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Abstract

Recently several researchers have formulated the competitive facility loca-

tion problem through Voronoi diagrams where a new site is placed in such a

location that its Voronoi region is maximized. One notable result gives a ran-

domized approximation algorithm that works in general settings and another

gives a deterministic algorithm that only works in very restricted settings.

Research is also going on to find winning strategies for Voronoi games based

on area maximization. So far, winning strategies could be found for 1 round

games in 2D and for n round games in ID.

This thesis addresses cooperative facility location which can be modeled

through Voronoi neighborships. We developed a solution which, given n

points in 2D, finds the location where a new site should be placed so that

it gets the maximum or the minimum number of the existing sites as its

neighbors. We also developed a solution to the problem of finding the op-

timum number of new sites that need to be added to get all existing sites

as neighbors. We analyzed optimal playing strategies for a game where the

basic objective is' to acquire more neighbors than the opponent. Several vari-

ations of the game were considered and we gave winning strategies for some

variations, for some variations we showed that it always ends in a tie, and for

other variations we showed that the game ends in a tie unless a player plays

non-optimally. We also developed an algorithm to generate the arrangement

of Delaunay circles in 0 (n) time, and detect all intersections of circles within

two Voronoi layers.

5



Contents

Acknowledgement.

Abstract .

1 Introduction

1.1 The problems and the results

1.2 Ou tline of the thesis .....

2 Preliminary

2.1 Voronoi diagram and Delaunay tessellation

2.1.1 Voronoi diagram and its properties

2.1.2 Delaunay tessellation and its properties .

2.2 Some important applications of Voronoi diagram.

2.2.1 Wireless networks.

2.2.2 Facility location ..

2.2.3 Nearest neighbor queries

2.2.4 Motion planning

2.3 Facility location problems

2.3.1 Cooperative facility location

2.3.2 Non-cooperative facility location.

6

4

5

12

16

17

18

18

19

20
22
22

22

23

23

23

24

24

••,
"



2.3.3 Competitive facility location

2.4 Arrangement of geometric objects .

2.5 Game theory and combinatorial games

3 Related Works

4 Optimizing Voronoi neighbors

25

25

27

31

35

4.1 Voronoi neighbors and arrangement of Delaunay circles 37

4.1.1 Becoming neighbors 38

4.1.2 Arrangement of Delaunay circles 42

4.1.3 Property of the arrangement of Delaunay circles 44

4.2 Dual graph of the arrangement

4.2.1 Construction of the dual graph

4.2.2 Property of the dual graph.

4.2.3 Data structure

4.2.4 Time complexity

4.3 Maximization and its variation.

4.3.1 Getting maximum neighbors

4.3.2 Getting all sites as neighbors.

4.4 Summary .. . . . . . . . . . . . . .

5 Voronoi neighbor games

50
51

51

53

53

53
53

55

57

58

51 One round games . . .

5.1.1 Variation 1: lVlaximizing opponent neighbors

5.1.2 Variation 2: Distinct opponent neighbors ..

7

59

59

69



5.1.3 Variation 3: Non-distinct opponent neighbors .. 73

5.1.4 Variation 4: Distinct opponent and self neighbors 75

5.1.5 Variation 5: Non-distinct opponent and self neighbors. 79

5.2 n Round Games . 82

5.2.1 Difference with one round games 82

5.2.2 Variation 1: Maximizing opponent neighbors . 84

5.2.3 Variation 2: Distinct opponent neighbors . 86

5.2.4 Variation 3: Non-distinct opponent neighbors 87

5.2.5 Variation 4: Distinct opponent and self neighbors 88

5.2.6 Variation 5: Non-distinct opponent and self neighbors. 91

6 Supplementary Results 93

6.1 Voronoi layers . . . . 94

6.2 Generating the arrangement of Delaunay circles

6.2.1 Basic idea

6.2.2 Algorithm

6.2.3 Complexity of algorithm

6.2.4 Limitation .

7 Conclusion

94
95

98
102
102

104

7.1

Index

Possibilities for further research

8

. 105

110



List of Figures

1.1 Facility location . . .. 13

1.2 Facility location game 15

21 Voronoi diagram and Delaunay triangulation 21

2.2 Example of arrangement of straight lines 26

2.3 Example of arrangement of circles 27

3.1 ]Vlaximizing Voronoi region . . . . . . . . . . . . . . . . . . . . 32

9



4,11 When a new circle intersects another new circle

4,12 When a new circle intersects an existing cell

4,13 Dual graph example

4,14 Dual graph levels ..

5.1 Placing a new site close to an existing site

5.2 R.emoving three sites .

5.3 R.emaining diagram - first problem scenario.

5.4 Remaining diagram - second problem scenario

5.5 Second problem

5.6 Third problem.

5.7 Third problem solution

5.8 Unique problem ....

5,9 Unique problem solution

5.10 One round Variation 2 .

5.11 .one round Variation 2 - hiding a site

5.12 One round Variation 2 - hiding a site 2

5.13 One round Variation 2 - for n=4 and n=3

5.14 One round Variation 3

5.15 One round Variation 4

5.16 Isolated sites of Player1 .

49

49

51

52

60
62

63

64

66

66

67

68

69

70

71

72

73

74

76

78
5.17 Winning Variation 5 of one round game when n = 2 and n = 3 79

5.18 One round Variation 5 .

5.19 Elaboration of Algorithm 5.1.5.1

10

80
81

-.~I
~.j'~



5,20 After round 1 ,'"

5,21 After round 2 of Playerl

5,22 After round 2 - A

5,23 After round 2 - B

5,24 After round 3

5,25 After second move of Player1

5,26 After second move of Playerl

5,27 After second round ' , , , . .

85

85
86

86

87

89
89

92

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6,8

Voronoi layers . . . . . . . . .. .. 95

Basic idea of generating the arrangement 96

The radii of the circles centered round a Voronoi region 97

Identifying intersections from the radii 98

Identifying all intersections . 99

The arrangement . . . . . . 100

Elaboration of the algorithm for constructing the arrangement 101

Example of intersection beyond 2 layers.. .. .' . . 103

11



Chapter 1

Introduction

Imagine that you are the owner of a large shopping chain and you have

multiple shops situated in different locations (for example, in Figure 1.1(a)

some shops are shown (solid circles)). Now, you want to set up warehouses

in convenient locations to support the smooth flow of commodity to these

shop.s. Though it would be most convenient to set up one warehouse near

every single shop (as shown in Figure 1.1(b) (warehouses are represented by

solid rectangles)), but there are some constraining factors that you have to

consider like the cost of setting up the warehouses and the cost of maintaining

them. On the other extreme, if you set up only a few warehouse (as shown in

Figure 1.1(c)), then both the cost and time required for transportation would

rise. Therefore, the objective is to find the exact number of warehouses and

the exact locations of them which ensures that the total cost is minimized

and the total profit is maximized (Figure 1.1(d) proposes a possibly good

trade-off) .

This problem is popularly known as facility location problem. In general,

there are a set of facility receivers (can be customers, shops, mobile phone
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Figure 1.1: The facility location problem

users etc.) who needs to receive a certain service from some facility providers

(can be markets, warehouses, mobile phone towers etc.). The goal is to locate

the facilities in such a way that a best trade-off is established between the

cumulative benefit of the receivers and the cost of setting up and maintaining

the facilities and the cost of getting the service (e.g., transportation cost to

go to a market). Researchers have proposed different computational model

to represent the problem and different ways to find the best solution.

In this thesis, we propose to model the relationship between the service

receiver and the service providers through Voronoi neighborships. According

to the model, a warehouse should be set up in such a location that it gets

13



the ma.ximum number of Voronoi neighbors (i.e. can serve as many shops

as possible). This way we can ensure that the set up cost is as low as

possible and we also ensure that the service cost is low because Voronoi

neighbors are geometrically closest by definition. In this thesis, we identify

various properties of Voronoi neighbors and use them to devise algorithms

to maximize or optimize neighborships.

Now imagine once again that you are the owner of a shopping chain, and

you are planning to set up shops in a city where at the moment you do

not have any shops, but one of your competitor shopping chain has already

set up numerous shops in the city (Figure 1.2(a) shows the locations of the

opponents shops using solid circles). You know that your product is at least

as good as the opponent's and you also know that if you set up a shop,

many customers would be tempted to come to your shop rather than your

opponent's. Your objective is to entice customers away from as many shops

of your opponent as possible.

It is common to assume that customers prefer to go to the shop which is

geographically closest to them (provided that the service is similar in qual-

ity), and thus, if we draw the Voronoi diagram, then the Voronoi region

corresponding to a shop will determine the customers affiliation with a shop

(see Figure 1.2(b)). So, if a new shop is placed it will take away some portion

from the Voronoi regions (in other words, customers) of each of its neighbor-

ing shops. For example, Figure 1.2(c) shows a new shop (represented as a

rectangle) which takes customers away from three existing shops and Figure

14
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Figure 1.2: Games in facility location

1.2(d) shows another placement where the new shop takes customers away

from five existing shops. Therefore, to cause the maximum interference to

the business of your opponent you should choose to place your shops such

that each of your shops gets as many shops of the opponent as neighbors as

possible. With this idea in focus, we introduce several variations of games

based on Voronoi neighborships.

The following section gives a brief outline of the problems addressed by

this thesis and their results.
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1.1 The problems and the results

The thesis addresses two problems related to the maximization of the number

of Voronoi neighbors. The first problem is to find the location where a new

Voronoi site can be placed so that it gets the maximum number of neighbors.

This problem is analogous to finding the location where a new warehouse can

be set up so that it can serve the maximum number of shops cheaply. The

second problem is to find the locations where new Vomnoi sites can be placed

to ensure that a minimum number of new sites is used to get all the existing

Voronoi sites as neighbors. This problem is analogous to finding the locations

where warehouses can be placed to ensure that all the shops can be served

by setting up as few warehouses as possible.

To solve the problems, we first establish that the number of neighbors of a

new site depends on the arrangement of Delaunay circles generated by the ex-

isting Voronoi sites. We also discuss special properties of such arrangements.

Based on the properties we construct the dual graph of the arrangement and

discuss its properties. We prove that to solve the first problem, the new site

must be placed in a cell of the arrangement corresponding to a top level node

of the dual graph. We also prove that the second problem reduces to the set

cover problem, where the sets consists of the set of neighbors ensured by the

nodes of the dual graph which has no parents.

Then we introduce games where two players places Voronoi sites in a plane

and compete each other to maximize the number of Voronoi neighbors of the

sites placed by them. We devise multiple variation of the game depending

16
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on the number of rounds and the specific criterion for winning a game. For

some of these games we establish the winning strategies, for some games we

show that winning is impossible and for some games we show that winning

is possible, but only if one of the players makes a non-optimal move.

We also introduce a concept of Voronoi layers and develop an algorithm

to construct the arrangement of Delaunay circles which can detect all possible

intersections of Delaunay circles which are within two Voronoi layers.

1.2 Outline of the thesis

This section gives a glimpse of the next chapters of the thesis.

Chapter 2 discusses a few basic topics which are very important and rel-

evant for the problems and are often referred to in later chapters or used

to discuss or prove the results in the thesis. Chapter 3 discusses previous

researches which address problems similar to that discussed in this thesis.

Chapter 4 discusses Voronoi neighborships in detail and presents algorithms

for the optimization of Voronoi neighbors. Chapter 5 discusses a number of

games based on the idea of maximizing the number of Voronoi neighbors and

devises winning strategies for them. Chapter 6 discusses a few supplemen-

tary ideas and results which are relevant to but not strictly related to the

main problems of the thesis. Finally, Chapter 7 concludes the thesis with a

summary and also opens up a few avenues of further research.

