
M.Sc. Engg. Thesis

Efficient Algorithms for
Generating All Triangulations of

Plane Graphs.

by
Mohammad Tanvir Parvez

Submitted to

Department of Computer Science and Engineering
in partial fulfilment of the requirments for the degree of
Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)

Dhaka 1000

March 2006,
,
c_

----.--- ._--- -_. _. .-- - --.., /

1111I11111!\lbll~~\'~IIIIII\1 \;. \"
. :..,~t'

The thesis titled "Efficient Algorithms for Generating All Triangulations of Plane
Graphs," submitted by Mohammad Tanvir Parvez, Roll No. 040405013P, Session April 2004,
to the Department of Computer Science and Engineering, Bangladesh University of Engineering
and Technology, has been accepted as satisfactory in partial fulfillment of the requirements for
the degree of Master of Science in Computer Science and Engineering and approved as to its
style and contents. Examination held on March 8, 2006.

Board of Examiners

Chairman
(Supervisor)

.~

1
Dr. Md. Saidur RahmaJl
Associate Professor
Department of CSE
BUET, Dhaka 1000

1.

Dr. Muhammad Masroor Ali
Professor & Head
Department of CSE
BUET, Dhaka 1000

Member
(Ex-officio)

3.
Dr. Md. Abul Kashem Mia Member
Professor
Department of CSE

:UET,D7~~

Dr. Masud Hasan
Assistant Professor
Department of CSE
BUET, Dhaka 1000

Member

~, 'i;V c-J1d5. _

Dr. Md. Elias
Associate Professor
Department of Mathematics
BUET, Dhaka 1000

Member
(External)

Candidate's Declaration

It is hereby declared that this thesis or any part of it has not been submitted elsewhere
for the award of any degree or diploma.

~.Iohammad Tanvir Parvez
Candidate

ii ..

Contents

iii

"\

CONTENTS

2.4.2 Face Traversal Algorithm

2.5 Algorithms for Enumeration Problems

2.5.1 Combinatorial Gray Code Approach

2.5.2 Family Tree Approach

2.6 Catalan Families .

3 Triangulations of Convex Polygons

3.1 Introduction.

3.2 Basic Idea . .

3.3 Labeled Triangulations of a Convex Polygon

3.3.1 Child- Parent Relationship

3.3.2 Generating the Children of a Triangulation in T(P)

3.3.3 The Representation of a Triangulation in T(P)

3.3.4 The Algorithm .

3.4 Unlabeled Triangulations of a Convex Polygon

3.4.1 Removing Rotational Repetitions

3.4.2 Avoiding Mirror Repetitions

3.5 Conclusion .

4 Triangulations of Plane Graphs'

4.1 Introduction....................

4.2 Algorithm for Biconnected Outerplanar Graphs

4.2.1 Finding the Root .

4.2.2 The Child Generation Rule

4.3 Algorithm for Biconnected Plane Graphs

4.4 Conclusion.................

5 Conclusion

v

30
31
32

34

34

36
36
37

38

41
43

48

49
53

55

58

59

60
60
61

62
64
65
65

67

List of Figures

1.1 Triangulation of a plane graph by adding edges. 3

1.2 Illustration of the straight line grid drawing algorithm. 5

1.3 Illustration of the straight line grid drawing algorithm. The graph is tri-

angulated in a different way than in Figure 1.2 6

1.4 Illustration of the algorithm for finding rectangular floorplan. . 7

1.5 Illustration of the algorithm for finding rectangular floorplan. The graph

is triangulated in a different, wa:jT;thanin Figure 1.4 8

1.6 Illustration of the Art Gallery Problem 9

1.7 Graph of triangulations of convex polygons of six vertices. 13

1.8 Illustration of tree of triangulations of convex polygons. 14

1.9 Illustration of splitting operation. 14

1.10 Illustration of the generation of new triangulations from an old one. 15

1.11 Illustration of the tree of triangulations of biconnected based plane trian-

gulations. 15

2.1 Illustration of a polygon. 19

2.2 Illustration of a graph. . 20

2.3 Illustration of planar embedding. 21

2.4 Illustration of triangulated polygons (a) triangulation of a simple polygon

and (b) triangulation of a convex polygon. 21

2.5 Two ways of triangulating a convex polygon of 6 vertices. 22

vi

LIST OF FIGURES vii

3.1 Illustration of (a) labeled and (b) unlabeled triangulations. . . 37

3.2 Genealogical tree T(P) for a convex polygon P of six vertices. 39

3.3 Illustration of flipping operation; (a) old triangulation and (b) new trian-

gulation. .. 39

3.4 Illustration of (a) a convex polygon of six vertices and (b) corresponding

root in T(P). 40

3.5 Illustration of generation of blocking diagonal; (a) old triangulation and

(b) new triangulation. 41

3.6 Illustration of child-parent relationship; (a) child and (b) parent. 42

3.7 Illustration of a flipping operation that does not preserve parent-child re-

lationship. 44

3.8 Illustration of generating diagonals. 44

3.9 Illustration of Lemma 3.3.4. 46

3.10 Illustration of Lemma 3.3.5. 47

3.11 Illustration of generation of a blocking diagonal from a generating diagonal 49

LIST OF FIGURES viii

3.12 Illustration of the effects of a flipping operation 52

3.13 Illustration of update operations for opposite pairs of two affected edges. 53

3.14 Illustration of rotationally equivalent triangulations 54

3.15 Illustration of triangulations which are mirror image of each other 54

3.16 Illustration of genealogical tree of six vertices when rotational and mirror

repetitions are not allowed. 55

3.17 Illustration of two triangulations where one has greater degree sequence. 56

4.1 Illustration of (a) an outerplanar graph Gof eight vertices and (b) ge-

nealogical tree T (G) of G., 61

4.2 An inner face of a biconnected outerplanar graph can be viewed as a convex

. polygon. .. 62

4.3 Illustration of (a) a biconnected outerplanar graph of 10 vertices and (b)

corresponding root in T(G)

4.4 Triangulating outer face of a plane graph

63
66

Acknowledgments

All praises due to Allah, Lord of the Worlds, who granted me the ability to finish this

thesis.

I would like to thank my supervisor Dr. Md. Saidur Rahman for introducing me

to the field of enumeration of combinatorial objects. I have learned from him how to

write, speak and present well. I thank him for his patience in reviewing my so many

inferior drafts, for correcting my proofs and language, suggesting new ways of thinking

and encouraging me to continue my work.

I would also want to thank the members of my thesis committee for their valuable

suggestions. I thank Professor Dr. Muhammad Masroor Ali, Professor Dr. I\'[d. Abul

Kashem Mia, Dr. Masud Hasan and Dr. Md. Elias.

It would be inappropriate if I do not mention the members of our research group.

They gave me valuable suggestions and listened to all of my presentations. I just want to

say them: Thank You!

ix ,

Abstract

Generating all triangulations of graphs and polygons have many applications in Com-

putational Geometry, VLSI Floorplaning and Graph Drawing. In this thesis, we deal

with the problem of generating all triangulations of plane graphs. We give an algorithm

for generating all triangulations of a biconnected plane graph G of n vertices. Our al-

gorithm establishes a tree structure among the triangulations of G, called the "tree of

triangulations," and generates each triangulation of Gin 0(1) time. The algorithm uses

O(n) space and generates all triangulations of G without duplications. To the best of

our knowledge, our algorithm is the first algorithm for generating all triangulations of

a biconnected plane graph; although there exist algorithms for generating triangulated

graphs with certain properties. Our algorithm for generating all triangulations of a plane

graph needs to find all triangulations of a convex polygon. 'vVegive an algorithm to gener-

ate all triangulations of a convex polygon P of n vertices in time 0(1) per triangulation,

where the vertices of P are numbered. Our algorithm for generating all triangulations of

a convex polygon also improves previous results; existing algorithms need to generate all

triangulations of convex polygons of less than n vertices before generating the triangula-

tions of a convex polygon of n vertices. Finally, we give an algorithm for generating all

triangulations of a convex polygon P of n vertices in time 0(n2) per triangulation, where

vertices of P are not numbered.

x

Chapter 1

Introduction

One of the problems addressed in the area of combinatorial algorithms is to generate all

items of a particular combinatorial class in such a way that each item is generated exactly

once. To solve many practical problems it is required to generate samples of random

objects from a combinatorial class. Sometimes a list of objects in a particular class is

helpful to find a counter-example to some conjecture, to find the best object among all

candidates, or to experimentally measure the average performance of an algorithm over

all possible inputs. Early works in combinatorics focused on counting; because generating

all objects requires huge computation. With the aid of fast computers it now has become

feasible to list the objects in combinatorial classes. However, in order to generate entire list

of objects from a class of moderate size, extremely efficient algorithms are required even

with the fastest computers. Due to the reason mentioned above, recently many researchers

have concentrated their attention for developing efficient algorithms to generate all objects

of a particular class without repetitions [JWW80, Sav97]. Examples of such exhaustive

generation of combinatorial objects include enumerating all binary trees, generating all

set partitions, generating permutations and combinations, enumerating spanning trees etc

[BV04, NU04a, NU04b].

One of the most important and extremely useful class of combinatorial objects are'

1

CHAPTER 1. INTRODUCTION 2

graphs. In this thesis, we deal with the problem of generating all triangulations of plane

graphs. Generating all triangulations of plane graphs have many applications in Com-

putational Geometry [DVOSOO],VLSI floorplanning [SY99], and Graph Drawing [NR04].

In these applications, to get a better solution, sometimes it is necessary to find all trian-

gulations of plane graphs. In this thesis, we also deal with problem of enumerating all

triangulations of convex polygons. Polygon triangulation plays a central role in Compu-

tational Geometry and is a basic step in many algorithms [DVOSOOJ. But, developing

algorithms for enumerating such triangulations is not an easy problem. The possible

number of triangulations of plane graphs is exponential and for this reason, the enumer-

ation algorithms would have to produce huge amounts of output. Such algorithms are

I/O intensive, need huge computational power and thus require fast computers. So, any

algorithm for enumerating triangulations of plane graphs has to be extremely efficient.

However, due to the exponential number of possible outputs, any enumeration algorithm

for generating all triangulations of plane graphs can be at best exponential. Therefore,

such algorithms concentrate on the complexity of the individual object generation, rather

than the complexity of the overall running time of the algorithm. In this thesis, we give

algorithms for generating all triangulations of plane graphs and exploit clever algorithmic

techniques to successfully meet the above mentioned challenges.

This chapter serves as an introduction to the problem we dealt with in this thesis.

We also discuss related applications and review the literature. 'vVestart in Section 1.1 by

giving a precise description of the problem we solved in this thesis. Section 1.2 describes

some of the applications of the algorithms we developed in this thesis. Section 1.3 ad-

dresses the algorithmic challenges that any efficient enumeration algorithm must resolve.

Section 1.5 discusses two problems related to the problem we have solved in this thesis

and describes existing algorithms for those problems. Section 1.6 deals with the scopes

of this thesis and finally Section 1.7 gives a summary of the results we have found and 0
compares our algorithms with other related algorithms.

CHAPTER 1. INTRODUCTION

1.1 Problem Statement

3

(b)

In this thesis we deal with the problem of generating all triangulations of plane graphs.

We give a brief description of the problem below.

Let G = (V, E) be a plane graph as shown in Figure Uta). The graph in Figure Uta)

has 4 faces; three of them are internal and the other one is external. If we add an edge

(V3, V7) to the graph of Figure l.1 (a), we get the graph G' of Figure l.1 (b). As can be

seen, the face F, = V2, V3, V6, V7 of the graph in Figure l.1(a) has become "triangulated"

in Figure l.1(b); that is the face F, of the graph in Figure l.1(a) has been partitioned into

smaller faces in the graph.of Figure l.1(b) where each of the smaller faces of G' contains

three edges on the boundary of it. We say that we have triangulated the face F1 of G.

By adding edges in G, we can triangulate all the faces of G. When all the faces of G

are triangulated we get a triangulation of the graph G. Figure l.1(c) shows one possible

triangulation of G. A particular plane graph G may have many different triangulations.

In this thesis we address the problem of generating all triangulations of a given plane

graph G such that all the triangulations of G are generated without duplications.

Figure l.1: Triangulation of a plane graph by adding edges.

1.2 Applications

Our algorithms for generating all triangulations of plane graphs and polygons have a

number of useful applications in a variety of fields. In this section we describe. three

different application domains where the algorithms for generating all triangulations of a

(

CHAPTER 1. INTRODUCTION

given plane graph or a simple polygon can be used.

1.2.1 Graph Drawing

4

Many algorithms in the area of Graph Drawing take triangulated plane graphs as input.

If the input graph is not triangulated then we must find a suitable triangulation of the

input graph before using the algorithm. For many algorithms, the way the input graph is

triangulated affects the quality of the output of the algorithm. For example, one of the well

known algorithms [NR04] for finding straight line grid drawing of a plane graph requires

that the input graph G must be triangulated. If the graph G is not a triangulated already,

then we must find a triangulation of G. The algorithm finds a canonical ordering of the

vertices of G based on the triangulation of G and draws the straight line grid drawing of

the graph using that ordering. The area required by a straight line grid drawing of a graph

G depends on the canonical ordering of the vertices of G, which in turn depends upon

the way G is triangulated. Two different triangulations of the same graph G may result

in two different drawings of G with different area requirements. Figure 1.2 illustrates the

algorithm for finding the straight line grid drawing for the graph of Figure 1.2(a). Figure

1.2(b) is a triangulation of the graph in Figure 1.2(a). In Figure 1.2(b), the numbers

shown in parenthesis besides the labels of the vertices show the canonical ordering of the

vertices of the graph. As shown in Figure 1.2(d), the straight line grid drawing of the

graph of Figure 1.2(a) requires an 8 x 4 grid for the particular triangulation of the graph

as shown in Figure 1.2(b). Whereas the same graph of Figure 1.2(a), triangulated in a

different way, may have a grid drawing of different grid size, as shown in Figure 1.3.

