
M.Sc. Engg. Thesis

An Approximation Algorithm for Edge-Ranking
of Series-Parallel Graphs

by
Tanzima Hashem

Department of Computer Science and Engineering
in partial fulfilment of the requirments for the degree of
Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)

Dhaka 1000

~.IE>f~

fI;~................ ~
~ \5T~.............. ~

*~.6Y

The thesis entitled "An Approximation Algorithm for Edge-Ranking of Series-
Parallel Graphs", submitted by Tanzima Hashem, Roll No: 040405015P, Session: April
2004, has been accepted as satisfactory in partial fulfillment of the requirement for the
degree of Master of Science in Computer Science and Engineering on June 10, 2006.

Board of Examiners

~1. _

3.

Dr. Md. Abul Kashem Mia
Professor
Department of Computer Science and Engineering

BUET, Dhaka 1000 _D2.~~::o::fYL ~
Professor & Head
Department of Computer Science and Engineering
BUET, Dhaka 1000

~~
/

Dr. Md. Saidur Rahman
Associate Professor
Department of Computer Science and Engineering
BUET, Dhaka 1000

~~4. _

Chairman
(Supervisor)

Member
(Ex-officio)

Member

5.

Dr. Masud Hasan
Assistant Professor
Department of Computer Science and Engineering
BUET, Dhaka 1000

N,t;~M.
Dr. Md. Elias
Associate Professor
Department of Mathematics
BUET, Dhaka 1000

Member

Member
(External)

•

Candidate's Declaration

It is hereby declared that this thesis or any part of it has not been submitted
elsewhere for the award of any degree or diploma.

TQ.~lh1r>.
Tanzima Hashem
Candidate

II

Contents

Board of Examiners

Candidate's Declaration

Acknowledgements

Abstract

1 Introduction

1.1 Backgrounds........ ...

1.1.1 Vertex-Ranking Problem

1.1.2 Edge-Ranking Problem.

1.2 Present State of the Problem.

1.3 Scope of this Thesis

i

ii

viii

1

2

2

4

6

8

9

1.3.1 Algorithm for Finding a 2-Vertex Separator Tree of a Series-

Parallel Graph 9

1.3.2 Approximation Algorit.hm for I"Alge-Ranking of a Series-

Parallel Graph 10

1.3.3 Improving the Time-complexit.y of Vertex-Ranking Algorit.hm 10

III

/

CONTENTS iv

1.4 Summary .. 10

2 Preliminaries 13

2.1 Fundamental Concepts 13

2.1.1 Graphs 13

2.1.2 Degree of a Vertex 14

2.1.3 Subgraphs 14

2.1.4 Complete Graphs and Cliques 16

2.1.5 Paths and Cycles 16

2.1.6 Connected Components and Separators. 17

2.1.7 Trees 18

2.1.8 Partial k-Trees 19

2.1.9 Tree-Decomposition 19

2.1.10 Separator Tree 20

2.2 Series-Parallel Graphs 21

2.2.1 Binary Decomposition Tree 22

2.3 Complexity of Algorithms 24

2.3.1 Complexity Classes: P and NP 25

2.3.2 NP-Complete Problem. 25

2.4 Approximation Algorithm and

Approximat.ion Rat.io .. 26

3 2-Vertex-Separator Tree 28

3.1 Preliminaries . 28

'"i

CONTENTS

3.2 The Algorithm

3.3 Conclusion...

4 Approximation Algorithm

4.1 The Algorithm ...

4.1.1 An Example.

4.2 Approximation Ratio

4.2.1 Deviation fromOptimality .

4.3 Conclusion..............

5 Conclusion

v

34

44

45

45

49

50

53

54

56

List of Figures

l.l A graph G. . .

1.2 A minimum vertex-coloring of graph G ..

1.3 A minimum edge-coloring of graph G ..

1.4 An optimal vertex-raking of graph G.

1.5 An optimal edge-ranking of graph G.

3

4

4

5

7

2.5 A t.ree T.

2.1 A graph G. . .

2.2 Suhgraphs induced by vert.ices and edges of G.

2.3 A complet.e graph and clique.

2.4 Separators of a graph.

2.6

2.7

2.8

2.9

(a) A graph G, and (b) its tree-decomposit.ion.

Separator trees of a graph.

Series and parallel connect.ion of a series-parallel graph.

A series- parallel graph G.

14

15

16

17

18

20

21

23

23

2.10 Binary decomposition tree of a serie.<;-parallel graph .. 24

3.1 A serie.<;-paraJlcl graph G is decomposed by removing a vertex. 29

vi

•

LIST OF FIGURES vii

3.2 A series-parallelgraph G is decomposedby removing two vertices. . . 30

3.3 Components after removing u, where Gz composed from G3 and G4.• 31

3.4 Components after removing u, where Gz composed from only G3. 32

3.5 Components after removing u and v. 33

3.6 A 2-vertex-separator tree and a binary decomposition tree of G. 35

4.1 Graphs associated with the nodes of a 2-vertex-separator tree. 46

4.2 Steps of SP...Approx_Rank.. .. 49

4.3 1-edge-separator tree of G having series connection. 51

4.4 1-edge-separator tree of G . 52

4.5 The optimal edge-ranking of a series-parallelgraph

4.6 The approximate edge-ranking of a series-parallel graph.

54

55

"'<

Acknow ledgments

I would like to express my deep and sincere gratitude to my supervisor Dr. Md.

Abul Kashem Mia, Professor, Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology (BUET), Dhaka. lowe to him

for his constant supervision, encouragement, personal guidance during the progress

my thesis. His in-dept,h knowledge in Graph Theory and his logical way of thinking

have been very helpful for the successful completion of this work. I am deeply

grateful to him for his cooperation.

I would like to thank the members of my thesis committee for their patience in

understanding my work. I warmly thank Professor Dr. Muhammad Masroor Ali,

Dr. Md. Saidur Rahman, Dr. Masud Hasan and Dr. Md. Elias for their valuable

suggestions.

I am thankful to all of my teachers, colleagues, and friends for their support

during the whole period of my thesis.

Finally, I owc my loving thanks to my husband, parents, brothers, and sistcrs.

Without their encouragement it would have bccn impossible for me to finish this

work.

Ahove all, [am grateful to Almighty Allah who gave me the strcngth to fiuish

this work.

VIII

, .

Abstract

This thesis deals with an approximation algorithm for finding edge-rankings

of series-parallel graphs. An edge-ranking of a graph G is a labeling of its edges

with positive integers such that every path between two edges with the same label

i contains an intermediate edge with label j > i. An edge-ranking is optimal if

the least number of distinct labels among all possible edge-rankings are used by

it. The edge-ranking problem is to find an optimal edge-ranking of a given graph.

Analogously, the vertex-ranking problem can be defined. The edge-ranking problem

of graphs has important applications like scheduling the parallel assembly of a

complex multi-part product from its components and parallel computation. The

edge-ranking problem is NP-complete for series-parallel graphs, that is, finding a

polynomial-time algorithm for solving the edge-ranking problem on series-parallel

graphs with unbounded maximum degree is unlikely. In this thesis, we present a

linear-time algorithm for finding a 2-vertex-separator tree of a series-parallel graph

G and a linear-time approximation algorithm for finding the edge-ranking of a given

series-parallel graph G using the 2-vertex-separator tree of G. Obtaining t.he 2-

vertex-separator tree of G immediately improves the running time of the known

best algorithm t.hat finds an optimal vertex-ranking of a series-parallel graph.

Chapter 1

Introduction

In this chapter, we provide the necessary background, present state and motivation

for this study on the rankings of graphs, define the problem and scope of this thesis.

In Section 1.1,we discuss the historical background on graph coloring. We also define

the vertex-ranking and the edge-ranking problem, related applications and review

the results on the ranking of graphs. Section 1.2 represents the present state of the

problem and Section 1.3 deals with the scope of this thesis. At last, in Section lA,

we discuss the results obtained for solving the problems of this thesis and compare

our results with the previously achieved ones.

1.1 Backgrounds

Graph theory is a delightful playground for the exploration of proof techniques in

discrete mathematics, and its results have applications in many area., of computing,

social and natural sciences. Recent research effort is concentrating on evolving

efficient algorithms in combinatorial mathematics especially graph theory.

Graph coloring theory not only plays an important role in discrete mathematics,

2

c

CHAPTER 1. INTRODUCTION 3

but also is of interest for its applications. Graph coloring dp.alswith the fundamental

problem of partitioning a set of objects into classes according to certain rules.

A graph G = (V,E) with n vertices and m edges consists of a vertex set V =

{VI, V2, ... , vn} and an edge set E = {el, e2, ... , em}, where an edge in E joins two

vertices in V. Figure 1.1 depicts a graph of seven vertices and nine edges, where

vertices are drawn by circles, edges by lines, vertex names next to the circles and

edge names next to the lines.

e7
e6

e5

e8 eg
V5 V6 V7

Figure 1.1: A graph G.

The vertex-coloring problem and the edge-coloring problem are two of the

fundamental problems on graphs. The vertex-coloring problem is to color the vertices

of a given graph with the minimum number of colors so that, no two adjacent vertices

are assigned the same color. Figure 1.2depicts a minimum vertex-coloring of a graph

G using three colors, where colors are drawn next to t.hevertices. The edge-coloring

problem is t.o color t.he edges of a given graph wit.h t.he minimum number of colors

so that. no t.woadjacent edges are assigned the same color. Figure 1.3 depicts a

minimum edge-coloring of G using fOllfcolors, where colors are drawn next t.o t.he

edges. The vert.ex-ranking problem and the edge-ranking problem arc rest.rictions

of the vert.ex-coloringproblem and t.heedge-coloring problem, respectively.

c

c

(

CHAPTER 1. INTRODUCTION

1 2 3

4

1 2 1

Figure 1.2: A minimum vertex-coloring of graph G.

4 1

4
2

4

1 3

Figure 1.3: A minimum edge-coloring of graph G.

1.1.1 Vertex-Ranking Problem

A vertex-ranking of a graph G is a labeling (ranking) of the vertices of G with

positive integers such that every path between any two vertices with the same label

i contains a vertex with label j > i [9]. Clearly a vertex-labeling is a vertex-ranking

if and only if, for any label i, deletion of all vertices wit.h labels> i leaves connect.ed

component.s, each having at. most one vert.ex wit.h label i. The int.eger label of a

vert.ex is called the rank of the vert.ex. The minimum number of ranks needed for

a vert.ex-ranking of G is called t.he vertex-ranking number of G and is denoted by

r(G). A vert.ex-ranking of G using the minimum numher of ranks is called an optimal

vertex-ranking of G. The vertex-ranking problem is to find an opt.imal vertex-ranking

CHAPTER 1. INTRODUCTION 5

of a given graph. The constraints for the vertex-ranking problem imply that two

adjacent vertices cannot have the same rank. Thus the vertex-ranking problem is

a restriction of the vertex-coloring problem. Figure 1.4 depicts an optimal vertex-

ranking of a graph G using four ranks, where ranks are drawn next to the vertices.

