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ABSTRACT

Practicable and realistic reservoir characterization is essential for optimel reservoir
management. In this study, a randomized back-propagation neural network model is
developed for formalion permeability prediction. The model has only one hidden-
layer, and the inputs to the model are core porosity, facies identifier, sample
Lhickness, and well sample location. A aumber of sensitivity studies for permeability
prediction are performed. Prediction errors from the model are analyzed and a post-
processing scheme for error mitigation is investigated. Neural network responses
were compared with those using conventional methods for permeability
determination. There are some specific advantages of using the developed model,
Characterization of prediction space is observed to be better. However, the
limitations of the study were also highlighted. A variety of applications of artificial

neural networks in reservoir engineering problems are reviewed in this study.
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CHAPTER 1 . -
ST,
INTRODUCTION

The demand for energy is ever increasing. For today’s world, oil and gas is one of
the main sources of energy for the industrial development and maintaining living
standard However, the finite sources of known reserves are depleting. As a
consequence, there is growing endeavor for search for unknown or unexploited
reserves and optimel reservoir management of the developed fields. Fierce
competition and the urge for environmenta! friendly exploitation of natural resources
drive most oil and gas companies to have greater and betier control over their plays
Characterization of the reservoir is thus deemed an essential aspect in reservoir

management,

Reservoir characterization is an important domain of petroleum engineering. It is the
precondition for reservoir simulation as well as effective reservoir management. It
entails various aspects of reservoir and rock-fluid modeling, namely formation
property like porosity, permeability, fluid saturation, lithology prediction, and so
forth. For proper and effective reservoir characterization, the directional and spatial
variation of rock property should be determined. This study focuses on one of the

processes involved in permeability characterization.

The Lraditional methods for permeability determination are oflen empirical in nature.
Carman-Kozeny equation for permeability determination is 2 common approach. A
number of imitations exist in the applicability of this approach. It is valid for packs
of uniformly sized spheres. Another drawback is that surface area can be determined
only by cecre analysis, and only with special equipment. Variation of Kozeny
constant for consolidated porous media creates another problem to work with
Carman-Kozeny equation. Multiple linear regression method is aisc used for the
estimation of permeability. Multiple regression methods often have an inherent
averaging tendency. Nonetheless, the assessment of uncertainty in estimetion is

precluded in these methods.



The influence and application of virtual intelligence have grown in numerous fields
of science and enginesring. Virtual intelligence tool such as artificial neural nerwork
15 being widely used. Anificial neural networks have emerged as useful tools in
petroleum engineering, particularly reservoir characterization. In this study, a neural
network model based on back propagation elgorithm has been developed for

permeability determination.

The neura! network is trained with avmilable data. During training, the neural
network gathers knowledge about the system and stores them as memory matrix.
This memory matrix is then used for prediction. Neura! network is error tolerant and
a data driven model. Very detail knowledge of the system is not necessary to work
with neural network Ft requires less input parameters for reservoir characterization
with respect to conventional mathematical medel. So, neural network can be used for

reservoir characterization in an inexpensive way.



CHAPTER 2
STATEMENT OF THE PROBLEM

Determining permeability from well logs is an essential element in reservoir
modeling. The task of deriving permeability values is however not a simple exercise.
Present day technologies reduce the complexity of the problem to some extent. The
general convention is to use simple permeability-porosity relationships These simple
relationships are only valid for unconsolidated sand and homogeneous lithology. In
fact, permeability is a complex function of several interrelated factors such as
lithology, pere fluid composition and porosity. Well logs respond directly to these
factors. There have been attempts to establish their relationships. As an alternative to
conventional methods such as Carman-Kozeny equation, multiple linear regression
analysis, one can implement an artificial neural network techmique to predict

permeability more accurately from well logs.

The artificial neural network models are data driven that is entailed in the “training”
stage of model development. The trained neural network modeis are able to capture
information and knowledge about the system. They can extract noniinear

relationships that are immensely difficult to model from the first principles.

Primarily the objectives of this work are:

To develop a neural network model to predict well permeability

* To optimize the prediction process and development of a post-processing

scheme to minimize estimation error

¢ To efficiently estimate permeabilities at “uncored™ wells

» To compare neural network model responses with conventional methods.



Outiine of Lhe work is given beiow.

* Review of application of neural network in Petroleum Field

* Development of Lhe computer code to implement a neural network model

using core-data

¢ Prediction of well permeability using neural network model, This entails a

case study with real core data.
¢ Optimal parameter selection of the neural network model
* Sensitivity analysis using neural network model
# Ermor analysis of the model predictions

* Development of a post-processing scheme for error comrection

» Permeability estimation using conventional methods.



CHAPTER 3
LITERATURE REVIEW

This chapter reviews the available literature of artificial neural network applied to
petroleum engineering. Only selective works have been considered. The review
should not be considered an exhaustive account of the applications of neural network

in petroleum engineering domain.

Artificial neural networks (ANN) are collections of computational techniques that
mimic the functions of human brain These techniques can recognize patterns,
approximate functions, feature detection and other scientific and engineering
problems. A discussion of the basics of artificial neural netwarks will be given in
Chapter 4 In a peneral sense, applications of neural networks are most effective
when there are no established relations among the parameters, Neural networks
atlempt o capture the non-linear relationship through some data driven algorithms.
However, the application of anificial neural networks should be made with caution:

it is strongly recommended not to use these elgorithms in a “black-box™ manuer,

Applications of neural networks in petroleum engineering have been around since the
mid-nineties. Amongst the first uses of neural network in petroleum engineering are
in the field of reservoir characterization. In the following sections, some of these
applications will be briefly discussed here. These applications are categorized into
two broad sections: one for reserveir characterization, and the other for reservoir
engineering. -

3.1  Applications of Neural Networks in Reservoir Characterization

"3\

Reservoir characterization entails building reservoir models and characterizing
reservoir properlies. Information from different sources is obtained for reservoir
characterization, Different sources of information include the domains of geology,
geophysics, geochemistry, stratigraphy, sedimentology, engineering, and relevant
geosciences. Data from these sources can vary in resolution, information-content,

and scale. The challenge in reservoir chameterization is to integrate these distinctly



different pieces of information into building plausible reserveir medels Applications

of neural networks in reservoir characterization are briefly discussed here.

Estimation of permeability is very difficult in uncored well as there is no direct
refationship between permeability and lithology. In fact, the relationship between
permeability, porosity and other data such as grain size, type and others are very
complex, and area specific. Log responses depend on lithelegy, fuid composition
and porosity. A predictive equation for uncored intervals can be developed using
multiple linear regression analysis. But fundamental assumption for linearity may not
be valid Huang and Shimel (1994) developed a back-propagation neural network
model to predict permeability in uncored well. Input parameters were latitude,
longitude, depth, spantaneous potential, gamma ray, density, sonic, neutron porosity,
density correction. Permeability was output parameter. The networks contain one
hidden layer, Number of nodes in input, hidden and output layers were 9, 12, and 1,

respectively.

Mohaghegh and Arefi (1994) developed neural networks model to predict rock
propey such as porosity, permeability as well as water, gas and oil saturation using
geophysical logs. Mohaghegh and Arefi {1995) developed a neural network model to

predict permeability using log data

Mohaghegh and Popa (1995a) developed a viriual intelligence software too! based on
detail analysis of a group of well logs. The soRware was then used to analyze the

remaining well logs at a reduced time and cost.

Balan, Mohaghegh and Ameri (1995) developed methods for empirical, statistical
(multiple repression) and a back-propagation neural network model to determine
permeability of heterogeneous oil bearing formation from well log data. It was found
that empirical modeling requires individual equation for individual field. Further,
fluid saturation, porosity and cementation factors are necessary to start modeling
through empirical method. A neural network model of three layers with 18 hidden
neurons was developed and trained. The neural network outperformed the other
techniques. The major advamtage of these models is that they do not require fluid
saturation, potosity data, and they are not affecled by Lhe cementation factor.



Mohaghegh et al. (1993b) compared the prediction capability of multiple regression
and back-propagaticn neural network model. Multiple regression systematically
underestimated the permeability. Also, it was not able to predict permeability for the
entire domain. Neural network models predicted the target permeability values closer
to standard core data. Furthermore, the entice domain permeability could be

predicted.

White and Meinar (1995) developed neural networks for zone identification in a
complex reservoir. The neurzl networks were trained using geophysical data along
with previously defined various zones. Then the developed neural networks were

used to identify zones, previcusly known by core analysis, for difTerent wells.

Walls and Taner (1995) developed a model for reservoir classification based on
seismic atirbutes and borehole dala. Core, well log, and post-stack seismic data were
used to predict lithology. The method was based on combination of core, well logs
and pattern recognition via neural networks. Borehole parameters to the network
were density, primary velocity, secondary velocity, clay volume, and water
saturation. Qutput was reservoir classification indicators. Seismic data are found
most effective to predict inter-well lithology. To tie well log derived attributes and
seismic atinbutes, synthetic seismograms were generated and used to train the neural
networks. A suite of atnbutes was derived. At last five attnibutes were found
sufficient enough to generate acceptable results. These five attributes were input to
the neural network and output was lithology column. Using a neural network trained
to iog lithology in the time domain gives lithology from synthetic seismic with
reasonable accuracy at the well locations. The neural network weights derived
synthetic seismograms were applied to attributes from real seismic revealing the
producing wells to be inside the indicated oil sand area and the non-producing wells

to be outside.

Mohaghegh and Richardson (1998) used well logs to predict effective porosity and
fluid saturation. Magnetic resonence imaging is used to measure free fuid,
ireducible water, and eflective porosity accurately. Permeability is then calcutated

using mathematical function. Magnetic resonance images are also capable of



calculating recoverable reserves. Recent studies show that neura! network have
petential to produce synthetic magnetic resonance images from conventiona! well
logs. Virtual magnetic resonance imaging logs were produced by a neural network
model and used to measure free fluid, irreducible water, and effective porosity for
training and verification data. Recoverable reserves were calculated for different

reserves using the virtual logs.

Mohaghegh (1599} developed a neural network mode! to predict permeability. The
neural network model was trained using geophysical well log data (bulk density,
gamma ray, and induction logs) as inputs, end core data as output. Neural network

performance was satisfactory to predict permeability for verification data.

Mohaghegh and Goddar (2000) used neural network medels producing virtual
magnetic resonance imaging logs from conventional logs (spontanecus potential,
gamma ray, caliper, and resistivity, density and induction logs) to predict free fluid,

elfective porosity, irreducible water saturation.

Modeling of the lithofacies distribution is an imporiant aspect in reservoir
characterization. Siripitayananon and Hui-Chuan {2001) developed & neurzal network
model to predict lithofacies distribution The relation between seismic attributes and
lithofacies is complicated and nonlinear and this relationship cannot be developed
based on first principle. A back-propagation neural network was developed to
capture the nonlinear relationship between seismic atiibutes and lithofacies. The
model couid also be used for petrophysical modeling. The numbers of nodes for the
input, hidden and output layers are 11, 7, and 4, respectively. The input parameters
used are seismic attributes (amplitude, instantaneous frequency, perigram, cosine of
phase, instantaneous phese, rellection strength, and response phase), the location of
the seismic trace, two way time to the reflector, and one bias node to impose an extra
degree of freedom. Qutput layer nodes represent 4 categories of lithofacies. Data

were prepared using a k-nearest neighbors classification algorithm.

Reeves and Mohaghegh ifZﬂ-Dl} showed that a high-resolution reservoir
characterization is possible through the imegration of diffecent scale and type of data
using artificial intelligence (such as neural networks). Relationships between data of



different scales and type had been established, including conventional well logs,
reservoir imaging logs, cross-well seismic, and surface seismic based on afificial
intelligence. Through integration of multiscale data a 3D reservoir image was

established which is required for reservoir flow simulation.
3.2 Applications of Neural Networks in Reservoir Engineering

This section discusses the use of neural networks in reservoir and production
engineering operations. Again, this is not an exhaustible account of such

applications.

