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Abstract

In this research work, we have introduced a new graph problem namely "minimum face-

spanning subgraph problem". Let G be an edge weighted connected plane graph, let

V (G) and E( G) be the set of vertices and edges, respectively. Let F be the set of faces of

graph G. For each edge e E; E, w( e) 2: 0 is the weight of the edge e of G. A face-spanning

subgraph of G is a connected subgraph H induced by a set of edges S <:;; E such that S

contains at least one vertex from the boundary of each face f E F of G. The minimum

face-spanning subgraph problem asks to find a face-spanning subgraph H induced by S

of G such that cost of H is minimum. Finding a minimum face-spanning subgraph has

practical applications in planning irrigation canal networks in irrigation systems, planning

gas pipelines in a locality, layout of power supply lines in a printed circuit board etc.

Efficient algorithms are necessary to solve these kinds of problems which arise from

numerous practical applications. However developing efficient algorithms is not always

possible. In this thesis, we show that finding an efficient algorithm for solving the mini-

mum face-spanning subgraph problem is unlikely by showing that this problem belongs to

the infamous class of NP-complete problems. We also prove that a variation of the min-

imum face-spanning subgraph problem called "minimum-vertex face-spanning subgraph

problem" is NP-complete. Since it is unlikely to have efficient algorithms for both the

problems, design of approximation algorithms is an urgent need. We present approxima-

tion algorithms for both the problems in this thesis. Approximation ratio and complexity

analysis of the developed approximation algorithms are also presented in this thesis.
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Chapter 1

Introduction

How can we supply water in all plots of a region from a single water pump at a minimum

establishment cost of canal networks given that the canal networks can pass along the

boundaries of the plots only? Or, how can we supply gas in all regions of a locality from

a gas-field at a minimum establishment cost of gas pipelines with the restriction that the

gas pipelines can pass along the road network of the locality only? These and many other

practical problems involve graph theory. In this thesis we deal with a newly introduced

graph theoretical problem namely "minimum face-spanning subgraph problem" to solve

these kinds of problems.

In this chapter we discuss the applications and motivations of the problem. We also

, reviewthe literature about the problem and present the objectives of the thesis. We start

with Section 1.1 by giving a precise description of the face-spanning subgraph problem.

Section 1.2 describes some practical applications of the problem. Section 1.3 reviews the

literature. Section 1.4 addresses the scope of this thesis. In Section 1.5 we present the

summary of the thesis.

1
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1.1 Problem Statement

2

In this section we define the face-spanning subgraph problem. Let G = (V, E) be an

edge weighted connected plane graph, where V and E are the set of vertices and edges,

respectively. Let F be the set of faces of graph G. For each edge e E E, w(e) 2': 0 is

the weight of the edge e of G. A face-spanning subgmph of G is a connected subgraph H

induced by a set of edges S C;; E such that the vertex set of H contains at least one vertex

from the boundary of each face f E F of G. A minimum face-spanning subgmph H of G is

a face-spanning subgraph of G, where l:w(e) is minimum, and a minimum face-spanning
eES

subgmph problem asks to find a minimum face-spanning subgraph of a plane graph. In

the following section we discuss on some of practical applications of the face-spanning

subgraph problem defined above.

1.2 Applications

A minimum face-spanning subgraph problem often arises in applications like planning

irrigation canal networks for irrigation systems, establishing gas pipelines in a locality,

establishing power transmission lines in a city, power wires layout in a complex circuit

etc. Finding a minimum face-spanning subgraph is same as finding minimum canal net-

works for irrigation systems or finding road networks to establish gas pipelines in a lo-

cality. Below we describes some details on different applications of the face-spanning

subgraph problem and also discuss on how those applications can be modeled using the

face-spanning subgraph problem..

1.2.1 Planning Gas Pipelines in a Locality

Let.a gas company wants to supply gas to a locality from a single gas source. They are

allowed t.o pass the underground gas lines along the road net.work only, because no one
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allows to pass gas lines through the bottom of his building. The road network divides the

locality into many regions as illustrated in Figure l.1(a), where each road is represented

by a line segment and a point at which two or more roads meet is represented by a

(black or white) small circle. A point at which two or more roads meet is called an

intersection point. Each region is bounded by some line segments and intersection points.

These regions need to be supplied gas. If a gas line reaches an intersection point on the

boundary of a region, then the region may receive gas from the line at that intersection

point. Thus the gas lines should reach the boundaries of all the regions of the locality.

Gas will be supplied from a gas field which is located outside of the locality and a single

pipe line will be used to supply gas from the gas field to an intersection point on the

outer boundary of the locality. The gas company wants to minimize the establishment

cost of gas lines by selecting the roads for laying gas lines such that the total length of the

selected roads is minimum. Since gas will be supplied from the gas field using a single line

to the locality, the selected road network should be connected and contains an intersection

point on the outer boundary of the locality. Thus the gas company needs to find a set of

roads that induces a connected road network, supply gas in all the regions of the locality

and the length of the induced road network is minimum. Such a set of roads is illustrated

by thick lines in Figure l.1 (b).

The problem mentioned above can be modeled using a face-spanning subgraph as

. follows.. Let. G = (V, E) be an edge weighted. connected plane graph, where V and E

are the set of vertices and edges, respectively. Let F be the set of faces of graph G. For

each edge e E E, w(e) e:: 0 is the weight of the edge e 'of G. If we represent each road of

the road network by an edge of G, each intersection point by a vertex of G, each region

by a face of G and assign the length of a road to the weight of the corresponding edge,

then the problem of finding a minimum face-spanning subgraph of G is the same as the

problem of finding gas lines in the gas company problem mentioned above.
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(a) (b)

Figure 1.1: (a) A road-network of a locality and (b) a sample setup of gas pipelines drawn

by thick lines for supplying gas in all the regions from a gas field.

1.2.2 Planning Canal Networks in Irrigation Systems

Let us establish canal networks to irrigate a region from a single water pump. Let the

region consists of many plots and each plot has its boundaries. We are allowed to pass the

canal networks along the boundaries of the plots only, because no one allows to pass canal

net.works through the middle of his plots. The boundaries divides the region into many

plot.sas illustrated in Figure 1.2(a), where each boundary is represented by a line segment

and a point at which two or more boundaries meet is represent.ed by a small whit.ecircle.

A point. at which two or more boundaries meet is called an intersection point. Each plot

is bounded by some line segments and intersection points. These plots of the region need

to be supplied water. If a canal network reaches an intersection point on the boundary

of a plot., t.hen t.he plot may receive wat.er from t.he line at that intersection point. Thus

the canal network should reach the boundaries of all the plots of t.he region. Water will

be supplied from a water pump which can be set up in any position on the canal network

to supply water in all the plots. We want to minimize the establishment cost of the canal

network by selecting the boundaries for laying canals such that the total length of the
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selected boundaries is minimum. Since water will be supplied from a water pump to the

region, the selected plot boundaries should be connected. Thus we have to find a set of

boundaries that induces a connected canal network, supply water in all the plots of the

region and the length of the induced canal network is minimum. Such a set of boundaries

is illustrated by thick lines in Figure 1.2(b).

(a) (b)

Figure 1.2: (a) Plot boundaries of a region. (b) a sample setup of canal network drawn by

thick lines for supplying water in all the plots from a water pump drawn by black circle.

The problem mentioned above can be modeled using a face-spanning subgraph as

follows. Let G = (V, E) be an edge weighted connected plane graph, where V and E are

the set of vertices and edges, respectively. Let P be the set of faces of graph G. For each

edge e E E, w(e) :2: 0 is the weight of the edge e of G. If we represent each boundary of

the plots by an edge of G, each intersection point by a vertex of G, each plot by a face of

G and assign the length of a boundary to the weight of the corresponding edge, then the

problem of finding a minimum face-spanning subgraph of G is the same as the problem

of finding canal network in irrigation systems mentioned above.

(
\,
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1.3 Literature Review
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Since the face-spanning subgraph problem is newly introduced, there is no mentionable

references on this problem. Anyway, one may think of the "vertex cover problem" [FD04]

or the "face cover. problem" [AL04] while considering the minimum face-spanning sub-

graph problem. Unfortunately, the minimum face-spanning subgraph problem is quite

different from those two problems. Below we discuss on the differences.

1.3.1 Vertex Cover Problem

A vertex set C <;; V is called a vertex cover if every edge of G is incident to some vertex

in C and the vertex cover problem asks to compute a minimum vertex cover in given G.

Thus the vertex cover problem asks to find a vertex set which contains at least one vertex

from the end vertices of each edge of G whereas the minimum face-spanning subgraph

problem asks to find an edge set which contains at least One vertex from the boundaries

of each face of G. Hence, the vertex cover problem and the minimum face-spanning

subgraph problem are different. A simple graph G is drawn in Figure 1.3. We see that

the vertex set {V4, vlO, VB, Vll} of the face-spanning subgraph of G drawn by thick lines in

Figure 1.3 does not contain at least one vertex from each edge of G. For example, the

vertex set of the face-spanning subgraph in Figure 1.3 does not contain any vertex from

th~ edges like (v" V2), (V5, V6) etc. Hence the face-spanning subgraph does not provide any

solution to the vertex cover problem. Thus, the vertex cover problem and the minimum

face-spanning subgraph problem are different.

1.3.2 Face Cover Problem

A set of faces whose boundaries contain all the vertices in a plane graph G is said to be

a face cover for G and the face cover problem asks to compute a minimum face cover in

given G. Thus the face cover problem asks to find a face set which contains all the vertices

("
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Figure 1.3: A simple graph G with a face-spanning subgraph drawn by thick lines.

7

of G whereas the minimum face-spanning subgraph problem asks to find an edge set which

contains at least one vertex from the boundaries of each face of G. Hence, the face cover

problem and the minimum face-spanning subgraph problem are also different." A simple

graph G is drawn in Figure 1.4. Since the face set {h, 15, 17, is} in Figure 1.4 contains

all the vertices of the graph G, the face set is a face cover. Again, since the edge set

{(V2,VS), (vs,Vg), (V9,V5)} drawn by thick lines in Figure 1.4 contains at least one vertex

from the boundaries of each face of G, the edge set induces a face-spanning subgraph.

Thus the face cover problem and the minimum face-spanning subgniph problem are also

different.

