8.90 8.90
33.88% 9.95 9.84
34.85% 20.11 20.11
34.69% 41.10 40.88
34.19% 62.09 62.03
33.65% 83.41 83.19
33.83% 104.01 103.85
34.04% 125.66 125.22
34.18% 146.98 146.48
34.28% 168.52 168.02
34.23% 190.77 190.33
33.98% 213.08 212.64

Techniques: Knuth Algorithm.
Scaled No.
Model Dynamic O-order model.
File type QBNA

===~~========,==~=

=c Time in seconds
Code file Compression---------1 :

Size Efficiencv C~mpression ~xpansion_,_
803 19.70% - 1.10 Co4--
1492 25.40% 2.14 2.03
2180 27.33% 3.13 3.08
2881 27.98% 4.18 4.07
3567 28.66% 5.22 5.11
4251 29.15% 6.32 6.10
4918 29.74% 7.25 7.14
5609 29.89% 8.30 8.08
6282 30.20% 9.34 9.07
6965 30.35% 10.38 10.11
13709 31.45% 21.15 20.60
27246 .31.89% 42.80 41.59
40723 32.13% 64.34 62.75
54035 32.46% 85.71 83.74
67383 32.62% 107.20 104.78
80722 32.73% 129.07 126.48
94185 32.73% 151.26 148.13

107686 32.70% 173.90 170.27
121211 32.66% 195.88 192.64
134755 32.62% 216.26 214.95

-207-



The results of Vitter algorithm have been given ill Tables '6.46,
I

to 6.51. The variation of coding efficiency has been found i~

these tables from 28.40 % to 34.84% for STD format and froJ

21.70% to 30.99% for BNA format for general texts. The coding'

and decoding times for general STD format texts have been

found from 1.21 sec. to 247.75 sec. and 1.21 sec. to 253.46

format text have been found in Table 6.48 from 1.32

sec. respectively in Table 6.46. Similar variations for BNA ,

sec. tol

254.56 sec. and 1.26 sec. to 260.93 sec. respectively.

,
,

in!The results of Arithmetic coding algorithm have been giv~n,
! ,

Coding efficiency for general texts ,!have!
I

Tables 6.52 to 6.57.

been varied from 24.80% to 34.92% for STD format and ,from'
I

13.70% to 30.47% for BNA format text. Coding times for these

text type and formats have been found from 1.10 sec. to 226.32

sec. and 1.10 sec. to 230.77 sec. respectively. Whereas

decoding times have been found from 1.26 sec. to 281.59 sec.

for STD format and from 1.37 sec. to 291.81 sec. for BNA"

format.

-208-



I'
I,,

Table 6.46

Il Time in 'seconds__ ~ '

compressio~~ansion
1.21 1.21
2.36 2.42
3.57 3.63
4.73 4.89
5.93 5.99
7.09 7.20
8.41 8.46
9.51 ~ 9.67
10.71 10.82
11.81 12.03
23.96 24.40
48.68 49.40
72.97 74.23
97.86 99.89
122.36 124.73
146.87 150.05
171.98 175.49
197.03 201.10
222.69 227.36
247.75 253.46

Vitter Algorithm.
No.
Dynamic O-order model.
STD

Compression
Efficienc
28.40%
31.45%
32.37%
33.12%
33.44%
33.42%
33.43%
33.49%
33.82%
34.03%
34.34%
34.34%
34.60%
34.02%
34.21%
34.50%
34.63%
34.82%
34.77%
34.84%

Techniques:
Scaled
Model
File type

II
i
I Code file
I Size

716
1371
2029
2675
3328
3995
4660
5321
5956
6597
13131
26264
39241
52786
65790
78596
91518
104290
117412
130325

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Techniques:
Scaled
Model
File type

I

Vitter Algorithm.
No.
Dynamic O-order model.
XFR

Table 6.47

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000'
60000
80000
100000
120000
140000
160000
180000
200000

Code file
Size
726

1383
2050
2702
3363
4038
4716
5379
6020
6670
13323
26709
40041
53848
67039
80084
93173

106394
119504
132627

Comp-fession
Efficienc
27.40%
30.85%
31.67%
32.45%
32.74%
32.70%
32.63%
32.76%
33.11%
33.30%
33.38%
33.23%
33.'27%
32.69%
32.96%
33.26%
33.45%
33.50%
33.61%
33.69%

Time in secondsI-----~-:
Compression ~:'(pansion

1.2b 1.21
2.42 2.42
3.57 3.68
4.73 4.89
5.99 6.04
7.20 7.31
8.35 8.52
9.51 9.73
10.66 10.93
11.98 12.09
24.07 24.34
48.57 49.62
73.02 74.95
98.19 100.44
122.36 125.27
147.31 150.93
172.25 176.48
197.64 202.36
223.57 229.34
248.85 254.45

-209-



Table 6.48

I II
I __ Time in seconds _L
[C;mpreSSio~:. IExpans.~l

1.32 1.26 T
2.53 2.53 I

3.74 3.74
4.95 4.95
6.10 6.21
7.36 7.42
8.46 8.57
9.78 9.89
10.99 11.15
12.2512.36
24.62 25.00
49.67 50.66
75.60 77.20

101.04 103.24
125.49 128.52
150.99 154.73
176.76 180.99
203.46 207.14
228.74 233.79
254.56 260.93

Vitter Algorithm.
No.
Dynamic O-order model.
BNA

Compression
Efficienc

21.70%
26.65%
28.83%
29.55%
30.24%
30.62%
30.84%
30.54%
30.66%
30.68%
31.02%
30.85%
29.57%
29.44%
29.92%
30.25%
30.52%
30.67%
30.89%
30.99%

Techniques:
Scaled
Model
File type

I
I
I
I
Code file

Size
783

1467
2135
2818
3488
4163
4841
5557
6241
6932
13797
27660
42256
56450
70079
83704
97274

110928
124389
138019

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

=~=~-=._-----

O-order model.
Algorithm.

I
I Time in seconds I~---~--T-----,-
Compression I Expansion

1.21 1.26
2.42 2.42 '
3.63 3.57
4.84 4.78
6.04 5.99
7.14 7.20
8.35 8.46
9.56 9 ..56
10.77 10.82
11.87 11.92
24.07 24.12
48.63 49.01
73.57 74.23
98.19 99.67

121.65 124.45
146.92 149.95
171.54 175.38
196.54 200.93
222.03 227.09
248.41 253.96

VitterNo.
Dynamic
QSTD

Compression
Efficiency

26.80%
30.30%
31.90%
32.62%
33.20%
33.45%
33.80%
34.10%
34.26%
34.36%
35.34%
35.01%
34.40%
33.80%
34.00%
34.17%
34.30%
34.43%
34.40%
34.17%

.. Techniques:
Scaled
Model
File type

~
Text file I Code file

Size Size
1000 732
2000 1394
3000 2043
4000 2695
5000 3340
6000 3993
7000 4634
8000 5272
9000 5917

10000 6564
20000 12933
40000 25996
60000 39361
80000 52957
100000 66004
120000 78990
140000 91975
160000 104914
180000 118086
200000 131669

Table 6.49

-210-



Table 6.50

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

Techniques: Vitter Algorithm.
Scaled No.
Model Dynamic O-order model.
File type QXFR

I I . -I Time in seconds
I
Code file Compression I" .1"--------

Size ---.l Efficiencv ~ompressio_n I Expansion I
730 27.00% 1.2ti-----CZ-1-1

1407 29.65% 2.42 2.42
2058 31.40% 3.63 3.68
2707 32.33% 4.78 4.84
3358 32.84% 5.99 6.04
4016 33.07% 7.14 7.25
4661 33.41% 8.24 8.46
5301 33.74% 9.40 9.62
5947 33.92% 10.60 10.77
6601 33.99% 11.76 12.03
13017 34.91% 23.68 24.29
26111 34.72% 48.19 49.18
39475 34.21% 72.75 74.56
53066 33.67% 97.58 99.95
66155 33.84% 122.03 124.84
79139 34.05% 146.98 150.1]
92132 34.19% 171.81 175.71