17
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Chapter 2

Preliminary

In this chapter, we are going to explore some preliminary topics that are

related to the thesis. These topics include a brief overview of Voronoi di-

agrams and Delaunay triangulations and their properties, many of which

are very important and integral to the results of the thesis. We also give a

sketch of only a few of many applications of Voronoi diagrams to emphasize

the importance of research in this area. We gave a summary of various kinds

of facility location problems which would enable the reader to get a better

understanding of the motivation of this thesis. And finally, we discuss some

basic topics related to arrangement of geometric objects and combinatorial

games, both of which will be referred multiple times in the following chapters.

2.1 Voronoi diagram and Delaunay tessella-
tion

Voronoi diagram and Delaunay tessellations, though pretty well known in

computational geometry, deserve a section in this discussion because they

form the core of the topic of this thesis.

18



2.1.1 Voronoi diagram and its properties

A Vorono'i diagram, named after Georgy Voronoi, also called a Voronoi tes-

sellation, a Voronoi decomposition, or a Dirichlet tessellation (after Lejeune

Dirichlet) [11]' is a special kind of decomposition of a metric space deter-

mined by distances to a specified discrete set of objects or sites in the space,

Commonly, we are given a set of points S, and the Voronoi diagram for S

is the partition of the plane into regions each of which are associated with

one point in S. In the rest of the thesis, we shall refer to the points in S as

Voronoi sites to avoid ambiguity with the general usage of the term 'point'

which will be used to indicate any general point in the plane.

The region associated with a site p, called Voronoi region of p and denoted

as V (p), is formed in such a way that all points in V (p) are closer to p than

to any other site in S. Intuitively, if we start expanding a circle centered at

any point x in the plane, then x belongs to the Voronoi region of the first site

reached by the circle. Another intuitive way to understand Voronoi regions

is - if we imagine n circles expanding from the sites at the same speed, the

fate of each point x of the plane is determined by those sites whose circles

reach x first. In 2D, the Voronoi regions are always convex polygons.

The shared edge between two adjacent Voronoi regions consists of points

which are equidistant from the two sites associated with those regions; in

other words, it is the perpendicular bisector of the two sites. Such edges are

called Voronoi edges. The average number of edges of a Voronoi region is

less than or equal to six [6].

19



An intersection of Voronoi edges is called a Voronoi vertex. A Voronoi

vertex can be formed by the intersection of many edges. But if the sites

are in general positions (no four sites are co-circular and no three sites are

collinear) then all the Voronoi vertices has exactly three edges incident on

them. The average number of vertices of a Voronoi region is less than or

equal to six.

Two sites are called Voronoi neighbors of each other if they share a

Voronoi edge; i.e. if their Voronoi regions are adjacent.

Figure 2.1 provides example for the terms described in this subsection. In

the figure, the Voronoi sites are shown as solid black circles and are named

p, ..., x. The Voronoi diagram is drawn using solid lines. The Voronoi vertices

are named 1, ... , 10. Line segments joining the vertices are the Voronoi edges.

The Voronoi region of p is shown in gray and has 1,2,3,4 and 5 on its

boundary.

2.1.2 Delaunay tessellation and its properties

Delaunay tessellation is the straight-line dual of the Voronoi diagram. Each

node of the Delaunay tessellation corresponds to a Voronoi region and is

usually drawn exactly in the same location of the sites and each edge in the

tessellation corresponds to a Voronoi edge. The tessellation is a triangulation

if no four sites are co-circular. An interesting property of the Delaunay

triangulation is that, compared to any other triangulation, it maximizes the

mllllmum angle; but it does not necessarily minimize the maximum angle

[11].

20
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Figure 2.1: Voronoi diagram and Delaunay triangulation

Every triangle of the triangulation is called a Delaunay triangle. The

union. of the Delaunay triangles forms the convex hull. The Voronoi sites on

the convex hull have unbounded Voronoi regions.

The circum-circle of a Delaunay triangle is called a Delaunay ciTcle. 1n-

teresting properties of Delaunay circles are - a Delaunay eircle is centered

at the Voronoi vertex common to the Voronoi regions of the three sites that

formed the corresponding Delaunay triangle and a Delaunay circle does not

contain any other site inside it. The number of Voronoi vertices (and thus

Delaunay circles) for n Voronoi sites is less than 2n - 5 where n is the number

of Voronoi sites [11J.
Both Voronoi diagram and Delaunay triangulation can be generated in

21



O(nlgn) time using only linear space [6, 11, 15].

Figure 2.1 also provides example for the terms described in this subsec-

tion. In the figure, the Delaunay triangulation is drawn using dashed lines.

One Delaunay triangle D.r suo is shaded and one Delaunay circle centered at

9 and going through u, sand t is also shown. The sites on the convex hull

are q, T, S, t, x and 11J.

2.2 Some important applications of Voronoi
diagram

Voronoi diagram and Delaunay triangulations have found a lot of applications

in several areas like wireless networks, facility location, nearest neighbor

searches, motion planning etc. to name a few.

2.2.1 Wireless networks

In wireless networks, Voronoi diagrams are used to address many different

problems. One widespread application is the formation of clusters and the

choice of cluster-heads. Another application is in finding the minimum ex-

posure path through an area infested with sensor nodes.

2.2.2 Facility location

Voronoi diagrams are often used to model customer response or affiliation

to a service provider and also to model support network between stores and

warehouses. We will elaborate this application more on later sections and

chapters.

22



2.2.3 Nearest neighbor queries

The basic idea of nearest neighbor queries is given a set of points, finding the

nearest points for each of the points in the set. This can easily be solved by

constructing the Voronoi diagram and the nearest neighbor of a point must

be among the sites of neighboring regions. This core idea is applied in string

comparisons, data mining, clustering etc.

2.2.4 Motion planning

Given an initial and ending position for an autonomous robot and many

obstacles in between, what should be the best path for the robot? The

solution is to draw the Voronoi diagram and follow the Voronoi edges. Similar

solutions can also be applied in developing AI for computer games.

2.3 Facility location problems

The basic question in fa.cility location problem is- where should I place a new

facility to serve some facility receivers such that the benefits are maximized?

Examples of facility 01' seTvice pmvideTs can be a warehouse, market, mosque

etc. which provides a spccific scrvice to its clients. On the other hand

seTvicelfa.cility TeceiveTs corresponding to the providers stated above can be

shops, customers, devotees etc. who receive the service.

The exact formulation and solution of facility location problem depends

on a lot of factor like the position of the other facilities, the customers or

facility receivers, the nature of the affiliation with the receivers, the definition

23



and beneficiary of the benefit etc. Widely we can classify the facility location

problem into three closely related variations which are outlined here. Several

researches addressing these problems will be discussed in Chapter 3

2.3.1 Cooperative facility location

The common example of this type of problem is the one we already mentioned

in Chapter 1 where there are multiple shops or retailers and we want to place

warehouses in such a way that ensures maximum benefit to both the shops

and the warehouse owner. The objective is usually to reduce the total service

cost (cost for a shop to transport goods from the warehouse) and the facility

cost (cost to setup and maintain the warehouse). It is usually assumed

that every shop is committed to get connected to the warehouse which IS

geometrically closest (or maybe takes least amount of time to reach).

The same model is applicable when we want to place a facility to serve the

general population. For example: setting up mosques, community centers,

schools etc. We want to place the facility in such a location that it provides

maximum benefit to the most number of peoples.

2.3.2 Non-cooperative facility location

The non-cooperative model adds another parameter to the cooperative facil-

ity location problem. Here the customers or facility receivers have the ability

to choose not to take service from a facility. They might decide to use a fa-

cility which is not the closest due to various reasons. One such case maybe,

that the customers prefer to go to a facility which is further but is not as

24



overloaded as the closer one.

Another quite interesting variation is where the customers are not sat-

isfied with the current locations of the facilities and they might themselves

try to establish a new facility for their benefit. In such cases, the facility

location problem has to consider the service cost, facility cost and as well

as best possible coverage of the population (a good coverage minimizes the

maximum service cost).

2.3.3 Competitive facility location

In competitive facility location, the problem gets another twist in the sense

that now two or more service providers competes each other to attain the pa-

tronage the maximum number of service receivers. For example, Pizza Hut

and Dominos are competitor entities who provide similar services to their

clients. So assuming that clients always go to the outlet which is nearest

(geographic distance or time required to reach), the owners of the two com-

panies would compete to set up their outlets in such locations that they get

more customers than their opponent.

2.4 Arrangement of geometric objects

In computational geometry, arrangement refers to the decomposition of the

space into cells by a collection of intersecting objects. To generate an ar-

rangement means to find out the exact number of cells that are formed,

the intersection points, the boundaries of the cells and also which objects

intersected to form which cells etc. In two dimensions, we can consider ax-
25



rangement of lines, polygons, circles etc.

For example, if the arrangement consists of three parallel lines, then there

are four regions, none of them bounded. If we add a line crossing the three

parallels, then there will be eight regions, still none of them bounded. If we

add one more line, parallel to the last, then there will be 12 regions, of which

two are bounded parallelograms.

Figure 2.2: Example of arrangement of straight lines

For our thesis, we are only interested in the arrangement of multiple

circles in 2D. In an arrangement of circles, we need to know exactly how

many cells there are, which are the intersection points, which are the arcs

that form the boundary of the cells and which circles they belong to. For

example the following figure shows the arrangement of three circles. They

have formed 5 cells. Cells A and B are part of only one circle; cells C and

D are part of two circles and cell E is part of three circles.

Agarwal and Sharir [2] have given a deterministic algorithm to compute

the arrangement of n circles in 2D. The time complexity of the algorithm

is O(n>'4(n)), where .\4(n) is the length of the Davenport-Schinzel sequence

of order 4 with n symbols. Davenport-Schinzel sequence of order s with n
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Figure 2.3: Example of arrangement of circles

symbols, ),8(71,), is a sequence (nl, ... ,nm) composed from 71, symbols such

that the same symbol does not appear consecutively in the sequence and the

sequence does not contain any alternating subsequence that uses two symbols

and has length s + 2. The standard bounds for ),4(71,) is 8(n.2a(n)) where

a(n) is the inverse Ackerman function which is extremely slow growing. In

fact, if 71, is less than or equal to an e:rponential tower of 65536 2s, then

a(n) ::; 4. In conclusion, we can state that even for very large values of 71"

the arrangement of 71,circles can be computed in close to 0(71,2) time.

For more information on arrangments and their applications interested

readers can refer to [3, 1].

2.5 Game theory and combinatorial games

Game theory is a branch of applied mathematics that is used in the social sci-

ences (most notably economics), biology, political science, computer science,

and philosophy. Game theory attempts to mathematically capture behavior

in strategic situations, in which an individual's success in making choices de-
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pends on the choices of others. Games can be cooperative or non-cooperative,

symmetric or asymmetric, simultaneous or sequential, perfect information or

imperfect information, discrete or continuous, infinite or defined etc. combi-

natorial games are a subset of these which are sequential, discrete and have

perfect information.

Combinatorial game theory (CCT) usually studies two-player games in

which the players take turns to change the state of the game in defined ways

or moves to achieve a defined winning condition [7]. Here the set of possible

states and the set of possible moves at each state are strictly defined. In fact

the progress of the game can be represented as a rooted tree, called state

tree, with the initial state as the root and the other nodes representing the

other possible states of the games, an edge between two nodes represent the

possibility of a move that can cause the game to move from one state to the

other. The collection of outgoing edges at each node represents the possible

choices for the next move when the game is in that state. The game also has

a few states which are defined as the winning states and are represented by

the leaves of the tree. In some cases, when the game can end in a tie, there

can be leaves which do not represent winning states. The objective of the

players is to reach a winning leaf before the other player.

Combinatorial game theory does not study games of chance (for example,

games involving throwing a dice etc.), but restricts itself to games whose

position is public to both players, and in which the set of available moves

is also public. This attribute is referred to as perfect information. CGT
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principles can be applied to games like chess, checkers etc. But these games

are mostly too complicated to allow complete analysis. combinatorial games

are called .impartial if both players have the same set of allowed moves 111

each position of the game.