Posi-fracture well performance prediction is a challenging task. Mohaghegh and
McVey (1995) developed a back-propagation neural network model to predict post-
fracture deliverability of wells, Unlike the conventional simulator based on
mathematical modeling, neural networks do not require a lot of reservoir data. Thus,
it is cost effective with respect to large cost for dala collection. This process is being
currently used to select candidates well economically feasible for stimulation
treatment Input parameters were well number, year and date the wells were
fractured, number of fracture jobs, type of fracture, fluid viscosity, total water used,
nitrogen used per barrel of water, Lotal sand used, sand concentration, sand type, acid
volume and type, chemicals, treatment injection rate, occumence of new screen-out,
contractor, hole size, completion type, well type, date of completion, date converted
to storage, well group number, sand thickness, minimum 20 year flow test value,
maximum 20 year flow test value, and flow test before refracturing. Output was
maximum flow test after fracture. Networks predicted results were compared with
actual data. This model is found cost effective with respect to conventional fracture

simulation.

Temnyik and Bilgesu (1995a) developed a virtual intelligence tool using neural
networks to predict flowing bottomhole pressure under multiphase Aow and inclined
wellbore conditions. The input parameters were oil, pas and water flow rates,
temperature, oil and gas gravity, pipe length, surface pressure and inclination angles
of the pipe. The developed virtual measurement tool was compared with published
data.



A new method, virtual measurement in pipes was developed by Ternyik and Bilgesu
(1995b) using nevral networks to predict liquid holdup and flow regime in pipelines
and well bores. The predicted output was tested with published data for validation.

The method proved to be an accurate measuring tool.

Nikravesh and Kovsech (1996) developed a neural network to predict water injection
rate as a function of wellhead pressure and vice versa in a fractured, low permeability
oil reservorr, The result was satisfactory though water flood behavior is compilex.
Neural networks were efficient in finding the major input parameters. In the same
Teservoir, neural networks were applied to correlate the injection pressure and rates,
and temperature responses in different wells using data from a dual injector steam
drive pilot. Assuming a future pressure policy, neural nelwork was used to predict

injection rate and growth of reservoir heated volume

Mohaghegh and Hefner (1996) developed a new software tool, Fracture Optimization
eXpert (FOX), based on neural network and genetic algorithm. It can predict post
fracture deliverability and the best possible combination of fracture parameters using
production history data and completion data. It can do without using reservoir data.
This tool was applied i North Eastern Ohic (Clinten Sand} and the result was
satisfactory. Mcvey and Mohaghegh (1994, 1995) identified major parsmeters for
hydraulic fracture based on neural networks Mohaghegh and Balan (1996) designed

and optimized hydraulic fracture treatment based on neuro-genetic approach,

Bilgesu and Tetric {1997) developed a neural network model to predict rate of
penetration and bit wear condition under various formation types and parameters,
Drilling data was generated wsing a simulator. The data generated was used to
develop relationship between complex patterns such as weight on bit, rotary speed,
pump rates, formation hardness, and bit type. The validity of the model was
demonstrated with data from an existing field. Bilgesu and Altmis (1998} developed
a three-layer back-propagation neura! network model to predict bit wear and life. Six
measured parameters (weight on bit, rotary speed, pump rate, formatiou hardness, bit

type, and torque) were used. The validity of the model was demonstrated.
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Mohaghegh and Platon (1998) developed neura! networks and genetic algorithm for
suitable fracture candidate selection. Neural networks provide realistic model for
successful fracturing jobs and chemical treatments; genetic algorithms  were
developed to design optimization economic analysis. Different neural networks were
used for different chemical {reatment. With each neural network model the first
series of genetic algorithm was used for optimum treatment design. A separate

genetic algorithm was used for economic analysis

Mohaghegh and Popa (1999b) developed intelligent software to design fracture jobs
in an inverse manner. The inputs to the software were fracture geometry and
reservolr characteristics and outputs were fluid, proppant and treatment schedule.

This new tool was tested and shown to be capable of designing hydraulic fractures,

Mohaghegh and Reeves {2000} developed a methodology incorporating artificial
intelligence techniques {neurel network, genetic algorithm and fuzzy logic) to select
wells for restimulation, Neural networks were used to develop a representative model
of completion and hydraulic fracturing process for a specific field. Genetic algorithm
as search and optimization tool was used to identify missed production based on the
neural network model. Finally, fuzzy logic was used to capture field experiences as
well as detnmental parameter and incorporated them in decision-meking process.

This methodology was applied in & tight sand lield and the results were satisfactory,

Reeves, Bastian and Flumerfelt {2000) identified restimulation candidate wells in an
effective manner. Production statistics, virual intelligence and type curve matching
were investigated to select restimulation candidates. Restimulating a number of
simulated reservoir models and observing the incremental production responses
established restimulation potential. Simple production data could not effectively
select restimulation candidates. Virtual intelligence techniques were found to be most

eflective.

Stundner and Al-Thuwani (2001) used back-propagation neural network to develop
models for injection production ratio optimization, well interaction. The key concept
for this optimization is to keep well pressure above saturation pressure and avoid

pressure sinks in the reservoir with the change in production injection patierns,
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Reservoir pressure response should be modeled with Lhe change in production and
injection rates. Fluid production and water injection were model inputs. The model
outputs were aquifer pressure and reservoir pressure. Inputs to the neural network
were cumulative fluid production and water injection, fluid production and water
injection rates. Average reservoir aquifer pressures were the model outputs. When
production data were not available, choke size, tubing head flowing pressure and/or
bottom hole flowing pressure were used for pressure response modeling. Wells were
grouped based on connectivity. They developed another back-propagation neural
network model for shut in pressure of a well. Fluid production and water injection

rates were inputs and shut in pressure was the output of this model,

During the process of hydraulic fracturing of gas wells over the years, companies
usually record the relevant data on methods and materials such as date of the job,
fluid type and amounl, proppant type and pump rate, breakers, additives, amount of
nitrogen, etc. These data are of little use in 3D hydraulic fracture simulations.
Mohaghegh and Gaskari {2002) processed these data coupled with general well
information, well log data and production data using virtual intelligence to select the
fracture candidate wells in a sand formation with low permeability. The job was
successful in candidate selection. Mohaghegh and Platon (1998) performed similar

excicise.

Mohaghegh and Hutchins (2002) developed a neural network mode! and trained the
pressure and flow rate data from separation facilities with corresponding pressure
and flow rate data at the inlet of central compressor. It was used as a tool to provide
maximum oil production from a field to find out optimum discharge pressure and

rate from separation unit.

There are more applications of neural networks in reservoir related studies. Due to

lack of accessibility of their account, these could not be included in this review.

12



CHAFPTER 4

BASICS OF NEURAL NETWORK

Adrtificial neural networks are computational techniques inspired by the mechanism,
structure and functions of human brain. The literature on neural networks has grown
exponentially over the recent years. The sheer number of applications of neural
networks in various fields of science, engineering, and social science are
monumental. In this chapter, it has been attempted to relate a brief discussion on the

basics of the neural networks.

Essentially, the neural network uses a set of linear and nonlinear activation function,
The neural networks are trained with 2 set of input and output data. Neural networks
can store knowledge obtained from this training in weights. After training the neural
network can be used for prediction, estimation and characterization. Neural network
is a data driven model. Prior knowledge about the first principles of the system is not

necessary to perform above tasks.

The outline of the chapter follows. Section 4.1 discusses the basic attributes of neural
network. Section 4.2 depicts how a neuron produces an output signal corresponding
to an input signal. Section 4 3 overviews the fundamental learning paradigms of a
netral network Section 4.4 deals about optimization technique in order to minimize
cost function, Section 4.5 introduces the basic principle of back propagation neura_l

network under multilayer perceptron.
4.1 Neura! Atiributes

Architectures and functional properties of neurodynamics are the basic attributes of
neural networks. Architecture deals with number of neurons and their
interconnectivity. Neural networks consist of many interconnected neurons, or
processing elements, with familiar characteristics, such as inputs, synaptic strengths,
activation, outputs, and bias. Neurodynamics deal with training and leaming,
recalling, association, continuous comparison of information with existing

knowledge, and classification. Neural networks process information based on parallel

13



decomposition of complex information into basic elements; an analogue is spectral

decomposition of color and its reconsirugtion.
4.2 Basic Model of a Neuron

Neurons are the building blocks of an artificial neural network. Neurons are also
referred as preprocessing elements. Each neuron has set of inputs ( r,x;,...,x ).
Each input element (signal) is weighted (multiplied by weights (w.)) and reached
processing element. In addition, a neuron has a bias term, a threshold value {®) that
has to be reached -or exceeded to produce signal, a nonlinear function U) that acts
on activation (v) (weighted signai}, and finally produce an output (0. As a neuron

becomes a part of a number of neurons in a network is referred to as a node. Inputs,
weights, activation signals, output, threshold, and nonlinear function are written as

x,, W, v, 0,0 f, respectively. The basic architecture of a neural network is

_fll'? ;J'-l‘ 41

shown in Figure 4.1.

Bius

xl’l_." ‘H-",:. -

. EG.): wi fi ﬁp Clutgal
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Figure 4.1: Basic architecture of a neural network model,

The transfer function of the basic model is described by the relation

a, =_)‘:.“Zj=1wuru). {4.1)
The neuron's activation condition is
E;-quxa )2 @:- ) (4'2)
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where the index 7 represents the neuron in question and represents the inputs
neurons. The response of the neuron is bounded using a nonlinear fanction, known as
activation function. Most common activation function used in neural networks is the

Sigmeidal function that is monolonic, bounded and eesily differentiable.

4.3 Learning in Artificial Neural Networks

Learning is the process by which neural network adjusts itself according to input
stimuli to produce a desired output. It is a continuous classification process. When a
set of input signal is represented to neural network it either recognizes or produces a
new class. During learning, neural networks changes its synaptic weights so that its
outputs converge to the desired outputs. Neural network completes its learning when
the outputs are same as the desired outputs. At the end of learning, neural networks
acquire knowledge and store them in the current weights. Some of the learning rules

and types of learning are discussed below.

4.3.1 Delta Rule
It is also known as Widrow-HofF rule. It essentially says that the adjustment made to
a synaptic weight of a neuron will be proportional to the product of the error signal

and the input signal. Let Awj denotes the edjustment to the synaptic weight w,, of
neuron kexcited by elemem x] of the signal vector x” at time step n. The delta
rule says

Aw, = fegx;, {43

where s is a positive constant determining the rate of learning.

4.3.2 Supervised Learning

During the process of training, neural network preduces an output response with
respect to input stimuli. The network compares this output with the desired cutput
and produces error signal. This error signal is a measure of network performance. All
the error signals are summed and averaged to yield a cost function, a fanction of free
parameters such as weights, bias. Then the weights are adjusted to minimize this cost

function. As the error minimization process is directed according to the mismatch
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from desired outputs, hence the name supervised learning. The supervised learning

maps inputs to corresponding output patterns.
4.3.3 Unsupervised Learning

Unlike the supervised learning, unsupervised learning does not require the
knowledge of the desired output. Unsupervised learning is suited for data
classification by the neursl network on its own, The network categorizes the data
based on the interdependencies detected within them. For the implementation of
unsupervised learning one may use compelitive learning. For a network of two
layers, input layer and compelitive layer, as all input data are presented all neurons in
the competitive layer compete with one another to respond to the input feature. The
network learns based on “winner-takes-all” stratepy in which a neuron with the
greatest total input “wins” the competition and turns on, all other neurons are then
switched off,

In the learning process, irrespective to types and rules of the process one requires a
minimization technigue. Following section discusses the problem of unconstrained

minimization and some of the techniques.