105144 34.28% 197.03 202.53
118373 34.24% 222.69 227.58
132031 33.98% 248.79 254.23

Table 6.51 .. Techniques: Vitter Algorithm.
Scaled No.
Model Dynamic O-order model.
File type QBNA

I I I
1 ! Time in seconds~Text file ,Code file Compression I 1Size Size Efficiencv [Compression I Expansion

1000 789 21.10% 1.32 1.262000 1478 26.10% 2.47 2.533000 2164 27.87% 3.74 3.794000 2866 28.35% 5.05 5.055000 3551 28.98% 6.21 6.216000 4235 29.42% 7.47 7.477000 4901 29.99% 8.68 8.688000 5592 30.10% 9.84 9.899000 6264 30.40% 11.15 11.15
10000 6948 30.52% 12.31 12.3620000 13690 31.55% 24.23 24.8940000 27226 31.93% 48.79 50.1660000 40702 32.16% 73.52 75.9980000 54015 32.48% 98.19 102.64

100000 67360 32.64% 125.00 126.37120000 80699 32.75% 150.77 .151.43
140000 94162 32.74% 176.70 177.42160000 107662 32.71% 203.30 204.89180000 121187 32.67% 229.18 230.71200000 134732 32.63% 252.58 257.36

-211-



Table 6.52 Techniques: Arithmetic codi.ng.Scaled Yes.
Model Static O-order model.File type : STD

r' .

T roo.' _.__ ._-

I Code file size
I

Time in secondsText file I I I ICompress ion ISize ITotal I Statistics ICodes I Efficiencv I Compress ion I.Expans ion1000 752 114 638 24.80% 1.10 1.262000 1401 125 1276 29.95% 2.09 2.643000 2048 125 1923 31.73% 3.19 4.014000 2689 125 2564 32.77% 4.23 5.335000 3337 126 3211 33.26% 5.38 6.656000 3998 129 3869 33.37% 6.37 7.977000 4661 134 4527 33.41% 7.47 9.348000 5312 134 5178 33.60% 8.52 10.609000 5941 134 5807 33.99% 9.51 11.9210000 6584 134 6450 34.16% 10.55 13.1920000 13092 140 12952 34.54% 21.65 26.9840000 26194 144 26050 34.52% 44.01 54.5660000 39134 144 38990 34.78% 66.10 82.3680000 52689 150 52539 34.14% 88.90 110.77100000 65643 150 65493 34.36% 111.32 138.41120000 78416 150 78266 34.65% 133.79 166.70140000 91298 153 91145 34.79% 156.76 195.11160000 104071 153 103918 34.96% 179.40 223.46180000 117209 156 117053 34.88% 203.24 252.75200000 130155 156 129999 34.92% 226.32 281.59

Table 6.53 . . Techniques: Arithmetic coding .Scaled Yes.
Model : Static O-order mode 1.File type : XFR

I ,--.-- ---'..~--~===~~=I Code file size I I Time in secondsText file I I I Codes I Compression I ----,-----ISize ITotal I Statistics I Compression I ExpansionI Efficiencv
~- .-1000 791 151 640 20.90% 1. 10 1.372000 1444 164 1280 27.80% 2.14 2.643000 2104 170 1934 29.87% 3.19 4.014000 2757 173 2584 31.07% 4.23 5.335000 3413 174 3239 31. 74% 5.27 6.656000 4089 183 3906 31.85% 6.37 8.027000 4767 191 4576 31.90% 7.47 9.348000 5428 193 5235 32.15% 8.52 10.779000 6061 193 5868 32.66% 9.56 12.0310000 6710 193 6517 32.90% 10.71 13.3020000 13455 207 13248 32.73% 21.76 27.2040000 27003 222 26781 32.49% 44.12 .. 55.2760000 40558 225 40333 32.40% 66.54 83.4680000 53793 225 53568 32.76% 89.12 111.32100000 66900 226 66674 33.10% 111.32 139.34120000 79955 226 79729 33.37% 133.85 167.86140000 93218 228 92990 33.42% 157.09 196.59160000 106384 228 106156 33.51% 179.95 225.44180000 119882 229 119653 33.40% 204.07 255.00200000 133948 234 133714 33.03% 227.75 284.84

-212-



Table 6.54 .. Techniques: Arithmetic coding.
Scaled Yes.
Model Static O-order model.
File type BNA

I ,-'-- -, ---;---===-' --_._---_. __ ._-,
II Code file size ! !Time in'se8ondsi

Text file 1 I I -1 Comnress ion i-----------r----'---.
Size I Total I Statistics I Codes I Efficiency LCompression I Expansion

1000 863 187 676 13.70% 1.10 1.37
2000 1541 195 1346 22.95% 2.14 2.75
3000 2203 197 2006 26.57% 3.24 4.12
4000 2880 201 2679 28.00% 4.23 5.44
5000 3551 204 3347 28.98% 5.38 6.87
6000 4219 204 4015 29.68% 6.43 8.24
7000 4898 207 4691 30.03% 7.53 9.56
8000 5609 215 5394 29.89% 8.63 10.93
9000 6292 216 6076 30.09% 9.62 12.3610000 6980 221 6759 30.20% 10.77 13.68

20000 13831 229 13602 30.84% 21.87 27.75
40000 27725 244 27481 30.69% 44.56 56.3260000 42530 258 42272 29.12% 67.80 86.0480000 56822 258 56564 28.97% 90.82 115.16
100000 70568 258 70310 29.43% 113.24 143.63
120000 84293 258 84035 29.76% 136.48 173.02140000 97975 258 97717 30.02% 159.73 202.25160000 111728 259 111469 30.17% 183.24 231.87180000 125308 259 125049 30.38% 207.03 261.65200000 139054 259 138795 30.47% 230.77 291.81

Table 6.55 .. Techniques: Arithmetic coding.
Scaled Yes.
Model Static O-order model.
File type : QSTD

I - _ ... -r- -I
I Code file size I I Time in secondsText file I ~- I 1 Compress ion 1-------,--. -~--

Size ITotal I Statistics i Codes IEfficiency ICompression I Expansion.
- ---' '-"-1000 779 134 645 22.10% 1.15 1.322000 1428 137 1291 28.60% 2.14 '2.643000 2067 137 1930 31.10% 3.13 3.964000 2715 137 2578 32.12% 4.29 5.275000 3351 137 3214 32.98% 5.33 ;6.656000 4004 140 3864 33.27% 6.37 ;7.917000 4644 141 4503 33.66% 7.47 '9.238000 5278 143 5135 34.02% 8.57 1,0.609000 5918 143 5775 34.24% 9.62 1'1.9210000 6561 143 6418 34.39% 10.71 1:3.3020000 .12897 143 12754 35.52% 21.70 26.9240000 25915 145 25770 35.21% 44.07 5~4.6260000 39233 145 39088 34.61% 66.81 82.7580000 52800 146 52654 34.00% 89.34 11i1.32

100000 65833 146 65687 34.17% 110.77 138.96120000 78778 146 78632 34.35% 133.52 16,7.20140000 91766 146 91620 34.45% 156.37 195.99160000 104680 146 104534 34.58% 179.18 224.73180000 117812 146 117666 34.55% 202.53 25,3.68200000 131341 146 131195 34.33% 226.54 283.35

-213-



Table 6.56 Techniques:
Scaled
Nadel
File type

Arithmetic coding.
Yes.
Static O-order mode].
QXFR

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

I

IITotal
790

1467
2111
2757
3405
4066
4712
5352
6005
6661
13064
26187
39565
53198
66346
79383
92484

