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Robust and Reliability-based Design Optimization under Epistemic 
Uncertainty 

 

ABSTRACT 

 

This thesis proposes formulations and algorithms for robust design optimization with 

uncertainty representation and propagation considering both aleatory (e.g. produced due to 

natural variability) and epistemic (e.g. variability due to lack of information or imprecise 

information) uncertainty arising from interval data. Multiple interval data are treated for 

uncertainty representation including both overlapping and non-overlapping in characteristics. A 

general likelihood-based approach for uncertainty representation has been proposed in this 

research. Uncertainty analysis through the likelihood approach is capable of estimating the 

uncertainty for different distribution types and parameters. The proposed likelihood-based 

representation of epistemic uncertainty has been used in the framework for robustness-based 

design optimization to achieve computational efficiency. A methodology is also outlined for 

solving reliability-based design optimization (RBDO) under epistemic uncertainty using the 

proposed likelihood-based uncertainty representation. The proposed robust design optimization 

methodology is illustrated with two numerical examples including a general mathematical 

problem and a real engineering problem. 
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CHAPTER I 

INTRODUCTION 

 

1.1. Background 

In engineering design optimization, the input design variables and system variables 

may contain uncertainty. Therefore, uncertainty representation and propagation is required in 

the systems and machineries design, production, maintenance and other applications. 

Deterministic design optimization is the traditional way which is bounded to a lot of errors 

due to reclusion of uncertainty. In deterministic design optimization, it is generally assumed 

that all design inputs are precisely known and the influence of data or distribution parameter 

uncertainty on the optimality and feasibility of the models is not explicitly considered. 

However, real-life engineering problems consist of different types of uncertainty and this 

deterministic assumption about inputs may lead to infeasibility or poor performance (Sim 

2004). In recent years, several methods have been developed for design under uncertainty. 

Reliability-based design (Chiralaksanakul and Mahadevan 2005) and robust design (Du and 

Chen 2000; Du and Huang 2007) are two major developments among these. While reliability-

based design aims to maintain design feasibility at desired reliability levels, robust design 

optimization attempts to minimize variability in the system performance due to variations in 

the inputs (Lee et al. 2008). All these methods developed so far work under aleatory 

uncertainty (i.e., precise probabilistic information). However, uncertainty increases 

proportionally with the increase of the complexity in engineering design. 

Uncertainty can be divided into two types: aleatory and epistemic. Further, epistemic 

uncertainty can be defined in two ways. It can be defined with reference to a poorly known 

quantity but stochastic in character (Baudrit and Dubois 2006) or with reference to a fixed 

but poorly known quantity (Helton et al. 2004). There is now an extensive volume of 

literature available to deal with these two definitions of epistemic uncertainty.  However, 

existing methods can handle these two definitions separately (Helton et al. 2004; Zaman et al. 

2011a; Zaman et al. 2011b; Zaman and Mahadevan 2013), although it may be possible that 

an engineering design contains both types of epistemic uncertainty. Therefore, an approach to 

engineering system design that addresses both aleatory and epistemic uncertainty of both 

types is needed.   
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1.2. Objectives with specific aims 

The specific objectives of this research are: 

 Development of a methodology for representation of epistemic uncertainty using 

likelihood-based approach. 

 Development of formulations and algorithms for robustness-based design 

optimization under epistemic uncertainty. 

 Development of formulations and algorithms for reliability-based design 

optimization under epistemic uncertainty.  

Therefore, the proposed research develops and demonstrates generalized methodologies and 

tools for managing uncertainty in engineering systems, which will provide decision support 

to engineers for robust and reliable design of engineering systems.  

1.3. Outline of Methodology 

The proposed research methodology is outlined below: 

a) A framework for the representation of aleatory uncertainty and stochastic epistemic 

uncertainty with insufficient multiple interval data has been developed. 

b) Formulations and algorithms for robustness-based design optimization under 

epistemic uncertainty have been proposed based on the developed uncertainty 

representation framework. 

c) Formulations and algorithms for reliability-based design optimization under 

epistemic uncertainty have been proposed based on the developed uncertainty 

representation framework. 

d) The proposed robustness-based design methodology has been illustrated for several 

example problems. 

 

1.4. Scopes and limitations 

The uncertainty representation methodology developed in this thesis is applicable to any 

engineering applications under epistemic uncertainty. However, the developed methodology 

has been used in robust and reliability-based design optimization framework under epistemic 

uncertainty for solving single discipline engineering problems. The proposed optimization 

framework can easily be extended to solve multidisciplinary optimization problems under 
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epistemic uncertainty. The proposed method may also contribute in the field of financial 

engineering problems, such as portfolio optimization and network optimization including 

supply chain management, warehouse management, inventory management, etc. 

The epistemic uncertainty analysis requires extra computational effort to estimate the 

uncertain parameters of the epistemic variables. However, this is essential to develop a better 

and efficient methodology for the design optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 | P a g e  
 

CHAPTER II 

LITERATURE REVIEW 
 

The current research is intended to develop a methodology that provides decision 

support to engineers for design and analysis of engineering systems for poor amount of data 

counting stochastic epistemic uncertainty. This uncertainty prevails in the natural 

characteristics of a design and observed data and this is ignored in the deterministic design 

optimization. Non-deterministic design optimization has gained increasing attention in last 

few decades due to this reason. There are now extensive volume of methods and applications 

available for non-deterministic design optimization problems. Robustness-based design 

(Parkinson et al. 1993; Du and Chen 2000; Doltsinis and kang 2004; Huang and Du 2007) 

and reliability-based design (Chiralaksanakul and Mahadevan 2005; Ramu et al. 2006; 

Agarwal et al. 2007; Du and Huang 2007) are two prominent fields of optimization which 

consider the uncertainty in the design parameters. Robustness is the performance criteria for a 

system to operate continuously for a wide range of operational conditions and will be failed 

outside the conditions (Steven 2001). Taguchi developed the concept of robust design and 

proposed a method where the product performance or the output remains insensitive to the 

variation in design variables in manufacturing process (Taguchi 1993). The variation in the 

design variables was designated as noise which could be created from various factors in the 

manufacturing process. As, all of the engineering models are becoming more and more 

complex day by day, application of statistical design tools in Taguchi‟s method is not well 

enough to calculate optimal feasible solution for multiple measurements of performance and 

design constraints (Wei et al. 2009). Due to application of nonlinear programming in the 

robust design, it became possible to achieve robustness in both performance outputs and 

design constraints (Du and Chen 2000). 

There exists high volume of researches for robust and reliability-based design 

optimization. However, most of the methods have been developed considering the physical or 

natural variability represented by probability distribution. There are normally some 

significant variables or elements in the system which arise uncertainty in the system. 

Uncertainty may be aroused from two sources which are aleatory and epistemic (Oberkampf 

et al. 2004). Aleatory uncertainty cannot be reduced due to including natural phenomena that 

exhibit natural variation like operating condition, material properties, geometric tolerances, 

etc. on the other hand, epistemic uncertainty arises from a lack of knowledge about the 
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system, or due to approximations in the system behavior models, or due to limited or 

subjective data. Epistemic uncertainty can be reduced by gathering as much as information 

about the system. There will be continuous variation in the manufacturing process due to lack 

of proper precision in the tools and system. When there is limited knowledge about a system 

or approximations have to apply for various estimations, epistemic uncertainty arouses. There 

may be limited data to properly define the distribution parameters of the random variables. 

This type of uncertainty may be reduced by harnessing more data. There are few studies on 

robust design optimization which have considered the epistemic uncertainty arising from the 

lack of information. Probability-based method (Youn et al. 2007) may be used to redefine the 

performance measure of robust design using the most likely values of fuzzy random 

variables. Two two-step methods have been developed by Dai and Mourelatos (2003) for 

robust design optimization which can treat aleatory and epistemic uncertainty separately 

using a range of method and fuzzy set approach.  

There exist a few methods that develop robustness-based design optimization 

methodology under data uncertainty (i.e., using sparse point data and interval data on input 

random variables). Zaman et al. (2011b) proposed a decoupled approach for robustness-based 

design optimization using both sparse point and interval data. They achieve computational 

efficiency by un-nesting the design optimization from the uncertainty analysis of the 

epistemic variables. This is a sequential approach, where two optimization formulations are 

solved until convergence. In this thesis, an optimization approach is proposed where the 

epistemic analysis is completely eliminated from the design optimization framework by 

estimating the distribution parameters of the epistemic variables using a likelihood-based 

uncertainty representation of interval data. 

2.1. Interval data uncertainty 

There are normally two types of sparsity lies in the data which are controlled and 

random. Based on the computational method, there are two types of interval data which are 

single and multiple intervals. Comparing to single interval, multiple intervals require 

consideration of two additional issues: (1) from the context of computational expense, 

estimating statistics from multiple intervals can be more challenging, (2) from the context of 

aggregation of information represented in the multiple intervals, there may be no basis to 

believe that the “true” value of the variables lies at any particular location of any intervals, 

such as endpoints or midpoints of the intervals. It is assumed in this research that all the 



6 | P a g e  
 

intervals are equally likely to include the true value of the variable, i.e., all the intervals have 

an equal weight (Ferson et al. 2007). When data is available in multiple intervals, the 

information contained in the intervals can be broadly categorized as non-overlapping and 

overlapping intervals. Different types of experiments and procedures are responsible to 

generate different types of interval data. Therefore, it is important to know about the sources 

of the interval data when they are collected as the observed data of the random variables. 

Sources of interval data 

For developing efficient and effective system, interval data are used frequently in 

practical engineering problems. Interval data are used in some specific situations (Ferson et 

al. 2007 ;Du et al. 2005), for example: (a) information could be gotten through physical limits 

and theoretical constraints, which can only provide possible ranges of quantities resulting in 

interval data, (b) expert opinions are strong sources of interval data , which specify a range of 

possible values for a variable, (c) Reporting data includes positive or negative uncertainties 

linked with the calibration of measuring devices also leads to interval data. (d) The results in 

the experiments like chemical or purity quantification below a certain detection limit, 

providing an interval or range of the observation for the amount of impurity between zero and 

the threshold. (e) For temporary or interim observations, there is always a chance to detect 

faults which can be evolved during two consecutive observations. Hence, the time of failure 

of a machine or a system is given through intervals. If the interval width cannot be ignored 

comparing with the magnitude of the variable, then it requires special treatment. 

Representation of Interval data 

In order to estimate and propagate the uncertainty in the design of a real engineering 

system, it is important to have proper uncertainty representation through models from which 

it will be possible to quantify the uncertainty. Therefore, the uncertainty quantification will 

help to estimate the system response. Two theories are popular to represent and mention the 

characteristic of interval data for uncertainty representation.  

Equi-probability model corresponds to the Laplacian principle of indifference 

(Howson and Urbach 1993) and considers each interval as a uniform distribution (Bertrand 

and Groupil 2000). Single probability mass and density are estimated for each possible 

realization of the interval data for the random variable. Assumption of uniform distribution or 

any other distribution within a particular interval cannot be valid and could be a limitation of 
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the equi-probability model. The inherent imprecision in the interval data cannot be captured 

though equi-probability model results in a precise probabilistic representation. 

The second interpretation of the interval data representation can be illustrated as 

interval data efficiently represents incertitude (Ferson et al. 2007). Therefore, the probability 

of an event will be an interval, unlike a single value for point data or sparse data. Hence, the 

probabilistic representation of the interval data is different from the uncertainty 

representation of the single point data. Different possible combinations of information in the 

interval data can be used for uncertainty representation. 

