M.Sc. Engg. Thesis

An Approximation Algorithm Afor Edge—Ranking
of Series-Parallel Graphs

by
Tanzima Hashem

Submitted to

Department of Computer Science and Engineering
in partial fulfilment of the requirments for the degree of
Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)
Dhaka 100

P

S ._--....__,-._T;. S rie=y E
T L
;

e |

|
: }
June 2006 | » IJ‘

The thesis entitled “An Approximation Algorithm for Edge-Ranking of Series-
Parallel Graphs”, submitted by Tanzima Hashem, Roll No: 040405015F, Session: April
2004, has been accepted as satisfactory in partial fulfillment of the requirement for the
degree of Master of Science in Computer Science and Engineering on June 10, 2006.

Board of Examiners

e~

Dr. Md. Abul Kashem Mia

Professor

Department of Computer Science and Engineering
BUET, Dhaka 1000

.~ AAasyosy, -
Dr. Mubhammad Masroor AII{
Professor & Head
Department of Computer Science and Engineering
BUET, Dhaka 1000

3. QO‘/\\&U""—

Dr. Md’., Saidur Rahman

Associate Professor

Department of Computer Science and Engineering
BUET, Dhaka 1000

Wonn

Dr. Masud Hasan

Assistant Professor

Department, of Computer Science and Engineering
BUET, Dhaka 1000

RN

Dr. Md. Elias

Associate Professor
Department of Mathematics
BUET, Dhaka 1000

Chairman
{Supervisor)

Member
~ (Ex-officio)

Member

Member

Member
(External)

Candidate’s Declaration

It is hereby declared that this thesis or any part of it has not been submitted
elsewhere for the award of any degree or diploma.

Tam;[mo.

Tanzima Hashem
Candidate

Contents

Board of Examiners ' i

Candidate’s Declaration ii

Acknowledgements viii
Abstract 1 .

1 Introduction o

1.1 Backgrounds. L 2

1.1.1 Vertex-Ranking Problem, . 4

1.1.2 Edge-Ranking Problem 6

1.2 Present State of the Problem 8

1.3 ScopeofthisThesis. 9

1.3.1 Algorithm for Finding a 2-Vertex Separator Tree of a Series-
Parallel Graph 9

1.3.2 Approximation Algorithm for Edge-Ranking of a Series-
Parallel Graph 10

1.3.3 Improving the Time-complexity of Vertex-Ranking Algorithm 10

iii

CONTENTS

1.4 Summary

2 Preliminaries

21 Fundamental Concepts
21,1 Graphs.
212 Degreeofa Vertex
2.1.3 Subgraphs
2.14 Complete Graphs and Cliques
215 Pathsand Cycles
2.1.6 Connected Components and Separators,
217 Trees L
21.8 Partial k-Trees L
2.1.9 Tree-Decomposition
2.1.10 Separator Tree

2.2 Series-Parallel Graphs
2.2.1 Binary Decomposition Tree

2.3 Complexity of Algorithms
2.3.1 Complexity Classes: Pand NP
232 NP-Complete Problem L

2.4 Approximation Algorithm and

Approximatrion Ratioo

3 2-Vertex-Separator Tree

3.1 Preliminaries

CONTENTS

3.2 TheAlgorithm o0 o .

3.3 Conclusion

4.3 Conclusion

5 Conclusion

4 Approximation Algorithm
4.1 The Algorithm L
411 AnExample. e e T
4.2 Approximation Ratio . . . e
4.2.1 Deviation from Optimality

34

44

45

45

49

50

23

o4

56

List of Figures

11 Agraph G. . .. o 3
1.2 A minimum vertex-coloring of graph G. 4
1.3 A minimum edg&coloriné ofgraph G.. L. 4
1.4 An optimal vertex-rakingof graph G.o 00 5
1.5 An optimal edge-rankingof graph G. 7
21 Agraph G o 14
2.2 Subgrapbs induced by vertices and edges of G. L. 15
2.3 A complete graph and clique. 16
24 Separatorsofagraph. L L. 17
25 AtreeT. e 18
2.6 (a) A graph G, and (b) its tree-decomposition. 20
2.7 Separator treesof agraph. oL 21
2.8 Series and parallel connection of a series-parallel graph. 23
29 Aseries-parallel graph G. o000 23
2.10 Binary decomposition tree of a series-parallel graph., 24
3.1 A series-parallel graph G is decomposed by removing a vertex. 29

vi

LIST OF FIGURES

3.2

3.3

34

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

A series-parallel graph G is decomposed by removing two vertices. . .
Components after removing u, where Gz composed from G3 and Gy. .
Components after removing u, where Gz composed from ‘on]y Gs.

Components after removingwandv.

A 2-vertex-separator tree and a binary decomposition tree of G. . . .

Graphs associated with the nodes of a 2-vertex-separator tree.
Steps of SP_Approx Rank.
1-edge-separator tree of G having series connection.
l-edge-separator treeof G.
The optimal edge-ranking of a series-parallel graph

The approximate edge-ranking of a series-parallel graph

vii

30

31 .

32

33

35

46

49

51

Acknowledgments

I would like to expréss my deep and sincere gratitude to my supervisor Dr. Md.
Abul IKashem Mia, Professor, Department of Computer Science and 'Engineering,
Bangladesh University of Engineering and Technology (BUET), Dhaka. T owe to him
for his constant supervision, encouragement, personal guidance during the progress
nmy thesis. His in-depth knowledge in Graph Theory and his logical way of thinking
have been very helpful for the successful completion of this work. T am deeply
graleful to him for his cooperation.

] would like to thank the members of my thesis committee {or their patience in
understanding my work. I warmiy thank Professor Dr. Muhammad Masroor Ali,
Dr. Md. Saidur Rahman, Dr. Masud Hasan and Dr. Md. Elias for their .valuable
suggestions.

[am thankful to all of my teachers, colleagues, and [riends for their support
during the whole period of my thesis.

Finally, T owe my loving thanks to my husband, parents, brothers, and sisters.
Without their encouragement it would have been impossible for me to finish this
work.

Above all, [am grateful to Almighty Allah who gave me the strength to finish

this work.

viil

Abstract

This thesis deals with an approximation algorithm for finding edge-rankings
of series-parallel graphs. An edgeranking of a graph G is a labeling of its edges
with positive integers such that every path between two edges with the same label
i contains an intermediate edge with label j > i. An edge-ranking is optimal il
the least number of distinct labels among all possible edge-rankings are used by
it. The edge-ranking problem is to find an optimal edge-ranking of a given graph.
Analogously, the vertex-ranking problem can be defined. The edge-ranking problem
of graphs has important applications like scheduling the parallel assembly of a
complex multi-part product from its components and parallel computation. The
edge-ranking problem is NP-complete for series-parallel graphs, that is, finding a
polynomial-time algorithm for solving the edge-ranking problem on series-paraliel
graphs with unbounded maximum degree is unlikely. In this thesis, we present a
.linear—time algorithm for finding a 2-vertex-separator tree of a series;parallel graph
G and a linear-time approximation algorithm for finding the edge-ranking of a given
series-paralle! graph G using the 2-vertex-separator tree of G Obtaining the 2-
vertex-separator tree of G immediately improves the running time of the known

best algorithm that finds an optimal vertex-ranking of a series-parallel graph.

Chapter 1

Introduction

In this chapter, we provide the necessary hackground, present state and motivation
for this study on the rankings of graphs, define the problem and scope of this thesis.
In Section 1.1, we discuss the historical background on graph coloring. We also define
the vertex-ranking and the edge-ranking problem, related applications and review
the results on the ranking of graphs. Section 1.2 represents the present state of the
problem and Section 1.3 deals with the scope of this thesis. At last, in Section 1.4,
we discuss the results obtained for solving the prohlems of this thesis and compare

our results with the previously achieved ones.

1.1 Backgrounds

Graph theory is a delightful playground for the exploration ol proof techniques in
discrete mathematics, and iis results have applications in many areas of computing,
social and natural sciences. Recent research effort is concentrating on evolving

efficient algorithms in combinatorial mathematics especially graph theory.

Graph coloring theory not only plays an important role in discrete maihematics,

CHAPTER 1. INTRODUCTION 3

but also is of interest for its applications. Graph coloring deals with the fundamental
problem of partitioning a set of objects into classes according to certain rules.
A graph G = (V,E) with n vertices and m edges consists of a vertex set V =
{v1,v2,...,v,} and an edge set E = {e;,ez,...,€m}, where an edge in E joins two
vertices in V. Figure 1.1 depicts a graph of seven vertices and nine edges, where
vertices are drawn by circles, edges by lines, vertex names next to the circles and

edge names next to the lines.

n v2 3
€] €2

Figure 1.1: A graph G.

The vertex-coloring problem and the edge coloring problem are two of the
fundamenta! problems on graphs. The vertex-coloring problem is to color the vertices
of a given graph with the minimum number of colors so that no two adjacent vertices
are assigned the same color. Figure 1.2 depicts a minimum vertex-coloring of a graph
G using three colors, where colors are drawn next to the vertices. The edge-coloring
problem is to color the edges of a given graph with the minimum number of colors
so that no two adjacent edges are assigned thc same color. Figure 1.3 depicis a
minimum edge-coloring of G using four colors, where colors are drawn next to the
edges. The vertex-ranking probiem and the edge-ranking problem are restirictions

of the veriex-coloring problem and the edge-coloring problem, respectively.

CHAPTER 1. INTRODUCTION 4

Figure 1.3: A minimum edge-coloring of graph G.

1.1.1 Vertex-Ranking Problem

A verlez-ranking of a graph G is a labeling (ranking) of the verlices of G with
positive integers such that every path between any two vertices with the same label
i contains a vertex with label 7 > ¢ [9]. Clearly a vertex-labeling is a vertex-ranking
il and only if, for any label i, deletion of all vertices with labels > ¢ leaves connected
components, cach having at most one vertex with label ¢. The integer label of a
verlex is called the rank of the vertex. The minimum number of ranks needed for
‘a vertex-ranking of G is called the wvertez-ranking number of G and is denoted by
r(G). A vertex-ranking of G using the minimum number of ranks is called an optimal

vertez-ranking of G. The vertez-ranking problem is 1o find an optimal vertex-ranking

CHAPTER 1. INTRODUCTION ' 5

of a given graph. The constraints for the vertex-ranking problem imply that two
adjacent vertices cannot have the same rank. Thus the vertex-ranking problem is
a restriction of the vertex-coloring problem. Figure 1.4 depicts an optimal vertex-

ranking of a graph G using four ranks, where ranks are drawn next to the vertices.