Therefore, if we want to find a straight line grid drawing of a plane graph G which

satisfies some area requirements, we may need to find all the triangulations of G. For

example, if we want the straight line grid drawing of G which requires minimum amount

of area, then we need an algorithm that generates all the triangulations of a given plane

graph.

CHAPTER 1. INTRODUCTION

a
(a)

g.

(b)

5

(e)

b

(d)

Figure 1.2: Illustration of the straight line grid drawing algorithm.

CHAPTER 1. INTRODUCTlON

(a) (b)

6

a

a

g

(c)

g

(d)

.... , , .

b

b

Figure 1.3: Illustration of the straight line grid drawing algorithm. The graph is triangu-

lated in a different way than in Figure 1.2

CHAPTER 1. INTRODUCTION

1.2.2 VLSI Floorplanning

7

Our algorithm for generating all triangulations of a plane graph has useful applications

in the area of VLSI floorplanning. One of the problems in VLSI floorplanning is to find

a rectangular floorplan of a given plane graph G. Conventional floorplanning algorithms

solve that problem by first triangulating the graph G, then finding a dual like graph G'

of G and then from G* a rectangular floorplan of G is found [NR04, SY99J. For example,

in Figure 1.4, to find a rectangular floorplan of the plane graph G of Figure 1.4(a), we

need to find a triangulation of G as in Figure 1.4(b). Figure 1.4(c) is the dual like graph

G* of G of Figure 1.4(a) and from G* we find a rectangular floorplan of G.

(a)

e
d

(b)

e

(e)

b

a f
e ~ e

g

d

(d)

Figure 1.4: Illustration of the algorithm for finding rectangular floorplan.

An interesting observation is that if we triangulate the same plane graph G in a

different way, we may get a different floorplan of G. An example of that is shown in

Figure 1.5. The plane graph G of Figure 1.5(a) is the same graph of Figure 1.4(a), but

triangulated in a different way as shown in Figure 1.5(b). As can be seen in Figure 1.5(d),

the floorplan of G is somewhat different than the floorplan of Figure 1.4(a). Sometimes

we may need to explore different floorplans of a plane graph G. For example, we may

(

., CHAPTER 1.. INTRODUCTION 8

want a .particular floorplan that satisfies some aesthetic criteria or has some adjacency

requirements for the faces. In these cases, we need to find all the different floorplans

of a given plane graph G, which requires to have an algorithm that generates all the

triangulations of a given plane graph.

Figure 1.5: Illustration of the algorithm for finding rectangular floorplan. The graph is'

triangulated in a different way than in Figure 1.4

1.2.3 Computational Geometry

Several applications of triangulations are found in Computational Geometry. Polygon

triangulation is vital in many of the algorithms in Computational Geometry. There exist

different algorithms that can triangulate any simple polygon [DVOSOO,Cha91]. One ofthe

well known problems in Computational Geometry is the so called "Art Gallery Problem" .

In Art Gallery Problem, each floor of an art gallery is modeled as a simple polygon. The

problem is to place cameras at the polygonal vertices in such a way that the entire floor

of the art gallery is covered. Conventional algorithm for solving the Art Gallery Problem

finds a triangulation of the simple polygon, colors the vertices of the triangulated polygon

(

CHAPTER 1. INTRODUCTION 9

with three colors such that adjacent vertices have different colors and then chooses the

color which is used minimally. Cameras are placed at the vertices which are colored with

that minimally used color. The number of cameras required depends on the way the

simple polygon is triangulated. Different triangulations of the same simple polygon may

give different results to the same Art Gallery Problem. Figure 1.6 illustrates such a case.

In Figure 1.6, R, G and B stand for the colors Red, Green and Blue. The triangulation

of Figure 1.6(a) gives a solution that requires three cameras; whereas the triangulation of

Figure 1.6(b) requires only two cameras.

B

R

R
(a)

B
G

B

Figure 1.6: Illustration of the Art Gallery Problem. (a) Solution of size three and (b)

solution of size two.

Finding the minimum number of cameras for a particular Art Gallery Problem is

NP hard [DVOSOO]. Therefore to find the optimal solution for a particular Art Gallery

Problem, we need an algorithm that generates all triangulations of a given simple polygon.

1.3 Challenges

In this section we discuss the main challenges that any algorithm for enumerating combi-

natorial objects must face [Sav97]. We have considered all these challenges while develop-

ing our algorithms in this thesis and have given algorithmic techniques that successfully

resolve the difficulties mentioned in the following subsections.

CHAPTER 1. INTRODUCTION

1.3.1 Time Complexity

10

The number of different objects is very large in many cases. For example, the number of

different permutations of n numbers is exponential. Therefore, to generate all the objects

of a particular combinatorial class, we may have to find an exponential number of objects.

That means, the overall time complexity of the algorithm is at best exponential, which

means the generation of individual objects must be very efficient. There are a number

of techniques that accomplish the task. We mention some of those techniques in Section

2.5.

1.3.2 Avoiding Duplications

In any enumeration algorithm, we must have a way to avoid generation of redundant

objects. One way to avoid duplications of objects is to store each object generated so

far and check each newly generated object with all the previous one to find whether the

newly generated one is a duplication. This way of checking duplications has two problems.

First, the time complexity goes up. Second, the space requirement becomes very high.

We mention some alternatives for avoiding duplications in Section 2.5.

1.3.3 I/O Operations

Algorithms that solve enumeration problems are generally I/O intensive and the output

of the algorithm dominates the running time. This is because the number of objects

generated is exponential in many cases and each of these objects must be output to

an output device. Since I/O is slower than computation, the more I/O operations an

algorithm performs the slower it becomes. For this reason reducing the amount of output

is essential

CHAPTER 1. INTRODUCTION

1.3.4 Exhaustive Generation

11

While we exhaustively generate combinatorial objects, we must have an efficient way to

determine the end of generation. One solution to this problem is that we count the number

of objects generated so far and check whether we have explored all the possibilities. But

this works only in the case where we know in advance the total number of distinct objects

to be generated and have an efficient way for detecting repetitions. For many problems,

it may be difficult to know or calculate the exact number objects that will be generated.

For example, it is not trivial to count the number of different triangulations of a given

arbitrary plane graph.

1.4 Goals of an Enumeration Algorithm

Any algorithm for generating all objects of a particular combinatorial class has to achieve

a number of goals or aims. We list the most important ones below .

• Reduce the time complexity,

• lVlinimize the usage of memory,

• Reduce the amount of output,

• Avoid duplications, and

• Avoid omissions.

In this thesis, we have considered each of these goals while we develop our algorithms.

To achieve the goals, we have developed efficient representations of objects, efficient data

structure for storage, and clever algorithmic techniques. We will addr~ss the issues men-

tioned above while we describe our algorithms in detail in later chapters.

CHAPTER 1. INTRODUCTION

1.5 Literature Review

12

Triangulations playa central role in Computational Geometry and there is a growing body

of papers considering triangulations of a point set [Aic99, ES94, HNU99, HOS96]. There

are also some well known results for triangulating simple polygons [DVOSOO, Cha91J and

finding bounds on the number of operations required to. transform one triangulation into

another [KNN99, STT88].

Let S be a set of n points in general position in the plane. Bespamyatnikh [Bes02J

gave an algorithm that generates all the triangulatioris of Sin O(loglogn) time per tri-

angulation. Avis and Fukuda [AF96] devised a reverse search method which allows to

enumerate triangulations in B(nt(S)) time, where t(S) is the number of triangulations

of S. It uses the well known process of the construction of the Delaunay triangulation

[For87]. Researchers also have focused their attention on generating triangulated polygons

and graphs with certain properties [Avi96, Nak02, NU04b]. The basic operation on tri-

angulations in a flip, which can be defined as follows. When two adjacent triangles form

a convex quadrilateral then the shared diagonal can be flipped and a new triangulation of

S is obtained. The graph G(S), called the graph of triangulations of a given polygon or

point set S, is the graph where the vertices of G(S) are the triangulations of S and two

triangulations being adjacent if one can be obtained from the other by flipping an edge.

These graphs are widely studied in [HNU99]. A large number of researchers have studied

the graph of triangulations GT(n) of convex polygons of n vertices [HN99, Lee89, STT88].

Figure 1.7 shows the graph of triangulations of convex polygons of six vertices.

In the following two subsections, we review two algorithms that are more closely related

to the problem we have addressed in this thesis. We also discuss the limitations of both

algorithms.

CHAPTER 1. INTRODUCTION

Figure 1.7: Graph of triangulations of convex polygons of six vertices.

1.5.1 Algorithm of Hurtado and Noy

13

Hurtado and Noy [HN99J built a tree of triangulations of convex polygons with any number

of vertices. Figure 1.8 shows the first four levels of the tree. Their construction is primarily

of theoretical interests; also all the triangulations of convex polygons with number of

vertices less than n need to be found before finding the triangulations of a convex polygon

of n vertices. That is, the algorithm of Hurtado and Noy starts with smallest possible

triangulated convex polygon, which is a triangle. From it, all the triangulations of a convex

polygon of four vertices are generated. From these triangulations, all the triangulations

of a convex polygon of five vertices are generated and so on. Figure 1.9 and 1.10 illustrate

the operations used to generate new triangulations from old ones. The idea is to split

the vertex Vn into two vertices, Vn neighboring Vn-I and Vn+! neighboring VI' The same

splitting occurs also to the diagonals incident to Vn'

Therefore,if all we want is the triangulations of a convex polygon of n vertices, then

the algorithm of Hurtado and Noy is not the desired algorithm, since in this case all the

triangulations of convex polygons of number of vertices less than n will be generated also.

In this thesis, our algorithm for generating all triangulations of a convex polygon of n

CHAPTER 1. INTRODUCTION

vertices does not suffer from this problem.

3

,6,

5

1~4.

6~6
,~5 ,~5 '1'1"\15
2~4 2~4 2~4

3 3 . 3

14

,
'1SJ:

,~,
,~, 'r1A' '~5 'r1fu5
2l("tJ4 2~h 2 4 2~

3 3 3

Figure 1.8: Illustration of tree of triangulations of convex polygons.

(a) (b) (c)

Figure 1.9: Illustration of splitting operation.

1.5.2 Algorithm of Li and Nakano

Li and Nakano [LN01J gave an algorithm to generate all biconnected "based" plane trian-

gulations with at most n vertices. Figure 1.11 shows the tree of triangulations built by the

algorithm of Li and Nakano. Their idea was to generate all graphs with some properties

without duplications. Here also, the biconnected "based" plane triangulations of n ver-

tices are generated after the biconnected based plane triangulations of less than n vertices

are generated. Hence, if we need to generate the triangulations of a convex poiygon or

a plane graph of exactly n vertices, existing algorithms generate all the triangulations of

convex polygons or plane graphs with less than n vertices. This is not an efficient way of

CHAPTER 1. INTRODUCTION

Figure 1.10: Illustration of the generation of new triangulations from an old one.

15

generation. Also the algorithm of Li and Nakano does not take any graph as input. In

this thesis, our algorithm for generating all triangulations of a biconnected plane graph

avoids generating such unnecessary triangulations.

Figure 1.11: Illustration of the tree of triangulations of biconnected based plane triangu-

lations.

1.6 Scope of this Thesis

In this section we list the algorithms we have developed in this thesis.

CHAPTER 1. INTRODUCTION

1.6.1 Labeled Triangulations of a Convex Polygon

16

The first problem that we consider is finding all the triangulations of a convex polygon

P of n vertices, where the vertices of P are numbered. The triangulations of P in this

case are called labeled triangulations . We give an algorithm that generates all the la-

beled triangulations of a convex polygon P of n vertices. The algorithm generates each

triangulations in 0(1) time per triangulation and uses O(n) space. We give the detailed

algorithm in Chapter 3.

1.6.2 Triangulations of a Biconnected Plane Graph

The second problem that we consider in this thesis is to generates all the triangulations

of a given plane graph G. Specifically we consider the cases where the graph G is either

a biconnected outerplanar graph or a biconnected plane graph. For each of these cases,

we give algorithm that generates all the triangulations of the given input graph G in time

0(1) per triangulation using O(n) space. We give the detailed algorithm in Chapter 4.

1.6.3 Unlabeled Triangulations ofa Convex Polygon

Finally we consider the problem of generating all the triangulations of a convex polygon

P of n vertice, where the vertces of P are not numbered. The triangulations of P in

this case are called unlabeled triangulations . We give an algorithm that generates each

unlabeled triangulation of P in 0(n2) time worts case time using O(n) space. We give

the detailed algorithm in Chapter 3.

1.7 Summary

In this thesis we give efficient algorithms for generating all triangulations of plane graphs

and convex polygons. Our main results can be divided into two parts.

CHAPTER 1. INTRODUCTION 17

Criteria Li and Nakano Hurtado and Noy Our algorithm

Generates Biconnected Plane Triangulated Triangulations of

Triangulations Convex Polygons Plane Graphs

and Convex Polygons

Takes Input? NO NO YES

Redundant Objects YES YES NO

Generation Time per Object 0(1) 0(1) 0(1)

Space Complexity O(n) O(n) O(n)

References [LNOIJ [HN99] Ours

Table 1.1: Comparison Table.

The first part of the results is about the triangulations of convex polygons. We give

an efficient algorithm that generates all triangulations of a convex polygon P of n vertices

where the vertices of P are numbered. The algorithm generates each triangulation of P

in constant time from previous one and uses linear space. We also give an algorithm for

generating all triangulations of a convex polygon P of n vertices where the vertices of P

are not numbered. The algorithm generates each triangulation of P in 0(n2) time per

triangulation from previous one and uses linear space.

