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ABSTRACT

Flow behavior through a perous medium depends on Muid properties as well as the
charactenstics of the medium. In a homogeneous and isorropic porous medium, flow
around a wellbore is generally radial or finear. [n some cases, Mow around a wellbore
may also become clbiptical instead of radial or lincar. Many authors discussed the
elliptical MNow behavior assuming a vertical fracture at the center of the reservoir,
Elliptical Now may alse be observed around a circular wellbare at the center of an
anisotropic reservolr even if there is no verticul fracture. Elliptical flow situation around
a circular wellbore also occurs during the production phase of ¢yelie sieam stimulation
{CS5) when a shear sone of enhanced permeabdity 18 crecled around the wellbore
during the injection phase of this process. No discussion is Tound in petroleum literature
an clliptical Now behavior with circular weillbore at the center, This study modified the
analytical solutions available in Titerature to (nvestigate sleady flow around a cireutar

wellbore in an elliptical domain,

The new model is used to analyze the effect of eccentricity of the elliptical domain an
fow rate. It wos found that radial flow model will produce as much as nine percent
error in flow caleulation i it is used in elhptical system. Using “Continuous Suceession
of Steady States™ (CS585) method, the model 15 aiso applied to estimate the depth of
investigation for a system with elliptical {low domain. The depth of investication in
radial and elliptical systems are alse compared in this study, The elliptical mode] was
fund m accordunce with the radial model at ¢ceentricity equal to zero. The area of
drainage was also found 10 be independent of the flow rate. pressure level and shape of

the elliptieal demain.
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CHAPTER 1

INTRODUCTION

Study of fluid flow through porous media has a greal importance in Petrolenm
Enginsering, Without knowing the charactenstics of {luid flow through a porous
medium, it is impossible to design and optimize the production facilities of petroleum

substances from a hydrocarbon reseevorr.

Flow through porous media depends on the characteristics of the media such as
homogeneiry, permeability distribution, shape of the reservoir outer boundary, shape of
the aguifer inner boundary. existence of fractures ete, Generally, in a homogeneous and
motropic medium, when two-dimensional fow is considered. a cadial or lincar Now
sinaton 14 found, On the other hand, in the area surrounding a vertical fracilure, in an
anisotropic formation or in a reservoir with elliptical outer boundary, flow will become
elliptical (Kucuk and Brigham, 1979}, Swmilar flow siteation also oceurs in Cyelic
Steamn Sttmulation (CSS) when a vertical fracture is created during injection period

creating an elliptical Aow domain (Tamim, 1993),

The concepts of radial and linear flows were developed many years ago in fluid
mechanics as well as in reservoir engineening, However, elliptical fow in the porous
media is 4 refatively new cuneepl. The earliest discussion on ellipticat flow behavior 1
attributed © Muskat in 1937, After that many authors tried to mode! their resecvair

incorporating eltiptical flow,

In case of a reservoir having a vertical fructune (Fig 1.I) at the center of the reservaoir,
tlow along the Fractuee wxis witl be higher than that of other directions due 1o the infinine
conductivity of the (rocture. This vadation of flud velociry along the different

dircetions creales an elliptical drainage area around the fracture.




Ty .
B £ Porous medium
5.;-{:,,@ l ifinie conductivity)
e
= o '
Ellptical £ e Fracture axis
huu?}tdar'_qr a2 = _\
e s e e e e e e e e e e ) =
—
Higher flow rate \—"u"Er‘til:aF fractura

afang fracture axis (infinrte canduekivity]

Fig L.1: Eliptical Flow with Fracture at the Middle of the reservoir

It petroleum engingenng study, there are several situations where the flow 15 around a
circular wellbore in an eltiptival demain, Flow in anisarropic reservoir is an example of
such case, If the reservoir i Romogeneous but anisotropic 1.c. 1f directional permeability
15 present then a circular wellbore will not produce drainage area in & circular fashion.
In this cuse the circular drainage area will be distorted and an elliptical domain around
the wellbare will be crealed. Fluid velocity ulong the direction of maximum
parmeability (say k) becomes the highest and that along the lowest permeability {say
k) bEcomes the lowest, Ay a resule, fluid will be drained to a higher distance atong the
direction of ke than the direction of &, Eventually, it will create an elliptical drainage
arcd around the wellbore (Fig 1.2). It is pussible 1o determine the directions of
maximum and mtaimum permeabiliey of (e anisotropic reservoir. The techniques of
mcasuring anisotropy are available in many references (Arnold ef af., 1962, Head er of..
1993, Wannell ¢7 of., 1993, Iversen and Ajdar, 19963,

Yol lbore
Ellptical
boundary

—_—
Higher flow rata
along &,

ARISHMOPIC
poraks medim

Fig 1.2: Elliptical Flow in Anisolcopic Media (withoul Vertical Fracture)



During the production phase of C5S process, the fractures which were created at the
injection phaswe can be closed These closed fractures create o “sheer zone™ around the
wellbore into the reservoir, This sheer zone exhibits directional permeability and creates

elliptical flow around the weble,

[n this study, the steady state [low equation for a reservoir with incompressible {uid and
elliptical fiow boundary 15 considered. The circular wellbore is considered at the center
of the reservoir. The depth of investization is also determined from the mode] and is

compared with other models in literature,

1.1 Statement of the Problem

Rudial and linear flow situations une observed very commaonly in reservoir engineering,
Elhptical flow siwation, on the other hand, does not scear as frequently as radial or
linear flows. In case of o reservoir having vertical fracture, anisotropy or elliptical
shaped outer boundary, elhiptical flow is found in the reservoir arownd the wellbore,
Analytical flow equations for an elbptical flow domain with verocal fractures are
wvaitable tn petrolour hilcratare (Muaskat, 1937; Couts ef el., 1939, Prags, 1961 Prais ef
al., 1962; Kucuk and Brigham, 1979, Obut and Enekin, 1987). In absence of verticai
fracture, the anesoiropic formation produces cliipucal flow domain around a circular
wellhore. In Cyclic Steam Stimulaven (CS5S) process, the production peried also
cncounters elliptical Aow situation around a circular wellhore upon the crestion of shear
zome of enhanced pormeability doe ko the injection of high-pressure stesm during the
injection period (Settari and Rwsbeck. 19313 Mo reference is tound in petrofeum
literature discussing {low around a chicular wellbare in an elliptical domuin in absence

of a verical fracture.

The objective of this study 1~ o adopt the steady state water flow equation af van der
Ploeg e af. (1971 modeling the Qow around a circular wellbore at the center of the
ciliptical domain that will be appropriate in Rcservoir Engineering application. The
effect of the shape and size of the ellipncal domain on {low rates will also he
mvestigated. Phe new model will be applicd lor determining “the depth of investigaton”

in an elliptical domain.



1.2 Solution Methodology

In developing the steady flow cquation in elliptical domain wilh circelar weltbore at the
center, steady state well flow theory for a confined elliptical aquifer developed by van

der Ploeg er af., (1971} was used
The tollowing teawres highlighted the methodotogy that lias been used for this study:

1} Modification of equanion of van der Ploeg et of. {[971) which is related to water

How in porous media, and use 1t in reservolir engineering scenariv.

2} Comparison of the resulls with radist model to check the validity using same set

af dala.

3) Derivation of the equation for “depth of investigation’ using the method of

"Continuous Seccession of Steady States™ (CSSS).
41 Validution of the proposed cqualion by comparing results with the radia! rmodel,

3) Determination of depth of investigation for elliptical domain for difterent

eCCeEntriciiies.

1.3 Organization of (he Thesis

This study 1ntends to establish w new spproach o understand the efliptieal flow through

porous media with a circular wellbare at the center ot the flow domain.

The literature revicw is presented in Chapler 2. The whale review is presented under

twa sections — “elliptical flow” section and *radius of drainage’ section.

In Chapter 3, development of flow eguation and 1ts analysis are discussed. The analysts
i» done on the basis of eccentricity of the elliptical domain. The dilference in radial and

cllipticad flow madel s also discussed in the wnctvsis,

Chapter 4 contains discussions of application of this new approach i determining depth
of investigation in ellipticul doman, The capression of radius of drainage has been

derived by the method of “Conlinuous Succession of Steady States™.




Chapter 5 presents general discussions, conclusions, recommendations cte. from this

study.

The data tables for this study are peesented in Appendix A Appendix B presents Lhe
derivation of flow equation by ¥an der Flogg, Kirkham and Boast {1971}, Computer
programs for generating of data from the proposed equation, written in Turbo Ca+,

version 3.0 are presented in Appendix C and Appendix D.