105576
118838
132535

Code file size i
i 1--~-1Compression
I Statistics I Codes I Efficiencv

146 64.i" 2f.oO%'
169 1298 26.~65%
170 1941 29.63%
171 2586 31.07%
177 3228 31.90%
184 3882 32.23%
187 4525 32.69%
192 5160 33.10%
201 5804 33.28%
203 6458 33.39%
208 12856 34.68%
215 25972 34.53%
215 39350 34.06%
221 52977 33;50%
221 66125 33.65%
221 79162 33.85%
221 92263 33.94%
221 105355 34.02%
221 118617 33.98%
221 132314 33.73%

"I ~~-c~__ - ~ - ~-- ---.~~---~-~--

! Tj,me i,ll secoTlds1'I--------~T--------~--
I Compression i Expansion
. ~ 1 .10 '1~.32

2.09 2.69
3.13 4.0.1
4.23 5.33
5.27 6.65
6.37 8.02
7.36 9.34
8.41 10.66
9.45 11.92
10.60 13.35
21.37 26.98
43.68 54.89
65.99 83.13
88.46 111.43
110.99 139.5]
133.74 167.91
156.59 19~.43
179.56 225.44
203.02 254.62
226.76 284.23

Table 6.57 :: Arithmetic coding.
Yes.
Static O-order model.
QBNA

Code file size
--=r-=-:c:-=--=.:::-=~==--:=--="';".:.::==::-.:::~-:--::::=

i Time ill seconds1---------.-- ..--[--------._-...--
i Compression I Expansion---'--=o_-~~~==-=~=~~~~--f==1.10 ,.37

2.14 2.75
3.24 4.12
4.40 5.49
5.49 13.87
6.54 ~.30
7.64 9.62
8.68 11.04
9.89 12.36
10.88 13.74
22.14 2V.69
44.95 56.21
67.69 8~.73
90.44 113.63
113.13 14l.54
136.59 17p.44
159.89 199.34
183.41 228.85
206.98 258.46
228.35 288.68

I

T
I
1 Compression
I Efficiencv

14.20%
22.50%
25.53%
26.77%
27.66%
28.42%
29.10%
29.43%
29.77%
30.02%31.45%
32.01%
32.23%
32.57%
32.68%
32.75%
32.75%
32.70%
32.65%-
32.61%

II Codes
681

1351
2027
2717
3397
4073
4740
5423
6098
677313481
26958
40422
53702
67078
80457
93905

107434
120980
134538

[Statistics
177
199
207
212
220
222
223
223
223
225229
238
240
240
244
246
247
247
248
248

I
I
IITotal

858
1550
2234
2929
3617
4295
4963
5646
6321
699813710

27196
40662
53942
67322
80703
94152

107681
121228
134786

Text file
Size

1000
2000
3000
4000
5000
6000
7000
8000
9000
1000020000
40000
60000
80000
100000
120000
140000
160000
180000
200000

-214-



,.1"> i.'

Chapter Seven.

DISCUSSIONS AND RECOMMENDATIONS

7.1 Discussions

I have studied and implemented different coding techniques and

tested in BangIa text. Effect of coding efficiency,

compression and decompression time of these techniques on file

length is point out. Similar effects. on file format for

general and specific BangIa text are also studied.

Static Algorithms: We studied both static and dynamic

versions of the coding techniques. Among static versions of

the coding techniques, Shannon-Fano, Huffman and Arithmetic

Coding techniques are tested and Shannon-Fano and Huffman

algorithm are implemented both scaled and unsealed counted,

arithmetic coding technique is implemented only for scaled

counted. Among these static techniques with scaled count,

arithmetic coding shows better efficiency and Huffman cbding

techniques shows faster compression and decompression times.

-215-



Dynamic Algorithms: Among the dynamic coding techni.ques,

Huffman algorithm modified Faller, Gallager and Knuth (FGK

algorithm) and Optimal algorithm by Vitter are studied and

tested. FGK algorithm is implemented both in Linked~list and

array data structures. Knuth suggested implementing dynamic

Huffman algorithm in array structures for efficient

modification of the tree, so we call this version as Knuth

algorithm whereas algorithm implementation in linked-list

structures is called as FGK algorithm. Among these dynamic

algorithms without scaling the symbol count, Vitter algorithm

1S found most efficient complying with its theoretically

established results. Compression and decompression times of

this algorithm are higher than any other algorithms

implemented in this work and decompression time is higher than

the compression time for all formats and types of texts. FGK

algorithm with scaled count has shown better efficiency among

all dynamic algorithms but the same algorithm with unsealed

count has wooer eff iciency than Vitter algor ithm with uns.caled

count. Dynamic algorithm by Knuth is found to have faster

compression time than any other dynamic algorithm whereas FGK
I

algorithm with scaled count shows faster decompression time.

From the Table 6.28 to 6.39, the same efficiencies have been

found same in dynamic Huffman (FGK) algorithm up to 20,000

bytes file length with scaled and unscaled symbol counts

independent of text type and text format.

-216-



Static and dynamic algorithm: Dynamic versions of Huffman

algorithm are FGK algorithm, Knuth algorithm and Vitter

algorithm. Shannon-Fano algorithm and Arithmetic coding.

algorithm are implemented only for static coding. Huffman

algorithm with and without scaled count is found to have

better efficiency in dynamic versions. Better coding and

decoding times have been found in dynamic version for small

files and static version for large files.

Effect of Scaling: Static Shannon- Fano algor ithm, Huffman

algorithm and dynamic FGK algorithm are implemented both for

scaled and unsealed count. Static Huffman and Shannon-Fano

algorithms without scaling the symbol counts show the negative

compression efficiency for small files, i.e., up to 2000 bytes

file compression is not possible for these coding techniques

with unsealed counts. No effect of scaling symbol counts on

coding efficiency is found in dynamic version of Huffman (FGK)

algorithm for small files (up to 20000 byte). Compression and

decompression times is found smaller in scaled version of

these algorithms for all file formats except BNA (i.e.

document) file format for both general and specific text.

Effect of file format: Each algorithm shows better
performance for BSCII format and worst performance for BNA

file format for both general and specific texts.

-217-



Effect of file length: We tested the performance of the

algorithms by varying file lengths from 1,000 byte to 200,000

bytes. With this range of file sizes, coding efficiency vary

from -32.00% (Shannon-Fano algorithm with unsealed count for

BNA format in general text) to 34.92% (Arithmetic coding with

scaled count for STD format in general text). Efficiency

increases rapidly up to 4000 byte file and very slowly with

increasing file length. Small irregularity of efficiency

change is found around 80000 byte length. Similar effect on

coding and decoding time on file length is found. Compression

time varies from 0.99 sec. (Shannon-Fano, Huffman and FGK

algorithms with scaled count for STD format) to 254.56

sec.(Vitter algorithm with unsealed count for BNA format) and

decoding time varies from 0.93 sec.(Shannon-Fano algorithms

with scaled count for STD format to 291.81 sec. (Arithmetic

coding with scaled count for BNA format). Both compression
and decompression time increase slowly for smaller files and

increase very rapidly after around 15000 byte of file length.

Increment of compression and decompression time are almost

linear.

Static variable length Codes: We have given two tables of

static variable length codes for BangIa BSCII format text. In

Table 6.1 static Huffman codes is given and static Shannon-

Fano code is given in Table 6.2. Average code length are

found 5.009 and 5.129 for Huffman and Shannon-Fano algorithm

-218-



respectively. Corresponding Huffman and Shannon-Fano trees

are given in Fig.6.1 and Fig.6.2 respectively. It is clear

from the code tables and trees, Huffman codes is better than

Shannon-Fano algorithm and Huffman algorithm is easier to

implement.