1 2 3
@
4
L
1 2 1

Figure 1.4: An optimal vertex-raking of graph G.

The vertex-ranking problem, also called ordered coloring problem, has received
mﬁch attention because of the numher of applications. The vertex-ranking problem
plays an important role in the parallel Cholesky factorization of matrices {7, 20].
Yet other applications of the vertex-ranking problem lie in the field of VLSI-layout
[9, 19, 24].

We then review the results on the vertex-ranking problem. The vertex-ranking
problem was posed in 1988 by Iyer et al in relation with applications in VLSI
Layouf and in manufacturing system [9]. Pothen proved that the vertex-ranking
problem is N'P-hard in general [4, 23], and hence it is very unlikely that there is a
polynomial-time algorithm for solving the problem for general graphs [1]. Hence an
approximation algorithm would be useful. An approximation algorithm for graphs
in general was given by Bodlaender et al., whose approximation ratio is O(log, n) for
the vertex-ranking number [5]. Although the vertex-ranking problem is A"P-hard,

Iyer et al. presented an O(nlogn) time scquential algorithm to soive the vertex-

CHAPTER 1. INTRODUCTION 6

ranking problem for trees [9], where n is the number of vertices of the input tree.
Then Schiaffer obtained a linear-time algorithm by refining their algorithm and its
analysis [23]. Deogun et al. gave algorithms to solve the vertex-ranking problem
for interval graphs in O(n?) time and for permutation graphs in O{n®) time [6)].
Bodlaender ef al. presented a polynomial-time sequential algorithm to solve the
vertex-ranking problem for partial k-trees, that is, graphs of treewidth bounded by
a fixed integer k [4]. Kloks et al. have presented an algorithm for computing the
vertex-ranking number of an asteroidal triple-free graph in time polynomial in the
number of vertices and the number of minimal separators [16]. Newton and Kasbem
presented an efficient optimal algorithm for vertex-ranking of permutation graphs
in O(n?) time [22]. Sun-yuan Hsieh solved the vertex ranking problem of a starlike

graph in O(n) time [8].

1.1.2 Edge-Ranking Problem

The edge-ranking problem is defined analogously as for the vertex-ranking problem.
An edge-ranking of a graph G is a labeling of the edges of G with positive integers
such that every path between two edges with the same label i contains an edge with
label 7 > i [11, 7]. Clearly an edge-labeling is an edge-ranking if and only if, for
any label 7, deletion of all edges with labels > 7 leaves connected components, each
having at most one edge with label 7. The minimum number of ranks needed for an
edge-ranking of G is called the edge-ranking number of G and is denoted by +/{G).
An edge-ranking of G using the minimum number of ranks is called an optimal
edge-ranking of G. The edge-ranking problem is to find an optimal edge-ranking of a
given graph. The constraints for the edge-ranking problem imply thatl two adjacent
edges cannot have the same rank. Thus the edge-ranking problem is a restriction of

the edge-coloring pro_l)lem. Figure 1.5 depicts an optimal edge-ranking of a graph

CHAPTER 1. INTRODUCTION 7

using six ranks, where ranks are drawn next to the edges. The problem of finding

Figure 1.5: An optimal edge-ranking of graph G.

an optimai ed'gé-rﬁﬁking of a graph G has applications in scheduling the parallel
assembly of a complex multi-part product from its components. The edge-ranking
problem for a graph G is also equivalent to finding an edge-separator tree of G having
the minimum height. An edge-separator tree with minimum height corresponds to

a parallel computation scheme having the minimum computation time [21].

We next review the results on the edge-ranking problem. The problem of finding
an optimal edge-ranking was first studied by Iyer et al. in 1991 as they found that
the problem has an application in scheduling the parallel assembly of multipart
products. They gave an O(nlogn) time approximation algorithm for finding an
edge-ranking of trees T using at most twice the minimum number of ranks, where n
is the number of vertices in T [11]. Their approximation algorithm uses the vertex-
ranking algorithm in [9] as a subroutine. The main open problem in their paper is
to determine whether the edge-ranking problem is in P, or if it is A"P-hard. Later
de la Torre et al. have given an exact algorithm to solve the edge-ranking problem
for trees in time O(ndlogn) by means of a two-layered greedy method (26]. Thus
the edge-ranking problem when restricted to trees is in P. However, Lam and Yue

have proved that the edge-ranking problem is N'P-hard for graphs in general [17].

CHAPTER 1. INTRODUCTION 8

and they have solved the optimal edge-ranking problem on trees in linear-time {18].

A natural generalization of an ordinary edge-ranking is the c-edge-ranking [27].
A c-edge-ranking of a graph G, for a positive integer ¢, is a labeling of the edges
of G with integers such that, for any label ¢, deletion of all edges with labels > 2
leaves connected components, each having at most ¢ edges with label . Clearly an
ordinary edge-ranking is a 1-edge-ranking. The minimum number of ranks needed
for a c-edge-ranking of G is called the c-edge-ranking number, and is denoted by
r'o(G). A c-edge-ranking of G using r'.(G) ranks is called an optimal c-edge-ranking
of G. The c-edge-ranking problem is to find an optimal c-edge-ranking of a given
graph G. Zhou ef al. gave an algoritbm to find an optimal c-edge-ranking of a
given tree T for any positive integer c in time O(n®log A), where A is the maximum
vertex-degree of T [27]. Kashem et al. gave a polynomial time sequential algoritbm

for generalized edge-ranking of partial k-trees with bounded maximum degree [13].

1.2 Present State of the Problem

In graph theory, series-parallel graphs related algorithms have been intensively
studied in recent years. DBut some interesting problems like edge-ranking in
this domain are NP-complete and thus near optimal polynomial-time solution
is required. A polynomial-time algorithm to solve the generalized edge-ranking
problem on partial k-trees with bounded maximum degree has been given by Kashetn
et al. [13]. Since a series-parallel graph is a partial 2-tree, a polynomial-time
algorithm for series-parallel graphs with bounded maximum degree is immediately
yielded by their algorithm. However, the edge-ranking problem is A'P-complete
for general series-parallel grapl1s {12], that is, finding a polynomial-time algorithm
for solving the edge-ranking problem on series-parallel graphs with unhonnded

maximum degree is unlikely. Therefore it is necessary to design a polynomial-time

CHAPTER 1. INTRODUCTION 9

approximation algorithm for edge-ranking of general series-parallel graphs which
will find a near optimal solution. There is still no approximation algorithm for

edge-ranking of general series-parallel graphs.

1.3 Scope of this Thesis

We summarize our developed and improved algorithms for series-parallel graphs in

this thesis.

1.3.1 Algorithm for Finding a 2-Vertex Separator Tree of a
Series-Parallel Graph

Since -a series-parallel graph is a partial 2-tree, it has a 3-vertex-separator tree [14].
We first prove that a series-parallel graph has a 2-vertex-separator tree. Consider -
the process of starting with a connected graph G and partitioning it recursively by
deleting at most 2 vertices from each of the remaining connected components until
the graph becomes empty. The tree representing the recursive decomposition is
called 2-vertex-separator tree. To prove that a series-parallel graph has a 2-vertex-
separator tree, at first, we show that a (connected) series-parallel graph can be
disconnected by removing at most two vertices. However, disconnected components
that do not have the series-parallel structure may be yielded by this process. So we
also show that every such component has at leasl one cut-vertex. This immediately
proves Lhat a series-parallel graph has a 2-vertex-separator tree. Then based on this

proof and using binary decomposition tree of a series-parallel graph G we present a

linear-time algorithm for constructing a 2-vertex-separator tree of G.

CHAPTER 1. INTRODUCTION : 10

1.3.2 Approximation Algorithm for Edge-Ranking of a
Series-Parallel Graph

We present a linear-time approximation algorithm using the 2-vertex-separator tree
for finding the edge-ranking of a series-parallel graph. Solving the edge-ranking
prohlem is equivalent to finding the minimum height 1-edge-separator tree. The
problems on series-parallel graphs are generally solved using hinary decomposition
tree. But in this thesis we first construct a 2-vertex-separator tree using binary
decomposition tree and then using the 2-vertex-separator we tree find the edge-

ranking of a series-parallel graph. We also calculate the approximation ratio of the

algorithm.

1.3.3 Improving the Time-complexity of Vertex-Ranking

Algorithm

Obtaining the 2-vertex-separator tree immediately improves the upper bound of
the optimal vertex-ranking number and thereby running time of the known best
algoritlim that finds the optimal vertex-ranking of a series-parallel graph. Kashem
et al. give the algorithm for solving vertex-ranking problem of order O(n’ log; n)
using 3-vertex-separator tree [15]. If we use 2-vertex-separator tree, the running

time improves to Q(n® login).

1.4 Summary

The known results of algorithms for solving the edge-ranking problem on different
types of graphs are summarized in Table 1.1. The main result of this thesis can

be divided into two parts: a linear-time algorithm for constructing a 2-vertex-

CHAPTER 1. INTRODUCTION 11

Graphs Time Value of ¢ | References
Trees O(n) c=1 (18]
. Trees O(n?log A) any positive [27]
integer
Partial effectively any positive
k-trees with nO(BK?) integer [13]

bounded degrees

Series-parallel
graph with O(n"¥2+2(Alog, n)®) c=1 [13]

bounded degrees

Series-parallel
graph NP-Complete c=1 [12]

(unbounded degrees)

Table 1.1: Algorithms for edge—ra.n_king.

separator tree of a series-parallel graph, and a linear-time approkimation algorithm
for finding an edge-ranking of a series-parallel graph using 2-vertex-separator tree
with an approximation ratio of 2A(h + 1)/ log, n, where A is the maximum vertex
degree of a series-parallel graph G, h is the height of the 2-vertex-separator tree and
n is the number of vertices in . Besides these, we improve the running time of
the known best algorithm for solving the vertex-ranking problem of a series-parallel

graph.

The thesis is organized as {ollows. Chapter 2 gives preliminary definitions and
representation of series-parallel graphs. Chapter 3 gives a linear-iime algorithm for
constructing a 2-vertex-separator tree of a series-parallet graph. Chapter 4 presents a

linear-time approximation algorithm for edge-ranking of a series-parallel graph using

CHAPTER 1. INTRODUCTION 12

the 2-vertex-separator tree with an approximation ratio of 2A(h+1)/log, n. Chapter
5 concludes with a discussion of the improved algorithm for solving the vertex-
ranking problem on series-parallel graphs, the results of the proposed algorithm and

future works.