The second part of the results deals with the plane graphs. Using the algorithm for

generating all triangulations of a convex polygon P of n vertices, we give algorithms that

generate all triangulations of a biconnected outerplanar graph and biconnected plane

graph. The algorithms generate each triangulation in constant time from its previous one

using linear space only.

A comparison between our algorithms and the algorithms of Li and Nakano [LNOl]

and Hurtado and Noy [HN99] is made in Table 1.1 for number of criteria.

Chapter 2

Preliminaries

In this chapter we define some basic terms of graph theory and algorithms. Definitions

which are not included in this chapter will be introduced as they are needed. We start, in

Section 2.1, by giving definitions of some standard graph-theoretical terms used through-

out the remainder of this thesis. We describe some notions from complexity theory in Sec-

tion 2.2. Sections 2.3 and 2.4 deal with the graph traversal and face traversal algorithms,

respectively. Section 2.5 deals with the well known techniques for solving enumeration

problems. Finally, Section 2.6 deals with the Catalan Families of combinatorial objects.

2.1 Basic Terminology

In this section we give definitions of some graph-theoretical terms used throughout the

remainder of this thesis. Readers interested in graph theory may consult [WesOl].

2.1.1 Polygon

A polygon is the region of a plane bounded by a finite collection of line segments forming

a simple closed curve. Each line segment of the closed curve is called a side or an edge of

the polygon. A point joining two consecutive sides of a polygon is called a vertex of the

18 ,

CHAPTER 2. PRELIMINARIES 19

polygon. A polygon is called simple if it does not cross itself. The set of points in the

plane enclosed by a simple polygon forms the interior of the polygon, the set of points

on the polygon itself forms its boundary, and the set of points surrounding the polygon

forms its eTterior . We say two vertices x and y of polygon P is visible to each other if

and only if the closed line segment xy is nowhere exterior to the polygon P; i.e, xy ~ P.

We say x has clear visibility to y if xy ~ P and xy does not touch any vertex or edge of

P. A diagonal of a polygon P is a line segment between two of its vertices x and y that

are clearly visible to each other.

A simple polygon is convex if, given any two points on its boundary or in its interior, all

points on the line segment drawn between them are contained in the polygon's boundary or

interior. Let the vertices of a convex polygon P are labeled VI, V2, .•• , Vn counterclockwise.

We represent P by listing its vertices as P = (VI, V2, ... , vn), and represent the edges of

P by (VI, V2), (V2, V3), ... , (vn, VI).

Figure 2.1: Illustration of a polygon.

2.1.2 Graphs

A graph G is a structure (V, E) which consists of a finite set of vertices V and a finite

set of edges E; each edge is an unordered pair of distinct vertices. We denote the set of

vertices of G by V(G) and the set of edges by E(G). Figure 2.2 illustrates an example

of a graph. An edge connecting vertices Vi and Vj in V is denoted by (Vi, Vj). An edge

(Vi, Vj) is called a loop if Vi = Vj. A graph is called a simple graph if there is no loop or

mul ti pie edges between any two vertices in G.

CHAPTER 2. PRELIMINARIES 20

Let G = (V,E) be a undirected connected simple graph with vertex set V and edge

set E. In this thesis, to make the data structures easier to manipulate, we write the edge

(Vi, Vj) such that i < j. Thus the edge incident to vertex V4 and VI is denoted by (VI, V4),

and not by (V4, VI)'

Figure 2.2: Illustration of a graph.

The degree of a vertex V is the number of edges incident to V in G. The connectiv-

ity K;(G) of a graph G is the minimum number of vertices whose removal results in a

disconnected graph or a single vertex graph. A graph is k-connected if K;(G) 2': k.

2.1.3 Planar graph and plane graph

A graph is planar if it can be embedded in the plane so that no two edges intersect

geometrically except at a vertex to which they are both incident. Note that a planar

graph may have an exponential number of embeddings. Figure 2.3 shows four planar

embeddings of the same planar graph.

A plane graph is a planar graph with a fixed embedding. A plane graph divides the

plane into connected regions called faces . The unbounded face is called outer face and

the other faces are called inner faces. For example, the plane graph in Figure 2.3(a) has

five inner faces and one outer face.

2.1.4 Triangulations of a Polygon

Let P = (VI, V2,"', vn) is a simple polygon. A diagonal (Vi, Vj) divides the polygon P

into two polygons: (Vi, Vi+I,"', Vj) and (Vj, Vj+l," ., Vi)' A decomposition of a polygon

CHAPTER 2. PRELIMINARIES 21

(0)

(0)

,~.
8

(b)

(d)

Figure 2.3: Illustration of planar embedding.

into triangles by a set of non-intersecting diagonals is called a triangulation of the poly-

gon. Figure 2.4(a) illustrates a triangulated simple polygon, whereas Figure 2.4(b) is an

example of a triangulated convex polygon.

(,) (b)

Figure 2.4: Illustration of triangulated polygons (a) triangulation of a simple polygon and

(b) triangulation of a convex polygon.

A simple polygon may have many different triangulations. Figure 2.5 shows two

different triangulations of a convex polygon P. The set of diagonals is maximal in a

triangulation T; that means, every diagonal not in T intersects some diagonal in T. The

CHAPTER 2. PRELIMINARIES 22

sides of triangles in the triangulation are either the diagonals or the sides of the polygon.

Every triangulation of a convex polygon P of n vertices has n - 3 diagonals and n - 2

triangles.

":t~r:'
vj

(a) (b)

Figure 2.5: Two ways of triangulating a convex polygon of 6 vertices.

Throughout this thesis, we represent each triangulation T of a convex polygon P by

listing its diagonals. For example, the triangulation of Figure 2.5(a) is represented by

T = {(V4, V6), (V2, V6), (V2, V4)}' Given the list of diagonals, we can uniquely construct the

corresponding triangulation.

2.1.5 Labeled and Unlabeled 'friangulations

A triangulation T of a simple polygon P of n vertices is called a labeled triangulation if

the vertices of P are numbered sequentially from Vj to Vn. Both triangulations of Figure

2.6 are labeled triangulations. On the other hand, if the vertices of P are not numbered,

then the triangulations of P are called unlabeled triangulations . Both triangulations of

Figure 2.7 are examples of unlabeled triangulations.

(a)

Figure 2.6: Illustration of labeled triangulations.

\

CHAPTER 2. PRELIMINARIES

(a) (b)

23

Figure 2.7: Illustration of unlabeled triangulations.

2.1.6 Triangulations of a Graph

The triangulations of a plane graph can be defined analogously. Consider the plane graph

G shown in Figure 2.8(a). G has five faces. Consider the face F =< VI, V4, V5, VB >. If we

add an edge between VI and V5, as illustrated in Figure 2.8(b), then the face F is divided

into two smaller faces FI and F2. Both FI and F2 have three edges on their boundary.

We say that by adding the edge (VI, V5) in G we have triangulated the face F of G. By

adding additional edges in G, we can triangulate the other faces of G. When all the faces

of G are triangulated, we get a triangulation of the graph G, as shown in Figure 2.8(c).

(,)

(0)

Figure 2.8: Illustration of a triangulated graph.

f,

CHAPTER 2. PRELIMINARIES

2.1.7 Graphs and Polygons

24

There is a plane graph G naturally associated with a triangulation T of a convex polygon

P. The vertices of G are the vertices of the triangulation and the edges of G are the

sides and diagonals of the triangulation. When there is no confusion, we will treat the

triangulation T and the plane graph G associated with it as essentially same. We will

sometimes use the terminology of graphs while discussing the triangulations of polygons.

Thus, we say that the vertices Vi and Vj of a convex polygon P are adjacent, if (Vi, Vj) is

a diagonal or a side of P and call (Vi, Vj) an edge incident to vertex Vi and Vj'

2.1.8 Paths and Cycles

A Va - VI walk, Va, el, VI,' .. , VI-I, el, VI, in G is an alternating sequence of vertices and

edges of G, beginning and ending with a vertex, in which each edge is incident to two

vertices immediately preceding and following it. If the vertices Va, VI, ... , VI are distinct

(except possibly Va, VI), then the walk is called a path and usually denoted either by the

sequence of vertices Va, VI, ... , VI or by the sequence of edges eb e2, ... , el' The length of

the path is I, one less than the number of vertices on the path. A path or walk is closed

if Va = VI' A closed path containing at least one edge is called a cycle.

2.1.9 Outerplanar Graph

A graph is outerplanar if it has an embedding with every vertex on the boundary of the

outer face. If the outerplanar graph is biconnected then all the vertices of the graph are

on a cycle. Figure 2.9 shows examples of outerplanar and biconnected outer planar graphs.

2.1.10 'frees

A tree is a connected graph containing no cycle. Figure 2.10 is an example of a tree. The

vertices in a tree are usually called nodes . A rooted tree is a tree in which one of the

(

CHAPTER 2. PRELIMINARIES

(a) (b)

25

Figure 2.9: Example of (a) an outerplanar graph and (b) biconnected outerplanar graph.

nodes is distinguished from the others. The distinguished node is called the root of the

tree. The root of a tree is generally drawn at the top. In Figure 2.10, the root is VI'

Every node U other than the root is connected by an edge to some other node p called

the parent of u. We also call u a child of p. We draw the parent of a node above that

node. For example, in Figure 2.10, VI is the parent of V2, V3 and V4, while V2 is the parent

of Vs and V6; V2, V3 and V4 are children of VI> while Vs and V6 are children of V2' A leaf is

a node of a tree that has no children. An internal node is a node that has one or more

children. Thus every node of a tree is either a leaf or an internal node. In Figure 2.10,

the leaves are V4, Vs, V6, V7 and Vs, and the nodes VI, V2 and V3 are internal nodes.

Figure 2.10: Illustration of a tree.

The parent-child relationship can be extended naturally to ancestors and descendants.

Suppose that UI, U2," . , Ul is a sequence of nodes in a tree such that UI is the parent of

U2, which is a parent of U3, and so on. Then node UI is called an ancestor of UI and node

Ul a descendant of UI' The root is an ancestor of every node in a tree and every node is

a descendant of the root. In Figure 2.10, all seven nodes are descendants of VI, and VI is

an ancestor of all nodes.

o

CHAPTER 2. PRELIMINARIES 26

The height of a node u in a tree is the length of a longest path from u to a leaf. The

height of the tree is the height of the root. The depth of a node u in a tree is the length of

a path from the root to u. The level of a node u in a tree is the height of the tree minus

the depth of u. In Figure 2.10, for example, node V2 is of height 1, depth 1 and level 1.

The tree in Figure 2.10 has height 2.

2.1.11 Binary Trees

A binary tree is either a single node or consists of a node and two subtrees rooted at the

node, both of the subtrees are binary trees. Figure 2.11 illustrates a binary tree of 15

nodes.

Figure 2.11: Illustration of a binary tree.

2.1.12 Degree Sequence

Let G be a plane graph of n vertices where the vertices are labeled vi to Vn. The degree

sequence of G is the sequence (dj, d2,"', dn), where di is the degree of the vertex Vi. For

example, the degree sequence for the graph of Figure 2.8(a) is (4,4,3,3,4,2)

2.2 Algorithms and Complexity

In this section we briefly introduce some terminologies related to complexity of algorithms.

c

CHAPTER 2. PRELIMINARIES 27

The most widely accepted complexity measure for an algorithm is the running time

which is expressed by the number of operations it performs before producing the final

answer. The number of operations required by an algorithm is not the same for all

problem instances. Thus, we consider all inputs of a given size together, and we define

the complexity of the algorithm for that input size to be the worst case behavior of the

algorithm on any of these inputs. Then the running time is a function of size n of the

input.

2.2.1 The notation O(n)

In analyzing the complexity of an algorithm, we are often interested only in the "asymp-

totic behavior," that is, the behavior of the algorithm when applied to very large inputs.

To deal with such a property of functions we shall use the following notations for asymp-

totic running time. Let f(n) and g(n) are the functions from the positive integers to the

positive reals, then we write f(n) = O(g(n)) if there exists positive constants Cl and C2

such that f(n) ::; clg(n) + C2 for all n. Thus the running time of an algorithm may be

bounded from above by phrasing like "takes time O(n2)."

2.2.2 Polynomial algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its complexity

is bounded by a polynomial of the size of a problem instance. Examples of such complex-

ities are O(n), O(nlogn) O(n100), etc. The remaining algorithms are usually referred as

exponential or non-polynomial. Example of such complexity are O(2n), O(n!), etc.

When the running time of an algorithm is bounded by O(n), we call it a linear-time

algorithm or simply a linear algorithm.

\

CHAPTER 2. PRELIMINARIES

2.2.3 Complexity of Graph Algorithms

28

We measure the complexity of an algorithm as a function of the size of the input to the

algorithm. In this thesis, the inputs to our algorithms are plane graphs. The size of an

input planar graph is measured by the amount of memory needed to represent the graph

in a computer, which in turn is a function of the number of edges of the graph.

Since in this thesis, we deal with plane graphs only. In a planar graph, the number of

edges m is less than 3n, where n is the number of vertices of the graph [WesOlJ. Therefore,

we analyze the complexity of the algorithms of this thesis as a function of n.

2.3 Graph Traversal Algorithm

When designing algorithms on graphs, we often need a method for exploring the vertices

and edges of a graph. In this section we describe such a method named depth first search

(DFS).

In DFS each edge is traversed exactly once in the forward and reverse directions and

each vertex is visited. Thus DFS runs in linear time. vVenow describe the method.