Text analysis: We have analyzed BangIa texts in BSCII format.

The text we considered for analysis has a file length of25024

bytes. The frequency of BangIa character in BSCII format and

frequency of BangIa Akkharas are found. The character 1 (194)

is found the highest frequent character after space and ~

(102) is found most frequent akkhara. We have also given the

25 most frequent BangIa words.

frequent among BangIa words.
The word ~~ is found the most

The n-Grams for BangIa text both for general and specific
texts up to 8-gram

them is calculated.
is given and entropy and redundancy for

We found that with the increase of order

of n-gram the entropy decreases whereas redundancy increases.

Both entropy and redundancy become constant for higher order
n-gram.

n-gram.
So we can expect more efficiency for higher .order

-219-



7.2 Recommendations

In this work static loss less algorithms have been implemented

and tested. Effect of scaled count is also studied on some of

these algorithms. An n-gram statistic of BangIa text is given

for response of redundancy. Future research work on

compression algorithm for BangIa text can be carried on:

(al Effects of coding efficienCy, coding and decoding

time can be studied by dictionary based coding

algorithms like LZW algorithm.

(b) Specific compression algorithms can be developed

for BangIa text exploiting n-gram statistics and

redundancy of the text.

(c) Global st"andard static variable length codes for

BangIa texts can be developed for efficient and

fast compression-decompression.

(d) A set of standard static variable length codes for

different types of text can be established.

(e) Adaptive version of arithmetic coding can be

studied for BangIa texts.

(f1 Higher order model of these algorithms can be

studied.

-220-



[ 1] Ahmed, M.,
Dot Matrix
1986.

REFERENCES

"Design of Bengali Alphanumeric Segment and
Display", M. Sc. Thesis, CSE Deptt., BUET,

[ 2 ] Anson, L.F.,
(October 1993),

"Fractal
195-202.

Image Compression", BYTE,

[ 3 ] Apiki,
1991) ,

S., "Loss less Data
309-314, 386-387.

Compression", BYTE (March

[4 ] Aronson,
Methods",
1977).

J., "Data Compression A Comparison of
National Bureau of Standards, PB-269-296, (June

[5] Bassiouni, M.A. and Ok, B., "Double Encoding A
Technique for Reducing Storage Requirement of Text",
Information Systems, 11, 2(1986), 177-184.

[6] Bookstein,
Information
680.

A. and Storer, J .A., 1!Data Compression",
Processing and Management, 28, 6(1992), 675-

[7] Byrd, M.,
Magazine,

"Data Compression: Is It
(Dec.11, 1990), 316-317.

All It Claims", PC

[8 ] Capocelli, R.M. and Santis, A.D., "A Note on
Huffman Codes", IEEE Trans. Inform. Theory, IT-37,
1991),174-179.

D-ary
l(Jan

[ 9 ] Chowdhury,
Techniques
System", M.

M.H., "Image Encoding and Representation
with Application to An On-Line Banking
Sc ..Thesis, CSE Deptt., BUET, 1990.

[10] Cannel, J.B., "A Huffman-Shannon-Fano Code," Proc. IEEE
61 (Jul. 1973), 1046-1047.

[ 11] Cover, T.M"
Codes", IEEE
172-174.

"On the Competitive Optimality of Huffman
Trans. Inform. Theory, IT-37, 1(Jan.1991),

[12] Das, G., Bhattacharya, S., and Mitra, S., "Representing
Ahamia, Bengali and Monipuri Text in Line Printer and
Display-wheel Printer", Journal of the Institute of
Electronics and Telecommunication Engineers, India, v-3D,
n-6, (1984),251-256.

-221-



[13] Das, P.K., "On Information Content of Bengali Language
and Noise in Microwave Communication in Bangladesh", M.
Sc. Thesis, EEE Deptt., BUET, 1976.

[14] Even, S. ,and Lempel, A. "Generation and Enumeration of
all Solutions of the Characteristic Sum Condition,"
Inform. 21 (1972), 476-482.

[15] Faller, N., "An Adaptive System or Data Compression", In
Record of the 7th Asilomar Conference on Circuits,
Systems, and Computers. (1973), 593-597.

[16] Fano, R.M., "Transmission of Information", Cambridge, MA;
MIT Press and New York; Yiley, 1961.

[17] Fe1ician, L. and Gentili, A., "A Nearly Optimal Huffman
Technique in the Microcomputei Environment", Information
Systems, 12, 4(1987), 371-373.

[18] Ferguson, T.J. and Rabinowitz, J.H., "Self-Synchronizing
Huffman Codes", IEEE Trans. on Inform. Theory, IT-30(4),
(July 1984),687-693.

[19] Frazer, W.D. and Bennett, B.T., "Bounds on Optimal Merge
Performance, and a Strategy for Optimality", JACM, 19,
(1972), 641-648.

[20] Gallager, R.G., "Variations on the Theme by Huffman",
IEEE Trans. Inform. Theory, IT-24 (1978), 668-674.

[21] Geckinli, N.C., "Two Corollaries to the Huffman Coding
Procedure", IEEE Trans. Inform. Theory, (May 1975), 342-
345.

[22] Gilbert, E.N. and Moore, E.F.,
Encodings", Bell Syst. Tech. J.

"Variable Length Binary
(July 1959), 933-967.

[23] Glassey, C.R., and Karp, M.R.,
Trees", SIAM J. Appl. Math. 31,

"Optimum Binary Search-
(1976), 368-372.

[24] Golumbic,
Computers,

M.C. ,
TC-25,

"Combinatorial Merging "
(1976), 1164-1167.

IEEE Trans.

[25] Guazzo, M., "A General Minimum-Redundancy Source-Coding
Algorithm", IEEE Trans. Inform. Theory, IT-26( 1), (Jan.
1980), 15-25.

[26] Hamming, R.W., "Coding and Information Theory",
Prentice-Hall, Englewood Cliffs NJ 07632, 1986.

-222-



[27] Haque, S.Z., "Statistical Analysis of Messages and Their
Coding of Bangli Language", M. Sc. Thesis, EEE Deptt.,
BUET, 1985.

[28] Harmon, G., "The Measurement of Information", Information
Processing and Management, 20, 1-2(1984), 193-198.

[29] Held, G.,. "Data Compression", John Wiley and Sons, New
York, 1984.

[30] Howard, P.G. and Vitter, J.S., "Analysis of Arithmetic
Coding for Data Compression", in Proc. Data Compression
Conference, J. A. Storer and J. H. Reif, eds., Snowbird,
Utah, Apr. 8-11, 1991, 3-12, invited paper, also to
appear as an in the special issue of Information
Processing and Management, also appears as Brown
University Technical Report No. CS-91-03.

[31] Howard, P.G. and Vitter, J.S., "New Methods for Lossless
Image Compression Using Arithmetic Coding", in Proc. Data
Compression Conference, J. A. Storer and J. H. Reif,
eds., Snowbird, Utah, Apr. 8-11, 1991, 257-266, also to
appear as an in the special issue of Information
Processing and Management, also appears as Brown
University Technical Report No. CS-91-47.

[32] Howard, P.G. and Vitter, J.S., "Practical Implementations
of Arithmetic Coding", Brown University Technical Report
No. CS-92-18.

[33] Hu, T.C., Kleitman, D.J. and Tamaki, J.K., "Binary Trees
Optimum Under Various Criteria", SIAM J. Appl. Math, 37,
2 (Oct.1979), 246-256.

[34] Hu, T.C. and Tucker, A.C., "Optimal Computer Search Trees
and Variable-length Alphabetical Codes", SIAM J. Appl.
Math. 21, (1971), 514-532.

[35] Huf-fman, D.A., "A Method
Redundancy Codes," Proc.

for the Construction of Minimum
IRE 40 (Sep. 1952), 1098-1101.

