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Abstract

Generating all triangulations of graphs and polygons have many applications in Com-
putatibnal Geometry, VLSI Floorplaning and Graph Drawing. In this thesis, we deal
with the problem of generating all triangulations of plane graphs. We give an algorithm
for generating all triangulations of a biconnected plane graph G of n vertices. Our al-
gorithm establishes a tree structure among the triaﬁgulations of G, called the “tree of
triangulations,” and generates each triangulation of G in O(1) time. The algorithm uses
O(n) space and generates all triangulations of G without duplications. To the best of
our knowledge, our algorithm is the first algorithm for generating all triangulations of
a biconnected plane graph; althdugh there exist algorithms for generating triangulated
graphs with certain properties. OQur algorithm for generating all triangulations of a plane
graph needs to find all triangulations of a convex polygon. We give an algorithm to gener-
ate all triangulations of a convex polygon P of n vertices in time O(1) per triangulation,
where the vertices Qf P are numbered. Our algorithm for generating all tfiangulations of
a convex polygon also improves previous results; existing algorithms need to generate all
triangulations of convex polygons of less than n vertices before generating the triangula-
tions of a convex pdlygon of n vertices. Finally, we give an algorithm for generating all
triangulations of a convex polygon P of n vertices in time O(n?) per triangulation, where

vertices of P are not numbered.



Chapter 1

Introduction

One of the problems addressed in the area of combinatorial algorithms is to generate all
items of a particular combinatorial class in such a way that each item is generated exactly
once. To solve many practical problems it is required to generate samples of random
objects from a combinatorial class. Sometimes a list of objects in a particular class is
helpful to find a counter-example to some conjecture, to find the best object among all
candidates, or to experimentally measure the average performance of an algorithm over
all possible inputs. Early works in combinatorics focused on counting; because generating
all objects requires huge computation. With the aid of fast computers it now has become
feasible to list the objects in éombinatorial classes. However, in order to generate entire list
of objects from a class of moderate size, extremely efficient algorithms are required even
with the fastest computers. Due to the reason mentioned above, recently many researchers
have concentrated their attention for developing efficient algorithms to generate all objects
of a particular class without repetitions [JWW80, Sav97}. Examples of such exhaustive
generation of combinatorial objects include enumerating all binary trees, generating all
set partitions, generating permutations and combinations, enumerating spanning trees etc

[BV04, NU04a, NUO4b].

One of the most important and extremely useful class of combinatorial objects are "
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graphs. In this thesis, we deal with the ﬁroblem of generating all triangulations of plane
graphrs. Generating all triangulations of plane graphs have many applications in Com-
putational Geometry [DVOS00), VLSI floorplanning [SY99], and Graph Drawing [NR04].
In these applications, to get a better solution, sometimes it is necessary to find all trian-
gulations of plane graphs. In- this thesis, we also deal with problem of enumeratlng all
‘triangulations of convex polygons Polygon trlangulatmn plays a central role in Compu-
tational Geometry and is a basic step in many algorithms [DVOS00]. But, developing
algorithms for enumerating such triangulations is not an easy problem. The possible
number of triangulations of plane graphs is exponential and for this reason, the enumer-
ation algorithms would have to produce huge amounts of output. Such algorithms are
1/0 intensive, need huge computational power and thus require fast computers. So, any
algorithm for enumerating triangulations of plane graphs has to be extremely efficient.
However, due to the exponential number of possible outputs, any enumeration algorithm
for generating all triangulations of plane graphs can be at best exponential. Therefore,
such algorithms concentrate on the complexity of the individual object generation, rather
than the complexity of the overall running time of the algorithm. In this thesis, we give
algorithms for generating all triangulations of plane graphs and exploit clever algorithrﬁic
techniques to successfully meet the above mentioned challenges .

This chapter serves as an introduction to the problem we dealt with in this thesis.

We also discuss related applications and review the literature. We start in Section 1.1 by

giving a precise deécription of the problem we solved in this thesis. Section 1.2 describes
some of the applications of the algorithms we developed in this thesis. Section 1.3 ad-
dresses the algorithmic challenges that any efficient enumeration algorithm must resolve.
Section 1.5 discusses two problems related to the problem we have solved in this thesis

and describes existing algorithms for those problems. Section 1.6 deals with the scopes

of this thesis and finally Section 1.7 gives a summary of the results we have found and O

compares our algorithms with other related algorithms.
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1.1 Problem Statement

Tn this thesis we deal with the problem of generating all triangulations of plane graphs.
We give a brief description of the problem below. | |

Let G = (V, E) be a plane graph as shown in Figure 1.1(a). The graph in Figure 1.1(a)
has 4 faces: three of them are internal and the other one is external. If we add an edge
(vs,v7) to the graph of Figure 1.1(a), we get the graph G’ of Figure 1.1(b). As can be
seen, the face F) = vg, v3, Us, 7 of the graph in Figure 1.1(a) has become “triangulated”
in Figure 1.1(b); that is the face F of the graph in Figure 1.1(a) has been partitioned into
smaller faces in the graph of Figure 1.1(b) where each of the smaller faces of G’ contains
three edges on the boundary of it. We say that we have triangulated the face Fy of G.
By adding edges in G, we can triangulate all the faces of G. When all the faces of G
are triangulated we get a triangulation of the graph G. Figure 1.1(c) shows one possible
triangulation of G. A particular plane graph G may have many different triangulations.
In this thesis we address the problem of generating all triangulations of a given plane

graph G such that all the triangulations of G are generated without duplications.

Figure 1.1: Triangulation of a plane graph by adding edges.

1.2 Applications

Qur algorithms for generating all triangulations of plane graphs and polygons have a
number of useful applications in a variety of flelds. In this section. we describe three

different application domains where the algorithms for generating all triangulations of a
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given plane graph or a simple polygon can be used.

1.2.1 Graph Drawing

Many algorithms in the area of Graph Drawing take triangulated plane graphs as input.
If the input graph is not triangulated then we must find a suitable triangulation of the
input graph before using the algorithm. For many algorithms, the way the input graph is
triangulated affects the quality of the output of the algorithm. For example, one of the well
known algorithms [NRO4] for finding straight line grid drawing of a plane graph requires
that the input graph G must be triangulated. If the graph G is not a triangulated already,
then we must find a triangulation of G. The algorithm finds a canonical ordering of the
vertices of (¢ based on the triangulation of G' and draws the straight line grid drawing of
the graph using that ordering. The area required by a straight line grid drawing of a graph
G depends on the canonical ordering of the vertices of G, which in turn depends upon
the way G is triangulated. Two different triangulations of the same graph G may result
in two different drawings of G with different area requirements. Figure 1.2 illustrates the
algorithm for finding the straight line grid drawing for the graph of Figure 1.2(a). Figure
1.2(b) is a triangulation of the graph in Figure 1.2(a). In Figure 1.2(b), the numbers
shown in parenthesis besides the labels of the vertices show the canonical ordering of the
vertices of the graph. As shown in Figure 1.2(d), the straight line grid drawing of the
graph of Figure 1.2(2) requires an 8 x 4 grid for the particular triangulation of the graph
as shown in Figure 1.2(b). Whereas the same graph of Figure 1.2(a), triangulated in a
different way, may have a grid drawing of different grid size, as shown in Figure 13
Therefore, if we want to find a straight line grid drawing of a plane graph G which
satisfies some area requirements, we may need to find all the triangulations of G. For
example, if we want the straight line grid drawing of G which requires minimuml amount
of area, then we need an algorithm that generates all the triangulations of a given plane

graph.
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(@

Figure 1.2: Illustration of the straight line grid drawing algorithm.
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g @)

a @

Figure 1.3: Tlustration of the straight line grid drawing algorithm. The graph is triangu-

lated in a different way than in Figure 1.2
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1.2.2 VLSI Floorplanning

Our algorithm for generating all triangulations of a plane graph has useful applications
in the area of VLSI floorplanning. One of the problems in VL3I floorplanning is to find
a rectangular floorplan of a given plane graph G. Conventional floorplanning algorithms
solve that problem by first triangulating the graph G, then finding a dual like graph G*
of G and then from G* a rectangular floorplan of G is found [NR0O4, SY99]. For example,
in Figure 1.4, to find a rectangular floorplan of the plane graph G of Figure 1.4(a), we
need to find a triangulation of G as in Figure 1.4(b). Figure 1.4(c) is the dual like graph

G* of G of Figure 1.4(a) and from G* we find a rectangular floorplan of G.

d
© (d)

Figure 1.4: Illustration of the algorithm for finding rectangular floorplan.

An interesting observation is that if we triangulate the same plane graph & in a
different way, we may get a different floorplan of G. An example of that is shown in
Figure 1.5. The plane graph G of Figure 1.5(a) is the same graph of Figure 1.4(a), but
triangulated in a different way as shown in Figure 1.5(b). As can be seen in Figure 1.5(d),
the floorplan of G is somewhat different than the floorplan of Figure 1.4(a).. Sometimes

we may need to explore different floorplans of a plane graph G. For example, we may



', CHAPTER 1.- INTRODUCTION | 8

- want a particular floorplan that satisfies some aesthetic criteria or has some adjacency
requirements for the faces. In these cases, we need to find all the different floorplans
of a given plane graph G, which requires to have an algorithm that generates all the

triangulations of a given plane graph.

(A

(c)

Figure 1.5: Illustration of the algorithm for finding rectangular floorplan. The graph is’

triangulated in a different way than in Figure 1.4

1.2.3 Computational Geometry

Several applications of triangulations are fbund in Computational Geometry. Polygon
triangulation is vital in many of the algorithms in Computational Geometry. There exist
different algorithms that can triangulate any simple polygon [DVOS00, Cha91]. One of the
well known problems in Computational Geometry is the so called “Art Gallery Problem”.
In Art Gallery Problem, each floor of an art gallery is modeled as a simple polygon. The
problem is to place cameras at the polygonal vertices in such a way that the entire floor
of the art gallery is covered. Conventional algorithm for solving the Art Gallery Problem

finds a triangulation of the simple polygon, colors the vertices of the triangulated polygon
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with three colors such that adjacent vertices have different colors and then chooses the
color which is used minimally. Cameras are placed a,f the vertices which are colored with
that minimally used color. The number of cameras required depends on the way the
simple polygon is triangulated. Different triangulations of the same simple polygon may
give different results to the same Art Gallery Problem. Figure 1.6 illustrates such a case.
In Figure 1.6, R, G and B stand for the colors Red, Green and Blue. The triangulation
of Figure 1.6{a) gives a solution that requires three cameras; whereas the triangulation of

Figure 1.6(b) requires only two cameras.

Figure 1.6: Illustration of the Art Gallery Problem. (a) Solution of size three and (b)

solution of size two.

Finding the minimum number of cameras for a particular Art Gallery Problem is
NP hard {DVOS00]. Therefore to find the optimal solution for a particular Art Gallery

Problem, we need an algorithm that generates all triangulations of a given simple polygon.

1.3 Challenges

In this section we discuss the main challenges that any algorithm for enumerating combi-
natorial objects must face [Sav97}. We have considered all these challenges while develop-
ing our algorithms in this thesis and have given algorithmic techniques that successfully

resolve the difficulties mentioned in the following subsections.
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1.3.1 Time Complexity

The number of different objects is very large in many cases. For example, the number of
different permutations of n numbers is exponential. Therefore, to generate all the objects
of a particular combinatorial class, we may have to find an exponential number of objects.
That means, the overall time complexity of the algorithm is at best exponential, which
means the generation of individual objects must be very efficient. There are a number
of techniques that accomplish the task. We mention some of those techniques in Section

2.5.

