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ABSTRACT

Practicable and realistic reservoir characterization is essential for optimal reservoir

management. In this study, a randomized back-propagation neural network model is
developed for fonnation permeability prediction. The model has only one hidden-

layer, and tbe inputs to the model are core porosity, facies identifier, sample

thickness, and well sample location. A number of sensitivity studies for permeability

prediction are performed. Prediction errors from the model are analyzed and a post.

processing scheme for error mitigation is investigated. Neural network responses

were compared with those using conventional methods for permeability

determination. There are some specific advantages of using the developed model.

Characterization of prediction space is observed to be better. However, the

limitations of the study were also highlighted. A variety of applications of artificial

neural networks in reservoir engineeringproblems are reviewed in this study.
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•
CHAPTERl

INTRODUCTION

The demand for energy is ever increasing. For today's world, oil and gas is one of

the main sources of energy for the industrial development and maintaining living

standard However, the finite sources of lrnown reserves are depleting. As a

consequence, there is growing endeavor for search for unknown or unexploited

reserves and optimal reservoir management of the developed fields. Fierce

competition and the urge for environmental friendly exploitation of natural resources

drive most oil and gas companies to have greater and better control over their plays

Characterization of the reservoir is thus deemed an essential aspect in reservoir
management.

Reservoir characterization is an important domain of petroleum engineering. It is the

precondition for reservoir simulation as well as effective reservoir management. It

entails various aspects of reservoir and rock-fluid modeling, namely formation

property like porosity, permeability, fluid saturation, lithology prediction, and so

forth. For proper and effective reservoir characterization, the directional and spatial

variation of rock property should be determined. This study focuses on one of the

processes involved in permeability characterization.

The traditional methods for penneability determination are often empirical in nature.

Carman-Kozeny equation for penneability determination is a common approach. A

number of limitations exist in the applicability of this approach. It is valid for packs

of uniformly sized spheres. Another drawback is that surface area can be detennined

only by core analysis, and only with special equipment. Variation of Kozeny

constant for consolidated porous media creates another problem to work vvith

Carman-Kozeny equation. Multiple linear regression method is also used for the

estimation of permeability. Multiple regression methods often have an inherent

averaging tendency. Nonetheless, the assessment of uncertainty in estimation is

precluded in these methods.

,



The influence and application of virtual intelligence have grown in numerous fields

of science and engineering. Virtual intelligence tool such as artificial neural network

is being widely used. Artificial neural networks have emerged as useful tools in

petroleum engineering, particularly reservoir characterization. In this study, a neural

network model based on back propagation algorithm has been developed for

penneability determination.

The neural network is trained with available data. During training, the neural

network gathers knowledge about the system and stores them as memory matrix.

This memory matrix is then used for prediction. Neural network is error tolerant and

a data driven model. Very detail knowledge of the system is not necessary to work

with neural network. It requires less input parameters for reservoir characterization

with respect to conventional mathematical model. So, neural network can be used for

reservoir characterization in an inexpensive way.

,



CHAPTER 2

STATEMENT OF THE PROBLEM

Determining permeability from well logs is an essential element in reservoir

modeling. The task of deriving permeability values is however not a simple exerclse.

Present day technologies reduce the complexity of the problem to some extent. The

general convention is to use simple permeability-porosity relationships These simple

relationships are only valid for unconsolidated sand and homogeneous lithology. In

fact, permeability is a complex function of several interrelated factors such as

lithology, pore fluid composition and porosity. Well logs respond directly to these

factors. There have been attempts to establish their relationships. As an alternative to

conventional methods such as Cannan-Kozeny equation, multiple linear regression

analysis, one can implement an artificial neural network technique to predict

permeability more accurately from well logs.

The artificial neural network models are data driven that is entailed in the "training"

stage of model development. The trained neural network models are able to capture

information and knowledge about the system. They can extract nonlinear

relationships that are immensely difficult to model from the first princlples.

Primarily the objectives of this work are:

• To develop a neural network model to predict well permeability

• To optimize the prediction process and development of a post-processing

scheme to minimize estimation error

• To efficiently estimate penneabilities at ''uncored" wells

• To compare neural network model responseswith conventional methods.

;



Outline of the work is given below,

• Review of application of neural network in Petroleum Field

• Development of the computer code to implement a neural network model

using core-data

• Prediction of well permeability using neural network model. This entails a

case study with real core data.

• Optimal parameter selection of the neural network model

• Sensitivity analysis using neural network model

• Error analysis of the model predictions

• Development of a post-processing scheme for error correction

• Permeability estimation using conventional methods,

4



CHAPTER 3

LITERATURE REVIEW

This chapter reviews the available literature of artificial neural network applied to

petroleum engineering, Only selective works have been considered. The review

should not be considered an eKbaustiveaccount of the applications of neural network
in petroleum engineering domain,

Artificial neural networks (ANN) are collections of computational techniques that

mimic the functions of human brain These techniques can recognize patterns,

approximate functions, feature detection and other scientific and engineering

problems. A discussion of the basics of artificial neural networks will be given in

Chapter 4 In a general sense, applications of neural networks are most effective

when there are no established relations among the parameters, Neural networks

attempt to capture the non-linear relationship through some data driven algorithms.

However, the application of artificial neural networks should be made with caution;

it is strongly recommended not to use these algorithms in a "black-box" manner,

Applications of neural networks in petroleum engineering have been around since the

mid-nineties. Amongst the first uses of neural network in petroleum engineering are

in the field of reservoir characterization. In the following sections, some of these

applications will be briefly discussed here. These applications are categorized into

two broad sections: one for reservoir characterization, and the other for reservoir
engmeermg.

3.1 Applications of Neural Networks in Reservoir Characterization
.'

Reservoir characterization entails building reservoir models and characterizing

reservoir properties. Information from different sources is obtained for reservoir

characterization, Different sources of information include the domains of geology,

geophysics, geochemistry, stratigraphy, sedimentology, engineering, and relevant

geosciences. Data from these sources can vary in resolution, information-content,

and scale. The challenge in reservoir characterization is to integrate these distinctly



different pieces of information into building plausible reservoir models Applications

of neural networks in reservoir characterization are briefly discussed here.

Estimation of permeability is very difficult in uncored well as there is no direct

relationship between permeability and lithology. In fact, the relationship between

permeability, porosity and other data 5Uchas grain size, type and others are very

complex, and area specific. Log responses depend on lithology, fluid composition

and porosity. A predictive equation for uncored intervals can be developed using

multiple linear regression analysis. But fundamental assumption for linearity may not

be valid Huang and Shimel (1994) developed a back-propagation neural network

model to predict permeability in uncored well. Input parameters were latitude,

longitude, depth, spontaneous potential, gamma ray, density, sonic, neutron porosity,

density correction. Permeability was output parameter. The networks contain one

hidden layer. Number of nodes in input, hidden and output layers were 9, 12, and I,
respectively.

Mohaghegh and Arefi (1994) developed neural networks model to predict rock

property such as porosity, permeability as well as water, gas and oil saturation using

geophysical logs. Mohaghegh and Arefi (1995) developed a neural network model to

predict permeability using log data.

Mohaghegh and Popa (1995a) developed a virtual intelligence software tool based on

detail analysis of a group of well logs. The software was then used to analyze the
remaining well logs at a reduced time and cost.

Balan, Mohaghegh and Ameri (1995) developed methods for empirical, statistical

(multiple regression) and a back-propagation neural network model to detennine

permeability of heterogeneous oil bearing formation from well log data. It was found

that empirical modeling requires individual equation for individual field. Further,

fluid saturation, porosity and cementation factors are necessary to start modeling

through empirical method. A neural network model of three layers with 18 hidden

neurons was developed and trained. The neural network outperformed the other

techniques. The major advantage of these models is that they do not require fluid

saturation, porosity data, and they are nnt affected by the cementation factor.



Mohaghegh et al. (1995b) compared the prediction capability of multiple regression

and back-propagation neural network modeL Multiple regression systematically

underestimated the permeability. Also, it was not able to predict permeability for the

entire domain, Neural network models predicted the target permeability values closer

to standard core data, Furthermore, the entire domain permeability could be
predicted.

White and Molnar (1995) developed neural networks for wne identification in a

complex reservoir. The neural networks were trained using geophysical data along

with previously defined various zones. Then the developed neural networks were

used to identity zones, previously known by core analysis, for different wells.

Walls and Taner (1995) developed a model for reservoir classification based on

seismic attributes and borehole data. Core, well log, and post-stack seismic data were

used to predict lithology. The method was based on combination of core, well logs

and pattern recognition via neural networks. Borehole parameters to the network

were density, primary velocity, secondary velocity, clay volume, and water

saturation. Output was reservoir classification indicators, Seismic data are found

most effective to predict inter-well lithology. To tie well log derived attributes and

seismic attributes, synthetic seismogramswere generated and used to train the neural

networks, A suite of attributes was derived. At last five attributes were found

sufficient enough to generate acceptable results. These five attributes were input to

the neural network and output was lithology column. Using a neural network trained

to log lithology in the time domain gives lithology from synthetic seismic with

reasonable accuracy at the well locations. The neural network weights derived

synthetic seismograms were applied to attributes from real seismic revealing the

producing wells to be inside the indicated oil sand area and the non-producing wells
to be outside,

Mohaghegh and Richardson (1998) used well logs to predict effective porosity and

fluid saturation. Magnetic resonance imaging is used to measure free fluid,

irreducible water, and effective porosity accurately. Permeability is then calculated

using mathematical function. Magnetic resonance images are also capable of

,



calculating recoverable reserves. Recent studies show that neural network have

potential to produce synthetic magnetic resonance images from conventional well

logs. Virtual magnetic resonance imaging logs were produced by a neural network

model and used to measure free fluid, irreducible water, and effective porosity for

training and verification data. Recoverable reserves were calculated for different

reserves using the virtual logs.

Mohaghegh (1999) developed a neural network model to predict permeability. The

neural network model was trained using geophysical well log data (bulk density,

gamma ray, and induction logs) as inputs, and core data as Ol.ltput.Neural network

performance was satisfactory to predict permeability for verification data.

Mohaghegh and Goddar (2000) used neural network models producing virtual

magnetic resonance imaging logs from conventional logs (spontaneous potential,

gamma ray, caliper, and resistivity, density and induction logs) to predict free fluid,

effective porosity, irreducible water saturation.

Modeling of the lithofacies distribution is an important aspect III reservOIr

characterization. Siripitayananon and Hui-Chuan (2001) developed a neural network

model to predict lithofacies distribution The relation between seismic attributes and

lithofacies is complicated and nonlinear and this relationship cannot be developed

based on first principle. A back-propagation neural network was developed to

capture the nonlinear relationship between seismic attributes and lithofacies. The

model could also be used for petrophysical modeling. The numbers of nodes for the

input, hidden and output layers are II, 7, and 4, respectively. The input parameters

used are seismic attributes (amplitude, instantaneous frequency, perigram, cosine of

phase, instantaneous phase, reflection strength, and response phase), the location of

the seismic trace, two way time to the reflector, and one bias node to impose an extra

degree of freedom. Output layer nodes represent 4 categories of lithofacies. Data

were prepared using a k-nearest neighbors classification algorithm.

Reeves and Mohaghegh (2002) showed that a high-resolution reservoir

characterization is possible through the integration of different scale and type of data

using artificial intelligence (such as neural networks). Relationships between data of

•



different scales and type had been established, induding conventional well logs,

reservoir imaging logs, crOSHvell seismic, and surface seismic based on artificial

intelligence. Through integration of multiscale data a 3D reservoir image was

established which is required for reservoir flow simulation.

