
Software Reliability Using Markov Chain
Usage Model

Submitted by
Md. Shazzad Hosain
M. Sc. Engineering Student

Department of Computer Science and Engineering
Student 10: 040205045P

A thesis submitted to the Department of Computer Science and Engineering in
partial fulfillment of the requirements for the degree of

Masters of Science in Engineering in
Computer Science and Engineering

Supervised by
Dr. Md. Shamsul Alam

Professor, Department ofCSE, BUET

IIImllllllllil/lllllllill/lllllil .
#100892#

}

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA, BANGLADESH
AUGUST 2005

•

The thesis "Software Reliability Using Markov Chain VS:lg" Moder', submitt"dby

Md. Shazzad Hosain, Roll No. 040205045P, Registration No. 95405, Session April 2002,

to the Department of Computer Science and Engineering, Bangladesh University of

Engineering and Technology, has been accepted as satisfactory for the partial fulfillment

of the requirements for the degree of Master of Science in Engineering (Computer

Science and Engineering) and approved as to its style and contents. Examination held on

August 24,2005.

Board of Examiners

1. _ -2=til~ or
Dr. Md. amsul Alam
Professor & Head
Department of CSE
BUET,Dhaka-1000

Chairman
(Supervisor)

Member

Member
(Ex-officio)Dr. Md. Sh u Alam

Professor & Head
Department of CSE
BUET, Dhaka- 1000

2

3.
Dr. A. S. M. Latiful Hoque
Associate Professor
Department of CSE
BUET,Dhaka-1000

4.

5.

. () "D~
l ~~- -_
Dr. Md:Saidur Rahman
Assistant Professor
Department of CSE
BUET, Dhaka - 1000

___~~~~~*-0& ~O?
Dr. Md. Haider Ali
Associate Professor
Department of CSE
Universityof Dhaka

Member

Member
(External)

•

Declaration

I, hereby, declare that the work presented in this thesis is the outcome of the

investigation performed by me under the supervision of Dr. Md. Shamsul Alam,

Professor, Department of Computer Science and Engineering, Bangladesh University of

Engineering and Technology, Dhaka. I also declare that no part of this thesis and thereof

has been or is being submitted elsewhere for the award of any degee or diploma.

~)
(Md. Shazzad Hosain)

Acknow [edgement

First I express my heartiest thanks and gratefulness to Almighty Allah for His divine

blessings, which made me possibleto complete this thesis successnllly.

I feel grateful to and wish to acknowledge my profound indebtedness to Dr. Md.

Shamsul Alam, Professor, Department of Computer Science and Engineering, Bangladesh

University of Engineering and Technology. Deep knowledge and keen interest of Dr. Md.

Shamsul Alam in the field of software reliability influenced me to carry out this project

and thesis. His endless patience, scholarly guidance, continual encouragement,

constructive criticism and constant supervision have made it possible to complete this

thesis.

I would like to thank the members of the graduate committee, Dr. A. S. M. Latiful

Hoque, Associate Professor, Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology, Dr. Md. Saidur Rahman,

.Assistant Prcfessor, Department of Computer Science and Engineering Bangladesh

University of Engineering and Technology and Dr. Md. Haider Ali, Associate Professor,

Department of Computer Science and Engineering, University of Dhaka for their helpful

suggestions and careful review of this dissertation. Lastly I would like to convey gratitude

to all my course teachers here whose teaching helps me a lot to start and complete this

thesis work.

II

Abstract

Statistical testing gIves us opportunity to have statistical inferences such as reliability,

mean time to failure (MTTF) etc. for software systems and Markov chain usage model

gams it's credibility in this field. Markov chain usage model has several benefits. It

allows generating test sequences from usage probability distributions, assessing statistical

inferences based on analytical results associated with Markov chains and also to derive

stopping criterion of the test process. But the main problem in this process is to model

.software behavior in a single Markov chain. For large software systems the model size

i.e. the number of sates become unwieldy and it becomes infeasible to apply this method

in generating test cases as well as measuring reliability.

Two Markov models called usage chain and testing chain are developed from the

example software. The discriminant value of the two chains is determined to analyze

software reliability. As the software becomes more complex the model size grows

quickly, which is known as state explosion problem. To overcome this problem we

present a technique to measure software reliability by combining the ideas drawn from

stochastic modeling, statistical testing using Markov cha in usage model and component

based software testing. We have taken example from database based application software,

find its modules, in this case forms, and measure reliability of each forms using Markov

chain usage model. We then analyze system reliability from those form's reliabilities

according to their usage probabilities. Our experimental efforts lead us to a more practical

and effective approach for software reliabilityand quality assurance.

III

'..

Contents

Declaration

Acknowledgement

Abstract

List of Figures

List of Tables

1. Introduction

I .1 Introduction

I .2 Literature Review

1.3 Problems of Existing Works

1.4 Scope of the Thesis

2. Testing Techniques

2.1 Issues of Software Quality

2.2 Software Testing

2.3 Testing versus Debugging

2.4 Function versus Structure

2.4.1 Flow Graphs and Path Testing

2.4.1.1 Control Flow Graphs

2.4.12 Notational Evolution

2.4.1.3 Path Testing

2.4.1.4 FWldarnental Path Selection Criteria

2.4.1.5 Path Testing criteria

2.4.1.6 Loop Testing

2.42 Transaction Flow Testing

2.4.2.1 Transaction Flows

2.422 Get the Transaction Flows

2.4.2.3 Path Selection

2.4.3 Data Flow Testing

2.4.3.1 Data Object State and Usage

2.4.32 Data Flow Anomalies

2.4.3.3 Static vs. Dynamic Anomaly Detection

IV

I

II

III

VIII

X

I

3

5

6

8

8

9

10

II

II

12

13

17

17

17

18

20
21

22

22

22

23

23

25

2.5 Software Testing Stages 2fj

2.5.1 General Testing Stages 2fj

2.5.1.1 Unit Testing Tl

2.5.1.2 Component Testing Tl

2.5.1.3 Integration Testing Tl

2.5.1.4 System Testing 27

2.5.2 Specialized Testing Stages 28

2.5.2. I Stress Testing 28

2.5.2.2 Survivability Testing '29

2.5.2.3 Recovery Testing '29

2.5.2.4 Security Testing '29

2.5.2.5 Compatibility Testing 30

2.5.2.6 Performance Testing 30

2.5.3 User-Involved Testing Stages 31

2.5.3.1 Usability Testing 31

2.5.3.2 Alpha Testing 31

2.5.3.3 Beta Testing 32

3. Reliability Models 33

3.1 Introduction 33

3.2 State - Based Models 34

3.2.1 littleWood Model 34

3.2.2 Laprie Model 35

3.2.3 Kubat Model 36

3.2.4 GokhaJe et. al. Model 36

3.3 Path - Based Models 37

3.3.1. Shooman Model 38

3.3.2 Krishnamurthy & Mathur Model 38

3.3.3 Yacoub, Cukic and Ammar Model 39

3.4 Additive Models 40

3.4.1 Xie & Wholin Model 40

3.4.2 Everett Model 40

3.5 Input Domain Models 41

v

/ .."

3.5.1 Nelson Model 41

3.5.2 Weiss & Weyuker Model 41

3.6 Reliability Growth Models 43

3.6.1 Software Reliability Growth Model Types 45

4. Statistical Testiog 49

4.1 Sllltistical Testing 49

4.2 Markov Chain Model for Statistical Software Testng 50

4.2.1 The Usage Markov Chain 52

4.2.2 Analysis of The Usage Chain 57

4.2.3 Constructing the Testing Chain 57

4.2.4 Incorporating Failure Data 59

4.2.5. Analytical Results for the Testing Chain 60

4.2.5.1 An Analytical Stopping Criterion 60

4.2.5.2 Measuring reliability, mean time to failure and tile 62

impact of failure

4.3 Effectiveness of Statistical Software Testing 65

5. Arc-based Reliability 67

5.1 Introduction 67

5.2 The Miller Reliability Model 67

5.3 Single Use Reliability and Single Action Reliability 68

5.3.1 Testing Records 69

5.3.2 Arc Failure Rate Calculation 70

5.3.3 Single Action Reliability Estimator 70

5.3.4. Miller Model 71

5.4 Single Action Reliability 71

6. Stopping Criteria 76

6.1 The Euclidean Distance 76

6.2 The Kullback Discriminant 78

6.3 The Sayre Long Run Arc Occupancies 78

6.4. Our Stopping Criterion 79

7. Conclosion 83

7.1 Introduction 83

VI

/" ...

r

72 Contributions

7.3 Suggestions for Fur1herResearch

References

VI!

83

84

86

List of Figures

1.1 Failure Rates

1.2 Classification of Software Reliability Models

2.1 Flowgraph Elements

2.2 Program Example (PDL)

2.3 One-to-{)ne Flowchart for Fig. 2.2 Example

2.4 Control Flowgraph for Fig. 2.2 Example

2.5 Simplified Flowgraph Notation

2.6 Classes of loops

3.1 Example defect detection data

3.2 Concave and S-Shaped Models

4.1 Selection Menu

4.2 Department Entry Form First State

4.3 Department Entry Fcrm Second State

4.4 Usage Markov Chain for the Software

4.5 Plot oW (U, 1)

4.6 Test Sequence versus Reliability

4.7 Expected Number of Steps Between Failures

4.8 Stationary Probabilities of States of the Testing Chain

4.9 Statistical Testing vs Random Testing (fuultlies on high probability path)

4.10 Statistical Testing vs Random Testing (fuult lies on low probability path)

5. I Search Books Form I

5.2 Search Books Form 2

5.3 Usage Markov Chain of Search Books

5.4 Single Action Reliability

5.5 Single Action Reliability Variance

6.1 Euclidean Distance, Example Model

62 Euclidean Distance, Testing Chain A

6.3 Euclidean Distance, Testing Chain B

6.4 Example Model, Convergence ofTesting Chain to Usage Chain

6.5 Convergence of Testing Chain to Usage Chain, Successively Updated

Testing Record

VIII

4

12

14

15

16

16

19

44

46

52

53

53
54

61

63
64

65

65

66

72

73

74
74
75
77

77

77

80

81

6.5 Convergence of Testing Chain to Usage Chain, Successively Updated

Testing Record

IX

82

,
I

List o/Tables

3.1 Sofiware Reliability Growth Model Examples

3.2 Software Reliability Model Assumptions

4.1 Transition Probabilities for the Example Usage Chain

4.2 Some Standard Analytical Results for Markov Chains

x

46

47
55
56

Chapter 1

Introduction

1.1 Introduction

Like hardware reliability, software reliability is based on modes of failure. Hardware

modes of fuilure - wear, design flaws, and unintentional environmental phenomena - are

more tangible because hardware is a physical entity. In fact, it is this very physical quality

tpat prompts hardware designers to assume that hardware cannot be perfect. Ironically,

the same designers often assign perfect reliability to a software component because it

can't "wear out," for example.

But software does have a mode of fuilure, which is based on the assumption that

design and development are not perfect process. The mistakes made during these

processes manifest as fuults in the code, which are revealed as inputs are processed. That

is failure occurs when the software does not perform according to specification for an

inputhistory.

It is important to recognize that there is a difference between hardware fuilure rate and

software failure rate. For hardware, as shown in Fig. 1.1, when the component is first

manufactured, the initial number of faults is high but then decreases as the faulty

components are identified and removed or the components stabilize. The component then

enters th~ useful life phase, where few, if any faults are found. As the component

physicallywears out, the fault rate starts to increase.

Burn in U-stdulLife
,
, Wearoui Inttg;ruion' U~tfulLife

&- un I

Hardwarefailure Rate Softwarefailure Rate

Fig. 1.1: Failure Rates

'~\

Software however, has a different fault or error identification rate. For software, the

error rate is at the highest level at integration and test. As it is tested, errors are identified

and removed. This removal continues at a slower rate during its operational use; the

number of errors continually decreasing, assuming no new errors are introdu:ed.

Software does not have moving parts and does not physically wear out as hardware, but is

does outlive its usefulnessand becomesobsolete.

To quantifY software reliability in a meaningful way, software use must be modeled

as a random process in which a use is selected according to some probability distribution,

or use distribution. Reliability then becomes the probability that the software will perform

according to specification for a randomly selected use. When the software fails to meet

~pecificationduring use, a failureoccurs.

Reliability can be a useful metric. We can use it to help guide software development

We can also use it to assess a program's fitness for use by conducting experiments to

establishempiricalevidenceof quality.

Reliability can be defined in two different ways. Reliability as a function of time,

perhaps the more traditional definition, addresses the design of software that will operate

according to specification for a period of time. But we can also use a simpler definition -

reliability is the probability that a randomly chosen use (test case) will be processed

correctly. Using this latter definition the mean time to failure is the average number of

uses between tailures.MTTF and reliabilitycan be relatedmathematically in the models.

1.2 Literature Review

The work on software reliability models started in 70's, the first model being

presented in 1972. Today the number of existing models exceeds hundred with more

models developed every year. Still there does not exist any model that can be applied in

all cases. Models that are good in general are not always the best choice for a particular

data set and it is not possible to know in advance what model should be used in any

particular case [I, 2].

Since software reliability models are used in different phases of the .Software

Development Life Cycle (SDLC), the reliability models are broadly classified under the

followingcategories:

2

Early prediction models uses characteristics of the software development process

from requirement to design and test, and extrapolate this information to predict the

behaviorof softwareduring operation[3, 4, 5].

Software reliability growth models (SRGM) captures failure behavior of software

during testing and extrapolates it to determine its behavior during operation. Hence this

category of models uses failure data information and !rends observed in the failure data to

derive reliability prediction. The SRGMs are further classified as Concave models and S-

shaped models [I, 6, 7]. The different types of SRGMs are shown in Fig. 1.3. Goe~

Okumoto model is one of the most widely used SRGM [8]. In this model, the fuilure

arrival process is assumed to be non-homogeneous Poisson process (NHPP). The

expected cumulative fuilures, called the mean function m(t) in NHPP, over time t is given

by the formula: m(t) ~ N(I- e-b'), where the model constants N (total number of defects

in the system)and b (model curvature) need to be estimated from the observation data.

Input domain based models use properties of the input domain of the software to

derive a correctness probability estimate from test cases that executed properly [I, 9].

Nelson model [10] is one of the most widely used input domain reliability models and it

can be obtained as: R ~ 1- f ~n - f .""ben usage time t, is available for each hit i, dIe
n n

. summary reliability measure, mean-time-between-failures (MTBF), can be calculated as:

MI13F = ~ ~t, .

Architecture based models put emphasis on the architecture of the software and

derives reliability estimates by combining estimates obtained for the different modules of

the software. The architecture based software reliability models are further classified into

State based models, Path based models and Additive models [I1, 12]. The details of some

examples of this type of models are given in chapter3.

Other reliability models are known as hybrid models [I]. Hybrid black box models

combine the features of input domain based models and software reliability growth

models. Hybrid white box models use selected features from both white box models and

black box models. However these models consider the architecture of the system for

reliabilityprediction,thereforethesemodels are consideredin hybridwhite boxmodels.

3

However, another alternative model for reliability measurement is Markov chain

usage model, though it is not yet offered as a complete reliability model for software [13,

14]. It is the kind of state based reliability model under the category of architecture based

reliability model shown in Fig. 1.3. Littlewood model [15] is one of the earliest models of

this type. An irreducible Semi-Markov Process (SMP) models the software architecture.

This was the generalization of the previous work [16] that describes software architecture

with continuous time Markov chain (CTMC).

Software Development Ufe Cyde

Nelson Medel
Tsoukalas Model
Weiss & Weyuker
Model

Musa Basic Model
Gael OkulTXlto NHPP Model
Ms3. OklJ:TKlloNHPP fvb::lel
Musa POOSCJ1 Exea.tbon Time
Model

• Jelinski Maranda Model
Littlewood Verall Model
Weibul Model
RaleighModel

SoftwareReliability Inpu!
GrON!hModels Domain

Based
Models

Input domain based
software reliability
growth model

Yarrada&shaped Model
G<>npertz Mod.

• Everett m:x!eI
• Xie and Wohlin model

A time structure based
model fer estimating
software reliability

Shooiron
rmJa
Krislmam",tI1'{
and Mathur
rmJa

• YOOXlb,Cuil.ic
<nJ!\mm"
rmJa

Path Based M:ldel
Rome Laboratmy Model
Raleigh Model
Musa Predictioo McxJej
Industry Data CoHeclion
Histoncal Data Collection

An ardlitec!ure-based
softwarereliabilitymodel
Heler():]eneoussoftware
reliabililymodel
Lapriem~el
Golohaleet aI. rrodel
Golohale et. aI. reliability

simulation approach

Fig. 1.2:Classificationof SoftwareReliabilityModels [I]

Reliability measurement according to software usage [20] is another interesting area

found in the literature. Several methods have been found but two of them get popularity.

One is operational profile (OP) method and the other is Markov chain usage model.

4

Operntional profile [7, 21, 22] is simply the description of expected product usage. An

ideal operational profile method would be like this [21]:

• Set up every customer's system in the test lab (all at once).

• Use each system exactly like those customers.

• Count failures and track usage.

• Compute and model the resulting metrics.

On the other hand Markov chain usage model have used successfully in several

applications [23, 24, 25], involving both reaJ.time embedded systems and user-oriented

applications. Whittaker [13] developed an irreducible finite state Markov chain called

usage chain from the software behavior and another Markov chain called testing chain to

encode the testing history while measuring reliability and other statistical inferences like

mean-time-1D-failure etc. Latter on Kirk Sayre developed arc-based reliability models

[26] combining the Miller reliability model [27] and Markov chain usage model. This

reliability is known as single action reliability.

