
Design of a High Speed Crypto-Processor ASIC

for Next Generation IT Security

by

Niranjan Roy

MASTER OF SCIENCE

IN

INFORMATION AND COMMUNICATION TECHNOLOGY

1111111111111111111111111111 ~ m
.: #1 04M7li1 2l

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

2007

This thesis titled, "Design of a High Speed Crypto-Processor ASIC for Next

Generation IT Security" submitted by Niranjan Roy, Roll No: MP0331026, Session

2003-2004 has been accepted as satisfactory in partial fulfillment of the requirement

for the degree of Master of Science in Information and Communication Technology
on the 071h October 2007.

BOARD OF EXAMINERS

1.

2.

3.

4.

Dr. Md. Liakot Ali
Assistant Professor, IICT
SUET, Dhaka - 1000

Qo
Dr. S. M. Lutful Kabir
Professor and Director, IICT
SUET, Dhaka - 1000

Dr. Md. Abul Kashem Mia
Professor, IICT
SUET, Dhaka - 1000

--!?r~ 10/10/0 T-
Or. A. S. M. Harun Ur-Rashid
Professor, Department of EEE
SUET, Dhaka - 1000

ii

Chairman

Member

(Ex-officio)

Member

Member

(External)

CANDIDATE'S DECLARATION

This is hereby declared that this thesis or any part of it has not been submitted

elsewhere for the award of any degree or diploma.

Niranjan Roy

111

To my parents and my wife for their love and support

IV

TABLE OF CONTENTS

List of Figures viii
List of Tables ix
List of Abbreviations of Technical Symbols and Terms x
Acknowledgements xii
Abstract xiii

Chapter 1: Introduction 1
1.1 Introduction 1
1.2 Scope and Motivation 3
1.3 Objectives 4
1.4 Framework 5

Chapter 2: Theoretical Background 6
2.1 Introduction 6
2.2 IT Security Needs 6
2.3 Overview of Cryptography 7

2.3.1 Basic Terminology and Concepts 7
2.3.2 Ciphering Techniques 8
2.3.3 Cryptanalysis 9

2.4 The Origins of AES 10
2.5 AES Performance on Different Platform 11

Chapter 3: The AES Algorithm 13
3.1 Introduction 13
3.2 The State 13
3.3 The AES Structure 14
3.4 Encryption 16

3.4.1 SubBytesO Transformation 17
3.4.2 ShiftRowsO Transformation 18
3.4.3 MixColumnsO Transformation 19
3.4.4 AddRoundKeyO Transformation 19

3.5 Key Expansion 19
3.6 Decryption 20

3.6.1 InvShiftRowsO Transformation 21

v

3.6.2 InvSubBytesO Transformation

3.6.3 Inverse AddRoundKeyO Transformation

3.6.4 InvMixColumnsO Transformation

Chapter 4: High Speed Design Considerations

4.1 Introduction

4.2 Algorithm Optimization

4.3 Benefits of Optimized Algorithm

4.4 Offline Key Expansion

4.5 Design Architecture

4.5.1 Loop Unrolling

4.5.2 PipeJining

4.5.3 Outer Round PipeJining

4.5.4 Inner round Pipelining

Chapter 5: ASIC Modules and Verilog Design Entries

5.1 Introduction

5.2 Components

5.3 Memory Unit

5.3.1 S-box Memory

5.3.2 Key Memory

5.3.3 Column Vector Memory

5.3.4 Total Memory Requirements

5.4 Encryption Unit

5.5 Decryption Unit

5.6 Key Expansion Unit

5.7 Verilog Design Entries for "Encryption" Module

5.7.1 "MixColumnProcessor" Module

5.7.2 "Round10" Module

5.8 Verilog Design Entries for "KeyExpansion" Module

5.8.1 "S_box" Module

5.8.2 "KeyProcessor" Module

5.8.3 "KeyRegister" Module

5.9 Verilog Design Entries for "Decryption" Module

5.10 Tools Used

VI

21

22
22

23
23
23
25
25
26

27
27

27

.27

29
29
29
30

30

30

30
31

31

32
33

33

34

34

34

34

34

35

35

35

Chapter 6: Results and Performance Analysis 36

6.1 Introduction 36

6.2 Resources Used 36

6.3 The Simulation Result 36

6.4 Timing Analysis and Speed Measurement 38

6.5 Comparison with Other Related Works 39

6.5.1 FPGA Implementation 39

6.5.2 ASIC Implementation: Prediction and Analysis 40

6.4 I/O Signals and Data Buses 42

Chapter 7: Conclusion 44

7.1 Conclusion 44

7.2 Further Studies 44

References 46

Appendix A Column Vectors 48

Appendix B Key Expansion Module 49

Appendix C Encryption Module 55

Appendix D S_box Memory (ROM) 60

Appendix E Inverse S_box (ROM) 62

Appendix F Decryption Module 64

List of Publications 69

VB

LIST OF FIGURES

Figure 3.1: Mapping of input bytes, state array and output bytes 13

Figure 3.2: AES encryption and decryption 14

Figure 3.3: Key and expanded key 15

Figure 3.4: A full encryption round 15

Figure 3.5: Pseudo code for the encryption 17

Figure 3.6: Shift row transformation 18

Figure 3.7: Add round key transformation 19

Figure 3.8: Pseudo code for key expansion 20

Figure 4.1: Standard round of optimized algorithm 25

Figure 4.2: Offline RoundKey addition 26

Figure 5.1: AES crypto-processor components 29

Figure 5.2: The encryption unit of the crypto-processor 31

Figure 5.3: The decryption unit of the crypto-processor 32

Figure 5.4: Key expansion unit 33

Figure 5.5: Veri log design hierarchy of "Encryption" module 33

Figure 6.1: Simulation result of "KeyExpansion" module 37

Figure 6.2: Simulation result of a full "Encryption" module 37

Figure 6.3: Simulation result from start to cipher 38

Figure 6.4: The throughput-area trade-off of the AES processor with online key 40

scheduling

Figure 6.5: Area-throughput trade-off for the high speed pipelined AES 41

implementations

Figure 6.6: I/O Signals and Data Buses 42

VIIl

Table 3.1:

Table 3.2:

Table 4.1:

Table 6.1:

Table 6.2:

Table 6.3:

Table 6.4:

Table A.1:

LIST OF TABLES

S-box

Inverse S-box

Transformations of a round

Timing analysis summary

Comparison of this design with other FPGA implementation

Performance of AES ASIC on different pipeline stages

Functions of 1/0 signals and data buses

Column vectors

IX

18

21

23
39
39
41

43

48

LIST OF ABBREVIATIONS OF TECHNICAL SYMBOLS AND TERMS

3DES

ACM

AES

ALM

ALUT

ASIC

CBC

CFB

CHES

CLB

DES

DPA

DSA

DSP

e.g.
EDA

Eq.

FIPS

FIPS PUB

fMAX
FPGA

FPL

Gbps

GF

GX

HDL

InvMixColumns()

InvSubBytes()

ISCAS

K

LAB
LC

LNCS

Triple-DES (Data Encryption Standard)

Association for Computing Machinery

Advanced Encryption Standard

Adaptive Logic Module - basic building block of Stratix family

Adaptive Look-Up Table

Application Specific Integrated Circuit

Cipher Block Chaining

Cipher Feedback

Cryptographic Hardware and Embedded System

Configurable Logic Block

Data Encryption Standard

Differential Power Analysis

Digital Signature Algorithm

Digital Signal Processor

For example

Electronic Design Automation

Equation

Federal Information Processing Standards

Federal Information Processing Standards Publications

Maximum Clock Frequency

Field Programmable Gate Array

Field Programmable Logic

Giga bits per second

Galois Field

Gigabit Transceiver

Hardware Description Language

Inverse Mix Columns operation

Inverse Substitute Bytes operation

International Symposium of Circuits And Systems

Cipher Key

Logic Array Block - a physically grouped set of logic cells

Logic Cell

Lecture Notes in Computer Science

x

LPM

LUT

M4K

M512

MixColumnsO

M-RAM

NIST

PDA

PLD

RAM

RconO

ROM

RotWordO

RSA

S-box

SubBytesO

tco

th

tpd

tsu

VHDL

Word

xor

, ,

" II

•

Library of Parameterized Module

Look-Up Table

Memory block of 4096 bits

Memory block of 512 bits

Forward Mix Columns operation

Mega RAM

National Institute of Standards and Technology

Personal Digital Assistant

Programmable Logic Device

Random Access Memory

The Round Constant word array

Read Only memory

A Function that performs a cyclic permutation

Rivest-Shamir-Adeiman

A lookup table that holds non-linear substitute byte values

Forward Substitute Bytes operation

Clock-to-Output Time

Hold Time

Point-to-Point Delay

Setup Time

Very High Speed Integrated Circuit Hardware Description

Language

A group of 32 bits

Exclusive-OR

Exclusive-OR operation

Signal name or port name

Module name or citation

Matrix Multiplication

Xl

ACKNOWLEDGEMENTS

During the time I was performing my masters thesis, I came across many people

who have supported and assisted me. First, I want to express my heartiest thanks to

my supervisor, Dr. Md. Liakot Ali, for giving me the opportunity to do my masters

thesis under his supervision. He encouraged me to involve in this promising and

sophisticated field of advanced digital design. Without his continuous support, even

in my personal matters, this thesis could not have been completed.

I gratefully acknowledge the valued advice and support from Professor Dr. M. A.

Kashem Mia, and Professor Dr. S. M. Lutful Kabir, Director, IICT.

I also express my gratitude to the management of Biman Bangladesh Airlines

Limited, where I have been doing my job, for giving me the permission for higher

studies.

My special thanks go to all the authorities and staff of IICT, BUET.

J thank my beloved wife, Nilima Biswas Lata, for her boundless support in all

respects, which helped me devote to the work.

Finally, I want to thank all my friends and family who helped me, making this work a

nice experience.

XII

ABSTRACT

Since demand for privacy and security of information are gradually emerging due to

the rapid growth of information and communication technology, the research in

protecting information for coming generation is gelling enormous importance.

Cryptographic algorithms form the fundamental aspect within this research field. The

Advanced Encryption Standard (AES), the latest security algorithm, has added new

dimension to cryptography with its potentiality of safeguarding the IT systems.

Since the National Institute of Standards and Technology (NIST) accepted the AES

to be the next generation IT security algorithm, a lot of research is going on to

harness the power of AES in different security applications. For applications

requiring high speed, hardware based implementation is the only choice. Since

Application Specific Integrated Circuit (ASIC) is inherently ornamented with better

performance than any other discrete system, ASIC based AES crypto-processor is

anticipated to be the best solution for high-speed security mechanism.

This thesis presents the design of a crypto-processor ASIC to generate

cryptographically secured information at a rate of multi-ten Gbps. The proposed

novel crypto-processor addresses the next generation IT security requirements: the

resistance against all attacks and high speed with low latency. This thesis uses AES

algorithm as AES meets the first requirement, i.e. it is immune to all known attacks.

Achieving high speed with AES algorithm is the main goal of this thesis. This work

optimizes AES algorithm to eliminate algebraic operations from the datapath, which

contributes to increase the processing speed and reduce the latency. By using loop

unrolling, inner-round and outer-round pipelining techniques and offline key

scheduling, this design can deliver secured data at ultra high speed. Thus, it

becomes available for encryption on an optical link. The prc'posed crypto-processor

is designed with Verilog HDL using Quartus II EDA software. The design is then

simulated on a Stratix II GX FPGA device to test and verify the functional behavior

and performance of the crypto-processor. The speed achieved on the FPGA is

36.16 Gbps. This design can be used to process data at a lhroughput of about 100
Gbps on ASIC technology.

XllI

CHAPTER 1
INTRODUCTION

1.1 Introduction:

This is the age of information and communication technology. The rapid growth in

computer systems and their interconnections via networks has increased the

dependence of both organizations and individuals on the information stored and

communicated using these systems. This has increased the awareness of the need

to protect data from disclosure, to guarantee data integrity and to protect systems

from network-based attacks. To enforce security and privacy of information that is

sent over the electronic communication media, a wide variety of security systems

have been proposed and materialized. Keeping pace with the maturity of security

technology, the hackers, the viruses, the electronic eavesdroppers and the

electronic frauds have been coming into the field with new and sophisticated

techniques of attacking existing security mechanisms. So, to breach and to

supersede the technology of attacks, there must have a continual effort of

developing new technologies for IT security. These phenomena show that IT

security is an ever-ending research field for the researchers. This thesis is targeted

to take the research on IT security one step ahead to next generation.

In today's information age, communications play an important role in e-commerce to

satisfy the customers and business needs of this fast and high-tech global

marketplace. In coming generation, the whole real world will be considered to be

replicated in 'Cyber World'. To achieve this, high-speed communication

infrastructure is being evolved to fulfill the requirements of transferring huge amount

of data in minimum time. So, to avoid creating bottleneck in the high speed

communication system, the IT security systems should equally have high speed. In

summary, the security mechanisms for next generation IT security should address

the challenging aspects like, (i) resistance against all attacks and (Ii) high speed with

low latency. These aspects of next generation IT security system are focused in this

thesis to design the proposed security system. The first challenge is overcome by

choosing the best available algorithm for IT security. Achieving high speed, the

second challenge for next generation IT security, is the main focus of this thesis.

The problem of latency, is also given importance so that it is kept minimum while

gaining speed.

2

The cryptographic algorithm, also known as cipher, forms the fundamental aspect

within the research field on IT security. On November 26, 2001, Advanced

Encryption Standard (AES) was chosen by the National Institute of Standards and

Technology (NIST) to be the replacement for Data Encryption Standard (DES) [1],

the most used and analyzed cryptographic algorithm for last 25 years. The AES

algorithm satisfies the following NIST statement: "Assuming that one could build a

machine that could recover a DES key in a second, then it would take that machine

approximately 149 trillion years to crack a 128-bit AES key [2]." Due to this

outstanding feature of AES, the AES meets one of the two prominent requirements

for next generation IT security system; i.e. the AES is resistant to all known attacks.

So this thesis work uses the AES as security algorithm.

The AES algorithm is a safeguard against all sorts of attack. But as AES has eleven

rounds of complex algebraic and matrix operation which create hinders against high

speed operation. This thesis provides solution to achiev;ng high speed by the

combination of the following algorithm optimization and design techniques:

i. ASIC Technology;

ii. Removal of all algebraic operations from its data path;

iii. Offline key scheduling;

iv. Loop unrolling;

v. Outer and inner loop pipelining;

vi. Use of memory blocks (ROM and RAM);

vii. Reduction of stages per round.

Though pipelining is used here, the latency of the datapath is kept reasonably lower.

There are two ways to implement any algorithm, i.e. hardware or software. A

software implementation offers only limited physical sl~curity. But hardware

implementation, by nature, is more physically secure, as they cannot easily be read

or modified by an outside attacker. The most significant disadvantage of software

based solutions is that the speed performance is significantly lower than that based

on hardware. This thesis addresses the hardware-based design for the applications

requiring high speed security infrastructure. For implementing cryptographic

applications in hardware, there are two ways; FPGA (Field Programmable Gate

Arrays) technology and ASIC (Application Specific Integrated Circuit) technology.

3

FPGAs are flexible, because FPGAs contain programmable logic blocks that allow

the same FPGA to be used in many different applications. For comparable

performance, cost of FPGA devices is still a bottleneck in the case of mass

production. For tho FPGA basod implemontations, extra delays are introduced by

the routing process. As a result of this speed penalty, the AES implemented in

FPGA is typically slower than the same circuit implemented in an ASIC, assuming

that both integrated circuits are fabricated using the same semiconductor technology

(in particular, using the same transistor size). Furthermore, FPGA based devices

consume more power than ASIC devices do. Hence this thesis is targeted to design
of an ASIC.

1.2 Scope and Motivation

U.S. unveils AES as a new U.S. encryption standard for the federal government in

hopes that industry will also embrace it. "AES will help the nation protect its critical

information infrastructures and ensure privacy for personal information about

individual Americans," Commerce Secretary Don Evans told an industry group [2].

The Commerce Department also said that the algorithm could be used without

paying royalty fees [2]. It is estimated that AES has the potential to remain secure

from key exhaustion attacks. These phenomena imply that AES will occupy the

encryption market worldwide and will monopoly for many years. Therefore, a huge

volume of AES products is necessary to meet the global market of security

mechanism. Due to these attractive and motivational phenomena, this thesis targets

to design IT security mechanism employing AES algorithm.

