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Abstract

Statistical testing gives us opporunity to have statistical inferences such as reliability,
mean time to failure (MTTF) etc. for software systems and Markov chain usage model
gains it’s credibility in this field. Markov chain usage model has several benefits. It
allows generating test sequences from usage probability distributions, assessing statistical
inferences based on analytical results associated with Markov chains and also to derive
stopping criterion of the test process. But the main problem in this process is to model
software behavior in a single Markov chain. For large software systems the model size
i.e. the number of sates become unwieldy and it becomes infeasible to apply this method

in generating test cases as well as measuring reliability.

~ Two Markov models called usage chain and testing chain are developed from the
example software. The disciminant value of the two chains is determined to analyze
software reliability. As the software becomes more complex the model size grows
quickly, which is known as state explosion problem. To overcome this problem we
present a technique to measure software reliability by combining the ideas drawn from
stochastic modeling, statistical testing using Markov chain usage model and component
based software testing. We have taken example from database based application software,
find its modules, in this case forms, and measure reliability of each forms using Markov
chain usage model. We then analyze system reliability from those form’s reliabilities
according to their usage probabilities. Our experimental efforts lead us to a more practical

and effective approach for software reliability and quality assurance.
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Chapter 1

Introduction

1.1 Introduction

Like hardware reliability, software reliability is based on modes of failure. Hardware
modes of failure — wear, design flaws, and unintentional environmental phenomena — are
more tangible because hardware is a physical entity. In fact, it is this very physical quality
that prompts hardware designers to assume that hardware cannot be perfect. Ironically,
the same designers often assign perfect reliability to a software component because it

can’t “wear out,” for example.

But software does have a mode of failure, which is based on the assumption that
design and development are not perfect process. The mistakes made during these
processes manifest as faults in the code, which are revealed as inputs are processed. That
is failure occurs when the software does not perform according to specification for an
input history.

It is important to recognize that there is a difference between hardware failure rate and
software failure rate. For hardware, as shown in Fig. 1.1, when the component is first
manufactured, the initial number of faults is high but then decreases as the faulty
components are identified and removed or the components stabilize. The component then
enters the useful life phase, where few, if any fauls are found. As the component

physically wears out, the fault rate starts to increase.

\_

Bum in Dsefal Life Wear out Integration | UsefulLife 1 Obsolete
] 1
&
Hardware Falure Rate Software Falure Rate

Fig. 1.1: Failure Rates
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Software however, has a different fault or error identification rate. For software, the
error mate is at the highest level at integration and test. As it is tésted, errors are identified
and removed. This removal continues at a siower rate during its operational use; the
number of erfors continually decreasing, assuming no new errors are introduced.
Software does not have moving parts and does not physically wear out as hardware, but is

does outlive its usefulness and becomes obsolete.

To quantify software reliability in a meaningful way, software use must be modeled
as a random process in which a use is selected according to some probability distribution,
or use distribution. Reliability then becomes the probability that the software will perform
according to specification for a randomly selected use. When the software fails to meet

specification during use, a failure occurs.

Reliability can be a useful metric. We can use it to help guide software development.

We can also use it to assess a program’s fitness for use by conducting experiments to

establish empirical evidence of quality.

Reliability can be defined in two different ways. Reliability as a function of time,
perhaps the more traditional definition, addresses the design of software that will operate
according to specification for a period of fime. But we can also use a simpler definition —
reliability is the probability that a randomly chosen use (test case) will be processed
correctly. Using this latter definition the mean time to failure is the average number of

uses between failures. MTTF and reliability can be related mathematically in the models.

1.2 Literature Review

The work on software reliability models started in 70’s, the first model being
presented in 1972, Today the number of existing models exceeds hundred with more
models developed every year. Still there does not exist any model that can be applied in
all cases. Models that are good in general are not always the best choice for a particular
data set, and it is not possible to know in advance what model should be used in any

particular case [1, 2].

Since software reliability models are used in different phases of the Software
Development Life Cycle (SDLC), the reliability models are broadly classified under the

following categories:



Early prediction models uses characteristics of the software development process
from requirement to design and test, and extrapolate this information to predict the

behavior of software during operation [3, 4, 5].

Software reliability growth models (SRGM) captures failure behavior of software
during testing and extrapolates it to determine its behavior during operation. Hence this
category of models uses failure data information and trends observed in the failure data to
derive reliability prediction. The SRGMs are further classified as Concave models and S-
shaped models [1, 6, 7]. The different types of SRGMs are shown in Fig. 13. Goel
Okumoto model is one of the most widely used SRGM [8]. In this model, the failure
arrival process is assumed to be non-homogeneous Poisson process (NHPP). The
expected cumulative failures, ealled the mean function m(f) in NHPP, over time ¢ is given
by the formula: m(s)= N(1—e ), where the model constants N (total number of defects

in the system) and b (model curvature) need to be estimated from the observation data.

Input domain based models use properties of the input domain of the software to
derive a correctness probability estimate from test cases that executed properly [1, 9]

Nelson model [10] is one of the most widely used input domain reliability models and it

can be obtamed as: R =1—£=n _f. When usage time ¢, is avaiiable for each hit 7, the -

n n

‘summary reliability measure, mean-time-between-failurcs (MTBF), can be calculated as:
MYBP":thj_
S5

Architecture  based models put emphasis on the architecture of the software and
derives re]iability estimates by combining estimates obtained for the different modules of
the software. The architecture based software reliability models are further classified into
State based models, Path based models and Additive models {11, 12]. The details of some

examples of this type of models are given in chapter 3.

Other reliability models are known as hybrid models [1}. Hybnd black box models
combine the features of input domain based models and software reliability growth
models. Hybrid white box models use selected features from both white box models and
black box models. However these models consider the architecture of the system for

reliability prediction, therefore these models are considered in hybrid white box models.

L)



However, another altenative model for reliability measurement is Markov chain
usage model, though it is not yet offered as a complete reliability model for software [13,
14]. Tt is the kind of state based reliability model under the category of architecture based
reliability model shown in Fig. 1.3. Littlewood model [15] is one of the earliest models of
this type. An imeducible Semi-Markov Process (SMP) models the software architecture.
This was the generalization of the previous work [16] that describes software architecture

with continuous time Markov chain {CTMC).

r Software Development Life Cydle I

|
' ! v '

Requirement Design l Implementation | | Testing J Validation
y vy L] ¥ Yy ¥ A
Early Prediction Architecture Hybrid White Hybrid Black Software Reliability Input
Modes based models Bax Approaches Box Approaches Growth Models Domain
Based
¢ Models
+ PatBased Nodel y Y ‘
« Rome Laboratory Model « A fime structure based » Inpul domain based
+ Raleigh Model model for estimaling software reliability » Netson Model
»  Musa Prediction Mode! saftware refiability growth model L] quukalas Modet
« Industry Data Collection * Weiss & Weyuker
» Historical Data Collection r Model
I SshapedModels | | Concave Models l

Y h Y #

Slate Based Models | [ Path Based Models l l Adiive Models | o MusaBasc Modd
« (Goad Okumcto NHPP Model
L L ¥ « M Okumoto NHPP Model

Musa Poisson Execution Time

» Anarhitecture-based + Shooman « Yamada S-shaped Model Model
software reliability mode! model + Gompertz Mode! « Jelinski Moranda Model
» Heterogeneous software « Krishnamurthy « Liltlewood Verall Model
reliabllity modet and Mathur » Weibu! Model
+ Laprie mode! moddl ] .
. Godhaeel 3. madel « Yaooub, Cukic — + RaleighModel
. le e, al, saliabil and Amrmar = Cwre
Goinale el . rliabily « Xie and Wohlin model
simulation approach moded

Fig. 1.2: Classification of Software Reliability Models [1]

Reliability measurement according to software usage [20] is another Interesting arca
found in the literature. Several methods have been found but two of them get popularity.

One is operationai profile (OP) method and the other is Markov chain wsage model.



Operational profile [7, 21, 22] is simply the description of expected product usage. An
ideal operational profile method would be like this [21]:

o Setup every customer’s system in the test lab (all at once).
» Use each system exactly like those customers.

« Count failures and track usage.

» Compute and mode] the resulting metrics.

On the other hand Markov chain usage model have used successfully in several
applications [23, 24, 25], involving both realtime embedded systems and user-oriented
applications. Whittaker [13] developed an imeducible finite state Markov chain called
usage chain from the software behavior and another Markov chain called testing chain to
éncode the testing history while measuring reliability and other statistical inferences like
mean-time-to-failure etc. Latter on Kirk Sayre developed arc-based reliability models
[26] combining the Miller reliability model {27} and Markov chain usage model. This
reliability is known as single action reliability.

1.3 Problems of Existing Works

The problems of existing works are summaries as follows:

i) Present works on reliability using Markov chain usage models only give a set of
equations for analytical purpose. The examples taken to explain the model were

small ones. So it is not clear whether it is applicable for large software systems.

i) If the software system is large the number of states in the Markov chain
%)ecomes large and it becomes infeasible to generate test cases and measure
reliability.

iii) Stochastic modeling of software is not well defined. For larger systems the
Markov chain is developed in a hierarchical fashion by selecting a primary
modeling mode, creating a Markov chain for it (which becomes the top-level in
the hierarchy) and then adding the remaining operational modes by expanding
states in the top-level model.



iv) There are hundreds of reliability models in literature but not a single model is
suitable for all applications. So there is a lack of practical and effective approach

to measure software system reliability according to its usage behavior.

1.4 Scope of the Thesis

Since statistical testing based on Markov chain usage model is not feasible for large

software system we propose a hybrid approach that combines the ideas from statistical

testing, stochastic testing and component bases software testing. The objectives of the
thesis are summarized as follows:

i) Develop two models called usage model and testing model from software

specification.

iy Measure reliability of the example software.

i1} Analyze the disciminant value of two models and determine the stopping point
of software testing and release of software.

iv) Find the complexities in measuring reliability for Jarge software system.

v) Propose a methodology of single action reliability analysis with improved

technique to determine the similarity between usage chain and testing chain,

vi) Find a more practical and effective approach for software testing and quality

assurance.
The remaining chapters of this thesis are organized as follows:

¢ Chapter 2 provides background knowledge on issues of software quality,

different types of testing techniques and testing stages or le vels.

e Chapter 3 presents some architecture based software reliability models. Two
state based models such as Littlewood model and Gokhale model, two path
based model such as Shooman model and Krshnamurthy model and one

additive model Xie and Wholin model are presented.

e Chapter 4 presents a detailed description of meodeling and measuring software
reliability of our example software. This chapter shows how Markov chain

usage model is used to measure reliability, mean-time-to-failure and to find

stopping criteria.



""e Chapter 5 shows how Miller reliability model is combined to Markov chain
usage model in measuring reliability and finding an analytical stopping criterion.
In this chapter we measure reliability of a form/partition of our example

software.

e Chapter 6 presents the existing methodologies of determining stopping criterion
and the reasons we choose Sayre’s criterion as our stopping criterion. It also

gives the experimental resulis from our example software.

e Finally in chapter 7 contributions, limitations and fiture works of the research

are presented. 9



Chapter 2

Testing Techniques

2.1 Issues of Software Quality

Quality is defined as the bundle of attributes present in a commodity and, where
appropriate, the level of the attribute for which the consumer (software users) holds a
positive value. Defining the attributes of software quality and determining the metrics to
assess the relative value of each attribute are not formalized processes. Compounding the
problem is that numerous metrics exist to test each quality attribute. Because users place
different values on each atribute depending on the product’s use, it is important that
quality attributes be observable to consumers. However, with software there exist not
only asymmetric information problems (where a developer has more information about
quafty than the consumer), but also instances where the developer truly does not know
the quality of his own product. It is not unusual for software to become technically
obsolete before its performance attributes have been fully demonstrated under reatwork
operation conditions. As software has evolved over time so has the definition of software
quality attributes. McCall et. al. [28] first attempted to assess quality attributes for
software. His software quality model characterizes attributes in terms of three categories:
product operation, product revision, and product transiton.  In 1991, the International
Organization for Standardization (ISO}) adopted ISO 9126 as the standard for software
quality (JSO, 1991).

It is structured around six main aftributes listed below (sub-characteristics are listed in

parenthesis):
1. Functionality (suitability, accurateness, interoperability, compliance, security)
2 Reliability (maturity, fault tolerance, recoverability)
3. Usability (understandability, learnability, operability)
4. Efficiency (time behavior, resource behavior)

5. Maintamability (analyzability, changeability, stability, testability)



6. Portability (adaptability, instailability, conformance, replaceability)

Although a general set of standards has been agreed on, the appropriate metrics to test
how well software meets those standards are still poorly defined. Publications by IEEE
(1988, 1996) have presented numerous potential metrics that can be used to test each

atiribute. These metrics include
1. Fault density,
2. Requirements corpliance,
3. Testcoverage, and

4. Mean time to failure.

The problem is that no one mefric is able to unambiguously measure a particular
quality attribute.  Different metrics may give different rank orderings of the same

attribute, making comparisons across products difficult and uncertain.
2.2 Software Testing

Software testing is the process of applying metrics to determine product quality.
Software testing is the dynamic execution of software and the comparison of the results of
that execution against a set of pre-determined criteriz. “Execution” is the process of
running the software on a computer with or without any form of instrumentation or test
control software being present.  “Pre-determined criteria” means that the software’s
capabilities are known prior to its execution. What the software actually does can then be
compa:ed‘against the anticipated results to judge whether the software behaved correctly
[29].

In many respects, software testing is an infrestructure technology or “infra-
technology.”  Infra-technologies are technical tools, including scientific and engineering
data, measurement and test methods, and practices and techniques that are widely used in
industry [30]. Software testing infra-technologies provide the tools needed to- measure

conformance, performance, and interoperability during the software development. . These

tools aid in testing the relative performance of different sofiware configurations and.

mitigate the expense of reengineering software after it is developed and released.

Software testing infra-technologies also provide critical information to the sofiware user:

-



regarding the quality of the software. By increasing quality, purchase decision costs for

software are reduced.

2.3

Testing versus Debugging

Testing and debugging are often lumped under the same heading, and it’s no wonder

that their roles are often confused: for some, the two words are synonymous; for others,

the phrase “test and debug” is treated as a single word. The purpose of testing is W

show that a program has bugs. The purpose of debugging is to find the eror or

misconception that led to the program’s failure and to design and implement the program

changes that correct the eror. Debugging usually follows testing, but they differ as to

goak, methods, and most important, psychology [29]:

1.

Testing starts with known conditions, uses predefined procedures, and has
predictable outcomes; only whether or not the program passes the test is
unpredictable. Debugging starts form possibly un-known initial conditions, and
the end cannot be predicted, except statistically.

Testing can and should be planned, designed, and scheduled. The procedures  for,

and duration of, debugging cannot be so constrained.

