Parallel Algorithm of a Heuristic for the
Multiple-Choice Multi-Dimension Knapsack Problem

by
Md. Waselul Haque Sadid

A Thesis Submitted to the Department of Computer Science and Engineering in
the Partial Fulfillment of the Requirement for the
Degree of
Master of Science in Engineering

(Computer Science and Engineering)

Department of Computer Science and Engineering
Bangladesh University of Engineering and T_e/ﬁhnology
Dhaka-1000, Bangladesh

October 2005

LT T
#100941# ‘

The thesis “Parallel Algorithm of a Heuristic for the Multiple-Choice Multi-
dimension Knapsack Problem ”, submitted by Md. Waselul Haque Sadid, Roll No.
100105042F, Registration No. 0110299, Session October 2001, to the Department of
Computer Science and Engineering, Bangladesh University of Engineering and
Technology, has been accepted as satisfactory for the partial fulfillment of the
requirements for the degree of Master of Science and Engineering (Computer Science
and Engineering) and approved as to its style and contents. The examination was held

on Qctober 2, 2005.

Board of Examiners

Dr. Md. Mostofa Akbar Chairman
Assistant Professor (Supervisor)
Department of CSE

BUET, Dhaka-1000

e

Dr. Md. Shamsul Alam Member
Professor & Head (Ex-officio)
Department of CSE

BUET, Dhaka-1000

Dr. Md. Abul Kashem Mia Member
Professor

Department of CSE

BUET, Dhaka-1000

. RPN

Dr. Md. Saifur Rahman Member
Professor (External)
Department of EEE

BUET, Dhaka-1000

Certificate

This is to certify that this thesis work has been done by Md. Wasclul Haque Sadid,
Student No. 100105042, under the supervision of Dr. Md. Mostofa Akbar, Assistant
Professor, Department of Computer Science and Engineering, Bangladesh University of
Engineering and Technology, Dhaka-1000, Bangladesh. It is also declared that neither
this thesis nor any part of it has been submitted or is being submitted to anywhere else for

the award of any degree or diploma.

Md. Waselul Haque Sadid Dr. Md. Mostofa Akbar

Supervisor of the Thesis

ACKNOWLEDGEMENT

First and foremost, I would like to thank my supervisor Dr. Md. Mostofa Akbar,
Assistant Professor, Department of Computer Science and Engineering, Bangladesh
University of Engineering and Technology. His constant supervision, constructive
criticism, vast experience, invaluable advice and continual encouragement at all

stages of my work have made it possible to complete this research.

I would like to express intense gratitude to Mr. Mohammad Abdul Hakim Newton,
Assistant Professor (on leave), Department of Computer Science and Engineering for
cordial cooperation and suggestions. I would also like to thank Mr. Abu Jafar
Muhammd Shahriar, Assistant Professor, Department of Computer Science and
Engineering, Ahsanullah University of Science and Technology for his good

cooperation and suggestions.

I would like to acknowledge with sincere thanks to the Head of the Department and
other faculty members, officers and staffs of the Department of Computer Science and

Engineering for their friendly cooperation.

1 would like to convey my sincere thanks to the Head of the Department and other
faculty members of the Department of Computer Science and Engineering of Rajshahi
University of Engineering and Technology for their valuable comments, suggestions

and cordial cooperation.

Finally I would like to thank all of my friends and my family members for all their

support and encouragement throughout my MSc. Engineering course.

Table of Contents

ACKNOWIEAZEMENT ...t s i
Table Of CONMENLS . ..vccurinirrierrienmreerrsritiiiriresre e ss s saesnannes et i
LSt OF FIGUICS ..uvvrveriesiiniiiiniint e sss sttt sb s s iv
LiSt Of TADIES c.ecveviesieieeie ettt secnssais et ene s s se st vi
ADSITACE 1.t ieeeeireee vt e e e e st bbb 1
10)5 1.9 ¥ 0 1T 0] | S—— vvers et e R AR R SRR R 2
INTRODUCTTION....cccnecasssrssassiassssmsssssassessissssssosssssmsssssasessassassesssistssssssssssasssassnsseass 2
1.1 Definition of KP and MMEKP........ccooovvniriiiiimimiis s 2
1.2 Applications of MMEKRP........c.ccoiiiiiiniinntsscciiss 4
1.3 Different Types of Algorithms for Solving MMKP ... 5
1.4 MOTIVALION coeviveeecerrererniecenree e st et ss e b s s et e e e a bt ais 5
1.5 Problem Definition. ..o iceeireernrrreiiiiiniiinsee et e cnes 6
1.6 Scope and FOCUSouvvuiieiisnicninrnen et 7
Ty A © 1111 1 T N OO OO PSS SOOI UYRON PRSPPI 7
CHAPTER TWOciinsiismsnsssisisisassisssssnssassssssssssassasssssssansssssassassss ———— 9
BACKGROUND AND PRELIMINARIES.........ccconmmmniniiiinnsacssssssosmosnerssnsnns 9
2.1 Related Research on KP and Its Variants, MDKP and MCKP.................. 9
2.1.1 Exact Solutions for KP, MDKP and MCKPcccooevvriinininninnin, 9
2.1.2 Approximate Solutions for KP, MDKP and MCKP ..., 11
2.2 Related Research on MMEKP ..o e 12
2.2.1 Algorithms for Exact Solutions to the MMKP ..., 12
2.2.2 Algorithms for Heuristic Solutions to the MMKP......c..ocociiiinnnn 13
23 PRAM MOUEL.ccorurrosmrmrcmmsinisssmsomsmsssissssssssssssssssssssssssssssss s ssssss 17
2.3.1 Concurrent Versus Exclusive Memory ACCESSESccvvurrrenrenrinnnsvensnane 18
232 Optimality of PRAM AIEOFAIMS ..ooccocverscnreeenssereaseeree e 19
2.3.3 Examples of PRAM AlZOTItIMS .t 19
2.4 Related Works on Parallel Algorithm for Knapsack Type Problems......... 25

i

o

CHAPTER THREE....ccccoovsrninmiienissssssrssnsmsasssasessisseesssssans R A

PROPOSED ALGORITHMS FOR MMEKDP ..o 29
3.1 Why M-HEU was Choscn for Parallellism..............cooconn 29
3.2 Problem of M-HEU to be Parallelized.........ccoouvremeoiiiiiinnnn 29
3.3 A New Sequential Heuristic, MS-HEU ... 30

3.3.1 The Main Principle .o 30
3.3.2 The Process of UpBradation ... 30
3.33 Steps Of MS-HEU oot 31
3.3.4 Description of MS-HEU for Upgrading » Items of an MMKP in an
Arbitrary Iteration in Step 2 ... 32
3.3.5 Description 0of MS-HEU ..o 34
3.3.6 Some Arguments Regarding MS-HEU ... 37
3.3.7 Example for Demonstrating Strategy 1 of MS-HEU ..o, 38
34 PRAM-HEU: A Heuristic for Solving the MMKP Using PRAM Model ..41
3.4.1 Description of the Algorithm PRAM-HEUcccccooiiniin. e 43
3.42 Complexity Analysis of Algorithm PRAM-HEU.........oooormrmmmmrvrvvivinninn 47

CHAPTER FOUR..ciiiiissaensnmnssssissssissstssssassessarsassassssssssasssssisserrss satssisssssssasaes 49

EXPERIMENTAL RESULTS..cccovivsnesneriinsnissiosssresssssanstsasssssssssnsrassssasrssasaansanss 49
4.1 Initializing the Data.......ooociiiinne e 49
4.2 Methods of EXPETiMEnt. ...cocovviioverniniisininne sttt 50
4.3 Tets RESUILS ..ccoiiiiriiireecicirerarrre et srtesrrestn s srrssrrie s et a s n s ss s n e e eb e 50
4.4 ODBSCIVALIONS 1evuriiirrieeeerirreersneeentsteeresias s ssasseeraress b aa s anssssssesar e nsessarnsetsrn 60

CHAPTER FIVEcccvevnsaerranns T teereneeeessameeeTesniIaNESIS LTI R AL SR S e s a4 AREE IV SRR 63

CONCLUSIONS reortssemasisaseEsaEet et TS SRE S R S R S SB RS SRR RS PRS R Se R bbb 63
5.1 Major COnNtribULIONS ... ocevririeiirce et s, 63
5.2 Future Research WOFK ..o i 64

APPEIIX ccvrtrrsirsrsmsnemsisessissessssssrasrsrscssisssssissrststr e ssasmassassssiiasssere s ers s s et s 66

RETETEIICES 11eveerrererersssorsressssreseasssrsostssstosrtessniasasssnerbat sesessrestessesararsssbisaasassssnnesannisstisss 87

iti

1.1
1.2
2.1
2.2
2.3
24
25
2.6

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

List of Figures

The classical 0-1 knapsack problem ... 3
Example of an MMEKPooiiiiiiiiiii i 4
Flow chart of M-HEU L.oun i ettt e an e 16
The shared MemMory MOUE]vveiireirreeiiii et 18
SUMMALIoN OF 72 €1EMENLS «.vv.iivvreriereerrer e eritie e e e r s ann e re e 20
An example of prefix cCOMPULAION........uvuviiriiriiie e 21
Doubly logarithmic depth tree of 16 nodes.........o.oooiiiriinriiiiiiiies 22
A binary tree T for pipelined merge-sort algorithm ... 24
Example of an MMEKRP L.....oiii e 33
Finding actual number of upgradesccoooviii 45

Performance of different strategies of MS-HEU normalized with respect to M-

HEU for the MMKP data sets with I=25and m=25ccviiinnn 53
Performance of different strategies of MS-HEU normalized with respect to M-
HEU for the MMKP data sets with #=2500 and /=25 ..o 53
Performance of different strategies of MS-HEU normalized with respect to M-
HEU for the MMKP data sets with n=2500 and m=25coooiiiinnnn, 54
Performance of different strategies of MS-HEU and M-HEU normalized with

the upper bound for the MMKP data sets with /=10 and m=10oooeeies 54
Performance of different strategies of MS-HEU and M-HEU normalized with
the upper bound for the MMKP data sets with #=500 and /=10 ... 55
Performance of different strategies of MS-HEU and M-HEU normalized with

the upper bound for the MMKP data sets with =500 and m=10 55
Time required by different stratcgics of MS-HEU and M-HEU for the MMKP
data sets with m=25and I=25o . 56
Time required by different strategies of MS-HEU for the MMKP data sets with
P V1T I s S U R T 56

iv

4.9

4.10

4.11

4.12

4.13

4.14

4.15

Time required by different strategies of MS-HEU and M-HEU for the MMKP? h

data sets with n=2500 and /225 ...
Time required by differcnt strategics of MS-HEU for the MMKP data sets with
2500 and 7525 oot
Time required by different strategies of MS-HEU and M-HEU for the MMKP
data sets With 772500 and M=25 ... ooocueeiieeeeeeeee e e e e s
Time required by differcnt strategics of MS-HEU for the MMKP data sets with
HE2500 and 525 1o e
Comparison of the total values of the items picked by PRAM-HEU, M-HEU
and Upper-Bound for 10 uncorrelated problem sets with #=100, m=5, =10

‘Comparison of the total values of the items picked by PRAM-HEU, M-HEU

and Upper-Bound for 10 correlated problem sets with #=100, m=5, [=10

Example of an MMKP with available resourcesoooiiiiiinnne

57

57

58

58

59

59
60

2.1

31
4.1

4.2

4.3

List of Tables

The lists arising during the execution of the indicated stages of the
pipelined merge-sort algorithm ...
Summary of the compiexities of different Stepsoo.vvvviiiiiiiiiinniienn,

Time requirements by M-HEU and New Heuristic algorithm for solving the
MMKP with correlated and uncorrelated data sets varying n veeeeaenas
Time requirements by M-HEU and New Heuristic algorithm for sofving the
MMKP with correlated and uncorrelated data sets varying m..................

