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Abstract

Let G be a planar graph such that each vertex in G is colored by either red or blue color. Assume

that there are nr red vertices and nb blue vertices in G. Let 8 be a set of fixed points in the

plane such that 181 = nr + nb where nr points in 8 are colored by red color and nb points in

S are colored by blue color. A bichromatic point-set embedding of G on 8 is a crossing free

drawing of G such that each red vertex in G is mapped to a red point in 8 and each blue vertex

in G is mapped to a blue point in 8 and each edge is drawn as a polygonal curve. In this thesis,

we study the problem of computing bichromatic point-set embeddings of trees with fewer bends

per edge on some special configurations of point-sets. Let 8 be such that no two points in 8

have same x-coordinates. Assume an ordering I of the points in 8 by increasing x-values. 8 is

called a consecutive point-set when all the points of same color appear consecutively in I. 8 is

called an alternating point-set when red and blue points alternate in l. In this thesis, we show

that any tree G has a bichromatic point-set embedding on a point set 8 with at most one bend

per edge if 8 is either a consecutive point-set or an alternating point-set and such an embedding

can be found in linear time.

I) -



Chapter 1

Introd uction

A graph consists of a set of vertices and a set of edges, each joining two vertices. Graphs

may be used to represent any information that can be modeled as objects and relationships

between the objects. A drawing of a graph can be thought of as a diagram consisting of

some points on the plane corresponding to the vertices of the graph together with some

line segments corresponding to the edges connecting the points. A graph when drawn

gives a sort of visualization of the information represented by the graph. One of the

objectives of graph drawing is to obtain such representation of a graph that makes the

underlying structure of the graph easily understandable, and moreover the drawing should

satisfy some criteria that arise from the application point of view. In this thesis, we deal

with a significant graph drawing problem known as the bichromatic point-set embedding

of planar graphs with fewer bends per edge. In this chapter, we discuss the applications

of point-set embeddings of planar graphs. We also review the previous results regarding

point-set embedding with minimum number of bends per edge and present the objectives

of the thesis. We start with Section 1.1 by giving a precise definition of bichromatic

point-set embedding problem. Section 1.2 describes some practical applications of point-

set embedding problem. Section 1.3 reviews the previous works in this field. Section 1.4

addresses the scope of this thesis. In Section 1.5, we present the summary of the thesis.

1



CHAPTER 1. INTRODUCTION

1.1 Bichromatic Point-Set Embedding

2

Let G = (V, E) be a planar graph where V and E are the set of vertices and edges,

respectively. Let V = v;. UVb, where it is assumed that the vertices in Vr are colored

red and the vertices in Vb are colored blue. Let 8 be a set of points in the plane such

that 181 = 111,.1+ IVbI and 8 contains 111,.1red points and IVbI blue points. A bichromatic

point-set embedding of G on 8 is a crossing free drawing of G such that each red vertex

Vr E v;. is mapped to a red point Pr E 8 and each blue vertex Vb E Vb is mapped to a blue

point Pb E 8 and each edge is drawn as a polygonal curve. For example, Figure 1.1(a)

shows a planar graph G with four red vertices and three blue vertices. Throughout the

thesis we draw a red vertex by a white circle and a blue vertex by a black circle. For

ease of illustration vertices are numbered and the number is shown inside each vertex.

Figure 1.1(b) shows a point-set 8 with four red points and three blue points. Figure

1.1 (c) illustrates a bichromatic point-set embedding of G on 8 where the number inside

each point represents the vertex mapped to that point. Figure 1.1 (c) shows that all the

edges are not drawn as straight lines in such an embedding. Some edges are drawn as

polylines with bends to maintain the planarity of the drawing. A bend is a point where

a line changes its direction.

Bichromatic point-set embedding of a plananr graph is not unique i.e. for a given graph

G and a point-set 8, there may be more than one bichromatic point-set embedding of G on

8 distinguished by different mappings of vertices of G on points in 8. For example, Figure

1.2 represents two bichromatic point-set embeddings of the graph G in Figure 1.1(a) on

the point-set of Figure 1.1(b). Now consider the drawing in Figure 1.2(a). There is at

least one edge (the edge connecting the vertices a and b) that contains two bends. We call

this drawing a bichromatic point-set embedding with at most two bends per edge. On

the other hand, we call the drawing in Figure 1.2(b) a bichromatic point-set embedding

r with at most one bend per edge since number of bends on any edge is at most one. It
,"'
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o red

3

blue

0 •
0

0 ••0
(a) (b) (e)

Figure 1.1 (a) A planar graph G, (b) a point-set S, and (c) a bichromatic point-set

embedding of G on S.

is desirable both from practical and theoretical point of view to compute a bichromatic

point-set embedding that contains fewer bends per edge. Therefore, we say the drawing

in Figure 1.2(b) is better and preferable than that in Figure 1.2(a).

(a) (b)

Figure 1.2 Two bichromatic point-set embeddings of a graph. (a) With at most two

bends per edge, and (b) with at most one bend per edge.

The general version of the problem of computing bichromatic point-set embedding

is known as the k-chromatic point-set embedding problem. In the k-chromatic point-set

embedding problem, the input is a planar graph G = (V, E) and a point-set S such that
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vertices in G and points in S are colored using k different colors; k may be any value in

the range 1 :s; k :s; IV I. For any color c, number of vertices in G of color c equals to the

number of points of color c in S. The desired output is a crossing free drawing of G such

that each vertex in G is mapped to a point of the same color in S and each edge is drawn

as a polygonal curve. In the next section, we discuss some of the practical applications of

k-chromatic point-set embedding problem.

1.2 Applications

The problem of finding k-chromatic point-set embeddings of planar graphs has practical

applications in drawing graphs with semantic constraints [S02] and also in VLSI design

[SY02]. We mention here an application in VLSI circuit implementations. Consider

the circuit C in Figure 1.3(a) comprising of three different types of basic gates. Figure

1.3(b) shows a circuit board B where the three different types of gates have been pre-

fabricated. The problem is to implement the given circuit C on the circuit board B. The

implementation involves mapping each gate from C to a gate of same type in B and then

making connections among the mapped gates in B according to the circuit C. Obviously

no two connecting wires should overlap while specifying the connections. Figure 1.3(c)

represents one such implementation. We can model this problem by considering the

circuit C as a graph G where each vertex represents a gate and each edge represents a

connection between two gates. Gates of any particular type are represented by vertices

having same color. The circuit board B can be modeled as a set of points S on the plane

where each point represents a prefabricated gate on the board. A particular type of gate

is represented by points with the same color. Subsequently the problem of implementing

C on B reduces to the problem of computing k-chromatic point-set embedding of G on

S. The value of k in Figure 1.3 is three since there are three different types of gates in

" the given circuit.
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(c)
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F2

F3

F

5

Figure 1.3 (a) A digital circuit C, (b) a circuit board B, and (c) implementation of C

on B.

1.3 Previous Results

In this section, we review the previous works regarding k-chromatic point-set embedding

and bichromatic point-set embedding of planar graphs.

In the k-chromatic point-set embedding problem, the parameter k denotes the number

of different colors that have been used to color the vertices of the given graph G. The

minimum value for k is 1 when all the vertices in G are of same color. The maximum

possible value for k is IVI when no two vertices in G have same color. For k = 1, it has

") been shown in [C03] that the problem of determining whether a planar graph G has an
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I-chromatic point-set embedding (i.e. k=l) without bends is NP-complete. Hence re-

searchers have focussed on finding k-chromatic point-set embedding by introducing bends

on the edges and tried to determine the number of bends per edge that will be sufficient

to compute such drawing. For k = n where n denotes the number of vertices in the

given graph, it has been shown in [PWOl] that O(n) bends per edge are required for

n-chromatic point-set embedding of a planar graph; hence the number of bends per edge

increases linearly with the number of vertices in G for the maximum value of k. On the

other hand, for k = 1, [KW02] has shown that any planar graph has i-chromatic point-set

embedding with at most two bends per edge. Surprisingly for the next immediate value

of k i.e. when k = 2, [GLT06] have shown that there exits instances of planar graphs

that require linear number of bends per edge for bichromatic point-set embedding. Figure

1.4(a) shows such a planar graph. [GLT06] have proved that any bichromatic point-set

embedding of the graph in Figure 1.4(a) on the point-set in Figure 1.4(b) must contain

atleast one edge that has linear number of bends. However there are smaller classes

(a)

0.0.0.0.0.

(b)

Figure 1.4 Bichromatic point-set embedding of the planar graph G in (a) on the point-set

S in (b) requires linear number of bends per edge.

of planar graphs that admit bichromatic point-set embedding with constant number of
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bends per edge. [GLT06] have presented algorithms to compute bichromatic point-set

embeddings of paths and cycles with at most one bend per edge and that of caterpillars

with at most two bends per edge and [GDL06] have proved that every outerplanar graph

has bichromatic point-set embedding with at most 5 bends per edge. Interestingly, it is

also possible to find bichromatic point-set embeddings with constant number of bends per

edge by working on restricted configurations of point-sets as [GDL07] have shown that

every planar graph has k-chromatic point-set embeddings with at most 3k + 7 bends per

edge on consecutive point-sets. Therefore, there is a motivation from theoretical interest

to find out what may be the other classes of planar graphs and special point-set config-

urations that admit k-chromatic point-set embeddings with fewer number of bends per

edge.

1.4 Scope of the Thesis

The class of planar graphs we have considered in this thesis is "tree". We have. tried to

find out how many bends per edge are sufficient for bichromatic point-set embeddings

of trees on some special configurations of point-sets, namely consecutive point-sets and

alternating point-sets. Let a given point-set S be such that no two points in S have same

x-coordinate. Assume an ordering I of the points in S by increasing x-values. S is called

a consecutive point-set when all the points of same color appear consecutively in I. S is

called an alternating point-set when points of two different colors alternate in l. In this

thesis, we study the problem of computing bichromatic point-set embeddings of trees on

consecutive point-sets and alternating point-sets with at most one bend per edge and also

developing linear-time algorithms to compute such drawings.
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1.5 Summary

. The main results of this thesis are as follows.

8

1. We give a linear-time algorithm for computing bichromatic point-set embeddings of

trees on consecutive point-sets with at most one bend per edge.

2. We present a linear-time algorithm for computing bichromatic point-set embeddings

of trees on alternating point-sets with at most one bend per edge.

The thesis is organized as follows. Chapter 2 defines basic terminologies relevant to the

graphs, graph algorithms and point-set embedding problems to understand our research

work. Chapter 3 describes the algorithm that computes bichromatic point-set embedding

of trees on a consecutive point-set in linear time. Chapter 4 shows a linear-time algorithm

for finding bichromatic point-set embedding of trees on an alternating point-set in linear

time. Finally, Chapter 5 gives the conclusion.
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Chapter 2

Preliminaries

In this chapter, we give definitions of some basic terms along with some discussion on

complexity theory. Definitions that are not given here are discussed as they are needed.

In Section 2.1, we start by giving the definitions of some basic terms that are related to

and used throughout this thesis. Section 2.2 describes the terms related to bichromatic

point-set embeddings of planar graphs. Section 2.3 defines the complexity of an algorithm.

Finally, Section 2.4 summarizes this chapter.

2.1 Basic Terminology

In this section, we provide definitions of some graph-theoretical terms used throughout

the remainder of this thesis. For readers interested in graph theory, we refer to [NR04,

BETT99] and [WeOl].

2.1.1 Graphs

Let G = (V, E) be a simple graph with vertex set V and edge set E. We denote the set of

vertices of G by V(G) and the set of edges of G by E(G). We denote an edge joining ver-

tices Vi, Vj of G by (Vi, Vj). If (Vi, Vj) E E, then two vertices Vi, Vj are said to be adjacent in

9
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-f-

G; edge (Vi, Vj) is then said to be incident to vertices Vi and Vj; Vi is a neighbor of Vj' The

degree of a vertex V in G is the number of edges incident to V in G. Figure 2.1 depicts a sim-

ple graph G, where each vertex in V (G) = {VI, V2, V3, V4, vs} is drawn by small black circle

and each edge in E(G) = {(VI, V2), (V2, V3), (V3, V4), (V4, vd, (VI, vs), (V2, vs), (V3, vs), (V4, vs)}

is drawn by a line segment.

Figure 2.1 A simple graph with five vertices and eight edges.

A path in G is an ordered list of distinct vertices (v" V2, ... , Vq_l, vq) E V such that

(Vi-I, Vi) E E for all 2 :S i :S q [WeOl]. The length of a path is one less than the number

of vertices on the path. A path or walk is open if Va oF vq. A path is closed if VI = Vq. A

closed path containing at least one edge is called a cycle. For a path P, Yin (P) denotes

the internal vertices of P, i.e., all the vertices except the endpoints of P. In Figure 2.1,

(VI, V2, V3) is a path and (VI, V2, Vs, VI) is a cycle.

2.1.2 Connectivity

A graph G is connected if for any two distinct vertices Vi, Vj of G there is a path between Vi

and Vj in G. A graph which is not connected is called a disconnected graph. A component

of a graph is a maximal connected subgraph. The graph in Figure 2.2(a) is connected

since there is a path between any two distinct vertices of the graph. On the other hand,
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the graph in Figure 2.2(b) is disconnected since there is no path between VI and V2. The

graph in Figure 2.2(b) has two components GI and G2 indicated by dotted lines.

(a)

/' - - -- - -
I • • "'
\ Vj V 4 I Gz
,-----_/

(b)

Figure 2.2 (a) A connected graph, and (b) a disconnected graph with two connected

components.

2.1.3 Trees

A tree is a connected graph without any cycle. Figure 2.3 is an example of a tree. The

vertices in a tree are usually called nodes. A rooted tree is a tree in which one of the nodes

is distinguished from others. The distinguished node is called the root of tree. The root

of a tree is usually drawn at the top. In Figure 2.3, the root is Vo. In a rooted tree G

with root vo, if the last edge on the path from Vo to a vertex u is (u, v), then v is called

the parent of u and u is a child of v. For example, in Figure 2.3, vertex VI is the parent

of V4 and V4 is a child of VI.

2.1.4 Planar Graphs and Plane Graphs

A graph is planar if it can be embedded in the planes so that no two edges intersect

geometrically except at a vertex to which they are both incident. Note that a planar

graph may have an exponential number of embeddings. Figure 2.4 shows two planar
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Figure 2.3 A tree.

embeddings of the same planar graph.

12

Figure 2.4 Two planar embeddings of the same graph.

2.2 Bichromatic Point-Set Embedding

2.2.1 2-colored Planar Graphs

A 2-coloring of a planar graph G = (V, E) is a partition of V(G) into two nonempty

disjoint sets Vr and Vb where the vertices in 11,. and Vb are red vertices and blue vertices

respectively. Given a vertex v E V(G), we denote the color of v by c(v). We say a graph

Gis 2-colored if G has a 2-coloring. Figure 1.1(a) shows a 2-colored graph G.
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2.2.2 Point-sets

13

By the term point-set, we refer to a set of fixed points in the Euclidian plane. In the rest

of the paper, we assume that for any given point-set S, no two points of S have same x-

coordinates (if this is not the case for some point-set S, we can rotate the plane to achieve

distinct x-coordinates for all the points in S). We use x(p) to denote the x-coordinate

of point pES. Let lSI = nand PO,Pl,'" ,Pn-l be the points of S ordered according to

their x-coordinates i.e. x(Po) < x(pd < ... < x(Pn-d. For any two points P, q in S, we

say P is to the left of q (or q is to the right of p) if x(p) < x(q). For any point pES,

we use next(p) to denote the point q E S where q is immediately to the right of p in the

ordering of points in S by increasing x values.

2.2.3 2-colored Point-set

A 2-coloring of a point-set S is a partition of S into two nonempty disjoint sets Sr and Sb

where the points in Sr and Sb are colored red and blue respectively. Given a point pES,

we denote the color of p by e(p). We say a point-set S is 2-colored if S has a 2-coloring.

Figure 1.1(b) shows a 2-colored point-set S.