1.3.2 Avoiding Duplications

In any enumeration algorithm, we must have a way to avoid generation of redundant
objects. One way to avoid duplications of objects is tlo store each 6bject generated so
far and check each newly generated object with all the previous one to find whether the
newly generated one is a duplication. This way of checking duplications has two problems.
First, the time complexity goes up. Second, the space réquirement becomes very high.

We mention some alternatives for avoiding duplications in Section 2.5.

1.3.3 1/0 Operations

Algorithms that solve enumeration problems are generally I /O intensive and the output
of the algorithm dominates the running time. This is because the number of objects
generated is exponential in many cases and each of these objects must be output to
an output device. Since I/O is slower than computation, the more I/O operations an
algorithm performs the slower it becomes. For this reason reducing the amount of output

is essential
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1.3.4 Exhaustive Generation

While we exhaustively generate combinatorial objects, we must have an efficient way to
determine the end of generatioh. One solution to this problem is that we count the number
of objects generated so far and check whether we have explored all the possibilities. But
this works only in the case where we know in advance the total number of distinct objects
to be generated and have an efficient way for detecting repetitions. For many problems,
it may be difficult to know or calculate the exact number objects that will be generated.
For example, it is not trivial to count the number of different triangulations of a given

arbitrary plane graph.

1.4 Goals of an Enumeration Algorithm

Any algorithm for generating all objects of a particular combinatorial class has to achieve

a number of goals or aims. We list the most important ones below.

o Reduce the time complexity,

Minimize the usage of memory,

Reduce the amount of output,

Avoid duplications, and

e Avoid omissions.

In this thesis, we have considered each of these goals while we develop our algorithms.
To achieve the goals, we have developed efficient representations of objects, efficient data
structure for storage, and clever algorithmic techniques. We will address the issues men-

tioned above while we describe our algorithms in detail in later chapters.
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1.5 Literature Review

Triangulations play a central role in Computational Geometry and there is a growing body
of papers considering triangulations of a point set {Aic99, ES94, HNU99, HOS96]. There
are also some well known results for triangulating simple polygons [DV0OS00, Cha91] and
finding bounds on the number .of operations required to transform one triangulation into
another [KNN99, STTSg].

Let S be a set of n points in general position in the plane. Bespamyatnikh [Bes02]
gave an algorithm that generates all the trigngulatioﬁs of § in O(loglogn) time per tri-
angulation. Avis and Fukuda [AF96] devised a reverse search method which allows to
enumerate triangulations in #(nt(S)) time, where ¢(S) is the number ‘of triangulations
of S. Tt uses the well known process of the construction of the Delaunay triangulation
[For87]. Researchers also have focused their attention on generating triangulated polygons
and graphs with certain properties {Avi96, Nak02, NU04b]. The basic operation on tri-
angulations in a flip, which can be defined as follows. When two adjacent triangles form
a convex Quadrilateral then the shared diagonal can be flipped and a new triangulation of
S is obtained. The graph G(S), called the graph of triangulations of a given polygon or
point set 5, is the graph where the vertices of G(S) are the triangulations of S and two
triangulations being adjacent if one can be obtained from the other by flipping an edge.
These graphs are widely studied in [HNU99]. A large number of researchers have studied |
the graph of triangulations Gr(n) of convex polygons of n vertices [HN99, Lee89, STTSS].
Figure 1.7 shows the graph of triangulations of convex polygons of six vertices.

In the following two subsections, we review two algorithms that are more closely related
to the problem we have addressed in this thesis. We also discuss the limitations of both

algorithms.
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Figure 1.7: Graph of triangulations of convex polygons of six vertices.

1.5.1 Algorithm of Hurtado and Noy

Hurtado and Noy [HN99) built a tree of triangulations of convex polygons with any number
of vertices. Figure 1.8 shows the first four levels of the tree. Their construction is primarily
of theoretical interests; also all the triangulations of convex polygons with number of
vertices less than 7 need to be found before finding the triangulations of a convex polygon
of n vertices. That is, the algorithm of Hurtado and Noy starts with smallest possible
triangulated convex polygon, which is a triangle. From it, all the triangulations of a convex
polygon of four vertices are generated. From these triangulations, all the triangulations
of a convex polygé)n of five vertices are generated and so on. Figure 1.9 and 1.10 illustrate
the operations used to generate new triangulations from old ones. The idea is to split
the vertex v, into two vertices, v, neighboring v,_; and vai1 neighboring v;. The same
splitting occurs also to the diagonals incident to vp. .

Therefore,if all we want is the triangulations of a convex polygon of n vertices, then
the algorithm of Hurtado and Noy is not the desired algorithm, since in this case all the
triangulations of convex polygons of number of vertices less than n will be generated also.

In this thesis, our algorithm for generating all triangulations of a convex polygon of n
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vertices does not suffer from this problem.
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Figure 1.8: Tllustration of tree of triangulations of convex polygons.
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Figure 1.9: Tllustration of splitting operation.

1.5.2 Algorithm of Li and Nakano

Li and Nakano [LNO1] gave an algorithm to generate all biconnected “based” plane trian-
gulations with at most n vertices. Figure 1.11 shows the tree of triangulations built by the
algorithm of Li and Nakano. Their idea was to generate all graphs with some properties
without duplications. Here also, the biconnected “based” plane triangulations of n ver-
tices are generated after the biconnected based plane triangulations of less than n vertices
are generated. Hence, if we need to generate the triangulations of a convex pofygon or
a plane graph of exactly n vertices, existing algorithms generate all the triangulations of

convex polygons or plane graphs with less than n vertices. This is not an efficient way of

A
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Figure 1.10: Illustration of the generation of new triangulations from an old one.

generation. Also the algorithm of Li and Nakano does not take any graph as input. In

this thesis, our algorithm for generating all triangulations of a biconnected blane graph

avoids generating such unnecessary triangulations.
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Figure 1.11: Illustration of the tree of triangulations of biconnected based plane triangu-

lations.

1.6 Scope of this Thesis

In this section we list the algorithms we have developed in this thesis.
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1.6.1 Labeled Triangulations of a Convex Polygon

The first problem that we consider is finding all the triangulations of a convex polygon
P of n vertices, where the vertices of P are numbered. The triangulations of P in this
case are called labeled triangulations . We give an algorithm that generates all the la-
beled triangulations of a convex polygon P of n vertices. The algorithm generates each
triangulations in O(1) time per triangulation and uses O(n) space. We give the detailed

algorithm in Chapter 3.

1.6.2 Triangulations of a Biconnected Plane Graph

The second problem that we consider in this thesis is to generates all the triangulations
of a given plane graph G. Specifically we consider the cases where the graph G is either
a biconnected outerplanar graph or a biconnected plane graph. For each of these cases,
we give algorithm that generates all the triangulations of the given input graph G in time

O(1) per triangulation using O(n) space.. We give the detailed algorithm in Chapter 4.

1.6.3 Unlabeled Triangulations of a Convex Polygon

Finally we consider the problem of generating all the triangulations of a convex polygon
P of n vertice, where the vertces of P are not numbered. The triangulations of P in
this case are called unlabeled triangulations . We give an algorithm that generates each
unlabeled triangulation of P in O(n?) time worts case time using O(n) space. We give

the detailed algorithm in Chapter 3.

1.7 Summary

In this thesis we give efficient algorithms for generating all triangulations of plane graphs

and convex polygons, Our main results can be divided into two parts.
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Criteria Li and Nakano Hurtado and Noy Our algorithm
Generates Biconnected Plane Triangulated Triangulations of
Triangulations Convex Polygons Plane Graphs
and Convex Polygons

Takes Input? NO NO YES
Redundant Objects YES YES ' NO
Generation Time per Object O(1) O(1) O(1)
Space Complexity O(n) O(n) O(n)
References [LNO1} [HN99] Ours

Table 1.1: Comparison Table.

The first part of the results is about the triangulations of convex polygons. We give
an efficient algorithm that generates all triangulations of a convex polygon P of n vertices
where the vertices of P are numbered. The algorithm generates each triangulation of P
in constant time from previous one and uses linear space. We also give an algorithm for
generating all triangulations of a convex polygon P of n vertices where the vertices of P
are not numbered. The algorithm generates each triangulation of P in O(n?) time per
triangulation from previous one and uses linear space.

The second part of the results deals with the plane graphs. Using the algorithm for
generating all triangulations of a convex polygon P of n vertices, we give algorithms that
generate all triangulations of a biconnected outerplanar graph and biconnected plane
graph. The algorithms generate each triangulation in constant time from its previous one
using linear space only.

A comparison between our algorithms and the algorithms of Li and Nakano [LNO]]

and Hurtado and Noy [HN99] is made in Table 1.1 for number of criteria.



Chapter 2

Preliminaries

In this chapter we deﬁne some basic terms of graph theory and algorithms. Definitions
which are not included in this chapter will be introduced as they are needed. We start, in
Section 2.1, by giving definitions of some standard graph-theoretical terms used through-
out the remainder of this thesis. We describe some notions from complexity theory in Sec-
tion 2.2. Sections 2.3 and 2.4 deal with the graph traversal and face traversal algorithms,
respectively. Section 2.5 deals with the well known techniques for solving enumeration

problems. Finally, Section 2.6 deals with the Catalan Families of combinatorial objects.

2.1 Basic Terminology

In this section we give definitions of some graph-theoretical terms used throughout the

remainder of this thesis. Readers interested in graph theory may consult [Wes01].

2.1.1 Polygon

A polygon is the region of a plane bounded by a finite collection of line segments forming
a simple closed curve. Each line segment of the closed curve is called a side or an edge of

the polygon. A point joining two consecutive sides of a polygon is called a vertez of the

18
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polygon. A polygon is called simple if it does not cross itself. The set of points in the
plane enclosed by a simple polygon forms the interior of the polygon, the set of points
on the polygon itself forms its boundary, and the set of points surrounding the polygon
forms its exterior . We say two vertices = and y of polygon P is wisible to each other if
and only if the closed line segment Ty is nowhere exterior to the polygon P; ie, zy C P.
We say = has clear visibility to ¥ if zy C P and zy does not touch any vertex or edge of
P. A diagonal of a polygon P is a line segment between two of its vertices z and y that
are clearly visible to each other. |

A simple polygon is convez if, given any two points on its boundary or in its interior, all
points on the line segment drawn between them are contained in the polygon’s bounaary or
interior. Let the vertices of a convex polygon P are labeled vy, v2,- -+, ¥n counterclockwise.

We represent P by listing its vertices as P = (v1,v9,***,Un), and Tepresent the edges of

P by (Ulﬂ v2): (U?.:UB):; T, (UTL: ‘Ul)'

Figure 2.1: Illustration of a polygon.

2.1.2 Graphs

A graph G is a structure (V, E) which consists of a finite set of vertices V and a finite
set of edges E; each edge is an unordered pair of distinct vertices. We denote the set of
vertices of G by V(G) and the set of edges by E(G). Figure 2.2 illustrates an example
of a graph. An edge connecting vertices v; and v; in V' is denoted by (v, v;). An edge
('ui,'uj)’is called a loop if v; = v;. A graph is called a simple graph if there is no loop or

multiple edges between any two vertices in G.
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Let G = (V, E) be a undirected connected simple graph with vertex set V' and edge
set F. In this thesis, to make the data structures easier to manipulate, we write the edge
{v;,v;) such that ¢ < j. Thus the edge incident to vertex v and v, is denoted by (v, vy),

and not by (vs, v1).

Figure 2.2: Ilustration of a graph.