CHAPTER 2

LITERATURE REVYIEW

A lotof work is found in the literature on elliptical flow and radius of investigation, The

works ure reviewed here i the [llevwing two sechions,

2.1 Elliptical Flow

Clhpucal flow in porows medi v well established in petraleum literature, A series of
authors considered elliptical fiow in thewr reservour modeling, but it is mostly discussed

in madeling of the venical fracture ol the reservoir,

Muskat (1937} first presented an analytical solution for the steady-state flow from a
finite line source in an inlhmite reservoir, The author consdered a canal or river as a line
source and the theory of cunjugale [unciions to derive the model. 1 was shown that

equipressure curves e confoval ellipses and streamlings arc confocal hyperbalas,

Coats et @l (1959} considered unveudy-state liquid fow through porous media having
eliptical boundaries. Their flow model was bused on two confocal ellipses, called inner
and outer boundaries. They started with ditfusivity equation governing unstcady-state
liguid flow through poroes media. They also assumed wniform porosity  and
permeability throughout the tlow model. They transformed the Carlesian coordinare
system 1o elliptical coordinale system in their solution, The final form of the flow
cyuitlion was solved numercally and compared with other flow models. They eompared
their elliptical mode! with 1adinl model on the basis of equal arcu encompassed by the
exterior eflipse and the extenor circle and equal areas included within the intenwor elfipse
and the interior circle, They showed that the water influx calculation was about 7% in
error when an elliplical boundary was approximated by an equal area circle for short

dimensionless Lme.



Prals {1961} constdered vertical {fracture ar the center of a cylindrical reservoir, His
incompressible fluid model showed clliptical pressure distribution ncar the wellbore,
His model characterizes the effect of verucal fracture by defining a parameter which is
the ratio of the ftow abilities of the formatien and the fracture. He showed that the flow
around the fracture becomes circulur from elliptical as the parameter approaches infinity
from zero, Prats, like other authors, also used the transformation of axes Lo ¢olliptical
coordinate te solve his model. Prats. Huzebroek and Soickler (1962 also studied with
compressible fluids and found that the effect of fractures on compressible fluid could

also be tgnomed,

Arnold and Gonzaler (1962} presemied o graphical method of esomating reservoir
anisotropy from production dats, Therr study was based on the transienl pressure
distribution in a porous and permeable mediun. The method considered elliptical
isopotential lines fur anisotropic rescrvoirs, They showed that the ratio of major and

miner 2xes is related to the maximum and minunum permeability ratio.

A closed-form solution for sawrated ow into & fully penetrating well in etliptical Row
geometry was proposed by van der Plueg, Kickhumy and Boast (1971}, Their work was
related to water flow in a confined ellipucal aguifer. A free surface was assumed at the
waler head. Steady-state flow cquations were developed for various well Jocations using
aravity flow. They staned with Laplices equation in polar coordinate and solve 1t using
the Gram-Schimdt methad as mwschlied by Powers er af. (19670, Results and fAow nels

were presenied for several cases.

Kucuk and Brigham (1979) worked on the transicnt fow model in elliptical systems.
They used two-dimensional difTusivity egualion and transform the equation to elliptical
courdinates. Their model is apphcable to inlinite conductivity vertical fractured wells,
cltiptically shaped rescrvoirs, und anisotropic reservoirs producing at a constant rate or
pressure. They generated type curves for both constant rate and pressure, In their
following work {1981}, they applied the elliptic flow solution to water influx problems
in elliptical and aneotropic ayuifen, They prescented solutions for the dimensionless
cumulative water intlux wmd inttux rae as a function of the dimensionless time n

tabular and graphical forma.



Hale and Evers (1981) developed clliptical flaw cyuation for vertically fractured gas
wells tn low permeability or tight reservoir. The cquation was developed for use with
short-term flow tests at either constant tate or constant pressure test conditions. Their
generalized elliptical equation combines lincar properties of early time behavior with
the radial properties of e time low in a single equation They used the conformal
mapping technique o solve the problem for steady state elliptical Mow repime and
modified the solution for unsteady stute problems by defining radius of investization

which changes as a function of dimensionless time

A composite system i elliptical flow geometry is considered by Obut and Eriekin
(1984). Their study was based on transient data on injection well having infinite
conductivity vertical fracture. They idealized the swept volume as an elliptical region
with focil located at the tips of the fracture wings Assuming equal pressure and flux at
the interfuce they gave solutions for both constant pressure and constant rate at the
wellbore using the techmigue of separaton of variables. Their solution is o suod

approxumation ol the sioted problem.

While siudying the effect of thermoclustic stresses on injection well fracturing, Perkins
and Gonzades (1985) found elbiptical Tlooded zone around the fracture, They stuted that
atong the growth ol the fracture, the flow system evolved from an essentially cwrcular
geometry in plan view to one characterized more nearly as elliptical. Thewr study wis
related to change of stress due o the temperature difference of the injected fuid and the
reservoir fiuid They derived an expression to find the major and minor axes of the

ellipme,

Okuoye er af. {T98X) presented an analyucal solution 1o unsieady state and psendu-steady
state flow in naturally fractured reservoirs with elliptical boundaries. They stanied from
diffusivity equation and upplied Laplace Transformation to develop their model. Finally
they inverted the Laplace space solution osing numerical Laplace inversion algarithm 1o

calculate the dimensioniess pressure and dime values.

Severa] authors {Diewich {F9RGY, Arthur er af (19913, Tamim ez wf. (1995)) considerad
elliptical flow geometry in Cyclie Swam Stimulation (CS8) process of enhunced oil
recovery. Dietich (T98G) considered CS8 model of tar samds wilh hydraulically induced

fracture. He assumed an elliprical healing pattern as hot injection flud moved off a



Y

vertical fracture tace. He found thar the major and minor axes of the heated eilipsoid
which iz produced out of steam injection process had great imporance in the choice of

well spreing and the Llime of inter-well heal communication

Arthue ¢f gl (1991) in their analytical model for C85 also considered clliptical (low
geomelry. They assumed that the length of the fracture obtained during the stcam
injectien for a particular cycle does not change at the end of the production peried for
thit cyele. They divided the entire elliptical flow geometry produced from the fracture
during the steam injection inte a hol and witrm zone 1 evaluate the perlormance of CS§

for the purpose of oplimization and process control of commercial operations.

Tamim and Farouq Ali {1993} presented another analytical CS5S model including
formation parting, Their model was hased on o traclere heating computation coupled

wiath flwid fow, They slso comsidered elhpical Now geametey in their CS8 medel.

2.2 Radius of Drainage

Radivs of drainage 15 the distance that a pressure transient has moved into a formation
following a rate change w a well. Rudius of drainage o characterized by the two
critgrit. One s presswe change and the other i5 flow rate. Many authors considered

these two criterta as a basts in defining the radius ot drainage.

Tek er al. (1957) developed a mathematical formulation of the radius of drainape based
on a developed held where gas production approached stexdy state condition. They
defined the radius of druanage as the radius at which the Mow rate is one per cent of that

ab the wellbore ar any instant.

Hlerst of al. {1961} compared the Kelvin selulion (line spurce approximition}, which
applies o an infinite reservoln, o that o w bounded reservoir, and found that initially
the two solutions were essenbally identical They correlated the time tll which this

match continues and introduced a correlution for radius of drainage.

van Poolen (1964 presented rudius of drainage equation by combining the solution ot
diffusivity cquation lor both finite and udinite acting reservoir. He based his derivation

onthe Y- funetion (pressure derivatived of Joaes (19623,
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Ishteiwy and van Pooten (1969) derived radivs of drainage equation for pressure
buildup analysis for o single wetl, They considered two bourdary conditions. The first
boundiry condition considered o single well near an extensive Hncar barrier in an
otherwise homwgencous und infimle reservoil, In the second case, a single well is
assumed near a linear and cxlensive pressure source in an otherwise homogeneous and

iniinite reservoir,

Kutasow and Hejrl (1984 used the material balance condition 1 detcrmine well
drainage radius. Their radios of dramage was based on a well at constant bottam-hole
pressure In - an inlinite acting reservoir  They found the relationship between

dimensienless drainuge radius and dimensionless time.

lohmsan (1988; delined rachus ol diainage as the radius enclosed 2 volume in the
reservolr that accounts tor a specilied tacton (&) of the cuimwlative production. He
considered constant production rate and constani formation volume factor with the line-
source solution of diffusivity equation. He used volumetric material balance by

assuming constant compressibility and parosity of a homogeneous reservoir,

Liav and Lee {1994} determined depth ol investigation tor efliptical flow probloms for
biydraulically fractured wells, They assurned an elliptical shaped wellbore formed due to
fracture at the cenler of the rewervoir. they also used their model to clhiptically
composite reservolrs, They used the method of “continuous suceession of steady states™

in their destvation ol depth of s estigation ftom stead y-state flow squation.



CHAPTER 3

RESERVOIR MODELING

The flow theory of van der Ploeg, Kirkham and Boast (19713 used in this study was
related to water flow i a contined elliptical aquifer. They developed a closed-formed
solution for steady saturated (low into a fully penetrating well 1 elliptica) flow
geometry. A free surface was assumied at the water head. Steady-state solutions were
developed lor varicus well localions using gravity Row. Results and flow nels were
presented for several cases. Fig 3.1 v the geometric representation of their model. The
tigue s redruwn showmg the well at the center, They considered different well
locations [or their stady, The essence of thetr apprusch was to derive orthonormal
functions for the problem using the methuods of Powers ez af. (1967). Although van der
Plucg er ef. presented solutions fur different well locations. only the solution for a well

al the cemier is considercd in this study.