1.3 Problems of Existing Works

The problems of existing works are summaries as follows:

i) Present works on reliability using Markov chain usage models only give a set of

equations for analytical purpose. The examples 1aken 10 explain the model were

small ones. So it is not clear whether it is applicable for large software systems.

ii) If the software system is large the number of states in the Markov chain

becomes large and it becomes infeasible to generate test cases and measure

reliability.

iii) Stochastic modeling of software is not well defined. For larger systems the

Markov chain is developed in a hierarchical fashion by selecting a primary

modeling mode, creating a Markov chain for it (which becomes the top-level in

the hierarchy) and then adding the remaining operational modes by expanding

states in the top-level model.

5

iv) There are hundreds of reliability models in literature but not a single model is

suitable for all applications. So there is a lack of practical and effective approach

to measure software system reliabilityaccording to its usage behavior.

1.4 Scope of the Thesis

Since statistical testing based on Markov chain usage model is not feasible for large

software system we propose a hybrid approach that combines the ideas from statistical

testing, stochastic testing and component bases software testing. The objectives of the

thesis are summarized as folio ws:

i) Develop two models called usage model and testing model from software

specification.

ii) Measure reliability of the example software.

iii) Analyze the discriminant value of two models and determine the stopping point

of software testing and release of software.

iv) Find the complexities in measuring reliabilityfor large software system.

v) Propose a methodology of single action reliability analysis with improved

technique to determine the similaritybetween usage chain and testing chain.

vi) Find a more practical and effective approach for software testing and quality

assurance.

The remaining chapters of this thesis are organized as follows:

• Chapter 2 provides background knowledge on issues of software quality,

different types of testing techniques and testing stages or levels.

• Chapter 3 presents some architecture based software reliability models. Two

state based models such as Littlewood model and Gokhale model; two path

based model such as Shooman model and Krishnamurthy model and one

adclitivemodel Xie and Wholinmodel are presented.

• Chapter 4 presents a detailed description of modeling and measuring software

reliability of our example software. This chapter shows how Markov chain

usage model is used to measure reliability, mean-time-to-failure and to find

stopping criteria.

6

. ..

• Chapter 5 shows how Miller reliability model is combined to Mariwv chain

usage model in measuring reliability and finding an analytical stopping criterion.

In this chapter we measure reliability of a fonn/partition of our example

software.

• Chapter 6 presents the existing methodologies of determining stopping criterion

and the reasons we choose Sayre's criterion as our stopping criterion. It also

gives the experimental results from our example software.

• Finally in chapter 7 contributions, limitations and future works of the research

are presented. 9

7

Chapter 2

Testing Techniques

2.1 Issues of Software Quality

Quality is defined as the bundle of attributes present in a commodity and, where

appropriate, the level of the attribute for which the consumer (software users) holds a

positive value. Defining the attributes of software quality and determining the metrics to

assess the relative value of each attribute are not formalized processes. Compounding the

problem is that numerous metrics exist to test each quality attribute. Because users place

different values on each attribute depending on the product's use, it is important that

quality attributes be observable to consumers. However, with software there exist not

only asymmetric information problems (where a developer has more information about

quafity than the consumer), but also instances where the developer truly does not know

the quality of his own product. It is not unusual for software to become technically

obsolete before its performance attributes have been fully demonstrated under real-world

opemtion conditions. As software has evolved over time so has the definition of software

quality attributes. McCall et. al. [28] first attempted to assess quality attributes for

software. His software quality model characterizes attributes in terms of three categories:

product opemtion, product revision, and product transition. In 1991, the international

Organization for Standardization (ISO) adopted ISO 9126 as the standard for software

quality(ISO, 1991).

It is structured around six main attributes listed below (sub-<:haracteristicsare listed in

parenthesis):

1. Functionality(suitability,accumteness,interopemhility,compliance,security)

2 Reliability(maturity, limittolerance,recovemhility)

3. Usability(understandability,leamability,opembility)

4. Efficiency(time behavior,resourcebehavior)

5. Maintainability(analymbility,changeability,stability,testability)

8

6. Portability(adaptability,installability,conformance,replaceability)

Although a general set of standards has been agreed on, the appropriate metrics to test

how well software meets those standards are still poorly defined. Publications by IEEE

(1988, 1996) have presented numerous potential metrics that can be used to test each

attribute. These metrics include

1. Fault density,

2 Requirementscompliance,

3. Test coverage, and

4. Mean time to failure.

The problem is that no one metric is able to unambiguously measure a particular

quality attribute. Different metrics may give different rank orderings of the same

attribute,making comparisonsacrossproductsdifficultand uncertain.

2.2 Software Testing

Software testing is the process of applying metrics to determine product quality.

Software testing is the dynamic execution of software and the comparison of the results of

that execution against a set of pre-determined criteria "Execution" is the process of

running the software on a computer with or without any form of instrumentation or test

control software being present "Pre-determined criteria" means that the software's

capabilities are known prior to its execution. What the software actually does can then be

compared against the anticipated results to judge whether the software behaved correctly

[29}.

In many respects, software testing is an infrastructure technology or "infra-

technology." IntTa-technologies are technical tools, including scientific and engineering

data, measurement and test methods, and practices and techniques that are widely used in

industry [30}. Software testing infra-technologiesprovide the tools needed to measure

conformance, performance, and interoperability during the software development . These

tools aid in testing the relative performance of different software configurations and

mitigate the expense of reengineering software after it is developed and released.

Software testing intTa-technologiesalso provide critical information to the software user

9

••

regarding the quality of the software. By increasing quality, purchase decision costs for

software are reduced.

2.3 Testing versus Debugging

Testing and debugging are often lumped under the sarne heading, and it's no wonder

that their roles are often confused: for some, the two words are synonymous; for others,

the phrase "test and debug" is treated as a single word. The purpose of testing is to

show that a program has bugs. The purpose of debugging is to find the error or

misconception that led to the program's failure and to design and implement the program

changes that correct the error. Debugging usually follows testing, but they differ as to

goal;, methods, and most importan~psychology[29]:

1. Testing starts with known conditions, uses predefined procedures, and has

predictable outcomes; only whether or not the program passes the test is

unpredictable. Debugging starts form possibly un-known initial conditions, and

the end cannot be predicted,except statistically.

2 Testing can and should be planned, designed, and scheduled. The procedures for,

and durationof, debuggingcannot be so constrained.

3. Testing is a demonstration of error or apparent correctness. Debugging is a

deductive process.

4. Testing proves a programmer's failure. Debugging is the programmer's

vindication.

5. Testing, as executed, should strive to be predictable, dull, constrained, rigid and

inhuman. Debugging demands intuitive leaps, ccnjectures, experimentation, and

freedom.

6. Much. of testing can be done without design knowledge. Debugging is impossible

without detaileddesign knowledge.

7. An outsidercan oftendo testing.An insidermust do debugging.

8. Although there' is a robust theol)' of testing that establishes theoretical limits to

what testing can and can't do, debugging has only recently been attacked by

theorists- and so far there are only rudimenlal)' results.

10

9. Much of test execution and design can be automated. Automated debugging is

still a dream.

2.4 Function versus Structure

Test can be designed from a functional or a structural point of view. In functional

testing the program or system is treated as a black box. It is subjected to inputs, and its

outputs are verified for conformance to specified behavior [29, 31). The software's user

should be concerned only with functionality and features, and the program's

implementation details should not matter. Functional testing takes the user's point of

view.

Structural testing does look at the implementation details. Such things as

progranuning style, control method, source language, database design, and coding details

dominate structural testing; but the boundary between function and structure is fuzzy.

Good systems are built in layer> - from tbe outside to the inside. The user sees only the

outermost layer, the layer of pure function. Each layer inward is less related to the

system's functions and more constrained by its structure; so what is structure to one

layer is function to the next. For ",ample, the user of an online system doesn't know that

the system has a memory - allocation routine. For the user, such things are structural

details. The memory - management routine uses a link - block subroutine. The memory

_ management routine's designer writes a "functional" specification for a link - block

subroutine, thereby defining a further layer of structural detail and function. At deeper

levels, the programmer views the operation system as a structural detail, but the

operation system's designer treats the computer hardware logic as the structural details.

There's no controversy between the use of structural ver>us functional tests: both are

useful, both have limitations; both target different kinds of bugs. Functional tests can, in

principle, detect all bugs but would take. infinite time to do so. Structural tests are

inherently finite but cannot detect all error>, even if completely executed. The art of

testing in part is in how you choose e between structural and functional tests. Some

structural and functionaltestingtechniquesare discussedbelow.

2.4.1 Flow Graphs and Path Testing

II

r
i

Path testing is the name given to a family of test techniques based on judiciously

selecting a set of test paths through the program. If the set of paths is properly chosen,

then we have achieved some measure of test thoroughness. For example, pick enough

paths to assure that every source statement has been executed at lease once. Path testing

is most applicable to new software for unit testing. It requires complete knowledge of the

program's structure (i.e., source code). Programmers to unit-test their own code most

often use it The effectiveness of path testing rapidly deteriorates as the size of the

software aggregate under test increases. Path testing is rarely, if ever, used for system

testing. For the programmer, it is the basic test technique.

Process

Decisions

Junctions

Case Statement

CASE-OF-.~g CASE I •
CASE 2 •
CASEN

Fig. 2.1: Flowgraph Elements

2.4.1.1 Control Flowgraphs

The control flowgraph (or flowgraph alone when the context is clear) is a graphical

representation of a program's control structure. It uses the elements shown in Fig. 2.1:

process blocks, decisions and junctions. The control flowgraph is similar to the. earlier

flowchart,with which it is not to he confused.

12

Process block: a process block is a sequence of program statements uninterrupted.

by either decisions or junctions. Formally, it is a sequence of statemen1s such that

if anyone statement of the block is executed, then all statemen1s thereof are

executed. Less formally, a process block is a piece of straight-Inc code. A

process block can be one source statement or hundred. The point is that, bugs

side, once a process block is initiated, every statement within it will be executed.

The term "process' will be used interchangeably with "process block". From the

pont of view of test cases designed from control flowgraphs, the details of the

operation within the process are unimportant if those details do not affect the

control flow. If the processing does affect the flow of control, the effect will be

manifested at a subsequent decision of case statement.

Decisions and case statements: A decision is a program point at which the

control flow can diverge. Machine language conditional branch and conditional

skip instructions are examples of decisions. The FORTRAN IF and the Pascal IF-

THEN-ELSE constructs are decisions, although they also contain processing

componen1s. A case smtement is a multi-way branch or decision. Examples of

case smtemeots include a jump table in assembly language, the FORTRAN-

computed GOTO and iEsigned GOTO, and the Pascal CASE statement. From the

point of view of test design, there are no fundamental differences between

decisions and case statements.

Junctions: A junction is a point in the program where the control flow can

merge. Examples of junctions are: the mrget of a jump of skip instruction in

assembly language, a label that is the target of GOTO, the END-IF and

CONTINUE statements in FORTRAN, and the Pascal statement labels, END an.d

UNTIL.

2.4.1.2 Notational Evolution

The control flowgraph is a simplified (i.e., more abstractO representation of the

program's structure. To understlnd i1s creation and use, we'll go through an example,

starting with Fig. 22 - a little horror written in a FORTRAN -. like prob'fanl design

language (POL). The first step in translating this to a control flowgraph is shown in Fig.

2.3, where we have the typical one -for-one classical flowchart. In Fig. 2.4 we merged the

process steps and replaced tllem with the ingle process box. We now have a control

13

flowgraph. But this rerresentation is still tao busy. We simplifY the notation further to

achieve Fig. 2. 5 where for the first time we can really see what the control flow looks

like.

CODE* (POL)

INPUT X, Y
Z X + Y
V .= X - Y
IF Z >= a GOTO SAM

JOE: Z .= Z -1
SAM: Z .= Z + V

FOR U = a TO Z

V(U) , U (V) .= (Z + VI *U
IF V(U) = a GOTO JOE
Z .= Z - 1
IF Z a GOTO ELL
U '= U + 1
NEXT U
V(U - 1) .- V(U + 1) + U(V - 1)

ELL: V(U + U(V)) .- U = V
IF U V GOTO JOE
IF U > V THEN U .= Z

Z .= U
END

Fig. 2.2: Program Example (PDL)

Fig. 2.5 is the way we usually represent the program's control flow-graph. There are

two kinds of components: circles and arrows that join circles. A circle with more than

one arrow leaving it is a decision; a circle with more than one arrow entering is a

junction. We call it e circles nodes and the arrows links. Note also that the enlIy and exit

are also denoted by circles and are thereby also considered to be nodes. Nodes are

usually numbered or labeled by using the original program labels. The link name can be

formed from the names of the nodes it spans. Thus a link from node 7 to nod e 4 is called

link (7, 4), whereas one from node 4 to node 7 is called link (4, 7). For parallel links

between a pair of nodes, (nodes 12 and 13 in Fig. 2.5) we can use subscripts to denote

each one or some unambiguous notation such as (12, 13, upper) and (\2, 13, lower). And

altemate way to name links that avoids' this problem is to use a unique lowercase letter

for each like in the flowgraph.

14

INPUT X, Y

NO

V(\J)~(Z +V) * U

V(U-!) ~ V(U+!) + U(V-!) I V(U+U(V))~U+V) ~

Fig. 2.3 : One-tCKlne Flowchart for Fig. 2.2 Example

]5

YES

NO

PROCESS 3 PROCESS 4

PROCESS 7

NO

PROCESS 5

PROCESS 9

z=O?

YES

NO
PROCESS 6

PROCESS 8

u=z?

YES

Fig. 2.4: Control Flowgraph for Fig. 2.2 Example

Fig. 2.5: Simplified Flowgraph Notation

16

2.4.1.3 Path Testing

A path through a program is a sequence of instructions or statements that starts at an

entty, junction, or decision and ends at another, or possibly the same, junction, decision,

or exit A path may go through several junctions, processes, or decisions, one or more

times. Paths consist of segments. The smallest segment is a link - that is, a single

process that lies between two nodes (e.g., junction - process - decision). A path segment

is a succession of consecutive links that belongs to the same path. The length of a path is

measured by the number of links in it and not by the number of instructions or

statements executed along the path. The name of a path is the name of the nodes along

the path. For example, the shortest path from entty to exit in Fig. 2.5 is called

:'(1,3,5,6,7,8,10,11,12,13,2)". The tenns entty/exit path and compete path arc also used

in the literature to denote a path that starts at an entty and goes to an exit. Our interest in

entty /exit paths in testing are pragmatic because: (I) It's difficult t set up and execute

paths that start at an arbitrary statement; (2) it's hard to stop at an arbitrary statement

without setting traps or using patches and (3) entty/exit paths arc what we want to test

because we use routines that way.

2.4.1.4 Fundamental Path Selection Criteria

There are many paths between the entry and exit cf a typical routine. A lavish test

approach might consist of testing all paths, but that would not be a complete test,

because a bug could create unwanted paths or make mandatory paths un-executable. And

just because all paths are right doesn't mean that the routine is doing the required

prooessing along those paths. Such possibilities aside for the moment, how might we

define "colTIplctetesting',?

1. Exercise every path .tromentty to exit.

2. Exercise every statementor instructionat leastonce.

3. Exercise every lranch and case statement, in each direction, at least once.

2.4.1.5 Path Testing Criteria

Any testing strategy based on patlls must at least both exercise every instruction and

take branches in all directions. A set of tests that does this is not complete in an IDsolute

sense, hut it is complete in the sense that anything less must leave something untested.

17

(

We have, therefore, explored three different testing criteria or strategies out of a

potentiallyinfinitefiunilyof strategies.They are:

I. Palh Tesling (P.) - Execute all possible control flow paths through the

program: typically, this is restricted to all possible entry/exit paths through

the program. If we achieve this prescription, we are said to have achieved

100% path coverage. This is the strongest criterion in the path-testing strategy

family:it isgenerallyimpossibleto achieve.

2. Sialement Testing (~) - Execute all statements in the program at least once

under some test. If we do enough tests to achieve this, we are said to have

achieved 100% statement coverage. An alternate, equivalent characterization

is to say that we have achieved 100% node coverage. This is the weakest

criterion in the fiunily; testing less than this for new software is

unconscionabband shouldbe criminalized.

Branch Tesling (p,) - Execute enough tests to assure that every branch alternative

has been exercised at least once under some test If we do enough tests to achieve this

prescription, then we have achieved 100% branch coverage. An alternative

characterization is to say that we have achieved 100% link coverage. For structured

software, branch testing and therefore branch coverage strictly includes statement

coverage.

2.4.1.6 Loop Testing

Loops are the cornerstone for the vast majority of all algorithms implemented in

software. And yet, we often pay them little heed while conducting software tests. Loop

testing is white box testing i.e. structural testing technique that focuses exclusively on

the validity of locp construct. Four different classes of loops can be defined: simple

loops, concatenated loops, nested loops and unstructured loops. The loops are shown in

Fig. 2.6.

Simple loops: The following set of tests can be applied to simple loops, where n is

the maximum number of allowablepassesthroughthe loop.

18

.-

Nested loops

Simple loops

Concatenated loops

Fig. 2.6: Classes of loops

19

Unstructured loops

•

J. Skip tlle loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

4. m passes through the loop where m < n.

5. n - 1, n, n + I passes through the loop.

Nested loops: if we were to extend the test approach for simple loops to nested loops,

the number of possible tests would grow geometrically as the level of nesting increases.

This would result in an impractical number of tests. Beizer [29] suggests an approach

that will help to reduce the number of test:

I. Start at the innermost loop. Set all other loops to minimum values.

2 Conduct simple loop tests for the innermost loop while holding the outer loops at

their minimum iteratiou parameter (e.g. loop counter) values. Add other tests for

out-of-range or excluded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer

loops at minimum values and other nested loops to "typical" values.

4. Continue until all loops have been tested.

Concatenated loops: concatenated loops can be tested using the approach defined for

simple loops, if each of the loops is independent of the other. However, if two loops are

concatenated and the loop counter for loop J is used as the initial value 6r loop 2, then

the loops are not independent. When the loops are not independent, the approach applied

to nested loops is recommended.

Unstructured loops: Whenever possible, this class of loops should be redesigned to

rellect the use of the structured programming constructs.