The degree of a vertex v is the number of edges incident to v in G. The connectiv-
ity kK(G) of a graph G is the minimum number of vertices whose removal results in a

disconnected graph or a single vertex graph. A graph is k-connected if «(G) > k.

2.1.3 Planar graph and plane graph

A graph is planar if it can be embedded in the plane so that no two edges intersect
geometrically except at a vertex to which they are both incident. Note that a planar
graph may have an exponential number of embeddings. Figure 2.3 shows four planar
embeddings of the same planar graph.

A plane graph is a planar graph with a fixed embedding. A plane graph divides the
plane into connected regions called faces . The unbounded face is called outer face and
the other faces are called inner faces . For example, the plane graph in Figure 2.3(a) has

five inner [aces and one outer face.

2.1.4 Triangulations of a Polygon

Let P = {v,v2, -, us) is a simple polygon. A diagonal (v;, v;) divides the polygon P

into two polygons: {v;, viy1,- -, ;) and {vj, Vi1, -, v;). A decomposition of a polygon
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Figure 2.3: Ilustration of planar embedding.

into triangles by a set of non-intersecting diagonals is called a triangulation of the poly-
gon. Figure 2.4(a) illustrates a triangulated simple polygon, whereas Figure 2.4(b) is an

example of a triangulated convex polygon.

(a)

Figure 2.4: Illustration of triangulated polygons (a) triangulation of a simple polygon and

(b)

(b) triangulation of a convex polygon.

A simple polygon may have many different triangulations. Figure 2.5 shows two
different triangulations of a convex polygon P. The set of diagonals is maximal in a

triangulation T; that means, every diagonal not in T intersects some diagonal in T'. The
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sides of triangles in the triangulation are either the diagonals or the sides of the polygon.
Every triangulation of a convex polygon P of n vertices has n — 3 diagonals and n - 2

triangles.

Figure 2.5: Two ways of triangulating a convex polygon of 6 vertices.

Throughout this thesis, we represent each triangulation T' of a convex polygon P by
listing its diagonals. For example, the triangulation.of Figure 2.5(a) is represented by
T = {(v4,vs), (V2,vs), (2, va)}. Given the list of diagonals, we can uniquely construct the

corresponding triangulation.

2.1.5 Labeled and Unlabeled Triangulations

A triangulation T of a simple polygon P of n vertices is called a labeled triangulation if
the vertices of P are numbered sequentially from v; to vn. Both triangulations of Figure
2.6 are labeled triangulations. On the other hand, if the vertices of P are not numbered,
then the triangulations of P are called unlabeled triangulations . Both triangulations of

Figure 2.7 are examples of unlabeled triangulations.

v (] v Y4
v,
% I 3
v v
7 vz I.'2
Vg 1 ¢ Y
(a) (b)

Figure 2.6: INustration of labeled triangulations.
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(a) (b)
Figure 2.7: Illustration of unlabeled triangulations.

2.1.6 Triangulations of a Graph

The triangulations of a plane graph can be defined analogously. Consider the plane graph
G shown in Figure 2.8(a). G has five faces. Consider the face F' =< vy, vy, vs, g > 1f we
add an edge between v; and vs, as illustrated in Figure 2.8(b), then the face F is divided
into two smaller faces F; and F,. Both F| and F; have three edges on their boundary.
We say that by adding the edge (v1,vs) in G we have triangulated the face F' of G. By
adding additional edges in G, we can triangulate the other faces of G. When all the faces

of G are triangulated, we get a triangulation of the graph G, as shown in Figure 2.8(c).

Figure 2.8: Illustration of a triangulated graph.

b
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2.1.7 Graphs and Polygons

There is a plane graph G naturally associated with a triangulation T of a convex polygon
P. The vertices of & are fhe vertices of the triangulation and the edges of G are the
sides and diagonals of the triangulation. When there is no confusion, we will treat the
triangulation T and the plane graph G associated with it as essentially same. We will
sometimes use the terminology of graphs while discussing the triangulations of polygons.
Thus, we say that the vertices v; and v; of a convex polygon P are adjacent, if (v;,v;) is

a diagonal or a side of P and call (v;,v;) an edge incident to vertex v; and v;.

2.1.8 Paths and Cycles

A vy — v walk , vo,€1,%1, V1, €4, 10 (¢ is an alternating sequence of vertices and
edges of G, beginning and ending with a vertex, in which each edge is incident to two
vertices immediately preceding and following it. If the vertices vp, vy, -, v are distinct
(except possibly vp, v1), then the walk is called a path and usually denoted either by the
sequence of vertices vg, vy, , % or by the sequence of edges ey, eq, -+, €. The length of
the path is {, one less than the number of vertices on the path. A path or walk is closed

if up = v;. A closed path containing at least one edge is called a cycle .

2.1.9 Outerplanar Graph

A graph is outerplanar if it has an embedding with every vertex on the boundary of the
outer face. If the outerplanar graph is biconnected then all the vertices of the graph are

on a cycle. Figure 2.9 shows examples of outerplanar and biconnected outerplanar graphs.

2.1.10 Trees

A tree is a connected graph containing no cycle. Figure 2.10 is an example of a tree. The

vertices in a tree are usually called nodes . A rooted tree is a tree in which one of the
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(a) (b)

Figure 2.9: Example of (a) an outerplanar graph and (b) biconnected outerplanar graph.

nodes is distinguished from the others. The distinguished node is called the root of thé
tree. The root of a tree is generally drawn at the top. In Figure 2.10, the root is v;.
Every node u other than the Toot is connected by an edge to some other node p called
the parent of u. We also call u a child of p. We draw the parent of a node above that
node. For example, in Figure 2.10, v, is the parent of vy, v3 and v4, while vs is the parent
of vs and vg; v, v3 and vy are children of vy, while vs and vg are children of vy, A leaf is
a node of a tree that has no children. An internal node is a node that has one or more
children. Thus every node of a tree is either a leaf or an internal node. In Figure 2.10,

the leaves are vy, Us, Vs, v7 and vg, and the nodes vy, vz and v are internal nodes.

Figure 2.10: Ilustration of a tree.

The parent-child relationship can be extended naturally to ancestors and descendants.
Suppose that uy, us, - -+, u 1S & sequence of nodes in a tree such that u; is the parent of
ua, which is a parent of u3, and so on. Then node uy is called an ancestor of 1 and node
u; a descendant of w;. The root is an ancestor of every node in a tree and every node is
a descendant of the root. In Figure 2.10, all seven nodes are descendants of vy, and v; is

an ancestor of all nodes.
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The height of a node u in a tree is the length of a longest path from u to a leaf. The
height of the tree is the height of the root. The depth of a node u in a tree is the length of
a path from the root to u. The level of a node u in a tree is the height of the tree minus
the depth of u. In Figure 2.10, for example, node v, is of height 1, deﬁth 1 and level 1.
The tree in Figure 2.10 has height 2.

2.1.11 Binary Trees

A binary tree is either a single node or consists of a node and two subtrees rooted at the
node, both of the subtrees are binary trees. Figure 2.11 illustrates a binary tree of 15

nodes.

Figure 2.11: Illustration of a binary tree.

2.1.12 Degree Sequence

Let G be a plane graph of n vertices where the vertices are labeled v, to v,. The degree
sequence of G is the sequence (dy,dz, -+  dy,), where d; is the degree of the vertex v;. For

example, the degree sequence for the graph of Figure 2.8(a) is (4,4,3,3,4,2)

2.2 Algorithms and Complexity

In this section we briefly introduce some terminologies related to complexity of algorithms.
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The most widely accepted complexity measure for an algorithm is the running fime
which is expressed by the number of operations it performs before producing the final
answer. The number of operations required by an algorithm is not the same for all
problem instances. Thus, we consider all inputs of a given size together, and we define
the complexity of the algorithm for that input size to be the worst case behavior of the
algorithm on any of these inputs. Then the running time is a function of size n of the

input.

2.2.1 The notation O(n)

In analyzing the complexity of an algorithm, we are often interested only in the “asymp-
totic behavior,” that is, the behavior of the algorithm when applied to very large inputs.
To deal with such a property of functions we shall use the following notations for asymp-
totic running time. Let f(n) and g(n) are the functions from the positive integers to the
positive reals, then we write f(n) = O(g(n)) if there exists positive constants ¢; and ¢;
such that f(n) < cig{n) + ¢, for all n. Thus the running time of an algorithm may be

bounded from above by phrasing like “takes time O(n?).”

2.2.2 Polynomial algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its complexity
is bounded by a polynomial of the size of a problem instance. Examples of such complex-
ities are O(n), O(nlogn) O(n'%), etc. The remaining algorithms are usually referred as
exponential or non-polynomial. Example of such complexity are 0(2™), O(n!), etc.
When the running time of an algorithm is bounded by O{n), we call it a linear-time

algorithm or simply a linear algorithm.
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2.2.3 Complexity of Graph Algorithms

We measure the complexity of an algorithm as a function of the size of the input to the
algorithm. In this thesis, the inputs to our algorithms are plane graphs. The size of an
input planar graph is measured by the amount of memory needed to represent the graph
in a computer, which in turn isl o function of the number of edges of the graph.

Since in this thesis, we deal with plane graphs only. In a planar graph, the number of
edges m is less than 3n, where 7 is the number of vertices of the graph [Wes01]. Therefore,

we analyze the complexity of the algorithms of this thesis as a function of 7.

2.3 Graph Traversal Algorithm

When designing algorithms on graphs, we often need a method for exploring the vertices
and edges of a graph. In this section we describe such a method named depth first search
(DFS).

In DFS each edge is traversed exactly once in the forward and reverse directions and
each vertex is visited. Thus DFS runs in linear time. We now describe the method.

Consider visiting the vertices of a graph (7 in the following way. We select and visit a
starting vertex v. Then we select any edge (v,w) incident on v and- visit w. In general,
suppose z is the most recent visited vertex. The search is continued by selecting some
unexplored edge {z,y) incident on x. If y has been previously visited, we find another new
e_dge incident on z. If ¥ has not been visited previously, then we visit ¥ and begin a new
search starting at y. After completing the search through all paths beginning at y, the
search retﬁrns to x, the vertex from which y was first reached. The process of selecting
unexplored edges incident to x is continued until the list of these edges is exhausted. This
method is called depth-first search since we continue searching in the deeper direction as
long as possible. |

If the graph G is a tree, then we can order the vertices based on the way the edges are

".‘&3

3]
—_
-
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chosen to be traversed. Consider a vertex v from which a new edge would be explored
and another vertex would bé reached. We mark a vertex u when we first reach u and
call the label of © the rank of u. The rank of the root of the tree is 0. So the rank of a
vertex u is- the number of vertices explored before u is reached for the first time. Such a
traversal is called a pre-order traversal of the vertices of the tree. If a vertex u is labeled
after all vertices located in the subtree rooted at u are labeled, then the traversal is called
post-order traversal. In case of a binary tree, if the vertex u is labeled after all vertices
located in the left-subtree rooted at u are labeled, but bgfore all vertices located in the

right-subtree rooted at u are labeled, then the traversal is called in-order traversal.

2.4 Face Traversal

In this section we describe a data structure to represent a plane graph. We also discuss

a face traversal algorithm for a plane graph.