1.4 Scope of Thesis

Since the minimum face-spanning subgraph problem arises from numerous practical appli-

cations like finding irrigation canal networks in irrigation systems, planning gas pipelines

in a locality, planning layout of power supply lines in a printed circuit board etc, efficient

algorithms are necessary to solve these problems. However developing efficient algorithms

is not always possible for many such problems. In this research work, we show that

(
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Figure 1.4: A simple graph G with a face-spanning subgraph drawn by thick lines.

8

it is unlikely to have a polynomial-time algorithm for finding a minimum face-spanning

subgraph of a plane graph. We also show the same scenario for a variation of the face-

spanning subgraph problem called "minimum-vertex face-spanning problem". In such a

case, design of approximation algorithms is needed for practical applications.

1.4.1 Face-Spanning Subgraph Problem

We show the hardness of the face-spanning subgraph problem in this thesis, that means,

we show that the face-spanning subgraph problem belongs to the infamous class of NP-

complete problems. First, we show that the face-spanning subgraph problem is in NP.

For this, we prove that any candidate solution of the face-spanning subgraph problem

can be verified in polynomial time. To prove the face-spanning subgraph problem is NP-

hard, "weighted tree cover problem" [AHH93]will be polynomially transformed into the

face-spanning subgraph problem. These above two steps will immediately prove that the

face-spanning subgraph problem is NP-complete.
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1.4.2 Minimum-Vertex Face-Spanning Subgraph Problem

9

In this thesis we also introduce a variation of the face-spanning subgraph problem namely

"minimum-vertex face-spanning subgraph problem". Let G = (V, E) be a connected

plane graph , where V and E are the set of vertices and edges, respectively, and let

F be the set of faces of graph G. A minimum-vertex face-spanning subgraph H of G

is a face-spanning subgraph of G where IV(H)I is minimum. A minimum-vertex face-

spanning subgraph problem asks to find a minimum-vertex face-spanning subgraph of

a plane graph. The minimum-vertex face-spanning subgraph problem often arises in

applications like establishing base transceiver stations in wireless networks, establishing

power distribution centers in a city etc, where the setup cost for each establishment is

huge. In these cases the objective is to minimize the number of vertices instead of edge

cost.

In this thesis we show that the minimum-vertex face-spanning subgraph problem is

NP-complete. First, to show the minimum-vertex face-spanning subgraph problem is in

NP, we prove that any candidate solution of the minimum-vertex face-spanning subgraph

problem can be verified in polynomial time. To prove the minimum-vertex face-spanning

subgraph problem is NP-hard, "connected vertex cover problem" [GJ77] will be poly-

nomially transformed into the minimum-vertex face-spanning subgraph problem. These

above two steps will immediately prove that the minimum-vertex face-spanning subgraph

problem is NP-complete.

1.4.3 Approximation Algorithms

Since the face-spanning subgraph problem and the minimum-vertex face-spanning sub-

graph problem arises from numerous practical applications and both the problems are

NP-complete, design of efficient approximation algorithms is essential. In this thesis we

present the approximation algorithms for the face-spanning subgraph problem and the
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minimum-vertex face-spanning subgraph problem. We show that the time complexities

of the presented approximation algorithms is linear. We also present the approximation

ratios of the designed approximation algorithms.

1.5 Summary

The main result of this thesis are as follows.

1. The face-spanning subgraph problem is NP-complete.

2. The minimum-vertex face-spanning subgraph problem is NP-complete.

3. We have developed a linear time algorithm for finding a minimal face-spanning

subgraph.

4. We have calculated the upper bound and lower bound on the number of vertices

for a minimal face-spanning subgraph. Let G be a plane graph of n vertices with

rnaximum degree 6. Let no be the number of outer vertices and f be the number of
faces of G. Then a minimal face-spanning subgraph of G contains at most n - no+ 1

vertices and at least (J - 2)/(6 - 2) vertices. We show that the upper bound and

the lower bound are tight.

5. We have developed approximation algorithms for solving the face-spanning sub-

graph problem and the minimum-vertex face-spanning subgraph problem. The ap-

proximation ratio of the developed approximation algorithms for the face-spanning

su'bgraph problem and the minimum-vertex face-spanning subgraph problem are

{(n - no)(6 - 2)emax}/{(J - 6)emin} and 2(6 -.:.2), respectively, where emax and

emin denote the maximum and minimum weight of the edges of G. The time com-

plexities of the approximation algorithms are linear.
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The thesis is organized as follows. Chapter 2 describes preliminary definitions on

graph, complexity theory and approximation algorith~s. Chapter 3 proves that the face-

spanning subgraph problem is NP-complete. Chapter 4 shows that the minimum-vertex

face-spanning subgraph problem is also NP-complete. Chapter 5 discusses a linear time

algorithm for finding a minimal face-spanning subgraph of a plane graph. ApproXimation

algorithms for finding solutions of the face-spanning subgraph problem and the minimum-

vertex face-spanning subgraph problem along with the approXimation ratio and complex-

ity analysis are presented in Chapter 5. Finally Chapter 6 gives the conclusion.



Chapter 2

Preliminaries

In this chapter, we define some basic definitions of graphs. Some discussion on complexity

theory and approximation algorithms will also be presented in this chapter. Definitions

that are not given here are discussed as they are needed. In Section 2.1, we start by giving

the definitions of some basic terms of graph which are related to and used through out

this thesis. Section 2.2 describes the terms related to the computational complexities. In

Section 2.3 we discuss on approximation algorithm and the approximation ratio. Section

2.5 illustrates on the "connected vertex cover problem" that will be used to prove the

hardness of the face-spanning subgraph problem. Section 2.4 defines the "weighted tree

cover problem" that will be used to prove the hardness of the minimum-vertex face-

spanning subgraph problem. Finally, Section 2.6 summarizes this chapter.

2.1 Basic Terminology

In this section we givc some definitions of standard graph-theoretical terms used through-

out the remainder of this thesis.

12
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Let G = (V, E) be a graph with vertex set V and edge set E. The number of vertices of

G is denoted by n, that is, n = lVI, and the number of edges of G is denoted by m, that

is, Tn = lEI. We often denote the set of vertices of G by V(G) and the set of edges of G

by E(G). We denote an edge joining vertices Vi, Vj of G by (Vi, Vj)' If (Vi, Vj) E E, then

two vertices Vi, Vj are said to be adjacent in G; edge (Vi, Vj) is then said to be incident to

vertices Vi and Vj; Vi is a neighbor of Vj' A loop is an edge whose endpoints are equal.

Pamllel edges or multiple edges are edges that have the same pair of endpoints. A simple

gmph is a graph having no loops or multiple edges. The graph in which loops and multiple

edges are allowed is called a multi graph. Figure 2.1 depicts a simple graph G, where

each vertex in V(G) = {VI,V2,V3,V4,VS} is drawn by small black circle and each edge in

E(G) = {(Vl,V2), (V2,V3), (V3,V4),(V4,VI), (vJ,vs), (V2,VS), (V3,VS) , (V4,VS)} is drawn by a

line segment.

Figure 2.1: A simple graph with five vertices and eight edges.

The degree of a vertex V in a graph G is the number of edges incident to V in G. The

degree of a vertex v is denoted by d(v) and the maximum degree of G is denoted by tl(G)

or simply by tl. In Figure 2.1, the degree d(vJl of vertex VI is 3 and the maximum degree

tl of G is 4.
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A path in G is.an ordered list of distinct vertices (VI, V2,"', Vq-l, vq) E V such that

(Vi-I, Vi) E E for all 2 ~ i ~q [WO1]. A path is closed if VI = vq. A closed path containing

at least one edge is called a cycle. In Figure 2.1, (VI, V2, Va) is a path and (VI, V2, V5, VI)

is a cycle.

2.1.2 Connectivity

A graph G is connected if for any two distinct vertices Vi, Vj of G there is path between Vi

and Vj in G. A graph which is not connected is called a disconnected graph. A connected

component of a graph is a maximal connected subgraph. The graph in Figure 2.2(a) is

connected since there is path in any two distinct vertices of the graph. On the other

hand, the graph in Figure 2.2(b) is disconnected since there is no path between VI and

V2. The graph in Figure 2.2(b) has two connected components G, and G2 indicated by

dotted lines.
~. . . . . . . . . . . . . . .

(a)

:~~:G. . I. .. .. .. .
". vs ....

. . .
. . . . . . . . . . . . ...----- ..

'. VI V4 : O2

.............
(b)

Figure 2.2: (a) A connected graph, and (b) a disconnected graph with two connected

components.

2.1.3 Trees and Subgraphs

G is a tree if G is connected and has no cycle. H = (V', E') is called a subgraph of G if

V' <;;: V and E' <;;: E. A subgraph H = (V', E') of G is called a spanning subgraph of G

o
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(a)

if H contains all the vertices V' of G. A spanning subgraph H of G is called a spanning

tree of G if H contains no cycle. A subgraph H = (V', E') of G is called the edge induced

suugmph of G induced by the edge set E' if V' contains only the vertices of G which

are end vertices of the edges in E'. Figure 2.3(b) illustrates an edge induced subgraph

induced by the edge set E' = {(VI, V2), (VI, V5), (V5, VB)} of the graph in Figure 2.3(a). For

a set of edges S £;; E, we denote by V (S) the set of vertices consisting of the end vertices

of the edges in S, that means, V(S) is the set of vertices of the edge induced subgraph of

G induced by S. Figure 2.3(b) illustrates that the edge induced subgraph of G induced

by S = {(VI, V2), (VI, V5), (V5, VB)} contains the vertex set V(S) = {VI, V2, V5, VB}'

Figure 2.3: (a) A graph with six vertices and nine edges, and (b) an edge-induced subgraph

induced by edge set {(Vj,V2),(VI,V5),(V5,VB)}'

2.1.4 Planar Graphs and Plane Graphs

A graph is planar if it can be embedded in the plane so that no' two edges intersect

geometrically except at a vertex to which they are both incident. A plane graph is a

planar graph with a fixed embedding. A plane graph divides the plane into connected.

regions called faces. Below we emphasis on some definitions usually used in the following

chapters.

Let G = (V, E) be an edge weighted connected plane graph, where V and E are the

{1
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set of vertices and edges, respectively. Let F be the set of faces of plane graph G. We say

a set of edges S S;;E covers a face f E F if V(S) contains at least one vertex from the

vertices on the boundary of f. Edge weighted connected plane graph is a connected plane

graph where each edge e has a weight w(e) 2': O. Let G be an edge weighted connected

plane graph. Then for a subgraph H of G, the cost of H is computed as 2: w(e). We
eEE(H)

say a vertex set V' S;;V covers all the edges of G if V' contains at least one verteX from

the end vertices of each edge of G. H is a tr-ee cover of G if H is a tree in G and V(H)

covers all the edges of G.