The representation of the interval data of a variable for a specific distribution, (e.g., 

empirical, normal) could be a probability box or p-box (Williamson and Downs 1990). 

Evidence theory and fuzzy logic are also popular and used in a great variety within the 

interpretation of incertitude. Various techniques have been developed to represent interval 

data to represent and propagate the uncertainty.  

When a variable is described by interval data and for which the set of all probability 

distribution of a specific distribution type (e.g., empirical, normal) are feasible, then the set of 

the probability distribution is known as a probability box or p-box in short. The empirical p-

box shows the interval data set graphically. The empirical p-box has an increasing step 

function with a constant vertical height of 1/n, where n is the number of intervals. This step 

height of each interval data for the empirical CDF is identical which represents the intervals 

are equally weighted. The sorting from the lower and upper bounds for the set of intervals is 

required to construct the p-box. Empirical cumulative distribution function (CDF) for each 

bound is plotted for the non-design variables used in the robust design optimization problem. 

The non-design variables may consist of overlapping, non-overlapping and mixed interval 

data which can be observed from Figs. 1.1-1.3. There are 5 sets of interval data for each non-

design variable. 
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Fig. 1.1 Empirical p-box for overlapping interval data 

  

 

 

 

Fig. 1.2 Empirical p-box for non-overlapping interval data 
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Fig. 1.3 Empirical p-box for mixed interval data 

Different techniques on quantification and propagation of epistemic data uncertainty 

for single point and interval data (Ferson et al. 2004) were the major topics in the workshop 

of the Sandia epistemic uncertainty project (Oberkampf et al. 2004). For representation and 

propagation of interval uncertainty, the popular uncertainty theories include probability 

distributions (Helton et al.2004), Dempster-Shafer structures (Helton et al.2004; Klir 2004), 

p-boxes (Ferson and Hajagos 2004), possibility distributions (Helton et al.2004), subjective 

probabilities (O‟Hagan and Oakley 2004), random intervals (Fetz and Oberguggenberger 

2004), set of probability measures (Fetz and Oberguggenberger 2004), fuzzy sets (Fetz and 

Oberguggenberger 2004), random sets (Berleant and Zhang 2004; Hall and Lawry 2004), 

imprecise coherent probabilities (Kozine and Utkin 2004), coherent lower provisions (De 

Cooman and Troffaes 2004), families of polynomial chaos expansions (Red-Horse and 

Benjamin 2004), info gap models (Ben-Haim 2004) etc. 

Different researches including p-box method providing a probability theory for 

interval data has focused on developing bounds mainly on CDFs (Hailperin 1986) with the 

method of propagation of these probability intervals through uncomplicated expressions. 

Following this ideas, probabilistic arithmetic expressions in the density domain were 

developed by Hyman (1982). Williamson and Downs (1990) proposed algorithms to compute 

arithmetic operations (addition, subtraction, multiplication and division) on pairs of p-boxes. 

The notion of the convolution between probability distributions was generalized through 

these methods (Berleant 1993; Berleant 1996; Berleant and Goodman-Strauss 1998). More 
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research works involving bounds on CDFs also developed (Helton et al. 2004; Helton et al. 

2008). 

Subjective probability is another medium of representing epistemic uncertainty 

(O‟Hagan and Oakley 2004; Apeland et al. 2002; Hofer et al. 2002). Probability is the 

common used method for representation of both aleatory and epistemic uncertainty but not 

the only way (O‟Hagan and Okaley 2004). There may be lack of precision in probability 

judgments and in the estimation of the uncertainty, it requires elicitations, not representation. 

This Bayesian approach (Howson and Urbach 1993) is popular for epistemic uncertainty for 

former distributions which are updated in the presence of new data. Some researchers also 

argue that a probabilistic representation for interval data is not enough due to addition of 

information to the problem (Du et al. 2005; Agarwal et al. 2004a).  

In the context of Dempstar-Shafer evidence theory (Shafer 1976) for interval data, 

there are many rules to aggregate different sources of information. However, this evidence 

theory may not be suitable for cases where there is inconsistency in the available evidence 

(Agarwal et al. 2004a; Oberkampf et al. 2001) e.g., for non-overlapping intervals. In such 

cases, a mixture of averaging rule can be applied (Oberkampf et al. 2001). Evidence theory 

has popular application to represent epistemic uncertainty for interval data in 

multidisciplinary system design (Agarwal et al. 2004a), which is used to develop or formulate 

the non-deterministic design constraints. Other researchers also used evidence theory for 

epistemic uncertainty quantification (Guo and Du 2007; Guo and Du 2009). 

Uncertain events from patterns can be designed using convex models of uncertainty 

(Ben-Haim and Elishakoff 1990). Ellipses of any convex sets are the examples of convex 

models consist of intervals. There is less detailed information in the convex models to 

represent uncertainties than probabilistic models. The convex model requires a worst case 

analysis to the design applications which can be developed as a constrained optimization 

problem. The computation of interval analysis is expensive when complex model has 

intervals. 

Possibility or fuzzy set theory for interval data used a modern technique. The 

possibility distribution of the membership function for an interval variable with a given 

possibility distribution can be estimated using Zadeh‟s Extension Principle (Dubois and 

Prade 1988). This process requires combinatorial interval analysis. Therefore, the 

computational expense increases exponentially with the number of uncertain variables and 
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with the nonlinearity of the function which is a major drawback. Rao and Annamdas (2009) 

proposed weighted fuzzy theory of intervals where fuzzy set based representations of interval 

variables from evidences of different credibility are combined to estimate the system margin 

of failure. 

The aggregation methods of multiple sources of information for multiple interval data 

is an important issue in characterizing input uncertainty. Different aggregation methods 

treated multiple interval data includes stochastic mixture modeling (Helton et al. 2004; 

Ferson and Hajagos 2004), posteriori mixture (Red-Horse and Benjamin 2004), Dempster‟s 

rule (Agarwal et al. 2004a; Rutherford 2004), a natural extension of pointwise maximum (De 

Cooman and Troffaes 2004), etc. However, the nature of the aggregation method should be 

consistent with the uncertainty theory specifically used for uncertainty representation (Helton 

et al. 2004). 

Probability theory, evidence theory, possibility theory and inter analysis are used by 

(Helton et al. 2004) for the representation and propagation of epistemic uncertainty. K. zaman 

et al. (2011a) proposed a sampling based approach with each of the uncertainty theories. 

Uniform distribution is assumed over the sets of the possible values of the input variables to 

define the probability. Different information sources are gathered by simply averaging the 

distributions by assigning equal weight to each source. Imprecise probabilistic information 

described by intervals can also be used to formulate different uncertainty approaches, such as 

probability theory, possibility theory, belief functions etc. (Baudrit and Dubois 2006). 

There are many methods developed for uncertainty representation and propagation 

considering both interval and aleatory uncertainties. Evidence theory or possibility theory are 

common approaches used to represent interval variables. However, probabilistic 

representation is generally used to represent aleatory uncertainty. The propagation of an 

evidence theory through a model for the representation of uncertainty estimating system 

response is computationally more expensive than that of probability theory (Helton et al. 

2007). Helton et al. (2008) discussed the efficiency of different alternatives for the 

representation and propagation of epistemic uncertainty. Computational effort and the 

expense are huge for the propagation of epistemic uncertainty using evidence theory and 

possibility theory than that of probability theory. In uncertainty propagation analysis for the 

interval data, there are various combinations produced by the computational method. For 

every combination of interval values, the probabilistic analysis for aleatory variables is 
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repeated, which results in a computationally expensive nested analysis. Therefore, great 

efforts have been given on managing these computational expenses (Penmetsa and Grandhi 

2002; Rao and Cao 2002). Representation and propagation of interval uncertainty are 

illustrated in the models of structural problems (Langley 2000) and multidisciplinary 

problems (Du and Chen 2000b). The users used non-probabilistic method to avoid 

computational complexity for uncertainty analysis due to lack of awareness about various 

methods. Therefore, huge educational effort is required to make the end users familiar with 

these non-traditional uncertainty analysis methods (Helton et al. 2008). 

There are advantages and limitations in the different approaches for uncertainty 

analysis for the interval data. Most of the approaches required nested analysis in the presence 

of the interval variables. Zaman et al. (2011a) proposed a probabilistic representation for 

interval data using a family of Johnson distributions. An aggregation technique is proposed 

which enables the use of the moment matching method to represent the uncertainty described 

by the multiple intervals through a family of probability distributions. An important 

advantage is that it allows for a unified probabilistic framework which can jointly handle 

aleatory and epistemic uncertainties. Efficient analytical probabilistic methods such as first-

order reliability method (FORM) and second-order reliability method (SORM) are allowed to 

use for uncertainty propagation with the unified probabilistic framework. The expensive 

nested analysis is avoided and this method enables the use of an optimization-based strategy 

for the estimation of the distribution parameters of the input variables that minimizes or 

maximizes a system response. 

Likelihood-based approach has become a popular method to interval uncertainty 

representation. The likelihood-based uncertainty representation method is capable to deal 

with any type of interval data. The simplicity of this approach has made it well established 

method for uncertainty representation. A likelihood-based approach is used in this research to 

estimate the uncertainty from the stochastic epistemic variables. The simplicity and the 

versatility of the proposed method could be realized through observing the existing methods. 

2.2. Likelihood-based method to uncertainty representation  

Likelihood-based methodology has been applied for a probabilistic representation of a 

stochastic quantity where sparse point data and interval data are available (Sankararaman and 

Mahadevan 2011). Likelihood function is developed from the probability density function of 

the sparse point data and the cumulative distribution function of the interval data jointly. A 

http://www.sciencedirect.com/science/article/pii/S0951832011000111
http://www.sciencedirect.com/science/article/pii/S0951832011000111
http://www.sciencedirect.com/science/article/pii/S0951832011000111
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full likelihood function is used to combine the uncertainty of the sparse point and interval 

data through a joint probability function. Parametric and non-parametric (without considering 

any particular distribution type) both types of approaches are developed to estimate the 

properties of the distribution through the full likelihood estimation method. 

Two or more coupled component models are usually complex in nature and need to 

quantify uncertainty through multidisciplinary iterative analysis (Sankararaman and 

Mahadevan 2012). This methodology is based on computing the probability of satisfying the 

interdisciplinary compatibility equations, conditioned on specific values of the coupling (or 

feedback) variables, and this information is used to estimate the probability distributions of 

the coupling variables. The estimation of the coupling variables is analogous to likelihood-

based parameter estimation in statistics and thus leads to the proposed likelihood approach 

for multidisciplinary analysis. 

Likelihood-based methodology can quantify the distribution type uncertainty while 

fitting probability distributions to sparse and imprecise data (Sankararaman and Mahadevan 

2013). In probabilistic representation of uncertainty, it is common to assume a particular type 

of probability distribution (e.g. normal, lognormal, etc.) while fitting distributions to available 

data; once this type is chosen, the distribution parameters and the uncertainty in the 

distribution parameters are estimated. This method analyzes the effect of the choice of the 

distribution type and quantifies the resulting uncertainty in the probabilistic characterization. 

Once the distribution type uncertainty in a particular random variable is quantified, the 

uncertainty in the distribution parameters can also be quantified. 