1

1

4

2

2 3

1

Figure 1.4: An optimal vertex-raking of graph G.

The vertex-ranking problem, also called ordered coloring problem, has received

much attention because of the number of applications. The vertex-ranking problem

plays an important role in the parallel Cholesky factorization of matrices [7, 20].

Yet other applications of the vertex-ranking problem lie in the field of VLSI-Iayout

[9, 19,24].

We then review the results on the vertex-ranking problem. The vertex-ranking

prohlem was. posed in 1988 by Iyer et al. in relation with applications in VLSI

layout and in manufacturing system [9]. Pothen proved that the vertex-ranking

problem is NP-hard in general [4, 23]' and hence it is very unlikely that there is a

polynomial-time algorithm for solving the problem for general graphs [1]. Hence an

approximation algorithm would be useful. An approximation algorithm for graphs

in general was given by 130dlaender et al., whose approximation ratio is 0(log2 n) for

the vertex-ranking number [5]. Although the verteJ{-ranking problem is NP-hard,

[yer et al. presented an O(n logn) time sequential algorithm to solve the vertex-

cCc

CHAPTER 1. INTRODUCTION 6

ranking problem for trees [9]' where n is the number of vertices of the input tree.

Then Schiiffer obtained a linear-time algorithm by refining their algorithm and its

analysis [23]. Deogun et al. gave algorithms to solve the vertex-ranking problem

for interval graphs in O(n3) time and for permutation graphs in O(n6) time [6].

Bodlaender et al. presented a polynomial-time sequential algorithm to solve the

vertex-ranking problem for partial k-trees, that is, graphs of treewidth bounded by

a fixed integer k [4]. Kioks et al. have presented an algorithm for computing the

vertex-ranking number of an asteroidal triple-free graph in time polynomial in the

number of vertices and the number of minimal separators [16]. Newton and Kashem

presented an efficient optimal algorithm for vertex-ranking of permutation graphs

in O(n3) time [22]. Sun-yuan Hsieh solved the vertex ranking problem of a starlike

graph in O(n) time [8].

1.1.2 Edge-Ranking Problem

The edge-ranking problem is defined analogously as for the vertex-ranking problem.

An edge-ranking of a graph G is a labeling of the edges of G with positive integers

such that every path between two edges with the sanle label i contains an edge with

label j > i [11, 7]. Clearly an edge-labeling is an edge-ranking if and only if, for

any label i, deletion of all edges with labels> i leaves connected components, ea<:h

having at most one edge with label i. The minimum number of ranks needed for an

edge-ranking of G is called the edge-ranking number of G and is denoted by ,-'(G).

An edge-ranking of G using the minimum number of ranks is called an optimal

edge-ranking of G. The edge-ranking problem is to find an optimal edge-ranking of a

given graph. The constraints for t.he edge-ranking problem imply that t.wo adjacent.

edges cannot have t.he same rank. Thus the edge-ranking problem is a restriction of

t.he edge-coloring problem. Figure 1.5 depicts an optimal edge-ranking of a graph

(

CHAPTER 1. INTRODUCTION 7

using six ranks, where ranks are drawn next to the edges. The problem of finding

4

1

5

2

1

6

Figure 1.5: An optimal edge-ranking of graph G.

an optimal edge-ranking of a graph G has applications in scheduling the parallel

assembly of a complex multi-part product from its components. The edge-ranking

problem for a graph G is also equivalent to findingan edge-separator tree of G having

the minimum height. An edge-separator tree with minimum height corresponds to

a parallel computation scheme having the minimum computation time [21).

We next review the results on the edge-ranking problem. The problem of finding

an optimal edge-ranking was first studied by Iyer et at. in 1991 as they found that

the problem has an application in scheduling the parallel assembly of multipart

products. They gave an O(n logn) time approximation algorithm for finding an

edge-ranking of trees T using at most twice the minimum number of ranks, where n

is the number of vertices in T [11). Their approximation algorithm uses the vertex-

ranking algorithm in [9] as a subroutine. The main open problem in their paper is

to determine whether the edge-ranking problem is in P, or if it is NP-hard. Later

de la Torre et al. have given an exact algorithm to solve the edge-ranking problem

for trees in time O(n310gn) by means of a two-layered greedy method [26]. Thus

the edge-ranking problem when restricted to trees is in P. However, Lam and Yue

have proved that the edge-ranking problem is NP-hard for graphs in general [17].

CHAPTER 1. INTRODUCTION 8

and they have solved the optimal edge-ranking problem on trees in linear-time [18].

A natural generalization of an ordinary edge-ranking is the c-edge-mnking [27].

A c-edge-mnking of a graph G, for a positive integer c, is a labeling of the edges

of G with integers such that, for any label i, deletion of all edges witb labels> i

leaves connected components, each having at most c edges with label i. Clearly an

ordinary edge-ranking is a l-edge-ranking. The minimum number of ranks needed

for a c-edge-ranking of G is called the c-edge-mnking number, and is denoted by

r'e(G). A c-edge-ranking of G using r'e(G) ranks is called an optimal c-edge-mnking

of G. The c-edge-mnking problem is to find an optimal c-edge-ranking of a given

graph G. Zhou et al. gave an algorithm to find an optimal c-edge-ranking of a

given tree T for any positive integer c in time O(n210gl'.), where l'. is the maximum

vertex-degree of T [27J. Kashem et al. gave a polynomial time sequential algorithm

for generalized edge-ranking of partial k-trees with bounded maximum degree [13].

1.2 Present State of the Problem

In graph theory, series-parallel graphs related algorithms have been intensively

studied in recent years. But some interesting problems like edge-ranking in

this domain are NP-complete and thus near optimal polynomial-time solution

is required. A polynomial-time algorithm to solve the generalized edge-ranking

problem on partial k-trees witb bounded maximum degree haB been given by Ka.,hem

et al. [13). Since a series-parallel graph is a partial 2-tree, a polynomial-time

algorithm for series-parallel graphs with bounded maximum degree is immediately

yielded by their algorithm. However, the edge-ranking problem is NP-complete

for general series-parallel graphs [12], that is, finding a polynomial-time algorithm

for solving the edge-ranking problem on series-parallel graphs with unhounded

maximum degree is unlikely. Therefore it. is necessary to design a polynomial-time

CHAPTER 1. INTRODUCTION 9

approximation algorithm for edge-ranking of general series-parallel graphs which

will find a near optimal solution. There is still no approximation algorithm for

edge-ranking of general series-parallel graphs.

1.3 Scope of this Thesis

We summarize our developed and improved algorithms for series-parallel graphs in

this thesis.

1.3.1 Algorithm for Finding a 2-Vertex Separator Tree of a

Series-Parallel Graph

Since a series-parallel graph is a partial 2-tree, it has a 3-vertex-separator tree [14].

We first prove that a series-parallel graph has a 2-vertex-separator tree. Consider

the process of starting with a connected graph G and partitioning it recursively by

deleting at most 2 vertices from each of the remaining connected components until

the graph becomes empty. The tree representing the recursive decomposition is

called 2-vertex-separator tree. To prove that a series-parallel graph has a 2-vertex-

separator tree, at first, we show that a (connected) series-parallel graph can be

disconnected by removing at most two vertices. However, disconnected components

that do not have the series-parallel structure may be yielded by this process. So we

also show that every such component has at least one cnt-vertex. This immediately

proves that a series-parallel graph has a 2-vertex-separator tree. Then based on this

proof and using binary decomposition tree of a series-parallel graph G we present a

Iinear-t.imealgorit.hm for constructing a 2-vert.ex-separator t.ree of G.

CHAPTER 1. INTRODUCTION 10

1.3.2 Approximation Algorithm for Edge-Ranking of a

Series-Parallel Graph

We present a linear-time approximation algorithm using the 2-vertex-separator tree

for finding the edge-ranking of a series-parallel graph. Solving the edge-ranking

prohlem is equivalent to fmding the minimum height l-edge-separator tree. The

problems on series-parallel graphs are generally solved using binary decomposition

tree. But in this thesis we first construct a 2-vertex-separator tree using binary

decomposition tree and then using the 2-vertex-separator we tree find the edge-

ranking of a series-parallel graph. We also calculate the approximation ratio of the

algorithm.

1.3.3 Improving the Time-complexity of Vertex-Ranking

Algorithm

Obtaining the 2-vertex-separator tree immediately improves the upper bound of

the optimal vertex-ranking number and thereby running time of the known best

algorithm that finds the optimal vertex-ranking of a series-parallel graph. Kashem

et at. give the algorithm for solving vertex-ranking prohlem of order O(n7Iog~n)

using 3-vertex-separator tree [15]. If we use 2-vertex-separator tree, the running

time improves to O(n5Iog~n).

1.4 Summary

The known results of algorithms for solving the edge-ranking problem on different

types of graphs are summarized in Table 1.1. The main result of this thesis can

be divided into two parts: a linear-time algorithm for constfllcting a 2-vertex-

CHAPTER 1. INTRODUCTION

Graphs Time Value of c References

Trees O(n) c=1 [18]

Trees O(n2log ll) any positive [27]

integer

Partial effectively any positive

k-trees with nO(L>k2) integer [13]

bounded degrees

Series-parallel

graph with O(n18LH2(lllog2n)8) c=1 [13]

bounded degrees

Series-parallel

graph NP-Complete c=1 [12J

(unbounded degrees)

Table 1.1: Algorithms for edge-ranking.

11

separator tree of a series-parallel graph, and a linear-time approximation algorithm

for finding an edge-ranking of a series-parallel graph using 2-vertex-separator tree

with an approximation ratio of 2ll(h + 1)/ log2n, where II is the maximum vertex

degree of a series-parallel graph G, h is the height of the 2-vertex-separator tree and

n is the number of vertices in G. Besides these, we improve the running time of

the known best algorithm for solving the vertex-ranking problem of a series-parallel

graph.

The thesis is organized as follows. Chapter 2 gives preliminary definitions and

representation of series-parallel graphs. Chapter 3 gives a linear-time algorithm for

constructing a 2-vertcx-separator tree of a series-parallel graph. Chapter <I presents a

linear-time approximation algorithm for edge-ranking of a series-parallel graph using

CHAPTER 1. INTRODUCTION 12

the 2-vertex-separator tree with an approximation ratio of 2Li.(h+1)/ log2n. Chapter

5 concludes with a discussion of the improved algorithm for solving the vertex-

ranking problem on series-parallel graphs, the results of the proposed algorithm and

future works.

Chapter 2

Preliminaries

In this chapter, we derme some basic definitions and some special types of graphs.