2.4.2 Transaction-Flow Testing

The control llowgraph was introduced as a structural model. Here the same

conceptual components and methods over a different kind of llowgraph, the transaction

llowgraph _ this time though, to create a behavioral model of the program that leads to

functional testing. The transaction flowgraph is, if you will, a model of the structure of

20

'''''.•: .<.

the system's behavior. Tmnsaction flows and tmnsaction-flow testing are to the

independent system tester what control flows and path testing are to the progmmmer.

2.4.2.1 Transaction Flows

A tmnsaction is a unit of work seen from a system user's point of view. A tmnsaction

consists of a sequence of opemtions, some of which are performed by a system, persons,

or devices that are outside of the system. Tronsactions begin with birth - that is they are

created as a result of some extemal act. At the conclusion of the tmnsaction's processing,

the tmnsaction is no longer in the system, except perhaps in the form of historical

records. A tmnsaction for an online information retrieval system might consist of the

following steps or tasks:

1. Accept input (tentative birth)

2. Validate input (birth)

3. Transmit acknowledgement to requester

4. Do input processing

5. Search file

6. Request directions form user

7. Accept input

8. Validate input

9. Process requester

10. Update file

II. Transmit output

12. Record transaction in log and cleanup (death)

The user sees this scenario as a single transaction. From the system's point of view,

the transaction consists of twelve steps and ten different kinds of subsidiary tasks.

Most online systems process many kinds of transaction. For example, an automatic

bank teller machine can be used for withdrawals, deposits, bill payments and money

transfers. Furthermore, these opemtions can be done for a checking aecoun~ savings

accoun~ vacation accoun~ Chrisbnas club and so on. Although the sequence of

21

operations may differ form transaction to transaction, most transactions have common

operations. For example, the automatic teller machine begins every transaction by

validating the user's card and password number. Tasks in a transaction flowgraph

correspond to processin~ steps in a control flowgraph. As with control flows, there can

be conditionaland unconditionalbranchesandjunctions.

2.4.2.2 Get the Transaction Flows

Complicated systems that process a lot of different complicated transactions should

have explicit representations of the transaction flows, or the equivalent, documented.

Transaction flows are like contrel flowgraphs, and consequently we should expect to

have them in increasing levels of detail. It is correct and effective to have subflows

analogous to subroutines in contrel flow-graphs, although there may not be any

processingmodule that correspondsto such subflows.

2.4.2.3 Path Selection

Select a covering set of paths based on fi.mctionally sensible transactions as you

would for control flowgraphs. Confirm these with the designers. Having designed those

(easy) tests, now we do exactly the opposite of what we should have done for unit tests.

We try to find the most tortuous, longest, strangest path from the entry to the eJC~of the

transaction flow. We create a catalog of these weird paths; go over them not just with the

high level designer who laid out the transaction flows, but also with the next-level

designers who are implementing the modules that will process the transaction. It can be

gratitying experience, even in a good system. The act of discussing the weird paths will

expose missing interlocks, duplicated interlocks, interface problems, programs working

at cross-purposes, duplicated processing - a lot of stuff that would otherwise have shown

up only during the final acceptance tests, or worse, after the system was operating.

2.4.3 Data-Flow Testing

Data-flow testing is the name given to a family of test strategies based on selecting

paths through the program's control flow in order to explore sequences of events related

to the status of data objects. For example. pick enough paths to assure that every data-

object has been initialized prior to use or that all defined objects have been used for

something.

22

2.4.3.1 Data Object Slate and Usage

Data objects can be created, killed and/or used. They can be used in two distinct was:

in a calculation or as part of a control flow predicate. The following symbols denote

these pessibilities:

d - defined,created, initialized,etc.

k - ki1J"d,un!ldi""d, rel~.

u - used for something.

c - usedin a calculation.

p - used in a predicate.

Defined _ An object is defined explicitly when it appears in a data declaration or

implicitly (as in FORTRAN) when it appears on the left-hand side of an assignment

statement.

Killed or Undefined - An object is killed or nndefined when it is released or

otherwise made unavailable, or when its contents are no longer known with certitude.

For example, the loop control variable in FORTRAN is undefined when the loop is

exited; release of dynamically allocated objects back to the availability pool" is

'killing' or 'un-defining'; return of records; the old top of the stack after it is pepped;

a file is closed. Define and kill are complementary operation. That is, they generally

come in pairs and one does the oppesite of the other. When you see complementary

operations on data objects it should be a signal to you that a data-flow model and

therefore data-flow testingmethods,might be effective.

Usage - A variable is used for computation (c) when it appears on the right-hand

side of an assignment statemen~ as a peinter, as part of a pointer calculation, a file

record is read or written, and so on. It is used in a predicate (P) when it appears

directly in a predicate (for example, IF A>B ...), but also implicitly as the control

variable of a loop, in an expression used to evaluate the control flow of a case

statement, as a peinter to an object that will be used to direct control flow.

2.4.3.2 Data-Flow Anomalies

23

An anomaly is denoted by a twacharactcr sequence of actions. For example, ku

means that the object id killed and then used (possible in some languages), whereas dd

means that the object is defined twice with out an intervening usage. There arc nine

possible twaletter combinations for d, k and u. some are bugs, some are suspicious and

some arc okay.

dd _ probably harmless but suspicious. Why define the object twice without an

intervening usage?

dk - probably a bug. Why define the object without using it?

du - the normal case. The object is defined and then used.

kd - normal situation. An object is killed and then redefined.

kk - harmless but probably buggy. Did we want to be sure it was really killed?

ku - a bug. The object doesn't exist in the sense that its value is undefined or

indeterminate. For example, the loop-control value in a FORTRAN program

after exit from the loop.

ud _ usually not a bug because the language permits reassignment at almost any time.

uk - normal situation.

uu - normal situation.

In addition to the above two-letter situations there are six single-letter situations.

We'll use a leading dash to mean that nothing of interest (d, k, u) occurs prior to the

action noted along the entry-exit path of interest and a trailing dash to mean that nothing

happens after the point of interest to the exit.

-k: possibly anomalous because from he entrance to this point on the path, ,the

variable had not been defined. We're killing a variable that does not exit; but note

that the variable might have been created by a called routine or might be global.

-d: okay. This isjust the first definition along this path.

-u: possibly anomalous. Not anomalous if the variable is global and has been

previously defined.

k-: not anomalous. The last thing done on this path was to kill the variable.

24

d-: possibly anomalous. The variable was defined and not used on this path; but his

could be a global definition or within a routine that defines the variables fir other

routines.

u-: not anomalous. The variable was used but not killed on this path. Although this

sequence is snot anomalous, it signals a frequent kind of bug. If d and k mean

dynamic storage allocation and return respectively, this could be an instance in

which a dynamically allocated object was not retumed to the pool after use - not

a bug if we expect some other routine to retum it.

The single-letter situations do not lead to clear data-flow anomalies but only the

possibility thereof. Also, whether or not a single-letter situation is anomalous is an

integration testing issue rather than a component testing issue because the interaction of

two or more components is involved.

2.4.3.3 Static versus Dynamic Anomaly Detection

Static analysis is analysis done on source code without actually executing it.

Dynamic analysis is done on the fly as the program is being executed and is based on

intermediate values that result from the program's execution. Source-<:ode system error

detection is the archetypal static analysis result, whereas a division by zero' warning is

the archetypal dynamic analysis result. If a problem, such as a data-flow anomaly, can be

detected by static analysis methods, then it does not belong in testing - it belongs in the

languageprocessor.

There's actually a lot more static analysis for data flow anomalies going on in current

language processors than we might realize at first. Languages, which force variable

declarations, can detect -u and ku anomalies and optimizing compilers can detect some

(but not all) instances of dead variables. The ru•.•.time resident portion of the compiler

and/or the operating system also does dynamic analysis for us and therefore helps in

testing by detecting anomalous situations. Most anomalies are detected by such means;

that is, we don't have to put in special software or instrumentation to detect an attempt,

say to read a closed file, but we do have to assure that we design tests that will p:~verse

paths on which such things happen.

25

2.5 Software Testing Stages

Aggregated software testing activities are commonly referred to as software testing

phases or stages [32]. A software testing stage is a process for ensuring that some aspect

of a software product, system, or unit functions properly. The number of software testing

stages employed varies greatly across companies and applications. The number of stages

can range from as low as I to as high as 16 [32].

For large software applications, finns typically use a 12-stage process that can be

aggregated into three categories:

I. General testing stages include subroutine testing, unit testing, new function

testing, regression testing, integration., and system testing.

2 Specialized testing stages consist of stress or capacity testing, performance testing,

platform testing and viral protection testing.

3. User-involved testing stages inccrporate usability testing and field-testing.

After the software is put into operational use, a maintenance phase begins where

enhancements and repairs are made to the software. During this phase, some or all of the

stages of software testing will be repcated. Many of these stages are common and well

understood by the commercial software industry, but not all companies use the sarne

vocabulary to describe them. Therefore, as we define each software stage below, we

identii)' other names by which that stage is known.

2.5.1. General Testing Stages

General testing stages are basic to software testing and occur for all software [32].

The following stages are considered general software testing stages:

I. Unit testing

2 Component testing

3. Integration testing

4. System testing

26

-,

2.5.1.1. Unit Testing

A unit is the smallest testable piece of software, by which I mean that it can be

compiled or assembled, linked, loaded, and put under the control of a test harness or

driver. A unit is usually the work of one programmer and it consists of several hundred or

fewer, lines of source code. Unit testing is the testing we do to show that the unit does not

satisfY its functional specification and / or that its implemented structure does not match

the intended design structure. When our tests reveal such faults, we say that there is a unit

bug.

2.5.1.2. Component Testing

A component is an integrated aggregate of one or more units. A unit is a component, a

Component with subroutines it calis is a component, etc. by this (recursive) definition, a

component can be anything from a unit to an entire s system. Component testing is the

testing we do to show that the component does not satisfY its functional specification

and/or that its implemented structure does not match the intended design structure. When

our tests reveal such problems,we say that there is a component bug.

2.5.1.3. Integration Testing

Integration .is a process by which components are aggregated to create larger

components. Integration testing is testing done to show that even though the components

were individually satisfactory, as demonstrated by successfitl passage of component tests,

the combination of components are incorrect or inconsistent. For example, components A

and B are both passed their component tests. Integration testing is aimed as showing

inconsistencies between A and B. examples of such inconsistencies are improper call or

return sequences, inconsistent data validation criteria, and inconsistent handling of data

o~ects. Integration testing should not be confused with testing integrated objects, which

is just higher-level component testing. Integration testing is specifically aimed at

exposing the problems that anse from the combination of components. The sequence,

then, consists of component testing for components A and B, integration testing for the

combination of A and B and finally,componenttestingof the "new" component (A, B).

2.5.1.4. System Testing

A system is big component. System tesling is aimed at revealing bug; that cannot be

attributed to component<; as such, to the inconsistencies between components, or to the

27

planned interactions of components and other objects. System testing concerns issues and

behaviors that can only be exposed by testing the entire integrated system or a major part

of it System testing includes testing for perfonnance, security, accountability,

configuration sensitivity, starl-up, and recovery.

2.5.2. Specialized Testing Stages

Specialized software testing stages occur less frequently than general software testing

stages and are most common for software with well-specified criteria. The following

stages are considered specialized software testing stages:

1. Stress, capacity, or load testing

2 Error-handlinwsurvivability testing

3. Recovery testing

4. Security testing

5. Compatibility testing

6. Perfonnance testing

2.5.2.1. Stress Testing

Stress testing executes a system in a manner that demands resources in abnonnal

quantity, frequency, or volume. For example

a) Special tests may be designed that generate ten interrupts per second, when one or

two is the average rate

b) Input data rates may be increased by an order of magnitude to detennine how

input functions will respond

c) Test cases that may cause thrashing in a virtual operating system are designed

d) Test cases that may cause excessive hunting for disi<-resident data are created.

Essentially the tester attempts to break the program.

A variation of stress testing is a technique call sensitivity testing. In some situations

(the most common occur in mathematical algorithm s), a very small range of data

contained within the bounds of valid data for a program. may cause extreme .and even

erroneo", processing or profound perfonnance degradation. Sensitivity testing attempts to

28

. uncover data combinations within valid input classes that may cause instability or

improperprocessing.

2.5.2.2. Survivability Testing

Perfect software, imperfectly deployed, or deployed in such a way ti,at is vulnerable

to failure or attack is of no more value than imperfect software that fails of its own

accord. A truly useful metric for distributed, service-based software must measure both

the quality of the software itself (the traditional role) and the quality of its configuration

vis a vis the underlying infrastructure and the kinds of threats to which the software and

infrastructure are subject. In the real world, systems can fail for a variety of reasons other

than code and specification errors (e.g., a virus might corrupt the file system that the

software relies upon). Thus, rather than ask simply whether the specification and code are

correct. it is necessary to ask how likely it is that the system will continue to provide the

desired functionality, or fuiling this, something approaching it. A survivable system [33]

is one in which actions can be taken to reoonfigure applications in the event of partial

failures to achieve functionality approximating the functionality of the original system.

The usefulness of a survivable system can be judged in several ways: how useful is what

it is doing now?; how useful is it likely to be in the future?; if it breaks, can it be repaired

so that it can again do somethinguseful?

2.5.2.3. Recovery Testing

Many computer-based systems must recover from limits and resume processing

within a pre-5pecified time. In this case, a system must be fault tolerant; that is,

processing mults must not cause overall system function to cease. In other cases, a system

failure must be corrected within a specified period of time or severe economic damage

will occur.

Recovery testing is a system test that forces the software to fail in variety of ways and

verifies that recovery is properly performed. If recovery requires human intervention, the

mean-time-1D-repair(MTTR) is evaluated to determine whether it is within acceptable

limits.

2.5.2.4. Security Testing

.Any' computer-based system that manages sensitive information or causes actions that

can improperly harm (or benefit) individuals is a target for improper or illegal

29

\

penetration. Penetration spans a broad range of activities: hackers who attempt to

penetrate systems for sport; disgruntled employees who attempt to penetrate for revenge;

dishonest individualswho attemptto penetratefor illicitpersonalgain.

Security testing attempts to verifY that protection mechanisms built into a system will,

in fact, prctect it from improper penetration. To quote Seizer [29]: "The system's security

must, of course, be tested for invulnerability from frontal attack - but must also be tested

for invulnerabilityfonn flankor rear attack".

During security testing, the tester plays the role(s) of the individual who desires to

penetrate the system. Anything goes! The tester may attempt to acquire passwords

through external clerical means; may attack the system with custom software designed to

breakdown any defenses that have been constructed; may overwhelm the system, thereby

denying service to others; may purposely cause system errors, hoping to penetrate during

recovery;may browse through insecuredata, hopingto find the key to system entry.

Given enough time and resources, god security testing will ultimately penetrate a

system. The role of the system designer is to make penetration cost more than the value of

the informationthat will be obtained.

2.5.2:5. Compatibility Testing

Testing to ensure compatibility of an application or \\eb site with different browsers,

operating systems, and hardware platfonns. Compatibility testing can be perfonned

manually or can be driven by an automatedfunctionalor regressiontest suite.

2.5.2.6. Performance Testing

For real-time and embedded systems, software that provides required function but

does not confonn to perfonnance requirements is unacceptable. Perfonnance testing s

designed to test the run-time perfonnance of software within the context of an integrated

system. Perfonnance testing occurs throughout all steps in the testing process. Even at the

unit level, the perfonnance of an individual module may be assessed as white-box tests

are conducted. However, it is not until all system elements are fully integrated that the

true perfonnance of a system can be ascertained.

Perfonnance tests are often coupled with stress testing and usually require both

hardware and software instrumentation. That is, if is often necessary to measure resource

30

utilization (e.g., processor cycles) in an exacting fashion. External instrumentation can

monitor execution intervals, log events (e.g., interrupts) as they occur, and sample

machine states on a regular basis. By instrumenting a system, the tester can uncover

situationsthat lead to degradationand possiblesystemJailure.

2.5.3. User-Involved Testing Stages

For many software projects, the users and their information technology consultants

are active participants at various stages along the software development process,

includingseveral stages of testing. Users generallyparticipatein the followingstages.

1. Usabilitytesting

2 Lab or alpha testing

3. Field or beta testing

4. Acceptance testing

2.5.3.1. Usability Testing

For a large number of products, it is believed that the usability becomes the fmal

arbiter of quality. This is true for a large number of desktop applications that gained

market share through providing a good user experience. Usability testing needs to not

only assess how usable a product is but also provide feedback on methods to improve the

user experience and thereby gain a positive quality image. The best practice for usability

testing should also have knowledge about advances in the area of Human Computer

Interface.

2.5.3.2. . Alpha Testing

Alpha testing is the software prototype stage when the software is first able b run. It

will not have all the intended functionality,but it will have core functions and will be able

to accept inputs and generate outputs. An alpha test usually takes place in the developer's

offices on a separate system. In-depth software reliability testing, installation testing, and

documentation testing are not done at alpha test time, as the software is only a prototype.

Alpha tester feedback forms are not used, although the developer does request feedback

on specific aspects of the software [31).

31

2.5.3.3. Beta Testing

TIle idea of a Beta is to release a product to a limited number of customers and get

feedback to fix problems before a larger shipment. For larger companies, such as IBM,

Microsoft and Oracle, many of their products are used internally, thus forming a good

beta audience. Techniques to best conduct such an internal Beta test are essential for us to

obtain good coverage and efficiently use internal. resources. This best practice has

everything to do with Beta programs though on a smaller scale to best leverage it and

reduce cost and expense of an external Beta [31].

An opportunity that a beta program provides is that one gets a large sample of users to

test the product. If the product is instrumented so that failures are recorded and returned

.to the vendor, they would yield an excellent source to measure the mean time between

failure of the software. There are several uses for this metric. Firstly, it can be used as a

gauge to enhance the product's quality in a manner that would be meaningful to a If;er.