Technique is also developed based on a maximum-likelihood to estimate the state of 

the pipeline constrained by the underlying physics in the field of fluid mechanics (Modisette 

2012). Not only that, advanced modeling and simulation tools used to calibrate a high-fidelity 

thrust program that predicts steady-state and transient operation of a fighter aircraft turbofan 

engine. Maximum likelihood parameter estimation is used to estimate engine-model 

calibration factors (Monaco et. al 2008). The Extended Maximum Likelihood Method 

(EMLM) is known to make a reliable estimate of the directional wave spectrum from wave 

measurements at fixed locations in the wave field (Waals et al. 2002). Generally, for accurate 

and efficient parameter estimation strategy for developing dynamic vehicle models, 

conventional techniques such as Least Square Estimation (LSE), Maximum Likelihood 

Estimation (MLE) and Instrumental Variable Methods (IVM) can deliver sufficient 

http://www.sciencedirect.com/science/article/pii/S0951832011000111
http://www.sciencedirect.com/science/article/pii/S0951832011000111
http://www.sciencedirect.com/science/article/pii/S0951832011000111
http://www.sciencedirect.com/science/article/pii/S0951832011000111
http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Jason+P.+Modisette&q=Jason+P.+Modisette
http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Jason+P.+Modisette&q=Jason+P.+Modisette
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estimation results for given models that are linear-in-the-parameter (Xiao and Kulakowski 

2003). 

Likelihood approach provides flexibility in the simulation which reduces the 

computational expenses. Krigling model is popular for providing mathematical relationship 

which can interpolate a set of observations. However, this model is computationally 

expensive to estimate the model parameters. MLE of kriging model provides the opportunity 

to estimate the parameters without the computational burden which only requires a 

continuous numerical optimization (Martin 2007).  

The uncertainty representation of the likelihood-based approach can be used for 

robust and reliability-based design optimization. The likelihood-based approach is popular to 

estimate the parameters of the distributions. The estimated parameters are used to design 

robust and reliable systems. 

2.3. Robustness-based design optimization 

As mentioned in Zaman et al. (2011b), robustness-based design optimization has four 

key elements: (1) maintaining robustness in the objective function which is called objective 

robustness; (2) achieve robustness in the constraints which is called feasibility robustness; (3) 

estimate the mean and the variance of the performance function; and (4) multi-objective 

optimization. There are various methods of estimating these elements which are necessary for 

robust design optimization. 

Objective Robustness 

In robustness-based optimization, objective robustness can be achieved by 

simultaneously optimizing mean and minimizing variances of the objective function. Two 

types of robustness measurement processes are popular: one is based on the variance, (Du 

and Chen 2000; Lee and Park 2001; Doltsinis and Kang 2004) and the other is based on the 

percentile difference (Du et al. 2004). 

Feasibility Robustness 

Feasibility robustness can be defined as robustness in the constraints. Robustness in 

the constraints indicates satisfying the constraints of the design in the presence of uncertainty. 

Du and Chen (2000) classified the methods of maintaining feasibility robustness into two 

categories: (i) methods based on stochastic and statistical analysis, e.g., a probabilistic 

http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Jie+Xiao&q=Jie+Xiao
http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Bohdan+Kulakowski&q=Bohdan+Kulakowski
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feasibility formulation (Du and Chen 2000; Lee et al. 2008), and a moment matching 

formulation (Parkinson et al. 1993) and (ii) methods that do not use probabilistic and 

statistical analysis. Several methods have been developed which are not depending on 

probabilistic and statistical analysis like worst case analysis (Parkinson et al. 1993), corner 

space evaluation (Sundaresan et al. 1995) and manufacturing variation patterns (MVP) (Yu 

and Ishii 1998). The feasible region reduction method (Park et al. 2006) is general in 

application and normality assumption is not necessary. This is a tolerance design method, 

where width of the feasible space in each direction is reduced by the amount of kσ where k is 

user defined constant and σ is the standard deviation of the performance function. 

Estimating Mean and Variance of the Performance Function 

The mean and the standard deviation or variance can be estimated through several 

methods. There are some existing methods for estimating the mean and standard deviation of 

performance function which can be classified into three major categories: (1) Taylor series 

expansion methods, (2) Sampling based methods, and (3) Point estimate methods (Huang and 

Du 2007). The Taylor series expansion method (Halder and Mahadevan 2000; Du and Chen 

2000; Lee and Park 2001) is quite appreciable to measure the mean and variance for 

nonlinear performance function. However, the approximation may result in huge error if the 

variances of the random variables are large (Du et al. 2004). Information on distribution of 

the random variables is required to estimate mean and variance by sampling based methods 

which has made it expensive. The effective and efficient sampling techniques can be listed as 

importance sampling, Latin hypercube sampling (Robert and Casella 2004) and surrogate 

models (Ghanem and Spanos 1991; Bichon et al. 2008; Cheng and Sandu 2009). Point 

estimate method (Rosenblueth 1975) can be used to ease the computation of the derivatives 

required in the Taylor series expansion. Several types of point estimate methods (Hong 1998; 

Zhao and Ono 2000; Zhao and Ang 2003) can be applied to estimate mean and variance. 

Dimension reduction method (DRM) (Rahman and Xu 2004; Xu and Rahman 2004; Lee et 

al. 2008) is developed recently which overcomes the troubles associated with Taylor series 

expansion and sampling method.  

  Multi-objective Optimization 

Multi-objective optimization can be achieved by optimizing the mean of the objective 

function and minimizing its variation (Marler and Arora 2004). Weighted sum approach has 

widespread application in multi-objective optimization for robust design problems (Lee and 
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park 2001; Doltsinis and Kang 2004; Zou and Mahadevan 2006). Other optimization methods 

called ε-constrained method (Mavrotas 2009), goal programming (Zou and Mahadevan 

2006), compromise decision support problem (Bras and Mistree 1993, 1995; Chen et al. 

1996), compromise programming (CP) (Zeleny 1973; Zhang 2003; Chen et al. 1999) and 

physical programming (Messac 1996; Messac et al. 2001; Messac and Ismail-Yahaya 2002; 

Chen et al. 2000) can be enlisted. There are different advantages and shortcomings of all 

those methods.  

2.4. Reliability-based design optimization  

Reliability-based design optimization (RBDO) uses numerical optimization 

algorithms which help to obtain optimal design with reliability (Agarwal et. al 2004b). The 

reliability optimization usually performed to ensure a safety limit or target reliability for 

deterministic data. However, without considering the uncertainty may lead to system failure. 

Therefore, it is necessary to include uncertainty in the design constraints for having a reliable 

design. The uncertainties can be modeled and represented using the probability theory like 

likelihood-based approach. In the reliability optimization, it may require to optimize a single 

or multi-objective function while satisfying the reliability constraints. The reliability 

constraints consider the probability of failure (Pf) which is related to the failure mood of the 

system or design. Different simulation methods with high computational ability like Monte 

Carlo Simulation (MCS), importance sampling etc. can be used to get a reliable solution. In 

the stochastic design, it is necessary to estimate the uncertainty of the random variables. 

Likelihood-based approach can have contribution to represent the uncertainty. After 

estimating the uncertainty, the designer will be able to go for a reliability-based design 

optimization which may provide an optimal and reliable solution of the problem. 

In this thesis, formulation of robustness-based design optimization through likelihood 

estimation method is proposed for interval data uncertainty. Uncertainty representation and 

propagation are done for the interval data. This robust design considers both aleatory and 

epistemic uncertainty through probabilistic representation. The proposed mathematical 

models are developed by considering multiple interval data of the random variables using 

normal distribution and bounded Johnson distribution. However, the probabilistic 

representation is analyzed through the maximum likelihood estimation (MLE) method which 

helps to find out the moments and the parameters of the distributions. A closed form of the 

bounded Johnson distribution is proposed to estimate the mean and the standard deviation 
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from the parameters of the bounded Johnson distribution calculated through MLE method. 

Nonlinear functions create complexity during calculating the mean and the variance. First 

order Taylor series expansion method is used to estimate the mean and variance of the 

performance function. Numerical examples are used to show the effectiveness of the 

formulated methods. One general mathematical problem is given where the coefficients of 

the objective function are treated as epistemic non-design variables and robust design 

optimization is performed for both MLE-based approaches for normal and bounded Johnson 

distribution. Another real engineering problem of a Two-Stage-To-Orbit (TSTO) vehicle is 

given with six input random variables where some are design variables including epistemic 

non-design variables with interval data and robust design optimization is done using both 

uncertainty analysis models. 

The performance of a robust design can be measured by the characteristics of the 

mean and variation of the objective or performance function (Zaman et al. 2011b). In the 

proposed formulation, we obtain the optimal value of the mean of the performance or 

objective function (e.g. weight) and simultaneously minimizing its variation or standard 

deviation. The formulation will provide an optimal target value of the objective function 

satisfying both the objective function and design constraints which will lead to feasibility 

robustness.  

As mentioned earlier, there exist a few methods for robust and reliability-based design 

optimization that can handle epistemic uncertainty (e.g., Zaman (2010) and Zaman et al. 

2011b). The existing methods either solve a nested optimization formulation or a decoupled 

approach of optimization, which are computationally expensive. In the current research, a  

formulation is proposed to completely separate the epistemic analysis from the design 

optimization framework to achieve computational efficiency. 

The specific objectives of this research are the development of formulations and 

algorithms for uncertainty representation and propagation through robustness-based design 

optimization under epistemic uncertainty. Therefore, the proposed research develops and 

demonstrates generalized methodologies and tools for managing uncertainty in engineering 

systems, which will provide decision support to engineers for robust and reliable design of 

engineering systems.  
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This thesis is organized as follows. In chapter III, a nested optimization-based 

methodology is developed to estimate the distribution parameters under interval uncertainty 

using maximum likelihood-based approach. The proposed methodology illustrates for normal 

and bounded Johnson distributions. Chapter IV illustrates the formulation of the nonlinear 

robustness-based design optimization model for both MLE approach. In chapter V, the 

opportunities and the applications of the reliability-based design optimization are described. 

Chapter VI provides the application of the proposed methods with illustration of two 

examples including a mathematical problem and an engineering problem. Chapter VII 

describes the summary of the research and recommendation for future research needs. 
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CHAPTER III 

LIKELIHOOD-BASED APPROACH TO EPISTEMIC UNCERTAINTY 

REPRESENTATION 

 

Likelihood-based approach has been applied particularly for single point data in many 

researches. In this chapter, a log maximum likelihood-based approach is proposed for 

variable x consists of multiple interval data. Maximum likelihood estimation (MLE) 

constructs an estimator to estimate the unknown distribution parameters (P). The „likelihood‟ 

term first introduced by an English mathematical statistician named R. A. Fisher in 1921. The 

likelihood for a parameter „P‟ is a quantity proportional to the probability of the parameter P 

quantified for a specific population where variable x consists the observed data as a sample 

(Fisher 1921). When there is less opportunity to show our confidence in making decisions, 

intuitions are used to make inferences which helps to produce the preference list from 

different results where the populations do not directly follow the rules of probability. R. A. 

Fisher used this term „likelihood‟ to present the inference quantity and distinguish it from the 

probability (Fisher 1925).  

According to Edward (1972), Likelihood contains two adjacent hypotheses to estimate a 

parameter from the observed data. However, all kinds of information regarding the 

hypotheses are available in the likelihood function to estimate the parameters from the 

observed data using inferences or intuitions. 