Time requirements by M-HEU and New Heuristic algorithm for solving the

MMKP with correlated and uncorrelated data sets varying [..................

vi

25
48

5t

52

Abstract

Multiple-Choice Multi-Dimension Knapsack Problem (MMKP) is a variant of the
classical 0-1 Knapsack Problem. It has a knapsack with a multidimensional capacity
constraint and groups of items where cach item having a utility value and a
multidimensional weight constraint. The knapsack is to be filled by picking up exactly
one item from each group. The problem is to maximize the total value of the items in the
knapsack but not exceeding the knapsack capacity. MMKP is an NP-Hard problem and
its exact solution is not suitable for real time decision making applications. Therefore
heuristic based approximation algorithms are developed. Khan developed a heuristic,
HEU, which achieves 93% of the optimal solution value. Later Akbar et al. presented M-
HEU, a modification of HEU, achieving 96% of the optimal value with a time complexity
of O(mnzl 2), where # is the number of groups, / is the number of items in each group and
m is the number of resource constraints. But, these heuristic algorithms do not scale better
for larger systems. In this thesis, a new sequential heuristic algorithm is developed by
modifying M-HEU to some extent that would be parallelized. Later a parallel heuristic
algorithm is introduced that is the parallel version of the new sequential heuristic
algorithm. And the new sequential heuristic algorithm 1is used to compare the
performance of the parallel heuristic algorithm. Experimental result shows the new
heuristic algorithm achieves 94.5% of the optimal value. The time complexity of the
parailel algorithm is 0(log nl(log n+logm+loglog l)) with O(n log nl(log n+ lm)) number
of operations in Concurrent Read Concurrent Write (CRCW) PRAM model, ie., the
required number of processors is O((n logn+nlm)/(logn+logm+loglogl)). This also
means that we ha.ve a sequential heuristic algorithm running in O(nlogn[(logn+lm))

time which seems lo be remarkable since M-HEU, a celebrated sequential heuristic,

although achieves 96% of optimal value, takes the time complexity of O(mnzl 2)

CHAPTER-1

Introduction

Knapsack problem and its variants are widely used in many resourcc management
problems such as resource scheduiing in multimedia servcr, admission control and
profit maximization, menu planning ctc. There are several variants of Knapsack
Problem (KP) such as Multiple-Choice Knapsack Problem (MCKP), Multi-
Dimensional Knapsack Problem (MDKP), Multiple-Choice Multi-Dimension
Knapsack Problem (MMKP) etc. In this chaptcr, we define the classical 0-1 KP and
MMKP.

1.1 Definition of KP and MMKP

The 0-1 knapsack problem (0-! KP) is a well-known problem in the ficld of computer
science. In KP, there is a knapsack with finite capacity and a sct of items each having
a value and a weight. The knapsack is to be filled with the items, each item taken
completely or excluded. The 0-1 KP is to maximize the total value of the items in the
knapsack, so that the total resource required does not cxceed the resource constraint of
the knapsack.

The classical 0-1 Knapsack Problem (KP) can be described as follows. Suppose there
are n objects, and a knapsack or bag. The value v; denotes value (or profit) provided
by Item i, weight #; denotes resource required by Item 7, and R denotes the amount of
available resource. Here the problem is to aliocate resource to a subset of items in
order to maximize the total value such that the total allocated resource does not
exceed the available resource.

Mathematically the problem is stated as follows:

n
V= maximize) x,

i=1

such thath,r; <R,

X, € {0,]}, i=12,..,n

Here x/'s for i = 1, 2, ..., n are variablcs. The problem is called the 0-1 knapsack
problem because variable x; can either be taken or left behind, ie. a value of 0
implying Item { is not picked, or a value of 1 implying ltem { is picked. Any pick of
items which satisfy thb constraint is calicd a feasiblc solution of thc problem. The
solution of the 0-1 knapsack problem is the feasible solution which maximizes the
sum of the value of the picked items. Figure 1.1 illustrates a KP where maximum

value that can be achieved is 18 and the weight capacity of the knapsack is 10.

Item
=10 v=8 v=15 Knapsqck
=5 r=4 =8 Capacity
R=10
Knapsack

Figurel.1: The classical 0-1 knapsack problem

The Multiple-Choice Multi-Dimension Knapsack Problem (MMKP)[1, 2, 3, 4] is a
variant of the classical 0-1 KP, where there are different groups of items and exactly
one item can be picked up from each group; and the constraints are multi-

dimensional, Let there be n groups of items, Group i containing /, items, ltem j of

Group i has a utility value vy and an m dimensional resource cost 7; = (¥, #5500 Fm)-

The resource constraint R=(R,R,,.,R,) is also m dimensional. The MMKP

. .« . e " 4 .
problem is to maximize the utility value V' = ZMZH x,;v, subject to the resource

. n A [A
constraint Z::; ZJ_:‘ Xty € Ry, where 1S k<m and x, € {O,I}and ZH x, =1.

Figure 1.2 illustrates an MMKP with 3 groups and 2 resource requirements. Values
and resource requirements of cach item are shown inside the boxes representing
items. Objective is to pick up exactly one item from each group to maximize the total
value of picked items maintaining ¥ r1 of picked items < 43 and X r; of picked items

<45,

y=20 V=25 V=12 [tem
=15 r=17 r=12 =15 r=17 r2=17‘(/
Maximum
=30 =16 =9 Allowable
rn=14 ry=17 =18 r=12 r=15 r=13 Resource
Type Ri=43
V=20 p=19 p=15 Type Ry =45
rl‘—=15 !‘2=15 r1=16 !‘2=14 r;=10 !‘2=17
Group 1 Group 2 Group 3 Knapsack

Figure 1.2: Example of an MMKP

1.2 Applications of MMKP:

MMKP has its application in many resource management problems. For example, it
can be used to solve the resource management problem in the delivery of multimedia
streams from an Adaptive Multimedia System (AMS) [1, 3] that has been proposed by
Khan. The users place request for sessions in these systems and pay according to the
Quality of Service (QoS) they are geiting. As resources of servers such as CPU
cycles, memory, 1/O bandwidth ctc. are limited decisions have to be made whether
new users should be admitted or not and the QoS level of the session if it is admitted.
This decision-making must consider the amount of available resources and also the
maximization of total revenue that can be earned from sessions. This type of
admission control in these systems is a real-time problem that requires decisions of
admission or rejection within a certain amount of time. Problem of admission control
can be mapped to MMKP by mapping users to groups, quality of service profiles of
users to items in a group, server resources to resources and revenue earned to values.
We also consider a menu selection problem [1] that can be mapped to the MMKP. A
person wants to have a meal where he has to choose a beverage, an appetizer, a main
dish and a dessert. For each choice, his preference is expressed as a satisfaction value.

The problem is to find a meal which maximizes the total satisfaction subject to

constraints such as maximum values of calorics, cholesterol and cost. Other
applications such as cargo loading, capital budgeting, industrial production can also

be mapped to the MMKP.

1.3 Different Types of Algorithms for Solving MMKP

There are two types of solutions for the MMKP: optimal solutions or exact solutions,
and near-optimal solutions or heuristic bascd solutions. The worst-case computation
time of the exact solutions for MMKP grows exponentially with the size of the
problem and its exact solution may not be feasible in any real time problem like
admission control problem in an adaptive multimedia system [1, 2, 3, 4]. Dynamic
Programming or Branch and Bound Algorithm can be used to obtain an optimal
solution to the MMKP. The heuristic based solutions is used to provide solutions
which are close to optimal values, but require computation times which are much
shorter than those of the optimal solutions. Different heuristic approaches have becn
developed to obtain near optimal solution to thc MMKP. Khan developed a hcuristic,
HEU [1, 2], based on the concept of aggregate resource consumption. Later Akbar et
al. presented a modification of HEU, M-HEU [3, 4], which finds the solution
achieving better optimality than HEU. Another heuristic, C-HEU [3], also developed
by Akbar finds the solution by constructing a convex hull. There are also some
parallel algorithms developed for solving knapsack type problems, but so far no

parallel algorithm has been reported for solving MMKP.

1.4 Motivation

Many practical problems in resource management can be mapped to the MMKP, The
utility model of adaptive multimedia system (AMS) has been proposed by Akbar [3,
4]. Users place requests for sessions to AMS and pay the owners of the AMS
according to the Quality of Service (QoS) they are getting. As resources of servers
such as CPU cycles, memory, 1/0 bandwidth ctc. are limited decisions have to be
made whether new users should be admitted or not and if admitted which level of
QoS they will enjoy. Problem of admissibn contro! in an AMS exactly fits an MMKP
and can be mapped to the MMKP [4]. Users submitting their requests to a multimedia

system can be represented by the groups of items. Each level of QoS of a user’s

requested session is equivalent to an item. Fach session is equivalent to a group of
items. The values of the items are cquivalent to offercd prices for the session. The
multimedia server is equivalent to the knapsack with limited resources, e.g. CPU
cycles, I/O bandwidth and memory. This type of admission control in these systems is
a real-time problem which requires decisions of admission or rejection within a
limited'time frame.

The exact solution of MMKP is not suitable for real time decision-making
applications. So heuristic based approximation algorithms are developed. These
heuristics for solving the MMKP can be used for solving rcal time admission control
problem in Adaptive Multimedia System (AMS). But if the number of groups of the
MMKP increases in a large multimedia system, it is not efficient to run M-HEU to
perform admission control. So, we need a faster algorithm to achieve the real-time
response in admission control. A parallel version of M-HEU can achieve batter
computational specd. _

Parallel computation is currently an area subject to intense research activity. There
has always been a need to solve large-scale computational problems [5]. These
problems must be solved in a reasonable time scale, which implics fast computers to
do the job. In those cases, where the application must be presented by a well-
determined deadline, the parallel computation will be applied. Recent technological
advances have opened up the possibility of performing massively parallel

computations cost effectively and have made the solution of such problems possible.

1.5 Problem Definition

Since MMKP is an NP-Hard problcm [6], algorithms for finding the exact solution for
MMEKP are not applicable to the real time admission control problem. To meet up any
real time demand we often use heuristic solutions of such problem. There are several
heuristic algorithms developed for solving MMKP. M-HEU [3, 4] is the best among
these heuristics as far as percentage of achieved optimality is concerned. But
quadratic complexity M-HEU does not scale better when number of groups increases
in large multimedia systems. We find that the time requirement for M-HEU can be
further reduced, if computations can be done in parallel. However, it is secn that it is

not possible to provide a parallel algorithm from M-HEU directly. Therefore, a new

heuristic algorithm is requircd for solving MMKP that would be parallelized and

provide a polylog time solution.

1.6 Scope and Focus

The main focus of this work is to present a parallel algorithm of a heuristic for
Muitiple-Choice Multidimensional Knapsack Problem (MMKP). Dcvelopment of
exact algorithms is beyond the scope of our work. Alsc PRAM machines are not

available in reality. So the implementation and developing the prototype of this

algorithm is beyond the scope of this thesis. As described in previous section, a new

serial heuristic algorithm is developed and we implemented it. Then we can get the
total value achieved from the algorithm by varying different parameters and we can
compare the performance of our algorithm with respect to M-HEU. We also compute
the performance of our algorithm in terms of achieved optimality. We also compare
the time requirement of the new serial heuristic aigorithm and that of the M-HEU by
varying different parameters. But the comparison of time requirement of our proposed
parallel algorithm with M-HEU is beybnd the scope of the current research. We
compute the time complexity and the total number of operations of the new sequential

heuristic algorithm and of the proposed parallel algorithm.

1.7 Qutline

This thesis is organized in five chapters. In this scction we briefly describe the
organization of the rest of the chapters.

In Chapter 2 a review of the literature of KP and its variants have becn carried out.
We describe here the algorithms related to the KP and its variants. Parallel algorithms
for the KP and its variants are also descried in this chapter. The parallel random
access machine (PRAM) model has also been included in this chapter.

Chapter 3 presents the parallel heuristic algorithm to solve the MMKP. First two
sections of this chapter describe why we chose M-HEU for this thesis and the problem
of M-HEU to be parallelized. A new serial heuristic algorithm has been described in
the next section, developed by modifying the M-HEU that would be parallelized.
Then the parallel heuristic algorithm is described followed by the' analysis of the

algorithm.

In Chapter 4 we present the cxperimental results. A description of the cxperimental
procedurcs has been given with the results presented in the graphs. An analysis of the
results of the experiments has also been performed at the end of this chapter.