Testing is a demonstration of emor or apparent correctness. Debugging is a

deductive process.

Testing proves a programmer’s failure. Debugging is the programmer’s
vindication.

Testing, as exccuted, should strive to be predictable, dull, constrained, rigid and
inhuman. Debugging demands intuitive leaps, conjectures, experimentation, and
freedom.

Much of testing can be done without design knowledge. Debugging is impossible
without detailed design knowledge.

An outsider can often do testing. An insider must do debugging.

Although there is a robust theory of testing that establishes theoretical limits to
what testing can and can’t do, debugging has only recently been attacked by

theorists — and so far there are only rudimentary results.

10



9. Much of test execution and design can be automated. Automnated debugging is
still a dream.

2.4 Function versus Structure

Test can be designed from a functional or a structural point of view. In functional
testing the program or system is treated as a black box. It is subjected to inputs, and its
outputs are verified for conformance to specified behavior [29, 31]. The software’s user
should be concemed only with functionality and features, and the program’s
implementation details should not matter. Functional testing takes the user’s point of

View.

Structural testing does look at the implementation details. Such things as
programming style, control method, source language, database design, and cading  details
dominate structural testing; but the boundary between function and structure is fuzzy.
Good systems are built in layers — from the outside to the inside. The user sees only the
outermost layer, the layer of pure function. Each layer inward is less related to the
system’s functions and more constrained by its structure; so what is structure to one
layer is fumction to the next. For example, the user of an online system doesn’t know that
the system has a memory — allocation routine. For the user, such things are structural
details. The memory — management routine uses a link — block subroutine. The memory
— management routine’s designer writes a “functional” specification for a link — block
subroutine, thereby defining a further layer of structural detail and function. At deeper
levels, the programmer views the operation System as a structural detail, but the

operation system’s designer treats the computer hardware logic as the structural details.

There’s no controversy between the use of structural versus functional tests: both are
useful, both have limitations; both target different kinds of bugs. Functional tests can, in
principle, detect all bugs but would take infinite time to do so. Structural tests are
inherently finite but cannot detect all errors, even if completely executed. The art of

testing  in part is in how you choose e between structural and functional tests. Some

structural and functional testing techniques are discussed below.

2.4.1 Flow Graphs and Path Testing



Path testing is the name given to a family of test techniques based on judiciously

selecting a set of test paths through the program. If the set of paths is properly chosen,

then we have achieved some measure of test thoroughness. For example, pick enough

paths 1o assure that every source statement has been executed at lease once. Path testing

is most applicable to new software for unit testing. It requires complete knowledge of the

program’s structure (i.e., source code). Programmers to unit-test their own code most

often use it. The effectiveness of path testing rapidly deteriorates as the size of the

software aggregate under test increases. Path testing is rarely, if ever, used for system

testing. For the programmer, it is the basic test technique.

Process

Decisions

Junctions

Case Statemenl

2.4.1.1 Contrel Flowgraphs

Do

> Process

A

\
—0O—O—

CASIE-OF -

m CASEL

()

—/

@ CASE2 >

! () CASEN

Fig. 2.1; Flowgraph Elements

The control flowgraph (or flowgraph alone when the context is clear) is a. graphical

representation of a program’s control structure. it uses the elements shown in Fig. 2.1:

process blocks, decisions and junctions. The confrol flowgraph is similar to the- earlier

flowchart, with which it is not to be confused.

-



Process block: a process block is a scquence of program statements uninterrupted.
by either decisions or junctions. Formally, it is a sequence of statements such that
if any one statement of the block is executed, then all staicments thereof are
executed. Less formally, a process block is a piece of straight-lne code.” A
process block can be one source statement or hundred. The point is that, bugs
side, once a process biock is initiated, every statement within it will be executed.
The term “process’ will be used interchangeably with “process block”. From the
poit of view of test cases designed from control flowgraphs, the details of the
operation within the process are unimportant if those details do not affect the
control flow. If the processing does affect the flow of control, the effect will be

manifested at a subsequent decision of case statement.

Decisions and case statements: A decision is a program point at which the
control flow can diverge. Machine language conditional branch and conditional
skip instructions are examples of decisions. The FORTRAN IF and the Pascal IF-
THEN-ELSE constructs are decisions, although they also contain processing
components. A case statement is a multi-way branch or decision. Examples of
case statements include a jump table in assembly language, the FORTRAN-
computed GOTO and @signed GOTO, and the Pascal CASE statement. From the
point of view of test design. there are no fundamental differences between

decisions and case statements.

Junctions: A junction is a point in the program where the control flow can
merge. Examples of junctions are: the target of a jump of skip instruction in
assembly language, a label that is the target of GOTO, the END-IF and
CON;I"[N UE statements in FORTRAN, and the Pascal statement labels, END and
UNTIL.

2.4.1.2 Notational Evelution

The control flowgraph is a simplified (ie, more abstractQ representation of the
program’s structure. To understand its creation and use, we’ll go through an example,
starting with Fig. 22 - a little horror written in a FORTKAN — like program design
language (PDL). The first step in translating this to a control ﬂéwgmph is shown in Fig.
2.3, where we have the typical one-for-one classical ﬂowcha&: ]‘Ii Fig. 24 we merged the

process steps and replaced them with the ingle process box. We now have a control

-
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flowgraph. But this repesentation is still too busy. We simplify the notation further to

achieve Fig. 2. 5 where for the first time we can really see what the control flow looks

like.

CODE* (PDL)
INPUT X, Y
7 =X+ X
vV := X - Y
IF 2 »>= 0 GOTO 5AM
JOE: Z = Z -1
SAM: Z = Z + V
FOR U = 0 TO Z
V(U), U{V) = (Z + V) *U
IF Vi(U) = 0 GOTO JOE
Z =2 -1
IF 2 = 0 GOTO ELL
U :=0 + 1
NEXT U
V(U - 1) := V(U + 1) + U(V - 1)
ELL: V(U + U(v))y =0 =¥
IF U = ¥V GOTQ JOE
IF U > V THEN U := Z
Z = U
END

Fig. 2.2: Program Example (PDL)

Fig. 2.5 is the way we usually represent the program’s control flow-graph. There are
two kinds of components: circles and arrows that join circles. A circle with more than
one arrow leaving it is a decision; a circle with more than one aow entering is a
junction. We call it e circles nodes and the arrows links. Note atso that the entry and exit
are also _aenoted by circles and are thereby also considered to be nodes. Nodes are
usually numbered or labeled by using the original program labels. The link name can be
formed from the names of the nodes it spans, Thus a link from node 7 to nod e 4 is called
fink (7, 4), whereas one from node 4 to node 7 is called link (4, 7). For parallel links
between a pair of nodes, (nodes 12 and 13 in Fig. 2.5) we can use subscripts to denote
ecach one or some unambiguous notation such as (12, 13, upper) and (12, 13, lower). And
alternate way to name links that avoids: this problem is to use a unique fowercase letter

for each like in the flowgraph.
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Fig. 2.3 : One-to-one Flowchart for Fig. 2.2 Example



Fig. 2.5: Simplified Flowgraph Notation



2.4.1.3 Path Testing

A path through a program is a sequence of instructions or statements that starts at an
entry, junction, or decision and ends at another, or possibly the same, junction, decision,
or exit. A path may go through several junctions, processes, or decisions, one or more
times. Paths consist of segments. The smallest segment is a link — that is, a single
process that lies between two nodes (e.g., junction — process - decision). A path segment
is a succession of consecutive links that belongs to the same path. The length of a path is
measured by the number of links in it and not by the number of instructions or
statements exccuted along the path. The name of a path is the name of the nodes along
the path. For example, the shortest path from entry to exit in Fig. 2.5 is called
_f‘(1,3,5,6,7,8,10,l1,12,13,2)”. The terms entry/exit path and compete path are also used
in the literature to denote a path that starts at an entry and goes to an exit. Qur interest in
entry /exit paths in testing are pragmatic because: (1) It's difficult t set up and execute
paths that start at an arbitrary statement; (2) it’s hard to stop at an arbitrary statement
without setting traps or using patches and (3) entry/exit paths are what we want fo test

because we use routines that way.
2414 Fundamrental Path Selection Criteria

There are many paths between the entry and exit d a typical routine. A lavish test
approach might consist of testing all paths, but that would not be a complete test,
because a bug could create unwanted paths or make mandatory paths unrexecutable. And
just because all paths are right doesn’t mean that the routine is doing the required
processing along those paths. Such possibilities aside for the moment how might we

define “copplete testing™?
1. Exercise every path from entry to exit.
2. Exercise every statement or instruction at least cnce.
3. Exercise every branch and case statement, in each direction, at least onee.

2.4.1.5 Path Testing Criteria

Any testing strategy based on paths must at least both exercise every instruction and

take branches in all directions. A set of tests that does this is not complete in an dsolute

sense, but it is complete in the sense that anything less must leave something untested.
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We have, therefore, explored three different testing criteria or strategies out of a

potentially infinite family of strategics. They are:

1. Path Testing (P)) — Execute all possible control flow paths through the
program: typically, this is restricted to all possible entry/exit paths through
the program. If we achieve this prescription, we are said to have achieved

100% path coverage. This is the strongest criterion in the path-testing strategy

family: it is generally impossible to achieve.

2. Statement Testing (F) — Execute all statements in the program at least once

under some test. If we do enough tests to achieve this, we are said to have
achieved 100% statement coverage. An altemnate, equivalent characterization
is to say that we have achieved 100% node coverage. This is the weakest
criterion in the family; testing less than this for new software is

unconscionabk and should be criminalized.

Branch Testing (P) — Execute enough tests to assure that every branch alternative
has been exercised at least once under some test. If we do enough tests fo achieve this
prescription, then we have achieved 100% branch coverage. An altemative
characterization is to say that we have achieved [00% link coverage. For structured
software, branch testing and therefore branch coverage strictly includes statement

coverage,

2.4.1.6 Loop Testing

Loops are the cormerstone for the vast majority of all algorithms implemented in
software. ‘And yet, we often pay them little heed while conducting software tests. Loop
testing is white box testing ie. structural testing technique that focuses exclusively on
the validity of loop construct. Four different classes of loops can be defined: simple
loops, concatenated loops, nested loops and unstructured loops. The loops are shown in

Fig.2.6.

Simple loaps: The following set of tess can be applied to simple loops, where 7 is

the maximum number of allowable passes through the loop.
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1. Skip the loop entirely.

2. Ounly one pass through the loop.

3, Two passes through the loop.:

4. m passes through the loop where m <n.
5. n—1,n,n+ | passes through the loop.

Nested loops: if we were to extend the test approach for simple loops to nested loops,
the number of possible tests would grow geometrically as the level of nesting increases.

This would result in an impractical number of tests. Beizer [29] suggests an approach

that will help to reduce the number of test:
i Start at the innermost loop. Set all other loops to minimum values.

2 Conduct simple loop tests for the innermost joop while holding the outer loops at
{heir minimum iteration parameter (e.g. loop counter) values. Add other tests for

out-of-range or exciuded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer

Joops at minimum values and other nested loops to “typical” values.

4. Continue until all loops have been tested.

Concatenated loops: concatenated loops can be tested using the approach defined for
simple loops, if each of the loops is independent of the other. However, if two loops are
concatenated and the loop counter for loop / is used as the initial value br loop 2, then
the loops are not independent. When the loops are not independent, the approach applied

to nested loops is recommended.

Unstructured loops: Whenever possible, this class of loops should be redesigned to

reflect the use of the structured programming constructs.
2.4.2 TransactionFlow Testing

The control flowgraph was introduced as 2 structural modef. Here the same
conceptual components and methods over a different kind of flowgraph, the transaction
flowgraph — this time though, to create a behavioral model of the program that leads to

functional testing. The transaction flowgraph is, if you will, a model of the structure of




the system's behavior. Transaction flows and transaction-flow testing are io the

independent system tester what control flows and path testing are to the programmer.

2.4.2.1 Transaction Flows

A transaction is a unit of work seen from a system user’s point of view. A transaction
consists of a sequence of operations, some of which are performed by a system, persons,
or devices that are outside of the system. Transactions begin with birth — that is they are
created as a result of some extemal act. At the conclusion of the transaction’s processing,
the transaction is no longer in the system, except perhaps in the form of historical
records. A transaction for an online information retrieval system might consist of the

following steps or tasks:
1. Accept input (tentative birth)
2. Validate input (birth)
3. Transmit acknowledgement to requester
4. Do input processing
5. Search file '
6. Request directions form user
7. Accept input
8. Validate input
9. Process requester
10. Update file
li. Transmit output
12. Record transaction in log and cleanup (death)

The user sees this scenario as a single transaction. From the system’s point of view,

the transaction consists of twelve steps and ten different kinds of subsidiary tasks.

Most online systems process many kinds of transaction. For example, an automnatic
bank teller machine can be used for withdrawals, deposits, bill payments and moncy
transfers. Furthermore, these operations can be done for a checking account, savings

account, vacation account, Christmas club and so on. Although the sequence of
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operations may differ form transaction to transaction, most transactions have common
operations. For example, the autornatic teller machine begins every transaction by
validating the user’s card and password number. Tasks in a transaction flowgraph
correspond to processing steps in a control flowgraph. As with control flows, there can

be conditional and uncorditional branches and junctions.

2.4.2.2 Get the Transaction Flows

Complicated systems that process a lot of different complicated transactions should
have explicit representations of the transaction flows, or the equivalent, documented.
Transaction flows are like control flowgraphs, and consequently we should expect to
have them in increasing levels of detail. It is correct and effective to have subflows
analogous o subroutines in control flow-graphs, although there may not be any

processing module that corresponds to such subflows.

2.4.2.3 Path Selection

Select a covering set of paths based on finctionally sensible transactions as you
would for control flowgraphs. Confirm these with the designers. Having designed those
(easy) tests, now we do exactly the opposite of what we should have done for unit tests.
We try to find the most tortuous, longest, strangest path from the entry to the exit of the
transaction flow. We create a catalog of these weird paths; go over them not just with the
high level designer who laid out the transaction flows, but also with the next-level
designers who are implementing the modules that will process the transaction. It can be
gratifying experience, even in a good system. The act of discussing the weird paths will
expose missing interlocks, duplicated interlocks, interface problems, programs working
at cross-purposes, duplicated processing — a lot of stuff that would otherwise have shown

up only during the final acceptance tests, Or worse, after the system was operating.
2.4.3 Data-Flow Testing

Data-flow testing is the name given to a famiy of test strategies based on selecting
paths through the program’s control flow in order to explore sequences of events related
to the status of data objects. For example, pick enough paths to assure that every data
object has been nitialized prior to use or that all defined objects have been used for -

something.
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2.4.3.1 Data Object State and Usage

Data objects can be created, killed and/or used. They can be used in two distinct was:
in a calculation or as part of a control flow predicate. The following symbols denote
these possibilities:

d — defined, created, initialized, etc.

k — kitled, undefined, released.

v — used for something.