Chapter 2

Preliminaries

In this chapter, we define some basic definitions and some special types of graphs.
Definitions that are not given here are discussed as they are needed. I Section 2.1,
we start by giving the definitions of some basic terms ol graph which are related

to and used through out this thesis. Section 2.2 defines a special type of graph,
series-parallel graph. It also introduces different properties of a series-parallel graph
and representation of series-parallel graph through the binary decomposition tree.
Section 2.3 discusses complexity classes of the algorithm. Finally in Section 2.4 we

define approximation algorithm and the approximation ratio.

2.1 Fundamental Concepts

2.1.1 Graphs

Let G = (V, E)} be a graph. We call V(G) or V the vertex-set of the graph G, and
E{G) or I the edge-set of G. If e = (v,w) is an edge, then e is said to join the

vertices v and w, and these vertices are then said 1o be adjacent. In this case we

13

CHAPTER 2. PRELIMINARIES 14

also say that w is a neighbor of v, and that e is incident to v and w. A loop is
an edge whose endpoints are equal. Parallel edges or multiple edges are edges that
" have the same pair of endpoints. A simple graph is a graph having no loops or
multiple edges. The graph in which loops and multiple edges are allowed is called
a multigraph. Sometimes a simple graph is simply called by a graph only if there
is no danger of confusion. A graph is finite if its vertex set and edge set are finite.

Every grapb mentioned in this thesis is finite.

v Ua vy
L 21 (&)

Figure 2.1: A graph G.

2.1.2 Degree of a Vertex

The degree of a verter v in a graph G is the number of edges incident to v, and is
denoted by d(v). The maximum degree of G is denoted by A(G) or simply by A.
In Figure 2.1, the degree of vertex d(v;) v, is 2 and the maximum degree A of GG, is

4 as d(vq) is 4.

2.1.3 Subgraphs

A subgraph of a graph G = (V, £) is a graph H = (Vy, £y) such that V(H) C V()
and E(H) C E(G), we write /] C G and say that G contains ff. If H contains

CHAPTER 2. PRELIMINARIES 15

all the edges of G that join two vertices in Vy, then H is said to be the subgraph
induced by Vy, and is denoted by G{Vy]. If Vy consists of exactly the vertices on
which edges in Ey are incident, then H is said to be the subgraph induced by Ey, and
is denoted by G[Ey|) Figure 2.2(a) depicts a subgraph of G in Figure 2.1 induced hy

m v3 v2 Uz
[]

€2

€4

2

er
£6

g wr

(a) ' (b)

Figure 2.2: (a) A subgraph induced by {v,v3,vs,vs,v7} of G in Figure 2.1 , and (b)

a subgraph induced by {ez, €4, €5, €5, €7} of G.

{v1, v3, v4, v6, vz} and Figure 2.2(b) depicts a subgraph induced by {ez, e4, €5, €5, €7}

We often construct new graphs from old ones by deleting some vertices or edges.
If v is a vertex of a given graph G = (V, E), then G —v is the subgraph of G obtained
by deleting the vertex v and all the edges incident to v. More generally, if V” is a
sibset of V, then G — V' is the subgraph of G obtained by deleting the vertices in
V' and all the edges incident to them. Then G — V'’ is a subgraph of G induced hy
V — V', Similarly, il e is an edge of G, then G — e is the subgraph of G obtained by
deleting the edge e. More generally, if B/ C E, then G — E’ is the subgraph of G

obtained by deleting the edges in F’.

CHAPTER 2. PRELIMINARIES 16
2.1.4 Complete Graphs and Cliques

A complete graph is a simple graph in which every pair of vertices has an edge. A
clique is a set of pairwise adjacent vertices in a graph. A complete graph has many
subgraphs that are not cliqllles, but every induced subgraph of a complete graph
is a clique. Figure 2.3(a) is both a complete graph and a clique with six vertices.

Subgraph with {vq, v, v3,v4} in Figure 2.3(b} is a clique.

vl U2
1 va

vg v3

U3 Ug

(a) (®)

Figure 2.3: (a) A complete graph, and (b) subgraph with {vy, vz, v3, v4} is a clique.

2.1.5 Paths and Cycles

A walk of length £ is a sequence g, €1, v1, €2, Va, . .., €, Uy, Of vertices and edges such
that e; = v;_1,v; for all 1,1 < ¢ < k. A {trail is a walk with no repeated edge. A
path is walk with no repeated vertex. A u,v-walk has first vertex u and last vertex
v. These two vertices u and v are endpoints of the u, v-walk. Normally, the path
is denoted by the sequence of vertices g, vy, v2,...,v. The length of the path is
calculated by the number of vertices less one. A walk is closed if it has length at
least one and its endpoints are equal. A eycle is a closed trail in which “lirst = last”
is the only vertex repetition. In Figure 2.1, an example of a path forming no cycle

is vsvgUataus from vg to vy and an example of cycle is vgrrvave.

CHAPTER 2. PRELIMINARIES | 17
2.1.6 Connected Components and Separators

A graph G is connected if for every pair {u,v} of distinct vertices there is a path
between u and v. A (connected) component of a graph is a maximal connected
subgraph . A graph which is not connected is called a disconnected graph. Separation
of a graph can be done in two ways: using vertex separator and edge separator.

Separator disconnects a graph into more than one components. A vertez separator

v vz) va v2
1 €1 €2 b €1
»r——8
L R & I L
Uy ve vr
()
v v2 va
€1 en
*>r—8—@
U4
£g
e\
b ER - eg
Us LH ur

Figure 2.4: Separation of a graph G (a) with a vertex separator, and (b) an edge

scparalor.

of a connected graph G is a set of vertices whose deletion disconnects G. The graph
G in Figure Z.A(a) has a separator {v3,v4}. An edge separator of a connected graph

G is a set. of edges whose deletion disconnects G. The graph G in Figure 2.4(b) has

D

CHAPTER 2. PRELIMINARIES 18

an edge separator {es, ea, er}. -

2.1.7 'Trees

A graph having no cycle is acyclic. A foresi is an acyéii-c lg;rna_ph‘; a tr;eeiis a c'onnected'
acyclic graph. The vertices in a tree are usually called nodesﬁA rooted tree is a
tree in which one of the nodes is distinguished from the others. V'T‘}lelz-;c}'iét_inguished
node is called the root of the tree. The root of a tree is generally dra\.x'rn' at the top.
Figure 2.5 shows an example of a tree T, where v; is the root of 7. Every hqde u

"

ve U3 Ug |
i

us vg vr Vg Vg vV

Figure 2.5: A tree T'.

other than the root is connected by an edge to some other node p called the parent
of u. We also call u a child of p. We draw the parent of a node aboxlre that node.
For example, in Figure 2.5, v, is the parent of vq, v3 and vy, while v3 is the parent
of vg and v7; on the other hand v,, v3 and w4 are children of vy, while ¥ and v; are
children of v3. A leaf is a node of a tree that has no children. That'is a leaf is a
verlex of degree 1. An inlernal node is a node that has one or more chiildren. Thus
every node of a tree is either a leafl or an internal node, but not both. A binary iree

is the tree where each node does not have more than two children.

In a tree T, a node u together with all of its proper descendants, if any, is called

a subtree of T. Node u is the root of this subtree. Referring again to Figure 2.5,

CHAPTER 2. PRELIMINARIES 19

nodes v, vg and vy form a subtree, with root vs. Finally, the entire tree in Figure
9.5 is a subtree of itself, with root v;. The height of a node u in a tree is the length
of a longest path from u to a leaf. The height of a iree is the height of the root.
The depth of a node w in a tree is the length of a path from the root to u. The level
of a node u in a tree is the height of the tree minus the depth of ». In Figure 2.5,
for example, node vy is of height 1, depth 1 and level 1. The tree.in Figure 2.5 has
height 2.

2.1.8 Partial k-Trees

A natural generalization of ordinary trees is the so-called k-irees. The class of k-trees

is defined recursively as follows [3]:

(a) A complete graph with k& vertices is a k-tree.

(b)) If G = (V,E) is a k-tree and k vertices vy, vz,...,vx induce a complete ‘

subgraph of G, then G’ = (V U {w}, EU{(v,w) | 1 £ < k}) is a k-tree,

where w is a new vertex not contained in (.

(c) All k-trees can be formed with rules (a) and (b).

A graph.is called a partial k-tree if it is a subgraph of a k-tree.

2.1.9 Tree-Decomposition

A tree-decomposition of a graph G = (V, E) is a pair (T, S), where T = (Vi, Er) is
a trec and S = {X, | x € Vr} is a collection of suhsets of V satisfying the following

three conditions {17}

(a') UIGVT XI = V;

(h) for every edge e = (v,w) € E, there exists a node = € Vp with v,w € X;;

CHAPTER 2. PRELIMINARIES 20

and

(c) for all z,y,z € V7, if node y lies on the path from node z to node z in 7,

then X; N X, C X,.

X =1{1,2,3,4}

9
Xz =1{1,2,3,6} rX'; ={1,4,3,5} X4=1{2,3,4,7}

Lxe = {3,5,8}
(b)

X5 =1{1,3,6,9}

Figure 2.6: (a) A graph G, and (b} its tree-decomposition.

| The width of a tree-decomposition (T,S) is maxey, [Xzf — 1. The tree width
of a graph G is the minimum width of a tree-decomposition of G, taken over all
possible tree-decompositions of G. The width of the tree-decomposition shown in
Figure 2.6(b) of the graph G of Figure 2.6(a) is 3. A graph G with treewidth < k is
called a partial k-tree. [Lvery partial k-tree G has a tree-decomposition (7', S) with
treewidth < k and ny < n, where nr is the number of nodes in T [14]. So every
node of tree-decomposition (T, S} of a partial k-tree can contain maximum (k + 1)

vertices. So it immediately implies partial k-tree has a k + 1-vertex-separator tree.

2.1.10 Separator Tree

There are two Lypes of separatlor trees: veriex-separator tree and edge-separator

trece. Consider the process of starting with a connected graph G and partitioning

CHAPTER 2. PRELIMINARIES ' 21

L2 |
h @ o /\

v [U5 U6
(a) (b) /\
*——a * —0
m v4 2 v
(©

Figure 2.7: (a) A graph G, (b) its 2-vertex-separator tree, and (c) its 1-edge-

separator tree.

it recursively by deleting at most ¢ vertices from each of the remaining connected
components until the graph becomes empty. The tree representing the recursive
decomposition is called a c-vertex-separator tree of G. Analogously we can define
c-edge-separator tree of G. Figure 2.7(b) illustrates a 2-vertex-separator tree of
the graph G depicted in Figure 2.7(a), where the vertex names of deleted ones are
drawn in ovals. Again Figure 2.7(c) illustrates a 1-edge-separator tree of the graph
G depicted in Figure 2.7(a).