3.2 Applications of Neural Networks in Reservoir Engineering

This section discusses the use of neural networks in reservoir and production

engmeenng operations. Again, this is not an exhaustible account of such
applications.

Post-fracture well performance prediction is a challenging task. Mohaghegh and

McVey (1995) developed a back-propagation neural network model to predict post-

fracture deliverability of wells. Unlike the conventional simulatOf based on

mathematical modeling, neural networks do not require a lot of reservoir data. Thus,

it is cost effective with respect to large cost for data collection. This process is being

currently used to select candidates well economically feasible for stimulation

treatment Input parameters were well number, year and date the wells were

fractured, number of fracture jobs, type of fracture, fluid viscosity, total water used,

nitrogen used per barrel of water, total sand used, sand concentration, sand type, acid

volume and type, chemicals, treatment injection rate, occurrence of new screen-out,

contractor, hole size, completion type, well type, date of completion, date converted

to storage, well group number, sand thickness, minimum 20 year flow test value,

maximum 20 year flow test value, and flow test before refracturing. Output was

maximum flow test after fracture. Networks predicted resl.dtswere compared with

actual data. This model is found cost effective with respect to conventional fracture
simulation.

Temyik and Bilgesu (1995a) developed a virtual intelligence tool usmg neural

networks to predict flowing bottomhole pressure under multiphase flow and indined

wel1bore conditions. The input parameters were oil, gas and water flow rates,

temperature, oil and gas gravity, pipe length, surface pressure and inclination angles

of the pipe. The developed virtual measurement tool was compared with published
data.
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A new method, virtual measurement in pipes was developed by Ternyik and Bilgesu

(1995b) using neural networks to predict liquid holdup and flow regime in pipelines

and well bores. The predicted output was tested with published data for validation.

The method proved to be an accurate measuring tool.

Nikravesh and Kovsech (1996) developed a neural network to predict water injection

rate as a function of wellhead pressure and vice versa in a fractured, low permeability

oil reservoir, The result was satisfactory though water flood behavior is complex.

Neural networks were efficient in finding the major input parameters. In the same

reservoir, neural networks were applied to correlate the injection pressure and rates,

and temperature responses in different wells using data from a dual injector steam

drive pilot. Assuming a future pressure policy, neural network was used to predict

injection rate and growth of reservoir heated volume

Mohaghegh and Hefner (1996) developed a new software tool, Fracture Optimization

eXpert (FOX), based on neural network and genetic algorithm. It can predict post

fracture deliverability and the best possible combination of fracture parameters using

production history data and completion data, It can do without using reservoir data.

This tool was applied in North Eastern Ohio (Clinton Sand) and the result was

satisfactory, Mcvey and Mohaghegh (1994, 1995) identified major parameters for

hydraulic fracture based on neural networks Mohaghegh and Balan (1996) designed

and optimized hydraulic fracture treatmem based on neuro-genetic approach.

Bilgesu and Tetric (1997) developed a neural network model to predict rate of

penetration and bit wear condition under various formation types and parameters,

Drilling data was generated using a simulator. The data generated was used to

develop relationship between complex patterns such as weight on bit, rotary speed,

pump rates, formation hardness, and bit type, The validity of the model was

demonstrated with data from an existing field. Bilgesu and Altmis (1998) developed

a three-layer back-propagation neural network model to predict bit wear and life. Six

measured parameters (weight on bit, rotary speed, pump J;llte,formation hardness, bit

type, and torque) were used, The validity of the modelwas demonstrated.



• Mohagbegh and Plalon (1998) developed neural networks and genetic algorithm for

suitable fracture candidate selection. Neural networks pmvide realistic model for

successful fracturing jobs and chemical treatments; genetic algorithms were

developed to design optimization economic analysis. Different neural networks were

used for different chemical treatment. With each neural network model the first

series of genetic algorithm was used for optimum treatment design. A separate
genetic algorithm was used for economic analysis

Mohaghegh and Popa (l999b) developed intelligent software to design fracture jobs

in an inverse manner. The inputs to the software were fracture geometry and

reservoir characteristics and outputs were fluid, proppant and treatment schedule.

This new tool was lested and shown to be capable of designing hydraulic fractures,

Mohaghegh and Reeves (2000) developed a methodology incorporating artificial

intelligence techniques (neural network, genetic algorithm and fuzzy logic) to select

wells for restimulation, Neural networks were used to develop a representative model

of completion and hydraulic fracturing process for a specific field. Genetic algorithm

as search and optimization tool was used to identify missed production based on the

neural network model. Finally, fuzzy logic was used to capture field experiences as

weil as detrimental parameter and incorporated them in decision-making process,

This methodology was applied in a tight sand field and the results were satisfactory,

Reeves, Bastian and Flumerfelt (2000) identified restimulation candidate wells in an

effective manner. ProductIon statistics, virtual intelligence and type curve matching

were investigated to select restimulation candidates. Restimulating a number of

simulated reservoir models and observing the incremental production responses

established restimulation potential. Simple production data could not effectively

select restimulation candidates. Virtual intelligence techniques were found to be most
effective.

Stundner and AJ-Thuwani (2001) used back-propagation neural network to develop

models for injection production ratio optimization, well interaction. The key concept

for this optimization is to keep well pres!lUTeabove saturation pressure and avoid

pressure sinks in the reservoir with the change in production injection patterns,

u



Reservoir pressure response should be modeled with the change in production and

injection rates. Fluid production and water injection were model inputs, The model

outputs were aquifer pressure and reservoir pressure, Inputs to the neural network

were cumulative fluid production and water injection, fluid production and water

injection rates. Average reservoir aquifer pressures were the model outputs. When

production data were not available, choke size, tubing head flowing pressure amI/or

bottom hole flowing pressure were used for pressure response modeling. Wells were

grouped based on connectivity. They developed another back-propagation neural

network model for shut in pressure of a welL Fluid production and water injection

rates were inputs and shut in pressure was the output of this model.

During the process of hydraulic fracturing of gas wells over the years, compames

usually record the relevant data on methods and materials such as date of the job,

fluid type and amount, proppant type and pump rate, breakers, additives, amount of

nitrogen, etc, These data are of little use in 3D hydraulic fracture simulations.

Mohaghegh and Gaskari (2002) processed these data coupled with general well

information, well log data and production data using virtual intelligence to select the

fracture candidate wells in a sand formation with low permeability. The job was

successful in candidate selection, Mohaghegh and Platon (1998) perfonned similar
exercise.

Mohaghegh and Hutchins (2002) developed a neural network model and trained the

pressure and flow rate data from separation facilities with corresponding pressure

and flow rate data at the inlet of central compressor. It was used as a tool to provide

maximum oil production from a field to find out optimum discharge pressure and
rate from separation unit.

There are more applications of neural networks in reservoir related studies, Due to

lack ofaccessibiJity of their account, these could not be included in this review.
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CHAPTER 4

BASICS OF NEURAL NETWORK

Artificial neural networks are computational techniques inspired' by the mechanism,

structure and functions of human brain, The literature on neural networks has grown

exponentially over the recent years. The sheer number of applications of neural

networks in various fields of science, engineering, and social science are

monumental. In this chapter, it has been attempted to relate a brief discussion on the
basics of the neural networks.

Essentially, the neural network uses a set of linear and nonlinear activation function.

The neural networks are trained with a set of input and output data, Neural networks

can store knowledge obtained from this training in weights. After training the neural

network can he used for prediction, estimation and characterization. Neural network

is a data driven modeL Prior knowledge about the first principles of the system is not

necessary to perform ahove tasks.

The outline of the chapter follows. Section 4.1 discusses the basic attributes of neural

network. Section 4.2 depicts how a neuron produces an output signal corresponding

to an input signal. Section 4 3 overviews the fundamental learning paradigms of a

neural network Section 4.4 deals about optimization technique in order to minimize

cost function. Section 4.5 introduces the basic principle of back propagation neural

network under multilayer perceptron.

4.1 Neural Attributes

Architectures and functional properties of neurodynamics are the basic attributes of

neural networks. Architecture deals with number of neurons and their

interconnectivity. Neural networks consist of many interconnected neurons, or

processing elements, with familiar characteristics, such as inputs, synaptic strengths,

activation, outputs, and bias. Neurodynamics deal with training and learning,

recalling, association, continuous comparison of information with exlstmg

knowledge, and classification. Neural networks process information based on parallel



decomposition of complex information into basic elements; an analogue is spectral

decomposition of color and its reconstruction.

4.2 Basic Model of a Neuron

Neurons are the building blocks of an artificial neural network. Neurons are also

referred as preprocessing elements. Each neuron has set of inputs (x"x" ...,xn).

Each input element (signal) is weighted (multiplied by weights (Wi) and reached

processing element. In addition, a neuron has a bias term, a threshold value (0) that

has to be reached 'or exceeded to produce signal, a nonlinear function cn that acts

on activation (v) (weighted signal), and finally produce an output 0. As a neuron

becomes a part of a number of neurons in a network is referred to as a node. Inputs,

weights, activation signals, output, threshold, and nonlinear function are written as

xlj>wif' v, ,0,,0,,1., respectively. The basic architecture of a neural network is

shown in Figure 4. I.

Figure 4.t: Basic architecture of a neural network model.

The transfer function of the basic model is described by the relation

0, =j,~;~tW,x,). (4.])

The neuron's activation condition is

b w< »0IL,o,",-" (4.2)



where the index I represents the neuron in question and j represents the inputs

neurons. The response of the neuron is bounded using a nonlinear function, known as

activation function. Most common activation function used in neural networks is the

Sigmoidal function that is monotonic, bounded and easily differentiable.

4.3 Learning in Artificial Neural Networks

Learning is the process by which neural network adjusts itself according to input

stimuli to produce a desired output. It is a continuous classification process. When a

set of input signal is represented to neural networK it either recognizes or produces a

new class. During learning, neural networks changes its synaptic weights so that its

outputs converge to the desired outputs, Neural network completes its learning when

the outputs are same as the desired outputs. At the end of learning, neural networks

acquire knowledge and store them in the current weights. Some of the learning rules

and types oflearning are discussed below,

4.3. t Deltll Rule

It is also known as Widrow-Hoffrule. It essentially says that the adjustment made to

a synaptic weight of a neuron will be proportional to the product of the error signal

and the input signal. Let L!.w; denotes the adjustment to the synaptic weight w" of

neuron kexcited by element x; of the signal vector x" at time step n, The delta

rule says

'" n nLOW" '" 'le.x"

where'l is a positive constant detennining the rate ofleaming.

4.3.2 Supervised Learning

(4 3)

During the process of training, neural network produces an output response with

respect to input stimuli. The network compares this output with the desired output

and produces error signal. This error signal is a measure of network performance. All

the error signals are summed and averaged to yield a cost function, a function of free

parameters such as weights, bias. Then the weights are adjusted to minimize this cost

function, As the error minimization process is directed according 10 the mismatch



from desired outputs, hence the name supervised learning. The supervised learning

maps inputs to corresponding output patterns.

4.3.3 Unsupervised Learning

Unlike the supervised learning, unsupervised learning does not require the

knowledge of the desired output. UllSupervised learning is suited for data

classification by the neural network on its owo, The network categorizes the data

based on the interdependencies detected within them. For the implemeotation of

unsupervised learning one may use competitive learning. For a network of two

layers, input layer and competitive layer, as all input data are presented all neurons in

the competitive layer compete with one another to respond to the input feature. The

network learns based on "winner-takes-all" strategy in which a neuron with the

greatest total input "wins" the competition and turns oIl, all other neurons are then

switched off.