¢ — used in a calculation.
p — used in a predicate.

Defizred — An object is defined explicitly when it appears in a data declaration or
implicitly (as in FORTRAN) when it appears on the left-hand side of an assignment

statement,

Killed or Undefined ~ An object is killed or undefimed when it is released or
otherwise made unavailable, or when its contents are no longer known with certitude.
For example, the loop control variable in FORTRAN is undefined when the loop is
“exited; ‘release of dynamically allocated objects ‘back “to the availability pool ‘is
“illing’ or ‘un-defining’; return of records; the old top of the stack after it is popped
a file is closed. Define and kill are complementary operation. That is, they generally
come in pairs and one does the opposite of the other. When you see complementary
operations on data objects it should be a signal to you that a data-flow model and

therefore data-flow testing methods, might be effective.

Usagie _ A variable is used for computation (c) when it appears on the right-hand
side of an assignment stalement, as a pointer, as part of a pointer calculation, a file
record is read or written, and so on. It is used in a predicate (p) when it appears
directly in a predicate (for example, IF A>B ... ), but also implicitly as the control
variable of a loop, in an expression used to evaluate the control flow of a case

statement;:as a pointer to an object that will be used to direct control flow.

2.4.3.2 Data-Flow Anomalies



An anomaly is denoted by a twocharacter sequence of actions. For example, ku
means that the object id killed and then used (possible in some languages), whereas dd
means that the object is defined twice with out an intervening usage. There are nine
possible twoletter combinations for d, & and u. some are bugs, some are suspicious and

some are okay.

dd — probably harmless but suspicious. Why define the object twice without an

intervening usage?
dk — probably a bug. Why define the object without using it?
du — the normal case. The object is defined and then used.
kd — normal situation. An object is killed and then redefined.
kk — harmless but probably buggy. Did we want to be sure it was really killed?

ku — a bug. The object doesn’t exist in the sense that its value is undefined or
indeterminate. For example, the loop-control value in a FORTRAN program
after exit from the loop. '

ud — usually not a bug because the language permits reassignment at almost any time.
uk — normal situation.
wu — normal situation.

in addiion to the above twolefter situations there are six single-letter situations.
We'll use a leading dash to mean that nothing of interest d. k, u) occurs prior to the
action noted along the entry-exit path of interest and a trailing dash to mean that nothing
happens after the point of interest to the exit. '

4 possibly anomalous because from he entrance to this point on the path, .the
variable had not been defined. We're killing a variable that does not exit; but note
that the variable might have been created by a called routine or might be global.

-4 okay. This is just the first definition along this path,

u: possibly anomalous. Not anomalous if the. variable is global and has been

previously defined.

k-- not anomalous. The last thing done on this path was tc kil the variable.
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d-: possibly anomalous. The variable was defined and not used on this path; but his
could be a global definition or within a routine that defines the vanables Br other

routines.

4+ not anomalous. The varable was used but not killed on this path. Although this
sequence is snot anomalous, it signals a  frequent kind of bug. If & and k& mean
dynamic storage allocation and retum respectively, this could be an instance in
which a dynamically allocated object was not retumed to the pool after use — not

a bug if we expect some other routine to retum it.

The single-letter situations do not lead 1o clear data-flow anomalies but only the
possibility thereof. Also, whether or not a single-letter situation is anomalous is an
integration testing issue rather than a component testing issue because the interaction of

two or more components is involved.
2.4.3.3 Static versus Dynamic Anomaly Detection

Static analysis is analysis done on source code without actually executing it
Dynamic analysis is done on the fly as the program is being executed and is based on
intermediate values that result from the program’s execution. Source-code system error
detection is the archietypal static analysis resull, whereas a division by zero: warning is
the archetypal dynamic analysis result. If a problem, such as a data-flow anomaly, can be
detected by static analysis methods, then it does not belong in testing — it belongs in the

language processor.

There’s actually a lot more static analysis for data flow anomalies going on in current
language processors than we might realize at first. Languages, which force variable
declarations, can detect —x and ku anomalies and optimizing compilers can detect some
(but not all) instances of dead variables. The run-time resident portion of the compiler
and/or the operating system also does dynamic analysis for us and therefore helps in
testing by detecting anomalous situations. Most anomalies are detected by such means;
that is, we don’t have to put in special software or instrumentation (o detect an attempt,

say to read a closed file, but we do have to assure that we design tests that will [raverse

paths on which such things happen.
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2.5 Software Testing Stages

Aggregated software testing activities are commonly referred to as software testing
phases or stages [32]. A software testing stage is a process for ensuring that some aspect
of a software product, system, or unit functions properly. The number of software testing
stages employed varies greatly across companies and applications. The number of stages
can range from as low as 1 to as high as 16 [32].

For large software applications, firms typically use a 12-stage process that can be
aggregated into three categories:

I. General testing stages include subroutine testing, unit testing, new function

testing, regression testing, integration, and system testing.
2 Specialized testing stages consist of stress or capacity testing, performance testing,

platform testing and viral protection testing.
3. User-involved testing stages incorporate usability testing and field-testing.

After the software is put into operational use, a maintenance phase begins where
enhancements and repairs are made to the software. During this phase, some or all of the
stages of software testing will be repeated. Many of these stages are common and well
understood by the commercial software industry, but not all companies use the same
vocabulary to describe them. Therefore, as we define each software stage below, we

identify other names by which that stage is known.

2.5.1. General Testing Stages

General testing stages are basic to software testing and occur for all software [32].

The following stages are considered general software testing stages:
1. Unit testing
2 Component testing
3. Integration testing

4. System testing
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2.5.1.1,  Unit Testing

A unit is the smallest testable piece of software, by which I mean that it can be
compiled or assembled, linked, loaded, and put under the control of a test hamess or
driver. A unit is usually the work of one programmer and it consists of several hundred or
fewer, lines of source code. Unit testing is the testing we do to show that the unit does not
satisfy its functional specification and / or that its implemented structure does not match

the intended design structure. When our tests reveal such faults, we say that there is a unit
bug.
2.5.1.2. Component Testing

A component is an integrated aggregate of one or more units. A unit is a component, a
“component with subroutines it calls is a component, etc. by this (recursive) definition, a
component can be anything from a unit to an entire s system. Component testing is the
testing we do to show that the component does not satisfy its functional specification
and/or that its implemented structure does not match the intended design structure. When

our tests reveal such problems, we say that there is a component bug,.

2.5.1.3. Integration Testing

' Integfaﬁon is a process by which components are aggregated to create larger
components. Integration testing is testing done to show that even though the components
were individually satisfactory, as demonstrated by successful passage of component tests,
the combination of components are incorrect or inconsistent. For example, components A
and B are both passed their component tests. Integration testing is aimed as showing
inconsistencies between A and B. examples of such inconsistencies are improper call or
return sequences, inconsistent data validation criteria, and inconsistent handling of data
ohjects. Integration testing should not be confused with testing integrated objects, which
is just higher-level component testing. Integration testing is specifically aimed at
exposing the problems that arise from the combination of components. The sequence,
then, comsists of component testing for components A and B, integration testing for the

combination of A and B and finally, component testing of the “new” component (A, B).

2.5.1.4. System Testing

A system is big component System testing is aimed at revealing bugs that cannot be

attributed to components as such, to the inconsistencies between components, or 1o the
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planned interactions of components and other objects. System ftesting concerns issues and
behaviors that can only be exposed by testing the entire integrated system or a major part
of it. System testing includes testing for performance,  security, accountability,
configuration sensitivity, start-up, and recovery.

2.5.2. Specialized Testing Stages

Specialized software testing stages occur less frequently than general software testing

stages and are most common for software with well-specified criteria. The following

stages are considered specialized software testing stages:
1. Stress, capacity, or load testing
2. Emor-handling/survivability testing

Recovery testing

[95)

4. Security testing
5. Compatibility testing
6 Performance testing

2.5.2.1.  Stress Testing

Stress testing executes a system in a manner that demands resources in abnormal

quantity, frequency, or volume. For example

a) Special tests may be designed that generate ten interrupts per second, when one or

two is the average rate

b) Iﬁput data rates may be increased by an order of magnitude to determine how

iﬂput functions will respond
c) Test cases that may cause thrashing in a virtual operating system are designed
d) Test cases that may cause excessive hunting for disk-resident data are created.
Essentially the tester attempts to break the program.

A varation of stress testing is a technique call sensitivity testing. In some situations
(the most common occur in mathematical algoritims), a very small range of data
contained within the bounds of valid data for a program.may cause extreme and even

erroneous processing or profound performance degradation. Sensitivity testing aftempts to

28



-uncover data .combinations within valid input classes that may cause instability or
improper processing.
2.5.2.2.  Survivability Testing

Perfect software, imperfectly deployed, or deployed in such a way that is vulnerable
to failure or attack is of no more value than imperfect software that fails of its own
accord. A truly useful metric for distributed, service-based software must measure both
the quality of the software itself (the traditional role) and the quality of its configuration
vis a vis the underlying infrastructure and the kinds of threats to which the software and
infrastructure are subject. In the real world, systems can fail for a variety of reasons other
than code and specification errors (eg. a virus might corrupt the file system that the
software relies upon). Thus, rather than ask simply whether the specification and code are
correct, it is necessary to ask how likely it is that the system will confinue to provide the
desired functionality, or failing this, something approaching it. A survivable system [33]
is one in which actions can be taken to reconfigure applications in the event of partial
failures to achieve functionality approximating the functionality of the original system.
The usefulness of a survivable system can be judged in several ways: how useful is what
it is doing now?; how useful is it likely to be in the future?; if it breaks, can it be repaired
so'thai: it can again do something useful? ' ) '
2.5.2.3. Recovery Testing

Many computer-based systems must recover from faults and resume processing
within a prespecified time. In this case, a system must be fault tolerant, that is,

processing faufts must not cause overall system function to cease. In other cases, a system

failure must be comrected within a specified period of time or severe economic damage
will occur.

Recovery testing is a system test that forces the software to fail in variety of ways and
verifies that recovery is properly performed. if recovery requires human intervention, the
mean-time-to-repair (MTTR) is evaluated to determine whether it is within acceptable
limits.
2.5.2.4. - Security Testing

7 "Any - computer-based system that manages sensitive information or causes actions that

can improperly harm (or benefit) individuals is a target for improper or illegal



penetration. Penetration spans a broad range of activities: hackers who attempt to
penetrate systems for sport; disgruntled employees who attempt to penetrate for revenge;

dishonest individuals who attempt to penetrate for illicit personal gain.

Security testing attempts to verify that protection mechanisms built into a system will,
in fact, protect it from improper penetration. To quote Beizer [29]: “The system’s security
must, of course, be tested for invulnerability from frontal attack - but must also be tested

for invulnerability form flank or rear attack”.

During security testing, the tester plays the role(s) of the individual who desires to
penetrate the system. Anything goes! The tester may attempt to acquire passwords
through external clerical means; may attack the system with custom software designed to
‘breakdown any defenses that have been constructed; may overwhelm the system, thereby
denying service to others; may purposely cause system errors, hoping to penetrate during

recovery; may browse through insecure data, hoping to find the key to system entry.

Given enough time and resources, god security testing will ultimately penetrate a

system. The role of the system designer is to make penetration cost more than the value of
the information that will be obtained.
2.5.2;5. Compatibility Testing

Testing to ensure compatibility of an application or Web site with different browsers,

operating systems, and hardware platforms. Compatibility testing can be performed

manually or can be driven by an automaied functional or regression test suite.

2.5.2.6. Performance Testing

For reattime and embedded systems, software that provides required function but
does not conform to performance requirements is unacceptable. Performance testing s
designed to test the run-time performance of software within the context of an integrated
system. Performance testing occurs throughout all steps in the testing process. Even at the
unit level, the performance of an individua! module may be assessed as white-box tests
are conducted. However, it is not until all system elements are fully integrated that the

true performance of a system can be ascertained.

Performance tests are often coupled with stress testing and usually require both

hardware and software instrumentation. That is, it is often necessary to measure resource
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utilization (e.g., processor cycles) in an exacting fashion. Extemal mstrumentation can
monitor execution intervals, log events (eg. interrupts) as they occur, and sample

machine states on a regular basis. By instrumenting a system, the tester can uncover

situations that lead to degradation and possible system failure.

2.5.3. User-Involved Testing Stages

For many software projects, the users and their information technology consultants
are active participants at various stages along the software development process,

including severa! stages of testing. Users generally participate in the following stages.
1. Usability testing
2 Lab or alpha testing
3. Field or beta testing

4. Acceptance testing

2.5.3.1.  Usability Testing
For a large number of products, it is believed that the usability becomes the final
arbiter of quality. This i true for a large number of desktop applications that gained

market share through providing a good user experience. Usability testing needs to not
only assess how usable a product is but also provide feedback on methods to improve the
user experience and thereby gain a positive quality image. The best practice for usability
testing should also have knowledge about advances in the area of Human Computer

Interface.

2.5.3.2.  Alpha Testing

Alpha testing is the software prototype stage when the software is first able b run. It
will not have all the intended functionality, but it will have core functions and will be able
to accept inputs and generate outputs. An alpha test usually takes place in the developer's
offices on a separate system. Indepth software reliability testing, installation testing, and
documentation testing are not done at alpha test time, as the software is only a prototype.
Alpha tester feedback forms are not used, although the developer does request feedback

on specific aspects of the software [31}.

.



2.5.3.3. Beta Testing

The idea of 2 Beta is to refease a product to a limited number of customers and get
feedback to fix problems before a larger shipment. For larger companies, such as IBM,
Microsoft and Oracle, many of ﬂ1eir products are used internally, thus forming a good
beta audience. Techniques to best conduct such an intenal Beta test are essential for us to
obtain good coverage and efficiently use internal . resources. This best practice has
everything to do with Beta programs though on a smaller scale to best leverage it and

reduce cost and expense of an external Beta {31].

An opportunity that a beta program provides is that one gets a large sample of users to
test the product If the product is instrumented so that failures are recorded and returned
to the vendor, they would yield an excellent source to measure the mean time between
failure of the software. There are several uses for this metric. Firstly, it can be used as a
gauge to enhance the product’s quality in a manner that would be meaningful to a user.
' Secondly, it allows us to measure the mean time between failure of the same product
under different customer profiles o user sets. Thirdly, it can be enhanced to additionally
capnlfe first failure data that could benefit the diagnosis and problem determination.
Microsoft has claimed that they are able to do at least the first two through in3strumented
versions that they ship in their betas. '



Chapter 3

Reliability Models

3.1 Introduction

Software reliability can be considered to be the probability that the software will
operate successfully. Because the measurement of software reliability is in principle the
modeling of a deterministic process by a probabilistic one, a problem to be solved is what
event should be considered random. When the measurement of reliability involves units
of time, such as the time to the next failure of the software, we refer to the implicit
definition of reliability as time-dependent. Otherwise, reliability measurement involves
occurrences of some other event of interest, such as a successful run of the program, and
we say the definition is fime-independent.