2.2 Series-Parallel Graphs

Now we will introduce a very special kind of graph known as series-parunilel graph

which is very similar to series-parallel circuit. A series-parallel graph is defined

CHAPTER 2. PRELIMINARIES 22

recursively as follows.

(1) A graph G of a single edge is a series-parallel graph. The end points s and ¢

of the edge are called the terminals of G.

(2) Let G; be a series-parallel graph with terminals s, and #;, and let G; be

another series-parallel graph with terminals s and tp.

(a) A graph G obtained from G; and G, by identifying vertex t; with
vertex sy is a series-parallel graph whose terminals are s = s; and
t = t3. Such a connection is called a series connection, and G is
denoted by G = G ® G3. (See Figﬁre 2.8(a).)

(b) A graph G obtained from G; and G2 by identifying s; with sz and #;
with ¢y is a series-parallel graph whose terminals are s = s; == s, and
t = t; = t3. Such a connection is called a parallel connection, and G

is denoted by G = G, || G2. (See Figure 2.8(b).)

A series-parallel graph is a partial 2-tree. So it has a tree-decomposition which
implies series-parallel graph has a 3-vertex-separator tree. Another property of a
series-parallel graph is its number of edges. A series-parallel graph on n vertices has

at most 2n — 3 edges [2].

2.2.1 Binary Decomposition Tree

The construction of a series-parallel graph can be represented by a binary
decomposition tree Ty [25]. Every internal node of T, is either a s-node or a p-
node and every leaf node of T, represents a subgraph of G induced by two vertices s
and ¢ connected by the edge (s,t). Figure 2.9 illustrates a series-parallel graph G and
Figure 2.10 illustrates its hinary decomposition tree T,. Labels s and p attached to

internal nodes in 7}, indicate series and parallel connections, respectively, and nodes

R

CHAPTER 2. PRELIMINARIES 7 23

Figure 2.8: A series-parallel graph G composed from G; and G (a) with series

connection, and (b) with parallel connection.

Ua v3 U4

V1 Us

vg

o5

UB V7

Figure 2.9: A series-parallel graph G.

CHAPTER 2. PRELIMINARIES 24

labeled s and p are called s-nodes and p-nodes, respectively.

Figure 2.10: Binary decomposition tree T, of a series-parallel grapb G in Figure 2.9.

2.3 Complexity of Algorithms

The efficiency or complexity of an algorithm is determined by the amount of
resources (such as time and storage) necessary to execute it. Generally, it is defined
as a function relating the input length n to the number of steps (time complexity) or
storage locations (space or memory complexity) required to execute the algorithm.
In theoretical analysis of algorithms it is common to estimate their complexity in
asymptotic sense, i.c., to estimate the complexity [unction for reasonably large
length of input n. For example, since binary search is said to run an amount of
steps proportional to a logarithm, its complexity of the running time is defined by

O(log(n)). If the running time of an algorithm is bounded by O(n), it is said 1o be

CHAPTER 2. PRELIMINARIES 25

a linear-time algorithm.

2.3.1 Complexity Classes: P and NP

A problem is said to have a polynomial-time algorithm if the worst case running
time is O(n*) for input size n and for some constant k. Generally, problems that
are solvable by polynomial-time algorithms are tractable or easy, and problems that
require superpolynomial time are intractable or hard. Based upon the running time
of algorithms, next we define complexity classes. Theclass P consists of all those
decision problems that can be solved on a deterministic sequential machine in an
amount of time that is polynomial in the size of the input; the class NP consists of
all those problems whose positive solutions can be verified in polynorial time given

the right information, or equivalently, whose solution can be found in polynomial

time on a non-deterministic machine. Any problem in P is also in NP, since il a

problem is in P then we can verify it in polynomial time.

2.3.2 NP-Complete Problem

Here, we are mainly interested im another class ol problems, called N'P-complete
problems (or N"PC), which can be loosely described as the hardest problems in NP
and therelore they are the least likely to be in P. No polynomial-time algorithm
has yet been discovered for an A'P-complete problem, nor has anyone yet been able

to prove that no polynomial-time algorithm can exist [or any of themn.

More precisely, a decision problem C is ANP-complete il it is complete for NP,
meaning that:

(1) it is in NP, and

(2) it is N'P-hard, i.c. every other problem in NP is polynomial-time reducible

e
!

CHAPTER 2. PRELIMINARIES 26

to it.

“Polynomial-time reducible” here means that for every problem L, there is a
polynomial-time many-one reduction, a deterministic algorithm which transforms
instances ! € L into instances ¢ € C, such that the answer to ¢ is YES if and only if
the answer to { is YES. To prove that an AP problem A is in fact an A"P-complete
problem it is sufficient to show that an already known A"P-complete problem reduces
to A. A consequence of this definition is that if we had a polynomial-time algorithm

for C, we could solve all problems in NP in polynomial time.

2.4 Approximation Algorithm and

Approximation Ratio

At present, all known algorithms for NP-complete problems require time that is
superpolynomial in the input size. It is unknown whether there are any faster
algorithms. Therefore, to solve an NP-complete problem for any nontrivial problem
size, generally it may still be possible to find near-optimal solutions in polynomial
time. An algorithm that quickly finds a suboptimal solution that is within a certain

{(known) range of the optimal one is called an approrimation algorithm.

lDepending on the problem, maximization or minimization, an optimal solution
may be defined as one with maximum possible cost or one with minimum possible
cost. An approximation ratio is a measure of goodness of the approximation solution
with the optimnal solution of the problemm. An algorithm for a problem has an
approzimation ratio of p{n) if, for any input size n, the cost C of the solution
produced by the algorithm is within factor of p(n) of the cost C* of an optimal

solution:

CHAPTER 2. PRELIMINARIES 27

mam{g, %} (2.1)

An algorithm that achieves an approximation ratio of p(n) is called p(n)-
approximation algorithm. For a maximization problem, 0 < ¢ < C*, and the ratio
C*/C gives the factor by which the cost of an optimal solution is larger than the cost
of the approxiamte solution. Similarly, for a minimization problem, 0 < C* < C,
and the ratio C/C* gives the factor by which the cost of an approximate solution
is larger than the cost of the optimal solution. Since all solutions are assumed
to have positive cost, these ratios are always well defined. The approximation
ratio of an approximation algorithm is never less than 1, since C/C* < 1 implies
C*/C > 1. Therefore, a l-approximation algorithm produces an optimal solution,
and an approximation algorifhrn with a large approximation ratio may return a

solution that is much worse than optimal.

Chapter 3

2-Vertex-Separator Tree

Since a series-parallel graph is a partial 2-tree it is known that each series-parallel
graph has a 3-vertex-separator tree[l14]. In this chapter we construct a 2-vertex-
separator-tree of a series-parallel graph using its special stiucture. In Section 3.1,
we show that a series-parallel graph has a 2-vertex-separator tree. A series-parallel
. graph can be disconnected by removing at most two vertices. However, disconnected
components that do not have the series-parallel structure may be yielded by this
process. So we show that every such component has at least one cut-vertex: This
immediately proves that a series-parallel graph has a 2-vertex-separator tree. Next
in Section 3.2, we describe an algorithm for constructing a 2-vertex-separator tree of
a simple series-parallel graph using binary decomposition tree of the scries-paraliel

graph. We also analyze the time-complexity of the algorithm.

3.1 Preliminaries

A single edge graph is a serics-parallel graph. Larger serics-parallel graphs can be

composed from smaller serics-parallel graphs either using series connection or parallel

28

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 29

connection. If a series-parallel graph G with terminals s and ¢ was composed with
series connection from two smaller series-parallel graphs G; with terminals s, and
t; and G with terminals s; and ¢, (see Figure 2.8(a)), G can be decomposed into
components by removing the single vertex (s, = ¢;) through which G was composed.
Again, if a series-parallel graph G with terminals s and ¢ was composed with parallel
connection from two smaller series-parallel graphs Gy with terminals s; and ¢; and G,
with terminals s, and ¢, (see Figure 2.8(b)), G can be decomposed into components
by removing the two vertices (s = s, = 53 and ¢t = t; = t3) through which G was
composed. Figure 3.1 and Figure 3.2 illustrate series and parallel decomposition of a
series-parallel graph. We then have the following lemma directly from the definition

of a series-parallel graph.

Figure 3.1: A series-parallel graph G is decomposed by removing a vertex.

Lemma 3.1.1 A series-parallel graph can be decomposed into components either by
removing a single vertex if the graph was composed with series connection or by

removing two vertices if the graph was composed with parallel connection. a

CHAPTER 3. 2-VERTEX-SEPARATOR TREE . 30

)

s
N ./

Figure 3.2: A series-parallel graph G is decomposed by removing two vertices.

After decomposing the series-parallel graph according to Lemma 3.1.1, the
resulting components may lose series-parallel structure. Figures 3.1 and 3.2 illustrate
that due to decomposition of series-parallel graph according to Lemma 3.1.1 the
resulting components may or may not have series-parallel structure. In Figures
3.1 and 3.2 the circled components do not have the series-parallel structure. After
decomposition of series-parallel graph if the resulting component loses its series-
patallel structure, then there must be an inner parallel connection of the original
series-parallel graph with one terminal removed. Then the other terminal which
is not still removed in the resulting component becomes the cut vertex of that

component. We next have the following lemma:

Lemma 3.1.2 Let G be a series-parallel graph. If a resulting component D does
not have series-parallel structure as a result of decomposition by removing one vertex
(series connection) or two vertices (parallel connection) from G, then D must have

a cut vertez.

Proof. Let G be a series-parallel graph comnposed from two series-parallel graphs

G, and Gs.

Let G be composed from G} and G» through the series vertex u. Let D be a

component that does not have scries-parallel structure as a result of removing u

)

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 31

from . Without loss of generality assume that D is a subgraph of Ga. Let the
graph G5 be composed from either series connection through the vertex v from two
smaller series-parallel graphs G3 and Gy, or only G3, where (G5 is a series-parallel
graph composed from parallel connection with the terminal vertices v and v. Then
G5 can be disconnected by removing v and v. Since the component D is obtained
by removing u from &, (74 is a subgraph of G and D is a subgraph of (75, D contains
the vertex v but not u. So if v is removed from D, D will be disconnected. Thus v

is a cut vertex in D.(See Figures 3.3 and 3.4.)