The observed data are used as the sample space for likelihood estimation. How the 

sample space is produced is irrelevant in likelihood estimation. The sample space generally 

does not depend on the parameter rather the parameter solely depends on the sample space. 

As mentioned before, evidential significance of the sample space or experimental information 

about the data x to influence the parameter P is contained in the likelihood function. In the 

inference of the parameter P for the observed data x, all the information are available in the 

likelihood method. If two likelihood functions are proportional to each other, the likelihood 

functions contain the same experimental information regarding the parameter.  

Likelihood estimation is applied to estimate the parameter P from different distributions, 

e.g., normal, lognormal, bounded Johnson distributions etc. If the sample size is big in 

quantity, then likelihood is a good estimator of the parameters. The likelihood function for a 
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specific distribution not only depends on the parameters as well as on the variables. If the 

variable x is a continuous variable, then  P|xf  is called probability density function (PDF). 

However, if x is discrete random variable, then  P|xf is called point mass function. If the 

random variables are independent, then the joint density function can be written as (Halder 

and Mahadevan 2000): 

         PPPPP |......|||...,...,| 2121 nni xfxfxfxxxfxf   (1) 

where, i = 1,2,…n. This is called the likelihood function denoted by L (P). In the 

likelihood estimation, the value of parameter P is selected in such a way so that the 

estimation of the sample space x1, x2,… xn follows the actually observed value.  For a specific 

value of P = P*, there is high probability that the function f (xi |P) will produce the actual 

observed value. Therefore, it is reasonable to estimate the value of P in such a way so that it 

is P*. 

For a specific continuous distribution, the parameter P is estimated when the 

likelihood function or the probability density function  P|ixf  is very high and this 

probability value becomes an estimator of P. Therefore, it is very reasonable to estimate the 

value of parameter P for which the value of the likelihood function will be maximum for the 

observed data. This is the well known maximum likelihood estimation (MLE). In the MLE, 

the chosen value of parameter P provides the maximum value of the likelihood function. If 

there is no actual data for the random variable xi (where, i=1…n) to estimate the likelihood 

function, then it is called „maximum likelihood estimate‟. When there are specific numerical 

values for the random variable xi (where, i=1…n), then it is called „maximum likelihood 

estimator‟. 

The MLE requires to maximize the likelihood function L(P) with respect to the 

parameter P. However, the likelihood function L(P) may be complex in nature for 

maximization. Hence, natural logarithm of the likelihood function is taken as support 

(Jeffreys 1934) which can be denoted as log(L(P)). Due to logarithm being a monotonic 

increasing function, the maximization of L(P) is equal to the maximization of log(L(P)). The 

log likelihood function can be expressed as: 
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In the paper of Sankararaman and Mahadevan (2011), a probabilistic representation is 

developed to estimate the parameters from the distributions including single point data and 

interval data. Sankararaman and Mahadevan (2011) used a full likelihood estimate where the 

entire likelihood function constructs the PDF of the distribution parameter P. Edwards (1972) 

suggests that the likelihood method is valid up to a proportional constant which allows using 

a proportional sign to likelihood representation. The probability value for a discrete or 

specific point is zero, if  P|xf is a continuous density function (Pawitan 2001).  

If the data are observed from different experiments or different expert opinions are the 

sources of the data, then the data can be treated as independent following Eqn. (1). Hence, the 

joint likelihood function for the parameter P of random variable xi is expressed as: 

   



n

i
ixfL

1

| PP  (3) 

Therefore, the parameter P can be estimated through maximizing the equation which 

is popular as Maximum Likelihood Estimation (MLE).  

In the following derivation, the likelihood considers interval around the data point xi. 

Hence, this derivation can be applied for any general interval [lb, ub] and the expression for 

likelihood function of the parameter P is expressed as: 

)(PL   P|dataobservedprob   

   P|,ublbxprob    

  P|ubxlbprob   (4) 

 

There can be different types of multiple interval data. For multiple intervals including 

overlapping and non-overlapping data (e.g.,  iii ublbx ,  where, n = 1 to n), the likelihood 

function can be written as:  

   



n

i
iii ubxlbprobL

1

| PP  (5) 

3.1. Maximum likelihood approach for normal distribution 

In this research, likelihood function is developed with an illustration of normal 

distribution from which the parameters can be estimated using the observed interval data. 
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Likelihood function becomes complex in nature for several variables. Application of the 

natural logarithm to the likelihood function will make it simple for calculation. The 

parameters for the normal distribution are estimated by maximizing the log-likelihood 

function. For the maximum value of the log-likelihood function, the partial differentiation 

with respect to the parameters becomes zero which helps to estimate the parameters using 

point data. However, the random variables consist of interval data. Non-linear optimization 

algorithm is used to estimate the parameters from the maximum log-likelihood function in 

this research. Hence, the parameters and the moments are identical for the normal distibution. 

Therefore, maximum log-likelihood estimation is done through optimization of the log-

likelihood function which calculate the parameters or moments (e.g. mean and standard 

deviation) of the normal distribution.  

The likelihood function for n observations of random variable xi for normal distribution is: 

 
(6) 

Therefore, to make the calculation simple, the natural logarithm of the likelihood function is 

taken which provides the log-likelihood function: 
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From this Eqn. (7), using multiple interval data, the parameter mean and standard 

deviation of the random variables can be estimated through non-linear optimization. 

3.2. Maximum likelihood approach for bounded Johnson distribution  

According to the formula of likelihood function, the likelihood function for n 

observations of random variable xi for bounded Johnson distribution is: 
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Taking natural logarithm of the likelihood function will make it simpler: 
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  (9) 

From Eqn. (9), using multiple interval data, the parameters (δ, γ, ξ and λ) can be 

calculated through optimization. According to the condition of bounded Johnson distribution, 

the values of δ and λ must be greater than zero. The value of ξ is assumed as the lowest value 

of the multiple intervals for the input random variables where λ is the difference of the lowest 

and highest bounds of the multiple intervals for each individual random variable. However, 

maximum log likelihood estimation method will be used to estimate the parameters from 

Eqn. (9). 

3.3. Proposed approach for likelihood-based estimation with interval data 

Nested optimization problem is designed and applied for maximum log likelihood 

estimation. The variables of the likelihood-based function are consisted of multiple interval 

data and the parameters of the distributions are estimated from the likelihood function by 

applying a nested optimization. 

The formulation of nested optimization for the maximum likelihood function: 
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(10) 

However, using the Eqns. (7) and (9) in the nested optimization model formulated in 

Eqn. (10), the parameters of the normal and bounded Johnson distribution are estimated, 

respectively. The mean (µ) and the standard deviation (σ) are the parameters for the normal 

distribution. The parameters (δ, γ, ξ and λ) of the bounded Johnson distribution are also 

estimated from the multiple interval data using the maximum log likelihood estimation 

method through the proposed nested optimization.  

Zaman et al. (2011a) formulated a method proposing nonlinear programming for 

calculating the moments from the different combination of multiple interval data rather than 

calculating the discrete point data. Nonlinear programming is used with minimization and 

maximization of the objective functions to calculate the bounds of the moments for their 
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respective multiple interval data. Overlapping and non-overlapping both types of interval data 

are treated with this method. The bounds completely enclosed all the possible moments that 

can be generated from various combinations of interval data which support the rigorous 

characteristics of the method. Methods of calculating moment bounds from multiple interval 

data are shown in Table 2.1. 

Table 2.1: Methods of calculating moment bounds from multiple interval data  
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where, iii ubxlb  , i = {1,2,…,n} and minimizing or maximizing for k = 

3 provides the lower or upper bound on the third moment and for k = 4 

yields the or upper bound on the fourth moment. 

The bounds of the moments help to verify the parameters estimated from the 

maximum likelihood estimation method. The empirical cumulative density function (CDF) 

for the parameters of the normal density function and the bounded Johnson density function 

should be remained or lied within the bounds of empirical cumulative density function (CDF) 

constructed from the bounds of the parameters of normal distribution and from the bounds of 

the parameters of bounded Johnson density function, respectively. The bounds of the 

parameters of bounded Johnson density function are estimated through the moment matching 

method. The validation of the parameters calculated from the maximum likelihood estimation 

depends on remaining the empirical CDF of the parameters in the bounds of empirical CDFs 

produced from the moment bounds. 
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CHAPTER IV 

ROBSUTNESS-BASED DESIGN OPTIMIZATION UNDER EPISTEMIC 
UNCERTAINTY 

  

4.1. Existing methods for robustness-based design optimization 

The variables in the designs and processes are considered as fixed in the deterministic 

optimization formulation without considering any stochastic characteristics or data 

uncertainty in the variables. The deterministic optimization formulation can be written as: 

 

 

ubxlb
iallforUBxgLBts

xf

i

x



..

min

  (11) 

where, f(x) is the objective function, x is expressed as a vector for design variables, 

gi(x) is the ith constraint, LB and UB are the vectors of lower and upper bound of the 

constraints gi(x) and lb and ub are the vectors of lower and upper bounds of the design 

variables. 

However, in the real situation, the input variables are normally uncertain and solution 

obtained from the deterministic design optimization could be sensitive to the variations of the 

input variables. Uncertainty analysis could be an important issue in the robustness-based 

design optimization. The deterministic design optimization could be used to get an optimal 

point which might be applied as an initial guess in the robustness-based optimization 

problem.  

In practice, the robust design optimization is complex in nature which requires 

nonlinear optimization. In the robust design optimization method, objective robustness is 

achieved by measuring the variation in the objective function through the variance or 

standard deviation. Feasibility robustness is achieved by feasible region reduction method. 

First order Taylor series expansion is used to estimate the mean and variance of the objective 

function. Weighted sum method is used to trade off the multiple objectives in the 

performance function of the robust design optimization. The formulation of robustness-based 

design optimization considering only aleatory uncertainty is (Zaman et al. 2011b): 
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where, f  and f are the mean value and standard deviation of the objective 

function, respectively; d is the vector deterministic variable which can be the mean values of 

the uncertain variables x; nrdv is the number of random design variables and nddv is the 

number of deterministic design variables; z is the vector of non-design input random 

variables. 0w  and 0v  are the weighting coefficients that represent the relative 

importance of the objectives f  and f  is the ith constraint; E(gi(d, z)) is the mean and 

σ(gi(d, z))  is the standard deviation of the ith constraint. LB and UB are the vectors of lower 

and upper bounds of the constraints gi’s; lb and ub are the vectors of lower and upper bounds 

of the design variables. ζ (x) is the vector of standard deviations of the random variables and k 

is some constant. k is used here to adjust the robustness of the method against the level of 

conservatism of the solution. Considering the variations in the design variables, k reduces the 

feasible region and is related to the probability of constraint satisfaction.  

The design methodology includes complexity in the robust design due to uncertainty. 

Therefore, the design variables d and the input random variables z in (12) have a high chance 

for having epistemic uncertainty in the form of multiple interval data. Normally, the designer 

has no control on the non-design epistemic variables z. Therefore, the optimization method 

has to employ a search among the possible values of the epistemic variables in order to find 

an optimal solution. The design becomes conservative due to this approach. The formulation 

of the robustness-based design due to the epistemic data uncertainty can be written as: 
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where, Zl and Zu are the vectors of lower and upper bounds of the decision variables µz of the 

inner loop optimization problem (Zaman et al. 2011 b). Here, d can be expressed as stochastic 

design variables as well as epistemic design variables. The outer loop optimization is the 
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design optimization problem where a robust design optimization may be carried out for a 

fixed set of non-design epistemic variables. The inner loop optimization is used to analyze 

the non-design epistemic variables. The inner loop optimizer searches the possible values of 

non-design epistemic variables to calculate the upper bound of the objective function value.  