A number of analytical models have been proposed to address the problem of
quantifying the software reliability, one of the most important metrics of software quality.
However, a great deal of this research effort has been focused on modeling the reliability
growth during the debugging phase [8, 34, 35]. These so called black-box models treat
{he software as a monolithic whole, considering only its interactions with the external
environment, without an attempt to model the internal structure. Their main common
feature is the assumption of some parametric model of the number of failures over a finite
time interval or of the time between failures, Failure data obtained while the application is
tested are then used to estimate model parameters or to calibrae the model. We discuss
some models here. The models are broadly classified into five categories.

1. State — based models
2. Path — based models
3. Additive models

4. Input domain models

5. Reliability growth models
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5.2 State— Based Models

This class of models uses the program flow graph to represent the architecture of the
system assuming that the transfer of control between modules has a Markov property {11,
12]. This means that given the knowledge of the module in controt at any given time, the
future behavior of the system is conditionally independent of the past behavior. The
architecture of software has been modeled as a discrete time Markov chain {DTMC),
continuous time Markov chain (CTMC), or semi Markov process (SMP). These can be
further classified into ieducible and absorbing, where the former represents an infinitety

running applications, and the latter a terminating one.

321 Littlewood Model [11,15]

This is one of the earliest, yet a fairly general architecture - based software reliability
model.

Architecture: It is assumed that software architecture can be described by an
ireducible SMP, thus generalizing the previous work [16], which describes software
architecture with CTMC. The program comprises a finite number of modules and the

transfer of control between modules is described by the probability p,= Pr {program
transits from module i to module j}. The time spent in each module has a general

distribution £ (f) with a mean sojourn time f1;, .

Failure behavior: Individual modules, when they are executing, fail with constant
failure rates v,. The transfers of control between modules (interfaces) are themselves
subject to failure; when module i calls module j there is a probability A, of a failure’s
occurringi

Solution method; The interest is focused on the total number of failures of the
integrated-program in time interval (0, ¢), denoted by N (), which is the sum of the
failures in different modules during their sojoumn times, together with the interface
failures. It is possible to cbtain the complete description of this failure point process, but
since the exact result is very complex, it is unlikely to be of practical: use. The asymptotic
Poisson process approximation for N (¢ is obtained under the assumption that failures are

very infrequent. Thus, the times between failures will tend to be much larger than the



times between exchanges of control, that is, many &changes of control would take place

between successive program failures. The failure rate of this Poisson process is given by
z ay, + Zb‘j/‘tﬁ
i )
where a, represents the proportion of time spent in module i, and b;is the frequency

of transfer of control between i and j. These terms depend on p;, V,, A, wand the

steady state probabilities of the embedded Markov cham 7;.

3.2.2 Laprie Model [18]}
This model is a special case of Littlewood model and the result, although obtained in
a different way, agrees with those given in {15].

Architecture: The software system is made up of » comporents and the transfer of

control between componenis is described by CTMC. The parameters are the mean
exccution time of a component i given by 1/7,, and the probability g, thal component j
is executed after component ;i given that no failure occured during the execution of

component L.
Failure behavior: Each component fails with constant failure rate 4,
Solution method: The model of the system is an n + 1 state CTMC where the system

is up in the states i, 0 <i<n (component is executed without failure in state /) and the

(n + 1th state (absorbing state) being the down state reached after a failure occurrence.

The associated generator matrix between the up states B is such that b, =—{y, +A,) and
b,J, =q,Y: for i#j. The matrix B can be seen as the sum of two generalor matrices such
that the execution process is govemned by B’ whose diagonal entries are equal to —y,and
ils off-diagonal cntrics to ¢,7,, and the failure process is governed by B’ whose diagonal
entries are zero.

It is assumed that the failure rates are much smaller than the execution rates, that is,

the 'execution process converges towards steady state before a failure is likely to occur.

As a consequence, the system failurc rale becomes 4, ~ Z:;l nt A, , where the stcady stale

pmbé.bility vector Jr=[7rj] is the solution of B'=0. This result has a simple physical
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interpretation having in mind that 7,is the proportion of time spent in state { when no
failure occurs.

3.2.3 Kubat Model [19]

This model considers the case of software composed of M modules designed for K

different tasks. Each task may require several modules and the same module can be used
for different tasks.

Architecture: Transition between modules follow a DTMC such that with probability
g, (k) task k will first call module i and with probability py(k) task & will call module ;
after executing in module i The sojourn time during the visit in module / by task & has the
pdf g,(k £) . Thus, the architecture model for each task becomes a SMP,

Failure modei: The failure intensity of a module /15 @, .

Model solution: The probability that no failure occurs during the execution of task &
while in module i is

R (k)= [ g k.0t

The expected number of visits in module i by task &, denoted by a,(k), can be

obtained by solving

M
a; (k) = Q,(k) + ZGJ(I{) E,(k) .
=1
The probability that there will be no failure when running for task & is given by

R =T [[RT

i=1
and the system failure rate becomes A, :Zil;; [1- R(k)], where r, is the amival rate
oftask £.

3.2.4 Gokhale et. al. Model [11].
The novelty of this work lies in the attempt to determine software architecture and

component reliabilities experimemally by testing the application.



Architecture: The terminating application is described by an absorbing DTMC. The
trace data produced by the coverage analysis tool called ATAC [36] during the testing is
used to determine the architecture of application and compute the branching probabilities
p, betwoen modules. The expected time spent in 2 module j per visil, denoted by £ s
computed as a product of the expected execution time of each block and the number of
blocks in the module.

Failure behavior: The failure behavior of cach component is described by the
enhanced non-homogeneous Poisson  process  model using time-dependent failure
intensity  4,(£) determined by block coverage measurements durng the testing of the
application.

‘ Solution method: The expected number of visits to state j, denoted by V, Is

computed by

V,= ”1(0)"'2[’:%
i=1
where 7 (0) denotes the initial state probability vector.

The rchiabitity of a module 7, given time-dependent failure intensity A,(f)and the total

expected time spent in the module per execution ¥t ,is given by

v
_I "’AJ (ndr
o

R =¢

J

and the reliability of the overall application becomes R =] "R, .

3.3Path — Based Models

This class of models is based on the same common steps as the state-based models,
except that the approach taken to combine the software architecture with the failure
behavior can be described as a path-based since the systeﬁ reliability is computed
considering the possible execution paths of the program either experimentally by testing
or algorithmically. |



33.1 Shooman Model {37]

This is one of the earliest models that consider reliability of modular  programs,
introducing the path-based approach by using the frequencies with which different paths

ar¢ rurn.

Architecture: This model assumes the knowledge of the different paths and the
frequencies £, with which path i is run.

Failure behavior: The failure probability of the path 7/ on each run, denoted by

g, characterizes the failure behavior.

Method of analysis: The total number of failures n, m N fest runs s given by
n, = Nfig, +Nfigo +...+ Njq, . where Nf; is the total number of traversals of path 7. The
systemn probability of failure on any test run is given by

n d
=1 L
qo—‘i_m}oN JEZlfqu.

332 Krishnamurthy and Mathur Model [38]

This metiod first involves computing .the path reliability .estimates. based on the
sequence of components executed for each test run, and then averaging them over all test

runs to obtain an estimate of the system reliability.

Architecture: Components and their interfaces are identified, and a sequence of
components along different paths is observed using the component traces collected during
the testing.

Failure behavior: Fach component is characterized by its reliability R, .

Method of analysis: The component trace of a program P for a given test case /,
denoted by M (P, ), is the scquence of components m executed when P is executed

against ¢. The reliability of a path in P traversed when P is executed on test case (€T is

given by

R= 11 &,

v, eMipn
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under the assumption that individual components along the path fail independently of

each other. The reliability estimate of a program with respect to a test set T is

Z,ﬁR,
iR

An interesting case occurs when most paths executed have components within loops

and these loops are traversed a sufficiently large number of times. Then if intra-
component dependency is ignored individual path reliabilities are likely to become low,

resulting in low system reliability estimates. In this work intra-component dependency is

modeied by “coflapsing” multiple occurrences of a component on an execution path into &
occurrences, where k>0 is referred as the degree of independence. However, it is not clear

"how one should determine a suitable value of k.

An alternative way to resolve the issue of intra-component dependency is proposed in
[39]. The solution of dependency characterization of a component that is invoked inside a
loop m times with a fixed execution time spent in the component per visit relies on the

time dependent failure intensity of a component.

3.3. 3 Yacoub, Cuklc and Ammar Model [58]

This reliability analysis technique is specific for component based software whose
analysis is strictly based on execution scenarios. A scenario is a set of component
interactions triggered by specific input stimulus and it is related to the concept of

operations and run-types used in operational profiles.

Architecture: Using scenarios, a probabilistic model named Component Dependency

Graph (CDG) is constructed. A node 5, of CDG models a component execution with an
average execution time £C . The transition probability P7, is associated with each
directed edge that models the transition from node #;to n; CDG has two additional nodes,
start node and termination node.

Failure behavier: The failure process considers component reliabilities RC; and
transition reliabilities . RT; associated with a node #; and with a transition from node »; to
n; respectively. '

Method of anaiysis: Based on CDG a tree-traversal algorithm is presented to

estimate the reliability of the application as a function of reliabilities of its components
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and interfaces. The algorithm expands all branches of the CDG stasting from the start
node. The breadth expansions of the tree represent logical “OR” paths and are hence
translated as the summation of reliabilities weighted by the transition probability along
each path. The depth of each path represénts the sequential execution of components, the
logical “AND”, and is hence translated to multiplication of reliabilities. The depth
expansion of a path terminates when the next node is a terminating node (a natural end of
an application execution) or when the summation of execution time of that thread sums (0

the average execution time of a scenario. The latest guaranties deadlock avoidance for

loops between two or more components.

3.4 Additive models

This class of models does not consider explicitly the architecture of the software.
Rather, they are focused on estimating the overall application reliability using the

component’s failure data. It should be noted that these models consider software

reliability growth. The models are called additive since under the assumption that nor-
homogeneous Poisson process (NHPP} can modet component’s reliability, the system

failure intensity can be expressed as the sum of component failure intensities.
3.4.1 Xie and Wholin Model [40]

This model considers a software system composed of »n components, which may have

been developed in parallel and tested independently. If the component reliabilities are
modeled by NHPP with failure intensity A(¢) then the system failure intensity is

A=, +A,(0)+.+ A1), and the expected cumulative number of system failures by

time ¢ is given by

b ©=3 0= > rwMr.

When this additive model is used the most immediate problem is that the starting time
may not be the same for all components, that is, some components may be introduced into
the system later. In that case, the time has to be adjusted appropriately to consider

different starting points for different components.

3.4.2 Everett Model [59]
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‘This approach considers the software made out of componenis, and addresses the problem of
estimating individual component’s reliability. Reliability of each component is analyzed using the
Extended Execution Time (EET) model whose parameters can be determined directly from
properties of the software and from the information on how test cases and operational usage
stresses each component. Thus, this approach requires keeping track of the cumulative amount of

processing time spent in each component.
When the underying EET models for the componenis are NHPP models, the
cumulative number of failures and failure intensity functions for the superposition of such

models is just the sum of the corresponding functions for each component.

3.5 Input Domain Models

In case of input-domain based models, the reliability of the software is measured by
exercising the software with a set of randomly chosen inputs. The ratio of the number of
inputs that resulted in successful execution to the total number of inputs gives an estimate
of the reliability of the software product Two important input domain reliability models
Nelson model and Weiss & Weyuker model is described bellow.

3.5.1 Nelson Model [10]

It is one of the most widely used input domain reliability models. According to this
model if a total number of f ermors are recorded (referred to as failures in software
reliability engineering, denoting behavioral deviations) for n hits, the estimated reliability

R is calculated as:

rR=1-L-221

n n

When usage time f, is available for each hit 7, the summary reliability measure, mean

time-between-failures (MTBF), can be calculated as:

|
MTBF = — :
X

when the usage time  is not available, we can use the numbers of hits as the rough

time measure. [n this case,
M’IBI; _-
f

3.5.2 Weiss & Weyuker Model [60]
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Weiss

& Weyuker [60] have partitioned the input domain inte some cquivalence

classes with respect to the behavior of the system under test. This approach mainly

reduces the number of test cases with respect to the input domamn. According to this

model reliability of a program is dependent only on the a priori probability distribution of

the operational input domain, on the properties of the program, and on the end user’s

notion of tolerable discrepancies between the actual and intended program behaviors. To

this end, the definition incorporates

1.
2.

The operational distribution of the input space

The actual discrepancy between the functional behavior of the program and its
specification, and

Parameterization by the tolerance function, which specifies the tolerable
discrepancy between the functional behavior of the program and its

specification at each possible input point.

‘In order to assess the reliability of a particular program P for a specification §, one

must perform the following steps.

1
2

Determine what the operational environment will be.
Define approximation to the operational distribution by using existing data
and/or a probabilistic analysis. Additionally, one may add an optional step, as

follows.

2') Define a partition of the input domain and assign operational probabilities to

3)

9

3)
6)

7)

the cells of the partition in accordance with the estimated operational
distribution.

Determine a metric on the output space, and document its definition with
ample justification that it reasonably models the structure of that space.

Select a set of test cases for the purpose of reliability testing. In particular,
errors will not be corrected as they are found. Some of the factors influencing
the selecton process include maximizing confidence and minimizing the cost
of testing.

Determine a tolerance function for this set of test.

Determine a measure of confidence for the reliability estimate that will be
obtained from this sample set.

Run the tests.

42



8) Calcutate the reliability estimate.  This  requires  defermining  the -
discrepancy at each test point.

9) Publish the reliability cstimatc along wilh the documentation of all of its
parameters, confidence estimates, efc.

Step 4) requires selecting a test set T. Jf a test set T ={¢} is chosen for reasons other
than its representativeness of the operational profile, such as for its value in exposing
errors Or exercising certain program  structures, then the representativeness of the
operational profile, such as for its value in exposing errors or exercising certain program
structures, then the representativeness of each test case of T must be explicitly
incorporated into the estimate of reliability obtained form 7. to thi end, at each teT a
weight p,(1) is assigned that imparts a degrec of representativeness to t. formally, p, is
an arbitrary probability function such that p, (£)= OfreT.

Having established these weights and completed stes 5) - 7), the reliability estimate R
is determined form the following formula.