Any impartial perfect-information combinatorial game without ties has

onc of two outcomes under optimal play (when the players do their best

to win): a first-player win or a second-player win. In other words, who-

ever moves first can force himself to reach a winning leaf, or else whoever

moves second can force himself to reach a winning leaf, no matter how the

other player moves throughout the game. Such forcing procedures are called

winning stmtegies.

The target of CGT is to determine the optimum sequence of moves for

both players until the game ends, thus discovering the optimum move in any

position and to find the winning strategy for either of the players. It is widely

accepted (e.g. [7]) that all combinatorial games can be reduced to the classic

game called Nim and finding a winning strategy for any game is equivalent

to finding a Nim-value for the game.

For more information abour CGT, readers might refer to the survey [13].

A regularly updated bibliography of researches related to CGT can be found

in [16] (contains 1160 entries when this thesis is being written).

The games we address cannot be tagged as strictly combinatorial games.

Because though we consider games having two players who play sequentially,

there is no uncertainty or randomness, and we have a definite set of possible
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states of the game (with a bit of abstractioil), but the possible set of moves

are infinite. So we cannot map the games to Nim and we have to solve them

uniquely.
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Chapter 3

Related Works

In this chapter, we want to mention a few research works which are relevant

to our thesis.

First, we will discuss some results which use Voronoi diagrams to model

competitive facility location problems and address issues like maximizing

the Voronoi area and finding winning strategies for games where the winning

criteria involve ma.ximization of Voronoi area.

F. Dehne, R. Klein and R. Seidel [12] worked with the goal of finding

the location where a new Voronoi site can be placed so that the area of

its Voronoi region is maximized. They formulated the area of the new site

as a mathematical function with the location of the new site in cartesian

coordinates as the variable and the location of the neighbors as constants.

Here, they assumed that the location of the neighbors are convex, i.e.

if they are connected sequentially, then they will form a convex polygon.

Then, they evaluate the function along the loci where the new site can be

placed such that those existing sites are its neighbors. They proved that if

the neighbors are in convex positions then there can be exactly one maxima
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Figure 3.1: Maximizing Voronoi region

of the function and that is where the new site should be placed to ensure

that the area is maximized. The limitations of this work is that it does not

work for the cases where the neighbors are in non-convex positions. As the

technique is not applicable for all situations, it cannot be extended to work

globally, i.e. for the entire Voronoi diagram. For example, in figure 3.1 (a),

the neighboring sites of p are in convex positions and this algorithm can be

applied to identify the location where p should be placed such that the area

of V(p) is maximized. But in Figure 3.1 (b), the neighboring sites are m

concave positions and this algorithm might fail.

o. Cheong, A. Efrat, S. Har-Peled also worked with a similar goal in [9].

They claimed that though the area of the Voronoi region of a new site can

be represented in a closed formula, the handling and comparison for specific

input values might become cumbersome and it is unknown whether it is N P

or not. So, they tried to find approximate solutions to the problem. They

showed that given a set T of n points and a i5 > 0, it is possible to find
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a point xapp such that /l(xapp) ?: (1 - i5){!opt, where /l(x) is the area of the

Voronoi region of x in the Voronoi diagram of TUx, and {Lopt = maxx/l(x).

the running time of their algorithm is O(n/i52 + nlogn).

O. Cheong, S. Har-Peled, N. Linial and J. Matousek [10] addressed one

round Voronoi game. According to their formulation, two players place their

sites inside a unit square region and try to maximize the total Voronoi area

of the Voronoi regions of their sites. Due to the game being one-round, the

first player places all n of his sites first and then the second player places his

n sites. They proved that, for large enough n, the second player can always

place his sites in such a way that the sum of the areas of their Voronoi

regions is at least 1/2 + a portion of the total playing area, where a > 0 is

a constant independant of n. In other words, the found a winning strategy

for the second player.

S. P. Fekete and H. Meijer [14] extended the results of Cheong et al to

find winning strategies even when the playing area is not an unit square.

They used a parameter p to represent the a.spect ratio of the playing area.

And they showed that the second player wins only if n ?: 3 and p > V2/n
or if n = 2 and p > ,)3/2. In all other cases, the first player has a winning

strategy. They also proved that if the playing area is a polygon with holes,

then finding a winning strategy for the second player is NP-hard.

H.-K Ahn, S.-W Cheong, O. Cheong, M. Golin and R. van Oostrum [4, 5]

addressed n-round Voronoi games. Here, the players take turns to place their

sites. They are only allowed to place one site in each round and in total they
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place n sites in n rounds. They could give winning strategy for the second

player only if the playing area is one dimentional, i.e. a line segment or a

circle. For two dimentional playing area the problem is still open.

VVemust mention that, besides Voronoi diagrams, many different models

and techniques have been used to model and solve different variations of

facility location problems. For example, T. Moscibroda and R. Wattenhofer

[22]modeled the cooperative facility location problem using bipartite graphs

where the edges are weighted using service costs and they give a distributed

approximation algorithm to optimize the overall benefit. D. B. Shmoys, E.

Tardos and K. Aardal [23, 24] also addressed similar problems and gave

approximation algorithms. On the other hand, rather than highlighting the

total cost, M. X. Goemans and M. Skutella [17] highlighted the distribution

of the cost to the customers. They argued that if the cost is not fairly

allocated, then the customers might choose to open their own facilty or ask

a competitor company to serve them. The authors used linear programming

relaxation to identify if fair cost allocation is possible or not. Interested

readers may also like to go through [8, 19] for some other related results.
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Chapter 4

Optimizing Voronoi neighbors

In this chapter, we will discuss two problems related to the optimization or

maximization of Voronoi neighbors, with applications in facility location.

The first problem is: given n Voronoi sites in the plane, to find the location

where a new Voronoi site can be placed so that it gets the maximum possible

number of Voronoi neighbors. For example, in Figure 4.1, it is shown how the

placement of the new site plays a role in the number of neighbors it is going

to get. Figure 4.1(a) shows the initial sites and the Figures 4.1(b), (c) and

(d) shows three different placement options of a new site p and we can see the

location where it gets the maximum number of neighbors in Figure 4.1(d).

Our objective is to find a deterministic technique to find such location(s) in

a Voronoi diagram.

The second problem is: given n Voronoi sites in the plane, to find the

minimum number of new sites that has to be placed (as well as the location

where they should be placed), so that all the existing n sites become neighbors

to at least one of the new sites. For example, Figure 4.2( a) shows that ten

sites were given and the next figures shows how new sites are added to get
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Figure 4.1: Elaboration of the first problem

all of the ten points as neighbors. The first placement (Figure 4.2(b)) uses

four new sites and the second placement (Figure 4.2(c)) uses only three new

sites which is the minimum number of new sites needed for this example.

The next sections deal with these two problems. But, before that we

discuss the basics of Voronoi neighborship and the arrangement of Delaunay

circles and their properties, we discuss how these properties enable us to

construct a Dual graph of the arrangement and finally, we discuss how the

maximization and optimization problems can be solved with the help of the
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Figure 4.2: Elaboration of the second problem

dual graph.

4.1 Voronoi neighbors and arrangement of De-
launay circles

This section is devoted to the discussion of Voronoi neighborship, their prop-

erties, how they are related to the arrangement of Delaunay circles and the

properties of the arrangement.
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4.1.1 Becoming neighbors

In this subsection, we are going to discuss the rules of becoming or aquiring

Voronoi neighbors. More precisely, we want to answer the question - when a

new site is placed, which of the existing sites become its neighbors and why?

The following lemma gives the answer.

Lemma 4.1.1. fr a new site, p is placed inside an existing Delaunay circle,

then the three existing sites a, band c which are on that circle becomes its

neighbors. If p is placed inside the Delaunay tJ'iangle !'>abc, then the triangle

remains intact but if p is placed outside the Delaunay triangle !'>abc, then the

Delaunay edge, on whose side p is placed, is removed.

Proof. We know that the center of a Delaunay circle is a Voronoi vertex (refer

to Section 2.1.1). Let, the center of the Delmll1ay circle going through a, b

and c be v (see Figure 4.3(a)). Now if p is placed inside the circle but outside

the Delaunay triangle in ac's side (i.e. in the region bounded by the arc ac

and the the edge/chord ac), then vp will be smaller than va, vb and vc (see

Figure 4.3(b)). So the point v should be inside the Voronoi region of p. And

if we move along vb, we will find a point, rn such that rnb = rnp, rnp < ma

and Tnp < mc (see Figure 4.3(c)). So, b will become neighbor to p. Similarly,

a and c also become neighbors of p.

In Figure 4.3( d), the dotted line represents the perpendicular bisector of

ac, so each point on this line is equidistant from a and c. Thus, if any portion

of this line is further from other sites than it is from either a or c, then a and
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Figure 4.3: When a new site, p IS placed inside the Delaunay circle but
outside the Delaunay triangle
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cremains Voronoi neighbors and the Delaunay edge ac remains. But we can

see that any point on this line which is in the portion above v, is closer to

b than it is to either a or c. And any point below and including v is closer

to p than it is to c (we assume that p is placed on c's side of the bisector).

Therefore, a and c no longer remains neighbors.

The Voronoi diagram is redrawn in the next figure where we see that p

becomes neighbors to a, band c (see Figure 4.3(e)) and a and c are no longer

neighbors of each other.

Similarly, if p is placed inside the circle and inside the Delaunay trian-

gle(see Figure 4.4(b)), then again vp will be smaller that va, vb or vc. And

p will be neighbors of a, band c. But now we shall find a point m on the

bisector of ac which is equidistant from a, c and p (see Figure 4.4( c)); so, the

portion of the bisector below m is closer to a and c than any other sites. So,

a and cremains Voronoi neighbors and the Delaunay edge ac remains intact.

For the same reason ab and bc also remains intact. Figure 4.4(d) shows the

resultant Voronoi diagram and Delaunay triangulation. D

So, if the new site is placed inside the Delaunay triangle, then all of

the existing Delaunay edges are intact. But if the site is placed outside the

triangle but inside the circle, then one of the Delaunay edges is deleted.

This rule is called edge flipping and it was introduced in [21J and was used

in [18] to compute the Delaunay triangulation. Edge flipping means after

placing a new site inside a Delaunay circle, we can redraw the triangulation

by connecting the new site to the existing sites and deleting any previous
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Figure 4.4: When a new Voronoi site, p is placed inside the Delaunay circle
and inside the Delaunay triangle

Delaunay edge which intersects any of the newly drawn edges.

Now, if there are more than three Voronoi sites, then there must be

more than one Delaunay circles and they will intersect. In such cases, if we

place a new site, it might be inside more than one circle (i.e. inside their

intersection). The following lemma extends Lemma 4.1.1 for such cases.
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c
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c

Figure 4.5: When a new Voronoi site, p is placed inside the intersection of
more than one Delaunay circles

Lemma 4.1.2. If C is the set of all existing Delaunay circles which contain

the new site, p inside them, then the set of neighbors of p, N(p) = {xix

is on a Delaunay circle, c where c E C} and in the new tria.ngulation, p

will be connected to. all the sites in N(p) and a.ny existing Delaunay edges

intersecting these new edges will be deleted.

Proof This result is achieved by applying the rules of Lemma 4.1.1 for each

circle c E C and taking the union.

Figure 4.5 gives an example for the rule described in Lemma 4.1.2.

4.1.2 Arrangement of Delaunay circles

o

The discussion in the above section implies that we can find out which of

the existing sites become neighbors of the new site if we know exactly which

Delaunay circles contain the new site, p.
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From our discussion of arrangement of circles (see Section 2.4), we know

that the arrangement decomposes the plane into cells formed by the inter-

sections of the circles. As circles are convex objects, they can only intersect

each other twice and that is why each cell of the arrangement is unique and

is formed by the intersection of a unique set of circles.