We conclude the thesis in Chapter 5 by describing the contributions of the current
research. Some suggestions for future research work have also been included in this

chapter.

CHAPTER 2

Background and Preliminaries

There are various algorithms for solving variants of Knapsack Problems. In this

chapter, we briefly describe some of these algorithms.

2.1 Related Research on KP and its variants, MDKP and MCKP

The MDKP, multidimensional Knapsack Problem is one kind of KP with multiple
resource constraints for the knapsack, i.e. the resources are multidimensional in this
typevof KP. The MCKP, Muitiple Choice Knapsack Problem is another KP where the
picking criterion for items is restricted. In this variant of KP, therc arc one¢ or more
groups of items. Exactly one item will be picked from each group subject to resource
constraint.

KP is an NP-Hard problem [6]. The variants of KP are as hard as KP. So these are all
NP-Hard. There are two types of algorithms for solving the KP and its variants: one is

for obtaining exact solution and the other is for obtaining approximate solution.

2.1.1 Exact Solutions for KP, MDKP and MCKP

Dynamic Programming and Branch and Bound approach can be used to obtain
optimal solutions [1, 3] to the classical 0-1 KP. Dynamic Programming method [7]
uses sequence of decisions, regarding whether to pick an item or not, leading to an
optimal solution. It is a design method that can be used when the solution to a
problem can be viewed as the result of a sequence of decisions. It acts as the divide-
and-conquer method, solves problems by combining the solutions of subproblems.
Divide-and-conquer algorithms divide the problem into independent subproblems,
solve the subproblems recursively, and then combine their solutions to solve the
original problem. Dynamic programming is applicable when the subproblems are not
independent, i.e., when subproblems simre sub supproblems. The solution to the
knapsack problemlcan: be viewed as the result of a sequence of decisions. Let there be
n items in the knapsack and x; define the ith item. We have to decide the values of x;

for 1 < i < n. First we make a decision on x;, then on xz, then on x3, and so on. An

optimal sequence of decisions maximizcs the objective function satisfying the
resource constraints.

On the other hand, Branch-and-bound is a general and popular method for solving
combinatorial optimization problem. In this method the optimal solution is found
using iterative generation of a tree, clal]ed search tree [1].

A node in the search tree represents a solution state where thcre may be some
variables whose values are known (values are assigned) and that of some others” may
be unknown (values are not assigned). This method starts with a single-node tree
where the values of all the variables are unknown. A node of this tree may be
expanded based on a variable whose value is unknown at the current node. For
example, expanding a node based on binary variable x; may generate two nodes: one
for x; = 0 and the other for x; = 1. No node will be generated for x; = 1 if it is not
feasible (that is picking item / violets the resource constraint). A node which has been
generated and whose children have not yct been generated is called a live node. The
expanding node or simply the e-node is the node which has the largest upper bound
among the live nodes. For exploration, upper bound of the objective function is
computed from the known values at each node. The node with the largest upper bound
is explored. A node producing the largest upper bound having no unknown variable is
the solution node. The upper bound is computed using linear programming technique.
Linear programming is a deterministic tool where all the model paramcters are
assumed to be known with certainty. The Simplex Method is a very powerful
technique for solving linear programs. The Simplex Method requires that cach of the
constraints be put in a special standard form in which all the constraints are expressed
as equations by augmenting slack or surplus variables as necessary. This type of
conversion normally results in a set of simultancous equations in which the number of
variables exceeds the number of equations. Even though the worst case computational
complexity of the Simplex Method grows exponentially with the problem size, this
method is very efficient practically {1].

Kolesar {8] gave the first branch and bound algorithm for the classical 0-1 KP. This
algorithm uscs a greedy-like stratcgy where at any c-node; it branches on the not-yet-
decided item which provides a highest value per unit of required resource (v;/r;). Shih
[9] presented a branch-and-bound algorithm for the MDKP. For upper bound

estimation, this algorithm treats the MDKP problem as m single dimensional KPs, and

10

calculates the optimal value of the objective function in cach case. The minimum of
these objective function values is then used as an upper-bound. Branch and bound

algorithm for the MCKP was proposed by Nauss [10].

2.1.2 Approximate Solutions for KP, MDKP and MCKP '
Different heuristics have been developed to obtain approximate solutions to the KP
and its variants. These approaches use some kind of greedy like method to generate

solutions. For the classical 0-1 KP, a greedy approach to get a near optimal solution is

as follows: pick the item with the largest v,/ (value per unit resource), then pick the
item with the second largest v,/r,, and so on until no more item can be picked

because the available resource is not enough or no item is left. The greedy method is
perhaps the most straightforward technique and it can be applied to a wide variety of
problems. Most though not all, of thesc problems have » inputs and they require a
subset that satisfies some constraints. Any subset that satisfies these constraints is
called a feasible solution.

The greedy approach can be generalized for other variants of KP. Toyoda [11]
proposed a simple solution to the MDKP using the concept of aggregate resource. In
this algorithm the main idea was to penalize the not yet picked items depending in the
current resourcc state. This idea penalizes the items with greater requirement of those
resources that are already consumed much. So, if two items produces the same value
then the item with less penalty is preferred. Suppose in an m: resource MDKP
instances, the current resource usage vector is given as C=(C1, Ca, ..., C») and

resource requirement of Item 7 is given by r=(ry, r2, ..., 7). Thena,, the aggregate

resource required by Item i is computed as follows:

i

a, = (iCy+1Cy e rmc% = "'CC" , where|C] denotes the magnitude of vector C;

and * denotes the dot product of vector. Toyoda’s algorithm starts with no item as the
initial solution and adds items iteratively one at a time. In each iteration, the item with
the maximum v, /a, (value per unit of aggregatc resource for itcm i) is picked.

Magazine [12] proposed another heuristic based on Lagrange Multipliers to solve the
MDKP, for maximizing the objective function subject to constraints. Afl resource

constraints are incorporated into the maximization goal. Initially all Lagrange

11

Multipliers are set to zero and this is in general not a feasiblc solution for the MDKP.
Next all actual resource consumptions are determined and the most violated constraint
is identified. Tl}e corresponding multiplier is then increased as much as necessary to
update the resource consumptions. This step is repeated until the solution has become
feasible.

Tabu Search [13], Simulated Anncaling [14] and Genetic Algorithms [15] can be
applied to solve the variants of Knapsack Problem. The Genetic algorithm has the
exponential worst case complexity - it can explore all of the items. This algorithm is
based on natural sclection and genetics. The algorithm combines a random selection
by the survival of the fittest theory. The strongest individuals in a population will
have a chance to transfer their genes to the next generation. Simply it can be coded a
number of different solutions of a problem as a bitstring, and evaluate their fitness in
relation to each other. Every solution can be scen as an individual in a population, and
the bitstring can be scen as the genes of the individual. Then the individuals are
selected based on their fitness. Tabu search and simulated annealing are based on
looking at the neighbours. These are costlier than the heuristics using greedy
approach. The Tabu search begins by marching to local minima. To avoid retracing
the steps used, the method records recent moves in one or more Tabu lists. The
original intent of the list was not to prevent a previous move from being repeated, but
rather to insure it was not reversed. In Tabu Search, Simulated Annealing and Genetic
Algorithm approach current solution is moved to another solution by upgrading some
and downgrading some. This upgrade and downgrade at the same step requires more

time because we have to search all neighbouring combinations of current solution.

2.2 Related Research on MMKP
MMEKP is actually the combination of MDKP and MCKP. As usual, there are 't:wo
methods of finding solutions for an MMKP: one is a method for finding exact

solutions and the other is heuristic solution.

2.2.1 Algorithms for Exact Solutions to thec MMKP
Khan [1] presented an exact algorithm for the MMKP using the Branch and Bound
Linear Programming (BBLP) technique. The Branch and Bound technique has been

discussed already in the previous section.

12

2.2.2 Algorithms for Heuristic Solutions o the MMKP

Since MMKP is an NP-hard problem, the computation time for any optimal
algorithm, such as BBLP, may grow exponentially with the size of the problem
instance in the worst case. This may not be acceptable for time-critical applications
such as admission control and dynamic resourcc allocation in a multimedia system.
These applications are forced to accept a near-optimal solution if the computational
time for optimal solution exceeds real-timc bounds.

Moser’s [16] heuristic algorithm uses the concept of graceful degradation from the
most valuable items based on Lagrange Multipliers to solve the MMKP. It starts with
the most valuable item of each group as the sclected item and in general the resource
constraints to be violated in that case. The initial choice of items is adapted to obey
the resource constraints by repeatedly improving on the most violated resource
constraints. But this algorithm fails to find a feasible solution when the resources are
short. However in those cases, some other heuristics such as M-HEU, I-HEU [3, 4]
find a feasible solution by starting from the lowest valued items and try to find a
feasible solution by upgrading the solution if the current one is not feasible.

A new heuristic algorithm HMMKP is proposed for solving MMKP with the time
complexity of O(mn®(I* ~I)) by Hernandez [17]. This heuristic needs to solve the

Linear Programming Relaxation (LPR) of a relaxation of the MMKP. In this heuristic,
an LPR of the MMKP is done, then the relaxed problem is solved and the Lagrange
multipliers are obtained. Later the Lagrange multipliers are used in order to compute
the pseudo-utility values needed for the MMKP solution.

The Guided Local Search (GLS) algorithm [18] is a recent approach for solving
MMKP, moves out of a local Maximum/minimum by penalizing particular solution
features that it considers should not occur in a near-optimal solution. The initial
feasible solution is obtained here by applying a Constructive Procedure (CP). CP %s a
greedy procedure which generates a feasible solution by considering the Feasible
State (FS) process. The Complementary CP approach, called CCP [18, 19], uses an
iterative improvement of the initial feasible solution. A reactive local search based
algorithm is proposed in [18], where the algorithm starts by an initial feasible solution
and improved by using a fast iterativc procedure. The aim of this process is to

improve the complementary solution obtained by CCP. Later a different procedure,

13

namcd unblocking procedurc is introduced in order to escape to local optima. Finally,
a memory list is applied in ordcr to forbid the repetition of configurations. The worst
case complexity of this algorithm is O(nlm*) floating point operations.

HEU, a heuristic developed by Khan [1, 2}, finds the solution of the MMKP using the
concept of aggregate resource consumption. Later Akbar [3, 4] presented a
modification of HEU, M-HEU, which achieves bettcr optimality than HEU. In these
heuristics, the selection of the lowest valued item in cach group is defined as the
initial solution of an MMKP. If this solution is not feasible then HEU tcrminates
notifying “No solution found”. However, therc may be a solution using higher-valued
items that requires fewer resources. Thus a new step should be added to find a feasible
solution if the initial solution is not feasible. Again HEU finds a solution by only
upgrading the selected items of each group. There might be some higher-valued items
in the MMKP, which makes the solution infeasible, but if some of the groups are
downgraded we can get a feasible solution. This method of upgrading followed by
downgrading may increase the total value of the solution. Thus M-HEU modifies
HEU by adding a pre-processing step to find a feasible solution and a post-processing
step to improve the total value of the solution. Incremental heuristic solution, I-HEU
also presented by Akbar [3, 4] withr the same optimality as M-HEU. If the number of
groups in the MMKP is very large then it is not efficient to run M-HEU. An
incremental solution is a necessity to achieve a better computational speed. By
changing the technique of finding feasible solution we can use M-HEU to solve the
MMKP incrementally. C-HEU, another heuristic developed by Akbar [3] using the
concept of convex-hull, provides solution to the MMKP in logarithmic worst-case
time complexity. It is an incremental heuristic. It has lower order of complexity but
the optimality achieved by this heuristic is much inferior to the other heuristics.

There is a number of iteration in every heuristic and cach itcration is highly dependent
on its previous iteration, so that it is really difficult to provide a parallel version from
these heuristies directly. In this research M-HEU is modified to some extent that
would be parallelized. So it is better to describe the HEU and M-HEU in detail for
clear understanding of our new algorithm.

Algorithm HEU:

HEU [1, 2] achieves 93% optimal solution with a complexity ofO(mnllz) operation.