Prd (5., F 0
; o(f)

Where d (Sp, P.i)i is known as the @ dzscrepancy between Sp and P at f. The
function ¢ is known as folerance function and c(t) is the tolerance a]]owed at ¢ For anyl -
specification S with domain D and “don’t care™ set U and any program P, S pis defined by

s (n)={S(") yooneb
P(n) if nelU

A specification S of a program is supposed to prescribe the output of the program for

each input. However, three cases can arise fora given input n:
1. Nooutput is specified
2. Exactly one output is specified, or
3. More than one output is specified.

If case 1) oceurs for a given input », then that input is a “don’t care”.
3.6 Reliability Growth Models

Developing reliable software is one of the most difficult problems facing the software
industry. Schedule pressure, resource limitation;. and- unrealistic requirements can all

negatively impact software reliability. Developing reliable softwarc is especially hard
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when there is inierdependence among the software modules as in the case with much of

the existing software. It is also a hard problem to know whether or not the software being
developed is reliable. After the software is shipped, its reliability is indicated by from

customer feedback, problem reposts, system outages, complaints or compliments and so

forth. However then it is too late; software vendors nced to know whether their products
are reliable before they are shipped to customers. Software reliability growth models

attempt to provide that information.

As mentioned earlier reliability is usually defined as the probability that a system will
operate without failure for a specified time period under specified operating conditions.
Reliability is concerned with the time between failures or tils reciprocal, the failure rate.
But software reliability growth models (SRGMs) repot on defect detection rate rather than
failure rate. Defect detection is usually a failure during a test, but test software may also
detect a defect even though the test continues to operate. Defects can also be detected
during design reviews or code inspections, but SRGMs do not consider those sorts of
activities. Time in a test environment is a synonym for amount of testing, which can be
measured in several ways. Defect detection data consists of a time for each defect or

group of defects and ca be plotted as shown in Fig. 3.1.

Number
of
Defects

Test Time
Fig, 3.1: Example defect detection data

A cumulative plot of defects vs. amount of testing such as Fig. 3.1 should show that
the defect discovery rate decreases as the amount of testing increases. The theory is that
each defect is fixed as it is discovered. This decreases the number of defects in the code,

so the defect discovery rate should decrease (the length of time between defect

discoveries should increase). When the defect discovery rate reaches an acceptably low'~

value, the software is deemed suitable to ship. However, it is difficult to extrapolate from

- defect discovery rate in a test environment to failure rate during - system operation,..~ -

primarily because it is hard to exirapolate from test time to system operation time. [nstead
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SRGMs look at the expecled quantity of rcmaining defects in the codc. These residual
defects provide an upper limit on the number of unique failures the customers could

encounter in field use.

Software reliability growth models are statistical interpolation of defect detection data
by mathematical functions. The functions are used to predict future failure rates or the
number of residual defects in the code. There are many types of software reliability

growth models as described in successive sections.

3.6.1 Software Reliability Growth Model Types

Software reliably growth models have been grouped into two classes of model —
concave and S-shaped. These two model types are shown in Fig. 3.2. The nost important
“thing about both models is that they have the same asymptotic behavior, ie., the defect
detection rate deceases as the number of defects detected (and repaired) increases, and the
. total number of defects detected asymptotically approaches a finite value. The theory for
this asymptotic behavior is that:

. A finite amount of code should have a finite number of defects. Repair and new
functionality may introduce new defects, which increase the original finite number
of defects. Some models explicitly account for new defect introduction during test
while others assume they are negligible or handled by the statistical fit of the
software reliability growth model to the data.

7 1t is assumed that the defect detection rate is proportional to the number of defects
in the code. Each time a defect is repaired, there are fewer total defects in the
code, so the defect detection rate decreases as the number of defects detected {and
repaired) increases. The concave model strictly follows this pattern. In the S-
shaped model, it is assumed that the early testing is not as efficient as later testing,
so there is a ramp-up period during which the defect detection rate increases. This
could be a good assumption if the first QA tests are simply repeating tests that
developers have already run or if early QA tests uncover defects in other products
that prevent QA from finding defects in the product being tested. For example, an
application’ test may uncover OS defects that need to be comected before the
application can be run. Application test hours are accumulated; but defect data is

minimal because OS defects don’t count as part of the application test data. After
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the OS defects are corrected, the remainder of the application test data fafter the

inflection point in the S-shaped curve) looks like the concave model.

Number Number
of of
Defects Defects
Concave S-Shaped
Test Time Test Time

Fig. 3.2: Concave and S-Shaped Models

There are many different representations of software reliability growth models. The

l-models show the expecied number of defects at time / and is denoted (). where t can be
calendar time, execution time or number of test executed. An example equation for p(s)
is the GoelOkumoto (G-O) modei:

u(ty=a(l-e™), where

a = expected total number of defects in the code

b = shape factor = the rate at which the failure rate decreases, ie, the rate at

which we apbroach the total number of defects.
Table 3.1: Software Reliability Growth Model Examples

Model Modcl ui) Ref. Comments
Name Type
Goel Concave  g(1-&™™) [71 | Also called Musa model or
2}1&:[;1;010 220,650 exponential model
GO | S- a(l—(1+bne™) [61] | Modification of G-O model
S-Shaped | Shaped 2> 0.b>0 to make it S-shaped (Gamma
- function instead of
exponential)
Hossain- | Concave  g(] —¢™" /(1 +ce™™) [62] | Solves atechnical condition
Dahrya/ a3 0.h>0.c0 with the G-O model.
GO - ? Becomes same as G-O as ¢
approaches 0.
Gompertz. | S- o b) [63] | Used by Fujitsu, Numazu
Shaped -Works
a=0,0<h < <c<l :
Parcto Concave q(t—(1+¢/BY") [64] | Assumes failurcs have
-] difTerent failure rates and
az0,>00<exl failures with highest rates
removed [irst
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‘Model | Model uin Ref. Comnents
Name Type

Weibull Concave a(l—e?) 171 | Same as G-O forc =
az0,b>0,c>0

Yamada | Concave _rei-e® [65] | Attempts to account for
a(l-e ) -

Exponent testing effort

ial az0rx>0p>0

Yamada | S- _ra(loe P, [65] | Attempts to account [or
a(l e ) :

Raleigh Shaped testing effort
az0,ra>0,f5>0

Log Infinitt  (1/c)In(ear+1) [7] | Failure rate decreases but

Poisson Failure does not approach to 0

c>0,a>0

The GoekOkumoto (G-O) model is a concave model, and the parameter 4™ would be
plotted as the total number of defects in Fig. 32. The GoekOkumoto model has 2
parameters. However other models can have 3 or more parameters. For most models,
u{t)=aF (1), where a is the expected total number of defects in the code and F(f) is a
cumulative distribution function. Note that F(0) = 0, so no defects are discovered before
the icst starts, and F(co)=1, 0 y(x)=a and a is the tolal number of defects discovered
after an infinite amount of testing, Table 3.1 provides a list of the models. A derivation of
the properties of most of these models can be found in [7].

The Log Poisson mode! is a different type of model. This model assumes that the code
has an infinite number of failures. Although this is not theoretically true, it may be
essentially true in practice since all the defects are never found before the code is
rewritten, and the model may provide a good fit for the useful life of the product.

The models all make assumptions about testing and defect repair. Some of these
assumptions seem very reasonable, but some are questionable. However, we give a ]ist:.
and discussion of these assumptions in the following Table 3.2.

Table 3.2: Software Reliability Model Assumptions

Assumption Reality

Defects are repaired Defects arc not repaired immediately, but this can be partially |

immediatcly when they accommodated by not counting duplicates. Test time may be

arc discovered artificially accumulated if a non-repaired defect prevenls othcr
defects from being found.

Decfeet repair is perfect Dcfect repair introduces new defects. The new defects arc lcs -
likely to be discovered by test since the retest for the repaired '
code is not usually as comprehensive as the original testing. P

No'new code 1§ New code is frequently ntroduced throughout the enfire test
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Assumption

Reality

introduced during QA test

period, both defect repair and new features. This is accounted
for in parameicr cstimation since actual defcct discovenes are
uscd, but may change the shape of the curve, 1.c., make it Jess
concave. '

Defects are only reported
by the product testing
group

Defects are reported by lots of groups because of parallel
testing activity. If we add the test tme for those groups, we
have the problem of equivalency between and hour of QA test
fime and an hour of test tme from a group that is testng a
diffcrent product. Restricting defects to those discovered by
QA can accommodate this, but that eliminates important data.
This problem means that defects do not correlate perfectly
with test time.

Each unit of time
(calendar, execution,
number of test cases) is
-equivalent

This is certainly not true for calendar time or test cases as
discussed earlier. For execution time, “comet” tests sometimes

are more likely to find defects, so those tests creale more stress
on a per hour basis. When there is a section of code that has
not been as thoroughly tested as other code, eg., a product that
is under schedule pressurc, tests of that code will wsually find
more defects. Many test are rerun to ensure defect repair has
been done properly, and these renms should be less likely to
find new dcfects. However, as long as lost scquences arc
reasonably  consistent from release to relcase, this can be
accounted for if neccessary from lessons learned on previous
release.

Tests represent
operational profile

Customcrs mn  so many different configurations and
applications that it is difficult 1o define an appropnate
operational profile In some cases, the sheer size and
transaction volume of the production sysiem makes the
operational environmeni impractical (o replicate. The tests
containced m the QA test hbrary test basic functionality and
operation, error tecovery, and specific areas with which we
havc had problems in the past. Additonal tests are continually
being added, but the code also learns the old tests, ic, (hc
defects that the old tests would have uncovered have been
repaired.

Failures are independent

Our expericnce s that this is reasonable except when there is a
section of code that has not been as thoroughly tested as other
code, eg., a product bchind schedule that was not thoroughly
unit tested. Tests run against this section of code may find a
disproportionate share of defccts. In [12] there arc detatled
discussions on independence assumption.
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Chapter 4

Statistical Testing

4.1 Statistical Testing

Harlan Mills (IBM Fellow who invented Clean Room software engineering) invented
the concept of statistical testing in 1987 (41, 42]. The central idea is to use software
tesing as a means to assess the reliability of software as opposed to a debugging
mechanism. This is quite contrary to the popular use of software testing as a debugging
“method. Therefore one needs to recognize that the goals and motivations of statistical
testing are different fundamentally. There are many arguments as to why this might
indeed be a very valid approach. The theory of this is buried in the concepts of Clean
Room software engineering and is worthy of a separate discussion. Statistical testing
needs to exercise the software along an operational profile and then measure interfailure
times that are then used to estimate its reliability. A good development process should
yield an increasing mean time between failuZres every time a bug is fixed. This then
becomes the release criteria and the conditions to stop software testing.

Most systematic testing methods have been aroused from the idea of coverage [29,
43]). Some aspect of a program is considered as a potential source of failure, and the
systematic method attempts to show that this aspect will not cause failure. For example, a
statement could be wrong, and if it is never executed during testing, the fault remains
unrevealed. Therefore we may want to measure line coverage during testing. Or similarly,
we may want to make sure that every one of the functions of the systems is executed at

least once.

However, every testing method (except exhaustive testing for batch programsy is less
than perfect. Tesling reveals a part of the software faults, yet some remain undetected. it
has therefore been suggested [13, 43, 44, 45] that testing should take into account use
patterns the software will encounter in its intended environment. The argument is that by
testing according to use, the faults found by imperfect methods are more likely to be the

important ones, the ones most users would encounter. [n statistical prediction, the

49



argument that test should follow user pattems is vital. If this is not the case, then the tests

are not a representative sample and all statistical conclusions are invalid.

Statistical testing, in contrast to other systematic testing method, makes no claims to
cover anything. One might therefore expect that statistical testing can’t compete with
systematic testing in exposing faults. But, however, this has been proven wrong by
several studies: under assumptions not unfavorable to systematic methods, they are not

much better at finding faults than statisticai testing [46, 47].

The black box approach [13, 29] to the software testing process unfolds as follows.
Given a program P with intended function f and input domain 4, the objective is 1o
select a sequence of entries from d, apply them to P, and compare the response with the
~ expected outcome indicated by f. Any deviation form the intended function is designated
as failure. It is assumed that / is well defined and completely specified, so that any
deviation is unambiguously detected and a failure is explicitly noted. The history of the
test at some time n s a sequence of inputs dgdd,.d,, and a corresponding sequence of

zero or more failures, each of which is uniquely identified with the particular input 4, at

which the failure was observed.

Statistical testing follows the black box model with two important extensions. First,
sequences form o are stochastically generated based on probability distribution that
represents a profile of actual or anticipated uvse of the software. Second, a statistical
analysis is performed on the fest history that enables the measurement of various
probabilistic aspects of the testing process. Thus, one can view statistical testing as a
sequence generation and analysis problem. A solution to the problem is achieved by
constructing a generator to obtain the test input sequences and by developing an

informative analysis of the test history.

4.2 Markov Chain Model for Statistical Software
Testing

Statistical testing of software establishes a basis for statistical inferences about a
software system’s expected field quality. We describe a method for statistical tesiing
based on a Markov chain model of software usage. The significance of the Markov chain

is twofold. First, it alows test input sequences to be generated from multiple probability
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distributions, making it more general than many existing techiiques.  Analytical results
associated with Markov chains facilitate informative analysis of the sequence before they
are generated, indicating how the tst is likely to unfold. Second, the test input sequences
generated from the chain and applied to the software are themselves a stochastic model
and are used to creale a second Markov chain to encapsulate the history of the test,
including any observed fallure information. The influence of the failures is assessed
through analytical computations of the chain. We also derive a stopping criterion for the
testing process based on a comparison of the sequence generating properties of the two

chains.
Statistical testing process can be carried out in three major steps [13, 43].

~Step 1: Construct the statistical models based on actual usage scenarios and related

frequencies.
Step 2: Use these models for test case generation and execution.

Step 3: Analyze the test results for reliability assessment and predictions, and help with

decision-making.

In Markov chain based statistical testing software usage behavior is modeled as a
finite state, discrete parameter, time homogeneous Markov chains. It is known as usage
Markov chain or in short usage model [13]. The usage model consists of elements from 4,
the domain of the infended function, and a probabilistic relationship defined on these
elements. A test input is a finite sequence of inputs form domain d probabilistically
generated form the usage model. The statistical properties of the model lend insight into

the expected makeup of the sequences for test planning purposes.

As the test sequences are applied to the software, the results are incorporated into a
second model. This festing model or the testing Markov chain [13] consists of the inputs
exccuted in the test sequences, plus any failures discovered while applying the sequences
to the software P. in other words, it is a model of what has occumred during testing, The
testing model also allows analysis of the test data in terms of random variables
appropriate for the application. For example, we may measure the evolution of the testing

model and decide to stop testing when tit has reached some suitable “steady state™.
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4.2.1 The Usage Markov Chain

A usage chain for a software system consists of states, ie., externally visible modes of
operation that must be maintined in order to predict the application of all system inputs,
and state transitions that are labeled with system inputs and transition probabilities. To
determine the statc set, one must consider each input and the information necessary to
apply the input. it may be that certain software modes cause an nput to become more or
less probable {or even illegal). Such a mode represents a state or set of states in the usage
chain. Once the states are identified, we establish a start state, a terminate state (for
bookkeeping purposes), and draw a state transition diagram by considering the effect of
each input from each of the identified states. The Markov chain is completely defined

- when transition probabilities are established that represent the best estimate of real usage.