2.2 Complexity Theory

In computer science, computational complexity theory is the branch of the theory of com-

putation that studies the resources, or cost, of the computation required to solve a given

computational problem. This cost is usually measured in terms of abstract parameters

such as time and space, called computational resources. Time represents the number of

steps it takes to solve a problem and space represents the quantity of information storage

required or how much memory it takes. There are often trade offs between time and space

that have to be considered when trying to solve a computational problem. It often turns

out that an alternative algorithm will require less time but more space (or vice versa) to

solve a given problem. Hence in the complexity theory we can classify problems based on

how difficult they are to solve. In this section we discuss on different classes of problems.

2.2.1 Decision Problems and Optimization Problems

Much of complexity theory deals with decision problems. A decision problem is a problem

where the answer is always YES or NO. One example of a decision problem is "given two

numbers x and y, does x evenly divide y?". This is a yes or no question, and its answer

depends on the values of x and y. An algorithm for this decision problem would tell how
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to determine whether x evenly divides y, given x and"y. Another example of a decision

problem related to .the shortest-path problem is, " Given a graph G = (V, E), two vertices

U, v E V, and a nonnegative integer K, does a path exist in G between u and v whose

length is at most K?" Here the answer is obviously either yes or no.

In computer science, an optimization problem is the problem to find among all feasible

solutions for some problem the best one [CCPS9S]. One example of an optimization

problem related to the shortest-path problem is, "Given a graph G = (V, E) and two

vertices u, v E V. Find the shortest path between u and v in Goo. In fact, the decisive

version of an optimization problem is a decision problem.

2.2.2 Complexity Classes

A complexity class is the set of all of the computational problems which can be solved

using a cert.ain amount. of a certain comput.ational resource. There are different complexity

classes in complexity theory. Below we briefly discuss on the commonly used different

complexity classes in the computational complexity theory.

The Complexity Class P

A problem is assigned to the P (polynomial time) class if there exists at least one algorithm

to solve that problem, such that the number of steps of the algorit.hm is bounded by a

polynomial in n, where n is the length of the input ..This complexit.y class includes the set

of decision problems that. can be solved by a deterministic machine in polynomial time.

More explicitly, a problem is polynomial-time solvable if there exists an algorithm to solve

it in time O(nk) for some constant k, where n is the length of the input.

The Complexity Class NP

In computational complexity theory, NP (Non-deterministic polynomial time) is the set of

decision problems solvable in polynomial time on a non-det.erminist.ict.uring machine. We
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assign a problem to the NP class if it is solvable in polynomial time by a non-deterministic

turing machine. We can identify that whether a problem is in NP or not, by verifying

a candidate solution of the problem in polynomial-time by deterministic turing machine

[GJ79].

Since the polynomial problems are solvable by deterministic turing machine, they are

also solvable by non-deterministic turing machine. Hence PeN P. Figure 2.4 illustrates

the relation of P and NP. The question which arises now is whether P = N P or not.

The question of whether P is the same set.as NP is the most important open question in

theoretical computer science. Questions like this motivate the concepts of NP-hard and

NP-complete which we discuss below.

. NP"'Probiems '

c__
All Problems

Figure 2.4: The set of all problems that contains the P and NP problems.

The Complexity Class NP-hard

In computational complexity theory, a reduction is a transformation of one problem into

another problem. Intuitively, if problem A is reducible to problem B, then a solution to B

gives a solution to A. Thus, solving A cannot be harder than solving B. A problem X is

NP-Iwrd if all the problems in NP are polynomially reducible to X. Figure 2.5 illustrates

the relation of different classes of problems.

IT
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-complete' "

• NP
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Figure 2.5: Illustration of the relationship among P; NP, NP-hard and NP-complete

problems.

The Complexity Class NP-complete

A problem X is NP-complete if X is in NP and X is NP-hard. Figure 2.5 illustrates

the relationship among P, NP, NP-hard and NP-complete problems where we see that

the part of the NP-hard problems that are in NP, are the NP-complete problems. NP-

complete problems are computationally intractable based on the following properties of

this class [GJ77]:

1. There is no polynomial-time algorithm that can solve any problem in the class.

2. Despite the wide variety and large number of problems in the class, the existence of

a polynomial-time algorithm for anyone of them w0';1ldimply that every problem

ill the class could be solved with a polynomial-time algorithm.

Detailed discussion on the class of NP-complete problems and its members are de-

scribed in many references [AHU74,K72, GJ79]. The reader is referred to [AHU74,GJ79]

for a thorough description of the formal requirements for a proof of NP-completeness. In

short, to prove a particular problem X is NP-complete, the following two steps are re-

quired:

1. Prove that X is in NP, that is, X can be solved in polynomial time by a non-

deterministic turing machine. In other words, it can be construed as any solution

of X can be verified in polynomial time.
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2. Prove that X is NP-hard. For this we have to prove that, some known NP-

complete problem X' can be polynomially transformed into X in such a way that

any polynomial-time algorithm for solvingX could be used to solveX' in polynomial

time.

2.3 Approximation Algorithm and Approximation

Ratio

It is unlikely to have an efficient algorithm for a NP-complete problem, that is, it is

unlikely to have an optimal solution of the NP-complete problem in polynomial time.

But some NP-complete problem arises from numerous practical applications like the face-

spanning subgraph problem. Hence an algorithm is required that can quickly provide a'

sub-optimal solution of the problem. An algorithm that finds a sub-optimal solution of

a problem in polynomial time within a certain range of the optimal solution is known as

a.pproximation a.lgorithm [CLR90J.An approximation ratio is the measure of goodness of

an approximation algorithm. Approximation ratio is generally denoted by p(n) where n is

thc input size of the problem. An approximation algorithm that achieves approximation

ratio p(n) is known as p(n)-approximation algorithm of the problem. If C is the cost of

the suboptimal solution of a problem produced by an approximation algorithm and C' is

the optimal cost of the optimal solution of the problem, then

{ C C'}max C" c :::;p(n) (2.1)

This definition applies for both the minimization and maximization problems. For a

maximization problem, 0 < C :::;C', and the ratio C;C' gives the ratio by which the cost

of an optimal solution is larger than the cost of the approximate solution. Similarly, for

a minimization problem, 0 < c' :::;C, and the ratio C';C gives the ratio by which the

cost of an approximate solution is larger than the cost of the optimal solution. Since all

II
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solutions are assumed to have positive cost, these ratios are always well defined. The ratio

of an approximation algorithm is never less than a 1, since C IC' < 1 implies C'IC > l.

An optimal algorithm has a ratio 1, and an approximation algorithm with a large ratio

may return a solution that is very much worse than optimal [AHU74].

2.4 Weighted Tree Cover Problem

In this section we discuss another NP-complete problem called "weighted tree cover prob-

lem" [AHH93]. We use this problem to prove that the face-spanning subgraph problem

is NP-complete.

Let G = (V, E) be an edge weighted connected plane graph, where V and E be the set

of vertices and edges respectively. Each edge e E E has a weight w( e) :::::O. A subgraph

H of G is a tree cover of G if H is a tree in G and V(H) cover all the edges of G. We say

H be weighted tree cover of G if we compute H based on the weight of the edges of G.

A weighted tree cover H of a plane graph G is a minimum weighted tree cover if

I: w( e) is minimum among all the weighted tree cover in G. It has already been
<EE(Ii)

proved that it is unlikely to design an efficient algorithm to find a minimum weighted tree

cover of a plane graph. A weighted tree cover problem asks to find a minimum weighted

tree cover of a plane graph. The formal definition of weighted tree cover problem is as

follows [AHH93J:

Definition 2.4.1 (Weighted Tree Cover Problem) Given a plane graph G = (V, E) and

weight on the edges w( e) :::::.0 for all e E E and a positive real number B, does there exist

any weighted tree, T ~ (V', E') induced by E' ~ E, whose vertices V' ~ V cover all the

edges in E and I: w(e) :'S:B?
cEEI

•
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2.5 Connected Vertex Cover Problem
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In this section we discuss a known NP complete problem called "connected vertex cover

problem" [GJ77j. We use this problem to prove that the minimum-vertex face-spanning

subgraph problem is NP-complete.

Let G = (V, E) be a connected plane graph, where V and E be the set of vertices and

edges respectively. We say a vertex set V' ~ V is a vertex cover of G if V' contains at

least one vertex from the end vertices of each edge e E E of G. Figure 2.6(a) shows a

connected plane graph where the vertex set V' = {VI, V3, vs, V6} is a vertex cover of that

graph. A vertex cover Viis connected if the subgraph induced by Viis connected. A

subgraph H of G be a connected vertex cover of G if V (H) is a vertex cover of G and

the subgraph H is connected. In Figure 2.6(b), the subgraph drawn by thick lines is a

connected vertex cover where the vertex set of the subgraph is {V2, V4, vs}. In some cases,

though a vertex set V' ~ V be a vertex cover of graph G, the subgraph induced by V' may

not be a connected vertex cover of G. For example, the vertex set V' = {VI, V3, vs, V6} in

Figure 2.6(a) is a vertex cover, but the subgraph induced by Viis not a connected vertex

cover since V' induces a disconnected subgraph.

(a) (b)

Figure 2.6: (a) A connected plane graph, and (b) a connected plane graph with a con-

nected vertex cover drawn by thick lines.



CHAPTER 2. PRELIMINARIES 23

A connected vertex cover H of a plane graph G is a minimum connected vertex cover

if JV(H)I is minimum in G. A connected vertex cover problem asks to find a minimum

connected vertex cover of a plane graph. The formal definition of connected vertex cover

problem is as follows [GJ77].

Definition 2.5.1 (Connected Vertex Cover Problem) Given a plane graph G = (V, E)

and an integer K, does ther'e exist a vertex cover V" ~ V satisfying IV'I :S K and the

subgraph induced by V' is connected?

2.6 Summary

In this chapter we discussed on some definitions of standard graph-theoretical terms.

We have discussed on different complexity classes. Basic concepts on approximation

algorithms, approximation ratios are given in this chapter. We have also discussed on two

NP-complete problems connected vertex cover problem and weighted tree cover problem

that will be used in the following chapters.