Definitions that are not given here are discussed as they are needed. In Section 2.1,

we start by giving the definitions of some basic terms of graph which are related

to and used through out this thesis. Section 2.2 defines a special type of graph,

series-parallel graph. It also introduces different properties of a series-parallel graph

and representation of series-parallel graph through the binary decomposition tree.

Section 2.3 discusses complexity classes of the algorithm. Finally in Section 2.4 we

define approximation algorithm and the approximation ratio.

2.1 Fundamental Concepts

2.1.1 Graphs

Let G = (V, E) be a graph. We call V(G) or V the vertex-set of the graph G, and

E(G) or E the edge-set of G. If e = (v, w) is an edge, then e is said to join the

vertices v and llJ, and these vertices are then said to be adjacent. In this case we

13

CHAPTER 2. PRELIMINARiES 14

also say that w is a neighbor of v, and that e is incident to 'v and w. A loop is

an edge whose endpoints are equal. Parallel edges or multiple edges are edges that

have the same pair of endpoints. A simple graph is a graph having no loops or

multiple edges. The graph in which loops and multiple edges are allowed is called

a multigmph. Sometimes a simple graph is simply called by a graph only if there

is no danger of confusion. A graph is finite if its vertex set and edge set are finite.

Every graph mentioned in this thesis is finite.

e7
eB

e5

e. eg
VB VB v7

Figure 2.1: A graph G.

2.1.2 Degree of a Vertex

The degree of a vertex v in a graph G is the number of edges incident to v, and is

denoted by d(v) . The maximum degree of G is denoted by L'J.(G) or simply by L'J..

In Figure 2.1, tbe degree of vertex d(vd VI is 2 and the maximum degree L'J. of G, is

4 as d(v4) is 4.

2.1.3 Subgraphs

A .mbgmph of a grapb G = (V, E) is a graph lJ = (VII, Ell) such that V(H) ~ V(G)

and E(ll) ~ E(C), we write II <;; G and say that G contains ll. If lJ contains

CHAPTER 2. PRELIMINARIES 15

all the edges of G that join two vertices in VH, then H is said to be the subgraph

induced by VH, and is denoted by G[VH]. If VH consists of exactly the vertices on

which edges in EH are incident, then H is said to be the subgraph induced by EH, and

is denoted by G[EH]. Figure 2.2(a) depicts a subgraph of G in Figure 2.1 induced by

V4
e, e,e, e,

e, e,

e.v, v, v, v,
(a) (b)

VI

Figure 2.2: (a) A subgraph induced by {VI, V3, V4, V6, V7} of G in Figure 2.1 , and (b)

a subgraph induced by {e2, e4, es, e6, e7} of G.

We often construct new graphs from old ones by deleting some vertices or edges.

If v is a vertex of a given graph G = (V, E), then G -v is the subgraph of G obtained

by deleting the vertex v and all the edges incident to v. More generally, if V'is a

subset of V, then G - V'is the subgraph of G obtained by deleting the vertices in

V' and all the edges incident to them. Then G - V'is a subgraph of G induced by

V - V'. Similarly, if e is an edge of G, then G - e is the subgraph of G obtained by

deleting the edge e. More generally, if E' <;; E, then G - E' is the subgraph of G

obtained by deleting the edges in E'.

CHAPTER 2. PRELIMINARIES

2.1.4 Complete Graphs and Cliques

16

A complete gmph is a simple graph in which every pair of vertices has an edge. A

clique is a set of pairwise adjacent vertices in a graph. A complete graph has many

subgraphs that are not cliques, but every induced subgraph of a complete graph

is a clique. Figure 2.3(a) is both a complete graph and a clique with six vertices.

8ubgraph with {V1, V2, V3, V4} in Figure 2.3(b) is a clique.

(a) (b)

Figure 2.3: (a) A complete graph, and (b) subgraph with {V1, V2, V3, V4} is a clique.

2.1.5 Paths and Cycles

A walk of length k is a sequence vo, e1, V1, e2, V2, ... , ek, Vk of vertices and edges such

that ei = Vi-1, Vi for all i, 1 <::: i <::: k. A tmil is a walk with no repeated edge. A

path is walk with no rcpeated vertex. A u, v-walk has first vertex IL and last vertex

v. These two vertices IL and v are endpoiuts of the u, v-walk. Normally, the path

is denoted by the sequence of vertices vo, V" V2, ... ,Vk' The length of the path is

calculated by the number of vertices less one. A walk is closed if it has length at

lea.stone and its endpoints are equal. A cycle is a closed trail in which "first = la.st"

is the only vertex repetition. In Figure 2.1, an example of a path forming no cycle

is V5V6V4V2V3 from V5 to V3 and an example of cycle is V6'I7V4V6.

(

CHAPTER 2. PRELIMINARIES

2.1.6 Connected Components and Separators

17

A graph G is connected if for every pair {u, v} of distinct vertices there is a path

between u and v. A (connected) component of a graph is a maximal connected

subgraph . A graph which is not connected is called a disconnected graph. Separation

of a graph can be done in two ways: using vertex separator and edge separator.

Separator disconnects a graph into more than one components. A vertex separator

VI VI V2e,• •

"7<
• ", • "9 •

V7 V, V, V7

(a)

V2 V, VI V2 V,
VI "1 "2• • •

f~7< l::~".

"' "9 •V, V, "7 ", "9
V, V. V7

(b)

Figure 2.~: Separation of a graph G (a) with a vertex separator, and (b) an edge

separat.or.

of a connect.edgraph G is a set of vert.iceswhose delet.iondisconnect.sG. The graph

G in Figure 2.4(a) has a separator {113, 114}' An edgc sepamtor of a connect.ed graph

G is a set.of edges whose deletion disconnect.sG. The graph G in Figure 2.4(b) has

()

CHAPTER 2. PRELIMINARIES

2.1.7 Trees

18

A graph having no cycle is acyclic. A forest is an acyclic graph; a tree' is a connected

acyclic graph. The vertices in a tree are usually called nodes .. A rooted tree is a
. . i- .. ,,' .

tree in which one of the nodes is distinguished from the others. The"distinguished.. '.'~." ..

node is called the root of the tree. The root of a tree is generally drawn at the top.

Figure 2.5 shows an example of a tree T, where v, is the root of T. Every node u

Vj

V7 Vs Vg ViO

Figure 2.5: A tree T.

other than the root is connected by an edge to some other node p called the parent

of u. We also call u a child of p. We draw the parent of a node above that node.

For example, in Figure 2.5, v, is the parent of V2, V3 and V4, while V3 is the parent

of Vo and V7; on the other hand V2, V3 and V4 are children of VI, while Vo and V7 are

children of V3. A leaf is a node of a tree that has no children. That lis a leaf is a

vertex of degree 1. An internal node is a node that ha.~one or Illore children. Thus

every node of a tree is either a leaf or an internal node, but not both. A binanj tree

is the tree where each node does not have more than two children.

In a tree T, a uode u together with all of its proper descendants, if any, is c-alled

a subtree of T. Node u is the root of this subtree. Referring again to Figure 2.5,

CHAPTER 2. PRELIMINARIES 19

nodes V3, V6 and V7 form a subtree, with root V3. Finally, the entire tree in Figure

2.5 is a subtree of itself, with root VI. The height of a node u in a tree is the length

of a longest path from u to a leaf. The height of a tree is the height of the root.

The depth of a node u in a tree is the length of a path from the root to u. The level

of a node u in a tree is the height of the tree minus the depth of u. In Figure 2.5,

for exanlple, node V3 is of height 1, depth 1 and level 1. The tree. in Figure 2.5 has

height 2.

2.1.8 Partial k-Trees

A natural generalization of ordinary trees is the so-called k-trees. The class of k-trees

is defined recursively as follows[3]:

(a) A complete graph with k vertices is a k-tree.

(b) If G = (V, E) is a k-tree and k vertices VI, V2, ... , Vk induce a complete

subgraph of G, then G' = (V U {w},E U {(Vi,W) I 1:; i :; k}) is a k-tree,

where w is a new vertex not contained in G.

(c) All k-trees can be formed with rules (a) and (b).

A graph is called a partial k-tree if it is a subgraph of a k-tree.

2.1.9 Tree-Decomposition

A tree-decomposition of a graph G = (V, E) is a pair (T, 5), where T = (VT, &r) is

a tree and 5 = {Xx I x E VT} is a collection of subsets of V satisfying the following

three conditions [17]:

(a) UxEv,. Xx = V;

(0) for every edge e = (11, tv) E E, there exists a node x E VT with 11, wE Xx;

CHAPTER 2. PRELIMINARIES 20

and

(c) for all x, y, z E Vr, if node y lies on the path from node x to node z in T,

then Xx n Xx ~ Xy•

4

(a)
6

9
X2 = {1,2,3,6}

Xs = {1,3,6,9}

Xl = {1,2,3,4}

X3 = {l,4,3,5}

X6 = {3,5,8}

(h)

Figure 2.6: (a) A graph G, and (b) its tree-decomposition.

The width of a tree-decomposition (T, S) is maxxEVyIXxl - 1. The tree width

of a graph G is the minimum width of a tree-decomposition of G, taken over all

possible tree-decompositions of G. The width of the tree-decomposition shown in

Figure 2.6(b) of the graph G of Figure 2.6(a) is 3. A graph G with treewidth :"::k is

called a partial k-tree. Every partial k-tree G has a tree-decomposition (T, S) with

treewidth :"::k and nr :"::n, where "T is the nuolber of nodes in T [14]. So every

node of tree-decomposition (T, S) of a partial k-tree can contain maximl1m (k + 1)

vertices. So it immediately implies partial k-tree has a k + 1-vertex-separator tree.

2.1.10 SeparatorTree

There are two types of separator trees: vertex-separator' tree and edge-separator

tree. Consider the process of starting with a connected graph G and partitioning

CHAPTER 2. PRELIMINARIES 21

• •Vs V7

I
• •

VI Vs V4

I
U7

• •x
• • • •
V2 V4 V6 U7

I
Vs Vs • • • •x '" V6

(a) (b)

• • • •VI V4 V, Vs

(e)

Figure 2.7: (a) A graph G, (b) its 2-vertex-separator tree, and (e) its 1-edge-

separator tree.

it recursively by deleting at most c vertices from each of the remaining connected

components until the graph becomes empty. The tree representing the recursive

decomposition is called a c-vertex-separator tree of G. Analogouslywe can define

c-edge-separator tree of G. Figure 2.7(b) illustrates a 2-vertex-separator tree of

the graph G depicted in Figure 2.7(a), where the vertex names of deleted ones are

drawn in ovals. Again Figure 2.7(c) illustrates a 1-edge-separator tree of the graph

G depicted in Figure 2.7(a).

2.2 Series-Parallel Graphs

Nowwe will introduce a very special kind of graph known as series-pamllel graph

which is very similar to series-parallel circuit. A series-parallel graph is defined

CHAPTER 2. PRELIMINARIES

recursively as follows.