The principles of the HEU are as follows:

» The items of cach group are sorted in nondecreasing order according to the value
associated with them and it selects the lowest valued items from each group as the
initial solution. It then upgrades the solution gradually by choosing new items as
along as the solution remains feasible.

» It uses Toyoda’s concept of aggregate resource where the required resource vector
of an item is converted to a scalar index using penalty factors taken from the
current resource usage vector. Here the main idea is to penalize the use of
resources depending on the current resource state. It applies a large penalty for a
heavily used rcsource, and a small penalty for a lightly uscd resourcc.

» To find the next item to be picked, it chooses the one which has the highest
positive change in aggregate consumed resource (one which gives the best
revenue with the least aggregate resource). But if no such item is found, it chooses
the one which maximizes the value gain per unit aggregate resource. It can be
defined by a vector Ady;, relative change of aggregate resource consumption and
the item is chosen with the maximum value of Aa"; which is defined as follows:
Ad ;= {v,b }is a vector, where

(av, /Aa,,0) if Aa, <0
{(Aa,j,l) if Ag, >0
And Ad >Ad w , if B(Ad y)>b(Ad) or (B(Ad")=b(Ad) and v(Ad")>v(Ad u))

Aal =

i

Where, the change of aggregate resource consumption, Aa, = Z(r,.pw ~ Ty)x C,
k

and the change of revenue, Av, =v,_,, —v,.

C,= Zr,pw , P[] is the currently selected item in group /.

Algorithm M-HEU: .

A new heuristic algorithm, M-HEU [3, 4], modification of HEU is proposed by Akbar
for solving MMKP with time complexity ofO(mnziz). M-HEU finds 96% optimal
solutions on average with much reduced computational complexity and performs
favorably relative to other heuristic algorithms for MMKP,

The items in each group of the MMKP are sorted in non-decreasing order according
to the value associated with them. So, the bottom items in each group are to be

considered as lower-valued items than the top ones. Picking a higher-valued or lower-

15

Sclect the lowest valued item
' from cach group

Solution
feasible? .~

Find a feasible solution

Select a higher valued item that

h 4

gives a feasible solution

No

Yes
Update the solution and the

resource consumption vector

'

Infeasible upgrade followed by
one or more downgrades

Solution
feasible?

Yes
Update the solution and the

resource consumption vector

-

Revive the previous updated
solution and terminate

End

Fig 2.1: Flow chart of M-HEU

16

valued item than the currently selected item in a group is called an upgrade or a
downgrade respectively. In the heuristic it is nccessary to find an upgradc or
downgrade frequently. It modifies HEU by adding a pre-processing step to find a
feasible solution if the initial solution is infeasible because there may be a solution
using higher valued items that requires fewcr resources. It also uses a post-processing
step to improve the total value of the solution with one upgrade followed by one or
more downgrades. Because there might be some higher valued items in the MMKP,
selection of which make the solution infeasible, but if some of the others groups are
downgraded we can get a feasible solution. This method of upgrading followed by
downgrading may increase the total valuc of the solution.

Steps in the Algorithm:

Stepl: Finds a feasible solution, if initial solution is not feasible.

Step2: Feasible Upgrades in each iteration.

Step3: Infeasible upgrade followed by one or more downgradcs

Fig 2.1 shows the steps of M-HEU algorithm.

2.3 PRAM Model

The Parallel Random Access Machinc (PRAM) [20] model is actually the
synchronous shared memory model; where all the processors operate synchronously
under the control of a common clock. It consists of a number of processors, typically
of the same type, each of which has its own local memory and can execute its own
local program. The processors are interconnected in a certain fashion to allow the
coordination of their activities and the exchange of data through a shared memory
unit. Each processor is uniquely identified by an index, called a processor number or
processor 1D, which is available locally and hence, can be referred to in the
processor’s program. Figure 2.2 shows a general view of a shared memory model
with p processors. These processors are indexed 1, 2,..., p. Shared memory is also
referred to as global memory.

The main purpose of parallel processing is to perform computations faster than can be
done with a single processor by using a number ol processors concurrently. The
pursuit of this goal has had a tremendous influence on almost all the activitics related

to computing. There are many applications in day-to-day life that demand real time

17

solutions to problcms. These include fluid dynamics, weather prediction, modeling
and simulation of large systems, information processing and extraction. image
processing, artificial intelligence and automated manufacturing. For example, weather
forecasting has to be done in a timely fashion. In the case of severe hurricanes or
snowstorms, evacuation has to be done in a short period of time. If an expert system is
used to aid a physician in surgical procedures, decisions have to be made within
seconds. And so on. Programs written for such applications have to perform an
enormous amount of computation.

In the forecasting example, large-sized matrices have to ‘be operated on. In the
medical example, thousands of rules have to be tried. Even the fastest singlc processor
machine may not be able to come up with solutions within tolerable limits. Parallel
machines offer the potential of decreasing the solution time enormously.

The running time of a paraliel algorithm depends on the number of processors
exccuting the algorithm as well as the size of the problem input. Therefore we discuss
both the time and the number of processors required when analyzing PRAM
algorithms. Typically there is a trade-off between the number of processors used by

an algorithm and its running time.

Shared Memory

h h Y

P P P,

% v '
LM, LM, LM,

Figure 2.2: The shared memory model

2.3.1 Concurrent versus Exclusive Memory Acccsses
There are several variations of thc PRAM modcl bascd on thc assumptions rcgarding

the handling of the simultaneous access of several processors to the same location of

the global memory [20].

18

'& .

A concurrent read algorithm is a PRAM algorithm during whose cxecution multiple
processors can read from the same location of shared memory at the same time. An
exclusive read algorithm is a PRAM algorithm in which no two processors ever read
the same memory location at the same time. We make a similar distinction with
respect to whether or not multiple processors can write into same memory location at
the same time, dividing PRAM algorithms into concurrent write and exclusive write
algorithms. The commonly used PRAM models are:

1) Exclusive Read Exclusive Write (EREW).

2) Concurrent Read Exclusive Write (CREW).

3) Concurrent Read Concurrent Write (CRCW).
The exclusive read exclusive write (EREW) PRAM does not allow any simultaneous
access to a single memory location. The concurrent read exclusive write (CREW)
PRAM allows simultaneous access for a read instruction only. Access to a location for
a read or a write instruction is allowed in the concurrcnt read concurrent write
(CRCW) PRAM. The three principle varieties of CRCW PRAMs are differentiated by
how concurrent writes are handled. The common CRCW PRAM allows concurrent
writes only when all processors are attempting to write the same value. The arbitrary
CRCW PRAM allows an arbitrary processor to succeed. The priority CRCW PRAM
assumes that the indices of the processors are linearly ordered and allows the one with

the maximum or minimum index to succeed.

2.3.2 Optimality of PRAM Algorithms

Suppose there is a computation problem P of size n. Let the sequential time
complexity of P be T(n). That is there is a sequential algorithm that solves P within
this time bound and in addition, it can be proved that no sequential algorithm can
solve P faster. A paraliel algorithm to solve P will be called optimal [20] if the work
W(n) required by the algorithm satisfies W(m)= O(1(n)). Otherwise the parailel

algorithm is called non optimal.
2.3.3 Examples of PRAM Algorithms

Some PRAM algorithms such as summing, sorting, searching, prefix sum are

described below:

19

o Parallel Sum Algorithm: Wc can detcrmine the sum of » clements by using a

balance binary tree constructed on the # input clements [20].

Fig2.3: Summation of n elements

The running time of the parallel algorithm is O(log #) and the total number of
operations used is O(n). This parallel algorithm is optimal, since the work
performed matches the run time of the best known sequential algorithm of the
problem. As an example, the summation of 8 numbers (m1, My, ..., mg) is shown in
Fig 2.3.

e Prefix Algorithm: A prefix sum algorithm presented in {7] is described as follows:
Suppose there are » input elements, defined as xi, xa,..., X, The prefix computation
is to compute the n elements as x;, x; +x2, x; X2+ x3 .., Xt xztxt .4 X, The
output elements are often referred to as the prefixes. Prefix computation on an n-
element input can be performed in O(log n) time using n/log n CREW PRAM
processors. The work done by this algorithm is O(n) and hence the algorithm has
an efficiency of O(1) and is work-optimai.

Suppose there are n/log n processors assigning log n elements cach. Processor i
(=1, 2, ..., nflog n) computes the prefixes of its log n assigned clements in paralle[l.
Let the results be z(.1)iog +1> Z(-1)og 42, ...» Zilog n- Then a total of - n/log n processors
collectively employ a non work-optimal algorithm to compute the prefixes of the
nflog n elements Ziog n, Ziog 2ns Ztog Iny -++s Zm Finally each processor updates the
prefixes it computed in the first step except Processor 1.

Let the input to the prefix computation be 5, 12,8,6,3,9,11,12, 1, 5,6, 7, 10, 4,
3, and 5. Here # = 16 and log # = 4. So thc number of processors is 4. In the first

step, each processor computes prefix sums on four numbers each. In the next step,

20

prefix sums on the local sums is computed. And in the last step, the locally
computed results are updated. [n this step, Processor 1 does not update the prcfixes
that are computed locaily. The prefixes of Processor 2 are updated by adding the ¥
prefix of the global computation (Computed in the previous step) with them. In the
similar way, 2™ and 3" prefixes of the global computation are added with the
locally computed prefixes of Processor 3 and 4 respectively. The prefix sums

computation is shown in Fig 2.4.

Processor 1 Processor 2 Processor 3 Processor 4

5,12,8,6 3,9, 11,12 1,5,6,7 | 10,4,3,5

o |

Step 1 (local to processors)

5,17,25,31_ 3, 12,23, 3\5 1,6,12,19 10, 14,17.22

T \
T

o |

“local sups—=""

~, \ Z -

™31, 35, 1972241

-
—

ﬂ Step 2 (global computation)
3L 66, 85, 107
s "“..__\"' T T
K A —=a
5,17, 25,31 3,12,23,35 1,6,12,19 10, 14, 17,22
ﬂ Step 3 (update) .
5,17, 25,31 34, 43, 54, 66 67,72,78, 85 95,99,102,107

Fig 2.4: An example of prefix computation

o Parallel Maximum Finding Algorithm: Finding the maximum of # arbitrary
numbers can be presented in Ologlog ») time using #/(loglog #) common CRCW
PRAM processors [20]. So the work done of the algorithm is O(») and it is work-
optimal.

There is an algorithm based on the logarithmic-depth binary tree for finding the
maximum in O(log) time and it is optimal. There is another algorithm that is
nonoptimal but runs in doubly logarithmic time, i.c. it requires O(loglog n) time
using O(n loglog ») operations. Then these two algorithms can be combined into an

optimal and a very fast algorithm. In the first step the binary tree algorithm is

21

applied, starting from the leaves of a binary trce and moving up to [log log log nl
levels. Since the number of candidates reduccs by a factor of ¥4 per level as we
grow up the binary tree, n'= O(n/loglogn) elements are generated at the end of
the binary tree algorithm. The total number of operations used so far is O(x) and
the corresponding time is O(log log log #). Now we use the doubly logarithmic-
depth tree based on the n’ generated elements in the previous step. Then it requires
O(log log n') = O(log log n) time and uses O(n' log log n') = O(n)operations.
Therefore, the overall time is O(log log n) and the total number of operations is
O(n). The logarithmic binary tree algorithm for finding the maximum is same as
that of computing the sum of n elements using balanced binary tree, described
earlier (in the 1™ example).

The doubly togarithmic-depth tree is described here. Suppose there is a rooted tree,
the level of a node « is the number of edges on the path between # and the root of

the tree. Hence the level of the root is 0. Let there be n leaves in the tree. The root
of the tree has \/;children. Ifn = 2% s thenJ_ = 22'4, then each children of the

root has 22 children, and in general, cach node at the ith level has2* ™" children,

for 0 < i< k-1. Each node at level k will have iwo leaves as children.