Al Flow Equation

It i» important to design an aceurare modet o extract any meaningful reselt from its
anmalysis. For the coase of caleubation it s also critical 0 make the appropriale
assumptions. In the present wurk, a reservoir with cliiptical druinage system 1
considered, The Jollowing assumptions are to be considered in the developmen of the
midel -

L. Flew is glhptical into o commaon source or sink

2. Rescrvoir hus a constim thickiness

3. Reservoir is considered homogeneous in all ruck properties
4. Fumation s completely saturated wilth single flud

5. Flutd saturation 15 ¢conslanl

6. Steady-state, single phase lNow



B |

Compressibility of the sy«lem is constant and small
8. Viscosity of the Tuid is constant theoughowt the reservair

9. Well is completed across the entire formanon thickness

WELL
. V. l_ _ | v A
— REF.LEvEL | | — -~ """ T--- —
|/ CONFINING LAYER j:j
el CPF VI IIIITIIIIITD.
— — -
n AQUIFER —» [T| «—

////////////X(//////// ?///////////////// e
IMPERMEABLE LAYER

(A)

Ay

(B)

Fig L1 Geanetriv Reprosentation of van der Plovg el al. Model

tA) Croms-sectonal View, (B) Plan Yiew

The flow eguation from & circular wellbore of an elliptical drainage boundary as

developed by van der Plocg ef of. (Appendix By is given by —

| 2KhA, A
] n ﬁ.
-

o= N
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whare,

Ags the duTercnce in hyvdraafic head,

K is the hydraulic conductivity ol the reservoir,
e In Lhe major axes of the reservoir,

F, 1% the weltbore radius snd

fi 1s the 1eservorr pay thickness,

Awp is a dimensionless coeflivient that depends on the geometry of the reservoir
(cecentricity) and the location of the well. A detaled deseription of the developmant

and solution procedure of this cquation is given in Appendix A,

The hydraulic conductivity & wicd i groundwater llow s related 0 permeability,
density and viscosity wsed in petrolewn engincering. Hydraolic conductivity can be

writlen as —

H
where,

& 1s the reservoir permeability.
£ s the Tluid density,
£ is the aceeleration duc 1o gravity vl

A ix the fluid viscosity,
When density is assumed w b constant, the hydravlic bead @ ean be expressed as

g=—"— 3.3

Therefore,

ag = Mp® o)
£
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3o, Egn 3.1 becomes -

2rkhA, Alp + ez
g =- bl I:P 7 } 3.5
it
Hln—
For hurizontal flew Az s zero wnd heace Tge 3.5 becomes —
2mhA
g = = 2R A A 36
u
dln-—
R

[}

lgnoring the mutus sign and rearranging the Eqn 3.5, a dimensionless flow cquation

may be found to be -

i 2,
Q” = = = .
Midlp+ pgz) Inlair, )

37

J.L.1  Permeability

In kgn 3.5, the peemeahility term A, appears in the numerator, has different values for
wotropie and anisctropic reservorrs, For wsotropic 1eservow 11 is simply &, an average
permeatnhity of the reservow. Typicully, this permeability is determined either from
core-analysis data or (rom well testing. On the other hand, in anisotropic reservoir the
averuge permeability value has 1o deal with ut least two directional permeablities, Lo,
and Ly Kuchubh and Brigham (1979 repoited average permeablty for anisotropic

porous media as =

k=& =k .k 348

(LR 1Y

312 Axes of the elliptical domain

e and & are the axes of the ellipucal domain. These values depend on the characterisncs

of reservoir.
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J12 1 Elhpredd reservelr

For elhpiical sotropie reservon, magor axis ‘o and minor axizs “A' will be a5 good as the

seametrie axes of the reservor,

122 Anfsorrapic reservolr

For amsotropie reservoir the permeability will be considered according to Egn 3.8, The
majut and minor axes of the elliptical drainage system formed due to anisotropy of the
reservoir are related to the dircctionul permeability of the reservoir. Arnold and
Gonzalez  (1962) exypressed the elutdenship of major and minor axes with

permeabilities. They showed that the rato of major and minor axes becomey —

I:'!-.'IJ'lIJ‘ = bt '{:ul.w J'Ir"‘rlnln :'!'.g

3.2 Characteristics of Axy
In radial system the flow equation 1s given by -

ZHEﬂI:ﬂ{;}+;1q:} 110

iln i
-

The flow equation in elliptical drainage system (Eqn 3.5) is very similar to radial system
(Eqn 3400 The only difference belween these two equations is the presence of an
additional term Ay in the ellipticat one, Also the ouler boundary radius r, ts replaced by
the major axis o of elliptical domain Development of scguential formulas for elliptical
cauatien by Powers ef ol (Appendix B) reveals that the coefficient Ay depends on

i, (8] only, The term u_{8) in given by -

Cos2me 3.li

It 3% elear fvomm Egn 3000 tha e {17} i o dimensionless quantity and depends et vo the

values of wellbore radius, magor and mmar axes of the elliptic domain but on their
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ratios. So the coelficient in elliptic equation Ay is a dimensioniess quantity and depends
on the shape of the elliptic domain wilk respect ta the wellbore radius. In other words,
Awp 15 2 geometrtc fuctor of the reservair. The suffix & of the constant Axp tends 1o
infinity but the value of Awy converges tw a number with oniy few values of M. Fig 3.2
depicts the convergence of Ane. Fiz 3.2 s plotted for major axes = 100, miner axes = 50
and radius of wellbore = 1 unit "The figure shows that only at & = 5 the value of Awg
converges. Table A. ! and Table A. 2 are constructed to realize how A varies with
different sets of major axes, minor axes and wellbore radius ratios. The data are plotted
in Fig 3.3, The figure indicates that Ay increases with eccentricity but decreases when

the ratio of mugor axes and wellbore rodios increases.

The walues of cecentricilies for an elliptical domain vary {rom zere to unity. The
eccentricity values, which are close to zero, indicate the circular shape or closely
cirettlar shape of the domain. The values of Aug in these cases are unity or close (o unity.
S0 the constant Aay v o kind ol deviation factor which cormesponds to the effect of
cecentricity or the devianon of the domain from the circle. When the wellbore
dimension 15 small compared 1o other dimensions such as major or minor axes of the

elliptical domain, the varation of Aws vaives becomes smali as the eccentricity

Imcreases.
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3.3 Comparison of the Qow equations

[n this section the cllynical Mow equation is compared with the radial flow cquation.
The comparison is shown i tabular form as well as graphically. To compare radial Now
cquation and elliptical tlow equation, primarily a circular reservoir is considered.
Keeping the area of the reservoir constanrt, equivalent elliptical domains are constructed
(Fig 3.4) for different eccenfiicity to appty the ellipical equation. The radivs of the

wellbere is kepl constant for buth the systems.

GO0+

fie¥yelacla ke By iy
Huounmduwn

200

1 1 I Fa 1
T 1 T T Wt I
-840 /00 -400 =204 1] 204} v
-2004
--""""--..______'-________..--"'""'-
-&00+

Fig 3.4: Cirenlar und Equivalent Elliptical Reservioirs {cqual area)

In Table A. 3 dimensinnless flow rates are shown where axes of the cllipticul domain

are expresscd by the ratio of #,.

From the Fig 3.5 it is clear that at cccentricity below (0.5, the dimensionless flow rates in
bath radial and elliptical druinage systems do not vary significantly, With the increase in
eccentricity, as the value of Awy increases, the dimensionless Mow rate in elliptical

drainage system also increases. 11 can be noted that the value of D orettiprreaty dOES TIOL
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change up o three decimal places when cocentricity changes from zero 1o arcund 0.5.
For an eccentricity value above {15, deviation of Qe becomes significant.
Percentage of error and corresponding 1o eccentricity of the ellipucal drainage area is
shown in Fig 3.6, An eccentricity above 0.9 may produce as high as nine-percent emmor

in Mow calculation, A similar error in fow calcuiation was reporied by Coats er al.
(1939,
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CHAPTER 4

DERIVATION OF “DEPTH OF INVESTIGATION"

In thus section, an equation of depth of mvestigation for elliptical How systems, such as
for amsotropic homogeneous reservorr is going to be developed. Depth of investigation
1% & very important parameter as it is used in wetl test design and analysis. The depth of
investigation for ellipucal flow syslems can be used in o way similar o radius of

investigation for radial flow problems.

4.1 Depth of Investigation

For radiat flow problems, the concept ol “rudius of investigation™ has been cstablished
and widely used in well test design and analysis. When a change in production tate of a
well in a reservair takes place, it can be considered as a disturbance or a pulse and it
will propagate throughout the reservorr to be adjusted with time. The distance over
whivh the pressure lransient has moved ino o formation following a rate change in a

well can be defined uy the rachus ol investigation.

For radial flow systems, the disturbance propagates radially and the investigated area is
circular, A circle should have a radivs and so the term “radius of investigation™ ts
suituble for radial systems In ease of lincar or elliptical flow problems, the scenario is
different, For lincar {low cases investegated arca s rectangular and for elliptical cases it
i» elliptical. So the term “radius of investigation™ is not suitable for the latter systems. It
is better o use the term “depth of investigation™ instead of “radius of investigation™ for

these rases.