After computing the arrangement of Delaunay circles, we shall know the

exact points of intersections, the boundaries and most importantly the set of

circles that intersected to form a particular cell. In other words, if we know

the arrangement of Delaunay circles, we can easily find out the cell that

contains the newly added site, p. And the set of circles that intersected to

form that particular cell is precisely the set of all Delaunay circles, C which

contain the new site, p inside them.

Lemma 4.1.3. If a new site p is placed inside a cell A of the arrangement

of Delaunay circles, then all the existing sites that are on any of the circles

that intersected to form A will become neighbors of p.

Proof. The proof follows from the definition of a cell of the arrangement of

Delaunay circles and Lemma 4.1.2. D

Now, we want to mention a few natations and assumptions which will be

used in the rest of the thesis .

• We will use capital letters (e.g. A, B etc.) to name the cells of the

arrangement.
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• Whenever we mention that a site p is placed inside a cell A, it will

indicate that it is placed inside the boundary of A and not on any of

the arc bounding it so that the sites remain in general positions .

• The set of neighbors that a new site will receive if it is placed inside

a particular cell, A will be denoted as N(A) and will be referred to as

set of nei.ghbors ensured by A.

4.1.3 Property of the arrangement of Delaunay circles

In this subsection, we shall explore some properties of the arrangement of

Delaunay circles. But before that we want to define completeness of the

a'rrangement and arc-adjacent cells of the arrangement.

An arrangement of Delaunay circles is complete only if the corresponding

Delaunay triangulation is complete. A Delaunay triangulation is complete

when every face except the face outside the convex hull of the triangulation

has exactly three edges and no new Delaunay edges can be added without

intersecting any existing edges.

Figure 4.6 shows example of complete and incomplete triangulations and

the corresponding complete and incomplete arrangement. In Figure 4.6(a)

the triangulation is incomplete, because we can add another Delaunay edge

to get the complete triangulation shown in Figure 4.6(b) where no new edges

can be added. Figure 4.6(c) is the arrangement corresponding to the incom-

plete triangulation shown in Figure 4.6(a) and Figure 4.6(d) is the complete

arrangement corresponding to the complete triangulation shown in Figure
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Figure 4.6: Examples of complete and incomplete Delaunay triangulation
and their corresponding arrangements

Figure 4.7: Examples of arc-adjacent and non-are-adjacent cells

4.6(b).
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Two cells in the arrangement of Delaunay circles are arc-adjacent if they

share a common arc. In Figure 4.7 the cells P and Q are arc-adjacent, but

cells Q and R are not arc-adjacent ..

The following lemmas and theorem present a few properties of the ar-

rangement of Delaunay circles.

Lemma 4.1.4. To add a new circle in a com.plete arrangement, a new site

m.ust be a.dded.

Proof The proof is given by contradiction .

.Let, we can add a new circle without adding new sites. This implies that

no new sites are needed and that the new circle goes through three existing

sites. But in that case those sites must be on a Delaunay triangle. Therefore,

either the triangle and thus the circle is not new, or the triangulation was

not complete before, which is a contradiction. D

Lemma 4.1.5. In a complete arrangement with at least 4 points, a circle

cannot have two Vomnoi sites on it which are not on any other circle.

Proof The Voronoi region of any site which is not on the convex hull must

be bounded by at least three Voronoi edges and thus must have at least three

neighbors. So, in the Delaunay triangulation, the site must be part of at least

three triangles. Thus, it will be on at least three Delaunay circles. Therefore,

we can conclude that any site which is not on the convex hull cannot be part

of only one circle.
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(a)

Figure 4.8: A Delaunay circle cannot have two Voronoi sites which are not
on other Delaunay circles

On the other hand, some sites on the convex hull can be part of only

one triangle and thus on only one circle. So we need to prove that two such

points can not be on a single circle. The proof is by contradiction.

Let, s, rand p be three consecutive sites on the hull. Let us assume that

there is a circle which have two Voronoi sites p, q and r on its perimeter and

p and q are not on the perimeter of any other circle. Then, it implies that

the edge pq belongs to only the triangle Llpqr and p and q do not belong to

any other triangle. Let r also belongs to another triangle Llrst. But then

the triangulation is not complete because the hull is not convex and we can

add at least one(shown in Figure 4.8) more edge to make it complete. D

Lemma 4.1.6. In a complete arrangement with at least 4 points, a circle

cannot have three Voronoi sites on it which are not on any other circle.

Proof. Follows from Lemma 4.1.4. D

Theorem 4.1.1. Let, P and Q are two arc-adjacent cells in the arrangement

of Delaunay circles and the common arc between them is convex with respect

47



Figure 4.9: The common arc between P and Q is convex with respect to P.
---------

,
,

(a) (a)

Figure 4.10: a new site p is added outside the hull and the hull is updated

to P. Now, if N(P) and N(Q) are the set of neighbors ensured by them, then

N(Q) C N(P) and N(P) has exactly one more element than N(Q).

Proof. Before going into the details of the proof, we will first elaborate the

statement of the theorem using an example. Figure 4.9 shows an arrangement

of three circles and the thick arc is the common arc between two arc-adjacent

cells P and Q and the arc is convex with respect to P. The arc being convex

with respect to P, indicates that P is part of the circle corresponding to that

arc and Q is not part of that circle.
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Figure 4.11: \Vhen a new circle intersects another new circle
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Figure 4.12: When a new circle intersects an existing cell

Now, we will prove it using a constructive technique of generating the

Delaun!1Ytriangulation. In this technique the triangulation is generated it-

eratively starting with three sites and their convex hull. Then, another site

is added outside the convex hull and the hull is updated using the rules of

edge-flipping [18]. This way the entire diagram is built. Figure 4.10 elab-

orates the idea of updating the hull. We see that some new triangles are

formed (and some previous ones might be destroyed) and each of the new

triangles consists of two existing sites and the new site p.
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Now, when a new circle intersects another new circle, for example- if a,

band c are three consecutive existing sites and p is the new site then /:::,abp

and /:::'bcp will be two Delaunay triangle and their corresponding Denaulay

circles will intersect (see Figure 4.11. In that case, the cell formed by the

intersection will ensure exactly one more neighbor than the two arc-adjacent

cells (remaining portion of the circles). Similar arguments can be used if

a third new Delaunay circle /:::,cdp intersects them and even if more new

Delaunay circles get involved.

Again, if a new circle, Cp intersects any existing cell, Q in the arrangement

(see Figure 4.12) then the cell will be divided into two parts and the newly

formed part (let's call it P), which is inside C" will ensure exactly one extra

neighbor, namely p; the two parts are otherwise equivalent. Thus P ensures

exactly one extra neighbor.

4.2 Dual graph of the arrangement

o

From Section 4.1, it is clear that the complete knowledge of the arrangement

of Delaunay circles is necessary to know the locations where new Voronoi sites

can be placed to maximize/minimize its neighbors. In this section we present

the idea of constructing the dual graph of the arrangement of Delaunay circles

to better model and utilize the hierarchical relationship existent among the

cells of the arrangement.
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Dual Graph of the
Arrangement of Delaunay Circles

Arrangement of Delaunay Circles

Figure 4.13: Example of dual graph of the arrangement of Delaunay circles

4.2.1 Construction of the dual graph

According to Theorem 4.1.1, we know that for any two arc-adjacent cells,

the number of neighbors ensured by the cells varies by exactly one. Using

this property we can define the dual graph, G as-

• the set of vertices, V( G) = {X I X is a cell of the arrangement} and

• the set of directed edges, E(G) = {XY I X and Yare arc-adjacent

cells of the arrangement and N(Y) c N(X)}.

Figure 4.13 gives an example of one such dual graph.

4.2.2 Property of the dual graph

A property of the dual graph follows from Theorem 4.1.1 that all the leaf

nodes correspond to cells of the arrangement which are part of just on8 circle

and thus ensure exactly three neighbors. Then, the nodes which are parents
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Levels in the Dual Graph of the
Arrangement of Delaunay Circles

Arrangement of Delaunay Circles

Figure 4.14: Levels in the dual graph of the arrangement of Delaunay circles

of any node any leaf node are part of exactly two circles and ensure exactly

four neighbors. To better represent this property, we define levels in this

dual graph as follows-

• Set of nodes in Level-i, L1 = {X I X is a leaf in the Dual graph of the

arrangement} and

• Set of nodes in Level-n, Ln = {X I :Jy[Y E Ln-1 and X is a parent

node of Y in the dual graph]}.

Figure 4.14 provides an example of levels in the dual graph.

According to Theorem 4.1.1, the difference between the number of neigh-

bors ensured by two arc-adjacent cells is exactly one. So, all the children of

a node ensure the same number of neighbors and thus are in the same level

and though the level of a node is defined recursively, it will always be unique.

And another aspect worth noting is that, because a node can not be a parent

of any node which are in a higher level or even in the same level, there can be
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no cycles in this dual graph. Also note that the nodes that have no parents

are not restricted to the top level only.

4.2.3 Data structure

For maintaining the dual graph, for each node we propose to store its name,

its level, the list of its children and whether it has any parent or not. We also

propose to maintain a list of nodes in the top level and a list of nodes having

no parents to speed up the solution of the problems we are addressing.

4.2.4 Time complexity

The dual graph can be constructed while the arrangement is being computed

by creating a node whenever a new cell is identified. The existing algorithms

(see section 2.4 for reference) computes the arrangement in O(nA4 (n)) time

and the time complexity for constructing the dual graph is the same.

4.3 Maximization and its variation

Now we return to the two problems which were mentioned at the start of the

chapter and discuss their solutions.

4.3.1 Getting maximum neighbors

The problem was- given n Voronoi sites in the plane, to find the location

where a new Voronoi site can be placed so that it gets the maximum possible

number of Voronoi neighbors. We present the solution below.
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Theorem 4.3.1. If a new site, p is placed in the cell carrespanding to, any

nade in the tap'mast level af the dual graph af armngement, then it will get

the maximum passible number o,f existing sites as neighbars,

Proaf. As discussed in 4.2.2, the mth level of the dual graph includes the

nodes corresponding to the cells of the arrangement of Delaunay circles which

were formed by the intersection of m circles and ensures that if. a new site

is placed inside that region, then it will get m + 2 neighbors. So, the higher

level a node is, the more neighbors it will guarantee. Thus, the topmost level

of the dual graph of the arrangement of Delaunay circles contains the nodes

which corresponds to the cells in the arrangement which were formed by the

intersection of the most number of circles and thus ensures that if the new

site is placed inside any of these cells, then it will get the maximum possible

number of neighbors. 0

Theorem 4.3.2. After canstmcting the d'ual graph af the armngement, the

lacatian where a new site must be placed to, get maximum number af Varanai

neighbars can be faund in canstant time.

Proaf. According to Theorem 4.3.1, the new site must be placed in a cell

whose corresponding node is in the topmost level. And we already mentioned

that we can create and update a list of nodes in the topmost level while we

are constructing the dual graph of the arrangement. After the dual graph is

completed, we can simply choose any node from this list to ensure maximum

number of neighbors and tus it takes constant time.
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4.3.2 Getting all sites as neighbors

The second problem was, given n Voronoi sites in the plane, to find the

minimum number of new sites that has to be placed (as well a, the location

where they should be placed), so that all the existing n sites become neighbors

to at least one of the new sites. The following theorem shows that the problem

reduces to the minimum set cover problem.

Theorem 4.3.3. The problem of finding the minimum number of new Voronoi

sites needed to be placed to get all the existing Voronoi sites as neighbors to

at least one of the new sites reduces to the minimum set cover problem.

Proof. The minimum set cover pmblem is defined as follows

• INSTANCE: Collection C of subsets of a finite set S .

• SOLUTION: A set cover for S, i.e., a subset C' <;;; C such that every

element in S belongs to at least one member of C' .

• MEASURE: Cardinality of the set cover, i.e., IC'I.

Our problem can be restated in the following way - we have a set of cells,

C. And for each cell, A E C, there is a corresponding set of neighbors ensured

by A such that N(A) <;;; N, the set of all existing Voronoi vertices. Choosing

a cell is equivalent to choosing the set of neighbors ensured by them. Let the

set of the set of neighbors be NC. So, each member of NC is a subset of N.