[36] Humayun, S.M., Rahman, S.H. and Kaykobad, M., "Static
Huffman Code for BangIa Text", 15th Annual Conference of
BAAS, Section III, AERE, Savar, March 5-8, 1990.

[37] Itai, A., "Optimal Alphabetic Trees", SIAM J. Computer,
9(3), (Aug. 1980), 9-18.

[38] Jayant, N.S., and Noll, P., "Digital Coding of
Waveforms", Englewood Cliffs, NJ, Prentice-Hall, 1984.

-223-



[39] Jones, C.B., "An Efficient Coding
Sequences", IEEE Trans. Inform.
1981),280-291.

System for Long Source
Theory, IT-27, 3 (May

[40] Ju, R.H., Jou, I.C. and Tsay,M.K., "GIQbal Study on Data
Compression Techniques for Digital Chiniese Character
Patterns", Proc. lEE, 139, 2(Jan 1992), 1-8.

[41 ] Kerp, R.M., "Minimum-redundancy Coding
Noiseless Channel", IRE Trans. Inform.
(Jan. 1961), 27-38.

for Discrete
Theory IT-17,

[42] Kerpez, K.J., "Runlength Codes From Source Codes", IEEE
Trans. Inform. Theory, IT-37, 3(May 1991), 682-687.

[43] Khan, M.M.B.A., "Optimal Realization of Bengali Keyboard
and Character Encoding for Computer Applications", M. Sc.
Thesis, CSE Deptt., BUET, 1986.

[44] Knuth, D.E., "Dynamic Huffman Coding", J. Algorithms,'
6(1985), 163-180.

[45] Knuth, D.E., "The "Art of Computer Programming", Volume I
and III, Addison-Wesley Publishing Company, Inc., 1973.

[46] Kuraisi, F.A., "BangIa Barnomalar Anatomy", Shamikha
Prokashoni, Dhaka, Feb. 1990.

[47] Langdon, G.G., "An Introduction to Arithmetic Coding" IBM
J. Res. Develop. 28, 2(Mar. 1984), 135-149.

[48] LeGall, D., "MPEG: A Video Compression Standard for
Multimedia Applications", Communication of ACM, 34(4),
(1991), 46-58.

[49] Liu, J.W., "Algorithms for Parsing Search
Inverted File Document Retrieval Systems",
Database Systems, 1, (1976), 299-316.

Queries in
ACM Trans.

[50] Longo, G. and Galas'so, G., "An Application of
Informational Divergence to Huffman Codes", IEEE Trans.
Inform. Theory, IT-28(1) (Jan. 1982), 36-43.

[51] Moffat, A., "Word-Based Text Compress ion", Software-
Practice and Experience, 19 (Feb. 1989), 185-198.

[52] Nelson, M.R., "Arithmetic
Modeling" Dr. Dobb's Journal,

Coding . and Statistical
(February 1991), 16-29.

[53] Nelson, M., "The Data Compression Book", M&T Publishing
Inc. USA; 1991.

-224-



[54] Nichols, S.J.V .. , "Getting Your Byte's Worth", Byte,
(Nov. 1990), 331-336.

[55] Nichols, S.J.V., "Saving Space", Byte, (Mar. 1990), 237-
243.

[56] Norwood, E., "The Number of Different Possible Compact
Codes," IEEE Trans. Inform. Theory IT~13 (Oct. 1967).

[57] Parker, D.S., "Conditions for Optimality of the Huffman
Algorithm", SIAMJ. Computer 9(3), (Aug. 1980), 470-489.

[58] Rahman, S.M., Ahmed, M., "Bangali Alphanumeric Segment
And Dot Matrix Display", M. Sc. Thesis, CSE Deptt., BUET,
1986.

[59] Reif. J., and Storer,J.A., "A Parallel Architecture for
High Speed Data Compression", Journal of Parallel &
Distributed Computing, 13, (1992), 222-227.

[60] Rissanen, J. and Langdon, G.G., "Universal Modeling and
Coding", IEEE Trans. Inform. Theory, IT-27, I(Jan 1981),
12-23.

[61] Rubin, F., "Arithmetic Stream
Precision Registers", IEEE Trans.
(Nov. 1979), 672-675.

Coding
Inform.

Using Fixed
Theory IT-25

[62] Rubin, R., "Experiments in Text-file Compression", Comm.
ACM 19, (1976), 617-623.

[63] Ruth, S., and Kreutzer, P., "Data Compression for Large
Business Files", Datamation, 18 (9), (1972), 62-66.

[64] Severance, D. G. , "Pract ical Guide to Data Base
Compression", Information Systems, 8, 1(1983), 51-62.

[65] Shannon, C.E., "A Mathematical Theory of Communication,
"Bell Syst. Tech. J. 27 (July 1948), 398-403.

[66] Shannon, C.E., "Prediction of Entropy of Printed
English", Bell Sysb. Tech. J. 30 (1951), 50-64.

[67] Sijstermans, F., and vander Meer, J., "CD-l Full-motion
Video Encoding on a parallel computer", Comm. of ACM
34(4) (1991), 81-91.

[68] Simon, B., "Squeeze Play", PC Magazine, (October 15,
1991), 291-312.

[69] Stevens,
Journal,

A., "eVA and Da-tacompression" I Dr.
(February 1991), 135-136,138,140,142.

-225-

Dobb's



[70] Suen, C.Y., "n-Gram Statitics for Natural Language
Understanding and Text Processing", IEEE Trans. Pattern
Anal. and Mach. Intelligence, PAMII-1(2), (1979),
164-172.

[71] Swan, T., "Alien Text-file Compression", Dr. Dobb's
Journal, (July 1993), 121-123.

[ 72] Tanaka, H., "Data Structure of Huffman Codes and
Application to Efficient Encoding and Decoding",
Trans. Inform. Theory IT-33(Jan. 1987), 154-156.

Its
IEEE

[73] Thomas, K., "Entropy", Dr. Dobb's Journal, (Feb. 1991),
32-34.

[74] Trivedi, K.S., "Probability and Statistics with
Reliability, Queuing, and Computer Science Applications",
Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, 1982.

[75] Usher, M.J., "Information Theory for Information
Technologists", MacMillan Publishers Ltd., London, 1984.

[76] Ushijima, K. "Steps to an Efficient Program for Floating-
point Summation",. Software-Practice and Experience, 7,
(1977), 759-769.

[77] Vaughan, S.J. and Nichols, "Saving Space", BYTE (March
1990), 237-243.

[78] Vitter, J.S., "Design and Analysis of Dynamic Huffman
Codes", J. ACM34, 4(Oct. 1987), 825-845.

[79] Vitter, J.S., "Dynamic Huffman Coding",
Software 15, 2(June 1989), 158-167,
Algorithm 673, Collected Algorithms of

ACMTrans. Math.
also appears as
ACM, 1989.

[80] Weiss, J. and Schremp, D., "Putting Data on a Diet", IEEE
Spectrum, (August 1993), 36-39.

[81] Welch, T., "A Technique for High
Compression", IEEE Computer, 17(6),

Performance
(1984),8-19.

Data

[82] Wells, M., "File Compression Using Variable Length
Encoding", Computer Journal, 15, 4(1973), 308-813.

[83] Yannakoudakis, E.J., Goyal, P. and Huggill, J.A., "The
Generation and Use of Text Fragments for Data
Compression", Inf'ormation Processing and Management, 18,
1(1982),15-21.

-226-



[84] Yeung, R.W., "Local Redundancy and Progressive Bounds on
the Redundancy of a Huffman Code", IEEE Trans. Inform.
Theory, IT-37, 3(May 1991), 687-690.

[85] Zimmerman, S., "An Optimal Search Procedure",
Math. Monthly, 66, (1959),690-693.