If Lhe pressure transient of a reservoir can he expressed as a function of distance from

the well, rand Lime, ¢, 1 e,
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p=plre) 4.0

the depth of investigation at ime 1 can be defined implicitly by Eqn 4.0b as —

ip[r.z}= 0 4.0b
ar

Fig 4.1; Depth of Investigation

4,2 Derivation of Depth of Investigation

The method of "Continuous Succession of Steady States (CSS5)” is used to derive the
depth of investigation for elliptical flow system using steady state flow eqguation around

a circular wellbore wn an elliptical domain.

‘The concept of CS85 was first introduced by Muskat (19373, This method considers a
transtent unsteady-state flow as continuous successian of steady state flow parttern. Each

steady state flow pattern is diffcrent from the others.

Determination of depth of investigation deals with transient flow problem, or time
dependent problem. In the method of CSSS, the time variable plays the role of a
parameter rather than an independent vanable, und does not occur (n the governing
equatton. Thus while the analytical detsils are carried through with the explicit
' assumption of time dependent boundary conditions, this is done with the understanding
that if the boundary conditions do not vary with Lime, the pressure distribution would be
a steady-state distribulion apprepriate to the comesponding instantanecus values of

boundary conditions.

The steady-stale Mow in un cHiptical domain with circular wellbore located at the center

s cxpressed earfier by the Eqn 3.5 cun be wiitten with slight modification as —
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= MM.WJ{P — P..-}

plnfafr,} +
For a porous medium, Liao and Lee (1994) found the expression of porosity as —
8= ¢=ﬂc"~[“‘"’*} 4.2
and for a ﬂuid_, the denwity iy —
0= L}I”(J"I:'U_P"I 4.3

where,

¢ = pOTosily at pressure o

g, = potosity at pressure p,

e = pore compressibility and

£ = fluid density at pressure p
i = fluid density at pressure .,

o7 = fluid compressibility

If the compressibilities e, and ¢; dre small then using the approximation of exponential

series (e-s5eries) one can wrile —
dor={go), + (o). c.(p-p.) 4.4

Where, £ = £, + o and ¢ is called wieal compressibility.

Thus 1t can be wrillen —

{9}, —ldo)=lew), «.{p, - p) 4.5
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—

-—
L B - —

Fig 4.2: LNiptical Dymain with Clreular Wetlbore at the Center

For a given time ¢ il 10 1s assomed that the disturbance (pressure varation) has
influenced an area {roen £, W r, where the pressures are p. and p; respectively, then the
instantanecus pressure distribution at this time obeys the steady state distribution of

Eqn 4.1. The cquation can be rewritien as —

e p. :[ i jlrliff.-“'n.} 4.6
ahi o AL
or. Infafr, )=@ﬂw{.ﬂ_ ) 7
(77,
and,
"\I In'
o ln{ﬁ ' :|
= ; 4.8
pooF [Eﬂhj A,
2;
o, ]n[arfr,,}=_—ﬂ%£ﬂm.(ﬁ; -p.] 49
G
MHOW,

i
IS = In[—'}—!nLi] 4.10
3 .r“ r“



o, 2rkh
or, In= = S fAwlp = p )= Avalp =0, ]

\ f £ cf
ar, "d‘n'm[:ﬁ'. =M. :I_ Am{ﬂ" - = %]nﬁ_fl

i
Iy

Putting the value of in Eqn4.12 from Eqn 4.8 one can write,

. 1 =n £
AN{JI[Pf"Fh]d—ANU{f?_Jr}u .:|= Jl I :r“ Jl"1"\'”.- ln—J-
!”{“. s } ¢

or, %{ﬂ, -p)-{p-p. }:riﬁ%m%
m:%{F,“F..)‘{P‘Pu}:%ﬁ %
ar, pe=p =%:;:{F’ -, ]_mln%:

o, p=p, +%:(P. - Pn}_ﬁéﬁln%:

Subtracting p, from both sides -

p=p=ep, b p, (p-p )Ll
£ Wil ]n{a.: .'II !’" :I €

Ao Ay, B P i
0T, — [ - 420 — — A b —
' F PI (PI f}“} "r11"..|'.l I:PI F" } A‘:“fl:’l ]nliﬂl.'frrh} " &

1 _
or, p-po= [i‘m ) !]I:’”. -, }_ ATl !ni
A Aug In I:'“. ."'fru} o

Ao, A - .
or, p= g, —[{] _ﬁ][n —p e e L g B

Ave, Any Infa /. } a

[ ]
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4.11

4,12

4,13

4.14

4.16

4.7

4.19

420

4.21
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The instantangous production rate o given by Egn 4.1 and it s rewritten as —

()= A (p — p.)

422
glalair, )
Aaincremental velume wilhin the driuinage volume is dV.
dV = tirdrd@) 4.23
Up o this time £, this small volume has produced an incremental liquid mass JG.
dG = [{g0), = {ges)liv 4.24
4G = [loo) —(gol|air dr 2 8) 4,15
Thus up to this time ¢, the total liguid mass from this volume ts —
IR
=4 _[ J-[{E*ﬂ) — ()l r dr o 4.26
0o r
2
where, R = —me—e 4.27
\I'Ia“ sin-&—hcos G
From Eqns 4.26 and 4.5 one can wrile
&Ik
=4[ [(eo).c.{p, - plhrdrae 4.28
& or,
£lie
~alopdcn | Jin, = plrarao 429
11 .,
=i A - i
) ,hj [ "U'] —p, e lre B P g0 Sl grag 4.30
r, At "dl.r..'n E“{':J.." ru'] a
L :
= 4(ap) chlp - p,) [ J I- A + HM:' Infa, /o) rdrd? 431
no L A In{ar.; ‘) Ay

ni

A, | Ay (e fa)
= 4('}:'."9 “C'.I'IE{FI. -, ]| | =Dty e
} 'i“ . AMJ A‘i"(] ]-n-l:r”“. r. }

S —

‘| drdt? 432
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= 4(go), chlp —p. } | [|1-

oL

R

(. =p ) [ ]

T

= a{gp), ok

:4I':¢1,ﬁ.1 e, ."i' ,.';I -n, *:[ Tri

oL

_Algol,cklp —p )" "
"~ mfa/r) Jﬂ

_Am{m
AN:’?

‘q'WJn ]Tll:ﬂ' .l'llla}
o e | G

(4. )= nle, a3}

Infer fr, )

T |' n

j|rn"rd{3‘

-A«'m ]n{“."'lru } rdrdii
ﬂ:‘\'f} ]n [Hr ."Ir rll }

In{a S } Avoe Inl:a,."r }}drdﬂ

Wik

On the other hand, for constant rate production,

zﬁjm'h'rh{f}.’ - p

Gt l=grg =
{] #e. ulnla fr )

it

Comparison of Egns 4.36 and 4.37 yields

z‘lﬁhﬁ\fﬂl {p -Pu }

F¥.r

=4[¢}’]r.c;h(,r:',—F..]Ti‘{ e, fr,)-

WL

M EI'I{G”"fr.. } l‘“{f'lj.-"r“; ) n o
k'r m'.r].- T )
— = |n{ca”.".f‘“:|
¢ Iu 2 I!‘ rjl wrl

Aoy Inlef v ) |Fdrd8
it

Now, the Tollowing dimensionless groups are defined

r
Fy =—
e
. ki
P e
R
Ru:'"_'
r

;”' In I:aj.l"r ]I}r dr 48
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433

4.34

4,35

4.36

437

438

4.39

440}

4.41]

442



and w,, =—

Theretore,

1 1
o=ty

ar, 2rdr = 2K rel,
5
oF, Fidr = rirgdeg

Introducing dimensionless groups in Egn 4,391t s Tound

m mIH, -1I .
2.\{1, = J j|:||1|:”u. I %ln{rf” }}r‘“ elry, ol

In | LY

58 K.

or, %zn = j J‘ln(f.!nI }r” er, d8— A, j _[lrikﬂu}ﬁ: dr, 40
o1 Air

[ LI |
Now, from eguition ol i eliipse —

el T Ll ' 4
rooost 8 rsint @
1 3
& h

and, b* =a’(1-¢")
whera, ¢ is the eccentrivity of the ellipse
From Egns 449 and .50 00 s deduced thar

Feos 8 Fantd
+ = |

: 2 T
& & {l—c'}

riain’

ot, a* =r cost 0+ —(I—,)—
_E_

3
X sin® @
Oor, g =F_[CO8” 7+ -

--"J-
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4.43

4.44

445

4.46

447

4.48

4,49

4.50

4.51

4.52

4,53



ﬁklllh - E’_‘ :|

W'rqin" £ + [1 —_ ]cn.&: &

1,|'il —c“'.f

sin’ EH-(I —f‘z)ﬂﬂhl &

or.r=4a

if, f{8)= ]

then
r=u f(6)
and @ = r/ f(8)

St Eqn 4.48 becomes

LT | A2 ag e
ek ' l ¥
_LE.N_@.:D :ln{aur}! ;[r” dr, d8-A,,, ,J,- ,'[ A_WIH[TT?)}” drﬂ a8

In the left hand side of Eyn 4.58 the there are two pans. These are —

-'T.l": "'rb)’['ﬁ:'
h=tnfe,) [ [rpdr,af

Il L]
And
arr o, 1l {

i j j e s 19
= n Fry E0F ey 1
2 " ] AN’H lfl:ﬂ}J ! ?

f, can be evaluated by integration and 1 can be writtan as —

h= M[ﬂilﬂ[—:'z - l]

On the other hand, {1 iy evaloated numerically. Su the final expression becomes —

I i -
fy = 2 [Eln{am){a;,lxl—c'—ljl—ﬂl,x-u.x‘r:}

l:;E'ﬂ'."n'-l'.ln

31

454

4 56

4.37

4.58

434

4.60

4.61

4.62

Eqgn 4.62 is the equation of the depth of investigation, ap. I01s an implicit equation of

ap. One can readily fiind the DO from this cquation if £ can be evaluated. The f;
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containg £ of apterm So for a given vy of @n, fp can be caleulated from this equation
very easily.