(b}

Figure 3.3: (a) A series-parallel graph G composed from G, and G (composed from

Gy and Gy) through u, and (b) resulting components after removing .

Let G be composed from G, and G, through the parallel vertices » and v. Let D

be a component that does not have series-parallel structure as a result of removing u

U

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 32

()

Figure 3.4: (a) A series-parallel graph G composed from G; and G, (composed from

only G3) through u, and (b} resulting components after removing u.

and v from G. Without loss of generality assume that D is a subgraph of G,. Let the
graph G5 be composed by series connection through the vertex w from two smaller
series-parallel graphs (G5 and G4, where Gy is a series-parallel graph composed from
parallel connection with the terminal vertices « and w. Then G3 can be disconnected
by removing v and w. Since the component D is obtained by removing u from G,
G, is a subgraph of G and D is a subgraph of G2, D contains the vertex w but not
u. So if w is removed from 1D, D will be disconnected. Thus w is a cut vertex in D.

(See Figure 3.5.)

So after decomposition of a series-parallel graph G when a resulting component
D loses its scries-parallel structure, there must be an inner parallel conneetion of G
with one terminal removed. Then the other terminal which is not still removed in

D becomes the cut vertex of the component. 8]

j

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 33

After removing all cut vertices from a component which is not a series-parallel
graph may result in a series-parallel graph or a graph (if the resulting graph is not

a series-parallel graph) with at least one cut vertex.

Now from Lemmas 3.1.1 and 3.1.2 we have the following theorem.

Theorem 3.1.3 A series-parallel graph has a 2-vertex-separator tree. O

.................
...........

w

GQ=G:;¢G4

(b)

Figure 3.5: {a) A series-parallel graph G composed from G, and G, through u and

v, and {b) the resulting components after removing v and v.

¢

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 34

3.2 The Algorithm

Now we have the algorithm SP_2_VertexSeparatorTree to construct a 2-vertex-
separator tree of a series-parallel graph. Let T, = (Vg,,Fr) be a binary
decomposition tree of a series-parallel graph G. (See Figure 3.6(c)). Our algorithm
constructs 2-vertex-separator tree T' (see Figure 3.6(b)) of G using T;. Let Tj(z) be
the subtree of T} rooted at node x. Every leaf z of T} represents a subgraph of G
induced by two vertices s and t connected by the edge (s,t) and let S; = {s,t} be
the set of terminals of G,. We associate a subgraph G, = (V, F,) of G with each

node z of T}, where
V, = U{S, | y =z or y is a descendent, of z in T;}
E,. = {e, | v is a leaf node in T(z}}

The graph associated with the root-of T}, is the given graph G itself. The left child
and right child of an internal node z in T}, are denoted by y and z, respectively.
Every internal node z in T} is either a s-node or a p-node and contains one or two
vertices of G to disconnect the graphs associated with node y and node z, that is

G, and G., respectively.

Again let A be an array with n entries. Each entry at index 7 of A corresponds
to vertex v; of G. Ali] can be defined as follows:
[{ 0 if the vertex v; is considered for 2-vertex-separator tree, and
Ali]l =

1 otherwise.

Initially cach entry of A is initialized with 1. SP_2_VertexSeparatorTrec is a
recursive algorithm that traverses a single node in cvery run of it. The algorithm
traverses the nodes of 7} in preorder fashion. Every node z in 7, contains at
most two vertices, and these vertic@ may exist or may not exist if it is alrcady

considered for the 2-vertex-separator tree and the algorithin checks it from A.

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 35

Figure 3.6: {a) A series-parallel graph G, (b} a 2-vertex-separator tree T" of G, and

{c) a binary decomposition tree T} of (.

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 36

SP_2_VertexSeparatorTree takes a node x as input, where z is the current traversing
node in T;,. SP_2_VertexSeparatorTree takes another input ¢, where i is either the
index of the vertex v;,1 < 1 < n, which is not yet associated with any node of
the 2-vertex-separator tree but is already been considered while executing for its
ancestor node or —1. SP_2_VertexSeparatorTree constructs 2-vertex-separator tree
T of G, where every internal node of T' associates two vertices of G. So when there
is only one vertex in any run of the algorithm the vertex is not associated with any

node of T and the index of the vertex is transmitted to its descendent for future

association to any node.

The algorithm SP_2_VertexSeparatorTree works in two phases. In first phase
it constructs T with a single or two nodes using the algorithms From_Leafnode
(given later), From Seriesnode (given later), From_Parallelnode(given later). In the
second phase it recursively calls SP_2_VertexSeparatorTree for its child nodes and
modifies T using 2-vertex-separator tree that it gets from the recursive return of
SP_2 VertexSeparatorTree. To modify, it uses Adjust_2vertexSeparatorTree (given
later) and Re_Adjust_2vertexSeparatorTree (given later). Now to construct the 2-
vertex-separator tree of a series-parallel graph G we call SP_2_VertexSeparatorTree

with r and 7, where z is the root node in T} and ¢ is -1.

Algorithm SP_2 VertexSeparatorTree(x,i)
Input: A node z in binary decomnposition tree 73, and an index variable i.
Output: Return a 2-vertex-separator tree T' of G.
begin
1 flag:=0;
2 twonode =0
3 if r is a leaf node then

4 From.Leafnode(i),

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 37

10
11
12
13
14

15

16

.17
18
19
20

21

22

23

24
25

26

return 2-vertex-separator tree T';
else if-z is a s-node then
From_Seriesnode(i);
else {z is a p-node}
From_Parallelnode(7);
if node z in T}, has a left child y then
T' « SP_2vertexSeparatorTree(y,);
if two_node == 1 then
ifTVisa tree with a node r and r is associated with no vertex then
two_node ;= {;
else {7” is a tree with a node r and 7 is associated with one or two
vertices}
modify T' by making the node r in T as the parent of the root node of
T
else {T" is a tree with a node r and r is associated with one or two vertices}
T Adjust_2veftexSeparatorTree(T, T',4,0);
if node z in T} has a right child z then
T" «— SP_2vertexSeparatorTree(z, i);
if T is a tree with a node r and r is associated with one or two vertices
then
T — Adjust_2vertexSeparatorTree(T', T", 1, two_node);
if (y exists and T" is a tree with a node r and r is associated with no
vertex) or {z exists and 7 is a tree with a node r and r is associated
with no vertex) and ¢ # —1 then
if = is a s-node then
if i =1 then

flag :=1;

CHAPTER 3. 2-VERTEX-SEPARATOR TREE _ 38

else {z is a p-node}
27 ifi=4iori=i" then
28 flag :=1;
290 if flag =1 then
30 T « Re_Adjust_2vertexSeparatorTree(T, 1);
31 return 2 vertex—sepafator tree T

end

The algorithm SP_2_VertexSeparatorTree based on the Theorem 3.1.3 correctly
consiructs a 2-vertex-separator tree of G since there is no more than 2 vertices
associated with each node of T. If z is a leaf node of T, then From_Lealnode
constructs T with a single or two nodes. If there is no transmitted node, that is 1
equals to —1, then it constructs T with a single node associated with two vertices
(if hoth vertices in z exist) or one vertex (if one vertex in x exists). But when i
is the index of the vertex v;,1 < ¢ < n, which is not yet associated with any node
of the 2-vertex-separator tree but is already been considered while executing for its
ancestor node then it constructs T with two nodes (if both vertices in z exist): one
associated with two vertices and the other with single vertex, and with single node
associated with two vertices (if one vertex in z exists). Otherwise, T is a tree with

a node associaled with no vertex.

Algorithm From_Leafnode(i)
Input: An index variable i.
Output: Return a 2-vertex-separalor tree T, and an index 1.
begin
1 make a node r and associate no vertex with it;
let u and v+ be the endpoints of 1the edge in G corresponding Lo the leaf

node of Ty;

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 39

10

11

12
13

14

15

16

if A[i'| = 1 and A[i"] =1 then
Al = 0; Al"] =0
if i = —1 then
associate vertices vy and v to the node 7;
else {i is the index of a vertex v; in {v1,v,...,vn}}
associate vertices v; and vy to the node r;*
make another node ¢ and associate the vertex v;» with it;
else if A[i'] =1 or A["] =1 then
without loss of generality assume that A[i’] = 1 {All parameters are similarly
handled for A[¢"} =1}
Al] =0,
if 2 = —1 then
associate the vertices vy to the node r;
else {i is the index of a vertex v; in {v1,v2,...,vn}}
associate vertices v; and vy to the node #;
if Af'] =1 and A[¢”] =1 and i # ~1 then
let T be the tree with the nodes r and ¢, where r is the parent node of ¢;
else
let T' be the tree with the 'node r only;

return 2-vertex-separator tree T', and the index ¢;

end

Il z is a s-node of T, then From_Seriesnode constructs T with a single node. I

there is no transmitied node, that is 7 equals to -1, then it constructs T with a

single node associated with one vertex (if the vertex in z exists). Bul when ¢ is

the index of the vertex v;,1 < i < n, which is not yet associated with any node

ol the 2-vertex-separator tree but is already been considered while executing lor

ils ancestor node then it constructs T with with single node associated with two

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 40

vertices (if the vertex in z exists). Otherwise, T is a tree with a node associated

with no vertex. From_Seriesnode also determines the value of 1 for next recursive

call of SP_2_VertexSeparatorTtee.