2.2.4 Bichromatic Point-set Embedding

Let G = (V, E) be a 2-colored planar graph where V = VrU Vb and S = Sr U Sb be a

2-colored point-set in the plane such that: (i) vertices in v;. and points in Sr are colored

red, (ii) vertices in Vb and points in Sb are colored blue and (iii)IVbI= ISbl and Iv;. I = ISrl.

We say that S is compatible with G. A biehromatic point-set embedding of G on S is

a crossing free drawing of G such that: (i) each vertex v E V(G) is mapped to a point

pES where e(p) = e(v), and (ii) each edge e E E(G) is drawn as a polygonal chain .\. A

point shared by any two consecutive segments of a polygonal chain .\ is called a bend of

e. Figure 1.1(e) shows a biehromatic point-set embedding of the 2-colored planar graph
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G in Figure 1.1(a) on the 2-colored point-set S in Figure 1.1(b) where S is compatible

with G.

2.2.5 Consecutive and Alternating Point-Set

We say a 2-colored point-set S a consecutive point-set if for every pair of points p, q

in S where c(p) = c(q), there is no point r in S such that x(p) < x(r) < x(q) and

c(r) ¥ c(p) = c(q). In other words, in a 2-colored consecutive point-set, points of each

color are consecutive according to the x-coordinate ordering. We say a 2-colored point-set

S is an alternating point-set, if for any point p in S, c(p) ¥ c(next(p)). In other words, in

a 2-colored alternating point-set, colors of points alternate in the x-coordinate ordering.

It is obvious that for any alternating point-set (J with nr red vertices and nb blue vertices,

either nr = nb (i.e. when the color of the leftmost point of (J is different from the color

of its rightmost point) or nr = nb:f: l(i.e. when both the endpoints of (J are of same

color). We define a single point (either red or blue) to be an alternating point-set of

size 1. Figure 2.5(a) shows a 2-colored consecutive point-set and Figure 2.5(b) shows a

2-colored alternating point-set.

y

P,

o
P,

o

P

6

(a)

P

6

p.• P,•
p.•

x

y

P,

o
P,•

P,o
P•
(b)

p.o
P,•

p.

o
x

Figure 2.5 (a) A 2-colored consecutive point-set, and (b) a 2-colored alternating point-set.
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We call a 2-colored point-set, S an RB-sequence denoted by u when all the points of S

are collinear. Let I be the line that passes through the points in u. We call I a spine of

u. A spine defines 2 half planes (called pages) sharing line I; the top half plane is called

the top page and the bottom half plane is called the bottom page. Figure 2.6 shows an

RB-sequence of size 8.

Figure 2.6 An RB-sequence.

2.2.7 Accessibility of Points

Let G be a 2-colored planar graph and u be a 2-colored RB-sequence compatible with G.

Let r be a bichromatic point-set embedding of G on u. Let p be a point on the spine I
of u. We say p is accessible from top (bottom) page in r if there is no such edge e in r
that e is drawn through the top (bottom) page and p lies between the endpoints of e on

I. For example, consider the 2-colored graph in Figure 2.7(a). Figure 2.7(b) represents a

bichromatic point-set embedding of G on some RB-sequence u. In the drawing of Figure

2.7(b), the point representing the vertex b is not accessible from the top page since b

lies between the endpoints of the edge connecting the vertices a and c. Similarly the

point representing the vertex d is not accessible from the bottom page. The point that

corresponds to the vertex c is accessible from both the pages. It is obvious that the

leftmost and rightmost point of u is always accessible from both the pages irrespective of

the drawing r.
We have the following observation from [GLT06].

Observation 2.2.1 Let r be a drawing that represents a bichromatic point-set embedding

of a 2-colored graph G on an RB-sequence u. Let p and q be two points on the spine of
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Figure 2.7 Illustration of accessibility of points. (a) A planar Graph G, and (b) a drawing

r of G.

(J that are accessible from the same page 1r. Then it is possible to connect p and q with a

polygonal chain A with at most one bend such that A is entirely contained in 1r and A does

not cross any other edge of r.

Proof. Since p and q are both accessible from 1r, there is no edge e = (u, v) in I such

that the closed region bounded by uv U e has p inside and q outside. Therefore, p and q

can be connected by a polygonal chain with one bend entirely contained in 1r and that

does not cross any edge of (J.

2.2.8 Chromatic Equivalence

Let P and Q be two 2-colored point-sets. We say P is chromatic equivalent to Q if the

following two conditions hold: (i) IPI = IQI(= n), and (ii) C(Pi) = C(qi) for 0 :S i :S n - 1

where Po,P!, ... ,Pn-l and qo, ql,"', qn-l denote the points in P and Q respectively in

the order of increasing x-coordinate value. We make the following observation regarding

chromatic equivalence of two alternating point-sets.

Observation 2.2.2 Let P and Q be two alternating point-sets such that IPI = IQI. If

the leftmost points of both P and Q have same cdlor, then P is chromatic equivalent to

Q.
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We have the following lemma that relates bichromatic point-set embeddings on two

chromatic equivalent point-sets.

Lemma 2.2:3 Let G = (V, E) be a 2-colored planar graph and S be a 2-colored point-

set compatible with G. Let (J be an RB-sequence chromatic equivalent to S. If G has a

bichromatic point-set embedding on (J with at most one bend per edge then G admits a

bichromatic point-set embedding on S with at most one bend per' edge.

Proof. The proof is constructive. Let r be the drawing that represents a bichromatic

point-set embedding of G on (J. Let I be the spine of (J and qo, ql , ... ,qn-I be the points

of (J ordered on I from left to right where IVI = n. The drawing of each edge in r is

contained either within the top plane or the bottom plane as defined by I since number

of bends on any edge is at most one. Let Vi be the vertex of G that is mapped on qi in

(J (0 :s; i < n). Let Po,PI, ... ,Pn-I be the points in S. Since (J is chromatic equivalent to

S, it follows that e(qi) = e(Pi) = C(Vi) for 0 :s; i < n. We map vertex Vi of G on Pi E S

and draw the edges (Vi, Vi+J) if exist, as straight line segments. The remaining edges are

the edges that are drawn using one bend in r. Now using the techniques in [KW02]' we

draw those edges connecting points of S with at most one bend and without any edge

crossings. Figure 2.8 illustrates the techniques described. Thus we have a bichromatic

point-set embedding of G on S. Since the technique described in [KW02] draws each

edge in constant amount of time, it follows that construction of bichromatic point-set

embedding of G bn S from the point-set embedding of G on (J requires linear time. 0

2.3 Algorithms and Complexity

In this section, we briefly introduce some terminologies related to complexity of algo-

rithms. For interested readers, we refer the book of Cormen et. al. [CLRS04].

The most widely accepted complexity measure for an algorithm is the running time

which is expressed by the number of operations it performs before producing the final
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(a) (b)

(c) (d)

Figure 2.8 An illustration for the proof of Lemma 2.2.3. (a) A 2-colored graph G, (b)

a point-set S, (c) a bichromatic point-set embedding of G on a consecutive RB-sequence

(J, and (d) a bichromatic point-set embedding of G on S.

answer. The number of operations required by an algorithm is not the same for all

problem instances. Thus, we consider all inputs of a given size together, and we define

the complexity of the algorithm for that input size to be the worst case behavior of the

algorithm on any of these inputs. Then the running time is a function of size n of the

input.
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In analyzing the complexity of the algorithm, we are often interested only in the "asymp-

totic behavior" , that is, the behavior of the algorithm when applied to very large inputs.

To deal with such a property of functions we shall use the following notations for asymp-

totic running time. Let f(n) and g(n) be the functions from the positive integers to the

positive reals, then we write f(n) = O(g(n)) if there exists positive constants Cl and no

such that 0 :S f(n) :S clg(n) for all n ~ no. Thus the running time of an algorithm

may be bounded from above by phrasing like "takes time O(n2)" meaning that the upper

bound of the algorithm is O(n2).

2.3.2 Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its complexity is

bounded by a polynomial of the size of a problem instance. Examples of such complexities

are O(n), O(n log n), O(n100) etc. The remaining algorithms are usually referred to as

exponential or nonpolynomial. Examples of such complexity are O(2n), O(n!), etc.

When the running time of an algorithm is bounded by O(n), we call it a linear-time

algorithm or simply a linear algorithm. For planar graphs, the number of edges m = O(n)

and the number of faces f = O(n).

2.4 Summary

In this chapter, we have defined some basic graph-theoretical terms as well as some special

terms related to bichromatic point-set embedding. Besides we have also discussed different

terms related to complexity of algorithms that will be used in the later sections.
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Embedding on Consecutive Point-Set

In this chapter, we prove that trees admit bichromatic point-set embeddings on consec-

utive point-sets with at most one bend per edge and such an embedding can be found

in linear time. We first present in Section 3.1 a linear-time algorithm that computes

a bichromatic point-set of any given tree G on an arbitrary consecutive RB-sequence iJ

with at most one bend per edge. Then in Section 3.2 we obtain a bichromatic point-set

embedding of G on any consecutive point-set S with at most one bend per edge from the

bichromatic point-set embedding of G on iJ. Finally, Section 3.3 summarizes this chapter.

3.1 Bichromatic Point-Set Embedding on Consecu-

tive RB-sequence

In this section, we describe a linear-time algorithm that computes a bichromatic point-

set embedding of a 2-colored tree G with at most one bend per edge on a consecutive

RB-sequence iJ compatible with G. We call this algorithm Consecutive-Embedding.

Without loss of generality, we assume that the leftmost point in iJ is red; this implies that

the blue points are to the right of the red points in iJ. Let there be nr red vertices and nb

blue vertices in G and IVI = nr + nb = n. We assume any red vertex of G as its root and

20
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denote it by Va.

The rest of the section is organized as follows. In Section 3.1.1, we illustrate the

Algorithm Consecutive-Embedding. In Section 3.1.2, we verify correctness and time

complexity of the Algorithm.

3.1.1 Algorithm Consecutive-Embedding

Given a.2-colored tree G and a consecutive RB-sequence rJ, Algorithm Consecutive-

Embedding finds a bichromatic point-set embedding of G on S by mapping vertices of

G on points of S in an incremental way. At each step an unmapped vertex of G is mapped

on some point in S in such a way that allows mapping of future vertices without any edge

crossing and with atmost one bend per edge. We use the following notations to illustrate

the drawing algorithm. Let "Ik denotes the drawing after some step k, k :::::O. For example,

Figure 3.I(b) shows the drawing "14 after step 4 for the input graph in Figure 3.1(a).

o red

(a)

L',

(b)

Figure 3.1 (a) A 2-colored tree G, and (b) the drawing "14 and the sets FI, Fi, L4, L~
and D4.

We denote by Gk the subgraph of G that has been drawn in "Ik; We call any vertex

v in V(G)\V(Gk) an unmapped vertex and vertices in Gk mapped vertices. A mapped

vertex v of Gk is a live vertex if it has at least one unmapped neighbor; otherwise v is



CHAPTER 3. EMBEDDING ON CONSECUTIVE POINT-SET 22

(ailed a dead vertex. We use Uk(v) to denote the set of unmapped neighbors of any live

vertex v; v is an R-live vertex if v has at least one neighbor u such that u E Uk(v) and

c(u) is red; v is called a B-live vertex if v has at least one neighbor u such that u E Uk(v)

and c(u) is blue.

Let (Yk C;; (Y denotes the set of points representing the vertices of Gk in 'Yk. For a vertex

v of G, we use p( v) to denote the point of (Y that represents v. The leftmost and rightmost

points of (Yk will be denoted by O!k and 13k respectively. We say any point p of (Y\(Yk is a

free point; A free point p is a free red point if c(p) is red; otherwise p is a free blue point

if c(p) is blue. The set of free red points and free blue points of (Y\(Yk will be denoted by

FI; and FZ respectively. Any point p of (Yk will be called an R-live point, B-live point or

dead point if it represents an R-live vertex, a B-live vertex or a dead vertex, respectively

in 'Yk. The set of R-live, B-live and dead points of (Yk will be denoted by L'k, L% and Dk
respectively. Figure 3.1 illustrates the given definitions. Figure 3.1(b) shows the drawing

"14 for the input graph in Figure 3.1(a). In Figure 3.1(b), the point P(VI) is an R-live

point since vertex VI has an unmapped neighbor V4 where c(V4) is red; the point p( V2) is a

B-live point since vertex V2 has neighbors V5 and VB that are unmapped vertices and are

colored blue; points p( va) and p( V7) are dead points since both vertices Va and V7 have no

unmapped neighbors ..

At the end of each step, the resulting drawing satisfies the following step invariant

properties.

Property 1: All points in FI; are to the left of O!k and all points in FZ are to the right

of 13k'

Property 2: All points in L'k are accessible from the bottom page and all points in

L% are accessible from the top page.

Property 3: Gk is a connected subgraph of G that contains the vertex Va and the

drawing 'Yk represents a bichromatic point-set embedding of Gk on (Yk with at most one

bend per edge.
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We now describe the operations at different steps.

At step k = 0, the root vertex Vo where c(vol is red, is mapped to the right most free

red point IT of (J. Figure 3.2 illustrates the operations in step O.

(a)

!,00000000 •••••
(b)

!,

00000000)••••••
(c)

Figure 3.2 An illustration for step 0 of Algorithm Consecutive-Embedding. (a) A

tree G, (b) a consecutive RB-sequence (J, and (c)the drawing 'Yo.

We now prove that the drawing 'Yo satisfies the step invariant properties.

The drawing 'Yo satisfies Property 1: According to our assumption, all the blue points

are to the right of the red points in the consecutive RB-sequence (J. We map the root

of G to the rightmost free red point IT of (J. By definition, ao = (30 = fr. Hence all the

remaining free red points are to the left of ao and free blue points are to the right of (30'

The drawing 'Yo satisfies Property 2: Since no edge is added, it follows that all the

points are accessible from both top and bottom pages. Therefore, Property 2 holds

trivially.

The drawing 'Yo satisfies Property 3: Since Go consists of the single vertex Vo and no

edges, hence it is trivial to show that Property 3 is satisfied.

We now specify the operations to perform at each step k, k > O. We use induction to

prove that the resulting drawing 'Yk maintains the invariant properties. We consider 'Yo as

the base case and as induction hypothesis we assume that the output of the previous step

'Yk-l satisfies the specified invariant properties. At any step k, we identify the following
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.J

Case 1: There is at least one R-live point in Uk-I'

In this case, L'k_l oF c/J. Let lr be the leftmost point in L'k-l' Let lr represents the

vertex v of G; hence v is an R-live vertex. Consider any vertex u such that u E Uk-l (v)

and c(u) is red. We map u to the rightmost point fr of Fk_l and add the edge (u,v)

connecting points lr and fr through the bottom page. Figure 3.3 illustrates case 1.

(a) (b)

;';0GJ~kOOOO\JW ••••••
(e)

Figure 3.3 An illustration for case 1 of Algorithm Consecutive-Embedding. (a) A

2-colored tree G, (b) the drawing 'Yk-l, and (c) the drawing, 'Yk'

We now show that the drawing 'Yk satisfies the desired invariant properties.

The drawing 'Yk satisfies Property 1: By induction hypothesis, points in Fk_l are

to the left of Ctk-l' Since fr is the rightmost point in Fk_1> it follows that fr = Ctk

and Fk = Fk_l \ {jr}; therefore, points in Fk are to the left of Ctk. On the other hand,

13k-1 = 13kand Ft_l = Ft. It follows that points in Ft are to the right of 13k'

The drawing 'Yk satisfies Property 2: We first show that points in L'k are accessible

from the bottom page. If there are no R-live points in Uk, i.e. L'k = c/Jthen this property
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holds trivially. Otherwise consider a point p E L'k such that p is not accessible from the

bottom page in Tk. Let vp be the vertex of G represented by p. Hence vp is an R-live

vertex in Gk. Since Ir is the leftmost point in Uk, Ir is accessible from both the pages in

Tk. It follows that p oF Ir. Since u is mapped on IT> Vp oF u. Then vp must be an R-live

vertex of Gk-1. It follows that p is an R-live point of Uk-I. Therefore, by Property 2 of

induction hypothesis, p is accessible from bottom page in Tk-l. Consequently it must be

the addition of the edge (u, v) that makes p inaccessible from bottom page in Tk. The

endpoints of the edge (u, v) are the points Ir and lr. Since Ir is the leftmost point of Uk,

Ir is to the left of p. Also lr is to the left of p since both lr and p are in L'k_l and lr is the

leftmost point of L'k_l. Since both the endpoints of edge (u, v) lie to the left of p in Tk,

it follows that the edge (u, v) does not modify the accessibility of p from bottom page in

Tk. Therefore, p is accessible from bottom page in Tk which is a contradiction. Hence all

points in L'k are accessible from the bottom page.