In the learning process, irrespective to types and rules of the process one requires a

minimization technique. Following sectioo discusses the problem of unconstrained

minimization and some of the techniques,

4.4 Unconstrained Optimization

Consider a continuously differentiable cost function e(w) with respect to weight

vector w. Cost function projects the weight vector into real number, One needs to

find weight vector w' for which cost function will be minimum, The necessary

condition is

e(w')~e(w) (4.4)

This is an unconstrained optimization problem. The optimum condition for the

problem is

(4.5)

where V is the gradient operator

[' a,]'
V", Ow,'0w1""'Bw,.

"

(4.6)



A class of unconstrained optimization algorithms is suitable for adaptive learning.

Usually, a local iterative descent algorithm is used,

4.4. t Method of Steepest Descent

In this algorithm, weights are adjusted according to the gradient of cost function, The

goal is to find a weight vector in a direction so that the gradient vector Ve(w) is

reduced at every step of iteration, For convenience, g=,Ve(w). The formal

description of steepest descent algorithm is

Aw" =' W,",1 -w" =' -7] g"

Equation (4.7) is in fact a fonnal statement of the error-eorrection rule.

(4.7)

The gradient vector is approximated applying first order Taylor series expansion

around weight vector w'" and it is as follows

t: (wn+')", e (w" )- '7g"' Aw"

= ,(w")-qg"' g" = ,(w" )-"llg"11
This ensures the reduction of cost function in each step. However, this is applicable

for small enough learning rates.

4.4.2 Least-Mean-Square (Delta Rule) Algorithm

The Least-Mean-Square (LMS) algorithm is developed using instantaneous values of

COS! function. The cost function is given by

(4.8)

where e' is the error signal measured at lime n. Differentiation of Equation 4.8 with

respect to the weight vector w, yields

a,","--
aw'

(4.9)

LMS algorithm deals with linear neuron and the error signal is

e"=d'_x"rw".

n

(4.10)



a,"Hence, -- 0= -x". and
aw"

8&(11'") •• u. . . d " h= -x e. smg an IteratIve escen! approacu, t eaw"
LMS algorithm can be formulated as follows

'n+l '. " •II' -II' =-'1xe, (411)

where" is the learning rate parameter. LMS algorithm provides an estimate of

weight vectors, The important point is that unlike the steepest descent algorithm,

LMS algorithm does not require knowledge of the statistics of the environment.

For strongly nonlinear problems, simple network architecture discussed so far cannot

yield plausible response. Ooe has to employ, more complex models like multilayer

perceptron models. Following section gives the basic outline of a multilayer
perceptron.

4.5 Multilayer Percept ron

Multilayer feed forward networks are an important class of neural networks.

Typically it consists of input units that constitute the input layer, one or more hidden

layers of computational nodes and one output layer of computational nodes, Input

signals are passed in a forward direction from layer to layer. These neural networks

are called multilayer perceptrons. Multilayer perceptrons are trained in a supervised

learning manner based on error-COlTeetionlearning. Error back-propagation learning

consists of forward pass and backward pass. During forward pass input signals are

passed through hidden layers to output layers. Weights are retained unchanged. In

output layer, actual responses are subtracted from target outputs to produce error

signals. During backward pass, these error signals are passed backward to adjust

weights according to error correction rule to move the actual outputs closer to the

target outputs,

4.5.1 Characteristics of a Multilayer Perceptron

A multilayer perceptron has three distinctive characteristicS. They are as follows.

• Each neuron behaves according to a smooth, nonlinear activation function.

Sigmoidal function is generally used fortbis pUl]Jose

"
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where Y, is the local field (that is, the weighted sum or all synapse inputs plus the

bias), and Y j the output ofthe neuron

• The networks consist of layers of hidden neurons, These hidden neurons lie

between input and output layers and not part of the input or output neurons. They

enable the networks to learn nonlinear relationship by extracting feature from
input pattems,

• Each neuron in a layer is connected to the all neurons in the prevIOus layer

through synapses of the network. The weights are adjusted to change the
connectivity of the network.

4.5.2 Some Preliminaries

Figure 4.2 shows the architecture of a multilayer pemeptfon with two hidden layers

Any node in any layer is fully connected to all nodes in the previous layer. Thus,

they are fully connected, Signal flow progresses in a forward direction from left to
right and from one layer to another.

Two kinds of signals are identified in this network. They are function signals and

error signals. Function signal comes in input layer, propagates through the hidden

layers and emerges at the output layer. It performs a useful function at the output

layer. At each neuron, through which it propagates, it is calculated as a function of

inputs and associated weights. It is also referred to as input signaL While, an error

signal is generated at an output node and passed backward. During this pass, weights

are modified based on error signal. Figure 4.3 shows schematically the two signals

The backward propagation algorithm is described hereafter. This is one of the most

common algorithms for multiple layer perceptron models.
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Figure 4.2: Architecture ofa multilayer perceptron with two hidden layers .
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perceptron: forward propagation of function signals and back-propagation of error

signals,



4.5.3 Back Propagation Algorithm

The back propagation algorithm is one of the most popular algorithms based on

supervised learning. The network output is compared and the mismatch or error is

propagated backward through the network. During this back propagation of error the

weights are adjusted, This process is continued in an iterative manner The algorithm

is briefly described here,

The error signal of neuron j at iteration n (that is, presentation of the n'" training
pattern) is defined by

e"==d"-y" (4.12)] 1 J •

Here, neuron j is an output node. By definition, the instantaneous value of total

error energy is

" l~",
C == -.::..e

2"c J
(4.13)

where C is all the neurons in the output layer of the network. The average squared

error energy is

" I ~ "1>",,==N~I> , (4.14)

where N is the total number of patterns in the training set. Average error energy is a

function of all free parameters (weights, bias). It represents the performance of

leaming process. Learning process minimizes 1>:'. In a simple training method,

weights are updated on a pattem-by-pattern basis until one epoch is dealt with The

weights are modified in accordance with respective errors computed for each pattern

presented to the network. Figure 4.4 shows the transfonnation of function signals,

produced by a set of neurons situated at the previous layer of neuron i layer to

neuron j.
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The induced local field is

(4,15)

which is the input to the activation function associated with neuron J. For bias,

synaptic weight is given by w jo = bj . The output of neuron j is

N,=nj

y.~+l

•y,

Figure 4.4: Signal-flowgraph highlighting the details of output neuron j,

Back propagation algorithm applies weight correction principle just like LMS

algorithm. According to this principle, weight correction Dow; is proportional to the

partial derivative of oe" .According to the chain rule, one hasow~
"

ae" ae" oe;--=--._-ow; oej ay;
oy;
ov",

ov;
aw'"

(4.17)

The partial derivative represents a sensitivity factor, detennining the direction of

search in weight space for the synaptic weight Wfl'



Differentiating both sides of Equation (4.13) with respect to e; , one obtains
B, "--=e"Be" J .,

While, differentiation of Equation (4. ]2) with respect to y;, yields

Further, differentiating Equation (4.16) with respect to v; , one gets

(4.18)

(4.19)

(4.20)

Differentiation of Equation (4.15) with respect to w;
av; "
~=y,.,

Finally, one derives the form

a," "'("j"--=-e .mV 'y.aw" J'" f ',

Now, the correction ~w;is defined by the delta role:

a,"
~w~=-'l' -,

fl awn
"

yields

(421)

(422)

(4.23)

where 'I is the learning -rate parameter of the back-propagation algorithm. The minus

sign in Equation (4.23) is to force the weight change in the descent direction. From

Equations (4.22) and (4.23) one obtains

Aw' =n.li".y"
fl " J "

where the local gradient li j is defined by

a" a"a"i5n=_'_=~.-.!..L=_e". ,(,oj.
f avo ay' ov" 1 rp f, , ,

(4.24)

(4.25)



The local gradient is equal to the product of error signal and derivative of activation

function tp'(v;) Weights are changed according to local gradients, Desired response

is applied for each neuron at the output layer. For output layer neuron J, error signal'

can be calculated using Equation (4.12), and the local gradient using Equation (4 25),

Now when neuron is located in hidden layer, it has no specified desired response,

Figure 4,5 shows hidden neuron signaillow graph for a neuron in a hidden layer.

Error signal for neuron j is calculated from error signals of all neurons to which

neuron j is connected, According to Equation (4.25), the local gradient <5; hidden

neuron j can be written as

<5"", Be"
, 'yOo ,

(4,25)

To calcl.llate the partial derivative

Figure 4.5, one has

a,"of-a "'y,
one may proceed as follows. From

(4,26)

Differentiating Equation (4.26) with respect to the function signal y;, one obtains
Be" "' •••.e;. Be;.
By" L.. oy", ,

Applying chain rule in Equation (4.27), one can write

(4.27)

(428)
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FigUft 4.5: Flow graph highlighting the details of output neuron k connected to

hidden neuron J _

However from Figure 4,5, it can be noted that when neuron k is output node

" d" "d" ( "Je. == k - Y. = • -ffJ. 11. '

Differentiating the Equation (4,29) with respect to v;, one obtains

- "". - . ("J-- __ qJ.v._
a,"•

From Figure 4 5, for neuron k the induced local field is

(4.29)

(430)

(4,31)

where m is the total number ofinputs (excluding the bias) applied to neuron k The

synaptic weight is given by w;o '" b; _Differentiating Equation (4,31) with respect to

y;, one obtains

(4,32)



Equation (4.28) now has the form

ao" "'" ,(")" "'8""--. =-L...e •. rp. v•. w.,. =-L... "w".
oY; • •

The local gradient for hidden neuron now assumes the fonn

oj=rp' ,(v;)Lo;.w;.
•

(4.33)

(4.34)

The back-propagation algorithm perfonns forward and backward passes

computation. The weights are remained constant during the forward pass and

neurons produce function signals. The back computation starts by passing the error

signal from output layer to the hidden layer direction. During this pass, each neuron

computes its local gradient and changes its associated weights according to Delta

rule.

Options for the activation function are discussed in the following subsection.

4.5.4 Activation Function

Local gradient computation needs the derivatives of activation function. Thus, a

requirement for the activation function is its continuous differentiability. Sigmoidal

activation function is commonly used as an activation function. The general form of

sigmoidal function (logistic function) is

(4.35)

(436)

where a> 0 and - <Xl < v; < <xl. Here, v; is the induced local field of neuron j. The

derivative is given by

, (")_a"p(-~;)
.,',-] ( )r'l+exp -av;

Using y; = rp J (v;), one can eliminate the exponential term reducing to

(4.37)

"



Another common activation function is hyperbolic tangent function .

• ,(,;)=0."""('>;) (4.38)

where a and b are constants. Hyperbolic tangent function is just the logistic

function rescaled and biased, Differentiation of Equation (4.38) with respect to v;
yields

rp',(v;)= ab. sech '(bv')= ab(l-tanh '~\I;))= .£.~-y; Ia + y; 1 (4.39), a

Following is a short note on the rate of learning,

4.5.5Rate ofLeaming

Learning rate parameter, 17, has a significant effect on network performance. Back

propagation algorithm provides an approximate trajectory in weight space according

to steepest descent rule, A smaller learning rate parameter yields smoother trajectory,

smaller changes in weight, and network settles to a acceptable solution. However,

more time is needed to train the network. Large learning rate parameter adjusts the

weights faster. But the network may become unstable and oscillate around solution.