O Q0 @O0 WO O YO VO VL G

Fig 2.5: Doubly logarithmic depth tree of 16 nodes

Figure 2.5 shows the doubly logarithmic depth tree for the case when the number

of items is 16. The root has four children and each of the other internal nodes has

22

two children. Each internal node corresponds to computing the maximum of that

node’s children. The number of nodes at the ith level of the doubly logarithmic-

depth tree is2* —2*7, for 0 < i < k. The number of nodes at the kth level is
27" = nf2. The depth of this tree is £ + 1 = log log n + 1. The maxima required at

any given level can be computed in O(1) time using O(p?) operations for p distinct

elements. Then the number of operations required at the ith level is

O((Zzl—m)z)per node, for 0 < i < Kk giving a total of

O((22“_I)2 ¥ J = 0(221')= Ofn)operations per level. Hence the total number

of operations required by the overall computation is O(nloglog#).

o Parallel Sorting Algorithm (Pipelined Merge Sort): A pipelined merge sort
algorithm presented in [20] is described as follows:
Sorting of # general numbers can be done in O(log mtime using # CREW PRAM
processors by pipelined merge-sort algorithm. The work done of this algorithm is
O(n tog n) and it is work-optimal. It consists of determining Z[v] (L[v] is a sorted
list that contains all the numbers stored in the subtree rooted at v) over a number
of stages such that, at stage s, Ly[v] is an approximation of L[v] that will be
improved at the next stage s+1. At the same time, a sample of L[v] is propagated
upward to be used for obtaining approximations of the lists to be generated at
higher heights. Let Lo[v] = 0 if v is an internal node; otherwise Lg[v] consists of
the item stored at the leaf v of a binary tree. Let the altitude of a node v be defined
asalt(v) = h(T) — level(v), where h(T) is the height of T, and level(v) is the length
of the path from the root to v. The list stored at node v will be updated over the
stages s satisfying alt(v) < s < 3alt(v). In this algorithm v is active during stage s if
alt(v) < s < 3alt(v). The algorithm will update the list Ls[v] such that node v will be
full (i.e., Li[v} = L[v]), when 5 > 3alt(v).
Let u and w be the children of an internal node v and

letL’, [u] = Sample(L,[u])and L, ,[w] = Sample(L, [w]), where Sample(Ls[x]) for

5

an arbitrary node x is defined as:

23

sample, (L.‘_ [x]) if s <3alt(x)
Sample(L_[x]) = { sample, (L.r [x]) if s =3alt(x)+1

samp!e,(L, [x]) if s=3alt(x)+2
Therefore, Sample(L,{x]) is the sublist consisting of every fourth ele;mcnt of Ly[x]
until it becomes full; then Sample(Li[x]) is every other element in the following
stage (that is, stage 3ali(x)+1), and ecvery clement in stage 3alt(x)+2.
Then L!,[«] and L!,[w]arc mcrged into a sorted list L ,,[v] and this can be
done in O(1) time [20].
Let 7 be the binary tree in Fig 2.6 where leaf nodes contain 7, 8, 6, 1, 5, 3, 4, 10,
9, 15, 2. The lists corresponding to asset of selected stages are shown in the Table
2.1.
Initially, there is no changes occur until stage s = 3. At the end of stage s = 3, all
the nodes of altitude 1 become full. Consider, for example, node vs. Since aft(vs) =
1, vs is active during stage 3. In this casc, Ly'[vi] = samplei(Lz[vi]) = (7) and
similarly L3'[vz] = (8). Hence, L3[vs] = (7, 8). During this stage, we alsb obtain
Li[ve] = (1, 6).

Vai

V|1=4 V12=10 V13=9 V14=15

Vl=7 V2=8 V3=6 V4:1

Figure 2.6: A binary tree T for pipelined merge-sort algorithm

At the end of stage s = 6, the nodes at altitude 2 become full, at the end of stage s
=9, the nodes at altitude 3 become full. The root vy; is active for all stages 5 <s <
15. However L,[v;] remains empty until stage s = 13 since, at each oft’l:le previous
stages, the lists of the children nodes vis and vz contain less than four elements.

At the end of stage s = 12, nodes vi9 and vy become full and each contain at least

24

four clements. Hence at stage s =13, Lg[vai] = (5, 15), which results from thc

merging of samples(L{vio]) and samples(L[vn]). At thc end of stage s =15,

(L1s{v1]) consists of the sorted list of all the items stored in the tree.,

Table 2.1: The lists arising during the execution of the indicated stages of the

pipelined merge-sort algorithm

VI]s=0| s=3 | s=5 5=6 5=8 5=9 s=11 s=13 s=15
(oo o ™ Q) ™) @) Q) Q)
2 8! ® | ®] ® (8) (8) (8) (8) (8)
3 (6] ©® | ® | © (6) (6) 6) ©6) 6)
s lm|lolo| a | .m (h 0] ()
5 o | (78|78 (7.,8) (7.8) (7,8) (7,8) (7,8) (7.8)
6 0 {(1,6)](1,6) (1,6) (1,6) (1,6) (1,6) (1,6) (1,6)
7@ G| © G | ©® Q) 5))
8 |G| 3| @ (3) (3) (3) 3) (3)
9 0 0 (6,8) | (1,6,7,8) | (1,6,7,8) (1,6,7,8) | (1,6,7,8) (1,6,7,8) (1,6,7.8)
100 0 0 0 (3,5) (3,5) (3,5) 3.5 (3,5) (3,5
Hi@ @@ @ @) (4) 4) @) (4)
12 {(10) | (10) | (10) (10) (10) (10) (10) (10) (10)
Blo|o®|O®| © 9)) ©) ©) ©)
14 1 (15)| (15) | (19) (15) (15) (15 (15) (15) (15)
{51 0O 0 0 0 (5,6,8) [1,3,56,7,8X1,3,5,6,7.8 (1,3,5,6,7.8)| (1,3,5,6,7,8)
sl|lo|lo| @ @))) @ @
171 0 0 0 0 0 (4,10) (4,10) (4,10) (4,10)
18 © 0 0 0 0 (9,15) (9,15) (9,15) (9,15)
19(. 0 0 0 0 0 0 (3,6,8) [(1,2,3,56,7,81(1,2,3,5,6,7,8)
200 O 0 0 0 0 0 (10,15) (4,9,10,15) | (4,9,10,15)
21 0 0 0 0 0 0 0 (5,15) 1,2,3,4,5,6,7,8
9,10,15)

2.4 Related Works on Parallel Algorithm for Knapsack Type

Problems

Knapsack Problems, since they are the simplest NP-hard problems have been subject

to much work on the development of cfficient parallel algorithms. With the advent of

25

parallcl processors many rescarchers have concentrated their efforts on the
development of efficient parallel algorithms for solving Knapsack Problems. For
exact methods Branch and Bound (B&B) and Dynamic Programming (DP) are the
most useful approaches [5]. For serial machines, it is accepted that B&B has bettcr
performance than DP for KP, but this observation has not been shown to translate to
the parallel case. The B&B method usually implemented on powcrful large-grain
multiprocessors but involves complicated communication stratcgies. The
communicatioﬁs issues are often hard to solve and an anomalous behaviour of B&B is
observed. Even if these problems were solved it is shown that there cxist hard
knapsack probléms for which the number of altcrnate solutions grows exponcntially
with problem parameters. Such growth makes the problem hard for B&B algorithms.
However the use of parallel DP to solve KP in these cases is possible. In addition DP
algorithms for Knapsack Type Problems (KTP) are suitable candidates offering the
possibility of further hardware accelcration [3].

Most of the recent work is related to the design of dynamic programming algorithms
for Unbounded Knapsack Problems (UKP) and 0/1 KP. For example, A DP algorithm
for 0-1 XP which may run on any number of processors available was presented by
Lin [21]. Its time complexity is O{nc/p) on EREW PRAM of p processors, where ¢ is
the capacity of the knapsack. Lee [22] proposed a hypercube implementation of the
DP approach is presented. The running timc is O(nc/p+c2+clog(p)). They also applied
the same algorithm for the two-dimensional 0-1 knapsack problem.

A divide and conquer approximation algorithm on a hypercube with a time
complexity O(lo,g2 (n) log (c)) on O(nee) processors is presented by Gopalakrishnan
[23]. Another approximation algorithm realized on the hypercube architecture
described by Mayr [24] with a time complexity O(log® (n) log (c)) on O(nc?)
processors. A pipeline-architecture containing a linear array of p processors is
proposed by Chen [25]. This architecturc allows onc to achicve an optimal speedup of
the KP algorithm with the time complexity of O(ncip +) and an efficiency
O(1/(1+1/pc)) which approaches O(1) as capacity, ¢ increases. Teng [26] proposed an
algorithm derived by transforming it to the well solved circuit valuc problem in
O(log*(nc)) time using N(c) processors, where N{(c) is the number of processors
needed for multiplying two ¢ by ¢ matrices. A parallel convolutive algorithm for the

unbound KP is presented by Morales [27] in O(c*/p+n) time using p processors.

26

An efficient paralle] algorithm for solving the knapsack problem on the hypercube
proposed by Goldman [28]. He proposed a scheduling algorithm for irrcgular mcshes
on the hypercube. The efficiency of the algorithin is independent on the number of
processors. A parallel tabu search algorithm for the 0-1 multidimensional knapsack
problem is presented by Niar [29]. He proposed a ncw parallcl meta-heuristic
algorithm based on the tabu search for the resolution for thc 0-1 multidimensional
knapsack problem that reduccs the execution time.

Parallel skeletons for tabu search mcthod has been proposed by Blesa er al. [30, 31]
for 0-1 multidimensional knapsack problem. Tabu scarch can be paral]eliied in
several ways for a complete taxonomy of parallcl tabu scarch heuristics. Two parallcl
implementation based on two different paraliel models are presented here. The first
implementation, namely, the direct parallelization is based on independent runs model
with search strategies. The second implementation is based on the master slave model
in which the neighborhood exploration is donc in parallcl by the slaves and cach slave
exploring a part of the neighborhood.

A multiprocessor based heuristic is proposed by Shahriar [32, 33] for multiplc-choice
multi-dimension knapsack problem. The work done of this heuristic is same as that of
M-HEU. The time complexity of this heuristic isO(T/p + f(p)), where T is the time
required by the algorithm using single processor, p is the number of processors and

f (_p) is the synchronization overhead. The time requirement is roughly inversely

proportional to the number of processors used for the computations. In this heuristic
multiple processes can be run independently by the operating systems. If the
processes are executed in a single processor machine then the operating system gives
the illusion of parallelism (pseudo parallelism) by fast switching from one process to
another. But if the machine has multiple processors then asynchronous parallelism can
be achieved by running cach process on a different processor as long as number of
processes is less than the number of procéssors. Time requircment of an algorithm can
be reduced greatly if jobs can be divided among processes that run concurrently in a
multi-processor machine. If computations are divided among a number of

p' processes, where p'is less than the number of processors p then turnaround time
for the job is roughly divided by p’ plus somc overhcad due to synchronization and

inter-process communication. In case of M-HEU synchronization is required in each

27

o
L3

iteration. So, in the long run this overhead may sum up to a significant amount. In this
heuristic algorithm, the groups of MMKP arc divided among multiplc proccsscs for

computations.

There is a substantial number of sequential heuristics for MMKP problems in the
literature. The parallel algorithms proposed so far are for different variants of
knapsack problems other than MMKP. Unfortunately there is no parallel algorithm
already proposed for MMKP. The proposed parallel algorithms for KP variants do not
provide solutions in polylog time with polynomial number of processors. Finding
polylog algorithms for MMKP problems is still an uncxplored interesting research
area. Thus our research concentrates on finding polylog algorithms by parallelizing
existing heuristics of MMKP using PRAM model.

28

CHAPTER 3

Proposed Algorithms for MMKP

In this chapter we introduce a parallel heuristic algorithm for solving MMKP in
polylog time. We find that it is not possible to find a parallel version of M-HEU in
polylog time. A new sequential heuristic algorithm is proposed here by modifying M-
HEU that would be parallelized. Later a parallel heuristic algorithm is introduced,

which is the parallel version of the new sequential algorithm.