()



Chapter 3

Face-Spanning Subgraph Problem

In this chapter we present our main result on the face-spanning subgraph problem. We

show that the face-spanning subgraph problem belongs to the NP-complete class. The

organization of this chapter is as follows. Section 3.1 formally defines the face-spanning

subgraph problem. In Section 3.2 we prove the NP-completeness of the face-spanning

subgraph problem. Finally, Section 3.3 summarizes this chapter. The approximation

algorithm to find a minimum face-spanning subgraph of a plane graph is discussed in

Chapter 5.

3.1 Problem Definition

In this section we formally define the face-spanning subgraph problem. Let G = (V, E)

be an edge weighted connected plane graph, where V and E are the set of vertices and

edges, respectively. LetF be the set of faces of graph G. For each edge e E E, w(e) ;:::a
be the weight of the edge e of G. A face-spanning subgraph of G is a connected subgraph

H induced by a set of edges S <;; E such that the vertex set of H contains at least one

vertex from the boundary of each face f E F of G. Figure 3.1 shows two face-spanning

subgraphs drawn by thick lines.

24
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(a) (b)

Figure 3.1: A simple graph with (a) a face-spanning subgraph of cost 11 and (b) a face-

spanning subgraph of cost 13.

A minimum face-spanning subgraph H of G is a face-spanning subgraph of G, where

L w( e) is minimum, and a face-spanning subgraph problem asks to find a minimum
cES

face-spanning subgraph of a plane graph. We say the face-spanning subgraph problem.

as "FSSP" in short in many places rest of this chapter. The formal definition of the

face-spanning subgraph problem is as follows:

Definition 3.1.1 (Face-Spanning Subgraph Problem) Let G = (V, E) be a cannected

plane graph, wher-e V and E aT"ethe set af vedices and edges, T"espectively, and let F be

the set of faces of graph G. Let w( e) 2: 0 be a positive T"ealnumbeT" assigned to edge e

as weight faT" evenj edge e E E. Then is theT"e any set S ~ E such that the subgraph H

induced by S is .connected, coveT" all faces af G and the cost of H is ::; B, faT" a given

positive real numbeT" B?
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3.2 .NP-completeness of FSSP
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In t.his sect.ion we prove t.hat. it. is unlikely t.o design an efficient. algorit.hm for finding a

minimum face-spanning subgraph of a plane graph by showing that the face-spanning

subgraph problem belongs to the infamous class of NP-complete problems. For this, we

prove t.he following theorem.

Theorem 3.2.1 The face-spanning subgmph problem is NP-complete.

To prove the Theorem 3.2.1, we have to show that (i) the face-spanning subgraph

problem is in NP and (ii) the face-spanning subgraph problem is NP-hard. In Subsection

3.2.1, we prove that the face-spanning subgraph problem is in NP and in Subsection

3.2.2, we prove that t.he face-spanning subgraph problem is NP-hard. These two st.eps

immediat.ely prove the Theorem 3.2.1. We use the well known NP-complete problem

weight.ed t.ree cover problem to prove the hardness of the face-spanning subgraph problem.

3.2.1 FSSP is in NP

NP is t.he set. of decision problems solvable in polynomial time on a non-deterministic

t.uring machine. We can ident.ify that whet.her a problem is in NP or not, by verifying a

candidat.e solution of the problem in polynomial-time by det.erminist.ic turing machine.

In this subsection we prove the first st.ep of the proof of NP-completeness of the face-

spanning subgraph problem, t.hat. is, t.he face-spanning subgraph problem is in NP. Let

G = (V, E) be an edge weighted connected plane graph, where V and E are the set of

vertices and edges, respectively. Let F be the set of faces of graph G. For each edge

e E E, w(e) ~ 0 is t.he weight. of the edge e of G. Thus we have the following lemma.

Lemma 3.2.2 The face-spanning subgmph problem is in NP.

Proof. To prove t.hat. t.he face-spanning subgraph problem is in NP, it is sufficient. t.o

prove t.hat. for a given edge set S <;;; E of G, we can verify in polynomial-time t.hat the
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subgraph H induced by S (i) is connected, (ii) cover all faces of G and (iii) the cost of H

is :S B.

(i) Connectivity of the subgraph H induced by S can be checked using DFS in linear

time.

(ii) We can verify whether S covers all faces of G or not in linear time by the following

method.

G
(a) AF AF

v, I, a I,

v, ; a ~ I

v, r, a I, I

V. t a t a

v, r, a r, a

V6 ~ a ~ 1

(i) (ii)
(b) (c)

Figure 3.2: (a) A graph G, (b) face-list for each vertex and (c) the boolean array AF (i)

after initialization and (ii) after checking the vertices of set V(S) = {VI, V3}

Let F( v) be the set of faces of G such that each face in F( v) contains the vertex

v. We maintain a face-list for each vertex v as illustrated in Figure 3.2(b), where the

face-list for v contains the faces in F(v). In the graph in Figure 3.2(a), F(v,) contains
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the faces fl, 12 and 16 and the faces fl, 12 and 16 have appeared in the face-list for the

vcrtex VI as illustrated in Figure 3.2(b). We also maintain a boolean array AF of length

IFI to indicate whether the faces of G are covered by the vertices in V(S) or not. For all

j E {I, 2, ... , IFI}, AFlJJ corresponds to the face Ij of graph G. Initially all elements of

AF are set to 0 as shown in Figure 3.2(c)(i) to indicate that no face is covered by the

vertices in V(S) initially. We traverse the face-list for each vertex V in V(S) and for each

face Ij in the face-list, we change the value of AFliJ to 1 to indicate that the face Ij is

covered by the vertices in V(S). As an example let us consider a set V(S) = {VI, V3}'

Figure 3.2(b) sho~s that F(vil contains the faces h, 12 and 16. Hence we set value 1

to AF[lJ, AF[2J and AF[6J as shown in Figure 3.2(c)(ii). Similar,ly,since F(V3) contains

the faces fl, 12 and h AF[lJ, AF[2] and AF[3J are set to 1 as shown in Figure 3.2(c)(ii).

After traversing the face-lists for all vertex in V(S), we check the array AF to know that

whether all faces of G are covered or not.

We now calculate the complexity of the method described above. Since JF(v) I is equal
to the degree of V and IV(S)I is at most lVI, then, to check all the vertices of V(S), we

have to consider at most I: d(v) = 2m = O(m) = O(n) entries in total. Since the
vEV(S)

length of array AF is equal to IFL the traversing time of AF is O(IFIl = O(n). Thus,

the overall time complexity to verify that whether the vertices in V(S) cover all faces of

G or not'is O(n).

(iii) It can be verified easily in O(n) time that the cost of His::; B.

Since it is possible to verify (i), (ii) and (iii) in polynomial time, the face-spanning

subgraph problem is in NP. 0

3.2.2 FSSP is NP-hard

A reduction is a transformation of one problem into another problem. Intuitively, if

problem A is reducible to problem B, then a solution to B gives a solution to A. Thus,

solving A cannot be harder than solving B. We say a problem X is NP-hard if all the
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problems in NP are polynomially reducible to X.

We now prove the second part of the proof of NP-completeness of the face-spanning

subgraph problem, that is, the face-spanning subgraph problem is NP-hard. Thus we

have the following lemma.

Lemma 3.2.3 The face-spanning subgmph problem is NP-hard.

To prove lemma 3.2.3 we prove that, the NP-complete problem weighted tree cover

problem defined in Section 2.4 can be polynomially transformed into the face-spanning

subgraph problem in such a way that any polynomial-time algorithm for solving the face-

spanning subgraph problem could be used to solve the weighted tree cover problem in

polynomial time.

Let G = (V, E) be a connected plane graph, where V and E are the set of vertices

and edges, respectively. Let F be the set of faces of graph G. We obtain a graph G' from

G as follows. For each edge e = (Vk, v,) E E we add a vertex Ve and two edges (Vk, vel

and (v/, Vel to G. More formally, G' = (V', E') where V' = V u v." v., = {vele E E} and

E' = EuEe where Ee = {(v"vk),(v"v,)I{e = (Vk,V,)) E E}. In G' we call a vertex in Ve

a new. vertex, a vertex in V an original vertex, an edge in Ee a new edge and an edge in E

an original edge. Note that original vertices and original edges of G' are also the vertices

and edges of G. We assign the cost w(e)/2 to each of the edges (v" Vk) and (v" v,) for all

e = (Vk, VI) E E. Figure 3.3 illustrates the construction of G' where the vertices drawn by

white small circles are new vertices, the edges drawn by dashed lines are new edges, the

vertices drawn by black circles are original vertices and the edges drawn by solid lines are

the original edges of G'. If G has n vertices and m edges, then G' has n + m vertices and

3m. edges. Clearly G' can be constructed in O(n) time. One can easily observe that the

graph G' is planar as illustrated in Figure 3.3, where a plane embedding of G' is shown.

Throughout the paper we consider G' as a plane embedding of the graph G'. For each

edge e = (Vk, VI) E E, we call the face (Vk, v" vel of G' a a-face. We call each of the
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remaining faces of G' a (3-facc. Figure 3.3 illustrates a-faces and (3-faces. We now have

the following lemma.

G

,,,0: a,
" ,

Q----- ,
'a ,, ,
I Q ...

u

,
•• a,
cr'

,0,,
a ,,,

,,
a '- - '........d

a 'p ~,,,,,

Figure 3.3: Illustration for the construction of G' from G.

Lemma 3.2.4 G' has a face-spanning subgraph H of cost ~ B'if and only if G has a

weighted tree cover T of cost ~ B, where Band B' are two positive real numbers.

Proof. Necessity. Assume that G' has a face-spanning subgraph of cost ~ B', that

is, there is an edge set 5' ~ E' of graph C' such that the subgraph H induced by 5' is

connected, cover all faces bf C' and the cost of H is ~ B'. We now prove that G has a

weighted tree cover T of cost ~ B, for a positive real number B.

From the construction of G' it is obvious that the degree of each new vertex v is two

in C'. Each rlllwvertex has exactly two neighbors Vi, Vj among the original vertices and

there is an original edge (Vi, Vj) between the two original vertices as illustrated in Figure

3.4(a). Modifying the subgraph H we construct a subgraph T of G' such that T contains

only the original vertices and original edges as follows. Since H is a subgraph of C', degree

of each new vertex v in H is either one or two. For each new vertex v of H we perform

one of the two operations described in Case 1 and Case 2 below to obtain T from H.