Amer.

[86] Ziv, J. and Lempel, A.,
Sequences via Variable-Rate
Theory, IT-24,5(Sep 1978),

II'Compression
Coding", IEEE
530-536.

of Individual
Trans. Inform.

[87] Ziv, J. and Lempel, A., "A
Sequential Data Compression",
IT-23, 3(May 1977),337-343.

-227-

Universal Algorithm for
IEEE Trans. Inform. Theory,



APPENDIX - A

BSCII (BangIa Standard Code for Information Interchange) codes

REX 00 10 20 30 40 50 60 10 80 90 AD 60 GO DO EO FO
DEG 0 16 32 ~8 6~ 80 96 112 128 144 160 176 192 208 224 m

0 0 a 0 ~ 0\ 1, • .I
1 1 I ~ ~ I> 'If • I> -• ~
2 2 • ,

t - -~ '511 -: 'I I. •
3 3 # () ~ ~ ~ r - -

'" •
4 4 \ 8 ~ q[ -.r .,

~ J
5 5 Yo <r @ .!ll ~ I ).,
6 6 Ii! ~ li il li ~"

7 7 • 'I l\I ~ Of '2" ~<

8 8 ( It ~ is "! [
I

[ * ~
9 9 ) ;, <Jt r; ~ 1 t r; J
A 10 t : <$ 'f 1'[ ] ri J --1
B 11 + ~ '!i !i { [1 - -, I> "C 12 ( il' ~ '¥ x -

• • , •
0 13 - = ll[ If [I } J ~ ••
E 14 • -) ~ If 11' J •• •
F /j / ?

,
Il if ~ J ~

-228-



APPENDIX B

Sam~le Listing of Source Code. Vitter algorithm and related
routines.

II COMDECOM,H: Header file for compression and decompression routine.
#ifndef _COMDECOM_"
#define COHDECOM_"

#include "tech.h"

enllm act io"_ t {emp. demp};

class ComDecom : public Technique
protected:

char *tfspec, *cfspec;
FILE *tfp. *cfp;
long tcount, Beount, ccount;
clock_t stime. etime;

public:
ComDecorn (enum action tact, int marge, chnr* mar-gv [ J ) ;
-ComDec~m (void){};
void open_comp (void);
void open_decomp (void);
void compress (void);
void decompress (void);
void report (void);

};

#endif

/1 COMDECOM.CPP: Implementation of ComOecom Clas-s member functions
#include <conia.h>
#include <stdia.h>
#include <allee.h>
#include "comdecom.h"
#inclu<le "tech.h"
#include "uti 1.h"

II Constructor of ComDecom class
ComDecom :: C9mDecom (enum action_t act, .lntmargc, char'" margv[] );Technique{)
[

if (margc < 3) usage (margv{O]);
if (act == crop) {

strcpy (tfspec, margv{l]);
strcpy (c£spec, margv[2]);

}
else

strcpy (cfspec, margv[l]);
strcpy (tfspec. margv{2]);

}
}

II Open files for compression
void ComDecom .. open_camp (void)

disp_scr (" Compressing ", tfspec. cfspec, tech, scaled, model);

tfp = fopen( tfspec. "rb");
if (tfp == NULL) error(l, "Source text file opening error .•.");

cfp = bfopen(cfspec, "wb");
if (cfp == NULL) error(I,"Terget code file opening error ...");

}

-229-
...~



II Open files for decompression
void Com Decorn open_decamp (void)

disp_ser (" Decompressing ", t.fspec, cfspec, t.eeh, scaled, model);

Lfp:: fopen(tfspec, "wh");
if (t.fp == NULL) error(l, "Terget t.ext file openi.ng error ... or);

efp = bfopen(cfspec, "rb");
if (cfp == NULI.) errore] ,"Source code file opening error ...");

II Compress source stri.ng to code string.
void ComDecom compress (void)

st.ime :: clock();
Technique: :compress (tfp. cfp, &tcount, &scount., &ccount);
etime = clock();

}

II Decompress code string to original st.ring
void ComDecom :: decompress (void)

st.ime = clock();
Technique: :decompress (cfp, tfp, &tcount, &scount, &ccount);
etime :: clock();

II Repoets the compression efficiency and times
void ComDecom report (void)

Utility: :report(stime, elime, tcount, scount, ccountl;

1/ COHPRESS.CPP: Main filf!s for Compresuion
# inc 1ude "comdecom. h"
#include "tech,h"

void main(int argc, char "'argv(])

ComDecom comp(cmp, argc, nrgv);

comp.open_comp ();
camp. compress ();
camp. report ();

}

II EXPAND,CPP : Main file for decompression
#include "comdecom.h"
#include "tech.h"

void main(int argc, char *argv())

ComDecom decomp(dcmp, argc, argvl;

decomp.open_decomp ();
decamp. decompress ();
decamp. report ();

}

-230-



II TECH.H : for Vitter algorithm

#ifndef
#define

#include
hnd tide
#include
#include
#include

<conia.h>
<st,dia.h>
<string.h>
<alloc.h>
"util.h"

#define
#define
#define
#defioe

EOS
N
Nl
N2

257
258
(1ft I )
(N*2l

pubUc Utili ty {

m, r, e, z;
alpha[NI],
block[N2] ;

class Technique :
private:

iot
int
.int

rep [NI];

lang iot weight[H2];
iot parent[NZ]. parity[N2], rtChi.ld[N2], first[N2], lastIN2];
iot prevBlock[N2], nextBlock[N2];

int availBlock;
int stack (Nt];

iot q, leafTofncreament, btl, b, oldParent, oldParity;
iot slide, nhq, par, hpar;

protect_ed:
char tech[50], scaled[5], moc1el[50];

public:
Technique(vaid) ;
void initialize(void);
void update( iot k);
void encode(int k);
unsigned decode(void);

iot
void
void
void

FindChild (iot j, iot parity);
Int.erchangeLeaves (int el, int ~2l;
f'iodNode (iot k);
SlideAndIncreament (void);

void compress (FILE *£i, FI LE "'fa, long ,.:tc, long :l<sc, long ~.cc);
void decompress (FILE 't'fi, FILE *fo, long *'tc, long "'sc, long *cc);

};
#endif.

1* VITT(U) .CPP:Vitter algorithm wit.h unsealed symbol CC1unt~; "'I

#include <cooio.h>
#include <stdio.h>
#include <string.h>
#include <alloc.h>
#include "comdecom.h"
#incillde "tech.h"

Technique:: Techniqlle(voi.d) : Utility()
(

strcpy(tech, "Vitter Algorithm.");
strcpy(scaled, "No.");
strcpy(model, "Dynamic O-order model.");

-231-



< z; itt-)
1 .

nextBlock[l]

II Initialize the Vilter model
void Technique: :init:ialize(void)

int i'

m 0 0;
e 0 0;
r 1;
z 2 * N - 1.

for(i 1; i <~ Nj i~~) (
m t= 1;
r ~~1;
if(m ~'" 2*rl

e t-~, I;
r ~ 0;

J
alpha[i] i.
rep[i] ~ i;

block[N) ~ prevBlock[l]
weight[l] ~ OL;
first[l] ~ H;
1ast[1] ~ N;
pnrfty[l] ~ 0;
parent {I J 0;
rtChildf.1J ~ 0;
availBlock ~ 2;
fo~ (i '"availBlock;

next.Block[iJ ~ i
next Block [z] ~ 0;

II Pinel the Right child of the node j
int Technique: :E'indChild (int j, int parity)

int delta, right, gap;

delta = 2 * (first. [block {jll - j) t- I - pari.ty;
right", rtChild [block {jJJ;
gap ~ right - last [block {right]];
if (delta <~ gap) {

return (ri.ght - delta);

else {
delta ~ delta - gap - 1;
right ~ first {prevBlock {block {right] J] j

gap ~ right - last [block [rightl]:
if (delta <~ gap)

return (right - delta);
else

return (first. [prevBlock [block [right}]) - delta ~ gap ~ 1);

