
•

An.Efficient Information Retrieval System for BangIa
Text Database

By
Mohammad Amir Sharif
Student No. 040305031

A thcsis submitted to the Departmcnt of Computer Science and Engineering in partial
fulfillment of the requircments for the degree of MASTER OF SCIENCE IN

COMPUTER SCIENCE AND ENGINEERING

Department of Computer Science and Engineering
BANGLADESH UN1VERSITY OF ENGINEERING AND TECHNOLOGY

November 2006

10

The thesis "An Efficient Information Retrieval System for BangIa Text Database",

submitted by Mohammad Amir Sharif, Roll No. 040305031P, Session: April 2003, to

the Department of Computer Science and Engineering, Bangladesh University of

Engineering and Technology, has been accepted as satisfactory for the partial fulfillment

of the requirements for the degree of Master of Science in Engineering (Computer

Science and Engineering) and approved as to its style and contents for the examination

held on November 24, 2006.

Board of Examiners

1.

2.

3.

4.

~~~(rO

Dr. Abu Sayed Md. Latiful Hoque
AssociateProfessor
DepartmentofCSE
BUET, Dhaka-lOOO

Dr. Muhammad Masroor Ali
ProfessorandHead
Departmentof CSE
BUET, Dhaka-lOOO

W'\I~~\<P
Dr. Masud Hasan
Assistant Professor
Departmentof CSE
BUET, Dhaka-l000

Dr. Md. Nasim Ahmed Dewan
Associate Professor
Departmentof EEE
BUET, Dhaka-lOOO

Chairman
(Supervisor)

Member
(Ex -officio)

Member

Member
(External)



Declaration

It is hereby declared that the work presented in this thesis or any part of the thesis has
not been submitted elsewhere for the award of any degree or diploma.

Signature

J'1rAanWlJlJl~m)k ~
-----------~'f,t,,~I'~~----
Mohammad Amir Sharif



Table of Content

List of Tables

List of Figures

Acknowlcdgcmcnt

Abstract

CHAPTER I: INTRODUCTION

Table of Content

IV

V

VI

VII

1

1.1 Information Rctricval Systcms and Relatcd Issucs I
1.2 Characteristics of Information Retrieval System 2
1.3 Problem of Infoffilation Retrieval in Bangia 2
1.4 Objective of the Thesis 3
1.5 Organization of the Thesis 3

CHAI)TER 2: LITERTURE REVIEW

2.1 Introduction

2.2 Different Information Retrieval Systems

2.2.1 Boolean Model

2.2.2 Probabilistic Model

2.2.3 Vector Space Model

2.2.3.1 Building Term Vectors in Document Space

2.2.3.2 Computation of Similarity between Documents and Query

2.2.3.3 Latent Semantic Indexing

2.2.3.4 IR System in BangIa using Vector Space Model

2.3 Comparison of Different IR systems

2.4 Indexing of Documents

2.5 Information Retricval on the Web

5

5

6

6

7

9

10

12

15

18

19

19

22



2.6 Relevance Feedback

2.7 Evaluation of IR Performance

2.7.1 Precision and Recall

CHAPTER 3: INFORMA nON RETRIEVAL SYSTEM

FOR BANGLA TEXT DATABASE

3.1 System Architecture

3.1.1 Database Initialization and Processing

3.1 .1.1 Document Database Creation

3.1.1.2 Creation of Stop list

3.1.1.3 Keyword Processor

3.1.1.4 Font Handler

3.1.1.5 Morphological Analyzer

3.1.1.6 Creation of Synonymlist

3.1.1.7 New Document Addition

3.1.2 Storage

3.1.2.1 Storage of Synonym list

3.1.2.2 Storage of Term Information

3.1.3 Query Execution

3.2 Analytical Representation of the Architecture

3.2.1 Analysis of the Initialization and Processing

3.2.2 Conversion of Non-unicode Documents into Unicode

3.2.3 Finding the Root of the Terms in a Document

3.2.4 Setup of the IR System

3.2.5 Methodology for New Document addition into the Database

3.2.6 Information Retrieval Query Processing on Bangia Text Database

3.2.6.1 Creation of Vector Space Representation

3.2.6.2 Finding the Relevance of Documents

3.2.7 Complexity Analysis

ii

23

24

25

27

27

28
28
29
29
29
30

30
30

30

31

32

32

33

33
34

36

41

45

48
48
49

50



III

3.2.7.1 Crcation of Indcx 50

3.2.7.2 Update Operation 51

3.2.7.3 Querying the Database 51

CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSION 52

4.1 Experimental Setup 52

4.2 Postfixes Statistics 54

4.3 Creation of Stoplist for the Dataset 57

4.4 Stemming Performance 58

4.5 The Effect of Number of Occurrences of Postfixes 59

4.6 The Effect of Number of Terms in Query Expression 61

4.7 The Effect of Consideration of Document Length 63

4.8 The Effect of Morphological Analysis 64

4.9 Comparison with Other IR Systems 66

CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH 69

5.1 Conclusion 69

5.2 Suggcstions for Furthcr Rcsearch 70

Bibliography 71



IV

List of Tables

Table No. Title Page No.

2.1

2.2

2.3

2.4

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

Documcnt term matrix

Document term matrix for two principal components

Example (Inverted File)

Relation between relevant and non-relevant document

Synonyms

BangIa characters with unicode and ascii value

Postfix list

Document information

Postfix statistics

List of stopwords with document frequency

Stcmming results

Precision and recall for frequent postfix without morphological analysis

Precision and recall for frequent postfix with morphological analysis

Precision and recall (one word)

Prccision and recall (two word)

Precision and recall (three word)

Retrieval time for query terms

Precision and recall ( not considering document length)

Precision and recall (considering document length)

Relevance for different query expression

Precision and recall ( not considering morphology)

Precision and recall (considering morphology)

Different steps of different IR system

Precision and recall(not considering morphology and document length)

Precision and recall(considering morphology and document length)

17

17

20
25

31

35

37
52

55

57

58
60
60
61

62
62
62

63

63

65

65

65
66

67

67



v

List of Figures

Figure No. Title Page No.

2.1 Cosine distance of two documents for a query 14

2.2 Inverted indexing tile 2 I.

3.1 System architecture for Bangia text retrieval 28

3.2 Storage of term information 32

3.3 Algorithm to create document database 33

3.4 Algorithm to convert non-unicode supported text to unicode supported text 34

3.5 Algorithm for conversion of non-unicode document into unicode 36

3.6 Algorithm for finding the root of a word 38

3.7 Character sequence of postfixes 39

3.8 Flowchart for the set up of the database for information retrieval (first scan) 43

3.9 Flowchart for database initialization (second scan) 44

3.1 () Algorithm to update occur table 45

3.11 Flowchart for new document addition 46

3.12 Algorithm for updating the synonym table for new document 47

3.13 Algorithm to add term information from temporary table to word table 47

3. I4 Query execution process 48

3.15 Vector space representation of document and query vector 49

3.16 Algorithm to display relevant document 50

4.1 Relation between document number and required stemming 58

4.2 Relation between document number and stemming time 59

4.3 Precision-recall curve for frequent postfix 61

4.4 Effect of number of query term in query expression 62

4.5 Consideration of document length 64

4.6 Precision-recall eurve for morphological analysis 66

4.7 Precision-recall curve for morphological analysis and document length 68



VI

Acknowledgement

The name that eomes at first with the sineere gratitude from the eore of my heart is my

thesis supervisor Dr. Abu sayed Md. Latiful Hoque for his invaluable contribution to

make the research as an art of exploiting new idea and technology in the field of

information retrieval. He made me enthusiastic to find new ideas through excellent

guideline and moral courage. His profound knowledge and expertise in the field of

information retrieval have made me able to know many things about information

retrieval.

I acknowledge Dr. Muhammad Masroor Ali, Head of the Department of Computer

Science and Engineering, SUET for his kind co-operation to complete the thesis.

I would like to express my heartiest gratitude to my parents who always inspired me to

complete the thesis work. I would also thank my colleagues of Mawlana Shashani

Science and Technology University, Tangail who helped me cordially to continue my

research.

\



Vll

Abstract

The amount of information available in electronic form is growmg exponentially,

making it increasingly difficult to find the desired information. Information retrieval is

primarily conccrned with the storage and retrieval of information. Thus, along with the

growth of the World Wide Web, information retrieval systems gain importance since

thcy are ollen the only way to find the few documcnts actually relevant to a specific

query in the vast quantities of text available. Although information retrieval systems

mainly deal with natural language, linguistic methods are rarely used. The mechanical

cutting otT of inflectional and derivational suffixes to better match index terms to query

terms is called stemming. Since most research on information retrieval is done for

English, which has a relatively weak morphology, this is not regarded as problematic for

stemming. Stemming and more linguistically motivated methods show a positive impact

on retrieval performance for language such as Dutch, German, Italian, or BangIa, which

are morphologically richer than English.

There is so much variation of words in Bangia having similar meaning. So stemming is

required to find the root of the words having similar meaning by doing morphological

analysis. IR system's performance is affected due to synonyms. This problem is even

worse in Bangia than English. Existing Bangia text database contains both unicode and

non-unicode texts. It is difficult to search uniformly the database with both the types of

tcxt.

We have devcloped an efficient information retrieval system with morphological

analysis to stem the word. The experimental results show that up to 20% better precision

with 14% better recall can be achieved for Bangia by using around 150 non-intuitive

stemming rules. We have developed a dictionary-based synonym handling technique to

store the synonyms and access the database with the consideration of the synonyms. We

have developed a technique to access the database irrespective of the type of encoding of

thc text.



Chapter 1
Introduction

1.1 Information Retrieval Systems and Related Issues
Although (hc (crm "inliJnllation retricval" sccms to bc very widc, information rctricval

gencrally focuses on narrative information. In information retrieval systems, information

is organized into documents and itis assumed that there is a large number of documents.

Data contained in the documents is unstructured, lacking any associated schema. The

process of information retrieval consists of locating relevant documents, on the basis of

user input, such as keywords or example documents.

Sometimes information retrieval (IR) is used as a more general term, covering all kinds

of retrieval tasks; document retrieval or text retrieval. Very often, however, information

retrieval and document retrieval are used synonymously as document retrieval is the

prcvalcnt area of research.

The amount of information available in electronic form is' growing exponentially,

making it increasingly difficult to find the desired information. Along with the growth of

information, information retrieval (IR) system gains importance since they are often the

only way to find the few documents actually relevant to a specific query in vast quantity

of text available.

The broad ranges of applications of information retrieval system are:

I. Research in libraries by making bibliographic data available for searching,

II. Retrieval of information about similar cases from large databases of legal

decisions to help decision making by lawyers and judges,

111. Providing vendors with information about how many units of a particular product

are on stock,

IV. Helping empirical linguists by making it possible to manage, search and evaluate

large corpora,

v. Finding the desired information from the Internet.



2

1.2 Characteristics of Information Retrieval System

For any information retrieval system, there are generally four main things. Firstly, there

must be a process by which the documents will be represented that is the whole

documcnt collcction, D will be a collection of formal representation of documents {dj l.

Here a document may be represented as a vector of keywords present in the document.

Secondly, the user information need (queries) must be represented as a formal way that

is the query expression Q, must have the possible formal representation {gil, in terms of

query terms. Thirdly, after the representation of query expression and document

collection, there must be a framework F, by which we can make a modeling with these

two. Lastly, we need a ranking function by which we can find the similarity (relevance)

of the documents with respect to query expression. After getting the relevance, the

documents arc sorted in descending order with the value of the relevance. Then the top

document in the sorted list is marked as most relevant with respect to the query.

1.3 Problem of Information Retrieval in Bangia

Finding the relevant documents from the BangIa text database has significantly different

characteristics than the same for English text database. In Bangia, there are so many

variations of words. By just adding some postfixes, many different words can be formed.

But these varied words have similar meaning. So unless any mechanism is adopted, the

varicd words will be considered as distinct words. But as all the words have similar

meaning, so all these words are relevant for query with any of the words. Otherwise,

queries with these different words will give different relevance value, which will

degrade the retrieval efficiency. For this reason it is very much important to find the root

of the varied words having similar meaning. These root words are used everywhere

instead of all the varied words to keep necessary information for calculating relevance

with the query. So it is absolutely necessary to find the roots of the words fr(Jm the

variations of the words by doing morphological analysis for efficient information

retrieval. But in English there is a little variation of words. So it is not necessary to find

the root of the words by doing similar analysis.

17
(



3

On the other hand, there are many synonyms of words exists in Bangia. That means

there are different words having different roots and the same meaning. So an efficient

technique is required to manage the synonyms for efficient information retrieval. But if

they are not managed in an efficient way then the system will treat all the synonyms of

same mcaning as distinct words. This will degrade the efficiency of the information

retrieval system.

Existing Bangia text database contains both unicode and nonunicode texts. It is difficult

to search uniformly the database with both the type of text. But the required information

may be found in any of the type of text. So it is very much necessary to make a

mechanism to handle both of the types of text uniformly.

1.4 Objective of the Thesis

The objective of the thesis is to find an efficient information retrieval system with

retrieval accuracy and retrieval cost. To do so the main outcome will be

o A morphological analysis will be done to find the root of the word for ac.curate

retrieval of information.

o A synonym handling technique will be developed which will manage the vast

amount synonym found in Bangia.