Now our problem can be written as follows .

• INSTANCE: Collection NC of subsets of a finite set N.
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• SOLUTION: A set cover for N, i.e., a subset NC' <;;; NC such that

every element in N belongs to at least one member of NC' .

• MEASURE: Cardinality of the set cover, i.e., INC'I.

Thus, the problem of finding the minimum number of new Voronoi sites

needed to be placed to get all the existing Voronoi sites as neighbors to at

least one of the new sites reduces to the minimum set cover problem. 0

Theorem 4.3.4. If there are n exisiting sites, then the problem of finding

the minim.urn. number of new sites needed to get all of them as neighbors is

approximable within 1+ In n.

Proof. Theorem 4.3.3 proved that this problem can be reduced to the mini-

mum set cover problem which is a well-studied N P - complete problem and

there is existing algorithm [20] using which it is approximable within 1+ In n.

Hence the proof. 0

The following lemma shows how we can restrict the number of sets that

need to the considered for the set cover problem.

Theorem 4.3.5. We can restrict the set cover problem to only the sets of

neighbors ensured by the cells whose corresponding nodes in the dual graph

has no parent.

Proof. For any node A, with a parent there is at least one node B, such

that N(A) c N(B). So it is sufficient to consider N(B) and ignore N(A).

Applying this argument to all nodes will eliminate all nodes except the nodes
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with no parents and thus our problem becomes restricted to sets of neighbors

ensured by the cells corresponding to these nodes. 0

4.4 Summary

In this chapter, we first showed that the number of Voronoi neighbors of a

new site is determined by the cell of the arrangement of Delaunay circles in

which the site is placed (see Lemma 4.1.3). Then Theorem 4.1.1 established

that the set of neighbors ensured by two arc-adjacent cells of the arrangement

differs by exactly one element. Based on this theorem we proposed to build

the dual graph which can be constructed while the arrangement is being

computed using existing algorithms running in 0(n,\4(n)) time. We also

maintain two separate lists at the same time. The first of these lists is a list

of the nodes of the dual graph which are in the top level and using this list

the problem of finding the location where a new site should be placed to get

maximum neighbors can be computed in constant time (see Theorem 4.3.2).

The second list contains the nodes which has no parents. We showed that

the problem of finding the minimum number of new sites that has to placed

to get all existing sites as neighbors is reducable to the minimum set cover

problem which is approximable within 1+ Inn time (see Theorem 4.3.2) and

we also showed that only the sets corresponding to the cells in the second

list need to considered for the set cover (see Theorem 4.3.5).
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Chapter 5

Voronoi neighbor games

In Chapter 3, we have discussed a number of games based on the idea of

maximizing the Voronoi area controlled by the sites of each player. We also

cited several researches aimed at finding winning strategies for those games.

In this chapter we are introducing several variations of Voronoi neighbor

games and their solutions. In our knowledge, we are the first to address

these games.

In Voronoi neighbor games, two players compete against one another with

the intention of optimizing their number of Voronoi neighbors. In the rest

of this thesis, we shall relate to the players as Playerl, who makes the first

move and Player2, who makes the last move. Variations arise through the

change in the number of rounds played by each player and the exact criterion

of winning.

In the rest of this chapter, we shall name the ith site placed by Playerl as

Pi and the 'ith site placed by Player2 as qi and in the figures the sites placed

by Playerl will be represented by solid black circles and the sites placed by

Player2 will be represented by solid gray rectangles.
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5.1 One round games

In one T'Oundgames, as the name suggests, each player gets only one round

to place his n sites. In other words, first Playerl will place all n of his sites

in 2D, and then Player2 will place his n sites. The game is analyzed for five

different winning criteria.

One round games are not perfect information games and is not impartial

(refer to Section 2.5). Here, due to its one round nature, Playerl has to place

his points without any knowledge whatsoever about how Player2 is going to

place his sites. On the other hand, Player2 has complete knowledge of the

positions of the sites placed by Playerl. This gives Player2 an advantage

which enables him to effectively implement winning strategies for almost all

the variations.

5.1.1 Variation 1: Maximizing opponent neighbors

In this variation, the winning criterion is to get as many distinct opponent

sites as neighbors as possible. Before elaborating the winning criterion let

us first elaborate the term distinct neighbors. Mathematically, if a site Xi of

playerX gets N(Xi) number of opponent sites as its neighbor, then the total

number of distinct opponent sites as neighbors of PlayerX, Nx is lu~]N(Xi) I.

SO,if the number of distinct sites of Player2 which are neighbors of Playerl

N1 and the number of distinct sites of Playerl which are neighbors of

Playerl = N2, then the objective of this variation is to maximize N] and

N2. From the criterion it is clear that this is more like a maximization
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problem, rather than a competition. Now, because Playerl does not know

where Player2 will place his sites, it is not possible to formulate a strategy

for Playerl. On the other hand several strategies can be found for Player2.

Lemma 5.1.1. It is possible for Player2 to get all n sites of Played as

neighbors.

Figure 5.1: Placing a new site close to an existing site

Proof. As the game is played on Real space, a site can be placed arbitrarily

close to another site. Let, x be the site (can belong to either player) which

is closest to a site Pi of Playerl which is not yet a neighbor of any site of

Player2. So, Player2 will place his site, qi in such a way that Piqi < XPi'

As Piqi is smaller than XPi, then x must be outside the circle centered at

Pi and has Piqi as radius (see Figure 5.1). If m is the point of intersection

between Piqi and their bisector, then m must be closer to Pi and qi than x.

And a.s x is the closest site to Pi, the other sites are also outside the circle

and are obviously even further from m. This means m is on the Voronoi edge
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between the Voronoi regions of Pi and qi and thus Pi and qi must be Voronoi

neighbors.

This way each site of Player2 will get at least one distinct site of Playerl as

its neighbor and thus Player2 will get all n sites of playerl as neighbors. D

But quite obviously it is not the best solution. We have already seen that

a new site can get many of the existing sites as neighbors. So it should be

possible for Player2 to win by using less than n sites of his own. Actually

the best winning strategy will be the same as the solution to the problem

we addressed in Section 4.3.2. So rather than restating the strategy, here we

will establish an upper bound on the number of sites required by Player2.

The upper bound will be established using a constructive algorithm. The

basic idea of the algorithm is to use a new site to make three existing con-

secutive sites P, q and T on the hull (the hull might be convex or non-convex)

as neighbor by placing the new site inside a cell of the arrangement which

ensures all of them as neighbors (refer to Lemmas 4.1.1 and 4.1.2). Before

placinK the next site, P, q and T and their corresponding Delaunay edges are

removed from the triangulation and then we choose the another three sites

that can be removed from the remaining triangulation. This technique is

applied again and again until all sites have become neighbors. Note that re-

moving a site/edge does not mean that the site/edge actually no more exists;

but it means that the site/edge will only be considered to be non-existent by

the algorithm.

See Figure 5.2 for a few examples of site removal. In Figure 5.2(a) an
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Figure 5.2: Removing three sites from the triangulation

initial triangulation is shown. Figure 5.2(b) shows the remaining triangula-

tion if the sites g, a and b are removed. Figure 5.2(c) shows the remaining

triangulation if the sites G., band c are removed. Figure 5.2(d) shows the

remaining triangulation if the sites c, d and e are removed.
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Figure 5.3: R.emaining diagram - first problem scenario

From the figures we see that for some combinations of three sites the

remaining diagram may not remain a triangulation. [If there is an edge or

site which is not part of any triangle, then we say that the remaining diagram

is no longer a triangulation]. The following two lemmas identify the cases

where such problems arise.

Lemma 5.1.2. If there is a site a, such that it has anly three neighbars and

at least two of them are selected for removal, then after removal the diagram

will not remain a triangulation.

Proof. Let the three neighboring sites of a be p, q and r (see Figure 5.3(a)).

If two of the neighboring sites q and r are removed, then after removal, a

will be on an isolated edge (see Figure 5.3(b)). If all three of the neighboring

sites are removed, then after removal, a will not be part of any triangle and

will be isolated from the rest of the triangulation (see Figure 5.3(c)). 0

Lemma 5.1.3. If any of the three selected sdes is part of a triangle such that

the other twa sites on the triangle are also. on the hull (but are nat selected

for removal), then after removal the diagram will not remain a triangulation.
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Figure 5.4: Remaining diagram - second problem scenario

Proof. Let p be one of the selected sites selected for removal and forms a

triangle with two other sites, a and b (none of which are selected for removal)

and ab is not part of any other triangle( s) because it is on the hull (see Figure

5.4(a)). Then if we remove p and its adjacent edges, we will be removing pa

and pb, but not remove abo As ab is not part of any other triangle, it will just

be a dangling edge. Depending on the nature of the existing triangulation,

the following three outcomes may arise .

• If the triangulation on pa's side contains only the other site(s) selected

for removal, then that entire triangulation will be removed and a will

become isolated (see Figure 5.4(b)) .

• Similarly, if the triangulation on pb's side contains only the other site(s)

selected for removal, then that entire triangulation will be removed and
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b will become isolated (see Figure 5.4(c)) .

• Otherwise, ab will be a connecting edge between two disjoint triangu-

lations (see Figure 5.4(d)).

Whichever be the case, the remaining diagram will not be a triangulation.

D

Though there are some problematic cases, we can still find three sites to

remove in almost all cases as shown in the next lemma.

Lemma 5.1.4. It is always passible to,find at least three sites that can be re-

moved, except for anly one v.nique situation, such that the remaining diagram

is a triangulat'ian.

Proaf. We will list the cases where removing a site might be a problem and

show that in all such cases, there is an alternate choice available. Let the

sites of our concern are p, q and r- in this order.

• The first problem discussed in Lemma 5.12 can be avoided by simply

removing the isolated site along with the three selected sites .

• The second problem scenario is if either p or r is part of an ear (except

6.pqr-). [If there is a Delaunay triangle s11chthat one of its sites has only

two neighbors, then we call this triangle an ear- of the triangulation].

Let r- is part of an ear 6.r-st. Now, the following two cases can happen.

If 6.pqr- is also an ear, then we can simply remove q, r- and s. See

Figure 5.5(a).
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Figure 5.6: Third problem

If on the other hand, 6.pqr is not an ear (an thus q is connected

to another site inside the hull), then we can remove r, sand t (we

assume that t is not part of another ear, otherwise it is similar to

the first case). See Figure 5.5(b) .

• The third problem scenario is if for anyone of p, q and r, there is a

triangle with two other sites a and b on the hull and the triangle is not

an ear. As, the triangle is not an ear, there must be at least one or

more site on the hull on either side of the triangle. If, the problem was
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Figure 5.7: Solution of the third problem

with p, then there are q, r, a and possibly more sites on one side of

the triangle. Similar situation arise if the problem was with r. If the

problem was with q, then on one side there are p, a and zero or more

other sites and on the other side there are q, b and zero of more other

sites. The cases are shown in Figure 5.6.

In each case, we can choose sites from the sites which are on the left

or right part of the triangle. If there is again problem with the next

sites, then the same argument applies again and in the end when we

have only three sites on one side and those three can be selected. In

Figure 5.7(a) p, x and a can be removed. In Figure 5.7(b) r, x and b

can be removed. In Figure 5.7(e) q, rand b can be removed.

An unique scenano can be found where both the second problem and

the third problem are present and it is not possible to remove any three

consecutive sites. Here there are two consecutive ears on both side separated

by odd numbers of triangle(s) having the third problem. Figure 5.8(a) shows

the smallest such example having eleven sites and one triangle having the
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third problem. Figure 5.8(b) shows the another example having thirteen

sites and three triangles having the third problem. D

Theorem 5.1.1. It is possible for Player2 to get all n sites of Played as

neighbors v.sing at most rn/31 sites.