To speed up the learning rate without oscillation, one can add momentum term to

account a fraction of previous time step weight change, This additional term tends to

keep the weight changes going in the same direction. The weight correction equation

with the momentum tenn is

(4.40)

where a is usually a positive member called momentum constant. It varies from 0 to

L

Some implementation issues like mode of training and stopping criteria are discussed

below,

4.5,6Mode ofTraioing

An epoch consists of entire training pallems, that is, a complete training set. The

learning process is performed on an epoch-by-epoch basis. It continues until the



weights and bias level of the network attain stability and average error goes to

acceptable value. For s given training set, back propagation learning may proceed in

one of two basic ways: sequential mode and batch mode.

Sequential mode of back propagation learning is also referred to as on-line, pattern,

stochastic mode. According to this mode, back propagation algorithm theories are

derived Learning is performed on pattern by pattern by basis. Let us consider an

epoch with N number of training examples such as (x' ,d' }(x' ,d' 1...,(xN ,dN). The

nrst pattern, (x',d'). is presented to the network, forward and backward

computations are perfonned, and weights and bias level updated. Then the second

pattern (x' ,d') is presented to the network, forward and backward computations are

performed again, weights and bias level are updated further and so on up to the last

(, ,)pattern X',d .

In batch mode of learning, weights are updated after the presentation of all patterns

in an epoch. Cost function is calculated based on Equations (4.18) and (419) as
follows

I ~••.•'e ov=-£.•d..•e, .
2N =1 ,EC

(4.41)

(4.42)

Error signal e; is produced by neuron j for pattern n In Equation (4.41), the inner

summation with respect to j is performed for each pattern over all neurons in the

output layer. The outer summation with respect to n is performed for all patterns

under an epoch. Weights are updated according to delta mle as follows

oe '1 N oe'
.1.w;, =-1J' ow": = NLe; ow'".'

fl •••1 fl

Sequential mode of learning requires less storage for synaptic connections than batch

mode. Pattern-by-pattern updating of weights makes the network search stochastic in

weight space and helps the network to avoid local minimum problem. When the data

are redundant, batch mode of learning is quite capable of taking the advantage of

redundancy. Sequential mode of learning is highly popular for two reasons. The



algorithm IS simple to implement, and it provides solution to large and difficult
problems.

4.5.7 Stopping Criteria

Back propagation algorithm cannot converge and there is no well-defined stopping

criterion, One can consider some reasonable criteria for termination of learning

process. Local or global minimum error surface is one of them. The back-

propagation algorithm can be considered to have converged when the Euclidean

norm of the gradient vector reaches a sufficiently small gradient threshold. This

criterion requires computation of derivative of error surface and its training time is
high. These make the criterion disadvantageous.

Another stopping criterion of the back-propagation algorithm could be when the

absolute rate of change in the average squared error per epoch is sufficiently smalL

Generally, the rate of change of error surface ranges from 0,01 to 1 per epoch.

Unfortunately, this criterion may lead to premature termination of the learning
process.

4.6 Discussion

This chapter explains the basics of a neural network. A reasonably good account of

the hack-propagation algorithm is given In this work, similar back-propagation

model has been adapted. The neural network devised here has three layers _ input,

output and one hidden layer. In terms of activation function, both sigmoidal and

hyperbolic tangent functions are considered. A number of implementation issues and

sensitivity exercises are performed to optimize the perfunnance of the model.

"



CHAPTER 5

EXPLORATORY DATA ANALYSIS

This chapter discusses the exploratory data analysis performed on petrophysical data

available from core measurements. The data include well locations, permeability,

porosity, facies, thickness, and relative stratigraphic depth. There are data from five

wells. Of these four wells have permeability and facies measurements. Histograms,

and scatter plots are obtained and analyzed, Essential statistics of data such as mean,

median, maximum, minimum, standard deviation, correlation coefficients between

variables of interest, and some derived statistics are obtained

The outline of this chapter is as follows. Section 5.1 gives a short description on the

wen locations, Section 5.2 explores the essential statistics through histograms and

scatter plots of the core data. Section 5.3 concludes the chapter highlighting the
summarized information from exploratory data analysis.

5.1 Well Locations

Short description on well locations and the spatial distribution of some of the

variables are given in this section, The reservoir domain of interest extends from

about coordinate location of731500 ft to 740500 ft in the Easting, while 5704000 ft

to 5711000 ft in the Northing direction. In the figures, X direction implies Easting,

while Y implies Northing directions. The coordinates (in ft) of the five wells are

Well I. (732227,4, 5710441.0), Well 2: (735445,5, 5710225.0), Well 3: (734877.5,

5705548.0), Well 4: (734877.5, 5705548.0), and Well 5, (739558.8, 57106160),

respectively.

Figure 5.1 shows vertically averaged porosity of five wells, Interesting to note that

there is a presence of high porosity zone in the northeastern part of the reservoir

Figures 5.2 and 5.3 show vertically averaged maximum permeability (Km.,), and

vertically averaged vertical permeability (K_). Evidently, there are only four wells

with permeability measurements. It is clear from the figures that there is a presence

of permeability zone in the northeastern part of the reservoir, Figure 5.4 shows the



spatial distribution of well thickness. Figure 5.4 reveals a trend in the well thickness.

The formation appears to be thinning in the eastward direction.
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Figure 5.1: Location map of vertically averaged core porosity at well locations.
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Figure 5.2: Location map of vertically averaged maximum core permeability at well

locations.
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In the following section, some basic statistics of the core data are explored. Outlier
analysis is also performed.

5.2 Univariate and Bivariate Statistics of Core Data

Histograms and scatter plots of core data are obtained. Histograms are basicaily piots

for univariate statistics. Univariate statistics include mean, standard deviation,

median, range of data, Scatter piots are for bivariate statistics between two variables

Bivariate statistics inciude the correlation coefficient and rank correlation

coefficients. Outlier information may also reveal Vllithboth histograms and scatter

plots. This section also discusses correlation between the variables before and after

the removal of outliers. Well-wise descriptions are given below.

5.2.1 Weill Statistics

Figure 5.5 shows histogram of maximum permeability (K...••). Mean and standard

deviation of K""" are 62,93 and 106,36, respectively. K"",<value ranges from 0,62 to

62.59, Figure 5 6 shows histogram of vertical permeability (K_) Mean and

standard deviation of Kv<rtare 4 134 and 4.32, respectively. The maximum and

minimum K",n values are 0.38 and 24.4. Histogram of porosity is given in Figure 5 7.

Mean and standard deviation are 0,08 and 0.04, while the values range from 0,02 to

0.16. There are 6 facies numbered ° to 5. Figure 5,8 shows the facies histogram,
Clearly, Facies I is the dominant facies in Well 1.

Porosity variation with facies in Well \ is explored, Figure 5,9 shows the porosity

histogram for Facies 0, Facies ° have low porosity with mean of 0,031, and ranges

from 0,0\7 to 0.045. Figure 5.10 shows the porosity histogram for Facies 1, Facies I

have moderate porosity with mean 0,105, and a range from 0,062 to 0.144. Figure

5.11 shows porosity histogram for Facies 2, Facies 2 porosities are even higher than

Facies L The mean is about 0.131, and it ranges from 0,099 to 0,\61, Figure 512

shows the porosity histogram for Facies 3. The porosity mean is 0,] II ranging from
0,072 to 0,155.
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Figure 5.13 shows porosity histogram for Facies 4. Mean porosity is found to be

0,048, and its range is from 0,0]8 to 0.11L Figure 5.14 shows the porosity histogram

for Facies 5. Facies 5 have again low porosity with a mean 0.059, and range from
0.017 to 0.096

Bivariate statistics between the variables for Well I are explored, Figure 5.15 is the

scatter plot of maximum permeability and vertical permeability. The correlation

coefficient is 0.347. The poor correlation between the two permeabilities may be

attributed to some outlier values, After removal of outlier, the correlation improves

from 0.347 to 0.41L Figure 5,16 is the maximum permeability versus porosity scatter

plot with outliers. Removal of outliers leads to improved correlation coefficient from

0.282 to 0.437. Figure 5,17 is the vertical permeability versus porosity scatter plot,

Removing the outliers, improves the correlation significantly from 0.331100.598,

Figure 5,18 shows facies versus relative strata scatter plot. It is plotted to find a trend

between facies and depth, This plot shows Faces 0 generally lies at top and Facies 4

and 5 at the bottom of the formation, Correlation is fouod 075, Figure 5.19 shows

support versus porosity scatter plot with correlation 0,504, This plot indicates higher
porosity values have lower support.

5.2.2 Well 2 Statistics

Similar analysis is performed for Well 2, Figure 5.20 shows maximum permeability

(KtlW<) histogram. The mean and standard deviation of Km•• are found to be 73.8 and

175.884 respectively, while the values range from 0.06 toI32, Figure 5,21 shows

histogram of vertical permeability (K,..,). The mean and standard .deviation of K",rt

are 3.109 and 4.088. The values range from 0.03 to 21.2 Figure 5,22 shows

histogram of porosity It has a mean of °083, and standard deviation 0.036. Porosity
value ranges from 0.016to 0.]93, Figure 5,23 shows facies histo~. Only Facies 0

to 4 are present, Again as in Well I, Facies I is the dominant facies Remarkably,

Facies 5 is absent in Well 2, Variation of porosity with facies is determined. Figure

5 24 is porosity histogram for Facies O.Facies 0 porosity in Well 2 is slightly higher

than that of Well I, with a mean of 0.068 and range from 0.016 to 0.107.
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Figure 5,25 shows porosity variation for Facies I. Its mean is 0,087 (higher than

Facies ° porosity), and the range is from 0,029 to 0.167. Figure 5.26 shows the

porosity histogram for Facies 2. The mean is found to be 0.068 The values range

from 0.035 to 0.11. Figure 5.27 shows the porosity histogram for Facies 3, The mean

is 0.068, and the range is between 0.035 and 0.1i. Figure 5.28 shows porosity

histogram for Facies 4. Notably, Facies 4 has the highest mean porosity of 0,095,
with a range from 0.06 to 0.193,

Bivariate statistics of Well 2 are discussed here. Figures 5.29 is the vertical

permeability versus maximum permeability scatter plot. Removing the outliers,

correlation improves from 0.265 to 0,485. Maximum Penneability versus porosity

scatter plot is shown in Figures 5,30 showing a correlation 0, 172. Figure 5.31 shows

vertical permeability versus porosity scatter plot. The correlation coefficient is 0,478

Figure 5.32 shows facies versus relative strata scatter plot. This plot shows a very

good correlation (0.82) between facies and strata. At the top Facies 0 is found, while

on the bottom Facies 4 is dominant.

5.2.3 WellJ Statistics

Well 3 statistics are briefly described here. Figure 5,33 is the histogram of maximum

permeability. Its mean and standard deviation are 22.111 and 740,463, while its

range is from 0 04 to 227. Vertical permeability histogram is shown in Figure 5 34.

Its mean and standard deviation are 2.195 and 1.731, and the values range from 0.01

to 32.2. Figure 5 35 shows histogram of porosity having mean and standard deviation

of 0,061 and 0.023, respectively. The minimum and the maximum porosity values

are 0.018 and 0.111. Figure 5.36 shows facies histogram. Facies I is again the

dominant facies in this well alike Wells I and 2, Only Facies I, 3, and 4 are present.

For facies porosity variation, the figures are not included here for convenience.

However, the statistics are described. Facies I, 3, and 4 porosity means are found to

be 0.061, 0,078, and 004, respectively The corresponding porosity ranges for the

three facies are (0.033, 0.096), (0.042, 0,Ill), and (0.018, 0,096), respectively.