o We will also develop a mechanism by which we can manage the unicode and

non-unicode text irrespective of their type for efficient retrieval purposes.

1.5 Organization of the Thesis

The structure of this thesis can be outlined as follows:

Chapter 1 depicts some introductory description of information retrieval.

Chapter 2 gives an overview about different kinds of information retrieval systems

dealing with information and different theoretical aspects.

I



4

Chapter 3 discusses about the full process and implementation of information retrieval

of BangIa.

Chapter 4 describes the experimental results and evaluation of the system developed.

Chapter 5 presents the conclusions.



5

.Chapter 2
Literature Review

2.1 Introduction
Thc nccd to storc and rctricve writtcn information became increasingly important over

centuries, cspecially with inventions like paper and the printing press. Soon after

computers werc inventcd, pcople rcalized that they could be used for storing and

mechanically retrieving large amounts of information. In 1945 Vannevar Bush published

a ground breaking article titled "As We May Think" that gave birth to the idea of

automatic access to large amounts of stored knowledge [I]. In the I950s, this idea

materialized into more concrete descriptions of how archives of text could be searched

automatically. Several works emerged in the mid 1950s that elaborated upon the basic

idea of searching text with a computer. One of the most influential methods was

described by H.P. Luhn in 1957, in which he proposed using words as indexing units for

documents and measuring word overlap as a criterion for retrieval [2]. Several key

dcvelopmcnts in the field happened in the 1960s. Most notabfe were the development of

the SMART system by Gerard Salton and his students, first at Harvard University and

latcr at Cornell University [3] and the Cranfield evaluations done by Cyril Cleverdon

and his group at the College of Aeronautics in Cranfield [4]. The Cranfield tests

developed an evaluation methodology for retrieval systems that is still in use by IR

systems today. The SMART system, on the other hand, allowed researchers to

expcriment with idcas to improve search quality. A system for experimentation coupled

with good evaluation methodology allowed rapid progress in the field, and paved way

for many critical developments. In I970s and 1980s many developments were built on

thc advances of the 1960s. Various models for document retrieval were developed and

advances were made along all dimensions of the retrieval process. These new

models/techniques were experimentally proven to be effective on small text collections

(several thousand articles) available to researchers at the time. However, due to lack of

availability of large text collections, the question whether these models and techniques



6

would scalc to larger corpora remained unanswered. This changed in 1992 with the

inception of Text Retrieval Conference, or TREC [5]. TREC is a series of evaluation

conferences sponsored by various US Government agencies under the auspices of

National Institute of Standards and Technology, which aims at encouraging research in

IR from large text collections. With large text collections available under TREC, many

old techniques were modified, and many new techniques were developed (and are still,
being developed) to do effective retrieval over large collections. TREC has also

branched IR into related but important fields like retrieval of spoken information,

information retrieval in non-English, information filtering, user interactions with a

retrieval system, and so on. The algorithms developed in IR from 1996 to 1998 were the

first ones to be employed for searching the World Wide Web. Web search, however,

matured into systems that take advantage of the cross linkage available on the Web, and

is not a focus of the present artiele. Some good IR resources for the evolution of modern

textuallR systems are found in [6, 7, 8].

2.2 Different Information Retrieval Systems

Information retrieval system may be classified as

I) Boolean model

2) Probabilistic model

3) Vector space mode

2.2.1 Boolean Model

The Boolean model represents documents by a set of index terms, each of which is

viewed as a Boolean variable and valued as True if it is present in a document. No term

weighting is allowed. Queries arc specified as arbitrary Boolean expressions formed by

linking terms through the standard logical operators: AND, OR, and NOT. Retrieval

status value (RSV) is a measure of the query-document similarity. In the Boolean model,

RSV equals 1 if the query expression evaluates to True; RSV is 0 otherwise. All

documents whose RSV evaluates to I are considered relevant to the query. This model is



7

simplc to implcment and many commercial systems are based on it. User queries can

employ arbitrarily complex expressions, but retrieval performance tends to be poor. It is

not possible to rank the output since all retrieved documents have the same RSV, nor

can wcights bc assigned to query terms. The results arc often counter-intuitive. For

example, if the user query specifies 10 terms linked by the logical connective AND, a

document that has nine of these terms is not retrieved. User relevance feedback is often

used in IR systems to improve retrieval effectiveness. Typically, a user is asked to

indicate the relevance or irrelevance of a few documents placed at the top of the output.

Since thc output is not ranked, however, .the selection of documents for relevance

I'ccdback elicitation is difficult. Thefuzzy-set model is based on fuzzy-set theory, which

allows partial membership in a set, as compared with conventional set theory, which

does not. It redefines 10gica:Joperators appropriately to include partial set membership,

and processes user queries in a manner similar to the case of the Boolean model. IR

systems based on the fuzzy-set model have proved nearly as incapable of discriminating

.among the retrieved output as systems based on the Boolean model. The strict Boolean

and fuzzy-set models are prefcrablc to other models in, terms of computational

rcquircmcnls, which arc low in terms of both the disk space required for storing

documcnt representations and the algorithmic complexity of indexing and computing

query-document similarities.

2.2.2 Probabilistic Model

This family of IR models is based on the genera] principle that documents in a collection

should be ranked by decreasing probability of their relevance to a query. This is often

called the probabilistic ranking principle (PRP) [9]. Since, true probabilities are not

available to an IR system, probabilistic IR models estimate the probability of relevance

of documents for a query. This estimation is the key part of the model, and this is where

most probabilistic models differ from one another. The initial idea of probabilistic

retrieval was published in 1960 [10]. Since then, many probabilistic models have been

proposed, each based on a different probability estimation technique.

,
U 0,-.



8

It is not possiblc to discuss thc dctails of all these models here. However, the following

dcscription abstracts out the common basis for these models: We denote the probability

of relcvance for document D, by p(R ID) since this ranking criteria is monotonic under

log-odds transformation, we can rank documents by 'oip(R ID)), where p(iil D) is thelp(RI D)

probability that the document is non-relevant. This, by simple bayes transformation,

bccomcs loJ p(D Iii). 1'(11)). Assuming that the prior probability of relevance, i.e., p(R)
lp(DI R)'p(R) .

is independent of the document under consideration and thus is constant across

documents, p(R) and p(R) are just scaling factors for the final document scores and can

be removed from the above formulation (for ranking purposes). This further simplifies

the above formulation to: loJ p(D IR)).lp(DI R)

Based on the assumptions behind estimation of p(D IR) different probabilistic models

start divcrging at this point. In the simplest form of this model, we assume that terms

(typically words) are mutually independent (this is often called the independence

assumption), and p(D IR) is re-writtcn as a product of individual term probabilities, i.e.,

probability of prest:nce/ahsence of a term in relevant/non-relevant documents:

P(DIR)= I1p(tiIR). I11-P(tiIR»
{,EQ,/) {;EQ,/)

which uses probability of presence of a term t; in relevant documents for all terms

that are common to the query and the document, and the probability of absence of a term

{J from relevant documents for all terms that are present in the query and absent from

the document. If Pi denotes Ph IR), and q i denotes q(t;l R), the ranking formula

D Pi 'D' -(1-Pj)
P(DI R) log ,EQ.D ;EQ,D

log reduces to: D q.,D -(I-q.)
I~DI R) ,EQ,D I }EQ.D J



9

For a giveli query, we can add to this a constant IOg(n 1
1
- 'Ii) to transform the

f,eQ - Pi

ranking formula to usc only the terms present in a document

11. I Pi .(1- 'Ii)og
I,EIJ.O '1i.(I-Pj)

10 TI pi.(I-qi)
g or

'IEQ.o'li .(1- Pj)

Different assumptions for estimation of Pi and 'Ii yield different document ranking

functions. E.g., in [II] Croft and Harper assume that Piis the same for all query terms

and ~ is a constant and can be ignored for ranking purposes. They also assume that
J - P,

almost all documents in a collection are non-relevant to a query (which is very close to

truth given that collections are large) and estimate 'I by '!!..., where N is the collection
N

sizc and ", is thc number of documents that contain term-i. This yields a scoring

function I log N - 11 i , which is similar to the inverse document frequency
l,EU./.) n i

function. Notice that if we think of log Pi . (1- 'Ii) as the weight of term-i in document D,
. 'Ii .(I-p,)

this formulation becomes very similar to the similarity formulation in the veetor space

model with query terms assigned a unit weight.

2.2.3 Vector Space Model

Vector space model is the mostly used technique for information retrieval. Here

documents are represented as the veetor of keywords, where weights of these keywords

are given non binary weights for getting better performance. Query expression is also

represented as a vector of query terms. Finally, a similarity measuring technique is used

for finding the relevance of the documents with the query. Some phases of vector space

model are given in the following sections.



10

2.2.3.1 Building Term Vectors in Document Space

Onc common approach to document rcprcsentation and indexing for statistical purposcs

is to rcprcscnt cach tcxtual documcnt as a sct of tcrms [12]. Most commonly, thc tcrms

arc words extractcd automatically from thc documcnts themselves, although they may

also bc phrases, n-grams or manually assigned descriptor terms. Of course, any such

term-based representation sacrifices information about the order in which the terms

occur in the document, syntactic information, etc. Often, if the terms are words extracted

from the documents, "stop" words (i.e., "noise" words with little discriminatory power)

arc e1iminatcd. Wc can apply this proccss to cach document in a given collection,

gcncrating a set of terms that represents the given document. Then the union of all these

sets of terms are taken to obtain the set of terms that represents the entire collection. This

set of terms defines a "space" such that each distinct term represents one dimension in

that space. Since each document is represented as a set of terms, this space can be

viewed as a document space.

A numeric weight is assigned to each term in a given document, representing an estimate

(usually but not ncccssarily statistical) of the uscfulness of the given tcrm as a descriptor

of thc givcn documcnt, i.c., an estimate of its usefulness for distinguishing the given

documcnt from other documents in the same collection. It should be stressed that a given

term may receive a different weight in each document in which it occurs; a term may be

a better descriptor of one document than of another. A term that is not in a given

document receives a weight of zero in that document. The weights assigned to the terms

in a givcn document D, can then be interpreted as the coordinates of D, in the document

spacc. In other words, D, is represented as a point in document space. Equivalently, we

can interpret D, as a vector from the origin of document space to the point defined by

D,'s coordinates.

In document space, each document D, is defined by the weights of the terms that

represent it. Sometimes, it is desirable to define a "term space" for a given collection. In

term spacc, each document is a dimension. Each point (or vector) in"term space is a term



I I

in the given collection. The coordinates of a given term are the weights assigned to the

given term in each document in which it occurs. As before, a term receives a weight of

zero for a document in which it does not occur.

The "document space" and "term space" can be combined perspectives by viewing the

collection as represented by a documcnt-by-tcrm matrix. Each row of this matrix is a

document (in term space). Each column of this matrix is a term (in document space).

The clement at row i, column), is the weight of term) in document i.

A query may be specified by the user as a set of terms with accompanying numeric

weights. Or a query may be specified in natural language. In the latter case, the query

can be processed exactly like a document; indeed, the query might be a document, e.g., a

sample of the kind of document the user wants to retrieve. A natural language query can

receive the usual processing, i.e., removal of "stop" words, stemming, etc., transforming

it into a set of terms with accompanying weights. Hence, the query can always be

interpreted as another document in document space. Note: if the query contains terms

that are not in the collection, these represent additional dimensions in document space.

An important question is how weights are assigned to terms either in documents or in

queries. A variety of weighting schemes have been used. Given a large collection,

manual assignment of weights is very expensive. The most successful and widely used

scheme for automatic generation of weights is the "term frequency" inverse document

frequency" weighting scheme, commonly abbreviated "tf*idf'. The "term frequency" «(f)

is the frequency of occurrence of the given term within the given document. Hence, !fis

a document-specific statistic; it varies from one document to another, attempting to

measure the importance of the term within a given document. By contrast, inverse

document frequency U4f) is a "global" statistic; i4f characterizes a given term within an

entire collection of documents. It is a measure of how widely the term is distribllted over

the given collection, and hence of how likely the term is to occur within any given

document by chance. The idf is defined as "In( ~)" where N is the number of documents



12

in the collection and n is the number of documents that contain the given term. Hence, .

the fewer the documents containing thc given term, the larger the idf If every document

in the collection contains the given term, the id{ is zero. This expresses the

commonscnsc intuilion that a tehn that occurs in every document in a given collection is