Consider visiting the vertices of a graph G in the following way. vVeselect and visit a

starting vertex v. Then we select any edge (v, w) incident on v and visit w. In general,

suppose x is the most recent visited vertex. The search is continued by selecting some

unexplored edge (x, y) incident on x. If y has been previously visited, we find another new

edge incident on x. If y has not been visited previously, then we visit y and begin a new

search starting at y. After completing the search through all paths beginning at y, the

search returns to x, the vertex from which y was first reached. The process of selecting

unexplored edges incident to x is continued until the list of these edges is exhausted. This

method is called depth-first search since we continue searching in the deeper direction as

long as possible.

If the graph G is a tree, then we can order the vertices based on the way the edges are

CHAPTER 2. PRELIMINARIES 29

chosen to be traversed. Consider a vertex v from which a new edge would be explored

and another vertex would be reached. We mark a vertex u when we first reach u and

call the label of u the rank of u. The rank of the root of the tree is O. So the rank of a

vertex u is the number of vertices explored before u is reached for the first time. Such a

traversal is called a pre-order traversal of the vertices of the tree. If a vertex u is labeled

after all vertices located in the subtree rooted at u are labeled, then the traversal is called

post-order traversal. In case of a binary tree, if the vertex u is labeled after all vertices

located in the left-subtree rooted at u are labeled, but before all vertices located in the

right-subtree rooted at u are labeled, then the traversal is called in-order traversal.

2.4 Face Traversal

In this section we describe a data structure to represent a plane graph. We also discuss

a face traversal algorithm for a plane graph.

2.4.1 Data Structures for a Plane Graph

A graph can be represented in a computer by either using a matrix or an adjacency list

representation. But these two representations are not suitable for representing a plane

graph; since a plane graph has a fixed embedding in plane and in a plane graph the edges

incident to a vertex have some order which is not preserved by these two representations.

Therefore, to represent a plane graph G we use a variation of the adjacency list repre-

sentation where the ordering of the edges incident to a vertex is preserved. For example,

the adjacency list in Figure 2.12(b) represents the plane graph in Figure 2.12(a) since the

representation preserves the clockwise ordering of the edges incident to each vertex.

CHAPTER 2. PRELIMINARlliS

t')

4 2

I I I • I .1 4 I • I 01 3 121

I 2 I. I .1 4 VI

" 14 VI

(b)

Figure 2.12: Adjacency list representation of a plane graph.

2.4.2 Face Traversal Algorithm

30

In our algorithm for generating all triangulations of a plane graph G, we need to traverse

the faces of G in order to find the root triangulation of the genealogical tree of G. Here

we illustrate a special data structure for a plane graph G and describe an algorithm to

traverse the faces of G efficiently using the data structure.

Assume we want to clockwise traverse the face F of the graph G starting from vertex

VI as shown in Figure 2.13(a). To traverse the face efficiently, we represent the graph G

using the data structure shown in the Figure 2.13(b).

As illustrated in the Figure 2.13(a), if we want to clockwise traverse the face F starting

from vertex VI, we first traverse edge (VI, V4) and reach at vertex V4. We now need to

traverse the edge (V4, V3)' Using the data structure shown in Figure 2.13(b), we can find

that edge in constant time. Here is how this can be done.

The edge (VI, V4) follows the edge (V4, vz) in the clockwise ordering of the edges in-

cident to vertex V4' In other words, the edge (V4, vz) is counterclockwise next to edge

,

CHAPTER 2. PRELIMINARIES

(.)

v, 4 2

v2 3

v3 2

v4 3 2

(b)

31

Figure 2.13: Illustration of a data structure for representing a plane graph used for efficient

face traversal.

(Vj, V4) in the adjacent list of V4' In the representation shown, both the clockwise and

counterclockwise ordering of edges incident to a vertex is preserved using a doubly circular

linked list of neighbors of the vertices; traversing the list forward and backward we get

clockwise and counterclockwise ordering, respectively. The two entries for an edge in the

representation are also linked so that one of them can be accessed from the other directly.

Using the data structure in Fig. 2.13(b), we can find the edge (V4, V2) as follows. From

entry 4 in the adjacency list of VI' go to entry 1 in the adjacency list of V4 directly using

the link between them. Then we can find V2, since entry 2 is counterclockwise next to

entry 1 in adjacency list of V4'

2.5 Algorithms for Enumeration Problems

There are a number of standard methods that are in use for solving enumeration problems.

As mentioned in Chapter 1, there are some difficulties that any enumeration algorithm

must resolve somehow. These challenges include reducing the amount of output, efficient

f

CHAPTER 2. PRELIMINARIES 32

checking for duplications and omissions, space complexity etc. Different methods have

different ways of dealing with these challenges.

Classical method algorithms first generate combinatorial objects allowing duplications,

but output only if the object has not been output yet. These methods require huge space

to store the list of objects generated so far. Furthermore, checking whether the newly

generated object will be output takes a lot of time.

Orderly methods algorithms [Mck9S] need not to store the list of objects generated so

far, they output a object only if it is a canonical representation of an isomorphism class.

Reverse search method algorithms [AF96] also need not to store the list. The idea is

to implicitly define a connected graph H such that the vertices of H correspond to the

graphs with the given property, and the edges of H correspond to some relation between

the graphs. By traversing an implicitly defined spamiing tree of H, one can find all the

vertices of H, which correspond to all the graphs with the given property.

In the following two subsections, we describe in more detail two other methods for

solving enumeration problems and address the techniques employed by these methods for

resolving the challenges mentioned above.

2.5.1 Combinatorial Gray Code Approach

To generate all the objects of a particular class, one approach is to try to generate the

objects as a list in which successive elements differ only in a small way. The term Com-

binatorial Gray Code first appeared in [JWWSO] and is now used to refer to any method

for generating combinatorial objects so that successive objects differ in some prespecified,

usually small, way. Savage [Sav97] gives a description of the state of the art of the area.

The advantages anticipated by such gray code approach are manifold. First, generation

of successive objects is faster, since each object is generated from the preceding one by

making constant number of changes. Secondly, the number of objects in a particular class

is generally exponential. Generating algorithms thus produce huge outputs in general,

CHAPTER 2. PRELIMINARIES 33

and the output dominates the running time. If we can reduce the amount of output, the

efficiency of the algorithm improves considerably. So in gray code approach, each object

is output as a difference from the preceding one, thus removing the necessity to output

the entire object. Thirdly, gray codes typically involve elegant recursive constructions

which provide new insights into the structure of combinatorial families.

There are many problems that can be solved using combinatorial gray code approach:

We list some of them below.

1. Listing all permutations of 1, ... ,n,

2. Listing all k-element subsets of an n-element set,

3. Listing all binary trees,

4. Listing all spanning trees of a graph,

5. Listing all partitions of an integer n, and

6. Listing lenear extensions of certain posets etc.

0=2 n=4

12 1234 4321
21 1243 3421

1423 324 1
4123 2314

0=3 4132 2341
123 1432 2431
132 1342 4231
3 12 1324 4213
321 3142 2413
23 1 3412 2143
2 I3 4312 2134

Figure 2.14: Generating permutations using gray code approach: Johnson-Trotter scheme.

One particular algorithm for generating all permutations of n elements, based onG

combinatorial gray code approach, is the Johnson- Trotter algorithm. Johnson and Trotter

CHAPTER 2. PRELIMINARIES 34

independently showed that it is possible to generate permutations by transpositions even

if the two elements exchanged are required to be in adjacent positions. [Tro62, Joh63]

The recursive scheme, as shown in Figure 2.14, inserts into each permutation on the list

for n -1 the element 'n' in each of the possible n positions, moving alternately from right

to left, then from left to right.

2.5.2 Family Tree Approach

In the family tree or genealogical tree approach, a hierarchical structure or tree structure

is established among the members of a particular combinatorial class. The idea is to

find a unique parent-child relationship among the objects such that one object can be

generated from its parent by making a minimal amount of changes. The main feature

of this approach is that the entire list of objects need not to be in the memory at once

for checking duplications. The objects are generated in the order they are present in

the family tree and generation rule itself ensures that no omissions occur. The space

complexity for this approach is also linear in the size of an individual object. The main

challenge in solving an enumeration problem by family tree approach is to establish a

unique parent-child relationship among the objects of interest. For many problems, finding

a suitable parent-child relationship may be extremely difficult.

There are a number of problems that have been solved by the family tree approach

[Bes02, Nak02, NU04a]. Figure 1.11 illustrates the family tree developed by Li and Nakano

for their algorithm for generating all based plane triangulations of graphs.

2.6 Catalan Families

In several families of combinatorial objects, the size of the class is bounded by the Catalan

Numbers, defined for n 2 0 by

Cn= _1 (2n)
n+ 1 n

(

CHAPTER 2. PRELIMINARIES 35

'6

" "

(0)
(6)

(1,8)

"

(d)
Ie)

Figure 2.15: Illustration of relationship between triangulations and binary trees.

These include binary trees on n vertices, well formed sequence of 2n parentheses, and

triangulations of a labeled convex polygon with n + 2 vertices. There exist bijections

between the members of the Catalan family [CLR90J. Therefore, enumeration algorithm

for one member of the family gives implicitly a listing scheme for every other member of the

family. In Figure 2.15 we show the one to one corresponding between the triangulations

of a convex polygon of n vertices and binary trees with n - 2 internal nodes. As shown in

Figure 2.15(c) and Figure 2.15(d), a diagonal flip in a triangulation of the convex polygon

is directly related to a rotation in the corresponding binary tree.

Chapter 3

Triangulations of Convex Polygons

3.1 Introduction

In this chapter, we give algorithms to generate all triangulations of a convex polygon P of

n vertices. We first consider the case where the vertices of P are numbered sequentially

and develop an algorithm that generates all labeled triangulations of P without any

duplications or omissions .. We also deploy schemes that reduces the amount of output

and minimizes the I/O operations. By modifying the algorithm for generating all labeled

triangulations of a convex polygon P of n vertices, we give an algorithm that generates

all unlabeled triangulations of P, that is the triangulations where the vertices of Pare

not numbered.

Figure 3.1(a) shows two labeled triangulations of a convex polygon of 4 vertices where

Figure 3.1(b) shows an unlabeled triangulation of a convex polygon of 4 vertices.

Based on the algorithms developed in this chapter, we give an algorithm that generates

all triangulations of a biconnected plane graph G in Chapter 4.

The rest of the chapter is organized as follows. In Section 3.2 we give the basic idea

behind our algorithms in this chapter. Section 3.3 deals with the algorithm for generating

all triangulations of a convex polygon P where the vertices of P are numbered sequentially.

36

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS

"K1""Izr ~i
V4~VI V4 vI ~

(a) (b)

Figure 3.1: Illustration of (a) labeled and (b) unlabeled triangulations.

37

Section 3.4 gives the algorithm for generating all triangulations of P, where the vertices

of P are not numbered.

3.2 Basic Idea

The basic idea behind the algorithm for generating labeled triangulations of a convex

polygon P of n vertices is based on the combinatorial gray code and family tree approach.

In our algorithm, a new triangulation is generated from an existing one by making a

constant number of changes. The main feature of our algorithm is that, we define a tree

structure, that is parent-child relationships, among those triangulations. In such a "tree of

triangulation" , each node corresponds to a triangulation of the convex polygon and each

node is generated from its parent in constant time. In our algorithm, we construct the

tree structure among the triangulations in such a way that the parent-child relationship is

unique, and hence there is no chance of producing duplicate triangulations. Our algorithm

also generates the triangulations in place, that means, the space complexity is only O(n).

Due to the one-to-one relationship between the triangulations of convex polygon of n

vertices and binary trees with n - 2 internal nodes (see Section 2.6), our algorithm readily

gives a way to enumerate all binary trees with n-2 internal nodes. The algorithm we give

that generates all unlabeled triangulations of a convex polygon P of n vertices is based

on the algorithm for labeled triangulations of P and generates each new triangulations in

worst case time O(n2) per triangulation.

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS

3.3 Labeled Triangulations of a Convex Polygon

38

In this section, we give an algorithm to generate all labeled triangulations of a convex

polygon Pof n vertices. For that purpose we define a unique parent-child relationship

among the triangulations of P so that the relationship among the triangulations of P

can be represented by a tree with a suitable triangulation as the root. Figure 3.2 shows

such a tree of triangulations of a convex polygon of six vertices. Once such a parent-child

relationship of P is established, we can generate all the triangulations of P using the

relationship. We need not to build or to store the entire tree of triangulations at once,

rather we generate each triangulation in the order it appears in the tree structure.

In our algorithm, we use the following operation to generate a new triangulation from

an old one. Let T be a triangulation of a convex polygon of n vertices. Let (Vi, Vj)

be a shared diagonal of two adjacent triangles of T which form a convex quadrilateral

(Vq, Vi, Vn Vj)' If we remove the diagonal (Vi, Vj) from T and add the diagonal (vq, vr), we

get a new triangulation T'. The above operation is known as flipping and has been used

by a number of researchers [For87, HNU99, KNN99J. We say that we .have flipped the

edge (Vi, Vj), and denote the new triangulation T' by T(Vi, Vj)'

For example, in Figure 3.3(a), the two triangles (VI, V2, V3) and (VI, V3, V4) form the

quadrilateral (VI, V2, V3, V4) and (VI, V3) is the shared diagonal. 'vVeremove (VI, V3) from the

triangulation of Figure 3.3(a) and add the diagonal (V2, V4) to generate the triangulation

of Figure 3.3(b). Thus, we flip the diagonal (Vb V3) of the triangulation of Figure 3.3(a)

to generate the triangulation of Figure 3.3(b).