3.1 Why M-HEU was Chosen for Parallelism
When a parallel algorithm is developed for any problem in PRAM model, the problem

can be solved in polylog time with a polynomial number of processors. As MMKP is
an NP-Hard problem, its exact solution may not be feasible in any time-critical
problem, since the exact solution of MMKP has an exponential time complexity. In
the quest to develop efficient algorithms, no one has been able to develop a
polynomial time algorithm for any NP-Hard problem. So if the exact algorithm of
MMKP is going to be parallelized, the number of processors will increase
exponentially with the increase in number of MMKP dataset and it is not possible to
provide a parallel version of an exact algorithm for MMKP in polylog time with a
polynomial number of processors. From this point of view, an exact algorithm has not
been chosen for parallelism; rather a heuristic based algorithm is chosen for
parallelism to solve the MMKP. There are different heuristic algorithms to obtain
approximate solution to the MMKP. But M-HEU achieves the maximum optimality
among these existing heuristic approaches. Again, the time complexity of M-HEU is
polynomial, so that it is possible to provide a parallel algorithm of M-HEU using a
polynomial number of processors. So M-HEU was chosen initially for parallclism in
our research. Parallelism using M-HEU is definitely worthy as it takes non real time

when the problem size gets larger.

3.2 Problem of M-HEU to Be Parallelized

In M-HEU, an item in the current solution is replaced by another item of the same

group, with the highest positive Aay (the change in aggregate resource consumption),

29

subject to the resource constraint. If no such item is found then an item with the
highest Av;j/Aa; (maximum value gain pcr unit aggregate resource expended) is
chosen. After each feasible upgrade, the change in aggregate consumed resource, Aag;;
or the maximum value gain per unit aggregate resource expended, (Avy)/(Aay) has
been calculated for each higher-valued item for the next iteration. Actually the result
of one iteration is the input to the next iteration. But in our algorithm, to achieve a
polylog time complexity, at best fogarithmic number of itcrations are permitted and in
each iteration items from different groups to be replaced in parallei with the items in
their respective groups. But it is not possible to upgrade more than one item
simultaneously in one iteration in M-HEU. So it is not possiblc to provide a polylog
time algorithm from M-HEU directly. Thus to provide a polylog timc parallcl
algorithm of M-HEU, we have to modify the M-HEU to some extent.

1

3.3 A New Sequential Heuristic, MS-HEU

3.3.1 The Main Principle
1n this heuristic one or more new items are selected in each iteration, so that the total

number of iterations is decreased significantly. That is, we have multiple upgrades in
each iteration. Evaluation (i.e., the relative change of aggregate resource
consumption, Ad’y) of every candidate item is done once in cvery iteration for
multiple upgrades but the method of evaluation is exactly the same as M-HEU. M-
HEU requires one evaluation of every item for each upgrade. Actually, when a single
itemn is selected, the remaining evaluations are no more perfect. As we are ignoring
this in this new heuristic, this approach will loose some revenue but p‘rovide a faster
solution. We call this as heuristic using multiple selections per iteration, abbreviated
as MS-HEU. Here M stands for Multiple and S stands for Selection.

3.3.2 The Process of Upgradation
Exactly one item is chosen with the maximum value of Ad’y from each group. The

items chosen from different groups are sorted in descending order according to their
value of Ad’;. First few items from the sorted list will be selected for upgradation.
“These items will be upgraded one by one if the resources are available, i.e., without
violating the resource constraints. The number of total iterations and the number of

upgrades in the iterations is fixed by the following strategies:

30

Strategy 1: Finding solution with a fixed numbcr of iterations and fixed number of
total proposed upgrades. -

Strategy 2: Finding solution with a fixed number of iterations and fixed number of
proposed upgrades in each iteration.

Strategy 3: Finding solution with itcrations until no further actual upgrades available.
In M-HEU, the maximum number of itcrations is n/ in the worst case, so that we
consider logn/ iterations in Strategy 1 and 2 of MS-HEU and the number of items to
be upgraded in Ath iteration is ni/2".

In Strategy 1, we call the number of items we want to replacc as ‘scheduled upgrade’.
Essentially scheduled upgrade = nl/2". 1f scheduled upgrade is greater than # (i.e. the
number of groups), we cannot take them all and hence we have to consider only }1
items in such cases. We call the total number of items we tentatively calculate for
possible upgrade as ‘tentative upgrade’ and the difference between tentative upgrade
and scheduled upgrade is defined pending upgrade. To increase the performance, we
add the pending upgrade with the scheduled upgrade and it is the minimum of this
summation and », which is ultimately considered for possible upgrade. So, in effect,
in every iteration we have tentative upgrade = min (pending upgrade + scheduled
upgrade,). But in Strategy 2 and 3, the pending upgrade is not considered. In
Strategy 2 we also want to upgrade our current solution by replacing nl/2" items with
larger valued items in lteration 4. But when the scheduled upgrade is greater than »,
only n items is considered in such cases. In Strategy 3, we want to upgrade the current

solution with iterations until no further actual upgrade is available.

3.3.3 Steps of MS-HEU

Step 1: In each group, add one dummy item with value 0 and construct the initial
solution with the lowest valued itcms. !

Step 2: In Iteration s (depending on the different strategics), find the fcasible
upgrades.

Step 2.1: Compute the relative aggregate rcsource consumption, Ad'y of each item
having a higher utility value than the sclected item from the same group.

Step 2.2: Find the item with the maximum valuc of Ad’; from cach group.

31

Step 2.3: Sort the items found in Step 2.2 in descending order, with respect to the
value of Ad'; of the items.

Step 2.4: One or more items found in Step 2.3 (different number of items for different
strategies) have been tried to upgrade one by one, without violating the constraint.
Step 3: Deliver the solution, if there is no dummy item in the solution. If there is a
dummy item in the final solution, it implics that ‘no solution is found’. Also the
introduction of a dummy item can be used as a special case of MMKP where the
restriction of picking exactly one item from each group is relaxed and it indicates that

no item will be taken from the corresponding group.

3.3.4 Description of MS-HEU for Upgrading n Items of an MMKP in an
Arbitrary Iteration in Step 2

Following are the variables and the procedures to describe the steps of the algorithm.
n: The total number of groups in the MMKP.

m: The total number of resources in the MMKP.

Ii: The number of items in the ith group.

ry: The kth resource requirement of the jth item of the ith group.

v; : The value of the jth item of the ith group.

Ci: The amount of kth resource consumed by the selected items of the groups.

Ry The total amount of the kth resource in the MMKP.

p[f] : The index of the currently selected item of the ith group.

current_solution: The solution vector containing the indexes of the current selected
items from each group.

candidate_item: The vector containing the items of groups selected by the procedure.
candidate_group: The vector containing the groups selected by the procedure.
find_candidate_item (i): finds the candidate item of Group i with the highest Ad i
among the higher valued items than the selected item. There might be no such item if
the highest valued item is already selected.

change_selection (i, jY. p[i] — j and returns the increase of total value for this
selection. Positive increase denotes upgrade.

current_resource_usage: The resource consumption of the current selected items

from each group.

32

additional_resource (candidate_item, i): 1t determines additional resource
requirement if ith item of candidate_item is sclected instead of the currently selected

item of the corresponding group.

Procedure multiple_selecion (num_items_to_select)
/[This procedure finds a feasible solution of the MMKP by upgrading one or more

/fitems selected from different groups

—

candidate_item= null
Jor i=1to ndo
candidate_item « candidate_item + find_candidate_item (i)

endfor

L R

proposed_candidates « sort_nondecreasing (candidate_item)

//sorting the candidate_item in nondecreasing order with respect to the value
/of Ad ; using merge sort algorithim

6. return do_feasible_upgrade (proposed_candidates, num_items_to_select)

7. end procedure

Procedure do_feasible_upgrade (proposed_candidates, num_items_to_select)

//This procedure does feasible upgrades as many as possible among
/Inum_items_to_select from the beginning of proposed_candidates. At first it tries
/twhether all num_items_to_select can be upgraded or not. If it is not feasible to
/fupgrade alil, then feasibility is searched by ignoring the last item in the
/Inum_items_to_select in the subsequent iterations. If there is any feasible upgrade, it

/freturns true.

1. used resource=current_rsource_usage
2. Jor (i = 1 to num_items_to_select) do
3. used resource = used_resource + additional_resource

(proposed_candidates, i)
// This indicates a summation of vectors indicating k dimensional resource
4, endfor
5. Jor (i = num_items_to_select to 1) do
6. if (used_resource < total_resource) then

// All k resource constraints are being checked

33

7. Jor(j=1t1oi)do
8. change_selection (candidate_group, candidate_item)

//Upgrading the selected feasible items

9. endfor

10. return true

11. else

12. used_rsource = used_resource — additional_resource

(proposed_candidates, i)
J/ This indicates a subtraction of vectors indicating & dimensional resource
13. endif
14. endfor

15.end procedure

Complexity analysis of an iteration in Step 2 of MS-HEU

In Step 2.1, m additions, m subtractions, m multiplications and 1 division arc needed
to calculate the relative change of aggregate resource cottsumption, Ad’;. The value of
Ad'; is calculated for every item in each group, so Step 2.1 needs O(Imn) operations..
Step 2.2 directly employs the maximum finding algorithm on / items in each group.
And to find the item with the highest Ad”; from a group, the algorithm needs O(/)
operations. Since there are »n groups in the MMKP, total number of operations is
O(nl). We apply the merge sort algorithm for sorting the items selected in the
previous step, in descending order with respect to their value of Ad'y, requires O(rlog
n) operations. In Step 2.4 the maximum number of items to be upgraded is # and so
the step needs O(n) operations.

So the overall complexity of an iteration of Step 2 of the algorithm is O(nim + nlog n)
= O(n(im + log 1)). |

3.3.5 Description of MS-HEU

The variables and the procedures to describe the steps of the algorithm are same as
described in the previous algorithm. Two new variables are described below.
act_upgrade: The number of items that will be upgraded satisfying the resource

constraints.

34

tentative_upgrade: The total number of items we tentatively calculate for possible

upgrade.

pending_upgrade: The difference between the number of items that we want to

upgrade and the number of items of tentative_upgrade.

Algorithm MS-HEU (Strategy 1)
Procedure MS-HEU Strategy 1()

/fDescription of Strategy 1 of MS-HEU

1.

- G S

— et e
A

15.

current_solution « initial_solution ()
num_items_to_select = n x max(l;)
pending_upgrade =0
do
if (pending_upgrade + num_items_to_select/2) > n
tentative_upgrade = n
else
tentative_upgrade = pending_upgrade + num_items_to_select/2
endif
multiple_selection(fentative_upgrade)
if (num_items_to_select ! =1)
num__items_to_select = mun_items_to_select/2
endif
pending upgrade = pending_upgrade + (num_items_to_select -
tentative_upgrade) '

while (num_items_to_select >1)

16. end procedure

Procedure initial_solution ()

//This procedure add one dummy item in each group and construct the initial solution

/fwith these dummy items.

1.
2.
3.

for candidate_groups i=1ton
add item with value O and constraint 0

endfor

4. end procedure

35

Algorithm MS-HEU (Strategy 2)
Procedure MS-HEU Strategy 2()

//Description of Strategy 2 of MS-HEU

1.

© e N v R W

13.

current_solution « initial_solution ()

num_items_to_select= nx max(l;)

do

if (num_items_to_select/2) > n
lentative_upgrade = n
else
tentative_upgrade = num_items_to_select/2
endif
multiple_selection(tentative_upgrade)
if (num_items_to_select | = 1)
num_items_to_select= num_items_to_select/2

endif

while (num_items_to_select >1)

14. end procedure

Algorithm MS-HEU (Strategy 3)
Procedure MS-HEU Strategy 3()

//Description of Strategy 3 of MS-HEU

1.

© % N O Y R W N

P e —
o= 2

current_solution « initial_solution ()

num_items_to_select = nx max(l;)

sel_success = 1

do

if (num_items_to_select/2) > n

tentative_upgrade = n
else

lentative_upgrade = num_items_to_select/2
endif
sel_success = multiple_selection(tentative_upgrade)
if (num_items_to_select ! = 1)

num_items_to_select= num_items_to_select/2

36

13. endif
14. while (num_items_to_select > =1 && sel_success == 1)

15. end procedure

Complexity analysis of different strategies of MS-HEU

Step 1 needs O(n) operations.

Step 2 iterates log f times in Strategy 1. So the total number of operation in Step 2 is
Olog nl (Imn + nlog n))= O(nlog nl (Im + log n)) for Strategy . And the overall
complexity of this strategy is O(nlog n/ (im + log n)).