II Interchange the nodes el and e2
void Technique: :lnterchangeLeaves (tnt el, int e2)

int temp;

rep [alpha [ell] '" e2;
rep [alpha [e2]] ~ el;
temp ~ alpha [ell;
alpha [e1) alpha [e2];
alpha [e2] ~ temp;

-232-



II Update model for the symbol k
void Technique: :update(int k)
(

FindNode(k) ;

while ('1 ) 0)
SlideAndlncreament();

if (leafTolncreament !:: 0)
q :: leafTolncreament;
SlideAndlncreament();

/1 Fi.ndt.he node corresponding to the symbol k
void Technique: :FindNode (int k)

q:: rep[k);
leafTofncreament ::0;
if(q<::m){

InterchangeLeaves (q, m);
if(r~~O){

r ::m/2;
if (r ) 0) e 1;

m--;
r--;
q :: m + 1;
bq :: block [q];
if(m)Ol{

block {ro] bq;
last [bq] m;
oldParent parent [bq];
parent [bq] ::m + N;
parity [bq] :: 1;
b ::availBlock;
availBlock ::nextBlock (availBlock];
prevBlock [b) ::bq;
nextB]ock (b] :: nextBlock (hqJ;
prevBlock [next.Block[bq]] :: b;
nextHlock [bq] :: b;
parent(b] ::oldParent;
parity [b] :: 0;
rtChild [b] :: q;
block [m .•. rq ;:; b;
weight [b] ::OL;
first [b) :: m + N;
last [b) ;:;m + N;
leafTolncreament q;
q :: m + N;

}
}
else {

InterchangeLeaves (q, first[block[q]]);
q:: first{block['1]];
if «'1 :::: (m- + 1» && (m ) 0»

leafToIncreament ;:;'1;
q:: parent [block [q]};

II Slide the current node to the next block
void Technique: :SlideAndlncreament (void)

bq = block[q];
nbq ::nextBlock[bq];
par:: parent[bq);
oldParent ::par;

-233-



oldParity = parity[hq];

if «(q <= N) && (first.[nhq) ) H) && (weight['nbq] ~= weight.{bq])) ::
«q> N) && (first(nbq] <= N) && (weightln!Jql =~ h'eight[bq] t lL)})

slide ~ 1;
oldParent parent[nhqJ;
oldParity parity[nbq] ;
if (par > 0) {

bpar = block[par];
if (rtChild[bpaJ:] == q)

rtChild(bpar] -= last[nbq];
else

if (rtChild [bpar] ::~ first [nbqJ)
rtChi Id [hpar) q;

else

if (par
if

rtChild [bpar] t:: 1;
!:: z) {
(block [par t l] !:: hparJ

if (rtChild. {block[par tIl]
rtChild [block [par t I]]

else if (block [rtChild [block
rtChild [block [par t 1]]

f lrst [nbq)
= q;
(par t 1]]] -=:: nbq)
t= 1;

}
parent [nbq] +:: - 1 -t parit.y [nbq];
parity [nhq] :: 1 - parity (nhq);
nbq -= nextBlock lnbq];

}
else

slide -= 0;

if {((q <:: N) && (first. [nhq) <:: NJ) ::
«q) N) && (first (nbqJ > N))) &&

(weight [nbq) ::::" weight [bq] tIL))

block [q] :: nbq;
last [nbq] ~ q;
if (last {bq] -== ql {

next Block [prevBlock [bq]] ::nextBlock (bq];
prevBloCk {nextBlock Ltq]] ::prevBJ.ock lhq];
next Block [bqJ :: availBlock;
availBlock :::bq;

}
else {

if (q > N) rtChild [bq) :: FindChilcl (q - 1, 1);
if (parity [bq] :::: 0) parent [bq] -= 1;
parity [b'lJ ::: 1 - pal'itYlbq];
first [hq] :: q - 1;

else if ( last [bq] ~~qJ (
if (slide) (

prevBlock {nextBlock [bqJ] " prevBlock [bq] ;
next Block [prevBlocK [bqJ] " next-Hlock [bq};
prevBlock [bq} " prevBlock (nb'l);
nextBlock [bqJ " nbq;
prevBlock [nbq} " bq;
next BloCK [prevBlock [bqJ] hq;
parent [bq] oldParent;
parity [bq] " oldParity;

}
weight [bq] t:: 1;

}
else {

b :::avaHBlock;
availBIock ::next Block [avaiIBlock];
block [q] b;
first [b] :: q;

-234-



last [b] = q;
if(q>N){

rtChild [b} = rtChild [hqJ;
rtChild [bq} = FindChild (q - L, 1);
if (rtChild [b] == (q - I})

parent [bq] = q;
else

if (parity [bq) === 0 I
parent [bq] -= I.;

)
else

if (parity (bq) == 0)
parent [bq] -= 1;

first [bq] = q - 1;
parity (bq] = 1 - parity [bq];
prevBlock (b) == prevBlock [nbq];
nextBlock [b] = nbq;
prevBlock (nbq] == b;
nextBlock (prevBlock (b]) == b;
weight [b] weight (bq] f. 1;
parent [b] oldParent;
parity [b) oldParity;

)
if (q <=

q
else

H)
oldParent;

q par;

II Encode the symbol j
void Technique: :encode (int j)

int i, ii, q, t, root;

q == rep fjl;
i = 0;
if(q<=m)l

q = q - 1;
if ( q < 2 * r)

t " e , 1;
else (

q -= r;
t == e;

)
for (ii = 1; ii <= t; ii++)

i++;
stack (i) = q % 2;
q = q /2;

)
q m;

)
if(m==N)

root N;
else

root z;

while (q !== root)
iUj
stack(i] = (first [block [q)] - q + patity [block [q]]) % 2;
q = parent [block (q]]

- (first [block [q]) - q + 1 - parity [block [q]]) I 2;

)

}
for .0i i- ii )= 1; ii--) fputb(stack [ii));

-235-



II Decode the next symbol from the code string
unsigned int Technique: :decode (void-)
(

int i, q;

if(m==NJ
q N;

else
q z'

while (q > N) {
q ::FindChild ~q, fgetb( );

if (q"=-m)
q =- 0;
for (i 1; i <= e; i~+) q
if(q<r)

q" 2 * q + fgetb ();
else

q += r.;
q++;

)
return (alpha [q]);

2 * q + fgetb ();

II UTIL.H: Header file for utility routines.
#ifndef UTIL_H
#define UTn If
#include <stdio,h>
#include <time,h>

class Utility {
pr-ival.e:

iot dxl, dx2, dyl, dy2, dy3;
I{protected:

FILE *file;
unsigned char mask;
int rack;
long iot ccount;

public:
Utility(voidl {

dxl 14;
dx2 28;
dyl 2;
dy2 3;
dy3 9;

)

void disp_scr (canst char *act, canst char *fnt, canst char ~fnc.
const char *tech, canst char :t:scaled, const char *model);

char* getfname (canst char *path};
void usage(char *comm);
void report (clock_t stime, clock_t etime,

long tcount, long scaunt, long ceount);
void error (canst int flag, canst char *message);
void out code (const long scaunt, canst long ccount);
void outtcount (canst long tcount);

rILE *bfopen( canst char *name, canst char *mode);
void fputb (int bit);
void fputbs (unsigned long code, int count);
int fgetb (void);
unsigned long fgetbs (iot bit_count);
void bfclose (void);
void bfflush (void);
void fpdntbs (n LE *file. unsigned int code, int bits);
long i,ntgetccount(void);