Proof. According to Lemma 5.1.4 Player2 can always place a new site and

remove three sites of Playerl in each step. And in the last step (when four

or less sites are left), one more new site is placed. Thus it is possible for

Player2 to get all n sites of Playerl as neighbors using at most rn/31 sites.

Even if the special case is encountered, Figure 5.9 shows how four sites

are enough to get all eleven remaining sites of Playerl as neighbors. In Figure

5.9(b) we see the outcome if only two sites e and .f are removed. After that

we can remove three sites in each step as shown in Figure 5.9(c) and 5.9(d).

Morever, Player2 could remove three sites of Playerl in each of the steps

before encountering this unique scenario. Even if the unique case involved

more than eleven sites, we would be able to remove at least three sites in

every step except for one. So, overall it is possible for Player2 to get all n
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Figure 5.9: Solution to the unique problem

sites of Playerl as neighbors using at most In/31 sites. o

It must be mentioned that this is an upper bound on the number of

sites required by Player2. The numbers of neighbors gained by each new

site mentioned in the above algorithm and proof are the absolute worst case

possibilities. The optimal solution (as mentioned in Section 4.3.2) will always

use less than or equal to the number of new sites mentioned here.

5.1.2 Variation 2: Distinct opponent neighbors

In this variation, the winning criterion is to get more distinct opponent sites

as neighbors than the opponent does. In other words, if Playerl gets N]

distinct sites of Player2 as neighbors and Player2 gets Nz distinct sites of

Playerl as neighbors, then Playerl wins if N] > Nz, Player2 wins if Nz > N]
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Figure 5.10: Elaboration of the winning criterion Variation 2 of one round
galnes

and it is a tie if NI = N2. See Figure 5.10 for further elaboration of the

problem. Here, NI= 3 and N2 = 5, so Player2 wins.

From Theorem 5.1.1, we already know that it is possible for Player2 to

get all sites of Player! as neighbors. So, to win this variation, all Player2 has

to do is to ensure that at least one of his sites does not become neighbor to

any of the sites of Player!. In the rest of the thesis, this will be referred to

as hiding a site from the opponent.

Lemma 5.1.5. To hide a site from all the existing sites, two extra new sites

aTe always sufficient.

Proof. First we consider the case when there are at least 4 sites on the convex

hull. Let p, q, T and s be four consecutive sites which are on the convex hull.

Now, we will extend the lines pq and ST until they meet at x (if they are

parallel, we assume that they meet at infinity) and form the triangle 6.qTX.

Now, we will place two new sites, a and b at the midpoints of qx and TX

(see Figure 5.11(a)). So, a will become neighbor of q and b will become

neighbor of T. Again, if aT < bq then a will also become neighbor of T; or
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Figure 5.11: Hiding a site

if aT > bq then b will also become neighbor of q [refer to the rule of edge

flipping described in Section 4.1.11. Without loss of generality, let us assume

aT < bq (see Figure 5.11(b)).

Now, if another new site, c is placed inside the triangle f,.abx but outside

the circumcircle of f,.abT, then c will be neighbor of a and b, but it will not

be neighbor of T or, in fact, any other site (see Figure 5.11(c) and Figure
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Figure 5.12: Hiding a site when number of sites on the hull is less than four

5.11(d)). Thus, c will be hidden from all the nodes that existed before using

the help of two new nodes a and b.

When the convex hull consists of less than four sites, then the same

technique still suffices. In fact, we get unbounded space to hide the new

site(s) after placing the two extra sites, a and b. Figures 5.13(a), 5.13(b) and

5.13(c) show how the two extra sites can be placed when there are three, two

and one existing site(s) on the convex hull. D

Theorem 5.1.2. Player2 can always get more distinct opponent sites as

neighbors than Played if n ~ 3. FOT n < 3, both player gets equal number

of dist'inct opponent sites as ne'ighbors.

Proof. To win Player2 must complete two tasks- a) get all sites of Playerl as

neighbors b) hide at least one site

If n ~ 5, then n - fn/31 ~ 3. According to Theorem 5.1.1 Player2 needs

at most fn/31 sites to get all sites of Playerl as neighbors. By Lemma 5.1.5,
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Figure 5.13: One round Variation 2 - for n=4 and n=3

to hide a site, Player2 needs (2 extra sites plus the site(s) to be hidden). So,

if n 2" 5 then Player2 wins.

If n = 4, then there are exactly two delaunay circles which must intersect

each other and thus Player2 needs only one site to get all sites of Playerl as

neighbors. Also according to Lemma 5.1.5, .because he has three sites left,

he can hide one his sites from Playerl. Thus Player2 wins. See Figure ??(a).

If n = 3, then Player2 can hide one of his sites using two other sites and

he can use the same two sites to get all three sites of the opponent as well

and thus Player2 can win. See Figure ??(b).

If n < 3, Player2 needs only one site to get sites of Playerl as neighbors,

but does not have sufficient sites left to hide any sites. So, Playerl also gets

all sites of Player2 as neighbors. Thus the game ends in a tie. 0

5.1.3 Variation 3: Non-distinct opponent neighbors

In this variation, the winning criterion is to get more non-distinct oppo-

nent sites as neighbors than the opponent. Before elaborating the winning
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Figure 5.14: Elaboration of the winning criterion Variation 3 of one round
games

criterion let us first elaborate non-distinct neighboTs. Mathematically, if a

site 1;i of playerX gets N(Xi) many opponent sites as its neighbor, then the

total number of non-distinct opponent sites as neighbors of PlayerX, Nx =

So, if Player! gets NI non-distinct sites of Player2 as neighbors and

Player2 gets N2 non-distinct sites of Player! 3B neighbors, then Player1 wins

if NI > N2, Player2 wins if N2 > N] and it is a tie if NI = N2. See Figure

5.14 for further elaboration of the problem. Here, NI = 8 and N2 = 8, so it

is a tie.

Though it was possible to formulate a winning strategy to get more dis-

tinct opponent sites aB neighbors (refer to Section 5.1.2), no such strategy

can be found when we are counting non-distinct neighbors.

Theorem 5.1.3. No winning stmtegy exists when the winning cTiteTion is

to get mOTe non-distinct opponent sites as neighboTs than the opponent does;

and the game always ends 'in a tie.

Pmoj. Being neighbors is a mutual relationship, If a site, Pi, of Player! gets
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rn neighbors, then rn sites of Player2 will get Pi as their neighbor. Applying

the same logic for every site placed by Player2, we can see that the total

number of non-distinct neighbors from the opponent sites is the same for

both players. o

5.1.4 Variation 4: Distinct opponent and self neigh-
bors

In this variation, the winning criterion is to get more distinct (opponent sites

as neighbor - self sites as neighbor) than the opponent does. Here, an extra

parameter is added to the criterion described in Variation 2 (section 5.1.2).

The extra paprameter is the number of self sites as neighbors. When a site

gets another site belonging to the same player as its neighbor, then they get

self sites as neighbors or become self neighbor's.

Now, if N1 is the number of distinct sites of Player2 which are neighbors of

Playerl, M1 is the number of distinct sites of Playerl which are neighbors of

Playerl, N2 is the number of distinct sites of Playerl which are neighbors of

Player2, andlvI2 is the number of distinct sites of Player2 which are neighbors

of Player2, then the score of Playerl, 51 = N1 - M1 and the score of Player2,

51 = N1 - MI. So, if 51 > 52 then Playerl wins; if 51 < 52 then Player2

wins and otherwise, it is a tie.

Figure 5.15 gives an example. Here, N1 = 3, M1 = 5, N1 = 5 and M1 =

4. So, Player2 wins in this example.

In this variation the two players not only need to maximize opponent

sites as neighbors, but also minimize self neighbor ships. So, as well as
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Figure 5.15: Elaboration of the winning criterion Variation 4 of one round
games

hiding sites from the opponent Player2 has to try to hide his sites from his

own sites to minimize self neighbor ships. We will see that, the strategy

applied for Variation 2, with a small modifition, is sufficient to guarantee

that Player2 is the winner for this variation as well.

In the strategy discussed in Variation 2 was to get all 11, sites of Playerl

as neighbors using only 111,/31 sites and then use two sites to hide the rest of

the sites from Playerl (see Section 5.1.2). Lemma 5.1.4 showed that we can

always find three sites on the hull that can be removed along with the edges

incident on them. The technique was to place a new site where it gets the

selected three sites as neighbors and then remove the sites and keep repeating

the process. Now, we want to add another criteria to the technique. Now we

force a restriction on the exact position of the placement.

When Player2 places a new site, qi, to get the selected three sites PJ' Pk

and PI of Playerl as neighbors, then it might (or might not) be possible that

qi gets other sites of Playerl as neighbors. It is very easy to check using

the dual graph (see Section 4.2). First we shall find the topmost node, A,
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which ensures Pj, Pk and PI as neighbors. If A is in level 1 then no other sites

will become neighbors; if A is in level I, then Player2 can get at most I - 1

other sites if he wants (he can get less if he wishes by just choosing a cell

corresponding to a lower level node) as well as the three as neighbors using

just one new site. We will call these sites candidates for removal.

Let Ph is one of the candiates for removal. Now Player2 will check if

there is any possibility that the removal of Ph will result in an incomplete

triangulation (see Lemma 5.1.2 and Lemma 5.1.3). If the removal does not

result in an incomplete triangulation, then Ph will be also be selected for

removal along with Pc, Pi and Pg' Player2 will check all I - 1 candidate sites

in the same way and identify all the sites that can and cannot be removed.

Now, he will place the new site such that none of those non-removable sites

are neighbors of the new site. Then he will remove the sites that are neighbor

of the new site (at least three and maybe more) and their incident Delaunay

edges and continue.

The following lemma shows the benifit of this modification.

Lemma 5.1.6. If Player2 places his new site such that all the site of Played

that becomes its neighbors co.n be removed, then at most rn/31 sites used by

Player2 will not be neighbors of ea.ch other. Morever, each of the sites of

Played will remain neighbors of at least two other sites of Played.

Proof. When Player2 places his sites in this way, then after removal none of

the remaining sites of Playerl are neighbors of the site placed by Player2. So,
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Figure 5.16: Isolated sites of Player1

each site placed by Player2 will be surrounded by sites of Playerl such that

clusters having Playerl's sites on the boundary and Player2's site as nucleus

will be separated by the edges (and thus triangles) that were removed. Thus

the sites of Player2 cannot be neighbors of each other.

According to the rules of edge flipping (see Section 4.1.1), existing De-

launay edges (i.e. neighborships) are destroyed if they intersect any newly

formed Delaunay edge. In this scenario, there can be no Delaunay edges

originating at the newly placed site of Player2 and ending at some other site

outside the cluster. So the existing Delaunay edges forming the hull of the

sites of Player2 which are neighbors of the newly placed site remains intact.

Thus the sites of Playerl will remain neighors to at least two other sites of

Playerl.
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n~2 n = 3

Figure 5.17: Winning Variation 5 of one round game when n = 2 and n = 3

Theorem 5.1.4. lfn 2'" 2, then Player2 can always get more distinct (oppo-

nent sites - self sites) as neighbors than Playerl. For n = 1, both player gets

equal number of distinct opponent sites as neighbors and the game is a tie.

Proof. The second part of the theorem is trivial. Here NI = N2 = 1 and MI

= M2 = 0 and thus the game is a tie.

When n 2'"4, according to Theorem 5.1.2, NI ::; (n -1) and N2 = nand,

according to Lemma 5.1.6 MI = nand M2 = n - rn/3l thus, Player2 wins.