One can observe that, each triangulation of the tree of triangulations in Figure 3.2,

except the root, is generated from its parent by flipping a single diagonal. Each arrow is

labeled in Figure 3.2 to indicate which diagonal has been flipped to generate a particular

child. We call a tree of triangulations of a convex polygon P of n vertices a genealogical

tree of P and denote it by T(P). Figure 3.2 illustrates T(P) of a convex polygon P of six

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS

Figure 3.2: Genealogical tree T(P) for a convex polygon P of six vertices.

39

(,I

"0'3 2

, ,
4 I

(bl

Figure 3.3: Illustration of flipping operation; (a) old triangulation and (b) new triangu-

lation.

vertices. Let T be a triangulation of a convex polygon P of n vertices, in which all the

diagonals of T are incident to vertex VI' We regard T as the root Tr of the genealogical

tree T(P). For example, the triangulation in Figure 3.4(b) is the root of the genealogical

tree T(P) of a convex polygon P of 6 vertices as shown in Figure 3.4(a).

Note that, in the root Tr of T(P), every interior point of P is visible from vertex

VI' We say that vertex VI has full vision in Tr. Obviously, in a non-root triangulation T

of P, vertex VI does not have the full vision. The reason is that T has some "blocking

diagonals" which are blocking some parts of the convex polygon P from being visible from

vertex VI' A diagonal (Vi, Vj) of a triangulation T of P is a blocking diagonal of T if both

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS

Figure 3.2: Genealogical tree T(P) for a convex polygon P of six vertices.

39

(a) (b)

Figure 3.3: Illustration of flipping operation; (a) old triangulation and (b) new triangu-

lation.

vertices. Let T be a triangulation of a convex polygon P of n vertices, in which all the

diagonals of T are incident to vertex VI' We regard T as the root Tr of the genealogical

tree T(P). For example, the triangulation in Figure 3.4(b) is the root of the genealogical

tree T(P) of a convex polygon P of 6 vertices as shown in Figure 3.4(a).

Note that, in the root Tr of T(P), every interior point of P is visible from vertex

VI' We say that vertex VI has full vision in Tr. Obviously, in a non-root triangulation T

of P, vertex VI does not have the full vision. The reason is that T has some "blocking

diagonals" which are blocking some parts of the convex polygon P from being visible from

vertex VI' A diagonal (Vi, Vj) of a triangulation T of P is a blocking diagonal of T if both

CHAPTER 3, TRIANGULATIONS OF CONVEX POLYGONS 40

"0,,
V6 vI

(a) T

"~"
v6 vI

(b) T = Tr

Figure 3.4: Illustration of (a) a convex polygon of six vertices and (b) corresponding root

in T(P),

Vi and Vj are adjacent to VI in T, We say that vertex VI has blocked vision in a non-root

triangulation T of P,

The following lemma characterizes the non-root triangulations of a convex polygon P

of n vertices,

Lemma 3.3.1 Each triangulation T of a convex polygon P = (VI, V2, ' . ' ,vn) has at least

one blocking diagonal, 'if T is not the TOot of T(P),

Proof. Let Vj be the vertex of P such that (UI. Uk) is a diagonal of T, for all k ::::j,

Then there exists it vertex Vi such that i < j and (Vi. V]) is it diagonal of T. Otherwise,

all diagonals of T would be incident to VI and T would be the root of T(P), Since T is a

triangulation of P, (VI, Vi, Vj) is a triangle, and hence (Vi. vJ) is a blocking diagonal. 0

Suppose we flip a diagonal (VI, Vj) of T to generate a new triangulation T', Let (Vb, Vb'),

b < b' be the newly found diagonal in T'. Obviously (Vb, Vb') is a blocking diagonal of T',

Similarly, if we flip a blocking diagonal of T to generate T', the newly found diagonal will

be non-blocking, incident to vertex VI in T', For example, if we flip the diagonal (VI, V4)

of the triangulation of Figure 3,5(a), we get the triangulation of Figure 3,5(b), where

(V2, vs) is the newly fonnd diagonal. This new diagonal (V2, vs) is a blocking diagonal of

the triangulation of Figure 3,5(b),

The rest of this section is organized as follows, Section 3,3,1 describes child to parent

relationship among the triangulations of a convex polygon P of n vertices. Section 3.3.2

<,
(;f' C

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 41

"~" "
V6 vI

(a) (b)

Figure 3.5: Illustration of generation of blocking diagonal; (a) old triangulation and (b)

new triangulation.

deals with the generation of children of a triangulation T in the genealogical tree T(P)

of P. Section 3.3.3 describes the data struCtures used to represent a triangulation T of

P. Finally, section 3.3.4 describes the algorithm to generate all the triangulations of P.

3.3.1 Child-Parent Relationship.

It is convenient to consider the child-parent relationship before considering the parent-

child relationship. Throughout the section, we will denote a triangulation by T and its

parent by P(T).

We define the child-parent relationships among the triangulations of P with two goals

in mind. First, the differences between a triangulation T and its parent P(T) should

be minimal, so that T can be generated from P(T) with minimal effort. Second, every

triangulation T of P must have a parent and only one parent in the genealogical tree

T(P). We achieve the first goal by ensuring that the parent P(T) of a triangulation T

can be found by flipping a single diagonal of T. That means T can also be found from its

parent P(T) by flipping a single diagonal of P(T). The second goal, that is the uniqueness

of the parent-child relationship, can be achieved as follows.

Our idea of defining a parent-child relationship is that the parent P(T) of a triangu-

lation T must have a "clearer vision" than T. Let T and T' be two triangulations of P.

We say that T' has a clearer vision than T if the number of vertices visible from VI in

T' is more than the number of vertices visible from VI in T. For example, three vertices

fl

CHAPTER 3. TRiANGULATIONS OF CONVEX POLYGONS 42

are visible from vertex VI in the triangulation of Figure 3.6(a), whereas four vertices are

visible from vertex VI in the triangulation of Figure 3.6(b). Therefore the triangulation of

Figure 3.6(b) has a clearer vision than the triangulation of Figure 3.6(a). We can easily

get a triangulation T' from T, where T' has a clearer vision than T, by flipping a blocking

diagonal (Vb, Vb') of T. We say that the triangulation T' is the parent of T if the diagonal

(Vb, Vb') is the "leftmost blocking diagonal" of T. The diagonal (Vb, Vb'), b < b', of T is the

leftmost blocking diagonal of T if no other blocking diagonals of T is incident to a higher

indexed vertex than Vb' in T. For example, in the triangulation of Figure 3.6(a), (V3, V6)

is the leftmost blocking diagonal. Therefore we flip (V3, V6) of the triangulation of Figure

3.6(a) to find its parent, which is shown in Figure 3.6(b).

"~"
v6 vI

Ca)

Figure 3.6: Illustration of child-parent relationship; (a) child and (b) parent.

The above definition of the parent of a triangulation T of a convex polygon P ensures

that we can always find a unique parent of a non-root triangulation T of P. From Lemma

3.3.1, a non-root triangulation T of P has at least one blocking diagonal, and from those

blocking diagonals of T we choose the one which is leftmost and we flip that diagonal to

find the unique parent P(T) of T.

Based on the above parent-child relationship, the following lemma claims that every

triangulation of a convex polygon P of n vertices in present in the genealogical tree T(P).

Lemma 3.3.2 For any triangulation T of a convex polygon P = (VI, V2, ... , vn), there is

a unique sequence of flipping operations that transforms T into the root Tr of T(P).

Proof. Let T be a triangulation other than the root of T(P). Then according to

Lemma 3.3.1, T has at least one blocking diagonal. Let (Vb, Vb') be the leftmost blocking

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 43

diagonal of T. We find the parent P(T) of T by flipping the leftmost blocking diagonal

of T. Since flipping a blocking diagonal of T results in a diagonal incident to vertex Vi

in the new triangulation, P(T) has one more diagonals incident to Vi than T. Now, if

P(T) is the root, then we stop. Otherwise, we apply the same procedure to P(T) and

find its parent P(P(T)). By continuously applying this process of finding the parent, we

eventually generate the root triangulation Tr of T(P). 0

Lemma 3.3.2 ensures that there can be no omission of triangulations in the genealogical

tree T(P) of a convex polygon P of n vertices. Since there is a unique sequence of

operations that transforms a triangulation T of P into the root Tr of T(P), by reversing

the operations we can generate that particular triangulation, starting at the root .. We

give the details in the next section.

3.3.2 Generating the Children of a Triangulation in T(P)

In this section we describe the method for generating the children of a triangulation T in

T(P).
To find the parent P(T) of the triangulation T, we flip the leftmost blocking diagonal

of T. That means P(T) has fewer blocking diagonals than T. Therefore, the operation

for generating the children of T must increase the number of blocking diagonals in the

children of T. Intuitively if we flip a diagonal (Vi, Vj) of T, which is incident to vertex Vi

in T, and generate a new triangulation T', then T' contains one more blocking diagonal

than T. We call all such diagonals (Vi, Vj) as the candidate diagonals of T.

Note that, flipping a candidate diagonal of T may not always preserve the parent-

child relationship described in Section 3.3.1. For example, we generate the triangulation

of Figure 3.7(b) by flipping the candidate diagonal (Vb V3) of the triangulation of Figure

3.7(a). The leftmost blocking diagonal of the triangulation of Figure 3.7(b) is (V4, V6);

therefore the parent of the triangulation of Figure 3.7(b) is the triangulation of Figure

3.7(c), not the triangulation of Figure 3.7(a).

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS

J1\l\~~V5~V, V5\lYV'V5~V'
V
6

VI v6 VI V6 vI

(a) (b) (e)

44

Figure 3.7: Illustration of a flipping operation that does not preserve parent-child rela-

tionship.

Therefore to keep the parent-child relationship unique, we flip a candidate diagonal

(VI, Vj) of T to generate a new triangulation T' if only if flipping (Vb Vj) of T results

in the leftmost blocking diagonal of T'. We call such a candidate diagonal (VI, Vj) of T

as a generating diagonal. The generating diagonals of a triangulation T of P can be

found as follows. Let (Vb, Vb') be the leftmost blocking diagonal of a triangulation T of a

convex polygon P of n vertices. Then (VI, Vj) is a generating diagonal of T if j ::::b. If T

has no blocking diagonal then all diagonals of T are generating diagonals. Thus all the

diagonals of the root Tr of T(P) are generating diagonals. All other candidate diagonals

of T are called non-generating. We call the set of generating diagonals of a triangulation

T as generating set C of T. For example, the triangulation in Figure 3.8(a) is the root

triangulation of the genealogical tree T(P) of a convex polygon P of 8 vertices. Therefore,

all the diagonals of the triangulation in Figure 3.8(a) are generating diagonals. In the

triangulation of Figure 3.8(b) , (VI, V4), (VI, V6) and (VI, V7) are three generating diagonals,

whereas (VI, V3) is a non-generating diagonal.

~, v4

v, v] v6 v]

v7 v, v7 "
v8 V, V, V,

(n) (b)

Figure 3.8: Illustration of generating diagonals.

We now have the following lemmas.

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 45

Lemma 3.3.3 The root Tr of the genealogical tree T(P) of a convex polygon P of n

vertices has n - 3 generating diagonals and any other triangulations in T(P) has less

than n - 3 generating diagonals.

Proof. The number of diagonals in any triangulation T of a convex polygon P of n

vertices is n -: 3. Thus the maximum number of possible generating diagonals is also

n - 3. Since the root triangulation Tr has all its diagonals as generating, Tr contains n - 3

generating diagonals. Any triangulation T other than the root Tr contains at least one

blocking diagonal, which is not incident to vertex Vj in T. Since generating diagonals must

be incident to vertex Vj, any triangulation other than Tr has less than n - 3 generating

diagonals. o

Lemma 3.3.4 Let (Vj, Vj) be a generating diagonal of a triangulation T of a convex poly-

gon P of n vertices. Then flipping (Vj, Vj) in T results in the leftmost blocking diagonal

ofT(vj, Vj)'

Proof. Let (vr, vr') be the leftmost blocking diagonal of T. We first consider the case

where either Vj = Vr or Vj = Vr'.

If Vj = Vr, then (Vj, Vj, vr') is a triangle of T (see Figure 3.9(a)) and after flipping (Vj, Vj)

of T we get (Vi, vr') as a diagonal in T(vj, Vj), for some i < j (see Figure 3.9(b)). Since

every face ofT(vj, Vj) is a triangle, (Vj, Vi, vr') is a triangle of T(vj, Vj)' Therefore, (Vi, Vr')

is the blocking diagonal of T(vj, Vj)' Since, (vr, vr') is the leftmost blocking diagonal of

T and vertex Vr is not visible from vertex Vj in T(vj,vj), (Vi,Vr') is the leftmost blocking

diagonal of T(Vj, Vj)

If Vj = Vr', then (Vj, Vr, Vj) is a triangle of T (see Figure 3.9(c)) and after flipping

(Vj,Vj) ofT we get (Vi,Vr) as a diagonal ofT(vj,'vj), for some i > j (see Figure.3.9(d)). •

Since every face of T(v1> Vj) is a triangle, (Vj,Vr, Vi) is' a:triangle of T(vj, Vj)' Therefore/!
. . '-.J

(Vr, Vi) is a blocking diagonal of T(Vj, Vj)' Since, (Vr,v~,Yis a leftmost blocking diagonal

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 46

of T and (vr, Vi) is a blocking diagonal of T(vl, Vj), where i > r', (Vn Vi) is the leftmost

blocking diagonal of T(Vj, Vj)

We now consider the case where j > r' (see Figure 3.9(e)). Let (vq, vq,) be the diagonal

which appears in T(Vj, Vj) after flipping the diagonal (Vj, Vj) of T (see Figure 3.9(f)). Every

face of T(Vj, Vj) is a triangle. Thus, (Vj, vq, vq,) is a triangle of T(Vj, Vj) and (vq, vq,) is a

blocking diagonal of T(vj,vj). Since, q' > j, we haveq' > r'. Therefore, (vq,Vq,) is the

leftmost blocking diagonal of T(Vj, Vj). o

(c)

(dl

V, v4=vr=vj
V,

VJ v6=vq'

V2 V,

V8 v,
(al (b)

v6=vr,

v = ~'.
7 J

Figure 3.9: Illustration of Lemma 3.3.4.