Step 2 iterates also log i/ timcs in Stratcgy 2. So thc overall complexity of this
strategy is also O(nlog #i (Im + log n)).

Step 2 iterates »/ times in the worst case in Strategy 3. So the overall complexity of

Strategy 3 is O(nl (Im + log n)).
3.3.6 Some Arguments Regarding MS-HEU

Why null values are introduced in MS-HEU?

A dummy item with null values is rintroduced in Step 1; it gives always a feasible
solution since the dummy item does not consume any resource. But if any dummy
item does exist in the final solution, it implies that there is no feasible solution.
However, in some practical problems these null values bear significant roles in
decision making. For example, the problem of admission control can be easily
mapped to the MMKP. In this case, a dummy item in the final solution indicatcs the
rejection of a particular session in the admission control problem. Here, the session is
equivalent to a group and the QoS of a user’s requested session is equivalent to an
item as described in Section 1.2. But in the cases where null values do not indicate
any significant meaning, our proposed algorithm docs not give a feasible solution
though there is a feasible solution using M-HEU. In M-HEU, if the initial solution is
not feasible, then a feasible solution is found by searching new itc.ms with better
revenue with less resource consumptions. But in this searching techniquc, the solution
of one iteration is dependent to thc solution of previous iteration, so that it is not

possible to provide a parallef version for this part of MMKP solution in polylog time

37

complexity. We can ignore this, because therc arc very good number of applications

in practical problems, where null values play important roles.

Why sorting the items with respcct to the value associated with them?

The lowest valued items are selected as the initial solution by sorting. Sorting is uscd
to reduce the search space. In the proposed algorithm, wc have to find the higher
valued items than the selected items for upgrading the current solution. So if the items
are not sorted, same computation is done for some lower. valued items, which is

undesirable, as it consumes extra time and space.
Why not starting from the highest valued items?

There could be another approach to start with the items with the highest value from
each group, and then iteratively selcct lower valued items until feasibility is achicved.
The chance of having feasible solution with the highest valued items is very low as it
is expected in almost all cases that those items will consume more resources. The next
step would be to bring the solution to feasible solution. But it is not possibie to
parallelize this approach in polylog iteration, because in this approach, every iteration
is fully dependent to its previous iteration and it might require »/ iterations in the

WOrst case.

3.3.7 Example for Demonstrating Strategy 1 of MS-HEU

Since the pending upgrade is considered in Strategy 1, it gives better result than other
strategies and a parallel algorithm is proposed in the next section using this strategy.
So that Strategy 1 is demonstrating here. The other strategies differ from Strategy. 1
only in the number of upgrades. The ubgradation process using other strategies is
similar to this. Thus it is expected that the other stratcgics could be understood easily
from this demonstration of Strategy 1.

Figure 3.1 shows an MMKP with 4 gro'ups. Each group has 3 items sorted according

to the value associated with each item. The resource is two-dimensional.

38

Demonstrating Step 1:

A dummy item with zero value is added in each group and these dummy items arc
selected as the initial solution. Thus the solution vector can be written as (0, 0, 0, 0)
where ith element of the vector is the index of the selected item of the ith group. The
resource usage vector for this solution is (0, 0) where ith clement denotes the ith

resource consumption.

v=24 v=36 v=23 v=34
Item 3 r=7,2=3 n=9,r=7 n=2,,=6 ri=3,r=5
Maximum
v=14 v=30 v=19 v=25 allowable
Item 2 r=7,2=0 r=7,r=6 =31 r=06,r,=8 resource
R| 122
Rz 120
v=12 v=29 o v=16 v=19
Item | r|=4,rz=5 I‘|:7,72=3 ?‘|=2,!‘2:] r,=2 ,?‘2=7
Group 1 Group 2 Group 3 Group 4 Knapsack

Figure3.1: Example of an MMKP
Demonstrating Step 2 (Feasible upgrades):

Iteration 1:

Values of Aaj, for all the feasible upgrades from the currently selected items are as
follows. The currently selected items are the dummy items. The value of Aaj of the

higher valued items can be calculated using Z(’?p[m — Py)
k

Aaj, = {1.33,0} Adl, = {2,0} Aal, = {2.4,0}

Aa;, =£§2.9,0} Adl, =1{2.31,0} Aal, =1{2.25,0}
Adj, ={5.33,0} Aaj, =1{4.75,0} Aal, = {2.88,0}
Aal, ={2.11,0} Aal, ={1.79,0} Aal, = {4.25,0}

The computation of Aa"n can be shown as follows:

39

2

Aa, = Z(rlpll]k —rm)

k=1
=(ri01 _r1:1)+(r|oz_’]12)
=(0-4)+{0-5)
=—4-5==9
Since Aa,; <0, y, =0 and Av,/Aa,, have to be calculated where
Av), = Ay —Bvy,
=0-12
=-12

So Av,,/day =12/ o =1.33 and hence Aa”u = {1.33,0}.

There are four groups containing threc items each. So in the first iteration, we want to
upgrade min (6, 4) groups simultaneously. So the number of pending upgrades is 2 in
this iteration. The items with the highcst Ad’; from cach group are selected. These
items are sorted in non descending order with respect to the value of Ad';;. Here we
get Item 1 from Group 2 and 3, and Item 3 from Group | and 4 with the highest Aa’y
from their respective groups. If four groups are upgraded, then the total resource
usages are 19 and 12 respectively and this is feasible. So Group 2, 3 are upgraded to
Item 1 and Group 1, 4 are upgraded to ltem 3. We get current solution (3, 1, 1, 3) with

resource usage (19, 12).

Iteration 2:

Adl, = {0.03,0} Aaj, = {0.08.0}
Aal, = {0.6,0} Aal, = {0.12,0}

The computation of Aa”i2 can be shown as follows:

2

Aay, = Z(er[l]k e)X C,

=

:("211 _rZZI)XCI +(r212 _rmz)xcz
=(7-7)x19+(3-6)x12
=0-36=-36

Since Aay, <0, y, =0 and Av,, /Aa,, have to be calculated where

Av,, = Av, o~ Av,,
=29-30
=-1

40

So Av,,/Aa,, =0.03 and hence Aa"x = {0.03,0}.

In iteration 2, we want to upgrade min (342, 4) groups. But Group | and 4 wiil not be
possible to upgrade in this iteration, since these groups have already upgraded to the
highest valued items in the previous iteration. So it is possible to upgrade Group 2 and
Group 3 from Item 1 to Item 3 and from Item 1 to Item 2 respectively. We get
resource usage (22, 16), so the solution is feasible. And the current solution is (3, 3, 2,
3).

lteration 3:
Aaj, =1{0.07,0}
In this iteration there is only one item that will be upgraded: in Group 3, from Item 2

to Item3. But if we select Item 3 in Group 3, it does not satisfy the resource

constraints. Hence the final solution is (3, 3, 2, 3) and resource usage (22, 16).

3.4 PRAM-HEU: A Heuristic for Solving the MMKP Using PRAM
Model

A parallel heuristic algorithm, PRAM-HEU is proposed using Strategy | of MS-HEU.
In Strategy 1, pending upgrade is considered, i.e. an upgradation which is not feasible
in one iteration, is considered in later iterations. But in Strategy 2 and 3, the pending
upgrade is not considered. As a result some feasible upgrades are left unconsidered in
some iterations in Strategy 2 and 3, and it is shown that Strategy 1 gives better result
than that of other strategies. Also there is no polylog time complexity of Strategy 3.
So that Strategy 1 of MS-HEU is considered to develop a parallel heuristic algorithm
for MMKP.

Finding maximum A4’y Items of each group in the MMKP are sorted in non-
decreasing order according to the value associated with them. First the relative change
in aggregate consumed resource, Ad’y; of each item are calculated in paralicl for cach
group. Then we find the items with the highest Ad’; from each group in parallel. We
start with the binary tree algorithm from the leaves and move until the size of the
problem is reduced to a certain value. Then we apply the doubly logarithmic-depth
tree based on the items generated in the first stcp (from the binary tree algorithm). A

CRCW PRAM model is used to find the items with the highest Ad'y.

4]

Sorting candidate items: The items found in the previous step, are sorted in non-
decreasing order with respect to the valuc of their relative change in aggregatc
consumed resource using pipelined merge sort algorithm on CREW PRAM model.
Finding feasibility:

Computing prefix sum: In cvery iteration we have tentative upgrade = min (pending
upgrade + scheduled upgrade, n) as Strategy | of MS-HEU, described in the prcvious
section. The prefix sum is computed of the resource consumptions of the tentative
upgrade items using logarithmic time prefix computation algorithm. The PRAM
model to compute this prefix sum is CREW.

Finding feasible upgrades: The sclected tentative upgrade items may not give the
feasible solution due to the resource constraints. If these itcms do not give the feasible
solution, then we find out the maximum number of items for which the solution will
be feasible and -these items will be upgraded. The whole procedure runs on
Concurrent Read Concurrent Write Parallel Random Access Machine (CRCW

PRAM).

The algorithm PRAM-HEU consists of the following steps:

Step 1: In each group add one duminy item with value 0 and constraints 0. Construct
the initial solution with the lowest valued item (i.e. dummy item} in each group.

Step 2: In Iteration 4 (0 < & < log nl), execute the following sub-steps.

Step 2.1: For all group, relative aggregate resource consumption, Ad'; of cach item
having a higher utility value than the item selected from the same group are computed
in parallel.

Step 2.2: Find the item with highest Ad’; in each group using paralict maximum
finding algorithm.

Step 2.3. Sort the items found in Step 2.2 in descending order of Ad’; using parallel
sorting algorithm. ' '

Step 2.4: Compute prefix sums of consumed resources for the first min (pending
upgrade + nl/2", n) items found in Step 2.3

Step 2.5: Using parallel maximum finding algorithm, find the maximum number of
items that can be upgraded at a time in this iteration without violating the constraint

and then perform the upgrade.

42

Step 3: Deliver the solution, if there is no dummy item in the solution. If there is a
dummy item in the final solution, it implics that ‘no solution is found’. Also the
introduction of a dummy item can be used as a special case of MMKP where the
restriction of picking exactly one item from each group is relaxed and it indicates that

no item will be taken from the corresponding group.

3.4.1 Description of the Algorithm PRAM-HEU

additional _resource_using_prefix_array(i): It determines additional resource
requirements of the / items, directly from the prefix sum, if these 7 items are selected
from different groups instead of currently sclected items of the corresponding groups.
find_candidate_item (i): 1t finds the candidate item of Group 7 with the highest Ad'j;
among the higher valued items than the current selected item in polylog time (the
algorithm is described in Chapter 2). There might be no such item if the highest

valued item is already selected.

Procedure PRAM-HEU ()
//This procedure finds a feasible solution of the MMKP by upgrading the items of
/{different groups in parallel

1. current_solution < initial_solution ()

2. num_items_to_select = n x max(l;)

3. pending_upgrade =0

4. do

5. for i=1 to ndo

6. candidate_item « candidate_item + find_candidate_item(i)
7. endfor

8. pipelined _merge_sort (candidate_item)

//1t sorts the candidate_item in nondecreasing order with respect to the value

/fof Ad';; using pipelined merge sort algorithm. The algorithm is described in

//Chapter 2.
9. if (pending_upgrade+num_items_lto_select/2) > n
10. tentative_upgrade = n
il. else

43

12. tentative_upgrade = pending_upgrade + num_items_to_select/2

13. endif

14, prefix_sum (tentative_upgrade)

15. act_upgrade « find_max_num_items_upgrade (fentative_upgrade)

16. do_feasible_upgrade (act_upgrade)

17. if (numjtenis_to_select '=1)

18. num_items_to_select = num_items_to_select/2

19. endif

20. pending_upgrade = pending _upgrade + (num_items_to_select - ‘

lentative_upgrade)
21. while (num_items_to_select >1)
22. end procedure
Procedure initial_ solution()
//This procedure adds one dummy item in cach group and construct the initial solution
fiwith these dummy items
L. Jor candidate_group i=1 to n pardo
2, add item with value 0 and constraint (
3. endfor
4, end procedure
Procedure prefix_sum (x)
//This procedure calculates the prefix sum of tentative_upgrade items for each
//resource constraint. Here we find out the prefixes of 1, 2, ..., tentative_upgrade - 1,

/ltentative_upgrade items for the kth resource constraint in paralle!.