4.4 Unconstrained Optimization

Consider a continuously differentiable cost function ¢(w) with respect to weight
vector w. Cost function projects the weight vector into real number. One needs to

find weight vector w* for which cost function will be minimum. The necessary

condition is

&:(w')i £(w) (4.4)
This is an unconstrained optimization problem. The optimum condition for the
problem is v E(W'): 0,

{4.5)
where V is the gradient operator
r
V= [321 ,ai ,...,ajm} . (4.6)
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A class of unconstrained optimization algorithms is suitable for adaptive leaming,

Usually, a local iterative descent algorithm is used.

4.4.1 Method of Steepest Descent

In this algorithm, weights are adjusted according to the gradient of cost function. The
goal is to find 2 weight vector in a direction so that the gradient vector Ve{w) is
reduced at every step of iteration. For convenience, g=Ve(w). The formal
description of steepest descent algorithm is

Aw” = w™ " =" {4.7)

Equation (4.7) is in fact a formal statement of the error-correction rule.

The gradient vector i3 approximated applying first order Taylor series expansion
around weight vector w™' and it is as follows
E(wm)h E(wn)_qgnrﬁwn
=c(w)-ng”g" =elw)-7

L]

£

This ensures the reduction of cost function in each step. However, this is applicable

for small enough learning rates.
4.4.2 Least-Mean-Square (Delta Rule) Algorithm

The Least-Mean-Square (LMS} algorithm is developed using instantaneous values of
cost function. The cost function is given by

) 2e” s
where ¢” is the error signal measured at time ». Differentiation of Equation 4.8 with

respect to the weight vector w, yields

E:‘E(w")ze,. de” (4.9)
aw" dw”

LMS algorithm deals with linear neuron and the error signal is

e" =d"—x" w" 4.10)
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de” delw” ) . .
Hence, Pl ~x", and P —x" e". Using an iterative descent approach, the
W W

LMS algorithm can be formulated as follows

o]

Wy = x"e" (411)

wheren is the learning rate parameter. LMS algorithm provides an estimate of

weight vectors. The important point is that unlike the steepest descent algorithm,

LMS algorithm does not require knowledge of the stalistics of the environment.

For strongly nonlinear problems, simple network architecture discussed so far cannot
yield plausible response. One has to employ, more complex models like multilayer
perceptron models. Following section gives the basic outline of a multilayer

perceptron.
4.5 Multilayer Perceptron

Multilayer feed forward networks are an imponant class of neural networks.
Typically it consists of input units that constitute the input layer, one or more hidden
layers of computational nodes and one output layer of computational nodes. Input
signals are passed in a forward direction from layer to layer. These neural networks
are called multilayer perceptrons. Multilayer perceptrons are trained in a supervised
leamning manner based on error-correction leaming. Error back-propagation leaming
consists of forward pass and backward pass. During forward pass input signals are
passed through hidden layers to output layers. Weights are retained unchanged. In
output layer, actual responses are subtracled from target outputs to produce error
signals. During baclkward pass, these error signals are passed backward to adjust
weights according to emor correction rule to move the ectual outputs closer to the

target cutputs.
4.5.1 Characteristics of 2 Multilayer Perceptron

A multilayer perceptron has three distinctive characteristics. They are as follows.

+ Each neuron behaves according to a smoath, nonlinear activation function.

Sigmoidal function is generally used for this purpose
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iz 1+expi-vj i’

where v is the local field (that is, the weighted sum of all synapse inputs plus the

bias), and y, the output of the neuron

* The networks consist of layers of hidden neurons. These hidden neurons lie
between input and output layers and not part of the input or output neurons. They
enable the networks to learn nonlinear relationship by extracting feature from

input patterns.

* Each neuron in a layer is connected to the all neurons in the previous layer
through synapses of the network, The weights are adjusted to change the

connectivity of the network.
4.5.2 Some Preliminaries

Figure 4.2 shows the architecture of a multilayer perceptron with two hidden layers
Any node in any layer is fully connected to all nodes in the previous layer. Thus,
they are fully connected. Signal flow progresses in a forward direction from lefl to

right and from one layer to another.

Two kinds of signals are identified in this network. They arc function signals and
error signals. Function signal comes in input layer, propagates through the hidden
layers and emerges at the output layer. It performs a useful function at the output
layer. At each neuron, through which it propagates, it is calculated as a function of
inputs and associated weights. It is also referred to as input signal. While, an emror
signal is generated at an output node and passed backward. During this pass, welghts
are modified based on error signal. Figure 4.3 shows schematically the two signals
The backward propagation algorithm is described hereafter. This is one of the most

common algorithms for mnltiple layer perceptron models.
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Figure 4.3 Tllustration of the directions of two basic signal flows in a multilayer
perceptron: forward propagation of function signals and back-propagation of error

signals,
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4.5.3 Back Propagation Algorithm

The back propagation algorithm is one of the most popular algorithms based on
supervised leeming. The network output is compared and the mismatch or emor is
propagated backward through the network. During this back propagation of error the
weights are adjusted. This process is continued in an iterative manner The algorthm

is bonefly described here.

The error signal of neuren j at iteralion » (that is, presentation of the n® training
pattern) is defined by

e] =d] -y} (4.12)

Here, neuron j is en output node By definition, the instantanecus value of total

eTTor energy is

£ %Zef , {4.13)

Je

where C is all the neurons in the output layer of the network, The average squared

€ITOr Energy is

n_ L
§n= E:é:e , (4.14)
where N 1s the total number of patterns m the Lrzining set. Average error energy is a
function of all free parameters (weights, bias). It represents the performance of
learning process. Leamning process minimizese”,. In a simple training method,
weights are updated on a patern-by-pattern basis until one epoch is dealt with The
weights are modified in accordance with respective errors computed for each pattern
presented to the network. Figure 4.4 shows the transformation of function signals,
produced by a set of neurons situated at the previous layer of neuron i layer to

neuron j .
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The induced local feld is
V=X wiyr, (4.15)
=0

which is the input to the activation function associated with neuron ;. For bias,

synaptic weight is given by w}, =5, The output of neuron j is
¥ =0 ;) (4.16)

Heuron _}'

2y

'|I".L

Figure 4.4: Signal-flow graph highlighting the details of output neuron /.

Back propagation algorithm applies weight comrection principle just like LMS
algorithm. According to this principle, weight correction Aw/, is proportional to the

partial derivative of According to the chain nile, one has

PR

A
Be" _e" Bl 3yr v

. J
dw, del By ov] ow)

(417

The partial derivative represents a sensitivity factor, determining the direction of

search in weight space for the synaptic weight w y
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DilTerentiating both sides of Equation (4.13) with respect to e}, one obtaing

087 gn. (4.18)

H E
de,

While, differentiation of Equation {4.12) with respect to ¥, yiclds

de’
L= (4.19)
3 y;

Further, differentiating Equation (4.16) with respect to V), one gets

a 3
2 =g o) (4.20)

T= (421)

Finally, one derives the form

de"

o
Dw.ﬂ

= -¢J'(v}“)« ¥ (422)

Now, the correction Aw} is defined by the delta rule:

Jde"

61-#;

Awl = -—n- . {4.23)

wheren is the learning -rate parameter of the back-propagation algorithm. The minus

sign in Equation (4.23) is to force the weight change in the descent direction. From
Equations (4.22) and (4.23) one obtains

awy =787y, (4.24

where the local gradient & 7 is defined by

(4.25)

23



The local gradient is equal to the produdt of error signal and derivative of activation
function ¢'[v ( ) Weights are changed according to local gradients. Desired response
is applied for each neuron at the output layer. For output layer neuron , eror signal -

can be calculated using Equation (4.12), and the local gradient using Equation (4 25),

Now when neuron is located in hidden layer, it has no specified desired response,
Figure 4.5 shows hidden neuron signal flow graph for a neuron in a hidden layer.
Error signal for neuron j is caloulated from error signals of all neurons to which
neuront / is connected. According to Equation (4.25), the local gradient & 7 mdden
neuren j can be written as
spale D0t a2
ay; v dy

!

To calculate the partial derivative of 65" , one may proceed as follows. From

f

Figure 4.5, one has

Z "3& . (4.26)

kEC

Differentiating Equation (4.26) with respect to the funciion signal ¥, one obtains

ae" . (4.27)
J
Applying chain rule in Equation (4.27), one can write
=Y e c:'ei v, _ (428)

C’J’Jr v 5.}':
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Figure 4.5: Flow graph highlighting the details of cutput neurcn & connected to

hidden neuron f.

However from Figure 4.5, it can be noted that when neuron & is output node

ef =dl —yi =dr —o () (4.29)

Differentiating the Equation (4.29) with respect to v, one obtains

la ) |

de,
m
av,

=g’ ,(). (4 30)
From Figure 4 5, for neuron & the induced local field is

vi=2 wpoyr, (4.31)

jal
where 1 is the total number of inputs {excluding the bias) applied to neuron & The

synaptic weight is given by wj, = &/ . Differentiating Equation (4.31) with respect to
¥}, one obtaing

L
cV;

2y

p (4.32)
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Equation {(4.28) now has the form

a g ¥ L3 L r n
ﬂ;n = _g‘*&" R x("’: ) Wy = _g“f"t'wh : {4.33)
¥

The local gradient for hidden neuron now assumes the form

5r=¢’ J(v;)';ﬁ W (4.34)

The back-propagation algorithm performs forward and backward passes
computation. The weights are remeined constant during the forward pass and
neurons produce function signals. The back computation starls by passing the error
signal from output layer to the hidden layer direction. During this pass, each neuron
computes its local gradient and changes its associated weights accerding to Delta

rule.
Options for the activation function are discussed in the following subsection.
4.5.4 Activation Function

Local gradient computation needs the derivatives of activation function. Thus, a
requirement for the activation function is its continuous differentiability. Sigmoidal
activation function is commonly used as an activation function. The general form of
sigmoidal function {logistic function) is

1

@ ;(V:): W, {4.35)

where @ >0 and —oo <v} <. Here, v/ is the induced local fisld of neuron ;. The

derivative is given by

¢ o) a~exp(—av}') 3
o ;) - (436)

Using y7 =9 J(v}' ) one can eliminate the exponential term reduciag to

o )=a -y -] @.37)
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Another common activation function is hyperbolic tangent function.
o 7)=a-tannfpv;) (4.38)
where @ and b are constants. Hyperbolic tangent function is just the logistic

function rescaled and biased. Differentiation of Equation (4.38) with respect to v}

yields

¢ (" )=ab_sech *(bv?)= abll - tanh *{pv7 )= %[a— ylavyr] @39
Following 1s a short note on the rate of learning.

4.5.5 Rate of Learning

Learning rate parameter, 77, has a significant effect on network performance. Back
propagation algorithm provides an approximate trajectory in weight space according
to steepest descent rule. A smaller learning rate parameter yields smoother trajectory,
smaller changes in weight, and network setiles to 2 acceptable solution. However,
more time is needed to train the network, Large learning rate parameter adjusts the
weights faster. But the network may become unstable and oscillate arcund solution.
To speed up the learning rate without oscillation, one can add momentum term 1o
account a fraction of previous time step weight change. This additional term tends to
kecp the weight changes going in the same direction. The weight correction equation

with the momentum term is
Awh =a-Awl e yn, (4.40)

where ¢ 13 usually a positive member called momentum constant. It varies from 0 to

1.

Some implementation issues like mode of training and stopping criteria are discussed

below,
4.3,6 Mode of Training

An epoch consists of entire training patterns, that is, a complete training set. The

learning process is performed on an epoch-by-epoch basis. It comtinues until the
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weights and bias level of the network attain stability and average error goes to
acceptable value. For s given training set, back propagation learning may proceed in

one of two basic ways: sequential mode and batch mode.