The Advanced Encryption Standard was accepted as a FIPS standard in November

2001 [1]. Since then, there have been different hardware realizations using ASIC

and FPGA technology. References [3], [4], [5], [6], and [7] present the fastest FPGA

realization of the AES algorithm. All of the architectures used in those works can

achieve the throughput rate of several Gbits/s. The maximum throughput achieved

is 21.54 Gbits/s on FPGA shown by [3].

References [8], [9], and [10] presents ASIC designs employing AES algorithm. The

work [9] presented the possibilities of achieving a throughput of over 30 Gbits/s

encryption, using a 0.18~m CMOS technology. The work [10J presented an AES

processor that runs between 30 to 70 Gbits/s with minimum area cost. References

4

(11), [12], (13), and [14] present the implementation of other aspects (like low power,

Differential Power Attack (DPA), Side channel analysis, etc.) of AES algorithm. This

thesis work presents the techniques and the architectures as stated in section 1.1,
which can achieve the throughput above 100 Gbps.

This crypto-processor will be designed using Verilog HDL with Quartus "

development software. The Quartus " design environment ensures easy design

entry and is a fully integrated, architecture-independent package for designing logic

with Altera Programmable Logic Device (PLD). Quartus " supports several LPM

functions and other mega-functions that allow implementinn RAM and ROM. The

generic, scalable nature of each of these functions ensures implementation of any

supported type of RAM (synchronous or asynchronous). Then the design will be

simulated and verified. Finally, after simulation and verification, this will be
synthesized into ASIC.

Since the design of the proposed ASIC is in Verilog HDI., which is technology

independent, the soft core can be reused in any new fabrication technology of this

ever-changing technology environment. ASIC designs usuall f consume less power,

show better performance and reliability and require smaller system size and shorter

time to market. Therefore, the design of the crypto-processor in this thesis is
ornamented with all the above advantages of the ASIC.

1.3 Objectives

The goal of this thesis is to design a high speed crypto-processor ASIC using AES

algorithm. To meet the goal, the following objectives have been identified:
• Algorithm optimization;

• Design of a crypto-processor ASIC using Verilog HDL (Hardware Description
Language);

• Design simulation using Quartus " development software;

• Analysis of throughput of the proposed design.

5

1.4 Framework

The organization of this thesis is as follows. Chapter 2 provides the thesis

background information. In this chapter the foundations and principles of

cryptography and the AES architecture are overviewed. Furthermore, an overview of

related work on the AES cipher is given. Chapter 3 discusses the AES algorithm in

general. Chapter 4 provides the design issues and design architecture used for

achieving high speed. The design hierarchy and design modules are described in

chapter 5. Chapter 6 presents the results and performance of the design. Chapter 7

concludes the thesis and gives some suggestions for future work. References and

appendices are provided following chapter 7.

6

CHAPTER 2

THEORETICAL BACKGROUND

2.1 Introduction:

This chapter describes foundations and principles of cryptography and different IT

security needs. Furthermore, it also overviews related works on the AES cipher.

2.2 IT Security Needs

The importance of transmitting messages securely is not new. For millenniums,

people have had a need to keep their communications private and secured [15].

Thousands of years ago, the Egyptian rulers, diplomats and defense personnel had

been using different techniques of communicating messages among them so that

the messengers or other people can not interpret the messages. In today's

information age, communications play an important role which contributes to the

growth of technology. Intemet commerce, mobile commerce, electronic

marketplace, electronic auction electronic payment system, e-govemess, etc. are

playing important role in e-commerce to satisfy the customers and business needs

of this fast and high-tech global marketplace. Electronic security is increasingly

involved in making communications more prevalent. Therefore, a mechanism is

needed to assure the security and privacy of information that is sent over the

electronic communications media. Information should be protected from

unauthorized reception or interception at any cost no matter whether the

communication media is wired or wireless. The Cryptography has been playing an

important role in providing security mechanisms for information communication.

History says that more than two thousand years back, Julius Caesar, the great, first

used cipher (cryptography) technique as a security mechanism [16].

Until the last two decades, cryptography was the domain of the diplomatic and

military world. But now the cryptography has been growing outside of military and

diplomatic circles, and into public domain. Often there has been a need to protect

information from 'prying eyes'. In this electronic age, information that could

otherwise benefit or educate a group or individual can also be used against such

groups or individuals. Industrial espionage among highly competitive businesses

often requires that extensive security measures be put into place. And, those who

wish to exercise their personal freedom, outside of thEl oppressive nature of

7

governments, may also wish to encrypt certain information to avoid suffering from

the penalties of going against the wishes of those who attempt to control.

2.3 Overview of Cryptography

In this section ciphering definitions, methods and techniques are overviewed, This

section is included as background information, since this thesis is about designing a

high speed IT security mechanism with a cipher algorithm.

2.3.1 Basic terminology and concepts

The term cryptography is derived from the Greek word "Kryptos". Kryptos is used to

describe anything that is hidden, obscured, veiled, secret or mysterious.

Cryptography, over the ages, has been an art. However over the past twenty years,

cryptography has moved from an art perspective to a science perspective.

Cryptography is the study of mathematical techniques related to aspects of

information security such as privacy, data integrity, entity authentication, and data

origin authentication.

The fundamental goal of cryptography is to prevent and detect cheating and other

malicious activities. This goal is achieved by adequately addressing four

frameworks. These four frameworks, which are commonly applied in network

services, are described as follows:

a. Confidentiality is a service used to keep the content of information away from

all but those authorized to see it. Secrecy is a term synonymous with

confidentiality and privacy. There are numerous approaches to provide

confidentiality, ranging from physical protection to mathematical algorithms

which render data unintelligible.

b. Data integrity is a service which addresses the unauthorized alteration of

data. To assure data integrity, one must have the ability to prevent data

manipulation by unauthorized parties. Data manipulation includes such

actions as insertion, deletion, substitution and multiplication.

8

c. Authentication is a service related to identification. This service applies to

both the sender and the receiver entity. To clarify, two parties initiated into a

secure communication should first identify each other.

d. Non-repudiation is a service which prevents a person/entity from denying

previous commitments or actions. This service is desired in situations where,

for example, one entity can authorize the purchase of property to another

entity and later denies such authorization was granted. In practice the

involvement of a trusted third party is necessary to resolve such disputes.

The cryptographic algorithms are the fundamental building blocks for the four

frameworks that are described above. Each cryptographic algorithm is classified

according to its characteristic features. The next section will overview these

classifications and will describe the ciphering principles of each classification.

2.3.2 Ciphering techniques

There are three groups in which cryptographic algorithms can be classified, these

are:

(I) symmetric cryptographic or secret-key algorithms;

(iI) asymmetric cryptographic or public-key algorithms; and

(iii) hash functions.

Algorithms of the first two classifications are key based techniques in which plain-

text is transformed into cipher-text or vice versa. Plain-text is a state of data in which

information is easily accessible. While, cipher-text is a state of data in which

information is hard to reveal. The process of transforming plain-text into cipher-text

is called encryption, while the process of transforming cipher-text into plain-text is

called decryption. The cipher-text can be transformed back into the plain-text only by

using a valid key.

The algorithms of the last classification, hash functions, are mathematical

techniques, which map data of arbitrary length to certain unique value. Hash

functions are commonly used in network services involving d,lta integrity.

9

The characteristic feature of symmetric cryptographic algorithms is that both the

encryption and decryption processes are accomplished by using the same key. On

the other hand, in public-key algorithm, the encryption and decryption processes are

accomplished by using different keys. More precisely, the encryption process is

based on using a key that is easily available, while the decryption process is based

on another key, which is only accessible to a specific person or entity. The key that

is used for the encryption process is known as the public key, while the key that is

used for the decryption process is known as the secret key. The strength of public-

key algorithms is based on the fact that factorizing the product of both keys is a hard
mathematical problem.

Data Encryption Standard (DES), Triple Data Encryption Standard (3DES) and

Advanced Encryption Standard (AES) are secret-key algorithms; whereas Rivest-

Shamir-Adleman (RSA) and Elliptic Curve Cryptosystem (ECG) are public-key

algorithms. Public-key algorithms are commonly used in network services involving

non-repudiation. The disadvantage of public-key algorithms is that considerable

amount of computation capacity is needed for encrypting or decrypting large

amounts of data. For high-speed considerations, the symmetric key cryptography is

more suitable to encrypt a large amount of data. On the contrary, the asymmetric

key cryptography is suitable for digital signature or computation of small and fixed

data length. Symmetric key based algorithms are also classified into two enciphering

techniques, namely: stream ciphers and block ciphers. The characteristic of stream

ciphers is that the algorithm operates on smaller units of plain-text, usually bits.

While block ciphers take a number of bits (known as blocks) and encrypt them as a

single unit. The AES uses the block cipher technique.

2.3.3 Cryptanalysis

Cryptanalysis is the study of retrieving the plain-text without any knowledge of the

valid key. A cipher is said to be breakable if a third party, without prior knowledge of

the key, can systematically recover plain-text from the corresponding cipher-text.

With the exhaustive search method, known as brute force attack, all possible keys
are tried in order to reveal the plain-text.

There are three types of cryptanalysis techniques: (i) linear technique, (II) differential
technique and (iii) side-channellechnique.

10

(i) Linear technique: The linear cryptanalysis takes advantage of input-output

correlations over a few rounds of the cipher. This technique uses a linear

approximation to describe the behavior of the block cipher. Given sufficient pairs of

known plain-text and corresponding cipher-text, bits of information about the key can
be obtained.

(Ii) Differential technique: The differential cryptanalysis is a type of cryptanalytic

technique that appears to be most effective on block ciphers. This technique is

based on the evolution of the differences made in two related plain-texts encrypted
with the same key.

(iii) Side-channel technique: The side-channel cryptanalysis techniques are based

on timing, fault and power analysis of systems. For example, the power

consumption of the electrical components is logged to deduce secret information like

the encrypting key. In practice, sometimes devices are tampered in order to have it

perform some erroneous operations. All these technique,s are used within the

framework of revealing the secret key or the secret information.

2.4 The Origins of AES

The most used and analyzed cryptographic algorithm is the Data Encryption

Standard (DES). Introduced in the early 70s, DES became the encryption standard

in 1977. In 1983 it was shown that DES cipher is vulnerable due to its short key

length (64-bit). Therefore, an enhanced version of the cipher was introduced. This

enhanced version, known as Triple-DES (3DES), performs DES three times

sequentially and therefore it is more secure than DES. However, the speed

performance of 3DES was not interesting for practical applications. Therefore in

1997, the National Institute of Standards and Technology (NIST) organized a

contest in order to develop a new cryptographic algorithm standard which would

replace both DES and Triple-DES [16]. On November 26,2001, the algorithm known

as Rijndael (pronounced Rhine-dall) was chosen to be the replacement for DES and

since then it is known as the Advanced Encryption Standard (AES) [17].

11

2.5 AES Performance on Different Platform

Various aspects of the AES algorithm have been investigated. One is the

performance of the algorithm. Several organizations have implemented the AES

algorithm on several platforms. Most of the results are published and are available

on Internet [16]. Depending on the platform, the AES speed performance varies

from several Mbit to a few Gbit per second. Another AES research aspect is the

methodology of breaking the cipher. Nowadays, new cryptanalysis techniques and

algorithms are being developed in order to break the AES cipher.

All the AES implementations can be classified into two groups: software based

implementations and hardware based implementations. The software based

implementations are designed and coded in programming languages, such as C,

CH, Java, and assembly. These implementations are executed, e.g. on general-

purpose microprocessors, Digital Signal Processors (DSP), and micro-controllers

(such as smart cards). The hardware based implementations are designed and

coded in hardware description languages, such as VHDL and Verilog HDL, and

finally synthesized into Application Specific Integrated Circuits (ASICs) or Field

Programmable Gate Arrays (FPGA).

The efficiency of cryptographical implementations in both software and hardware is

generally characterized by several parameters. One of these parameters is speed

performance and it is expressed by the throughput. Throughput is defined as the

number of bits that are processed in a second. For the encryption process, the

throughput is defined as the number of bits encrypted in a second. Similarly, for the

decryption process, the throughput is defined as the number of bits decrypted in a

second. Since throughput depends on the platform environment and therefore it

does not always characterize the efficiency of an implementation, it is often

accompanied by the parameter latency. Latency is definod as the time that is

required to complete the processing of one data block and is usually expressed in

number of clock cycles.

Another parameter that characterizes the implementation efficiency is size. In

software based designs this parameter is related to the size of the binary code that

is compiled for a certain machine. In systems with memory shortage, such as

wireless systems and smart cards, this parameter becomes often the most important

12

design criterion. For example, developers who secures systems like wireless

phones and personal digital assistants (PDAs), often make trade-offs between code

size and throughput. For hardware based designs. the parameter, size, is related to

the silicon area of the synthesized circuit. Dependent on what technology is used,

there are various ways for expressing the size of a synthesized circuit. In the ASIC

technology, the occupied area, or in short area, is expressed in the terms of

equivalent transistors or logic gates. In the FPGA based solutions, area is

expressed in the terms of basic building blocks. Dependent on the FPGA vendor, a

basic building block is either expressed in Configurable Logic Block (CLB) or in

Logic Cells (LC). Various FPGA vendors also give an equivalent logic gate number

of the FPGA device. Another parameter. which is used to characterize the efficiency,

is the power consumption. This parameter represents the energy that the design

consumes and it is usually expressed in Watts or Milli Watts. For low power

systems, this is the most critical parameter. Since the system environment sets the

critical parameter for a design, it is often impossible to compare various designs in

an efficient way.

13

CHAPTER 3

THE AES ALGORITHM

3.1 Introduction

The Rijndael algorithm, referred to as the AES Algorithm, is a symmetric key block

cipher that can process data blocks of 128 bits, using cipher keys with lengths of

128, 192, and 256 bits. For high speed design, this thesis uses the AES algorithm

with key lengths of 128 bits. So this chapter describes the algorithm using 128 bits

cipher key.

3.2 The State

The AES algorithm's internal operations are performed on a two dimensional array

of bytes called state. The state consists of 4 rows of bytes and each row has 4

bytes. Each byte is denoted by Si. j (0 ~ i < 4, 0 ~ j < 4). The four bytes in each

column of the state array form a 32-bit word, with the row number as the index for

the four bytes in each word. At the beginning of encryption or decryption, the array

of input bytes is mapped to the state array as illustrated in Fig. 3.1, assuming a 128-

bit block can be expressed as 16 bytes: ina, in" in, ... in,s. The encryption!

decryption are performed on the state, at the end of which t~,e final value is mapped

to the output bytes array auto, out
"

out, ... out,s.

Input Bytes

ina In. In. In"

in, ins ing in13

in2 in6 in10 in14

in, in7 in11 in15

State Array

So.o SO,l So" SO,3

S"O S1,1 S,., S'.3

S"O S',l S,., S'.3

S3,0 S3,1 S3,' S3,3

Output Bytes

out" out. out" out"

out, ouls oul. oul"

oul, oul,; OUllO OUI,.

OUl3 out, auI" OUI,S

Figure 3.1: Mapping of input bytes, state array and output bytes

Hence, the relation of the input array, state array and output array follows the

following scheme:

Sri, j] = in[I,4jJ and out[I,4j] = sri, j] for 0 ~ i < 4 and 0 ~ j < 4,

14

3.3 The AES Structure

Figure 3.2 depicts the overall structure of AES. The input to the encryption and

decryption process is a single 128-bit block. This block is copied into the state, as

mentioned in section 3.2, which is modified at each stage of encryption or

decryption. After the final stage, the state is copied to an output matrix.

'"'"~
"o
'"

o~
'"~
"o
'"

Plaintext (128 bit)

RoundKey (0)

1+------ RoundKey (1)

RoundKey (9)

EP-.----- RoundKey (10)

Ciphertext (128 bits)

Encryption

Plaintext (128 bit)

Ciphertext (128 bits)

Dl!cryption

•••
'"~
"o
'"

~
'"~
"o
'"

Figure 3.2: AES encryption and decry~tion

15

Similarly, the 128-bit key is depicted as a square matrix of bytes. This matrix is by

column, i.e. the first four bytes occupy the first column and so on. This key is then

expanded into an array of 44 words, said to be 'w' matrix, as illustrated in figure 3.3.