22

(1) A graph G of a single edge is a series-parallel graph. The end points s and t

of the edge are called the terminals of G.

(2) Let G1 be a series-parallel graph with terminals S1 and t}, and let G2 be

another series-parallel graph with terminals S2 and t2•

(a) A graph G obtained from G1 and G2 by identifying vertex t1 with

vertex 82 is a series-parallel graph whose terminals are s = 81 and

t = t2. Such a connection is called a series connection, and G is

denoted by G = G1 • G2. (See Figure 2.8(a).)

(h) A graph G obtained from G1 and G2 by identifying S1 with 82 and t1

with t2 is a series-parallel graph whose terminals are 8 = 81 = 82 and

t = t1 = t2• Such a connection is called a pamllel connection, and G

is denoted hy G = G1 II G2• (See Figure 2.8(h).)

A series-parallel graph is a partial 2-tree. So it has a tree-decomposition which

implies series-parallel graph has a 3-vertex-separator tree. Another property of a

series-parallelgraph is its number of edges. A series-parallel graph on n vertices has

at most 2n - 3 edges [2].

2.2.1 Binary Decomposition Tree

The construction of a series-parallel graph can he represented by a binary

decomposition tree Tb [25]. Every internal node of Tb is either a s-node or a p-

node and every leaf node ofn represents a suhgraph of G induced by two vertices 8

and t connected by the edge (8, t). Figure 2.9 illustrates a series-parallel graph G and

Figure 2.10 illustrates its binary decomposition tree n. Labels 8 and p attached to

internal nodes inn indicate series and parallel connections, respectively, and nodes

(

CHAPTER 2. PRELIMINARIES

~----~
G1 G2

23

G

(aJ

G

(bJ

Figure 2.8: A series-parallel graph G composed from Gj and G2 (a) with series

connection, and (b) with parallel connection.

VI

V8

• 3

V7

Figure 2.9: A series-parallel graph G.

CHAPTER 2. PRELIMINARiES

labeled s and p are called s-nodes and p-nodes, respectively.

P VI, Vs

24

•
V3

•

•
V5

••
V6 V6

•v,

Figure 2.10: Binary decomposition tree n of a series-parallel grapb G in Figure 2.9.

2.3 Complexity of Algorithms

The efficiency or complexity of an algorithm is determined by the amount of

resources (such as time and storage) necessary to execute it. Generally, it is defined

as a function relating the input length n to the number of steps (time complexity) or

storage locations (space or memory complexity) required to execut.e the algoritbm.

In theoretical analysis of algorithms it is common to estimat.e their complexity in

a.~ymptotic sense, i.e., to est.imate the complexity function for rea.sonably large

lengt.h of input n. For example, since binary search is sRid to mn an amount of

st.epsproportionRI to a logarithm, it.s complexity of the running t.ime is defined by

O(log(n)). If the mnning time of an algorithm is bounded by O(n), it is said to be

CHAPTER 2. PRELIMINARIES

a linear-time algorithm.

2.3.1 Complexity Classes: P and NP

25

A problem is said to have a polynomial-time algorithm if the worst case nmning

time is O(nk) for input size n and for some constant k. Generally, problems that

are solvable by polynomial-time algorithms are tractable or easy, and problems that

require superpolynomial time are intractable or hard. Based upon the running time

of algorithms, next we define complexity classes. The 'classP consists of all those

decision problems that can be solved on a deterministic sequential machine in an

amount of time that is polynomial in the size of the input; the classNP consists of

all those problems whose positive solutions can be verified in polynomial time given

the right information, or equivalently, whose solution can be found in polynomial

time on a non-deterministic machine. Any problem in P is also in NP, since if a

problem is in P then we can verify it in polynomial time.

2.3.2 NP-Complete Problem

Here, we are mainly interested in another class of problems, called NP-complete

problems (or NPC), which can be loosely described as the hardest problems in NP

and therefore they are the least likely to be in P. No polynomial-time algorithm

ha, yet been discovered for an NP-complete problem, nor ha, anyone yet been able

to prove that no polynomial-time algorithm can exist for any of them.

More precisely, a decision problem C is NP-complete if it, is complete for NP,

meaning that:

(1) it is in NP, and

(2) it is NP-ham, i.e. every other problem in NP is polynomial-time reducible

CHAPTER 2. PRELIMINAillES

to it.

26

"Polynomial-time reducible" here means that for every problem L, there is a

polynomial-time many-one reduction, a deterministic algorithm which transforms

instances I E L into instances c E C, such that the answer to c is YES if and only if

the answer to I is YES. To prove that an NP problem A is in fact an NP-complete

problem it is sufficient to show that an already known NP-complete problem reduces

to A. A consequence of this definition is that if we had a polynomial-time algorithm

for C, we could solve all problems in NP in polynomial time.

2.4 Approximation Algorithm and

Approximation Ratio

At present, all known algorithms for NP-complete problems require time that is

superpolynomial in the input size. It is unknown whether there are any faster

algorithms. Therefore, to solve an NP-completeproblem for any nontrivial problem

size, generally it may still be possible to find near-optimal solutions in polynomial

time. An algorithm that quickly finds a suboptimal solution that is within a certain

(known) range of the optimal one is called an approximation algorithm.

Depending on the problem, maximization or minimization, an optimal solution

may be defined as one with maximum possible cost or one with minimum possible

cost. An approximation ratio is a measure of goodness of the approximation solution

with the optimal solution of the problem. An algorithm for a problem has an

approximation mtio of p(n) if, for any input size n, the cost C of the solution

produced by the algorithm is within factor of p(n) of the cost C' of an optimal

solution:

I

CHAPTER 2. PRELIMINAmES

{
C CO}

max c,'7)

27

(2.1)

An algorithm that achieves an approximation ratio of p(n) is called p(n)-

approximation algorithm. For a maximization problem, 0 < C :':::C', and the ratio

C' /C givesthe factor by whichthe cost of an optim31solution is larger than the cost

of the approxiamte solution. Similarly, for a minimization problem, 0 < C' :':::C,

and the ratio C/C' gives the factor by which the cost of an approximate solution

is larger than the cost of the optimal solution. Since all solutions are assumed

to have positive cost, these ratios are always well defined. The approximation

ratio of an approximation algorithm is never less than 1, since C/C' < 1 implies

c'/C > 1. Therefore, a I-approximation algorithm produces an optimal solution,

and an approximation algorithm with a large approximation ratio may return a

solution that is much worse than optimal.

Chapter 3

2-Vertex-Separator Tree

Since a series-parallel graph is a partial 2-tree it is known that each series-parallel

graph has a 3-vertex-separator tree[14]. In this chapter we construct a 2-vertex-

separator-tree of a series-parallel graph using its special stiucture. In Section 3.1,

we show that a series-parallel graph has a 2-vertex-separator tree. A series-parallel

graph can be disconnected by removing at most two vertices. However,disconnected

components that do not have the series-parallel structure may be yielded by this

process. So we show that every such component has at least one cut-vertex: This

immediately proves that a series-parallel graph has a 2-vertex-separator tree. Next

in Section 3.2, we describe an algorithm for constructing a 2-vertex-separator tree of

a simple series-parallel graph using binary decomposition tree of the series-parallel

graph. We also analyze the time-complexity of the algorithm.

3.1 Preliminaries

A single edge graph is a series-parallel graph. Larger series-parallel graphs can be

composedfrom smaller series-parallel graphs either using seriesconnection or parallel

28

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 29

connection. If a series-parallel graph G with terminals s and t was composed with

series connection from two smaller series-parallel graphs GI with terminals Sl and

tl and G2 with terminals S2 and t2 (see Figure 2.8(a)), G can be decomposed into

components by removing the single vertex (S2 = td through which G was composed.

Again, if a series-parallel graph G with terminals s and t was composed with parallel

connection from two smaller series-parallel graphs GI with terminals Sl and tl and G2

with terminals S2 and t2 (see Figure 2.8(b)), G can be decomposed into components

by removing the two vertices (s = S1 = S2 and t = tl = t2) through which G was

composed. Figure 3.1 and Figure 3.2 illustrate series and parallel decomposition of a

series-parallel graph. We then have the following lemma directly from the definition

of a series-parallel graph.

~

,, • •,

\, ,
, ,
, ,,, , •,

L!, ,
, ,,

,

Figure 3.1: A series-parallel graph G is decomposed by removing a vertex.

Lemma 3.1.1 A series-pamllel gmph can be decomposed into components either by

removing a single vertex if the gmph was composed with series connection or by

removing two vertices if the gmph was composed with parallel connection. 0

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 30

Figure 3.2: A series-parallel graph G is decomposed by removing two vertices.

After decomposing the series-parallel graph according to Lemma 3.1.1, the

resulting components may lose series-parallelstructure. Figures 3.1 and 3.2 illustrate

that due to decomposition of series-parallel graph according to Lemma 3.1.1 the

resulting components mayor may not have series-parallel structure. In Figures

3.1 and 3.2 the circled components do not have the series-parallel structure. After

decomposition of series-parallel graph if the resulting component loses its series-

parallel structure, then there must be an inner parallel connection of the original

series-parallel graph with one terminal removed. Then the other terminal which

is not still removed in the resulting component becomes the cut vertex of that

component. We next have the followinglemma:

Lemma 3.1.2 Let G be a series-pamllel gmph. If a resulting component D does

not have series-pamllel structure as a result of decomposition by removing one vertex

(series connection) or two vertices (pamllel connection) from G, then D must have

a cut vertex.

Proof. Let G be a series-parallel graph composed from two series-parallel graphs

G1 and G2.

Let G be composed from Gland G2 through the series vertex u. Let D be a

component that docs not have series-parallel structure as a result of removing u

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 31

from G. Without loss of generality assume that D is a subgraph of G2• Let the

graph G2 be composed from either series connection through the vertex v from two

smaller series-parallel graphs G3 and G4, or only G3, where G3 is a series-parallel

graph composed from parallel connection with the terminal vertices u and v. Then

G3 can be disconnected by removing u and v. Since the component D is obtained

by removing u from G, G2 is a subgraph of G and D is a subgraph ofG2, D contains

the vertex v but not u. So if v is removed from D, D will be disconnected. Thus v

is a cut vertex in D.(See Figures 3.3 and 3.4.)

/

/

............. '...... ;'..
,

....
GJ. ,u,...... ,,,,

(aJ ----------

,,,,,,,
,,,,,

/
/

(b)

D

r

Figure 3.3: (a) A series-parallel graph G composed from G, and G2 (composed from

G3 and G4) through u, and (b) resulting components after removing u.

Let G be composed from Gj and G2 through the parallel vertices u and v. Let D

be a component that docs not have series-parallcl structure as a result of removing u

CHAPTER 3. 2-VERTEX-SEPARATOR TREE

32

".

.............. ".
Gl , U,.......................•..,,,-

(a)

---,,,
•v •
I,,,,,

G2=G3,"..•... _--_ ..
.........