"
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Well 3 bivariate statistics are discussed here, Figure 5.37 is the vertical permeability

versus maximum penneability scatter plot. Removing the outliers, correlation

improves significantly from 0 029 to 0,83, Figure 5,38 shows maximum permeability

versus porosity scatter plot. Removing outliers, correlation improves from 0.014 to

0,34. Figure 5,39 shows vertical penneability versus porosity scatter plot Correlation

improves from 0.005 to 0.341 after removing the outlier, Figure 5.40 shows facies

ver5lJS relative strata scatter plot. This plot shows correlation 0.871 between facies

and relative strata.

5.2.4 Well 4 Statistics

Well 4 statistics are described below. Figures 5.41. 5.42. and 5.43 are the histograms

of maximum permeability, vertical permeability, and porosity. The corresponding

means are found to be 5,926, 0.947, and 0.065; while the standard deviations are

7,292,1.765, and 0.02, respectively. And the corresponding ranges are (0.04,25,9),

(0.07,8.95), and (0.019, 0,104), respectively, Figure 5.44 shows facies histogram.

Only Facies I and 2 are present, Facies I being the major one. For porosity variation

with facies, Facies I, 2 porosity means are found to be 0.74 and 0.042. The

corresponding porosity ranges are (0.05, 0,104) and (0.019, 0,061)

As for bivariate statistics, Figure 5.45 shows vertical permeability versus maximum

permeability scatter plot. Having outliers removed, correlation improves from 0.032

to 0.498. Maximum penneability versus porosity scatter plot is given in Figure 5.46.

With and without outliers, the correlation coefficients are 0.345 and 0.41 L Figllre

5.47 is the vertical penneabiIity versus porosity scatter plot, In this case, the

correlation coefficients with and without outliers are 0.158 and 0.445. Figure 5.48

shows facies versus relative strata scatter plot. This plot also shows very good

correlation (0,837) between facies and relative strata,

5.2.5 WellS Statistics

It should be noted that Well 5 does not have permeability measurements, FigLIre5.49

gives the porosity histogram, Porosity value ranges from 0.025 to 0,067 with a mean

and standard deviation of 0.044 and 0.014, Figure 5,50 is the facies histogram. Only

Facies 0
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and I are present. Interestingly, both facies proportions are equal. Facies 0 porosity

values slightly higher mean of 0.049 than Facies 1 mean of 0.04. However, the

corresponding porosity ranges are (0.025, 0067) and (0.031, 0.056), respectively.

Figure 5 51 is the facies versus relative strata scatter plot. Correlation is found 0.08.

5.2.6 Global Statistics

Only well statistics were considered till this point. The information from these

statistics is localized. To retrieve the global infonnalion about the reservoir,

combined statistics need to be considered. Figure 5.52 is the maximum penneability

histogram. Maximum penneability value ranges from 0.04 to 1320 wilh a global

mean and standard devialion 50.861 and 124,137. Vertical permeability histogram is

shown in Figure 5.53. The global mean and standard deviation are 2,95 and 4.49, The

values range from 0,01 to 32.2. Figure 5.54 shows porosity histogram It has global

mean and standard deviation 0075 and 0.035. Facies histogram is given in Figure

5.55. Not surprisingly, Facies 1 is the dominant one,

For porosity variation with facies, porosity histograms for Facies 0, 1, 2, 3, 4, and 5

are shown in Figures 5.56, 5.57, 5.58, 5,59, 5.60, and 5,61 respectively. The

corresponding means are 0.059, 0,081, 0.08, 0.82, 0,064, and 0.059; while the

corresponding ranges are (0016, 0.107), (0.029, 0.167), (0.019, 0,162), (0.035,

0155), (0,018, 0.193), and (0.017, 0,096), respectively, Figure 562 shows facies

versus relative strata scatter plot, Correlation coefficient between the parameters is
0.671.
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5.3 Conclusion

Exploratory data analysis is performed on the available core data, Both localized and

global statistics are retrieved. Some of the conclusions from the analysis are given
below.

• Available data are well locations, depth, porosity, facies, maximum

permeability, and vertical permeability. Most of these variables are derived

properties except for the locations and depth,

• Local and global statistics can be significantly different at places.

• Correlations between the variables are quite poor. The raw petrophysical and

primary response signals of the wells are not available. Thus, it almost

prohibits the use of models based on first principles or some simple

regressive models to predict permeability. This warrants the use of highly

non-linear, effective tools like neural network. This rationalizes the scope of

the work of this thesis.

• Notwithstanding the use of neural networks, the poor correlations and the

absence of primary signals substantiate that there will be significant

prediction error Some post-processing of the estimates could be considered,



CHAPTER 6

PERMEABILITY PREDICTION USING

NEURAL NETWORK

This chapter discusses permeability prediction using the neural network modeL

Previously, exploratory data analysis was performed (discussed in Chapter 5), It

revealed some directions on how to set up the framework of the neural network

modeL It was identified that spatial data (Easting, Northing, relative stratigraphy),

porosity, facies and thickness could be used as the argument to the modeL It should

be pointed out that permeability depends on various other faclors like grain size and

distribution, angularity, connectivity, geomechanical properties, diagenesis effect and

so forth, Absence of the information of these parameters is a handicap and il will

influence the quality of the prediction using any model. Notwithstanding the facl, we

devise the neural network model for the prediction,

The outline of the chapter is as the following, Section 6, I gives a brief discussion on

the architecture and training of the neural network. Sections 6,2, 6.3, and 64 deal

with optimal parameter selectioI15,that is, the selection of bias, learning rates, and

number of hidden nodes, respectively, Section 6,6 discusses the learning profile. In

section 6,7 it has been tried to find out the major input parameter for output

parameter, permeability. Section 6.7 discusses about the randomness effect. Section

6.8 predicts the permeability of Well 5 while the Section 6.9 gives conclusion of the
developed modeL

6.1 Training of the Neural Network Model

A back propagation neural network model with one hidden layer is developed to

predict permeability, The input parameters to the model are Basting (X), Northing

(Y), relative stratigraphic coordinates (Zd•.•••), porosity, facies, and thickness, The

output is the permeability. There is only one hidden layer present. All the input and

output data are normalized according to affine scaling. In order to ooOlliderthe entire

population (reservoir), respective maximum and minimum values of different



parameters for nonnalization are taken beyond their maximum and minimum values

found in the sample (well) data. Table 6.1 shows maximum and minimum values.

Maximum permeability (KllWl) is converted to log scale and then nonnalized. Thus,

the model consists of six plus one (bias) input nodes, five plus one (bias) hidden

nodes and one output node,

Table 6.1: Maximum and minimum of the input and output parameters.

Parameter X Y '-. Facie! Porosity Tbieknei! "'"Permeability

MaxlJllum 739551 57106t6 15.91 " 0.25 '" 3.12

Minimum 132227 5705548 1.867 5 0,016 " -1398

Nonnalizcd 750000 5715000 " " 0.25 " 3.176
MaXlIllum

Normalized 730000 5103000 " 5 0.001 5 ~5

Minimum

The optimum parameter selection is an important aspect for the effectiveness of the

neural network. The parameters optimized are the bias, the learning rales, and the

number of hidden node, Each optimal parameter is selected based on minimum value

of objective function, Root Mean Square Error (RMSE), keeping all other parameters

constant. A range of the parameter is considered and the RMSE values determined,

In order to minimize the random effect due to in-built randomness, RMSE values are

obtained by averaging the same from 3 runs, The reduction factor is also considered.

The number of epoch is kept 10' in each case, The following sections discuss the

optimum parameter selection,

6.2 Bias Selection

Input layer and hidden layer bias values are incorporated in the model. Because of

the use ofnonnalized variables, input and hidden layer bias values range from 0 to 1.

In order to obtain the optimum values in the bias space, 25 pairs of bias values



are considered. The pairs considered are (1,1), (0.75,1), (0.5, I), (0,25, 1), (0.05, I),

(I, 0.75), .. " and (0,05, 0.05), and the RMSE values are observed. The optimum pair

of bias values selected (0.5, 0.05). The low bias value 0.05 (for hidden layer)

indicates that the effect of bias is negligible to the output layer. This optimum pair of

bias values is used subsequently.

6.3 Learning Rates Selection

Learning rates for both hidden-to-output-layer and input-to-hidden-Iayer back

propagation of weight correction should be optimally selected. For convenience,

hidden-to-output-layer learning rate will be invoked by BLR, while input-to-hidden-

layer learning rate by ALR,

6.3.1 Hidden-to-Output-Layer Learning Rate Selection

The optimum hidden-to-output-layer learning rate was determined through a

sensitivity study, Keeping the number of hidden layer node and the number of

epochs constant, the inpuHo"hidden-layer learning rate is fixed at some values and

the hidden-to-output-layer learning rate was varied from 0,0001 to I. The number of

hidden layer node is fixed at 5, while the number of epoch considered is 101for the

sensitivity study, A number of plots of RMSE values are generated. The reduction

factors of the RMSE are also plotted. Figures 6,1 and 6.2 show variation of RM$E

and reduction factor with BLR variation for ALR = 0.01. Figure 6.1 shows very little

change ofRMSE values with respect to BLR. It is evident from the figures that the

optimum range of BLR is between 0.0002 and 0,002, Figures 63 and 6.4 show

similar plots for ALR = 0,02. Figure 6.3 shows greater RMSE variation than that

evident in Figure 6 I. The optimum range of BLR is found to be from 0.0002 to

0.005. The RMSE variations for BLR for various values of ALR are shown in

Figures 6.5,6,7,6.9, 6.11 and 6,13. The corresponding ALR values in these figures

are 0.05, 0.1, 0.2, 0.5, and I, respectively, The corresponding plots showing

reduction factor of RMSE with BLR are given in Figures 6.6, 6.8, 6,10, 6.12 and

6.14. Examining the respective figures, the corresponding optimum ranges ofBLR



are found (0,0005, 0.01), (0,0005, 0.005), (0.0001, 0.02), (0.0002, 0.02), and (0.0002,

0,005), respectively.
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Considering the RMSE variation with BLR in the above cases, an overall optimum

range of BLR is found from 0.0002 to 0.005. This range appears to yield good

response for all the cases considered. Although it should be noted the change in

RMSE with respect to BLR is not so high, Thus, it can be concluded that BLR value

may not be very significant.

6.3.2 Input-to-Hidden-Layer Learning Rate Selection

Similar to hidden-to-output-Iayer learning rate (BLR) selection procedure, the

optimum input-to-hidden_layer learning rate (ALR) was determined through a

sensitivity study. Keeping the number of hidden layer node and the number of

epochs constant, BLR is fixed at some values within the optimum range found in the

previous section, and ALR is varied from 0.0001 to 1, Again, the number of hidden

layer node is fixed at 5, while the number of epoch considered is 10' for the

sensitivity study. Plots ofRMSE values and their reduction factors against ALR are
generated,

The BLR values are fixed at 0.0002, 0,0005, 0,001, 0.002, and 0,05. The

corresponding RMSE variations versus ALR are shown in Figures 6.15, 6,17, 6.19,

6,21, and 6.23, respectively. The variations in reduction factor ofRMSE versus ALR

plots are given in Figures 6.16, 6,18, 6,20, 6.22, and 6.24, respectively. The

corresponding optimum ranges for ALR are found to be (0,5, 5), (1, 10), (0.1, 5),

(0,1,5), and (0.1, 10), respectively. Figure 6.15 shows significant reduction of

RMSE particularly at low value of ALR and subsequent regular reduction of RMSE

overthe range. Figure 6,21 shows very steep and optimum range of ALR in the range

of 5 to 20. Figure 6,23 indicates the variation of RMSE for BLR=0.005 is not
significant.