Each word is 4-byte (32-bit) long. Four consecutive words serve as a round key for

each round. The key expansion aigorithm is described in section 3.5.

ko k4 k. k'2

k, ks kg k'3
k2 k. klO k14
k3 k, kll k,s

Wo W, W2 ------------ -------- W42 W43

Figure 3.3: Key and expanded key

Four different stages are used, one for permutation and three for substitutions.

Figure 3.4 depicts the structure of a full encryption round. The stages are as follows:

Figure 3.4: A full encryption round

16

• Substitute bytes: This function uses an S-box to perform a byte-by-byte

substitution of the block. For encryption and decryption, this function is

indicated by SubBytes 0 and InvSubBytes 0 respectively.

• Shift rows: This is a simple permutation. For encryption and decryption,

this function is indicated by ShiflRows 0 and InvShiflRows 0
respectively.

• Mix Columns: This is a substitution that makes use of arithmetic over

GF(2B), with the irreducible polynomialm(x) = x8 + x4 + x3 + x +1. For

encryption and decryption, this function is indicated by MixColumns 0
and InvMixColumns 0 respectively.

• Add round key: This function does a bitwise XOR operation of the

current block with a portion of the expanded key. For both encryption and

decryption this function is indicated by AddRoundKey O.

For both encryption and decryption, the algorithm starts with an add round key

stage, followed by nine rounds, each of which contains all four stages; and then

followed by a tenth round containing three stages, excluding Mix columns stage.

Each stage is reversible. For SubBytes 0, ShiflRows 0 and MixColumns 0 stages,

there are corresponding inverse function - InvSubBytes 0, InvShiflRows 0 and

InvMixColumns O. For the AddRoundKey () stage, the inverse is achieved by

XORing the same round key to the block, using the result: A Ell A Ell B = B. The

decryption process makes use of the expanded key in reverse order. The decryption

process is not identical to the encryption algorithm. This is a consequence of the

particular structure of AES.

3.4 Encryption

At the beginning of encryption, the input is copied to the state array as described in

section 3.2. After an initial round key addition, the state array is transformed into

17

final state by implementing a round function 10 limes. The final state is then copied

to the output. The pseudo code for the encryption process is shown in Figure 3.5.

Encryption(byte in[16], byte out[16], word w[44))
begin

byte state[16]

state = in

end

AddRoundKey(state, w[O,3))

for round = 1 step 1 to 9
SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[round.4, (round+1t3))

end for

SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[40, 43))

out = state

/I Section. 3.4.4

/I Section 3.4.1
II Section 3.4.2
II Section 3.4.3
II Section 3.4.4

Figure 3.5: Pseudo code for the enc!) ption

The individual transformations - SubBytesO, ShiftRowsO, MixColumnsO, and

AddRoundKeyO - process the states and are described in the following subsections.

The array w[] contains the key schedule, which is described in section 3.5.

3.4.1 SubBytesO transformation

The SubBytesO is a simple lookup table. This transformation is a non-linear byte

substitution that operates independently on each byte of tile state using a 16x 16

matrix of byte values, called 'S-box'. This S-box is constructed by first computing the

multiplicative inverse of each element in GF(2') with irreducible polynomial m(x) = x'

+ x' + x' + x + 1, the element {OO} is mapped to itself. Then an affine transformation

is applied which can be expressed in matrix form as:

b'o 000111 bo 1
b'l 100011 bl I
b'2 110001 b2 0
b'3 1 I 100 0 1 b3 ;- 0
b', = I 1 1 1 1 000 b, 0
b', o 1 I 1 1 10O b, 1
b'6 a a 1 I 1 1 I 0 b6 I
b', a a a 1 I I 1 1 b7 0

18

where bi is the ith bit of a byte. Here and elsewhere, a prime on a variable (e.g., b',)

indicates that the variable is to be updated with the value on the right.

The Table 3.1 shows the substitution byte values of S.box.

Table 3.1: S-box

y
0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

0 63 7C 77 78 F2 68 6F C5 30 01 67 28 FE 07 A8 76
1 CA 82 C9 70 FA 59 47 FO AD 04 A2 AF 9C A4 72 CO
2 87 FO 93 26 36 3F F7 CC 34 A5 E5 F1 71 08 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 E8 27 82 75
4 09 83 2C 1A 1B 6E 5A AO 52 38 D6 83 29 E3 2F 84
5 53 D1 00 ED 20 FC 81 58 6A CB 8E 39 4A 4C 58 CF
6 DO EF AA F8 43 40 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 90 38 F5 8C 86 DA 21 10 FF F3 D2x 8 CD OC 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE 88 14 DE 5E 08 08
A EO 32 3A OA 49 06 24 5C C2 03 AC 62 91 95 E4 79
B E7 C8 37 60 80 05 4E A9 6C 56 F4 EA 65 7A AE 08
C 8A 78 25 2E 1C A6 84 C6 E8 DO 74 1F 48 80 88 8A
0 70 3E 85 66 48 03 F6 OE 61 35 57 89 86 C1 10 9E
E E1 F8 98 11 69 09 8E 94 98 1E 87 E9 CE 55 28 OF
F 8C A1 89 OD 8F E6 42 68 41 99 2D OF 80 54 8B 16

The substitution strategy is that the four most significant bits of each state element

are used for the row index, while the rest are used for the column index.

3.4.2 ShiftRowsO transformation

In this transformation, the bytes in the first row of the State do not change. The

second, third, and fourth rows shift cyclically to the left one byte, two bytes, and

three bytes, respectively, as illustrated in Figure 3.6.

S S'

50.0 50,1 So,, 50,3

81,0 5',1 51,2 81,3

5',0 82.1 5", 82,3

83,0 83,1 53,' 83,3

50,0 80,1 So., 50,3

81,1 81,2 81,3 8',0

5", 82,3 5',0 82,1

53.3 53,0 83,1 83,2

Figure 3.6: Shift row transformation

19

3.4.3 MixColumns() transformation

The MixColumns transformation operates on each column of the state matrix

individually. Each byte of a column is mapped into a new value that is a function of

all four bytes in the column. The transformation can be defined by the following

matrix multiplication on state:

02 03 01 01 So,o SO,1 So,, SO,3 S'o,o S'O,1 S'o,' S'O,3

01 02 03 01 8',0 5',1 8',2 81,3 51,0 5'1,1 8'1,2 5\3=01 01 02 03 82,0 82,1 52,2 S',3 S'"o S'2,1 S'", S'2,3

03 01 01 02 53,0 83,1 S3,' 83,3 83,0 S'3.1 8'3,2 S' 3,

3.4.4 AddRoundKey() transformation

In AddRoundKey transformation, a RoundKey is added to the state by bitwise

Exclusive-OR (XOR) operation. Each RoundKey consists of 4 words (128 bits)

generated from Key Expansion described in section 3.5. As shown in Figure 3.7, the

XOR operation is viewed as a column-wise operation between the 4 bytes of a state

column and one word of the round key.

S RoundKey S'

SO.O 50,1 80,2 SO,3

8',0 51,1 S1,2 51,3

S"o 52,1 S", S',3

53,0 53,1 S3,' 53,3

=

SO,O So,, So" SO,3

S,.o S,., S1,2 S',3

S"o 52,1 S", S'.3

S3,O 53,1 83,2 S3,3

Figure 3.7: Add round key transformation

3.5 .Key Expansion

In the AES algorithm, Key Expansion generates a total of 44 words. The key, K, is

used as the initial set of 4 words, and the rest of the words are generated from the

key iteratively. The output of Key Expansion is an array of 4..byte words denoted by

Wi, where 0 :0; i < 44. Each RoundKey is a concatenation of 4 words from the output

of Key Expansion, RoundKey(i) = (W4i, W4i'" W4i'2, W4i'3). The Key Expansion

scheme can be expressed by the pseudo code shown in Figure 3.8.

20

KeyExpansion (byte key[16], word w(44J)

begin
word temp

i = 0

while (i < 4)
w[ij = (key[4*i], key[4*i+1], key[4*i+2], key[4*i+3J)
i = i+1

end while

i = 4

while (i < 44)
temp = w[i-1]
if (i mod 4 = 0)

temp = SubWord(RotWord(temp)) xor Rcon[i/4]
end if
w[i] = w[i-4] xor temp
i = i + 1

end while
end

Figure 3.8: Pseudo code for key expansion

SubWord in Figure 3.8 performs a byte substitution on each byte of its input word

using the S-box (Table 3.1). The function RotWord rotates each byte in a word one

position to the left. RconO) is the round constant word array and is defined as

RconO) = [RCO), {DO}, {DO}, {DO}]. Where, RCO} = xj", with X i-' being powers of x (x is

denoted as {02}) in the field GF(2B).The values of RCO) in hexadecimal are as
follows:

The encryption process as described in section 3.4 can be inverted and then

implemented in reverse order to produce straightforward decryption cipher. The

sequence of transformations for decryption differs from that for encryption. But the

form of the key schedule for encryption and decryption are the same. An encryption

3.6 Decryption

10
36

9
1B

6
20

5
10

4
08

3
04

2
02

J 1
RC[j] 01

21

round has the structure of SubBytesO, ShiftRowsO, MixColumnsO and

AddRoundKeyO. Whereas the standard decryption round has the structure

InvShiflRowsO, InvSubBytesO, AddRoundKeyO and InvMixCoJumnsO. This has the

disadvantage that two separate modules are needed for applications that require

both encryption and decryption.

3.6.1 InvShiftRowsO transformation

InvShiftRowsO is the inverse of the ShiftRowsO transformation. This performs the

circular shifts in the opposite direction for each of the last three rows with one-byte

circular right shift for the second row, two-byte circular right shift for the third row

and three-byte circular right shift for the fourth row.

3.6.2 InvSubBytesO transformation

The transformation uses the inverse S-box as shown in Table 3.4.

Table 3.2: Inverse S-box

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 OB 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FO ED B9 DA 5E 15 46 57 A7 8D 90 84
6 90 D8 AB 00 8C BC 03 OA F7 E4 58 05 B8 B3 45 06
7 DO 2C 1E 8F CA 3F OF 02 C1 AF BD 03 01 13 8A 6BX 8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE FO B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 10 29 C5 89 6F B7 62 OE AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB CO FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
0 60 51 7F A9 19 B5 4A OD 2D E5 7A 9F 93 C9 9C EF
E AO EO 3B 4D AE 2A F5 BO C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 OC 7D

This is obtained by applying the inverse of the affine transformation (section 3.4)

followed by taking the multiplicative inverse in GF(2B). This transformation is

depicted in matrix form as follows:

22

b\l o 0 I 0 0 I 0 I h. \
/1'1 100 100 I 0 b, 0
b'2 01001001 b, \
b'3 I 0 1 001 0 0 b3 + 0
b', = 01010010 b4 0
b', 0010\00\ b, 0
b'. 100 1 0 1 0 0 b. 0
b', 0\0010\0 b7 0

3.6.3 Inverse AddRoundKeyO transformation

The inverse AddRoundKeyO transformation is identical to the AddRoundKeyO
transformation used in encryption, since the XOR operation is its own inverse.

3.6.4 InvMixColumnsO transformation

The InvMixColumnsO transformation operates on each column of the state matrix

individually. Each byte of a column is mapped into a new value that is a function of

all four bytes in the column. The transformation can be defined by the following

matrix multiplication on state:

DE DB OD 09 80,0 80,1 80,2 80,3 S'o,O 5'0,1 8'0,2 5'0.3

09 DE DB OD 8',0 51,1 5,.2 S1,3 81,0 5\1 8\2 5",3
=OD 09 DE DB 82,0 82,1 82,2 82,3 8'2,0 5'2,1 5'2,2 S'2,3

08 OD 09 DE 53,0 83,1 53,2 53,3 53.0 8'3,1 8'3.2 5' 3,

23

CHAPTER 4

HIGH SPEED DESIGN CONSIDERATIONS

4.1 Introduction

This chapter provides the aspects of the AES algorithm optimization which

contribute to gain high processing speed of the crypto-processor. Though getting

high speed is the main objective, the other such as the silicon area and the power

consumption of the ASIC are also given importance to make the design altogether a
competitive product.

4.2 Algorithm Optimization

Table 4.1 shows four transformations expressed in algebraic and matrix form.

Table 4.1: Transformations of a round

Functions Expressions

SubBytes() Transformation b = S[a] where S[a.J input matrixIJ 'd' IJ

~ - ~ -
Coj ~j

ShiftRows ()T ransformation Clj = b'j"

c,j (".j.,

c.:'3j_ J"h_
- - '02 of - -dOJ 03 01 cOJ

dl.j 01 02 03 01 el.jMixColumns()T ransformation =d,.j 01 01 02 03 e2J

L93L Jl3 01 01 o~ L£3L

- - ~
I ~k.J-(Dj <hj J.el.j = d,j IDjAddRoundKey()

Czj ch.j lujTransformation
Jl3j_ _ffij Jlj

In the ShiftRows equation, the column indices are taken mod 4. All of these

expressions of the four transformations can be combined into a single equation:

CO,i 02 03 01 01 S(aOj] kOJ
Clj 01 02 03 01 S[a'j.'] k'J= EEl =
e2J 01 01 02 03 S(a2j.2] k2J
eJj_ 03 01 01 02 [aJj.J) J'

02 03 01
01 02 03• S[aOj) EEl • S[aOj.,) EEl • S[aOj-2) EEl01 01 02
03 01 01

24

01

01 • S[aOj.3J
03
02

". ... [Eq. 1J

This shows that matrix multiplication can be expressed as a linear combination of

vectors. As a result, an implementation based on the equation 1 requires only four

table lookups per column per round. These tables can be pre-calculated and stored

in memories. Each table takes as input a byte value of the input state matrix and

provides a 32-bit wide column vector. This column vectors are shown in Table A.1 of

Appendix A.

The nine rounds, starting from second round to tenth round, are identical and are

said to be standard round, since they have all four stages in original AES algorithm.

A standard round of original algorithm has four stages whereas the standard round

of the optimized algorithm has only three stages as in Figure 4.1.

25

SubBytes

ShiftRows ShiftRows
MixColumns ColumnVectors

AddRoundKey ,
Original Standard Optimized Standard
Round Round

Figure 4.1: Standard round of optimized algorithm

4.3 Benefits of Optimized Algorithm

This algorithm optimization eliminates the need for using S-box for the standard

rounds. This also eliminates the most speed expensive algebraic operation, i.e. the

matrix multiplication of the MixColumns transformation. So, a standard round will

have only table lookups for column vectors and XOR operations with round key and

column vectors. This is the most important and unique consideration for the

proposed design of this thesis work. As the column vectors of 16 elements (Byte

value) can be fetched in one cycle rather than calculated sl3quentially, we can say

this parallel processing. The algebraic operations are vulnerable to cryptanalysis

and require more power. So the proposed design will consume relatively less power

and will be secured against algebraic attack.

4.4 Offline Key Expansion

The key expansion process can be accomplished in one of two ways: using

hardware or using software. In later case, the round keys would be generated using

software and be stored in memory for subsequent use. This can save a significant

number of gates and reduce the total power consumption, but needs external

support. As this thesis is to provide a standalone system, the first way of key
scheduling is used.

The key expansion process in standalone crypto-processor can be on-line or off-

line. The key expansion algorithm inherently expands the AES key in the order that

26

the encryption process requires the round-keys. In this way, a round key generation

block can provide encryption round-keys as they are required, in the correct order in

real-time; no buffering of these round keys is necessary. As this work uses the

optimized algorithm reducing the number of stages per round, this on-line key

scheduling is not feasible. Moreover, for decryption, where round-keys are required

in reverse order, there is no way of algorithmically producing the inverse round-keys

in the correct order directly from the supplied AES encryption key.

In on-line key expansion' process, the round keys are calculated for each session

that remains constant during the whole session. In this approach, for a particular

session, first the offline key expansion unit calculates all the required round keys for

each round and stores them in memories. Then the encryption data-path performs

the AES algorithm on the input data samples and uses the stored round key values

for the key addition stage of a round. The off-line key scheduling is shown in Figure
4.2.

ata

Key I Key
Start , Done

Key Expansion Unit
Key Input

Round Key Memory

'I II 'V I, , , ,I, , \ I,

0 1 2 3 4 5 6 7 8 9 10
Input Data Output D

Encryption Rounds

Figure 4.2: Offline RoundKey addition

4.5 Design Architecture

To generate high throughputs, this work uses the loop unrolling and pipelined

architecture and incorporates parallei processing for encryption and decryption.