(b)

D

.......

Figure 3.4: (a) A series-parallel graph G composed from G\ and G2 (composed from

only G3) through u, and (b) resulting components after removing u.

and v fromG. Without loss of generality assume that D is a subgraph ofG2. Let the

graph G2 be composed by series connection through the vertex w from two smaller

series-parallel graphs G3 and G4, where G3 is a series-parallel graph composed from

parallel connection with the terminal vertices u and w. Then G3 can be disconnected

by removing u and w. Since the component D is obtained by removing u from G,

G2 is a subgraph of G and D is a subgraph of G2, D contains the vertex w but not

u. So if w is removed from D, D will be disconnected. Thus w is a cut vertex in D.

(See Figure 3.5.)

So after decomposition of a series-parallel graph G when a resulting component

D loses its series-parallel structure, there must be an inner parallel connection of G

with one terminal removed. Then the other terminal which is not still remov(.>din

D becomes the cut vertex of the component. o

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 33

After removing all cut vertices from a component which is not a series-parallel

graph may result in a series-parallel graph or a graph (if the resulting graph is not

a series-parallel graph) with at least one cut vertex.

Now from Lemmas 3.1.1 and 3.1.2 we have the followingtheorem.

Theorem 3.1.3 A series-pamllel gmph has a 2-verlex-sepamtor tree. o

.............................. ' ".

~ ~.~.~~
...":"~:..: ------------

, -,:
v •......... ' .,,,,,

...........

w

,~'-. -'
,: u.... ,.... .. '
' ••••• "!" •••• ~. ,,,

" ,

----_ ••.

(a)
. ',.

' ..
w

D
.'

(b)

Figure 3.5: (a) A series-parallel graph G composed from G, and G2 through u and

v, and (b) the resulting components after removing u and v.

CHAPTER 3. 2-VERTEX-SEPARATOR TREE

3.2 The Algorithm

34

Now we have the algorithm SP_2_VertexSeparatorTree to construct a 2-vertex-

separator tree of a series-parallel graph. Let n = (VTb, ET.) be a binary

decomposition tree of a series-parallel graph G. (See Figure 3.6(c». Our algorithm

constructs 2-vertex-separator tree T (see Figure 3.6(b» of G using n. Let Tb(x) be
the subtree ofn rooted at node x. Every leaf x of Tb represents a subgraph of G

induced by two vertices s and t connected by the edge (s,t) and let Sx = {s,t} be

the set of terminals of Gx. We associate a subgraph Gx = (Vx, Ex) of G with each

node x ofn, where
Vx = U{Sy I y = x or y is a descendent of x in Tb}

Ex = {cy I y is a leaf node in n(x)}

The graph associated with the root-of Tb is the given graph G itself. The left child

and right child of an internal node x in n are denoted by y and z, respectively.

Every internal node x in Tb is either a s-node or a p-node and contains one or two

vertices of G to disconnect the graphs associated with node y and node z, that is

Gy and G" respectively.

Again let A be an array with n entries. Each entry at index i of A corresponds

to vertex Vi of G. A[i} can be defined as follows:

{
0 if the vertex Vi is considered for 2-vertex-separator tree, and

Ali} =
1 otherwise. _

Initially each entry of A is initialized with 1. SP_2_VertexSeparatorTree is a

rec\lfHivealgorithm that traverses a single node in every run of it. The algorithm

traverses the nodes of 1'0 in prcorder fashion. Every node x in 1b contaiIL' at

most two vertices, and these vertices may exist or may not exist if it is already

considered for the 2-vertex-separator tfL'e and the algorithm checks it from A.

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 35

v,

v,

v,

G

(a)

v,

v,

v,

T

(b)

T

(c)

Figure 3.6: (a) A series-parallel graph G, (b) a 2-vertex-separator tree T of G, and

(c) a binary d<.'Compositiontree Tb of G.

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 36

SP_2_VertexSeparatorTreetakes a node x as input, where x is the current traversing

node in Tb. SP_2_VertexSeparatorTree takes another input i, where i is either the

index of the vertex Vi, 1 :s i :s n, which is not yet associated with any node of

the 2-vertex-separator tree but is already been considered while executing for its

ancestor node or -1. SP_2_VertexSeparatorTree constructs 2-vertex-separator tree

.T of G, where every internal node of T associates two vertices of G. So when there

is only one vertex in any run of the algorithm the vertex is not associated with any

node of T and the index of the vertex is transmitted to its descendent for future

association to any node.

The algorithm SP_2_VertexSeparatorTreeworks in two phases. In first phase

it constructs T with a single or two nodes using the algorithms From-.Leafnode

(given later), FromJ3eriesnode (given later), FromYaralielnode(given later). In the

second phase it recursively calls SP_2_VertexSeparatorTree for its child nodes and

modifies TusIng 2-vertex-separator tree that it gets from the recursive return of

SP_2_VertexSeparatorTree. To modify, it uses AdjusL2vertexSeparatorTree (given

later) and Re-AdjusL2vertexSeparatorTree (given later). Now to construct the 2-

vertex-separator tree of a series-parallel graph G we call SP_2_VertexSeparatorTree

with x and i, where x is the root node in Tb and i is -1.

Algorithm SP -.2_VertexSeparatorTree(x, i)

Input: A node x in binary decomposition tree Tb, and an index variable i.

Output: Return a 2-vertex-separator tfL'eT of G.

begin

flag:= 0;

2 two_node:= 0

3 if x is a leaf node then

4 From..Leafnode(i);

CHAPTER 3. 2-VERTEX-SEPARATOR TREE

5 return 2-vertex-separator tree T;

6 else if.x is a s-node then

7 From..seriesnode(i);

8 else {x is a p-node}

9 FromYarallelnode(i);

10 if node x innhas a left child y then

11 T' <-- SP-2vertexSeparatorTtee(y, i);

12 if two_node == 1 then

13 if T' is a tree with a node r and r is associated with no vertex then

37

14 two_node ;= 0;

15 else {T' is a tree with a node rand r is associated with one or two

vertices}

16 modify T by making the node r in T as the parent of the root node of

T';

17 else {T' is a tree with a node rand r is associatedwith one or two vertices}

18 T <-- AdjusL2vertexSeparatorTtee(T, T', i, 0);

19 if node x in Tb has a right child z then

20 Til <-- SP_2vertexSeparatorTtee(z,i);

21 if Til is a tree with a node rand r is associated with one or two vertices

then

22 T <-- AdjusL2vertexSeparatorTtee(T, Til, i, two_node);

23 if (y exists and T' is a tree with a node r and r is associated with no

vertex) or (z exists and Til is a tree with a node r and r is associated

with no vertex) and i # -1 then

24 if x is a s-node then

25 if i = i' then

26 flag := 1;

CHAPTER 3. 2-VERTEX-SEPARATOR TREE

else {x is a p-node}

27 if i = i' or i = i" then

28 flag := 1;

29 if flag = 1 then

30 T <- Re.Adjust.2vertexSeparatorTree(T, i);

31 return 2 vertex-separator tree T;

end

38

The algorithm SP.2_VertexSeparatorTree based on the Theorem 3.1.3 correctly

constructs a 2-vertex-separator tree of G since there is no more than 2 vertices

associated with each node of T. If x is a leaf node of Tb then From_Leafnode

constructs T with a single or two nodes. If there is no transmitted node, that is i

equals to -1, then it constructs T with a single node associated with two vertices

(if both vertices in x exist) or one vertex (if one vertex in x exists). But when i

is the index of the vertex Vi, 1 <::: i <::: n, which is not yet associated with any node

of the 2-vertex-separator tree but is already been consideredwhile executing for its

ancestor node then it constructs T with two nodes (if both vertices in x exist): one

associated with two vertices and the other with single vertex, and with single node

associated with two vertices (if one vertex in x exists). Otherwise, T is a tree with

a node associated with no vertex.

Algorithm Fmrn_Leafrwde(i)

Input: An index variable i.

Output: Return a 2-vertex-separator tree T, and an index i.

begin

make a node r and associate no vertex with it;

let Vi' and Vi" be the endpoints of the edge in G corresponding to the leaf

node of Tb;

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 39

2 if Ali'] = 1 and Ali"] = 1 then

3 Ali'] := 0; Ali"] := 0;

4 if i = -1 then

5 associate vertices Vi' and Vi" to the node r;

else {i is the index of a vertex Vi in {VI, V2, ... , vn}}

6 associate vertices Vi and Vi' to the node r;

7 make another node q and associate the vertex Vi" with it;

8 else if Ali'] = 1 or A[i"] = 1 then

without lossof generality assume that Ali'] = 1 {All parameters are similarly

handled for A [i"] = I}

9 Ali'] := 0;

10 if i = -1 then

11 associate the vertices Vi' to the node r;

else {i is the index of a vertex Vi in {v}, V2, ... 1 Vn}}

12 a.ssociatevertices Vi and Vi' to the node 1';

13 if Ali'] = 1 and A[i"] = 1 and i i -]then
14 let T be the tree with the nodes l' and q, where r is the parent node of q;

else

15 let T be the tree with the node l' only;

16 return 2-vertex-separator tree T, and the index i;

end

If x is a ,,-node of Tb t.hen FronLSeriesnode constructs T wit.h a single node. If

there is no transmitted node, that is i equals to -], t.hen it constructs T with a

single node "ssociat.ed wit.h one vertex (if the vertex in x exists). I3ut when i is

the index of the vertex Vi, 1 ~ i ~ 11, which is not. yet. Associated wit.h any node

of t.he 2-vert.ex-separat.ortree but. is already been considered while e.xecuting for

its ancest.or node then it. constructs T with wit.h single node associated with two

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 40

vertices (if the vertex in x exists). Otherwise, T is a tree with a node associated

with no vertex. From_Seriesnodealso determines the value of i for next recursive

call of SP_2_VertexSeparatorTree.

Algorithm FromSeriesnode(i)

Input: An index variable i.

Output: Return a 2-vertex-separator tree T, and an index i.

begin

1 make a node r and associate no vertex with it;

let v;, be the vertex in G through which series connection was made;

2 if A(i/] = 1 then

3 A(i/] := 0;

4 if i = -1 then

5 i := i'i

else {i is the index of a vertex V; in {VI, V2, ... , Vn} }

6 i=-I;

7 associate vertices v; and v;, to the node r.;

8 let T be the tree with the node r. only;

9 return 2-vertex-separator tree T, and the index i;

end

If x is a p-node of Tb then FronLParallelnode constructs T with a single node. If

there is no transmitted node, that is i equals to -1, then it constructs T with a

single node associated with two vertices (if both vertices in x exist). But when

i is the index of the vertex v;, I «:: i «:: n, which is not yet associated with any

node of the 2-vertex-separator tree but is already been considered while executing

for its ancestor node then it constructs T with single node associated with two

vertices (if one vertl'.J(or two vertices in x exists). Otherwise, T is a tree with a

o

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 41

node associated with no vertex. From-.Parallelnode also determines the value of i for

the next recursive call of SP_2_VertexSeparator'fiee and also set decision variable

two_node when i not equal, to -1 and both vertices in x exist. By setting two_node

to 1 it implies that there is a probability of two nodes of T for this x in n. If there

is a vertex in any node of T(y) that is not yet considered, then two_node will remain

1. The variable two_node is used in the modification phase.

Algorithm FramYarallelnode(i)

Input: An index variable i.