2.4.1 Data Structures for a Plane Graph

A graph can be represented in a computer by either using a matrix or an adjacency list
representation. But these two representations are not suitable for representing a plane
graph; since a plane graph has a fixed embedding in plane and in a plane graph the edges
incident to a vertex have some order which is not preserved by these two representations.
Therefore, to represent a plane graph G we use a variation of the adjacency list repre-
sentation where the ordering of the edges incident to a vertex is preserved. For example,
the adjacency list in Figure 2.12(b) represents the plane graph in Figure 2.12(a) since the

representation preserves the clockwise ordering of the edges incident to each vertex.
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Figure 2.12: Adjacency list representation of a plane graph.

2.4.2 Face Traversal Algorithm

In our algorithm for generating all triangulations of a plane graph G, we need to traverse
the faces of & in order to find the root triangulation of the genealogical tree of G. Here
we illustrate a special data structure for a plane graph (G and describe an algorithm to
traverse the faces of G efficiently using the data structure.

Assume we want to clockwise traverse the face I of the graph G starting from vertex
vy as shown in Figure 2.13(a). To traverse the face efficiently, we represent the graph G
using the data structure shown in the Figure 2.13(b).

As illustrated in the Figure 2.13(a), if we want to clockwise traverse the face F' starting
from vertex vy, we first traverse edge (vi,v4) and reach at vertex vy. We now need to
traverse the edge (vs,vs). Using the data structure shown in Figure 2.13(b), we can find
that edge in constant time. Here is how this can be done.

The edge (v1,v,) follows the edge (4, v2) in the clockwise ordering of the edges in-

cident to vertex vy. In other words, the edge {v4,v2) is counterclockwise next to edge
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Figure 2.13: Illustration of a data structure for representing a plane graph used for efficient

face traversal.

(v, v4) in the adjacent list of vs. In the representation shown, both the clockwise and
counterclockwise ordering of edges incident to a vertex is preserved using a doubly circular
linked list of neighbors of the vertices; traversing the list forward and backward we get
clockwise and counterclockwise ordering, respectively. The two entries for an edge in the
representation are also linked so that one of them can be accessed from the other directly.
Using the data structure in Fig. 2.13(b), we can find the edge (v4, v2) as follows. From
entry 4 in the adjacency list of v{ ":go to entry 1 in the adjacency list of vy directly using
the link between them. Then we can find vy, since entry 2 is counterclockwise next to

entry 1 in adjacency list of vy.

2.5 Algorithms for Enumeration Problems

There are a number of standard methods that are in use for solving enumeration problems.
As mentioned in Chapter 1, there are some difficulties that any enumeration algorithm

must resolve somehow. These challenges include reducing the amount of output, efficient
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checking for duplications and omissions, rspace complexity etc. Différent methods have
different' ways of dealing with these challenges.

Cl&ssical method algorithms first generate combinatorial ob jecté allowing duplications,
but output only if the object has not been output yet. These methods require huge space
to store the list of objects generated so far. Furthermore, checking whether the newly
generated object will be output takes a lot of time. |

Orderly methods algorithms {Mck98] need not to store the list of objects generated so
far, they output a object only if it is a canonical representa.tioh of an isomorphism clasé.

Reverse search method algorithms [AF96] also neea not to store the list. The idea is
to implicitly define a connected gra}ﬁh H such that the vertices of H correspond to the
graphs with the given property, and the edges of H correspond to some relation between
the graphs. By traversing an implicitly defined spanning tree of H, one can find all the
vertices of H, which correspond to all the graphs with the given property.

In the following two subsections, we describe in more detail two other methods for
solving enumeration problems and address the techniques employed by these methods for

resolving the challenges mentioned above.

2.5.1 Combinatorial Gray Code Approach

To generate all the objects of a particular class, one approach is to try to generate the
objects as a list in which successive elements differ only in a small way. The term Com-
bz’natorial. Gray Code first appeared in [JWW8(] and is now used to refer to any method
for generating combinatorial objects so that successive objects differ in some prespecified,
usually small, way. Savage [Sav97] gives a description of the state of the art of the area.
The advantages anticipated by such gray code approach are manifold. First, generation
of successive objects is faster, since each object is generated from the preceding one by
making constant number of changes. Secondly, the number of objects in a particular class

is generally exponential. Generating algorithms thus produce huge outputs in general,
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and the output dominates the running time. If we can reduce the amount of output, the
efficiency of the algorithm improves consi'derably. So in gray code approach, each object
is output as a difference from the preceding one, thus removing the necessity to output
the entire object. Thirdly, gray codes typically involve elegant recursive constructions
which provide new insights into the structure of combinatorial families.

There are many problems that can be solved using combinatorial gray code approach.

We list some of them below.
1. Listing all permutations of 1,---,n,
2. Listing all k-element subsets of an n-element set,
3. Listing all binary trees,
4. Listing all spanning trees of a graph,
5. Listing all partitions of an integer n, and

6. Listing lenear extensions of certain posets etc.

n=2 n=4
12 1234 4321
21 1243 3421
1423 1241
4123 2314
n=3 4132 2341
123 1432 2431
132 1342 4231
312 1324 4213
321 3142 2413
231 3412 2143
213 4312 2134

Figure 2.14: Generating permutations using gray code approach: Johnson-Trotter scheme.

One particular algorithm for generating all permutations of n elements, based on Q

combinatorial gray code approach, is the Johnson- Trotter algorithm. . Johnson and Trotter

W

-
-



CHAPTER 2. PRELIMINARIES 34

independently showed that it is possible to generate permutations by transpositions even
if the two elements exchanged are required to be in adjacent positions. [Tro62, Joh63]
The recursive scheme, as shown in Figure 2.14, inserts into each permutation on the list
for n— 1 the element ‘n’ in each of the possible n positions, moving alternately from right

to left, then from left to right. -

2.5.2 Family Tree Approach

In the family tree or genealogical tree approach, a hierarchical structure or tree structure
is established among the members of a par'ticula.r combinatorial class. The idea is to
find a unique parent-child relationship among the objects such that one object ca.n‘ be
generated from its parent by making a minimal amount of changes. The main feature
of this approach is that the entire list of objects need not to be in the memory at once
for checking duplications. The objects are generated in the order they are present in
the family tree and generation rule itself ensures that no omissions occur. The space
complexity for this approach is also linear in the size of an individual object. The main
challenge in solving an enumeration problem by family tree approach is to establish a
unique parent-child relationship among the objects of interest. For many problems, finding
a suitable parent-child relationship may be extremely difficult.

There are a number of problems that have been solved by the family tree approach
[Bes02, Nak02, NUO4a]. Figure 1.11 illustrates the family tree developed by Li and Nakano

for their algorithm for generating all based plane triangulations of graphs.

2.6 Catalan Families

In several families of combinatorial objects, the size of the class is bounded by the Catalan

Numbers, defined for n > 0 by




CHAPTER 2. PRELIMINARIES 35

{b)

(a)

{1.8)

S
o

=

[CH

1)

Figure 2.15: Illustration of relationship between triangulations and binary trees.

These include binary trees on n vertices, well formed sequence of 2n parentheses, and
triangulations of a labeled convex polygon with n + 2 vertices. There exist bijections
between the members of the Catalan family [CLR90]. Therefore, enumeration algorithm
for one member of the family gives implicitly a listing scheme for every other member of the
family. In Figure 2.15 we show the one to one corresponding between the triangulations
of a convex polygon of n vertices and binary trees with 7 —2 internal nodes. As shown in
Figure 2.15(c) and Figure 2.15(d), a diagonal flip in a triangulation of the convex polygon

is directly related to a rotation in the corresponding binary tree.



Chapter 3

Triangulations of Convex Polygons

3.1 Introduction

In this chapter, we give algorithms to generate all triangulations of a convex polygon P of
n vertices. We first consider the case where the vertices of P are numbered sequentially
and develop an algorithm that generates all labeled triangulations of P without any
duplications or omissions.. We also deploy schemes that reduces the amount of output
and minimizes the I/O operations. By modifying the algorithm for generating all labeled
triangulations Qf a convex polygon P of n vertices, we give an algorithm that generates
all unlabeled triangulations of P, that is the triangulations where the vertices of I are
not numbered.

Figure 3.1(a) shows two labeled triangulations of a convex polygon of 4 vertices where
Figure 3.1(b) shows an unlabeled triangulation of a convex polygon of 4 vertices.

Based on the algorithms developed in this chapter, we give an algorithm that generates
all triangulations of a biconnected plane graph G in Chapter 4.

The rest of the chapter is organized as follows. In Section 3.2 we give the basic idea
behind our algorithms in this chapter. Section 3.3 deals with the algorithm for geﬁerating

all triangulations of a convex polygon P where the vertices of P are numbered sequentially.

36
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Figure 3.1: Tllustration of (a) labeled and (b} unlabeled triangulations.

Section 3.4 gives the algorithm for generating all triangulations of P, where the vertices

of P are not numbered.

3.2 Basic Idea

The basic idea behind the algorithm for generating labeled triangulations of a convex
polygon P of n vertices is based on the combinatorial gray code and family tree approach.
In our algorithm, a new triangulation is generated from an existing one by making a
constant number of changes. The main feature of our algorithm is that, we define a tree
structure, that is parent-child relationships, among those triangulations. In such a “tree of
triangulation”, each node corresponds to a triangulation of the convex polygon and each
node is generated from its parent in constant time. In our algorithm, we construct the
tree structure among the triangulations in such a way that the parent-child relationship is
unique, and hence there is no chance of producing duplicate triangulations. Qur algorithm
also generates the triangulations in place, that means, the space complexity is only O(n).
Due to the one-to-one relationship between the triangulations of convex polygon of n
vertices and binary trees with n— 2 internal nodes (see Section 2.6), our algorithm readily
gives a way to enumerate all binary trees with n— 2 internal nodes. The algorithm we give
that generates all unlabeled triangulations of a convex polygon P of n vertices is based
on the algorithm for labeled triangulations of £ and generates each new triangulations in

worst case time O(n?) per triangulation.
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3.3 Labeled Triangulations of a Convex Polygon

In this section, we give an algorithm to generate all labeled triangulations of a convex
polygon P of n vertices. For that purpose we define a unique parent-child relationship
among the triangulations of P so that the relationship among the triangulations of P
can be represented by a tree with a suitable triangulation as tfle root. Figure 3.2 shows
such a tree of triangulations of a convex polygon of six vertices. Once such a parent-child
relationship of P is established, we can generate all the triangulations of P using the
relationship. We need not to build or to store the entire tree of triangulations at once,
rather we generate each triangulation in the order it appears in the tree structure.

In our algorithm, we use the following operation to generate a new triangulation from
an old one. Let T be a triangulation of a .convex polygon of n vertices. Let (vi,v5)
be a shared diagonal of two adjacent triangles of T .which form a convex quadrilateral
(g, Vs, Ur, v5). 1f we remove the diagonal (v;,v;) from T and add the diagonal (vg, vr), we
get a new triangulation T". The above operation is known as flipping and has been used
by a number of researchers [For87, HNU99, KNN99], We say that we have flipped the
edge (v;,v;), and denote the new triangulation T' by T'{(v;, ;).

For example, in Figure 3.3(a), the two triangles (vy, v2, v3) and {vy,v3, v4) form the
quadrilateral (v), vz, vs, v4) and (v1,vs) is the shared diagonal. We remove (vy,vs) from the
triangulation of Figure 3.3(a) and add the diagonal (v, v4) to generate the triangulation
of Figure 3.3(b). Thus, we flip the diagonal (v, vs) of the triangulation of Figure 3.3(a)
to generate the triangulation of Figure 3.3(b).