27

4.5.1 Loop unrolling

The AES algorithm has round loops. For high speed design the AES iteration loop

has 10 be unrolled. If the datapath is shared in different iteration, the datapath can

not be pipelined and the throughput significantly decreases. As the key scheduling

used in this design is off-line, this does not have influence on the throughput of the

encryption and decryption datapath. So key scheduling is not unrolled.

4.5.2 Pipelining

The AES encryption and decryption processes have 11 rounds. If all the rounds are

calculated in one clock cycle, the clock signal requires high time period which

eventually decreases throughput. The time period of the clock can be reduced if the

whole datapath is calculated in several clock cycles. But this does not increase the

throughput rather further decreases in throughput occurs. The highest possible

throughput can be achieved when each output sample is generated in every clock.

This is possible when pipelining architecture is used.

4.5.3 Outer round pipelining

Encryption and decryption data path of AES comprise 11 rounds. For pipelining

purpose, each round is calculated every cycle; in other words, in each cycle all the

rounds are calculated. In a particular cycle, each round gets input from the output

generated by the preceding round in the previous cycle and uenerates output for the

use as input to the following round in the next cycle. Thus the first round takes input

samples every cycle and the last round generates output sample every cycle. The

throughput can be calculated by dividing the number of bits in output samples by the

time period of the clock cycle. So by using pipelining, throughput is increased, since

output is generated every cycle. If there is one pipeline stage for each round, it is

referred to as outer round pipelining. So there are 11 outer-round pipelining stages

for encryption and decryption datapath.

4.5.4 Inner round pipelining

In the optimized AES algorithm, each standard round has three operations: table

lookup for column vectors, shifting and XORing. The shifting operation can be done

by simple interconnection which produces negligible amount of delay. Three

operations of a round are further pipelined. In one pipeline stage, fetching of data

from the memory for column vectors and shifting operation is performed

28

concurrently. In another pipeline stage, the key addition (XOR) operation is done. So

each standard round is performed in two pipeline stages. Further pipelining is also

possible but it increases the throughput a bit with exponentially increasing area

which is not a cost effective solution. As this pipelining is done within a round it is

termed as inner round pipelining.

The first round of the encryption and decryption datapath has only one operation _

the key addition (XORing). This round is performed in one clock cycle. The eleventh

round of the original AES algorithm has three operations: byte substitution, byte

shifting and key addition. This round does not have the MixColumns operation. So it

is not optimized as the standard rounds. The byte substitution operation is done by

simply table lookup of S-box. It is identical with the optimized standard rounds. So

this round is also pipelined with the same number of pipeline stages that a standard

round has; and these pipeline stages are compatible with those of a standard round.

In this thesis work, the proposed design has 21 pipeline stages for

encryption/decryption data path: one stage for the first round and two stages for each

of the other 10 rounds.

29

CHAPTER 5:

ASIC MODULES AND VERI LOG DESIGN ENTRIES

5.1 Introduction

In the previous chapter, the design considerations and the design architecture have

been described. The proposed crypto-processor design is partitioned functionally

into deferent modules of several levels. The textual designs of these modules are

coded with verilog HDL. The textual design module is called verilog design entry.

These entries are then compiled, synthesized, placed and routed, and then time-

analyzed and simulated. This chapter describes the design hierarchy, verilog

design entries and operation of the crypto-processor.

5.2 Components

The crypto-processor is a standalone system. Figure 5.1 shows the main modules

and their interconnection and relation.

C1l <: en
Decryptor ~ E 0

C1l :I -> - 0
Inv <: 0 C1l-u>
S-box

RoundKey (RAM)

S-Box <: en
E 0:1-
- 0o C1l

Encryptor u>

Memory Unit

AES Crypto-Processor

Figure 5.1: AES crypto-processor comporlents

It consists of an encryptor and a decryptor. The encryption and the decryption

operations can not be done with the same circuitry. So 1here are two separate

30

encryptor and decryptor modules. There is another module for key expansion

function. These are the top-level modules. The following sections describe these

modules and their sub-modules.

5.3 Memory Unit

The crypto-processor ASIC has three memories: S-box Memory, Column Vector

Memory and Key Memory.

5.3.1 S-box memory

The S-box memory unit holds constant byte values. These constant byte values are

stored in ROM. The S-box values are used by the off-line key scheduling operation

at the starting of a session to expand the session key. These are also used by the

last round of the encryption and decryption operation throughout the whole session.

The address and data bus of this memory are of 8-bits wide. Each S-box memory

has 2048 (2Bx8) bits. For parallel operation, 16 identical S-box memory segments

are used by the last round. So, the total size of the S-box memory unit becomes

2048 x 16 = 32,768 bits.

As the key scheduling is done off-line there is no need for separate S-box memory

block; the memory unit as described above for last round of the encryption can be

used in key expansion operation.

5.3.2 Key memory

The key scheduling process generates 11 round keys off-line. These round keys are

made available to the on-line encryption and decryption operation. The size of each

roundkey is 128 bits. To address 11 roundkeys at least 4-bit address bus is

necessary which necessitates 2048 (128x16) bits of memory. As the values of the

round key change with the change in session key, these are stored in RAM. These

values are used by both the encryption and decryption operation. The width of the

data path is 128 bits and that of the address bus is 4 bits.

5.3.3 Column vector memory

The column vectors used by the standard rounds are stored in ROM. The value of

column vector is of 32 bits. As the values are pre-calculated and constant, these are

stored in ROM. The width of the address bus and the data bus are of 8 bits and 32

31

bits respectively. Each column vector memory requires 8192 (32x28) bits. For

parallel operation, 16 identical memory segments are used by each of nine standard

rounds. For pipelining operation, 144 (16x9) identical memory segments for column

vectors are required by encryption process. So, for parallel operation and pipelining

purposes, the requirement of memory for column vectors is 1,179,648 (8192x144)

bits.

5.3.4 Total memory requirements

The total memory requirements for the encryption is the summation of S-box

memory, key memory and column vector memory which amounts

(32,768+2,048+1,179,648) bits =1,214,464 bits.

The decryption algorithm uses Inverse S-box and different column vectors but the

same roundkeys, so it requires (32,768+1,179,648) bits =1,212,416 bits.

Therefore, the total amount of memory requires for the crypto-processor is

(1,214,464+1,212,416) bits = 2,426,880 bits

5.4 Encryption Unit

Figure 5.2 shows the encryption module with its constituent modules and

input/output signals.

r

clk •
ready

RoundKey Memory

• 128.ciphe
0 ~ N M •• '" <D •... <0 0> 0~ ,
'0 '0 '0 '0 '0 '0 '0 '0 '0 '0 '0encr " " " " " " " " " "" " " " " " " " " " "• 0 0 0 0 0 0 0 0 0 0 "a:: a:: a:: a:: a:: a:: a:: a:: a:: a:: 0a::

go sts
• ColumnVectors S-box

ext 1~8
", I

t

Figure 5.2: The encryption unit of the crypto-processor

The encryption module starts and continues to function as 10l1gas 'encr' (encryption)

and 'go' signal is asserted when the 'ready' signal is high after the key expansion

32

operation is completed. It takes the input samples from the 'text' input data bus in

first cycle and performs XOR operation with the 'text' and roundkeyO.

In next 9 rounds, it takes 2 cycles for each round. In first cycle it fetches column

vectors from column vector memory (module "ColumnVector") and performs

necessary shifting operation. The shifting operation requires only interconnection

which does not make delay. It performs XOR operation with corresponding roundkey

in the next cycle.

The operation of the final round also takes two cycles. The first cycle reads

substitute byte from S-box memory; and the 2nd cycle performs XOR operation with

the roundkey. Finally, cipher output is generated at 'cipher' data bus.

The encryption datapath is 21 cycles long, which meanS, output is generated after

21 cycles from the first cycle that takes input samples. So the latency of the

encryption process is 21 cycles. At 21st cycle, the 'sts' (status signal) is made high

and remains high until the encryption session is stopped by either de-asserting 'go'
or 'encr' signal.

5.5 Decryption Unit

The operation of decryption process is the inverse of encryption process. Figure 5.3

shows the decryption module. It takes cipher as its input and generates text as

output. The starting of the module is triggered by the assertion of 'deer' signal when

'ready' signal is high.

elk

ready
RoundKey Memory

128 text0 ~ N M ••• '" to ••• <0 en 0
"C ~ ,"C "C "C "C "C "C "C "C "C "Cdecr c: c: c: c: c: c: c: c: c: c::J :J :J :J :J :J :J :J :J :J c:
0 0 0 0 0 0 0 0 0 0 :J
0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 00: sts deergo

InvInvColumnVectors
cipher 128 S-box

,

Figure 5.3: The decryption unit of the crypto-processor

33

5.6 Key Expansion Unit

ready

processing

Key Expansion Unit

Round Key Memory

text (key)

start

rst

The key expansion unit is shown in Figure 5.4. When 'start' signal is asserted with

'rst' low, the key expansion process starts functioning taking the sample from 'text'

bus as its session key; and the 'processing' signal becomes high. After all the

roundkeys have generated and stored in the round key memory, the process forces

the 'ready' signal to go high. For the rest of the session this process remains

standby, but provides the corresponding round key as asked by the encryption and

decryption unit.

Figure 5.4: Key expansion Unit

5.7 Verilog Design Entries for "Encryption" Module

Figure 5.5: Verilog design hierarchy of "Encryption" module

ColumnVeclor

MixColumnProcessorRound10

KeyProcessor

KeyExpansion

The encryption module has the hierarchy of design entries as shown in Figure 5.5.

The top level module, "Encryption", contains both design information and

instantiations of the modules: "KeyExpansion", "MixColumnProcessor" and

"Round10". The "KeyExpansion" module provides the "Encryption" module the

roundkeys for all pipeline stages and all eleven rounds. The "Encryption" module

does the XORing operation with appropriate roundkeys provided by "KeyExpansion"

module and the data provided by "MixColumnProcessor" or "Round10" module.

Section 5.8 describes the "KeyExpansion" module. The verilog HDL coding of the

"Encryption" module is given in Appendix C.

KeyRegisler

34

5.7.1 "MixColumnProcessor" module

Though the complex algebraic operation of the MixColumns transformation has

been eliminated, and only the column vector memory is used, to have flavor of

original algorithm, this name is given to this module. This module instantiates

"ColumnVector" module. The "ColumnVector" module infers a ROM that holds the

column vector values. For the nine standard rounds, the "MixColumnProcessor"

module reads column vectors from the memory and does the necessary 'shifting'

operations. The Verilog code for "MixColumnProcessor" and "ColumnVector" are

given in Appendix C.

5.7.2 "Round10" module

The "Encryption" module instantiates this module for the last round of the encryption

process. The "Round10" module again instantiates "S_box" module. The "S_box"

module infers a ROM that stores substitute byte values. The "S_box" module is

instantiated both in "Round10" and "KeyExpansion" module. The "Round10" module

fetches S-box values from memory and does the necessary 'shifting' operations.

The Verilog code of "Round1 0" is also given in Appendix C.

5.8 Verilog Design Entries for "KeyExpansion" Module

The Verilog HDL code of "KeyExpansion" module is given in Appendix B. This

module is instantiated both in "Encryption" and "Decryption" modules. This module

again instantiates "S_box", "KeyProcessor" and "KeyRegister" modules. The

hierarchy of this module is shown in Figure 5.5.

5.8.1 "S_box" module

This module infers a ROM that stores the substitute byte values. These values are

used by the "KeyExpansion" module and the "Round10" module of the encryption

unit. The Verilog code of this module is given in Appendix D.

5.8.2 "KeyProcessor" module

This module calculates the round keys. This is the most delay inducing module

because this involves in operation of computing the most complex algebraic jargons.

The Verilog code of this module is given in Appendix B.

35

5.8.3 "KeyRegister" module

This module stores the round key generated by KeyProcessor module in memory

(RAM) and fetch from memory whenever needed by the encryption process. The
Verilog HDL textual design is given in Appendix B.

5.9 Verilog Design Entries for "Decryption" Module

The "Decryption" module has the similar hierarchy of modules as the "Encryption"

module shown in Figure 5.5. It instantiates "KeyExpansion", "lnvRound10" and

"lnvMixColumnProcessor" modules. The corresponding sub-modules are "lnvS_box"

and "lnvColumnVetor". The functional description of these modules are the same as

described in section 5.7.1 and section 5.7.2. The Verilog HDL code given in

Appendix F corresponds to the original algorithm and without pipelining. This is

because of distinguishing the performance of original and optimized algorithms.

Appendix E provides the coding for "lnvS_box" module, which infers a ROM that

stores the inverse substitute byte values for decryption process only. The

"lnvS_box" module is only instantiated in "Decryption" module not in "KeyExpansion"
module.

5.10 Tools Used

27,104

27,104

2,308

13,552

1 1,589,824 programmablElbits

144 (144x4608) = 663,552 programmable bits

202 (202x576) = 116,352 prc,grammablebits

1,369,728 bits

Logic Registers

1/0 Registers

ALM

M-RAMs

M4K RAMs

M512 RAMs

Total Block Memory

The Quartus II development software has been used in this thesis as this design

environment ensures easy design entry. The Quartus II software is a fully integrated,

architecture-independent package for designing logic with Altera programmable

logic devices (PLDs). Stratix II GX is based on a scalable high-performance

architecture. For the compilation and simulation purposes,; an Altera device,

EP2SGX30DF780C3 of Stratix II GX family, has been used. The specifications of
the device are given below;

ALUTs

36

CHAPTER 6

RESULTS AND PERFORMANCE ANALYSIS

6.1 Introduction

This chapter focuses on the results and the performance issues of the design of the

crypto-processor. The comparison analysis of the performance achieved by this

design with other related works on FPGAs is shown in section 6.5. The performance

of the crypto-processor on the ASIC platform is also explored herein.

6.2 Resources Used

Encryption and decryption modules of the design are compiled and simulated

separately using Quatrus II development software. The resources used by .the

encryption module, when compiled and simulated using an Altera device of family
Stratix II GX, are as follows:

Resource

ALUTs used

Dedicated logic registers

Total registers

Dedicated logic registers

I/O registers

ALMs

Total LABs

M512s

M4Ks

M-RAMs

Total block memory bits

6.3 The Simulation Result

Usage

3,763/27,104 (14%)

2,960/27,104 (11%)

2,960/29,412 (10%)

2,960/27,104 (11%)

0/2,308 (0%)

3,560/13,552 (26%)

663/1,694 (39%)

64 / 202 (32%)

144/144 (100%)

0/1 (0%)

696,320/1,369,1::8 (51%)

Figure 6.1 shows the simulation result of "KeyExpansion" module. As the 'start'

signal is asserted with 'rst' signal low, the 'processing' signal becomes high

indicating that key processing is in progress. The 'keyin' signal provides the sample

key. To generate eleven roundkeys, it takes eleven clock ('c1k2') cycles. At twelfth

37

clock cycle, the key processing function completes. The 'processing' signal goes

low and the 'ready' signal becomes high indicating that the system is ready for

clk2
1st

stall

keyin

ready

lOunds:
dataout 00 ~
precessing

,000 0 0 040 70809 080 0 0

4 8 7 E
3F9 9E -18 08, 4 000

Figure 6.1: Simulation result of "KeyExpansion" module

encryption and decryption. After twelfth cycle, for any round value given to 'rounds'

signal, it provides the corresponding roundkey. When the "KnyExpansion" module is

instantiated in the "Encryption" module, the "Encryption" module sets the round

value to the 'rounds' signal of the "KeyExpansion" module; clnd the "KeyExpansion"

module provides the respective roundkeys ('dataout' value) to the "Encryption"

module, during the encryption process.

Figure 6.2 shows the simulation result of the "Encryption" module with

"KeyExpansion" module instantiated. There are two clock signals: 'elk' and 'c1k2',

The 'c1k' signal corresponds to the clock of the datapath of the "Encryption" module;

and the 'c1k2' is used to provide clock signal to generate roundkeys in the

"KeyExpansion" module. The "Encryption" module instantiat.es the "KeyExpansion"

elk
c~2

"'stall
processing
ready

en_deer

"lelll
cipher

,',

,
10234 B ,"'OF••••,----,----

,~

I

Figure 6.2: Simulation result of a full "Encryplicn" module

module with both the clock signals. The "KeyExpansion" module requires 'elk' signal

to provide synchronously the roundkeys to the "Encryption" module. As the algebraic

operation is eliminated from the optimized algorithm, the pipelining stages of the

38

data path require low time-period of the clock cycle. But, the complex algebraic

operation involved in key expansion process requires more time-period. So, to

increase the throughput, two clock signals are used in this design.