Case 1: v has degree two in H

In this case v has two neighbors Vi, Vj among the original vertices such that (Vi, Vj) is
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an original edge. If (Vi, Vj) E E(H) then we delete V from H to obtain T as illustrated

in Figure 3.4(b) and 3.4(e). Otherwise we replace th~ path (Vi, V, Vj) of H by the edge

(Vi,Vj) to construct T as illustrated in Figure 3.4(c) and 3.4(e).

Case 2: V has degree one in H

In this case V has exactly one neighbor Vi among the original vertices. We simply remove

the new vertex V of H to construct T. Figure 3.4(d) and 3.4(f) illustrates this case.

If T contains cycles, we delete an edge from each cycle until the resulting subgraph

has no cycle and we regard the resulting subgraph as T, and take the set of all edges in

TasS.

We now prove that T is a tree in G of cost :'0 B. Since H is connected, if we delete

the new vertex V or we replace the path (Vi, V, Vj) by edge (Vi, Vj) in Case 1, T remains

connected. Again, the cost of the path (Vi, V, Vj) is w(e)/2 + w(e)/2 = w(e) in total,

which is equal to the cost of the edge (Vi, Vj). Hence in Case 1, the cost of the modified

subgraph is decreased (if we delete the new vertex v) or unchanged (if the path (Vi, V, Vj)

is replaced by edge (Vi, Vj)). In Case 2, the new vertex has degree one and it is omitted,

hence T remains connected after considering Case 2 for all such new vertices. In this case,

edge (v, Vi) is removed, hence the cost of the modified subgraph decreases. Thus T is a

connected subgraph of cost :'0 B' in G'. Note that we have destroyed cycles to construct

T and T is a tree of cost :'0 B' in G'. If we take B = B', then the cost of tree T is

. :'0B. Since the edges of T in G' are original edges and the vertices of T in G' are original

vertices, G contains T. Hence T is a tree of cost :'0 B in G.

Note that T and H are induced by Sand 5' respectively. To prove that T is a weighted

tree cover in G of cost :'0 B, it is now remained to show that the set of vertices V(S) of

subgraph T is a vertex cover in G. Since H is a face-spanning subgraph of G', the set

of vertices V(S') of H covers all faces of G'. Hence V(S') contains at least one vertex

(eithe'r black or white) from the boundary of each face ofG'. Since H is connected, V(S')

can contain a new vertex V only if V(S') contains at least one neighbor Vi of V among the
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Figure 3.4: Illustration for the construction of T from H.

original vertices in C'. Since a new vertex v has degree 2, the two faces covered by a new

vertex v are also be covered by an original vertex Vi which is neighbor to the new vertex

v. Thus V(S') contains at least one original vertex from the boundary of each face of

G'. Since V(S) contains all the original vertices of V(S'), V(S) also contains at least one

original vertex from the boundary of each face of G'. Since we create an a-face in G' for

each edge of G while constructing G', there is a face of G' for each edge in G. Since each

face of G' is covered by V (S), each edge of G is covered by V (S). Hence V (S) contains

at least one vertex from each edge of G. Thus V (S) is a vertex cover of C.

Since, T is a tree in G of cost:'::: Band V(S) is a vertex cover of graph G, T is a

weighted tree cover of cost :':::B of G.

Sufficiency. Assume that G has a weighted tree cover of cost:':::B, that is, there is

tree T in G of cost :':::B and the vertex set V (S) that T contains is a vertex cover of graph

G. We now prove that G' has a face-spanning subgraph H of cost :':::B', for a positive
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real number B'. We take B = B'.

From the construction of G' it is clear that all the vertices in V (S) and the edges of

T in G are also in G'. We take S' as the set of edges of G' which are in S and let H be

the sllbgraph induced by S. Then H contains all the edges of T and V(S') contains all

the vertices in V(S). We now show that the subgraph H of G' (i) is connected, (ii) cover

all faces of G' and (iii) the cost of H is ~ B'.

(i) From the construction it is obvious that all the vertices and edges of G are also in

G'. Since T is a tree in G aild T = H, H is a tree in G'. Hence the subgraph H induced

by S' in G' is connected.

(ii) Since the subgraph T induced by S is a weighted tree cover of G, then for each

edge e == (Vk, vtl E E of G, V(S) contains either Vk or VI or both. By the construction of

G' from G, G' has an a-face for each edge e E E of G. Thus V(S') contains Vk or VI or

both for each a-face of graph G'. Since each edge of G is covered by V(S), each a-face

of graph G' is covered by V(S'). We now need to show that the ,6-faces of G' are also

covered by V(S'). Since each ,6-face of G' contains the original vertices of at least three

a-faces and V(S') contains at least one original vertex from each a-face, V(S') contains

at least two original vertices. Hence each ,6-face of G' is covered by V(S'). Thus V(S')

covers all the faces of G', that means, the subgraph Hind uced by S' in G' cover all faces

of G'.

(iii) The cost of T is ~ B. Since T = Hand B = B', the cost of H is ~ B' in G'. 0

Proof. of Lemma 3.2.3: Since the construction of G' from G takes polynomial time,

Lemma 3.2.4 implies that the face-spanning subgraph problem is NP-hard. 0

After the long discussion on NP and NP-hard of the face-spanning subgraph problem,

we are' now in a position to prove the Theorem 3.2.1. Below we.prove the Theorem 3.2.1.

Proof. of Theorem 3.2.1: By Lemma 3.2.2, the race-spanning subgraph problem is

in NP and by Lemma 3.2.3, the face-spanning subgraphproblem is NP-hard. Hence the
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face-spanning subgraph problem is NP-complete.

3.3 Summary

34

o

In this chapter we have proved that the face-spanning subgraph problem is NP-complete.

We use two steps to prove the NP-completeness of the face-spanning subgraph problem.

First, we have shown that the face-spanning subgraph problem is in NP. For this, we

have shown that any candidate solution of the face-spanning subgraph problem can be

verified in polynomial time. As a second step, we have proved that the face-spanning

subgraph problem is NP-hard. For this, we have transformed the weighted tree cover

problem to the face-spanning subgraph problem in polynomial time. These above two

steps immediately prove that the face-spanning subgraph problem is NP-complete. This

is t.he first time in literature that the face-spanning subgraph problem is introduced and

the NP-completeness of the face-spanning subgraph problem is proved.



Chapter 4

Minimum-Vertex Face-Spanning,

Subgraph Problem

In this chapter we consider a variation of the face-spanning subgraph problem, which we

call the "minimum-vertex face-spanning subgraph problem", The minimum-vertex face-

spanning subgraph problem often arises in applications like establishing base transceiver
(

stations in wireless networks, establishing'power distribution centers in a city etc where the

setup cost for each establishment is huge. In these cases the objective is to minimize the

number of vertices instead of edge cost. In this chapter we show that the minimum-vertex

face-spanning subgraph pr~blem belongs to the NP-complete class. The organization of

this chapter is as follows. Section 4.1 formally defines the minimum-vertex face-spanning

subgraph problem, In Section 4.2 we prove the NP-completeness of the minimum-vertex

face-spanning subgraph problem. Section 4.3 summarizes this chapter. The approxi-

mation algorithm to find a minimum-vertex face-spanning subgraph of a plane graph is

discussed in Chapter 5.

35
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4.1 Problem Definition

In this section we define the minimum-vertex face-spanning subgraph problem. Let G =

(V, E) be a connected plane graph, where V and E are the set of vertices and edges,

respectively, and let F be the set of faces of graph G. A minimum-vertex face-spanning

subgraph H of G is a face-spanning subgraph of G where IV(H)I is minimum. Figure

4.1(,,) shows a face-spanning subgraph drawn by thick lines with 6 vertices whereas Figure

4.1(b) shows a face-spanning subgraph drawn by thick lines with 7 vertices.

(a) (b)

Figure 4.1: A simple graph with (a) a minimum-vertex face-spanning subgraph of 6

vertices and (b) a minimum-vertex face-spanning subgraph of 7 vertices.

A minimum-vertex face-spanning subgraph problem asks to find a minimum-vertex

face-spanning subgraph of a plane graph. We say the minimum-vertex face-spanning

subgraph problem as "MVFSSP" in short in many places rest of this chapter. The formal

definition of the minimum-vertex' face-spanning subgraph problem is as follows:

Definition 4.1.1 (Minimum-Vertex Face-Spanning Subgraph Problem) Let G = (V, E)

be a connected plane graph, where V and E are the set of vertices and edges, respectively,

and let F be the set of faces of graph G. Then is there any set S C;; E such that the

subgraph H induced by S is connected, cover all faces of G and IV(H)I :::;K, for a given

positive integer' K :::;IV I ?
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4.2 NP-completeness of MVFSSP

It is unlikely to design an efficient algorithm for finding a minimum-vertex face-spanning

subgraph of a plane graph. For this, we show that the minimum-vertex face-spanning

subgraph problem belongs to the infamous class of NP-complete problems. We have the

following theorem.

Theorem 4.2.1 The minimum-vertex face-spanning subgraph problem is NP-complete.

To prove the Theorem 4.2.1, we have to show that (i) the minimum-vertex face-

spanning subgraph problem is in NP and (ii) the minimum-vertex face-spanning sub-

graph problem is NP-hard. In Subsection 4.2.1, we prove that the minimum-vertex face-

spanning subgraph problem is in NP and in Subsection 4.2.2, we prove that the minimum-

vertex face-spanning subgraph problem is NP-hard. These two steps immediately prove

the Theorem 4.2.1. We use the well known NP-complete problem connected vertex cover

problem to prove the hardness of the minimum-vertex face-spanning subgraph problem.

4.2.1 MVFSSP is in NP

As discussed before, N P is the set of decision problems solvable in polynomial time on a

non-deterministic turing machine. We can identify that whether a problem is in NP or

not, by verifying a candidate solution of the problem in polynomial-time by deterministic

turing machine.

In this subsection we prove the first, step of the proof of NP-completeness of the

minimum-vertex face-spanning subgraph problem, that is, the minimum-vertex face-

spanning subgraph problem is in NP. Let G = (V, E) be a connected plane graph, where

V and E are the set of vertices and edges, respectively. Let F be the set of faces of graph

G. Thus we have the following lemma.

Lemma 4.2.2 The minimum-vertex face-spanning subgraph problem is in NP.
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Proof. To prove that the minimum-vertex face-spanning subgraph problem is in NP, it

is sufficient to prove that for a given set S C;; E, we can verify in polynomial-time that the

subgraph H induced by S (i) is connected, (ii) cover all faces of G and (iii) fV(H)1 :5 K,

time.

(ii) We can verify whether S covers all faces of G or not in linear time using a method

similar to one in the proof of Lemma 3.2.2.