Sequential mode of back propagation learming is also referred to as on-line, pattern,
stochastic mode. According to this mode, back propagation algorithm theories are

derived Learning is performed on pattern by pattern by basis. Let us consider an
epoch with N number of training examples such as (r',4 ‘)(xz,d‘l...,(r"",d”). The
first pattern, (Il,d '). 15 presented to the network, forward and backward
computations are performed, and weights and bias level updated. Then the second
pattern (xz | 2) 15 presented to the network, forward and backward computations are
performed again, weights and bias leve! are updated Forther and so on up to the last

pattern (¥ &% ).

In batch mode of learning, weights are updated afier the presentation of all patterns
in an epoch. Cost function is caloulated based on Equations (4.18) and (4 19) as
follows
gw=—l—i2e“z. (4.41)
ZN =l pac !

Error signal e] is produced by neuron j for pattern # In Equation {4.41), the inner

summation with respect to j is performed for each pattern over all neurons in the

output layer. The outer summation with respect to » is performed for all patterns

under an epoch. Weights are updated according to delta rule as follows

e n o, Oel
Aw? =g = LN
P e TN G

A

(4.42)

Sequential mode of learning requires less storage for synaptic connections than batch
mode. Pattern-by-patiern updating of weights makes the network search stochastic in
weight space and helps the network to avoid local minimum problem. When the data
are redundant, batch mode of learning is quite capable of taking the advantage of

redundancy. Sequential miede of learning is highly popular for two reasons. The
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algorithm is simple (o implement, and it provides solution to large and difficult

problems.
4.5.7 Stopping Criteria

Back propagation algorithm cannot converge and there is no well-defined stopping
criterion, One can consider some reasonable criteria for termination of iearning
process. Local or global mininum error surface is one of them. The back-
propagation algorithm can be considered to have converged when the Euclidean
norm of the gradient vector reaches a sufficiently small gradient threshold. This
criterion requires computation of derivative of error surface and its training time is

high. These make the criteron disadvantageous.

Another stopping criterion of the back-propagation elgorithm could be when the
absolute rate of change in the average squared error per epoch is sufficiently small
Generally, the rate of change of error surface ranges from 0.01 to 1 per epoch,
Unfortunately, this criterion may lead to premature termination of the leamning

process.
4.6 Discussion

This chapter explains the basics of a neural network. A reasonably good account of
the back-propagation algorithm is given In this work, similar back-propagation
model has been adapted. The neural network devised here has three layers — input,
cutput and one hidden layer. In terms of activation function, both sigmoidal and
hyperbolic tangent functions are considered. A number of implementation issues and

sensitivity exercises are performed to optimize the performance of the model,
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CHAPTER 5

EXPLORATORY DATA ANALYSIS

This chapter discusses the exploratory data enalysis performed on petrophysical data
available from core measurements. The daia include well locations, permeability,
porosity, facies, thickness, and relative stratigraphic depth. There are data from five
wells. Of these four wells have permeability and facies measurements. Histograms,
and scatter plots are obtained and analyzed. Essential statistics of data such as mearn,
median, maximum, minimum, standerd deviation, correlation coefficients between

variables of interest, and some derived statistics are obtained

The outline of this chapter is as follows. Section 5.1 gives a short description on the
well Jocations. Section 5.2 explores the essential statistics through histograms and
scatter plots of the core data. Section 5.3 concludes the chapter highlighting the

summarized information from exploratory data analysis.
3.1 Well Locations

Short description on well locations and the spatial distribution of some of the
variables are given in this section. The reservoir domain of interest extends from
about coordinate location of 731500 ft to 740500 ft in the Easting, while 5704000
16 5711000 ft in the Northing direction. In the figures, X direction implies Easting,
while Y implies Northing directions. The coordinates {in fi) of the five wells are
Well 1. (732227 4, 5710441.0), Well 2: (735445.5, 5710225.0), Well 3: (7348775,
5705548.0), Well 4: (734877.5, 5705548.0), and Well 5. (7395588, 5710616 Q)

respectively.

Figure 5.1 shows vertically averaged porosity of five wells, Interesting Lo note that
there is a presence of high porosity zone in the northeastern part of the reservoir
Figures 5.2 and 5.3 show vertically averaged maximum permeability (Kmax), and
verlically averaged vertical permeability (K..n). Evidently, there are only four wells
with permeability measurements. It is clear from the figures that there is a presence

of permeability zone in the norlheastern part of the reservoir, Figure 5.4 shows the
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spatial distribution of well thickness, Figure 5.4 reveals & trend in the well thickness.

The formation appears to be thinning in the eastward direction.
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Figure 5.1: Location map of vertically averaged core porosity at well locations.
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In the following secticn, some basic statistics of the core data are explored. Outlier

analysis is also performed.

5.2 Univariate and Bivariate Statistics of Core Data

Histograms and scatter plots of core data are obtained. Histograms are basically plots
for univariate statistics. Univariate statistics include mean, standard deviation,
median, range of data. Scatter plots are for bivariate statistics between two variables
Bivariate statistics include the correlation coefTicient and rank correlation
coefficients. Quulier information may also reveal with both histograms and scatter
plots. This section also discusses correlation between the variables before and after

the removal of outliers. Well-wise descriptions are given below.
5.2.1 Well 1 Statistics

Fignre 5.5 shows histogram of maximum permeability (Kma<}. Mean and standard
deviation of Kru. are 62.93 and 106,36, respectively. K. value ranges from 0.62 to
62.59. Figure 56 shows histogram of vertical permeability (Kyet) Mean and
standard deviation of K. are 4 134 and 4.32, respectively. The maximum and
minimum Kyen values are 0.38 and 24.4. Histogram of porosity is given in Figure 5 7.
Mean and standard deviation are 0.08 and 0.04, while the values range from 0.02 to
0.16. There ere 6 facies numbered O ta 5. Figure 5.8 shows the facies histogram,

Clearly, Facies 1 is the dominant facies in Well 1.

Porosity variation with facies in Well 1 is explored. Figure 5.9 shaws the porosity
histogram for Facies 0. Facies 0 have low porosity with mean of 0.031, and ranges
from 0.017 to 0.045. Figure 5.10 shows the porosity histogram for Facies 1. Facies 1
have moderate porosity with mean 0.105, and a range from 0,062 ta 0.144. Figure
5.11 shows porosity histogram for Facies 2. Facies 2 porosities are even higher than
Facies 1. The mean is about 0.131, and it ranges from 0.099 to 0.161. Figure § 12
shows the porosity histogram for Facies 3. The perosity mean is 0.111 ranging from
0.072to 0,155,
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Figure 5.13 shows porosity histogram for Facies 4. Mean porosity is found to be
0.048, and its range is from 0,018 to 0.111. Figure 5.14 shows the porosity histogram
for Facies 5. Facies 5 have again low porosity with 2 mean 0.059, and range from
0.017 10 0.096

Bivariate statistics between the variables for Well 1 are explored. Figure 5.15 is the
scatter plot of maximum permeability and vemical permeability. The correlation
coefficient is 0.347. The poor correlation between the two permeabilities may be
attributed to some outlier vaiues. After removal of outlier, the correlation improves
from 0.347 to 0.411. Figure 5.16 is the maximum permeability versus porosity scarer
plot with outliers. Removal of outliers leads to improved comelation coefficient from
0.282 to 0.437. Figure 5.17 is the venical permeability versus porosity scatter plot,
Removing the outliers, improves the correlation significantly from 0.331 to 0,598,
Figure 5.18 shows facies versus relative strata scatter plot. It is plotied to find a trend
between facies and depth. This plot shows Faces 0 generaily lies at top and Facies 4
and 5 at the bottom of the formation, Correlation is found 0 75. Figure 5.19 shows
SUPPOIT versus porosity scatter plot with correlation 0.504. This plot indicates higher

porosity values have lower support.

5.2.2 Well 2 Statistics

Similar enalysis is performed for Well 2. Figure 5.20 shows maximum permeability
(K} histogram. The mean and standard deviation of Ko, are found to be 73.8 and
175.884 respectively, while the values range fom 0.06 to132. Figure 5.21 shows
histogram of vertical permeability (Kver). The mean and standard -deviation of Kyen
are 3.109 and 4.088. The values range Fom 0.03 to 21.2 Figure 522 shows
histogram of porosity It has 2 meen of 0 083, and standard deviation 0.036. Porosity
value ranges from 0.016 to 0.193. Figure 523 shows facies histogram. Only Facies 0
to 4 are present. Again as in Well 1, Facies 1 is the dominant facies Remarkably,
Facies 5 is absent in Well 2. Variation of porosity with facies is determined. Figure
5 24 1 porosity histogram for Facies 0. Facies 0 porosity in Well 2 is slightly higher
than that of Well 1, with a mean of 0.068 and range from 0.016 te 0.107.
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Figure 5.25 shows porosity variation for Facies 1. Its mean is 0.087 (higher than
Facies O porosity), and the range is from 0,029 to 0.1587. Figure 5.26 shows the
porosity histogram for Facies 2. The mean is found to be 0.068 The values range
from 0.035 to 0.11. Figure 5.27 shows the porosity histogram for Facies 3. The mean
is 0.068, and the range is between 0.035 and 0.11. Figure 5.28 shows porosity
histogram for Facies 4. Notably, Facies 4 has the highest mean poresity of 0,095,
with a range from 0.06 to 0.193,

Bivaniate statistics of Well 2 are discussed here. Figures 5.29 is the vertical
permeability versus maximum permeability scatter plot. Removing the outliers,
correlation improves from 0.265 to 0.485. Maximum Permeability versus porosity
scatter plot is shown in Figures 5.30 showing a correlation 0.172. Figure 5.31 shows
vertical permeability versus perosity scatter piot. The correlation coeffigient is 0.478
Figure 532 shows facies versus relative strata scatter plot. This plot shows a very
good correlation {0.82) between facies and strata, At the top Facies 0 is found, while

on the bottam Facies 4 is dominant.
5.2.3 Well 3 Statistics

Well 3 statistics are briefly described here. Figure 5.33 is the histogram of maximum
permeability. Its mean and standard deviation are 22.111 and 740.463, while its
range is from 0 04 to 227. -Venical permeability histogram is shown in Figure § 34,
Its mean and standard deviation are 2.195 and 1.731, and the values range from 0.01
to 32.2. Figure 5 35 shews histogram of porosity having mean and standard deviation
of 0.061 and 0.023, respectively. The minimum end the maximum porosity values
are 0.018 and 0.111. Figure 5.36 shows facies histogram. Facies 1 is again the

dominant facies in this well alike Wells 1 and 2. Only Facies 1, 3, and 4 are present.

For facies porosity variation, the figures are not included here for convenience.
However, the statistics are described. Facies 1, 3, and 4 porosity means are found to
be 0.061, 0.078, and 0 04, respectively The correspending porosity ranges for the
three facies are {0.033, 0.096), (0.042, 0.111), and {0.018, 0.096), respectively.
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 Figure 5.28: Facies 4 porosity histogram for Well 2.
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51



Well 3 bivariate statistics are discussed here, Figure 5.37 is the vertical permeability
versus maximum permeability scatter plot. Removing the outliers, correlation
improves significantly from 0 029 to 0,83, Figure 5.38 shows meximum permeabiliry
versus porosity scatter plot. Removing outliers, correlation improves Fom 0.014 to
0.34._ Figure 5.39 shows vertical permeability versus porosity scatter plot Cormrelation
improves from 0.005 to 0.341 afler removing the outlier. Figure 5.40 shows facies
versus relative strata scarter plot. This plot shows correlation 0.871 between facies

and relative strata.