Algorithm From_Seriesnode(i)
Input: An index variable ¢.
QOutput: Return a 2-vertex-separator tree T, and an index 1.
begin
1 make a node r and associate no vertex with it;

let vy be the vertex in G through which series connection was made;

=]

if Ali'] = 1 then

5 1:=71
else {t is the index of a vertex v; in {vy,vs,...,vn}}
] 1= —1;

7 associate vertices v; and u to the node 7,
8 let T be the tree with the node r only;
9 return 2-vertex-separator tree T, and the index 1;

end

If is a p-node of T then From_Parallelnode constructs T with a single node. If
there is no transmitled node, that is ¢ equa.lé to —1, then it consirucits T with a
single node associated with two vertices (if both vertices in z exist). But when
1 is the index of the vertex v;,1 < 7 < n, which is notl yet associated with any
node of the 2-vertex-separator tree but is already been considered while executing
for its ancestor node then it constructs T with single node associated with two

vertices (if one verlex or two vertices in z exists). Otherwise, T is a tree with a

N

-t

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 41

node associated with no vertex. From_Parallelnode also determines the value of 7 for

the next recursive call of SP_2_VertexSeparatorTree and also set decision variable

two_node when i not equals to —1 and both vertices in z exist. By setting {wo_node

to 1 it implies that there is a probability of two nodes of T for this x in Tp. If there

is a vertex in any node of T'(y) that is not yet considered, then fwo_node will remain

1. The variable two_node is used in the modification phase.

9

10

11

Algorithm From_Parallelnode(i)
Input: An index variable 1.
Output: Return 2-vertex-separator tree T, an index i, and a variable
two_node.
begin
make a node r and associate no vertex with it;
let v;» and v~ be the vertices in G through which parallel connection was
made;
if A[']| =1 and A[i"] =1 then
Ali') :=0; Ali"] :=0;
if i = —1 then

associate vertices vy and v;» to the node r;

else {7 is the index of a vertex v; in {v1,vq,...,0,}}
1:=1";
two_node := 1;

assoclate vertices v; and v; to the node r;
else if A[i'] =1 or A[i”] = 1 then
without loss of generality assume that A[i'] = 1 {All parameters are similarly
handled for Af"] =t}
Al =0,
if i = —1 then

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 42

12

13

14

15

16

1i=1;
else {i is the index of a vertex v; in {v1,v2,...,Vn}}
1:= —1;

associate vertices v; and vy to the node 7;
let T' be the tree with the node r only;
return 2-vertex-separator tree T, the index i, and the variable {wo_node;

end

Now Adjust 2 VertexSeparatorTree and Re_Adjust_2_VertexSeparatorTree

modify T that by merging T with the 2-vertex-separator tree that it gets from

recursive return of SP_2_VertexSeparatorTree for the child nodes of z in T.

Adjust_2_VertexSeparatorTree also determines the value of 7 for the next recursive

call of SP_2_VertexSeparatorTree.

0

Algorithm Adjust 2_VertexSeparatorTree(T, T_child, i, two_node)
Input: A 2-vertex-separator tree T, another 2-vertex-separator tree T _child,
an index variable 7, and another varible two_node.
Output: Return a 2-vertex-separator tree T and an index 1.
begin
if 1wo_node = 0 then

if £ £ —1 then

T := T_child,
i:=—1;
else {i=-1}

if the rool node v of T' is associated with no vertex then
if #’ has children {a;,az,...,ax} then
remove 7’ and make {ay,az,...,ax} the children of the node » in T}

else

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 43

10 modify T by making the root +* ol T as the child of node r in T,
11 else {two_node = 1}
12 if the root node ' of T" is associated with no vertex then

let ¢ be the child of node r in T

13 if +/ has children {a;,ay,...,ax} then

14 remove 7 and make {aj,as,...,ax} the children of the node g in T;
15 else

16 modify T by making the root ' of 7" as the child of node ¢ in T;;

L]

17 return 2-vertex-separator tree T, and the index g;

end

Re_Adjust_2_VertexSeparatorTree is used to adjust T in a special case when all the
2-vertex-separator tree that are returned contain a node associated with no vertex,
the present value of ¢ is not equal to —1 and vertex v; exists in z. [n that case

Re_Adjust_2. VertexSeparatorTree add a new node associated with v; in T

Algorithm Re_Adjust 2 VertezSeparatorTree(T, 1)
Input: A 2-vertex-separator tree T, and an index variable i.
Qutput: Return a 2-vertex-separator tree T

begin

1 if T is a tree with a node r and r is associated with no vertex then

2 associate the vertex v; to node r of T';
3 else
4 make a new node g and associate the vertex v; with it;

5 modify T by making q as a child of r;
6 return 2-vertex-separator tree T

end

A serics-parallel graph can be represented by a binary decomposition tree in

CHAPTER 3. 2-VERTEX-SEPARATOR TREE ' 44

linear time [25]. Every operations including conditional statements of the algorithms
From_Leafnode, From_Seriesnode, From Parallelnode, Adjust_2vertexSeparatorTree
and Re_Adjust_2vertexSeparatorTree execute in constant time. Now to construct
a 2-vertex-separator tree of G, SP_2 VertexSeparatorTree traverses the binary
decomposition tree T} in preorder fashion. Since the number of nodes in the binary
decomposition tree is O(n), the complexity of SP_2_VertexSeparatorTree is O(n),

where n is the number of vertices in .

3.3 Conclusion

In this chapter we present a linear-time algorithm for constructing a 2-vertex-
separator tree of a simple series-parallel graph using its special structure. The height
of the 2-vertex-separator tree is < n/2. We shall use this 2-vertex-separator tree in
the next chapter for obtaining approximation algorithm to find an edge-ranking of a
series-parallel graph. Obtaining a 2-vertex-separator tree immediately improves the
upper bound of the optimal vertex-ranking number and thereby the running time of
the known best algorithm that finds the optimal vertex-ranking of a series-parallel

graph.

Chapter 4

Approximation Algorithm

This chapter deals with the approximation algorithm for finding the edge-ranking
of a series-parallel graph. The algorithm is based on the 2-vertex-separator tree
discussed in Chapter 3. This chapter is organized as follows. In Section 4.1, first we
define some terms related to the algorithm and then propose the algorithm. We also
analyze the time-complexity and give the correctness of the algorithm. Finally, we
illustrate our algorithm step by step using an example. In Section 4.2, we calculate
the approximation ratio. To do that we first find the lower bound of the optimal

edge-ranking number of series-parallel graphs and then the upper bound of edge-

ranking number of series-parallel graphs used by our approximation algorithm. We
also discuss the reason behind the deviation from optimality of our approximation

algorithm.

4.1 The Algorithm

Let T be a 2-vertex-separator tree of a series-parallel graph G = (V, E), where

V ={v,v2,...,vn} and E = {e1,€2,...,vm}. Let X, be the set of vertices in node

45

CHAPTER 4. APPROXIMATION ALGORITHM 46

r of T. In Figure 4.1, X; = {vi,v5}, Xy, = {vs,ve}, and Xy, = {vs,v7}. We
associate a subgraph G, = (Vz, E;) of G with each node z of T', where

Ve=U{n|u€ X, and y = z or y is a descendent of z in T'}

E. = {{u,v) | u,v € X, and y = z or y is a descendent of z in T}
The graph associated with node z is G; = (V;, £;) as shown in Figure 4.1(b). The
children of node z in T is labeled with y;, 1 < ¢ < d, if z has d children. Here
node r has two child nodes: y; and y,. Graphs associated with ¥, and y. are
Gy = (Vi Ey,) and Gy, = (Vyy, Fy,) as shown in Figure 4.1(c) and Figure 4.1(d),

respectively.

vi vs

T Gr=G
@ (®)
ug
v2 va va vg
*r—o—8 /I
Gy UR G,, v

Figure 4.1: (a) A 2-vertex-separator tree T of graph G, (b) graph G, associated with
node z of T, (c) subgraph G, of G associated with node y, of T, and (d) subgraph

Gy, of G associated with node y2 of T,

CHAPTER 4. APPROXIMATION ALGORITHM o 47

Let us define the set Fy as follows: the set of edges connecting vertices in X, to
vertices in V,,,1 < i < d and also edges between vertices in X;. In Figure 4.1, we
have Fy = {(v1,v2), (v1, vs), (v1, a), (vs, va), (vs,vs), (v1,v6)}. Let m,1 < i < d be

the largest rank used for ranking the edges in E,,. We also define 7 as follows:
* r = max{r;|y; is a child of £ and 1 <7 < d}.

To rank the edges of G we call SP_Approx_Rank with G, where 7 is the root of
T and G; is the subgraph associated with . Note that is G, is actually the given

series-parallel graph G.

Algorithm SP_Approz_Rank(G:)
Input: A graph G, = (V;, E,), the subgraph of &G corresponding to node x
of T
Qutput: An.edge—ranking of G;.
begin
1 if z is a leafl node and |E;| = 1 then
2 rank the edge in E, with rank 1;
else
3 for each child node y;, 1 <i < d, of z do
4 SP_Approx_Rank(G,,);
Let F, be the set of edges connecting vertices in X, to verlices in Vy,
I <i < d and also edges belween vertices in X, and r be defined as
r = max{r;|y; is a child of z and 1 < i < d};
5 rank sequentially the edges in F, with different ranks starting {rom rank
r+1;

end

For a leaf node of T the algorithm ranks the edge in its associated subgraph in

O(1) time. Since for every internal node x of T there can be at most 2 vertices in

CHAPTER 4. APPROXIMATION ALGORITHM 48

X, C V., the number of edges to be ranked is d(v) + d(w), where v,w € X;. So for
each internal node of T' the algorithm takes O(d(v)) time to rank these edges in Step

5. So the overall running time of the algorithm is O(Z ey d(v)) = O(|E|) = O(n).

Lemma 4.1.1 SP_Appror_Rank finds an edge-ranking of a series-parallel graph G,

correctly.

Proof. Let T be a 2-vertex-separator tree of a series-parallel graph G.
(G is a graph associated with node z of T. The algorithm labels the edges
(if exists) contained in the subgraph of a leaf node of T with 1 as there can
be maximum one edge in the subgraph of a leaf node. So if z is a leaf node
of T then SP_Approx_Rank((G,) finds an edge-ranking of a series-parallel graph
G, correctly. The edges in F, are ranked with labels greater than the labels
used in ranking the edges of E,,, where y;,1 < 4 < d is a child of z. Let

{Gyl = (Vquy])}a{Gm = (VyzaEyz)}a-~-v{Gyd = (VydvEyd)} are the d subgraphs

associated with nodes 4, ¥9, - . -, ya, where y1, ya, . . . , ya are the child nodes of z. Here
according to the algorithm, it is possihle that some of the edges from {ej, eq,. .., ea},
where e; € Ey ,e0 € Ey,y,...,eq € Ey,, have the same label. But all paths hetween

this two edges contain one of the edges from the edges in F; as the subgraphs
Gy, Gy, - - -, Gy, are connected through the edges in F,. The labels of all edges in
F; are greater than the label of all edges in E,,, E,,,..., E,,. Soif z is an internal
node of T then SP_Approx_Rank also finds an edge-ranking of a series-parallel graph

G, correcily. m]

If we call SP_Approx Rank with G, the algorithm traverses the tree in postorder and
while traversing rank the edges of the subgraph associated with each node. Finally
the algorithm returns the edge-ranking of G, = G when the traversal of the T is

finished.

CHAPTER 4. APPROXIMATION ALGORITHM

4.1.1 An Example

vz] ¥z 2 Y4

(d)

] U3 Ug
vy / E Us
vg
Vg
Ug vr
(b)

vz 1 ¥3 2 M

<
D
|4

5

g

Us 2 Uz

49

V3 1 vz 2 Y4

g
Vs
g ur
©
Uz 1 vz 9 Y4
7

Figure 4.2: (a)A 2-vertex-separator tree of G, (b) A series-parallel graph G and

(c)-([) after each call of SP_Approx_Rank.