Secondly, it allows us to measure the mean time between failure of the same product

under different customer profiles or user sets. Thirdly, it can be enhanced to additionally

capture first fuilure data that could benefit the diagnosis and problem determination.

Microsoft has claimed that they are able to do at least the first two through in3strumented

versions that they ship in their betas.

32

r

Chapter 3

Reliability Models

3.1 Introduction

Software reliability can be considered to be the probability that the software will

operate successfully. Because the measurement of software reliability is in principle the

modeling of a deterministic process by a probabilisticone, a problem to be solved is what

event should be considered random. When the measurement of reliability involves units

..of time, such as the time to the next failure of the software, we refer to the implicit

definition of reliability as time-dependent. Otherwise, reliability measurement involves

occurrences of some other event of interest, such as a successful run of the program, and

we say the definitionis time-independent.
A number of analytical models have been proposed to address the problem of

quantifYing the software reliability, one of the most important metrics of software quality.

However, a great deal of this research effort has been focused on modeling the reliability

growth during the debugging phase [8, 34, 35]. These so called black-box models treat

the software as a monolithic whole, considering only its interactions with the external

environment, without an attempt to model the intemal structure. Their main common

feature is the assumption of some parametric model of the number of failures over a finite

time interval or of the time between fuilures. Failure data obtained while the applicationis

tested are then used to estimate model parameters or to calibrate the model. We discuss

some models here. The models are broadly classifiedinto five categories.

I. State - basedmodels

2 Path - basedmodels

3. Additivemodels

4. Inputdomainmodels

5. Reliabilitygrowthmodels

33

5.2 State - Based Models

This class of models uses the program flow graph to represent the architecture of thc

system assuming that the transfer of control between modules has a Markov property [I I,

12]. This means that given the knowledge of the module in control at any given time, the

future behavior of the system is conditionally independent of the past behavior. The

architecture of software has been modeled as a discrete time Markov chain (DTMC),

continuous time Markov chain (CTMC), or semi Markov process (SMP). These can be

further classified into irreducible and absorbing, where the former represents an infinitely

runningapplications,and the lattera terminatingone.

3.2.1 Littlewood Model [11,15)

This is one of the earliest, yet a fuirly general architecture - based software reliability

model.
Architecture: It is assumed that software architecture can be described by an

irreducible SMP, thus generalizing the previous work [16], which describes software

architecture with CTMC. The program comprises a finite number of modules and the

transfer of control between modules is described by the probability P,= Pr {program

transits from module i to module j}. The time spent in each module has a general

distributionFij (I)with a mean sojourntimeII,.

Failure behavior: Individual modules, when they are executing, fail with constant

failure rates v;. The transfers of control between modules (interfaces) are themselves

subject to failure; when module i calls module j there is a probability Au of a failure's

occurring.

Solution method: The interest is focused on the total number of failures of the

integrated-program in time interval (0, I), denoted by N (I), which is the sum of the

failures in different modules during their sojoum times, together with the interfuce

filliures. It is possible to obtain the complete description of this fuilure point process, but

since the exact result is very complex, it is unlikely to be of pra;tical~use. The asymptOtic

Poisson process approximation for N (I) is obtained under the assumption that failures are

very infrequent. Thus, the times between failures will tend to be milch larger than the

34

times between exchanges of control, that is, many e<changesof control would take place

between successive program failures.The failure rate of this Poisson process is given by

Ia,y, + Ih,)lij
iJ

where a, represents the proportion of time spent in module i, and h'j is the frequency

of transfer of control between i and j. These terms depend on p" Y" AU' Ilij and the

steady state probabilitiesof the embeddedMmkovchain 7C,.

3.2.2 Laprie Model [18]

This model is a specialcase of Littlewoodmodel and the result, althoughobtained in

a differentway, agrees with those given in [15].

Architecture: The software system is made up of n components and the transfer of

control between components is described by CTMC. The parameters are the mean

execution time of a component i given by 1/ y" and the probability q ij that component j

is executed after component i given that no failure occurred during the execution of

component i.

Failure behavior: Each component fails with constant failure rate A,.

Solution method: The model of the system is an n + 1 state CTMC where the system

is up in the states i, 0,; i';n (component i is executed without fuilure in state i) and the

(n + I)th state (absorbing state) being the down state reached after a failure occurrence.

The associated generator matrix between the up states B is such that h" = -(y, +AJ and

hlj = qljY':' for i* j. The matrix B can be seen as dIe sum of two generator matrices such

that the execution process is governed by B' whose diagonal entries are equal to -Y, and

its off-diagonal entries to qlj Y" and thc failure process is govemed by B' whose diagonal

entries. are zero.

It is assumed that the failure rates are mlCh smaller than the execution rates, that is,

the' execution process converges towards steady state before a failure is likely to occur.

As a consequencc, dlC systcm failure rate becomes A.q - I;,,7C,A, , where the stcady state

probability vector 7C = [7C,] is dIe solution of 7CB' = O. This result has a simple physical

35

interpretation having in mind that 71:, is the proportion of time spent in state when no

failure occurs.

3.2.3 Kubat Model [19)

This model considers the case of software composed of M modules designed for K

different tasks. Each task may require several modules and the same module can be used

for different tasks.

Arcbitecture: Transition between modules follow a DTMC such that with probability

q, (k) task k will first call module i and with probability Pu(k) task k will call module j

after executing in module i. The sojourn time during the visit in module i by task k has the

pdf g,(k, t) . Thus, the architecture model for each task becomes a SMP.

Failure model: The failure intensity of a module i is a,.

Model solution: The probability that no fuilure occurs during the execution of task k

while in module i is

R,(k) = f:e"g,(k,t)dt
The expected number of visits in module i by task k, denoted by a,(k), can be

obtained by solving

M

a,(k) = q,(k) +~>P)/1,(k) .
j=1

The probability that there will be no fuilure when running for task k is given by

M

R(k)= IT [R,(k)t
k
)

;=1

and the system failure rate becomes A,= I:_l'k [l-R(k)]. where '. is the arrival rale

of task k.

3.2.4 Gokhale et. at. Model [11)

The novelty of this work lies in the attempt to determine software architecture and

component reliabilities experimentally by testing the application.

36

Architecture: The terminating application is described by an absorbing DTMC. The

trace data produced by the coverage analysis tool called ATAC [36] during the testing is

used to determine the architecture of application and compute the branching probabilities

Pu between modules. The expected time spent in a module j per visit, denoted by Ij,is

computed as a product of the expected execution time of each block and the number of

blocks in the module.

Failure behavior: The failure behavior of each component is described by the

enhanced non-homogeneous Poisson process model using time-dependent failure

intensity Ail) determined by block coverage measurements during the testing of the

application.

Solution method: The expected number of visits to state j, denoted by Vi is

computed by

"v, = Jrj (0) + 2)-;Pij
i=1

where Jr(O) denotes the initial state probability vector.

The reliability of a module j, givm time-dependent failure intensity Il/I) and the total

expected time spent in the module per execution V,I j , is given by

j"R.
- lJA}(l)dl

=e U,

and the reliability of the overall application becomes R = rr~elRJ'
3.3Path - Based Models

This class of models is based on the same common steps as the state-based models,

except that the approach taken to combine the software architecture with the failure

behavior can be described as a path-based since the system reliability is computed

considering the possible execution paths of the program either experimentally by testing

or algorithmically.

37

3.3.1 Shooman Model [37]

This is one of the earliest models that consider reliability of modular programs,

introducing the path-based approach by using the ffequencies with which different paths

are run.

Architecture: This model assumes the knowledge of the different paths and the

frequencies f, with which path i is run.

Failure hehavior: The fuilure probability of the path i on each run, denoted by

q, characterizes the failure behavior.

Method of analysis: The total number of failures nfinN test runs is given by

.'nf = NJq, +Nf,q,+ ... + NJ:q, , where Nf, is d,e total nmnber of traversals of pad, i. The

system probability of fuilure on any test run is given by

n '
q = lim -.L = " j,q.o N-4OO N L.' J

J=l

3.3.2 Krishnamurthy and Mathur Model [38]

. This method first involves computing the path reliability estimates based on the

sequence of components executed for each test run, and then averaging them over all test

runs to obtain an estimate of the system reliability.

Architecture: Components and their interfuces are identified, and a sequence of

components along different paths is observed using the component traces collected during

the testing.

Failure behavior: Each component is characterized by its reliability Rm•

Method of aualysis: The component trace of a program P for a given test case i,

denoted by M (P, i), is the sequence of components m executed when P is executed

against I. The reliability of a path in P traversed when P is executed on test case 1E T is

given by

l~= IT Rm
V.,EM(p,t)

38

under the assumption that individual components along the path fail independently of

each other. The reliability estimate of a program with respect to a test set T is

R

An interesting case occurs when most paths executed have components within loops

and these loops are traversed a sufficiently large number of times. Then if intra-

component dependency is ignored individual path reliabilities are likely to become low,

resulting in low system reliability estimates. In this work intra-component dependency is

modeled by "collapsing" multiple occurrences of a component on an execution path into k

occurrences, where k>O is referred as the degree of independence. However, it is not clear

how one should determine a suitable value of k .

An alternative way to resolve the issue of intra-component dependency is proposed in

[39]. The solution of dependency chamcterization of a component that is invoked inside a

loop m times with a fixed execution time spent in the component per visit relies on the

time dependent failure intensity of a component.

3.3.3 Yacoub, Cukic and Ammar Model [58)

This reliability analysis technique is specific for component-based software whose

analysis is strictly based on execution scenarios. A scenario is a set of component

intemctions triggered by specific input stimulus and it is related to the concept of

opemtions and run-types used in operational profiles.

Architecture: Using scenarios, a probabilistic model named Component Dependency

Gmph (COG) is constructed. A node n, of COG models a component execution with an

average execution time EC,. The transition probability PT" is associated with each

directed edge that models the transition from node n, to nj. COG has two additional nodes,

start node and termination node.

Failure behavior: The failure process considers component reliabilities Re, and

transition reliabilities .RTii associated with a node n, and with a transition from node n, to

n) respectively.

Method of .analysis: Based on CDG a tree-traversal algorithm is presented to

estimate the reliability of the application as a function of reliabilities of its components

39

and interfaces. The algorithm expands all branches of the CDG stmting from the start

node. The breadth expansions of the tree represent logical "OR" paths and are hence

translated as the summation of reliabilities weighted by the transition probability along

each path. The depth of each path represents the sequential execution of components, the

logical "AND", and is hence translated to multiplication of reliabilities. The depth

expansion of a path terminates when the next node is a terminating node (a natural end of

an application execution) or when the summation of execution time of that thread sums to

the average execution time of a scenario. The latest guaranties deadlock avoidance for

loopsbetween two or more components.

3.4 Additive models

This class of models does not consider explicitly the architecture of the software.

Rather, they are focused on estimating the overall application reliability using the

component's fuilure data. It should be noted that these models consider software

reliability growth. The models are called additive since under the assumption that non-

homogeneous Poisson process (NHPP) can model component's reliability, the system

failure intensitycan be expressedas the sum of component failure intensities.

3.4.1 Xie and Wholin Model [40]

This model considers a software system composed of n components, which may have

been developed in parallel and tested independently. If the component reliabilities are

modeled by NHPP with failure intensity A,(t) then the system failure intensity is

A,(t) =A,(t) +A-,(t)+ .. +A.(t), and the expected cumulative number of system failures by

time t is givenby

. , .
11,(t)= LI1,(t) = foLA,(r)dr.

)';1 i",l

When this additive model is used the most immediate problem is that the starting time

may not be the sarne for all components, that is, some components may be introduced into

the system later. In that case, the time has to be adjusted appropriately to consider

differentstartingpoints for differentcomponents.

3.4.2 Everett Model [59]

40

This approach considers the software made out of components, and addresses the problem of

estimating individual component's reliability. Reliability of each component is analY7.edusing the

Extended Execution Time (EED model whose parameters can be detennined direcriy from

properties of the software and from the information on how test cases and operational usage

stresses each component. Thus, this approach requires keeping track of the cumulative amount of

processing time spent in each component.

When the underlying EET models for the components are NHPP models, the

cumulative number of failures and fuilure intensity functions for the superposition of such

models is just the sum of the corresponding functions for each component

3.5 Input Domain Models

In case of input-domain based models, the reliability of the software is measured by

exercising the software with a set of randomly chosen inputs. The ratio of the number of

inputs that resulted in successful execution to the total number of inputs gives an estimate

of the reliability of the software product Two important input domain reliability models

Nelson model and Weiss & Weyuker model is described bellow.

3.5.1 Nelson Model [10]
It is one of the most widely used input domain reliability models. According to this

model if a total number of f errOrs are recorded (referred to as failures in software

reliability engineering, denoting behavioral deviations) for n hits, the estimated reliability

R is calculated as:

[n-[
R=l--=--.

n n

When usage time Ii is available for each hit i, the summary reliability measure, mean-

time-between-fuilures (MTBF), can be calculated as:

MTBF=~"t
f~'

when rile usage time Ii is not avaitable, we can use the numbers of hits as the rough

time m~a'\ure.In this case,

MTBF= !!....
f

3.5.2 Weiss & Weyuker Model [60]

41

Weiss & Weyuker [60] have partitioned the input domain into some equivalence

classes with respect to the behavior of the system under test. This approach mainly

reduces the number of test cases with respect to the input domain. According to this

model reliability of a program is dependent only on the a priori probability distribution of

the operational input domain, on the properties of the program, and on the end user's

notion of tolerable discrepancies between the actual and intended program behaviors. To

this end, the definition incorporates

I. The operational distribution of the input space

2. The actual discrepancy between the functional behavior of the program and its

specification, and

3. Parameterization by the tolerance function, which specifies the tolerable

discrepancy between the functional behavior of the program and its

specification at each possible input point.

In order to assess the reliability of a particular program P for a specification S, one

must perform the following steps.

I) Determine what the operational environment will be.

2) Define approximation to the operational distribution by using existing data

and/or a probabilistic analysis. Additionally, one may add.an optional step, as

follows.

:£') Define a partition of the input domain and assign operational probabilities to

the cells of the partition in accordance with the estimated operational

distribution.

3) Determine a metric on the output space, and document its definition with

ample justification that it reasonably models the structure of that space.

4) Select a set of test cases for the purpose of reliability testing. In particular,

errors will not be corrected as they are found. Some of the factors influencing

the selectim process include maximizing confidence and minimizing the cost

of testing.

5) Determine a tolerance function for this set of test.

6) Determine a' measure of confidence for the reliability estimate that will be

obtained from this sample set.

7) Run the tests.

42

8) Calculate the reliability estimate. This requires dctcnnining the a-

discrepancy at each test point

9) Publish the reliability estimate along with the documentation of all of its

parameters, confidence estimates, etc.

Step 4) requires selecting a test set T. If a test set T = {I,} is chosen for reasons other

than its representativeness of the operational profile, such as for its value in exposing

errors or exercising certain program structures, then the representativeness of the

operational profile, such as for its value in exposing errors or exercising certain program

structures, then the representativeness of each test case of T must be explicilly

incorporated into the eslimale of reliability obtained form T. to thE end, at each lET a

;Neight p,,(t) is assigned that imparts a degrec of representativeness to I. formally, Pr is

an arbitrary probability function such that Pr (I) = 0 if I '" T.

Having established these weights and completed stes 5) - 7), the reliability estimate R

is determined form the fullowing formula

R=l_IPT.da(Sp,P' I)
<or a(l)

Where da(S!"P,I)is known as the a-discrepancy between 8/' and P at I. The

function a is known as lolerance function and a(l) is the lolerance allowed at I For any

specification S with domain D and "don't care" set U and any program P, S p is defined by

{
s(n)

Sp(n) = P(n)
if nED
if nEU

A specification 8 of a program is supposed to prescribe the output of the program for

each input. However, three cases can arise for a given input n:

I. No output is specified

2. Exactly one output is specified, or

3. More than one output is specified.

If case I) occurs for a given input n, then that input is a "don't care".

3.6 Reliability Growth Models.

Developing reliable software is one of the most difficult problems facing the software

industry. Schedule pressure, resource limitatiot),;,'and unrealistic requirements can all

negatively impact software reliability. Developing reliable software is especially hard

43

"',

when there is interdependence among the software modules as in the case with much of .

the' existing software. It is also a hard problem to know whether or not the software being

developed is reliable. After the software is shipped, its reliability is indicated by from

customer feedback, problem reposts, system outages, complaints or compliments and so

forth. However then it is too late; software vendors need to know whether their products

are reliable before they are shipped to customers. Software reliability growth models

attempt to provide that information.

As mentioned earlier reliability is usuaJly defined as the probability that a system wiJl

operate without failure for a specified time period under specified operating conditions.

Reliability is concerned with the time between failures or tits reciprocal, the failure rate.

But software reliability growth models (SRGMs) repot on defect detection rate rather than

failure rate. Defect detection is usuaJly a fuilure during a test, but test software may also

detect a defect even though the test continues to operate. Defects can also be detected

during design reviews or code inspections, but SRGMs do not consider those sorts of

activities. Time in a test environment is a synonym for amount of testing, which can be

measured in several ways. Defect detection data consists of a time for each defect or

group of defects and ca be plotted as shown in Fig. 3.1.

Number
of

Defects

.,'

Fig, 3.1: Example defect detection data

A cumulative plot of defects vs. amount of testing such as Fig. 3.1 should show that

the defect discovery rate decreases as the amount of testing increases. The theory is that

each defect is fixed as it is discovered. This decreases the number of defects in the code,

so the defect discovery rate should decrease (the length of time between defect

discoveries should increase). When the defect discovery rate reaches an acceptably loW' ..

value, the software is deemed suitable to ship. However, it is difficult 1D extrapolate from

defect discovery rate in a test environment to failure rate during system operation, ..

primarily because it is hard to extrapolate trom test time to system operation rime. Instead

44

SRGMs look at the expected quantity of remaining defects in the code. These residual

defects provide an upper limit on the number of wliquc failures the customers could

encounter in field use.