5.2,4 Well 4 Statistics

Well 4 statistics are described below. Figures 5.41, 5.42, and 5.43 are the histograms
of maximum permeability, vertical permeability, and porosity. The corresponding
means are found to be 5926, 0.947, and 0.065; while the standard deviations are
7.292, 1.765, and 0.02, respectively. And the corresponding ranges are {0.04, 25.9),
(0.07, 8.95), end (0.019, 0.104), respectively. Figure 5.44 shows facies histogram.
Only Facies 1 and 2 are present, Facies 1 being the major one. For porosity variation
with facies, Facies 1, 2 porosity means are found to be 0.74 and 0.042. The
corresponding porosity ranges are (0.05, 0.104) and {0.019, 0.061)

As for nvariate statistics, Figure 5.45 shows vertical permeability versus maximum
permeability scatter plot. Having outliers removed, correlation improves from 0.032
to 0.498. Maximum permeability versus porosity scatter plot is given in Figure 5.46.
With and without outliers, the cormelation coefficients are 0.345 and 0.411. Figure
547 15 the vertical permeability versus perosity scatter plot. In this case, the
comrelation coefficients with and without outhiers are 0.158 and 0.445. Figure 5.48
shows facies versus relative strata scatter plot. This plot also shows very good

correlation (0.837) between facies end relative strata,

5.2.5 Well 5 Statistics

It should be noted that Well 5 does not have permeability measurements. Figure 5.49
gives the porosity histogram. Porosity value ranges from 0.025 to 0.067 with a mean
and slandard deviation of 0.044 and 0.014, Figure 5.50 is the facies histogram. Only

Facies O
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Figure 5.38: Maximum permeability versus porosity scatter plot for Well 3.
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Figure 5,46: Maximum permeability versus porosity scatter plot for Well 4.
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Figure 5.47: Vertical permeability versus perosity scatter plot for Well 4
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Figure 5.49: Porosity Histogram for Well 5.
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and 1 are present. Interestingly, both facies proportions are equai. Facies 0 porosity
values slightly higher mean of 0.049 than Facies 1 mean of 0.04. However, the
corresponding porosity ranges are (0.025, 0067) and (0.031, 0.056), respectively.

Figure 5 51 is the facies versus relative strala scatier plot. Correlation is found 0.08.
5.2.6 Global Statistics

Only well statistics were considered till this point. The information from these
statistics is localized. To retrieve the global information about the reservoir,
combined statistics need 1o be considered. Figure 5.52 is the maximum permesbility
histogram. Maximum permeability value ranges from 0.04 to 1320 with a global
mean and standard deviation 50.861 and 124.137. Vertical permeability histogram is
shown in Figure 5.53. The global mean and standard deviation are 2.95 and 4.49, The
values range from 0.01 to 32.2. Figure 5.54 shows porosity histogram It has global
mean and standard deviation 0 075 and 0.035. Facies histogram is given in Figure

5.53. Net surprisingly, Facies 1 is the dominant one.

For porosity variation with facies, porosity histograms for Facies 0, 1, 2, 3, 4, and 5
are shown in Figures 5.56, 5.57, 5.58, 559, 5.60, and 561 respectively. The
carresponding means are 0.059, 0.081, 0.08, 0.82, 0064, and 0.059; while the
corresponding ranges are (0016, 0.107), (0.029, 0.167), {0.019, 0.162), {0.035,
0155), (0.018, 0.193), and {0.017, 0.096), respectively. Figure 5 62 shows facies
versus relative strata scatier plot. Correlation coefficient between the parameters is
0.671.
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5.3 Conclusion

Exploratory dala analysis is performed on the available core data. Both localized and
global statistics are retrieved. Some of the conclusions from the analysis are given

below.

* Available dala are well locations, depth, porosity, facies, maximum
permeability, and vertical permesbility. Most of these variables are derived

propertties except for the locations and depth,
* Local and global statistics can be significantly different at places.

* Correlations between the variables are quite poor. The raw petrophysical and
primary response signals of the wells are not available. Thus, it almost
prohibits the use of models based on first principles or some simple
regressive models to predict permeability. This warrants the use of highly
nen-linear, effective tools like neural network. This rationalizes the scope of

the work of this thesis.

* Notwithstanding the use of neural networks, the poor correlations and the
absence of primary signals substantiate that there will be significant

prediction error Some post-processing of the estimates could be considered.
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CHAPTER 6

PERMEABILITY PREDICTION USING
NEURAL NETWORK

This chapter discusses permeability prediction using the neural network model.
Previously, exploratory data analysis was performed (discussed in Chapter 5). It
revealed some directions on how to sel up the famework of the neural network
model. It was identified that spatial data (Easling, Northing, relative stratigraphy),
porosity, facies and thickness could be used as the argument to the medel. }t should
be pointed out that permeability depends on various other factors like grain size and
distribution, angularity, connectivity, geomechanical propesties, diagenesis effect and
so forth. Absence of the information of these parameters is a handicap and it will
influence the quality of the prediction using any model, Notwithstanding the fact, we

devise the neural network model for the prediction.

The outline of the chapter is as the following, Section 6.1 gives a brief discussion on
the architecture and training of the neural network. Sections 6.2, 6.3, and 6 4 deal
with optimal parameter selections, that is, the selection of bias, learning rates, and
number of hidden nodes, respectively. Section 6.6 discusses the leaming profile. In
section 6.7 it has been tried to [ind out the major input parameter for output
parameter, permeability. Section 6.7 discusses gbout the randomness effect. Section
6.8 predicts the permeability of Well 5 while the Section 6.9 gives conclusion of the

developed model.
6.1 Trzining of the Neural Network Model

A back propagation neural network model with one hidden layer is developed to
predict permeability. The input parameters to the model are Easting (X), Norhing
(Y), relative stratigraphic coordinates (Zgn.), porosity, facies, and thickness, The
output is the permeability. There is only one hidden layer present. All the input and
output data are normalized according to affine scaling. In order to consider the entire

population (reserveir), respective maximum end minimum values of different
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parameters for normalization are taken beyond their maximum and minimum values
found in the sample (well) data. Table 6.1 shows maximum and minimum values.
Maximum permeability (Kpay) is converled to log scale and then normalized Thus,
the model consists of six plus one {bias) input nodes, five plus one (bias) hidden

nodes and one cutput nade.

Table 6.1: Maximum and minimum of the input and output parameters.

Paramcter X Y Zyursw | Facies | Porosity | Thickness Lop
Permcability

MMaxumum 739551 | 5710616 | 1591 0 025 20 312
Minimuom | 732227 | 5705548 | 1.867 5 0.016 14 -1 342
Moomalized | 750000 | 5715000 16 [ 025 25 317
Maxamum

Nommaltred | 730000 | 3703000 i) 5 0.001 5 -3
Minimum

The optimum parameter selection is an imporiant aspect for the effectiveness of the
neural network. The parameters optimized are the bias, the learning rates, and the
number of hidden node. Each optimal parameter is selected based on minimum value
of objective function, Root Mean Square Error (RMSE), keeping all other parameters
constant. A range of the parameter is considered and the RMSE values determined.
In order to minimize the random effect due (o in-built randomness, RMSE values are
obtained by averaging the same from 3 runs. The reduction factor is aiso considered.
The number of epoch is kept 10° in each case. The following sections discuss the

optimum parameter selection.
6.2 Bias Selection

input layer and hidden layer bias values are incorporated in the model. Because of
the use of normalized variables, input and hidden layer bias values range from 0 o 1.

In order to obtain the optimum values in the bies space, 25 pairs of bias values
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are considered. The peirs considered are (1, 1), (0.75, 1), (0.5, 1), (0.25, 1), (0.05, 1),
{1, 0.75), ..., and (0.05, 0.05), and the RMSE valuses are observed. The optimum pair
of bias values selected (0.5, 0.05). The low bias value 0.05 {for hidden layer)
indicates that the effect of bias is negligible to the output layer. This optimum pair of

bias values is used subsequently.
6.3 Learning Rates Selection

Learning rates for both hdden-to-output-layer and input-to-hidden-layer back
propagation of weight comection should be optimally selected. For convenience,
hidden-to-output-layer leamning rate will be invoked by BLR, while input-to-hidden-
layer learning rate by ALR.

6.3.1 Hidden-to-Output-Layer Learning Rate Selection

The optimum hidden-to-output-layer leaming rate was determined through a
sensitivity study. Keeping the number of hidden layer node and the number of
epochs constant, the input-to-hidden-layer learning rate is fixed at some values and
the hidden-to-output-layer learning rate was varied from 0.0001 to 1. The number of
hidden layer node is fixed at 5, while the number of epoch considered is 10° for the
sensitivity study. A number of plots of RMSE valnes are generated. The reduction
factors of the RMSE are also plotied. Figures 6.1 and 6.2 show variation of RMSE
and reduction factor with BLR variation for ALR = 0.01. Figure 6.1 shows very little
change of RMSE values with respect to BLR. It is evident from the figures that the
optimum range of BLR is between 0.0002 and 0.002. Figures 6 3 and 6.4 show
similar plots for ALR = 0.02. Figure 6.3 shows greater RMSE variation than that
evident in Figure 6 1. The optimum range of BLR is found 1o be fFom 0.0002 to
0.005. The RMSE varniations for BLR for various values of ALR are shown in
Figures 6.5, 6.7, 6.9, 6.11 and 6.13. The cormresponding ALR values in these figures
are 0.05, 0.1, 0.2, 0.5, and 1, respectively. The corresponding plots showing
reduction facior of RMSE with BLR are given in Figures 6.6, 6 8, 6.10, 6.12 and
5.14. Examining the respective figures, the comesponding optimum ranges of BLR

Ta
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are found {0.0005, 0.01), (0.0005, 0.005), (0.0001, 0.02), (0.6002, 0.02), and (0.0002,
0,005}, respectively.
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Figure 6.1: RMSE versus BLR for ALR=0.01.
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Considering the RMSE variation with BLR in the above cases, an overall optimum
range of BLR is found from 0.0002 to 0.005. This range appears to vield good
response for all the cases considered. Although it should be noted the change in
RMSE wilh respect 10 BLR is not so high. Thus, it can be concluded that BLR value
may not be very significant,

6.3.2 Input-to-Hidden-Layer Learning Rate Selection

Similar to hidden-to-output-layer learning rate (BLR) selection procedure, the
optimum  input-to-hidden-layer learning rate (ALR) was determined through a
sensitivity study. Keeping the nnmber of hidden layer node and the number of
epochs constant, BLR is fixed at some values within the optimum range found in the
previous section, and ALR is varied from 0.0001 to 1. Again, the number of hidden
layer node is fixed at 5, while the number of epoch considered is 10° for the
sensitivity study. Plots of RMSE values and Lheir reduction factors against ALR are
Egenetated.

The BLR wvalues are fixed at 0.0002, 0.0005, 0.001, 0.002, and 0.05. The
corresponding RMSE variations versus ALR are shown in Figures 6.15, 6.17, 6.19,
6.2], and 6.23, respectively. The variations in reduction factor of RMSE versus ALR
plots are given in Figures 6.16, 6.18, 6.20, 6.22, and 6.24, respectively. The
comesponding cptimum ranges for ALR are found to be (0.5, 5}, {1, 10), (0.1, 5),
(0.1, 5), and (0.1, 10), respectively. Figure 6.15 shows significant reduction of
RMSE pariicularly at low valne of ALR and subsequent regular reduction of RMSE
over the range. Figure 6.21 shows very steep and optimum range of ALR in the range
of 5 to 20. Figure 6.23 indicates the variation of RMSE for BLR=0.005 is not

significant.

The variation of RMSE values wilh respect to ALR is evidently more significart than
Lhat with respect to BLR values. From the sensitivity study, the optimum values of
ALR and BLR are selected at 2 and 0.0005, respectively.
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6.4 Number of Hidden Nodes Selection

The optimum number of hidden node is determined using the previously obtained
optimum values of bias and learning rates. The number of hidden layer nodes is
varied from 1 to 15 and the RMSE variation is examined. Figure 6.25 shows initial
increase of RMSE with just one hidden node. However, a subsequent rapid reduction
of RMSE with the number of hidden node is evident in the figure with RMSE
eventually becoming stabilized. Stabilization occurs when the number of node is
about 6. The optimum number of hidden node is fixed at & considering the thumb
rule (number of connections should be at least three times higher than the number of
patterns} and the computational load (computation increases with number of hidden

node),

The following section discusses the learning profile of the neural networks. It mainly

discusses how fast it learns or converges to expected local minimum error,
6.5 Learning Profile

The variation of RMSE with number of epochs gives the learning profile. Figure 6.26
shows RMSE versus number of epochs for the optimum parameters. It is apparent
from the figures that training starts with large error, but rapid reduction of error takes
place at moderate number of epochs, with eventually the RMSE flattening out Most
of the training is completed within epoch number of 1000, Subsequent training rate is

slow, but RMSE continuously decreases along the path of convergence.