Now we illustrate the approximation algorithm for edge-ranking of a series-

parallel graph with an example. A series-parallel graph G is given in Figure 4.2(b)

and the 2-vertex-separator tree T for the graph is shown in Figure 4.2(a). We rank

the edges of G using SP_Approx_Rank. The algorithm SP_Approx_Rank traverses

T in postorder fashion. The algorithm starts from the root node and go to the leaf

node thal contains the vertex vy, Since there is no edge in the graph associated

with this node, next it goes to the node that contains vertices vy and vy, Now

CHAPTER 4. APPROXIMATION ALGORITHM 50

F; = {(ve,v3), (vs,v4)}. Since in this stage r = 0, the algorithm ranks (vg, v3) with
r+ 1, that is 1 and (vs,v4)} with r + 2, that is 2, as shown in Figure 4.2(c). The
traverse of left subtree of the root node of T' is now complete. Then the ranking of
the graph associated with right child of the root node should be completed. The
subgraph associated with the leaf node contains the only edge (vs,vg) and it is
ranked with 1(Figure 4.2(d)). Now the algorithm visits the node that contains the
vertices (vg, v7). Here F, = {(vs, vs), (vs,v7)}. Edges (vr,vs) and (vs, v7) are ranked
with 2 and 3, respectively(Figure 4.2(e)), since the rank is already used for (vs,vg)
is 1. For the root node F; = {(v1,v2), (v1, vs), (v1, va), (vs, vs), (vs, vg), (v1,v5)}. The
maximum rank, r used in the graph associated with the child nodes of the root node
is 3. So to rank the edges in F; the algorithm uses different ranks starting from 4.
The edges (vy, v9), (v1, %), (v1, ve), (v, Us), (Us, vg), (v1,vs) of G are ranked with 4, 5,

6, 7, 8 and 9, respectively as shown in Figure 4.2(f).

4.2 Approximation Ratio

Now we will find the approximation ratio which is the measure of the goodness of
our proposed approximation solution im comparison with the optimal solution of the
problem. To calculate the approximation ratio we first find the lower bound of the
optimal edge-ranking number of series-parallel graphs in Lemma 4.2.1 and then the
upper bound of the approximate edge-ranking number of series-parallel graphs used

by our approximation algorithm, thereby the approximation ratio in Lemma 4.2.2.

Lemma 4.2.1 The optimal edge-ranking number r'(G) of a series-parullel graph G

satisfies T'(G) > logyn, where n is the number of vertices in G.

Proof. Solving edge-ranking problem on a grapb G is equivalent to finding

minimum height 1-edge-separator tree of G. Let us consider an example of a simple

CHAPTER 4. APPROXIMATION ALGORITHM 51

series-parailel graph G composed with only series connections as shown in Figure
4.3. Tt is possible to construct a 1-edge-separator-tree T of G which is a balanced
complete binary tree as shown in Figure 4.3(b). T is the minimum height 1-edge-
separator tree among all possible l—edge—separatdr trees for this graph. Now edges
in nodes at the same level of T can be ranked with the same rank. So the number
of ranks required for ranking the edges in G equals to h(T) + 1, where h(T) is the

height of the minimum height 1-edge-separator tree T

*—o
d e
H H

oo oo o oo
a & e d e f g *k /\ /\

H *—o 66— oo
a c d e f g h

(a) (b)

Fignre 4.3: (a) A series-parallel graph G with only series connection and (b) its

minimum height 1-edge-separator tree T.

The number of ranks increases with the height of the tree. Among all possible
1-edge-separator trees of a series-parallel graph complete binary tree(if possible to
construct) is the tree with minimum height. We know that removing a single edge
(cut edge) can result in maximum two components. In case of a 1-edge-separator
tree every node cannot contain more than one edge and (or the complete binary tree
removing every edge in every node will resull in two components. There are some
series-paraliel graphs for which it is not possible Lo construct a l-edge-separator tree

with complete binary tree structure as shown in Figure 4.4.

CHAPTER 4. APPROXIMATION ALGORITHM ' 52

e— e
o b
—8
€ h
| ® & .]
a c b e
b e |
*«e————@
a h I h
d g * e @ o
d g ¢ J
> — i
a d g h
(a) (b)

Figure 4.4: (a) A series-parallel graph G and (b) its minimum height 1-edge-

separator tree T.

Now 271 _ 1 = n, where 7n is the number of edges in a series-parallel graph
G, when T is a complete binary tree and 2™+ — 1 > 1 when T is not a complete
binary tree. So A(T)+1 > log,(m+1). Now in a series-parallel graph G, m > n—1,

where n is the number of vertices in G. Thus we have, 1'(G) = iy + 1 > log, n.

So the smallest height possible for a 1-edge-separator tree of a series-parallel
graph is that of the complete binary tree and the optimal edge-ranking number

7'(G) of a serics-parallel graph G satisfies r'(G) > logy n. O

Lemma 4.2.2 The Approrimation algorithm SP_Approz_Rank has a ratio bound of

CHAPTER 4. APPROXIMATION ALGORITHM 53

2A(h 4 1)/ log, n, where A is the marimum vertez degree in G, h is the height of

the 2-vertez-separator tree and n is the number of verlices in G.

Proof. Since T is a 2-vertex-separator tree of G, the number of vertices of G
associated with each node z of T can be at most two. The edges in Fy(the set
of edges connecting vertices in X, to vertices in V,,,1 < ¢ < d, and also edges
between vertices in X,) require at most 2A ranks as there can be at most 2A edges
in F,. Again these edges have ranks different from the ranks used in the edges of
the subgraph {E,,} associated with the child nodes y; of z. The algorithm can use
same rank for edges in different F, when the nodes z are in the same level of T
Since h is the height of the 2-vertex-separator tree, SP_Approx_Rank requires at
most 2A(h 4+ 1) ranks for an edge-ranking. By Lemma 4.2.1 the lower bound for

optimal edge-ranking number is log, n. Thus SP_Approx_Rank has a ratio bound of

2A(h + 1)/ log, 1. : O

4.2.1 Deviation from Optimality

SP_Approx_Rank has an approximation ratio of 2A(h + 1)/log,n. Finding the
optimal edge-ranking is equivalent to finding the minimum height 1-edge-separator
tree T, as shown in Figure 4.5. But an approximate edge-ranking of the same graph
is obtained using the 2-vertex-separator tree T, as shown in Figure 4.6. Actually
this is the main reason for deviating from optimality of our approximation algorithm
and it is not possible to directly compare edge-separator tree and vertex-separator
tree. In the l-edge-separator tree at cach node there is only 1 edge, so | rank is
required for each level of T,. But in case of the 2-vertex-separator tree at each node
there can be 2 verlices, so at most 2A edges and hence 2A ranks may be required
at each level of T,. Although it may happen that height of T, is sometimes smaller

than thatl of T,. So the deviation from optimality depends on the height of T, which

CHAPTER 4. APPROXIMATION ALGORITHM 54

—e
n s
.—l—.
(5] Ug
*—e
vg Ur
*—o *—e
m Ug 4 Vs
*—e *a—e oo
Ug 4 v .
U R Uz U4 Vs Ug
Uy Vg Vg U3 Vg Uz
(a) (b)

Figure 4.5: (a) The optimal edge-ranking of a series-parallel graph G, and (b) its

minimum height 1-edge-separator tree 7.

is actually h and how many edges are to be ranked for each node of T, which can

be at most 2A.

4.3 Conclusion

In this chapter we present a linear-time approximation algorithm for linding the
edge-ranking of a series-parallel graph. The approximation algorithm has a ratio
bound of 2A{h + 1}/ log, n. This is the first time that an approximation algorithm
is proposed for solving the edge-ranking problem on serics-parallel graphs. The

edge-ranking problem is A'P-complete for series-parallel graphs, that is, finding a

»\

CHAPTER 4. APPROXIMATION ALGORITHM 55

Figure 4.6: (a) The approximate edge-ranking of a series-parallel graph G, and (b)

its 2-vertex-separator tree T.

polynomial-time algorithm for solving the edge-ranking problem on series-parallel
graphs with unbounded maximum degree is unlikely. But our proposed linear-time

algorithm can return near optimal solution.

The lower bound of the optimal edge-ranking number #'(G) of a series-parallel
graph G satisfies 7'(G)} > log,n, where n is the number of vertices in G, but the
upper bound of (G is 2A log, n [15]. The upper bound of the approximate edge-
ranking number of a series-parallel graph obtained by our algorithm is 2A(h + 1).
If the height £ of the 2-vertex-separator tree could be obtained close to log, n, then
the approximate edge-ranking number obtained by our algorithm would be near to

optimal-edge-ranking number.

Chapter 5

Conclusion

In this thesis, we deal with the problem of finding the optimal edge-ranking of series-
parallel graphs. We present a linear-time algorithm to find the 2-vertex-separator
tree of series-parallel graphs and a linear-time approximation algorithm for finding
. the edge-ranking of series-parallel graphs using the 2-vertex-separator tree with an
approximation ratio of 2A(h + 1)/ logy n, where A is the maximum vertex degree
in G, h is the height of the 2-vertex-separator tree and n is the number of vertices
in G. The upper bound of optimal edge-ranking number of a series-parallel graph
is 2Alogyn. If thé height h of the 2-vertex-separator tree could be obtained close
to log, n, then the approximate edge-ranking number obtained by our algorithm
would be near to optimal-edge-ranking number. This is the first Lime that an
approximation algorithm is proposed for solving edge-ranking problem on series-
parallel graphs.

Obtaining the 2-vertex-separator tree improves the running time of the known
best algorithm for finding the optimal vertex-ranking of series-parallel graphs. Since
a scries-paraliel graph is a partial 2-tree, it is known that each series-parallel graph

has a 3-vertex-separator tree. Since we show how to construct a 2-vertex-separator-

o6

CHAPTER 5. CONCLUSION : 57

tree of a series-parallel graph using its special structure, the upper bound of the
optimal vertex-ranking number is improved and hence the running time of the best
known algorithm is also improved. The optimal vertex-ranking number of a series-
parallel graph is < alog, n, where @ = 3 when 3-vertex-separator tree is used and
a = 2 when 2-vertex-separator tree is used. Using 3-vertex-separator tree the upper
bound of the optimal vertex-ranking number is 3log,n. Using 2-vertex-separator
tree the upper bound of optimal vertex-rafiking number improves to 2log, n. Since
the running time of known best algorithm for solving the vertex-ranking problem
on series-parallel graphs depends on the upper bound of the optimal vertex-ranking
number, the running time is also improved. The running time of the algorithm for
solving the vertex-ranking problem on series-parallel graphs is O(n2%*! login). So

using 3-vertex-separator tree the running time is O(n”log}n). If we use 2-vertex-

separator tree, the running time improves to O(n® log? n).