Next we show that points in L% are accessible from the top page. If Uk contains no

B-live points, i.e. L% = <p then this prqperty holds trivially. Otherwise consider a point

p E L% such that p is not accessible from top page in Tk. Let vp be the vertex of G

represented by p. Hence vp is a B-live vertex in Gk. Since Ir is the leftmost point in Uk,

Ir is accessible from both the pages in Tk. It follows that p oF fr. Since u is mapped on

IT> Vp oF u. Then vp must be a B-live vertex of Gk-1. It follows that p is a B-live point of

Uk-I. Therefore, by property 2 of induction hypothesis, p is accessible from top page in

Tk-l. Consequently it must be the addition of the edge (u, v) that makes p inaccessible

from top page in Tk. But since we draw the edge (u, v) through the bottom page, it cannot

modify the accessibility of p from top page. It follows that p is accessible from top page in

Tk which is a contradiction. Therefore, all points in L% are accessible from the top page.

The drawing Tk satisfies Property 3: According to the operation specified, V(Gk) =

V(Gk-1) U{u}. Since Gk-1 is a connected graph that contains the vertex vo(by induction

hypothesis) and u is a neighbor of some vertex v E V(Gk-l), if follows that Gk is also
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connected and Vo is in Gk. Therefore, it remains to show that the edge (u, v) does not

create any edge crossings and contains at most one bend. Since Ir E Lk_l, by Property

2 it is accessible from bottom page in Ik-I' The point Ir E Fi;_1 is to the left of the

leftmost point of (Tk-I (by Property 1); hence Ir is accessible from both the pages in Ik-I'

Therefore, from Observation 2.2.1, Ir and Ir can be connected with a polygonal chain

through the bottom page that contains at most one bend and does not cross any other

edge in Ik-I' Hence Ik represents a bichromatic point-set embedding of Gk on (Tk'

Case 2: There is no R-live point but at least one B-live point in (Tk-I.

In this case, Lk_1 = c/Jand L%_I # c/J.Consider the rightmost point h of L%-I' Let

h represents the vertex v of G; hence v is a B-live vertex. Consider any vertex u such

that u E Uk_I(V) and c(u) is blue. We map u to the leftmost free blue point Ib of F~_I

and add the edge (u, v) connecting points Ib and Ib through the top page. Figure 3.4(b)

illustrates case 2.

We now show that the required invariants are maintained by the drawing Ik.

The drawing Ik satisfies Property 1: By induction hypothesis, points in Ftl are to

the right of f3k-1 and Ib is the leftmost point in F~_I'Hence Ib = f3k and F~ = F~_I\ {Jb};

therefore, points in F~are to the right of f3k' On the other hand, LYk-1= LYk and Fi;_1 = F;;'
It follows that points in Fi; are to the left of LYk.

The drawing Ik satisfies Property 2: We first show that points in Lk are accessible

from bottom page. If there are no R-live points in (Tk, i.e. Lk = c/Jthen Property 2 holds

trivially. Otherwise it must be the case that Lk = {Jb} since Lk_1 = c/J.Since Ib is the

rightmost point in (Tk, it is accessible from both the pages in Ik' Thus points in Lk are

accessible from bottom page in Ik'

We now show that points in L% are accessible from the top page. If there are no B-live

points in (Tk, i.e. L% = c/Jthen this property holds trivially. Otherwise consider a point

p E L% such that p is not accessible from top page in Ik. Let vp be the vertex of G
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(a)

•••••
(b)

Figure 3.4 An illustration for case 2 of Algorithm Consecutive-Embedding. (a) A

2-colored tree G, (b) the drawing 'Yk- J, and (c) the drawing 'Yk'

represented by p. Hence vp is a B-live vertex in Gk. Since Ib is the rightmost point in (Tk,

IT is accessible from both the pages in 'Yk' It follows that p oF lb' Since u is mapped on

Ib, vp oF u. Then vp must be a B-live vertex of Gk-!. It follows that p is a B-live point of

(Tk-I' Therefore, by Property 2 of induction hypothesis, p is accessible from top page in

'Yk-I. Consequently it must be the addition of the edge (u, v) that makes p inaccessible

from top page in 'Yk' The endpoints of the edge (u, v) are the points Ib and h. Since Ib

is the rightmost point of (Tk, Ib is to the right of p. Also lb is to the right of p since both

lb and p are in LL! and lb is the rightmost point of LL!. Since both the endpoints of

edge (u, v) lie to the right of p in 'Yk, it follows that the edge (u, v) does not modify the

accessibility of p from top page in 'Yk' Therefore, p is accessible from top page in 'Yk which

is a contradiction. Hence all points in L% are accessible from the top page.

The drawing 'Yk satisfies Property 3: According to the operation specified, V(Gk) =

V(Gk_!) U{u}. Since Gk-! is a connected graph that contains the vertex vo(by induction
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hypothesis) and u is a neighbor of some vertex v E V(Gk-I), if follows that the graph

Gk is also connected and Va is in Gk. Therefore, it remains to show that the edge (u, v)

does not create any edge crossings and contains at most one bend. Since fb E £%-1' by

Property 2 it is accessible from the top page in rk-1. The point fb E FL1 is to the right

of the rightmost point of O"k-1 (by Property 1); hence fb is accessible from both the pages

in rk-1. Therefore, from Observation 2.2.1, lb and fb can be connected with a polygonal

chain through the top page that contains at most one bend and does not cross any other

edge in rk-1. Hence rk represents a bichromatic point-set embedding of Gk on O"k.

This concludes the illustration of Algorithm Consecutive-Embedding. We now

give a formal presentation of Algorithm Consecutive-Embedding. Before that we

need to describe the data structures that we use in the formal description of Algorithm

Consecutive-Embedding. We represent a 2-colored tree G using an array of 21V11ists;

for each vertex v E V, there are two seperate lists to store the set of red children and the

set of blue children of v. We use Aa to denote this representation of G. For example,

Figure 3.5(b) shows the representation for the 2-colored tree in Figure 3.5(a). The set of

R-live points at any step is stored in a linked list. We denote this list as Ru. Each element

of Ru holds a pointer to an R-live vertex. The first and last elements of Ru correspond

to the leftmost and rightmost R-live points respectively. Ru can be accessed from both

front and end. We store the set of B-live points in a similiar linked list that we denote

as Bu. Initially the lists Ru and Bu are empty. Mapping of vertices to points is stored

in an array of size 10"1.. We denote this array as Mu. The ith element of M holds the

vertex mapped to the ilh point of 0". Figure 3.6 illustrates the data structures. Figure

3.6(b) shows the drawing rk computed after some step k(k > 0) for the input graph G in

Figure 3.6(a). Figure 3.6(c) shows Aa after step k. Note that for each vertex v E V, Aa

holds the lists of unmapped red and blue children of v since whenever we map a vertex,

we remove that node from the list of its parent. Figure 3.6(d) illustrates lists Ru, Bu

and the array Mu. We are now ready to present a formal description of the Algorithm
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Figure 3.5 (a) A 2-colored tree G, and (b) AG.

Consecutive- Embedding.

Algorithm Consecutive- Embedding(AG, Ma)

{AG represents a 2-colored rooted tree G and Ma represents a 2-colored consecutive

RB-sequence. }

begin

Let there be nr red vertices and nb blue vertices in G;

ir := nr - 1; {lr always holds the index of the rightmost free red point in (J.

We assume the leftmost point of (J is indexed O.}

ib := nr; {Fb always holds the index of the leftmost free blue point in (J.}

Set Ra and Ba to NIL; {Initially both the lists are empty.}

{Let vertex Vo be the root of G. At first we embed vo.}

ir := ir -1;
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Figure 3.6 (al A 2-colored tree G, (bl the drawing ik, (cl AG after step k, and (d) states

of the lists Ra, Ba and the array Ma after step k.

if Va has at least on red child in AG {va is an R-live vertex}

then Add Va to the front of Ra;

if Va has at least on blue child in AG {va is a B-live vertex}

then Add Va to the front of Ba;

for k= 1 to n - 1 do

if Ra is not empty then
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{There is at least one R-live point in iI. This is case 1.1.}

begin

Let v be the vertex stored in the first element of Ra;

{Hence the leftmost R-live point represents v.}

Let u be the first red child of v in Ac.

Ma[Ir]:= u;

IT := IT -1;

Remove u from the list of red children of v in Ac.

if v had no red child left in Ac then remove v from Ra.

if u has at least one red child in Ac then store u at the front of Ra.

if u has at least one blue child in Ac then store u at the front of Ba.

end

else if Ra is empty but Ba is not empty then

{There is no.R-live point but at least one B-live point in iI. This is case 1.2.}

begin

Let v be the vertex stored in the last element of Ba;

{Hence the rightmost B-live point represents v.}

Let u be the first blue child of v in Ac;

Ma[!bJ:= u;

Ib:= Ib + 1;

Remove u from the list of blue children of v in Ac;

if v had no blue child left in Ac then remove v from Ba;

if u has at least one red child in Ac then store u at the end of Ra;

if u has at least one blue child in Ac then store u at the end of Ba;

end

end.
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In this section, we verify the correctness and time complexity of Algorithm Consecutive-

Embedding. We first prove the following lemma on the correctness of the Algorithm

Consecutive- Embedding.

Lemma 3.1.1 Algorithm Consecutive-Embedding computes a bichromatic point-set

embedding of a 2-colored tree G on a consecutive RB-sequence U with at most one bend

per edge.

Proof. First of all we need to show that the Algorithm Consecutive-Embedding

terminates. At step 0 we map the root Vaof G on some free point p of u where c(p) = c(va).

In subsequent steps, we map vertices of G that are not already mapped. Since there are

finite number of vertices in G, the Algorithm must terminate after some finite steps. Now

it remains to show that when the Algorithm Consecutive-Embedding terminates, the

resultant drawing represents a bichromatic point-set embedding of G with at most one

bend per edge. Let us assume the Algorithm Consecutive-Embedding terminates

after some step k, k 2': O. It follows that there are no live points in Uk otherwise the

Algorithm would have continued according to case 1 or case 2. Let Ik be resulting drawing.

Since Ik satisfies the step invariant properties, it follows that Ik represents a bichromatic

point-set embedding of some graph Gk with at most one bend per edge where Gk is a

connected subgraph of G. Therefore, we need to show that Gk is the graph G i.e. the set

V(G)\ V(Gk) = rjJ.In other words, we need to ensure that no vertex in G is left unmapped

in Ik' Now for contradiction assume V( G)\ V( Gk) =F rjJ.Let v be a vertex of V( G)\ V( Gk).

Since Uk has no live points, there is no vertex u E V(Gk) such that v is a neighbor of u

in G; otherwise u would have been a live vertex and the point representing u would be a

live point. It follows that G has more than one component which is a contradiction since

G is connected. Therefore, vertices such as v cannot exist and V(G)\ V(Gk) = rjJ. Thus

the Algorithm Consecutive-Embedding finds a bichromatic point-set embedding of G
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on (J" with at most one bend per edge.
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o

We now have the following lemma on the time complexity of Algorithm Consecutive-

Embedding

Lemma 3.1.2 Algorithm Consecutive-Embedding runs in linear time.

Proof. In each step of the Algorithm Consecutive-Embedding, we embed a vertex

of G on a point of (J". Hence Consecutive-Embedding requires O(IV(GJIJ steps to com-

pute a bichromatic point-set embedding of G. From the formal description of Algorithm

Consecutive-Embedding in Section 3.1.1, one can readily observe that operations in

each of the steps take constant time. Thus Algorithm Consecutive-Embedding runs

in linear time. 0

3.2 Bichromatic Point-Set Embedding on Consecu-

tive Point-Set

In this section, we prove the existence of bichromatic point-set embedding of trees on

consecutive point-sets with at most one bend per edge. We in fact prove the following

theorem.

Theorem 3.2.1 Let G = (V, EJ be a 2-colored tree. Let S be a 2-colored consecutive

point-set compatible with G. G has a bichromatic point-set embedding on S with at most

one bend per edge. Moreover such a drawing can be computed in linear time.

Proof. The proof is constructive. Let (J" be any RB-sequence chromatic equivalent

to S. It follows that (J" is also consecutive and compatible with G. Using the Algorithm

Consecutive-Embedding we construct a bichromatic point-set embedding of G on (J"

with at most one bend per edge; by Lemma 3.1.2, this takes linear time. Then using the
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technique used in the proof of Lemma 2.2.3, we compute a bichromatic point-set embed-

ding of G on S with at most one bend per edge from bichromatic point-set embedding of

G on (J and this also takes linear amount of time. Thus it requires linear time to construct

a bichromatic point-set embedding of G on S. D

3.3 Summary

In this chapter, we have proved the existence of bichromatic point-set embeddings of

trees on consecutive point-sets with at most one bend per edge. We have described a

linear-time algorithm that finds a bichromatic point-set embedding of a 2-colored tree on

a consecutive RB-sequence with at most one bend per edge. Then using such drawing we

have shown how to construct a bichromatic point-set embedding of the given tree on any

consecutive point-set with at most one bend per edge in linear time.



Chapter 4

Embedding on Alternating Point-Set

In this chapter, we prove that trees admit bichromatic point-set embeddings on alternating

point-sets with at most one bend per edge and such an embedding can be found in linear

time. We first present a linear-time algorithm that computes a bichromatic point-set of

any given tree G on an arbitrary alternating RB-sequence (J with at most one bend per

edge in Section 4.1. Then in Section 4.2 we obtain bichromatic point-set embedding of

G on any alternating point-set S with at most one bend per edge from the bichromatic

point-set embedding of G on (J. Finally, Section 4.3 summarizes this chapter.

4.1 Bichromatic Point-Set embedding on Alternating

RB-sequence

In this section, we describe a linear-time algorithm that computes a bichromatic point-set

embedding of a 2-colored tree G on an alternating RB-sequence with at most one bend

per edge. We call this algorithm Alternating-Embedding. Algorithm Alternating-

Embedding uses a procedure that we call Thee-Embed. Therefore, we first illustrate

Procedure Thee-Embed in Section 4.1.1. Then we present Algorithm Alternating-

Embedding in Section 4.1.2. Finally, in Section 4.1.3 we verify correctness and time

35
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complexity of the Algorithm.

4.1.1 Procedure Tree-Embed

36

Procedure Tree-Embed has two inputs: (i) a 2-colored tree G with a designated root Va,

and (ii) an integer value identified as level. The output of Tree-Embed is a drawing 'Y

that satisfies the following conditions: (i) 'Yrepresents a bichromatic point-set embedding

of either G or some connected subgraph Gs of G on an arbitrary alternating point-set (j,

and (ii) Va is mapped to the leftmost point of (j. Whether the output is a drawing of G or

Gs is determined by the configuration of the input graph G as well as the value of level.