Lemma 3.3.5 Let T be a triangulation of a convex polygon P ofn vertices. Let T(vj, Vj)

be the triangulation generated by flipping the diagonal (Vj, Vj) of T. Then T is the parent

ofT(vj, Vj) in the genealogical tree T(P) if and only if (Vj, Vj) is a generating diagonal of

T.

Proof. Necessity. Assume that (Vj, Vj) is a non-generating diagonal of T. It is sufficient

to show that T is not the parent of T(vj, Vj). Here, we have j < l' (see Figure 3.10(a)).

Let (vq, vq,) be the diagonal which appears in T(vj, Vj) after flipping (Vj, Vj) of T (see

Figure 3.10(b)). Since the diagonal (Vj, vr) of T is also a diagonal of T(vj, Vj), we have

q' :'0 r. Therefore, q < r'. Thus, (vr, vr') is the leftmost blocking diagonal of T(vl, Vj) and

T is not the parent of T (VI, Vj).

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 47

Sufficiency. Assume that (VI, Vj) is a generating diagonal of T. We show that T is the

parent of T(vl, Vj) in I(F).
Let (vq, vq') be the diagonal which appears in T(VI' Vj) after flipping (VI, Vj) of T. To

prove that T is the parent of T(VI, Vj) in I(F), we must show that (vq, vq') is the leftmost

blocking diagonal of T(VI' Vj)'
We first consider the case where T is the root of I(F). T does not have any parent and

all the diagonals of T are incident to vertex VI' Therefore, (vq,Vq,) is the only diagonal

of T(VI' Vj) which is not incident to vertex VI' Thus, (vq, vq') is the leftmost blocking

diagonal of T(VI, Vj).
We now consider the case where T is not the root of I(F). Then by Lemma 3.3.4,

(Vq, vq') is the leftmost blocking diagonal of T(VI' Vj)'

(a) (b)

o

Figure 3.10: Illustration of Lemma 3.3.5.

According to Lemma 3.3.5, if the generating set C of a triangulation T is non-empty,

then we can generate each of the children of T in I(F) by flipping a generating diagonal

of T. Therefore, the number of children of a triangulation T in I(F) will be equal to the

cardinality of the generating set. Thus, the following lemma holds.

Lemma 3.3.6 The number of children of a triangulation T of a convex polygon P is

equal to the number of diagonals in the generating set of T. The root of I(F) has the

maximum number of children.

CHAPTER 3. TRIANGULATIONS'OF CONVEX POLYGONS

3.3.3 The Representation of a Triangulation in T(P)

48

The child generation rule defined in Section 3.3.2 ensures that every triangulation T of

a convex polygon P of n vertices is present in the genealogical tree T(P) and every

triangulation T except the root Tr of T(P) is generated from its parent. In this section

we describe a data structure that we use to represent a triangulation T and that enables

us to generate each child triangulation of T in constant time.

For a triangulation T of a convex polygon P of n vertices, we maintain three lists: L,

C and 0 to represent T completely. Here L is the list of diagonals of T and C is the

generating set ofT. For each diagonal (Vj,Vj) in the generating set C ofT, we maintain a

corresponding opposite pair (vo, Vd), such that (Vj, vo, Vj, vo') is a convex quadrilateral of

T. Note that, 0 < j and 0' > j. 0 is the list of list of such opposite pairs. For example,

in Figure 3.11, the generating diagonal (Vj, V4) has the opposite pair (V3, V6)'

Since we generate triangulations of P starting with the root T" we find the represen-

tation of T
r
first. The diagonals of Tr are listed in L in counterclockwise order. That is,

for T,., L = {(Vj, Vn-j), (Vj, Vn-2),'" (Vj, V3)}' The generating set C is exactly similar to

the list L of Tr: C = {(Vj, Vn-j), (Vj, Vn-2), ... , (Vj, V4), (Vj, V3)}' Corresponding list of op-

is the opposite pair of (Vj, Vj) in T" 3 < j < n - l.

Let T(vj, Vj) be a child triangulation of Tin T(P) generated from T by flipping the

diagonal (Vj, Vj) of T. Let (Vb, Vb') be the blocking diagonal which appears in T(Vj, Vj) after

flipping (Vj, Vj) of T. The list L of T(vj, Vj) can be found easily from the representation

of T by removing (Vj, Vj) from the list L of T and adding (Vb, Vb') to it. Note that one

can easily find the blocking diagonal (Vb, Vb') of T', since (Vb, Vb') is the opposite pair of

(Vj, Vj) in the representation of T.

In the next section we give the detailed algorithm for generating the triangulations of

P and show that the representation of a child triangulation T' of T can be found from

the representation of T in constant time.

~'"..,.

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 49

V4=~VO

V5~V2

V6 = va v)

(a)

Figure 3.11: Illustration of (a) a generating diagonal with opposite pair and (b) blocking

diagonal generated by flipping the generating diagonal.

3.3.4 The Algorithm

In this section we give an algorithm to generate all triangulations of a convex polygon P

of n vertices.

Let vj" v)" ... , Vj"]1 > 12 > ... >]k, be the sequence of k vertices of a triangulation

T of P such that (VI. Vj,), (VI, V],), ... , (VI, Vlk) are the diagonals of T and each of the

diagonals (VI, VjJ, 1 ::; i ::;k, is a generating diagonal of T. Then, T has a generating

set C = {(VI, VjJ, (VI, V],), ... , (VI, Vj-J} of k generating diagonals, for 0 ::; k ::; n-

3. For Tr, C = {(VI. Vn-l), (VI, Vn-2),"', (VI. V4), (VI, V3)}' For each diagonal (VI, Vj) of

T, we keep an opposite pair (va, Va') in T. Ois the set of such pairs. For Tr, 0 =

{(Vn-2, vn), (Vn-3, Vn-l), ... , (V3, vs), (V2, V4)} as shown in Section 3.3.3. We find the sets

C and 0 of a child T' of T by updating the lists C and 0 of T while we generate T'.

We now describe a method for generating the children of a triangulation T in T(P).

We have two cases based on whether T is the root of T(P) or not.

Case 1: T is the root of T(P).
In this case, all the diagonals of T are generating diagonals and there are a total of

n _ 3 such diagonals in T. Any of these generating diagonals of T can be flipped to

generate a child triangulation of T. For example, the root of the genealogical tree in

Figure 3.2 has three generating diagonals; thus it has three children as shown in Figure

3.2.

Case 2: T is not the root of T(P).

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 50

{Case I}

Let (Vb, Vb') be the leftmost blocking diagonal ofT. Consider a diagonal (VI,Vj) ofT.

If j 2: b, then (VI, Vj) is a generating diagonal of T. Therefore, according to Lemma 3.3.5,

T(vI, Vj) is a child of Tin T(P). Thus, for all diagonals (VI, Vj) of T such that j 2: b, a

new triangulation is generated by flipping (VI, Vj).

If j < b, then (Vb Vj) is a non-generating diagonal of T and according to Lemma 3.3.5,

we can not flip (VI, Vj) to generate a new triangulation from T.

Based on the case analysis above, we can generate all triangulations of a convex

polygon P of n vertices. The algorithm is as follows.

Procedure find-all-child-triangulations(T)

begin

output Tj {output the difference from the previous triangulation}

if T has no generating diagonals then return j

Let (Vb, Vb') be the leftmost blocking diagonal of Tj

for all j 2: b

if (Vj, Vj) is a diagonal of T then

find-all-child-triangulations(T(VI, Vj)); {Case 2}

end;

Algorithm find-all-triangulations(n)

begin

output root Tr;

T=Tr;

for j = n - 1 to 3

find-all-child-triangulations(T(VI, Vj)) j

end.

The following theorem describes the correctness and performance of the algorithm

find -all- t riangula t ions.

Theorem 3.3.7 Given a convex polygon P ofn vertices, the algorithm find-ali-triangulations

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 51

generates all the triangulations of P in 0(1) time per triangulation on average, without

duplications and omissions. The space complexity of the algorithm is 0 (n).

Proof. Let T be a triangulation of P and T(v), Vj) be the triangulation generated from

T by flipping the diagonal (v), Vj) of T. The algorithm find-all-triangulations gener-

ates T(v), Vj) from T if only if (v), Vj) is a generating diagonal of T. Therefore, according

to Lemma 3.3.5, T is the parent of T(v), Vj). That means, each triangulation T of P is

generated from its parent only; therefore, duplication can not occur. To prove that no

omission occurs, we use Lemma 3.3.2. Lemma 3.3.2 implies that for any triangulation T

of P, there is a unique path from the root Tr to T in T(P). Thus, to show that the algo-

rithm find-all-triangulations does not omit any triangulation, it is sufficient to prove

that the algorithm find-all-triangulations generates all the children of a triangulation

T. By Lemma 3.3.5, to generate the children of a triangulation T, only the generating

diagonals of T need to be flipped. Since the algorithm find-all-triangulations flips all

the generating diagonals of a triangulation T to generate new triangulations from T, all

the children of T in T(P) are generated.

The complexity of the algorithm can be found as follows. \Ve need to store the

generating set C for the current triangulation T of P. Since the maximum cardinality of

Cis n - 3, it take O(n) space to store it. Along with C, we need to maintain for T, the

set of opposite pairs 0 and update it while generating children. We also need to maintain

another list L for listing the diagonals of T. To generate the triangulations of P, we start

at the root of T(P). For the root of T(P), C is identical to Land C can be found in

O(n) time. When a generating diagonal of a triangulation T is flipped, that diagonal is

replaced in the list L of T by its opposite pair in T to get the list L of the child. Since we

use a recursive procedure to generate the triangulations without constructing the whole

T(P), and the depth of the tree is n - 2 (number of diagonals in the root plus one), thD

algorithm uses O(n) space.

Now the question is how can we update C and 07 By implementing these two sets

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 52

using linked lists and storing appropriate pointers at each node on the path from the root
I

of T(P) to the current triangulation T, we can do it in constant tim~. Let (VI, Vj) be the

diagonal of T to be flipped. The updated lists C and 0 correspond to lhe newly generated

child of T.

Flipping the generating diagonal (VI, Vj) of T can change the opposite pairs of max-
. I

imum two other candidate diagonals of T in the representation of T{ VI, Vj). In our al-

gorithm, we only need to change the opposite pairs of candidate dilgonals of T(VI, Vj).

Let (VI, Vi), (VI, Vj) and (VI, Vk) be three candidate diagonals of T, kl < j < i, such that

(VI, Vk, Vj, Vi) is a convex quadrilateral of T, as shown in Figure 3.12. We now flip (VI, Vj)

of T to generate the child T(VI' Vj) of T. Flipping the diagonal (VI, Vj) of T changes the
I

opposite pairs of the diagonals (VI, Vi) and (VI, Vk) of Tin T(VI, Vj). jI'he changes can be

done as follows.

Figure 3.12: Flipping (VI, Vj) can affect two candidate di gonals.

Ld ("" ",') be the oppo,"e pme pf h,p,) ip T. H"" ~k =1d ~ i, " ,how" in

Figure 3.12. Let the opposite pair of (VI, Vi) in T be (VI, VI')' Then II j and the opposite

pair of (VI, Vi) in T(VI, Vj) is (vo, VI')' Similarly, if the opposite pair of (VI, vd is (vs> vs')

in T, then s' = j and the opposite pair of (VI, Vk) in T(VI' Vj) will be (vs> vo')' Figure 3.13

shows the update operations. Clearly, these updates can be done in 0(1) time.

Thus, if a triangulation T has k children, all of them can be generated in O(k) time.

Therefore each child of T is generated in 0(1) time on average. o

/. '

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 53

v =V.= Vd5 I

(a) (b)

v =V = V3 k 0

Figure 3.13: Illustration of update operations for opposite pairs of two affected edges; (a)

parent and (b) child.

3.4 Unlabeled Triangulations of a Convex Polygon

In this section we modify our algorithm for generating all labeled triangulations of a

convex polygon P of n vertices to generate unlabeled triangulations of P.

Generating unlabeled triangulations of a convex polygon P is more difficult than gener-

ating labeled triangulations; if vertices of P are not numbered then there arise "rotational"

and "mirror repetitions" among the triangulations of P. Two unlabeled triangulations of

a convex polygon are rotationally equivalent to each other, if one can be found by rotating

the other one. when the labels are removed. Similarly, two unlabeled triangulations of a

convex polygon are mirror image of each other, if one can be found by taking the mirror

image of the other one. For example, the triangulations of Figure 3.14(a) and (b) are

rotationally similar if we remove the labels. The two triangulations of Figure 3.15 are

mirror images of the one another if no labels are used. In this section, we modify our

algorithm for generating all triangulations of a convex polygon to avoid such repetitions.

The main idea of the modified algorithm is to consider each triangulation of P as belong-

ing to a particular class. Those triangulations of P which are rotationally equivalent or

mirror images of one another, forms a class of triangulations. 'vVechoose one particular

triangulation from each class as the representative of that class. The modified algorithm

still uses the labels while generating the triangulations, but avoids any rotational or mir-

ror repetitions by outputting a triangulation only if it is the representative of a particular

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 54

class. Thus, our modified algorithm constructs the tree of triangulations T6 of a convex

polygon of six vertices as shown in Figure 3.16. Note that, only 3 triangulations are there

in Figure 3.16, while the tree of triangulations of Figure 3.2 contains 14 triangulations.