Output: Return 2-vertex-separator tree T, an index " and a variable

two_node.

begin

1 make a node r and associate no vertex with it;

let Vi' and Vi" be the vertices in G through which parallel connection was

made;

2 if A(i'] = 1 and A(i"] = 1 then

3 Ali'] := 0; Ali"] := 0;

4 if i = - 1 then

5 a,sociate vertices Vi' and Vi" to the node r;

else {i is the index of a vertex Vi in {VI, V2, ... , Vn} }

6 i:=i"j

7 two_node := 1;

8 associate vertices Vi and Vi' to the node r;

9 else if Ali'] = 1 or Ali"] = 1 then

without loss of generality assume that Ali'] = I {All parameters are similarly

handled for A [i"] = I}

10 Ali'] := 0;

II if i = -I then

-r

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 42

12 i := i';

else {i is the index of a vertex Vi in {TlJ 1 V2, ... , Vn}}

13 i:=-l;

14 associate vertices Vi and Vi' to the node r;

15 let T be the tree with the node r only;

16 return 2-vertex-separator tree T, the index i, and the variable two_node;

end

Now Adjust-2_VertexSeparatorTree and Re-i\djusL2_VertexSeparatorTree

modify T that by merging T with the 2-vertex-separator tree that it gets from

recursive return of SP_2_VertexSeparatorTree for the child nodes of x in T.

Adjust_2_VertexSeparatorTreealso determines the value of i for the next recursive

call of SP-2_VertexSeparatorTree.

Algorithm Adjust-2_Ve,.texSeparatarTree(T, T_child, i, two_node)

Input: A 2-vertex-separator tree T, another 2-vertex-separator tree T_child,

an index variable i, and another varible two_node.

Output: Return a 2-vertex-separator tree T and an index i.

begin

1 if two_node = 0 then

2 if i oj -I then

3 T := T_child;

4 i:=-l;

5 else {i=-l}

6 if the root node ," of T' is associaterl with no vertex then

7 if ,.' has chilrlrcn {a], a2, ... , ak} then

8 remove r' and make {aI, a2, ... ,ad thc chilrlrenof thc norle r in T;

9 else

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 43

10 modify T by making the root 1"' of T' as the child of node 1" in T;

11 else {two.node = I}

12 if the root node 1"' of T' is associated with no vertex then

let q be the child of node 1" in T;

13 if 1"' has children {o.l> 0.2, ... ,o.k} then

14 remove 1"' and make {aI, 0.2, ... ,o.k} the children of the node q in T;

15 else

16 modify T by making the root ,.I of T' as the child of node q in T;

17 return 2-vertex-separator tree T, and the index i;

end

Re-Adjust_2_VertexSeparatorTreeis used to adjust T in a special casewhen all the

2-vertex-separator tree that are returned contain a node associated with no vertex,

the present value of i is not equal to -I and vertex Vi exists in x. In that case

Re-Adjust_2.VertexSeparatorTreeadd a new node associated with Vi in T.

Algorithm Re-AdjusL2.Ve1"texSepo.ratOTT1"ee(T, i)

Input: A 2-vertex-separator tree T, and an index variable i.

Output: Return a 2-vertex-separator tree T

begin

1 if T is a tree with a node ,. and 1" is associated with no vertex then

2 associate the vertex Vi to node ,. of T;

3 else

4 make a new node q ano associate the vertex Vi with it;

5 modify T by making q as a child of r;

6 return 2-vertcx-separator trcc T;

end

A series-parallel graph can be represented by a binary oecomposition trcc in

CHAPTER 3. 2-VERTEX-SEPARATOR TREE 44

linear time [25].Every operations including conditional statements of the algorithms

From-.I,eafnode,FromJ3eriesnode, From2arallelnode, Adjust-2vertexSeparatorTree

and Re--Adjusk2vertexSeparatorTree execute in constant time. Now to construct

a 2-vertex-separator tree of G, SP-2_VertexSeparatorTree traverses the hinary

decomposition tree n in preorder fashion. Since the number of nodes in the binary

decomposition tree is O(n), the complexity of SP-2_VertexSeparatorTree is O(n),

where n is the number of vertices in G.

3.3 Conclusion

In this chapter we present a linear-time algorithm for constructing a 2-vertex-

separator tree of a simple series-parallel graph using its special structure. The height

of the 2-vertex-separator tree is <:: n!2. We shall use this 2-vertex-separator tree in

the next chapter for obtaining approximation algorithm to find an edge-ranking of a

series-parallelgraph. Obtaining a 2-vertex-separator tree immediately improves the

upper bound of the optimal vertex-ranking number and thereby the running time of

the known best algorithm that finds the optimal vertex-ranking of a series-parallel

graph.

Chapter 4

Approximation Algorithm

This chapter deals with the approximation algorithm for finding the edge-ranking

of a series-parallel graph. The algorithm is based on the 2-vertex-separator tree

discussed in Chapter 3. This chapter is organized as follows. In Section 4.1, first we

definesome terms related to the algorithm and then propose the algorithm. We aL~o

analyze the time-complexity and give the correctness of the algorithm. Finally, we

illustrate our algorithm step by step using an example. In Section 4.2, we calculate

the approximation ratio. To do that we first find the lower bound of the optimal

edge-ranking number of series-parallel graphs and then the upper bound of edge-

ranking number of series-parallel graphs used by our approximation algorithm. We

also discuss the reason behind the deviation from optimality of our approximation

algorithm.

4.1 The Algorithm

Let T be a 2-vertex-separator tree of a series-parallel graph G= (V, E), where

V = {VI, V2, ... , Vn} and E = {CI, C2, ... , vm}. Let Xx be the set of vertices in node

45

CHAPTER 4. APPROXIMATION ALGORITHM 46

x of T. In Figure 4.1, Xx = {V"V5}, Xy, = {V3,V4}, and X", = {V6,V7}. We

associate a subgraph Gx = (Vx, Ex) of G with each node x of T, where

Vx = U{u I u E Xy and Y = x or Y is a descendent of x in T}

Ex = {(u, v) I u, v E Xy and y = x or Y is a descendent of x in T}

The graph associated with node x is Gx = (Vx, Ex) as shown in Figure 4.1(b). The

children of node x in T is labeled with Yi, 1 :S i :S d, if x has d children. Here

node x has two child nodes: Yl and Y2. Graphs associated with Yl and Y2 are

Gy, = (VYl' Ey,) and Gy, = (V"" Ey,) as shown in Figure 4.1(c) and Figure 4.1(d),

respectively.

Y'

Vs, Vg

T Gx = G

(~ ~)

v, v, v, r /v6• • •

Gy,
v, Gy,

V7

(c) (d)

Figure 4.1: (a) A 2-vertex-separator tree T of graph G, (b) graph Gx associated with

node x of T, (c) subgraph Gy, of G associated with node YI of T, and (d) subgraph

G", of G associated with node Y2 of T.

CHAPTER 4. APPROXIMATION ALGORITHM 47

Let us define the set Fx as follows: the set of edges connecting vertices in Xx to

vertices in Vyp 1 ~ i ~d and also edges between vertices in Xx. In Figure 4.1, we

have Fx = {(V\,V2), (vJ,Vg), (v\,Vg), (V5,V4), (V5,V6), (V\,V6)}. Let ri, 1 ~ i ~d be

the largest rank used for ranking the edges in Ey,. We also define l' as follows:

r = max{rilYi is a child of x and 1 ~ i ~d}.

To rank the edges of G we call SP-ApproLRank with Gr, where r is the root of

T and Gr is the subgraph associated with 1'. Note that is Gr is actually the given

series-parallel graph G.

Algorithm SF -Approx.Rank(Gx)

Input: A graph Gx = (Vx, Ex), the subgraph of G corresponding to node x

ofT.

Output: An edge-ranking of Gx•

begin

1 if x is a leaf node and IExl = I then

2 rank the edge in Ex with rank 1;

else

3 for each child node Yi, 1 ~ i ~d, of x do

Let Fx be the set of edges connecting vertices in Xx to vertices in Vy"

1 ~ i ~d and also edges between vertices in Xx and r be defined as

l' = max{rilYi is a child of x and I ~ i ~d};

5 rank sequentially the edges in Fx with different ranks starting from rank

l' + I;

end

For a leaf node of T the algorithm ranks the edge in its associated sllbgraph in

O(1) timc. Since for cvcry intcrnal node x of T there can be at most 2 vertices in

CHAPTER 4. APPROXIMATION ALGORITHM 48

Xx <;; Vx, the number of edges to be ranked is d(v) + d(w), where v, wE Xx. So for

each internal node of T the algorithm takes O(d(v)) time to rank these edges in Step

5. So the overall running time of the algorithm is O(LvEV d(v)) = O(IEI) = O(n).

Lemma 4.1.1 SP_Approx_Rank finds an edge-ranking of a series-parallel graph Gx

correctly.

Proof. Let T be a 2-vertex-separator tree of a series-parallel graph e.
ex is a graph associated with node x of T. The algorithm labels the edges

(if exists) contained in the subgraph of a leaf node of T with 1 as there can

be maximum one edge in the subgraph of a leaf node. So if x is a leaf node

of T then SPJ\pprox-.Rank(ex) finds an edge-ranking of a series-parallel graph

ex correctly. The edges in Fx are ranked with labels greater than the labels

used in ranking the edges of Ey" where Yi, 1 <:: i <:: d is a child of x. Let

{ey, = (VYl' Ey,)}, {eY1 = (Vy" Ey,)}, ... , {eYd = (VYd' Eyd)} are the d subgraphs

associated with nodes Y" Y2, ... , Yd,whereYl, Y2, ... , Yd are the child nodes ofx. Here

according to the algorithm, it is possible that some of the edges from {e" e2, ... , ed},

where e, E Ey" e2 E Ey" ••• , ed E Eyd, have the same label. But all paths between

this two edges contain one of the edges from the edges in Fx as the subgraphs

ey" e"" ... ,GYd are connected through the edges in Fx• The labels of all edges in

Fx are gTeater than the label of all edges in Ey" Ey" ... , Eyd' So if x is an internal

node of T then SPJ\pprox_Rank also finds an edge-ranking of a series-parallel graph

ex correctly. 0

If wecall SP.Approx_Rank with er the algorithm traverses the tree in postorder and

while traversing rank the edges of the snbgraph associated with each node. Finally

the algorithm returns the edge-ranking of er = e when the traversal of the T is

finished.