This procedure works in a step by step fashion. At the end of each step a connected

subgraph of G is embedded on an arbitrary RB-sequence such that the resulting RB-

sequence is alternating. We use Gk to denote the subgraph of G that is embedded after

step k and (jk to denote the RB-sequence representing vertices in Gk> for k 2: O. Let 'Yk

denotes the drawing after step k. Figure 4.1(b) shows drawing 'Yo for the input graph in

Figure 4.1(a).

o red

• blue

<a) (b)

Figure 4.1 (a) A 2-colored tree G, and (b) the drawing 'Yo after step 5 and the sets L5,

L~, Hi and Do'

\lve use the following notations to illustrate the operations inside the procedure. We say

a vertex v in V(G)\ V(Gd is an unmapped vertex and vertices in Gk are mapped vertices.
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A mapped vertex v of Gk is a live vertex if it has at least one unmapped neighbor; else v

is called a dead vertex. We use Uk(v) to denote the set of unmapped neighbors of any live

vertex v; v is an R-live vertex if there is at least one vertex u such that u E Uk(v) and

c(u) is red; v is called a B-live vertex if there is at least one such vertex u that u E Uk (v)

and c(u) is blue.

For a vertex v of Gk, we use p(v) to denote the point of 17k that represents v. The

leftmost and rightmost points of 17k will be denoted by O'k and (3k respectively. A point of

17k will be called a R-live point, B-live point or dead point if it represents a R-live vertex,

a B-live vertex or a dead vertex, respectively in ik. The set of R-live, B-live and dead

points in 17k will be denoted by L'I" L%and Dk respectively. Any point of 17k that does not

represent a vertex is called a hole; a hole can be either red or blue. The set of blue holes

and red holes in 17k will be denoted by HZ and Hi:: respectively. For example, in Figure

4.1(b), point p(va) is a R-live point since vertex Va has an unmapped neighbor V2 where

c(V2) is red; point p( V4) is both an R-live point and a B-live point as one of its unmapped

neighbors Vg is red and another unmapped neighbor VlO is blue; points p(vtl, P(V3), P(V7)

and p( vs) are dead points.

We define the following seven types for 17k'

Type I: We say 17k is of Type I when the following conditions are hold: (i) the

rightmost point of 17k is red, i.e. C((3k) is red; (ii) 17k has at least one B-live point, i.e.

L%f- q,; (iii) 17k has no red hole or blue hole, i.e. Hi:: = q, and HZ = q,.
Type II: We say 17k is of Type II when the following conditions are hold: (i) the

rightmost point of 17k is red, i.e. C((3k) is red; (ii) 17k has at least one B-live point, i.e.

L% f- q,; (iii) 17k has no red hole, i.e. Hi:: = q,; (iv) 17k has at least one blue hole, i.e.

HZ f- q,.
Type III: We say 17k is of Type IIIwhen the following conditions are hold: (i) the

rightmost point of 17k is red, i.e. C((3k) is red; (ii) 17k has no B-live point, i.e. L%= q,; (iii).~
17k has at least one R-live point, i.e. L'k f- q,; (iv) 17k has no red hole, i.e. Hi:: = q,.
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Type IV: We say '7k is of Type IV when the following conditions are hold: (i) the

rightmost point of Uk is red, i.e. C(!3k) is red; (ii) Uk has no B-live point, i.e. L%= 1;; (iii)

Uk has no R-live point, i.e. L'k = 1;; (iv) Uk has no red hole, i.e. H'k = 1;.
Type V: We say Uk is of Type V when the following conditions are hold: (i) the

rightmost point of Uk is blue, i.e. C(!3k) is blue; (ii) Uk has at least one R-live point, i.e.

L'k =/- 1;; (iii) Uk has no red hole or blue hole, i.e. H" = 1; and HZ = 1;.
Type VI: We say Uk is of Type VI when the following conditions are hold: (i) the

rightmost point of Uk is blue, i.e. C(!3k) is blue; (ii) Uk has no R-live point, i.e. L'k = 1;;

(iii) Uk has at least one B-live point, i.e. L%=/-1;; (iv) Uk has no red hole or blue hole, i.e.

H" = 1; and HZ = 1;.
Type VII: We say Uk is of Type VII when the following conditions are hold: (i) the

rightmost point of Uk is blue, i.e. C(!3k) is blue; (ii) Uk has no B-live point, i.e. L%= 1;;

(iii) Uk has no R-live point, i.e. L'k = 1;; (iv) Uk has no red hole or blue hole, i.e. H" = 1;
and HZ = 1;.

We define horizontal flip of 'Yk as rotating 'Yk by an angle 180 degree with respect to

any line perpendicular to the spine of Uk' Figure 4.2(c) illustrates horizontal flip of the

drawing 'Yk in Figure 4.2(b). We have the following observation regarding horizontal flip

operation.

Observation 4.1.1 Let 'Yk be a drawing that represents a bichromatic point-set embedding

of some graph Gk on an alternating point-set Uk' Let 'Yr be the drawing obtained by

horizontal flip of 'Yk' Then 'Yr also represents a bichromatic point-set embedding of G k on

Uk' Furthermore for any vertex v of Gk, if p( v) is accessible from some page 1r in 'Yk, p( v)

is also accessible from 1r in 'Yr.
Proof. Let v be any vertex in V(Gk) and mapped to some point p E Uk where

c(v) = c(p). Since horizontal flip operation does not change the mapping of any vertex,

it follows that v is mapped to p also in 'Yr. Also horizontal flip operation does not add

or delete any edge of 'Yk' Thus 'Yr represents a bichromatic point-set embedding of Gk.
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Moreover, if an edge e of Gk is contained in top (bottom) page in "Ik, e also remains in

the top (bottom) page in "I~. Thus horizontal flip operation does not change accessibility

of any point. 0

Next we define vertical flip of "Ik as rotating "Ik by an angle 180 degree with respect to

the spine of (Jk' Figure 4.2(d) illustrates vertical flip of the drawing "Ik in Figure 4.2(b).

We have the following observations regarding vertical flip operation.

Observation 4.1.2 Let "Ik be a drawing that represents a bichromatic point-set embedding

of some graph G k on an alternating point-set (Jk' Let "11: be the drawing obtained by

vertical flip of "Ik. Then "11: also represents a bichromatic point-set embedding of Gk on

(Jk' Furthermore for any vertex v of Gk, if p( v) is not accessible from top page in "Ik, p( v)

is not accessible from bottom page in "11: and vice versa.

Proof. Let v be a vertex in V(Gk) and mapped to some point p E (Jk where c(v) = c(p).

Since vertical flip operation does not change the mapping of any vertex, it follows that v

is mapped to p also in "11:. Thus "11: represents a bichromatic point-set embedding of Gk.

Also vertical flip operation does not add or delete any edge of "Ik' Now for each edge e of

Gk, if e is drawn in top (bottom) page in "Ik, then e must be in the bottom (top) page in

"11:. Thus any point p of (Jk that is not accessible from top (bottom) page in "Ik becomes

inaccessible from bottom (top) page in "I~. 0

We define inversion of any 2-colored graph G as changing the color of each of the vertex

in G such that each blue vertex of G becomes a red vertex and each red vertex becomes a

blue vertex. Similarly inversion of any 2-colored point-set (J is defined as changing color

of each blue point to red and each red point to blue. One can observe that the point-set

obtained after inverting an alternating RB-sequence is also an alternating RB-sequence.

Figure 4.3 illustrates the inversion operation. We have the following observation regarding

inversion operation.
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(a) (b)

v,

(c) (d)

Figure 4.2 (a) A 2-colored tree G, (b) the drawing lk (after some step k, k ~ 0), (c) lk

after horizontal flip, and (d) lk after vertical flip.

Observation 4.1.3 Let lk be a drawing that represents a bichromatic point-set embedding

of some graph Gk on an alternating point-set ak. Let G~ be the graph obtained after

inversion of Gk and a~ be the point-set obtained after inversion of ak' Then lk represents

a bichromatic point-set embedding of G~on alternating RB-sequence ak.

Proof. Let v be a vertex in V(Gk) and mapped to some point pEak' It follows that

c(v) = c(p). Let c(v) is red in Gk. Hence c(v) is blue in G~. Similarly c(p) is blue in

pEal. Also inversion operation does not add or delete any edge of Gk. Therefore, lk

represents a bichromatic point-set embedding of G~. 0

We are now ready to define the invariants that are maintained at the end of each step

of the drawing algorithm. The invariants are as follows.

Property 1: If L'k i <P, all points in L'k are accessible from the bottom page.

Property 2: If L~i <P, all points in L~are accessible from the top page.

Property 3: If HZ i <P, there is no B-live point to the left of any blue hole and all
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(a) (b)

(e) (d)

j

Figure 4.3 (a) A 2-colored tree G, (b) the drawing 'Yk, after some step k > 0, (c) G after

inversion, and (d) 'Yk after inversion.

points in HZ are accessible from the top page.

Property 4: Uk is an alternating RB-sequence and type of Uk is either I, II, III, IV,

V, VI or VII.

Property 5: Gk is a connected subgraph of G such that Gk contains the root Vo of

G and 'Yk is a bichromatic point-set embedding of Gk on Uk with at most one bend per.

edge. Moreover, Vo is represented by the leftmost point of Uk.

\~Tenow specify the operations as performed inside Procedure Thee-Embed.

At step k = 0, we embed the root vertex Vo of G. We take any point Po on the

plane such that c(Po) = c(vo). We assume that the point Po is on x-axis. We map Vo on

Po. Figure 4.4 illustrates the operation in step 0. We now show that the invariants are

maintained after this step. Since no edge is added, properties I, 2 and 3 are hold trivially.
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(a)

Po

G)
(b)

Figure 4.4 An illustration for step 0 of Procedure Tree-Embed. (a) A 2-colored tree

G, and (b) the drawing "Yo.

0'0 contains the single point Po and hence is an alternating RB-sequence of unit length;

also 0'0 = (30= Po. We now determine type of 0'0. From the operation specified, Ho = <p

and Hi = <p. There can be the following cases.

(i) c(po) is red and Po is a B-live point: In this case, 0'0 is of Type I since c((3o) is red,

Lg = {Po} f- <p, Ho = <P, and Hi = <p.

(ii) c(po) is red, Po is not a B-live point and Po is an R-live point: In this case, 0'0 is

of Type III since c((3o) is red, L~ = {Po} f- <P, Lg = <P, and Ho = <p.

(iii) c(po) is red, Po is a dead point: In this case, 0'0 is of Type IV since c((3o) is red,

L~ = <P, Lg = <P, and Ho = <p.

(iv) c(po) is blue and Po is an R-live point: In this case, 0'0 is of Type V since c((3o) is

blue, L~ = {Po} f- <P, Lg = <P, Ho = <P, and Hi = <p.

(v) c(po) is blue, Po is not an R-live point and Po is a B-live point: In this case, 0'0 is

of Type VI since c((3o) is blue, L~ = <P, Lg = {Po} f- <P, Ho = <P, and Hg = <p.

(vi) c(po) is blue, Po is a dead point: In this case, 0'0 is of Type VII since c((3o) is red,

L~ = <P, Lg = <P, Ho = <P, and Hi = <p.

For example, in Figure 4.4, c(po) is red and Po is a B-live vertex since vo has an

unmapped neighbor v, where v, is blue; therefore, 0'0 is of Type 1. Thus for all possible
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input combinations, 0'0 is within the defined types of I-VII. Therefore, Property 4 holds

for 1'0.

Since Go contains only the vertex Vo and Po is the only point of 0'0, if follows that 1'0

satisfies Property 5.

We now specify the operations at a subsequent step k, k > O. We use induction to

prove that the resulting drawing I'k maintains the invariant properties. We consider 1'0

as the base case and as induction hypothesis we assume that the output of the previous

step I'k-1 satisfies the specified invariant properties. At any step k (k > 0), We identify

the following seven cases.

Case 1: Uk-1 is of Type I, i.e. c(f3k-d is red, L%_l oF cP, Hk_1 = cP and HZ_1 = cPo
We add a point Pb on the spine of Uk-1 such that Pb is to the right of f3k-1 and C(Pb) is

blue. Let lb be the rightmost point in L%-l and v be the vertex of G mapped on lb' Hence

v is a B-live vertex and there is a vertex u E Uk-1(V) such that cluj is blue. We map u

on Pb and draw the edge (v, u) connecting points lb and Pb through the top page. Figure

4.5 illustrates this case. We now prove that I'k satisfies the invariants.

The drawing I'k satisfies Property 1: If Uk contains no R-live points, i.e. Lk = cP then

Property 1 holds trivially. Otherwise consider a point PI E Lk such that PI is not accessible

from bottom page in I'k. Let VI be the vertex of G represented bYPI' Hence VI is an R-live

vertex in Gk. Since Pb is the rightmost point in Uk, Pb is accessible from both the pages

in I'k. It follows that PI oF Pb. Since u is mapped on Pb, VI oF u. Then VI must be an R-live

vertex of Gk-1. It follows that PI is an R-live point of Uk-I' Therefore, by Property 1

of induction hypothesis, PI is accessible from bottom page in I'k-1' Consequently it must

be the addition of the edge (u, v) that makes PI inaccessible from bottom page in I'k.

But since we draw the edge (u, v) through the top page, it cannot make PI inaccessible

from bottom page. It follows that PI is accessible from bottom page in I'k which is a

contradiction. Therefore, all points in Lk are accessible from the bottom page.
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(a)

44

4".,

~
I b 1\...,

(b) (c)

Figure 4.5 An illustration for case 1 of Procedure Tree-Embed. '(a) A 2-colored tree

G, (b) the drawing 'Yk-l, and (c) the drawing 'Yk'

The drawing 'Yk satisfies Property 2: If there are no B-live points in ak, i.e. Lt = <P

then Property 2 holds trivially. Otherwise consider a point PI E Lt such that PI is not

accessible from the top page in 'Yk' Let VI be the vertex of G represented by PI' Hence

VI is a B-live vertex in Gk. Since Pb is the rightmost point in ak, Pb is accessible from

both the pages in 'Yk. It follows that PI =I Pb. Since u is mapped on Pb, VI =I u. Then VI

must be a B-live vertex of Gk-I. It follows that PI is a B-live point of ak_I' Therefore, by

Property 2 of induction hypothesis, PI is accessible from top page in 'Yk-I. Consequently

it must be the addition of the edge (v., v) that makes PI inaccessible from top page in 'Yk.

The endpoints of the edge (u, v) are Pb and lb. Since Pb is the rightmost point of ak, Pb is

to the right of PI' Also lb is to the right of PI since both lb and PI are in LLI and lb is the

rightmost point of LLI' Since both the endpoints of edge (u, v) lie to the right of PI in

'Yk, it follows that the edge (u, v) cannot make PI inaccessible from top page. Therefore,

PI is accessible from top page in 'Yk which is a contradiction. Hence all points in Lt are
accessible from the top page.
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The drawing 'Yk satisfies Property 3: Since Uk~1 contains no blue holes and no new blue

hole is created by the operation defined for this step, it follows that He = q,. Therefore,
Property 3 is maintained trivially.

The drawing 'Yk satisfies Property 4: By induction hypothesis Uk~1 is an alternating

RB-sequence where c((3k-Il is red. Since the point Pb is to the right of 13k-I and C(Pb) is

blue, it follows that Uk = Uk-I U{Pb} is also an alternating RB-sequence where 13k = Pb.

We now determine the type of Uk' From the operations specified, HI, = Hk_1 = q, and
He = HLI = q,. Now there may be the following cases.

(i) L'k f- q,: In this case, Uk is of Type V since C((3k) is blue, L'k f- q" HI, = q, and
He = q,.

(ii) L'k = q, and L% f- q,: In this case, Uk is of Type VI since C((3k) is blue, L'k = q"
L% f- q" HI, = q, and He = q,.

(iii) L'k = q, and L%= q,: In this case, Uk is of Type VII since C((3k) is blue, L'k = q"
L% = q" HI, = q, and He = q,.

Therefore, for all possible input combinations, Type of Uk is either of V, VI and VII.