4.3  ¥alidation of the Model

The implicit cxpression of depth of investigation. Egn 4.62 is derived for elliptical flow
with circular wellbore at the center. Different eccentricity will represent difterent shape
of the elliptical flow. Cirele is 2 special case of etlipse whose eccentricity 1s zero. In
literature an expression of depth of investigation for radial Mow system whose dratnage
area by ctrcular o avainlable, Line and Leo §1994) discussed the depth of investigation in
details for radial flow systems as well as elliptical flow systems with vertical fracture at
the middle. For radial flow systems. they fuund the depth of tnvestigation as -

= é(r@ ~1-2lnr,) 4.63

It s alse an implicil expression Tor depuh ul investigation £, Bqn 4.62 and the Eqo 4.03
both are in dtmensionless form, Eqn 4.62 is solved with computer program which is
given in Appendix D. The generated data are given in Table A, 4. As Eqn 4.62 s not an
explicit expression for dimenswnless depth of investigation apy, 1t was not suitable to
calculate apy; tor different dimensionless time fp,. For the convenience, tp, values were

generated for different ap’s taking the cecentricity of the elliptical domain as the

parametar.

When the cocentricity of the elliptical domain is zero il beeomes circular. In this case
Le.at e = 0, Egn 4.62 shouid produce the depth of investigation sumilar to the radius of
investigatton in circular domain v given in Eqn 4.63. Both the equations are plotted 1n

Fig 4.3. First ten data For Fig 4.3 are shown in Table A 5.

In Fig 4.3, it is found that the curves are everlapping each other giving merely the same
values of depth of investiganon or radivs ot investigation, This is 4 good support for the

validity of the elliptical model of this study.
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4.4 Resolts

The depth of investigation for elliptical system is expressed in terms of the length of
major axes. The elliptical drainage boundary can be obtained from major axes and
eccentricity of the elliptical domain. In Fig 4.4, dimensionless depth of investigation is
plotted against the dimensionless time at different eccentricitics. The values for this

ligure are givenan Table AL 6,

The depth of investigation 1n terms of munor axis can easily be calculated from the data
of Table A. 4. The calculated data of minaor axis are given tn Table A. 6 and Table A. 7.

The data were plotted in Fig 4.3,
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From Fig 4.4 and Fig 4.5, it is found that the depths of mvestigation or the lengths of the
major and minor axes of the elliptical propagation increases with increase in
dimensionless time. With the increase in eccentricities, major axes of the elliptical
domain increases but the minor axes decreases which can casity be understood from the

propertics of clhpse.

Aler a4 defimite  dimensionless time  period, different elliptical domains  for
corresponding eccenbicities produce different depths of investigations. Depths of
mvestigation tor ditferent cecentneites are tabulated 1n Table A, 8 for different vajues
ol ¢y, These data of Tuhle A 8 are 1ewl om Fig 4.4, The values are plotted in Fig 4.6
and it shows the mereasing trends of depth of investigation with eccentricities.
Cullender (1955} found that the extent of drainage area is a function of time and is
indepandent of the rate of flow and pressuse level. The drainage areas are caleulated in
Table A, 9 and plotied o Fre 47,0 11 slows that the dradnage areas are almost constant
and do not change wilh the shape ol the dommn as well. Fig 4.8 is another
representation of the data of Table AL 8 Tt s plolted o check the variation of drainage
area with dimensionless time for different eccentricities. The little deviation of the
points for different ¢ bt particalar 7, a5 observed in the Fig 4.8 is due to the ermor of
numegrical integration al the computer. s error can be mimmized with the refinement
of the mesh points with improved wleocithons. Eguation of te depth of investigation, Eqn
3.62 is independant of How rale amd pressure wrms. So the depth of investigation and
hence the drainage mea do nod depemd on flow rate or pressure level, but it depends on
tome. Therefore, it con be concluded that the ellipneal model is consistent with
Cullender’s statement. In addition 1o this, 101 also understood irom the ellipticat model

that the drainage ares i independent of the shape of the elliptical domain.
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CHAPTER 5

CONCLUSIONS

In thus work the closcgd form solution tor fAow into circular wellbore in an ellipucal
domain proposed by van der Ploey er al is modified and adopted for petrofeum
engineering applicatiun. The flow eguation derived from their proposition is for steady-
state conditon. Using the methed of continuous succession of steady states, the
equation s applicd w0 calvwlate the depth of mvesngation in elliptical tlow in a
petroleamn reserver systeny, The concept of depth of ivestigation is related to the
transient Now bohavior of o reservowr. When the pressure transient propagates from the
wellbore, the drainage area and hence the depth of investigation increases and
uitimately the pressare transient touches the outer boundary of the reservoir. The
pseudo-steady stwe or the sleady state cordition begias from this point. Estimating the
depth of investigation 18 very important on many counts. Depth of investigation concept
in ¢lliptical flow systems is as good as radius of investigation of radial systems. A well
test analysis provides important reservoir information on an average basis. This
infurmation is good for the region within the depth of investigation ie. within the
drainage area, So it is very impaortant to know the extent of the reservoir that is being
tested to provide the paramcters hke permeability and storage capacity of the reservoir
from a well-test analyses, Another important aspect of knowing the depth of
inveatigation s to optimize the Jocations of new wells to be drilled in a field. It is very

diffienli 1o wdentily the well test 1un time without an estimation of radius of drainage.

5.1 Conclusions

« Flow around a virculur wellbore moelliptical domain should be treated accerding

to this new nwxdel 10 incorperate the elliptical Mow behavier of the system.
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Radial Now model wiall prodece as muoch as ning percent ermor in flow
caleulateor if s used in elliptical flow systaim,

A new cquation for the caleulation of depth of imvestigation 1o an elliptical
domain has been developed that can be successlully used in well test modeling
for such system.

The depth of investigation for elliptical flow model] produces the same result as
of a radial modet when eccentricty of the domain is zero,

Depth of investigation tn terms of major axis increases with the increase in
gccentricity of the elliptical domain.

An equal dimensonless time produces the equal drainage area irrespective of the

eceentriciy ol the domn,

5.2 General Recommendation

The wellbore iv consclersd ot the center of the elliptical domain in the flow
equations. Further study can be made considering wellbore at locations other
than the eenter of the doman.

The study considered single-phase fluid Aow in the eservoir. Furcther study can

he made fur multiple-phase fluid flow in the reservaoir,
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APPENDIX A

TABLES
Table 4. 13 Variation of 1., e, = 10, 510, TIHD
alr.. T 50 100
¢ A | A bir, Ay Bity Anp
0 bo.000 | TO0B000 | S0000 | LOROUO0 | 100.000 | 1.000000
0.1 9950 | LOMIU94 | 407407 LODUGAG | 99.490 | 1.000348
0.2 9.798 [ 1004519 439901 1.002655| 97.980| 1.002255
0.3 9539 [ 1010725 [ 47697 1006279 | 95.304 | 1.005329
0.4 Y165 | 1020584 | 458261 1.012010 91.632 [ 1.010184
0.5 B.o60 ] 035826 | 43301 1.020776 | 86.603 | 1.017593
0.6 8000 ) 10587921 40000 1.034347 | 80.000| 1.020027
0.7 041 F 1099930 35707 1056480 Tr.4l4 | 1.047575
0] 600 [ 11761701 30000 1.096674 [ 60000 | 1080945
051 4359 | 1372535 21794 1190080 | 43.589 | 1.136972
Tabice A, 2: Vartation of A .y {2/, = 500, 1080)
aty 500 1000
P 7 A Bir, Ang

0 S0.000 [ LO00000 1000.000 1.000000

0.1 497.494 1000406 954 987 1.000365

0.2 489.858 1.001670 979.796 1.001502

0.3 476.970 1003943 053.939 1.003546

04 458258 L 007527 916.515 1006767

(L5 433013 1012978 366.025 101T66]

0.6 300,000 1.02134 800,000 1.019166

0.7 337.071 1.034825 714,143 1.031221
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& a00 1000

e T Bir, App B, Apg
0.8 300.000 1.038751 600.000 1.052546
0.9 717.945 1111776 435.890 1.099445