            This nested formulation in Eqn. (13) is a very expensive formulation and does not 

provide any guarantee to converge. This nested optimization analyzes the aleatory uncertainty 

of the design variables with every epistemic analysis which makes it costly. Therefore, 

another design optimization algorithm is developed which is un-nested from the epistemic 

analysis with the computational accuracy.  

The optimization problem is decoupled and expressed (Zaman et al. 2011b) as: 
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  (15) 

            The optimization problem in Eqns. (14) and (15) are solved iteratively until 

convergence. In Eqn. (15), the optimization is continued by all non-design epistemic 

variables where in Eqn. (14), the optimization is done for only design variables.  In the 

optimization, d* are the fixed quantities in the optimization in Eqn. (15) and µz
* are the fixed 

quantities in the optimization in Eqn. (14). 

            The existing methods for robustness-based design optimization solve a nested 

formulation as shown in Eqn. (13), where the optimizers searches among the possible values 

of epistemic variables to find a robust design. The decoupled approach given in Eqns. (14) 

and (15) can achieve computational efficiency by un-nesting the design analysis from the 

epistemic analysis. However, this is an iterative approach. The formulations in Eqns. (14) and 

(15) are solved iteratively until convergence to obtain the robust design in the presence of 

data uncertainty. We can achieve further computational efficiency if the uncertainty analysis 

for the epistemic variable is carried out outside the design optimization framework. In the 
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following subsection, we propose an efficient approach for robustness-based design 

optimization, where epistemic analysis is based on the likelihood-based approach described 

in chapter 2. 

4.2. Proposed MLE-based Robust design optimization with interval data 

In this research, the uncertainty analysis of the epistemic variables is done outside the 

optimization framework which helps to increase the computational efficiency and reduce 

cost. The uncertainty is represented by likelihood-based approach mentioned in chapter 2 and 

used in the robust optimization model as fixed values. Therefore, it is not required to search 

in the epistemic variables for uncertainty representation with respect to design variables 

which actually makes it costly in the nested design optimization. Neither any convergence is 

needed for the uncertainty representation as mentioned in the decoupled approach.  

The proposed formulation of nonlinear MLE-based robust design optimization can be 

expressed as: 
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 (16) 

In the Eqn. (16), the standard deviation (σd) or variance of the design variables and the 

mean (µz) and standard deviation (σz) of the non-design epistemic variables are provided as 

fixed values for robust design optimization. The estimated uncertainty of the non-design 

variables can be provided through the likelihood-based method. The uncertainty 

representation method is proposed with the illustrations of normal and bounded Johnson 

distribution in chapter 2. In the decoupled approach, Eqn. (15) is supplying the mean values 

of epistemic variables in the Eqn. (14) until convergence. Therefore, the Eqn. (16) is 

equivalent to Eqn. (14). The proposed MLE-based approach estimated the parameters which 

can be used to provide the mean (µz) and standard deviation (σz) of the non-design epistemic 

variables. This moment estimation method based on MLE converts the decoupled approach 

into a  robust design optimization formulation as shown in Eqn. (16).  

The mean (µ) and standard deviation (σ) of the performance function in (16) can be 

obtained by first order Taylor series expansion method. If there is a response variable Y 
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which is represented by a non-linear function f consists a set of random variables 

 nxxx ,...,, 21 then the response variable can be represented as, 

 nxxxfY ,...,, 21  (17) 

If the mean and variance of each xi are known but the distribution is unknown, the 

approximate and variance can be estimated by expanding the function  nxxxf ,......,, 21 in a 

Taylor series about the mean values  
nxxx  ,......,,

21
 (Halder and Mahadevan 2000). 
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However, the derivatives are evaluated at the mean values of the xi’s. 

So, the first-order approximate mean of Y: 
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The first-order variance of Y can be written as: 
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If xi‟s are uncorrelated, then the equation becomes: 
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 (21) 

Using Eqns. (19) and (21) based on approximation method, the moments of the 

performance function can be estimated. These procedures are followed to estimate the mean 

and the standard deviation for the robust design optimization. 

 
The uncertainty representation by likelihood approach has made the robust design 

optimization simple. The MLE method is illustrated for normal and bounded Johnson 

distribution. The moments and the parameters are identical for normal distribution. Hence, 

the mean (µz) and standard deviation (σz) of the non-design epistemic variables for the normal 

distribution can be directly calculated from the log likelihood estimation. However, the 

moments from the parameters of the bounded Johnson distribution are estimated through a 

new proposed method. 
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4.3. Estimation of moments from the bounded Johnson distribution parameters 

There are extensive researches to estimate the moments of the bounded Johnson 

distribution (mean and standard deviation). J. Draper (1952) suggested a method to estimate 

the moment of the transformed variable y which helps to get a generalized standard form to 

estimate the moments of input epistemic variable x for the bounded Johnson distribution 

function. The general standard form of the bounded Johnson distribution is:    
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There can be a substitution in (22) as
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where, Z is the unit normal variable. The „r‟th moment of y about zero is: 
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For r = 1, the first central moment can be estimated directly from the equation through 

integration which will provide the expected value of „y‟ as: 

 
























 dzeey

zz
1

2
1

1 1
2
1)(

2






  (25) 

For r = 2, the second central moment can be estimated through integration as: 
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Therefore, the mean of the input random variables x can be estimated as: 

   yx 1   (27) 
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If, y is a random variable, then from the general statistical formula of variance, 

 

Therefore, the standard deviation, 

 22 ][][ yEyE   (28) 

Hence, the standard deviation of the bounded Johnson distribution from the central moments 

can be estimated as: 

   yx    (29) 

where,       212 yyy    

After calculating the parameters of the bounded Johnson distribution through 

maximum log likelihood estimation, the mean (µz) and standard deviation (σz) of the non-

design epistemic variables are estimated from Eqns. (27) and (29), respectively. Monte Carlo 

Simulation (MCS) method is used to verify the mean and the standard deviation. For that, the 

cumulative density function of the bounded Johnson distribution is expressed for input 

random variable or for the coefficients x of a function. Ten thousand standard normal random 

numbers are generated in MATLAB for Monte Carlo Simulation (MCS) technique which 

produce ten thousand values of each input variable or coefficients. The moments (mean and 

standard deviation) are calculated then from this enormous number of input variables. 

The bounded system of Johnson distribution in Eqn. (22) can be converted to: 
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(30) 

Using Monte Carlo Simulation in Eqn. (30), the mean and the standard deviation are 

estimated for the parameters of the bounded Johnson distribution which helps to prove that 

the proposed method to estimate the mean (µz) and standard deviation (σz) of the epistemic 

variables from Eqns. (27) and (29), respectively is valid. 
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The Design Structure Matrixes (DSM) are drawn to understand the robustness-based 

design optimization method easily. In Fig. 3.1, the MLE-based approach for robustness-based 

design optimization for normal distribution is presented. The parameters of the distributions 

can be estimated using the maximum likelihood estimation method from the non-design 

epistemic variables in the form of interval data. The parameters and the moments are same 

for normal distribution. However, the moments are used in the robust design optimization 

which will provide the estimated mean values of the design variables for the standard 

deviations which consist deterministic uncertainty. This is a  robust design optimization 

framework to optimize the mean and minimize the standard deviation of a performance 

function.  

 

Fig. 3.1 MLE-based approach for robustness-based design optimization considering normal 

distribution 

Fig. 3.2 illlustrates the DSM of the MLE-based approach for robustness-based design 

optimization for bounded Johnson distribution. The four parameters δ, γ, ξ and λ) are 

estimated form the likelihood-based approach. A method is developed to estimate the 

moments (mean and standard deviation) of the bounded Johnson distribution is from the 

estimated parameters. The estimated moments of the non-design epistemic variables are used 

in the robust design optimization to calculate the mean values of the design variables with 

standard deviations consists of fixed uncertainty. This robust optimization will optimize the 

performance function and minimize the standard deviation or variance. This single loop 

robust design optimization can be used to optimize the mean and minimize the variation.  

Uncertainty analysis as parameter estimation for 

epistemic variables using MLE 

 

Robust Design Optimization  
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Fig. 3.2 MLE-based approach for robustness-based design optimization considering bounded 

Johnson distribution 
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CHAPTER V 

RELIABILITY-BASED DESIGN OPTIMIZATION UNDER EPISTEMIC 
UNCERTAINTY 

 

Reliability-based design optimization (RBDO) has become a well-established method 

to ensure the quality and safety in the automotive, aerospace, various consumer products and 

especially in the structural designs and applications. It is used to optimize the quality in the 

product with minimizing the cost. The quality of a product is judged by the characteristics of 

withstand the failure. Reliability-based design optimization is such a method which 

minimizes the cost considering the design constraints for the probability of failure. However, 

the reliability optimization requires a huge computational effort which may become 

expensive. The expensive computational effort for the complex engineering problem may not 

allow it become an efficient tool. At the same time, there may be single or multiple objectives 

in reliability-based design optimization. Due to the complexity in the design constraints, the 

objective function becomes non-linear. In the non-linear multi-objective reliability-based 

design optimization, the goal is to establish the best tradeoff between the objectives.  The 

summation of the amount of reliability and the quantity of the probability of failure is 

expressed as unity. Hence, it is mandatory to estimate the amount of the probability of failure 

to estimate the reliability. The estimation of the probability of failure (Pf) for large number of 

random variables is difficult and impossible in some cases. First Order Reliability Method 

(FORM), Second Order Reliability Method (SORM), Monte Carlo Simulation (MCS), 

Importance Sampling etc. are used to estimate the uncertainty from the complex engineering 

models consist of many random variables. There is huge influence of the optimization 

algorithms for reliability analysis in the complex engineering designs (Rackwitz 2001).  

For a reliable design, the resistance or the capacity must be greater than the load or 

demand. For RBDO, there must be a relationship or performance function consists of both the 

capacity and load. For a deterministic design, there are no uncertainty lies in the resistance or 

the load. However, in a stochastic design, it is natural to have uncertainty in the variables 

used in expressing the objectives in the performance function. Hence, it is required to 

estimate the uncertainty of the random variables. The proposed likelihood-based approach 

can be used to represent the epistemic uncertainty from the interval data for different 
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probability distributions. The estimated parameters of different distributions using likelihood 

approach can be used for the reliability-based design optimization.    

In the worldwide competitive market, it is important to design a product which will be 

optimal in quality and reliability. The manufacturing cost of the product is trying to reduce 

simultaneously with achieving performance and quality which requires reliability-based 

design optimization. Different types of optimization frameworks have become popular for 

efficient reliability-based design optimization. In the simulation based environment, there are 

three generalized methods which are well established for the reliability-based design. These 

methods are nested optimization, decoupled approach and single loop optimization for 

reliability-based design optimization.   

Nested optimization is the well known traditional method for reliability optimization. 