One can observe that, each triangulation of the tree of triangulations in Figure 3.2,
except the root, is generated from its parent by flipping a single diagonal. Each arrow is
labeled in Figure 3.2 to indicate which diagonal has been flipped to generate a particular
child. We call a tree of triangulations of a convex polygon P of n vertices a genealégical

tree of P and denote it by 7 (P). Figure 3.2 illustrates 7 (P) of a convex polygon P of six
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Figure 3.2: Genealogical tree 7{P) for a convex polygon P of six vertlces
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Figure 3.3: Illustration of flipping operation; (a) old triangulation and (b} new triangu-
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lation.

vertices. Let T be a triangulation of a convex polygon P of n vertices, in which all the
diagonals of T are incident to vertex v;. We regard T as the root T, of the genealogical
tree T(P). For example, the triangulation in Figure 3.4(b) is the root of the genealogical
tree 7 (P) of a convex polygon P of 6 vertices as shown in Figure 3.4(a).

Note that, in the root T, of T(P), every interior point of P is visible from vertex
v;. We say that vertex v; has full vision in T;. Obviously, in a non-root triangulation T
of P, vertex v, does not have the full vision. The reason is that 7" has some “blocking
diagonals” which are blocking some parts of the convex polygon P from being visible from

vertex v;. A diagonal (v, v;) of a triangulation T of P is a blocking diagonal of T if both
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Figure 3.2: Genealogical tree T (P) for a convex polygon P of six vertices.

Figure 3.3: Illustration of flipping operation; (a) old triangulation and (b) new triangu-

lation.

vertices. Let T be a triangulation of a convex polygon P of n vertices, in which all the
diagonals of T are incident to vertex vi. We regard T as the root T; of the genealogical
tree 7 (P). For example, the triangulation in Figure 3.4(b) is the root of the genealogical
tree T (P) of a convex polygon P of 6 vertices as shown in Figure 3.4(a).

Note that, in the root T, of T(P), every interior point of P is visible from vertex
vy. We say that vertex v; has full vision in T,. Obviously, in a non-root triangulation 7°
of P, vertex v, does not have the full vision. The reason is that T has some “blocking
diagonals” which are blocking some parts of the convex polygon P from being visible from

vertex v;. A diagonal {v;,v;) of a triangulation T of P is a blocking diagonal of T if both
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@ T b T=T,

Figure 3.4: Illustration of (a) a convex polygon of six vertices and (b) corresponding root

in 7(P).

v; and v; are adjacent to vy in T. We say that vertex v, has blocked vision in a non-root
triangulation T" of P.
The following lemma characterizes the non-root triangulations of a convex polygon P

of n vertices.

Lemma 3.3.1 Each triangulation T of a convex polygon P = {(v1, v, - -, Un) has at least

one blocking diagonal. if T 1s not the root of T(F).

Proof. Let v; be the vertex of P such that (1, vy} is a diagonal of 7', for all k 2 J.
Then there exists a verfex v; such that i < j and (v;.v;) is a diagonal of T'. Otherwise,
ail diagonals of T would be incident to ; and 7" would be the root of 7 (). Since T is a
triangulation of P, (vy,v;, v;) is a triangle, and hence (v,,v;) is a blocking diagonal. U

Suppose we flip a diagonal (v;, v;) of T to generate a new triangulation T". Let (v, vi),
b < b be the newly found diagonal in T'. Obviously (v, upr) 1s a blocking diagonal of T".
Similarly, if we flip a blocking diagonal of T' to generate T’ the newly found diagonal will
be non-blocking, incident to vertex vy in T". For example, if we flip the diagonal (v1,va)
of the triangulation of Figure 3.5(a), we get the triangulation of Figure 3.5(b), where
(v, vs) is the newly found diagonal. This new diagonal (vz,vs) is a blocking diagonal of
the triangulation of Figure 3.5(1).

The rest of this section is organized as follows. Section 3.3.1 describes child to parent

relationship amnong the triangulations of a convex polygon P of n vertices. Section 3.3.2

-
&
;
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Figure 3.5: Illustration of generation of blocking diagonal; (a) old triangulation and (b)

new triangulation.

deals with the generation of children of a triangulation T in the genealogical tree 7 (P)
of P. Section 3.3.3 describes the data structures used to represent a triangulation T of

P. Finally, section 3.3.4 describes the algorithm to generate all the triangulations of P.

3.3.1 Child-Parent Relationship.

It is convenient to consider the child-parent relationship before considering the parent-
child relationship. Throughout the section, we will denote a triangulation by T and its
pa.rént by P(T).

We define the child-parent relationships among the triangulations of P with two goals
in mind. First, the differences between a triangulation T' and its parent P(T) should
be minimal, so that T can be generated from P(T) with minimal effort. Second, every
triangulation 7 of P must have a parent and only one parent in the genealogical tree
T(P). We achieve the first goal by ensuring that the parent P (T) of a triangulation T
can be found by flipping a single diagonal of T. That means T can also be found from its
parent P(T) by flipping a single diagonal of P(T'). The second goal, that is the uniqueness
of the parent-child relationship, can be achieved as follows.

Our idea of defining a parent-child relationship is that the parent P(T) of a triangu-
lation T must have a “clearer vision” than T Let T and T' be two triangulations of P.
We say that 7" has a clearer vision than T if the number of vertices visible from v; in

T is more than the number of vertices visible from vy in T. For example, three vertices
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are visible from vertex v, in the triangulation of Figure 3.6(a), whereas four vertices are
visible from vertex v in the triangulation of Figure 3.6(b). Therefofe the triangulation of
Figure 3.6(b) has a clearer vision than the triangulation of ‘Figure 3.6(a). We can easily
get a triangulation T” from T', where T' has a clearer vision than T, by flipping a blocking
diagonal (v, ver) of T. We say that the triangulation T’ is the parent of T if the diagonal
(vy, vy) is the “leftmost blocking diagonal” of T. The diagonal (vy, vy), b < ¥, of T is the
leftmost blocking diagonal of T if no other blocking diagonals of T is incident to a higher
indexed vertex than vy in T. For example, in the triangulation of Figure 3.6(a), (vs,vs)
is the leftmost blocking diagonal. Therefore we flip (vs, vg) of the triangulation of Figure

3.6(a) to find its parent, which is shown in Figure 3.6(b).

(b

Figure 3.6: Illustration of child-parent relationship; (a) child and (b) parent.

The above definition of the parent of a triangulation T' of a convex polygon P ensures
that we can always find a unique parent of a non-root triangulation T of P. From Lemma
3.3.1, a non-root triangulation 7" of P has at least one blocking diagonal, and from those
blocking diagonals of 7" we choose the one which is leftmost and we flip that diagonal to
find the unique parent P(T) of T

Based on the above parent-child relationship, the following lemma claims that every

triangulation of a convex polygon P of n vertices in present in the genealogical tree 7(P).

Lemma 3.3.2 For any triangulation T of a convez polygon P = (v, vq, -+, V), there ts

a unique sequence of flipping operations that transforms T into the root T, of T(P).

Proof. Let T be a triangulation other than the root of 7(P). Then according to

Lemma 3.3.1, T has at least one blocking diagonal. Let (vs, vy) be the leftmost blocking
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diagonal of T. We find the parent P(T).of T by flipping the leftmost blocking diagonal
of T. Since flipping a blocking diagonal of T results in a diagonal incident to vertex v,
in the new triangulation, P(T") has one more diagonals incident to v than T. Now, if
P(T) is the root, then we stop. Otherwise, we apply the same procedure to P(T") and
find its parent P(P(T)). By continuously applying this process of finding thé parent, we
eventually generate the root triangulation Ty of 7(P). | O
Lemma 3.3.2 ensures that there can be no omission of triangulations in the genealogical
tree T(P) of a convex polygon P of n vertices. Since there is a unique sequence of
operations that transforms a triangulation T of P into the root T, of T(F), by reversing
the operations we can generate that particular triangulation, starting at the root. We

give the details in the next section.

3.3.2 Generating the Children of a Triangulation in T (P)

In this section we describe the method for generating the children of a triangulation T in
T(P). .

To find the parent P(T) of the triangulation T', we flip the leftmost blocking diagonal
of T. That means P(T') has fewer blocking diagonals than T Therefore, the operation
for generating the children of T must increase the number of blocking diagonals in the
children of T'. Intuitively if we flip a diagonal (v1,v;) of T, which is incident to vertex v;
in T, and generate a new triangulation 7", then T’ contains one more blocking diagonal
than T. We call all such diagonals (vy,v;) as the candidate diagonals of T.

Note that, flipping a candidate diagonal of T may not always preserve the parent-
child relaﬁionship described in Section 3.3.1. For example, we generate the triangulation
of Figure 3.7(b) by flipping the candidate diagonal (v, v3) of the triangulation of Figure
3.7(a). The leftmost blocking diagonal of the triangulation of Figure 3.7(b) is' (v4, Us);
therefore the parent of the triangulation of Figure 3.7(b) is the triangulation of Figure

3.7(c), not the triangulation of Figure 3.7(a).
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AT
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Figure 3.7: Illustration of a flipping operation that does not preserve parent-child rela-

tionship.

Therefore to keep the parent-child relationship unique, we flip a candidate diagonal
(v1,v;) of T to generate a new triangulation T if only if flipping (w,v;) of T results
in the leftmost blocking diagonal of 7", We call such a candidate diagonal (vy,v;) of T
as a generating diagonal . The generating diagonals of a triangulation T of P can be
found as follows. Let (v, vp) be the leftmost blocking diagonal of a triangulation T of a
convex polygon P of n vertices. Then (v1, v;) is a generating diagonal of T ifj>b IfT
has no blocking diagonal then all diagonals of T' are generating diagonals. Thus all the
diago.nals of the root 7T, of T(P) are generating diagonals. All other candidate diagonals
of T are called non-generating . We call the set of generating diagonals of a triangulation
T as generating set C of T. For example, the triangulation in Figure 3.8(a) is the root
triangulation of the genealogical tree 7 (P) of a convex polygon P of 8 vertices. Therefore,
all the diagonals of the triangulation in Figure 3.8(a) are generating diagonals. In the
triangulation of Figure 3.8(b), (v1,24), (v1,vs) and (v, v7) are three generating diagonals,

whereas (v;,v3) is a non-generating diagonal.

5 V4 S V o
v.
v & v Yy
v, L) v v
¥,
8 Vl Vg Vl

Figure 3.8: Illustration of generating diagonals.

We now have the following lemmas.
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Lemma 3.3.3 The root T. of the genealogical tree T(P) of a convez polygon P ofn
vertices has n — 3 generating diagonals end any other triangulations in T (P) has less

than n — 3 generating diagonals.