Consider a simple selection menu pictured in Fig. 4.1. Though it is simple it has the
salient features of database based application software. The input domain consists of up

arrow key, down arrow key and enter key that select the items. The up arrow key and
down arrow key moves the cursor from one item to next, and wraps from top to bottom

on an up-arrow and from bottom to top on a downrarrow key.

Connect
Disconnect
Data Intry
Query
Print

Exat

Fig. 4. 1: Selection Menu

The first item “Connect® is used to establish conpection to a database server. The
connect window has two options, Ok and Cancel. The Ok button establishes a connection
to the specified server with proper authentication and the Cancel button retums to
previous state. Once the connection is established the next four items, Disconnect, Data
Entry, Query and Print can be selected to perform their respective functions. If connection
is not established, selecting these 8items give no response. As Connect state, Disconnect
state has also Ok and Cancel button to disconnect from database server or not. From the

other three options we enter another screen only for Data Entry state for simplicity and
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assume that the same thing could be done for other states. For data entry state we enter in

a new screen, which could insert or update department record to database. The screen is

pictured in Fig. 42.

‘_ -‘._9 Dﬁarl’mentEn TV o e gt

Deaaﬂmaﬂlﬂ ]

Fig. 4. 2: Depanment Entry Form First State

Initially New, Update and Back button are enabled and the other controls are disabled.
Selecting data entry from menu displays this screen and the control focus goes on to
“New” button. The tab key will shift the focus on the next enabled button, and will rotate
right when the focus is on right-most button. [f “New” button is pressed, “New”,
“Update” and “Back” button will be disabled and the disabled controls will be enabled. In
that case the screen will look like Fig. 4.3. The same thing will happen if “Update” button
is pressed. Now, if “Save™ button is pressed, data provided in the text boxes will be
updated to database. If “Clear” button is pressed the screen will go to its initial state i.e.
“New” stale and “Back” button returns to “Data Entry™ state.

'S, Department En

Depatren 0|

S

Fig. 4. 3: Department Entry Form Second State

In this example, there are two items of interest when applying menu inputs. First, the
cumrent cursor location must be maintained to determine the behavior of the “Enter” key.

Second, whether connection to database is cstablished or not to determine which of the

menu items are available,
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o+l = enter key
1 =up arow key

+ = down arrow key 4

Fig. 4. 4: Usage Markov Chain for the Software

These two items of information are organized as the following usage variable:

1. Cursor location (which is abbreviated CL and takes on values CN, DC, DE, QR,

PR or Exit for each respective menu item), and
2 Connection status (which is abbreviated CS and takes on the values Y or N).

The state set therefore consists of the following: {(CL = CN, C§ = N), (CL = DC, CS =
N), (CL = DE, C§ =N), (CL =QR, CS8 = N), (CL = PR, CS =N), (CL = Ext, C§ = N),
(CL=CN,CS=Y),(CL=DC,CS=Y),(CL=DE,C8 =Y), (CL=QR,CS=Y),(CL
= PR, CS = Y), (CL = Ext, CS = N)}. In addition, we include states that represent
placeholders for other system screens, as well as start and end states that represent the
software in its “not invoked” mode. The state transitions are depicted in Fig. 44 in a

graphical format.
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Table - 4.1: Transition Probabilities for the Example Usage Chain

SL# From state Trans To state Est.

Stimufi Prob.
1 | Unlmvoked Imde  {CL=CN, CS=No} .00
2 | {CL=CN, 1 {C1.-DC, CS=No} 0.10
CS=No} 4+ {CL=Ext, CS=No} 0.10
J {Connect} 0.80
3 | {aL=me, 1 {CL=DE, CS=No} 033
C5=No} t {CL=CN, CS=No} 034
a {CL=DC, CS=No} 033
4 | {CL=DF, 1 $CL~QR, CS=No} 033
CS5=No} 1 {CL=DC, CS=Noj 0.3
J {CL=DE, CS=No} 033
5 | {CL~QR, 1 {CL- R, CS=No} 033
CS=No} 1 {CL=E, C§=No) 034
1 {CL=R, CS=No} 033
6 | {CL=FR, T {CL=Ext, CS=No} 034
CS=No} 1 {CL=QR, CS=No) 033
g {CL=PR, CS=No} 0.33
7 | {CL=Ext, 1 {CL=CN, CS=No} 034
CS=No} ) {CL=PR, CS=No} 033
r {Terminakcd} 0.33
8 | {CL-CN, I {CL=DC, C5=Yes} 0.50
C8=Yes} T {CL=Ext, C5=Yes} 035
a {CL=CN, C5=Yes} 0.15
9 {CL=DX, 3 {CL-DE, C5=Yes} 0.70
CS5=Yes} t {CL=CN, CS=Yes} 0.15
2 {Discormext} 0.15
10 | {CL=DE, 3 {CL=QR, CS=Yes) 0.25
CS=Yes} 1 {CL=DC, CS=Ycs} 025
N {Data Entry New) 0.5
11 | {CL=OR, T {CL-PR, CS=Yes} 0.25
CS8=Yes) ) {CL=DE, C$=Ycs} 025
J {Quoxyj 0.50
12 | {CL-PR, I {CL=Ext, C5=Yes} 0.25
CS=Yes} t {CL=QR, CS=Yes} 0.25
y {Print} 0.50
13 | {CL=Ext, 1 {CL=CN, C8=Yes} 015
CS=Yes} t {CL=PR, C5=Yes} 0.35
R { Terminatcd} 0.50
14 | {Connect} Ok {CL—CN, CS=Ycs} 0.85
Cmod  {CL=CN, CS=No} 0.15
15 | {Discommest} Ok {CL=IXC, C5=No} 0.60
Cwad  [CL=DC, C5~Yes) 0.4)
16 | {DataEntry Tab  {Update} 0.40

A
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s From state Trans. To state Est.
Stimuli Proh.

New} ) {Save} 0.50

17 | {Updatc} Tab {Baxck} 0.50

J {Save} 0.50

18 | {Back} Tab {Data Entry New} 020

A {CL=DE, CS5=Yes} 0.80

19 | {Saxwe} Tab {Clear} 0.20

N {Data Entry New} 0.80

20 | {Clear} Tab {Save} 0.50

4 {Duta Extry New} 0.50

21 {Quary} Quay  {CL~QR, CS=Yes} 1.00
Data

22 | {Print} Primt {CL=PR, C5~Yes} 1.06
Data

23 | {Terninaied} Null Un-Imvoked 1.00

A path from the initial “Urrinvoked” state to the final “Terminated” state represents a

single execution of the software. In order to generate sequence statistically, probability

distributions are established over the exit arcs at each state that simulates expected fietd

usage. Several methods can be employed to extract this information, including subjective

evaluation based on expert opinions, survey of target customers, and measurement of

actual usage patterns. We assigned the probabiliies by expert opinion and Table-l lists

each transition for the example chain in Fig. 4.4,

Table — 4.2: Some Standard Analytical Results for Markov Chains

Resuits

Equation for Prob. or Mean

Interpretation of Mean

Recurrent chain

Stationary distribution, 7

Jrj = zﬂ:iUU
i

7, is the asymptotic appearance

(1) | rate of state j In a large number of

sequences from U.

The mean number of state

] ) 1 transitions between occurrences
Recurrent time for state J m, = ) )
T, of state j in a large number of
sequences from U.
Number of occurrenees of . The mean number of occurrences
state i hetween mmR, = "n_—" (3) ! of state i between occurrences of
/
occurrences of state j state j.
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The mean number of state
First passage time m, =1 +;Udmkj (4) | ransitions until state j occurs
” from state i.
Absorbing chain (for initial state ;)
The probability that stale f occurs
Single sequence prob. for ¥, = U; + ZU; Yy 5) in a single sequence (ic., fr?m
state f ket the initial state io the absorbing
state).
Number of sequences to h = 1 © The mean number of states until
occurrence of state j Yy state f ocours.
The probability that arc j, £k
_Single sequence prob. for 20 =3V ) cocurs in a single sequence (ie.,
arc j, k from the imtial state to the
absorbing state).
Number of sequences to hj: B _1_ ® The mean number of states umtil
occurrence of arcj, & Zy are j, k occurs.
Number of occurrences of | m(j]i)= Z Usm( j| k) The mean number of occurrences
state j in a single sequence (9) | of state j in a single sequence.
oy id

4.2.2 Analysis of the Usage Chain

The fact the usage model is a Markov chain allows software testers to perform

significant analysis that gives insight how the test is likely to unfold. The details of the
underlying mathematics can be found in [48]; however, we have included Table II to
summariz:e some useful results, This analysis s used to gain insight into how the test will
likely unfold so that testers can proceed in an informed manner. The insight gained

through the analysis can be used to aid test planning and preparation.

4.23 Constructing the Testing Chain

Usage chain U/ has stationary fransition probabilities; ie, they do not change
throughout the test However, probabilities in testing chain T are updated, and tracking
T’s evolution is an inherent part of monitoring the statistical testing process. Let

$,58,,..., 5, denote the set of test sequences in the order generated by U and applied to
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software P. The corresponding series of testing chains 7, 7.7, describes the evolution

of T during testing and is constructed as follows.

Before any sequence is input to P, the test history is empty. The initial chain 7o is a
copy of the usage chain U, with all arc probabilities set to 0. Assume first that no software
failures occur. 7; is obtained from 7, by incrementing arc frequencies along the path of
states from “Un-invoked” to “Terminated’ in s, Similarly, 72 is obtained from T; by
sequence s and, in general, 7, is obtained from T.; by 5. In the way, frequency counts on
arcs in T; are always obtained from specific sequences applied to software P. These arc
frequencies are converted to relative frequency probabilities whenever computation with
T;’s state transition probabilities is required.

The testing chin’s arc counts are reset when fixes are applied to P. Thus, as the
software changes, a new testing chain is created to model only the sequences applied on
that version. In this manner, the festing chain remains an accurate model of the testing
experience of the current software version. An additional formulation is to maintain a
testing chain that is not rest between fixes and incorporates festing experience across
different software versions. This latter testing chain is really a model of the process of
error discovery and faut removal, whereas the former serics of chains represents each
successive version of the software product Either interpretation can provide valuable

feedback about software development activity.

What can be said about the series 7,,7,.,7,7 If no failures are detected, the evolution

o:hy
of T is dictated solely by sequences from U. The Strong Law of large numbers for
Markov chains [55] guarantees (with probability 1) that these sequences s,s,,...,s, Wwill
become ° statistically typical of U when enough are generated. This means that
convergence of T to U is certain, because the relative frequencies on T's arcs will
converge to the probabilities on U’s arcs. A key point is that the test history 7T is
statistically typical of the usage chain U if and only if convergence is achieved.

In other words, U is a fixed reference toward which T; evolves at an expected rate

with statistical variation that depends on factors such as the source entropy of U {14].

This evolution is well controlled and predictable in statistical terms.
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42.4 Incorporating Failure Data
Supposc now that failures do occur and that the b fallurc f; is detected during input

of sequence s5; to P. To incorporaie this failure event into the test history, a new state
labeled £, is placed in Markov chain Ti exactly as it was ordered in si. The arcs to and

from the new state f, have frequency count 1. If f, is catastrophic failure, then the run
of software P is aborted, and the arc form [, goes to “Terminated™; otherwise, the test

sequence can continue, and the arc from f, goes to the next state in ;. In this way, T, is

maintained as a Markov chain that incorporates both the underlying structure of the
source of test sequences, U, and the frequency count history of sequences-plus-failures as

" testing evolves.

Convergence of T to U is adversely affected by failures of software P during testing.
To achieve convergence when failures have been observed, the relative frequency
probabilities on arcs to failure states in 7; must approach 0. In this way, the probabilities
on the non-failure arcs are still forced to converge to the corresponding fonzero) values
in U, If even one failure occurs, this can be accomplished only when P responds to more
test sequences without exhibiting failures. Thus, failures automatically impose additional

testing to overcome their adverse impact on the convergence of T'to U.

The testing chain, 7, is a model of the current test history and is useful for computing
properties of descriptive random variables as shown in the next section. An alternative
would be to obtain statistics directly from the set of sequences executed; however, T
incorporates explicitly the structure of the usage chain, which is only implicit in the
sequences. In other words, each sequence is accorded different status according its
specific attributes; e.g., sequences can vary in length and probability and thus contribute a
different amount of information into the statistical testing experiment. The testing chan
incorporates each event of each sequence, recognizing the probabilistic relationship
between states and arcs established in the usage chain. Any computation based on T
incorporates this information as well. Thus, T is an important model for the identification
and derivation of measures that describe the statistical testing process. See [14] for proofs

concerning specific attributes of testing chains.



425 Analytical Results for the Testing Chain

In this section, the testing chain, T, is used to obtain analytical results to answer two
questions. First, at what point does the test history become representative of usage (as

defined by U); second, how does each failure impact the testing process?
4.2.5.1 An analytical stopping criterion

Stopping criteria for stafistical software testing can be as simple as choosing some
target reliability [49, 50, 51, 52], and testing until the estimate of the reliability meets or
exceeds the target. However, the estimate of the reliability meets or exceeds the target.
However, the usage-to-testingchain approach suggests an analytic stopping criterion
based directly on the statistical properties of the usage and testing chains. The usage chain
is a model of ideal testing of the software; ie., each arc probability is established with the
best estimate of actual usage, and no failure states are present. The testing chain, on the
other hand, is a model of a specific test history, including failure data. Thus, the usage
chain represents what would occur in the statistical test in the absence of failures, and the
testing can represents what has occurred. Dissimilarity between the two models is
therefore a useful measure of the testing process. When the dissimilarity is small, the test

history is an accurate picture of the usage model.

The log likelihood ratio [53, 54] known as discriminant is used to0 measure how two
stochastic processes relate to each other. If two stochastic processes tend to converge each
other the numerical value of discriminant tends to zero and if both are same than the value

is zero. This value is computed for two arbitrary ergodic stochastic processes Ajand A,
[52} as foltows:

Dl )=l ~llog, p(dydd,.,1 29 ~log, p(ddyd 1)) (D

where p(d..|A) denotes the probability with which stochastic process A generates
sequence d. Although IX4,,A4,) cannot be directly computed for arbitrary process A, and

A, , it can be computed for Markov chains U and 7'{14] as follows:

DW.T)=Y #,p,lo8, gJ )
ij

[
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where 7is the stationary distibution of U, p, is the probability of a transition from i
to j in U, and p; is the comosponding probability in 7. Each p, that corresponds to a
nonzero p, must be greater than zero in order for DU, T) w0 be defined. D(U,T) 18
non-negative and equal to zero if and only if p, = p, forall 7 j [53].