Software reliability growth models are statistical interpolation of defect detection data

by mathematical functions. The functions are used to predict future failure rates or the

number of residual defects in the code. There are many types of software reliability

growth models as described in successivesections.

3.6.1 Software Reliability Growth Model Types
Software reliably growth models have been grouped into two e!a>ses of model -

concave and S-shapcd. These two model types are shown in Fig. 3.2. The nust important

'thing about both models is that they have the same asymptotic behavior, i.e., the defect

detection rate deceases as the number of defects detected (and repaired) increases, and the

total number of defects detected asymptotically approaches a finite value. The theory for

this asymptoticbehavior is that:

I. A finite amount of code should have a finite number of defects. Repair and new

functionality may introduce new defects, which increase the original finite number

of defects. Some models explicitly account for new defect introduction during test

while others assume they are negligible or handled by the statistical fit of the

software reliabilitygrowthmodel to the data

2 It is assumed that the defect detection rate is proportional to the number of defects

in the code. Each time a defect is repaired, there are fewer total defects in the

code, so the defect detection rate decreases as the number of defects detected (and

repaired) increases. The concave model strictly follows this pattern. In the S-

shaped model, it is assumed that the early testing is not as efficient as later testing,

so there is a ramp-up period during which the defect detection rate increases. This

could be a good assumption if the first QA tests are simply repeating tests that

developers have already run or if early QA tests uncover defects in other products

that prevent QA from finding defects in the product being tested. For example, an

application test may uncover OS defects that need to be corrected before the

application can be run. Application test hours are accumulated; but defect data is

minima.lbecause OS defects don't count as part of the application test data. After

45

the OS defects are corrected, the remainder of the application test data (after the

inflection point in the S-shaped curve) looks like the concave model.

Number
of

Defects

Test Time

Number
01

Del..,',

S-Shaped

Test Time

Fig. 3.2: Concave and S-Shaped Models

There are many different representations of software reliability growth models. The

models show the expected nwnber of defects at time 1 and is denoted 11(1), where t can be

calendar time, execution time or nwnber of test executed. An example equation for 11(l)

is the Goe~Okumoto (G-O) model:

11(t)=a(l-e-b,), where

a = expected total number of defeets in the code

b = shape factor = the rate at which the failure rate decreases, i.e., the rate at

which we approach the total number of defects.

Table 3.1: Software Reliability Growth Model Examples

Model Model 11(1) Ref. Comments

Name Tvoe
Goe~ Concave a(t _e-bo) [7J Also called Musa model or
Okwnoto a;o,O,b>O

exponential model

(G-O)
G-O S- a(l-(l+bl)e-

bo
) [61] Modification ofG-O model

S-Shaped Shaped a;o,O,b>O
to make it S-shaped (Gamma
function instead of
exponential)

Hossain- Concave a(l-e-")/(l +ce-b') [62] Solves a technical condition

Dahiyal a;o,O,b>O,c>O
with the G-O model.

G-O Becomes same as G"() as c
approaches O.

Gompertz s- a(b") [63] Used by Fujitsu, N'lliJazu

Shaped
a;o,O,O,;b ';I,O<c <1

Works

Pareto Concave a(l-(I+II f3t") [641 Assumes failures have

a;o, O,f3> O,O,;a';l
different failure rates and
:failures with highest rates
removed first

46

Model . Model P (I) Ref. Comments

Name Type
Weibull Concave a(!-e-',') [7] Same as G-O for c - I

a2: O,b>O,c> 0
Yamada Concave a(l_e-mn-,-') [65] Attempts to account for

E""]JOnent
a 2:O,ra > 0,[3 >0

testing effort

ial
Yamada S- a(l_e_ra(l_ef-flrlll))) [65] Attempts to account for

Raleigh Shaped
a 2: 0, ra > 0, [3 > 0

testing effort

Log Infmite (1/ c)ln(cal+ I) [7[Failure rate decreases but

Poisson Failure c>O,a>O
does not approach to 0

The Goe~Okumoto (G.Q) model is a concave model, and the parameter '11" would be

plotted as the total number of defects in Fig. 3.2. The GoeJ.Okumoto model has 2

parameters. However other models can have 3 or more parameters. For most models,

p(t) = aF(I) , where a is the expected total number of defects in the code and F(I) is a

cumulative distribution function. Note that F(O) = 0, so no defects are discovered before

the test starts, and F(oo)= I, so p(oo) = a and a is the total number of dcfects discovered

after an infinite amount of testing. Table 3.1 provides a list of the models. A derivation of

the properties of most of these models can be found in [71-

The Log Poisson model is a different type of model. This model assumes that the code

has an infinite number of fuilures. Although this is not theoretically true, it may be

essentially true in practice since all the defects are never found before the code is

rewritten, and the model may provide a good fit for the uscfullite of the product

The models all make assumptions about testing and defect repair. Some of these

assumptions seem very reasonable, but some are questionable. However, we give a list

and discussion of these assumptions in the following Table 3.2.

Table 3.2: Software Reliability Model Assumptions

AssnmDtion Realitv
Defects arc repaired Defects are not repaired immediately, but this can be partially
immediately when they accommodated by not counting duplicates. Test time may be

arc discovered artificially =umulated if a non-repaired defect prevents other
defects from being found.

Dcfcct repair is perfect Dcfcct repair introduccs new defects. Thc new defects arc Ics
likely to be diseovered by test since the retest for the repaired
codc is not usually as comprehensive as the original testing. . ',;'

No'new code is New code IS freauenUv introduced throlllmout the entirC lest

47

Assumption Realitv
introduced during QA test period, both defect repair and new featuteS. This is accounted

for in parameter estimation sinec actual defcct discoveries arc
used, but may change thc shape of thc curve, i.e., make it less
concave.

Defects are only reported Defects are reported bY lots of groups because of parallel
by the product testing testing activity. If we add the test time for those groups, we
group have the problem of equivalency between and hour of QA test

time and an hour of test time /Tom a group that is testing a
different product. Restricting defects to d,OSC discovered by
QA can accommodate this, but that eliminates important data.
This problem means that defects do not correlate perfectly
with test time.

Each UIlitof time This is certainly not 1me for calendar time or test cases as
(calendar, execution, discussed earlier. For execution rime, "cornet" tests sometimes
number of test cases) is arc more likely to find defects, so those tests create more stress

.equivalent on a per hour basis. When there is a section of cede that has
not been as dlOroughlytested as od,er code, e.g., a product d,at
is UIlder schedule pressure, tests of that code will usually frod
more defects. Many test arc rerun to ensure defect repair has
been done properly, and dlese renms should be less likely to
find new dcfects. However, as long as test scquences are
reasonably consistent from release to release, this can be
accOOlltedfor if n=saI)' from lessons learned on previous
release.

Tests represent Customers run so many different confrgurations and
operationalprofile applications that it IS difficnlt to define an appropriate

operational profrle. [n some cases, the sheer Size and
transaction volume of the production system makes the
operational environment impractical to replicate. The tests
contained in thc QA test library test basic fUllctionality and
operation, error recovery, and specific areas ,vith which we
have had problems in the past. Additional tests arc continually
being added, but the code also learns the old tests, i.e., Ole
defects that the old tests would have UIlcovered have been
reoaired.

Failures are independent Our experience is OmtOUSis reasonable except when there is a
section of code that has not been as thoroughly tested as other
code, e.g., a product behind schedule O,at was not thoroughly
UIlit tested. Tests run against this section of codc may find a
disproportionate share of defects. In [J2] there are detailed
discussions on independence asslUTIption.

48

Chapter 4

Statistical Testing

4.1 Statistical Testing

Harlan Mills (IBM Fellow who invented Clean Room software engineering) invented

the concept of statistical testing in 1987 [41, 42]. The central idea is to use software

testing as a means to assess the reliability of software as opposed to a debugging

mechanism. This is quite contrary to the popular use of software testing as a debugging

. method. Therefore one needs to recognize that the goals and motivations of statistical

testing are different fundamentally. There are many argwnents as to why this might

indeed be a vel)' valid approach. The theol)' of this is buried in the concepts of Clean

Room software engineering and is worthy of a separate discussion. Statistical testing

needs to exercise the software along an operational profile and then measure interfailure

times that are then used to estimate its reliability. A good development process should

yield an increasing mean time between failu2res evel)' time a bug is fixed. This then

becomes the release criteria and the conditions to stop software testing.

Most systematic testing methods have been aroused ITom the idea of coverage [29,

43]. Some aspect of a program is considered as a potential source of fuilure, and the

systematic method attempts to show that this aspect will not cause failure. For example, a

statement could be wrong, and if it is never executed during testing, the Hmlt remains

unrevealed. Therefore we may want to measure line covera~ during testing. Or similarly,

we may' want to make sure that eveI)' one of the functions of the systems is executed at

least once.

However, eveI)' testing method (except exhaustive testing for batch programs) is less

than perfect. Testing reveals a part of the software faults, yet some remain undetected. It

has therefore been suggested [13, 43, 44, 45] that testing should take into account use

patterns the software will encounter in its intended environment. The argument is that by

testing according to use, the limits fuund by imperfect methods are more likely to be the

important ones, the ones most users would encounter. In statistical prediction, the

49

argument that test should follow user patterns is vital. Ir this is not the case, thcn the tests

are not a representative sample and all statistical conclusions are invalid.

Statistical testing, in contrast to other systematic testing method, makes no claims to

cover anything. One might therefore expect that statistical testing can't compete with

systematic testing in exposing faults. But, however, this has been proven wrong by

several studies: under assumptions not unfuvorable to systematic methods, they are not

much better at finding faults than statistical testing [46, 47].

The black box approach [13, 29] to the software testing process unfolds as follows.

Given a program P with intended function f and input domain d, the objective is to

select a sequence of entries from d, apply them to P, and compare the response with the

. expected outcome indicated by f. Any deviation form the intended function is designated

as failure. It is assumed that f is well defined and completely specified, so that any

deviation is unambiguously detected am a failure is explicitly noted. The history of thc

test at some time n s a sequence of inputs d,p,d, ..o"_, and a corresponding sequence of

zero or more failures, each of wbich is uniquely identified with the particular input d, at

which the failure was observed.

Statistical testing follows the black box model with two important extensions. First,

sequences form d are stochastically generated based on probability distribution that

represents a profile of actual or anticipated use of the software. Second, a statistical

analysis is pertonned on the test history that enables the measurement of vatious

probabilistic aspects of the testing process. Thus, one can view statistical testing as a

sequence generation and analysis problem. A solution to the problem IS achieved by

constructing a generator to obtain the test input sequences and by developing an

informative analysis of the test history.

4.2 Markov Chain Model for Statistical Software

Testing

Statistical testing of software establishes a basis for statistical inferences about a

software system's expected field quality. We describe a method for statistical testing

based on a Markov chain model of software usage. The significance of the Markov chain

is twofold. First, it allows test input sequences to be generated from multiple probability

50

distributions, making it more general than many existing techniques. Analytical results

associated with Markov chains fucililale informative analysis of the sequence before they

are generated, indicating how the l:st is likely to unfold. Second, the test input sequences

generated from the chain and applied to the software are themselves a stochastic model

and are used to create a second Markov chain to encapsulate the history of the test,

including any observed fuilure information. The influence of the tailures is assessed

through analytical compulations of the chain. We also derive a slopping criterion for the

testing process based on a comparison of the sequence generating properties of the two

chains.

Statistical testing process can be carried out in three major steps [13,43].

Step 1: Construct the statistical models based on actual usage scenarios and related

frequencies.

Step 2: Use these models for test case generation and execution.

Step 3: Analyze the test results for reliability assessment and predictions, and help with

decision-making.

In Markov chain based statistical testing software usage behavior is modeled as a

finite state, discrete parameter, time homogeneous Markov chains. It is known as usage

Markov chain or in short usage model [13]. The usage model consists of elements from d,

the domain of the intended fimction, and a probabilistic relationship defined on these

elements. A test input is a' finite sequence of inputs form domain d probabilistically

generated form the usage model. The statistical properties of the model lend insight into

the expected makeup of the sequences for test planning purposes.

As the test sequences are applied to the software, the results are incorporated into a

second mode I. This testing model or the testing Markov chain [13] consists of the inputs

executed in the test sequences, plus any failures discovered while applying the sequences

to the software P. in other words, it is a model of what has occurred during testing. Tre

testing model also allows analysis of the test data in terms of random variables

appropriate for the application. For example, we may measure the evolution of the testing

model and decide to stop testing when tit has reached some suitable "steady state".

51

4.2.1 The Usage Markov Chain

A usage chain for a software system consists of states, i.e., externally visible modes of

operation that must be maintained in order to predict the application of all system inputs,

and state transitions that are labeled with system inputs and transition probabilities. To

determine the state set, one must consider each input and the information necessary to

apply the input. It may be that certain software modes cause an input to become more or

less probable (or even illegal). Such a mode represents a state or set of states in the usage

chain. Once the states are identified, we establish a start state, a terminate state (for

bookkeeping purposes), and draw a state transition diagram by considering the effect of

each input from each of the identified states. The Markov chain is completely defined

.when transition probabilitiesare establishedthat represent the best estimate of real usage.

Consider a simple selection menu pictured in Fig. 4.1. Though it is simple it has the

salient features of database based application software. The input domain consists of up

arrow key, down arrow key and enter key that select the items. The up arrow key and

down arrow key moves the cursor from one item to next, and wraps from top to bottom

on an up-arrow and from bottomto top on a down-arrowkey.

COlllicct

DiSl..U1nect
Data Entry
Query
Print
E.'<it

Fig. 4. 1: SelectionMenu

The first item "Connect' is used to establish connection to a database server. The

connect window has two options, Ok and Cancel. The Ok button establishes a connection

to the specified server with proper authentication and the Cancel button returns to

previous state. Once the connection is established the next four items, Disconnect, Data

Entry, Query and Print can be selected to perform their respective functions. If connection

is not established, selecting these 8items give no response. As Connect state, Disconnect

state has also Ok and Cancel button to disconnect from database server or not. From the

other three options we enter another screen only for Data Entry state for simplicityand

52

assume that the same thing could be done for other states. For data entry state we enter in

a new screen, which could insert or update department record to database. The screen is

picturedin Fig.42.

iii. Department, Entry fo~~

Fig. 4. 2: Department Entry Form First State

Initially New, Update and Back button are enabled and the other controls are disabled.

Selecting data entry from menu displays this screen and the control focus goes on to

"New" button. The tab key will shift the focus on the next enabled button, and will rotate

right when the focus is on right-most button. If "New" button is pressed, "New",

"Update" and "Back" button will be disabled and the disabled controls will be enabled. In

that case the screen will look like Fig. 4.3. The same thing will happen if "Update" button

is pressed. Now, if "Save" button is pressed, data provided in the text boxes will be

updated to database. If "Clear" button is pressed the screen will go to its initial state i.e.

'~ew" state and HBack" button returns to "Data Entry" state.

Fig. 4.3: Department Entry Form Second State

In this example, there are two items of interest when applying menu inputs. First, the

current cursor location must be maintained to determine the behavior of the "Enter" key.

Second, whether connection to dataha<e is estahlished or not to determine which of the

menu itemsare available.

53

i

•
{Temtinlltod}

i

i
null

<1Qu.",}) e
i I f--.J i 1"1,-1 i~ .• I~~

{QR, Y} IPR, y) lEn, Y}

•• ••

..J = enter key

1= up arrow key
i = down arrowkey

Fig. 4. 4: Usage Markov Chain for the Software

These two items of information are organized as the following usage variable:

I. Cursor location (which is abbreviated CL and takes on values CN, DC, DE, QR,

PR or Exit for each respective menu item), and

2 Connection status (which is abbreviated CS and takes on the values Y or N).

The state set therefore consists of the following: {(CL = CN, CS = N), (CL ~ DC, CS =
N), (CL = DE, CS = N), (CL = QR, CS = N), (CL = PR, CS = N), (CL = Ext, CS = N),

(CL = CN, CS = V), (CL = DC, CS = V), (CL = DE, CS = V), (CL = QR, CS = V), (CL

= PR, CS = V), (CL = Ext, CS = N)}. In addition, we include states that represent

placeholders for other system screens, as well as start and end states that represent the

software in its "not invoked" mode. The state transitions are depicted in Fig. 4.4 in a

graphical format.

54

Table - 4.1: Transition Probabilities for the Example Usage Chain

SUI From state Tn••" To state ,"'-
Stimuli Prob.

1 U"lmokod /",rn, {CL=CN,~No} 1.00

2 {CLoQ\ • {CL DC, CS=No} 0.10

CS=No} t (CL~Ext,CS~No) 0.10

~ {Conoo;;t} O.ro
3 {CL~llC, t {CL=DE,CS=No} 033

CS=No} t (CL~N, CS=NoJ 034

~ {CL=DC. CS""No} 0.33

• {CL Il£, • {CL=QR,=No} 033

CS-No} t (CL-llC, CS=No) 0.34

~ {CL=DE, CS=No} 0,33

5 {CL=QR, • {eL R, CS No} 033

CS=No} t (CL= E, CS=No) 0.34

~ {CL=R.CS=No} 0.33

6 {CL PI<, • {CL Ext, cs No) 034

CS=No} t (CL=QR,CS=No) 0.33

~ (CL~PR,CS=No) 0.33

7 {CL Ext, • {CL"'CN, C&=No) 034

CS"'Nol t {CL=PR,CS=No} 0.33

~ (Tenninated) 0.33

8 {CLoQ\ • {CL DC, CS Yes} 0.50

CS=Yes} t {Q,=Ext, CS=Yes} 0.35

~ (CL=CN, CS~Y",) 0.15

9 {CL DC, • {CL DE,CS=Yes} 0.70

CS=Yes} t (CL=CN, CS~Y",) 0.15

~ (~) 0.15

10 {CL~DE, t {CL=QR,CS=Y",) 0.25

CS=Yes} t {CL=DC. CS""Yes} 025

~ (DmaEntryNew) 0.50

11 {CL=QR, • {a. PR, CS YC!} 025

CS=Yes} t {CL=DE, CS=Yes} 0.25

~ (QooyJ 0.50

12 {CL PR, • {CL Ext, CS Yes} 0.25

CS-Yesl t (CL-QR. CS-Y",) 0.25

~ (Print) 0.50

13 {a..:Ex~ • {eL CN, CS Yes} 0.15

CS=YesJ t {CL=PR, CS=Yes} 0.35

~ {Terminated} 0.50

I' {Connecl} Ok {CL=cN, CS-Ycs} 0.85

e:-; {CL=CN, CS=No} 0.15

15 {""""""'I} Ok {CL DC, CS=No} 0.60

Q"..rl (CL=OC, CS=Yes) 0.40

16 {DataEntIy T,b {lJpWJc) 0.40

55

SIJI From '"'''
T•.•••• To!ltate ,,"-
Stimuli Prob.