not likcly to be useful for distinguishing relevant from non-relevant documents. Or. what

is cquivalcnt, a term that occurs in every document in a collection is not likely to be

uscful for distinguishing documents about one topic from documents about another

topic. To cite a commonly-used example, in a collection of documents about computer

science or software, the term "computer" is likely to occur in all or most of the

documents, so it won't be very good at discriminating documents relevant to a given

query from documents that are non-relevant to the given query. (But the same term.

might be very good at discriminating a document about computer science from

documents that are not about computer science in another collection where computer
science documents are rare.)

Computing the weight of a given term in a given document as tf"id{ says that the best

descriptors of a given document will be terms that occur a good deal in the given

document and very little in other documents. Similarly, a term that occurs a moderate

number of timcs in II moderate proportion of the documents in the given collection will

also be a good descriptor. Hence, the terms that are the best document descriptors in a

given collection will be terms that occur with moderate frequency in that collection. The

lowest weights will be assigned to terms that occur very infrequently in any document

(low-frequency documents), and terms that occur in most or all of the documents (high
frequency documents).

2.2.3.2 Computation of Similarity between Documents
and Query

Once vectors have been computed for the query and for each document in the given

collection, e.g., using a weighting scheme like those described above, the next step is to

compute a numeric "similarity" between the query and each document. The documents

\



13

vector.

can thcn be ranked according to how similar they are to the query, i.e., the highest-

ranking documcnt is thc documcnt most similar to thc query, etc. While it would bc too

much to hope that ranking by similarity in document vector space would correspond

cxactly with human judgmcnt of dcgrec of relevance to the given query, the hope is that

the documents with high similarity will includc a high proportion of thc rclcvant

documents, and that the documents with very low similarity will inelude very few

relcvant documents. Ranking of course, allows the human user to restrict his attention to

a set of documents of manageable sizc, e.g., the top 20 documents, etc. There are several

similarity measuring techniques to find similarity between document vector and query

The usual similarity measure employed in document vector space is the "inner product"

betwcen the query vector and a given document vector. The inner product between a

query vector and a documcnt vector is computed by multiplying the query vector

component (i.e., weight), QTi for each term i, by the corresponding document vector

component weight, DTi for the same term i, and summing these products over all i.

llence [he inner product is given by:

N

L QT i x DT i

1=1

where N is the number of descriptor terms common to the query and the gIven

document. If both vectors have been cosine normalized, then this inner product

represents the cosine of the angle between the two vectors; hence this similarity measure

is often called "cosine similarity". The maximum similarity is one, corresponding to the

query and document vectors being identical (angle between them zero). The minimum

similarity is zero corresponding to the two vectors having no terms in common (angle

between them is 90 degrees). One problem with cosine similarity is that it tends to

produce relatively low similarity values for long documents, especially when the

document is long bccause it deals with multiple topics. Many techniques have been

developed to solve the problem. Figure 2.1 shows Cosine distance of two documents for
a query.

.,



14

1.0

0.8

0.6

0.4

0.2

D,= (0.8, 0.3)
D2=(0.2, 0.7)
Q= (0.4, 0.8)
cosu,=0.74
cosu2=0.98

02 0.4 0.6 0.8 1.0

Figure 2.1: Cosine distance of two documents for a query

Apart from such distance metrics, there is a host of similarity formulas that "normalize"

by avoiding term frequencies altogether, i.e., functions that only count the number of

terms that match and (sometimes) the number of terms that don't match. One such

popular function is Dice's coefficient [27):

O. 2w
Ice=--

n] +n2

whcre 11' is the number of terms common to vectors D, and D2, n, is the number of non-

zcro tcrms in D" and n; is the number of non-zero terms in D;. Note that the

dcnominator here performs a kind of nonnalization, so that a short document D, will get

a high score relative to a short topic description D2 to which it is relevant. A long

document D3 relevant to D; will get a lower Dice score provided that the additional text

in D3 contains terms that are not in D, and also not in the topic description (greater n"
same 11'). This could happen if D3 contains long sections not relevant to D;, It could also

happen if D3 contains additional discussion of the topic described by D;, but this

additional discussion uses terms that were overlooked by the user who specified topic

D;. On the other hand, if D3 and D, contain most of the same topic-relevant terms that

D; contains, but D uses them more frequently and uses few additional terms that D,

doesn't use, then D3 and D, will receive similar Dice scores despite their difference in

length.

Another common similarity function is Jaccard's coefficient [27):
w

Jaccard( 0, , O2) = --
N-z



15

where w (as before) is the number of terms common to vectors D, and D1, N is the total

number of distinct tcrms (not term occurrences!) in the vector space (union of all

document and topic vcctors), and z is the number of distinct terms (not term

occurrcnccs!) thaI arc ncithcr in D, nor in D2. In othcr words, N-z is the total numbcr of

dislinct tcrms that occur iIi D, or D2 or both. Note that the valuc of the Jaccard function

is lower, lhc morc distinct tcrms arc cithcr in D, but not D2 or vice versa. It docsn't

matter whether the mismatch is causcd by non-relevance, or difference in document

length. On the other hand, it doesn't matter how frequently a mismatching term (or a

matching term) occurs in either D, or D2.

2.2.3.3 Latent Semantic Indexing

Documents are represented as a T-Dimensional vector of term weights where T means

number of distinct tcrms present in the document set. A criticism of the term-based

approach is that user may pose queries using different terminology than the terms used

to index a document. For example, from a term similarity viewpoint, the term data

mining has nothing directly in common with the term knowledge discovery. However,

semantically these two terms have much in common and if we posed a query with one of

thcse terms, we would considcr documents containing the other to be relevant.

An interesting and useful alternative methodology goes by the name of Latent semantic

indexing (LSI). The name suggests that hidden semantic structure is extracted from text

rather than just term occurrences. What LSI actually does is to approximate the original

T-Dimensional term space by the first k principal component directions in this space,

using N x T document-term matrix to estimate directions. The first k principal

component directions provide the best set of k orthogonal basis vectors in terms of

explaining the most variance in the data matrix. The principal components approach will

exploit redundancy in the terms, if it exists. There are such redundancies very often in

practice. For example, terms such as database, SQL, indexing, query optimization can be

expected to exhibit redundancy in the sense that many database-related documents may

contain all four of these terms together. The intuition behind principal components is



16

that a singlc vcctor consisting of a wcightcd combination of the original terms may bc

ablc to approximatc quite costly thc effect of a much larger set of terms. Thus the

original document-term matrix of size NxT can be placed by matrix of size NxK where

K may be much smaller than T with little loss in information. From a text retrieval

pcrspcctive, for fixed recall, LSI can increasc precision compared to the simple vector

spacc model.

An interesting aspect of the principal component representation for the document-term

matrix is that it captures relationships among terms by creating new terms that may more

closely affect the semantic content of the document. For example, if the terms database,

SQL, indexing, query optimization are effectively combined into a single principal

component term, we can think of this new term as defining whether the content of a

document is about database concepts. Thus, for example, if the query is posed using the

term SQL, but the database-related documents in the set of documents contain only the

tcrm indexing, that set of database documents will nonetheless be returncd by LSI

mcthod (but would not return strictly term based approach).

Wc can calculate a singular value decomposition (SYD) for the document term matrix

M. That is we find decomposition M = U x S x vI'. Here U is a lOx 6 matrix shown in

Tablc 2.1 as for cxample where each row is vector of weights for a particular documents,

S is a 6 x 6 diagonal matrix of eigenvalues for each principal component directions, and

thc column of the 6x6 matrix yT provide a new orthogonal basis for the data, often

referrcd to as the principal component directions. The U matrix, for example, may be

stated as the document term matrix shown in Table 2.1.

The S matrix for M has diagonal elements

AI. . At, ={77.4, 69.5, 22.9,13.5,12.1, 4.8}

In agreement with our intuition, most of the variance in the data is captured by the first

two principal components. In fact, if we were to retain only these two principal

components (as two surrogate terms instead of the six original terms), the fraction of



17

variance that our two-dimensional representation retains (Ai +Aj) I I::IAi = 0.925; I.e.,

only 7.5% of the information has been lost (in mean square sense).

Table 2.1 : Document term matrix

T1 1'2 1'3 1'4 1'5 1'6

DI 24 21 9 0 0 3

D2 32 10 5 0 3 0

03 12 16 5 0 0 0

D4 6 7 2 0 0 0

05 43 31 20 0 3 0

06 2 0 0 18 7 16

D7 0 0 1 32 12 0

D8 3 0 0 22 4 2

09 1 0 0 34 27 25

010 6 0 0 17 4 23

If we represent the documents in the new two dimensional principal component spaces,

the co-efficient for each document correspond to the first two columns of the U matrix.

The matrix is shown in Table 2.2.

Table 2.2: Document term matrix for two principal components

.'

D1 30.8998 -11.4912

D2 30.3131 -10.7801

D3 18.0007 -7.7138

D4 8.3765 -3.5611

05 52.7057 -20.6051

D6 14.2118 21.8263

D7 10.8052 21.9141

D8 11.5080 28.0101

D9 9.5259 17.7666

D10 . 19.9219 45.0751



18

Latent semantic indexing is done in query expression also and the space for the principle

component direction is also found lor the query expression. Then the similarity is

calculatcd with the ncw spacc of document vector and query vector.

From a computational viewpoint, directly computing the principal component vectors

(by seeking the eigenvectors of the correlation or covariance matrix, for example) is

usually neither computationally feasible or numerically stable.

Many other techniques have been developed over the years and have met with varying

success. Cluster hypothesis(28] states that documents that cluster together (are very

similar to each other) will have a similar relevance profile for a given query. Document

clustering techniques were (and still are) an active area of research. Even though the

usefulness of document clustering for improved search effectiveness (or efficiency) has

been very limited, document clustering has allowed several developments in IR, e.g., for

browsing and search interfaces. Natural Language Processing (NLP)(29] has also been

proposcd as a tool to enhance retrieval effectiveness, but has had very limited success.

Even though document ranking is a critical application for IR, it is definitely not the

only one. The field has developed techniques to attack many different problems like

information filtering, topic detection and tracking (TOT), speech retrieval, cross-

language retrieval, question answering, and many more.

2.2.3.4 IR System in Bangia using Vector Space Model

An information retrieval system in BangIa using vector space model has been developed

by Islam ct at. (26]. They have developed a corpus based information retrieval and

summarizer for Bangia. Term frequency and document frequency is used to give term

weighting of the keywords and cosine distance formula is used to find the relevance of

the documents with respect to a query. No morphological analysis is done to find the

root of the terms. They showed a sentence ranking process to find a summary of the

relevant documents. They did not show any experimental result of their experiment.



19

2.3 Comparison of Different IR Systems

Boolean model is very simple and it has a very clear semantic and neat formalism. But

the problem is that it retrieves too many or too few. In these methods all the retrieved

documcnts will have same ranking. That is all the retrieved documents are equally

rclcvant. Therc is no way of more or Icss similarity. In probabilistic model theoretical

adequacy can be achieved because here by assigning manual probability the ranking' of

thc retrieved documents can be changed. But the problem is that the system requires

guessing initial ranking. Another problem is that it gives binary weight to the terms,

which degrades retrieval accuracy. But the vector space model has many advantages. It

improves quality by giving term weighting, it also allows approximate matching by

giving partial matching and it is very simple and fast. Most benefit is that it gives more

or less relevant documents by using similarity measurement function. It has some

problem also. It does not consider term dependency. In spite of this vector space model

is used in my system for the facilities mentioned earlier.

2.4 Indexing of Documents

No large database can be searched without indexes. There may be pnmary and

sccondary indexes. Elaborated data structures are also needed to hold the index to

support rapid queries. An index of an information retrieval system allows finding the

documents matching a particular query without having to look at the documents

themselves. This speeds up the searching considerably (by several orders of magnitude).

Traditionally, IR systems use specialized data structures such as tries. However, most of

these structures are character-based, while the word forms of natural languages are

composed of allomorphs. Character-based structures may not be really appropriate to

store and search natural-language texts.

One of the problems of the character-based method is that they go to great lengths to

make it possible to do rapid searches for patterns such as "c.t" where "." is a wild card

representing any single character. In English, this would return the items, "cat", "cot"



20

and "cut" which do not form any natural set of interest. Wild cards fail in this example

by rcturning too much and in other cases by returning too little (no simple variant of