To monitor the testing process, D (U, 7) can be computed with each sequence applied
to the software after T becomes fully defined. A downward trend in the values of D (U, 1)
signifies growing simifarity of the two models. Usage chain U never changes; however, D
(U, T) reflects the impact of each additional sequence on the stochastic characteristics of
the testing chain. D (U, T), for example, can rise when no failures are observed if a
_ sequence reinforces some low -probability event. Of course, a rise is expected when a
failure occurs. When the discAmination drops below some predefined threshold and
experiences little change for an extended period, it is implied that additional test
sequences will not significantly impact the statistics of the testing model, and testing can

stop.
No Failure - -- - - Failure
0.025 7
0.02
0.015
(=
2
(=]
0.0
N
0 1 T T T T 1
0 50 100 150 200 250 300
Sequence

Fig. 4.5: Plotof D (U, T)

We have written a program for our example software and calculate the discriminant
according to equation (2) and plot it in Fig. 4.5. The figure shows two plots of D (U, T).
The solid line depicts behavior of D (U, T) with no failures and the dotted line depicts a

61



sequence with four faflures. When testing chain grows quite similar-to usage chain i.e. the
test history reflects the actual usage pattern, the value of D (U, 7)) becomes very small.
Test should stop at this point. Whenever a failure occurs the valie of D (U, T increases
significantly so additional tests require minimizing that effect [13]. it is important to

stress that analysis of D (U, T)) should involve trends in the values of the function over

time rather than any single value at some specific point in time.
4.2.5.2 Measuring reliability, mean time to failure and the impact of failure

We compute two characteristics of the testing chain that give insight into the effect of
the failures. The first is the probability of a failure free realization of the testing chain,
denoted R, computed by using a standard result from Markov chain theory. The second is
-the expected number of steps between failure states, denoted M, which requires a new

computation.

R and M can be computed directty from the testing chain 7 at any time during the
testing of software P, even when only a single sequence has been input to P. It must be
emphasized that R is a probability and M is an expected value conditioned on the test
history encoded as 7. these values gan credibility as statistical measures as the
discrimination D (U, T) becomes relatively small, for this indicates that ' is becoming
statistically typical of sofiware P’s response to the input sequences form usage chain U.

The probability, R, of a failure-free realization of the testing chain is the probability
that a realization of T beginning with “Un-invoked” and ending with the first occurrence
of “Terminated” will not contain a failure state. To compute R, each failure state and
“Terminated” are made absorbing states. R is the probability that absorption cccurs at
“Terminated”, given “Un-invoked™ as the start state [13, 48]; namely, as follows:

‘RUn—J'rl,Term = pUn—inTerm + Z pUn—inJRjTérm (3)

Jer
where T is the set of transient (norrabscabing) states.

Fig. 4.6 depicts a plot of R for 250 sequences. Failures on high probability paths wili
cause a sharper decrease in R, because the failures are probability-weighted according to
their location in chain [13]. Note that R = 1 when no failure dates exist in 7. because it is

a conditional probability, R gains credibility as D (U, T) gets small. From that plot after
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250 sequences of test if the value of R is 0.976 than we can say that a randomly selected

test sequence has 97.6% chance to execute successfully without failure.
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Fig. 4. 6: Test Sequence versus Reliability
The expected number of steps between failures is the expected number of state
transitions encountered between occurrences of failure states in the testing chain. This
value is computed [13, 14] as follows:

M=} ( > ﬁy(m,.ﬂ)J @

FEf S Jen ... Uy,

where v, is the conditional long-nm probability for failure state f,, given that the

process is in a failure state, m, is the mean number of steps until the first occurrence of

any failure state from j, w,,...,u, is the set of usage chain states, and f...., f, is the set of
failure states. Fig. 4.7 is a plot of M for 250 sequences generated from our example
software.

"Also some additional information can be found from the usage and testing Markov

chain. For example as the test process advances we can compute stationary probability of

each state of the testng Markov chain which shows the amount of time spent in any state



in the long run. We compute the stationary probabilities snd are shown in the following

graph.
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Fig. 4. 7: Expected Number of Steps Between Failures

We describe a sequence generation and analysis technique for statistical testing using
Markov chains. We discuss the construction of a Markov chain as a sequence generator
for statistical festing and show how analytical results associated with Markov chains can
aid in test planning. An important aspect of this method is that the test sequences
generatea and applied to the software are used to create a second Markov chain to
encapsulate the history of the test, including any observed failure information. The
influence of the failures is assessed through analytical computations on this chain. We
also find a stopping point for the testing process based on a comparison of the sequence

generating properties of the two chains.
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Fig. 4. 8: Stationary Probabilities of States of the Testing Chain
4.3 Effectiveness of Statistical Software Testing

One of the major shortfalls of statistical testing is the lack of evidence of the effectiveness
of statistical testing compared to other methodologies, such as structural testing [66],
random testing etc. Here we show the effectiveness of statistical testing over random
testing. We assign equal probabilities to each exiting arcs from a state, generate test cases

that represent random testing and measure reliability to compare the test processes.

usage probability - - - == egual probability
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Fig. 4.9: Statistical Testing vs Random Testing (fault lies on high probability path)
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" From Fig. 4.9 we find that if the fault lies on the path of heavy usage probability than
it reveals early in statistical testing while the fault reveals lately in random testing. If we-
set the target refiability to 0.98 we see from Fig. 4.9 that random testing may not reveal
one bug. But if the fault lies on the less usage probability path than random testing reweals
the fault early than statistical testing but this does not jeopardize our test effort as the
same number of bugs are revealed by statistical testing before attaining the desired
reliability and this is shown in Fig. 4.10.

Usage probability - - - --- equal probability

0.7 1 F T T T
0 50 100 150 200 250 300
sequence

Fig. 4.10: Statistical Testing vs Random Testing (fault lies on low probability path)
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Chapter S

Arc-based Reliability

5.1 Introduction

Markov chain usape model that we have used to measure reliability in previous
chapter has several benefits. It allows generating test sequences from usage probability
distributions, assessing stalistical inferences based on analytical results associated with
Markov chains and also to derive stopping criterion of the test process. But the main
problem in this process is to mode! software behavior in a single Markov chain. For large
software systems the model size ie. the number of sates become unwieldy and it becomes
infeasible to apply this method in generating fest cases as well as measuring reliability.
Our main goal is to measure reliability of the entire software system. But a software
system evolves over time. Whenever a change is made or new functionalities are added
we have to go through the same procedure repeatedly to measure reliability. This is also a
drawback of the previous technique. So we find an altemative approach to measure
software reliability by combining the ideas drawn from partition testing, statistical testing
using Markov chain usage model and component based software testing. Again we have
taken exampk from database based application software, find its partitions or modules, in
this case individual forms, separately so that it improves sampling efficiency [20, 26] and
measure reliability of each forms according to Markov chain usage model. We assume
that the 'forms are independent. When the individual forms reliabilities are measured we
can calculate the entire software system’s reliability using the usage probabilities of the

forms.

5.2 The Miller Reliability Model

The Miller reliability model [27] can be used in conjunction with usage models to
define software reliability estimators. The Miller model is based on Bayesian statistics
and allows the user of the model to take advantage of prior knowledge of the system
under test [27]. The Miller model assumes that the possible failure rates of the software
have a standard beta distribution [56]. In the Miller model the expected value of the
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N . f+a .
ils der test s E(R)=1-| ———— |, where the number
reliability R of the system under B F(R) [f+s pys +b] where 5 is

of successful tests run, f is the number of failures, and @ and b are parameters representing

prior information about the software failure rate. For the case of no prior information

about the software failure rate g=b=1.

The variance of R is.

(f+a)s+b)
(f+s +a+b)}(f+s+a+b+1)

Var(R) =

While the Miller model can be used to calculate the expected value of the overali
reliability for the system, it can also be used when the testing domain is partitioned into
~equivalence classes (also called blocks or bins). Reliability can then be calculated for

each block of the partition as well as for the entire system [26].
5.3 Single-Use Reliability and Single-Action Relizbility

The Whittaker model [14] estimates software reliability in terms of test cases as
“yses”, where a use is an executed sequence of actions from (Un-Invoke) to (Terminate).
For example, a use of word processing software could be to invoke the software, load a
document, print the document, and then exit the software. This view of software
reliability, the single-use reliability, defines the rteliability as the probability of the
software executing a randomly selected use without a failure. A use is considered to have
a failure if at least one failure occurs during the execution of that use. While preserving
this definition of reliability, an altemative approach to its estimation is given that does not
necessariiy yield R= 1.0 when random testing reveals no failures. This definition is
needed because Cleanroom development and testing often leads to testing results where
no failures are seen in random testing. Current reliability estimators in use today, such as
the Whittaker model and the sampling theory based model [57], do not provide a
meaningful variance in the absence of failures. Therefore it is impossible to define a
confidence interval around the estimated reliability, which in tum means it is impossible

to assess the trustworthiness of the estimated reliability.

The single-action reliability [26] is introduced to provide an estimate of the
probability that a single user action, a single state transition in the usage model, will occur
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without failure. For example, a single user action involving a word processor might be

loading a file.

Field experience shows many festing situations in which pre-test information is
known or asserted in terms of individual arcs of the usage model. Both of these reliability
estimates make use of this type of information.

Note that it is possible for the single-usc refiability and the single-action reliability of
a system to be quite different. This is because the single-usc reliability depends strongly
on the length of a typical use of the software. The longer the typical use of the software,
the more chances the software has to fail. Therefore it is possible for software with a high
single-action reliability to have relatively low single-use reliability. For example, consider

a model where the probability of each individual user action succeeding is 0.99 and every
use is 100 steps long (however rare such a model might be). The single-action reliability
would be 0.99 since any given step has 0.99 reliability. However, for a use to succeed
every user action must succeed; therefore the single -use reliability is (0.99) 1" = 0.366, a
much lower value than the single -action reliability.

5.3.1 Testing Records

Five matrices are needed to compute the single-action: the usage model transition
matrix U, a success matrix S, a failure matrix F, and matrices of parameters of prior
information, A and B. The transition matrix contains the arc transition probabilities of the

usage model. It & created when the model is created.

A success matrix contains the counts of the number of times. that each. transition. has
been taken successfully during testing. Note that the success matrix does not contain
information about failure states and that normalization of the success matrix would yield

the testing chain only in the case of no failures.

The record of failures is maintained separately from the record of successes. The
failure matrix F contains the counts of the number of times that a transition has failed
during testing. If a failure is encountered while executing a test case that does not permit
testing to continue (a halting fallure), then no transitions beyond the failure will be
counted in the testing record in either the success matrix or the failure matrix. Since those
transitions were not executed during the test, they cannot be counted as successes or

failures. Testing will continue with the sequence if possible.
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The general process followed in testing using this reliability measure is as follows:

1. Generate sequences from the usage model.

2. Run the sequences until (Terminate} unless there is 2 halting failure.
3. Update the count of successful transitions in S.

4, Update the count of failed transitions in F.

5. Using the Miller failure rate calculation, estimate the failure rate of each arc in the

model. The arc failure rate is defined to be zero if the state transition probability is

2210,
6. Estimate the single -action reliability, E (Ro).
"532. Are Failure Rate Calculation

Following Miller, the expected values and variances of the arc failure rate random

variables are computed using the Beta distribution [26].

RN,

E(, )=

x5, ta,+h,

(f,+a W +s,+8,)
2
(f,+5,;+a,,+b ) ([ +s,,+a,,+b, ,+])

Var(E, ;) =

533 Single Action Reliability Estimator

The single-action failure rate can be viewed as the probability of failure of a randomly
selected transition from the convergent sequence. In terms of the Miller model, the
probabiliéy associated with each state is the fong run probability of the arc that defines
that state. The long run arc probabilities of U are dfined by 7 (7, /) =7 (), ;.

Theorem: For each arc in a usage model U; the long run arc probability is equal to
the probability of selecting the state under R identified with the arc, i.c.
P =rm, .

Proof: Because the Markov chan representing the usage modet is ergodic, in the
convergent sequence the probability of selecting an arbitrary arc approaches that arc’s
long run probability [48). Selecting an arc at random and taking the sequence beginning

with the most recent (Invoke) is equivalent to selecting the state. Therefore, the long run
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arc probability is equal to the probability of selecting the state under R identified with the

arc,

Theorem: The expected value of the single-action reliability is E(R)=1-E(F,),

where E(F,)= Z[Z o EF )J is the expected value of the single-action failure rate.
]

Proof: The probability associated with block ¢ j) 1s p,,. The failure rate associated
with block (i, J) is F,,,. The expected value of the single-action failure rate follows by

the Miller model.

5.3.4. Miller Model

Because the single-action reliability is the sum of random variables, by the central
limit theorem the random variable representing the single-action reliability has an
approximately normal distribution. Therefore, given the expected value and varance of
the single-action reliability it is possible to compute a c% confidence interval for the

single action reliability.

5.4 Single Action Reliability

From our example software we have taken a complex form named “Search Books”. It
is a part of Library Management Software. Through this form a borrower can search
books ac::cording to Author, Title, Call Number, Accession Number and Keywords, and
can reserve books for a specified time period. Fig. 5.1 shows the window of “Search

Books™.

Borrower selects search type from the combo box, inserts string in the text box and
clicks on “Search” button to get the result. User can also log in to the system using
his/her borrower id and password. If the process succeeds the “Change Password”,
“add”, “Remove” and “Reserve” buttons, and the “Issued Books”,

“Reserved Books” radio buttons are enabled. The form now looks like in Fig. 5.2,
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Fig, 5.1: Search Books Form { - | ’

If borrower clicks on “Issued Books” radid button then the system displays the
books information that the borrower borrowed from library. If he wants to reserve books
then he .selects "Reserved Books” radio button, selects a book from the searched
book list and clicks on “Add” button to add the book in the second list as in Fug. 52.
The status is set to ‘pending’. He can remove a book from the list by clicking on
“Remove” button. When the list is complete borrower reserves the books using the
“Reserve” button and the status is €t 10 ‘reserved’ . The behavior of this form is
modeled as a Markov chain as shown in Fig 5.3 and probabilities are assigned to each arc
according to expert judgment as are assigned in previous chapter. For simplicity of the

graphical representation we omit some unimportant arcs. S
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F:g 5.2: Search Books Form 2

Assigning each arc an “actual” failure rate testing was simulated. Taking random
walks from “Uninvoked” to “Terminated” of the usage modei based on the transition
matrix generated the simulated test sequences. At each transition it was randomly
determined whether a failure occurred; success and failure matrices were updated as
discussed earlier. | ‘ ‘

All arcs were assumed to have a failure rate of 0.01 and no prior information was used
in the arc failure ratc cstimates, ic., all elements of A and B equal 1. A graph of the single

action reliability is shown in Fig. 54.
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Fig. 5.3: Usage Markov Chain of Search Books
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Fig. 5.4: Single-Action Reliability

Through the application of statistical sampling theory it is possible to compute the
probability that the testing chain will remain essentially unchanged if more test cases are

run. When estimating the mean of a population through sampling it is possible to estimate
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the variance of the sample mean. Given a sample of size, the variance of the sample mean
provides information on how the sample mean might vary from sample to sample. If the
variance of the sample mean is small, repeated drawings of samples of size are likely to

yield the same sample mean.