(iii) It can be verified in O(n) time that fV(H)1 :5 K.

Since it is possible to verify (i), (ii) and (iii) in polynomial time, the minimum~vertex

face-spanning subgraph problem is in NP.

4.2.2 MVFSSP is NP-hard

o

A reduction is a transformation of one problem into another problem. Intuitively, if

problem A is reducible to problem B, then a solution to B gives a solution to A. Thus,

solving A cannot be harder than solving B. We say a problem X is NP-hard if all the

problems in NP are polynomially reducible to X.

We now prove the second part of the proof of NP-completeness of the minimum-vertex

face-spanning subgraph problem, that is, the minimum-vertex face-spanning subgraph

problem is NP-hard. Thus we have the following lemma.

Lemma 4.2.3 The minimum-vertex face-spanning subgmph problem is NP-hard.

To prove lemma 4.2.3 we will prove that, the NP-complete problem connected vertex

cover problem can be polynomially transformed into the minimum-vertex face-spanning

subgraph problem in such a way that any polynomial-time algorithm for solving the

minimum-vertex face-spanning subgraph problem could be used to solve the connected

vertex cover problem in polynomial time.

\ e
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Let G = (V, E) be a connected plane graph, where V and E are the set of vertices

and edges, respectively. Let F be the set of faces of graph G. We obtain a graph G' from

G as follows. For each edge e = (Vk, vll E E we add a vertex Ve and two edges (Vk, vel

and (VI,Ve) to G. More formally, G' = (V',E') where V' = VUv", Ve = {vele E E} and

E' = E UEe where Ee = {(v" Vk), (v" vI)I{e = (Vk, VI)} E E}. In G' we call a vertex in

v" a new vertex, a vertex in V an original vertex, an edge in Ee a new edge and an edge

in E an original edge. Note that original vertices and original edges of G' are also the

vertices and edges of G. We assign the zero cost to each of the edges (v" Vk) and (v" vll

for all e E E. Figure 4.2 illustrates the construction of G' where the vertices drawn by

white small circles are new'vertices, the edges drawn by dashed lines are new edges, the

vertices drawn by black circles are original vertices and the edges drawn by solid lines are

the original edges of G'. If G has n vertices and m edges, then G' has n + m vertices and

3m edges. Clearly G' can be constructed in O(n) time, One can easily observe that the

graph G' is planar as illustrated in Figure 4.2, where a plane embedding of G' is shown.

Throughout the paper we consider G' as a plane embedding of the graph G'. For each

edge e = (Vk' VI) E E, we call the face (Vk, v/, vel of G' a a-face. We call each of the

remaining faces of G' a (3-face. Figure 4.2 illustrates a-faces and (3-faces. We now have

the following lemma.

Lemma 4.2.4 G: has a minimum-vertex face-spanning subgraph H' with IV(H') I :s K'
. if and only' if G has a connected vertex cover H with IV(H)I:s K, where K and K' are

two positive integers.

Proof. Necessity. Assume that G' has a minimum-vertex face-spanning subgraph

H' with IV(H')I.:s K', that is, there is an edge set S' C;; E' of graph G' such that the

subgraph H' induced by S' is connected, cover all faces of G' and IV(H') I :s K'. We now

prove that G has a connected vertex cover H with IV(H)j :s K, for a positive integer K.

From the construction of G' it is obvious that the degree of each new vertex v is two in

G', Each new vertex has exactly two neighbors Vi, Vj among the original vertices and there

•I,
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''0,,,,

,,,
, a,0 .

G

Figure 4.2: Illustration for the construction of G' from G.

is an original edge (Vi, Vj) between the two original vertices as shown in Figure 4.3(a).

Modifying the subgraph H' we construct a subgraph H of G' such that H contains only

the original vertices and original edges as follows. Since H' is a subgraph of G', degree of

each new vertex V in H' is either one or two. For each new vertex V of H' we perform one

of the two operations described in Case 1 and Case 2 below to obtain H from H'.

Case 1: v has degree two in H'

In this case v has two neighbors Vi, Vj among the original vertices such that (Vi, Vj) is

an original edge. If (Vi, Vj) E E(H') then we delete V from H' to obtain H as illustrated

in Figure 4.3(b) and 4.3(e). Otherwise we replace the path (Vi, V, Vj) of H' by the edge

(Vi, Vj) to construct H as illustrated in Figure 4.3(c) and 4.3(e).

Case 2: V has degree one in T'

In t.hiscase V has one neighbor Vi among the original vertices. We simply remove the new

vertex V of H' to const.ruct H. Figure 4.3(d) and 4.3(f) illustrates this case.

We regard the resulting subgraph as H and take the set of all edges in H as S.'

We now prove that H is a connected subgraph in G with IV(H)I ~ K. Since H' is

connected, if we delete the new vertex V or we replace the path (Vi, V, Vj) by edge (Vi, Vj)

in Case 1, H remains connected. Again, number of vertices in path (Vi, V, Vj) is 3 and an
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edge (Vi, Vj) contains 2 vertices. Hence in Case 1, the number of vertices in the modified

subgraph H is decreased by 1 whether we delete the new vertex V or replace the path

(Vi,V,Vj) by 'edge (Vi,Vj)' In Case 2, the new vertex has degree one and it is omitted,

hence H remains connected after considering Case 2 'for all such new vertices. In this

case, the edge (v, Vi) is removed, hence the size of the modified 'subgraph decreases. Thus

H is a connected subgraph in G' with IV(H)I :::;K'. If we take K = K', IV(H)I :::;K'

implies IV(H)I :::;1(, Since the edges of H in G'are original edges and the vertices of H

in G' are original vertices, G contains H. Hence H is a connected subgraph in G with

IV(H)I :::;K.

v

Q, ,, ,, ,, ,• •Vi (a) vj

(d) vj,
vo., ,, ,, ,, ,

• •vi (I) vj ,

v

1\
vi (b) vj vi (c) vj

~ /

Figure 4.3: Illustration for the construction of H from H'.

Note that Hand H' are induced by Sand S' respectively. To prove that H is a

connected vertex cover in G with IV(H)I :::;K, it is now remained to show that the set

of vertices V(S) of subgraph H is a vertex cover in G. Since H' is a minimum-Vertex

face spanning subgraph of G', the set of vertices V(S') ofH' covers all faces of G'. Hence
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V(S') contains at least one vertex (either black or white) from the boundary of each face

of G'. Since H' is connected, V(S') can contain a new vertex v only if V(S') contains at

least one neighbor vertex Vi of v among the original vertices in G'. Since a new vertex v

has degree 2, the two faces covered by a new vertex v are also be covered by an original

vertex Vi which is neighbor to the new vertex v. Thus V(S') contains at least one original

vertex from the boundary of each face of G'. Since V (S) contains all the original vertices

of V (S'), V (S) also contains at least one original vertex from the boundary of each face

of G'. Since we create an a-face in G' for each edge of G while constructing G', there is

a face of G' for each edge in G. Since each face of G' is covered by V (S), each edge of G

is covered by V (S). Hence V (S) contains at least one vertex from each edge of G. Thus

V(S) is a vertex cover of G.

Since, H is a connected subgraph in G with IV(H)I :::;K and V(S) is a vertex cover

of graph G, H is a connected vertex cover of G with IV(H) I :::;K.

Sufficiency. Assume that G has a connected vertex cover of size:::;K, that is, there is

a connected subgraph H in G with IV(H)I :::;K and the vertex set V(S) that H contains

is a vertex cover of graph G. We now prove that G' has a minimum-vertex face-spanning

subgraph H' with IV(H')I :::;K', for a positive integer K'. We assume K = K'.

From the construction of G' it is clear that all the vertices in V (S) and the edges

of H in G are also in G'. We take S' as the set of edges of G' which are contained in

S and let H' be the subgraph induced by S'. Then H' contains all the edges of Hand

V(S') contains all the vertices in V(S). We now show that the subgraph H' of G' (i) is

connected, (ii) cover all faces of G' and (iii) V(H') :::;K'.

(i) From the construction it is obvious that all the vertices and edges of G are also in

G'. Since H is a connected subgraph in G and H = H', H' is a connected subgraph in

G'. Hence the subgraph H' induced by S' in G' is connected.

(ii) Since the subgraph H induced by S is a connected vertex cover of G, then for each

edge e = (Vk, vtl E E of G, V(S) contains either Vk or VI or both. By the construction of
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G' from G, G' has an a-face for each edge e E E of G. Thus, V(S') contains Vk or VI or

both for each a-face of graph G'. Since each edge of G is covered by V(S), each a-face of

graph G' is covered by V(S'). We now need to show whether the ,a-faces of G' are also

covered by V (S'). Since each ,a-face of G' contains the original vertices of at least three

a- faces and V (S') contains at least one original vertex from each a-face, V (5') contains

at least two original vertices. Hence each ,a-face of G' is covered by V(S'). Thus V(S')

covers all the faces of G', that means, the subgraph H' induced by 5' in G' cover all faces

of G'.

(iii) The size of H is < 1(, that is, IV(H)t < 1(. Since H H' and 1( = 1(',

IV(H')I ~ 1(' in G'. 0

Proof. of Lemma 4;2.3: Since the construction of G' from G takes polynomial

time, Lemma 4.2.4 implies that the minimum-vertex face-spanning subgraph problem is

NP-hard. 0

After the long discussion on NP and NP-hard of the minimum-vertex face-spanning

subgraph problem, we are now in a position to prove the Theorem 4.2.1. Belowwe prove

the Theorem 4.2.l.

Proof. of Theorem 4.2.1: By Lemma 4.2.2, the minimum-vertex face-spanning

subgraph problem is in NP and by Lemma 4.2.3, the minimum-vertex face-spanning sub-

. graph problem is NP-hard. Hence the minimum-vertex face-spanning subgraph problem

is NP-complete. 0

4.3 Summary

In this chapter we have proved that the minimum-vertex face-spanning subgraph problem

is NP-complete. We use two steps to prove the NP-completeness of the minimum-vertex

face-spanning subgraph problem. First, we have shown that the minimum-vertex face-
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spanning subgraph problem is in NP. For this, we have shown that any candidate solution

of the' minimum-vertex face-spanning subgraph problem can be verified in polynomial

time. As a second step, we have proved that the mininium-vertex face-spanning subgraph

problem is NP-hard. For this, we have transformed the connected vertex cover problem

to the minimum-vertex face-spanning subgraph problem in polynomial-time. These above

two steps immediately prove that the minimum-vertex face-spanning subgraph problem is

NP-complete. This is the first time in literature that the minimum-vertex face-spanning

subgraph problem is introduced and the NP-completeness of the minimum-vertex face-

spanning subgraph problem is proved.