After the 'ready' signal becomes high, the 'go' and 'en_deer' are asserted, the

encryption process gets started. The encryption process takes data samples from

'text' port every clock cycle ('c1k') and generates encrypted data at output port

'cipher' after 21 clock cycles ('elk'). The 'sts' signal indicates that the ciphers are

ready at port 'cipher' in every cycle. The Figure 6.2 shows that 'sts' signal becomes

high after 21 cycles ('elk') from the time of both 'en_deer' and 'go' being asserted.

So the latency of the data path of the encryption process is 21 cycles.

Figure 6.3 shows the simulation result from the start of the key expansion process to

where 'sts' signal becomes high and the first cipher sample is available. Actually,

Figure 6.2 and Figure 6.3 are two different snapshots of the same simulation result.

; 22ZZZZZZZZZ2ZZ7ZZZZZZZZzzzz2zaz i

, , ,

I I I

! i ,I
000102030405060708

:tmJ
'm, ! :

I I i
~

I !

, 00010203040506070809M080CODOEOF .

elk
elk2

"I
start

processing

ready
en_decl
go

io<i
cipher
sis

Figure 6.3: Simulation result from start to cipher

6.4 Timing Analysis and Speed Measurement

Table 6.1 presents the summary of the timing analyzer. The fMAX,maximum clock

frequency, for the clock signal 'elk' is 282.49 MHz. The timin!l analyzer provides fMAl(

taking into account the other types of timing shown in the table. As the clock signal

'elk' corresponds to the data path of the encryption process, the speed performance

is determined on the basis of this clock signal. The time period of the 282.49 MHz

signal is 3.54 ns. A cycle processes a data sample of 128 bits. So the speed of the

crypto processor is 128/3.54 Gbits/s Le. 36.16 Gbps.

39

Table 6.1: Timing analysis summary

Type Maximum value From To

Worst-case tsu 9.447 ns text[17] clk2

Worst-case tco 10.629 ns fJag[2] sts

Worst-case tpd 10.088 ns start processing

Worst-case th -2.250 ns en_decr clk

Clock Setup: 'clk2' 107.97 MHz (period = 9.262 ns) c1k2 c1k2

Clock Setup: 'clk' 282.49 MHz (period = 3.54 ns) clk c1k

6.5 Comparison with other related works

To establish speed performance of the design for ASIC, the performance on FPGA

is explored and a comparative performance analysis with other similar works is

performed. The following sections lead to asses the measures taken by this thesis

work to achieve the desired goal and objectives.

6.5.1 FPGA implementation

In this work, the design of a high throughput fully pipe lined AES crypto-processor is

realized on FPGA platform that can achieve a throughput of 36.16 Gbps on a

EP2SGX30DF780C3 FPGA of Stratix family, with a minimum latency of 21 cycles.

Table 6.2 shows the performance achieved by other works.

Table 6.2: Comparison of this design with other FPGI\ implementation

Pipeline FPGA LatencyDesign Stages Throughput
Per round Device (Cycle)

Jarvinen et al [6] 4 XC2V2000-5 17.80 Gbps 41

Standaert et al[4] - XCV3200E-8 18.56 Gbps -
Saggese et al [5] 4 XVE2000-8 20.30 Gbps 41

Alireza Hdjat & Ingrid 4 XC2VP20-7 ~~1.54Gbps 41
Verbauwhede [31
Alireza Hdjat & Ingrid 7 XC2VP20-7 21.64 Gbps 71
Verbauwhede [31

Table 6.2 shows that the maximum speed achieved was 21.54 Gbps with

reasonably minimum latency of 41 cycles. Though a slight increase in speed (21.64

40

Gbps) is possible with further increase in pipelining stages per round, it significantly

increases the latency. The design architecture and technique, which generates

21.54 Gbps with a latency of 41 cycles on a Xillinx device, generates 21.90 Gbps on

a EP2SGX30DF780C3 FPGA of Stratix family. But the design architecture and

technique presented in this thesis generates 36.16 Gbps with two pipelining stages

per round and the latency of only 21 cycles.

6.5.2 ASIC implementation: prediction and analysis

In this section the throughput of the ASIC implementation of the AES algorithm in a

0.18-um CMOS technology is explored. The outputs of the latest research on ASIC

implementation of AES [9, 10] are first be presented; and then, by logical

extrapolation of these results, the performance of this thesis work is predicted.

By loop-unrolling and inner and outer round pipelining, the throughput of 10 to 100

Gbps is achieved in ASIC. Figure 6.4, Figure 6.5 and Table 6.3 show that the

throughput increases if:

- no of pipeline stages per round increases

_ LUT S_box is used instead of composite Galois Field (GF) S_box.

4 plpefine stages
3 plpeUne stages per round

per round ---- CO osIt SOOmp e x
COmposite Sbox

1 plpefine stage
per round
LUTSbox

2 plpeUne stages
per round
LUT Sbox

706040 50

Throughput (GbltsJs)

30

300

250

l 200!
l'S 150
~

100

50
20

Figure 6.4: The throughput-area trade-off of the AES processor with online
key scheduling [10]

41

As the design used in this thesis work is fully pipe lined architecture with loop

unrolling and LUT based S_box and column vectors, its speed performance will be

greater than the speed performance presented herewith. Figure 6.4 is based on

online key scheduling; but the design of this thesis uses offline key scheduling,

which also contributes to speeding up the crypto processing. Another outstanding

speed-increasing contribution of this thesis is that it has eliminated the most delay

producing stage of MixColumns operation. It reduces the time-period of the clock

cycle that increases the maximum clock frequency and eventually the throughput.

This thesis uses LUT based column vector instead of algebraic operations. This is

equivalent to substitute byte operation (LUT S_box) for the standard rounds. As the

Shift Rows function requires only circuit interconnection, it produces no delay. So no

pipeline stage is required for these steps. This design puts two pipeline stages for

standard rounds. These are thoroughly discussed in section 4.5.4. These two-stage

pipelining per round increases the throughput as well as decreases the latency.

90
80 Ilmer and outer-rolUld pipelined _

"' 70 .-'":15 60 .
S? 50 .
:.;
f" 40
Ol
i5 30 .~
j:': 20

10

o
50

Outer-rOIUld only pipe lined

Multi-round
pipelined

'100 150 200 250

.•.

300 350 400 450 500

Area (Kgates)

Figure 6.5: Area-throughput trade-off for the high speed pipelined
AES implementations [9]

The above discussions indicate the design of this work to be the best in speed

performance based on theoretical analysis. However, to show this practically, an

analogy may be drawn. The design with four pipelining stages per round can

produce 21.54 Gbps on an FPGA platform, as shown in table 6.2. The same

architecture, by the same authors, when implemented on ASIC platform can

42

Table 6.3: Performance of AES ASIC on different pipeline stages

Type of Design
Clock per Latency

fMAX Throughput
sample (MHz)

2 11 362 23.1 Gbps

1 11 377 48.2 Gbps

1 41 606 77.6 Gbps

produce 77.6 Gbps, as shown in Table 6.3. As the throughput of the design of this

thesis, when implemented on FPGA platform, is greater than 36.16 Gbps, it can

easily be estimated, by logical extrapolation, that its throughput will be greater than

100 Gbps. The other prominent feature of the crypto-processor is its low latency.

6.6 I/O Signals and Data Buses

Figure 6.6 shows the I/O signals and data buses; and Table 6.4 describes their

functions. Total number of pins required by the device is 523.

c

elk processing
~

elk2
~ ready

rst
~

start
~ ,m-sts

~
ao AES

Crypto-Processor
encr ASIC aec-sts

~ ~

decr
~ cipher 128

ext (key) 128
}/ ~

}/ .
ipher-in 12)3 plaintext 1?8

> ~ 7 III

t

Figure 6.6: I/O Signals and Data Buses

Table 6.4: Functions of I/O signals and data buses

43

Signal Input! FunctionOutput

elk Input Clock signal to the data path

elk2 Input Clock signal to the key expansion process

rst Input Reset the whole system

start Input Starts the session key processing

processing Output Session key processing is in progress

ready Output Key processing complete. ready for encryption/decryption

go Input Enables encryption/decryption process

encr Input Starts encryption process

deer Input Starts decryption process

en-sts Output Encryption output is available

dec-sts Output Decryption output is available

text(key) Input Key or data input for encryption

cipher Output Output of the encryption process

cipher-in Input Data input to the decryption process

plaintext Output Output of the decryption process

44

CHAPTER 7

CONCLUSION

7.1 Conclusion

This thesis presented the design of an ultra high throughput crypto-processor for the

next generation IT security. The main target of the thesis was to overcome

challenges of next generation IT security. The proposed crypto-processor is capable
of safeguarding against all known attacks, since it uses the AES algorithm, the latest

and the most invincible algorithm. Chapter 4 presented new considerations of

achieving high-speed for AES algorithm. First, the optimized AES algorithm is used,

which eliminates the delay producing algebraic operations. This also reduces the

number of pipeline stages per round, which consequently minimizes the latency.

Elimination of algebraic operations also reduces the power consumption. Second,

the design architecture used here is the combination of offline key scheduling, loop

unrolling and inner and outer loop pipelining, which contributes to achievement of

high speed.

Chapter 6 presented the results and performance analysis of the design in

comparison with other related works. The comparison shown in subsection 6.5.1

reveals that this design can provide a throughput of 36.16 Gbps on an FPGA

technology. The analysis presented in sub-section 6.5.2 shows that this design can

be used to process data at a throughput of above 100 Gbps on ASIC technology.

Another significant contribution of this thesis is that the designed AES crypto-

processor has a very low latency of 21 cycles only. These features of this crypto-

processor make it be available for applications requiring several tens of Gbps.

7.2 Further Studies

This thesis was focused on achieving high speed of the AES cipher that was

targeted to ASIC. However various aspects such as area cost optimization, low

power design were not addressed. These aspects may be addressed in future work.

Here are some suggestions for future work:

45

• The area cost may be reduced by resource sharing, minimizing the size of

memory required. This will increase the key processing time but the time of

encryption and decryption process will remain the same.

• Reduction of power consumption requires analysis of synthesis phase of the

design. The synthesizer shows the details of which circuits consume more

power. By changing the design for that portion, the power consumption can

be kept as minimum as reasonably possible.

•

46

[2] Leopld G., "U.S. unveils advanced encryption standard,"EE Times,
December 10, 2001, Available at:
http://www.eetimes.com/story/OEG20011205S0060.

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES
"Advanced encryption standard (AES)", Federal Information Processing
Standards Publication (FIPS PUB) 197, National Institute of Standards and
Technology (NIST), November, 2001. Available at:
http://csrc. nis!.gov/p ublication/d rafts/dfips-AE S.pdf.

Hodjat, A. and Verbauwhede, I., "A 21.54 Gbits/s Fully Pipelined AES
Processor on FPGA", IEEE Symposium on Field-Programmable Custom
Computing Machines, April 2004.

Standaert et ai, "Efficient Implementation of Rijndael Encryption in
Reconfigurable Hardware: Improvements and Design Tradeoffs", CHES 2003,
LNCS 2779, pp. 334-350, 2003.

Saggese et ai, "An FPGA-Based Performance Analysis of the Unrolling, Tiling,
and Pipe lining of the AES Algorithm", FPL 2003, LNCS 2778, pp. 292-302,
2003.

Jarvinen et ai, "A fully pipelined memoryless 17.8 Gbps AES-128 encryptor",
International Symposium on Field Programmable Gate Arrays, pp. 207-215.
2003.

Gaj K. and Chodowiec P., "Fast Implementation and Fair Comparison of the
Final Candidates for Advanced Encryption Standard Using Field
Programmable Gate Arrays", CT-RSA 2001, LNCS 2020, pp. 84-99, 2001

Schau mont, P., Verbauwhede, I. and Kuo, H., "DE,sign and performance
testing of a 2.29 Gb/s rijndael processor", IEEE Journal of Solid-State Circuits,
pp. 569-572, 2003.

Hodjat, A. and Verbauwhede, I., "Speed-Area Trade-off for 10 to 100 Gbits/s
Throughput AES Processor", 37'h Asilomar Conference on Signals, Systems,
and Computers, November 2003.

Hodjat, A. and Verbauwhede, I., "Minimum area cost f:Jr a 30 to 70 Gb/s AES
Processor", IEEE Computer Society Annual Sympo3ium on VLSI (ISVLSI
2004), Emerging Trends in VLSI Systems Design, IEEE Computer Society, pp.
83--88, February 2004.

[11] Schramm, K. and Paar, C., "Higher-order masking of the AES", CT-RSA,
Lecture Notes in Computer Science (LNCS), Vol. 3860, pp. 208-225, 2006.

[12] Oswald, E., Mangard, S., Herbst, C. and Tillich, S., "Practical second-order
differential power analysis (DPA) attacks for masked smart card
implementations of block ciphers", CT-RSA, Lecture Notes in Computer
Science (LNCS), Vol.3860, pp. 192-207,2006.

http://www.eetimes.com/story/OEG20011205S0060.

47

[13) Bertoni, G., Macchetti, M. and Negri, L., "Power-efficient ASIC synthesis of
cryptographic S-boxes", Proceeding of Great Lake Symposium on VLSI
(GLSVLSI), Association for Computing Machinery (ACM) Press, pp. 277-281,
2004.

[14] Wang, S. and Ni, W., "An efficient FPGA implementation of advanced
encryption standard algorithm", Proceedings of International Symposium on
Circuits and Systems (ISCAS), IEEE Computer Society, Vol. 2, pp. 597-600,
May 2004.

[15] Eskicioglu, A., Litwin, L., "Cryptography" IEEE Vol. 20, Issue 1, pp. 36-38.
Feb-Mar 2001.

[16] Stallings, W'o "Cryptography and Network Security: Principles and Practicies",
3rd edition, Pearson Education (Singapore) Pte. Ltd. Indian Branch, pp. 30-140,
2003.