The variance of the single -action reliability estimator is shown in Fig. 5.5.
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Fig. 5.5: Single Action Reliability Variance

The stopping criterion is determined for this process and is discussed in the next

chapter. Software consists of a number of forms. Single action reliability estimator

detelmine_s reliability R; of every form. The system reliability R:ZR.*R, is computed

from the form’s reliabilities, where p, is the usage probability of each form.

75



Chapter 6

Stopping Criteria

Currently, three methods are used to compare testing experience with expected use of
the software, the Euclidean distance between the usage chain and the testing chain, the
Kullback discriminant from the usage chain to the testing chain and Krik Sayre’s long run
arc occupancy. These methods compare the current testing chain with the usage chain and
provide an indication of the degree to which the testing chain matches the usage chain.
However, the Kullback discriminant and Krik Sayre’s long run arc occupancy provide a

- more accurate indication of the similarity of the usage chain and the testing chain.

6.1. The Euclidean Distance

The Euclidean distance is computed as E‘(uu —1,,)" where u,, and ( are the
L

probabilities of going from state (f) to state (f) in the usage chain and the testing chain,
respectively.
As stated earlier, the Euclidean distance can be an inaccurate measure of the similarity

of two usage models. For example, consider the usage model shown in Fig. 6.1.

Now suppose that two different testing chains with extreme differences resulted from

two separate testing experiments. The testing chains are shown in Fig. 6.2 and Fig. 6.3.

In ftesting chain A the probabilities of the arcs exiting (fnvoke) match the
corresponding arcs in the usage model. However, the probabilities of the arcs in the cloud
containing the majority of the mode! structure of testing chain A do not match the
corresponding arcs in the usage model. In testing chain B the situation is reversed. The
arcs exiting §rvoke) in testing chain B do not match the corresponding arcs in the usage
chain but the probabilities of the arcs in the cloud in testing chain B do match the
probabilities of the corresponding arcs of the usage model. Because testing chain B has
more arc probabiliies in common with the usage model than testing chain A, the
Euclidean distance will indicate that testing chain B is much closer to the usage chain

than testing chain A, or in other words the testing performed to create testing chain B will
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be interpreted as .being more representative of the expected use of the software than the
testing experience represented by testing chain A. If the Euclidean distance is interpreted
in this manner the software organization runs the risk of wasting time fixing relatively
unimportant faults uncovered through testing of the cloud and runs the risk of missing
important faults that would be exposed through testing of the transition from (fnvoke) to
(State A). Thus, the Euclidean distance has the potential for misleading interpretation.

Ut

e

Fig. 6.1: Euclidean Distance, Example Model

i)

shinirkey

WINERI
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Fig. 6.2: Euclidean Distance, Testing Chain A

L)

Y

‘
Fig. 6.3: Euclidean Distance, Testing Chain B
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6.2. The Kullback Discriminant

The Kullback discriminant {53] is the expected value of the loglikelhood ratio of

pr[Xo,Xl,...,XJU]J -

In the
Pr[XO,X,,...,X”H']

two stochastic processes, ie. K(U,T)=]im-—l-[10g[
rl—man

specific case of comparing the usage chain to the testing chain, X, X ... X, is a

i M ‘Ll
sequence of fength » generated by the usage chain and K(U,7T)= Zﬂ(i)ZuL ,log [——’i]
i=) =] Iy
A problem arises in the computation of the discriminant when one or more arcs in the
“usage chain have not been covered in the testing chain. This lcads to a division by zero in
the discriminant calculation. Therefore, the discriminant is not defined unless all arcs in

the usage chain have been covered during testing.

6.3. The Sayre Long Run Arc Occupancies
According to Sayre the testing chain is considered to heave converged if

Priv.v (in(i, /) -&(i,j)}SE,.!J)]>p, ie. the probability that all the long nm arc
occupancies of the testing chain will be approximately equal to the long nm arc
occupancies of the usage chain is greater than p, if an equal number of tests were to be
run again. Henceforth, the testing chain will be termed approximately equal to the usage
chain if all of the long run arc occupancies as estimated from the testing record are
approximately equal to the long run arc occupancies of the usage chain. This probability

is estimated through simulation.

The simulation is performed by repeating iterations of generating a fixed number, n,
of sequences, updating the testing chain, and checking to see if the resulfting testing chain
is approximately equal to the usage chain. The probability of the festing chain being
approximatcly cqual to the usage chain affer the pencration of # sequences is estimated as
the proportion of times that the testing chain and usage chain were approximately equal to

the total number of times the generation of # sequences was simulated.
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in more detail, given S and F as the initial value of the testing record, 1, the number
of sequences to generate, U, the usage chain, and j, the number of simulation iterations,

the simulation proceeds as follows:

Count Of Equal = 0
for p=1 to j do
t temp = 8§+ F
for gq = 1 to n do
s = Generate Sequence (U)
Update t_temp with s
end for
if (Estimate_Long_Run Arc Occ(t_temp) is approximately
equal to Calg_Long_ Run_Arc_Occ(U)) then
Count_Of Egqual = Count_Qf Egqgual + 1
end if
end for
Probability = Count Of Equal/j

As j becomes sufficiently large, Probability will approach the true probability of
the testing chain being approximately equal to the usage chain afier the generation of n

sequences.

6.4. Our Stopping Criterion

Neither the Kullback discriminant nor the FEuclidean distance directly check whether
the testing chain has followed a testing activity to converge to the usage chain. They
simply provide a number used by the testing engineer to assess the degree to which the
testing chain is currently in some sense equal to the usage chain. So we use Sayre’s long
run arc occupancies technique to measure the stopping point of the test process. The

graph in Fig. 6.4 shows the probability of approximate equafity of the testing chain, T,
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and ‘the usage chain, U. During the simulation the testing record was initialized with an.
empty testing record, i.c., the same base of testing experience was used to compute the
probability of approximate equality after running » = 1...1000 additional tests. In this
cxample the €, ; for each arc {, j) was set to 20% of the actual long run occupancy of the
arc. Thus, the testing chain is considered to be approximately equal to the usage chain if
all long mun arc occupancies as estimated from the testing record are within 20% of their

actual values. Values were computed every ten test cases

Convergence of testing chain to usage chain
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Fig. 6.4;: Example Model, Convergence of Testing Chain to Usage Chain

Given that no specific prior testing was performed, when testing from the example
model there is approximately a 50% chance of the testing chain being approximately
equal to the usage chain afier running 190 test cases. After running 1000 test cases there

is a 99.5% chance of the testing chain being approximately equal to the usage chain.

In Fig. 64 the graph of the probability of approximate equality given a fixed base of
testing experience scems to be smoothly increasing, with a number of local rough points.
These rough points in the graph will disappear if the number of iterations in the
simulation is ingreased. Given a fixed base of testing experience, ie., the simulation is
initialized every time with the same testing record, the probability of approximate

equality increases monotonically as the number of tests run increases.
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There are two basic ways of using the probability- of .approximate equality, (1)
calculating the probability of approximate equality given a fixed prior testing record and
varying the number of additional tests to run, or (2) calculating the probabifity of
approximate equality given a fixed number of additional tests to run based on a
successively updated testing record. Discussion up to this point has centered around the
caleulation of the probability of approximate probability given a fixed prior testing record
and varying the number of additional tests fo run. The probability of approximale equality

is monotonically increasing in this case.

Now we are concemed with the second use of the probabifity of gpproximate equality,
The testing record used in the estimation of the probability of approximale equality is
_updated after each executed test case. Given this updated base of testing experience, the
probability of approximate equality after running some number of additional tests is

estimated,

Converfgence of testing chain to usage chain successively
updating testing record
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Fig. 6.5: Convergence of Testing Chain to Usage Chain, Successively Updated Testing Record

Fig. 65 and Fig. 6.6 displays the pmobability that the testing chain will be
approximately equal to the usage chain after running »ni additional test cases, given that »
specific lest cases have already been run. Two different random seeds are used to
generate the two graphs. The probabilities presented illustrate the case for nl = [0 and »
going from 0 to 1000.The testing record used in the simulation of the probability of
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approximate equality is updated after each test case is rum, ie., the base of testing

experience is evolving over time.

Converfgence of testing chain to usage chain successively
updating testing record
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Fig. 6.6; Convergence of Testing Chain to Usage Chain, Successively Updated Testing Record

The graph of Fig. 6.5 and Fig. 6.6 do not follow an orderly curve. Until the testing
record has stabilized to a certain degree, the probability of approximate equality of the
testing chain and usage chain after running the next ten test cases given the updated
testing experience is quite sensitive to the current state of the testing record. While testing
chain T will eventually converge to usage chain U, T does not converge monotonically to
U.

A planning analysis, using Fig. 64 might suggest that 700 test cases will need to be
run before the probability of approximate equality nears 0.95. Fig. 6.5 & Fig. 6.6 suggest
that given the actual testing performed, the probability of approximate equality
consistently exceeds 0.95 after 500 test cases have been run. Therefore, if the probabiiity
of approximate equality being greater than 0.95 was used as a stopping criterion, it may
make sense to stop testing after 500 test cases have been run.
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Chapter 7

Conclusion

7.1 Introduction

The statistical relfiability assessment of software requires that the random test cases be
generated from the operational profile or usage pattern of the system. An operational
profile or usage model consists of a Jogical description of the possible states of the system
and of a statistical or probabilistic model describing how often certain states of sequences
of states are encountered. Hf the model doesn’t correspond statistically to the actual usage
of the system, the reliability estimates based on the statistical testing is erroneous. In this
thesis we have considered statistical testing approach and reliability assessment in
general. We have shown how stochastic modeling [55] can be applied to the software-
testing problem. Aithough choice for a model could have been any number of stochastic
processes, Markov chains were used because they have been shown to be successful in

practice and because of their potential to provide valuable analytical feedback.

In this concluding chapter, the contributions and limitations of the research are

presented, and propose future research tasks aimed at addressing the limitations.

7.2 Contributions

Statistical software testing promises a solution- to the increased testing burden caused
by the éver-increasing complexity of today’s software systems; however, the complexity
of these ;systems makes it more difficult to provide a model to use as a basis for statistical
testing. The flat operational profile and Whittaker’s Markov model leads to enormous
mdels when capturing the usage of these complex systems and makes it infeasible to
generate test cases randomly and asses reliability form the enormous model. In our thesis
we have shown a different approach while measuring software reliability. We combined
the ideas of stochastic modeling, stafistical testing and component based software testing
to measure reliability of software system. We also find a stopping criterion to stop testing,

i.e. the number of test cases that should be run before releasing software.



Taking an application form as a software component and modeling it as a Markov
chain gives us several benefits. Traditional Markov modeling or stochastic modeling
would incorporate additional states to previous model and would require repeated testing
effort to find reliability. But in our approach it needs only to model the new form and find
its reliability to measure system reliability that is less cumbersome. Thus our approach
considers the impact of software change or software evolution. We choose single action
reliability model to measure the individual form’s reliability, which enables us to use pre-
test information that was not possible in Whittaker model. Testing savings can be realized
if accurate pre-test refiability information is available. We also apply Sayre’s long mun arc
occupancy to measure the similarity of usage model and testing model. Thus extensive
simulation can be used in test planning. A testing orpanization now has considerable
“ability to tailor the reliability estimation to the situafion in order to make testing more
efficient. Using partition-testing techniques in conjunction with usage models and arc-
based reliability models increase testing efficiency. These accomplishments allow for
larger systems to be modeled more concisely and compactly while providing statistical
testing’s benefits of effective, efficient testing, reliability estimation and quantified

business decisions.
7.3 Suggestions for Further Research

A formal relationship between the similarity of the testing chain and the usage chain
and the estimated refiability should be established. Field evidence shows that a high
degree of similarity between the testing chain and the usage chain indicates that the
reliability estimated from the testing experience is accurate. However, a more formal
relationship is needed. The distributions of various random variables based on the usage
model (sequence length, number of sequences to cover all states or arcs, efc.) should be
studied. Knowledge of the distribution underlying these random varnables will allow for
increased accuracy in test planning and model validation.

In our approach we simply come up the idea of divide and conquer method. But as the
model increases with the growing complexities of software, researchers have developed
the Requirements State Machine Language without Events (RSML™), a state-based
modeling language that will serve as the basis for the parallelisim-capable statistical
modeling [66]. As a formal language RSML® can be used to accurately describe

requirements and create a state-based model of a system’s behavior. This addresses the
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statistical component of the operational profile, adding probabilities to the structural
‘mode! and generating test cases from the parallelism-enhanced operational profile.

In this thesis we show how stochastic modeling can be applied to the software-testing
problem. Although the choice for a model could have been any number of stochastic
processes, Markov chains were used because they have been shown to be successful in
practice and because of their potential to provide valuable analytical feedback. Our given
example is a small one and the futwe work can focus on more complex software like
banking software, where transactions are very much important. This will increase the
volume of state space, Future work can also investigate methods to mechanically
enumerate the state space of the model from the operational modes. We envision the
development of the operational modes and a set of constrints defining possible states to
be the task of a human tester and then an algorithm would generate the full state space. It
.remains to be seen how general such an algorithm could be and whether we could embed
arc information so that the entire Markov chain could be constructed.

The issue of generating test cases randomly from the model is an important one.
Currently, we generate test cases based only on the probabilities assigned to each arc. An
extension of this idea would be to dynamically change the probabilites as new
information surfaces dunng test. For example, software that has artificial intelligence
capabilities may change its branching probabilities form one state to another. Also, we
might decide that a particularly buggy section of code needs additional testing and then
raise the probabilities ssociated with that part of the model. Thus the model would adapt
to the demands of testing by leamning failure pattems and adjusting probabilities to get
better coverage of specific parts of the model.

In our research effort we focus on database based application sofiware and take only
functional’ requirements in consideration to measure reliability. But today security aspects
of database especially authentication, authorization are some major issues. Can we say
that our system is highly reliable if security is poor? No research effort is given to this
direction, A formal approach could be developed that incorporates security issues and

other kinds of failure like network falure ete. in measuring software reliability.
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