(a)

Figure 3.14: Triangulations of (a) and (b) are rotationally equivalent when the labels are

removed.

Figure 3.15: Triangulations of (a) and (b) are are mirror image of each other when the

labels are removed.

vVe now give a new representation of each triangulation of a convex polygon that

enables us to avoid any rotational or mirror repetitions easily. Let T be a triangulation of

P where the vertices of P are labeled sequentially from VI to vn. A labeled degree sequence

(d
l
, d

2
, ... , dn) of T is the sequence of degrees of the vertices, where di .is the degree of Vi

in the graph associated with T. A vertex with degree 2 is called an ear of T. We thus

have the following lemma.

Lemma 3.4.1 Let T be a labeled triangulation of a convex polygon P ofn vertices. Then

T can be rep1'esented uniquely by its labeled degree sequence.

Proof. Let (dl, d2,"', dn) be the labeled degree sequence of T. We note that T has at

least two ears. Let Vi is the clockwise first ear. Remove it and decrease the degrees of its

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 55

Vs V2

V6 vI

~4) (1.3)~

V3 V4

Vs V2 Vs V2

Figure 3.16: Illustration of genealogical tree of six vertices when rotational and mirror

repetitions are not allowed.

two neighboring vertices by one. Apply the procedure recursively until the vertices VI ans

V2 are left. Thus we get a sequence of vertices Vi" Vi" ... Vin_,. Now adding the vertices

in reverse order we can generate T. Thus there is a bijection between the triangulations

of a convex polygon and the labeled degree sequences of the triangulations. o

3.4.1 Removing Rotational Repetitions

First we describe the algorithm for avoiding rotational repetitions. The following fact is

very important for that purpose.

We have the following idea to avoid rotational repetitions. One can observe the fol-

lowing fact.

Fact 3.4.2 Let T and T' be two triangulations of a convex polygon P ofn vertices, which

are rotationally equivalent to each other. Then, by rotating the labeled degree sequence of

T, we get the labeled degree sequence ofT',

As an illustration of the Fact 3.4.2, the triangulations of Figure 3.14(a) and (b) have the

labeled degree sequences (3,2,4,3,2,4) and (4,3,2,4,3,2) respectively. By right rotating

(

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 56

the labeled degree sequence of the triangulation of Figure 3.14(a) 4 times, we get the

labeled degree sequence of the triangulation of Figure 3.14(b).

Let T and T' be two triangulations of a convex polygon P of n vertices, which are

rotationally equivalent to each other. Let (d1, dz,"', dn) and (d~, d~, ... , d~) be the la-

beled degree sequences of T and T' respectively. Let d1 = d~, dz = d~,' .. , dk-1 = d~_1

and dk > d~ for some k, 1 ::; k ::; n. We say that the sequence (d1, dz, ... , dn) is greater

than the sequence (d~, d~,' .. , d~) and T has a greater sequence than T'. For example,

the triangulations of Figure 3.17(a) and (b) have the degree sequences (5,2,5,2,3,4,3,2)

and (4,2,3,4,3,3,2,5) respectively and the first sequence is greater than the second one.

Thus the triangulation of Figure3.17(a) is greater than the triangulation of Figure 3.17(b).

v
V6 v3 V6 V3
V7 v2 V7 v2

vg vI Vg
Ca) (b)

Figure 3.17: Illustration of two triangulations where one has greater degree sequence.

Let 5 be the set of those triangulations of a convex polygon of n vertices, where the

triangulations are rotationally equivalent to each other. Let T be the triangulation in 5

whose degree sequence is greater than all other triangulations in S. Then, the labeled

degree sequence of T is the canonical representation of S. We say that T has the greatest

labeled degree sequence and T is the representative of S. We modify our algorithm to

avoid any rotational repetitions as follows. We output each triangulation T only if it has

the greatest labeled degree sequence. Let (d1, dz' .. dll) be the degree sequence of T. If

d
1
> di for 2 ::; i ::;n, then T has the greatest labeled degree sequence. This can be found

in 0(1) time as explained later. Otherwise, we generate n - lather degree sequences

by right rotating T's degree sequence and check whether T's sequence is greater. In this

case, it takes O(nZ) time to find whether T has the greatest labeled degree sequence.

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 57

For the triangulation T, we need to maintain an array D to store the degree sequence.

It takes O(n) space. Let (Vj, Vj) is a generating diagonal in T with opposite pair (va' va').

Flipping (Vj, Vj) changes the degrees of four vertices. The degrees of Vj and Vj are reduced

by one and the degrees of va and va' are increased by one. All these updates can be

done in 0(1) time. Let (di, d~, ... , d~) be the resultant degree sequence and T' is the

new triangulation. We can easily check whether di > .d; for 2 :S i :S n by storing the

highest degree d
max

among nodes other than Vj and updating it while generating a new

triangulation. Now there are three cases.

Case 1: If di > dmax, then output T'.

Case 2: If d'l = d
max

, then check whether T' has the greatest labeled degree sequence. If

YES, then output T'.
Case 3: If di < dmax, then ignore T' and prune the subtree of triangulations rooted at T'.

Let S be the set of those triangulations of a convex polygon P of n vertices, where

the triangulations are rotationally equivalent to each other. Let T be the triangulation

in S whose degree sequence is greater than all other triangulations in S. Then, the

labeled degree sequence of T is the canonical representation of S. We say that T has the

greatest labeled degree sequence and T is the representative of S. To avoid any rotational

repetitions among the triangulations of P, we output each triangulation T of P only if it

has the greatest labeled degree sequence. Let (dj, dz ... dn) be the degree sequence of T. If

d
j
> d

i
for 2 :S i :S n, then T has the greatest labeled degree sequence. This can be found

in 0(1) time as explained later. Otherwise, we generate n - 1 other degree sequences

by right rotating T's degree sequence and check whether T's sequence is greater. In this

case, it takes O(nZ) time to find whether T has the greatest labeled degree sequence. We

also need to maintain for T an array to store the degree sequence. It takes O(n) space.

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS

3.4.2 Avoiding Mirror Repetitions

58

We now further modify our algorithm of generating all triangulations of a convex polygon

to avoid any mirror image repetitions.

Let T be a triangulation of an n vertex convex polygon having labeled degree sequence

(d], d2,"', dn). Assume that T has the greatest labeled degree sequence than all other

triangulations which are rotationally similar to T. Let T' be the triangulation which is

the mirror image of T. Using the following fact we can find the labeled degree sequence

of T'.

Fact 3.4.3 Let T and T' be two triangulations of a convex polygon of n vertices, which

are mirror images of each other. Let T has the labeled degree sequence (d], d2,' . " d,,).

Then the labeled degree sequence ofT' is (dn, d,,_],"', d2, d]).

For example, the triangulation of Figure 3.15(a) has the degree sequence (4,2,3,4,2,3).

The triangulation of Figure reffig:mirrorimage(b), which is the mirror image of the trian-

gulation of Figure 3.15(a), has the reverse degree sequence (3,2,4,3,,2,4).

I\'ow, using the labeled degree sequence of T', we can avoid mirror image repetitions

as follows. vVe start with the sequence (d", d,,_],"', d2, (h), and from it we generate

n - 1 other sequences by right rotation. These n - 1 sequences corresponds to all the

triangulations which are rotationally similar to T'. We compare the degree sequence of

T with all these sequences to determine whether T's sequence is the greatest. Thus, we

have to compare T's sequence with a total of n sequences. This takes O(n2) time. If

T's sequence is found greater than all these sequences, then we output T. Otherwise we

discard T and prune the subtree rooted at T. Since all we need is to store the sequence

of T, the space complexity is O(n).

Thus we have the following theorem.

Theorem 3.4.4 For a convex polygon P of n vertices, all the triangulations of P can be

CHAPTER 3. TRIANGULATIONS OF CONVEX POLYGONS 59

found in time 0(n2) per triangulation, where the vertices of P are not numbered, avoiding

the rotational and mirror image repetitions. The space complexity is O(n).

3.5 Conclusion

In this chapter we gave two algorithms. The first one generates all labeled triangulations

of a convex polygon P of n vertices. In this case all the vertices of P are numbered

sequentially. The second algorithm generates unlabeled triangulations of a convex polygon

P of n vertices, where the vertices of P are not numbered and avoids rotational and mirror

image repetitions among the triangulations of P.

The main idea behind the algorithms was to generate each triangulation from previ-

ous one by making a constant amount of local changes. For that purpose we defined a

tree structure among the triangulations of P. The idea can be traced back to the well

known technique called Combinatorial Gray Code Approach, although the main feature

of our algorithm is the data structure we used to represent each triangulation. That data

structure is crucial in developing the algorithm for generating all triangulations of a given

plane graph, as described in the next chapter. Our algorithm for generating all labeled

triangulations of a convex polygon P of n vertices generates each new triangulation in

0(1) time and uses O(n) space. The algorithm for generating unlabeled triangulations

is based on the algorithm for labeled triangulations and generates each triangulation in

0(n2) time with linear space complexity.

Chapter 4

Triangulations of Plane Graphs

4.1 Introduction

In this chapter we present the main result of this thesis, an algorithm for generating all

triangulations of a biconnected plane graph G. Our algorithm for generating all trian-

gulations of a biconnected plane graph G is based on the algorithm for generating all

triangulations of a convex polygon P of n vertices as described in Chapter 3. Here also

we define a parent-child relationship among the triangulations of G and denote the cor-

responding genealogical tree of G by T(G). To make the material accessible, we describe

the algorithm in two parts. vVe first handle the case where G is a biconnected outer planar

graph and describe in detail the algorithm for generating all triangulations of G. Later

we generalize t.he algorit.hm for generat.ing all t.riangulat.ions of a biconnect.ed out.erplanar

graph t.o generat.e all t.riangulations of a biconnect.ed plane graph.

The rest. of the chapt.er is organized as follows. In Section 4.2 we give an algorithm t.hat.

generat.es all t.riangulat.ions of a biconnect.ed out.erplanar graph G of n vertices. Sect.ion

4.3 describes t.he algorit.hm for generating all t.riangulat.ions of a biconnected plane graph.

Finally, Section 4.4 is t.he conclusion.

60

CHAPTER 4. TRIANGULATIONS OF PLANE GRAPHS 61

4.2 Algorithm for Biconnected Outerplanar Graphs

Let G be a biconnected outerplanar graph of n vertices. The genealogical tree of the

biconnected outerplanargraph G of Figure 4.1(a) is shown in Figure 4.1(b).

~

" "
116 113

11
7

112

1Ig vI

(0)

(b)

Figure 4.1: Illustration of (a) an outerplanar graph G of eight vertices and (b) genealogical

tree T(G) of G.

Let F be an inner face of a biconnected outerplanar graph G, where the boundary of

F contains s vertices. Then the boundary of the face F can be drawn as the boundary of

a convex polygon P of s vertices and a triangulation of P corresponds to a triangulation

of the face F of G. For example, the face (VI, V2, V5, V5, V7) of the graph in Figure 4.2(a)

can be drawn as the convex polygon P in Figure 4.2(b). Then the triangulation of P in

Figure 4.2(c) corresponds to the triangulation of the face (VI, V2, V5, V5, V7) of the graph

of Figure 4.2(a), as shown in Figure 4.2(d). Our idea is to apply the algorithm for

generating all triangulations of a convex polygon to each of the inner faces of G. By

finding the triangulations of the inner faces of G and then combining those triangulations

we generate the triangulations of G itself.

CHAPTER 4. TRIANGULATIONS OF PLANE GRAPHS 62

cr'
v,

v6

",V7 V1

VI
Ca)

Q6V,
V,

"2

VI
(C)

~

6 V,
V,

V2

VI

Cd) (e)

Figure 4.2: An inner face of a biconnected outerplanar graph can be viewed as a convex

polygon.

4.2.1 Finding the Root

In this section we give an algorithm to find the root triangulation of the genealogical tree

T(G) of a biconnected outerplanar graph G of n vertices.

Finding a root for T(G) is more difficult than finding the root for T(P). The idea is

to treat each inner face Fi of G as a convex polygon Pi and find the root triangulation

of the genealogical tree of P; using the definition of root triangulation of Scction 3.3.2.

From the root triangulation of the genealogical tree of Pi we get a triangulation of Fi. By

combining the triangulations found for each face Fi of G this way, we get a triangulation

of the graph G. '\Ie take this specific triangulation as the root triangulation TT of the

genealogical tree T(G) of G. Figure 4.3(a) shows a biconnected outerplanar graph G of

10 vertices. Corresponding root in T(G) is shown in Figure 4.3(b).

Assume that the biconnected outerplanar graph G has k faces, labeled FI,F2, •.. , Fk.

We say that the face Fi precedes the face Fj whenver i < j. For each face Fi of G, there

is a convex polygon Pi associated with Fi, where the number of vertices of Pi and F; are

same and the vertices of Pi are labeled similar to the vertices of Fi. The face F; has the

candidate set Ci, where Ci is the generating set of the root triangulation of the genealogical

tree of Pi. The generating set Co of G is the ordered union of CI, C2, •• ', Ck. That is

o

v

CHAPTER 4. TRIANGULATIONS OF PLANE GRAPHS 63

(a) (b)

Figure 4.3: Illustration of (a) a biconnected outerplanar graph of 10 vertices and (b)

corresponding root in T(G)

CO= CI uC2U ... UGk and the edges of Ci are listed in Co before the edges of Gj, whenever

i < j. For example, in Figure 4.3(b), CI = {(Vl,vg), (VI'VS)}' C2 = {(VI,V3)}, and C3 =
{(VI, V6), (VI, vs)}. Thus Co = CI UC2 U C3 = {(VI, Vg), (VI, Vs), (VI, V3), (VI, V6), (VI, Vs)}.