For n = 2 and n = 3, Player2 can place his sites in the way shown in

Figure 5.16 and win. D

5.1.5 Variation 5: Non-distinct opponent and self neigh-
bars

In this variation, the winning criterion is to get more non-distinct (opponent

sites as neighbor - self site as neighbor) than the opponent. More specifically,

if NI is the number of non-distinct sites of Player2 which are neighbors of

Playerl, Mj is the number of non-distinct sites of Playerl which are neigh-
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Figure 5.18: Elaboration of the winning criterion Variation 5 of one round
gaInes

bars of Playerl, Nz is the number of non-distinct sites of Playerl which are

neighbors of Player2 and M2 is the number of non-distinct sites of Player2

which are neighbors of Player2, then the score of Playerl, 81= N1 - M1 and

the score of Player2, 81 = N1 - M1. So, if 81 > 82 then Playerl wins; if

81 < 8z then Player2 wins and otherwise it is a tie.

Figure 5.18 gives an example. Here, N1 = 8, 1\11

= 10. So, it is a tie in this example.

10, N1 = 8 and M1

R.ecall from Section 5.1.3 that no winning strategy existed for variation

3 where the criterion was to get more non-distinct opponent sites as neigh-

bars. So, number of non-distinct opponent sites as neighbor is equal for both

Playerl and Player2 [i.e. N1 = Nz]. But, the 'number of non-distinct self

sites as neighbor' can be different [M1 and M2 can be different] and that

difference will decide who wins this variation of the game.

Once again we will try to use the same strategy used before, the 'get all

and hide at least one' strategy. But we can easily see that the strategy is

not so good for winning this variation. Because the strategy packs a lot of
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Figure 5.19: Elaboration of AlgoTithm 5.1.5.1

sites of Player2 in a small area (to hide them), the rlUmber of non-distinct

self neighbors may become quite high and Player2 could lose in many cases.

80, a different strategy is warranted. The new strategy is outlined below-

Algorithm 5.1.5.1

1. Get all sites of Player! as neighbors using at most In/31 sites following

the strategy described in Variation 4.

2. Phce the remaining sites uniformly around the outside of the convex

hull. The sites should be placed in such a way that they are in convex

positions and the distance of each of these sites from their closest site

on the hull is greater than the length of their closest edge on the hull

AlgoTithm 5.1.5.1 is elaborated using an example in Figure 5.19

Theorem 5.1.5. AlgoTithm 5.1.5.1 is a winning stmtegy fOT vaTiation 5 of

one round games.
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Proof. Here, we can ignore N1 and N2 as they are equal when we consider

non-distinct neighborships.

And, according to Lemma 5.1.6, M1 :::> 2n

Also according to Lemma 5.1.6, the sites of Player2 used for getting all

sites of Playerl as neighbors are isolated from each other. But, the rest of

the sites of Player2 which are placde outside the hull, will be neighbors of

exactly two other sites of Player2. So, Nh ::; 2(n - In/31)
Thus, Player2 wins.

5.2 n Round Games

D

In n-TOnnd ga.mes, each player gets n rounds to place his n sites. The players

take turns to place their sites one at a time inside a 2D region. The next

subsection describes the features of n-round games, which makes it trickier

to formulate a winning strategy.

5.2.1 Difference with one round games

In one round games, Playerl had to place his sites without any knowledge

whatsoever about how Player2 is going to place his sites. On the other

hand, Player2 had complete knowledge of the position of the sites placed by

Playerl. But in n round games, both players have similar advantages and

disadvantages. Here, in the i'h round, both players know exactly where the

previous (i - 1) sites of both Playerl and Player2 were placed.

Thus both players have the ability to dynamically take decisions to opti-

mize each of their turns and both players can actively try to undermine the
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strategy of the other. For example, it is possible that in the ith round Player2

places a site, qi and gets a site, Pi of Playerl as its neighbor. But, it is also

possible that in the (i + 1)lh round Playerl places another site, Pi+! between

Pi and qi, which makes Pi hidden from qi. It is again possible for Player2 to

place a site, qi+! in the same round and get both PH! and Pi as neighbors.

Even if a player makes an optimal move in each step, it does not guarantee

that he will win because the other player is also making optimal moves in

each round. The only way to win is by taking advantage of either of two

unique rounds - the first round or the last round.

There are many examples of games where Playerl can win by making a

move in the first round which ensures that no matter how good Player2 plays,

Playerl always retains the advantage and in the end Playerl will eventually

win. But in our games, such a strategy is not possible because the playing

area is virtually unbounded and it does not matter where Playerl places the

first site.

The other possibility is for Player2 to make a move in the last round

that ensures that he wins. But for Voronoi neighbor garnes, for most of the

variations, the last round is not unique from any other round. If there is a

move that can ensure Player2 wins after nth round, then that same strategy

should ensure that Player2 is ahead after the (n - l)th round. By repeating

thc same argument we can say that the same strategy should ensure that

Player2 is ahead after every single round. It can either be done by achieving

some advantage in the first round and maintaining for the rest of the game
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or maybe even achieving some advantage in every step. Thus our objective

comes down to either finding a unique last move that ensures victory or

finding a strategy that ensures that Player2 gets some advantage after the

first round and remains ahead after every single round no matter how Playerl

plays.

5.2.2 Variation 1: Maximizing opponent neighbors

In this variation, the winning criterion is to get as many distinct opponent

sites .as neighbors as possible. If the number of distinct sites of Player2 which

are neighbors of Playerl = Nj and the number of distinct sites of Playerl

which are neighbors of Playerl = N2, then the objective of this variation is

to maximize Nj and N2.

The strategy in each step is to try to get as many distinct opponent sites

as neighbors as possible and at the same time ensuring that the opponent

gets as few as possible.

Theorem 5.2.1. In n-round Voronoi neighbor games, if both players makes

optimal moves in each round, then after n rounds both player get equal num-

ber of distinct opponent sites as neighbors.

Proof. As indicated in the last paragraph of Subsection 5.2.1, we should

explore the first round first. After the players place their first site, both have

the other as neighbors and none has any advantage (see Figure 5.20).

In the second round, Playerl cannot gain any new sites of Player2 simply

because there are no new sites. So, the best Playerl can do is to try to ensure
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Figure 5.20: State of the game after first round

•I;
(a) (b)

Figure 5.21: State of the game after second move by Playerl.

that one of his sites is hidden from Player2 by either placing ])2 between ])1

and ql or placing ])2 in such a way that ])1 is between ])2 and ql (see Figure

5.21 (a) and (b)). If Playerl had placed the site anywhere else, then Player2

would have had 2 opponent sites as neighbors and Playerl would have had

only one, giving the advantage to Player2.

Now, if Player2 tries to acquire another site as neighbor by placing q2,

then Playerl will also acquire one more neighbor and again none will have

any advantage. If it was only a 2-round game then both are 'winners (see

Figure 5.22). On the other hand, if Player2 tried to hide q2, then neither of

the players would have gotten optimum number of opponent sites and neither

player would have won if it was a 2-round game (see Figure 5.23).

VVesee that, in each round, Playerl always hides one of his sites from

Player2. Player2 can either choose to get the hidden site of Playerl as neigh-

bor or it can hide its own site. For example, all possible outcomes after the

end of round 3 is shown in the figures 5.24.

The outcome of each round is equal for both players; i.e. if Player2 decides
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• • •
P, l) q]

/ ~

• • • • • • • •
q, P, p] q] P, q, p] q]

Figure 5.22: State of the game after second round if Player2 attacks .

• • •

Figure 5.23: State of the game after second round if Player2 hides a site.

to attack, then both players get one more neighbor and if Player2 decides to

hide, then neither player gets any new neighbors. Thus, even if the game has

more rounds to come, the finally both Players will always have equal number

of opponent sites as neighbors.

5.2.3 Variation 2: Distinct opponent neighbors

D

In this variation, the winning criterion is to get more distinct opponent sites

than the opponent. If the number of distinct sites of Player2 which are

neighbors of Playerl = Nj and the number of distinct sites of Playerl which

are neighbors of Player1 = N2, then Playerl wins if Nj > N2, Player2 wins

if Nj < N2 and otherwise it is a draw.

The strategy for this variation is actually the same as variation 1 (sub-

section 5.2.2). And it follows from Theorem 5.2.1 that, this variation ends

in a tie if both players play optimally in each round.
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Figure 5.24: Possible state of the game after third round

5.2.4 Variation 3: Non-distinct opponent neighbors

In this variation, the winning criterion is to get more non-distinct opponent

sites as neighbor than the opponent. In other words, if the number of non-

distinct sites of Player2 which are neighbors of Playerl = Nj and the number

of non-distinct sites of Playerl which are neighbors of Playerl = N2, then

Playerl wins if Nj > N2, Player2 wins if Nj < N2 and otherwise it is a draw.

The same refhsoning applied for variation 3 of one round games (see Sub-
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section 5.1.3) applies here too and as a result the game always ends in a tie

regardless of the strategies adopted by the players.

5.2.5 Variation 4: Distinct opponent and self neigh-
bors

In this variation, the winning criterion is to get more distinct (opponent sites

as neighbor - self site as neighbor) as neighbors than the opponent. Let, NI .

= number of distinct sites of Player2 which are neighbors of Player, MI =

number of distinct sites of Playerl which are neighbors of Playerl, N2 =

number of distinct sites of Playerl which are neighbors of Player2 and M2 =

number of distinct sites of Player2 which are neighbors of Player2.

Then we can define the scores of the players as, 51 = (NI - MI) and 52

= (N2 - M2). The player with a higher score wins.

Theorem 5.2.2. In n-round Voronoi neighbor games 'When the winning crite-

rion is to get mar'e distinct (opponent sites as neighbor - self site as neighbor)

than the opponent and if both players makes optimal moves in each round,

the game end in 0. tie ..

Proof. After the first round, 51 = 52 = 1. 80, the game is tied.

Now we consider the second round. Let us analyze the options Playerl

has and their consequences in this round. There are three possibilities - a)

hiding one of his sites from Player2, b) hiding the new site from his own sites,

and c) not hiding. Figure 5.25 shows all three possibilities. Though Playerl

is behind in all three cases, but option (b) is the best choice.
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(a)

• • •
(b)

•
(e)

Figure 5.25: State of the game after second move of Player!

• •
(a)

• • • •
(b)

• •
(c)

Figure 5.26: State of the game after second move of Player!

Now, Player2's goal is to ensure that his lead is intact or increased in

this round. If Player! chose options (a), then Player2 will use g2 to get as

neighbor the site of Player! which was hidden from him and also try to ensure

that g2 is hidden from g]. On the otherhand, if Playerl chose options (b) or

(c), then Player2 cannot acquire any new distinct opponent site as neighbors

and cannot hide his new site from Player!. So, the best option is to hide

g2 from g]. Figure 5.26 shows the state of the game after Player2 places his

second site. So, Player2 is ahead unless Player! chose option (b) in his move.

To generalize Player2's strategy we can state that- if in any round, Player!

uses option (a) and hid one of his site from Player!, then Player2 will use his
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site to get the hidden site as neighbor and also try to hide the new site from

his own sites. If, Playerl used option (b) or (c), then Player2 already has all

sites of Playerl as neighbors and the only way to improve is by hiding his

new site from his other sites.

Now to find the best policy for Playerl in general, let us assume that,

after (i - l)tI, round, the game is tied. And we can note that, in each round,

if Player2 tries to hide his site then Playerl can always get it as neighbor

using his new site in the same round. So, after the (i _1)tlt round, N[ = N2

= i-I (due to the strategy followed by Player2) and M[ = M2 (due to our

assumption that the game is tied).

Then, in the itlt round, if Playerl chooses option (a), M[ will increase by

at least 1, and N[, N2 and M2 remains the same. Then, Player2 can easily

get the hidden site as neighbor using qi and mayor may not be able to hide

qi from his own sites. So, N2 and N[ increases by 1, NI[ remains the same

and M2 mayor may not increase. In total, the ith round increases the lead of

Playerl or retains it. So, this is not the optimal playing strategy for Playerl.

Again, in the _itlt round, if Playerl chooses option (c), M[ and N2 will

increase by at least 1 and M2 and N[ remains the same. Then, Player2 will

try to hide qi from his own sites. So, N[ increases and M2 mayor may not

increase. In total, the ith round increases the lead of Player2 or retains it.