Proof. The number of diagonals in any triangulation T' of a convex polygon Pofn
vertices is n — 3. Thus the maximum number of poséible generating diagonals is also
n—3. Since the root triangulation T; has all its diagonals as generating, 7, contains n—3
generating diagdhals. Any triangulation T' other than the root T, contains at least one
blocking diagonal, which is not incident to vertex v, in T'. Since generating diagonals must
be incident to vertex v;, any triangulation other than 7, has less than n — 3 generating

diagonals. m]

Lemma 3.3.4 Let (v1,v;) be a generating diagonal of a triangulation T of a conves poly-

gon P of n vertices. Then flipping (v1,v;) in T results in the leftmost blocking diagonal

of T(v1, vj)
Proof. Let (v, v) be the leftmost blocking diagonal of T. We first consider the case
where either v; = v, or v; = vr. |

Ifv; = vy, then (vy, v;, v) is a triangle of T (see Figure 3.9(a)) and after flipping (v1, v5)
of T we get (v;,v) as a diagonal in T'(vy, vy), for some 2 < j (see Figure 3.9(b)). Since
every face of T(vy,v;) is a triangle, (v1, v, v} is a triangle of T'(v1, v;). Therefore, (v;, Upt)
is the blocking diagonal of T(v1,v;). Since, (vr,vr) is the leftmost blocking diagonal of
T and vertex v, is not visible from vertex vy in T'(v1,v;), (v, vyr) is the leftmost blocking
diagonal of T (v, v;) '

If v; = vy, then (vy, v, ;) is a triangle of T (éeé Figure 3.9(c)) and after flipping
(v1,v;) of T we get (v;,v,) as a diagonal of T(vl,"el),j), for some @ > j (see Figure 3.9(d)).
Since every face of T'(vy,v;) is a triangle, (v1 U, 'u'_i) i.s-'_é; triangle of T (v, v5)- Therefore@

(vy,u;) is a blocking diagonal of T (v, v;). Since, (vr,vrf) is a leftmost blocking diagonal
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of T and (v, ;) is a blocking diagonal of T'(v1, v;), where i > 7', (v,,v;) is the leftmost
blocking diagonal of T'(v1, v;)

We now consider the case where j > r* (see Figure 3.9(e)). Let (v, vy) be the diagonal
which appears in T(v1, v;) after flipping the diagonal (v1,v;) of T (see Figure 3.9(f)). Every
face of T(vll,vj) is a triangle. Thus, (v1,v,, V) is a triangle of T(v1,v;) and (v, Vgr) I8 a

blocking diagonal of T'(vy,v;). Since, ¢ > j, we have ¢ > r’. Therefore, (vg, vy} is the

leftmost blocking diagonal of T'(v1,v;). a0
% Ya=Yr=Y; % Y : K Y=Y
V6= Vo Y u6 = vq, Y= Yq v6= Vl,,=vJ L
VT V2 V.', V2 VT Vz
VS v( Vg V|
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Figure 3.9: Ilustration of Lemma 3.3.4.

Lemma 3.3.5 Let T be a triangulation of a convez polygon P of n vertices. Let T (v1,v;)
be the triangulation generated by flipping the diagonal (vi,v;) of T. Then T 1s the parent
of T(v1,v;) in the genealogical tree T(P) if and only if (v1,;) 15 a generating diagonal of
T.

Proof. Necessity. Assume that (v1,v;) is a non-generating diagonal of T'. 1t is sufficient
to show that 7T is not the parent of T(vi,v;). Here, we have j < r (see Figure 3.10(a)).
Let (vg,vy) be the diagonal which appears in T(v1,v;) after flipping (vy,v;) of T (see
Figure 3.10(b)). Since the diagonal (v;,v,) of T is also a diagonal of T(vy,v;), we have
q < r.' Therefore, g < . Thus, (v, v) is the leftmost blocking diagonal of T(w,v;) and

T is not the parent of T'(vy,v;).
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Sufficiency. Assume that (v, v;)isa generating diagonal of T. We show that T is the
parent of T(vy,v;) in T(P). |

Let (vg, vy) be the diagonal which appears in T(vy,v;) after flipping (vy,v;) of T. To
prove that T is the parent of T(vy,;) in T (P), we must show that (g, vy ) is the leftmost

blocking diagonal of T'(vy,v;).

 Wefirst consider the case where T is the root of 7(P). T does not have any parent and
all the diagonals of T are incident to vertex v;. Therefore, (v,,vy) is the only diagonal
of T(vy,v;) which is not incident to vertex ;. Thus, (v, vy) is the leftmost blocking
diagonal of T(vl, ;). '

We now consider the case where T is not the root of T(P). Then by Lemma 3.3.4,

(vg, vy} is the leftmost blocking diagonal of T'(vy, ;). 0
% Yi=Va
Ve Vs
v, Y=Y
Vs Y
(b)

Figure 3.10: Illustration of Lemma 3.3.5.

According to Lemma 3.3.5, if the generating set C of a triangulation T is non-empty,
then we can generate each of the children of T' in T (P) by flipping a generating diagonal
of T. Therefore, the number of children of a triangulation T' in T (P) will be equal to the

cardinality of the generating set. Thus, the following lemma holds.

Lemma 3.3.6 The number of children of a triangulation T of a convezr polygon P 1is
equal to the number of diagonals in the generating set of T The root of T{P) has the

mazimum number of children.

R
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3.3.3 The Representation of a Triangulation in T(P)

The child generation rule defined in Section 3.3.2 ensures that every triangulation T of
a convex polygon P of n vertices is present in the geneaiogical tree 7(P) and every
triangulation T except the root Ty of 7(P) is generated from its parent. In this section
we describe a data structure that we use to represent a triangulation T' and that enables
us to generate each child triangulation of T in constant time. |

For a triangulation T of a convex polygon P of n vertices, we maintain three lists: L,
C and O to represent T completely. Here L is the list of diagonals of T and C is the
generating set of 7. For each diagonal (vy,v;) in the generating set C of T, we maintain a
corresponding opposite pair (o, V), Such that (v1,v,, v;,Vy) IS a convex quadrilateral of
T. Note that, 0 < § and o' > j. O is the list of list of such opposite pairs. For example,
in Figure 3.11, the generating diagonal (v, v4) has the opposite pair (vs, vg) -

Since we generate triangulations of P starting with the root T, we find the represen-
tation of 7, first. The diagonals of T; are listed in L in counterclockwise order. That is,
for T,, L = {(v1,vn-1), (v1,0n-2)," " (v1,v3)}. The generating set (' is exactly similar to
the list L of T3 € = {(v1, Un=1), (¥1,Un-2), -, (v1,v4), (v1,v3)}. Corresponding list of op-
posite pairs is O = {(tn-2,Un): (Vn-3, Un-1), -, (v, vs), (U2, v4) }; that means, (Vj-1,Vj41)
is the opposite pair of (vy,v;) in T3, 3 <j<n—1

Let T'(v1,v;) be a child triangulation of T in T (P) generated from T by flipping the
diégonal (vy,v;) of T. Let (v, viy) be the blocking diagonal which appears in T'(vy, v;) after
flipping (vy,v;) of T. The list L of T'(vq,v;) can be found easily from the representation
of T by removing (v;,v;) from the list L of T' and adding {(vy, vy) to it. Note that one
can easily find the blocking diagonal (v, vy) of T", since (vp, vy) is the opposite pair of
(v1,v;) in the representation of T.

Tn the next section we give the detailed algorithm for generating the triangulations of
P and.show that the representation of a child triangulation 7" of T' can be found from

the representation of T in constant time.

W
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Figure 3.11: Illustration of (a) a generating diagonal with opposite pair and (b) blocking

diagonal generated by flipping the generating diagonal.

3.3.4 The Algorithm

In this section we give an algorithm to genel;ate all triangulations of a convex polygon P
of n vertices. | |

Let vy, Ujps " Vs 1 > J2 > 0 2 j, be the sequence of k vertices of a triangulation
T of P such that (vi,v5,), (¥, V), (v1,75,) are the diagonals of T and each of the
diagonals (vy,v;,),1 <7 <k, isa generating diagonal of 7. Then, T has a generating
set C = {(v1,25,), (01,05,), -+ (V1,050 } of & generating diagonals, for 0 < k& < n —
3. For T,, C = {{v1,Un-1), (1, Un—2)s "+ (V1, Va), (v1,v3)}. For each diagonal (v1,v4) of
T, we keep an opposite pair (Uo,'l;or) in T. O is the set of such pairs. For T., O =
{(vn—2,Vn), (Va3 Un-1)y " (v3, vs), (U2, vs)} as shown in Section 3.3.3. We find the sets
C and O of a child T of T by updating the lists C and O of T while we generate 7"

We now describe a method for generating the children of a triangulation 7" in 7 (P).
We have two cases based on whether 7" is the root of 7 (F) or not.

Case 1: T is the root of 7(P).

In this case, all the diagonals of 7" are generating diagonals and there are a total of
n—3 suth diagonals in 7. Any of these generating diagonals of T" can be flipped to
generate a child triangulation- of T. For example, the root of the genealogical tree in
Figure 3.2 has three generating diagonals; tht_fs it-hasifihree children as shown in Figure
3.2. Do
Case 2: T is not the root of 7{P).

<
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Let (v, vy) be the leftmost blocking diagonal of T'. Consider a diagonal (v, v;) of T.
If 7 > b, then (v1,v;) is a generating diagonal of T". Therefore, according to Lemma 3.3.5,
T(vy,v;) is a child of T in T(P). Thus, for all diagonals (v, v;) of T such that j > b, a
new triangulation is generated by flipping (v1, v;).
If j < b, then (v1,v;) is a non-generating diagonal of 7" and according to Lemma 3.3.5,
we can not flip {v;,v;) to generate a new triangulation from 7' |
Based on the case analysis above, we can generate all triangulations of a convex
polygon P of n vertices. The algorithm is as follows.
Procedure find-all-child-triangulations(T)
begin
'output T; {output the difference from the previous triangulation}
if T has no generating diagonals then return ;
Let (vp, vy) be the leftmost blocking diagonal of 7T
forallj > b
if (v1,v;) is a diagonal of T then
find-all-child-triangulations(T'(v;, v;));  {Case 2}
end;
Algorithm find-all-triangulations(n)
begin |
output root Tr;
=T,
for j=n-—-1to 3
find-all-child-triangulations(T (v, v;}); {Case 1}
end.

The following theorem describes the correctness and performance of the algorithm

find-all-triangulations.

Theorem 3.3.7 Given a convex polygon P of n vertices, the algorithm find-all-triangulations
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generates all the triangulations of P in O(1) time per triangulation on average, without

duplications and omissions. The space complexity of the algorithm is O(n).

Proof. Let T be a triangulation of P and T'(vy,v;) be the triéngulation generated from
T by flipping the diagonal (vi,v;) of T. The algorithm find-all-triangulations gener-
ates T(vy,v;) from T if only if (v1,v;) is a generating diagonal of T'. Therefore, according
to Lemma 3.3.5, T is the parent of T'(vy,v;). That means, each triangulation 7" of P is
generated from its parent only; therefore, duplication can not occur. To prove that no
omission occurs, we use Lemma 3.3.2. Lemma 3.3.2 implies that for any triangulation T
of P, there is a unique path from the root T. to T in 7(P). Thus, to show that the algo-
rithm find-all-triangulations does not omit any triangulation, it is sufficient to prove
that the algorithm find-all-triangulations generates all the children of a triangulation
T. By Lemma 3.3.5, to generate the children of a triangulation T', only the generating
diagonals of T" need to be flipped. Since the algorithm find-all-triangulations flips all
the generating diagonals of a triangulation T' to generate new triangulations from 7', all
the children of T in 7 (P) are generated.

The complexity of the algorithm can be found as follows. We need to store the
generating set C for the current triangulation 7" of P. Since the maximum cardinality of
Cis n — 3, it take O(n) space to store it. Along with ¢, we need to maintain for T, the‘
set of opposite pairs O and update it while generating children. We also need to maintain
another list L for listing the diagonals of T. To generate the triangulations of P, we start
at the root of 7(P). For the root of 7(P), C is identical to L and C can be found in
O(n) time. When a generating diagonal of a triangulation T is flipped, that diagonal is
replaced in the list I of T by its opposite pair in T to get the list L of the child. Since we
use a recursive procedure to generate the triangulations without constructing the whole
T(P), and the depth of the tree is n — 2 (number of diagonals in the root plus one), the—
algorithm uses O(n) space.