During learning neural network chsnges its weights with respect to epoch number.
Chenge of weights with respect to epoch number 1, 2, 5, 10, 20, 50,100, 200, 500,
1,000, 2,000, 5,000, 10,000, 20,000, 50,000 and 100,000 has been shown in a
combined form in Figure 6.27, This figure shows that at the beginning of training,
weights are near about to zero. Though the change in RMSE after epoch number
1,000 is very slow, the significant change in weights is continued up to epoch
number 20,000. Final weights have been shown in the last one (for epoch number
10%) and neural networks perform its grediction based on this set of weights.
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Figure 6.27: Changes in weights with respect to epoch number from 1 to 10°.

In the following Section &.6, it has been tried to show the major input parameters for

permeability prediction.
6.6 Impact of Input Parameter

The Figure 6.29 is the final absolute weights afler epoch mumber 10°. The Figure
consists of 7(row) x B(column) blocks. The first top row is the bias from hidden to
output layer. Subsequent rows represent the first, second, third, fourth, fiRh and sixth
hidden node respectively. Similarly, columns (fom right side) represent input
parameters x, y, relative strala, facies, porosity and thickness. The seventh column is
the bias from input to hidden layer. Qutput is represented by eighth column From
this Figure, it is clear that the major input parameters are porosity and relative strat.a_

Y location is also important input parameter. The effect of biases is negligible.
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6.7 Randomness EfTect

Figure 6.27 shows randomness plat. The figure shows RMSE variation fram 0.10503
to 0.1107 due to randomness effect. The reduction factor varies from 0.46 to 0.56
due to rndomness effect. An average value of RMSE is previously considéred to

reduce the mndomness effect during the optimal parameter selection.
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Figure 6.29: RMSE variation at differemt runs signifying randomness.



6.8 Well 5 Permeability Prediction

The developed neural network model has been trained upto epoch number 25x10°
using the data of well 1, 2, 3, and 4. During the training, the selected optimum
parameters were input to hidden layer bias = 0.5, hidden to output layer bias = 0 05,
ALR=20, BLR = 0.0005, number of hidden node = 6, RMSE was 0.10041. Table 6.2
shows predicted permeability of Well 5.

6.9 Conclusion

¢ Development of a neural network modeling mainly deals with the optimum
parameter selection. To find each optimum parameters, the neural net work with
one hidden layer consists of 6 hidden node were trained upto epoch mumber 10°
In most cases the RMSE was near about to 0.1060. The optimum parameters
were input to hidden layer bias = 0.5, hidden to output layer bias =0.05,
ALR=2 0, BLR = 0.0005, number of hidden node = 6.

+ The higher value of ALR indicates that the input to hidden layer learning rate is

more significant than the hidden to output layer learning rate,

*» Afier training the model upto epoch number 10°, the RMSE is quite high (near
about to 0.11) and rate of change of RMSE with respect to epoch number is very
slow afier epoch number 10°. This is due to the lack of information {other input
parameters on which permeability depends) in the input layer. So, the model

prediction error will be high,

¢ The change in RMSE is high upto epoch number 1000 and then it gets slow. But
the change in weights is significant upto epoch number 20x10°.

« Porosity and relative strata show their more impact to permeability prediction,

The effect of biases is neglipible.

* Average of RMSE shouid always be considered during the optimum parameter

selection to reduce the randomaness effect.
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Table 6.2 Well 5 permeability, prediction training Well 1, 2, 3 and 4 (Epoch No.
25x105).

Input Qutput
X . 4 Relatlve | Facies Poroaity Thickoess § Permcability
Sirata

079657 0.63467 095714 0.00 0.0963806 0.45 051216
0.79657 0.63467 0.85714 .00 0.1967%0 D45 051114
0.79657 0.63467 . BD000 0.20 0.120480 .45 G.51103
0. 79657 063457 0.77143 0,20 0.220830 45 0.51103
0.79657 0.63467 0,75000 0.20 0. 164660 0.45 0.51102
0.79657 0.63467 0.72142 Q.20 0.120480 0.45 0.51101
0.79657 063467 0.69285 .00 0.265060 .45 0.51136
0. 79657 0.63457 0.50000 0.00 0.208840) 0.45 0.51217




CHAPTER 7

CROSS VALIDATION

Neural network model responses are verified using cross validation method. This
chapter discusses the analyses oblained from the cross validation exercise. As stated
earlier, the present study develops a neural network model {Chapter 6) to predict well
permeability using available petrophysical and spatial information including
porosity, facies, well location, relative stratigraphic depth and formation thickness.
Cross velidation is a statistical analysis in which model responses are obtained for
some known subset of input parameter space without using prior information of this
subset and analyzing some statistical measures of the difference between the known
subset and model response. In this study for all the wells that already have
permeability information, we predict the permeabilities twice. First, these values are
predicted using prior information. Second time, we do not use the pricr information.
The difference between the two predictions provides us information regarding the
quality of the model responses for any particular well or ares of the reservoir, It is
imporiant to note that &ll other parameters were kept unchanged during the training
phase. We used an epoch number of 10° for the study.

The outline of the chapter follows, Section 7.1 discusses the cross validation analyses
for Well 1. Similarly, Sections 7.2, 7.3 and 7.4 discuss the same for Wells 2,3 and 4.
Section 7.5 relates the uncertainty characterization of the permeability prediction

space. Some conclusions are drawn in Section 7.6.
7.1 Well 1 Response Validation

Figure 7.1 is the permeability prediction versus pattern plot of Well 1 for the case in
which the Lraining set includes prior information of Well 1. The training root mean
square error (RMSE) was 0.1063, The predicted and training patterns means are very
close and they are 0.717 and 0.718. Figure 7.2 shows pattern-wise prediction errors.
The absolute prediction error ranges from 0 to 0.15 with a mean value G.05,
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For the model responses that do not use prior Well 1 information, the prediction
versus pattern plot is given in Figure 7.3. Training RMSE in lhis case is 0.1084, The
predicted pattern mean is 0.721. Prediction emrors are shown in Figure 7.4. Mean
absolute error is 0.05 while the absalute error values range from 0 to 0.16. It is
apperent that the prediction performances for Well 1 are more or less same in both

cases.
7.2 Well 2 Response Yalidation

Permeability prediciion for Well 2 using pder information in training set is shown in
Figure 7.5. Training RMSE is 0.1063. Predicted medn is 0.683 and while pattern
mean 0.681. The predicted patierns and patterns means are near about to equal.
Patlern wise prediction errors are shown in Figure 7.6. Mean value of absolute error
is 0.096 with a range from 0 to 0.40. For medel responses without Well 2 prior
information, permeability predictions versus patterns are shown in Figure 7.7.
Prediction errers are shown in Figure 7.8. RMSE is 0.0882. Large predicticn errors
are clearly evident. The difference between prediction mean (0.721) and pattern
mean (0.716) is significant. Absolute error for prediction ranges from § to 0.44 while
the mean is 0.111. So, the responses are less reliable for Well 2 compared to that for
Well 1.

7.3 Well 3 Response Yalidation

Well 3 permeability prediction and prediction errors are shown in Figures 7.9 and
7.10 for the case when the Well 3 data is included in the training patterns. RMSE is
0.1066. The prediction and pattern means are 0.574 and 0.597. Mean sbsolute eror
for prediction is 0.094, end it ranges from O to 0.29. While, permeability prediction
and prediction errors are shown in Figure 7.11 and 7.12 for the case when Well 3
prior information ar¢ not included in the training phase. Bins in the prediction
worsens. The mean absolute error for prediction is 0.117. Patlern wise absolute

prediction error varies from 0 to 0.35.
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7.4 Well 4 Response Validation

Figures 7.13 and 7.14 show Well 4 permeability prediction and error plots when
Well 4 data are incinded in training patlerns. The predicted pattern and training
patiern means are 0.522 and 0.591. Absolute prediciion error varies from 0 to 0.17
with a mean value 0.065. Figures 7.15 and 7.16 are the prediction and error plots
when Well 4 data is not used. The prediction and training pattern means are 0.670
aand 0.352. Absolute mean error i5 0.125 and it ranges from 0.01 to 0.27.

7.5 Prediction Space Characterization

In order Lo charecterize the prediction space, we perform prediction exercises with
different random number seeds and examine the scatier in the prediction. The scatter
in the predicted values implicitly characterizes the uncertainty in prediction. Pattern-
wise prediction scatters for Wells 1, 2, 3 and 4 are shown in Figures 7.17 to 7.24.
The use of prior information is alse examined it these plots. The uncertainty space is

evidently larger when prior information is not used. It is intuitive.
7.6 Conclusion

»  Model responses for Wells I and 2 are more reliable than those for Wells 3 and 4.
The reason could he attributed to the amount of information available. However,
there is always a possibility of not capturing information of spatial distrbution

with only 4 wells,

* Additional information may not lead to greater reduction in training RMSE, The

reason could be existence of conflicting information in the data.

» Pammeterization of the input space for the problem is not sufficient. Additional
information regarding grain size and distribution, angularity, connectivity,
geomechanical properties, disgenesis effect and so forth may improve the model

rESPoONSeEs.

¢ Uncertainty space in the prediction varies for one point 1o another within the

[ESETYOIL.
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Figure 7.15: Permeability prediction versus pattern for Well 4 (Training set; Wells
1, 2, and 3).
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CHAPTER 8
ERROR ANALYSIS

We analyze the prediction error in the neural network responses in this chapter. The
objective is to investigate the source of errors and minimize the error. It is found that
most of predictions tend towards the central values. Patterns with low and high
(extreme) values have higher prediction errors. It was conjectured that affine scaling
of the prediction histogram could improve the prediction. AfTine scaling of the
histogram is a deterministic method of introducing greater variability in the values
keeping the shape of the histogram almost unchanged. Affine scaling has been used

to lessen prediction error.

This chapter comprises of the following sections. Section 3.1 discusses neural
network predictions. In Section 8.2, affine scaling is used to minimize error. Section
8.3 explores the sources of prediction error. Section 8.4 is the conclusion of error

analysis.
8.1 Neural Network Predictions

We witness some interesting trend in the histograms of the patierns and predictions
Figures 8.1 and 8.2 show histograms of the patterns and corresponding prediction for
a typical neural network run. Pattern mean is 0.658. It ranges from 0.26 to 099
Prediction mean is 0.66 and the range is 0.40 to 0.81. Reproductien of mean is
evident, In other words, there is very little bias in the neural network prediction.

However, the prediction range is significantly lower than the pattem range.

We attempted Lo correct this error through the application of an afTine scaling of the
prediction histeé,ram. In the following section, affine scaling is applied to minimize

the neural network prediction error.
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8.2 Affine Scaling of Prediction Histogram

Affine scaling of the histogram is a deterministic method of introducing greater
variability in the values keeping the shape of the histogram almaest unchanged. A
Fortran code for affine scaling of histogram, AFFINE, (Deutsch and Joumel, 1998)

was used.