'"mouse" returns Hmice~~nor does His" return '"are".

A common index type is inverledfiles. In this system each document each document in

the collection is assigned a list of attributes, which are supposed to represent the

document. The most common type of attributes is keywords. The inverted file is then the

sorted list of keywords of all documents, where each keyword has links to the

documents that contain that keyword. An effective index structure is important for

efficient processing of queries in an information retrieval system. Rather than update

existing inverted lists whcn adding ncw documcnts, many IR systems simply rebuild the

inverted filc by adding thc new documents to the existing collection and indexing the

entire eollcction from scratch. This technique is expensive in terms of time and disk

space, resulting in update costs proportional to the size of the total collection after the

addition. On the other hand inverted indexing is not satisfactory at handling synonymy

and polysemy. Inverted indexing is used mostly for rapid reindexing for addition,

deletion and update. Here size of the index is an important issue for indexing.

Inverted File Index consists of

o term, kcywords of interest

o lexicon, list of all terms occurring in the text

a index [tennl = documentI, document2, ...

An Example of inverted index

Document Text
I Pease porridge hot, pease porridge cold
2 Pease porridge in the pot
3 Nine days old
4 Some like it hot, some like it cold
5 Sole like it in the pot
6 Nine days old

Lexicon and the inverted index of the above text are given in Table 2.3 and figure of

inverted indexing is given in Figure 2.2.



21

Table 2.3: Example (inverted file)

Number Term Documents

I cold 1,4
2 days 3,6
3 hot 1,4
4 In 2,5
5 it 4,5
6 like 4,5
7 nIne 3,6
9 old 3,6
10 pease 1,2
I I porridge 1,2
12 pot 2,5
13 some 4,5
14 the 2,5

Keyword Link Doc ID Hit Link

Computer '\ ----.~ I 10

\ 4 12

2 50-
\3 20

I 30
Database 2 35

6 25

------'~..6

Figure 2.2: Inverted indexing file

A signature tile is a file that stores a signature record for each document in the database.

Each signature has a fixed size of b bits representing terms. A simple encoding scheme

goes as follows. Each bit of a document signature is initialized to O. A bit is set to I if

the term it represents appears in the document. A signature SI matches another signature

•



22

S2 if eaeh bit that is scl in signature S2 is also sct in SI' Sinec thcre arc usually morc

tcrms than availablc bits, there may be multiple terms mapped into the same bit. Such

multiple-to-one mapping makes the search expensive since a document that matches the

signature ofa query does not neccssarily contain the set of keywords of the query.

Rclational database management systems (RDBMS) have further advantages besides

using proven technology with a solid theoretical background. They offer flexible

structures, so that attributes can be easily added and removed, and they allow the easy

addition, deletion, and updating of entries, something which is very difficult with other

.approaches, where the addition of new documents to a collection usually imply a

reindcxing of the whole collection. It gives a nice management of synonyms found in

Bengali and also gives the accuracy of searching.

2.5 Information Retrieval on the Web

Thc World Widc Web contains a vast amount of information on every imaginable

subject. The vastness and exponential growth of the Web make the necessity to search a

precompiled index built and updated periodically for finding necessary information. The

indcx is a scarchable archive that gives reference pointers to Web documents. In ordcr to

search the Web for information, or to simply gather documents to build an index

database, one needs to run a program that retrieves documents from the Web in much

the same way as a surfing user retrieves documents by means of the browser. These

special programs are called robots or spiders.

Gcnerating a comprehensive index requires systematic traversal of the Web to locate all

documents. The Web's structure is similar to that of a directed graph, so it can be

travcrscd using graph-traversal algorithms. Because Web servers and clients use the

client-server paradigm to communicate, it is possible for a robot executing on a single

computer to traverse the entire Web.



23

Thcre are currcntly thrce traversal mcthods:

• Providing the robot a "seed URL" to initiate exploration. The robot indexes the

seed document, cxtracts URLs pointing to other documents, then examines each

ofthesc URLs recursivcly in a breadth-first or depth-first fashion.

• Starting with a set of URLs determined on the basis of a Web site's popularity

and searching recursively. Intuitively, we can expect a popular site's home page

to contain URLs that point to the most frequently sought information on the local

and other Web servers.

• Partitioning the Web space based on Intcrnet names or country codes and

assigning one or more robots to explore the space exhaustively. This method is

more widely used than the first two.

Whcn user submits a qucry, the query expression is checked in the index of the

document database. The result of the query expression may be rank ordered in a list of

clickable URLs that includes a short summary of the documents and a relevance score.

Rcsults may also include the title, a short abstract, size, and date of the last modification

f()rcach rctricvcd document.

In Intcrnct, query writtcn in different languages should retrieve the relevant documents

of different language. Automatic training of the IR system in multilingual environment

can be performed using machine translation facility.

2.6 Relevance Feedback

Information retrieval is an unsupervised process. The performance of IR can be

improved by some indication of relevant and irrelevant items to use in ranking the

documents. Relevance feedback accomplishes this by adding extra iterations to the

retrieval process. IR system retrieves documents when a given query matches. Then

retricvcd documents are marked as relevant or not. These newly marked documents are

used to achieve better performance. IR system uses these relevant documents as new



24

queries into thc database. Other documcnts that arc relcvant to these good documents are

then rcturned. According to Rocchio algorithm [12] ncw query qr is constructed:

q =-' "D--'- "D
r [R[ L. ' [Sl L. '

DjER DiES

whcre Rand S are known relevant and irrclevant documcnts rcspectively and Dj is the

document term rcprcsentation. The guery gr points towards the componcnts that separate,
the rclcvant documcnts from the non-relcvant documents. In practice, thc negative

components arc removcd from gr. Further performance is improved by re-centering thc

new vector around the original, go:

gr= agr +l3go

2.7 Evaluation of IR Performance

The evaluation of inforn1ation retrieval systems has been a conccrn of IR research from

thc start. Question is why information retrieval systcms have to be cvaluatcd, what

should be evaluatcd, and how it can bc done.

Therc are basically two types of evaluations: tests for efficiency, and tests for

effectiveness. The cffectiveness of an information retricval system dcpends on its ability

to provide its uscrs with thc information thcy nced, while thc efficiency is determined by

the time and resources needed to perform a specified task.

In most areas of computer science, it is possible to consider only efficiency, because the

task of the system is exactly specified, and the complete and correct solution is an

absolute precondition.

In this respect the evaluation of information retrieval systems poses challenges similar to

thc evaluation of natural language processing systems, like morphologic analyzers.

The quality of an information retrieval system obviously depends on both its efficiency

and its effectiveness, and both have to be evaluated. However, the retrieval effectiveness

is olien of greater importance than the efficiency of the system.



25

The next question is then. whal to evaluate?

Six main measurable quantities have been listed here:

I. The coverage of the collection, that is, the extent to which the system includes

relevant matter;

2. the time lag, that is, the average interval between the time the search request is

made and the time an answer is given;

3. thejiJrm of presentation of the output;

4. the effort involved on the part of the user in obtaining answers to his search

requests;

5. the recall of the system, that is, the proportion of rclevant material actually

retrieved in answer to a search request;

6. the precision of the system, that is, the proportion of retrieved material that is

actually relevant.

The first four of the previous criteria are relatively easy to assess. Recall and precision,

however, pose a problem because they rely on the notion of relevance.

In information retrieval, the notion of relevance is usually interpreted as a logical

property between two texts, the query and a document. A document is considered

relevanl ir contains material, which is appropriate to the requirements stated in the

query. This could be described as an "objective view" of relevance. A subjective view of

relevance would not only have to consider the content of a document, but it would also

have to take into account the knowledge of the user, and what documents they already

know about at the time of the query. Although, this interpretation of relevance is

probably closer to its meaning in everyday language, this is not (yet) possible, since the

system cannot know what a user already knows about a topic.

2.7.1 Precision and Recall

Let E be a set of documents, the collection, and let A, B 3 E, where A is the set of

relevant documents with respect to some query, and B being the set of actually retrieved

documents in response to that query.

/,



26

Table 2.4: Relation between relevant and non-relevant document

Relevant Non Relevant

Retrieved AnB A'nB B

Not Retrieved AnB' A'n B' B'

A A'

Many effectiveness measures can be derived from this table, the most important being

recall and precision. The precision P of a retrieval system for some query can be defined

as:

IAnBIp=--
IBI

That is. precision is the proportion of retrieved documents that are relevant. The recall R

of a retrieval system for some query can then be defined as:

IAnBI
R=-IAI-

That is, recall is the proportion of relevant documents that are retrieved. Precision and

recall is the standard technique for measuring effectiveness of an IR system. Precision

and Recall are inversely related. Recall and precision are related in such a way that the

higher the recall, the lower the precision, and vice versa. One IR system is considered to

have performed better than another when its precision-recall curve is above and to the

right of the other.



27

Chapter 3
Information Retrieval System for

Bangia Text Database

This chapter describes the details of the information retrieval system developed for

BangIa text database. There are mainly two sections in this chapter. First section is about

the system architecture of the information retrieval system developed and the second

section is about the analytical representation of the information retrieval system. In first

section, different modules of the architecture and relationship among them are described

briefly. Among the main modules of the architecture like database initialization and

processing, storage and query execution, this section gives elaborated description of the

storage module. Second section of the chapter gives the details of the developed system

with different algorithms, flowcharts and tables required for information retrieval.

3.1 System Architecture

The system architeCture for the retrieval of relevant documents from BangIa text

database comprises three main modules: database initialization and processing module,

storage module and query execution module. The database initialization and processing

module sets up the database from an initial set of documents for information retrieval.

The storage module manages the storage of the text database and related information.

Query execution module performs all information retrieval queries with different

options. The architecture is shown in the Figure 3.1. The single directional arrows

represent the direction of next sub-module to be executed in a module and the double

directional arrows represent the relationship of a sub-module with sub-modules from

which the sub-module gets help for processing. The modules are described in the
following sub-sections.



28

3.1.1 Database Initialization and Processing
Databasc initialization and proccssing module consists of thc sub-modules: document

database creation, new document addition, creation of stoplist, keyword processor, font

handler and morphological analyzer, creation of synonymlist and addition of new

documcnt. The relationships among thc sub-modules arc shown in Figurc 3.1.

User

Document
Database
Creation

Query
Input!

Response

Calculation
oflenn
weight

Parse Query
Keyword
Processor

---------------------" ....

:!,~Creation of
Synonym

lisl

Creation of
Stoplist

Addition of",w
Document

,- - - - - - --,,,,,,,,,,

Database Initialization
and Processin~

Morpholo
gical

Analvzcr

--;--------

Calculation
of doc

relevance

Sorting of
documents

Document
Database

Slopword
fite

Stoplist in
Database

Storage

Synonym
lisl In

Database

Keyword
Information
in Database

Query Execution

Figure 3.1: System architecture for Bangia text retrieval

3.1.1.1 Document Database Creation

This module stores initial document set to be retrieved, from file system to database

system. The document database is created with the information document !D, document

title and size of the document for each of the documents. Each of the documents can be

stored as a document object in the database as BLOB (Binary Large Object) but query



29

proccssing and management will be difficult as BLOBs are part of the database. BFlLE

data type has been used to store the document database in a file system.

3.1.1.2 Creation of Stoplist

Aller documcnt databasc creation, ncxt submodulc is creation of stoplist. This module

stores some most frequently used terms of BangIa like "t'l', c:>f'Itti!, <.!Iii, <.!I~etc. in the,
database. These words are auxiliary terms of BangIa and used most frequently. These are

called stopwords. The list of stopwords for the IR system is called stoplist.

There are two types of stopwords in our system. Some are user defined and some are

database specific. The above-mentioned auxiliary terms form the user-defined

stopwords. Scanning the document set and having the frequency count of words found

some additional stopwords. Among these words, some words had excessively high

inverted document frequency count and considered to be stopword. All these stopwords

are kept in a file and stoplist creation module stores the stopwords in the database tables.

It requires faster checking to verifY whether any word is stopword or not. For this reason

stopwords are stored in database table for faster access.- When a new stopword is

required to be added, it is just appended in the table.

3.1.1.3 Keyword Processor