Nested optimization is also known as the double loop method. However, nested optimization 

is computationally expensive to execute. The decoupled reliability-based design optimization 

is popular for reducing the computational cost less than the nested optimization. This is also 

popular as the sequential reliability design optimization method. In sequential optimization, a 

deterministic and a reliability analysis are decoupled for convergence (Chen et al. 1997; 

Wang and Kodiyalam 2002). The deterministic optimization is updated based on information 

from the reliability analysis and the updated design is used for the next cycle. The decoupled 

process is continued until the convergence is obtained. However, this method may not be 

convergent and the optimal design may possess errors. Different methodologies are 

developed based on the sequential or decoupled method.  Chen et al. (1997) proposed a 

sequential RBDO method for normally distributed random variables. Wang and Kodiyalam 

(2002) developed a more advanced model for non-normal random variables with huge 

computational expenses. Chen and Du (2002) proposed a method called SORA (Sequential 

Optimization and Reliability Assessment).  

Unilevel reliability optimization has similarity to the nested optimization but cost 

effective. Kuschel and Rackwitz (2000) developed unilevel formulation where the FORM 

problem is replaced by corresponding first order Karush-Kuhn-Tucker (KKT) optimality 

conditions of the first order reliability problem.  The unilevel method developed by Agarwal 

et al. (2004b) can reduce the computational cost around fifty percent with comparison to the 

nested optimization. It can deal with the equality constraints through continuation method. 
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This method follows the results produced from the nested optimization which proved its 

validity. It avoids the singularities associated with zero probability of failure.  

In the reliability-based design optimization, there is tradeoff between getting higher 

reliability and lowering the cost. There must be achieved two important characteristics in 

reliability-based design optimization which are efficiency and robustness. The computation 

method should be efficient with respect to time and expense while reliability optimization 

must achieve robustness in the result without having any local optimal solution. The 

reliability optimization requires characterizing the uncertain variables and all kinds of failure 

moods to estimate the most probable point (MPP) of failure. The uncertainty can be 

represented by probability theory, Dempster-Shafer theory, convex models, possibility or 

fuzzy set theory and many others. The probability theory requires sufficient data for 

uncertainty representation. The uncertainty of the different distributions of the random 

variables usually estimated through the statistical models (Klir and Wierman 1998; Parsons 

2001). There may be multiple failure moods in a design or system. Hence, a reliable design 

has to satisfy all the failure moods to gain overall reliability of the system. The probability of 

failure (Pf) is also denoted as reliability index which can be estimated using simulation-based 

probabilistic reliability analysis (Enevoldsen and Sorensen 1994).   

In the deterministic design, there are fixed limits for the design constraints which do 

not allow any kind of incertitude. Therefore, deterministic design has high chance of failure 

due to lack of uncertainty. The uncertainties may be controllable (physical dimension) or 

uncontrollable (material property). Uncertainties can be responsible to produce huge amount 

of variations in the performance function and this may lead to failure. Therefore, the 

deterministic design optimization may lead to unreliable solution.  

A typical reliability formulation only considering the aleatory uncertainty with 

component level reliability constraints can be written as (Zaman 2010): 

 
   kiforpZXgPpts

Zdf

iifi
,...,2,10,..
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(31) 

where, f(d,Z) is the objective function, d is a set of design variables, Z is a set of input random 

variables and pi could be ith threshold failure probability. The vector d may include both 

deterministic design variables as well as distribution parameters of random design variables 
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x. In RBDO, the objective function value is estimated at the mean values of the random 

variables x and z. 

  The inclusion of epistemic uncertainty in reliability-based design optimization leads 

to more complexity in the design methodology. The design variable d and/or the input 

random variable Z in Eqn. (31) might have epistemic uncertainty. Since the non-design 

epistemic variables could not be controlled, the RBDO methodology has to employ a search 

among the possible values of such epistemic variables in order to find an optimal solution. 

This may provide a conservative reliability-based design. The nested RBDO considering the 

epistemic uncertainty can be formulated as: 
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(32) 

Where, Zl and Zu are the vectors of the lower and upper bound of the non-design variables µz 

of the inner loop optimization problem. 

In Eqn. (32), the outer loop decision variables d may consist of stochastic design 

variables as well as epistemic design variables. In the RBDO, the outer loop optimization is 

carried out for a fixed set of non-design epistemic variables. The inner loop optimization is 

the analysis of the non-design epistemic variables where the optimizer searches among the 

possible values of the non-design epistemic variables within the interval data for a 

conservative solution of the RBDO.  

The nested optimization is expensive than the decoupled approach while there is 

probability of failure in convergence in the decoupled reliability optimization. Therefore, it 

would be better to find a single loop optimization which will be efficient in computation and 

cost effective. At the same time, the performance of the design methodology would be better 

than these methods.  

A single loop reliability-based design optimization is proposed which can be written 

as: 
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The single loop optimization can be solved using Eqn. (33). However, this requires 

the uncertainty estimation of the non-design epistemic variables. The proposed likelihood-

based method can be applied for the epistemic uncertainty representation as mentioned in 

chapter 2. The parameters of the non-design epistemic variables z are estimated using 

maximum likelihood method. In the uncertainty representation, the parameters and the 

moments may be identical. Either, methods can be developed to estimate the moments from 

the parameters as mentioned in chapter 3. The fixed values of the moments of the non-design 

random variables are used in Eqn. (36) for the reliability optimization.  

The proposed maximum likelihood approach can estimate specific values of the 

parameters which can be used for moment estimation. Therefore, the estimated uncertainty 

from the likelihood method can provide the most probable reliability-based design 

optimization. Hence, application of this MLE-based single loop optimization method will be 

efficient and reduce the computational expenses. This proposed MLE-based reliability design 

optimization can be illustrated with numerical examples in future. 

In robust design optimization, the main objective is to minimize the variation in the 

performance function where the optimization is focused to minimize the failure probability in 

the reliable design. Both methods required the uncertainty representation of the random 

variables which can be done easily and efficiently by the proposed maximum likelihood 

based approach in chapter 2. This thesis mainly focused on the robust design optimization 

considering the epistemic uncertainty representation. Nonlinear robustness-based design 

optimization is illustrated with numerical examples to establish the proposed method.  
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CHAPTER VI 

NUMERICAL EXAMPLES 

 

In this research, Maximum Likelihood Estimation-based (MLE) approach has been 

proposed for robustness-based design optimization. This is a generalized method which is 

used to estimate the parameters of the specified distributions. The MLE-based robust design 

optimization is illustrated with normal distribution and bounded Johnson distribution. A 

established method is used to estimate the moments of the bounded Johnson distribution from 

the parameters.  

Two examples are illustrated in this study where one of them is a mathematical design 

problem which includes a objective function of three random variables and four coefficients. 

The observed data of the coefficients are multiple intervals which are overlapping or non-

overlapping in nature. Another is a real engineering problem describing the upper stage 

design problem for a Two Stage To Orbit (TSTO) vehicle. The proposed methodology is 

applied for this two examples to develop robust design models. 

6.1. Mathematical Example 

Robust design optimization is done for a mathematical example using the MLE-based 

liklihood approach proposed previously. There is a performmance function consisted of two 

nonlinear constraints. There are three variables of x and four coefficients (a, b, c and l) in the 

performance function. The variables xi (where, i = 1,2,3) are treated as design variables where 

the coefficients are treated as the non-design epistemic variables and denoted as zi.    

The performance function with the nonlinear constraints of the mathematical model: 
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From the nonlinear function f(x), applying first order Taylor series expansion method, 

the mean and variance can be obtained from Eqns. (19) and (21), respectively. 

Hence, the mean of the objective function: 
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There are 7 variables in the objective function where some are design variables with 

non-design epistemic variables. Therefore, the variance of the objective function: 
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(36) 

The coefficients of the objective function consist of multiple interval data. Maximum 

log likelihood method is used in Eqn. (10) to find out the parameters of the coefficients of the 

objective function considering the coefficients follow normal distribution. The interval data 

including overlapping, non-overlapping and mixed of the coefficients are presented in Table 

5.1.  

Table 5.1: Multiple interval data of the coefficients 
Coefficient Multiple Interval Data [lbi-ubi] 

a  [1.5 - 2.2; 1.8 – 2.3; 2.0 – 2.5; 2.1 – 2.6; 2.2 – 2.7] 
b  [2.8 – 3.2; 3.3 – 3.9; 4.0 – 4.5; 4.7 – 5.0; 5.2 – 6.0] 
c  [2.7 – 3.1; 2.9 – 3.2; 2.8 – 3.2; 3.5 – 3.8; 4.0 – 4.5] 
l  [4.8 – 5.1; 5.3 – 5.9; 6.0 – 6.8; 6.5 – 6.9; 6.6 – 7.0] 

The parameters of the coefficients (a, b, c and l) are estimated using maximum log 

likelihood method from multiple interval data through optimization by using MATLAB 

solvers called „fminunc‟ and „fmincon‟. The optimization is applied for each coefficient 

individually to find out the optimum values of the parameters from the multiple interval 

values. The mean (µ) and the standard deviations (σ) are the parameters for normal 

distribution. The parameters are obtained through nested optimizations which are given in 

Table 5.2. 

Table 5.2: Parameters of normal distribution for the coefficients 

Coefficient     
a  2.2200 0.4792 

b  4.2200 1.1565 

c  3.3400 0.7003 

l  6.1600 0.9222 
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For the log likelihood function of bounded Johnson distribution, the parameters (δ, γ, 

ξ and λ) of the coefficients (a, b, c and l) are estimated from Eqn. (9) through the nested 

optimization method proposed earlier from multiple interval. The nested optimization is 

applied for each coefficient individually to find out the parameters δ, γ, ξ and λ from the 

multiple intervals. The estimated values of the parameters (δ, γ, ξ and λ) are given in Table 

5.3.  

Table 5.3: Parameters of bounded Johnson distribution for the coefficients  

           Parameters 

Coefficient 
  

      

a  0.4901 0.2548 1.5000 1.2000 

b  0.5110 0.3101 2.8000 3.2000 

c  0.4926 -0.0827 2.7000 1.8000 

l  0.5038 0.1073 4.8000 2.2000 

The empirical CDF curve of the parameters estimated from nested optimization for 

both normal and bounded Johnson distribution are plotted in the graphs Figs. 5.1-5.8. The 

MLE-based curves are well within the bounds of the empirical CDFs produced from the 

parameters obtained through moment matching method from the moment bounds method 

developed in Zaman et al. (2011b). 

 

Fig. 5.1 MLE-based curve fitting of coefficient „a‟ for normal distribution 
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Fig. 5.2 MLE-based curve fitting of coefficient „b‟ for normal distribution 

 

 

 

 

Fig. 5.3 MLE-based curve fitting of coefficient „c‟ for normal distribution 
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Fig. 5.4 MLE-based curve fitting of coefficient „l‟ for normal distribution 

 

 

 

 

Fig. 5.5 MLE-based curve fitting of coefficient „a‟ for bounded Johnson distribution 
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Fig. 5.6 MLE-based curve fitting of coefficient „b‟ for bounded Johnson distribution 

 

 

 

 

Fig. 5.7 MLE-based curve fitting of coefficient „c‟ for bounded Johnson distribution 
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Fig. 5.8 MLE-based curve fitting of coefficient „l‟ for bounded Johnson distribution 

In the proposed robust design optimization, it requires the standard deviations (σx) of 

the design variables and the moments (mean (µz) and standard deviation (σz)) of the epistemic 

non-design variable.  

Let‟s assume, the standard deviation of the random variables as, 

5.0
321
 xxx   

The moments of the epistemic variables (zi) for the bounded Johnson distribution 

from the parameters can be estimated from Eqns. (27) and (29). The proposed equations for 

bounded Johnson distribution provide the values of the mean (µz) and the standard deviation 

(σz) of the coefficients in Table 5.4. 