We traverse the face Fi of G to find the generating set Ci of Fi. We traverse the face Fi

of G using the doubly connected adjacency list representation of G [NR04]. Face Fi can

be traversed in time proportional to the number of vertices on the boundary of it. Assume

that we traverse the face Fi clockwise starting at vertex Vj' We find the candidates edges

of F; and corresponding opposite pairs as follows. Let Vi be a vertex on the boundary of

the face F,. The edge (Vj, Vi) is added to the generating set Ci of Fi if and only if (Vj, v,)

is not an edge of G. Thus we have the following lemma.

Lemma 4.2.1 Let G be a biconnected outerplanar graph of n vertices. Then the TOot

triangulation of the genealogical tree T(G) of G can be found in O(n) time.

Proof. In a biconnected outerplanar graph G of n vertices, the maximum number of

edges is 2n - 3. The number of inner faces of G is at most n - 2. Since each face Fi of G

can be traversed in time proportional to the number of edges on the boundary of Fi and

each edge can be shared by at most two faces .of G, traversing all the faces of G requires

time proportional to the total number of edges of G. Thus the root of T(G) can be found

in O(n) time. 0
n
\-,

':1.

CHAPTER 4. TRIANGULATIONS OF PLANE GRAPHS

4.2.2 The Child Generation Rule

64

In this section we give the rules for generating child triangulations of a triangulation T

of a biconnected outerplanr graph G.

Let F
i
be a face and T be a triangulation of G. The current triangulation of the face

Fi in T corresponds to a triangulation of the convex polygon Pi associated with Fi. The

generating diagonals of the current triangulation of Pi are called the candidate edges of

F
i
in T and the leftmost blocking diagonal of the current triangulation of Pi is called the

blocking edge of Fi in T. If there is no generating diagonals in the current triangulation

of Pi, then Fi has no candidate edges in T. The candidate edges of Fi in T are called

generating edges of T if there is no blocking edge in any of the faces Fj in T, j < i. We

call the face Fi a generating face of T if Fi contains generating edges. To generate a child

triangulation of a triangulation T of G, we find a generating face F of T and then flip a

candidate edge of F.

A generating face F in a triangulation T of G can be found as follows. Let T be the

root triangulation of T(G). Then all the faces of G are generating faces of T. Otherwise,

assume that T is generated from its parent by flipping a candidate edge of the face Fi of

G. Then all the faces Fj, j ::::i are the generating faces of T.

The above child generation rule ensures that each child of a triangulation T of G can

be generated in 0(1) time. For the triangulation T, we maintain three lists; the list of

candidate edges Co, the list of opposite pairs 00, and the list of edges LO representing T.

It requires O(n) space to store the lists. Updating the lists are similar to the procedures

explained in Section 3.3. Note that, flipping an edge of face Fi affects the candidate edges

of the face Fi only.

Thus we have the following theorem.

Theorem 4.2.2 Let G be a biconnected outerplanar graph of n vertices. Then the chil-

dren of a triangulation T in T(G) can be generated in time 0(1) per triangulation, with

pI

CHAPTER 4. TRIANGULATIONS OF PLANE GRAPHS

O(n) space complexity.

4.3 Algorithm for Biconnected Plane Graphs

65

The algorithm for generating all triangulations of a biconnected outerplanar graph can be

readily extended to a biconnected plane graph. Let G be a biconnected plane graph of n

vertices. Given the doubly connected adjacency list representation of G, we can find the

root triangulation of the genealogical tree of Gin O(n) time. We maintain the generating

set similarly as in biconnected outerplanar graph. Generating the new triangulations from

a triangulation of the biconnected plane graph is similar to the biconnected outerplanar

graph and cases are also same. Since the number of edges in any plane graph is bounded

by a linear function of n, the space complexity is also linear.

While generating triangulations of plane graphs, we have to triangulate the outer face

also. This can be done easily, since triangulating the outer face is similar to triangulating

an inner face. For example, boundary of the outer face of the graph of Figure 4.4(a) is

shown in Figure 4.4(b) and Figure 4.4(c) is one possible triangulation of that outer face.

We can consider the outer face as an inner face and the triangulation of Figure 4.4(d)

corresponds to the triangulation of Figure 4.4(c).

Thus we have the following theorem.

Theorem 4.3.1 Given a biconnected plane graph G of n vertices, the algorithm for gen-

erating all triangulations ofG generates each triangulation in 0(1) time, with O(n) space

complexity.

4.4 Conclusion

In this chapter we gave algorithms that generate all triangulations of a biconnected out-

erplanar graph and a biconnected plane graph. Both of these algorithms are based on
'..

CHAPTER 4. TRIANGULATIONS OF PLANE GRAPHS 66

%J Q
(a) (b)

~

(c)
(d)

Figure 4.4: Triangulating outer face of a plane graph; (a) the graph, (b) boundary of the

outer face, (c) one triangulation of the outer face and (d) equivalent triangulation of the

inner face.

the algorithm we described in Chapter 3 that generates all labeled triangulations of a

convex polygon. The algorithms described in this chapter requires some preprocessing of

the given graph G to find the root of the tree of triangulations or the genealogical tree of

G. Starting at the root triangulations, all other triangulations of G are generated where

each triangulation is generated from previous one in 0(1) time using only O(n) space,

where 11 is the number of vertices of G.

Chapter 5

Conclusion

This thesis deals with algorithms for generating all triangulations of a plane graph. We

have given efficient algorithms to generate all triangulations of a convex polygon P of n

vertices and based on that algorithm developed algorithms for generating all triangulations

of a biconnected outerplanar graph and biconnected plane graph.

We first summarize each chapter and its contributions. In Chapter 1 we have given

a brief description of the problem we have addressed in this thesis and discussed our

motivations behind solving the problem. \eVealso have described the main algorithmic

challenges that any enumerations algorithm has to face and reviewed some of the existing

literature.

In Chapter 2 we have introduced graph theoretical terminologies that have been used

throughout this thesis.

In Chapter 3 we have given two algorithms. The first algorithm generates all triangu-

lations of a convex polygon P of n vertices where the vertices of P are labeled sequentially.

The algorithm generates each triangulation of Pin 0(1) time per triangulation and uses

O(n) space. The other algorithm of this chapter generates all unlabeled triangulations of

P in worst case time 0(n2) per triangulation using only linear space.

In Chapter 4 we have given algorithms that generate all triangulations of a biconnected

67
(

CHAPTER 5. CONCLUSION 68

outerplanar graph and a biconnected plane graph. The algorithms are based on the

algorithm for generating all triangulations of a convex polygon P of n vertices given in

Chapter 3. The algorithms in this Chapter generate each triangulation of a biconnected

outerplanar graph or a plane graph G of n vertices in time 0(1) per triangulation with

liner space complexity.

The following problems related to the generation of triangulations of graphs and poly-

gons are still open.

1. Develop an algorithm that generates all triangulations of a connected plane graph.

2. Is there any constant time algorithm that generates unlabeled triangulations of a

convex polygon?

3. Develop an algorithm that generates all triangulations of a simple polygon.

Bibliography

[Avi96] D. Avis, Generating rooted triangulations without repetitions, Algorithmica,

16, pp. 618-632, 1996.

[AF96] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Applied

Mathematics, 6, pp. 82-90, 1996.

[Aic99] O. Aichholzer, The path of a triangulation, Proc. of 15th Annual Symposium

on Computational Geometry, pp. 14-23, 1999.

[Bes02] S. Bespamyatnikh, An efficient algorithm for enumeration of triangulations,

Computational Geometry: Theory and Applications, 23, pp. 271-279, 2002.

[BV04] J. Baril, V. Vajnovszki, Gray code for derangements, Discrete Applied J\.Iathe-

matics, 140, pp. 207-221, 2004.

[Cha91] B. Chazelle, Triangulating a polygon in linear time, Discrete Computational

Geometry, 6, pp. 485-524, 1991.
... '

.0 •,..
[CLR90] T. lVI. Carmen, C. E. Leiserson and R.L. Rivest, Introduction to Algorithms,

MIT Press, 1990.

[DVOSOO] M. de Berg, ,M. van Krevald, M. Overmars and O. Schwarzkopf, Computational

Geometry: Algorithms and Applications, Springer-Verlag, 2000.

69

BIBLIOGRAPHY 70

[ES94] P. Epstein, J.-R Sack, Generating triangulations at random, ACM Transaction

on Modeling and Computer Simulation, 4, pp. 267-278, 1994.

[For87] S. J. Fortune, A note on Delaunay diagonal flip, Manuscript, AT&T Bell Lab,

Murray Hill, NJ, 1987.

[HN99] F. Hurtado and M. Noy, Graph of triangulations of a convex polygon and tree

of triangulations, Computational Geometry 13, pp. 179-188, 1999.

[HNU99] F. Hurtado, M. Noy and J. Urrutia, Flipping diagonals in triangulations, Dis-

crete Computational Geometry 22, pp. 333-346, 1999.

[HOS96] S Hanke, T. Ottmann and S. Schuierer, The edge-flipping distance of triangu-

lations, Journal of Universal Computer Science, 2, pp. 570-579, 1996.

[Joh63] . S. jVI.Johson, Generation of pennuatations by adjacent transpositions, Math-

ematics of Computation, 17, pp. 282-285, 1963.

[JWW80] J. T. Joichi, D. E. White, and S. G. Williamson, Combinatorial gray codes,

SIANI Journal on Computing, 9(1), pp. 130-141, 1980.

[KNN99] H. Komuro, A. Nakamoto and S. Negami, Diagonal flips in triangulations on

closed surfaces with minimum degree at least 4, Journal of Combinatorial The-

ory, Series B, 76, pp. 68-92, 1999.

[Lee89] C. W. Lee, The associahedron and triangulations of the n-gon, European Jour-

nal of Combinatorics, 10, pp. 551-560, 1989.

[LN01] Z. Li and S. Nakano, Efficient generation of plane triangulations without repe-

titions, Proc. of ICALP 2001, LNCS 2076, pp. 433-443, 2001.

[JI'Ick98] B. D. Mckay, Isomorph-free exhaustive generation, Journal of Algorithms, 26,

pp. 306-324, 1998.

BIBLIOGRAPHY 71

[Nak02] S Nakano, Efficient generation of plane trees, Information Processing Letters,

84, pp. 167-172, 2002.

[NR04J T. Nishizeki and M. S. Rahman, Planar Graph Drawing, World Scientific, 2004.

[NU04a] S. Nakano and T. Uno, More efficient generation of plane triangulations, Proc.

of CD 2003, LNCS 2912, pp. 273-292, 2004.

[NU04b] S. Nakano and T Uno, Constant time generation of trees with specified diam-

eter, Proc. of WC 2004, pp. 33-45, 2004.

[Rou98] J O'Rourke, Computational Geometry in C, second edition, Cambridge Uni-

versity Press, 1998.

[SY99] S. M. Sait and H. Youssef, VLSI Physical Design Automation: Theory and

Practice, World Scientific, 1999.

[Sav97] C. Savage, A survey of combinatorial gray codes, SIAiVIReview, 39, pp. 605-

629, 1997.

[STT88] D. Sleator, R. Tarjan and W. Thurston, Rotation distance, triangulations, and,
hyperbolic geometry, Journal of American lvlathematical Society, 1, pp. 647-

681, 1988.

[Tro62] H. F. Trotter, PERM (Algorithm 115), Communications of the AClvl, 5, pp.

434-435, 1962.

[Wes01] D. B. West, Introduction to Graph Theory, 2nd Ed, Prentice Hall, 2001.

Index

E(G), 19

O(n), 27

V(G), 19

grid drawing, 4

algorithm, 26

complexity, 26

exponential, 27

linear time, 27

polynomial, 27

running time, 27

Art Gallery Problem, 8

blocking edge, 64

candidate edges, 64

canonical ordering, 4

canonical representation, 56

Catalan Family, 34

combinatorial gray code, 32

Johnson-Trotter algorithm, 33

complexity

time, 10

cycle, 24

72

degree sequence, 26

greatest, 56

labeled, 54

depth first search, 28

DFS , see depth first search

diagonal

blocking, 39

leftmost, 42

candidate, 43

generating, 44

non-generating, 44

duplication, 10

ear, 54

edge, 19

face traversal, 29

algorithm, 30

family tree, 34

flipping, 38

genealogical tree, 38

root, 39

generating face, 64

,

INDEX

generating set, 44

graph, 19

connectivity, 20

edges, 19

face, 20

inner face, 20

outer face, 20

precede, 62

outer planar , 24

planar, 20

plane, 20

data structure, 29

simple, 19

triangulation, 23

vertex, 19

degree, 20

graph drawing, 4

graph traversal, 28

I/O operation, 10

mirror image, 53

NP hard, 9

opposite pair, 48

diagonal, 19

edge, 18

exterior, 19

interior, 19

representation, 19

side, 18

simple, 19

triangulation, 21

vertex, 18

visible, 19

representation of triangulations, 48

rotationally equivalent, 53

table

comparison, 17

tree, 24

ancestor, 25

binary, 26

child, 25

depth, 26

descendant, 25

height, 26

leaf, 25

level, 26

73

path, 24

polygon, 18

convex, 19

node, 24

internal, 25

parent, 25

INDEX

root, 25

triangulations

based plane, 14

convex polygon, 13

graph of, 12

labeled, 16, 22

tree of, 13

unlabeled, 16, 22

vIsion

blocked, 40

clearer, 41

full, 39

VLSI floorplan, 7

walk, 24

74

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086