The variation ofRMSE values with respect to ALR is evidently more significant than

that with respect to BLR values. From the sensitivity study, the optimum values of

ALR and BLR are .selectedat 2 and 0.0005, respectively.
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6.4 Number of Hidden Nodes Selection

The optimum number of hidden node is detennined using the previously obtained

optimum values of bias and learning rates. The number of hidden layer nodes is

varied from I to 15 and the RMSE variation is examined. Figure 6.25 shows initial

increase ofRMSE with just one hidden node. However, a subsequent rapid reduction

of RMSE with the number of hidden node is evident in the figure with RMSE

eventually becoming stabilized. Stabilization occurs when the number of node is

about 6. The optimum number of hidden node is fixed at 6 considering the thumb

rule (number of connections should be at least three times higher than the number of

patterns) and the computational load (computation increases with number of hidden
node).

The fol1owingsection discusses the learning profile of the neural networks. It mainly

discusses how fast it learns or converges to expected local minimum error.

6.5 Learning Profile

The variation ofRMSE with number of epochs gives the learning profile. Figure 6.26

shows RMSE versus numher of epochs for the optimum parameters. It is apparent

from the figures that training starts with large error, but rapid reduction of error takes

place at moderate number of epochs, with eventually the RMSE flattening oUI Most

of the training is completed within epoch number of 1000. Subsequent training rate is

slow, but RMSE continuously decreases along the path of convergence.

During learning neural network changes its weights with respect to epoch number.

Change of weights with respect to epoch number I, 2, 5, 10,20,50,100,200,500,

1,000, 2,000, 5,000, 10,000, 20,000, 50,000 and 100,000 has been shown in a

combined form in Figure 6.27. This figure shows that at the beginning of training,

weights are near about to zero. Though the change in RMSE after epoch number

1,000 is very slow, the significam change in weights is continued up to epoch

number 20,000. Final weights have been shown in the last one (for epoch number

IOJ
) and neural networks perform its prediction based on this set of weights.

••
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In the following Se<:lion 6.6, it has been tried to show the major input parameters for

permeability prediction.

6.6 Impact of Input Parameter

The Figure 6.29 is the final absolute weights after epoch number 105• The Figure

consists of 7(row) x 8(column) blocks. The first top row is the bias from hidden to

output layer. Subsequent rows represent the first, second, third, fourth, fifth and sixth

hidden node respectively. Similarly, columns (from right side) represent input

parameters x, y, relative strata, facies, porosity and thickness. The seventh column is

the bias from input to hidden layer. Output is represented by eighth column From

this Figure, it is clear that the major input parameters are porosity and relative strata.

Y location is also important input parameter. The effect of biases is negligible .

••
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Figure 6.28: Significant of input parameter to output through llbsolulC weights.

6.7Rlndomnes~ Effecl

Figure 6.27 shows l1Uldomocss plot. The figure shows RMSE variation from 0.10503

100,1107 due to randomness effect. lltc reduction factor wries from 0.46 to 0,56

due to rtndomness effect. An avenge value of RMSE is previously considered 10

reduce lite nmdomness effect during tlte optimal parameter sclettion.
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Figure 6.29: RMSE variation at different runs signifying randomness.
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6.8 WellS Permeability Prediction

The developed neural network model has been trained upto epoch number 25xlO'

using the data of well I, 2, 3, and 4. During the training, the selected optimum

parameters were input to hidden layer bias = 0.5, hidden to output layer bias = 0 os,

ALR=2.0, BLR = 0.0005, number of hidden node = 6. RMSE was 0.10041, Table 6.2

shows predicted permeability of Well 5.

6.9 Conclusion

• Development of a neural network modeling mainly deals with the optimum

parameter selection, To find each optimum parameters, the neural net work with

one hidden layer consists of6 hidden node were trained upto epoch number 1O~,

In most cases the RMSE was near about to 0,1060. The optimum parameters

were input to hidden layer bias = 0,5, hidden to output layer bias =0.05,

ALR=2 0, BLR = 0.0005, number of hidden node = 6.

• The higher value of ALR indicates that the input to hidden layer learning rate is

more significant than the hidden to output layer learning rate.

• After training the model upto epoch number 10', the RMSE is quite high (near

about to 0.11) and rate of change ofRMSE with respect to epoch number is very

slow after epoch number 10'. This is due to the lack of information (other input

parameters on which permeability depends) in the input layer. So, the model

prediction error will be high,

• The change in RMSE is high upto epoch number 1000 and then it gets slow. But

the change in weights is significant upto epoch number 20x 103•

• Porosity and relative strata show their more impact to permeability prediction.

The effect of biases is negligible.

• Average ofRMSE should always be considered during the optimum parameter

selection to reduce the randomness effect,



Table 6.2 Well 5 permeability, prediction training Well 1, 2, 3 and 4 (Epoch No.
2SxlOS).

Inpul Output

X V Rrlatlve Fades Po•.•••lly Thitkoe5' Permeabmty

Strata

0.79657 0.63467 0.95714 0.00 0.096386 0.45 0.51216

0.7%57 0.63467 0.85714 0.00 0.196790 0.45 051110

0.79657 0.63467 0,80000 0,20 0.120480 0,45 0.51103

0,79657 0,63467 0.77143 0.20 0.220ll8O 0.45 0,51103

0.79657 0.63467 0,75000 0.20 0.164660 0.45 0.51102

0.7%57 0.63467 0.72143 0.20 0.120480 0.45 0.51101

0.79657 0,63467 0.69285 0,00 0.265060 0,45 0.51136

0,79657 0.63467 0- 0.00 0.208840 0.45 0,51217

"'



CHAPTER 7

CROSS VALIDATION

Neural network model responses are verified using cross validation method. This

chapter discusses the analyses obtained from the cross validation exercise. As stated

earlier, the present study develops a neural network model (Chapter 6) to predict well

permeability using available petrophysical and spatial infonnation including

porosity, facies, well location, relative stratigraphic depth and formation thickness.

Cross validation is a statistical analysis in which model responses are obtained for

some known subset ofinpu! parameter space without using prior infonnation of this

subset and analyzing some statistical measures of the difference between the known

subset and model response. In this study for all the wells that already have

permeability infonnation, we predict the penneabilities twice, First, these values are

predicted using prior infonnation. Second time, we do not use the prior infonnation.

The difference between the two predictions provides us infonnation regarding the

quality of the model responses for any particular well or area of the reservoir. It is

important to note that all other parameters were kept unchanged during the training

phase. We used an epoch number of]05 for the study,

The outline of the chapter follows. Section 7.1 discusses the cross validation analyses

for Well L Similarly, Sections 7.2, 7.3 and 7.4 discuss the same for Wells 2, 3 and 4.

Section 7.5 relates the uncertaillly characterization of the penneability prediction
space. Some conclusions are drawn in Section 7.6.

7.1Weill Response Validation

Figure 7.1 is the permeability prediction versus pattern plot of Well I for the case in

which the training set includes prior information of Well L The training rOOImean

square eour (RMSE) was 0.1063. The predicted and training patterns means are very

close and they are 0.717 and 0.718. Figure 7.2 shows pattern-wise prediction errors.

The absolute prediction error ranges from{)to 0.15 with a mean value 0.05.
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For the model responses that do not use prior Well I infonnation, the prediction

versus pattern plot is given in Figure 7.3. TrainingRMSE in this case is 0.1084, Tlte

predicted pattern mean is 0,721. Prediction errors are shown in Figure 7.4. Mean

absolute error is 0.05 wltile the absolute error values range from 0 to 0.16. It is

apparent tllat tlte prediction performances for Well I are more or less same in both
~,
7.:ZWeD:Z Re!lponse Validation

Penneability prediction for We!l2 using prior information in training set is shown in

Figure 7.5. Training RMSE is 0,1063. Predicted mean is 0.683 and while pattern

mean 0.681. The predicted patterns and patterns means are near about to equaL

Pattern wise prediction errors are shown in Figure 7.6.Mean value of absolute error

is 0.096 with a range from 0 to 0.40. For model responses without Well 2 prior

infonnation, penneability predictions versus patterns are shown in Figure 7,7.

Prediction errors are shown in Figure 7,8. RMSE is 0,0882. Large prediction errors

are clearly evident. The difference between prediction mean (0.721) and pattern

mean (0.716) is significant. Absolute error for prediction ranges from 0 to 0,44 while

the mean is 0.111. So, the responses are less reliable for Well 2 compared to that for

Well 1.

7.3 Well 3 Response Validation

Well 3 permeability prediction and prediction errors are shown in Figures 7,9 and

7.10 for the case when the Well 3 data is included in the training patterns, RMSE is

0.1066. The prediction and pattern means are 0.574 and 0.597. Mean absolute error

for prediction is 0.094, and it ranges from 0 to 0.29. While, permeability prediction

and prediction errors are shown in Figure 7.11 and 7.12 for the case when Well 3

prior information are not included in the training phase, Bias in the prediction

worsens. The mean absolute error for prediction is 0.117. Pattern wise absolute

prediction error varies from 0 to 0.35.
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7.4 Well 4 Response Validation

Figures 7,13 and 7,14 show Well 4 permeability prediction and error plots when

Well 4 data are included in training patterns. The predicted pattern and training

pattern means are 0.522 and 0.591. Absolute prediction error varies from ° to 0,17

with a mean value 0.065, Figures 7.15 and 7.16 are the prediction and error plots

when Well 4 data is not used. The prediction and training pattern means are 0.670

and 0,552. Absolute mean error is 0.125 and it ranges from 0.01 to 0.27.

7.5 Prediction Space Characterization

In order to characterize the prediction space, we perform prediction el[ercises with

different random number seeds and examine the scatter in the prediction. The scatter

in the predicted values implicitly characterizes the uncertainty in prediction, Pattern-

wise prediction scatters for Wells I, 2, 3 and 4 are shown in Figures 7.17 to 7.24.

The use of prior infonnation is also elWllined in these plots. The uncertainty space is

evidently larger when prior information is not used, It is intuitive.

7.6 Conclusion

• Model responses for Wells 1 and 2 are more reliable than those for Wells 3 and 4.

The reason could be attributed to the amount of infonnation available. However,

there is always a possibility of not capturing information of spatial distribution

with only 4 wells.

• Additional information may not lead to greater reduction in training RMSE. The

reason could be existence of conflicting information in the data.

• Parameterization of the input space for the problem is not sufficient. Additional

information regarding grain size and disttibution, angularity, connectivity,

geomechanical properties, diagenesis effect and so forth may improve the model
responses,

• Uncertainty space in the prediction varies for one point to another within the

reservOIr.
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CHAPTER 8

ERROR ANALYSIS

We analyze the prediction error in the neural network responses in this chapter. The

objective is to investigate the source of errors and minimize the error, It is found that

most of predictions tend tnwards the central values, Patterns with low and high

(extreme) values have higher prediction errors. It was conjectured that affine scaling

of the prediction histogram could improve the prediction, Affine scaling of the

histogram is a detenninistic method of introducing greater variability in the values

keeping the shape of the histogram almost unchanged. Affine scaling has been used
to lessen prediction error.

This chapter comprises of the following sections. Section 8.1 discusses neural

network predictions, In Section 8.2, affine scaling is used to minimize error. Section

8.3 explores the sources of prediction error. Section 8,4 is the conclusion of error
analysis.

8.1 Neural Network Predictions

We witness some interesting trend in the histograms of the patterns and predictions

Figures 8.1 and 8.2 show histograms of the patterns and corresponding prediction for

a typical neural network run. Pattern mean is 0.658. It ranges from 0,26 10 099

Prediction mean is 0,66 and the range is 0.40 10 0,81. Reproduction of mean is

evident. In other words, there is very little bias in the neural nelwork prediction.