Keyword processor module converts all non-unicode BangIa text documents into

unicode supported with the help of font handler. Keyword processor also extracts the

root of every word using morphological analyzer. The root words are checked against

stoplisl. If the root word is not found in the stoplist, the keyword processor stores all

related information of the root word in the database.

3.1.1.4 Font Handler

The terms that are extracted from the document set may consist of unicode-or non-

unicode supported font. The font handler performs necessary transformation to convert

any non-unicode text to unicode text. If the integer equivalents of the characters of the

terms are in the range of unicode value then they are considered as unicode supported.



30

Otherwise, it is considered as non-unicode supported. In such case, this module performs

a character mapping to make conversion of non-unicode supported BangIa fonts into

unicode supported. As for example the word ~ consists of three characters. The ascii

equivalent of'l', "I, 'I are 75, 106 and 103, respectively, and the unicode value are 2453,

2482 and 2478, respcctivcly. This module makes the substitution of the ascii values of

the characters by unicode values and gets the corresponding unicode equivalent of the

string. All the characters of non-unicode fonts including "sanjukta akhar" (Composite

Lctter)of BangIa are transformed into unicode equivalent in this module.

3.1.1.5 Morphological Analyzer

Alier the font conversion, the terms of the document files are stemmed to find the root of

thc tcrms, which may be referred as keyword. For this reason a morphological analysis

was donc to stcm 'llf"l (GaLl), 'll"f1 (GaLA), ffl (TEE), ~ (TAA), C'fil (DER) etc.

from the end of the terms. To stem these postfixes from the terms of the document set,

the terms were checked against a postfix list. The morphological analyzer takes a word

as input and gives the root of the word as an output.

3.1.1.6 Creation of Synonym list

This modulc stores the synonym of words as the structure shown in Table 3.1. The

synonyms are stored in the database scanning the words of document database excluding
stop words.

3.1.1.7 New Document Addition

After scanning all the initial documents, when new document is required to be added this

module adds the document in the document database and performs similar tasks for each

keyword in that document as described in previous sections.

3.1.2 Storage

This module handles the storage of the document database and different necessary

information for retrieval purposes. The stoplist is stored accordingly as described in



31

stoplist creation sub-module. The most critical part of the storage module is the storage

of synonyms of words and the term information.

3.1.2.1 Storage of Synonymlist

A word having the same meaning as another in the same language is called synonym.

Sometimes e10sely associated words are also treated as synonyms. In any information

retrieval system it is very much important to manage the synonyms efficiently. Because

if the synonyms having same meaning are not treated as same words rather different

words, then there will be a great degradation of retrieval accuracy. Here a very little

relevant information will be retrieved for any query. But if synonyms are considered.

any query with any word will retrieve all the necessary information regarding the

synonyms of that word also. Searching uniformly over a text database considering all the

synonyms is a difficult problem. A special synonym handling mechanism is used to

store the synonyms.

Table 3.1: Synonyms

Synonym_ID Sequence Word

101 I ~,
101 2 ~

101 3 151f'5'l1'l

102 1 'l"'I'l
102 2 ~

The document database is scanned twice to create the synonymlist. After the first sean of

the database initialization without the synonym effect, the occur table of the database as

shown in Figure 3.2 contains different words of the document database. This table also

contains words with their synonyms also. So this table is checked to find the group of

words having same meaning. With the group of words a synonym table is created

according to Table 3.1. In the structure the words having same meaning will have same

synonym id that forms a group of synonyms. In each. group of synonyms, a sequence

number is maintained according to the importance. During second scan of the database

0' -F•



32

initialization thc synonym table is uscd to kcep the effect of synonyms. For storing or

ranking of term during retrieval, the tenn having sequence number I is used.

3.1.2.2 Storage of Term Information

This module also manages the storage of the terms in such a way that the IR system can

run uniformly ovcrcoming the synonym-handling problem. Storage modulc stores tcrm

information and necessary related information in the database according to Figure 3,2.

Database Table: Word
Kc word Doc II) Frc

Database Table: Document
Doc ID Title Size

Database Table: Occur
Keyword I Doc freg

Figure 3.2: Storage of term infonnation

In Figure 3.2 keyword and Doc_1D of the word table represents which keyword IS

present in which document and Freq field shows how many times the keyword occurs in

that document. The Doc_lD, Title a1)d Size fields of the document table represent

document 10 of documents, Title and qumber of tenns present in that document,

rcspectively. In occur table the field Keyword and DocJreq is used to represent in how

many documents a keyword occurs.

After stemming the postfix of a tenn by morphological analysis, the root is stored in the

word table of the database with the corresponding document 10. All the keywords of all

documents are stored in the word table. After the creation of word table, the occur table

is created from word table. A record in document table is inserted after completion of

scanning of each document.

3.1.3 Query Execution

In Query Execution module the sub-modules that are related to process a query are-

query input/response sub-module, parse query sub-module, calculation of tenn weight



33

sub-module, calculation of document relevance sub-module and sorting of relevant

documents sub-module as shown in Figure 3.1. Query input or response sub-module

takes the query expression from the user and returns relevant documents to the user for

that query. "Parse query" sub-module identifies different roots from the query

cxpression writtcn in Bangia with the help of "keyword processor" sub-module.

"Calculation of term weight" sub-module calculates the weights of every query terms for

each document. "Calculation of document relevance" sub-module calculates the

relevance of each document against the query expression. "Sorting of relevant

documents" sub-module sorts the documents according to their relevance and then sends

the relevant documents to "Query processor" sub-module.

3.2 Analytical Representationof the Architecture
This section gives an analytical description of the system architecture given in previous
sections.

3.2.1 Analysis of the Initialization and Processing

In document database creation module set of documents are represented as a database of

documents. The algorithm for storing the document set in database file is given in Figure

3.3.
AIgorithm Document_DB ()
{ I. Create a File object of the directof)' name of the directof)' where the

document tiles exist.
2. Create table named document with the field Doc_lO, Title, Size having the

data type as number, BFILE and number respectively.
3. Initialize counter variable as 1.
4. While counter is not greater than directory length of the directory
4.1 Insert the file name of directof)' [counter] into Title field of Document

table.
4.2 Increment the value of counter by I.

Figure 3.3: Algorithm to create document database

The algorithm in Figure 3.3 stores all the documents in the database as BFILE. The first

sql query creates a path from which the BFILE should keep the reference. The second

sql command creates a table deelaring document title as BFILE according to the syntax.

When new document is required to be added, the insert statement is executed for that

document file.



j:~j+l;
return (word); 1/ end of string_convert

34

In stoplist crcation modulc, thc stoplist is creatcd from a filc whcre the stopwords arc

storcd manually. For finding thc frcqucnt word the document sct is chcckcd

incrcmcntally to find the number of occurrencc of terms in document set.

3.2.2 Conversion of Non-unicode Documents into Unicode

Bangia documents containing non-unicode character contain the ascii values as shown in

Table 3.2. At the same time, unicode supported Bangia text documents contain the

unicode value as shown in the same. The algorithm shown in Figure 3.4 converts a non-

unicode string to unicode. To do this it checks all the characters of the string

sequentially. If the integer equivalent value of the character is within unicode range then

it requires no transformation. If its value is within ascii range then corresponding

Pseudocode string_convert (stfT) /1 stfT is non-unicode string to be converted
{set i: ~Oj: ~O,flagl :~O,word: ~ null, p:~ length (strr);
whileU<p)
{e:~ strr[j]: I:~ (in!)e;
if(l~ integer equivalent of bangla character which have unicode value) then

i:= unicode value of that character.;
else if (I~inleger equivalent of bangla 'sanjukta' akhar ) then lido for all 'sanjukta'

{ word: = word + first unicode character of Isanjukta'.
word: =word + 'jafalaa' in unicode.
word: = word + first unicode character of 'sanjukta'.
if(flag~l)

{ word: ~ word +y; y: ~ null; flag I : ~O;
else if«I~ integer equivalent of second part ofbangla 'sanjukta' akhar) and
( (int) word[lcngth(word)-1J~ integer equivalent of first part of bangla
'sanjukta' akhar» lido for all such 'sanjukta' akhar
{ word: ~ word + first unicode character of 'sanjukta'.
word := word + 'jafalaa' in unicode.
word:= word + first unicode character of 'sanjukta'.
if (flag~ I) {word: ~ word +y; y :~ null; flag I :~O;

else word: = word + c;
if«i>~2432)AND(i<~2559)) II within bangla unicode range

{ if(i~2495 or i~2503 or i~2504) Ilfor aekar, rishikar, oikar
{y:~(char)i; flag I :~ I;

if(i~ 2494) II for ookar or oukar
{ if«int) word[length(word)-1J~(2503 or 2504»
word: ~ word- word [Iength(word)-I J;
word: ~ word + char (2507 or 2508); flagl :~O;

else { word: ~ word +(char) i;
if(flag~I)
{word: ~ word +y; y ~ null; flagl :~O;

Figure 3.4: Algorithm for conversion of non-unicode supported text to unicode
supported text.



Table 3.2: Bangia characters with unicode and ascii value

35

Character Unicode Non
value Unicode

ASCll
Value

"l 2437 65
I5l1 2438
~ 2439 66
" 2440 67
'" 2441 68
\5 2442 69
'il 2443 70
"1 2447 71

~ 2448 72
'S 2451 73
-s 2452 74
<i' 2453 75
"'l 2454 76
'1 2455 77
"I 2456 78
(l; 2457 79
1> 2458 80
~ 2459 81
i!li 2460 82
'11 2461 83
<$ 2462 84
\i 2463 85
~ 2464 86
\5 2465 87
1> 2466 88
'I 2467 89
'" 2468 90
OJ 2469 95
'1 2470 96
~ 2471 97
"'l 2472 98
<>( 2474 99
'l' 2475 100
'I 2476 101
'" 2477 102

Character Unicode Non
value Unicode

ASCII
Value

"'l 2478 103
1I 2479 104
•• 2480 105., 2482 106
"I 2486 107
1I 2487 108
'I 2488 109
~ 2489 110
1 2494 118
f 2495 119
'j 2496 120
'I 2497 12I
< 2498 126
< 2499 8222
t 2503 8225
t 2504 8240
{d 2507
(I 2508

2509 38
(l; 2524 III
1> 2525 112
~ 2527 113
'11 2434 115
'il 2443 70
0 2534 48
~ 2536 49
~ 2537 50
~ 2538 51
8 2539 52
<l 2540 53
~ 2541 54
'\ 2542 55 ".,. 2543 56
li> 2544 57



36

non-unicodc valuc of that charactcr is substituted by thc unicode value with a look up of

Table 3.2. If any "sangukta akhar"(composite letter) comes, as in unicode no "sangukta

akhar" has any specific value, so it is substituted by two unicode characters by which the

"sangukta akhar" is formcd. For joining of two characters in unicode, "jafala" is used as

conncctivc of two characters. In this way the algorithm works for all thc characters of
Bangia.

The algorithm for conversion of a non-unicode document into a unicode document is

given in Figure 3.5. The algorithm scans each character of the document file and

appends it with a null string until a new line or space is found. During scanning the

characters is checked, if the integer equivalent value of the character is within the

unicode range or ascii range. If any character is within ascii range and the new line or

space is cncountered the string is converted by string converting algorithms and then

processed. If all the characters of the string are within unicode range then the string is
processed directly.

Pseudocode Font_handling (document_name)
{
set flag:= 0;
read (document_name);
For j = I 10 character number of document_name dot

c:= rcad(charUll;
p:=(inl) c; .

if«value ofp is within unicode range of Bangia characters) OR (p=!3 OR p=32)) {
if«flag=OlAND(p=J3 OR p~32)) {

process the word;
word := null;
flag:= 0;

if«flag=I)AND (p=13 OR p=32)) {
convert word using strinJLconvert algorithm
process the word;
word := null;
flag:= 0;

else word := word +c;
else if(value ofp is wilhin ascii range of Bangia characters){

word := word + c;
flag:=I;

Figure 3.5: Algorithm for conversion of non-unicode document into unicode

3.2.3 Finding the Root of the Terms in a Document

Bangia words can have many difficult variations by adding the postfixes with the root of

the word. These variations have significant impact on the information retrieval of BangIa



37

text database. Finding the rool of a word is called stemming. To stem the postfixes from

the terms of the document set, the morphological analyzer checks the terms against a

postfix list according Table 3.3. This list is created from BangIa grammar books.

Table 3.3: Postfix list
S.N Postfix

I fU
2 fUil
3 'Ut
4 'Util
5 ~
6 WI
7 "M1
8 'OfA1i!
9 m
10 "'!1f.rn
II ~
12 '11fW
13 ~t"l1
14 ~"11

15 ~f"!
16 ~t"l1il
17 ~"I1il
18 ~fu
19 C'!il
20 f'rt'1il
21 '1~
22 WI
23 'f'i
24 0lI

25 'l'I
26 ~
27 ~
28 ~
29 'l11I
30 9f1<'r
31 '!'I"'!
32 ~
33 'l,<>l
34 'l1"I1
35 ~
36 mfXt
37 m

S.N Postfix
38 m
39 ~
40 '1<\
41 'lof
42 ~
43 'f1J:'f!I

44 ~ll!i

45 $I

46 r'f
47 "Jill
48 w"lT
49 ~9T
50 11
51 m
52 Ci!
53 "111
54 "1m
55 'l
56 'l1
57 '"58 ffol
59 R
60 '5

61 "C'O
62 =
63 "Wol

64 '51"'1
65 ~
66 ~
67 I5'l
68 ~
69 1;(
70 ~
71 ~
72 ~
73 fW>!
74 fWor

S.N Postfix
75 ~
76 fW!
77 fWr-I
78 ~
79 ~
80 ~
81 "I

82 ~
83 f"!
84 "I1'l
85 'l:'l
86 ~
87 ~
88 "I
89 "1"1
90 "11;(
91 "It1;(
92 "I~
93 "I~
94 "IfW>!
95 "IfWor
96 "IfW!
97 "l~

98 "IfWr-I
99 "I~
100 "I~
101 "I~
102 ~
103 ~
104 ~
105 m
106 ~
107 ~
108 ~
109 ~
110 ~
111 ~

S.N Postfix
112 ~
113 ~
114 ~
115 ~
116 ~
117 ~
118 ~
119 ~
120 ~

121 ~
122 ~
123 ~
124 ~
125 ~
126 ~
127 ~C\!l~I~
128 ~C\!lfl!C"I
129 ~
130 ~C\!lfl!C"I'I
131 ~C\!lfl!C"I~
132 ~C\!l~~
133 ~
134 ~
135 ~
136 ~
137 ~
138 ~
139 ~
140 ~
141 ~!IIfl!c.,'1
142 ~!IIfl!C"I~
143 ~!II~I~



38

The algorithm to find a root of the term is given in Figure 3.6.
Word_Stem (sir) {
barna~O. i~O.p=o. I'=0;
i=str.lcnglh () - t;
While (Iruc) (

ir(harna= = 0)
harna = (illl) slr.chural (i);
s\\lilch (hama) I II barna is ascii value of each

case /\sdi_hal1lal: { 1/ eharnrall possihlc postfix
if(i-t>=O)

bama=(int) slr.charAI (i-I);
if(harna==loo){i __; hreak;1
else if (barna==dantana){ i--;brcak;)

.....................................

... ., , .

else if ((i+2<=slr.lenglh ()- t )&&(slr.eharAt( i+ I)
~ackar )&& (str.eharAI (i+2)==dantana))
(str ~ str.substring (O.i);bama=t ;break; I

else if ((i+ t <=str.lcnglh ()-I )&&(str.eharAt (i+ I)