Hence Property 4 holds for 'Yk'

The drawing 'Yk satisfies Property 5: According to the operation specified, V(Gk) =
V(Gk_l) U{u}. Since Gk-I is a connected graph that contains the vertex va(by induction

hypothesis) and u is a neighbor of some vertex v E V(Gk_I), if follows that the graph Gk

is also connected and Va is in Gk. Therefore, it remains to show that the edge (u, v) does

not create any edge crossing and contains at most one bend. Since hEL%-I' by Property

2 it is accessible from the top page in 'Yk-I. The point Pb is taken such that Pb is to the

right of the rightmost point of Uk-I; hence Pb is accessible from both (top and bottom)

pages. Therefore, according to Observation 2.2.1, lb and Pb can be connected with such a

polygonal chain through the top page that contains at most one bend and does not cross

any other edge in 'Yk-I. Hence 'Yk represents a bichromatic point-set embedding of Gk on
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Case 2: CTk-l is of Type II, i.e. C(f3k-l) is red, LLI =F cP, HZ-I =F cP and H'k-l = cPo

Let lb be the leftmost point in LLI and v be the vertex represented by lb' Consider

any vertex u such that u E Uk-1(V) and c(u) is blue. Let Gv and Gu be the components

of G obtained by deleting the edge (u,v) from G where Gu contains v and Gu contains

u. One can observe that V(Gk-1) <;; V(Gv) and all the vertices in Gu are unmapped

vertices. Moreover, Gu is also a 2-colored tree. We designate u as the root of Gu and

invoke Procedure Tree-Embed(Gu, u, 1) (note that this is a recursive call) with graph

Gu and level value of 1 as input. Let 'Yube the returned drawing. We use au to denote the

alternating RB-sequence associated with 'Yu.Let L~, L~, H~ and H~ denotes the set of

R-live points, B-live points, red holes and blue holes respectively in au- Now we identify

three sub cases.

Case 2.1: The rightmost point in au is red and there are no live points in au.

Note that this case arises when Tree-Embed(Gu, u, 1) terminates in the way as

specified in case 4.2. It follows that 'Yu satisfies the invariant properties 1-5 and thus

represents a bichromatic point-set embedding of Gu on au (by Property 5). Moreover,

au is of Type IV. Since u is designated as the root of Gu, it follows that u is mapped

to the leftmost point of au (by Property 5). Let hb be the rightmost point in HZ- 1.

We now perform the following operations. We first flip 'Yu horizontally. As a result the

rightmost point in au now represents the vertex u; let f3udenotes this point. We insert the

drawing 'Yu between the points hb and next(hb). Finally we add the edge (u, v) connecting

the points lb and f3u through the top page. Figure 4.6 illustrates this case. From the

operations specified, if follows that L" = L"_1 UL~, L%= L%_1UL~, HZ = HZ-I UH~

and ak = ak-l Uau- We now show that the drawing after this step satisfies the invariants.

The drawing 'Yk satisfies Property 1: Since au contains no R-live points, it follows that

L" = L"_I' If there are no R-live points in ak, i.e. L" = cP then Property 1 holds trivially.

Otherwise consider a point PI E L" such that PI is not accessible from the bottom page

in 'Yk' Since PI is also in L"_I' by induction hypothesis, PI is accessible from bottom
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(a) (b)

(c) (d) (e)

(I) (g)

Figure 4.6 An illustration for case 2.1 of Procedure Tree-Embed. (a) A 2-colored tree

G,(b) the drawing l'k-l, (c) subgraph Gu of G, (d) the drawing l'u, (e) the drawing after

horizontal flip of l'u, (f) insertion of l'u, and (g) the drawing l'k.

page 1lll'k-l (Property 1). Therefore, it must be some edge e added to l'k-l that makes

PI inaccessible from bottom page where PI lies between the endpoints of e. From the

drawing operation specified, e is either an edge of l'u or the edge (u, v). Since PI in not

in a,,, PI cannot lie between the endpoints of any edge in l'u. Hence e is not an edge of

l'u. Moreover, e cannot be the edge (u, v) that connects the points lb and f3u since the

edge (u, v) is drawn through the top page and therefore cannot make PI inaccessible from

bottom page in l'k. Hence no edge such as e exists and PI is accessible from bottom page
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III 1k. Therefore, 1k satisfies Property l.

The drawing 1k satisfies Property 2: Since Uu contains no B-live points, it follows that

L~ = L%-l' If there are no B-live points in Uk, i.e. L% = <p then Property 2 holds trivially.

Otherwise consider a point PI E L% such that PI is not accessible from the top page in

1k' Since PI is also in L%-1' by induction hypothesis, PI is accessible from top page in

1k-l. Therefore, it must be some edge e added to 1k-l that makes PI inaccessible from

top page ,where PI lies between the endpoints of e. From the drawing operation specified,

e is either an edge of 1u or the edge (u, v). Since PI in not in uU, PI cannot lie between

the endpoints of any edge in 1u' Hence e is not an edge of 1u. Then e must be the edge

(u, v) that connects the points lb and fJu' Since both lb and PI are in L%-l and lb is the

leftmost of point of L%-l' it follows that lb is to the left of PI' Since we insert 1u between

the points hb and next(hb) in Uk-l and fJu is a point of uu, hence any point to the right

of hb in Uk-l is also to the right of fJu in Uk' It follows that PI is to the right of fJu in Uk

since PI is right to hb in Uk-l (by Property 3). Since both lb and fJu are to the left of PI,

the edge (u, v) cannot cause PI to be inaccessible from top page. Hence e cannot be the

edge (u, v). Consequently no edge such as e exists and PI is also accessible from top page

in 1k. It follows that all points in L% are accessible from top page.

The drawing 1k satisfies Property 3: Let H~ denotes the set of blue holes, if exists

in uu. It follows that HZ = HZ-I UH~. If Uk contains no blue holes, i.e. HZ = <p then

Property 3 holds trivially. Otherwise, we first show that there is no B-live point to the

left of any blue hole in Uk' Consider any blue hole Ph E HZ. Ph is either in HZ-lor in H~.

We first examine the case when Ph E HZ-I' By Property 3 of induction hypothesis, no

point of L%-l is to left of Ph in Uk-I' Since L% = L%-l' it follows that there is no B-live

point to the left of Ph in Uk. Next we examine the case when Ph E H~. Assume there

is a point PI E L% to left of Ph in Uk' Since 1u contains no B-live points, it follows that

PI E L%-l' Since we insert 1u between points hb and next(hb) in Uk-l and Ph is in uu, it

follows that PI must also be to left of hb in Uk-I. It contradicts the induction hypothesis
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that there is no B-live point to left of hb E HZ-I in Uk-I' Therefore, no point such as PI

exists and hence all B-live points are to the right of any blue hole of Uk'

We next prove that any blue hole of Uk is accessible from top page in Ik. Consider a

point Ph E HZ such that Ph is not accessible from the top page in Ik' Ph is either in HZ-I

or in H~. Consider the case when Ph E HZ-I' By induction hypothesis, Ph is accessible

from top page in Ik-l' Therefore, it must be some edge e added to Ik-l that makes Ph

inaccessible from top page where Ph lies between the endpoints of e. From the drawing

operation specified, e is either an edge of IU or the edge (u, v). Since Ph in not in uu, Ph

cannot lie between the endpoints of any edge in lu' Hence e is not an edge of IU' Then e

must be the edge (u, v) that connects the points lb and (3u' Since lb is in L%-l' by Property

3 of induction hypothesis lb is to the right of Ph in Uk-I. The point hb is the rightmost

blue hole in Uk-I; therefore, hb is to right of Ph. Since we insert IU between the points hb

and next(hb) in Uk-l and (3u is a point of UU, hence any point to the left of hb in Uk-l is

also to the left of (3" in Uk' It follows that PI is to the left of (3u in Uk' Now since both lb

and (3u are to the right of Ph, the edge (u, v) cannot cause Ph to be inaccessible from top

page in Ik. Hence e cannot be the edge (u, v). Consequently no edge such as e exists and

Ph is also accessible from top page in Ik'

Now consider the case when Ph E H~. Since drawing IU satisfies the invariants, it

follows that Ph is accessible from top page in IU' Moreover, the horizontal flip operation

does not change the top page accessibility of Ph in IU (according to Observation 4.1.1).

Since we insert lu between the points hb and next(hb) in Uk-I, therefore, to make Ph

inaccessible from the top page in Ik, there must be such an edge e in Ik-l that one

endpoint of e is to the left of hb and another is to the right of hb. But such an edge makes

the point hb E HZ-I inaccessible from top page in Ik-l' This contradicts the induction

hypothesis that hb is accessible from top page in Ik_l(Property 3). Therefore, no edge

such as e exists and Ph is accessible from top page in Ik. Therefore, all the blue holes in

Ik are accessible from the top page.
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The drawing rk satisfies Properly 4: From the operation specified, it follows that Uu

is an alternating RB-sequence where the leftmost point is blue and the rightmost point

is red. Hence after the horizontal flip operation of ru, the leftmost point of Uu is red and

the rightmost point of Uu is blue. Since we insert the drawing ru between the points hb

and next(hb) in Uk-l where c(hb) is blue and c(next(hb)) is red, it follows that Uk is also

an alternating RB-sequence and 13k= 13k-I, We now identify type of Uk' Since Uu is of

Type IV, it follows that L~= <p, L~= <P, and H~= <p. From the operations specified,

H" = H"_l U H~ = <p. There may be the following cases.

(i) L%=I- <p and HZ = <p: In this case, Uk is of Type I since c(13o) is red, L%=I- <p, H" = <p

and HZ = <p.

(ii) L% =I- <p and HZ =I- <p: In this case, Uk is of Type II since c(13k) is red, L%=I- <p,

H" = <p and HZ =I- <p.
(iii) L%= <p and L'k =I- <p: In this case, Uk is of Type III since c(13k) is red, L'k =I- <p,

L%= <p and H" = <p.
(iv) L%= <p and L'k = <p: In this case, Uk is of Type IV since c(13k) is red, L'k = <p,

L%= <p, and H" = <p.
Therefore, Property 4 holds for rk'
The drawing rk satisfies Properly 5: From the operations specified it follows that

V(Gk) = V(Gk-tlUV(Gu). By induction hypothesis, Gk-l is connected. Moreover, Gu

is also a connected subgraph of G. Since v E V(Gk-tl, u E V(Gu) and the edge (u, v)is

in rk, it follows that Gk is also connected. Now it remains to show that the edge (u, v)

does not create any edge crossings and contains at most one bend. Since lb E L%_1> by

induction hypothesis, h is accessible from the top page in rk-l' 13uis the rightmost point

of Uu and thus accessible from both the pages in ru' Therefore, to make 13u inaccessible

from top page after insertion of ru between hb and next(hb), there must be an edge e in

rk-l such that one endpoint of e is to the left of hb and the other is to the right of hb. But

such an edge also makes hb inaccessible from top page in rk-l and thus contradicts the
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induction hypothesis that Ik-I maintains Property 3. Hence both lb and (Ju are accessible

from the top page and therefore can be connected with such a polygonal chain through the

top page that does not cross any other edge and may contain at most one bend (according

to Observation 2.2.1). Therefore, Property 5 holds for Ik'

Case 2.2: The rightmost point in Uu is blue and there are no live points and holes in

Note that this case arises when Tree-Embed(Gu, u, 1) terminates in the way as

specified in case 7.2. It follows that lu satisfies the invariant properties 1-5 and thus

represents a bichromatic point-set embedding of Gu on Uu (by Property 5). Moreover, Uu

is of Type VII. Since u is designated as the root of Gu, it follows that u is mapped to the

leftmost point of Uu (by Property 5). Let hb be the rightmost point in HZ-I' We now

perform the following operations. We first flip lu horizontally. As a result the rightmost

point in Uu now represents the vertex u; let (Ju denotes this point. Next we insert the

drawing lu between the points hb and next(hb) in Ik-I and then remove the point hb.

Finally we add the edge (u; v) connecting the points lb and (Ju through the top page.

Figure 4.7 illustrates this case.

From the operations specified, if follows that L" = L"_I UL~, L%= LLI UL~, Ht =
HZ-I UH~\ {hb} and Uk = Uk-I Uuu. We now show that the drawing after this step

satisfies the invariants.

The drawing Ik satisfies Property 1: Since Uu contains no R-live points, it follows that

L" = L"_I' If there are no R-live points in Uk, i.e. L" = if; then Property 1 holds trivially.

Otherwise consider a point PI E L" such that PI is not accessible from the bottom page

in Ik. Since PI is also in L"_I' by Property 1 of induction hypothesis, PI is accessible

from bottom page in Ik-I' Therefore, it must be some edge e added to Ik-I that makes

PI inaccessible from bottom page where PI lies between the endpoints of e. From the

drawing operation specified, e is either an edge of lu or the edge (u, v). Since PI in not

in UU, PI cannot lie between the endpoints of any edge in lu' Hence e is not an edge of

r,,
{ (
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(e) (d) (e)

(I) (g)

Figure 4.7 An illustration for case 2.2 of Procedure Tree-Embed. (a) A 2-colored tree

G, (b) the drawing Ik-1, (c) subgraph Gu of G, (d) the drawing IU, (e) the drawing after

horizontal flip of IU, (f) insertion of IU between hb and next(hb), and (g) the drawing Ik'

lu. Moreover, e cannot be the edge (u, v) that connects the points lb and (3u since the

edge (u, v) is drawn through the top page and therefore cannot make PI inaccessible from

bottom page in Ik' Hence no edge such as e exists and PI is accessible from bottom page

in Ik. It follows that Ik satisfies Property 1.

The drawing Ik satisfies Property 2: Since (Ju contains no B-live points, it follows that

L~ = L%-I' If there are no B-live points in (Jk, i.e. L% = c/Jthen Property 2 holds trivially.

Otherwise consider a point PI E L% such that PI is not accessible from top page in Ik.
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Since PI is also in L%-I' by Property 2 of induction hypothesis, PI is accessible from top

page in Tk-I' Therefore, it must be some edge e added to Tk-I that makes PI inaccessible

from top page where PI lies between the endpoints of e. From the drawing operation

specified, e is either an edge of Tu or the edge (u, v). Since PI in not in eru, PI cannot lie

between the endpoints of any edge in TU' Hence e is not an edge of TU' Then e must be

the edge (u, v) that connects the point hand (3u' Since both lb and PI are in L%_I and lb

is the leftmost of point of L%_I> it follows that lb is to the left of PI. Since the point hb is

in HZ-I' by Property 3 of induction hypothesis, hb is to the left of PI' Since we insert Tu

between the points hb and next(hb) in erk-I and {3u is a point of eru, hence any point to

the right of hb in erk-I is also to the right of {3u in erk' It follows that PI is to the right of

{3u in erk since PI is right to hb in erk-I (by Property 3). Since both lb and {3u are to the left

of PI, the edge (u, v) cannot cause PI to be inaccessible from top page. Hence e cannot be

the edge (u, v). Consequently no edge such as e exists and PI is also accessible from top

page in Tk. It follows that all points in L% are accessible from top page.

The drawing Tk satisfies Property 3: There are no blue holes in eru. Moreover, since

we remove the point hb E HZ-I' it follows that HZ = HZ-I \{hb}. If erk contains no blue

holes, i.e. HZ = <p then Property 3 holds trivially. Otherwise we first show that there is

no B-live point to the left of any blue hole in erk' Consider any blue hole Ph E HZ. It

follows that Ph E HZ-I' By Property 3 of induction hypothesis, no point of L%-I is to left

of Ph in erk-I' Since L% = L%-I' it follows that there is no B-live point to the left of Ph in

We next prove that any blue hole of erk is accessible from top page in Tk. Consider

a point Ph E HZ such that Ph is not accessible from the top page in Tk. Since Ph is also

in HZ-I' by Property 3 of induction hypothesis, Ph is accessible from top page in Tk-I'

Therefore, it must be some edge e added to Tk-I that makes Ph inaccessible from top

page where Ph lies between the endpoints of e. From the drawing operation specified, e

is either an edge of Tu or the edge (u, v). Since Ph in not in eru, Ph cannot lie between
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the endpoints of any edge in 'Yu. Hence e is not an edge of 'Yu. Then e must be the edge

('11.,v) that connects the point lb and f3u. Since lb is in L%-I' by Property 3 of induction

hypothesis, lb is to the right of Ph in 17k-I. The point hb is the rightmost blue hole in 17k-I;

therefore, hb is to right of Ph' Since we insert the drawing 'Yu between the points hb and

next(hb) and f3u is a point of ITu, hence f3u is to the right of hb. It follows that f3u is to

right of Ph. Since both lb and f3u are to the right of Ph, the edge ('11,v) cannot cause P to

be inaccessible from top page. Hence e cannot be the edge ('11, v). Consequently no edge

such as e exists and Pbh is also accessible from top page in 'Yk'

The drawing 'Yk satisfies Property 4: From the operation specified, it follows that ITu

is an alternating RB-sequence where both the leftmost and rightmost points of ITu are

blue. As a result, after horizontal flip of 'Yu, the leftmost and the rightmost points of ITu

are still blue. Since ITk-1 is an alternating RB-sequence and c(hb) is blue, it follows that

both the points prev(hb) and next(hb) are red. Thus after insertion of 'Yu between the

points hb and next(hb) in 'Yk-I and then removal of point hb, the resultant point-set 17k

is also an alternating RB-sequence where 13k = 13k-I, We now identify type of 17k' Since

ITu is of Type VII, it follows that L~ = cP, L~ = cP, H~ = cP and H~ = cP. Moreover,

H'k = H'k_1 UH~ = cP. Now there may be the following cases.