Figure 8.3 shows neural network predictions and affine scaling corrected neural
network prediction. The first column plots are prediction versus partem and the
second column are error versus pattemn. Plots in the first row of the figure are neural
network prediction and pattern-wise prediction error. The prediction mean is 0.659,
and the pattern mean 0.658. The prediction ranges from 0.398 10 0.811 Correlation
coefficient between partern and prediction is 0.687. Afler affine scaling, prediction
mean is 0.660 while the range is from 0.312 to 0.811. Comelation coeficient
between patiern and prediction remains at 0.687. Although the range umproves, there
is hardly any improvement of the correlation. Table 8.1 presents neural network and
affine scaling corrected neurel network prediction results for 5 runs. Table 8.1

indicates similar trend in all the runs.

In order to see the effectiveness of affine scaling, we considered the patterns with
neural network predictions error less than a thresheld value. We arbitrarily fix the
threshold at 0.15. The pattern and the prediction histograms and scatter plots are
shown in Figures 8.4, 85 respectively In Figure 8.4, the first column plots are
pattern histograms, and second celumn plots are prediction histograms. Plats in the
first row are for neural netwerk response. The pattern mean is 0.67 and the range is
0.26 10 0.95. The comresponding neural network prediction mean is 0 67 and the
range is 0.40 to 0.81. Second row plots are those afler affine scaling. The affine
corrected prediction mean is 0.67. The prediction ranges from (.31 to 0.86. Figure
8.5 shows prediction versus pattern in the first column and error versus pattern
scatter plots in the second column for neural network prediction and for neural
network prediction after affine scaling. The comelation between prediction and

pattern is 0.816. ARer affine scaling histogram correction, the correlation between
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prediction and pattern becomes 0.852, which is higher than the original neural

network prediction.

This is evident in other four runs shown in Table 8.2 and 8.3. Affine scaling is

effective to improve the neural network prediction performance for patierns with less

than the threshold.
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TalHe 8.1: Neural network and effine scaling corrected prediction statistics.

Run Mrun Banps Corredallon
Cocffirient
Pairern Nearal AfTine Patiern N rwrd AlTine Newrul AMne
Network Scaling Medwork Scaling Network Scallng
Prediction | Prediction Prediction | Predirtion | Predicion | Prediciion
1 0.65% 0659 D560 W6 - 09 Al6 - TR0 | 315 -.82! 064 (1.2
2 D5k 0658 0637 26-0% AT - 82T | O 51E- 878 {1683 0683
] H.658 0.660 0.660 26 . A0% —~ B1% 32 - TR 067 L'E-F)
4 0.658 0659 0 &39 6 - 09 435 - 202 A6 = 367 648 0 &48
5 0658 0.639 {.660 26 - 99 R L. | 312- 211 {.687 0GET
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Table 8.2: Neural network predictions with error less than the threshold.

Run Mean Hanpe Correlation
CaefTicient
Pattern Nenral Pattern Newral Nearal
Netwark Network Network
Prediction Prediction Prediction
1 067 0.67 035-0.88% 0.42-078 0.793
2 0.67 0.67 0.35-08%8 | 0.397-02827 0,793
3 067 0.67 035-095 | 04020825 .799
4 066 067 G35-095 | 0.455-0.802 0,750
5 0.67 0.67 026-005 | 0.398-0.%11 D32la

Table 8.3: Neural network predictions after affine scaling with error less than

threshold.
Run, Mcan Ranpe Correlation
Cofficient
Pattern Alfine Patirrm AlTine Alling
Scaling Ecaling Scaling
Prediction Prediction Prediction
1 .65 0.67 0.25-0.88 032 -0.83 0.822
2 0.66 0.67 Q.25-DRR .32 -0.83 0,827
3 0.66 067 | 025-095 | 032-088 0833
4 .66 0.66 025-0.95 0.38 -0.47 .84
5 0.67 0.67 0.26 -0.95 031 -0.85 0852
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In the following section, we investigate the source of errors particularly of the

patterns with prediction error greater than the threshold value.
8.3 Sources of High Prediction Errors

We explore the sources of high prediction errors. The objective was to determine the
presence of some trend in the parameters that yield high errors. The parameters
examined are the maximum permeability, porosity and facies. Figures 8.6, 8 7 and
8.8 show maximum permeability, porosity and facies histograms respectively for
patterns with greater than the threshold value of prediction error. The threshold value
is fixed at 0.15. The mean and standard deviation of maximum permeability is
119.32 and 259.2 and the range is .04 to 1320. Figure 8 6 shows that exireme values
of permeability are responsible for higher prediction error, The porosity (see Figure
8.7) mean and standard deviation are 0.06 and 0.03 respectively and the range is 0.02
to 0.13. Figure 8.8 shows that Facies 1 is the major facies with prediction errors
greater than the threshold. In fact, amount of information available of Facies 1 is

greater those for other facies.
8.4 Conclusion

Some of the conclusions derived from the error analysis exercise are given below.

+ Affine scaling of neural network prediction histogram appears to be an eflective

correction scheme for patterns with less than some threshold value.
* Prediction error is high for extreme values of permeability.

* Porosity and facies of the high prediction error patterns do not reveal any obvious

trend,

113



IFrequency

Flljllllilllltljlll

C By B e

0 200 400 &00 B0 1000 1200 1400
Kmax

Figure 8.6: Maximum permeability histogram for patterns with prediction error

greater than threshold,

T T | T T T —F T 3 T T ot T

Frequency

J||||I|r|_|r||||:l'|l_-|"‘l_|_
IJ!II

T

t by by v v g

™T

0 0.02 004 006 008 01 012  0.14
Porosity

Figure 8.7. Porosity histogram for patterns with prediction emor greater than
threshold.

Fl4



25_ T T T T T I 4
20 - ]
& 15 F ]
g I ;
= 3
¥ 10f .
L8 C ]
51 -
U L1 1 S| 1 |EIIJ|:|
0 1 2 3 4 5

Facies

Figure 8.8 Facies histogram for patterns with prediction ertor greater than threshold.

115



CHAPTER 9

COMPARATIVE STUDY FOR PERMEABILITY
DETERMINATION

This chapter compares the performance between developed neurnl network model
and conventional methods used for permeability estimation. The conventional
methods such as Carman-Kozeny equation and multiple Jinear regression are
generally employed to estimate permeability. The performances of these methods
have been compared with the neural network model responses to investigate their

effectiveness in permeability determination.

This chapter comprises the following sections. Section 9.1 deals with Carman-
Kozeny equation and prediction of permeability. In section 9.2, multiple linear
regression model has been developed to predict permeability. Section 9.3 {llustrates

the comparison between these conventional and neural network models,

9.1 Permeability Determination Using Carman-Kozeny Equation

9.1.1 Basies of Carman-Kozeny Equatoin

The equation relating to measurable rock properties with permeability was first
proposed by Kozeny. It was modified by Carman. Carman-Kozeny equation is used
to provide framework for permeability estimation. Carman-Kozeny equation relates
porosity, specific surface area, hydraulic radius and tortucsity According to
Poiseuille’s equation, flow through a conduit or capillary can be written as
AP
Bl

where ris the radius of the conduit, ¢ is the volumatric flow rate. From Darcy’s

(= (9.1

equation, one can write

z
- k= AP {9.2)

S
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From Equation (9.1) and (9.2) one can write

k= (9.3)

Equation (9.3} should be corrected for poresity and tortuosity lo give the interstitial
velocity. So, the corrected permeability is
g2 (9:4)
Br
In perous rock medium, grain size is not constant. To overcome this problem, r is
substituted by hydraulic radius. Hydraulic radius is defined by

y = volume open 1 Qow
h wetted surface area

For cylindrical capillary,

relr, (9.5}
For granular or parous medium specific area can be defined es

5 - welted surface area
’ solid volume

Specific surface area is an intrinsic property for a porous medium. It can be estimated
using picnometer, porosity estimates, and grain size analysis. From the definitions of
hydreulic radius and specific surface area, hydraulic radius can be derived as

¢
a,(l-¢)

Using Equation {9.5)

fp=

a2
P (5.6)

From Equation (9.2) and (9.6}
¢3
=¥ 9.
2r(l-4)’al e

Equation (9.7) is referred as Carman-Kozeny equation,
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For porous medium with uniform sphere

4 o treaof spheres 5 _ 6
volume of spheres Tpl Dy

& P

So, for a uniform porous medium, permeability can be estimated using Equation

R |
(6.7 as g Dr?
721 - )2

(9.8

From Equation {.8), it can be inferred that tortuosity has weak influence on
permeability due 10 its low power and it does not vary much. On the other hand,
permeability increases dramatically with particle size and porosity. In practical cases,
particie size is more uncertain than porosity. $So, particle size is the main controlling

factor in permeability estimation, not porosity.

Particle size and tortuosity data are not found in the field data, collected to perform
the present research work. To overcome this problem (he Kozeny constant has been
considered in lumped form and it is

D3

C T2r(l- gy

¢3
k=C 9.9
{1-¢)* €9

where C is the Kozeny constant in lumped form. Equation {9.9) has been used ta

determine the Kozeny constant in lumped form (in field units) vsing field data for

permeability and porosity.
%.1.2 Selection of Kozeny Constant

Figure 9.1 shows histogram for Kozeny constant (calculated using Equation {9.9)
from field data, in field unit) in hamped form. Mean and standard deviation are found
200823.00 and 601084 80 respectively while the range is found to be 127.00 to
4930000.00. This histogram has been plotted to select Kozeny constants at different
peaks. The Kozeny onstants are 1500, 10000, 30000, 100000, 400000, 200000,

Using these constants, maximum permeabitity (Kmay) has been determined.
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9.1.3 Variation of Porosity and Permeability with Kozeny Constant

Figure 92 shows Kozeny constant (in lumped form) versus porosity scatter plot.
Correlation is found to be —0.30. So, the Kozeny constant decreaes with porosity.
Figure 9.3 shows maximum permeability (calculated) versus porosity scatter plots for
the selected Kozeny constants. These plot shows that maximum permeability (Kinay)
increases slowly for low value of porosity, but permeability increases dramatically
for higher values of porosity. Figure 9.3 shows that rate of permeability change is

high for high values of the Kozeny constant,

In neural network medel, the pattem (measured maximum permeability} and
prediction (model output i.e., calculated maximum permeability) are in normalized
form. To compare the performance of empirical model and neural network model,
the calculated Knax from Carman-Kozeny equation and measured Ky, are also
trnasformed inte normalized condition. To consider the entire population, the
maximum and minimum values of log K were selected 4.50 and -3.00

respectively.

Figure 9.4 shows maximum permeability {measured) histogram. Mean and standard

deviation are 0.54 and 0.12 respectively. The vlaue ranges from 0.21 to 0.82.

9.1.4 Determination of Permeability Using Carman-Kozeny Equaiton
2.1.4.1 Permeability Determination for Kozeny Constant 1500

Figure 9.5 shows histogram of calculated maximum permeability (Kmn.,) Mean and
standard deviation are 0.36 and C.10. The difference for mean between calculated
Km and measured Ky, is remarkable. So, the results from Carman-Kozeny
equation for Kozeny constant 1500 are highly biased. The range of claculated Keax
is from 0.11 to 0.56 which is narrow with respect to the measured Ko, range. Figure
9.6 is calculated Ko, versus measured Kp., scatter plot with correlation 0.48 and
RMSE 0.21.
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9.1.4.2 Permeability Determination for Kozeny Constant 10000

Figure 9.7 shows histogram of calculated Ky, The mean and standard deviation of
calculated Kmay are 0.474 and 0.10. The calculated K., ranges from 0.28 to 0.67
The calculated results are siill biased and narrow ranged. Figure 9.8 is calculated
Kpax versus measured K scatter plot. Correlation and RMSE are 0,478 and 0 13.
The reduction of RMSE is clearly evident. .

9.1.4.3 Permeability Determination for Kozeny Constant 30000

Figure 9.9 is the histogram of calculated Kgu.. The mean and standard deviation are
0.54 and 0.10 respectively. The calculated Ky ranges from 0.28 to 0 74, So, the
calculated results are refatively less biased and the range is moderately good. Figure
9.10 shows calculated Koy versus measured Ko, scatter plot and the correlation is
0.48. RMSE 15 0.11, farther reduction of RMSE.