--danlasha))

: str =slr,substring (O,i); barna=) ;brcak;}
barna=) ;
break;

delilUlt: hurna=2;
if ((barna= I lll(barna~=2))
break; .

relurn (sIr); II end of Word Slem

Figure 3.6: Algorithm for finding the root ofa word.

The algorithm takes a word as input and gives the root of the words as output. To

find a matching of postfix, each character of terms from last is cheeked with the last

character of any postfix. If it is matched then next matching is checked until a

complete matching is found. If a complete matching is found, the matched part is

discarded from the term and the root is extracted. If no matching is found then the

scanning is discarded and next term is considered for checking. A simple case-switch

statement is used to perform this operation. Each case option contains some decisions

for an alphabet. The decisions may be the next possible alphabets of different

postfixes to which next matching occurs, whether the current alphabet is the end of

any postfix matching etc. The analysis that requires selecting the right postfixes for

the right word is called morphological analysis.

The character sequence of postfixes is given in Figure 3.7.



39

1-6 7-10 11-12 13-18 19-20

~ ~

~'~

lrn
r
[]]

21 22 23 24 25 26 27 28 33~&~~~
49 48 47 46 44 43 42 41 40 39 38 37 34

Figure 3.7: Character sequence of postfixes

•



40

50-52 53-54 55-59 60-66
67-68

133-143

88-101

116-132

81-87

109-115

Figure 3.7: Characler sequence of postfixes (can!.)

..
'l'.~"- ,••



41

In Figurc 3.7 wc lind thc charactcr scqucncc of different postlixes in which they

occurs. Table 3.3 contains the postlixes of Bangia with a serial number. Figure 3.7

also shows the character sequence of a postlix with a corresponding serial number.

As during morphological analysis all the terms will be in unicode supported, so it

will Illilow thc phonctic sequence of charactcrs for their appcarance in the terms.

Figurc 3.7 shows the phonetic scquences of thc postlixcs. To lind any matching it is

rcquired to scan the terms according to any possible sequence of postlixes given in'

Figure 3.7. For example the postlix of serial number 15 is 111"t. Normally, in non-

unicode format the sequence of appearance of the characters of 111"t is '1+,+1+"1, but

the sequence that is followed in unicode format is '1+,+"1+1', as given in Figure 3.7.

3.2.4 Setup of the IR System
The flowchart for the setup of the information retrieval system for Bangia text

database is given in Figure 3.8. and 3.9. Figure 3.8 describes the lirst scan of the

document database to make a synonym table for the information retrieval system.

First scan starts with the creation of a document database. After this, a stoplist is

created. Then all the documents are scanned using a counter i. Each word me is

scanned until end of the me. A term is extracted from that me and is converted to

unicode-supported text, if necessary. Then the term is checked whether it is in

stoplist or not. If it is in stoplist then thc term is skipped and next term is considered.

If it is not in the stoplist then its root is found by morphological analysis. After

linding the root of the term, the root is checked whether it is present in the word table

for that document or not. If it is not present then the root word is stored in word table

with other information. If it is present in the word table, the value of "Freq" is

incremented by I for that term of the document. If the end of me occurs after

scanning the whole document, the document table is updated with the "Size" value.

When all the documents are scanned, the occur table is created with the necessary

information.

After the first scan, the occur table of the database contains different words of the

document database. But this table contains words with their synonyms. So this table

is checked to find the groups of words having same meaning. With the group of



42

words a synonym table is created according to Table 3.1. In the structure all words

having same meaning will have same synonym id that forms a group of synonyms. In

each group of synonyms. a sequence number is maintained according to the

importance. For ranking of documents, the term having importance I is used.

The occur table is used to find the terms to add in the stoplist which occurs in many

documents. These terms are added in the stopword file for adding in the stoplist.

In the second scan of the database initialization, the synonym table which has been

developed from the occur table is used. Before running the second scan, all the tables

of storage of term information is deleted for adding new data with the effect of

synonym. In the second scan, first of all, a document database is created, then a

stoplist is created from stopwords. Each term of each document is converted into

unicode, if needed, then checked in stoplist, and the equivalent synonym of that term

is found from the synonym table. After finding equivalent term, the term is checked

whether it is present in the word table for that document or not. If it is not present

then the term is stored in word table with other information. If it is present in the

word table, the value of "Freq" is incremented by I for that. term of the document.

After scanning all the documents the occur table is newly created.



Start of J<llabasc creation

43

Store in documcll
table

no

Check if in stop list

no
yes

Stem using morphological analy7.cr

I Store in occur table I•C End of database Creation ----....-----~--"
Figure 3.8: Flowchart for the set up of the database for information retrieval

(first scan)



Slore in document
table

Slart of database creation

Creation of Stop list

Check ifin stop list

yes
n

Stem using morphological analyzer

Find Synonyms

Store in words table

Store in occur table

no

44

f
C End of database Creation ==::>.

Figure 3.9: Flowchart for database initialization (second scan)



45

3.2.5 Methodology for New Document Addition into the
Database

. The flowchart for new document addition is given in Figure 3.11. First of all, the

document to be added is selected. Then the maximum document ID is obtained from

the document table. The new ID is incremented by one for the new document. Then

the document's terms arc scanned one by one until the end of the file is reached. For

each term it is converted into unicode supported and checked whether it is in stoplist

or not. Ifit is in the stoplist, it isjust skipped.lfit is not in the stoplist morphological

analysis is done to find the root ofthe word.

The root word is checked in the synonym table. If it is present, then the equivalent

term is checked in the word table for that document whether it is present or not. If it

is not present then one record will be inserted into the word table with values

equivalent synonym as keyword, the new document id as Doe_ID and frequency as

I. If it is present with the new document id then the Freq value of the term for that

term will be incremented by 1. If the root word is not found in the synonym table, it

is inserted into a temporary table with the same structure as the word table. In this

way the scanning of the new document is completed. If no term is found in the

temporary table after the complete scan of the file the occur table .is processed from

word table according to the algorithm given in Figure 3.10.

Algorithm updatc_occur_tbl_new_documcnt 0
(

1. Select maximum document id from the word table.
2. Get all the terms from the word table where document id = maximum document id.
3. For each selected term do the following

If the term is present in the Decurtable
Increment the doc_freq value oflhat term by I in the occur table
Else
Insert the term into occur table with doc~freq value by I.

Figure 3.10: Algorithm to update occur table



Start add new document

Select document 10be added

Get Max doc_id from document

tahle

Set doc_id"" docJd+!

Extract a term from the fi Ie

no

Font conversion

Stem by morphological analysis

Find synonyms

Update or insert into word table

yes

no

46

no

Check the keyword ifin

occurs lable

Update document table

yes

Insert into occurs table

End of add new document

Update occurs table

Figure 3.11: Flowchart for new document addition



47

If there are some records in the temporary table then it is considered that the terms

occurring in that records have no entity in the synonym table. As a result no effect of

synonyms is considered for those terms. So synonym table is updated for the terms in

temporary word table. The algorithm for this synonym table updating is given in

Figure 3.12.
Algorithm update _ synonym_tbl_new _document ()
I

I. Gct all the tcnns from the temporary word table.
2. Mark those terms as unmarked.
3. For each unmarked lcnn do the following

3. ) Select maximum synonym id from the synonym table
3.2 Increment the selected id by I.
3.3 Insert the unmarked tefm into synonym table with id 1 and sequence number I.
3.4 Scan all the other unmarked terms to find the synonyms orthe previous term.
3.5 Ifsome terms arc found then do the following

For each such term insert the term into synonym table with the same id and
sequence number as sequence number + I:

3.6 Mark alllhe terms as marked having the generated synonym id

Figure 3.12: Algorithm for updating the synonym table for new document

The algorithm given in Figure 3.12 shows how the synonym is generated for the

newly added document. Now it is required to add the terms from temporary word

table to the word table considering the effect of synonyms. The algorithm to add the

tcrms from temporary word table to word table is given in Figure 3.13.

Algorithm inscrt._ word _tbl_new _document ()
I

I. Select document id for the new document.
2. Get all the terms from the temporal)' word table.
3. For each selected term do the following

3.1 Find the term's equivalent synonym from the synonym table
having sequence number I.

3.2 Check this equivalent synonym in word table with same doejd
3.3 Ifit is present then increment the freq value of that term for the new document

by I.
3.4 Ifit is not present then insert a record in the word table with the equivalent

synonym having the new document id and freq value as I.

Figure 3.13: Algorithm to add term information from temporary table to word table.

Afier inserting the tcrm information into word table, the occur table is updated

according to algorithm given in Figure 3.10. Then the document table is updated for

the new document with its size. In this way all the information regarding the new

document is stored in the database.



48

3.2.6 Information Retrieval Query Processing on Bangia
Text Database

The steps of information retrieval query processing on Bangia text database are given

in Figure 3.14. The query manager receives the user query through an interface and

transfers the query to the parser. Query manager also presents the result of the query

to the user. The parser translates the user query consisting of Bangia words and

selects a query plan for execution. Firstly, the words are checked if they are in the

sloplisl. If the word is found in the stoplist, then the word is skipped and next term is

considered for relevance calculation. If the word is not a stopword, it is included into

the query vector, Q. For all qjEQ, the equivalent synonym with sequence number I is

found. The query vector is generated using these equivalent synonyms. This is done

with the help of synonyms table of the database.

Morphological
Analysis

Sort (by relevance) Documents

Figure 3.14: Query execution process

3.2.6.1 Creation of Vector Space Representation
The document vector Dj for i1h document is created in the same way as the query

vector Q, but the weighting factor for D is not same as the query vector. The weight

of a term t for a document D is represented as

W(t,D;) =Tj x log (N)x X
n D~

where,

7/= Frequency of the term t in document D,



49

N = Number ofdoeuments in the database,

n = Number of documents the term Ioccurs,

x =Mean document length of the database, and

DL, = Number of terms in /', document.

A vector space representation of each of the documents with the weight of the

keywords is found as shown in Figure 3.15. For weighting the keywords, document

length is also brought into consideration. This gives much more preference to the

shorter document having keyword than longer one.

t2 .... tno 2
2 0

d" 2 3

Document space

Query space

Figure 3.15: Vector space representation of document and query vector

3.2.6.2 Finding the Relevance of Documents

Cosinc distance formula is used by this sub-module to find the rank of each

document with respect to the query expression. Cosine distance formula is used for

relevance ranking because it emphasizes the relative contributions of individual

terms resulting in good performance. The formula is given as,

"
IQ,xD"

d,(Q,D,)=---,=:=="=' ===
" "I CD,,)' X I(Q,)'

;:1 1=1

Here, Q and D are the vector space representation of the query expression and

documents, respectively, and n is the cardinality of the query vector. Cardinality of

query vector is considered instead of the cardinality of document vector to reduce the

computational cost. After getting the relevance of all the documents, this module

sorts the documents in the descending order of relevance. The highest ranked

documents will be at the top of the list as the most relevant documents for any

particular query.



50

In query execution module whcn the relevant documents are listed they can be

accessed from front end, because all the documents stored in the database are as

BFILE. The algorithm is given in Figure 3.16. When the corresponding relevant

documcnt is nccdcd to vicw, its corrcsponding Doc_1D is selected and the word file

or that address bearing the Doc_ID is displaycd.

Algorithm sclccUll'lLE 0
{
Statement stmt = Conncclion.crcateStatement ();
RcsultSct rset = slmt.cxccutcQucry ("select Title from document where

doc_ID~' n"');
Oraclc.sql.BFILE bfilc ~ null;
bfile~ «oraclcRcsultset)rset).gctFILE (I);
bnie.opeoFilc 0;
Inputstrcam instrcam = bfilc.gctbinarystream ();
Gui.displayl'ilc (iostrcam);
I

Figure 3.16: Algorithm to display relevant document

Here in the algorithm we find that rset variable stores the resultset for the select

query statement where Doc_ID is equal to n. Here n is the Doc_1D of the selected

document. Then the address of the document having n as Doc_ID is assigned III

BFILE variable. Then the BFILE is opened and it is stored in an input stream

variablc instream. This instream is then displayed by a graphical user interface. In

this way any relevant document can be viewed.

3.2.7 Complexity Analysis

The Information retrieval system developed has two parts for the time concern, one

for storing the necessary information in index structure and another one is query time

for any particular query. In most of the information retrieval system indexing time is

sacrificed for the fast response against a query.

3.2.7.1 Creation of Index

The time complexity for the indexing may be described as follows,

Let the number of words in a file be N and number of roots in a file be R.

Then the complexity is O(N)+O(Rx(Q+U))

where, Q~database query time for each root

U~ database insertion time for each root



51

If the database size becomcslarge then thc complexity will be O(lIxQ) because other