Table A. 3: Percentage of Lrror due (o Leeentricity (@ maw = 1811037

@/r . Bir. ¢ Ann Qo (eitipricany | Fo error
S00.00 | S00.00 0000 L.OOGOOD | 1.011037 | 0.000000
SO0 4,20} (276 [.O03217 1811065 £ (03044
S25.00 | 476 19 0421 LOOE044 | 1011231 [ 0.019161
55000 | 45433 0.563 LOIGO78 | 1011776 | 0.073032
57500 | 43178 | 0.654 1024095 | 1012625 | 0.157042
$23.00 | 40000 0768 1.040043 | 1015075 |0.399332
BTS00 | 37037 036 | 055838 | LOLR3LT | 0720012
| 72500 | ey 1,380 V071726 § 1022425 | 1126382
775.00 AT 0,000 1086828 | 1.026439 | [.323360
825.00 | 303.03 0.930 [ 101980 | 1.031060 | 1.980383
RODOU | 31250 0921 1094434 | 1.028713 | 1.748204
o000 | 2777w Tnesl | 128244 | 1038436 | 2.709944
FO0.00 | 2000 | 0ueN | 1153047 | L0O48796 | 3.734642
1500.00 166,607 0.0%4 1283042 | 1.102334 | 9.029987

Tahle A. 4: Differenl Yulues of Dimensionless Time aod Corresponding Dimensionless Depth af
Lavestigations Tor Bilferent Decemtricities

£y
=00 ] @202 | ec0d4 | e=06 | €=08 | =09
1 0.000 0,000 0.000) 0 000 0.000 0.000
3 1212 ARt 1.231 0.999 0.574 0.091
5 Sa T TR 102N 3H75 2.660 1.532
7 (1.203 10,746 | Ly R.520 6.081 3.879
g 19,399 IRS87 | 17236 14.869 10.728 7.206
T 29617 28470 26.460 22.797 16.588 11.339
13 41944 40.416 A7.371 32.506 23.796 16.444
15 56 382 54.299 50,660 43,700 32.079 22 336
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- in
e=0.0 e=02 e=104 e=0.6 e=08 e=0.9
17 72 930} 70 203 65.604 36.760 41.757 29,219
19 BN 7411 RE3RS %2 406 71.600 52.496 36.673
21 1091191 108664 ]  100.987 R7.730 #d 849 43.261
23 36U | 130926 121.99] 105.869 78.060 54736
25 156.196 155080 | 144509 | 125414 52.400 65.128
27 182,501 IR1400 | 169461 147.162 108.179 76.333
29 210718 209712 196.26% [69.662 125.567 88.043
31| 242.6541 240243 224731 194,393 143,640 100.828
33| 275706 | 273037 254619 220324 162990 |  114.560
35} 310878 | 307.552 286912 249830 184.152 |  129.347
37| 348171 343917 [ 220133 279596 206127 | 144,888
39| 387.587 | 383203 357.492) 310974 22895  161.323
41| 429128 | 423921 39a507] 343395 253.932|  178.368%
43| 472796 467460 436.135| 379217 279.219] 196,609
45 518.59 512074 478373 415893 3059821 215.55¢
471 566515]  559.004 | 522329 454660 334873 | 235.308
49| 616569 | 608803 | 567950 4937801  364.273 |  256.343
51 668733 639045 616057 535583] 395338 | 277.832
53| 723.074| 7I3R18| €65.819| 578946 | 427.152| 300.184
5| 779526 | 768736 | 710240 | 624.154 | 459001 322331
57 838114 |  #26772| 772272 671243 | 404420 347.478
50| 808 838 | 8RS.BO4|  827.533 | 718863 | 530.157| 372477
61| 961699 | 947.268| 883.515| 770062 S567.839[ 398.864
63| 1026698 | 1012840 | 944.640| 821330| 605848 | 424926
65 | I0UIRIO' 107541 | 1006086 | 873387 | 6444761 452730
671 1ien113 " 146,728 1 1070300 930031 685430 | 481.33%
60 [ 1234539 1216560 1136620 OR7.538 [ 728220[ 511263
T1T 1308085 | 1288465 | 1204426 | 1045272 770610 S41.060
73| 13837821 1362025 | 1273276 1107304 815796 |  572.131
75 1461.621 s 1938987 | 1345008 | 1169131 861079 603531
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Lin
B YT c=04 e=10.6 e=0.8 e=10.9
77| 1858.637] ISIRTUS | 1417.745 | 1232.028]  G09.125 | 638.032
01 1641294 159R4Z4| 14939231 1298.629| 956459 671383
BU| 1726098 [ 1682413 [ 1572687 1366904 | 1006.922| 706231
83 | 1813.049 i 17680021 1650.205 | 1434.492 | 1058260 | 740,895
85| 19020481 I8SaSS0[ 17317521 1505234 | 1107.965| 778.089
87| 1993395 1943772 1K15904 | 1577183 | 1162819] 815377
RO | 2086.792| 2032481 1900897 1632961 | 1216114 852.950
ol [ 2182338 [ 2128547 1986.347] 1728922 | 1272.517| 890.758
93 | 2280.035 | 2222.784 [ 2077.939| 1R06.543 | 1331110 932371
95 | 2379.883 | 2321.093| 2168.257 | 1885.729| 13BB.335| 972.369
97 | 2481.882 ] 2421.539 [ 2261088 | 1964535 | 1448939 1014.146
90| 2586033 | 2520581 2356438 | 2048400 | 1500424 1056.150

Tahle A. 5: Dimensionless Time ¥Yalues Tor Elliptical BModel
te = 0.0} aned Radial Model

L5

i Elliptical Model Radial Model

{Eqn 3.38) {Egn 3.59)
1 0 0
3 | 312 1.451
5 5310 5.193
7 1i.293 11.027
Y 19.390 18.901
't 20.617 28801
[3 41.044 40.718
15 56,342 54,646
17 7203 70.583
19 RR.741 88.52%

Table A 6: Dillerent vahtes of dimemsionless gme a2nd corresponding dimensionless depth of
investigations (in ferms of minare axes) for eeccnlricity 0 to 0.4

L

e =0

e=102

=104

L~
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In, byy Ery By £ by
312 L2000 [.3¥1 2939 [.231 2.750
5311 5.000 5 006 4,859 4.628 4.5%3

11.293 7.000 §0.746 6.859 9.948 6.416
19.399 9.000 18.587 R.818 17.236 8.249

29617 {1.000 28470 10778 26.460 10.082

41.944 15 000 40,416 12,737 3T 371 L1.915

36 3582 15.000 54 290 14.697 ar.660) (3748

72.93D 17.000 70207 16.657 65.604 13.581

48.741 19.000 88385 18.616 52406 i7.414

109.119 21.000 108 664 20.576 100,987 19.247

131.603 TR0 130926 22533 121,991 21.080

156.196 25,000 155000 24.495 144.509 22513

182,501 27000 181,400 26.454 169.461 24746

211.719 29 (M1 209,712 28.414 196.268 26.579

242.654 | 31000 2401243 30,374 224.731 28412

275 706 | 33.000 273037 32333 754.619 30,245

310.878 35.000 307.352 34.293 286.912 32.078

348.171 37.000 343.917 36.252 321.133 33511

387387 30,000 383.203 38212 357.492 15,744

429.12R 41 000 423,977 40,172 106,507 37.577

472796 33000 467.460 42,131 436.135 30.410

318.391 450N 5120074 44 (5] 478.373 41,243

566.515 47.000 559004 46.050 522.329 43076

616.569 490000 608,803 48.010 367.950 44.500

668,755 51.000 659,045 49970 616057 46742

723.074 53.000 713818 51.929 663.819 48575

779.526 55.000 768.736 53.880 715.240 50.408

838.114 57.000 826.772 55.348 772272 52.241

808,838 50.000 883 K(M 57 808 §27.533 54.074

961.695 61.000 047 268 59.768 885.515 55.907

1026698 63.000 | 1012.549 &1 727 044.640 57.740
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=00 ¢=10.2 e=04
fo boi foi by to: by
1093836 65.000 | 1078541 63.687 | 1006.086 59,573
1163113 &7 (00 1146 728 f3.646 1076 A0 &l 407
T34 529 aoKn | 1216.560 67.606 1136.620 63.240
1318085 71000 [ZRH 465 &6y SA6 12(4.426 65.073
1383.782 3000 1362925 71.525 1273.276 $6.906
1461 621 75,000 1438 087 73 485 1345008 68.730
1558.637 TLHO [ 1518705 75.444 1417.745 T0.572
154 1.204 T4 HN] Fads 424 T7 .40 1493923 T2.405
1726008 Bl (HN) 1682413 79363 1572 687 T4.238
1813.049 RI.000] 1768.002 81.323 1650.208 76.071
1902.148 83000 | 1354.550 £3.283 1731.752 77.904
1993,395 47.000 1943.772 85.242 | 1815.004 79.737
2086.792 RO.000 [ 2034 481 87.202 1900.897 81.570
2182338 91000 | 2128547 89,161 1986.547 83403
2280.035 93.000 | 2222784 91.124 2077.930 85.236
2379, 883 95,000 | 2321093 93,081 2168.257 87.069
2481842 97.000 | 23421509 95040 | 2261.0%8 38.902
25%6.033 99000 | 2520.38] 97000 | 2356.438 90.735