In Chapter 1, we focus on the background history and related motivations on
this research field. We also define our problem and discuss our motivations behind
solving the problem. In Section 1.1, we discuss the historical background and results
on graph coloring and graph-ranking problem. Section 1.2 represents the present
state of the problem and Section 1.3 deals with the scope of this thesis. At last, in
Section 1.4, we discuss the results obtained for solving the problems of this thesis

and compare our results with the previously achieved ones.

In Chapter 2, we discuss the required definitions for solving the problem and
developing the properties. In this chapter we also mention different types of
characterization, which are needed in the way of evolution. In Section 2.1, we
start by giving the definitions of some basic terms of graph which are related
to and used through out this thesis. Section 2.2 defines a special type of graph,
series-parallel graph. It also introduces different properties of a series-parallel graph

and representation of series-parallel graph through the binary decomposition tree.

CHAPTER 5. CONCLUSION 98

Section 2.3 discusses complexity classes of the algorithm. Finally in Section 2.4 we

define approximation algorithm and the approximation ratio.

In Chapter 3, we design an algorithm for finding a 2wvertex—sepa-rator tree of
" a series-parallel graph. In Section 3.1 we show that a series-parallel graph has a
2-vertex-separator tree. A series-parallel graph can be disconnected by removing
at most two vertices. However, disconnected components that do not have the
series-parallel structure may be yielded by this process. So we show that every such
component has at least one cut-vertex. This immediately proves that a series-parallel
graph has a 2-vertex-separator tree. Next in Section 3.2, we describe an algorithm
for constructing a 2-vertex-separator tree of a simple series-parallel graph. Here we

also analyze the complexity of the algorithm.

In Chapter 4, we present an approximation algorithm for solving the edge-ranking
problem on a simple series-parallel graph using the 2-vertex-separator. Section 4.1
presents the algorithm, its correctness and complexity analysis. In Section 4.2 we
calculate the approximation ratio of our propos?d algorithm. To do that we first find
the lower bound of the optimal edge-ranking number of series-parallel graphs and

also the upper bound of approximate edge-ranking number of series-parallel graphs.

We first introduce the trend of solving edge-ranking problem using vertex-
separator tree instead ol using edge-separator tree. The following problems related to
the approximation algorithm for solving the edge-ranking prohlem of series-paraliel

graphs are still open.

1. Develop a linear-time algorithm for finding the minimum height of 2-vertex-

separator tree of scries-parallel graphs.

2. Develop an approximation algorithm for Solvixig the edge-ranking problem on

scries-parallel graphs with better approximation ratio.

CHAPTER 5. CONCLUSION 59

3. Develop an approximation algorithm for solving the edge-ranking problem on

partial k-trees.

- Bibliography

1]

[2]

3]

(5]

[7]

A. V. Aho, J. E. Hoperoft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addision-Wesley, Reoding, MA, 1974.

M. Bodirsky, O. Gimnéz, M. Kang, and M. Noy, On the number of series parallel and
outerplanar graphs, Proceedings of Discrete Mathematics and Theoretical Computer
Science (DMTCS), (2005), pp. 383-388.

H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index

on partial k-trees, Journel of Algorithms 11, (1990), pp. 631-643.

H.L. Bodlaender, J.S. Deognn, K. Jansen, T. Kloks. D). Kratsch, H. Miiller, and Zs.
Tuza, Rankings of graphs, Society for Industrial end Applied Mathematics (SIAM)
Journal on Discrete Math. 21 (1998), pp. 168-181.

H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks, Approximating
treewidth, pathwidth and minimum elimination tree height, Journal of Algorithms,

18 (1995), pp. 238-255.

J.S. Deogun, T. Kloks, D). Kratsch, and H. Miiller, On vertex ranking for permmtation
and other graphs, Proceedings of the 11th Annual Symposium on Theoretical Aspects
of Computer Science, Lecture Notes in Computer Science, Springer-Verlag, 775

(1994), pp. 747-758.

J. 5. Deogun, and Y. Peng, Edge ranking of trees, Congressus Numerantium, 79
(1990), pp. 19-28.

60

BIBLIOGRAPHY 61

8]

[9]

[10]

(11]

(12]

[13]

(14]

[15]

[16]

117)

1.S. Duff, and J.K. Reid, The multifrontal solution of indefinite sparse symmetric
linear equations, Association for Computing Machinery (ACM) Transactions on

Mathematical software, 9 (1983), pp. 302-325.

A.V. Iyer, H.D. Ratliff, and G. Vijayan, Optimal node ranking of trees, Information

Processing Letters, 28 (1988), pp. 225-229.

A.V. Iyer, H.D. Ratliff, and G. Vijayan, Parallel assembly of modular products - an
snalysis, Technical Report Planning and Design Resource Center, Technical Report

88-06, Georgia Institute of Technology, 1988.

A.V. Iyer, H.D. Ratliff, aud G. Vijayan, On an edge-ranking problem of trees and
graphs, Discrete Applied Mathernatics, 30(1991), pp. 43-52.

M. A. Kashem, and M. E. Haque, FEdge-ranking problem is NP-complete for series-
parallel graphs, Proceedings of the Jth International Conference on Computer and
Information Technology (ICCIT), 2001, pp. 108-112.

M. A. Kashem, X. Zhou, and T. Nishizeki, Algorithms for generalized edge-rankings
of partial k-trees with bounded maximnm degree, Proceedings of the 1st International

Conference on Computer and Information Technology (ICCIT),1998, pp.45-51.

M.A. Kashem, X. Zhou, and T. Nishizeki, Algorithms for genéralized vertex-rankings

of partial k-trees, Theoretical Computer Science, 240(2000), pp. 407-420.

M. A. Kashem, X. Zhon, and T. Nishizeki, Optimal ¢-vertex-rankings of series-parallel

graphs, Manuscript in preparation.

T. Kloks, H. Miiller, and C.K. Woug, Vertex ranking of astercidal triple-free graphs,
Proceedings Of the Tth International Symposium on Algorithms and Computation
(ISAAC’96), Lecture Notes in Computer Science, Springer- Verlag, 1178 (1996), pp.
174-182.

T. W. Lam, and F. L. Yue, Edge Ranking of graphs is hard, Discrete Applicd
Mathematics, 85(1998), pp. 71-86.

BIBLIOGRAPIIY ' - : 62

(18]

[19]

[20]

(21}

[22]

[23]

24]

[25]

T. W. Lam, and F. L. Yne, Optimal edge ranking of trees in linear time, Algorithmica,

30(2001), pp. 12-33.

C.E. leiserson, Area—cfficient, graph layouts for VLSI, Proceedings of the 215t Annual

1EEE Symposium on Foundations of Computer Science, 1980, pp. 270-281.

J.W .H. Liu, The role of elimination trees in sparse factorization, Soctety for Industrial
and Applied Mathematics (SIAM) Jouwrnal of Matriz Analysis and Applications, 11
(1990), pp. 134-172,

N. Megiddo, Applying parallel computation algorithms in the design of serial
algorithms, Journal of the Association for Computing Machinery (ACM), 30(1983},

pp- 852-865.

M.A.H. Newton, and M.A. Kashem, An efficient algorithm for optimal vertex-ranking
of permutation graphs, Proceedings of the 2nd International Conference on Computer

and Infermation Technology (ICCIT), 1999, pp. 315-320.

A. Pothen, The complexity of optimal elimination trees, Technical Report C5-88-13,

Pennsylvania State University, USA, 1988.

A. Sen, H. Deng, and S. Guha, On a graph partition problem with application to
VLSI layout, Information Processing Letters, 43 {1992), pp. 87-94.

K. Takamizawa, T. Nishezeki, and N. Sato, Linear time computability of
combinatorial problefns on series-parallel graphs, Journal of the Association for

Computing Machinery (ACM), 29(1982), pp. 623-641.

[26] P. de la Torre, R. Greenlaw, and A.A. Schiffer, Optimal edge ranking of trees in

polynomial time, Algorithmica, 13 (1995), pp. 592-618.

[27] X.Zhou, M. A. Kashem, and T. Nishizeki, Generalized edge-rankings of trees,

The Institute of Electronics, Information and Communication Engineers (IEICE)
Transactions on Fundamentals of Electronics, Communications and Computer

Science, 81-A-2{1998), pp. 310-320.

Index

GlFEy], 15

G[Vu], 15

T, 18

Ty, 22

A, 14

NP, 25

NP-Complete, 25
NP-hard, 25

P, 25

c-edge-ranking, 8
c-edge-ranking number, 8
c-edge-ranking problem, 8
k-tree, 19

T, 47

r(G), 4

(G), 6

algorithm, 24
approximation algorithm, 26

approximation ratio, 26

binary decomposition tree, 22
p-node, 24

s-node, 24

clique, 16

complexity
lincar-time, 25
polynomial-time, 25
component, 17
vertex, 30

cycle, 16

decomposition, 30
parallel, 29

series, 29

edge—coloring problem, 3
edge-ranking, 6
edge-ranking number, 6

edge-ranking problem, 6

finite, 14

forest, 18

graph
adjacent, 13
complete, 16
connected, 17
degree, 14
disconnected, 17

incident, 14

63

INDEX

loop, 14
multigraph, 14
multiple, 14
neighbor, 14
parallel, 14

simple, 14

optimal c-edge-ranking, 8

optimal vertex-ranking, 1

partial k-tree, 19
path, 16
postorder, 48

preorder, 34
rank, 4

separator, 17
separator, 17
edge, 20
edge separator, 17
vertex, 20

separator tree, 20

series-parallel graph, 21
parallel, 22
series, 22

SP_Approx_Rank, 48

subgraph, 14
connected, 17

maximal, 17

trail, 16

tree, 18
binary, 18
child, 18

height, 19
internal, 18
leaf, 18-
node, 18
depth, 19
height, 19
level, 19
parent, 18
root, 18
rooted, 18
subtree, 18
tree width, 20

tree-decomposition, 19

vertex-coloring problem, 3
vertex-ranking, 4
vertex-ranking number, 4

vertex-ranking problem, 4

walk, 16

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073