terms will bc negligible in comparison with it.

3.2.7.2 Update Operation

For crcating an invcrtcd index the system scans all the documents with the

complexityO(N)+O(lIx(Q+U)), which',is proportional to the document number. So if. ~.

the document number is so big then this time will be very long. RDBMS structure is

used here so that we can update the index by updating one doeument each time rather

making the re-indexing of whole index.

3.2.7.3 Querying the Database

The time complexity for searching may be described as follows,

Let, n be the number of keyword in the query expression,

D be the number of document in the collection.

Q be the time required to get necessary information about a keyword.

So time required for querying all the keyword in a query expression is O(nQ),

time required for calculating relevance of D number of doeument is 0(0),

and, time required for sorting the relevant doeument is O(OlogO).

So total time complexity for searching is O(nQ)+O(DlogD).



52

Chapter 4
Experimental Results and Discussions

Precision and recall is the standard technique for measuring effectiveness of any

information retrieval system. In our experiment we. used precision recall for

performance measurement of information retrieval system in Bangia. By using.

precision recall curve we evaluated the performance of our system with various

options. We have also shown the effect of number of terms present in query

expression by using precision recall curve. The effect of morphological analysis for

the query terms with the most frequently found postfixes is also shown by precision

recall curve.

4.1 Experimental Setup

The information retrieval system has been developed on a machine having the

operating system Windows 2000 Professional, 1.6 GHz Pentium IV Processor with

256 MB memory. The system was implemented in Jbuilder-8 in the front and in

Oracle 9i DBMS in the back-end for storing the text. database and related

information.

We developed a corpus in Bangia with 63 documents as given in Table 4.1. These

documents were collected from different departments of a public university, where

the documents were created for different application domain. According to Table 4.1,

we see that there are two types of documents in the dataset: non-unicode supported

and unicode supported. We have developed the system such that information

retrieval queries can be processed as the dataset irrespective of the type of the

document.

Table 4.1: Document Information

S.N Document Word Type
Title connt

I Aad. 3816 Non-
Commitee unicode

2 Admission 317 Non-
form unicode

S.N Document Word Type
Title connt

3 Alama 1265 Non-
Khatun 2 unicode

4 Alama 558 Non-
khatun unicode



S.N Document Word Type
Title count

5 ALOWA 210 Non-
unicode

6 ANNA PO 320 Non-
unicode

7 attendance 195 Non-
unicode

8 Backup of 175 Non-
fa unicode

9 bihar.doc 396 Non-
unicode

10 Backup of 171 Non-
rna unicode

II bari sir 1 734 Non-
unicode

12 baten 61 Non-
unicode

13 Billof 1483 Non-
admission I unicode

14 BOU 4541 Non-
unicode

15 BOU 2 4107 Non-
unicode

16 BOU 77 4111 Non-
unicode

17 BOUOO 4527 Non-
unicode

18 BU 2937 Non-
unicode

19 budgetU 1358 Non-
unicode

20 Chairman I 1172 Non-
unicode

21 Chairman 724 Non-
pad unicode

22 CIVIX_I 2045 Non-
unicode

23 CIVIX 2 2229 Non-
unicode

24 coaching 334 Non-
unicode

25 computerge 41 unicode
nerationunic
ode

26 credit 72 Non-
unicode

53

S.N Document Word Type
Title eount

27 database 27 unicode
28 databaseSys 36 unicode

temunicode
29 dormatoryl 258 unicode
30 dormitory 134 Non-

rule unicode
31 dorm itory 1_ 805 Non-

alama unicode
32 Eivei 2580 Non-

unicode
33 Exam BILL 905 Non-

unicode
34 exam 245 Non-

unicode
35 history 2854 Non-

unicode
36 InquaryAcc 430 Non-

ounts unicode
37 inquery _phy 284 Non-

sical unicode
38 inqueryAdm 638 Non-

inistration unicode
39 inquerylibra 1658 Non-

ry unicode
40 inquerySP 1407 Non-

unicode
40 invertedinde 24 unicode

xunicode
42 iptv 36 unicode
43 khairul 3629 Non-

Alam unicode
44 Internet 32 unicode
45 Message 465 Non-

unicode
46 mv APP 1241 Non-

unicode
47 Proctorc 281 Non-

office unicode

48 regent board 279 Non-
unicode

49 relationaldat 24 unicode
abaseun icod
e



54

S.N Document Word Type
Title count

50 retrievalunic 32 unicode
ode

51 RU 62 Non-
unicode

52 serverunlco 21 unicodc
de

53 SHAMAJ 7 9822 Non-
unicode

54 sociology 1P 9095 Non-
art unicode

55 sociology2p 8282 Non-
art . unicode

56 stud 152 Non-
unicode

57 suggestion 664 Non-
unicode

58 Tax 1751 Non-
unicode

59 Testimonial 1417 Non-
cse unicode

60 twotire 32 unicode
61 VC Sir 982 Non-

unicode
62 Webserveru 45 Unicode

nicode
63 wcbunicode 28 Unicode

4.2 Postfixes Statistics

We analyzed the syntax of various words using the dictionary published by Bangia

Academy of the Government of Bangladesh. We found altogether 168 postfixes that

are used to form different words by adding with the root of Bangia words as shown

in Table 4.2. There are three columns in the table: first column contains the postfixes,

the sccond column contains the sequence in which they appear with the root words

and the third column shows the frequency count of the postfixes in the document set.

Some of the postfixes that are listed in the first column, are for "Shadhu Bhasha" and

some are for "Chalti Bhasha". As we used our document set written in "Chait!.

Bhasha", so there are some postfixes whose frequency count is zero in the document

set. In our experiment we found that our data set requires stemming of around 72

different kinds of postfixes, where the system can handle around 168 postfixes. The



55

frequency count column of Table 4.2 contains vafue other than zero for these 72

postfixes only.

Table 4.2: Postfix statistics

Postfh Character Number of
sequence occurrence

fl) .+f :>~b':>

"' • +1 ~~B

It. 1:+H-11 ~~,
"'" u+1HI "'!t'lI ~+1+'i1+1 )

'!Rt< ~+1+'i1+1+1l' ~
'i1R "'-I+l+~+f 0

'I1f.ffil 1.l+1+*f+ll' 0

'lre ~+1+~+1 0

~ ~+1+f+. ~
ill '+1 :>8~o
~iII I!l+'il'+l ~,~, tH 8Q")1';,

"'"' 1H ~b'88

'" He H,\1T, , Q')~o

~t'I1 ~+...+l'IHl ))~

"'" 'ff+...+'C'I+1 ~
~fi1 ~+...+~+r "'"m ~H+l1 :>o~o
fiWt, ~+f+f1H+1l' 0

~ <li+ ...+'C'I '0

~~ ~+~ ~
••• "+,, ~~~

"" ,,+•• )))
".., l'j+<Jl+'C'I )'~

"'!"- ~+'Il'+ •.+~ b-

>r>j'fll "'+'Il'+...+lfHl' ).,. ~+11+,+<t ~
~ -1+ ,+~H+et+l 0

'f1<1 ~+l+l'I )B

r¥l ,+ +'i1+yc; 0

'l'f .,+1t+:+~ ~
•• <11 'Il'+et+:+~+'C'I+) 0- 1T+~+'C'I 0

'I' ll'+ •. +!1j 0

""..-ijj 1:ll1+"+l'I+t ')
~'" '1+...+l;+_+~ 0

$I '1+,+11+1+1t ~.
." H' ~~
."., ~+1¥f )

'i1'l l'f+l+1l' 0

m. "il'+H-<H-11 0

f.101l "l'+fi-'5+1I 0

""" 9\+U+~ 0

~.g 9\+ ...+<!ll+, +" 0- 'Il'+l+l'I+l "i!Ifu 1l'+l+~+f )

Postfix Character Number of
sequence occurrence

m 11+1+1If+f 0

~ ~ ~l\I,\l:r
~ ~+1;5H+~+r 0

~ o:+f '0

~ ~+" )~o

~" ~+'l "~ ~+"'+C+. 0

~ ~+\!)+H~f.i-l'f 0

~ ~ 8tr:>tr

~ '$:+'l!iH+~H 0

~ 't+I!i+t+~+';J 0

0: 0: 0

~ o:+f+" 0

to:'! ~H+'i\' )8
to: <+t B~.

~ ~+o+1+0: 0

~ ~+1I+1+'W+ft:" 0

~ ~Hr+l+'~+t+"il' 0~. ~+. 0

~~ ~+.+f+" 0

~to:'! I!l+~+t+'" ~o
~ ~+1I+1+~+t 0

~ ~+"'+t )~~

~ l:+i:5+f+'l' 0

~ '$:+I!\+t+"l' 0

"" "'+t )~~

~ '5+f-i-" 0

"""
'I!i+(+'il )

~ ~+'" ~Hlr

'" '" ~Q'~lr
~ l:+'iHC+~+f.t-~+1+1I' 0

~ ~+f+l'\'+1+1I' )~

~ ~+f.t-l'f+ '"+11' 0

1Wrll ~+f.t-~H+lI 0

~ ~+'i5H+,+f +C"IH 0

~ ~+"'+t+o:+f+,,+f 0

~ ~+'i5H+~+f+l'fH+'il 0

fW! ~+f.t-'C'f+! 0

~ .+f+,,+f 0

~ ~+f.t-l'IH+'il ~~
~ ~+'i5H+~+f.t-'fI' 0

~ ~+f.t-'t'I )"
~ ~+lJ+l+~+f.t-l'f+l+1i 0

~'" l!l+~H ,~
is'! is+,, H.
i5'I' iSH ~o
~ ~+"+1+~ ~
.". l'f+l+lI ))B



Postfix Character Number of
senuence occurrence

'l" 1'1+...+11' ,
""" i'lH+lI 0

WI 'i:+l'IH •
'lji, ~+~+r 0

""" 'i:+t'f+t+"" '0

'" ~H ""~
"' ~+f .~
"'" 'C'IH+'i1' 0

." ~+~ ,..
~ ~ . ~,,\~l\l

""'" 'i:+1;!i:+l+lI 0

m \5+1+11 •
~ 'i5+•. +11 0

.".. 'i!iH+lI 0

~Wrro 1!I+~f+1'I+l+1I "~fW!'l <!l+~f+li'fH+lI 0

~fOT1 1!l+~+f+i'I +,,+11 0

~ ~H+l+~+f+~H 0

~ ~H+1H+f+~+f 0

~ 'i:+~+l+~+r +,fjH+'i1 0

~fW!'l 1!I+~f-i..'i'I+C+11 0

~fOT1 1!I+~+f+i'I+•.+11' 0

~ ':tHl+l+~+r +i'lH 0

~ 'i:+Hl+'~+r+Vf+f 0

~ 'i:+ll+l+1.+f +l'lH+'if 0

~fW!'l 1!I+~f+1'!H+1I' 0

~fOT1 11I+~f+'f'I +•.+11 0

~ 'i:Hl+l+~+f +i'lH 0

~ 'i:+ll+l+l.+r+q+f 0

~ 'i:+11+1+~+r+i'lH+'iI 0

~fW!'l <Jl+~r+1'IH+1I 0

~fWI 1!I+~+f+i'lH 0

~~ ~H+f+~+r 0

~fWr-I 1!I+'ttf+l'IH+'" 0

~ 'i:+1I+1+~+f +l'j 0

~~ 1!I+~+f+l'f '"•• ~H ~8, , ~ol';):>
~ 'i:+<SH ~
>:f'! 'i:+<f+f "m. 'i:+<f+t+01 0

" ,+( '"R ,+f ,~,
"'" <lH+'i1' ,.
~~ ~+. 8

56



57

4.3 Creation of Stoplist for the Dataset

All Bangia documents contain some auxiliary words like"C'l',~, <!Iil, <!I~etc. These are

the stopwords. We found 15 stopwords in the dataset as given in Table 4.3. We also

included some terms like ~'1, ~, ~ etc. that are not auxiliary but occur in most

of the documents of our document set. So these terms will not give considerable

significance in measuring the relevance of documents. In our system we added the terms

with more than fifty percent occurrence in the document database into stoplist. Terms

like these are domain specific that means it varies if we take the document files from

different domain. In this way a stop list was created and then stored in the database.

Table 4.3: List of stop word with document frequency

WORD )CCURRED DOC]REQ

<!I'l' 40
l.!l<f~ 39
<!Iil 44
~ 42
'8 52
'l'il 51
'lil 31
iilfiU 43
'l1'l 31
~'1 32
'I1:'l 35
WI 38
C'!1fU"I 39
1ltp! 34
'f'r!I 31
~ User defined

WORD OCCURRED DOC]REQ

<!I~ User defined

<!I~ User defined

~ User defined

<!IV!> User defined

"'"ott User defined

~ User defined

w:r User defined

'l'il1 User defined

"<ltll User defined

"C'l' User defined

~ User defined

<!Iil User defined

<!I~ User defined

"<ltll User defined

Q$ User defined

C'l1iJ User defined
.



10 20 30 40 50 60

Number of document scanned

58

4.4 Stemming Performance

Stemming has been described in section 3.2.3. We performed stemming on the dataset

initially with ten documents and incrementally added ten word documents in the system.

Table 4.4 shows the number of stemming required and the required time for stemming of

different number of documents. Figure 4.1 shows that the number of stemming required

increases with the increase of document number. Figure 4.2 shows that the stemming

time increases almost linearly with the increase of document number.

Table 4.4: Stemming results

Document Total No. of Words Required time
number words stemmed (m-sec)

10 11019 7424 3703
20 39411 15581 6578
30 46486 17557 7594
40 59325 21383 8844
50 64933 22859 9875
60 987021 31657 12781

Graph for number of words stemmed Vs
document number

35000
-g 30000
E 25000
~ 20000
1ii "2 15000
'0 ~ 10000
; 5000 .-- --.... _ ..._-_ .... _..--- ---.~ ..---...-
~ 0 "--'-'-'-'---T"-'~~---"-~---;---~

"Z

Figure 4.1: Relation between document number and required stemming



59

Graph for stemming time Vs
document number

~ 15000c
::l
•• 12000
E:;: 9000

.~ 6000

~ 3000
~
til a .... -- ...,- ... _,-- ,--- ._._.,.__ ... -,

10 20 30 40 50 60

Number of Document Scanned

Figure 4.2: Relation between document number and stemming time

4.5 The Effect of Number of Occurrences of Postfixes

We applied the morphological analyzer on the Bangia data set and found that total of 72

postfixes were used to form different words. Table 4.2 shows the list of postfixes, their

character sequence and number of occurrence in the dataset. The frequency count of the

postfixes ranges from 0 to a maximum of about 4500 with' an average of 570. The

standard deviation of frequency count for different postfixes is very high. It indicates

that there are some postfixes with very high occurrence in the dataset and querying with

words forming by these postfixes will affect significantly if stemming is not performed.

As mentioned before there are two writing styles in Bangia language - namely "Shadhu

Bhasha" and "Chalti Bhasha". Recent trend in BangIa document writing uses "Chalti

Bhasha". So we used the dataset consisting of "Chalti Bhasha". We found 55% of 168

postfixes with zero occurrences count in the dataset. From theses statistics we can

estimate that about half of the postfixes are used for "Chalti Bhasha" and half for the

"Shadhu Bhasha".

.•..

(



60

We measured the retrieval effectiveness (as shown in Table 4.5 and 4.6) for the postfix

with maximum occurrences in the dataset. We found 3 relevant documents out of 8

(Table 4.5) without using morphological analysis. This poor performance result is due to

the words with postfixes resembles to different words and not participate in the

relevance measurement. We obtained improved performance (6 documents relevant out

of 8) by using morphological analysis as shown in Table 4.6. Precision is the proportion

of retrieved documcnts that are relevant. Recall is the proportion of relevant documents

that are retrieved. Precision and Recall are inversely related. One IR system IS

considered to have performed better than another when its precision-recall curve IS

above and to the right of the other. The precision recall curve for this scenario is given

in Figure 4.3.

Table 4.5: Precision and recall for frequent
postfix without morphological analysis

Document'l'illc Rank Actual Recall Precisi
relevance on

SHAMAJ 7.doe 1 ves 0.16 1
Message.doc 2 yes 0.33 1
BOll.doe 3 yes 0.50 1

hari sir I.doc 4 no 0.50 0.75
mv APP,doc 5 no 0.50 0.60
ALOWA.doe 6 no 0.50 0.50
ANNA PO.doc 7 no 0.50 0.43
attendance,doc 8 no 0.50 0.38

Table 4.6: Precision and recall for frequent
postfix with morphological analysis

Document Title Rank Actual Recall Precisi
relevance on

AadComittee.doc 1 ves 0.16 1
Alama Khatun2.doc 2 yes 0.33 1
Alama khatun.doc 3 yes 0.50 1
SHAMA.J 7.doe 4 yes 0.67 1
bari sirl.doc 5 ves 0.83 1

sociology Ipart.doc 6 no 0.83 0.83
Illl.doe 7 ves 1.00 0.86

Backup orkhairul 8 no 1.00 0.75
Alam.doc



61

1.20

1.00

0.80
'iii

0.60""'" 0040

0.20

0.00
0.00

__ lMthout x-x
Stenrring I

-x-lMth x-x
Stenrring . '. ~ .

.•......•....•~.'---.'---_.~
!
~

0.20 0040 0.60 0.80 1.00 1.20

Precision

Figure 4.3: Precision-recall curve for frequent postfix

4.6 The Effect of Number of Terms in Query Expression

We have studied the system with various query options like single term, two terms, and

three terms. The results are shown in Table 4.7, 4.8 and 4.9. We ran the queries with

stemming in both query vector and document vector. We found that the ranking of

documents changes as more terms are added to the queries. This is because the context

of the query changes as more words are added to the query and at the same time, the

ranking of the documents also changes. Our system does not consider the proximity of

the terms while evaluating the queries. This could be incorporated by using a window of

query size. Table 4.10 shows the required retrieval time for one, two and three query

terms. The required time increases with the increase of query terms, but it does not

increase linearly with the number of term. The effect is shown in Figure 4.4.

Table 4.7: Precision and recall (one word)

Document Title Rank Actual Recall Precision
relevance

AadComittee.doc 1 yes 0.14 1

Alamakhatun.doc 2 yes 0.29 I 1
bad sirl.doc 3 yes 0.43 1

Exam BILL.doc 4 --;es 0.57 1
Chairman I.doc 5 ves 0.71 1
khairul Alam.doc 6 yes 0.86 1

Bill of 7 yes 1.00 1
admission I.doc

Eivci.doc 8 no 1.00 0.88



Table 4.8: Precision and recall (two words)

Document Title Rank Actual Recall Prccisi