Now} ~ I-} 0.60

17 {Updolo} T,b Ilkk} 0.50

~ {Sa•...e} 0.50

18 {Ikk} T,b lData En"" Now} O.W

~ {CL~OE.C""Yo;} 0.'"

19 I-} T,b IO",,} O.W

~ lData En"" New) 0.'"

20 {aear} T,b I-} 0.50

~ {Data Entry N(,,~} 0.50

21 {Quay} Q<uy {CL"'QR CS Yes} 1.00

Data

22 {Print} Prinl ta pR.,eSYes} 1.00

Oola

23 {Terminated} NWI Un-_ 1.00

A path from the initial "Un-invoked" state to the final "Terminated" state represents a

single execution of the software. In order to generate sequence statistically, probability

distributions are established over the exit arcs at each state that simulates expected field

usage. Several methods can be employed to extract this information, including subjective

evaluation based on expert opinions, survey of target customers, and measurement of

actual usage patterns. We assigned the probabilities by expert opinion and Table -I lists

each transition for the example chain in Fig. 4.4.

Table - 4.2: Some Standard Analytical Results for Markov Chains

Results Equation for Prob. or Mean I Interpretation of Mean

Recurrent chain

1f j is the asymptotic appearance

Stationmy distribution, 1f 1fj ~ L1f,uiJ (I) rate of state j in a large number of,
sequences from U.

The mean number of state

I transitions between occurrences
Recurrent time for state j m ~- (2)

jj 1C. of stale j in a large number ofJ

sequences from U.

Number of occurrences of The mean number of occurrences

state i between m)J1C, =~ (3) of state i between occurrences of
1fj

occurrences of state j state j.

56

11Je mean number of state

First passage time m =1 + IU.m, (4) transitions until state } occurslj . ~,,}
from state i.

Absorbing chain (for initial statej)

The probability that state} occurs

Single sequence prob. for Yij = U; +IU;Y'J (5)
in a single sequence (i.e., from

state) ,~ the initial state to the absorbing

state).

Number of sequences to I The mean nllll1ber of states lllltil
h.=- (6)

occurrence of state j
J
Ylj state j occurs.

The probability that arc }, k

_Single sequence proh. for
zjk =YijUjk (7)

occurs in a single sequence (i.e.,

arc j, k from the initial state to the

absorbing state).

Number of sequences to I The mean number of states until
h =- (8)

occurrence of arcj, k
jk Z arc j, k occurs.jk

Number of occurrences of m(jl i)= IU:m(j1 k) The mean number of occurrences

state j in a single sequence (9) of state j in a single sequence.
+{I if i=j

o if i;rj

4.2.2 Analysis of the Usage Chain

The fact the usage model is a Markov chain allows software testers to perform

significant analysis that gives insight how the test is likely to unfold. The details of the

underlying mathematics can be found in [48]; however, we have included Table II to

summarize some useful results. This analysis is used to gain insight into how the test will

likely unfold so that testers can proceed in an informed manner. The insight gained

through the analysis can be used to aid test planning and preparation.

4.2.3 Constructing the Testing Chain

Usage chain U has stationary transition probabilities; i.e., they do not change

throughout the test. However, probabilities in testing chain T are updated, and tracking

1"s evolution is an inherent part of monitoring the statistical testing process. Let

s"s"""sm denote the set of test sequences in the order generated by U and applied to

57

'"
\ ""~

,k

software P. The corresponding series of testing chains 7;,1; •...,Tm describes the evolution

ofT during testingand is constructedas follows.

Before any sequence is input to P, the test history is empty. The initial chain To is a

copy of the usage chain U, with all arc probabilities set to O. Assume first that no software

failures occur. T/ is obtained from To by incrementing arc frequencies along the path of

states from "Un-invoked" to "Terminated" in s I. Similarly, T2 is obtained from TI. by

sequence S2, and, in geneml, T, is obtained from T,.I by S;. In the way, frequency counts on

arcs in T; are always obtained from specific sequences applied to software P. These arc

frequencies are converted to relativc frequency probabilities whenever computation with

Tis state transitionprobabilitiesis required.

The testing chin's arc counts are reset when fixes are applied to P. Thus, as the

software changes, a new testing chain is created to model only the sequences applied on

that version. In this manner, the testing chain remains an accurate model of the testing

experience of the current software version. An additional formulation is to maintain a

testing chain that is not rest between fixes and incorporates testing experience across

different software versions. This latter testing chain is really a model of the process of

error discovery and fallt removal, whereas the former series of chains represents each

successive version of the software product Either interpretation can provide valuable

feedback about software developmentactivity.

What can be said about the series 7;,,7;,.. ,Tm? If no failures are detected, the evolution

of T is dictated solely by sequences from U. The Strong Law of large numbers for

Markov 'chains [55J guamntees (with probability I) that these sequences SJ'S2'''',Sm will

become 'statistically typical of U when enough are generated. This means that

convergence of T to U is certain, because the relative frequencies on T's arcs will

converge to the probabilities on U's arcs. A key point is that the test history T is

statisticallytypicalof the usage chain U if and only if convergence is achieved.

In other words, U is a fixed reference toward which T; evolves at an expected rate

with statistical vanation that depends on factors such as the source entropy of U [14].

This evolutionis well controlledand predictablein statisticalterms.

58

\, :.)

4.2.4 Incorporating Failure Data

Supposc now that fuilures do occur and that the /, failure 1; is detected during input
of sequence s; to P. To incorporate this failure event into the test history, a new state

labeled fj is placed in Markov chain T; exactly as it was ordered in S;. The arcs to and

from the new state fj have frequency count 1. If fj is catastroehic fulure, then the nul

of software P is aborted, and the arc form fj goes to "Tenninated"; otherwise, the test

sequence can continue, and the arc from f goes to the next state in s;. In this way, T; is_ J

maintained as a Markov chain that incorporates both the underlying structure of the

source of test sequences, U, and the frequency count history of sequences-plus-failuresas

..testing evolves.

Convergence of T to U is adversely affected by failures of software P during testing.

To achieve convergence when failures have been observed, the relative frequency

probabilities on arcs to fulure states in T; must approach O. In this way, the probabilities

on the non-failure arcs are still forced to converge to the corresponding (lonzero) values

in U. If even one fuilure occurs, this can be accomplished only when P responds to more

test sequences without exhibiting fuilures. Thus, fuilures automatically impose additional

testing to overcome their adverse impacton the convergence of T to U.

The testing chain, T, is a model of the current test history and is useful for computing

properties of descriptive random variables as shown in the next section. An alternative

would be to obtain statistics directly from the set of sequences executed; however, T

incorporates explicitly the structure of the usage chain, which is only implicit in the

sequences. In other words, each sequence is accorded different status according its

specific attributes; e.g., sequences can vary in length and probability and thus contribute a

different amount of information into the statistical testing experiment The testing chain

incorporates each event of each sequence, recognizing the probabilistic relationship

between states and arcs established in the usage cha in. Any computation based on T

incorporates this information as well. Thus, T is an important model for the identification

and derivation of measures that describe the statistical testing process. See [14] for proofS

concerning specific attributesof testingchains.

59

4.2.5 Analytical Results for the Testing Chain

In this section, the testing chain, T, is used to obtain analytical results to answer two

questions. Firs~ at what point does the test history become representative of usage (as

defined by U); second, how does each fuilureimpact the testing process?

4.2.5.1 An analytical stopping criterion

Stopping criteria for statistical software testing can be as simple as choosing some

target reliability [49, 50, 5I, 52], and testing until the estimate of the reliability meets or

exceeds the target. However, the estimate of the reliability meets or exceeds the target.

However, the usage-to-testing-chain approach suggests an analytic stopping criterion

based directly on the statistical properties of the usage and testing cha ins. The usage chain

is a model of ideal testing of the software; i.e., each arc probability is established with the

best estimate of actual usage, and no fuilure states are present. The testing chain, on the

other hand, is a model of a specific test history, including fuilure data. Thus, the usage

chain represents what would occur in the statistical test in the absence of failures, and the

testing can represents what has occurred. Dissimilarity between the two models is

therefore a useful measure of the testing process. When the dissimilarity is small, the test

history is an accurate picture of the usage model.

The log likelihood ratio [53, 54] known as discriminant is used to measure how two

stochastic processes relate to each other. If two stochastic precesses tend to converge each

other the numerical value of discriminant tends to zero and if both are same than the value

is zero. This value is computed for two arbitrary ergodic stochastic processes il" and A,

[52] as follows:

D(J1",A,) = lim.!:.[log, p(dA ...d"_1I A.,) - log, p(dA ...d"_11A,)] (I)
"-n

where p(d ... 1 ill denotes the probability with which stochastic process il generates

sequence d. Although D(il",A,) cannot be directly computed for arbitrary process il" and

A" it can be computed for MaIkov chainsU and T [14] as follows:

D()-" PijU,T -L-TriPijlog,-:::-
ij PIJ

60

(2)

where 71" is the stationary distribution of U, Pif is the probability of a transition from i

to j in U, and Puis the com:spondin~ probability in T. Each pu that corresponds to a

nonzero p. must be greater than zero in order for D(U, T) to be dermed. D(U, T) is

non-negative and equal to zero if and only if Pu = P if for all i,.i [53].

To monitor the testing process, D (U, T) can be computed with each sequence applied

to the software after T becomes fully defined. A downward trend in the values of D (U, T)

signifies growing similarity of the two models. Usage chain U never changes; however, D

(U, T) reflects the impact of each additional sequence on the stochastic characteristics of

the testing chain. 0 (U, n, for example, can rise when no failures are observed if a

. sequence reinforces some low -probability event Of course, a rise is expected when a

fuilure occurs. When the discrimination drops below some predefined threshold and

experiences little change for an extended period, it is implied that additional test

sequences will not significantly impact the statistics of the testing model, and testing can

stop.

I--NO Failure - -- - - -Failure I
0.025

0.02

0=- 0.015
:;;
C

0.01

0.005

o
o 50 100 150

Sequence

200 250 300

Fig. 4,5: Plot of D (U, T)

We have written a program for our example software and calculate the discriminant

according to equation (2) and plot it in Fig. 4.5. The figure shows two plots oW (U, T).

The solid line depicts behavior of D (U. T) with no fuilures and the dotted line depicts a

61

(

sequence with four fuilures. When testing chain grows quite similar. to usage chain i.e. the

test history reflects the actual usage pattern, the value of D (U. T) becomes very small.

Test should stop at this point. Whenever a failure occurs the value of D (U, T) increases

significantly so additional tests require minimizing that effect [13). It is important to

stress that analysis of D (U, T) should involve trends in the values of the function over

time rather than any single value at some specific point in time.

4.2.5.2 Measuring reliability, mean time tofailure and the impact offailure

We compute two characteristics of the testing chain that give insight into the effect of

the failures. The first is the probabilrty of a failure me realization of the testing chain,

denoted R, computed by using a standard result from Markov chain theory. The second is

. the expected number of steps between failure states, denoted M, which requires a new

computation.

R and M can be computed directly from the testing chain T at any time during the

testing of software P, even when only a single sequence has been input to P. It must be

emphasized that R is a probability and M is an expected value conditioned on the test

history encoded as T. these values gail credibility as statistical measures as the

discrimination D (U. T) becomes relatively small, for this indicates that T is becoming

statistically typical of software P's response to the input sequences form usage chain U.

The probability, R, of a failure-free realization of the testing chain is the probabilrty

that a realization of T beginning with "Un-invoked" and ending with the first occurrence

of "Terminated" will not contain a failure state. To compute R, each failure state and

"Terminated" are made absorbing states. R is the probability that absorption occurs at

"Terminated", given "Un-invoked" as the start state [13,48); namely, as follows:

RUn-inTerm = PUn-inierm +L Pun-inJRjTerm 0)
jF;.,.

where .• is the set of transient (non-abscrbing) states.

Fig. 4.6 depicts a plot of R for 250 sequences. Failures on high probability paths will

cause a sharper decrease in R, because the failures are probability-weighted according to

their location in chain [13]. Note that R = I when no failure $ltes exist in T. because it is

a conditional probabilrty, R gains credibility as D (U. T) gets small. From that plot after

62

250 sequences of test if the value of R is 0.976 than we can say that a randomly selected

test sequence has 97.6% chance to execute successfullywithout fuilure.

1.1

0.9
"" ..••..•;V

'" 0.8

0.7

(\j 0.6
~
Q:) 0.5

() 0 50 100 150 200 250
300 I

\) sequence

~
Fig. 4. 6: Test Sequenceversus Reliability

The expected number of steps between fuilures is the expected number of state

transitions encountered between occurrences of failure states in the testing chain. This

value is computed [13, 14]as follows:

M = iOf'ff. Vi c,~""P, (mj + I») (4)

where Vi is the conditional long-run probability for failure state J;, given that the

process is in a failure state, m} is the mean number of steps until the first occurrence of

any failure state from j, u". .. ,U" is the set of ll'age chain states, and j" ... ,lm is the set of

failure states. Fig. 4.7 is a plot of M for 250 sequences generated from our example

software.

Also some additional information can be found from the usage and testing Markov

chain. For example as the test process advances we can compute stationary probability of

each state of the tesmg Markov chain which shows the amount of time spent in any state

63

••

in the long run. We compute the stationary probabilities and are shown In the following

graph.

4000

3500

3000

2500

:E 2000

1500

1000

500

50 100 150

sequence

200 250 300

Fig. 4. 7: Expected Nwnber of Steps Between Failures

We describe a sequence generation and analysis technique for statistical testing using

Markov chains. We discuss the construction of a Markov chain as a sequence generator

for statis?cal testing and show how analytical results associated with Markov chains can

aid in test planning. An important aspect of this method is that the test sequences

generated and applied to the software are used to create a second Markov chain to

encapsulate the history of the tes~ including any observed fulure information. The

influence of the failures is assessed through analytical computations on this chain. We

also find a stopping point for the testing process based on a comparison of the sequence

generating properties of the two chains.

64

stationary probabilities of testing chian states

0.25

0.2

•
~ 0.15
:;;
J!l
2 0.1
Q.

0.05

o
states

Fig. 4. 8: Stationary Probabilities of States oflhe Testing Chain

4.3 Effectiveness of Statistical Software Testing

One of the major shortfalls of statistical testing is the lack of evidence of the effectiveness

of statistical testing compared to olher methodologies, such as structural testing [66],

random testing etc. Here we show the effectiveness of statistical testing over random

testing. We assign equal probabilities to each exiting arcs from a state, generate test cases

that represent random testing and measure reliability to compare the test processes.

--usage probability...•• 'equalprobability

1.02

1

0.98

0.96

0.94

'" 0.92

0.9

0.88

0.86

: -V ;.....---..----
/'

11/
V

0.84
o 50 100 150

sequence

200 250 300

Fig, 4.9: Statistical Testing vs Random Testing (fault lies on high probability path)

65

(

From Fig. 4.9 we find that if the fault lies on the path of heavy usage probability than

it reveals early in statistical testing while the limit reveals lately in random testing. If we

set the target reliability to 0.98 we see from Fig. 4.9 that random testing may not reveal

one bug. But if the limit lies on the less usage probability path than random testing re\eals

the limit early than statistical testing but this does not jeopardize our test effort as the

same number of bugs are revealed by statistical testing before attaining the desired

reliabilityand this is shown in Fig.4.10.

--Usage probability. - - - - .equalprobability

1.05

0.95
I\~0.9 '770:: . :'

0.85

0.8

0.75

30025020015010050

0.7 +---,.----,-----r-----,---,------,
o

sequence

Fig. 4.10: StatisticalTesting vs RandomTesting (filUltlies on low probabilitypath)

66

. \"\ ~.

Chapter 5

Arc-based Reliability

5.1 Introduction

Markov chain usage model that we have used to measure reliability in previous

chapter has several benefits. It allows generating test sequences fium usage probability

distributions, assessing statistical inferences based on analytical results associated with

Markov chains and also to derive stopping criterion of the test process. But the main

.' problem in this process is to modeI software behavior in a single Markov chain. For large

software systems the model size i.e. the number of sates become unwieldy and it becomes

infeasible to apply this method in generating test cases as well as measuring reliability.

Our main goal is to measure reliability of the entire software system. But a software

system evolves over time. Whenever a change is made or new functionalities are added

we have to go through the same procedure repeatedly to measure reliability. This is also a

drawback of the previous technique. So we find an alternative approach to measure

software reliability by combining the ideas drawn from partition testing, statistical testing

using Markov chain usage model and component based software testing. Again we have

taken example from database based application software, find its partitions or modules, in

this case individual forms, separately so that it improves sampling efficiency [20, 26] and

measure reliability of each forms according to Markov chain usage model. We assume

that the' forms are independent. When the individual forms reliabilities are measured we

can calculate the entire software system's reliability using the usage probabilities of the

forms.