Table 5.4: Mean values (µz) and standard deviations (σz) of the bounded Johnson distribution 

in mathematical problem 

Coefficient Mean (µz) Std. Dev (σz) 

a  2.0073 0.3744 

b  4.1049 0.9727 

c  3.6453 0.5681 

l  5.8288 0.6865 
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The robust design formulation from Eqn. (16) for the mathematical example can be written 

as: 
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The mean (µ) and standard deviation (σ) of the performance function are estimated 

form first order Taylor series expansion method using Eqns. (35) and (36), respectively. As 

mentioned previously, „w ≥ 0‟ is the weighting coefficient which ranges from 0 to 1 that 

provides the relative importance of the objectives µf and σf. The value of „k‟ is assumed to be 

unity which adjusts the robustness of the method against any types of conservatism in the 

solution. The value of „k‟ ensures feasibility robustness in the robust design optimization. 

However, the Matlab solver „fmincon‟ is used for robust design optimization using 

Eqn. (37) which will provide the mean (µ) and standard deviation (σ) of the performance 

function. Here, „fmincon‟ uses „Active set algorithm‟ for optimization of the performance 

function. From the optimization, mean (µf) and standard deviation (σf) of the performance 

function are obtained for different values of „w‟. The robustness-based design optimization is 

obtained using maximum likelihood-based approaches (MLE) with the illustration of normal 

and bounded Johnson distribution. Zaman et al. (2011b) developed a decoupled method for 

robust design optimization which is illustrated here to compare with the methods proposed in 

this research.   

The mean (µf) and standard deviation (σf) are estimated from the Robustness-based 

design optimization using MLE for Normal distribution, MLE for bounded Johnson 

distribution and decoupled approach (Zaman et al. 2011b). The estimated values of the means 

(µf) and standard deviations (σf) are given in Table 5.6, respectively.  

 From Table 5.6, it is easy to compare the robust design optimizations using different 

methods for different values of „w‟.  For w = 0, the MLE-based robust optimization using 

bounded Johnson distribution is better than the other two methods with minimum standard 

deviation as it is the requirement to minimize the standard deviation with optimizing the 

mean value. For w = 0, the MLE-based robust optimization using normal distribution is better 

method than the decoupled approach for robust design due to contain less deviation.  For w = 
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1, the MLE-based robust optimization using bounded Johnson distribution with minimum 

standard deviation is better than the MLE-based robust optimization using normal 

distribution and the MLE-based robust optimization using normal distribution is better than 

decoupled approach which has maximum standard deviation. For w = 0.2, 0.4, 0.6 and 0.8, 

the MLE based robust optimizations are better than the decoupled approach for robust design 

optimization which has bigger standard deviations.  It is easier to observe the differences in 

Figs. 16-18. 

Table 5.5: Mean values (µf) and standard deviations (σf) from robust optimization using MLE 

and decoupled approaches in mathematical problem 

w  

Moments of performance function (µf, σf) 

MLE (Normal 
distribution) 

MLE (bounded 
Johnson distribution) 

Decoupled approach 
(Zaman et al. 2011) 

0.0 (29.2744, 12.1637) (27.7160, 11.1894) (31.3929, 13.1637) 

0.2 (29.2146, 12.1663) (27.6411, 11.1927) (31.2753, 13.1663) 

0.4 (29.1709, 12.1739) (27.5873, 11.2021) (31.1848, 13.1739) 

0.6 (29.1397, 12.1866) (27.5500, 11.2173) (31.1159, 13.1866) 

0.8 (29.1195, 12.2061) (27.5266, 11.2397) (31.0676, 13.2061) 

1.0 (29.1116, 12.2366) (27.5178, 11.2732) (31.0476, 13.2366) 

Robustness-based design optimization using maximum likelihood approach for 

Normal distribution and bounded Johnson distribution are shown in Figs. 5.9 and 5.10, 

respectively. In Figs. 5.11-5.13, comparisons are shown among the MLE-based robust design 

optimization method using normal distribution, MLE-based robust design optimization 

method using bounded Johnson distribution and decoupled approach for robust design 

optimization (Zaman et al. 2011b). 
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Fig. 5.9 MLE-based robust design optimization using Normal distribution 

 

 

 

 

 

Fig. 5.10 MLE-based robust design optimization using bounded Johnson distribution 
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Fig. 5.11 Robust design optimization using MLE-based (Normal distribution) and MLE 
(bounded Johnson distribution)  

 

 

 

 

Fig. 5.12 Robust design optimization using MLE-based (Normal distribution) and decoupled 
approach 
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Fig. 5.13 Robust design optimization using MLE-based (bounded Johnson distribution) and 
decoupled approach 

 

6.2. Engineering Example 

In this section, the proposed methods are illustrated for the conceptual level design 

process of a TSTO vehicle. This problem has been adapted from Zaman et al (2001). The 

engineering system analysis may consist of geometric modeling, aerodynamics, 

aerothermodynamics, engine performance analysis, trajectory analysis, mass property 

analysis and cost modeling (Stevenson et al. 2002). In this example, a simplified version of 

the upper stage design process of a TSTO vehicle is used to examine the proposed methods.  

The analysis outputs (performance function) are Gross Weight (GW), Engine Weight 

(EW), Propellant Fraction Required (PFR), Vehicle Length (VL), Vehicle Volume (VV) and 

Body Wetted Area (BWA). Each of the analysis outputs is approximated by a second order 

response surface and is a function of the random design variables Nozzle Expansion Ratio 

(ExpRatio), Payload Weight (Payload), Separation Mach (SepMach), Separation Dynamic 

Pressure (SepQ), Separation Flight Path Angle (SepAngle) and Body Fineness Ratio 

(Fineness).  

The objective is to optimize an individual analysis output (e.g., Gross Weight) while 

satisfying the constraints imposed by each of the design variables as well as the analysis 

output. The numerical values of the design bounds for the input variables and analysis 

outputs are given in Tables 5.7 and 5.8, respectively. 
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Table 5.6: Design bounds for the input variables 

Design Variables lower bound (lb) upper bound (ub) 

ExpRatio 40 150 

Payload 8000 40000 

SepMach 7 12 

SepQ 40 200 

SepAngle 7 12 

Fineness 4 6 

Table 5.7: Design bounds for the analysis outputs 

Analysis Outputs Lower Bound (LB) Upper Bound (UB) 

GW 0 100e+005 

EW 0 100e+005 

PFR 0.4 0.95 

VL 0 100e+002 

VV 0 100e+003 

BWA 0 100e+005 

 

The performance function of Gross Weight (GW) is expressed in Eqn. (38) as: 
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The performance function of Engine Weight (EW) is expressed in Eqn. (39) as: 
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The performance function of Propellant Fraction Required (PFR) is expressed in Eqn. (40) 

as: 
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The performance function of Vehicle Length (VL) is expressed in Eqn. (41) as: 
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The performance function of Vehicle Volume (VV) is expressed in Eqn. (42) as: 
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The performance function of Body Wetted Area (BWA) is expressed in Eqn. (43) as: 
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The proposed robust design optimization method is illustrated here for the TSTO problem. It 

is assumed that four input variables (ExpRatio, Payload, SepMach and SepQ) are design 

variables denoted by di and another two variables (SepAngle and Fineness) are the epistemic 

non-design variables denoted by zi which are expressed by interval data as given in Table 5.9.  

Table 5.8: Interval data of epistemic variables of the TSTO system 

Sample SepAngle Fineness 

i. 8.0 – 8.5 4.00 – 4.50 

ii. 8.2 – 8.6 4.25 – 4.75 

iii. 8.5 – 9.0 4.50 – 5.25 

iv. 8.2 – 9.2 4.50 – 5.50 

v. 8.8 – 9.5 5.00 – 6.00 

In chapter 2, a maximum log likelihood method is proposed with the illustration of 

normal and bounded Johnson distribution for the uncertainty representation of the interval 
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data. Using Eqns. (7) and (9), the log likelihood density functions are formed for normal and 

bounded Johnson distribution. The proposed nested optimization for the likelihood estimation 

in Eqn. (10) provides the parameters of the distributions. The estimated parameters of normal 

and bounded Johnson distribution are given in Tables 5.10 and 5.11 respectively. 

Table 5.9: Parameters of normal distribution estimated in TSTO problem 

 Mean (µ) Std. Dev (σ) 

SepAngle 8.7800 0.5810 

Fineness 4.8500 0.7681 

Table 5.10: Parameters of bounded Johnson distribution estimated in TSTO problem 

           Parameters 

Variable 
  

      

SepAngle 0.4902 -0.2411 8 1.5 

Fineness 0.4923 -0.2008 4 2 

The empirical CDF curves constructed for the parameters estimated from nested 

optimization for both normal and bounded Johnson distribution are plotted in the graphs 

(Figs. 5.14-5.17). The MLE-based curves are well within the bounds for the empirical CDF 

produced from the parameters obtained through moment matching method from the bounds 

of moment estimation methodology developed in Zaman et al. (2011a).  

 

Fig. 5.14 MLE-based curve fitting of SepAngle for normal distribution 
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Fig. 5.15 MLE-based curve fitting of Fineness for normal distribution 

 

 

 

 

Fig. 5.16 MLE-based curve fitting of SepAngle for bounded Johnson distribution 
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Fig. 5.17 MLE-based curve fitting of Fineness for bounded Johnson distribution 

The moments (mean (µz) and the standard deviations (σz)) of the epistemic variables 

(zi) for the bounded Johnson distribution from the parameters can be estimated from Eqns. 

(27) and (29). Estimated mean (µz) and standard deviations (σz) of the epistemic variables are 

given in Table 5.12. 

Table 5.11: Mean values (µz) and standard deviations (σz) of bounded Johnson distribution in 

TSTO problem 

 Mean (µz) Std. Dev (σz) 

SepAngle 8.8597 0.4687 

Fineness 5.1219 0.6264 

Let‟s assume, the standard deviations of the random variables are calculated from the 

coefficient of variation (Cv) which is asssumed to be 0.1. hence, the standard deviation of the 

decision variable can be calculated from the following equation: 

d

d
vC




  (44) 

Using (44), the standard deviations (σd) of the decision variables are calculated from 

the average value of the bounds as shown in Table 5.14. 
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Table 5.12: Standard deviations (σd) of the decision variables 

Decision variable Standard deviation (σd) 

ExpRatio 9.50 

Payload 2400 

SepMach 0.95 

SepQ 12 

 

For the TSTO vehicle, the robust design problem becomes: 
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(45) 

The mean (µGW) and standard deviation (σGW) from the variance of the performance 

function are estimated form first order Taylor series expansion method using Eqns. (19) and 

(21) respectively. As mentioned previously, „w ≥ 0‟ is the weighting coefficient which ranges 

from 0 to 1 and that „k‟ is assumed to be unity. 