However, the prediction range is significantly lower than the pattern range.

We attempted to correct this error through the application of an affine scaling of the

prediction histogram, In the following section, affine scaling is applied to minimize

the neural network prediction error.
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8.2 Affine Scaling of Prediction Histogram

Affine scaling of the histogram is a detenninistic method of introducing greater

variability in the values keeping the shape of the histogram almost unchanged. A

Fortran code for affine scaling of histogram, AFFINE, (Deutsch and Iournel, 1998)
was used.

Figure 8.3 shows neural network predictions and affine scaling corrected neural

network prediction. The first column plots are prediction versus pattern and the

second column are error versus pattern. Plots in the first row of the figure are neural

network prediction and pattern-wise prediction error. The prediction mean is 0.659,

and the pattern mean 0.658. The prediction ranges from 0.398 to 0.811 Correlation

coefficient between pattern and prediction is 0.687. After affine scaling, prediction

mean is 0,660 while the range is from 0.312 to 0.811. Correlation coefficient

between pattern and prediction remains at 0,687, Although the range improves, there

is hardly any improvement of the correlation. Table 8.1 presents neural network and

affine scaling corrected neural network prediction results for 5 ruos. Table 8.1
indicates similar trend in all the runs,

In order to see the effectiveness of affine scaling, we considered the patterns with

neural network predictions error less than a threshold value. We arbitrarily fix the

threshold at 0.15. The pattern and the prediction histograms and scalier plots are

shown in Figures 804, 8.5 respectively In Figure 804, the first column plots are

pattern histograms, and second column plots are prediction histograms. Plots in the

first row are for neural network response. The pattern mean is 0.67 and the range is

0.26 to 0.95. The corresponding neural network prediction mean is 067 and the

range is 0040 to 0.81. Second row plots are those after affine scaling, The affine

corrected prediction mean is 0.67, The prediction ranges from 0.31 to 0.86, Figure

8.5 shows prediction versus pattern in the first column and error versus pattern

scalier plots in the second column for neural network prediction and for neural

network prediction after affine scaling. The correlation between prediction and

pattern is 0.816. After affine scaling histogram correction, the correlation between
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prediction and pallern becomes 0.852, which IS higher than the original neural
network prediction.

This is evident in other four runs shown in Table 8.2 and 8.3. Affine scaling is

effective to improve the neural network prediction performance for patterns with less
than the threshold.
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network prediction.

""



Table 8.1: Neural network and affine scating corrected prediction statistics.
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Figure 8.5: Neural network prediction and affine corrected neural network

predictionfor patternswith lessthan threshold.
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Table 8.2: Neural network predictionswith error less than the threshold.

R,m M'D ",." Correlation

CoefficieDt

Pattern Neural Pattern Neural Neural
Network Network Network
Prediction Prediction Prediction, ""' 0.67 0,35 - 0.88 0,42-0.78 0.793

, 0.67 0,67 0.35 -0.88 0.397 - 0.827 0.793

; 0.67 0.67 0,35-0,95 0402-0.825 0,799

, 0,66 0.67 035 _0.95 0.455-0.802 0.190

, 0.67 0,61 0.26-0.95 0.398-0.811 0.816

Table 8.3: Neural network predictions after affine scaling with error less than
Ihreshold.

R" M'D Range Correlatioo

Cofficient

Pattern Affioe Pattern Affine Affine
Sealing Seating Sealing

Prediction Prediction Prod!c""n, 0,66 0.67 0.25-0,88 0.32_0.83 0,822

, 0.66 0.67 0,25 - 0.88 0.32-0.83 0.827

; 0,66 0.67 0.25 -0,95 0.32':'0.88 0.833

, 0.66 0.66 0,25 _0.95 0.36 -0.87 0,84

, 0.67 0.67 0.26-0.95 0,31-0.86 0.852



In the following section, we investigate the source of errors particularly of the

patterns with prediction error greater than the threshold value.

8.3 Sourees ofHigb Prediction Errors

We explore the sources of high prediction errors. The objective was to determine the

presence of some trend in the parameters that yield high errors. The parameters

examined are the maKimum permeability, porosity and facies. Figures 8.6, 87 and

8.8 show maximum permeability, porosity and facies histograms respectively for

patterns with greater than the threshold value of prediction error, The threshold value

is fixed at 0.15. The mean and standard deviation of maximum permeability is

119.32 and 259.2 and the range is 0.04 to 1320, Figure 8 6 shows that extreme values

of permeability are responsible for higher prediction error. The porosity (see Figure

8.7) mean and standard deviation are 0.06 and 0.03 respectively and the range is 0.02

to 0.13. Figure 8.8 shows that Facies 1 is the major facies with prediction errors

greater than the threshold. In fact, amount of information available of Facies 1 is

greater those for other facies,

8.4 Conclusion

Some of the conclusions derived from the error analysis exercise are given below.

• Affine scaling of neural network prediction histogram appears to be an effective

correction scheme for patterns with less than some threshold value.

• Prediction error is high for extreme values of permeability,

• Porosity and facies of the high prediction error patterns do not reveal any obvious

trend.
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(9.1)

CHAPTER 9

COMPARATIVE STUDY FOR PERMEABILITY

DETERMINA nON

This chapter compares the performance between developed neural network model

and conventional methods used for permeability estimation. The conventional

methods such as Carman-Kozeny equation and multiple linear regression are

generally employed to estimate permeability. The perfonnances of these methods

have been compared with the neural network model responses to investigate their

effectiveness in permeability determination,

This chapter comprises the following sections. Section 9,1 deals with Carman-

Kozeny equation and prediction of permeability, In section 9.2, multiple linear

regression model has been developed 10predicl penneability. Section 9.3 illustrates

the comparison between these conventional and neural network models,

9.1 Permeability Detennination Using Carman-Kozeny Equation

9.1.1 Basics of Cannan-Kozeny Equatoin

The equation relating to measurable rock properties with permeability was first

proposed by Kozeny. It was modified by Carman. Carman-Kozeny equation is used

to provide framework for penneability estimation, Carman-Kozeny equation relates

porosity, specific surface area, hydraulic radius and tortuosity According to

Poiseuille's equation, flow through a conduit or capillary can be written as

~'M'Q~--"~
where ris the radius of the conduit, Q is the volumatric flow rate. From Darcy's

equation, one can write

Q •• kt,r'lJ.P (9.2)
~
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From Equation (9.1) and (9.2) one can write

(9.3)

Equation (9.3) should be corrected for porosity and tortuosity to give'the interstitial

velocity. So, the corrected permeability is

(9.4)

In porous rock medium, grain size is not constant. To overcome this problem, r IS

substituted by hydraulic radius. Hydraulic radius is defined by

volume op<:n to flow','----~---wetted surfucearea

For cylindrical capillary,

(9.5)

For granular or porous medium specific area can be defined as

welted surfucearea
11"~

solid volume

Specific surface area is an intrinsic property for a porous medium. It can be estimated

using picnometer, porosity estimates, and grain size analysis. From the definitions of

hydraulic radius and spedfic surface area, hydraulic radius can be derived as

r" _ 1J
11,(l-1J)

Using Equation (9.5)

From Equation (9.2) and (9.6)

k~ ?'
2«1_;)',,;

Equation (9.7) is referred as Carman-Kozeny equation.

(9.6)

(9.7)



For porous medium with uniform sphere

areaof spheres 1rD; 6a.. _
v vclumeof5phere. !!-D' - D,, '

So, for a uniform porous medium, permeability can be estimated using Equation

(9.7) as (9.8)

(9.9)

From Equation (9.8), it can be inferred that tortuosity has weak influence on

permeability due to its low power and it does not vary much, On the other hand,

permeability increases dramatically with particle size and porosity. In practical cases,

particle size is more uncertain than porosity. So, particle size is the main controlling

factor in permeability estimation, not porosity.

Particle size and tortuosity data are not found in the field data, collected to perform

the present research work. To overcome this problem the Kozeny constant has been

considered in lumped form and it is

D't/>'
k.. '

72,-(l-t/>}'

k _C t/>'
(I-t/»'

where C is the Kozeny constant in lumped form. Equation (9.9) has been used to

detennine the Kozeny constant in lumped form (in field units) using field data fo,-

permeability and porosity.

9.1.2 Selection of Kozeny Constant

Figure 9.1 shows histogram for Kozeny constant (calculated using Equation (9.9)

from field data, in field unit) in lumped form. Mean and standard deviation are found

200823.00 and 601084.80 respectively while the range is found to be 127.00 to

4930000.00, This histogram has been plotted to select Kozeny constants at different

peaks, The Kozeny onstants are 1500, 10000. 30000, 100000, 400000, 200000,

Using these constants, maximum permeability (K",..) has been determined.

B'



9.1.3 Variation of Porosity and Permeability with Kozeny Constant

Figure 92 shows Kozeny constant (in lumped form) versus porosity scatler plot.

Correlation is found to be -0.30. So, the Kozeny constant decreaes with porosity.

Figure 9.3 shows maximum permeability (calculated) versus porosity scatter plots for

the selected Kozeny constants. These plot shows that maximum permeability (Krnax)

increases slowly for low value of porosity, but permeability increases dramatically

for higher values of porosity. Figure 9.3 shows that rate of permeability change is

high for high values of the Kozeny constant.

In neural network model, the pattern (measured maximum permeability) and

prediction (model output i.e., calculated maximum permeability) are in normalized

form, To compare the performance of empirical model and neural network model,

the calculated Km•• from Cannan-Kozeny equation and measured K",,, are also

trnasformed into normalized condition, To consider the entire population, the

maximum and minimum values of log KtIW< were selected 4,50 and -3.00
respectively,

Figure 9.4 shows maximum permeability (measured) histogram, Mean and standard

deviation are 0.54 and 0.12 respectively. The vlaue ranges from 0,21 to 0.82,

9.1.4 Determination of Permeability Using Carman-Kozeny Equaiton

9.1.4.1 Permeability Determination for Kozeny Constant 1500

Figure 9,5 shows histogram of calculated maximum permeability (K...,,) Mean and

standard deviation are 0.36 and 0,10, The difference for mean between calculated

K•••, and measured K•••, is remarkable. So, the results from Carman-Kozeny

equation for Kozeny constant 1500 are highly biased. The range of claculated Kma,

is from 0.11 to 0.56 which is Darrowwith respect to the measured K",,, range. Figure

9,6 is calculated K.".,. versus measured K•••, scatter plot with correlation 0.48 and
RMSE 0,21.

II'
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9.1.4.2 Permeability Determination for Kozeny Constant 10000

Figure 9.7 shows histogram of calculated Km.•. The mean and standard deviation of

calClllatedK"",. are 0.474 and 0.10. The calClllatedK.n•• ranges from 0.28 to 0.67

The calculated results are still biased and narrow ranged. Figure 9,8 is calculated

Km•• versus measured Km.xscatter plot. Correlation and RMSE are 0.478 and 0 13.

The reduction ofRMSE is clearly evident.