(i) L%=I- cP and HZ = cP: In this case, 17k is of Type I since C(f3k) is red, L%=I- cP, H'k = cP

and HZ = cP.
(ii) L% =I- cP and HZ =I- cP: In this case, 17k is of Type II since C(f3k) is red, L% =I- cP,

H'k = cP and HZ =I- cP.
(iii) L% = cP and L'k =I- cP: In this case, 17k is of Type III since C(f3k) is red, L'k =I- cP,

L% = cP and H'k = cP.
(iv) L% = cP and L'k = cP: In this case, 17k is of Type IV since C(f3k) is red, L'k = cP,

L% = cP and H'k = cP.
Therefore, Property 4 holds for 'Yk.

The drawing 'Yk satisfies Property 5: From the operations specified, it follows that
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V(Gk) = V(Gk-1) UV(Gu). By induction hypothesis, Gk-1 is connected. Moreover, Gu

is a connected subgraph of G. Since v E V(Gk-1), U E V(Gu) and we add the edge (u, v),

it follows that Gk is also connected. Now it remains to show that the edge (u, v) does not

create any edge crossings and contains at most one bend. Since h E L%_I, by induction

hypothesis, lb is accessible from the top page in I'k-1. (3u is the rightmost point of CTuand

thus accessible from both the pages in I'u. Therefore, to make (3u inaccessible from top

page after insertion of I'U between hb and next(hb), there must be an edge e in I'k-1 such

that one endpoint of e is to the left of hb and the other is to the right of hb• But such an

edge also makes hb inaccessible from top page in I'k-1 and thus contradicts the induction

hypothesis that I'k-1 maintains Property 3. Hence both lb and (3u are accessible from the

top page and therefore can be connected with such a polygonal chain through the top

page that does not cross any other edge and may contain at most one bend (according to

Observation 2.2.1). Therefore, Property 5 holds for I'k.

Case 2.3: The rightmost point in CTu is blue and CTuhas no R-live points or holes but

contains at least one B-live point.

Note that this case arises when Tree-Embed(Gu, u, 1) terminates in the way as

specified in case 6.2. It follows that I'u satisfies the invariant properties 1-5 and thus

represents a bichromatic point-set embedding of a graph G, on CTu (by Property 5) where

Gs is a connected subgraph of Gu and G, contains the vertex u. Moreover, CTu is of Type

VI. Let hb be the rightmost point in HL1. Now we perform the following operations. We

first flip I'u horizontally. As a result the rightmost point in CTu now represents the vertex

u; let (3u denotes this point. Next we insert the drawing I'u between the points hb and

next(hb) in CTk-1 and then remove the point hb. Finally we add the edge (u, v) connecting

the points hand (3u through the top page. Figure 4.8 illustrates this case.

From the operations specified, if follows that L" = L"_1 U L~, L%= L%_1U L~, Hi =

HL1UH~\{hb} and CTk = CTk-1UCTu. We now show that the drawing after this step

satisfies the invariants.



CHAPTER 4. EMBEDDING ON ALTERNATING POINT-SET 56

If!'-, 4!C,

/\" I"
~ 1\-,

(a) (b)

L~

~ ~
(c) (d) (c)

(I) (g)

Figure 4.8 An illustration for case 2.3 of Procedure Tree-Embed. (a) A 2-colored tree

G, (b) the drawing 'Yk-l, (c) graph Gu; shaded area denotes the graph Gs mapped on 'Yu,

(d) the drawing 'Yu, (e) the drawing after horizontal flip of 'Yu, (f) insertion of 'Yu between

hb and next(hb), and (g) the drawing 'Yk.

The drawing 'Yk satisfies Properly 1: Since Uu contains no R-live points, it follows that

L" = L"_I' If there are no R-live points in Uk, i.e. L" = IjJ then Property 1 holds trivially.

Otherwise consider a point PI E L" such that PI is not accessible from bottom page in 'Yk'

Since PI is also in L"_I' by Property 1 of induction hypothesis, PI is access.iblefrom bottom

page in 'Yk':'!. Therefore, it must be some edge e added to 'Yk-I that makes PI inaccessible

from bottom page where PI lies between the endpoints of e. From the drawing operation
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specified, e is either an edge of 'Yu or the edge (u, v). Since PI in not in o"u, PI cannot

lie between the endpoints of any edge in 'Yu. Hence e is not an edge of 'YU' Moreover, e

cannot be the edge (u, v) that connects the points lb and l3u since the edge (u, v) is drawn

through the top page and therefore cannot make PI inaccessible from bottom page in 'Yk'

Hence no edge such as e exists and PI is accessible from bottom page in 'Yk. Thus 'Yk

satisfies Property 1.

The drawing 'Yk satisfies Property 2: Let L~ denotes the set of B-live points in o"u. It

follows that L% = L%-I U L~. Consider any point PI E L% such that PI is not accessible

from the top page in 'Yk' PI is either in L%_I or in L~.Consider the case when PI E L%-I'

By Property 2 of induction hypothesis, PI is accessible from top page in 'Yk-I' Therefore,

it must be some edge e added to 'Yk-I that makes PI inaccessible from top page where PI

lies between the endpoints of e. From the drawing operation specified, e is either an edge

of 'Yu or the edge (u, v). Since PI in not in o"u, PI cannot lie between the endpoints of any

edge in 'Yu. Hence e is not an edge of 'Yu. Then e must be the edge (u, v) that connects

the points lb and l3u. Since lb is the rightmost point of L%-I' lb is to the left of PI in O"k-I'

The point hb is a blue hole in O"k-I; therefore, by Property 3, hb is to left of Pl' Since we

insert the drawing 'Yu between the points hb and next(hb) and l3u is a point of o"u, hence

any point to the right of hb in O"k-I is also to the right of l3u in O"k' It follows that PI is

to the right of l3u in O"k' Now since both lb and l3u are to the left of Ph, the edge (u, v)

cannot cause PI to be inaccessible from top page in 'Yk' Hence e cannot be the edge (u, v).

Consequently no edge such as e exists and PI is also accessible from top page in 'Yk'

Now consider the case when PI E H~. Since drawing 'Yu satisfies the invariants, it

follows that PI is accessible from top page in 'Yu. Moreover, the horizontal flip operation

does not change the top page accessibility of PI in 'Yu (according to Observation 4.1.1).

Since we insert 'Yu between the points hb and next(hb) in O"k-I, therefore, to make PI

inaccessible from the top page in 'Yk, there must be such an edge e in 'Yk-I that one

endpoint of e is to the left of hb and another is to the right of hb. But such an edge makes
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the point hb E HZ-I inaccessible from top page in I'k-I. This contradicts the induction

hypothesis that hb is accessible from top page in I'k-I. Therefore, no edge such as e exists

and PI is accessible from top page in I'k. Therefore, each B-live point in I'k is accessible

from the top page.

The drawing I'k satisfies Property 3: There are no blue holes in 17u. Moreover, since

we remove the point hb E HZ-I' it follows that Hi = HZ-I\{hb}. If 17kcontains no blue

holes, i.e. Hi = <p then Property 3 holds trivially. Otherwise we first show that there is

no B-live points to the left of any blue hole in 17k. Consider any blue hole Ph E Hi and

any B-live point PI E L%_I. Now Pbl is either in L%-I or in L~.We first examine the case

when PI E L%-I. Since Ph E HZ-I' by Property 3 of induction hypothesis, Ph is to the left

of Pl .. Next consider the case when PI E H~. Since hb is the rightmost point in HZ-I'

it follows that Ph is to the left of hb. Since we insert the drawing I'u between the points

hb and next(hb), therefore, points in 17uare to the right of hb. It follows that Pbl is to the

right of Ph. Hence points in L% are to the right of points in Hi.
We next prove that any blue hole of 17kis accessible from top page in I'k. Consider a

point Ph E Hi such that Ph is not accessible from the top page in I'k. Since Ph is also in

HZ-I' Ph is accessible from top page in I'k-I (by Property 3). Therefore, it must be some

edge e added to I'k-I that makes Ph inaccessible from top page where Ph lies between the

endpoints of e. From the drawing operation specified, e is either an edge of I'u or the

edge (u, v). Since Ph in not in 17u, Ph cannot lie between the endpoints of any edge in I'u.

Hence e is not an edge of I'u. Then e must be the edge (u, v) that connects the point lb

and (3u. Since lb is in L%-I' by Property 3 of induction hypothesis, lb is to the right of Ph

in 17k-I. The point hb is the rightmost blue hole in 17k-I; therefore, hb is to right of Ph.

Since we insert the drawing I'u between the points hb and next(hb) and {3u is a point of

17u,hence {3u is to the right of hb. It follows that {3u is to right of Ph. Since both lb and

{3u are to the right of Ph, the edge (u, v) cannot cause P to be inaccessible from top page.

Hence e cannot be the edge (u, v). Consequently no edge such as e exists and Pbh is also
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accessible from top page in rk.
The drawing rk satisfies Property 4: From the operations specified, it follows that CJu

is an alternating RB-sequence where both the leftmost and rightmost points of CJu are

blue. As a result, after horizontal flip of ru, the leftmost and the rightmost point of CJu

are still blue. Since CJk-l is an alternating RB-sequence and c(hb) is blue, it follows that

both the points prev(hb) and next(hb) are red. Thus after insertion of ru between the

points hb and next(hb) in rk-l and then removal of point hb, the resultant point-set CJkis

also an alternating RB-sequence where {3k = (3k-1. We now identify type of CJk. Since CJu

is of Type VI, it follows that L~ = 1;, L~ =F 1;, H~= 1; and H~= 1;. From the operations

specified, Hk = Hk~l U H~ = 1;. There may be the following cases.

(i) L%=F 1; and HZ = 1;: In this case, CJkis of Type I since C({3k) is red, L%=F 1;, Hk = 1;
and HZ = 1;.

(ii) L% =F 1; and HZ =F 1;: in this case CJk is of Type II since C({3k) is red, L% =F 1;,

Hk = 1; and HZ =F 1;.
(iii) L%= 1; and L'k =F 1;: in this case CJk is of Type III since C({3k) is red, L'k =F 1;,

L% = 1; and Hk = 1;.
(iv) L%= 1; and L'k = 1;: in this case CJk is of Type IV since C({3k) is red, L'k = 1;,

L% = 1; and Hk = 1;.
Therefore, Property 4 holds for rk.
The drawing rk satisfies Property 5: From the operations specified, it follows that

V(Gk) = V(Gk-1) U V(Gs). By induction hypothesis, Gk-1 is connected. Moreover, Gs

is also a connected subgraph of G. Since v E V(Gk-1) and u E V(Gs) and the edge

(u, v) is in rk, it follows that Gk is also connected. Now it remains to show that the edge

(u, v) does not create any edge crossing and contains at most one bend. Since lb E L%_l,
by Property 2 of induction hypothesis, h is accessible from the top page in rk-1. After

horizontal flip of ru, the vertex u is represented by the rightmost point {3u of CJeand thus

accessible from both the pages in ru. Therefore, to make {3u inaccessible from top page
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after insertion of 'Yu between hb and next(hb), there must be an edge e in 'Yk-l such that

one endpoint of e is to the left of hb and the other is to the right of hb. But such an edge

also makes hb inaccessible from top page in 'Yk-l, therefore, contradicts the induction

hypothesis that 'Yk-l maintains Property 3. Hence both lb and !3u are accessible from the

top page and thus can be connected with a polygonal chain through the top plain and

the edge may contain at most one bend (by Observation 2.2.1).

Case 3: O'k-l is of Type III, i.e. c(!3k-1) is red, LLI = rP, Lk_1 '1= rP and Hk_1 = rP.
We add two points Pb and PT on the spine of O'k-l such that X(!3k-l) < X(Pb) < X(PT),

C(Pb) is blue and C(PT) is red. Let IT be the rightmost point in Lk_1 and v be the vertex

represented by LT' Hence vis an R-live vertex and there is a vertex u E Uk-1 (v) such that

c(u) is red. We map '/1, on PT and draw the edge (u, v) connecting points IT and PT through

the bottom page. Figure 4.9 illustrates this case.

(a)
L,':.,

~J

I,

(b) (c)

Figure 4.9 An illustration for case 3 of Procedure Tree-Embed. (a) A 2-colored tree

G, (b) the drawing 'Yk-l, and (c) the drawing 'Yk.

We now show that the drawing after this step satisfies the invariants ..
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The drawing "tk satisfies Property 1: If Uk contains no R-live points, i.e. Lic = <p then

Property 1 holds trivially. Otherwise consider a point PI E Lic such that PI is not accessible

from bottom page in "tk. Let VI be the vertex of G represented by Pl. Hence VI is an R-live

vertex in Gk. Since Pr is the rightmost point in Uk, Pr is accessible from both the pages

in "tk. It follows that PI of Pr. Since u is mapped on Pro VI of u. Then VI must be an R-live

vertex of Gk-I. It follows that PI is an R-live point of Uk-I. Therefore, by Property 1 of

induction hypothesis, PI is accessible from bottom page in "tk-I. Consequently it must be

the edge (u, v) that makes PI inaccessible from bottom page i.e. PI lies between the points

Ir and Pr. Now since both PI and Ir are in Lic_1 and Ir is the rightmost point of Lic_l, it

follows that Ir is to the right of Pl. Again Pr is the rightmost point of Uk and hence is to

the right of Pl. Since both Ir and Pr are to the right of PI, the edge (u, v) cannot make PI

inaccessible from any page. Therefore, no point such as PI exists. Hence all points in Lic

are accessible from the bottom page in "tk.

The drawing "tk satisfies Property 2: If there are no B-live points in Uk, i.e. L% = <p

then Property 2 holds trivially. Otherwise L% = {Pr} since L%_I = <p. Since Pr is the

rightmost point of Uk, it is accessible from both the pages in "tk. Therefore, Property 2

holds for "tk.

The drawing "tk satisfies Property 3: According to the operation specified, the point

Pb is a blue hole in Uk. Hence HZ = HZ-I U{Pb}. Since LLI = <p, it follows that either

L% = <p or L% = {Pr}. Since Pr is the rightmost point in Uk, therefore, irrespective of

whether Pr is in L% or not, there is no B-live point to the left of any blue hole in Uk.