Chapter 5

Approximation Algorithms

It is unlikelyto have efficient algorithms for finding optimal solutions for the NP-complete

problems. But there exists numerous practical applications which unfortunately fall in

the infamous NPccomplete class. Hence design of approximation algorithms is an urgent

need. Since the face-spanning subgraph problem and the minimum-vertex face-spanning

subgraph problem are NP-complete, we design approximation algorithms for finding min-

imum face-spanning subgraph and minimum-vertex face-spanning subgraph of a plane

graph in this chapter.

In practical applications of the face-spanning subgraph problem like the gas pipelines

planning problem discussed in Section 1, an input is often a plane graph G such that

each vertex_of,G has degree three or more. We thus consider those plane graphs where

the minimum degree three is at least three in this chapter for designing approximation

algorithms.

In this chapter we introduce a new terminology called "minimal face-spanning sub-

graph". This minimal face-spanning subgraph is used to find approximate solution of the

the face-spanning subgraph problem and the minimum-vertex face-spanning subgraph

problem. This chapter is organized as follows. Section 5.1 formally defines the minimal

face-spanning subgraph and presents a lower tight bound on the number of vertices of a

45
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face-sp;;tnningsubgraph of a plane graph. Section 5.2 gives a linear-time algorithm to find

a minimal face-spanning subgraph of a plane graph and. the upper bound of the algorithm

is calculated in this section and it is shown that the upper bound is tight. Section 5.3

illustrates approximation algorithms to find face-spanning subgraph and minimum-vertex

face-spanning subgraph of a plane graph. The approximation ratio and complexity of

the presented approximation algorithms have also been calculated in Section 5.3. Finally

Section 5.4 discuss the findings of this chapter.

5.1 Minimal Face-Spanning Subgraph

In this section we define a minimal face-spanning subgraph of a plane graph. Let H be

a face-spanning subgraph of G induced by edge set S .~ E. We call H a minimal face-

sp"nning subgmph of G if there is no edge set S' ~ S such that the subgraph induced by

S' is a face-spanning subgraph of G.

Clearly a minimal face-spanning subgraph is a tree. Figure 5.1 illustrates an example

of minimal face-spanning subgraph. The thick lines in Figure 5.1(a) is a minimal face-

spanning subgraph. The thick lines in Figure 5.1(b) is not a minimal face-spanning

subgraph since the subset of this thick lines can induce a face-spanning subgraph.

A plane graph may ha;,e many minimal face-spanning subgraphs. In Figure 5.2(a),

a minimal face-spanning subgraph of cost 4 is drawn by thick lines and in Figure 5.2(b)

another minimal face-spanning subgraph of cost 2 is drawn by thick lines for the same

graph. Note that a minimum face-spanning subgraph of G defined in Chapter 2 is one of

the minimal face-spanning subgraphs of G whose total edge weight is minimum among

all the minimal face-spanning subgraphs. Thus we can find a minimum face-spanning

subgraph of a plane graph G by finding all minimal face-spanning subgraph and choosing

one of the minimal face-spanning subgraphs of G whose total edge weight is minimum

among all the minimal face-spanning subgraphs of G..
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(a) (b)

Figure 5.1: Illustration of (a) a minimal face-spanning subgraph, and (b) a non-minimal

face-spanning subgraph.

A minimum-vertex facecspanning subgraph H of G defined in Chapter 4 may not be

a minimal face-spanning subgraph of G, since the definition of a minimum-vertex face-

spanning subgraph allows cycles in H. However, there exists a minimal face-spanning

subgraph H' of G with the vertex set V(H), and H' can be obtained by removing an edge

from each cycle in H if H has any cycle. Figure 5.3 illustrates an example how to find a

minimal face-spanning subgraph from a minimum-vertex face-spanning subgraph. Figure

5.3(a) shows a simple graph with a minimum-vertex face-spanning subgraph H drawn by

thick lines and Figure 5.3(b) shows a minimal face-spanning subgraph H' drawn by thick

lines obtained by removing an edge e from each cycle of H in Figure 5.3(a).

We now establish a lowe'r bound on the number of vertices of a minimal face-spanning

subgraph of a plane graph. We have the following lemma.

Lemma 5.1.1 Let G = (V, E) be a connected plane graph. Assume that each vertex ofG

has degree three or more. Let H be a minimal face-spanning subgraph induced by S <;;; E

of G. Then IV(S)I 2: (f - 2)/(1':>. - 2), where f is the number of faces of G.

Proof. Let G be a connected plane graph with maximum degree I':>. and f faces. Let

H be a minimal face-spanning subgraph of G induced by S <;; E and S contains kedges.
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(a) (b)

Figure 5.2: (a) A minimal face-spanning subgraph of cost 4, and (b) a minimal face-

spanning subgraph of cost 2.

We prove the above claim using induction on k.

If k = 1, then S contains exactly one edge and hence W(S)[ = 2. In this case S cover

at most 2l:>- 2 faces. This implies (I - 2)/(l:> - 2) :s 2 = W(S)[. Therefore the claim

holds.

Assume that k 2: 2 and the claim holds for all connected plane graphs each of which

ha.~a minimal face-spanning subgraph of fewer than k edges, and suppose that G has a

face-spanning subgraph of K edges. We remove an edge e from S such that the graph

H' induced by 5' = 5 - {e} is connected. Since H' is connected, W(5')1 = W(5)[ - l.

Let G' be the subgraph of G such that G' contains all faces of G covered by 5' and H'

is a minimal face-spanning subgraph of G'. Let l' and l:>' be the number of faces and

the ma.ximum degree of G', respectively. Then l' 2: f - (l:>- 2), since S can cover at

most (l:>- 2) faces more than the faces covered by 5'. Furthermore, l:> 2: l:>'. Since

S' has less than k edges, by induction hypothesis W(5')[ 2: (I' - 2)/(l:>' - 2). Since

l' 2: f - (l:>- 2), l:>2: l:>', and W(5')[ = [V(5)[- 1, the claim immediately follows from

induction hypothesis. o

We have a graph of 9 faces with l:>= 3 as illustrated in Figure 5.4, for which the
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(a) (b)

Figure 5.3: (a) A minimum-vertex face-spanning subgraph H, and (b) a minimal face-

spanning subgraph H' obtained from H.

minimum number of vertices required for a minimal face-spanning subgraph is 7. Thus

the example in Figure 5.4 attains the lower bound, and hence the bound is tight.

Figure 5.4: A graph of 9 faces with 6>= 3 for which the minimum number of vertices
- . -

required for a face-spanning subgraph drawn by thick lines is 7.

5.2 Find-Minimal-Subgraph Algorithm

We now give an algorithm for finding a minimal face-spanning subgraph based on a

spanning tree [HSR9S]. Let G = (V, E) be a connected plane graph, where V and E are

the set of vertices and edges, respectively, and let F be the set of faces of G. Let Va be an

T
••
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outer vertex of C. Let G' be the graph obtained from G by deleting all outer vertices of

G except vo. Let T be a spanning tree of G'. One can observe that T is a face-spanning

subgraph of G. We traverse the tree T and delete each leaf vertex v of T if each of the

faces of C which contains v is covered by any other vertex in T. Deletion of v from T may

generate a new leaf vertex of T. We repeat the operation above for all the leaf vertices of

T including the newly generated leaf vertices. The resulting tree H is our desired minimal

face-spanning subgraph. Using a data structure similar to that described in Lemma 3.2.2

we can obtain a minimal face-spanning subgraph mentioned above in linear time. We

call the algorithm described above Find-Minimal-Subgraph. Figure 5.5 illustrates the

transformation of G to G' along with a minimal face-spanning subgraph H of graph G

drawn by thick lines.

G

(,)

G/

(b)

Figure 5.5: Illustration of the transformation of G to C'. (a) a simple graph G and (b)

G' obtained from C with a minimal face-spanning subgraph H of C drawn by thick lines.

Clearly the following lemma holds on the upper bound of the number of vertices of a

minimal face-spanning subgraph produced by Algorithm Find-Minimal-Subgraph.

Lemma 5.2.1 Let C be a plane graph of n vertices, and let no be the number of outer

vertices of G. Assume that each vertex of G has degree three or more. Then Algorithm

Find- Minimal-Subgraph produce a minimal face-spanning subgraph with at most n - no+1
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ver.tices in lineaT time.
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The upper bound in Lemma 5.2.1 is also tight, since we have an infinite number of

examples attaining the bound; one example is shown in Figure 5.6.

Figure 5.6: A graph of 7 faces with n = 10 and no = 6 for which the minimum number of

vertices required for a face-spanning subgraph is 5.

5.3 Approximation Algorithms

We can use a minimal face-spanning subgraph of a plane graph to find an approximate

solution for the face-spanning subgraph problem and the minimum-vertex face-spanning

subgraph problem. In this section we present approximation algorithms for the face-

spanning subgraph problem and the minimum-vertex face-spanning subgraph problem

along with the approximation ratios and complexity analysis.

5.3.1 Minimum-Vertex Face-Spanning Subgraph Problem

We can take a minimal face-spanning subgraph of a connected plane graph G produced

by Algorithm Find-Minimal-Subgraph as an approximate solution of the minimum-vertex

face-spanning subgraph problem. Then we have the following theorem.

Theorem 5.3.1 Let G = (V, E) be a connected plane graph. Then the appT'Oximation

ratio of Algorithm Find-Minimal-Subgraph fOTfinding minimum-vertex face-spanning sub-

graph is 2(b. - 2).

(

......•.
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Proof. Algorithm Find-Minirnal-Subgraph constructs a minimum-vertex face-spanning

subgraph of G with at most n - no + 1 vertices. By Lemma 5.1.1 a face-spanning subgraph

of G.has at least (J -2)/(6-2) vertices. Hence approximation ratio is (n-no+l)/{(J-

2)/(6 - 2)}. From Euler's Formula for planar graphs, we have f - 2 = m - n. Since

degree of any vertex in G is 2: 3, 2m 2: 3n. This implies (m - n) 2: n/2 and hence

(J - 2) 2: n/2. Therefore the approximation ratio is (n - no + 1)/{(J - 2)/(6 - 2)} ::;

(n - no + 1)/{(n/2)/(6 - 2)} = 2(n - no + 1)(6 - 2)/n::; 2(6 - 2). 0

Since we have used Algorithm Find-Minirnal-Subgraph to find approximate solution of

the minimum-vertex face-spanning subgraph problem and the time complexity of Algo-

rithm Find-Minimal-Subgraph is linear, the time complexity of the approximation algo-

rithm to find approximate solution of the minimum-vertex face-spanning subgraph prob-

leln is linear.