Now the question is how can we update C and O7 By implementing these two sets
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using linked lists and storing appropriate pointers at each node on the path from the root
of T(P) to the current triangulation T', we can do it in constant time. Let (vy,v;) be the
" diagonal of T' to be flipped. The updated lists € and O correspond to the newly generated
child of T'.

Flipping the generating diagonal (v1,v;) of T can change the opposite pairs of max-
imum two other candidate diagonalslof T in the representation of 7*(v1,v;). In our al-
gorithm, we only need to change the opposite pairs of candidate diagonals of T'(v;,v;).
Let {(v1,v;), (v1,v;) and (vy,vx) be three candidate aiagonals of T, kl < 7 < i, such that
{v1, Uk, v, ;) 1S & convex quadrilateral of T', as shown in Figure 3.12. |We now flip (v, v;)
of T to generate the child T'(vi,v;) of T. Flipping the diagonal (vy,v;) of T changes the
opposite pairs of the diagonals (v;,v;) and (vy,vg) of T in T(vy,v;). The changes can be

done as follows.

Figure 3.12: Flipping (v, v;) can affect two candidate diagonals.

Let {v,,v,) be the opposite pair of (v1,v;) in T. Here 0 = & and|o’ = 4, as shown in

Figure 3.12. Let the opposite pair of (v1,v) in T" be (v, vy). Then ! = j and the opposite
pair of (vy,v;) in T(v1,v;) is (Vo, vr). Similarly, if the opposite pair of (v, vx) is (vs, vs)
in T, then s’ = j and the opposite pair of (v, v) in T (v, v;) will be (vs, o). Figure 3.13
shows the update operations. Clearly, these updates can be done in O(1) time.

Thus, if a triangulation T has k children, all of them can be generafed in O(k) time.

Therefore each child of T is generated in O(1) time on average. O

%

{R. I3
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y.=VvV.=V =V, -y =V
V5= vl= Vd V2=VS
=V V. l
V6 i 1

(b)

Figure 3.13: Tllustration of update operations for opposite pairs of two affected edges; (a)

parent and (b) child.

3.4 TUnlabeled Triangulations of a Convex Polygon

In this section we modify our algorithm for gencrating all labeled triangulations of a
convex polygon P of n vertices to generate unlabeled triangulations of P.

Generating unlabeled triangulations of a convex polygon P is more difficult than gener-
ating labeled triangulations; if vertices of P are not numbered then there arise “rotational”
and “mirror repetitions” among the triangulations of P. Two unlabeled triangulations of
a convex polygon are rotationally equivalent to each other, if one can be found by rotating
the other one, when the labels are removed. Similarly, two unlabeled triangulations of a
convex polygon are mirror ﬁfnage of each other, if one can be found by taking the mirror
image of the other one. For example, the triangulations of Figure 3.14(a) and (b) are
rotationally similar if we remove the labels. The two triangulations of Figure 3.15 are
mirror images of the one another if no labels are used. In this section, we modify our
algorithm for generating all triangulations of a convex polygon to avoid such repetitions.
The main idea of the modified algorithm is to consider each triangulation of P as belong- |
ing to a particular class. Those triangulations of P which are rotationally equivalent or
mirror images of one another, forms a class of triangulations. We choose one particular
triangulation from each class as the representative of that class. The modified algorithm
still uses the labels while generating the triangulations, but avoids any rotational or mir-

ror repetitions by outputting a triangulation only if it is the representative of a particular
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class. Thus, our modified algorithm constructs the tree of triangulations Tg of a convex
polygon of six vertices as shown in Figure 3.16. Note that, only 3 triangulations are there

in Figure 3.16, while the tree of triangulations of Figure 3.2 contains 14 triangulations.

Ya Y3 vy Vs
VS Vz vj V2
v6 vl V6 vl
(a) (b)

Figure 3.14: Triangulations of (a) and (b) are rotationally equivalent when the labels are

removed.

Va V3
Vs Y
‘V6 Vl
(b)

Figure 3.15: Triangulations of (a) and (b} are are mirror image of each other when the

labels are removed.

We now give a new representation of each triangulation of a convex polygon that
enables us to avoid any rotational or mirror repetitions easily. Let T be a triangulation of
P where the vertices of P are labeled sequentially from v to Ua. A labeled degree sequence
{dy,dg," -, dyn) of T is the sequence of degrees of the vertices, where d; is the degree of v;
in the graph associated with 7. A vertex with degree 2 is called an ear of T. We thus

have the following lemma.

Lemma 3.4.1 Let T be a labeled triangulation of a conves polygon P of n vertices. Then

T can be represented uniquely by its labeled degrec sequence.

Proof. Let {(dy,ds, -, dn) be the labeled degree sequence of T. We note that T has at

least two ears. Let v; is the clockwise first ear. Remove it and decrease the degrees of its
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Figure 3.16: Illustration of genealogical tree of six vertices when rotational and mirror

repetitions are not allowed.

two neighboring vertices by one. Apply the procedure recursively until the vertices vy ans
vy are left. Thus we get a sequence of vertices vi,, Uiz, " Vino- INOW adding the veriices
in reverse order we can generate 7. Thus there is a bijection between the triangulations

of a convex polygon and the labeled degree sequences of the triangulations. O

3.4.1 Removing Rotational Repetitions

First we describe the algorithm for avoiding rotational repetitions. The following fact is
very important for that purpose.
We have the following idea to avoid rotational repetitions. One can observe the fol-

lowing fact.

Fact 3.4.2 Let T and T' be two triangulations of a convez polygon P of n vertices, which
are rotationally equivalent to each other. Then, by rotating the labeled degree sequence of

T, we get the labeled degree sequence of T'.

As an illustration of the Fact 3.4.2, the triangulations of Figure 3.14{a) and (b) have the

labeled degree sequences (3,2,4, 3, 9,4) and {4,3,2,4,3,2) respectively. By right rotating
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the labeled degree sequence of the triangulation of Figure 3.14(a) 4 times, we get the
labeled degree sequence of the triangulation of Figure 3.14(b).

Let T and T' be two triangulations of a convex polygon P of n vertices, which are
rotationally equivalent to each other. Let (d1,dy, -, dn) and {dj, t, -+, d,) be the la-
beled degree sequences of T and T’ respectively. Let di = dp,d2 = dhy e i1 = di_y
and di > d for some k, 1 <k < n. We say that the sequence {d1,da, -, d,) is greater
than the sequence (d,,d5, --,d,) and T has a greater sequence than 7'. For example,
the triangulations of Figure 3.17(a) and (b} have the degree sequences (5,2,5,2,3, 4,-3, 2)
and (4,2,3,4,3,3,2,5) respectively and the first sequence is greater than the second one.

Thus the triangulation of Figure3.17(a) is greater than the triangulation of Figure 3.17(b).

V, \% 4 W v4
V6 V3 v6 v3
"7 ? g Y7 Y
v g v g Vl
(a) (b)

Figure 3.17: Hllustration of two triangulations where one has greater degree sequence.

Let S be the set of those triangnlations of a convex polygon of n vertices, where the
triangulations are rotationally equivalent to cach other. Let T be the triangulation in 5
whose degree sequence is greater than all other triangulations in S. Then, the labeled
degree sequence of T is the canonical representation of 5. We say that T has the greatest
labeled degree sequence and T is the representative of S. We modify our algorithm to
avoid any rotational repetitions as follows. We output each triangulation T only if it has
the sreatest labeled degree sequence. Let (dy,ds- - dn) be the degree sequence of T. If
d, > d; for 2 < i < n, then T has the greatest labeled degree sequence. This can be found
in O(1) time as explained later. Otherwise, we generate n — 1 other degree sequences
by right rotating T’s degree sequence and check whether 7’s sequence is greater. In this

case, it takes O(n?) time to find whether T has the greatest labeled degree sequence.
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For the triangulation T, we need to maintain an array D to store the degree sequence.
It takes O(n) space. Let (v1,v5)is a generating diagonal in T' with opposite pair (Vo, Vo).
Flipping (v1,v;) changes the degrees of four vertices. The degrees of v, and v; are reduced
by one and the degrees of v, and v, are increased by one. All these updates can be
done in O(1) time. Let {dy,d, - .,d") be the resultant degree sequence and T" is the
new triangulation. We can easily check whether d) > 'di for 2 <4 < n by storing the
highest degree dmq. among nodes other than v; and updating it while generating a new
triangulation. Now there are three cases.
Case 1: If d] > dmaq, then output T
Case 2: 1f d| = dmaz, then check whether 7" has the greatest labeled degree sequence. If
YES, then output 7"
Case 3: 1f d} < dpas, then ignore 7" and prune the subtree of triangulations rooted at T

Let S be the set of those triangulations of a convex polygon P of n vertices, where
the triangulations are rotationally equivalent to each other. Let T be the triangulation
n S whose degree sequence is greater than all other triangulations in S. Then, the
labeled degree sequence of T is the canonical representation of 5. We say that T has the
greatest labeled degree sequence and T is the representative of S. To avoid any rotational
repetitions among the triangulations of P, we output each triangulation T of P only if it
has the greatest labeled degree sequence. Let {dy,dy - - - dn) be the degree sequence of T. If
d, > d;for2<i<n, thenT has the greatest labeled degree sequence. This can be found
in O(1) time as explained later. Otherwise, we generate n — 1 other degree sequences '
by right rotating T"s degree sequence and check whether T’s sequence is greater. In this
case, it takes O(n?) time to find whether T has the greatest labeled degree sequence. We

also need to maintain for 7" an array to store the degree sequence. It takes O(n) space.
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3.4.2 Avoiding Mirror Repetitions

We now further modify our algorithm of generating all triangulations of a convex polygon
to avoid any mirror image repetitions.

Let T be a triangulation of an n vertex convex polygon having labeled degree sequence
(d1,dy, -+, dy). Assume that T has the greatest labeled degree sequence than all other
triangulations which are rotationally similar to T Let 7' be the triangulation which is
the mirror image of T. Using the following fact we can find the labeled degree sequence

of T".

Fact 3.4.3 Let T and T' be two triangulations of a convez polygon of n wvertices, which
are mirror images of each other. Let T has the labeled degree sequence {di,da, ", dn).

Then the labeled degree sequence of T is {dn,dn-1," -, d2, dy).

For example, the triangulation of Figure 3.15(a) has the degree sequence (4,2,3,4,2,3).
The triangulation of Figure reffig:mirrorimage(b), which is the mirror image of the trian-
gulation of Figure 3.15(a), has the reverse degree sequence (3,2,4,3,2,4).

Now, using the labeled degree sequence of T, we can avoid mirror image repetitions
as follows. We start with the sequence (d,,d,_1, --,dz,d1}. and from it we generate
n — 1 other sequences by right rotation. These n — 1 sequences corresponds to all the
triangulations which are rotationally similar to T". We compare the degree sequence of
T with all these sequences to determine whether T7’s sequence is the greatest. Thus, we
have to compare T’s sequence with a total of n sequences. This takes O(n?) time. If
T’s sequence is found greater than all these sequences, then we output T. Otherwise we
discard T and prune the subtree rooted at T Since all we need is to store the sequence
of T, the space complexity is O(n).

Thus we have the following theorem.

Theorem 3.4.4 For a convez polygon P of n vertices, all the triangulations of P can be
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found in time O{n?) per triangulation, where the vertices of P are not numbered, avoiding

the rotational and mirror image repetitions. The space comple:m’ty is O(n).

3.5 Conclusion

In this chapter we gave two algorithms. The first one generates all labeled triangulations
of a convex polygon P of n vertices. In this case all the vertices of P are numbered
sequentially. The second algorithm generates unlabeled triangulations of a convex polygbn
P of n vertices, where the vertices of I are not numbered and avoids rotational and mirror
image repetitions among the triangulations of P.