Table A. 7: Dilferent vilues of

0.6 to %

dimensionless time and .corresponding dimensionless depth of
investigativns {in lerms of ninor axes) for eceenlricity

e=hé e=10.8 e=0}Y
L b Ein b En bui
0.999 2.400 0.574 1.800 0.051 1.308
3.875 4.000 2.660 3.000 1.532 2.179
8529 5.600 6.081] 4.200 3879 3.051
14.869 7.200 10.728 5400 7.206 3.923
22.797 BRI 1. 28 6 600 11.3534 4 795
32.506 10,400 23.796 7.800 16.444 3.667
43,700 12.000 32,079 0.000 22.336 6.538
36.760 13,600 41.757 10.200 29.219 7.410
71.600 132010 32.496 11.400 36673 R.282
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e =0.6 e=048 e=19

i by {o by i bo;

87,730 1628002 64 540 12600 45.261 G.154
105 _H64 1¥.440 TE O6Od) L3 R0 54.736 10025 l
125414 2006 Q2,40 15.000 65,128 10,807 ]
147,162 21.600 108,179 161,200 76,333 11.769
169.662 73,200 125.367 17.400 88.043 12.641
194303 24 80K 1436403 18.600 100.828 13,513
221.324 26.400 162,990 19.800 114560 14384
249 830 28 000 184.152 21.000 129.347 i5.256
270.596 20.600 206127 22200 144.988 16.128
310.974 31.200 228.950 23.400 161.323 (7.000
343.395 12 800 252,032 24 600 178.368 17.871
379.217 34400 279.219 25.800 196.609 18.743
415.893 36.000 305.9%2 27.001) 215.559 19.615
454 660 37 600 334.873 28.200 233.308 20.487
493.780 920} 364273 29.400 256.345 21,356
535.583 AR 5338 30 600 777.832 22.230
578.946 | TR 3t.800 300,184 23 102
624.154 oo | 459.901 33.000 322.531 23.974
671.243 45 600 404.420 34.200 347.478 24.846
718,862 17 200 530,157 35.400 372,477 25718
770.062 A4.¥00 S67.839 36.600 308.864 26,589
821.330 S0 40K A015.548 37.800 424926 27.461
875.387 33000 f44.476 39,000 452,731 28,333
9301031 53,600 AHS 430 401200 4%1.538 28205
HRT 53K CES T 7IRay EYRETTTY 511.263 30,076
1045.272 CsaMOn | FTOeI0 | 42,600 341,060 30.048
ELO7.304 SR.400 R15, 796 43 800 572.131 31.820
1163.131 A1 OH] 861179 45.000 603.531 32.692
1232.028 G E 6L Gy, 135 46,200 638.032 33564
1208620 a0 Usedse| 47400 671.383 34,435
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e=0.6 e=0.8 e=09
Iy b, Ini b to; bp;
1366.904 64 8O0 | 1006922 48.600 T06.23] 35307
1434.492 60400 | 1058269 49,800 740.895 36.179
1505.234 | 68 000 1107.963 51,000 778.089 37.051
1577.183 (9.600] 1162819 52.200 815.377 37.922
1632961 7120 1316.114 53,400 152,950 38,704
1728.922 TINOG|T 1272517 54.600 RO0 758 35,666
1806.543 74 400 1330110 55.800 932,371 40.538
1885.729 76000 [ 1388.235 57.000 572.369 41.410
1964.535 77600 1448939 S8200 | 1014.146 42.281
20484001 9.0 | [509.424 S9400| 1056.150 43,133
Table A. & Depthy of Investication g, for Different Eecentricities
¢
> 0 02 0.4 06 0.8 0.9
L1 (i) 8l 70 7 50 B.70 10,440
10 20045 | 2007 2050 2237 2599 30.84
200 WA 2KA3 29.27 31.43 36.45 43.36
3K 39| 3457 3578 3831 44.57 52.95
SN 40T 34 77 46.01) 49.46 57.42 68.23
1000 62,0 62 6 4 27 .00 80.21 96.00
Table A, % Drainage Area For DNlfereot Foecentricities
_____ L B}
A 0.2 04 | 06 |08 0.9
(0] 136.8481 . 1423326 TR | TA1 T3 | 14670 148.1134
100 | 1274927 L 1252.271 | 1257.747 | 1257.688 | 1273.253 1302.436
200 '2’4’99.21:& 2T0AT | 2466 812 2482731 | 2504363 2574.579
300 | 3715483 7 3678603 ' 36%6,135 | 3688631 | 3743.773 3838.642
500 [ 6101505 | BUALOI4  AOUZAS | 6148216 | 6214819 6374.974
EOG0 12{176.31_J_12_Utii:3:¢filiq]1]-?<*}'3.43i_ll‘HﬁjJ?‘ _1_212?.“51 124620.31




APPENIDIX B

FLOW INTO A WELL LOCATED AT THE CENTRE OF AN
ELLIPTICAL BOUNDARY

YVanr der Ploeg, Kirkham and Boast (1971) presenied a closed-form solution for steady
state saturated flow into a finite circular wellbore in an elliptical confined aquifer, They
solved the flow problem for different well location in an isetropic and homopencous

aguiter,

B.1  Well at the center of an ellipse

The equation of ellipse in @ 1ectangular coordinate is —

ANy (B.1)

o f1-

Lising polar coordinates (r, & x and ¥ may be written as
r=1 s (R
V=g {B.3}

and the eguation of cllijpwe fora point P 0 at the boundary s

el LA
AL IS Py (B.4)
" e !

R.2  Roundary conditions

oy =10 feer v =1, Dz r2 (B.3)
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b =1 forr=FR 12 H=m2 (B.5)
C. %g =] fer &=1; Py (B.7)
d a—cj'—ﬂ fear {4 = 2 Fo oS {B.8)
T ' K '

Laplaces eguation i polde coordindtes i« -

ﬂ+la—ﬁ+iqﬁ£:{} (B.9%
ar’ rdr rfage

The solution of this probdem shoubd give an expression of @ which should satisfy the

boundary conditions aml Faplace s equation.
B.3 Solution

The authors used the Cham-Schimdt method as moedihied by Powers, Krikham and

Snowden {1967 to detcrmine the solution as

k)

p=2 Agu,(rd) {B.10)
ruad)

where

m=0,1,2,.... N

N=01.2,... 2

oS T
-{2)

Replacing # with £ at the boundary and using Egqn A4 to express R in term of &, u{r,8)

cos2mil {B.11}

may be written as
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N R:
u_{#)= — coR2mé (B.12)

where,

1 AN
R::[Cmmﬁ"'sngJ B.13)
o 5
The hydraulic head may be defined as
i
‘:jr:.ﬁ! = ZANII. ll"'f.-ll (ﬂ} {}E HE 'l l:B' 14}
1rxik
Apphying boundary condition {b). the hydraulic head may be written as
M
'I;‘T"‘r=ﬁ' = k = ZAM“HM{ﬁj ﬁE EE m? {B.].S}

=l

Powets et af. {1967) derived a tuble of orthogonal functions to solve potennal flow
peoblems like seepage of steady ramn through soil bedding. In accordance with Powers e

erd., the two constants te determine Ay, on this problem are

w, = [, (8)d0, m=0,1,2. N (B.16)
]

and

How =

ane

u (@ (810, m=0,1,2,...N n<m (B.17)

=T p— ) Y

The parameters 1, i) and (&) iy be determined Trom Eqn A2, When N — o=,

boundary condimon ) 1w salistied exactly 1t can be seen that the term with zem

subseripts produce indelernundate torms Using L Hépital's rale w, would be
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H (A= —=, {B 18)

cos 2Rt (B.1%

After the values of w,. and ., are determuned, all values can be calculated by using
Table 2 of Powers or af, (1967,

B4 Sequentizl Formulas presented by Powers ef al,

N
Aw =E,— Y EJ, (B.20)
=]
E =G /D, m={0.1.2,...,N {8.21)
m=1
G,=w,->c,0, m=0, 1,2, ..., N (B.22)
pmii
Iher|
JJ'I” = Curl.l - Z(’IJI|N“|F|.-II m= {:I* ]' 1' {B.23:|
mal
ms|
Jr.'.lu = ‘:'.um - Zcurer m = 2" 3"' 4 EB'24}
UL
n=1,23 ....m-1
-1
(Hﬁu“n )_ ZJJIJ I:Hn. H.r ‘}I
¢ = m=1.2.3 .. (B.25)
£

"

=002 -1
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D, = Iiu,,,u,“]—zn':,. 3 m=1,2,3 .. {B.26)
n=1100.
B.5 Well I¥scharge

Using Darcy’s eqguation tor powentad Bow tor wme thickness, the {low rate ¢ can be

written as

i .
foq ==KAg de el &

sl dr

l
=

{B.27

where, & s the hydraube conducovity Multiplving the above equation with the

thickness &, the total tow s

nhodr

1x
¢ =-Khisg [[@] il e — 0, (B.28)

The flow rate for a well at the center of an elliptical drainage system is

ZakKhA, A
o :-...JI.T_,,..’:;“_¢I (B.29)
n -

r
"



APPENDIX C

COMPUTER PROGRAM TO CALCULATE Ax-VALUES

Teo calcubate the valwes off Agg Tor reservoirs with circular wellbore at the centre of the
elliptical drainage arca of cifterent eccentiicity, the following programming codes are

wrillen i C languagy,

l.f*

Prosramming Longuage Tuho T+

Version: 3.0

The pesiticon ol e woll i~ at cene of the reservaor,

*f

#incledecsidio h=
#incivde<conio.h>

#include<math. h>

#defing pie 3.141539265154
#define e 0.00]

M Global Vanable Decleranwon

double K, h.odelphisw b,

£ Funcoon Decleration
double find_um{mt mi, int theab,
double find_u_motime maint o);
omble Find _wiml ),

doulle Rt thata):

M Function Debimtions 4



a2

dowble Pred _wning a1, o g
i
double factor= pie/t 80.0,

double resule=0,

Him==071 result={log{ R {theta}rwiklogarw));

glse {

result=cos(2*m*heia*factor)*({pow((Bitheta®* factoriah(2*m))-
pow({rw*rw/{a R theta* factor))) L 2* m) DA Lepow({rw/a) {4* m1;

]

return resule;

}

double find_u_mn(int m.int ny #* Intigration is done using TRAPTZOIDAL Method */
[

int x={k

double resuhi=(),

for{x=kxe=89 +4¢1 )

result+=nd a1 T _eimdnosHfimd_omdm, o+ D #find _umin x+ 1*0.5;

J

return resull;

double find_wiine

[

int a=0;

double result=();

forln=0:0<=89 +5x} [

restult+=tbnd _unnt s cklind et LA,

}
return resule:

t
donble B{imt theta

!