5.3.2 Face-Spanning Subgraph Problem

A minimal face-spanning subgraph produced by Algorithm Find-Minimal-Subgraph can

also be taken as an approximate solution of the minimum face-spanning subgraph problem.

One can ea.'3ilyobserve that approximation ratio of Algorithm Find-Minimal-Subgraph for

finding minimum face-spanning subgraph is {(n-nO)emax} / {{ (J - 2)/(6 - 2) -1 }emin} =

{(n - no)(6 - 2)emax}/{(f - 6)emin}, where emax and emin denote the maximum and

minimum weight of the edges of G. The time complexity of this approximation algorithm

is also linear.

5.4 Summary

In this chapter we have introduced minimal face-spanning subgraph of a plane graph.

This minimal face-spanning subgraph has been used to find approximate solution of the

the face-spanning subgraph problem and the minimum-vertex face-spanning subgraph
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problem. We have established a tight lower bound on the number of vertices of a minimal

face-spanning subgraph of a plane graph. We have also designed a linear-time algorithm

to find a minimal face-spanning subgraph of a plane graph. We have also calculated the

upper bound of the algorithm which is also tight.

We have designed approximation algorithms for finding minimum face-spanning sub-

graph and minimum-vertex face-spanning subgraph of a plane graph. We see that the time

complexities for both the approximation algorithms are linear. The approximation ratio

of the face-spanning subgraph problem and the minimum-vertex face-spaJming subgraph

problem are {(n - no)(6 - 2)emax}/{(J - 6)emin} and 2(6 - 2) respectively.
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Conclusion

In this thesis we deal with a newly introduced graph problem called the face-spanning

subgraph problem. We have proved the hardness of the face-spanning subgraph problem.

We also proved a variation of the face-spanning subgraph problem called the minimum- .

vertex face-spanning subgraph problem is NP-complete. We have introduced minimal

face-spanning subgraph of a plane graph in this thesis. We have established a tight lower

bonnd on the number of vertices of a minimal face-spanning subgraph of a plane graph.

We have also designed a linear time algorithm to find a minimal face-spanning subgraph

of a plane graph. We have calculated the upper bound of the algorithm which is also

tight. We have used minimal face-spanning subgraph to find approximate solution of the

the face-spanning subgraph problem and the minimum-vertex face-spanning subgraph

problem. The approximation ratios and complexities have also been analyzed for the

approximation algorithms. Below we summarize each chapter and its contribution.

In Chapter 1 we have a brief description of the problems we have addressed in this

thesis and discussed our motivation behind solving these problems. We also reviewed the

literature about these problems in the chapter. We have presented that how the practical

applications like establishing gas pipelines in a locality, establishing power transmission

lines in a city, power wires layout in a complex circuit, planning irrigation canal networks
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for irrigation systems etc can be modeled using graph theoretical terms. We have also

described our main result of the this in this chapter; We have described the scope of this

thesis in this chapter too.

In Chapter 2 we have introduced basic graph theoretical terminologies that have been

used throughout the thesis. We have presented a brief description of two known NP-

complete problems, connected vertex cover problem and weighted tree cover problem in

this chapter.

IIi Chapter 3 we proved that the face-spanning subgraph problem is NP-complete. To

prove that the face-spanning subgraph problem is NP-complete, we use two steps. First,

we have shown that the face-spanning subgraph problem is in NP. As a second step, we

prove that the face-spanning subgraph problem is NP-hard. These steps immediately

proved that the face-spanning subgraph problem is NP-complete.

In Chapter 4 we proved a variation of the face-spanning subgraph problem, which we

cftll the minimum-vertex face-spanning subgraph problem is NP-complete. The problem

often arises in applications like establishing base transceiver stations in wireless networks,

establishing power distribution centers in a city etc where the setup cost for each es-

tablishment is huge. We have proved that the minimum-vertex face-spanning subgraph

problem is NP-complete. First, we have shown that the minimum-vertex face-spanning

subgraph problem is in NP. As a second step, we have proved that the minimum-vertex

face-spanning subgraph problem is NP-hard. These two steps immediately proved that

the minimum-vertex face-spanning subgraph problem is NP-complete.

In Chapter 5 we have introduced minimal face-spanning subgraph of a plane graph.

This minimal face-spanning subgraph is used to find approximate solution of the the face- .

spanning subgraph problem and the minimum-vertex face-spanning subgraph problem.

We have established a tight lower bound on the number of vertices of a face-spanning

subgraph of a plane graph. We have designed a linear time algorithm to find a minimal

face-spanning subgraph of a plane graph. We have calculated the upper bound of the
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algorithm which is also tight. We have presented an approximation algorithm for finding

minimum face-spanning subgraph of a plane graph. The approximation ratio of the pre-

sented approximation algorithm is {(n - no)(b. - 2)emax} I{(J - b.)emin} and the time

cOlllplexityof the algorithm is linear. We have also designed an approximation algorithm

for finding a minimum-vertex face-spanning subgraph of a plane graph. The approximac

tion.ratio of the presented approximation algorithm is 2(6 - 2) and the time complexity

of the algorithm is linear.

This is the first time that the face-spanning subgraph problem and the minimum-vertex

face-spanning subgraph problem are introduced in literature and and the NP-completeness

of both the problems are proved. Linear-time approximation algorithms have also been

prcsented in this thesis. However, the following problems related to the face-spanning

subgraph problem and the minimum-vertex face-spanning subgraph problem are still open.

1. Develop an approximation algorithm for finding a minimum face-spanning subgraph

of a plane graph with better approximation ratio.

2. Develop an approximation algorithm for finding a minimum-vertex face-spanning

subgraph of a plane graph with better approximation ratio.

3. Design an algorithm to find all minimal face-spanning subgraphs of a plane graph.



Bibliography

[AFL05] F. N. Abu-Khzam , H. Fernau and M. A. Langston, Asymptotically Faster Al-

gorithms for' Parameterized face cover, International Workshop on Algorithms and

Complexity in Durham, 4, pp. 43-58, 2005.
,

[AHH93] E. M. Arkin, M. M. Halldorsson and R. Hassin, Approximating the tree and tour

covers of a graph, Information Processing Letters, 47(6), pp. 275-282, 1993.

[AHU74] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The design and analysis of com-

puter' algorithms, Addison-Wesley, Reading, MA, 1974.,

[AL04) F. N. Abu-Khzam and M. A. Langston, A direct algorithm for the parameterized

face cover problem, Proceedings of IWPEC 2004, LNCS 3162, pp. 213-222, 2004.

[CCPS9S] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver, Com-

puter' Optimization, John Wiley & Sons, Inc., New York, 1998.

[CLR90] T. M. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms,
MIT Press, 1990.

[FD04J T. Fujito and T. Doi, A 2-approximation NC algor"ithmfor connected vertex cover

and tr'ee cover, Information Processing Letters, 90(2), pp. 59-63, 2004.

[GJ77] M. R. Garey and D. S. Johnson, The rectilinear steiner tree problem is NP-

complete, SIAM Journal on Applied Mathematics, 32(4), pp. 826-834, 1977.

57



BIBLIOGRAPHY
5S

[GJ79] M. R. Garey and D. S. Johnson, Computers and Intertractability: A guide to the

theory of NP-completeness, W. H. Freeman, San Francisco, New York, 1979.

[GK9S] S. Guha and S. Khuller, Approximation algorithms for connected dominating sets,

Algorithmica, 20(4), pp.374 - 3S7, 1995.

[HSR9SJ E. Horowitz, S. Sahni and S. Rajasekaran, Fundamentals of Computer Algo-

rithms, Galgotia Publications Pvt. Ltd., New Delhi, 1995.

[K72] R. M. Karp, Reducibility among combinatorial problems, Complexit.y of Computer

Computations, R. E. Miller and J. W. Thatcher(eds.), Plenum Press, New York, pp.
S5-104, 1972.

[KKPS03J J. Konemann, G. Konjevod, O. Parekh and A. Sinha, Improved approximations

for tour and tree covers, Algorithmica, 3S(3), pp. 441-449, 2003.

[NR04J T. Nishizeki and M. S. Rahman, Planar Graph Drawing, World Scientific, Singa-
pore, 2004.

[VOl] V. V. Vazirani, Approximation Algorithms, Springer- Verlog, Berlin, 2001.

[W01] D. B. West, Introduction to Graph Theory, Prentice-Hall, Inc., New Jersey, 2001.

[YES1] R. B. Yehuda and S. Even, A Linear-Time Approximation Algorithm for the

Weighted Vertex Cover Problem, Journal of Algorithms, 2, pp. 19S-203, 19S1.

'"'I



Index

adjacent, 13

approximation

algorithm, 20

ratio, 20

complexity class, 17

NP,17

NP-complete, 19

NP-hard, 18

P, 17
component

connected, 14

connected vertex cover, 22

minimum, 23

problem, 23

----cost of-subgraph, 16 -

covers a face, 16

covers all the edges, 16

cycle, 14

decision problem, 16

degree, 13

maximum, 13

59

edge weighted connected plane graph, 16

face, 15

face cover, 6

problem, 6

face-spanning subgraph, 2

NP,26

- NP-complete, 26, 33

NP-hard, 28, 33

applications, 2

approximation algorithm, 52

minimum, 2

problem, 2

problem definition, 24

graph

connected, 14

disconnected, 14

multi, 13

planar, 15

plane, 15

simple, 13

incident, 13



,

INDEX

loop, 13

minimal facc-spanning subgraph, 46

algorithm, 49

lower bound, 47

upper bound, 50

minimum-vertex face-spanning subgraph,

9

NP,37

NP-complete, 37, 43

NP-hard, 38, 43

applications, 9

approximation algorithm, 51

problem, 9

problem definition, 36

neighbor,..13

open problems, 56

optimization problem, 17

path, 14

closed, 14

reduction, 18

subgraph, 14

edge induced, 15

spanning, 14

t.ree, 14

spanning, 15

tree cover, 16, 21

vertex cover, 6

problem, 6

weighted tree cover, 21

minimum, 21

problem, 21

60


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070