The main idea behind the algorithms was to generate each triangulation from previ-
ous one by making a constant amount of local changes. For that purpose we defined a
tree structure among the triangulations of . The idea can be traced back to the well
known technique called Combinatorial Gray Code Approach, although the main feature
of our algorithm is the data structure we used to represent each triangulation. That data
structure is crucial in developing the algorithm for generating all triangulations of a given
plane graph, as described in the next chapter. Our algorithm for generating all labeled
triangulations of a convex polygon P of n vertices genera.tés each new triangulation in
O(1) time and uses O{n) space. The algorithm for generating unlabeled triangulations
is based on the algorithm for labeled triangulations and generates each triangulation in

O(n?) time with linear space complexity.



Chapter 4

Triangulations of Plane Graphs

4.1 Introduction

In this chapter we present the main result of this thesis, an algorithm for generating all
triangulations of a biconnected plane graph G. Our algorithm for generating all trian-
gulations of a biconnected plane graph G is based on the algorithm for generating all
triangulations of a convex polygon PP of n vertices as described in Chapter 3. Here also
we define a parent-child relationship among the triangulations of G and denote the cor-
responding genealogical tree of G by T(G). To make the material accessible, we describe
the algorithm in two parts. We first handle the case where ( is a biconnected outerplanar
graph and describe in detaﬂ the algorithm for generating all triangulations of G’ Later
we generalize the algorithm for generating all triangulations of a biconnected outerplanar
graph to generate all triangulations of a biconnected plane graph.

The rest of the chapter is organized as follows. In Section 4.2 we give an algorithm that
generates all triangulations of a biconnected outerplanar graph G of n vertices. Section

4.3 describes the algorithm for generating all triangulations of a biconnected plane graph.

Finally, Section 4.4 is the conclusion. - O
e
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4.2 Algorithm for Biconnected Outerplanar Graphs

Let (@ be a biconnected outerplanar graph of n vertices. The genealogical tree of the

biconnected outerplanar graph G of Figure 4.1(a) is shown in Figure 4.1(b).

Figure 4.1: Illustration of (a) an outerplanar graph G of eight, vertices and (b} genealogical

tree 7(G) of G.

Let F be an inner face of a biconnected outerplanar graph G, where the boundary of
F contains s vertices. Then the boundary of the face F' can be drawn as the boundary of
a convex polygon P of s vertices and a triangulation of P corresponds to a triangulation
of the face F of G. For example, the face {v1,vs, vs, vs, v7) of the graph in Figure 4.2(a)
can be drawn as the convex polygon P in Figure 4.2(b). Then the triangulation of P in
Figure 4.2(c) corresponds to the triangulation of the face {vy, vy, vs, Vg, v7) Of the graph
of Figure 4.2(a), as shown in Figure 4.2(d). Our idea is to apply the algorithm for
generating all triangulations of a convex pol&’gon to each of the inner faces of G. By
finding the triangulations of the inner faces of & and then combining those triangulations

we generate the triangulations of ¢ itself.
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(d) (e}

Figure 4.2: An inner face of a biconnected outerplanar graph can be viewed as a convex

polygon.

4.2.1 Finding the Root

In this section we give an algorithm to find the root triangulation of the genealogical tree
T(G) of a biconnected outerplanar graph G of n vertices.

Finding a root for 7(G) is more difficult than finding the root for T(P). The idea is
to treat each inner face Fy of G as a convex polygon F; and find the root triangulation
of the genealogical tree of P; using the definition of root triangulation of Section 3.3.2.
From the root triangulation of the genealogical tree of F; we get a triangulation of F;. By
combining the triangulations found for each face F; of G this way, we get a triangulation
of the graph G. We take this specific triangulation as the root triangulation T, of the
genealogical tree 7 (G) of G. Figure 4.3(a) shows a biconnected outerplanar graph G of
10 vertices. Corresponding root in 7(G) is shown in Figure 4.3(b).

Assume that the biconnected outerplanar graph G has k faces, labeled noE, - F
We say that the face F; precedes the face F; whenver 7 < j. For each face Fj of (G, there
is a convex polygon P, associated with F}, where the number of vertices of F; and F; are
same and the vertices of P; are labeled similar to the vertices of F;. The face I has the
candidate set C;, where C; is the generating set of the root triangulation of the genealogical

tree of P,. The generating set C° of G is the ordered union of Ci,Cy, -+, Cr. That is
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b

Figure 4.3: Illustration of (a) a biconnected outerplanar graph of 10 vertices and (b)

corresponding root in 7 (G)

C° = CLUC,U- - -UC and the edges of C; are listed in C° before the edges of C;, whenever
i < j. For example, in Figure 4.3(b), C1 = {(v1,v9), (v1,28)}, Ca = {(v1,vs3)}, and C3 =
{(v1,ve), (v1,vs)}. Thus C° = Cy U CyUCs = {(v1, %), (v1,vs8), (v1,v3), (v1, ve), (V1,v5)}-
We traverse the face F} of G to find the generating set C; of F;. We traverse the face F;
of G using the doubly connected adjacency list representation of G [NR04]. Face I can
be traversed in time proportional to the number of vertices on the boundary of it. Assume
that we traverse the face Ft- clockwise starting at vertex v;. We find the candidates edges
of F, and corresponding opposite pairs as follows. Let v; be a vertex on the boundary of
the face F;. The edge (v;,v;) is added to the generating set C; of Iy if and only if (v5.v)

is not an edge of G. Thus we have the following lemma.

Lemma 4.2.1 Let G be a biconnected outerplanar graph of n. wertices. Then the root

triangulation of the genealogical tree T(G) of G can be found in O{n) time.

Proof. In a biconnected outerplanar graph G of n vertices, the maximum number of
edges is 2n — 3. The number of inner faces of (7 is at most » — 2. Since each face F; of G
can be traversed in time proportional to the number of edges on the boundary of F; and
each edge can be shared by at most two faces of G, traversing all the faces of G requires
time proportional to the total number of edges of G. Thus the root of 7(G) can be found

in O(n) time. ' O
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4.2.2 The Child Generation Rule

In this section we give the rules for generating child triangulations of a triangulation T
of a biconnected outerplanr graph G.

Let F; be a face and T be a triangulation of G. The current triangulation of the face
F; in T corresponds to a triangulation of the convex polygon P associated with F;. The
generating diagonals of the current triangulation of P; are called the candidate edges of
F, in T and the leftmost blocking diagonal of the current triangulation of F is called the
blocking edge of F; in T. If there is no genérating diagonals in the current triangulation
of P;, then F; has no candidate edges in T'. The candidate edges of F; in T are called
generating edges of T' if there is no blocking edge in any of the faces F; in T, j < i. We
call the face F: a generating face of T if Fj contains generating edges. To generate a child
triangulation of a triangulation T' of GG, we find a generating face " of T and then flip a
candidate edge of F.

A generating face F in a triangulation T of G can be found as follows. Let T be the
root triangulation of 7(G). Then all the faces of G are generating faces of T'. Otherwise,
assume that 7 is generated from its parent by flipping a candidate edge of the face F; of
G'. Then all the faces F;, j < ¢ are the generating faces of T

The above child generation rule ensures that each child of a triangulation T of G can

be generated in O(1) time. For the triangulation T', we maintain three lists; the list of

candidate edges C°, the list of opposite pairs O°, and the list of edges L° representing 7.
It requires O(n) space to store the lists. Updating the lists are similar to the procedures
explained in Section 3.3. Note that, flipping an edge of face I affects the candidate edges
of the face F; only.

Thus we have the following theorem.

Theorem 4.2.2 Let G be a biconnected outerplanar graph of n vertices. Then the chil-

dren of a triangulation T in T{G) can be generated in time O(1) per triangulation, with

W
<
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O(n) space complezity.

4.3 Algorithm for Biconnected Plane Graphs

The algorithm for generating all triangulations of a biconnected outerplanar graph can be
readily extended to a biconnected plane graph. Let G bé a biconnected plane graph of n
vertices. Given the doubly connected adjacency list representation of G‘, we can find the
root triangulation of the genealogical tree of G in O(n) time. We maintain the generating
set similarly as in biconnected outerplanar graph. Generating the new triangulations from
a triangulation of the biconnected plane graph is similar to the biconnected outerplanar
graph and cases are also same. Since the number of edges in any plane graph is bounded
by a linear function of n, the space complexity is also linear.

While generating triangulations of plane graphs, we have to triangulate the outer face
also. This can be done easily, since triangulating the outer face is similar to triangulating
an inner face. For example, boundary of the outer face of the graph of Figure 4.4(a) is
shown in Figure 4.4(b} and Figure 4.4(c) is one possible triangulation of that outer face.
We can consider the outer face as an inner face and the triangulation of Figure 4.4(d)
corresponds to the triangulation of Figure 4.4(c).

Thus we have the following theorem.

Theorem 4.3.1 Given a biconnected plane graph G of n vertices, the algorithm for gen-
erating all triangulations of G generates each triangulation in O(1) time, with O(n) space

complezity.

4.4 Conclusion

In this chapter we gave algorithms that generate all triangulations of a biconnected out-

erplémar graph and a biconnected plane graph. Both of these algorithms are based on
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g ; v 1% V
(a) b)
© {d)
Figure 4.4: Triangulating outer face of a plane graph; (a) the graph, (b) boundary of the

outer face, (c) one triangulation of the outer face and (d) equivalent triangulation of the

inner face.

the algorithm we described in Chapter 3 that generates all labeled triangulations of a
convex polygon. The algorithms described in this chapter requires some preprocessing of
the given graph G to find the root of the tree of triangulations or the genealogical tree of
G. Starting at the root triangulations, all other triangulations of G are generated where
each triangulation is generated from previous one in O(1) time using only O(n) space,

where n is the number of vertices of G.



Chapter 5
Conclus‘i(‘)n

This thesis deals with algorithms for generating all triangulations of a plane graph. We
have given efficient algorithms to generate all triangulations of a convex polygon P of n
vertices and based on that algorithm developed algorithms for generating all triangulations
of a biconnected outerplanar graph and biconnected plane craph.

We first summarize each chapter and its contributions. In Chapter 1 we have given
a brief description of the problem we have addressed in this thesis and discussed our
motivations behind solving the problem. We also have described the main algorithmic
challenges that any enumerations algorithm has to face and reviewed some of the existing
literature. |

In Chapter 2 we have introduced graph theoretical terminologies that have been used
throughout this thesis.

In Chapter 3 we have given two algorithms. The first algorithm generates all triangu-
lations of a convex polygon P of n vertices where the vertices of P are labeled sequentially.
The algorithm generates each triangulation of P in O(l) time per triangulation and uses
O(n) space. The other algorithm of this chapter generates all unlabeled triangulations of
P in worst case time Q(n?) per triangulation using only linear space. .

In Chapter 4 we have given algorithms that generate all triangulations of a biconnected
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outerplanar graph and a biconnected plane graph. The algorithms are based on the
algorithm for generating all triangulations of a convex polygon P of n vertices given in
Chapter 3. The algorithms in this Chapter generate each triangulation of a biconnected
outerplanar graph or a plane graph G of n vertices in time O{1) per triangulation with
liner space complexity.

The following problems related to the generation of triangulations of graphs and poly-

gons are still open.

1. Develop an algorithm that generates all triangulations of a connected plane graph.

2. Is there any constant time algorithm that generates unlabeled triangulations of a

convex polygon?

3. Develop an algorithm that generates all triangulations of a simple polygon.
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