[17] htlp:llwww.informatik.uni-trier.deHey/db/index.htmland htlp:lleprint.iacr.orgl.

http://htlp:llwww.informatik.uni-trier.deHey/db/index.htmland

APPENDIX A
COLUMN VECTORS

Table A.1: Column vectos

48

00: C66363A5 34: 30181828 68: 8A4545CF ge: A70EOE79 dO: E0707090

01: F87C7C84 35: 379696A1 69: E9F9F910 9d: BC5E5EE2 d1: 7C3E3E42

02: EE777799 36: OA05050F 6a: 04020206 ge: 160BOBlO d2: 71B5B5C4

03: F67B7B80 37: 2F9A9AB5 6b: FE7F7F81 9f: AOOBOB76 d3: CC6666M

04: FFF2F200 38: OE070709 6e: A05050FO aO: OBEOE03B d4: 90484808

05: 066B6BBO 39: 24121236 6d: 783C3C44 a1: 64323256 d5: 06030305

06: OE6F6FB1 3a: 1B80809B 6e: 259F9FBA a2: 743A3A4E d6: F7F6F601

07: 91C5C554 3b: OFE2E230 6f: 4BA8A8E3 a3: 140AOA1E d7: 1COEOE12

08: 60303050 3e: COEBEB26 70: A25151F3 a4: 9249490B d8: C26161A3

09: 02010103 3d: 4E272769 71 : 50A3A3FE a5: OC06060A d9: 6A35355F
Oa: CE6767A9 3e: 7FB2B2CO 72: 804040CO a6: 4824246C da: AE5757F9
Ob: 562B2B70 3f: EA75759F 73: 058F8F8A a7: B85C5CE4 db: 69B9B900

Oe: E7FEFE19 40: 1209091B 74: 3F9292AO a8: 9FC2C250 de: 17868691
Od: B5070762 41 : 1083839E 75: 219090BC a9: B003036E dd: 99C1C158

Oe: 40ABABE6 42: 582C2C74 76: 70383848 aa: 43ACACEF de: 3A101 027
Of: EC76769A 43: 341A1A2E 77: F1F5F504 ab: C46262A6 df: 279E9EB9

10: 8FCACA45 44: 361B1B20 78: 63BCBCOF ac: 399191A8 eO: 09E1E138
11: 1F828290 45: OC6E6EB2 79: 77B6B6C1 ad: 319595A4 e1 : EBF8F813
12: 89C9C940 46: B45A5AEE 7a: AFOAOA75 ae: 03E4E437 e2: 2B9898B3
13: FA707087 47: 5BAOAOFB 7b: 42212163 af: F279798B e3: 22111133
14: EFFAFA15 48: A45252F6 7e: 20101030 bO: 05E7E732 e4: 026969BB
15: B25959EB 49: 763B3B40 7d: E5FFFF1A b1: 8BC8C843 e5: A9090970
16: 8E4747C9 4a: B7060661 7e: FOF3F30E b2: 6E373759 e6: 078E8E89
17: FBFOFOOB 4b: 70B3B3CE 71: BF020260 b3: OA6060B7 e7: 339494A7
18: 41AOAOEC 4e: 5229297B 80: 81COC04C b4: 0180808C e8: 209B9BB6
19: B3040467 4d: 00E3E33E 81: 180COC14 b5: B1050564 e9: 3C1E1E22
1a: 5FA2A2FO 4e: 5E2F2F71 82: 26131335 b6: 9C4E4E02 ea: 15878792
1b: 45AFAFEA 4f: 13848497 83: C3ECEC2F b7: 49A9A9EO eb: C9E9E920
1e: 239C9CBF 50: A65353F5 84: BE5F5FE1 b8: 086(;6CB4 ec: 87CECE49
1d: 53A4A4F7 51: B9010168 85: 359797A2 b9: AC5Ei56FA ed: M5555FF
1e: E4727296 52: 00000000 86: 884444CC ba: F3F4F407 ee: 50282878
11: 9BCOC05B 53: C1EOE02C 87: 2E171739 bb: CFEAEA25 ef: A50FOF7A
20: 75B7B7C2 54: 40202060 88: 93C4C457 be: CA6565AF to: 038C8C8F
21 : E1FDF01C 55: E3FCFC1F 89: 55A7A7F2 bd: F47A7A8E f1 : 59A1A1F8
22: 309393AE 56: 79B1B1C8 8a: FC7E7E82 be: 47AEAEE9 f2: 09898980
23: 4C26266A 57: B65B5BEO 8b: 7A303047 bf: 10080818 f3: 1AOOO017
24: 6C36365A 58: 046A6ABE 8e: C86464AC cO: 6FBABA05 f4: 65BFBFDA
25: 7E3F3F41 59: 80CBCB46 8d: BA5050E7 e1: F0787888 f5: 07E6E631
26: F5F7F702 5a: 67BEBED9 8e: 3219192B e2: 4A25256F f6: 844242C6
27: 83CCCC4F 5b: 7239394B 8f: E6737395 e3: 5C2E2E72 f7: 006868B8
28: 6834345C 5e: 944A4AOE 90: C06060AO e4: 381C1C24 f8: 824141C3
29: 51A5A5F4 5d: 984C4C04 91: 19818198 e5: 57A6A6F1 f9: 299999BO
2a: 01E5E534 5e: B05858E8 92: 9E4F4FD1 e6: 73B4B4C7 fa: 5A202D77
2b: F9F1F108 5f: 85CFCF4A 93: A30COC7F e7: 97C6C651 fb: 1EOFOF11
2e: E2717193 60: BBOOO06B 94: 44222266 e8: CBEilE823 fe: 7BBOBOCB
2d: ABD8D873 61: C5EFEF2A 95: 542A2A7E e9: AlOD007C fd: A85454FC
2e: 62313153 62: 4FAMAE5 96: 3B9090AB ca: E874749C fe: 60BBBB06
21: 2A15153F 63: EOFBFB16 97: OB888883 eb: 3E1 F1 F21 If: 2C16163A
30: 0804040C 64: 864343C5 98: 8C4646CA ee: 964B4BOO
31: 95C7C752 65: 9A404007 99: C7EEEE29 cd: 61BOBOOC
32: 46232365 66: 66333355 9a: 6BB8B803 ce: 00888B86
33: 90C3C35E 67: 11858594 9b: 2814143C ef: OF8A8A85

49

APPENDIX B
KEY EXPANSION MODULE

r The following module is to generate expanded key and store in a RAM
for future use by encryption and decryption

*'
module KeyExpansion

(
rkO,rk1,rk2,rk3,rk4,rk5,rk6,rk7 ,rk8,rk9 ,rk10,rO,r1,r2,r3,r4,r5,r6,r7 ,r8, r9,r1 0,
ready, processing, keyin, start, c1k2, rst
);

if start is assarted after keyin is placed
key processing will start *'r

output [127:0] rkO,rk1,rk2,rk3,rk4,rk5,rk6,rk7 ,rk8,rk9,rk1 0;
output ready, processing; II ready indicates key processing finished
input [3:0] rO,r1,r2,r3,r4,r5,r6,r7 ,r8,r9,r1 0;
input [127:0] keyin;
input c1k2, rst, start;

wire elk;
wire [7:0] d1,d2,d3,d4;
wire [127:0] key, dataout;
wire [3:0] aO,a1,a2,a3,a4,a5,a6,a7,a8,a9,a1 0;
wire [3:0] r, flag, waddr, raddr; '/flag is to hold the value of rounds

reg we;
reg ready, processing;
reg [3:0] state, nextstate;
reg [127:0] datain, indata;
reg [7:0] ad 1, ad2, ad3, ad4;
reg [127:0] round key, roundkeyreg;
reg [3:0] round; //stored value of r

parameter
idle=4'dO, round1=4'd1, round2=4'd2, round3=4'd3, round4=4'd4,
round5=4'd5, round6=4'd6, round7=4'd7, round8=4'd8, round9=4'd9,
round10=4'd10;

S_box SBK(.d1 (d1),.d2(d2),.d3(d3) •.d4(d4),
.a1 (ad1),.a2(ad2),.a3(ad3),.a4(ad4),.e1k(e1k2»;

KeyProcessor KP(.key(key), .r(r),.datain(datain),.d1 (d1),.d2(d2),
.d3(d3),.d4(d4 »;

KeyRegister KR(.dataoutO(rkO) •.dataout1 (rk 1),.dataout2(rk2), .dataout3(rk3),
.dataout4(rk4),.dataout5(rk5), .dataout6 (rk6),. dataout7 (rk7),
.dataout8(rk8),.dataout9(rk9), .dataout1 O(rk10),
.aO(aO),.a1(a1),.a2(a2),.a3(a3),.a4(a4 l,.a5(a5),
.a6(a6),.a7(a7) •.a8(a8),.a9(a9),.a 1O(a10),
.indata(indata), .waddr(r), .we(we), .cIlQ(clk2»;

Ilassign datain=datastore;
assign r=round;
assign aO=we? 4'bZ: rO;
assign a1=we? 4'bZ: r1;
assign a2=we? 4'bZ; r2;
assign a3=we? 4'bZ: r3;
assign a4=we? 4'bZ: r4;
assign a5=we? 4'bZ: r5;
assign a6=we? 4'bZ: r6;
assign a7=we? 4'bZ: r7;
assign a8=we? 4'bZ: r8;
assign a9=we? 4'bZ: r9;
assign a10=we? 4'bZ: r10;

assign indata=roundkeyreg;

always @ (posedge clk2 or posedge rst) begin
if (rst) begin state <= idle; roundkey<=O; end
else begin state <= nextstate; roundkey<=roundkeyreg; end

end

always @ (state or start or key or keyin or roundkey)
begin

nextstate=state;
ad1=0;ad2=0;ad3=0;ad4=0;
ready=O; roundkeyreg=O; round=O; processing=1;
datain=O;
we=1;
case (state)

idle: begin
if (start) begin

ready=O;
nextstate=round1 ;
roundkeyreg=keyin;
{ad1 ,ad2,ad3,ad4}=keyin[31 :0);

end
else begin ready=1; processing=O; we=O; end
end

round1: begin
datain=keyin;
round=1 ;
roundkeyreg=key;
{ad1 ,ad2,ad3,ad4}=key[31 :0);
nextstate=round2;
end

round2: begin
datain=roundkey;
round=2;
roundkeyreg=key;
{ad1 ,ad2,ad3,ad4}=key[31 :0);
nextstate=round3;

50

end

round3: begin
datain=roundkey;
round=3;
roundkeyreg=key;
{ad1 ,ad2,ad3,ad4}=key[31 :0];
nextstate=round4;
end

round4: begin
datain=roundkey;
round=4;
roundkeyreg=key;
{ad1 ,ad2,ad3,ad4}=key[31 :0];
nextstate=round5;
end

round5: begin
datain=roundkey;
round=5;
roundkeyreg=key;
{ad1 ,ad2,ad3,ad4}=key[31 :0];
nextstate=round6;
end

round6: begin
datain=roundkey;
round=6;
roundkeyreg=key;
{ad1 ,ad2,ad3,ad4}=key[31 :0];
nextstate=round?;
end

round?: begin
datain=roundkey;
round=?;
roundkeyreg=key;
{ad1 ,ad2,ad3,ad4}=key[31 :0];
nextstate=round8;
end

round8: begin
datain=roundkey;
round=8;
roundkeyreg=key;
{ad1 ,ad2,ad3,ad4}=key[31 :0];
nextstate=round9;
end

round9: begin
datain=roundkey;

51

round=9;
roundkeyreg=key;
{ad 1,ad2,ad3,ad4}=key[31 :0];
nextstate=round 10;
end

round10: begin
datain=roundkey;
round=10;
roundkeyreg=key;
nextstate=idle;
end

default: begin
roundkeyreg=128'bZ;
nextstate=idle;

end

end case

end Iialways

endmodule

52

r This module calculates the round key
°1
module KeyProcessor(key, datain, d1 ,d2,d3,d4,r);

output [127:0] key;
input [127:0] datain;
input [3:0] r;
input [7:0] d 1,d2,d3,d4;

reg [127:0] key;
reg [7:0] RC;
reg [31 :0] kw1;
reg [31 :0] kw2;
reg [31 :0] kw3;
reg [31 :0] kw4;
reg [31 :0] kw5;
reg [31 :0] kw6;
reg [31 :0] kw7;
reg [31 :0] kw8;

always @(datain or r or d1 or d2 or d3 or d4) begin
key=128'hO;
kw1=0;kw2=0; kw3=0; kw4=0;
kw5=0; kw6=0; kw7=0; kw8=0;

case(r)
4'h1: RC = 8'h01;
4'h2: RC = 8'h02;
4'h3: RC = 8'h04;
4'M: RC = 8'h08;
4'h5: RC = 8'h10;
4'h6: RC = 8'h20;
4'h7: RC = 8'MO;
4'h8: RC = 8'h80;
4'h9: RC = 8'h1B;
4'hA: RC = 8'h36;
default: RC=8'hXX;

endcase

if «r>O) && (r<4'hB)) begin
{kw1,kw2,kw3,kw4}=datain;
kw5= kw1 A (d2ARC,d3,d4,d1};
kw6=kw2 A kw5;
kw7=kw3 A kw6;
kw8=kw4 A kw7;
key = {kw5,kw6,kw7,kw8};

end Ilif
end //always

endmoduJe

53

I' This module stored the round key generated by KeyProcessor module in
memory (RAM) and fetch from memory whenever needed

'/
module KeyRegister

(
dataoutO, dataout 1,dataout2, dataout3, da taout4, dataout5,
dataout6,dataout7 ,dataout8,dataout9,dataout1 0,
aO,a1,a2,a3,a4,a5,a6,a7 ,a8,a9,a1 0,
indata, waddr, we, c1k2

);

output [127:0] dataoutO,dataout1 ,dataout2,dataout3,dataout4,dataout5;
output [127:0] dataout6,dataout7,dataout8,dataout9,dataout10;
input [3:0] aO,a1,a2,a3,a4,a5,a6,a7,a8,a9,a1 0, waddr;
input [127:0] indata;
input c1k2,we;

reg [127:0] memory[10:0];

assign
dataoutO=memory[aO],
dataout1 =memory[a1],
dataout2=memory[a2],
dataout3=memory[a3],
dataout4=memory[a4],
dataout5=memory[a5],
dataout6=memory[a6],
dataout7=memory[a7],
dataout8=memory[a8],
dataout9=memory[a9],
dataout1 0=memory[a1 0];

always @ (posedge c1k2)
if (we) memory[waddr]<=indata;

endmodule

54

APPENDIX C
ENCRYPTION MODULE

r This module is the top level entity for encryption process.
*/

module Encryption
(
cipher, ready, processing, sts, text, start, en_deer, go, elk, clk2, rst
);
output [127:0] cipher;
output ready, processing, sts;
input [127:0] text;
input start, en_deer, go, elk, clk2, rst;

wire [127:0] cipher, roundkey, mixin, keyin, mixout, out;
wire [3:0] round, rO, r1, r2, r3, r4, r5, r6, r7, rB, r9, r10;
wire [127:0] rkO,rk1,rk2,rk3,rk4,rk5,rk6,rk7 ,rkB,rk9,rl<10;
wire [127:0] moO,m01 ,m02,mo3,m04,mo5,mo6,mo'l,moB,mo9;

reg sts;
reg [4:0] flag;
reg [127:0] mi1 ,mi2,mi3,mi4,mi5,mi6,mi7,miB,mi9;
reg [127:0] cipherO,cipher1,cipher2,cipher3,cipher4;
reg [127:0] cipher5,cipher6,cipher7 ,cipherB,cipher9,cipher1 O,in;

KeyExpansion KE(
rkO,rk1 ,rk2,rk3,rk4,rk5,rk6,rk7,rkB,rk9,rk1 0,rO,r1,r2,r3,i"4,r5,r6,r7 ,rB,r9,r1 0,
ready, processing, keyin, start, e1k2,rst);

MixColumnProcessor M1(.mixout(mo1), .mixin(mi1),.c1k(e1k));
MixColumnProeessor M2(.mixoul(mo2), .mixin(mi2),.e1k(e1k));
MixColumnProeessor M3(.mixout(mo3), .mixin(mi3),.e1k(e1k));
MixColumnProeessor M4(.mixout(mo4), .mixin(mi4),.e1k(elk));
MixColumnProeessor M5(.mixout(mo5), .mixin(mi5),.elk(e1k));
MixColumnProcessor M6(.mixout(mo6), .mixin(mi6),.e1k(e1k));
MixColumnProeessor M7(.mixout(m07), .mixin(mi7),.elk(elk));
MixColumnProcessor MB(.mixout(moB), .mixin(miB),.e1k(elk));
MixColumnProeessor M9(.mixout(mo9), .mixin(mi9),.cik(elk));

Round10 R1(out, in,e1k);

assign keyin=text;
assign eipher=sts? eipher1 0: 12B'bO;
assign rO=4'hO,r1=4'h1 ,r2=4'h2,r3=4'h3,r4=4'h4,r5=4'h5,

r6=4'h6,r7=4'h 7,rB=4'hB,r9=4'h9,r1 0=4'ha;

always @(posedge elk or posedge rsl) begin
if (rst) begin

cipherO<=O;
eipher1 <=0;
eipher2<=0;

55

cipher3<=0;
eipher4<=0;
cipl1er5<=0;
eipher6<=0;
cipher7 <=0;
cipher8<=0;
cipher9<=0;
eipher10<=0;
flag<=O;

end

else if (go && en_deer) begin
eipherO<=text'rkO;
cipher1 <=rk1 'm01;
cipher2<=rk2'm02;
cipher3<=rk3'mo3;
cipher4<=rk4'mo4;
eipher5<=rk5'mo5;
cipher6<=rk6'mo6;
cipher7<=rk7'mo7;
eipher8<=rk8'mo8;
eipher9<=rk9'm09;
cipher1 O<=rk1O'out;
if (sts==O) flag<=flag+1;

end
end //always

always @ (eipherO or eipher1 or cipher2 or eipher3 or cipher4 or
cipher5 or cipher6 or cipher7 or elpherB or cipher9) begin

mi1=cipherO;
mi2=cipher1 ;
mi3=cipher2;
mi4=cipher3;
mi5=cipher4;
mi6=eipher5;
mi7=cipher6;
mi8=cipher7;
mi9=cipher8;
in =cipher9;

end //always

always @ (flag) if (fla9>20) sts=1; else s\s=O;
endmodule

56

57

/* This module takes column vectors from ColumnVeetor module and do
the shifting operation for the standard rounds