rclevan -on
cc

AadComitlcc.doc 1 yes 0.16 1

Chairman I.doc 2 yes 0.33 1
BOll 77.doc 3 yes 0.50 I
BOll 2.doc 4 ves 0.67 1
BOlI.doc 5 ves 0.83 1
Eivci.doc 6 00 0.83 0.83
BOUOO.doc 7 ves 1.00 0.86

sociology2part .doc 8 00 1.00 0.75

Table 4.9: Precision and recall (three words)

Document Title Rank Actual Recall Prccisi
relevance -00

AadCol11itlcc,doc 1 ves 0.17 1
/\Ialll:l Khal1l1l2.doc 2 yes 0.33 I
Alalllu klmtun.doc 3 yes 0.50 1

bari sir1.doc 4 yes 0.67 1
BOU 77 .doc 5 00 0.67 0.80

SHAMA! 7.doc 6 ves 0.83 0.83
sociologv 1Dart,doc 7 ves 1.00 0.86
socioioev2oart .doc 8 00 1.00 0.75

Effect of Number of Query Term
1.2

0.8
--+-oneword

~ 0.6 - {] - Twov

'" Word
0.4 ---tr-- Three

0.2 word

0 .. ,---"._ ...

O' 0.2 0.4 0.6 0.8
Precision

1.2

62

Figure 4.4: Effect of number of query term in query expression

Table 4.10: Retrieval time for query terms

Number of query terms Retrieval time (m-s)

1 1344
2 2625
3 3141



63

4.7 The Effect of Consideration of Document Length

For weighting the terms of a document, the document length was brought into

consideration. If a term occurs in a document which is very small in length then it

becomes important. But if it occurs in a document which is large in length then the term

will not be as much important as of a small document. We ran the query for a system

considering and not considering the document length and found better performance with

considering document length, which is shown in Table 4.11 and Table 4.12. The

precision recall curve for Table 4.11 and 4.12 arc shown in Figure 4.5.

Table 4.11: Precision and recall (not
considering document length)

Document Tille Ronk Actual Recall Precision
relevance

AadComiUec.doc I yes 0.20 I

Billof 2 yes 0.40 I
admission.doc
Chaimmnl.doc 3 yes 0.60 I
Chainnan2.doc 4 yes 0.80 I
Testimonial 5 no 0.80 0.80
esc. DOC
Bll.doc 6 110 0.80 0.67

budgcttJ.doc 7 no 0.80 0.57
RU.doc 8 no 0.80 0.50

Table 4.12: Precision and recall (considering
document length)

Document Title Rank Actual Recall Precision
relevance

AadComittcc.doc I yes 0.20 I

Credit.doc 2 yes 0.40 I
Crcdit2.doc 3 yes 0.60 I

Chaimlan I.doc 4 yes 0.80 I
RU.doc 5 no 0.80 0.80
Bill of 6 yes 1.00 0.84

adni.ission.doc
Testimonial.doc 7 no 1.00 0.78
BudgelU.doc 8 00 1.00 0.66



64

Consideration of documenUength

x- -;r -,x,
•

I-+-"otco~'iden"~;;;- - -~.

documentlen~~ll ~,'L

- X - co nsldering ~
document length :t\

1.2

1

0.8
iii
:;: 0.6
a::

0.4

0.2
o
o 0.2 0.4 0.6 0.8

Precision
1 1.2

Figure 4.5: Consideration of document length

4.8 The Effect of Morphological Analysis

Experimental result shows that the dataset contains a total of 128518 distinct words,

where only 41733 words out of them require stemming. This implies that almost one

third of the words are not root words. Words that are formed by the addition of postfixes

with roots are called extended words. These extended words are considered as different
"

word if stemming is not performed. So the relevance value r(q, d) is affected and many

relevant documents become irrelevant and the performance of the IR system is degraded.

We ran a number of experiments to test the effect of morphological analysis on IR

system in BangIa. Table 4.13 shows some relevance value for different query

expressions with three query terms. We find from the table that the retrieval may vary,

because of the presence of a number of relevant documents. We used the terms

f.i'llf.i~JI"IC~~~ "l"'ftli'"I for measuring precision and recall and the results are shown in

Table 4.14 and 4.15. We found 4 relevant documents for the top ranking 8 documents

without stemming, which is shown in Table 4.14. Table 4.15 shows that by doing

morphological analysis 5 relevant documents are found out of 8 top ranking documents.

The precision-recall curve for Table 4.14 and 4.16 are shown in the Figure 4.6. It'shows

that by using morphological analysis, on the average, 20% better precision with 14%

better recall can be achieved.



Table 4.13: Relevance for different query expression

SL. NO. Query terms Relevant Irrelevant
I . . f.lflWI'[~ " 3 5
2 ~ 'lil1"I ~~ 6 2
3 G1~"lMV't ~ • 5 3

Table 4.14: Precision and recall (not
considering morphology)

Document Title Rank Actual. Recall Precision
relevance

AadComittee.doc I yes 0.20 I

Credit.doc 2 yes 0040 I
RU.doc 3 no 0040 0.67
Bill of 4 yes 0.60 0.75

admission.doc
Chainnan l.doe 5 yes 0.80 0.80
BudoetV.doc 6 no 0.80 0.67
inqucrySP.doc 7 no 0.80 0.58

Btl,doc 8 no 0.80 0.50

Table 4.15: Precision and recall (considering
morphology)

Document Title Rank Actual Recall Precision
relevance

AadComittee.doc I yes 0.20 I

Credit,doc 2 yes 0040 I
Credit2.doc 3 yes 0.60 I

Chainnan I.doc 4 yes 0.80 I
RU.doc 5 no 0.80 0.80
Bill of 6 yes 1.00 0.84

admission.doc
Testimonial.doc 7 no 1.00 0.78
Budl!clU.doc 8 no 1.00 0.66

.•..

65



66

1.20 [

1.00

0.80

m
:d 0.60
a::

DAD

0.20

__ Wrthout

rmrphology
-_With

rmrphology

1.00 1.20

0.00 .. - --,------.,-------, ---_._, . , _
0.00 0.20 DAD 0.60 0,80

Precision
.-. ---""-- ._--~---~-----_._-----------

Figure 4.6: Precision-recall curve for morphological analysis

4.9 Comparison with Other IR systems

Table 4.16 shows comparison of different information retrieval systems. The

information retrieval system developed by Koudas et aI., [15) works for English

language. Here partial matching is used for finding relevance. 'The weighting technique

has been modified for better relevance. They used vector space model and cosine

similarity for measuring relevance. But they did not do any kind of morphological

analysis for stemming the words.

Table 4.16: Different steps of Different IR system

Koudas et Jelita et aI. Chowdhury Islam et al. OurIR
al. et al. system

Morphological Not done Not done done Not done done
analysis

Vector space Used yes no Used used
'-.

model

Cosine Used Not used Not used Used used
similarity



67

The information retrieval system developed by Jelita et al. [24] works for Indonesian

language. Instead of cosine similarity measure they used pooling to find the actual

relevant documents. They represented documents in a structured way, which is like

vector space model for adhoc retrieval. They showed that stemming does not show

retrieval accuracy for Indonesian language. The information retrieval system developed

by Chowdhury et aI. [25) works for information retrieval system in Arabic languag,e.

The information retrieval system developed by Islam et aI. [26) works for Bangia

language which is based on vector space model and cosine similarity measure. They

used term frequency and document frequency for weighting and did not do any

morphological analysis for stemming. They did not show any experimental results also.

Table 4.17 and 4.18 show that by doing morphological and considering document length

better performance can be achieved than that of IR system developed by Islam et al.

(26). The precision-recall curve for Table 4.17 and 4.18 are shown in the Figure 4.7.

Table 4.17: Precision and recall (not
considering morphology and document It;ngth)

Document Title Rank Actual Recall Precision
relevance

AadComittce.doc I yes 0.17 I

Bill of 2 yes 0.33 I
admission.doc
Exam BILL.doc 3 yes 0.50 I
Chainnan I.doc 4 no 0.50 0.75

sociologY2oart .doc 5 ves 0.67 0.80
Eivci.doc 6 no 0.67 0.67

BOU 77 .doc 7 no 0.67 0.57
BU.doc 8 no 0.67 0.50

Table 4.18: Precision and recall (considering
morphology and document length)

Document Title Rank Actual Recall Precision
relevance

AadComiUee.doc I yes 0.17 1

Exam BILL.doc 2 yes 0.34 I
Bill of 3 yes 0.50 I

admission.doc
khairul Alam.doc 4 ves 0.67 I
Testimonial.doc 5 yes 0.83 I
Chainnan J .doc 6 ves I I
BOU 77 .doc 7 no I 0.86

Eivci.doc 8 no I 0.75



Condireation of Morphology and Document length

1.2

~~L • not
considering

0.8 t document

• • •'1
",ngth and

~ morphology
&!

0.6 -~• considering, document
0.4 length and

morphology
0.2 !r1

0
0 0.2 0.4 0.6 0.8 1.2

Precision

Figure 4.7: Precision-recall curve for morphological analysis and document length

68



69

Chapter 5
Conclusion and Future Research

5.1 Conclusion

We have developed an IR system for retrieval of most relevant documents to a query

from Bangia text databasc. The problems of lR in Bangia text database are

i) huge number of words with different postfixes forming different

words with same meaning,

ii) synonym handling and

iii) unicode and non-unicode format of data.

We have explored the set of postfixes that are added to the root of a word forming

different words. There are two major styles of writing BangIa documents: "Shadhu

Bhasha" and "Chalti Bhasha". We have studied the effect of postfixes on the language

styles. About 45% of the postfixes are used in "Chalti Bhasha" and the rest are for

"Shaddhu Bhasha".

We have also evaluated the effect of the frequency of occurrence of postfixes and found

that the postfixes with higher frequency of occurrence require stemming operation to

improve performance of the system.

Efficient IR system in BangIa requires a morphological analysis. We have developed an

efficient morphological analyzer for this purpose. Our experimental results show that

20% better precision with 14% better recall can be achieved using the morphological

analyzer.

A synonym handling technique have been developed which handles synonyms

efficiently. A dictionary-based synonym handling mechanism has been developed. The

,



70

IR system can find any equivalent synonym efficiently from the database of synonyms

for document database initialization or query processing.

We have also developed a fonthandling mechanism to retrieve information from both,
unicode and non-unicode type of data uniformly. A substitution method is used to

convert non-unicode text into unicode text. If any non-unocode text is found then it is

converted into unicode and necessary information regarding that text is stored i~ the

database for information retrieval. For unicode-supported text, it is stored directly in the

database.

5.2 Suggestions for Further Research

The document database that is used here are domain specific. The document set was

collected from registry section of a public university. BangIa being one of the ten most

spoken languages requires the development offull database of BangIa text.

A corpus of Bangia text documents may be constructed fully in future. The performance

for Bangia corpus may be tested with the IR system that has been developed in this

work.

This thesis work can also be extended in cross language information retrieval system

adopting machine translation facility.



71

Bibliography

[I] Bush, V., "As We May Think", Atlantic Monthly, Vol-176, pp 101-108, July
1945.

.
[2] Luhn, H. P., "A Statistical Approach to Mechanized Encoding and Searching of

Literary Information", IBM Journal of Research and Development, pp 234-244,
1957.

[3] Salton, G., "The SMART Retrieval System-Experiments in Automatic
Document Retrieval", Prentice Hall Inc., Englewood Cliffs, NJ, 1971.

[4] Cleverdon, C. W., "The Cranfield Tests on Index Language Devices", Aslib
Proceedings, Vol-19, pp 173-192, 1967.

[5] Harman, D. K., "Overview of the First Text Retrieval Conference (TREC-I)", In
Proceedings of the First Text Retrieval Conference (TREC-I), pp 1-20, NIST
Special Publication 500-207, March 1993.

[6] Salton, G. and McGill, M. 1., "Introduction to Modern Information Retrieval",
McGraw Hill Book Co., New York, 1983.

[7] Robertson, S. E., Walker, S. and Beaulieu, M., "Okapi at TREC-7: Automatic'
Ad-hoc, Filtering, VLC and Filtering Tracks", In Proceedings of the Seventh Text
Retrieval Conference (TREC-7), pp 253-264. NIST Special Publication 500-242,
1999.

[8] Jones, K. S. and Willett, P., "Readings III Information Retrieval", Morgan
Kaufmann, 1997.

[9] r{obertson, S. E., "The Probabilistic Ranking Principle III IR", Journal of
Documentation, Vol-33, pp 294-304,1977.

[10] Maron, M. E. and Kuhns, J. L., "On Relevance, Probabilistic Indexing and.
Information Retrieval", Journal of the ACM, Vol-7, pp 216-244,1960.

[II] Croft, W. B. and Harper, D. J., "Using Probabilistic Models on Document
Retrieval without Relevance Information", Journal of Documentation, Vol-35, pp
285-295, 1979.

('



[12]

[13]

[14]

[15]

[16]

[17]

[1 XI

[ 19]

[20]

[21]

[22]

[23]

72
". -- ,.

Salton, G., Wong, A. and Yang, C. S., "A Vector Space Model for Information
Retrieval", Communications of the ACM, Vol-18, No. 11, pp 613-620,
Novcmbcr 1975.

Piotrowski, M., "NLP-Supported Full-Text Retrieval", CLUE Technical Reports-3,
pp 1-55,2001.

Kahvcci, T. and Singh, A. K., "An Efficient Index Structure for String
Databases", Proceedings of the 27th VLD Conference, pp 351-360, 2001.

Koudas, N., Marathe, A. and Srivastava, D., "Flexible String Matching against
Large Databases in Practice", Proceedings of the 30th VLDB Conference, pp 1-9,
2004.

Zobel, 1., Moffat, A. and Davis, R. S., "An Efficient Indexing Technique for Full
Text Database System", Proceedings of the 18th VLDB Conference, pp 352-362,
1992.

Faloutsos, C. and Chritodoulakis, S., "Signature Files: An Access Method for
Documents and its Analytical Performance Evaluation", ACM Transaction on
Database Systems, Vol-2, pp 267-288,1984 .

•Martynov, M. and Novikov, R, "An Indexing Algorithm for Text Retrieval",
Proceedings of the International Workshop on Advances in Databases and
Information Systems, pp 171-175, 1996.

Tomasic, A. and Molina, H. G., "Query Processing and Inverted Indices in
Shared-Nothing Text Document Information Retrieval Systems", VLDB Journal,
Vol- 2, pp 243-275, 1993. .

Chiueh, T. and Huang, L., "Efficient Real-time Index Updates in Text Retrieval
Systems", ECSL Technical Report 66, pp 1-10, 1999.

Finch, S., "Exploiting Sophisticated Representations for Document Retrieval",
Proceedings of the 4th Conference on Applied Natural Language Processing, pp
65-70, 1994.

D'SouzaA, D. J., Thorn, J. A. and Zobel, J.," A Comparison of Techniques for
Selecting Text Collections", Australasian Database Conference, pp 1-10,2000.

Losee, R. M., "When Information Retrieval Measures Agree about the Relative
Quality of Document Ranking", Journal of the American Society for Information
Science Vol-51, No.9, pp 834-840, 2000.



[24)

[25)

[26]

[27)

[28)

[29)

73

Asian, J. and Williams, H. E., "A Testbed for Indonesian Text Retrieval",
Proceedings of the 9th Australasian Document Computing Symposium,
Australia, pp 1-4, 2004.

Chowdhury, A., Alilayl, M., Jenson, E., Beitzel, S., Grossman, D. and Frieder,
0., "Linear Combinations Based Document Structure and Varied Stemming for
Arabic Information Retrieval", Information Retrieval Laboratory, Illinois Institute
of Technology, Chicago, 2002.

Islam, M. T. and Masum, S. M. A., "Bhasa: A Corpus-based Information
Retrieval and Summarizer for Bengali Text", Proceedings of the 7th
International Conference on Computer and Information Technology, pp 627-631,
2004.

Rijsbergen, V., "Information Retrieval", Second Edition, Online Version,
London, Butterworths, 1979.

Xu, J. and Croft, W. B., "Cluster-based Language Models for Distributed
Retrieval", Proceedings of the 22"d Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, United
States, pp 254-261, 1999.

Voorhees, E. M., "Information Extraction: Towards Scalable Adaptable
Systems". Springer, Berlin, 2004.


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083