We next prove that any blue hole of Uk is accessible from top page in "tk. Consider a

point Ph E HZ such that Ph is not accessible from the top page in "tk. Ph is either in HZ-I

or Ph = Pb. Consider the case when Ph E HZ-I. By Property 3 of induction hypothesis,

Ph is accessible from top page in "tk-I. Therefore, it must be the edge (u, v) that makes

Ph inaccessible from top page in "tk. But it is not possible since the edge (u, v) is drawn

through the bottom page. Hence Ph must be accessible from top page in "tk. We then
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examine the case when Ph = Pb. Let e be the edge that makes Ph inaccessible from top

page in 'Yk i.e. Pb lies between the endpoints of e. e is either an edge of 'Yk-1 or the edge

(u, v). Since Pb is to the right of (3k-I, both the endpoints of any edge in 'Yk-1 are to the

left of Pb. Therefore, e cannot be an edge of 'Yk-1. Also e cannot be the edge (u, v) since

the edge is drawn through the bottom page. Hence no edge such as e exists and Ph is

accessible from top page in 'Yk' Thus Property 3 holds for IJk'

The drawing 'Yk satisfies Property 4: By induction hypothesis IJk-1 is an alternating

RB-sequence where C((3k-1) is red. From the way the points Pb and Pr are taken, one

can observe that IJk = IJk-1 U{Pb,Pr} is also an alternating RB-sequence where (3k = Pr'

We now determine the type of IJk' From the operations specified, HI, = H'k_1 = <p and

HZ = HZ-1 U{Pb}. There may be the following cases.

(i) L%# if>: In this case, IJk is of Type II since C((3k) is red, L%# <p, HI, if> and

HZ # if>.

(ii) L%= if> and Lk # if>: In this case, IJk is of Type III since C((3k) is red, Lk # if>,

L%= if> and HI, = <p.

(iii) Lk = if> and Li = <p: In this case, IJk is of Type IV since C((3k) is red, Lk = if>,

Li = if> and HI, = if>.

Therefore, 'Yk satisfies Property 4.

The drawing 'Yk satisfies Property 5: According to the operation specified, V(Gk) =

V(Gk-1) U{u}. Since Gk-1 is a connected graph that contains the vertex vo(by induction

hypothesis) and u is a neighbor of some vertex v E V(Gk-tl, if follows that the graph

Gk is also connected and Vo is in Gk. Therefore, it remains to show that the edge (u, v)

does not create any edge crossing and contains at most one bend. Since Ir E Lk_1, by

Property 2 it is accessible from the bottom page in 'Yk-1. The point Pr is to the right of

the rightmost point of IJk-1; hence Pr is accessible from both the pages (top and bottom).

Therefore, Ir and Pr can be connected with a polygonal chain through the bottom page

that contains at most one bend and does not cross any other edge in 'Yk-1 (by Observation
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2.2.1. Hence 'Yk represents a bichromatic point-set embedding of Gk on Uk.

Case 4: Uk-I is of Type IV, i.e. C((3k-l) is red, L%_I = <P, L/;_I = <P and Hk_1 = <p.

63

In this case, there are no live points in Uk-I which implies that G has no unmapped

vertices. At this point, the procedure terminates. Let 'YG and UG represents the output

drawing and output point-set respectively where 'YG = 'Yk-I and UG = Uk-I. We distin-

guish the following two sub cases determined by the value of level (the other input of the

Procedure Tree-Embed).

Case 4.1: level= O. In this case, we check the number of times G has been inverted

inside this instance of the procedure. It should be noted that G is inverted in each

intermediate step i whenever Ui-I is of Type VI and the value of input level= O(refer to

case 6.2). If G has been inverted odd number of times, we invert G and UG once more.

Then the procedure terminates and returns the drawing 'YG.

Case 4.2: level= 1. In this case, the procedure simply terminates and returns the

drawing 'YG.

Case 5: Uk-I is of Type V, i.e. c((3k-d is blue, L/;_I =f <P, Hk_1 = <P and HZ-I = <p.

We add a point Pr on the spine of Uk-I such that Pr is to the right of (3k-1 and c(Pr) is

red. Let Ir be the rightmost point in L/;_I and v be the vertex of G mapped on Ir. Hence

v is an R-live vertex and there is a vertex u E Uk_I(V) such that c(u) is red. We map

u on Pr and draw the edge (u, v) connecting points IT and PT through the bottom page.

Figure 4.10 illustrates this case.

We now prove that 'Yk satisfies the invariants.

The drawing 'Yk satisfies Property 1: If there are no R-live points in Uk, i.e. L/; = <p

then Property 1 holds trivially. Otherwise consider a point PI E L/; such that PI is not

accessible from the bottom page in 'Yk. Let VI be the vertex of G represented by PI.

Hence VI is an R-live vertex in Gk. Since PT is the rightmost point in Uk, Pc is accessible

from both the pages in 'Yk. It follows that PI =f Pr. Since u is mapped on Pro VI =f u.

Then VI must be an R-live vertex of Gk-I. It follows that PI is an R-live point of Uk-I.



CHAPTER 4. EMBEDDING ON ALTERNATING POINT-SET

(a)

64

(b)
~ I, P,

(c)

Figure 4.10 An"illustration for case 5 of Procedure Tree-Embed. (a) A 2-colored tree

G, (b) the drawing 'Yk-J, and (c) the drawing 'Yk'

Therefore, by Property 1 of induction hypothesis, PI is accessible from bottom page in

'Yk-l. Consequently it must be the addition of the edge (u, v) that makes PI inaccessible

from bottom page in 'Yk' The endpoints of the edge (u, v) are Pr and Ir. Since Pr is the

rightmost point of Uk, Pr is to the right of PI' Also Ir is to the right of PI since both

Ir and PI are in Lk_1 and Ir is the rightmost point of Lk_1 •. Since both the endpoints

of edge (u,v) lie to the right of PI in 'Yk, it follows that the edge (u,v) cannot make PI

inaccessible from bottom page. Therefore, PI is accessible from bottom page in 'Yk which

is a contradiction. Hence all points in Lk are accessible from the bottom page in 'Yk. Thus

'Yk satisfies Property 1.

The drawing 'Yk satisfies Property 2: If Uk contains no B-live points, i.e. L%= 4J then.

Property 1 holds trivially. Otherwise consider a point PI E L% such that PI is not accessible

from top page in 'Yk. Let VI be the vertex of G represented by PI. Hence VI is a B-live

vertex in Gk. Since Pr is the rightmost point in Uk, Pr is accessible from both the pages

in 'Yk. It follows that PI oF Pr' Since u is mapped on Pr, VI oF 11.. Then VI must be a B-live
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vertex of Gk-1. It follows that Pi is a B-live point of Uk-I' Therefore, by Property 2 of

induction hypothesis, Pi is accessible from top page in "Yk-l. Consequently it must be the

addition of the edge (u, v) that makes Pi inaccessible from top page in "Yk. But since we

draw the edge (u, v) through the bottom page, it cannot make Pi inaccessible from top

page. It follows that Pi is accessible from bottom page in "Yk which is a contradiction.

Therefore, all points in L%are accessible from the top page. Thus "Yk satisfies Property 2.

The drawing "Yksatisfies Property 3: Since Uk-l contains no blue holes and no new blue

hole is added by the operation defined for this step, it follows that HZ =,p. Therefore,

Property 3 is maintained trivially.

The drawing "Yk satisfies Property 4: By induction hypothesis, Uk-l is an alternating

RB-sequence where C((3k-l) is blue. Since the point Pr is to the right of (3k-l and c(Pr)

is red, it follows that Uk = Uk-l U{Pr} is also an alternating RB-sequence where (3k= Pro

We now determine the type of Uk' From the operations specified, H'k = H'k_l = ,p and
HZ = HZ-I = ,p. There may be the following cases.

(i) L% =I-,p: In this case, Uk is of Type I since C((3k) is red, L% =I- ,p, H'k = ,p and HZ = ,p.
(ii) L% = ,p and Lk =I-,p: In this case, Uk is of Type III since C((3k) is red, Lk =I- ,p,

L% = ,p and H'k = ,p.
(iii) Lk = ,p and L% = ,p: In this case, Uk is of Type IV since C((3k) is red, Lk = ,p,

L% = ,p and H'k = ,p.
Therefore, for all possible input combinations Uk is either of types I, III and IV. Thus

"Yk satisfies Property 4.

The drawing "Yk satisfies Property 5: According to the operation specified, V(Gk) =

V (Gk-l) U{u}. Since Gk-l is a connected graph that contains the vertex Vo (by induction

hypothesis) and u is a neighbor of some vertex v E V (Gk-l), if follows that the graph Gk

is also connected and Vo is in Gk. Now it remains to show that the edge (u, v) does not

create any edge crossing and contains at most one bend. Since lr E Lk_1, by Property 2

it is accessible from the bottom page in "Yk-l' The point Pr is taken such that Pr is to the
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right of the rightmost point of 'lk-1; hence Pr is accessible from both the pages. Therefore,

lr and Pr can be connected with a polygonal chain through the bottom page that contains

at most one bend and does not cross any other edge in 'Yk-1 (from Observation 2.2.1).

Hence 'Yk represents a bichromatic point-set embedding of Gk on (Jk'

Case 6: (Jk-1 is of Type VI, i.e. c(l3k-Jl is blue, Lk_1 = rP, L%-1 =F rP, Hk_1 = rP and
HL = rP.

We distinguish two sub case as determined by the value of level.

Case 6.1: level= O. In this case, we first invert G. It should be noted that later

iterations in this instance of the procedure will consider this inverted graph as input.

Next we invert (Jk-1 and then flip 'Yk-1 vertically. The resulting drawing and the point-set

are denoted by 'Yk and (Jk respectively. Figure 4.11 illustrates the case.

We now prove that 'Yk satisfies the invariants.

The drawing 'Yk satisfies Property 1: Since points in (Jk are obtained after inverting

the points in (Jk-1, it follows that Lk = L%-I' By induction hypothesis, points in L%-1

are accessible from the top page. Now'Yk is obtained by a vertical flip of 'Yk-1. Therefore,

according to Observation 4.1.1, points in Lk are accessible from bottom page in 'Yk' Hence

Property 1 holds for 'Yk.

The drawing 'Yk satisfies Property 2: Since points in (Jk are obtained after inverting

the points in (Jk-1, it follows that L~ = Lk_1. By induction hypothesis, points in Lk_1 are

accessible from the bottom page. Now'Yk is obtained by a vertical flip of 'Yk-1' Therefore,

according to Observation 4.1.2, points in L~are accessible from top page in 'Yk. Hence

Property 2 holds for 'Yk.

The drawing 'Yk satisfies Property 3: Since (Jk-1 does not contain any blue hole and

points in (Jk are obtained after inverting the points in (Jk-1, it follows that there are no

blue holes in (Jk' Now'Yk is obtained by a vertical flip of 'Yk-1. This operation does not

create in any blue hole either. Hence HZ = rP and thus Property 3 trivially holds for 'Yk.

The drawing 'Yk satisfies Property 4: By Property 4 of induction hypothesis, (Jk-1
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(a) (b)

(c) (d) (c)

Figure 4.11 An illustration for case 6.1 of Procedure Tree-Embed. (a) A 2-colored

tree G, (b) the graph G after inversion, (c) the drawing 'Yk-I, (d) the drawing 'Yk-l after

inversion of ak-J, and (e) the drawing 'Yk obtained by vertical flip of the drawing in (d).

is an alternating HE-sequence. Since ak is obtained after inverting the points in ak_I'

Moreover, vertical flip of 'Yk-I doesn't change the color of any point, it follows that ak is

also an alternating HE-sequence. We now determine type of ak' Since L'k = L~_I f. cP,
L~ = L'k_1 = cP, Hi = H'k_l = cP, H'k = HL = cP and C((3k) it red, it follows that ak is of

Type III. Thus 'Yk satisfies Property 4.

The drawing 'Yk satisfies Property 5: We invert both the input graph G and ak-I

and then flip the drawing 'Yk-I vertically. Therefore, it follows from Observation 4.1.3

and Observation 4.1.2 that 'Yk represents a bichromatic point-set embedding of Gk on

ak. Moreover, Vo is still mapped to the leftmost point of ak' It follows that 'Yk satisfies
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Property 5.

Case 6.2: level= 1.

In this case, the procedure terminates and returns. Let "Is and Us be the returned

drawing and point-set respectively where "Is = "Ik-I and Us = Uk-I' Since Us contains

B-live points, it follows that there are vertices of G that are left unmapped. Hence "Is

represents a bichromatic point-set embedding of a connected subgraph of G. Let Gs

denotes this subgraph. Then V(Gs) c V(G). By Property 5, Vo E V(Gs) and mapped to

the leftmost point of us'

Case 7: Uk-I is of Type VII, i.e. c((3k-d is blue, LLI = cP, L"_I = cP, Hk_1 = cP and

HZ-I = cP.
In this case, there are no live points in Uk-I which implies that G has no unmapped

vertex. At this point, the procedure terminates. Let "Ia and ua represents the output

drawing and output point-set respectively where "Ia = "Ik-I and Ua = Uk-I. We distin-

guish the following two sub cases determined by the value. of level(the other input of the

Procedure Tree-Embed).

Case 7.1: level= O. In this case, we check the number of times G has been inverted

inside this instance of the procedure. It should be noted that G is inverted in each

intermediate step i whenever Ui-I is of Type VI and the value of input level= O(refer to

case 6.2). If G has been inverted odd number of times, we invert G and ua once more.

Then the procedure terminates and returns "Ia.

Case 7.2: level= 1. In this case, the procedure simply terminates and returns the

drawing "Ia.

This concludes the description of Procedure Tree-Embed. We now give a formal

presentation of the Procedure Tree-Embed. Before that we need to describe the data

structures that we use in the formal description of Procedure Tree-Embed. We represent

a 2-colored tree G using an array of 21Vllists; for each vertex v E V, there are two seperate

lists to store the set of red children and the set of blue children of v. We use Aa to denote
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this representation of G. For example, Figure 3.5(b) shows the representation for the

2-colored tree in Figure 3.5(a). The set of R-live points at any step is stored in a doubly

linked list. We denote this list as Ra. Each element of Ra holds a pointer to an R-live

vertex. Moreover, elements of Ra can be accessed from both ends. We use a similiar

doubly linked list Ea to store the set of B-live points. Mapping of vertices to points is

also stored in a doubly linked list. We denote this list as Ma. At the end of some step

k(k > 0), each element of Ma represents a point p of (Tk and holds the vertex mapped

to that point. Ma also allows access from both the ends. We store the set of blue holes

in another doubly linked list denoted as Ha. Each element of Ha holdsa pointer to an

element ofMa that represents a blue hole. Note that in each of these lists the first element

corresponds to the leftmost point and the last element corresponds to the rightmost point

of the set it represents. Initially the lists Ra, Ea, Ha and Ma are empty. Figure 4.12

illustrates the data structures. Figure 4.12(b) shows the drawing 'Yk computed after some

step k(k > 0) inside Tree-Embed for the input graph G in Figure 4.12(a). Figure 4.12(c)

shows AG after step k. Note that for each vertex v E V, AG holds the lists of unmapped

red and blue children of v since whenever we map a vertex, we remove that node from

the list of its parent. Figure 4.12(d) shows the lists Ra, Ea, Ha and Ma corresponding to

the drawing in Figure 4.12(b). We are now ready to present a formal description of the

Procedure Tree-Embed.

Procedure Tree-Embed (Aa, Va, level)

{Aa represents a 2-colored rooted tree G, Va is the root of G.}

begin

Let T points to the graph currently used by the procedure;

{Initially T points to G. However in subsequent steps T may

also point to the graph obtained by inversion of G;

Set T to AG;

Set Ra, Ea, Ha and Ma to NIL; {Initially all the lists are empty.}
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(a)

vvo•
0

vI •
0

V2 •

v 0
3 •

v4
v 0
5

v 0
6.

0
V7•

v 0
8.

v 0
9.