9.1.4.4 Permeability Determination for Kozeny 100000

Maximum permeability histogram for Kozeny constant 100000 has been shown in
Figure 5.11. Tt has a mean of 0.61 and a standard deviation of 0.10.The value ranges
from 0 30 to 0.81. So, the calculated results show bias but the range is good. Figure
9 12 is the calculated Koy versus measured Kp,, scatter plot. The correlation is 0.48
and RMSE 15 0.13. RMSE is more then the RMSE for Kozeny constant 30000,

9.1.4.5 Permeability Determination for Kozeny Constant 400000

Figure 9 13 is the histogram for calculated Kpay for Kozeny constant 400,000 with
mean and standard deviation 0.69 and 0.10 respectively. The minimum and
maximum values are 0.43 to 0.89 respectively. Again the calculated result shows
bias. The range has exceeded the measured permeability value. Figure 9.14 is the
scatter plot between calculated Ko, and measured Ko, with correlation 0.48 and
RMSE 0.18,
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3.1.4.6 Permeability Determination for 2000000

Figure 9.15 shows maximum permeability (Kmay) histogram. It has mean and
standard deviation 0.78 and 0.10 while the range is found to be 0.52 to 0.98. The
calculated result is unable to generate mean i.e. biased and the range is very high
with respect to the measured permeability range. Figure 9.16 indicates calculated

Kimsx versus measured Koy scatter plot. Correlation is 0.48. RMSE is 0 26,

From the above results, it can be inferred that Carman-Kozeny equation performs
better for Kozeny conslant 30000, So, for comparison with other methods, the results
for Kozeny constant 30000 has been used in Section 9.3.

The following Section 9.2 gives a statistical model, multiple linear regression for

maximum pereneability prediction.

9.2 Multiple Linear Regression Model

A useful extension of least square method is the multiple linear regression method
where dependent variable, Y is linear function of two or more independent variables

(X,,X,;,X,,...) The general form of multiple linear regression equation is
2.1 3 P
Y =B,+8 X +B,X 4B, X e (9.10)

Where B,, 8,,8,, B, are the coefficients and e is the error term. The best values of
coefficients are selected in such a manner so that the error term reduces to zero
Under this study multiple linear regression mode! for permeability prediction has
been developed based on least square method using well locations, relative
stratigraphic  depth, facies, porosity and thickness as independent variables.
Normalization of the data has been done according to Table 6.1 The developed

linear regression model is

K poa=0.343172-0,32656.X +0.202984Y —0.122472 ,,,.,,—0.09837(Facies) + 0.4 11706

+H2. 43908 7(TAickness}

(9.11)
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9.2.1 Validation of the Regression Model

Figure 9.17 is the histogram for maximum permeability (Kuax) (measured). The
measured  Kma, value ranges from 026 to 0.99 while the mean and standard
deviation are 0.658 and 0.145 respectively. Figure 9.18 shows predicted maximum
permeability histogram The predicted Kaux value ranges from 0.504 to 0.845. The
mean and standard deviation are 0.658 and 0.082. The developed regression model 15
capable 1o reproduce the mean. So, the developed regression model is more or less

bias free but prediction range is very narrow.

Figure .19 shows predicted maximum permeability versus measured permeability

scatter plot. The cormelation and RMSE are 0,57 and 0.12 respectively.
9.3 Results and Discussions

The prediction statistics of neural network model, empirical Carman-Kozeny
equation and multiple linear regression model have been shown in Table 9.1, 9 2 and
9.3 respectively. It is remarkable that neural network model and regression model are
quite capable to reproduce the mean. So, their predictons are bias free. On the
otherhand, the Carman-Kozeny equation is slightly biased. Prediction ranges for
neural network and regession model are narrow, Comparatively, regression model
prediction range is more narrow than that of neural network model. Prediction range
for Carman-Kozeny equation is relatively better than the other two methods. The
RMSE for nmeural network model (0.105) is less then that of Carman-Kozeny
equation (0.11) and multiple linear regression model (0.12). On the other hand,
neural network shows higher correlation (0 640 to 0.687) between predicted and
measured maximum permeability than Carman-Kozeny Equatoin (0.48) and multiple

linear regression model (0.57).
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Table 9.1: Neural network prediction statistics.

Run Mean Ranjre RMSE | Correlation
Mean K, Neural K. .. Neural
(measared) Network {mewured) Network
Prediction Prediction
| 0.658 0.659 0.26 ~0.99 0,416 —=10.730 0105 0.640
2 0658 (L6585 0.26 0.5% 0.397-03827 0,105 0.683
3 LG58 0.660 0.26 - 0,99 (.402 - 0,825 0.103 0670
4 0.658 0639 0.26-10.99 0.455 - 0.302 0105 0648
3 0.658 0.65% 0,26 -099 0,398 -0.811 Q105 .687

Table 9.2: Statistics of results from Carman-Kozeny equalion for Kozeny constant

30000
Mean Range RMSE | Correlation
Mean K., Calculated Ko Calculated
{Mﬂmmd} l(ju: {mj:asul'ﬂd] K!l!l
0.543 0.533 0,215 -0.816 0.28 -{.736 011 D48
Table 9.3: Multiple lingar regression model prediction statistics.
Mean Fanpe RMS3E | Corrclation
Mean K,..; Predicted Kou Predicted K.,
{measurced) Konsx {measared)
0.658 0.658 0.26 -0.99 050 -0.85 0.12 0.57
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9.4 Conclusion

Neural network model predicts that porosity and relative strata are the most
important and thickness is the least impertant input parameters for permeability
prediction. This prediction is relevant with the exploratory data analysis and practical
experiences. In contrast, multiple linear regression model shows that the thickness is
the most important input parameter for permeability prediction. S, linear regressive

model is unable to predict the important input parameters.

The conventional methods offer no prediction space. Neural network model can
produce prediction space (Figure 7.17 to 7.24). So, it can reduce the artifact effect in

the prediction space.

Neural network model 15 more efficient to caphire the prediction space than the
conventional methods Carman-Kozeny equation and multiple linear regression
model. The RMSE of neural network model can be reduced as well as the correlation

can be improved more by increasing the number of hidden layers.
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CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

In this study, a neural network medel is developed for permeability prediction at a
“uncered” well. The inputs to the neural network are porosity values, lithofacies
identifiers, spatial coordinates, and thickness of the samples. A number of analytical
studies are performed in this work. Some of the salient conclusions derived from the
study are enumeraied below. More delailed analyses are discussed in the previous

chapters.
10.1 Conclusions

+ Exploratory data analysis reveals the correlations belween variables of interest
are very poor. Under usual circumstances, this leads to peor models based on first
principle or simple regressional methods. The use of highly nonlinear

sophisticated tool such as neural networks was deemed to develop a model,

« Both sipmoidal function and hyperbolic tangent functions had been used for the
activation function in the neural nelwork model. It was found that sigmoidal

function performs better of the hwo.

« Optimal parameters and their corresponding values were selected The optimum
parameters were input to hidden node bias (0.50), hidden to output node bias
{0 05), input to hidden node learning rate (2.0), hidden to output node learning
rate (0.0003), number of hidden nodes (4).

» The relative influence of the input parameters was investigated. It is found that
porosity and relative strata are the significant parameters amongst the others
input parameters available for permeability prediction. On the other hand,
contribulion of multiple linear regression model about the importance of input

parameter is misleading,
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» Parametenization of the input space for the problem is not sufficient With
available data, developed model shows high prediction emror and less reliability.
Of course, a major reason for high prediction error is the poor correlation

between parameters.

* A number of uncertainty analyses were performed for permeability prediction
using this study. This kind of studies is recommended as routine affair for any
engineering  investigation. Uncertainty characterization leads to berter

understanding of the problem being investigated.

» Prediction error i3 high for exireme values of permeability. Affine scaling has
been applied to minimize prediction emor of the developed model. Affine scaling
is effective to minimize prediction ervor for patiems with values lower than some
threshold

+ One important thing over the conventional methods is that neural network model

13 error Lolerant and it can minimize the artifacts in the prediction space.

« It i3 possible to predict permeability with more efficiently than conventional

methods using neural network model.
10.2 Recommendations

In this study, a back propagation neural network model has been developed to predict
permeability of an “uncored” well using mainly core data. Some of the

recommendations realized from the work could be the following.

* The computer program developed in this work has a much wider
applicability. The same code can be applied to some suitable petroleum

engineering problems {mentioned in Chapter 3) with little modification.

» Number of hidden layer can be increased for betier iraining as well as to ger

" better responses of the developed neural network model.
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Additional information regerding grain size and distribution, angularity,
connectivity, geomechenical properties, diagenesis effect erc. would have
enhanced the model.

For nonstationacy systems, the developed neural network model should be
modified te incorporate approaches similar to temporal Back Propagation
Neural Network Model.

More effective methods should be applied for emor correction. Further

investigation is required in this regard.

This is the first documented application of neural network in petroleum
engineering studies in Bangladesh. Techniques like neural networks
discussed here and more sophisticated ones can be and should be applied

extensively for the development of petroleum engineering in Bangladesh.
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NOMENCLATURE

ALR = Learning rate between input and hidden laver
BLR = Learning rate between hidden and output layer
Krax = Maximum permeability

Kvat = Vertical permeability

RMSE = Root mean square ermor

Zarms = Relative strata

a, = Specific surface area in Equation (9.6)

b7 = Bias applied to neuron

oy = Kozeny constant in lumped form in Equation (9.8)

d" = Desired output vector for time step n in Equation (4. 10)

d; = Desired response (output) for neuron j at time step # in Equation (4.15)
d;  =Desired response {output) for neuron k at time step # in Equation (4.29)
D,  =Panicle diemeter in Equation (9.8)

¢; = Refers to the error signai at the outpnt of neuron £ for time

step » time step in Equation {4.3)

é = Refers to the error signal at the output of neuron j for time

step 7 in Equation (4.12)

i = Noalinear function in Equation (4.1)

N = Total number of patiern in the training set in Equation (4.14)
n = Time step in Equation {:1.3)

0, = Qutput produced by neuron i in Equation (4.1}
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AP = Pressure difference in Equation {9.1)

o = Volumetric flow rate in Equation {9.1)

r = Radius of the conduit in Equation (9.1)

A = Hydraulic radius in Equation (9.5)

vy = The induced local field (i.e , weighted sum of all synaptic inputs plus bias)
of neuron j atiteration »in Equation {(4.21}

w'  =Optimum weight vector in Equation (4.9)

wi, = Synaptic weight for bias 5 at iteration n in Equation {4.15)

w, = Synaptic weight connecting the output of neuron i to the input of

neuron j at iteration n in Equation (4.21}

Aw; = The correction applied to this weight at iteration s in Equation (4.23)

x”  =Input veclor at iteration # Equation (4,10)

x} = The j th element of the input vector (pattern) at iteration n
in Equation (4.3}

ky = The input signal from neuron 7 to neuron j in Equation {4.1}

¥; = Function signal appearing at the output of neuron F at ieration » in
Equation {4.12)

Greek Symbols

@ {) =The activation function associated with neuron J in Equation (4.16)

@ = Porosity it Equation {%.4)
7 = The learning-rate parameter in Equation {(4.3)
£"  =Instamtaneous value of the sum of squared errors in Equation {4.13)
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e{w) = Cost function in Equation (4.4)
B = Gradient of cost function, ¢{w) in Equation (4.7)

% = Average error energy in Equation {4.14)

©®, = Threshold for neuron 7 in Equation {4.2)
a7 = Local gradient of neuron of neuron j at time n in Equation (4.24)
7 = Partial

v = Differential operator

T = Tortuosity in Equation (9.4)

Subscript

av = Average

i = Neuron §

7 = Neuron j

e =Neuron &

max = Msximum

verl = Vertical
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