CHAPTER 4. APPROXIMATION ALGORITHM

4.1.1 An Example

49

v

T
(a)

V8

(d)

V8

(b)

(e)

(c)

(t)

Figure 4.2: (a)A 2-vertex-separator tree of G, (b) A series-parallel graph G and

(c)-(f) after each call of SP-Approx_Rank.

Now we illustrate the approximation algorithm for edge-ranking of a series-

parallel graph with an example. A series-parallel graph G is given in Figure 4.2(h)

and the 2-vertex-separator tree T for the graph is shown in Figure 4.2(a). We rank

the edges of G using SP -Approx-Rank. The algorithm SP-Approx_Rank traverses

T in postorder fashion. The algorithm starts from t.he root. node and go t.o t.he leaf

node that contains the vertex 112. Since there is no edge in the graph associated

with this node, next it goe.~ to the node that contains vert.ices 113 and 114. Now

CHAPTER 4. APPROXIMATION ALGORITHM 50

Fx = {(V2, va), (va, V4)}. Since in this stage r = 0, the algorithm ranks (V2, va) with

r + I, that is 1 and (va, V4)} with r + 2, that is 2, as shown in Figure 4.2(c). The

traverse of left subtree of the root node of T is now complete. Then the ranking of

the graph associated with right child of the root node should be completed. The

subgraph associated with the leaf node contains the only edge (vs, Vg) and it is

ranked with I(Figure 4.2(d)). Now the algorithm visits the node that contains the

vertices (V6,V7). Here Fx = {(V7,VS),(V6,V7)}. Edges (V7,VS) and (V6,V7) are ranked

with 2 and 3, respectively(Figure 4.2(e)), since the rank is already used for (vs,Vg)

is 1. For the root node Fx = {(v], V2), (v" VB), (V" Vg), (V4, Vs), (Vs, V6), (V" vs)}. The

maximum rank, 1" used in the graph associated with the child nodes of the root node

is 3. So to rank the edges in Fx the algorithm uses different ranks starting from 4.

The edges (v" V2), (v" Vs), (V" Vg), (V4, V5), (V5, V6), (V" vs) of G are ranked with 4, 5,

6, 7, 8 and 9, respectively as shown in Figure 4.2(f).

4.2 Approximation Ratio

Nowwe will find the approximation ratio which is the measure of the goodness of

our proposed approximation solution in comparison with the optimal solution of the

problem. To calculate the approximation ratio we first find the lower bound of the

optimal edge-ranking number of series-parallel graphs in Lemma 4.2.1 and then the

upper bound of the approximate edge-ranking number of series-parallel graphs used

by our approximation algorithm, thereby the approximation ratio in Lemma 4.2.2.

Lemma 4.2.1 The optimal edge-ranking number ,-'(G) of a series-parallel graph G

sat~,fies r'(G) ~ log2n, where n ~, the number of vertices in G.

Proof. Solving edge-ranking problem on a graph G is equivalent to finding

minimum height I-edge-separator tree of G. Let us consider an example of a simple

CHAPTER 4. APPROXIMATION ALGORITHM 51

series-parallel graph G composed with only series connections as shown in Figure

4.3. It is possible to construct a I-edge-separator-tree T of G which is a balanced

complete binary tree as shown in Figure 4.3(b). T is the minimum height I-edge-

separator tree among all possible I-edge-separator trees for this graph. Nowedges

in nodes at the same level of T can be ranked with the same rank. So the number

of ranks required for ranking the edges in G equals to h(T) + I, where h(T) is the

height of the minimum height I-edge-separator tree T.

e----e
d e

••••••••
ahedelgh

(a)

e----e .--.
h e f g

/\ /\.--. e----e --. e----e
a h e d e f g h

(b)

Figure 4.3: (a) A series-parallel graph G witb only series connection and (b) its

minimum height l-edge-separator tree T.

The number of ranks increases with the height of the tree. Among all possible

I-edge-separator trees of a series-parallel graph complete binary trce(if possible to

construct) is the tree with minimum height. We know that removing a single edge

(cut edge) can result in maximum two components. In case of a I-edge-separator

tree every node cannot contain more than one edge and for the complete binary tree

removing every edge in every node will result in two components. There are some

series-parallel graphs for which it is not possible to construct a I-edge-separator tree

with complete binary tree structure as shown in Figure 4.4.

CHAPTER 4. APPROXIMATION ALGORITHM

o
a

52

b e

0------0 0b
a c

o
e

a

d

c

(a)

9

h

o
a

O.
J

-O-d---~O. 0
9 c

o
9

o
h

(b)

O.
J

Figure 4.4: (a) A series-parallel graph G and (b) its illllllmum height l-edge-

separator tree T.

Now 2h(T)+! - 1 = m, where m is the number of edges in a series-parallel graph

G, when T is a complete binary tree and 2h(T)+! - 1 > m when T is not a complete

binary tree. So h(T) + 1 :;. log2(m+ 1). Now in a series-parallel graph G, m :;.n - 1,

where n is the number of vertices in G. Thus we have, r'(G) = hb + 1 :;. log2n.

So the smallest height. possible for a l-edge-separator tree of a series-parallel

graph is that of the complete binary tree and the optimal edge-ranking number

,"(G) of a series-parallel graph G satisfies r'(G) :;. log2n. o

Lemma 4.2.2 The Approximation algorithm SP_ApproLRank ha., a ratio bound of

CHAPTER 4. APPROXIMATION ALGORITHM 53

211.(h+ 1)/ log2n, where ll. is the maximum vertex degree in G, h is the height of

the 2-vertex-sepamtor tree and n is the number of vertices in G.

Proof. Since T is a 2-vertex-separator tree of G, the number of vertices of G

associated with each node x of T can be at most two. Tbe edges in Fx(the set

of edges connecting vertices in Xx to vertices in Vy" 1 S; i S; d, and also edges

between vertices in Xx) require at most 211.ranks as there can be at most 211.edges

in Fx• Again these edges have ranks different from the ranks used in the edges of

the subgraph {Ey.} associated with the child nodes Yi of x. The algorithm can use

same rank for edges in different Fx when the nodes x are in the same level of T.

Since h is the height of the 2-vertex-separator tree, SP.Approx_Rank requires at

most 211.(h+ 1) ranks for an edge-ranking. By Lemma 4.2.1 the lower bound for

optimal edge-ranking number is log2n. Thus SP.Approx_Rank has a ratio bound of

o

4.2.1 Deviation fromOptimality

SP.Approx.Rank has an approximation ratio of 211.(h+ 1)/ log2n. Finding the

optimal edge-ranking is equivalent to finding the minimum height 1-edge-separator

tree Te as shown in Figure 4.5. But an approximate edge-ranking of the same graph

is obtained using the 2-vertex-separator tree Tv as shown in Figure 4.6. Actually

this is the main reason for deviating from optimality of our approximation algorithm

and it is not possible to directly compare edge-separator tree and vertex-separator

tree. In the I-edge-separator tree at each node there is only I edge, so I rank is

required for each level of Te. But in case of the 2-vertex-separator tree at each node

there can be 2 vertices, so at most 211.edges and hence 211.ranks may he required

at each level of Tv. Although it may happen that height of Tv is sometimes smaller

than that of Te. So the deviation from optimality depends on the height of Tv which

r'-"",
(' .

CHAPTER 4. APPROXIMATION ALGORITHM 54

6 e---co
V4 V5

/\--. e---co
v3 V4 V5 V6

I Ie---co e---co
v2 v3 V6 V7

Ie---co
Vs Vg

4

Vg

VB

(a) (b)

Figure 4.5: (a) The optimal edge-ranking of a series-parallel graph G, and (b) its

minimum height l-edge-separator tree Te•

is actually h and how many edges are to be ranked for each node of Tv which can

be at most 2ll..

4.3 Conclusion

In t.his chapt.er we present. a linear-t.ime approximation algorithm for finding the

edgc-ranking of a series-parallel graph. The approximation algorithm ha., a ratio

bound of 2ll.(h + 1)/ log2n. This is the first. time t.hat an approximation algorit.hm

is proposed for solving t.he edgc-ranking problem on series-parallel graphs. The

edgc-ranking problem is NP-complet.e for series-parallel graphs, t.hat is, finding a

.•....\

CHAPTER 4. APPROXIMATION ALGORITHM 55

v21va2V4

VI 9

v.
1

v, 2 V7

(al (bl

Figure 4.6: (a) The approximate edge-ranking of a series-parallel graph G, and (b)

its 2-vertex-separator tree T.

polynomial-time algorithm for solving the edge-ranking problem on series-parallel

graphs with unbounded maximum degree is unlikely. But our proposed linear-time

algorithm can return near optimal solution.

The lower bound of the optimal edge-ranking number ri(G) of a series-parallel

graph G satisfies r'(G) 2' log2n, where n is the number of vertices in G, but the

upper bound of ri(G) is 2tllog2 n [15]. The upper bOlmd of the approximate edge-

ranking number of a series-parallel graph obtained by our algorithm is 2tl(h + 1).

If the height h of the 2-vertex-separator tree could be obtained close to log2n, then

the approximate edge-ranking number obtained by our algorithm' would be near to

optimal-edge-ranking number.

,

Chapter 5

Conclusion

In this thesis, we deal with the problem of finding the optimal edge-ranking of series-

parallel graphs. We present a linear-time algorithm to find the 2-vertex-separator

tree of series-parallel graphs and a linear-time approximation algorithm for finding

. the edge-ranking of series-parallel graphs using the 2-vertex-separator tree with an

approximation ratio of 2tl.(h + 1)/ log2n, where tl. is the maximum vertex degree

in G, h is the height of the 2-vertex-separat.or tree and n is t.he number of vert.ices

in G. The upper bound of optimal edge-ranking number of a series-parallel graph

is 2tl.log2n. If the height h of t.he 2-vert.ex-separat.ort.ree could be obt.ained close

to log2n, then the approximat.e edge-ranking number obtained by our algorithm

would be near to optimal-edge-ranking number. This is the first time that an

approximation algorithm is proposerl for solving erlge-ranking problem on series-

parallel graphs.

Obtaining the 2-vertex-separat.or tree improves the running time of the known

best algorithm for finrling the optimal vertex-ranking of series-parallel graphs. Since

a series-parallel graph is a partial 2-trce, it is known that each series-parallel graph

has a 3-vertex-separator tree. Since we show how to construct a 2-vertex-separator-

56

CHAPTER 5. CONCLUmON 57

tree of a series-parallel graph using its special structure, the upper bound of the

optimal vertex-ranking number is improved and hence the nmning time of the best

known algorithm is also improved. The optimal vertex-ranking number of a series-

parallel graph is s: a log2n, where a = 3 when 3-vertex-separator tree is used and

a = 2 when 2-vertex-separator tree is used. Using 3-vertex-separator tree the upper

bound of the optimal vertex-ranking numher is 310g2n. Using 2-vertex-separator

tree the upper bound of optimal vertex-rafiking number improves to 210g2n. Since

the running time of known best algorithm for solving the vertex-ranking problem

on series-parallel graphs depends on the upper bound of the optimal vertex-ranking

number, the running time is also improved. The running time of the algorithm for

solving the vertex-ranking problem on series-parallel graphs is O(n2a+I log~n). So

using 3-vertex-separator tree the running time is O(n710g~n). If we use 2-vertex-

separator tree, the running time improves to O(n510g~n).