So, this is also not the optimal playing strategy for Playerl.

Again, in the itlt round, if Playerl chooses option (b), N2 will increase by

1 and N[, lvI[ and M2 remains the same. Then, Player2 hides qi from his
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own sites. So, NI increases and everything else remains the same. In total,

the ith round does not change the outcome of the game.

So, the best strategy for Player1 is to follow option (b) in each step which

will ensure that the outcome of the game remains the same. Thus, if both

Players follow the optimal strategy the the game ends in a tie. o

5.2.6 Variation 5: Non-distinct opponent and self neigh-
bors

In this variation, the winning criterion is to get more non-distinct (opponent

sites as neighbor - self site as neighbor) than the opponent. Let, NI be the

number of non-distinct sites of Player2 which are neighbors of Playerl, M] be

the number of non-distinct sites of Playerl which are neighbors of Player1,

N2 be the number of non-distinct sites of Playerl which are neighbors of

Player2 and M2 be the llIlmber of non-distinct sites of Player2 which are

neighbors of Player2. Then we can define the scores of the players as, 51 =

(NI - MI) and 52 = (N2 - M2). The player with a higher score wins.

Theorem 5.2.3. In n-T01tnd Vomnoi neighboT games when the winning cri-

terion is to get more non-distinct (opponent sites as neighbor - self site as

neighbor) than the opponent and if both players makes optimal moves in each

mund, the game end in a tie.

Pmof. As discussed in Subsection 5.1.5 about variation 5 of one round games,

when we count non-distinct neighbors, then NI will always be equal to N2

and to win a player has to try to reduce M. So, in each round, both players
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Figure 5.27: After second round

will simply try to hide their new site from their existing sites. This is the

optimal strategy.

Once again we will analyze the states of the game starting from the second

round (first round is non-consequential). In the second round, Playerl can

hide P2 from PI by ensuring that ql on the line PIP2. In the same way, Player2

can hide q2 by ensuring that either PI or P2 is on the line Qlq2. (see Figure

527)

The same pattern will continue and the game will end in a tie. 0
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Chapter 6

Supplementary Results

In this chapter we present few results which, though not integral parts of

the primary objective of the thesis, were developed while working with the

main objectives and non-trivial enough to deserve a special mention. We will

introduce a concept of Voronoi layers and also present a novel algorithm to

compute the arrangement of Delaunay circles in linear time. The existing

algorithms for computing arrangement of circles takes quadratic time. We

show that our algorithm successfully identifies all possible cells of the ar-

rangement generated by the intersection of Delaunay circles which are not

more than two Voronoi layers apart. However, our algorithm fails to detect

the cells formed by intersection of circles which are more than 2 layers apart.

It must be mentioned here that intersections beyond two layers in very rare

and it is possible to detect those intersections, but not in linear time. We

believe our algorithm gives a very good approximation in quick time and

might be useful in many situations.
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6.1 Voronoi layers

Voronoi layers are defined relatively; i.e. we say that a Voronoi site/region is

in layer 2 with respect to a reference Voronoi region. More precisely, Voronoi

layers are sets of Voronoi sites/regions such that, Layer 1 consists of the ref-

erence site/region, Layer 2 consist of sites/regions that are neighbors of the

reference site/region, Layer 3 consist of sites/regions which are neighbors to

at least one site/region of Layer 2 but not neighbors of the site/region of

Layer 1 and so on. In the rest of the chapter, the statements - 'a site is in

layer x' and' a region is in layer x' are used synonymously.

More precisely, If p is the reference site,

Layer 1, L] = {p}

Layer 2, L2 = {x Ilf x [x E N(p)]}

Layern, Ln = {x I Ifx [:Jy [y E Ln-] &x E N(y)] &lfz [z E Ln-2 U ... U L] &x rf.

N(z)]]}.

Refer to Figure 6.1 for further elaboration. In the figure layers are shown

in different shades of gray.

6.2 Generating the arrangement of Delaunay
circles

VVementioned in Section 2.4 that the arrangement of n circles in the plane can

be computed in close to O(n2) time. But, Delaunay circles have some special
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Figure 6.1: Yoronoi lacyers

attributes and properties which might be utilized to develop an algorithm to

compute the arrangement which will run faster than the existing algorithm.

The following subsections will present the basic idea, the algorithm and its

analcysis.

6.2.1 Basic ~dea

We know that a propertcy of Delaunacy circles is that thecy always go through

three or more Yoronoi sites and are centered at the Voronoi vertices (refer

to Section 2.1). So, if there are Tn Voronoi vertices on the perimeter of the

Yoronoi region of a site ]i, then Tn Delaunay circles goes through ]i.

Now, if we draw lines connecting the Voronoi vertices to the Voronoi sites,

then these lines will actually represent the radii of the Delaunay circles going

through that sit,e. We will be able to decide which circles intersect which and
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c,

Figure 6.2: Basic idea of generating the arrangement

thus find the cells of the arrangement by simply using the angles between

these radii.

Identifying cells involving two circles

.We observe that if more than one circles pass through a single point, then

they must either intersect or be tangent to each other. Two circles centered

at C] and C2 are tangent to each other if the line C1 C2 is equal to the sum of

their radii. It follows that two circles will be tangent to each other only if

the angle between their radii is 180°; otherwise all the circles are pair-wise

intersecting and for each intersection there will be a corresponding cell which

is part of the two circles.
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Figure 6.3: The radii of the circles centered round a Voronoi region

Identifying cells involving three or more circles

A cell involving three circles is formed when two cells each involving two

circles, one of which is common, intersect. In. other words, if a cell involving

circles A and B intersects a cell involving circles Band C, then a new cell

is formed involving circles A, Band C. Such intersections can happen when

the sum of the angle between the radii of A and B and the angle between

the radii Band C is less than 1800
•

Cells involving more than three circles can also be found by the same

technique.

Going beyond one Voronoi region

The previous subsections elaborated how the intersections of Delaunay cir-

cles centered round the perimeter of a single Voronoi region can be found
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Figure 6.4: Identifying intersections from the radii

out. But each Voronoi vertex is shared by three Voronoi regions and each

Delaunay circle passes through three Voronoi sites. So, when we compute

the arrangement of the Delaunay circles going through a particular Voronoi

site, we only generate a part of all the intersections and cells formed by those

circles.

But if we apply the same technique to all the Voronoi regions, then the

arrangement will be complete. For example, in Fig 6.5 it is shown that by

considering the Regions V (p), V (q) and V (r), the arrangement ir;volving

circle C1 is completed.

6.2.2 Algorithm

To compute the arrangement generated by the circles centered round a

Voronoi site, the algorithm works by rotating an imaginary ray counterclock-

wise and centred at a Voronoi site. Whenever this ray encounters a radius,

it creates a level 1 node for the corresponding circle. It will also create a

98



4

Figure 6.5: Identifying all intersections

level 2 node with the most recent and second most recently created level 1

node as its children. For each node, the algorithm does not store all the

circles that formed the corresponding cell, rather it stores the name of one

of them- the one whose radius was encountered first .. For ex'ample, if the

algorithm encounters the radii r], T2, r:J and r4 in this order and there is a

node corresponding to the intersection of the circles C2, C3 and C4, then the

algorithm will only remember that r2 is the first radius encountered for that

node.

The algorithm will continue to create higher level nodes in the same way.

But while trying to create a level i node, if it finds that the angle between

the radius first encountered for the previously created level i-I node and

the current radius encountered by the ray is greater than 1800, then it does
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not create the level i node or any higher level nodes.

The algorithm terminates when the ray has encountered every radius

twice.

Elaboration of the algorithm

In this subsection we will elaborate the algorithm with an example. The

arrangement for which the algorithm will be applied is shown in Figure 6.6.

Figure 6.7 shows the outcome of the algorithm step by step. Figure 6.7(a)-(f)

shows the state of the dual graph after the j'ay encounters 1-6 radii respec-

tively and Figure 6.7(g) shows the final arrangement .

•
4

•

•

5

•

•

Figure 6.6: The arrangement
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(a)

~.88
(b) (e)

(d) (e)

1,2,3,4

(I)

(g)

Figure 6.7: Elaboration of the algorithm for constructing the arrangement
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6.2.3 Complexity of algorithm

The following theorem gives the timing complexity of the algorithm.

Theorem 6.2.1. OUI' algorithm computes the armngement in O(n) t.ime

PTOOf. The ray encounters each radii twice to compute the an'angment for a

single Voronoi region. As each Voronoi vertex and thus each radius belongs

to three Voronoi regions, so if we consider the entire Voronoi diagram, each

vertex will be encountered exactly six times. And as there are at most 2n -

5 vertices in a Voronoi diagram, the total number of encounters is 12n - 30.

For each encounter, the number of nodes created is less than or equal to

the total number of circles going through a particular Voronoi site. In other

words, when we are dealing with m circles, there can be at most m levels. Vye

know that on an average, each Voronoi region has at most 6 vertices (Section

2.1.1). Thus, total complexity of the algorithm is 36(2n - 5) or O(n). 0

6.2.4 Limitation

The limitation of the algorithm presented here is that it cannot detect some

possible intersections. It only detects intersections which are within two

layer. But in reality there can be intersections beyond layer2. We have given

one such example in Figure 6.8.

But we want to mention here that the kind of intersections which are

undetected by our algorithm happens very rarely and only when parts of

the Voronoi diagram approach degenerate or non-general positions. So we
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Figure 6.8: Example of intersection beyond 2 layers

1 believe for many applications (for example, for the one round games) the

above algorithm would be sufficient,
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Chapter 7

Conclusion

In conclusion, we are going to summarize the major contributions of this

thesis.

First of all, we have introduced a number of exciting new problems which

are both theoretically interesting and have direct applications in facility 10-

cation. We have established the properties of the arrangement of Delaunay

circles, and used them to define an algorithm to find the location where a

new site can be placed to maximize its neighbors. Our proposed dual graph

of the arrangement can be built while the arrangement is being computed

without additional cost and after the dual graph is complete, the location

that maximizes Voronoi neighbors can be found out in constant time. We

have also proved that the problem of finding minimum number of new sites

needed to get all existing points as neighbors can be mapped to the set cover

problem, and also proved that the possible candidates for the set cover can

be restricted to only the nodes of the dual graph which have no parents.

We are also the first to introduce the Voronoi neighbor games for which

we formulated several well defined variations. We devised winning strategies
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for some of the variations and for the other variations, we proved that the

game ends in a tie if both players play optimally and thus no winning strategy

is possible.

We also defined an algorithm to construct the arrangement of Delaunay

circles in 0 (n) time and can detect all cells generated by the intersection of

Delaunay circles whose centers are at most two Voronoi layers apart. We

also identified examples where there can be intersection of circles which are

more than two layers apart.

7.1 Possibilities for further research

One obvious area for further research is to study the variations of the game

for which winning strategies do not exist. If 1110rerestrictions are applied

on the placement of new sites, then might exist. One example of possible

restrictions can be - enforcing that the sites must be placed on a grid and

inside a defined boundary. This means that sites cannot be placed arbitrarily

close to or arbitrarily far from another site.

Another area where future research can be focused is on improving the

algorithm for generating the arrangement of Delaunay circles so that it can

detect intersections beyond two layers efficiently.

Also, we proved that the candidate sets for the set cover can be restricted

to the sets of neighbors corresponding to the nodes of the dual graph having

no parents. Finding the exact number of nodes with this property could be

another challengilig topic of research.
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And finally, in our thesis, we assumed that the service provided by each

facility provider were equivalent and the receivers always affiliated with the

provider which was geometrically closest. But there can be situations when

some service providers can be for preferred by the receivers even if they are ge-

ometrically further. In such cases, we can model them using weighted Voronoi

diagrams. Therefore, it will be interesting to investigate the maximization

and optimization problems aB well the games for the weighted Voronoi dia-

graIn.
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