The mean of Gross Weight (GW) can be calculated as expressed in Eqn. (46): 
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The variance of the Gross Weight (GW) can be calculated as expressed in Eqn. (47): 
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(47) 

The mean of Engine Weight (EW) can be calculated as expressed in Eqn. (48): 
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The variance of the Engine Weight (EW) can be calculated as expressed in Eqn. (49): 
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(49) 

The mean of Propellant Fraction Required (PFR) can be calculated as expressed in Eqn. (50): 
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The variance of the Propellant Fraction Required (PFR) can be calculated as expressed in 

Eqn. (51):
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(51) 

The mean of Vehicle Length (VL) can be calculated as expressed in Eqn. (52): 
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The variance of the Vehicle Length (VL) can be calculated as expressed in Eqn. (53):
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(53) 

The mean of Vehicle Volume (VV) can be calculated as expressed in Eqn. (54): 
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The variance of the Vehicle Volume (VV) can be calculated as expressed in Eqn. (55):
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(55) 
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The mean of Body Wetted Area (BWA) can be calculated as expressed in Eqn. (56): 
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The variance of the Body Wetted Area (BWA) can be calculated as expressed in Eqn. (57):
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Matlab solver „fmincon‟ is used for robust optimization using Eqn. (45) which will 

optimize the performance function by estimating the mean values of the design variables di. 

Here, „fmincon‟ uses „Active set algorithm‟ for optimization of the performance function. 

From the optimization, mean and standard deviation of the performance function are obtained 

for the values 0 to 1 of „w‟. The nonlinear robustness-based design optimization is obtained 

using maximum likelihood-based approaches (MLE) with the illustration of normal and 

bounded Johnson distribution which are compared with a decoupled method proposed by 

Zaman et al. (2011b) for robust design optimization.   

The mean (µf) and standard deviation (σf) are estimated from the robustness-based 

design optimization using MLE for Normal distribution, MLE for bounded Johnson 

distribution and based on decoupled approach (Zaman et al. 2011b) given in Table 5.15. 

Form Table 5.15, it is easy to compare the robust design optimization for the different values 

of „w‟.  For w = 0, the robust design for MLE-based robust optimization using normal 

distribution is better than the other two methods with minimum standard deviation as it is the 

target to minimize the standard deviation with optimizing the mean value. For w = 0, the 

MLE-based robust optimization using bounded Johnson distribution is better method than the 

decoupled approach based robust design. The MLE-based robust optimization using bounded 

Johnson distribution contains smaller deviation than the decoupled approach based robust 

design.  For w = 1, the decoupled-based robust design is better than the both MLE-based 
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robust optimization with minimum standard deviation. For w = 1, the MLE-based robust 

optimization using normal distribution is better than the MLE-based robust optimization 

using bounded Johnson distribution which has maximum standard deviation. However, for w 

= 0.2, 0.4, 0.6 and 0.8, the MLE-based robust optimizations are better than the decoupled 

approach for robust design optimization which has bigger standard deviations.  It is easier to 

observe the differences in the Fig. 5.18. 

Table 5.13: Mean values (µf) and standard deviations (σf) from robust optimization using 

MLE and decoupled approaches in TSTO problem 

w  

Moments of performance function (µf, σf) 

MLE (Normal 
distribution) 

MLE (bounded Johnson 
distribution) 

Decoupled approach 
(Zaman et al. 2011b) 

0.0 1.3322e+05, 1.0616e+04 1.3751e+05, 1.1091e+04 1.3771e+05, 1.2335e+04 

0.2 1.3153e+05, 1.0636e+04 1.3520e+05, 1.1118e+04 1.3448e+05, 1.2373e+04 

0.4 1.2955e+05, 1.0723e+04 1.3003e+05, 1.1871e+04 1.2905e+05, 1.2904e+04  

0.6 1.2417e+05, 1.1879e+04 1.2460e+05, 1.2449e+04 1.2331e+05, 1.3518e+04 

0.8 1.2002e+05, 1.2839e+04 1.2031e+05, 1.3431e+04 1.1834e+05, 1.4776e+04 

1.0 1.1086e+05, 1.7156e+04 1.0973e+05, 1.7489e+04 1.1447e+05, 1.6532e+04 

Robustness-based design optimization using MLE for Normal distribution and MLE 

for bounded Johnson distribution and decoupled approach for robust design optimization 

(Zaman et al. 2011b) for upper stage design problem of TSTO vehicle are shown in Fig. 5.18.  

 

Fig. 5.18 Robust design optimization (RBDO) for MLE (Normal distribution), MLE 
(bounded Johnson distribution) and decoupled approaches for TSTO problem 
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CHAPTER VII 

CONCLUSION AND RECOMMENDATION 

 

7.1. Conclusion 

This research proposed a likelihood-based approach to representation of epistemic 

uncertainty arising from multiple interval data. The proposed epistemic uncertainty 

representation methodology is then used in the design optimization framework to solve 

robustness-based design optimization problem under epistemic uncertainty. The proposed 

methodology is illustrated for numerical examples: a general mathematical problem and the 

upper level conceptual design of a TSTO vehicle. The outcomes of this research are 

mentioned below: 

i. A maximum likelihood estimation-based methodology is developed for 

uncertainty representation with multiple interval data. This methodology is 

applicable to any probability distributions. 

ii. A single loop robustness-based design optimization framework is developed using 

the proposed likelihood-based uncertainty representation for the non-design 

epistemic variables. 

The proposed likelihood-based approach is verified using empirical cumulative 

distribution functions (CDF). Empirical CDFs are plotted for the parameters estimated from 

both normal and bounded Johnson distributions using the proposed likelihood-based 

approach and moment bounding algorithms developed in Zaman et al (2011a). Considerable 

agreement is found in the results obtained using the both approaches. 

The proposed likelihood-based approach of epistemic uncertainty representation is able to 

estimate the parameters of any distributions including normal and bounded Johnson. The 

estimated parameters are used to calculate moments of the distributions. The information 

about the moments of the non-design epistemic variables has provided us the opportunity to 

go for  robust design optimization. This likelihood-based approach extends the opportunity to 

obtain specific values of the parameters or moments from interval data rather than taking 

upper bound value from the moment for conservative robustness-based design optimization.  

The proposed methodology of robust design optimizes the mean of the performance 

function and minimizes the variance or standard deviation of the performance function. The 
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proposed MLE-based robust design optimization models are better than the established robust 

optimizations methods with respect to efficiency and computational expense. The proposed 

MLE-based robust optimization can provide most probable solution of the robust design 

where decoupled approach provides the worst case scenario due to use of upper bound of the 

moment (standard deviation). This robust optimization reduces the computational cost 

through minimizing the computational complexity.  

From the MLE-based robust design optimization of normal distribution and bounded 

Johnson distribution, it can be observed for the mathematical example in Figs. 5.9 and 5.10, 

respectively that the mean of the performance function is optimized with the minimization of 

the standard deviation. The robust design optimization based on MLE approach of bounded 

Johnson distribution is better than the MLE-based approach of normal distribution which is 

shown in Fig. 5.11. The both proposed robust design optimizations on MLE-based 

approaches are better than a well established method called decoupled approach with respect 

to variation. In Figs. 5.12 and 5.13, comparisons are shown between the decoupled method 

and the MLE-based robust design optimizations. The MLE-based robust optimizations are 

also applied to an engineering design problem of TSTO vehicle. The mean of the 

performance function is optimized with the minimization of the standard deviation in the 

robust design optimization for both distributions which are shown in Figs. 5.18. The 

comparison of the MLE-based approaches with well established decoupled method is show in 

Fig. 5.18. It can be deduced easily that the MLE-based robust optimization for normal 

distribution is better than the MLE-based robust optimization for bounded Johnson 

distribution. The both MLE-based robust optimization methods are better in most cases than 

the decoupled method for robustness-based design optimization.   

This proposed formulation is an approach of robust optimization which can also be 

applied to develop more multi-objective optimization techniques or methods. It is always 

difficult to gather precise data from the experiment. Point data has a severe fatality of loosing 

data due to slight deviation of a system or little fault in the system. To accumulate all the data 

and information, it is rather safe to collect the data in the form of intervals. It is also possible 

to gather more and more data through different experiments. However, it will increase the 

cost though reduce uncertainty. This proposed robust design optimization for multiple 

intervals assists to reduce the cost associated with system design and analysis compare to 

other methods. 
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7.2. Recommendation for future research needs 

The method developed in this study is a single disciplinary system, can be used in the 

multidisciplinary system. The design variables and the input random variables of a problem 

might have epistemic uncertainty with interval uncertainty. The designer does not have any 

control on the non-design epistemic variables. Therefore, the design methodology has to 

employ a search among the possible values of such epistemic variables to find an optimal 

solution. It became a conservative design. Multidisciplinary system analysis is a system 

which leads to use of individual disciplinary analysis codes that interact with each other 

through shared input and output data. A feasible multidisciplinary optimization solution 

simultaneously satisfies all individual disciplinary constraints. Therefore, it becomes more 

complex to have a multidisciplinary solution based on interval uncertainty. This MLE-based 

robust optimization may extend in application for multi-disciplinary robustness-based design 

optimization which may ensure to reduce the design cost. The proposed uncertainty 

representation and design optimization methodology can easily be extended to solve 

problems in other domains such as financial engineering and network optimization. 
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APPENDIX 

 

A.1. Johnson family of distributions 

Any data set with finite moments can be fitted by a member of the Johnson families 

such as SB, SU or SL. The most commonly used methods to estimate the parameters of the 

Johnson distribution are the Percentile approach (Slifker and Shapiro 1980) and Quantile 

method (Wheeler 1980). Large volume of researches have been done to estimate the 

parameters of the Johnson distribution which can be find in Drapper (1952), Hill et al. (1976), 

Hahn and Shapiro (1967), George et al. (2009).   

If, there is a continuous random variable X whose distribution is unknown and is to be 

estimated, Johnson proposed three normalizing transformations (George and Ramachandran 

2011) having the general form: 








 







XfZ  

Where f(.) denotes the transformation function, Z is a standard normal variable, γ and 

δ are shape parameters, λ is the scale parameter and ξ is a location parameter. Without the 

loss of generality, it is assumed that δ>0 and λ>0. The first transformation proposed by 

Johnson defined the lognormal system of distributions denoted by SL: 
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The SL curves cover the lognormal family. 

The bounded system of distributions SB is defined by 
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SB curves cover bounded distribution. The distributions can be bounded on the lower 

end, the upper end or the both ends. This family covers Gamma distributions, Beta 

distributions and many others. 
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The unbounded system of distributions SU is defined by 
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The SU curves are unbounded and cover the t and normal distributions, among others. 

After the transmission, Z follows standard normal distribution, the probability density 

function (pdf) of each of the family of the Johnson distribution can be derived. If X follows 

the Johnson distribution and 
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function (pdf) is:  
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Similarly, for the SB family, the pdf is: 
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The pdf for the SU family is  
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DeBrota et al. (1988) presents four methods to estimate the Johnson‟s parameters. The 

first method is the moment matching method. This method involves solving a set of four 

nonlinear equations that equate the first four moments calculated from the given data with 

those of a Johnson distribution, which are calculated as the function of unknown parameters. 

The second method is known as the percentile matching, where the parameters are estimated 

by solving a system of nonlinear equations equating four percentile points of the data and the 

Johnson distribution. The third method involves a least square estimation of the parameters 

obtained by minimizing the sum of the squared errors in the percentile values from the data 

and those from the Johnson distribution. The fourth approach involves minimizing the error 
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norm of the Johnson distribution CDF when compared with the empirical CDF constructed 

from the data. 

Hill et. al (1976) designed an algorithm to estimate  ,,  and   matching the first 

four moments of X. Johnson and Kitchen (1971) developed a table which helps to find   and 

 . This method provides the opportunity to match the first two given moments. The four 

moments provide us better fitting than using two moments. However, during the use of 

sample values, the two moment method is considered as better process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