In Chapter 1, we focus on the background history and related motivations on

this research field. We also define our problem and discuss our motivations behind

solving the problem. In Section 1.1,we discuss the historical background and results

on graph coloring and graph-ranking problem. Section 1.2 represents the present

state of the problem and Section 1.3 deals with the scope of this thesis. At last, in

Section 1.4, we discuss the results obtained for solving the problems of this thesis

and compare our results with the previously achieved ones.

In Chapter 2, we discuss the required definitions for solving the problem and

developing the properties. In this chapter we also mention different types of

characterization, which are needed in the way of evolution. In Section 2.1, we

start by giving the definitions of some basic terms of graph which are related

to and used through out this thesis. Section 2.2 defines a special type of graph,

series-parallel graph. It also introduces different properties of a series-parallel graph

and representation of series-parallel graph through the binary decomposition tree.

<
(

CHAPTER 5. CONCLUSION 58

Section 2.3 discusses complexity classes of the algorithm. Finally in Section 2.4 we

define approximation algorithm and the approximation ratio.

In Chapter 3, we design an algorithm for finding a 2-vertex-separator tree of

. a series-parallel graph. In Section 3.1 we show that a series-parallel graph has a

2-vertex-separator tree. A series-parallel graph can be disconnected by removing

at most two vertices. However, disconnected components that do not have the

series-parallel stmcture may be yielded by this process. So we show that every such

component has at least one cut-vertex. This immediately proves that a series-parallel

graph has a 2-vertex-separator tree. Next in Section 3.2, we describe an algorithm

for constructing a 2-vertex-separator tree of a simple series-parallel graph. Here we

also analyze the complexity of the algorithm.

In Chapter 4, wepresent an approximation algorithm for solving the edge-ranking

problem on a simple series-parallel graph using the 2-vertex-separator. Section 4.1

presents the algorithm, its correctness and complexity analysis. In Section 4.2 we

calculate the approximation ratio of our proposed algorithm. To do that wefirst find

the lower bound of the optimal edge-ranking number of series-parallel graphs and

also the upper bound of approximate edge-ranking number of series-parallel graphs.

We first introduce the trend of solving edge-ranking problem using vertex-

separator tree instead of usingedge-separator tree. The followingproblems related to

the approximation algorithm for solving the edge-ranking problem of series-parallel

graphs are still open.

1. Develop a linear-time algorithm for finding the minimum height of 2-vertex-

separator tree of series-parallel graphs.

2. Develop an approximation algorithm for solving the edge-ranking problem on

series-parallel graphs with better approximation ratio.

•

CHAPTER 5. CONCLUmON 59

3. Develop an approximation algorithm for solving the edge-ranking problem on

partial k-trees.

Bibliography

[IJ A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The De~,ignand Analysis of Computer

Algorithms, Addision- Wesley, Reading, MA, 1974.

[2] M. Bodirsky, O. Gimn<\z,M. Kang, and M. Noy, Ou the number of series parallel and

outerplanar graphs, Proceedings of Discrete Mathematics and Theoretirol Computer

Science (DMTCS), (2005), pp. 383-388.

[3] H.I.. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index

on partial k-trees, Journal of Algorithms 11, (1990), pp. 631-643.

[4] H.I.. Bodlaender, J.S. Deognn, K. Jansen, T. Kloks. D. Kratsch, H. Miiller, and Zs.

Tuza, Rankiugs of graphs, Society for Indu..,trial and Applied Mathematics (SIAM)

Journal on Discrete Math. 21 (1998), pp. 168-181.

[5J H.I.. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks, Approximating

treewidth, pathwidth and minimum elimination tree height, Journal of Algorithms,

18 (1995), pp. 238-255.

[6] J.S. Deogun, T. Kloks, D. Kratsch, and H. Miiller, On vertex ranking for permutation

and other graphs, Proceedings of the 11th Annual Symposium on Theoretir.alA,'pects

of Computer Science, Lecture Notes in Computer Science, Springer- Verlag, 775

(1994), pp. 747-758.

[7] J. S. Deogun, and Y. Peng, Edge ranking of trees, Congress." Numemntium, 79

(1990), pp. 19-28.

60

BIBLIOGRAPHY 61

[8] 1.8. Duff, and J.K. Reid, The multifrontal solution of indefinite sparse symmetric

linear equations, Association for Computing Machinery (ACM) Tmnsaetion., on

Mathematical software, 9 (1983), Pl'. 302-325.

[9] A.V. Iyer, H.D. Ratliff, and G. Vijayan, Optimal node ranking of trees, Information

Processing Letters, 28 (1988), Pl'. 225-229.

[10] A.V. Iyer, H.D. Ratliff, and G. Vijayan, Parallel assembly of modular products - an

analysis, Technical Report Planning and Design Resource Center, Technical Report

88-06, Georgia Institute of Technology, 1988.

[11] A.V. Iyer, H.D. Ratliff, aud G. Vijayan, On an edge-ranking problem of trees and

graphs, Discrete Applied Mathematics, 30(1991), Pl'. 43-52.

[12] M. A. Kashem, and M. E. Haque, Edge-ranking problem is NP-complete for series-

parallel graphs, Proceedings of the 4th International Conference on Computer and

Information Technology (ICCIT), 2001, Pl'. 108-112.

[13] M. A. Kashem, X. Zhou, and T. Nishizeki, Algorithms for generalized edge-rankiugs

of partial k-trees with bounded maximum degree, Proceedingsof the 1st International

Conference on Computer and Information Technology (ICCIT),1998, 1'1'.4&-51.

[14] M.A. Ka.,hem, X. Zhou, and T. Nishizeki, Algorithms for generalized vertex-rankiugs

of partial k-trees, Theoretical Computer Science, 240(2000), Pl'. 407-420.

[15] M. A. Kashem, X. Zhon, and T. Nishizeki, Optimal c-vertex-rankings of serip.'l-parallel

graphs, .Manuscript in preparation.

[I6] T. Kloks, H. ~'liiller,and C.K. Wong, Vert"x ranking of "-,t,,roidal triple-frc", graphs,

Proceedings Of the 7th International Symposium on A19orithms and Computation

(ISAAC'96), Lecture Notes in Computer Science, Springer- Verlag, 1178 (1996), Pl'.

174-182.

[171 T. W. Lam, and F. L. Yne, Edge lumking of graphs is hard, Di.,crde Applied

Mathematie." 85(1998), Pl'. 7\-86.

BIBUOGRAPIIY 62

[18] T. W. Lam, and F. L. Vue, Optimal edge mnking of trC<'.'in Iinenr time, Algorithmicn,

30(2001), pp. 12-33.

[191C.B. Leiserson, Area-efficient, graph layout.sfor VLSI, ProceeLiingsof the 21st Annual

IEEl' Symposium on Foundation., of Computer Sciencc. 1980, pp. 270-281.

[201J.W.II. Liu, The role of elimination trL'esin sparse factorization, Society for lnd,~,trial

and Applied Mathematics (SIAM) Journal of MatTix Analysis and Applications, 11

(1990), pp. 134-172.

[21] N. Megiddo, Applying parallel computation algorithms in the design of serial

algorithms, Journal of the Association for Computing Machinery (ACM), 30(1983),

pp. 852-865.

[22] M.A.II. Newtou, and M.A. Kashem, An efficientalgorithm for optimal vertex-ranking

of permutation graphs, ProceeLiingsof the 2nd International Conference on Computer

and Information Technology (ICCIT), 1999, pp. 315-320.

[23] A. Pothen, The complexity of optimal elimination trees, Technical Report CS-88-13,

Peunsylvania State University, USA, 1988.

[24] A. Sen, II. Deng, and S. Guha, On a graph partition problem with application to

VLSI layout, Information Processing Letters, 43 (1992), pp. 87-94.

[25] K. Takarnizawa, T. Nishezeki, and N. Sato, Linear time computability of

combinatorial problems on series-parallel graphs, Journal of the Association for

Computing Machinery (ACM), 29(1982), pp. 623-641.

[26] P. de la Torre, R. Greenlaw, and A.A. Schiiffer, Optimal edge ranking of trees in

polynomial time, Algorithmicn, 13 (1995), pp. 592-618.

[27] X.Zhou, M. A. Kashem, and T. Nishizeki, Generalized edge-rankings of trees,

The Institute of Electronics, Information and Communicntion Engineers (IEICE)

Tmnsactions on Fundamentals of Electronics, Communications and Computer

Science, 81-A-2(1998), pp. 310-320.

Index

GIEII], 15

GIVII], 15

'P,18

n,22

~, 14

NP,25

NP-Complete, 25

NP-hard,25

P,25

c-edge-ranking, 8

c-edge-ranking nnmber, 8

c-edge-ranking problem, 8

k-tree, 19

r,47

r(G),4

r'(G),6

algorithm, 24

approximation algorithm, 26

approximation ratio, 26

binary decomposition tree, 22

p-node,24

s-node,24

clique, 16

complexity

linear-time, 25

polynomial-t.ime, 25

component, 17

vertex, 30

cycle, 16

decomposition, 30

parallel, 29

series, 29

edge-coloring problem, 3

edge-ranking, 6

edge-ranking number, 6

edge-ranking problem, 6

finite, 14

forest, 18

graph

adjacent, 13

complete, 16

connected, 17

degree, 14

disconuected, 17

incident., 14

63

•

INDEX

loop, 11

multigraph, 14

multiple, 14

ueighbor, 14

parallel, 14

simple, 14

optimal c-edge-ranking, 8

optimal vertex-ranking, :1

partial k-tree, 19

path, 16

postorder, 48

preorder, 34

rank,4

separator, 17

separator, 17

edge, 20

edge separator, 17

vertex, 20

separator tree, 20

series-parallel graph, 21

parallel, 22

series, 22

SP..Approx-Rank, 48

subgraph, 14

connected, 17

maximal,17

trail, 16

tn..'C, 18

binary, 18.

child, 18

height, 19

internal, 18

leaf, 18.

node, 18

depth, 19

height, 19

level, 19

parent, 18

root, 18

rooted, 18

subtree, 18

tree width, 20

tree-decomposition, 19

vertex-coloring problem, 3

vertex-ranking, 4

vertex-ranking number, 4

vertex-ranking problem, 4

walk, 16

o

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073