*/
module MixColumnProeessor (mixout, mixin, elk);

output [127:0] mixout;
input [127:0] mixin;
input elk;

wire [127:0] mixout;
wire [31 :0] eolumn1;
wire [31 :0] eolumn2;
wire [31 :0] eolumn3;
wire [31 :0] eolumn4;
wire [7:0] aO,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11 ,a12,a13,a14,a15;
wire [31 :0] sO,s1,s2,s3,s4,s5,s6,s7,s8,s9,s1 0,s11 ,s12,s13,s14,s15;

ColumnVeetor M1 (sO,s1,s2,s3,s4,s5,s6,s7,s8,s9,s1 0,s11 ,s12,s13,
s14,s15, in,elk);

assign {aO,a1,a2,a3,a4,a5,a6,a7,a8,a9,a1 0,a11 ,a12,a13,a14,a15} = mixin;
assign in = {aO,a5,a1 0,a15,a4,a9,a14,a3,a8,a13,a2,a7,a12,a1 ,a6,a11};

assign
column1 =(sOA{s1[7:0],s1 [31 :B]}Y({s2[15:0],s2[31: 16JY{s3[23:0],s3[31 :24]}),
column2=(s4A{s5[7:0],s5[31 :B]})A({s6[15:0],s6[31 :16JY{s7[23:0]'s7[31 :24]}),
eolumn3=(s8A{s9[7:0],s9[31 :8]})A({s10[15:0]'51 0[31: 16JY{s 11[23:0],511 [31:

24]}),
column4=(s12A{s13[7:0]'s13[31 :8]}Y({s 14[15:0],s14[:::1: 16JY{s 15[23:0],

s15[31:24]});
assign mixout={column1, column2, column3, column4};

endmodule

/*

This module fetches byte values from S-box and perform the shifting operations
*/
module Round10(out, in, elk);

output [127:0] out;
input [127:0] in;
input elk;

wire [7:0] dO,d1,d2,d3,d4,d5,d6,d7,dB,d9,d1 0,d11 ,d12,d13,d14,d15;
wire [7:0] aO,a1,a2,a3,a4,a5,a6,a7,aB,a9,a10,a11 ,a12,a13,a14,a15;

S_box M1(dO,d1,d2,d3,d4,d5,d6,d7,dB,d9,d10,d11 ,d12,d13,d14,d15,
aO,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11 ,a12,a13,a14,a15, clk);

assign {aO,a1 ,a2,a3,a4,a5,a6,a7,aB,a9,a1 0,a11 ,a12,a13,a14,a15}=in;
assign out={dO,d5,d1 0,d15,d4,d9,d14,d3,dB,d13,d2,o7,d12,d1 ,d6,d11};

endmodule

58

/* This module represents memory (inferred ROM) of column vectors.
The stored values are used by the Encryption modules.

'/
module
ColumnVeetor(50,51 ,52,53,54,55,56,57,58,59,510,511,512,513,5 14,5 15,in,elk);

output [31 :0] 50,51,52,53,54,55,56,57,58,59,51 0,511 ,512,513,514,515;
input [127:0] in;
input elk;
reg [31 :0] 50,51,52,53,54,55,56,57,58,59,51 0,511 ,512,513,514,515;
wire [7:0] eO,e1,c2,c3,c4,c5,c6,c7,c8,c9,c1 0,c11 ,c12,c13,c14,c15;
wire [31 :0] c[0:255];

assign
{c[O],c[1],c[2] ,c[3]'c[4] ,c[5],c[6] ,e[7],c[8],c[9],c[1 0],c[11],c[12]'e[13],c[14],c[15]}=512'h
e66363a5f8 7e7e84ee 777799f67 b7b8dfff2f20d d66b6bbdde6f6fb 191c5e5546030305
00201 0103ce6767a9562b2b7de7fefe19b5d7d7624dababe6ee767 69a,

{e[16] ,e[17],e[18],e[1 9],c[20J ,c[21],e[22],e[23] ,e[24] ,e[25] ,c[26],e[27],e[28] ,e[29] ,e[30],
c[31J)=512'h8feaea451 f82829d89cge940fa 7d7d87 effafa 15b2595geb8e4 747 e9fbfOfO
Ob41adadeeb3d4d4675fa2a2fd45afafea23gegebf53a4a4f7 e4 7272969beOe05b,

{c[32], c[33], e[34], c[35], c[36], c[37], c[38], c[3 9],c[40], e[41], e[42], c[43], c[44], c[45], e[46],
e[47]}=512'h 75b 7b7c2e 1fdfd 1c3d9393ae4e26266a6c36365a 7e3f3f41 f5f7f70283eee
c4f6834345e51 a5a5f4d 1e5e534f9f1 f108e27171 93abd8d873623131532a 15153f,

{e[48], c[49], c[50], e[51], c[52], e[53], e[54], c[55] ,c[56], e[57], c[58], c[59], c[60], c[61], c[62],
c[63]}=512'h0804040c95c7c752462323659dc3c35e30181828379696a1 Oa0505Of2f
9a9ab50e070709241212361b80809bdfe2e23dedebeb264e2727697fb2b2cdea7575
9f,
{e[64], e[65], e[66], e[67], e[68], e[69], e[70], e[71], e[72], e[73], e[74],e[75], e[76],e[77], e[78],
e[79]}=512'h 1209091 b1d8383ge582c2c7 4341 a 1a2e361 b1b2dde6e6eb2b45a5aee5
baOaOfba45252f6763b3b4db 7d6d6617 db3b3ce5229297bdde3e33e5e2f2f71138484
97,
{c[80], c[81], c[82], c[83], c[84], c[85], c[86], c[8 7],c[88], c[89], c[90], e[9 1],c[92], c[93], c[94],
c[95]}=512'ha65353f5b9d 1d16800000000c1 eded2c4020206 Oe3fcfc1 f79b1 b1e8b65
b5bedd46a6abe8debeb4667bebed97239394b944a4ade984c4ed4b05858e885efcf4
a,
{e[96]'c[97],e[98],e[99],c[1 00]'e[1 01],c[1 02],e[1 03],c[1 04],e[1 05],c[1 06],c[1 07],e[1 08],
e[109],e[11 0],e[111]}=512'hbbdOd06be5efef2a4faaaae5edfbfb16864343e59a4d4dd7
66333355118585948a4545efe9f9f91 004020206fe 7f7f81 a05050f0783e3c44259f9fba
4ba8a8e3,
{e[112],e[113],e[114],e[115],e[116],e[117],e[118],e[119],e[120],e[121],e[122],c[123],
e[124]'e[125],e[126]'e[127]}=512'ha25151 f35da3a3fe804040e0058f8f8a3f9292ad21
9d9dbc70383848f1 f5f50463bcbcdf77b6b6c1 afdada7542212163201 01030e5ffff1 afdf
3f30ebfd2d26d,
{e[128],c[129],e[130],c[131],e[132],c[133],e[134],c[135],e[136],c[137],e[138],c[139],
e[140],c[141],e[142],c[143]}=512'h81 cdcd4c180cOc1426131 :l35c3eeee2fbe5f5fe135
9797 a2884444ee2e 17173993e4e45755a 7a7f2fe7 e7e827 a3d3d4 7c86464aeba5d5d
e73219192be6737395,
{e[144],e[145],e[146],e[147],e[148]'c[149],e[150],e[151],e[152],c[153],e[154],e[155],
e[156],e[157],e[158],e[159]}=512'he06060a019818198ge4f4fd1 a3dede7f442222665
42a2a7e3b9090abOb8888838e4646eae7eeee296bb8b8d32814143ea7dede79be5e
5ee2160bOb1daddbdb76,

59

{c[160].c[161j.c[162].c[163].c[164].c[165].c[166].c[167].c[168]'c[169].c[170j.c[171j.
c[172].c[173].c[17 4],c[175]}=512'hdbeOe03b643232567 43a3a4e140aOa1 e924949db
Oc06060a4824246cb85c5ce49fc2c25dbdd3d36e43acacefc46262a6399191a831959
5a4d3e4e437f279798b,

{c[176].c[177].c[178].c[179].c[180].c[181].c[182].c[183].c[184].c[185],c[186],c[187].
c[188j.c[189] .c[190] .c[191]}=512'hd5e 7e7328bc8c8436e373759da6d6db 7018d8d8c
b1d5d5649c4e4ed 249a9ageOd86c6cb4ac56 56faf3f 4f407 cfeaea25ca6565aff 47a7a8
e47aeaee910080818.

{c[192].c[193].c[194].c[195].c[196].c[197].c[198].c[199].c[200].c[201].c[202].c[203].
c[204].c[205].c[206].c[207]}=512'h6fbabad5f07878884a25256f5c2e2e 72381 c1c245
7a6a6f173b4b4c797c6c651cbe8e823a1dddd7ce874749c3e1f1f21964b4bdd61bdbd
dcOd8b8b860f8a8a85.

{c[208].c[209].c[21 0].c[211].c[212].c[213].c[214].c[215].c[216].c[217j.c[218].c[219].
c[220j, c[221]. c[222]. c[223]}=512'he0707 0907 c3e3e4271 b5b5c4cc6666aa904848d 8
06030305f7f6f6011 cOeOe12c26161 a36a35355fae5757f969b9b9d01786869199c1 c1
583a1d1d2727gegeb9.

(c[224]. c[225]. c[226]. c[227). c[228). c[229). c[230).c[231]. c[232). c[233]. c[234], c[235].
c[236].c[237].c[238].c[239]}=512'hdge1 e138ebf8f8132b9898b322111133d26969bba
9d9d970078e8e89339494a72d9b9bb63c1e1e2215878792cgege92087cece49aa55
55ff50282878a5dfdf7 a,

{c[240j ,c[241]'c[242].c[243] .c[244].c[245].c[246j.c[24 7].c[248].c[249] ,c[250j ,c[251].
c[252].c[253].c[254] .c[255]}=512'h038c8c8f59a 1a1f809898980 1aOdOd1765bfbfdad7
e6e631844242c6d06868b8824141c3299999b05a2d2d771eOfOf117bbObOcba85454f
c6dbbbbd62c16163a.

{cO.c1.c2.c3.c4.c5.c6.c7 .c8,c9.c1 0.c11.c12.c13.c14.c15}=in;

always @ (posedge elk) begin
sO=c[cO];
s1=c[c1];
s2=c[c2];
s3=c[c3];
s4=c[c4j;
s5=c[c5];
s6=c(c6];
s7=c[c7);
s8=c(c8];
s9=c[c9);
s10=c[c1 0);
s11=c[c11];
s12=c[c12];
s13=c(c13];
s14=c[c14];
s 15=c[c15);

end
end module

60

APPENDIX D
S_box Memory (ROM)

r This module represents memory (inferred ROM) for S_box elements.
Tho storod valuos oro usod by both 1<0yExpansion and Encryption modules.

*/
module 5_box(dO,d1 ,d2,d3,d4,d5,d6,d7,dB,d9,d10,d11 ,d12,d13,d14,d15,

aO,a1,a2,a3,a4,a5,a6,a7 ,aB,a9,a10,a11 ,a12,a13,a14,a15,elk);

output [7:0] dO,d1,d2,d3,d4,d5,d6,d7 ,dB,d9,d1 O,d11,d12,d 13,d 14,d 15;
input [7:0] aO,a1,a2,a3,a4,a5,a6,a7,aB,a9,a10,a11 ,a12,a13,a14,a15;
input elk;

reg [7:0] dO,d1,d2,d3,d4,d5,d6,d7 ,dB,d9,d1 O,d11,d12,d 13,d14,d15;
wire [7:0] 5[0:255];

assign
{8[0],8[1] ,8[2],8[3],8[4],8[5],8[6J,8[7J,8[8],8[9],8[1 0J,8[11],8[12],8[13],
8[14],8[15J}=128'H637C777BF26B6FC53001672BFED7 AB76,

{8[16],8[17J,8[18],8[19],8[20],8[21],8[22],8[23],8[24],8[25J,8[26],8[27],
8[28] ,8[29] ,8[30] ,8[31]}=128'HCA82C97DFA594 7FOADD4A2AF9CM 72CO,

{8[32] ,8[33],8[34],8[35] ,8[36],8[37] ,8[38] ,8[39],8[40] ,8[41],8[42J,8[43],
8[44],8[45],8[46],8[4 7J}=128'HB7FD9326363FF7CC34A5E5F171 D83115,

{8[48] ,8[49],8[50],8[51] ,8[52] ,8[53J ,8[54] ,8[55] ,8[56] ,8[57J ,8[5B] ,8[59],
8[60J ,8[61] ,8[62], 8[63J}= 128'H04C723C31896059A0712BO E2EB27B27 5,

{8[64] ,8[65],8[66] ,8[67] ,8[68J ,8[69] ,8[70] ,8[71] ,8[72J ,8[731 ,8[74] ,8[7 5],
8[76J,8[77],8[78],8[79J}=128'H09832C 1A1B6E5AA0523BD6B329E32F84,

{8[80] ,8[81], 8[82J ,8[83] ,8[84] ,8[85] ,8 [86] ,8[87],8[88] ,8[89] ,8 [90],8[91],
8[92],8[93],8[94],8[95J}=128'H53D 100ED20FCB 15B6ACBBE394MC58CF,

{8[96],S[97],8[98],8[99],8[1 00],8[1 01],8[1 02],8[1 03],8[1 04],8[1 05],8[1 06J,8[1 07],
8[108],8[1 09],8[11 0],8[111J}=128'HDOEFAAFB434D338545F9027F503C9FA8,

{8[112],8[113],8[114],8[115],8[116],8[117],8[118],8[119],8[120],8[121],8[122],
8[123],8[124],8[125],8[126],8[127J}=128'H51 A3408F929D38F5BCB6DA211 OFFF3
D2,

{8[128J,8[129],8[130],8[131],8[132],8[133],5[134],5[135J,5[136],5[137],5[138J,
5[139],5[140],5[141],5[142],5[143J}=128'HCDOC 13EC5F97 4417C4A77E3D645D 19
73,

{8[144],8[145],8[146],8[14 7J,8[148],8[149],8[150],8[151],8[152],8[153],8[154],
8[155],8[156],8[157],8[158],8[159J}=128'H60814FDC222A908846EEB814DE5EOB
DB,

(5[160J,5[161],5[162J,5[163],5[164],5[165J,5[166],5[167],5[168],5[169],5[170],
5[171],5[172],5[173],5[17 4],5[175J}=128'HE0323A0A490!i245CC2D3AC629195E4
79,

{5[176],5[177],5[178],5[179],5[180],5[181],5[182],5[183],5[184],5[185],5[186],

61

8[187],8[188J,8[189],8[190].8[191)}=128'HE7C8376D8DD54EA96C56F4EA657 AA
EG8,

{8[192],8[193J,8[194J,8[195J,8[196].8[197],8[198J,8[199],8[200J,8[20 1],8[202],
8[203J,8[204],8[205],8[206],8[207)}=128'HBA 78252E 1CA6B4C6E8DD7 41F4BBD8
BBA,

{8[208],8[209],8[21 0J,8[211],8[212J,8[213],8[214],8[215],8[216],8[217],8[218J,8[21
9],
8[220],8[221],S[222],8[223)}=128'H703EB5664803F60E613557B986C 11D9E,

(8[224],8 [225],8[226],8 [227],8[228],8[229] ,8[230],8[231].8[232].8[233],8[234].
8[235].8[236].8[237].8[238J.8[239J)=128'HE1 F8981169D98E949B1 E87E9CE5528
DF.