) ;
#endif

-236-



II UTIL.CPP: Member functions Implementation for Utility Class.
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
~incl\Jde <string.h>
;Iinclude <dir.h>
#include "util.h"

II Open file for bit oriented liD operation.
FILE *Utility: :bfopen (const char *name, canst char *mode)
(

file
rack
mask
ccount
return

fopen(name,
0;
O><BO;
" 0;
file;

mode) ;

II close binary file
void Utility: :bfclose(void)

fclose(file);

II Flushes the remaining bits of the code file.
void Utility: :bfflush(void)

if(mask != OxBOl
H(plltc(rack, file) !:: rack) (

error( 1, "Error in writing code ... ");
}
else

out code (0, •."'ccoun t 1;
)

fflush(file) ;

II Output a single hit,
void Utility: :fputb (iot bit)
[

if(bit)
rack ::: mask;

mask »= 1;
if(mask :=:= 0) (

if(plltc(rack, file) !:= rack)
error(l, "Fatal error in writing bit ... ");

else

}
rack
mask

outcode(O, ++ccount);

0;
OxBO;

II Output a group of bits.
void Utility: :fputbs (unsigned long code, int count)

unsigned long testbit;

testbi t :: -iL < < (count - 1);
while (testbit != 0) (

if(testbit & code)
rack : = mask;

mask »= 1;
if(mask == 0) {

if(putc(rack, file) != rack)
error(i, "Fatal error in writing bit ... ");

else {
outcode(O, •..•.ccount);

-237-

_•. tt



}
rack
mask

}
t esthi t »:; 1;

1/ input a single bit.
iot Utility: :fgetb(void)

iot value;

0;
Ox80;

if(mask ::= Ox80) (
rack:; getc(file);
if (rack == EOF)

error (1, "Fat.al error in reading bit ... ");
else

out.cade(O, ++ccount);

}
value rack ~ mask;
mask »:: 1;
if (mask =.:: 0)

mask:: OxBO;
return (value? 1 : 0);

II Input a number of bits.
unsigned long Utility: :fgetbs (int bit~count)
(

unsigned long test-mask;
unsigned long return value,

testmnsk :: lL « (bit count I);
,return_value::: 0;
while (testmask != 0) (

if(mask == OxBO) l
rack:: getc(filel;
if (rack == EOF)

error(l, "Fatal error in reading bits ... ");
out code (0, t +ccount ) ;

)
if(rack &. mask)

returo_value := mask;
testmask »= 1;
mask »= 1;
if (mask =:: 0)

mask :: Ox80;
)
return(return_value);

/1 print a integer data as a group of bit.
void Utility:: fprintbs(FILE *file, unsigned int code, int bits)

unsigned int mask;

mask = 1 « (bits - 1);
while (mask != O){

if(code & mask)
fputc('l', file);

else
fputc( '0', file);

llIask »= 1;

-238-



long int Utility: :getccount(void)
(

return ccount;
)

II Display the screen for compression and decompression operation.
void Utility: :disp_scr (canst char *act, canst char *fnt, canst char *fnc,

canst char *tech, canst char *scaled, canst char *model)
canst int xl
canst iot It

'int x, y;

14, yl = 7, x2 = 67, y2 = 19;
201, Ib = 200, rt = 187" rb = 188, hor 205, ver 186;

clrscr() ;
1* draw the box */
gotaxy(xl,yl);putch(lt);
for (x = xl + 1; x < xl + 5; x++) putch(hor);
printf(act);
for(x = wherex(); x < x2; x+t) putch(hor); putch(rt);
for(y = yl+l; y <y2; y+r )(

gotoxy(xl,y); putch(ver);
gotoxy(x2,y); putch(ver);

)
gotoxy(xl,y2); putch(lb);
for (x = xl + 1; x < x2; x++) putch(hor);
putch(rb) ;

1* writing message *1
window(xl+l, yl+l, x2-I, y2-1);

gataxy( 13,1);
cprintf(" Name Size\n\r");
cpdntf(" Text File %s\n\r",getfname(fnt»);
cprintf(" Code File %8\0\r\0\r", getfname(fnc»;
cprintf(" Technique %8\0\1''',tech);
cprintf(" Scaled %s\o\r", scaled);
cprintf(" Model %s\n\r\n\r", model);
cprintf(" Efficiency:");

gotoxy(wherex()+lO,wherey(»;
cprintf("Time: \o\r\n\1' Message :");

II Seperate file name from the full path name.
char~ Utility::getfname (canst char *path)

char P[MAXPATHi;
char drive[MAXDRIVE];
char dir[MAXDIR];
char file[MAXFILE);
char ext[MAXEXT];
strcpy(p,path) ;
fnsplit(p, drive.dir,
fnmerge (p, "" '(II

return p;
file, ext);
file, ext);

void Utility: :usage(char *comm)

.printf("\nSyntax: %s <SourceFile> <TergetFile>", getfname(comm»;
exit( -1);

-239-



II report times and compression efficiency.
void Utility: : report (clock_t stime, clock_f. etime,

long tcount, long scollnt, long ceaunt)

double c1time;

,
i;

"I,',.
1/

dtime ~ (dauble)(etime - stimel/ldouble)CLK_TCK;
outeode(scount, ccount);
gotoxy(dxl, dy3);
cprintf ("%5. 2f%%", (1.0- (double) (,sc::ount+ccount) / (double) tcount )*100.0);
gotaxy (dx2, dy3);
cprintf(" %0.3f seconds.", dtime);
error(O, "End of compression .... ');

I'
getch( );
window(1,I,BO,Z5)i
elrser() ;
'1

II Give error message.
void Utility::error (const int flag, canst char *message)
(

gotoxy(14 ,11);
clreol() ;
textattr(Ox87)i
cprintf(message);
textattr(Ox07);
i.f(flag) {

1/ getch();
/I window(l,l,80,25)i
/I cl rsert ) i

exit( -1);

II Display static counts on the screen.
void Utility: :outcode (canst long scotlnt, canst long ceaunt)

gotoxy(dx2, dy2);
if(scount && ecount){

cprintf( "%ld". scount+ccount);
gotoxy(dx2, dy2~1);
cprintf("{%ld ~ %ld]", scount.,ceount.);

}
else if(scount)

cprintf( "%ld". scount);
else

}
cprintf( "%ld", cc~)Unt) i

II Display compression counts.
void Utility: :outtcount (canst long tcount)
(

gotoxy(dx2, dyl)j
cprintf("%ld", tcount);

)

-240-


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154
	00000155
	00000156
	00000157
	00000158
	00000159
	00000160
	00000161
	00000162
	00000163
	00000164
	00000165
	00000166
	00000167
	00000168
	00000169
	00000170
	00000171
	00000172
	00000173
	00000174
	00000175
	00000176
	00000177
	00000178
	00000179
	00000180
	00000181
	00000182
	00000183
	00000184
	00000185
	00000186
	00000187
	00000188
	00000189
	00000190
	00000191
	00000192
	00000193
	00000194
	00000195
	00000196
	00000197
	00000198
	00000199
	00000200
	00000201
	00000202
	00000203
	00000204
	00000205
	00000206
	00000207
	00000208
	00000209
	00000210
	00000211
	00000212
	00000213
	00000214
	00000215
	00000216
	00000217
	00000218
	00000219
	00000220
	00000221
	00000222
	00000223
	00000224
	00000225
	00000226
	00000227
	00000228
	00000229
	00000230
	00000231
	00000232
	00000233
	00000234
	00000235
	00000236
	00000237
	00000238
	00000239
	00000240
	00000241
	00000242
	00000243
	00000244
	00000245
	00000246
	00000247
	00000248
	00000249
	00000250
	00000251
	00000252
	00000253
	00000254
	00000255
	00000256
	00000257
	00000258
	00000259
	00000260
	00000261
	00000262
	00000263