(e)

(b)

R" ~.I Va 1.-0-1 v! lSi

E" 1fuH.1 v, 1.-0-1 4 lSi

(d)

Figure 4.12 (a) A 2-colored tree G, (b) the drawing ik, (c) AG after step k, and (d)

states of the lists Ru, Bu, H" and Ru after step k.

if level= 0 then Set A~ to inversion of AG;

{A~ represents the graph which is the inversion of G.}

Set invert:= 0; {invert holds number of times G is inverted; c.f. case 6.2.}

Set k := 0; {k holds the current iteration index.}

{We first embed the root Vo of G.}

Add Vo to the end of Mu; {This corresponds to point Po.}
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if Vo has at least on red child in T {vo is an R-live vertex.}

then Add Vo to the end of R,,;

if Vo has at least on blue child in T {vo is a B-live vertex.}

then Add Vo to the end of B,,;

Set Type according to c(vol and status of R" and B,,;

{An empty list implies that there is no point of the corresponding type in O".}

Set k:= k + 1;

while true do

begin

if Type is I then {d. case I}

begin

Let v be the vertex stored in the last element of B,,;

{Hence the rightmost B-live point represents v.}

Let u be the first blue child of v in T;

Add u to the end of M,,;

Remove u from the list of blue children of v in T;

if v has no more blue child in T then remove v from B,,;

if u has at least one red child in T then store u at the end of R,,;

if u has at least one blue child in T then store u at the end of B,,;

Set Type according to c(vo) the status of R" and B,,;

end

else if Type is II then {d. case 2.}

begin

Let v be the vertex stored in the first element of B".

{Hence the leftmost B-live point represents v.}

Let u be the first blue child of v in T;

Let h be the last element of H".

71
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{Hence h points to the rightmost blue hole of M".}

Tree-Embed(T, u, 0); {Recursive invocation on subtree rooted at u.}

Let fLu, Bu, Hu and Mu be the lists returned from the procedure;

{fLu, Bu, Hu and Mu represents the sets L~,L~,H~ and (Ju respectively.}

Let Typeu holds the type of (Ju;

{We assume this is also returned by the procedure.}

{Now consider the three sub cases. }

if Typeu is IV then {c.f. case 2.1. In this case, the lists fLu and Bu are empty.}

begin

Let temp=val(h); { val(h) is the value contained in h.}

Set next(val(h) to tail(Mu) and next(head(Mu)) to next(temp);

{This operation is equivalent to perform a horizontal flip of (Ju and

then insert it to the next of rightmost blue hole in (Jk-I.}

Remove u from the list of blue children of v in T;

if v has no more blue child in T then remove v from B,,;

if Hu is not empty then Add Hu to the end of H,,;

Set Type according to the status of R", B" and H,,;

end

else if Typeu is VII then

{c.f. case 2.2. In this case, the lists fLu, Bu and Hu are empty.}

begin

Let temp=val(h); { val(h) is the value contained in h.}

Set next(val(h) to tail(Mu) and next(head(Mu)) to next(temp);

{This operation is equivalent to perform a horizontal flip of (Ju and

then insert it to the next of rightmost blue hole in (Jk-I.}

Remove h from H,,;

Remove u from the list of blue children of v in T;
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if v has no more blue child in T then remove v from Bu;

Set Type according to the status of Ru, Bu and Hu;

end.

else if Typeu is VII then

{c.f. case 2.3. In this case, the lists Ru and Hu are empty.}

begin

Let temp=val(h); { val(h) is the value contained in h}

Set next(val(h) to tail(Mu) and next(head(Mu)) to next(temp);

{This operation is equivalent to perform a horizontal flip of !Ju and

then insert it to the next of rightmost blue hole in !Jk-l'}

Remove h from Hu;

Remove u from the list of blue children of v in T;

Set head(Bu) to tail(Bu) and next(head(Bu)) to v;

if v has no more blue child in T then remove v from Bu;

Set Type according to the status of Ru, Bu and Hu;

end

end

if Type is III then {d. case 3.}

begin

Add an element to the end of Mu; {This corresponds a blue hole.}

Add an element to the end of Hu that stores a pointer to tail(Mu);

Let v be the vertex stored in the first element of Ru;

{Hence the rightmost R-live point represents v.}

Let u be the first red child of v in T;

Add u to the end of Mu;

Remove u from the list of red children of v in T;

if v has no more red child in T then remove v from Ru;

73
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if u has at least one red child in T then store u at the end of Ra;

if u has at least one blue child in T then store u at the end of Ba;

Set Type according to the status of Ra, Ba and Ba;

end

if Type is IV then

{There is no vertex of G left unmapped; c.f. case 4.

Hence this instance of the procedure terminates and returns a drawing.}

begin

Return Ra, Ba, Ha, Ma and Type; {Here the lists Ra, Ba are empty.}

{We do not differentiate between the two cases as described previously,

c.f case 4.1 and 4.2 since we are only interested in the sequence of vertices of G

that represents a mapping on an alternating point-set.}

end

if Type is V then {d. case 5}

begin

Let v be the vertex stored in the last element of Ra;

{Hence the rightmost R-live point represents v.}

Let u be the first red child of v in T;

Add u to the end of Ma;

Remove u from the list of red children of v in T;

if v has no more red child in T then remove v from Ra;

if u has at least one red child in T then store u at the end of Ra;

if u has at least one blue child in T then store u at the end of Ba;

Set Type according to c(vol the status of Ra and Ba;

end

if Type is VI then {d. case 6.}

begin
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if level= 0 then {d. case 5.1.}

begin

T:=A~;

{Hence in subsequent steps the graph inversion of G is used by the procedure.}

Re; <-> Be;; {Since the set of R-live points become B-live points

after inversion operation and vice versa. }

{We need not to invert Me; since the color of any point can be identified

by the color of the vertex mapped to it.}

Type:= I;

end

else {i.e. level= 0; d. case 5.2}

then Return Re;, Be;, He;, Me; and Type;

{In this case, the lists Be; and He; are empty.}

end

if Type is VII then {There is no vertex of G left unmapped; c.f. case 7.

Hence this instance of the procedure terminates and control goes back to caller.}

begin

Return Re;, Be;, He;, Me; and Type; { Here the lists Re;, Be; and He; are empty.}

{We do not differentiate between the two cases as described previously,

c.f case 7.1 and 7.2 since we are only interested in the sequence of vertices of G

that represents a mapping on an alternating point-set.}

end

end

end.
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4.1.2 Algorithm Alternating-Embedding
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Given a 2-colored tree G, Algorithm Alternating-Embedding computes a planar draw-

ing r of G such that it satisfies the following two conditions: (i) each edge of G is drawn

with at most one bend, and (ii) the set of points representing the vertices of G in r is an

alternating RB-sequence. Let (J denotes the set of points in r. We say that r represents

a bichromatic point-set embedding of G on an alternating RB-sequence (J with at most

one bend per edge. We assume G contains equal number of red and blue vertices. We

now present Algorithm Alternating-Embedding.

Algorithm Alternating-Embedding( G)

{G is a 2-colored tree.}

begin

Designate any red vertex Vo of G as root of G;

Tree-Embed(G, vo, 0);

Let r be drawing computed by the procedure;

Then r represents the desired drawing;

end.

4.1.3 Correctness and Time Complexity

In this section, we verify the correctness and time complexity of the Algorithm Alternating-

Embedding. We first prove the following lemma on the correctness of the Algorithm

Alternating- Embedding.

Lemma 4.1.4 Algorithm Alternating-Embedding computes a bichromatic point-set

embedding of a 2-colored tree G on an alternating RB-sequence with at most one bend per

edge. Moreover, number of points in the point-set equals IV(G)I .

Proof. We first show that the Algorithm Alternating-Embedding terminates.

Since Alternating-Embedding invokes Procedure 'Tree-Embed, therefore, we need to
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prove that Tree-Embed terminates. Consider the operations at some intermediate step

k(k > 0) inside Tree-Embed. The output drawing from the previous step denoted by

I'k-l satisfies the step invariant properties. Hence by Property 4, type of I'k-l is either of

types I-VII. Since we specify the next operations for each of these seven types, it implies

that our case analysis is complete. When I'k-l is of Type IV or Type VII i.e. there are no

live points in O"k-l, the procedure terminates. Now consider the cases when O"k-l contains

at least one live point i.e. I'k-l is of Type I, II, III, V or VI. If I'k-l is of Type I, III

or IV, the operations specified for each of these cases embed an unmapped vertex of the

input graph (c.f. case 1, case 3 and case 4). In case I'k-l is of Type II, we invoke Tree-

Embed on some connected subgraph of unmapped vertices (c.f case 2). This operation

reduces the number of unmapped vertex by at least one since each invocation of Tree-

Embed embeds at least one unmapped vertex i.e. the root vertex. When I'k is of Type

V, there are two subcases as determined by the value of level. If level = 1, the procedure

terminates(refer to case 6.2). Otherwise we specify operations such that the resulting

drawing is of Type III, which ensures that a new unmapped vertex will be mapped in the

immediate next iteration. Thus after O(V( G)) steps, there remains no live points and the

resulting drawing I'e reduces to Type IV or VII.

Now let I'e be output drawing when the invocation Tree-Embed(G, Va, 0) inside the

Algorithm Alternating-Embedding returns. Let O"e be the output RB-sequence. Since

I'e satisfies the step invariant properties as defined in the Procedure Tree-Embed, it

follows that O"e is an alternating RB-sequence(by Property 4). Moreover, I'e represents a

bichromatic point-set embedding of a connected graph Gs that contains the root Va of G

(by Property 5). Now we need to show that Gs is the graph G i.e. the set V(G)\ V(Gs) =

cjJ. In other words, we need to ensure that no vertex in G is left unmapped in I'e. Now

for contradiction, assume V(G)\ V(Gs) # cjJ. Let v be a vertex of V(G)\ V(Gs). Since

O"e is of Type either IV or VII ( when level= 0, these are the only two cases where the

procedure terminates), if follows that O"e has no live points. Hence there is no vertex
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u E V(Gs) such that v is a neighbor of u in G; otherwise u would have been a live vertex

and the point representing u would be a live point. It follows that G has more than one

component which is a contradiction since G is connected. Therefore, vertices such as v

cannot exist and V(G)\V(Gs) = cPo

Now it remains to prove that IUGI= IV(G) I i.e. UG contains no hole (a point where

no vertex of G has been mapped). There may be the following cases.

(i) Rightmost point of UG is red and UG contains no red holes: This is according to

case 4.1 and when no inversion of the output drawing is required. We assume that G has

equal number of red and blue vertices. Let nrb denotes the number of red (blue) vertices

in G. As shown previously, each vertex of G is mapped on some point of UG' Since UG

contains no red holes, it follows that there are exactly nrb red points in UG. Also UG must

contain at least nrb blue points. Therefore, UG may contain at most one blue hole since

UG is an alternating RB-sequence. However in that case both the leftmost and rightmost

points of UG must be blue. But the rightmo1st point of UG is red. Hence UG contains no

blue hole.

(ii) Rightmost point of UG is blue and UG contains no blue holes: This is according to

case 4.1 and when the output drawing is inverted. Using the same reasoning described

above, it can be shown that UG contains no red hole either.

(iii) Rightmost point of UG is red and UG contains no holes: This is according to case

7.1.

Therefore, there are no holes in UG and thus IUGI= IV(G)I. o

We now have the following lemma on the time complexity of the Algorithm Alternating-

Embedding

Lemma 4.1.5 Algorithm Alternating-Embedding runs in linear time.

Proof. Since the Algorithm Alternating-Embedding invokes Procedure Tree-

Embed, we need to show that each instance of this procedure runs in O(IV(G)I) time
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where G denotes the input graph for that instance. From the description of Tree- Embed,

one can see that each step performs either of the following tasks. (i) Maps an unmapped

vertex (c.f. case 1, case 3 and case 5); (ii) Maps a connected subgraph of G by recursive

invocation (refer to case 2); (iii) Transforms the resulting drawing in such a way that

ensures mapping of a new unmapped vertex in the immediate next step (refer to case

6). Thus Tree-Embed requires O(IV(G)I) steps to compute a bichromatic point-set

embedding of G. From the formal description of Procedure Tree-Embed in Section

4.1.1, one can readily find that for all possible cases, operations in each of the steps of

Tree-Embed take constant time. Therefore, the Algorithm Alternating-Embedding

runs in linear time. 0

4.2 Bichromatic Point-Set embedding on Alternating

Point-Set

In this section, we prove the existence of bichromatic point-set embedding of trees on

alternating point-sets with at most one bend per edge. We in fact prove the following

theorem.

Theorem 4.2.1 Let G = (V, E) be a 2-colored tree. Let S be a 2-colored alternating

point-set compatible with G. G has a bichromatic point-set embedding on S with at most

one bend per edge. Moreover, such a drawing can be computed in linear time.

Proof. The proof is constructive. We assume the leftmost point of S be red. Using the

Algorithm Alternating-Embedding we compute a bichromatic point-set embedding of

G on some alternating RB-sequence Il; by Lemma 3.1.2 this takes linear time. Let I

denotes the drawing. It follows from the Algorithm Alternating-Embedding that the

leftmost point of Il is red. Moreover, IIlI = IV(G)I. Since lSI is compatible with G,

lSI = IV(G)I. It follows that IIlI= lSI. Since both Sand Il are alternating point-sets and
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the leftmost points of both Sand (J are red, it follows from Observation 2.2.2 that (J is

chromatic equivalent to S. Now using the technique used in the proof of Lemma 2.2.3,

we compute a bichromatic point-set embedding of G on S with at most one bend per

edge from bichromatic point-set embedding of G on (J and this also takes linear amount

of time. Thus it requires linear time to construct a bichromatic point-set embedding of

GooS. D

4.3 Summary

In this chapter, we have proved the existence of bichromatic point-set embeddings of trees

on alternating point-sets with at most one bend per edge. We have described a linear-

time algorithm which finds a bichromatic point-set embedding of a 2-colored tree on an

alternating RB-sequence with at most one bend per edge. Then using such drawing we

have shown how to construct a bichromatic point-set embedding of the given tree on any

alternating point-set with at most one bend per edge in linear time.
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Conclusion

In this thesis, we have dealt with the problem of computing bichromatic point-set em-

bedding of trees on consecutive and alternating point-sets with at most one bend per

edge on some special configurations of point-set. Even though linear number of bends

per edge is required to compute bichromatic point-set embedding of planar graphs, there

are results for restricted classes of planar graphs namely path and caterpillars that allow

bichromatic point-set embedding with at most one bend per edge. On the other hand,

outer planar graphs admit k-chromatic point-set embedding with at most 4k + 1 bends

on a consecutive point-set. These results have motivated us to a explore a combination

of these two directions i.e. to look for other larger classes of planar graphs that admit

bichromatic point-set embeddings on special configurations of point-sets with at most one

bend per edge. The class of planar graphs we have considered here is 'tree' which is a

larger class than path and caterpillars. The contributions of this research work are listed

below.

(1) We have given a linear-time algorithm for computing bichromatic point-set embed-

ding of trees on consecutive point-sets with at most one bend per edge.

(2) We have given a linear-time algorithm for computing bichromatic point-set embed-

ding of trees on alternating point-sets with at most one bend per edge.

81
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Below we summarize each chapter and its contribution.

In chapter 1, we have defined point-set embedding problem and described some appli-

cations of point-set embedding. Then we have focused on the previous works in this field

and justified the motivation of our work. We have then described the scope of this thesis

work and the main achievements of this research work.

In chapter 2, we have given the definitions of some basic graph theoretical terminologies

and terminologies regarding bichromatic point-set embedding problem. We have also

discussed complexity of algorithms.

In chapter 3, we have constructively proved the existence of bichromatic point-set

embeddings of trees on consecutive point-sets with at most one bend per edge. This

constructive proof leads to an algorithm that computes a bichromatic point-set embedding

of a 2-colored tree on a 2-colored consecutive point-set in linear time.

In chapter 4, we have constructively proved the existence of bichromatic point-set

embeddings of trees on alternating point-sets with at most one bend per edge. This

constructive proof leads to an algorithm that computes a bichromatic point-set embedding

of a 2-colored tree on a 2-colored alternating point-set in linear time.

Due to the practical applications, the attentions of many researchers have been drawn

on point-set embedding problems. But the following problems are still open relating to

bichromatic as well as k-chromatic point-set embedding problem.

(1) Proving or disproving the existence of bichromatic point-set embedding of trees on

general 2-colored point-set with at most one bend per edge.

(2) Finding other larger classes of outer planar graphs as well as special configurations

of point-set that admit bichromatic point-set embeddings with at most one bend

per edge.

(3) Exploring 3-chromtic point-set embedding problem with constant number of bends

per edge for outer planar graphs.
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