9.1.4.3 Permeability Determination for Kozeny Constant 30000

Figure 9.9 is the histogram of calClllatedK•••••.The mean and standard deviation are

0,54 and 0.10 respectively. The calculated K",.. ranges from 0,28 to 0 74, So, the

calculated results are relatively less biased and the range is moderately good. Figure

9.10 shows calculated K""" versus measured Km.xscatter plot and the correlation is

0.48. RMSE is 0, 11, farther reduction ofRMSE.

9.1.4.4 Permeability Determination for Kozeny 1011000

Maximum permeability histogram for Kozeny constant 100000 has been shovvnin

Figure 9.11. It has a mean of 0,61 and a standard deviation of O.IO.Thevalue ranges

from 0 30 to 0,81. So, the calculated results show bias hut the range is good, Figure

912 is the calculated K..... versus measured K••••scatter plot. The correlation is 0.48

and RMSE is 0.13. RMSE is more than the RMSE forKozeny constant 30000,

9.1.4.5 Permeability Drtermination for Kozeny Conslllnt 400000

Figure 9 13 is the histogram for calculated K",.. for Kozeny constant 400,000 with

mean and standard deviation 0.69 and 0.10 respectively, The minimum and

maximum values are 0.43 to 0,89 respectively. Again the calculated result shows

bias. The range has exceeded the measured permeability value, Figure 9,14 is the

scatter plot between calculated K...... and measured K..... with correlation 0.48 and
RMSEO,18,
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9.1.4.6 Permeability Determination for 2000000

Figure 9.15 shows maximum permeability (K.....) histogram. It has mean and

standard deviation 0,78 and 0.10 while the range is found to be 0.52 to 0.98. The

calculated result is unable to generate mean i.e. biased and the range is very high

with respect to the measured permeability range. Figure 9.16 indicates calculated

Kmoxversus measured Kmaxscatter plot. Correlation is 0.48, RMSE is 0 26.

From the above results, it can be inferred that Carman-Kozeny equation performs

better for Kozeny constant 30000. So, for comparison with other methods, the results

for Kozeny constant 30000 has been used in Section 9.3.

The following Section 9.2 gives a statistical model, multiple linear regression for

maximum permeability prediction,

9.2 Multiple Linear Regression Model

A useful extension of least square method is the multiple linear regression method

where dependent variable, Y is linear function of two or more independent variables

(X"X" X" . .). The general form of multiple linear regression equation is

y ~Bo+B,X ,+B,X ,+8,X ,+e (9,10)

Where Bo, B
"

B" B, are the coefficients and e is the error term. The best values of

coefficients are selected in such a manner so that the error term reduces to zero

Under this study multiple linear regression model for penneability prediction has

been developed based on least square method using well locations, relative

stratigraphic depth, facies, porosity and thickness as independent variables.

Normalization of the data has been done according to Table 6.] The developed

linear regression model is

K """ ~ 0.343 t 71- 0,32656X +0.202984Y -0, 12247 Z """,-o.09837(F""iu) + 0.4117()6q>

-Hl, 48908 7(1"!Iickness)

n.

(9.11)
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9.2.1 Validation ofthe Regression Model

Figure 9.17 is the histogram for maximum permeability (Km.J (measured). The

measured K""", value ranges from 0,26 to 0.99 while the mean and standard

deviation are 0.658 and 0,145 respectively. Figure 9.18 shows predicted maximum

permeability histogram The predicted Km., value ranges from 0.504 to 0.845. The

mean and standard deviation are 0,658 and 0.082, The developed regression model is

capable to reproduce the mean. So, the developed regression model is more or less

bias free but prediction range is very narrow,

Figure 9.19 shows predicted maximum permeability versus measured permeability

scatter plot. The correlation and RMSE are 0,57 and 0,12 respectively.

9.3 Results and Discussions

The prediction statistics of neural network model, empirical Carman-Kozeny

equation and multiple linear regression model have been shown in Table 9.1, 9 2 and

9.3 respectively, It is remarkable that neural network model and regression model are

quite capable to reproduce the mean, So, their predictons are bias free. On the

otherhand, the Cannan-Kozeny equation is slightly biased, Prediction ranges for

neural network and regession model are narrow. Comparatively, regression model

prediction range is more narrow than that of neural network modeL Prediction range

for Carman-Kozeny equation is relatively better than the other two methods. The

RMSE for neural network model (0,105) is less thail that of Carman-Kozeny

equation (0.11) and multiple linear regression model (0.12). On the other hand,

neural network shows higher correlation (0640 to 0.687) between predicted and

measured maximum permeability than Carman-Kozeny Equatoin (0,48) and multiple
linear regression model (0.57).

BO
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Table 9.1: Neural network prediction statistics.

Roo M~" Range RM" Cnrrelation

MeanK-. Neural "-. Neural
(mu •••red) Network (measured) Network

Prediction Prediction

, 0.M8 0.659 0,26_0,99 0,416-0.780 0.105 0,640

, 0.658 0.658 0.26 -{l.99 0.397-0.827 0,105 0,683

, 0.658 M'" 0.26_0.99 0.402 - 0,825 0,105 0.670

• 0,658 0.659 0.26-0.99 0.455-0.802 0.105 0.648

; 0,658 0,659 0,26-{l,99 0,398-0.811 0.105 0.687

Table 9.2: Statistics of results from Carman-Kozeny equation for Kozeny constant

30000,

Mean Range RM" Correlation

~ean K.:~: Cal;ulated 'mc~:;,~.n Cal;ulated
mcuured

0,543 0,538 0.213 -0.816 0.28-0.736 0.11 0.48

Table 9.3: Multiple linear regression model prediction statistics.

M,~ R~~ RMSE Correlation

~.an~~: P~ctl'd
'me~':cd'

Predicted K. ••
mea•••red •
0.658 0,658 0.26 -0.99 050_0.85 0.12 0.57

m



9.4 Conclusion

Neural network model predicts that porosity and relative strata are the most

important and thickness is the least important input parameters for permeability

prediction. This prediction is relevant with the exploratory data analysis and practical

experiences. In contrast, multiple linear regression model shows that the thickness is

the most important input parameter for permeability prediction. So, linear regressive

model is unable to predict the important input parameters.

The conventional methods olTer no prediction space. Neural network model can

produce prediction space (Figure 7.17 to 7.24). So, it can reduce the artifact elTect in

the prediction space.

Neural network model is more efficient to caphire the prediction space than the

conventional methods Carman-Kozeny equation and multiple linear regression

model. The RMSE of neural network model can be reduced as well as the correlation

can be improved more by increasing the number of hidden layers.



CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

In this study, a neural network model is developed for permeability prediction at a

"uncored" well. The inputs to the neural network are porosity values, lithofacies

identifiers, spatial coordinates, and thickness of the samples. A number of analytical

studies are performed in this work. Some of the salient conclusions derived from the

study are enumerated below. More detailed analyses are discussed in the previous
chapters.

10.1 Conclusions

• Exploratory data analysis reveals the correlations between variables of interest

are very poor, Under usual circumstances, this leads to poor models based on first

principle or simple regressional methods, The use of highly nonlinear

sophisticated tool such as neural networks was deemed to develop a model.

• Both sigmoidal function and hyperbolic tangent functions had been used for the

activation function in the neural network model. It was found that sigmoidal

function performs better of the two.

• Optimal parameters and their corresponding values were selected The optimum

parameters were input to hidden node bias (0,50), hidden to output node bias

(0 OS), input to hidden node learning rate (2.0), hidden to output node learning

rate (0,0005), number of hidden nodes (4).

• The relative influence of the input parameters was investigated. It is found that

porosity and relative strata are the significant parameters amongst the others

input parameters available for permeability prediction, On the other hand,

contribution of multiple linear regression model about the importance of input

parameter is misleading,



• Parameterization of the input space for the problem is not sufficient With

available data, developed model shows high prediction error and less reliability.

Of course, a major reason for high prediction error is the poor correlation

between parameters.

• A number of uncertainty analyses were perfonned for permeability prediction

using this study. This kind of studies is recommended as routine affair for any

engineering investigation. Uncertainty characterization leads to better

understanding of the problem being investigated.

• Prediction error is high for extreme values of permeability. Affine scaling has

been applied to minimize prediction error of the developed model. Affine scaling

is effective to minimize prediction error for patterns with values lower than some

threshold

• One important thing over the conventional methods is that neural network model

is error tolerant and it can minimize the artifacts in the prediction space.

• It is possible to predict penneability with more efficiently than conventional

methods using neural network model.

10.2 Recommendations

In this study, a back propagation neural network model has been developed to predict

permeability of an "uncored" well using mainly core data. Some of the

recommendations realized from the work could be the following.

• The computer program developed in this work has a much wider

applicability. The same code can be applied to some suitable petroleum

engineering problems (mentioned in Chapter 3) with little modification.

• Number of hidden layer can be increased for better training as well as to get

. better responses of the developed neural network modeL



• Additional infonnation regarding grain SIZe and distribution, angularity,

connectivity, geomechanical properties, diagenesis effect etc. would have

enhanced the modeL

• For nonstationary systems, the developed neural network model should be

modified to incorporate approaches similar to temporal Back Propagation

Neural Network Model.

• More effective methods should be applied for error correction. Further

investigation is required in this regard.

• This is the first documented application of neural network in petroleum

engmeering studies in Bangladesh. Techniques like neural networks

discussed here and more sophisticated ones can be and should be applied

extensively for the development of petroleum engineering in Bangladesh.



NOMENCLATURE

ALR = Learning rate between input and hidden layer

BLR '" Learning rate between hidden and output layer

K""" '" Maximum permeability

Kv<rt = Vertical permeability

RMSE = Root mean square error

Z...... = Relative strata

a. '" Specific surface area in Equation (9.6)

b; '"Bias applied to neuron j

C = Kozeny constant in lumped form in Equation (9.8)

d" = Desired output vector for time step n in Equation (4.10)

dJ" '" Desired response (output) for neuron j at time step n in Equation (4, 15)

d; ~Desired response (output) for neuron k at time step n in Equation (4.29)

D p = Particle diameter in Equation (9.8)

e; '" Refers to the error signal at the output of neuron k for time

step n time step in Equation (4.3)

e: = Refers to the error signal at the output of neuron j for time

step n in Equation (4.12)

j, = Nonlinear function in Equation (4.1)

N '" Totaillumber ofpatlem in the training set in Equation (4, 14)

n = Time step in Equation (4.3)

0, = Output produced by neuron i in Equation (4.1)



ilP •• Pressure difference in Equation (9.1)

Q ••Volumetric flow rate in Equation (9.1)

r =Radius of the conduit in Equation (9. I)

r. = Hydraulic radius in Equation (9.5)

v; = The induced local field (i.e, weighted sum of all synaptic inputs plus bias)

of neuron j atiteration n in Equation (4.21)

w' = Optimum weight vector in Equation (4.4)

w;o = Synaptic weight for bias bi at iteration n in Equation (4.15)

w; = Synaptic weight connecting the output of neuron i to the input of

neuronj at iteration n in Equation (4.21)

t.wi, = The correction applied to tbis weight at iteration n in Equation (4.23)

x" = Input vector at iteration n Equation (4.10)

xj = The j th element of the input vector (pattern) at iteration n

in Equation (4.3)

x; = The input signal from neuron i 10 neuron j in Equation (4. I)

yj = Function signal appearing at the output of neuron j at iteration n III

Equation (4.12)

Greek Symbols

rp ,0 =The activation function associated with neuron j in Equlltion (4.16)

= Porosity in Equation (9.4)

1/ = The learning-rate parameter in Equation (4.3)

e" = IllStantaneous value oftbe sum of squared errors in Equation (4.13)



8(W) = Cost function in Equation (4.4)

g =Gradient of cost function, 8(W) in Equation (4.7)

8:" = Average error energy in Equation (4.14)

0, = Threshold for neuron i in Equation (4.2)

J 7 =Local gradient of neuron of neuron j at time n in EquBtion (4.24)

a = Partial

'V = Differential operator

r = Tortuosity in Equation (9.4)

Subscript

~ = Average

; =Neuron i

j = Neuron j

k =Neuron k

m" =Maximum

"rt = Vertical

""
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