5.2 The Miller Reliability Model

The Miller reliability model [27] can be used In conjunction with usage models to

defme software reliability estimators. The Miller model is based on Bayesian statistics

and allows the user of the model to take advantage of prior knowledge of the system

under test [27], The Miller model assumes that the possible failure rates of the software

have a standard beta distribution [56], In the Miller model the expected value of the

67

f

reliabilityR of the system under test is E(R)= 1-(f +a }, where s is the nwnber
f +s +a +b

of successful tests run, f is the number of failures, and a and b are parameters representing

prior information about the software fuilure rate. For the case of no prior information

about the software failure rate a=b=1.

The variance of R is

(f +a)(s+b)
Var(R) =--~~~-~---

(f +s +a + b)'(f + s+ a+ b+ 1)

While the Miller model can be used to calculate the expected value of the overall

reliability fur the system, it can also he used when the testing domain is partitioned into

. equivalence classes (also called blocks or bins). Reliability can then be calculated for

each block of the partition as well as for the entire system [26].

5.3 Single-Use Reliability and Single-Action Reliability

The Whitlllker model [14] estimates software reliability in terms of test cases as

"uses", where a use is an executed sequence of actions from (Un-Invoke) to (Terminate).

For example, a use of word processing software could be to invoke the software, load a

document, print the document, and then exit the software. This view of software

reliability, the single-use reliability, defines the reliability as the probability of the

software executing a randomly selected use without a fuilure. A use is considered to have

a failure if at least one failure occurs during the execution of that use. While preserving

this definition of reliability, an a1temativeapproach to its estimation is given that does not

necessarily yield R= 1.0 when random testing reveals no fuilures. This definition is

needed because Cleanroom development and testing often leads to testing results where

no failures are seen in random testing. Current reliability estimators in use today, such as

the Whitlllker model and the sampling theory based model [57], do not provide a

meaningful variance in the absence of failures. Therefore it is impossible to define a

confidence interval around the estimated reliability, which in tum means it is impossible

to assess the trustworthinessof the estimatedreliability.

The single-action reliability [26] is introduced to provide an estimate of the

probability that a single user action, a single state transition in the usage model, will occur

68

without fuilure. For example, a single user action involving a word processor might be

loadinga file.

Field experience shows many testing situations in which pre-test infonnation is

known or asserted in tenns of individual arcs of the usage model. Both of these reliability

estimatesmake use of this type of infonnation.

Note that it is possible for the single-use reliability and the single-action reliability of

a system to be quite different This is because !he single-use reliability depends strongly

on the length of a typical use of the software. The longer the typical use of the software,

the more chances the software has to fuil. Therefore it is possible for software with a high

single-action reliability to have relatively low single-use reliability. For example, consider

a model where the probability of each individual user action succeeding is 0.99 and every

use is 100 steps long (however rare such a model might be). The single-action reliability

would be 0.99 since any given step has 0.99 reliability. However, for a use to succeed

every user action must succeed; therefore the single-use reliability is (0.99) 100; 0.366, a

much lowervalue than the single-actionreliability.

5.3.1 Testing Records

Five matrices are needed to compute the single-action: the usage model transition

matrix U, a success matrix S, a failure matrix F, and matrices of parameters of prior

infonnation, A and B. The transition matrix contains the arc transition probabilities of the

usage model. It is created when the model is created.

A success matrix contains the counts of !he number of times that each transition has

been taken successfully during testing. Note that the success matrix does not contain

infonnation about fuilure states and that nonnalization of the success matrix would yield

the testing chain only in the case of no fuilures.

The record of fuilures is maintained separately from the record of successes. The

failure matrix F contains the counts of the number of times that a transition has fuiled

during testing. If a fuilure is encountered while executing a test case that does not pennit

testing to continue (a halting fuilure), !hen no transitions beyond !he failure will be

counted in the testing record in either the success matrix or the fuilure matrix. Since those

transitions were not executed during the test they cannot be counted as successes or

fuilures.Testingwill continuewith the sequence if possible.

69

The genem! process followed. in testing using this reliability measure is as follows:

1. Generate sequences ITomthe usage model.

2 Run the sequences until (Terminate) unless there is a halting failure.

3. Update the count of successful transitions in S.

4. Update the count of failed transitions in F.

5. Using the Miller failure rate calculation, estimate the fuilure rate of each arc in the

model. The arc failure rate is defined to be zero if the state transition probability is

zero.

6. Estimate the single -action reliability, E (Ra) •

..5.3.2. Arc Failure Rate Calculation

Following Miller, the expected values and variances of the arc failure rate random

variables are computed using the Beta distribution [26].

, +a.
E(F.) = j '.j '.]

('J) , b
Ji,j +Si,j +ai•J + ;,1

v: (F.)= (f..j+a,.)(f..j+s'.j+b,.)
ar «J)),(, b(J;,j+SI,j+Gi,j+bi,j Ji,j+si,j+ai,j+ 1,)+1)

5.3.3 Single Action Reliability Estimator

The single-action failure rate can be viewed as the probability of fuilure of a randomly

selected transition ITom the convergent sequence. In terms of the Miller model, the

probability associated with each state is the long run probability of the arc that defines

that state. The long run arc probabilities ofU are d:fined "¥ 1r(i,}) =1r(i)u'J'

Theorem: For each arc in a usage model U; the long run arc probability is equal to

the probability of selecting the state under R identified with the arc, i.e.

p.. =1r&)u .
I,) I,j

Proof: Because the Markov chan representing the usage model is ergodic, in the

convergent sequence the probability of selecting an arbitrary arc approaches that arc's

long run probability [48]. Selecting an arc at random and taking the sequence beginning

with the most recent (Invoke) is equivalent to selecting the state. Therefore, the long run

70

.,

arc probability is equal to the probability of selecting the slate under R identifiedwith the

arc.

Theorem: The expected value of the single-action reliability is E(Ral =1-E(Fal,

where E(F 1= "(,, p .E(F l) is the expectedvalue of the single-action failure rate.
a L-. L..J I,) I,}

, j

Proof: The probability associated with block {, jl is P,.i' The failure rate associated

with block (i,) is F(n)' The expected value of the single-action fuilure rate follows by

the Millermodel.

5.3.4. Miller Model

Because the single-action reliability is the sum of random variables, by the central

limit theorem the random variable representing the single-action reliability has an

approximately normal distribution. Therefore, given the expected value and variance of

the single-action reliability it is possible to compute a c"10confidence interval for the

singleactionreliability.

5.4 Single Action Reliability

From our example software we have taken a complex form named "Search Books". It

is a part of Library Management Software. Through this form a borrower can search

books according to Author, Title, Call Number, Accession Number and Keywords, and

can reserve books for a specified time period. Fig. 5. J shows the window of "Search

Books".

Borrower selects search type from the combo box, inserts string in the text box and

clicks on "Search" button to get the result. User can also log in to the system using

hislher borrower id and password. If the process succeeds the "Change Password",

"Add", "Remove" and "Reserve" buttons, and the "Issued Books" 1

"Reserved Books" radio buttonsare enabled.The form now looks like in Fig. 5.2.

71

,.

;..;'.,
.,',

Fig, 5.1: Search Books Fonn I

If borrower clicks on "Issued Books" radio button then the system displays the

books infonnation that the borrower borrowed from library. If he wants to reserve books

then he ,selects "Reserved Books" radio button, selects a book from the searched

book list. and clicks on "Add" Wtton to add the book in the second list as in Fug. 52.

The status is set to 'pending'. He can remove a book from the list by clicking on

"Remove" button. When the list is complete borrower reserves the books using the

"Reserve" button and the status is sit to 'reserved'. The behavior of this fonn is

modeled as a Markov chain as shown in Fig 5.3 and probabilities are assigned to each arc

according to expert judgment as are assigned in previous chapter. For simplicity of the

graphical representationwe omit some unimportantarcs.

72

'.~

Fig. 5.2: Search Books Fonn 2

Assigning each arc an "actual"' failure rate testing was simulated. Taking random

walks fTom "Un-invoked" to "Terminated" of the usage model based on the transition

matrix generated the simulated test sequences. At each transition it was randomly

determined whether a fuilure occurred; success and fuilure matrices were updated as

discussed earlier.

All arcs were assumed to have a failure rate of 0.0I and no prior information was used

in the arc fuilurcrate estimates, i.e., all clements of A and B equal I. A graph of the single

action reliabilityis shown in Fig. 5.4.

73

..~

0.05

0.5 1 0

Search Books
0.1 Exit 1.0 Termmated

Fig. 5.3: UsageMarkov Chain of Search Books

Single - Action Reliability

1

0.95 (
0.9

'";: 0.85:E
.!!!
;l! 0.8

0.75

0.7

0.65
0 100 200 300 400 500

test run

Fig. 5.4: Single-ActionReliability

Through the application of statistical sampling theory it is possible to compute the

probability that the testing chain will remain essentially unchanged if more test cases are

run. When estimating the mean of a population through sampling it is possible to estimate

74

the variance of the sample mean. Given a sample of size, the valiance of the sample mean

provides infonnation on how the sample mean might vary trom sample to sample. If the

variance of the sample mean is small, repeated drawings of samples of size are likely to

yield the same sample mean.

The variance of the single -action reliability estimator is shown in Fig. 5.5.

Singfe - Action Reliability Variance

1.E+OO

1.E-Ol

~
u~

.::g 1.E-02
~

1.E-03

1.E-04
o 100 200 300 400 500

test run

Fig. 5.5: Single Action Reliability Variance

The stopping criterion is detennined for this process and is discussed in the neJlt

chapter. Software consists of a number of fonns. Single action reliability estimator

detennines reliability R; of every fonn. The system reliability R =L P, * R, is computed

trom the fonn's reliabilities, where P, is the usage probability of each fonn.

75

Chapter 6

Stopping Criteria
Currently, three methods are used to compare testing experience with expected use of

the software, the Euclidean distance between the usage chain and the testing chain, the

Kullback discriminant from the usage chain to the testing chain and Krik Sayre's long run

arc occupancy. These methods compare the current testing chain with the usage chain and

provide an indication of the degrec to which the testing chain matches the usage chain.

However, the Kullback discriminant and Krik Sayre's long run arc occupancy provide a

.more accurate indicationof the similarityof the usagechain and the testing chain.

6.1. The Euclidean Distance

The Euclidean distance is computed as (u .. -I. .)' where u.. and "J are the
I,) ',J ',j,

i,j

probabilities of going from state (i) to state Ij) in the usage chain and the testing chain,

respectively.

As stated earlier, the Euclidean distance can be an inaccurate measure of the similarity

of two usage models. For example, considerthe usagemodel shown in Fig. 6.1.

Now suppose that two different testing chains with extreme differences resulted from

two separate testing experiments.The testing chains are shown in Fig. 6.2 and Fig. 6.3.

In testing chain A the probabilities of the arcs exiting (Invoke) match the

corresponding arcs in the usage model. However, the probabilities of the arcs in the cloud

containing the majority of the model stmcture of testing chain A do not match the

corresponding arcs in the usage model. In testing chain B the situation is reversed. The

arcs exiting Ilnvoke) in testing chain B do not match the corresponding arcs in the usage

chain but the probabilities of the arcs in the cloud in testing chain B do match the

probabilities of the corresponding arcs of the usage model. Because testing chain B has

more arc probabilities in common with the usage model than testing chain A, the

Euclidean distance will indicate that testing chain B is much closer to the usage chain

than testing chain A, or in other words the testing performed to create testing chain B will

76

be interpreted as .being more representative of the expected use of the software than the

testing experience representcd by testing chain A. If the Euclidean distance is interpreted

in this manner the software organization runs the risk of wasting time fixing relatively

unimportant fuults uncovered through testing of the cloud and runs the risk of missing

important faults that would be exposed through testing of the transition !Tom (Invoke) to

(State A). Thus, the Euclideandistancehas the potential for misleading interpretation.

Fig. 6.1: EuclideanDistance,ExampleModel

Fig. 6.2: EuclideanDistance,Testing Chain A

Fig. 6.3: EuclideanDistance,Testing Chain B

77

6.2. The Kullback Discriminant

The Kullback discriminant (53] is the expected value of the log-likelihood ratio of

two stochastic processes, i.e. K(U,T)=lim.!.[IOg(Pr[Xo,Xl"X.I~])J. In the
'-~n lPr[Xo,Xp .. ,X.17]

specific case of comparing the usage chain to the testing chain, Xo,X" ... , X, is a

sequence of length n generated by the usage chain and K (U, T) = t, n:(i)t, U '.J log [':,';).

A problem arises in the computation of the discriminant when one or more arcs in the

. usage chain have not been covered in the testing chain. This leads to a division by zero in

the discriminant calculation. Therefore, the discriminant is not defined unless all arcs in

the usagechain have been coveredduring testing.

6.3. The Sayre Long Run Arc Occupancies

According to Sayre the testing chain is considered to heave converged if
A

Prllf,If/In:(i,J)-n:(i,J)I:S:c,)I> p, i.c. O,C probability O,at all O,e long Illll arc

occupancies of the testing chain will be approximately equal to the long Illll arc

occupancies of the usage chain is greater than p, if an equal number of tests were to be

run again. Henceforth, the testing chain will be termed approximately equal to the usage

chain if all of the long run arc occupancies as cstimated from the testing record are

approximately equal to the long run arc occupancies of the usage chain. This probability

is estimatedthroughsimulation.

The simulation is performed by repeating iterations of generating a fixed number, n,

of sequences, updating the testing chain, and checking 10 see if the resulting testing chain

is approximately equal to the usage chain. The probability of the testing chain being

approximately cqual to the usage chain after the generation of n sequences is estimated as

the proportion of times that the testing chain and usage chain were approximately equal to

the total number of times the generationof n sequenceswas simulated.

78

In more detail, given S and F as the initial value of the tcsting record, n, the number

of sequences to generate, U, the usage chain, and j, the number of simulation iterations,

the simulationproceedsas follows:

for p~l to j do

t temp = S + F

for q = 1 to n do

s ~ Generate Sequence(U)

Update t_temp with s

end for

••

equal to Calc_Long Run Arc_Occ(U)) then

end if

end for

Probability ~ Count Of Equal/j

As j becomes sufficiently large, Probability will approach the true probabilityof

the testing chain being approximately equal to the usage chain after the generation of n

sequences.

6.4. Our Stopping Criterion

Neither the Kullback discriminant nor the Euclidean distance directly check whether

the testing chain has followed a testing activity to converge to the usage chain. They

simply provide a number used by the testing engineer to assess the degree to which the

testing chain is currently in some sense equal to the usage chain. So we use Sayre's long

run arc occupancies technique to measure the stopping point of the test process. The

graph in Fig. 6.4 shows the probability of approximate equalty of the testing chain, T,

79

and the usage chain, U. During the simulation the testing record was initialized with an

empty testing record, i.e., the same base of testing experience was used to compute the

probability of approximate equality after running n = 1...1000 adilltiona! tests. In this

example the 10,.) for each arc If, }) was set to 20% of the actual long run occupancy of the

arc. Thus, the testing chain is considered to be approximately equal to the usage chain if

all long run arc occupancies as estimated !Tom the testing record are within 20% of their

actual values. Values were computed every ten test cases

Convergence of testing chain to usage chain

~ 0.9
'iii
~ 0.8

~ 0.7
,5 0,6~
~ 0.5
Q.
n:l 0.4
'0
~ 0.3
:s 0.2~
J:J2 0.1
Q.

100 200 300 400 500 600 700 800 900 1000

test run

Fig. 6.4: Examplc Model, Convergence of Testing Chain to Usage Chain

Given that no specific prior testing was performed, when testing !Tom the example

model there is approximately a 50"10 chanoe of the testing chain being approximately

equal to the usage chain after running 190 test cases. After running 1000 test cases there

is a 99.5% chance of the testing chain being approximately equal to the usage chain.

fn Fig. 6.4 the graph of the probability of approximate equality given a fixed base of

testing experience seems to be smoothly increasing, with a number of local rough points.

These rough points in the graph will disappear if the number of iterations in the

simulation is increased. Given a lixed base of testing experience, i.e., the simulation is

initialized every time with the same testing record, the probability of approximate

equality increases monotonically as the number oftests run increases.

80

(
.C-

There are two basic ways of using the probability of approximate equality, (I)

calculating the probability of approximate equality gIven a fixed prior testing record and

vatying the number of additional tests to run, or (2) calculating the probability of

approximate equality given a fixed number of additional tests to run based on a

successively updated testing record. Discussion up to this point has centered around the

calculation of the probability of approximate probability given a fixed prior testing record

and vatying the number of additional tests to run. The probability of approximate equality

is monotonicallyincreasingin this case.

Now we are concerned with the second use of the probability of 'PProximateequality.

The testing record used in the estimation of the probability of approximate equality is

updated after each executed test case. Given this updated base of testing experience, the

probability of approximate equality after running some number of additional tests is

estimated.

Converfgence of testing chain to usage chain successively
updating testing record

~m 0.9
"go 0.8

'* 0.7
.~ 0.6
o
Q.. 0.5
Co
~ 0.4
o
~ 0.3:s 0.2
1lo 0.1
a 0

o 100 200 300 400 500 600 700 800 900 1000

test run

Fig. 6.5: ConvergenceofTesling Chainto UsageChain,SuccessivelyUpdatedTestingRecord

Fig. 6.5 and Fig. 6.6 displays the probability that the testing chain will be

approximately equal to the usage chain after running n I additional test cases, given that n

specific test cases have already been nm. Two different random seeds are used to

generate the two graphs. The probabilities presented illustrate the case for n I = 10 and n

going from 0 to IOOO.Thetesting record used in the simulation of the probability of

81

approximate equality is updated after each test case is run, i.e., the base of testing

experience is evolving over time.