{8[240]. 8[241 J .8[242],8[243],8[244] ,8 [245],8[24 6],8[24 7J,8[248J, 8[249].8[250],
8[251],8[252],8[253],8[254],8[255)}=128'H8CA 1890DBFE6426841992DOFB054BB
16;

always @(posedge elk) begin
dO<=s[aO];
d1<=s[a1];
d2<=s[a2];
d3<=s[a3];
d4<=s[a4];
d5<=s[a5J;
d6<=s[a6];
d7<=s[a7];
d8<=s[a8];
d9<=s[a9];
d10<=s[a1 0];
d11<=s[a11];
d12<=s[a12];
d 13<=s[a 13];
d14<=s[a14];
d15<=s[a15];

end
endmodule

62

APPENDIX E
Inverse S_box (ROM)

Module IS_Box
(

dO,d1,d2,d3,d4,d5,d6,d7,d8,d9,d1 0,d11 ,d12,d13,d14,d15,
aO,a1,a2,a3,a4,a5,a6,a7,a8,a9,a1 0,a11 ,a12,a13,a14,a15

);
output [7:0] dO,d1,d2,d3,d4,d5,d6,d7,d8,d9,d1 0,d11 ,d12,d13,d14,d15;
input [7:0) aO,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11 ,a12,a13,a14,a15;

wire [7:0] e[0:255];

assign
{e[0]'e[1],e[2],e[3] ,e[4],e[5] ,e[6],e[7],e[8] ,e[9],e[1 0],e[11],e[12],e[13] ,e[14],
e[15]}=128'h52096AD53036A538BF40A39E81 F3D7F8,

{e[16) ,e[17],e[18],e[19],e[20) ,e[21] ,e[22],e[23) ,e[24]'e[25],e[26) ,e[27] ,e[28],e[29],
e[30],e[31]}= 128'h 7CE33982982FFF87348E4344C4DEE9C8,

{e[32], e[33], e[34], e[35], e[36], e[37),e[38),e[39], e[40], e[41), e[42], e[43) ,e[44), e[45),
e[46] ,e[47]}= 128'h54 7B9432A6C2233DEE4C950842FAC34E,

(e[48], e[49], e[50], e[51],e[52], e[53],e[54], e[55], e[56], e[57], e[58], e[59], e[60], e[61],
e[62],e[63]}=128'h082EA 16628D924B2765BA2496D8BD125,

{e[64), e[65], e[66], e[67], e[68),e[69], e[70], e[71], e[72] ,e[73], e[74], e[75],e[76], e[77] ,
e[78],e[79]}=128'h72F8F66486689816D4A45CCC5D658692,

{e[80],e[81], e[82), e[83], e[84), e[85], e[86], e[87) ,e[88), e[89), e[90], e[91), e[92] ,e[93),
e[94],e[95]}=128'h6C704850FDED89DA5E154657 A78D9D84,

{e[96],e[97],e[98],e[99],e[1 00],e[1 01],e[1 02],e[1 03],e[1 04],e[1 05],e[1 06],e[1 07],
e[108],e[109],e[11 0],e[111]}=128'h90D8AB008CBCD30AF7E4580588B34506,

{e[112],e[113],e[114],e[115],e[116],e[117],e[118],e[119],e[120],e[121],e[122],e[12
3],e[124],e[125],e[126],e[127]}=128'hD02C1 E8FCA3FOF02C1 AFBD0301138A
6B,
{e[128],e[129],e[130],e[131],e[132],e[133],e[134],e[135],eI136],e[137],e[138],e[13
9],e[140],e[141],e[142],e[143]}=128'h3A9111414F67DCEA97F2CFCEF084E6
73,
{e[144],e[145],e[146],e[14 7],e[148],e[149],e[150]'e[151],eI152],e[153],e[154],e[15
5],e[156],e[157],e[158],e[159]}=128'h96AC7 422E7 AD3585E2F937E81 C75D
F6E,
{e[160],e[161],e[162],e[163],e[164],e[165],e[166],e[167],e[168],e[169],e[170],e[17
1],e[172],e[173],e[174],e[175]}=128'h47F11A711 D29C5896FB7620EAA 18BE1 B,

{e[176],e[177],e[178],e[179],e[180],e[181],e[182],e[183],e[184],e[185]'e[186]'e[18
7],e[188],e[189],e[190],e[191]}=128'hFC563E48C6D279209ADBCOFE78CD5AF
4,
{e[192],e[193],e[194],e[195],e[196],e[197],e[198],e[199],e[200],e[201],e[202],e[20
3],e[204],e[205],e[206],e[207]}=128'h1 FDDA8338807C731 81121 0592780EC5F,

63

{c[208].c[209].c[21 0].c[211].c[212].c[213].c(214].c[215].c[216].c[217],c[218],c[21
9],c[220],c[221],c[222],c[223]}=128'h60517FA919854AOD2DE57 A9F93C99CE
F.
{c[22 4]. c[225]. c[226]. c[227]. c[228]. c[229]. c[230]. c[231]. c[232]. c[233].c(234]. c[23
5].c(236]. c[237]. c(238]. c[239]}= 128'hAOE03B4DAE2AF 5BOC8EBB B3C8353996
1,
{c[240] ,c[241] ,c[242] ,c(243] .c[244].c(245],c[246].c[24 7].c[248],c[249].c[250] ,c(25
1],c[252].c(253],c[254].c[255]}= 128'h 172B04 7EBA77D626E 16914635521 OC7D,

dO=c[aO],
d1=c[a1],
d2=c(a2],
d3=c(a3],
d4=c[a4],
d5=c[a5],
d6=c(a6],
d7=c[a7],
d8=c(a8].
d9=c(a9].
d10=c[a1 0].
d11=c[a11],
d12=c[a12],
d13=c[a13],
d14=c[a14],
d15=c[a15];

endmodule

APPENDIX F
DECRYPTION MODULE

/* This module is the top level entity of the decryption process
*1
module Decryption(plaintext, cipher, go, elk, rst);

output [127:0] plaintext;
input [127:0] cipher;
input go, elk, rst;

reg [3:0] round reg;
reg [127:0] plaintext,textreg,roundinreg,inreg;
wire [127:0] roundout,roundin,roundkey,dataout, in;
wire [3:0] round,rounds,r;

KeyWord KW(roundkey,r);
InvRoundProcessor IRP(roundout, round in, round);
InvShiftSubAdd ISA(dataout, in, rounds);

assign r=(roundreg==0)?4'hA:4'hZ; Ilthis is the first round for decryption
assign roundin=roundinreg;
assign rounds=roundreg;
assign round=roundreg;
assign in=inreg;

always @(posedge clk or posedge rst) begin
if (rst) begin roundreg <=0; plaintext<=128'bX; end
else if (go) begin roundreg<=roundreg+1; plaintext<=textreg; end

else begin round reg <=0; plaintext<= 128'bX; end
end

always @(go or plaintext or cipher or round reg or roundkey or roundout
or dataout) begin

roundinreg=O;
textreg=O;
inreg=O;

case (roundreg)

0: begin
if (go) textreg=cipherAroundkey;

end

1,2,3,4,5,6,7,8,9: begin
rou ndinreg =plaintext;
textreg=roundout;

end

10: begin
inreg=plaintext;

64

textreg=dataout;
end

default: begin
inreg= 128'bZ;
textreg=128'bZ;
inreg=128'bZ;
end

end case
end Iialways

end module

module InvRoundProcessor(roundout, roundin, round);
output [127;0] roundout;
input [127:0) roundin;
input [3;0) round;

wire [127:0) dataout, in, mout, min;
wire [3:0] rounds;

InvShiftSubAdd ISSA(dataout, in, rounds);
InvMixProcessor(mout, min);

assign rounds=round;
assign in=roundin;
assign min=dataout;
assign roundout=mout;

endmodule

module KeyWord(roundkey,round);
output [127:0) round key;
input [3:0) round;
wire [127:0] key[O:10);
assign

key[O]= 128'H000102030405060708090aObOcOdOeOf,
key[1)= 128'Hd6aa74fdd2af72fadaa678f1 d6ab76fe,
key[2]= 128'Hb692cfOb643dbdf1 be9bc5006830b3fe,
key[3)= 128'Hb6ff7 44ed2c2c9bf6c590cbf0469bf41,
key[4]= 128'H47f7f7bc95353e03f96c32bcfd058dfd,
key[5]= 128'H3caaa3e8a99f9deb50f3af57adf622aa,
key[6)= 128'H5e390f7 df7a69296a 7553dc1 Oaa31f6b,
key[7]= 128'H14f9701 ae35fe28c440adf4d4ea9c026,
key[8]= 128'H47438735a41 c65bge016baf4aebf7ad2,
key[9)= 128'H549932d 1f08557681 093ed9cbe2c974e,
key[10]= 128'H 13111 d7fe3944a 17f307 a78b4d2b30c5;

assign roundkey=key[round);
endmodule

65

66

module InvMixProcessor(mout, min):
output [127:0] mout;
input [127:0] min;
reg [127:0] mout;
reg [7:0] temp1 ,temp2,temp3,carry1,carry2,carry3;
reg [7:0] mixg[O: 15],mixB[0:15],mixD[0: 15],mixE[0: 15];
reg [7:0] mix1 [0: 15]'mix2[0: 15],mix4[0: 15],mix8[0:15]'mixout[0: 15J;

integer i;

always @(min) begin
mix1 [0]=0; mix1 [1]=0; mix1 [2]=0; mix1 [3]=0; mix1 [4]=0; mix1 [5]=0;
mix1 [6]=0; mix1 [7]=0; mix1 [8]=0; mix1 [g]=O; mix1 [10]=0; mix1 [11]=0;
mix1 [12]=0; mix1 [13]=0; mix1 [14]=0; mix1 [15]=0;

carry1 =0; carry2=0; carry3=0; temp1 =0; temp2=0; temp3=0;

mix2[0]=0; mix2[1]=0; mix2[2]=0; mix2[3]=0; mix2[4]=0; mix2[5]=0;
mix2[6]=0; mix2[7]=0; mix2[8]=0; mix2[9]=0; mix2[10]=0; mix2[11]=0;
mix2[12]=0; mix2[13]=0,mix2[14]=0; mix2[15]=0;

mix4[0]=0; mix4[1]=0; mix4[2]=0; mix4[3]=0; mix4[4]=0; mix4[5]=0;
mix4[6]=0; mix4[7]=0; mix4[8]=0; mix4[9]=0; mix4[1 0]=0; mix4[11]=0;
mix4[12]=0; mix4[13]=O,mix4[14]=0; mix4[15]=0;

mix8[0]=0; mix8[1]=0; mix8[2]=0; mix8[3]=0; mix8[4]=0; mix8[5]=0;
mix8[6]=0; mix8[7]=0; mix8[8]=0; mix8[9]=0; mix8[10]=0; mix8[11]=0;
mix8[12]=0; mix8[13]=O, mix8[14]=0; mix8[15]=0;

mix9[0]=0; mix9[1]=0; mix9[2]=0; mix9[3]=0; mix9[4]=0; mix9[5]=0;
mix9[6]=0; mix9[7]=0; mix9[8]=0; mix9[9]=0; mix9[10]=0; mix9[11]=0;
mix9[12]=0; mix9[13]=O, mix9[14]=0; mix9[15]=0;

mixB[O]=O; mixB[1]=0; mixB[2]=0; mixB[3]=0; rnixB[4]=0; mixB[5]=0;
mixB[6]:=0; mixB[7]=0; mixB[8]=0: mixB[9]=0; rnixB[10]=0;
mixB[11]=0; mixB[12]=0; mixB[13]=O, mixB[14)=0; mixB[15]=0;

mixD[O]=O; rnixD[1]=0; mixD[2]=0; mixD[3]=0; mixD[4]=0; mixD[5]=0;
mixD[6]=0; mixD[7]=0; mixD[8]=0; mixD[9]=0; mixD[10]=0;
mixD[11]=0; mixD[12]=0; mixD[13]=O, mixD[14]=0; mixD[15]=0;

mixE[O]=O; mixE[1]=0; mixE[2]=0; mixE[3]=0; rnixE[4]=0, mixE[5]=0;
mixE[6]=0; mixE[7]=0; mixE[8]=0; mixE[9]=O, rnixE[10]=0;
mixE[11]=0; mixE[12]=0; mixE[13]=O, mixE[14]=0; mixE[15]=0;

mixout[O]=O; mixout[1]=0; mixout[2]=0; mixout[3]=0; mixout[4]=0;
mixout[5]=0; mixout[6]=O; mixout[7]=0; mixout[8]=0; mixout[9]=0;
mixout[10]=0; mixout[11]=0; mixout[12]=0; mixout[13]=0;
mixout[14]=0; mixout[15]=0;

{mix1 [0],mix1 [1],mix1 [2],mix1 [3],mix1 [4],mix1 [5],mix1 [6],mix1 [7],mix1 [8],
mix1 [9],mix1 [10],mix1 [11],mix1 [12],mix1 [13]'rnix1 [14],mix1 [15]}=rnin;

for (i = 0; i < 16; i = i + 1) begin
{carry1,lemp1)= mix1[i]« 1;
if (carry1)

mix2[i] = lemp1 A 8'b00011011;
else

mix2[i] = lemp1;

{carry2,lemp2}= mix2[i] « 1;
if (carry2)

mix4[i] = lemp2 A 8'b00011011;
else

mix4[i] = lemp2;

{carry3,lemp3}= mix4[i] « 1;
if (carry3)

mix8[i] = lemp3 A 8'b00011011;
else

mix8[i] = lemp3;

mix9[i]=mix8[Wmix1 [i];
mixB[i]=mix9[Wmix2[i];
mixD [i]=mix9[i] Amix4 [i];
mixE[i]=mix8[Wmix4[Wmix2[i] ;

end Ilfor

mixoul[O] = mixE[O] A mixB[1] A mixD[2] A mix9[3];
mixoul[1] = mix9[0] A mixE[1] A mixB[2] A mixD[3];
mixoul[2] = mixD[O] A mix9[1] A mixE[2] A mixB[3];
mixoul[3] = mixB[O] A mixD[1] A mix9[2] A mixE[3];

mixoul[4] = mixE[4] A mixB[5] A mixD[6] A mix9[7];
mixoul[5] = mixg[4] A mixE[5] A mixB[6] A mixD[7];
mixoul[6] = mixD[4] A mix9[5] A mixE[6] A mixB[7];
mixoul[7] = mixB[4] A mixD[5] A mix9[6] A mixE[7];

mixoul[8] = mixE[8] A mixB[9] A mixD[10] A mix9[11];
mixoul[9] = mix9[8] A mixE[9] A mixB[10] A mixD[11];
mixoul[10] = mixD[8] A mix9[9] A mixE[10] A mixB[11];
mixoul[11] = mixB[8] A mixD[9] A mix9[10] A mixE[11];

mixoul[12] = mixE[12] A mixB[13] A mixD[14] A mix9[15];
mixoul[13] = mix9[12] A mixE[13] A mixB[14] A mixD[15];
mixoul[14] = mixD[12] A mix9[13] A mixE[14] A mixB[15];
mixoul[15] = mixB[12] A mixD[13] A mix9[14] A mixE[15];

moul={ mixoul[O], mixoul[1],mixoul[2], mixoul[3], mixoul[4], mixoul[5],
mixoul[6],mixoul[7] ,mixoul[8] ,mixoul[9],mixoul[1 0],mixoul[11],
mixoul[12],mixoul[13],mixoul[14],mixoul[15]};

end Ilaiways
endmodule

67

module InvShiftSubAdd(dataout, in, rounds);
output [127:0] dataout;
input [127:0] in;
input [3:0] rounds;
wire [127:0] round key;
wire [127:0] out;
wire [3:0] round;

InvSubShift ISS (out, in);
KeyWord (rou ndkey, round);

Ilassign in=datain;
assign round=4'hA-rounds;
assign dataout=out'roundkey;

endmodule

module InvSubShift(out, in);
output [127:0] out;
input [127:0] in;

wire [7:0] dO,dl ,d2,d3,d4,d5,d6,d7,d8,d9,dl 0,dll,d12,d13,d14,d15;
wire [7:0] aO,al ,a2,a3,a4,a5,a6,a7,a8,a9,al0,all ,a12,a13,a14,a15;

IS_Box Ml (dO,dl ,d2,d3,d4,d5,d6,d7,d8,d9,dl O,dll,d12,d13,d14,d15,
aO,al ,a2,a3,a4,a5,a6,a7,a8,a9,al0,all ,a12,a13,a14,a15);

assign {aO,al,a2,a3,a4,a5,a6,a7,a8,a9,al 0,all,a12,a13,a14,a15}=in;
assign out={dO,d13,dl0,d7,d4,dl ,d14,dll,d8,d5,d2,d15,d12,d9,d6,d3};

endmodule

68

69

LIST OF PUBLICATIONS

The work contributing to this thesis yielded the following publication:

[1) Roy N. and Ali L., "Design of a High Speed Crypto-Processor ASIC for Next

Generation IT Security", accepted in Proceedings. of International

Conference on Robotics, Vision, Information, and Signal. Processing,

Malaysia, 28-30 November, 2007.

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082