TOORE 7

doubile factors pe/ 181140

TETLErn

63

(sqref L cos{theta* actory® cositheta*factor W a* o) +sin(theta®*factor)*sinftheta*factoryf(b

B
}

vold matn [void)
{
eleser )

prontf{"ninData mput Partsininn™);

printf{"Properties of the Elliptical Acguiferin®);

printf{" Major axes (a) =\0");
scanfi " F1f" &a);

printf(" Minor axes (b) ="

scanf(" w1, &b

Prntf( e ss feesnk ey,
printf{ "Wealbore rudius (rad =),
scanf{"Sel™ Arw

printf{"m\minData input completed.....");
printf{"winnDesired value of N A"
it N;

scanfy " Ed" &N

rintU i Press any bey 1o continne - "1

zetchiy,
clraee()y,
textcolor{ WHITE+BLINK):
cpringf(™atniminininintninin

K Local Varahle decheraion

double D[50]:
double C{SOY 0.
double J{50]] 50§
double G301 31|

Piease wait....

"h



intig.k,l;

fon t=0; =N 4413

{

Dli]=Mind_u_mnii.i;

for{j=0cj<is++i)

[
D{i=D[-Chl [ CI DY L
}

for(j=0;j<=i:++1

{

Clard i ]=nd _u_tmngi+ 1

fnih=irh<=)-r+h)
[
Cli+ U =Cl+1 11k * find_u_mn(i+1,k};
I'

Cli+ LI =Ch+1][1/D%

h

for(j=0;j<=1:++))

|

IG+1103]=Cli+ 11010

for(k=j+) ke=i++k)
1
I+ 11=0 e+ L GT-Cli+ 1k *A KD
t

Gli|=find_w(iy:

for(j=0;<t:++))

{
Glil=GH1-CHID 1FGijk
I'



Cli=GlL]An ]

H Caleulaton of constants A{Nm]

double Af50]|300):

for(i=ie=N++i)

{
for(=0 <=1++
[
AlilI=EGE
tor(k=)+1.k<=1.5+})
!
AlHI=ARG-EIRTIRIGE
'
f
%

texteolon LIGHTGR AY .

clrser);

for(i=0i<=N++i)
{
for(j=lhj<=++j
!
prntt" T AR D
E
printf(™n"y;

)

printt{"wnwmia® )
textcolor LIGHTORAY Y,
cprintfi” Press any koy o return,..");

setchih ]

65



APPENIIX D

COMPUTER PROGRAM TO CALCULATE 5 AND a,,-VALUES

#ncludestdin. b
Hinc ludeseons iz
#inchide<muath.h=

#include<sidlih.h=

#deline pi 3 14130245150

wdetine err 0001

HGlobal variables

Mot aDe A aldi = doneissoaless magor ascg length, (aifnw)

fo = veeenmwy of the elhpuea] propagation
HGlobal variable as wsed m ANO
duuble o  ANO, b_ANC0 s AR,

SFPungtions declarainm

double filoat thet):

double AN a

double find_umiint im.oam thews
double find o mol(int reant ng,

double Nind_wiint m);



doulle Rfint thetal:

HFunciion definition

double f(float theta)

double lob = [-2¥e:

douhle 5 = sinfthets)-

double ¢ = cosdthera;

double resull =syrtilob gt s s+lob*e¥e):

relurn result;

double ANOfoat i)
{
rw_ AaNO = 1.0k
a4 AND =
b_AND = w™ayt | e

i ANOw=rw_ AN relm b0

Int & = 15:

# Local Variable dedleaten

double D20
conbbe C 20120
double I 200 200,
double G20].E[2(}H:
int .kl

for(i=0:ie=N++1)

{

&7



D[il=find_u_mn(i,i);

=0 b1 42)
{
DI =101 FCHEECTH ] D)
i

for{)=l;1<=t'++|)
[
Cir+ 1L )=Nnd _u_min{i+1 )

for(k=0:k<=j- L4k

!
Clet FH =CL LE -1 k| Hind_u_mn{i+i k);
)

Clit 1 I=Ch+ [ ID L

for(j=lkje=i++)
!
A+ 1=CLi+ T
fur(k=j+ | he=iz++k)
[
I+1]0 =0+ L GI-Cl LRI R
!

Glil=fed_wiin;
for(j=0.j<i;++j)
{
GEHI=GR-CHl Gl
f

E(i]=G{i /1111
]

f Calcalation of constants A{Nm)

6%



&%

double A[207[20]:
for(i =0:ic=N 4+
i
for(j=0np<=1.++))
i
A I=EGE
for(k=)+ 1 k<=is+k)
{
Alll=AnIlE-ER IR
f
!
)

printf{" AN = %I A LS ]0]):
retn A 1T&]|0):

double find_umiint m. ind thelad
{
double twior= /180,

douhble resuli={);

==
resubt=thogl Bahwtra _ANO N ogia, ANOAme _ANQ) 1
else
!
cesult=cas( 2%m theta factory (f paw({Ritheta®factorya_ ANO}(2*m))-
powlrw_AND rw AN ANOS RO Facten 30,027 m )0 -
powiirw_ AN _ANCY - g
}

return Tesell;

]
deuble find_u_malint m.ine ny - Intisiation is done using TRAPIZOIDAL Method */
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int x=k
double respit=t;
for(x=x<=89:++x)

{

resul+=i find_unmdm.)* find_umdn,x ) +find_um(m(x+ 1 *find_omin,(x+100%0.
3
}

returt result:

}

doubte find_wiint m}
{
int x=0);
double resule=0;
for(a=0:x<=8%++x}
{
resull+={{ind_umi{m,x)+find_umim,{x+ 1))7%0.5;
!

relurn result;

dhauhle [iing thela

|
double Tactor= pif 18014

relurm

Csqrid 1 cos(then facton seontheat tactoriiia_ANO*a_ ANO)+sin{theta*factor)*sin{the
tafactor){_ANO T AN

}

voridl nuin

{
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FILE *fp;

double (1D, integral = rei:

cler():

printf{"\nEccentricity = "),
scanf("Fog", &e);

if{{fp = fopen{"ANO:1", "a+" ==NLILL)
{
printf{"CannoL open file");
exit(1);
f
fprintf{ fp, "mEccentricity ; Shgin"2);
felose(fp);

double uptheta = pif2: ffuptheta 15 the upper limit of theta i.e. 90 degree or pif2
double h1 =0.05, /bl is the increment 1n theta direction

double h2 =005 /fh2 15 the increment in 1 direction

int noflines = upthelwh [ +1.

double *line_sodpaoinl:
Ime_cndpoinl = (double #) mallog(sizeof{double) *noflines),
iffline_endpoinl==NULL}
{
printf{"nMNot enough memory to run the program...\nPress any key to exit,..”};
getehl);
exit L n;
i
/* Looping */
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far(ing =0 j<nalles j 141

{

hine_cndpoint]i| = 1.0

{orfaDi=aDi== 1 00:aDi+=2)
{
double tD = 0.0k
int t={;

for{double theta = O, theta<uptheta: theta+=h1)

1
printf("nTheta = %10 radian" theta);

domhle fthetu = Tithead; fftheta 530 radian
double R} = aln” tihet,
for{ Huat rb=lme_cwdpaing] i DR DirD+=h2)

(
printfi"nk 13 == 4he of S0 DLRDY,

double rIe = rDffhes; M2a is the conversion of a from r (a =
rfi{theta))
integral = integral + rD h1+h2*ng(r2a Y ANO(r2a),
}
line_endpoint]if = rD+02;

++;

doulle part| = (pirFlogiadiytali*aDi®sgee 1-e*e)-17;
doulle ANCI=ANI D

D = (pani-ANOMinegral ) uptheta* ANGHY: #here uptheta = pif2 which is

defined earlier
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proncf{ " = SHINMITY = S 1M alDi D

if({fp = fopent"ANOuat", "a+" ==NLLL)
{

printt{"Canncat open lile"],
exit{ 1)
!

printfitp. nvaln = Bl = % 1" aDiAD);
felosef fp:

J
geteh():
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