Converfgence of testing chain to usage chain successively
updating testing record

~ 1~5- 0.9••~ 0.8
•••E 0.7
><2 0.6
8:: 0,5~
'0 0.4
~. 0.3
:s! 0.2
2 0.1
c-

O
o 100 200 300 400 500 600 700 800 900 1000

test run

Fig. 6.6: Convergenceof TestingChainto UsageChain,SuccessivelyUpdatedTestingRecord

The grnph of Fig. 6.5 and Fig. 6.6 do not follow an orderly curve. Until the testing

record has stabilized to a certain degree, the probability of approximate equality of the

testing chain and usage chain after running the next ten test cases given the updated

testing experience is quite sensitive to the current state of the testing record. While testing

chain T will eventually converge to usage chain U, T does not converge monotonically to

U.
A pianning analysis, using Fig. 6.4 might suggest that 700 test cases will need to be

run before the probability of approximate equality nears 0.95. Fig. 6.5 & Fig. 6.6 suggest

that given the actual testing performed, the probability of approximate equality

consistently exceeds 0.95 after 500 test cases have been run. Therefore, if the probability

of approximate equality being greater than 0.95 was used as a stopping criterion, it may

make sense to stop testing after 500 test cases have been run.

82

Chapter 7

Conclusion

7.1 Introduction
The statistical reliability assessment of software requires that the random test cases be

generated from the operational profile or usage pattern of the system. An operational

profile or usage model consists of a logical description of the possible states of the system

and of a statistical or probabilistic model describing how often certain states of sequences

..of states are encountered. Jf the model doesn't correspond statistically to the actual usage

of the system, the reliability estimates based on the statistical testing is erroneous. ln this

thesis we have considered statistical testing approach and reliability assessment in

general. We have shown how stochastic modeling [55] can be applied to the software-

testing problem. Although choice for a model could have been any number of stochastic

processes, Markov chains were used because they have been shown to be successful in

practiceand because of their potentialto provide valuableanalytical feedback.

In this concluding chapter, the contributions and limitations of the research are

presented, and propose future research tasks aimed at addressing the limitations.

7.2 Contributions
Statistical software testing promises a solution. to the increased testing burden caused

by the ever-increasing complexity of today's software systems; however, the complexity

of these systems makes it more difficult to provide a model to use as a basis for statistical

testing. The flat operational profile and Whittaker's Markov model leads to enormous

models when capturing the usage of these complex systems and makes it infeasible to

generate test cases randomly and asses reliability form the enormous model. In our thesis

we have shown a different approach while measuring software reliability. We combined

the ideas of stochastic modeling, statistical testing and component based software testing

to measure reliability of software system. We also find a stopping criterion to stop testing,

i.e. the number of test cases that should be run before releasing software.

83

Taking an application fonn as a software component and modeling it as a Markov

chain gives us several benefits. Traditional Markov modeling or stochastic modeling

would incorporate additional states to previous model and would require repeated testing

effort to find reliability.But in our approach it needs only to model the new fonn and find

its reliability to measure system reliability that is less cumbersome. Thus our approach

considers the impact of software change or software evolution. We choose single action

reliability model to measure the individual fonn's reliability, which enables us to use pre-

test infonnation that was not possible in Whittaker model. Testing savings can be realized

if accurate pre-test reliability infonnation is available. We also apply Sayre's long run arc

occupancy to measure the similarity of usage model and testing model. Thus extensive

simulation can be used in test planning. A testing organization now has considerable

ability to tailor the reliability estimation to the situalion in order to make testing more

efficient Using partition-testing techniques in conjunction with usage models and arc-

based reliability models increase testing efficiency. These accomplishments allow for

larger systems to be modeled more concisely and compactly while providing statistical

testing's benefits of effective, efficient testing, reliability estimation and quantified

businessdecisions.

7.3 Suggestions for Further Research

A fonnal relationship between the similarity of the testing chain and the usage chain

and the estimated reliability should be established. Field evidence shows that a high

degree of similarity between the testing chain and the usage chain indicates that the

reliability estimated from the testing experience is accurate. However, a more fonnal

relationship is needed. The distributions of various random variables based on the usage

model (sequence length, number of sequences to cover all states or arcs, etc.) should be

studied. Knowledge of the distribution underlying these random variables will allow for

increasedaccuracy in test planningand modelvalidation.

In our approach we simply come up the idea of divide and conquer method. But as the

model increases with the growing complexities of software, researchers have developed

the Requirements State Machine Language without Events (RSML"), a state-based

modeling language that will serve as the basis for the parallelism-capable statistical

modeling [66]. As a fonnal language RSML" can be used to accurately describe

requirements and create a state-based model of a system's behavior. This addresses the

84

statistical component of the operational profIle, adding probabilities to the structural

.model and generating test cases from the parallelism-enhancedoperational profile.

In this thesis we show how stochastic modeling can be applied to the sofrware-testing

problem. Although the choice for a model could have been any nwnber of stochastic

processes, Markov chains were used because they have been shown to be successful in

practice and because of their potential to provide valuable analytical feedback. Our given

example is a small one and the future work can focus on more complex software like

banking software, where transactions are very much important. This will increase the

volume of state space. Future work can also investigate methods to mechanically

enumerate the state space of the model from the operational modes. We envision ille

development of the operational modes and a set of constraints defming possible states to

be the task of a human tester and then an algorithm would generate the fuJI state space. It

remains to be seen how general such an algorithm could be and whether we could embed

arc informationso that the entireMarkov chaincould be constructed.

The issue of generating test cases randomly from the model IS an important one.

Currently, we generate test cases based only on the probabilities assigned to each arc. An

extension of this idea would be to dynanlicaJly change the probabilities as new

information surfaces during test. For example, software that has artificial intelligence

capabilities may change its branching probabilities form one state to another. Also, we

might decide that a particularly buggy section of code needs additional testing and then

raise the probabilities ffisociatedwith that part of the model. Thus the model would adapt

to the demands of testing by leaming failure pattems and adjusting probabilities to get

better coverage of specific parts of the model.

In our research effort we focus on database based application software and take only

functional' requirements in consideration to measure reliability. But today security aspects

of database especially authentication, authorization are some major issues. Can we say

that our system is llighly reliable if security is poor? No research effort is given to this

direction. A formal approach could be developed that incorporates security Issues and

other kinds of failure like network faJureetc. in measuring software reliability.

85

References

[I] Ch. Ali Asad, Muhammad Irfan Ullah and Muhammad Jalfar-Ur Rehman, "An
Approach fur Software Reliability Model Selection", Proceedings of the 28,h
Annual International Computer Software and Applications Conference, Hong Kong,
China, September 2004.

[2] Denton A. D., "Accurate Software Reliability Estimation", Master of Science Thesis,
Colorado State University, Fort Collins, Colorado, Fall 1999.

[3] C. Smidts, R. W. Stoddard and M. Stutzke, "Software Reliability Models: An
Approach to Early Reliability Prediction", IEEE Transactions on Reliability, vol.
47(3), pp. 268 - 278, 1998.

[4] H. Sing, V. Cortellessa, B. Cukic, E. Gunel and V. Bharadwaj, "A Bayesian Approach
to Reliability Prediction and Assessment of Component Based System",
Proceedings of I 2,h International Symposium on Software Reliability Engineering
(lSSRE), Hong Kong, China, November 200 I.

[5] V. Cortellessa, H. Sing and B. Cukic, "Early Reliability Assessment of UML Based
Software Models", 3iil International Workshop on Software Performance, Rome,
Italy, July 2002.

[6] A. Wood, "Software Reliability Growth Models", Tandem Computers, TR 96.1, Part
No. 130056, September 1996.

[7] 1. D. Musa, Software Reliability Engineering, New Yark: McGraw - Hill. 1998.

[8] A. L. Goel, "Software Reliability Models: Assumptions, Limitations and
Applicability", IEEE Transaction on Software Engineering, vol. 11(12), pp. 1411 -
1423, December 1985.

[9] S. S. Gokhale, P. N. Marinos and K. S. Trivedi, "Important Milestones in Software
Reliability Models", Proceedings of Software Engineering and Knowledge
Engineering, Lake Tahoe, NV, pp. 345 - 352, 1996.

[10] E. Nelson, "Estimating Software Reliability from Test Data", Microelectronics and
Reliability, vol. 17(1), pp. 67 - 73, 1978.

[II] S. Gokhale, W. E. Wong, K. S. Trivedi and J. R. Horgan, "An Analytical Approach
to Architecture-Based Software Reliability Prediction", Proceedings of IEEE
International Computer Performance and Dependability Symposium, pp 13 - 22,
September 1998.

[12] K. Goseva - Popstojanova and K. S. Trivedi, "Architecture Based Software
Reliability", Proc. of International Conference on Applied Stochastic System
Modeling, Kyoto, Japan, March 2000.

86

\
"

[13] J. A. Whittaker and M. G. Thomason, "A Marl<ov chain model for statistical
software testing", IEEE Transactions on Software Engineering, vol. 20(10), pp. 812
- 8~4,0ct0ber 1994.

[14] J. A. Whittaker, "Markov chain techniques for software testing and reliability
analysis", Ph.D. dissertation, Dept. of Computer Science, University of Tennessee,
Knoxvi1Le,USA, 1994...

[IS] B. Littlewood, "Software Reliability Model for Modular Program Slructure", IEEE
Transaction on Reliability, vol. 28(3), pp. 241 - 246, 1979.

[16] B. Littlewood, "A Reliability Model for Systems with Markov Stru:ture", Applied
Statistics, voL 24(2), pp 172 - 177, 1975.

[17] R. C. Cbeung, "A User - Oriented Software Reliability Model", IEEE Transactions
on Software Engineering, vol. 6(2), pp. 118 - 125,1980.

[18] J. C. Laprie, "Dependability Evaluation of Software Systems in Operation", IEEE
Transactions on software Engineering, voL 10(6), pp. 701- 714, 1984.

[19] P. Kubat, "Assessing Reliability of Modular Software", Operational Research
Letters, vol. 8, pp. 35 - 41, 1989.

[20] K. Sayre and 1. H. Poore, "Partition testing with usage models", Information &
Software Technology, vol. 42(12), pp. 845 - 850,2000.

[21]

[22]

[23]

[24]

[25]

[26]

B. D. JuWin, "Implementing operational profiles to measure system reliability",
Proceedings of 3n1 International Symposium on Software Reliability Engineering,
vol. 7(10), pp. 286 - 295, October 1992.

M. Gittens, H. Lutfiyya and M. Bauer, "An Extended Operational Profile Model",
Proceedings of 151h International Symposium on Software Reliability Engineering,
vol. 2(5), pp. 314- 325, November 2004.

K. Agrawal and 1. A. Whittaker, "Experiences in Applying Statistical Testing to a
Real-time Embedded Software System", Proceedings of Pacific Northwest Software
QualityConference,pp.154- 170,1993.

J. A. Whittaker and J. H. Poore, "Markov Analysis of Software Specifications",
ACM Transactions on Software Engineering Methodology, vol. 2, pp. 93 - 106,
January 1993.

F. Zhen and C. Peng, "A System Test Methodology Based on the Markov Chain
Usage Model", Proceedings of81h International Conference on Computer Supported
Cooperative Work and Design, pp. 160 - 165,2003.

Kirk Sayre, "Improved Techniques for Software Testing Based on Markov Chain
Usage 9Models", Ph.D. dissertation, Dept. of Computer Science, University of
Tennessee, Knoxville, USA,Decemhe'. 1999.

87

("-.\::-
! .
\,, p:'-

[27] K.W. Miller, et. aI., "Estimating the Probability of Failure When Testing Reveals No
Failures", IEEE Transactions on Software Engineering, Vol. 18, pp. 33-42, January
1992.

[28] 1. McCall, P. Richards and G. Walters, "Factors in Software Quality", NTIS AD-
A049-{)14, 015, 055,Noven1ber 1977.

[29] B. Beizer, Software Testing Techniques, second ed. Boston, Mass. Int'I Thomason
Computer Press, 1990.

[30] G. Tassey, The Economics of R&D Policy, Westport, CT: Quorum Books, 1997.

(31] R. S. Pressman, Software Engineering: A Practical Approach, fifth edition, McGraw
HiU,2OO1.

[32] C. Jones, Software Quality-Analysis and Guidelines for Success, Boston:
Intemational Thompson Computer Press, 1997.

[33] D. Wells, "SUIVivability in Object Services Architectures", Annual Report, Object
Services and Consulting Inc., www.objs.com/survivability/. 1998.

[34] C. V. Ramamoorthy and F. B. Bastani, "Software Reliability - Status and
Perspectives", IEEE Transactians on Software Engineering, vol. II (12), pp. 354 -
371,1982.

[35] W. Farr, "Software Reliability Modeling Survey", in Handbook of Software
Reliability Engineering, pp. 71 - I 17, McGraw-Hill, 19%.

[36] 1. R. Horgan and S. London, "ATAC: A Data Flow Coverage Testing Tool for C",
Proceedings of I'd Symposium on Assessment of Quality Software Development
Tools, vol. 2(10),1992.

[37] M., Shooman, "Structural Models for Software Reliability Prediction", Proceedings
of]"d International Conference on Software Engineering, pp. 268- 280, 1976.

[38]

[39]

[40]

S. Krishnamurthy and A. P. Mathur, "On the Estimation of Component Based
Software Systems", Proceedings of 9/h International Symposium on Software
Reliability Engineering, pp. 192 - 201, 1998.

S. Gokhale and K. Trivedi, "Dependency Characterization in Path-Based
Approaches to Architecture Based Software Reliability Prediction", Proceedings of
Symposium on Application - Specific Systems and Sojiware Engineering
Technology, pp. 86 - 89, 1998.

M. Xie and C. Wohlin, "An Additive Reliability Model for the Analysis of Modular
Software Failure Date", Praceedings of 61h International Symposium on Software
Reliability Engineering, pp. 188 - 194,1995.

88

)

/

http://www.objs.com/survivability/.

[41] R. H. Cobb and H. D. Mills, "Engineering Software Under Statistical Quality
Control", IEEE Software, vol. 7(6), pp. 44 ~ 54, November 1990.

[42] S. J. Prowell, R. C. Linger and S. Prowell, "Cleanroom software Engineering:
Developing Software Under Statistical Quality Control", Addison-Wesley, 1999.

[43] Chaitanya Kallepalli and Jeff Tian, "Measuring and modeling usage and reliability
for statistical web testing", IEEE transactions on software engineering, vol. 27 (II),
pp. 1023 - 200 I,November 200 1.

[44] J. D. Musa, "Operational Profiles In Software Reliability Engineering", IEEE
Software, vol. 10 (2), pp. 14-32, 1993.

[45] Haapanen Penni, Pulkkinen Urho and Korhonen Jukka, "Usage models in reliability
assessment of software-based systems", STUK- YTO-TR 128, Helsinki, pp. 1-48,
April 1997.

[46] J. Duran and J. Wiorkowski, "QuantifYing Software Validity by Sampling", IEEE

Transactions on Reliability, vol. 29, no. 2, pp. 141-144,1984.

[47] S. Karlin and H.M. Taylor, A First Course in Stochastic Processes, second ed.,

Academic Press, New York, 1975.

[48] J. G. Kemeny and J. L. Snell, Finite Markov Chains. New York: Springer - Verlag,
1976.

[49] P. A. Currit, M. Dyer and H. D. Mills, "Certifying the correctness of software",
IEEE Trans. Software Eng., vol. 12(1), pp. 3 - II, Jan. 1986.

[50] R. Hamlet, "Testing software for software reliability", Technical Report, TR - 91 -
2, rev. 1, Department of Computer Science, Portland, OR, USA, March 1992.

[51] K., Diegrist, "Reliability of systems with Markov transfer of control", IEEE
Transaction on Software Engineering, vol. 14, pp. 1049 - 1053, July 1988.

[52] B. H. Juang and L. R. Rabiner, "A probabilistic distance measure for hidden Markov
models", AT & T Tech. J., vol. 64(2), pp. 391 - 408, Feb. 1985.

[53] S. Kullbck, Information theory and statistics, New York: Wiley, 1958.

[54] J. L. Doob, Stochastic Processes, New York: Wiley, 1953.

[55] J. A. Whittaker, "Stochastic Software Testing", IEEE Annals of Software
Engineering, vol. 4, pp. 115 - 131, 1997.

[56] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distrib utions,
John Wiley and Sons, New York, 1995.

89

~.

I"\" 1 '

~,~~:'~,.t~

[57] W. G. Cochran, Sampling Techniques, John Wiley and Sons, New York, 1977.

[58]

[59]

S. M. Yacoub, B. Cukic, H. H. Ammar, "Scenario-based Reliability Analysis of
Component-based Software", in Proc. of the 10'h Intarnational Sumposium of
Softwaer Reliability Engineering, pp.22 - 31,1999.

W. Everett, "Software Component Reliability Analysis", in the Proceeding of
Symposium onApplication-Specijic Systems and Software Engineering Technology,
pp.204 - 211,1999.

[60] S. N. Weiss and E. J. Weyuker, "An Extended Domain-Bases Model of Software
Reliability", 1EEE Transaction on Software Engineering, vol.I4, no. 10, pp.1512-
1524, October 1988.

[61] Yamada, Shigeru, Mitsuru Ohba and Shunji Osaki, "S-shaped Reliability Growth
Modeling for Software Error Detection", IEEE Transaction on Reliability, vol. ~
32, pp. 475 - 484, December 1983.

[62] Hossain, Syed and Ram Dahiya, "Estimating the Parameters of a Non-Homogeneous
Poison-Process Model of Software Reliability, IEEE Transaction on Reliability, vol.
42, no. 4, pp. 604 - 612, December 1993.

[63] Kececioglu, Dimitri, Reliability Engineering Handbook, Volume 2, Prentice-Hall,
1991.

[64] Littlewood B, "Stochastic reliability Growth: A Model for Fault Removal in
Computer Programs and Hardware Design", IEEE Transaction on Reliability, vol.
R-30, pp. 313 - 320, December 1981.

[65] Yamada, Shigeru, Hiroshi Othera and Hiroyuki Narihisa, "Software Reliability
Growth Models with Testing Effort", IEEE Transaction on Reliab ilily, vol. R-35,
no. I, pp. 19 - 23, April 1986.

[66] Robert J. Weber, "Statistical Software Testing with Parallel Modeling: A Case
Study", Proceedings of the 15'hInternational Symposium on Software Reliability
Engineering,200t

90

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102