1. prefix_array = {x}

2. Jor resource constraint k=1 to m pardo

3. fof processor i (i = | to x/logx) pardo

4. compules the prefixes of its logx assigned items (i-Dlogx+1, (i-1)
logx+2,, ilogx. let the resulls be zi1yogs+ 1, Z(i-1)ogs + 2, -+ Ziloga

5. endfor

6. Jor processor i (i = 1 to x/logx) pardo

7. compute the prefixes of x/logx items Ziogy, Zaloge ---» Zx Jound in the

previous step. lef Wiogy, Wajog, ..., Wx be the result

8. endfor

44

9, processor | outputs 2\, 23, ..., Ziogx
10. for processor i (i = 2 to x/logx) pardo
11. computes and outputs W . vyogxd Z(i-1)logx+ 1» Wi - iogx™™ Z(i-1)logx+ 21 +-+s

W(i - ogx T Zilogn

12. endfor

13. store the.outputs in prefix_array
14. endfor

15. return prefix_array

16. end procedure

Procedure find_max_num_items_upgrade (tentative_upgrade)

/{This procedure finds the number of possible feasible upgrades. At first it finds

/fwhether all tentative_upgrade items can give feasible upgrade or not. If it is not

//feasible to upgrade all, then feasibility is searched by ignoring the last item in the

/ltentative_upgrade in the subsequent iterations. If there is any fcasible upgrade, it

/freturns true.

1. used_resource = currvent_resource_usage

2 index_array = {tentative_upgrade}

3. for (i = 1 to tentative_upgrade) pardo

4 used_resource = used_rsource +
additional_resource_using_prefix_array(i}

5. if (used_resource < total_resource) then

/f All k resource constraints are being checked in parallel

6 write the value of i in the index_array

7. else

8 write negati-ve number in the index_array
9 endif

10. endfor

11. if there is no positive number in the index_array
12. return false

13. else

14, employ parallel maximum finding algorithm
15. return true

16. endif

45

17. endif

18. end procedure

An example of the parallel maximum finding algorithm is given below. The parallel

maximum finding algorithm is employed on the indices of the Boolean array giving

“Yes” in the Figure 3.2.

Each processor, instead of writing “No”, just writes a negative number to indicate a

negative verdict and the array of indices is initialized with the index of the Boolean

array. Then the parallel maximum finding algorithm is employed, same as that

described to find the candidate item with the highest Aa’y in Proccdure

find_candidate_item(i). The maximum in the array of indices will indicate the number

of act_upgrade.

Boolean Array

1

2
3
4
5
6
7
8

Procedure do_feasible_upgrade (act_upgrade)

Yes

Yes

No

Yes

No

Yes

Yes

No

Array of Indices

1

o =) &N th AW bk

Figure 3.2: Finding actual number of upgrades

Maximum of the
elements in Array
of indices will
indicate
actual_upgrade

//This procedure upgrades act_upgrade items from different groups in parailel.

[am—

Jor (i = | to act_upgrade) pardo

change_selection (candidate_group, candidate_ilent)

2.

3. endfor

4. return true
5. end procedure

46

3.4.2 Complexity Analysis of Algorithm PRAM-HEU

For the convenience of the analysis we assume all the groups have the same number

ofitemsie !, =1, =, =---veve =] =1

Step 1 and Step 3 can be performed easily in O(1) parallel time, O(n) operations on
EREW PRAM. Howcver, Stecp 2 with a number of nontrivial sub-steps needs some
analysis.

In Step 2.1, m additions, m multiplications and m subtractions are needed. The
additions can be done in parallel in log m time using O(m) operations. For the
subtraction, m processors are directly employed and it can be done in O(1) time using
O(m) operations. m multiplications can also be done in O(1) time using O(m)
processors, i.¢. total number of operations is O(m). Then the results of m subtractions
and m :[multiplications should be added and it can be added in parallel. Similarly, to
calculate the value of C, we need n additions, which can be done in barallel in log n
time spending O(n) operations. We have to calculate the relative change of aggregate
resource consumption, Ad’y; for each item (/ items) from each group (n groups). So in
total Step 2.1 runs in O(log m + log r) time using O(inm + nm) = O(Inm) operations
on CREW PRAM.

Step 2.2 directly employs the parallel maximum finding algorithm on [items in each

group. Since there are » groups this can be done in O(loglog /) time with ({nl)
operations on CRCW PRAM.

In Step 2.3 we apply the parallel sorting algorithm on » elements which can be done
in O(log n) time, O(nlog) operations on CREW PRAM.

In Step 2.4 we compute prefix sums of consumed resources for ‘entative_upgrade
elements. Computing prefix sum on k elements in parallel takes O(log &) time using
O(k) operations in EREW PRAM. Since the resources are m dimensional we can do
the prefix sum separately on different dimensions in O(lg(fentative_upgrade)) time
using O(m x tentative_upgrade) operations. However, to construct the Boolean array
indicating whether resource constraints are met or not we have to check all the
dimens:ions in parallel. We can do the job in O(1) parallel time using
O(tentc;ztive_upgrade x n1) operations as follows. We employ one processé)r each for
each of the resource dimensions for each of the tentative_upgrade elements. Each

processor checks the assigned dimension against the corresponding available resource

47

dimension. A group of m processors, corresponding to the s resource dimension of a
particular element writes to particular entry of the array. The array is initialized with

“YCS”.

If any check of any processor turns out to be negative, it just writes “No” in the
corresponding entry. So the PRAM model needed is CRCW, Since maximum value of
fentative_upgrade is n, Step 2.4 can be performed in O(log ») time using O(mn)
operations in CRCW PRAM.

In Step 2.5, we find the maximum number of items, i.e., the value of actual_upgrade
for whlch the solution is feasible. In this step we can employ the parallel maximum
fndmg algorithm directly and it will take O(loglog n) time with O(n) operations on

CRCW PRAM, since maximum value of fentative_upgrade can be in the worst case

H.

Finally performing the upgrade can be done in O(1) parallel time using O(»)
operations. The complexity analysis of the steps is summarized in Figure 3.4.

Since the Step 2 iterates for logn! time, the overall running time of Step 2 should be
O(lognl(logmtlogn+loglogl)) parallel time. The number of operations needed is
O(nlogni(logn+im)). It is easy to see that the running time and the total operations of

the algorithm remain those of Step 2 and the PRAM model required is CRCW.

Table 3.1: Summary of the complexities of different steps

Step Time Operation PRAM
1 o) o) EREW
2.1 O(log n +log m) O(imn) CREW
2.2 O(loglog 1) O(ni) CRCW
2.3 O(log n) O(n log n) CREW
2.4 O(log n) O(mn) CRCW
2.5 Ofloglog n) O(n) CRCW
3 (1) O(n) EREW

48

CHAPTER 4

Experimental Results

}n order to study the performance of PRAM-HEU, we do not simulate the PRAM
algorithm actually. The corresponding serial algorithm is used to compare the
performance (such as earned revenue) of PRAM-HEU and we compare the results
with the value achieved by M-HEU, modified Heuristic for MMKP and the upper
bound, a bound which is equal to or higher than the optimal value of the objective
function of the MMKP.

We have performed experiments on an extensive set of problem sets. We used
randomly generated and correlated MMKP instances for our test cases. The average

of the results achieved from multiple MMKP sets are presented in tables and graphs.

4.1 Initializing the Data

We performed experiments on extensive sets of problem set. The MMKP problems
were igcnerated using pseudo-random number generators. The data generation
procedure that is used here is the same as that was used for generating data for M-

HEU [3, 4]. The data sets for testing the performance of the heuristic were initialized

as follows:

R, = Maximum amount of a resouree consumption by an item.

P =Maximum value per unit resource.

R, = Total constraint for the kth resource type = nx R, x0.5. Here we assum¢
R_x0.5 amount resource on the average for each session.

P, = Value of the kth resource= Random (P,) = A uniform discrete random number
from 0 to (2, ~1).

. = The kth resource of the jth item of the ith group = Random (R,).

R P f
v, = Value of the jth item of the ith group =Random[m X 16 xﬁ] XJTH, when the

item values are not correlated with the resource requirement.

49

R, P . - .
v, = Z’?J'k x P, +Randon{mx3x]—(‘]—xﬁ} when there is a positive correlation

between the resource consumption and item values.

For the experimental results reported in this chapter, we used R, = 10 and P, = 10.

Please see ftp://panoramix.univ-parisl.fr/pub/CERMSEM/Mifi/MMKP for some
benchmark data sets on the MMKP. Although in our experiments we used larger data
sets, but the data generation procedure is the same as that was used for creating

benchmark datasets. The performance and the time complexity of MS-HEU have been

observed for random and correlated data sets.

4.2 Methods of Experiment

It is not possible to provide a PRAM machine by using normal multiprocessors and
normally the PRAM machine is not available, so that we can’t get actual performance
of the algorithm in the desired environment. MS-HEU gives exactly the same result of
the PRAM algorithm. That is why MS-HEU is implemented to determine the total
value to be earned by PRAM-HEU. MS-HEU has been implemeﬁted for different
strategies using the Java programming language and ran the algorithm on a Pentium
IV 1.7 GHz with 128 MB of RAM running Windows XP. We also compare the time
requirement of MS-HEU using different strategies. These time requirements do not
represent the time requirement of PRAM-HEU. For the same data, M-HEU has also
been executed. Our solution is then benchmarked with the result of M-HEU.

We can get the exact solution by BBLP technique, but that will take exponential time
complexity. In this experiment we compute an upper bound of the value using the
same technique but with one iteration only, where an indefinite number of iterations
finds the optimal value. The percentages of the value achieved by our algorithms with
respect to this upper bound are presented, which is defined as the optimality of the

solution in our algorithm.

4.3 Test Results
It is observed that PRAM-HEU achieves on an average 98% of the value of M-HEU

and about 94.5% of the optimal solution. We presented the experimental results in the

tables and graphs.

50

Table 4.1, 4.2 and 4.3 show the comparison of the time requirements among different
strategies of MS-HEU and M-HEU for correlated and uncorrelated (random) data sets
for varying number of groups, number of resource dimensions and number of items in
each group respectively.

The graphs of Figure 4.1 to 4.3 show the performance of different strategies of MS-
HEU with respect to M-HEU for different number of groups, resource dimensions and
items in each group. Similarly the graphs of Figure 4.4 to 4.6 compares the optimality
achieved by the M-HEU and different strategies of MS-HEU for different number of
groups, resource dimensions and items in each group. The optimality of M-HEU and
different strategies of MS-HEU are compared for smaller data sets, because it takes
lots of time to calculate the optimality when the data sets are larger, due to the
exponential complexity of upper bound finding algorithm. The graphs of Figure 4.7 to
4.12 compare the time required by M-HEU and different strategies of MS-HEU.

All the plotted data in the above mentioned graphs are the average of 10 problem sets.
To verify the consistency of the results we present graphs showing Upper-Bound and
total values from Strategy 1 of MS-HEU and M-HEU for 10 correlated and

uncorrelated data sets in Figure 4.13 and Figure 4.14,

‘Table 4.1 Time requirements in milliseconds by M-HEU and different strategies of

MS-HEU for solving the MMKP with correlated and uncorrelated data sets varying »

N m { Time requirement (in ms) of Time requirement (in
MS-HEU ms) of M-HEU
Strategy | Strategy 2 Strategy 3
Cor |Uncor| Cor |Uncor|Cor |Uncor | Cor Uncor

500 | 25 | 25 1032 | 451 1182 | 641 [1482 \ 811 | 67467 46297
1000 | 25 | 25 |2944 | 1101 | 3136 |1273 |3846 | 1683 |243850 128224
1500 | 25 | 25 |4850 | 1803 | 5339 1984 |6059 | 3465 (771729 331136
2000 | 25 [25 |S5708 [2994 | 6474 (3518 |10014| 5608 (912402 563500
2500 | 25 | 25 |10275 | 4666 |11053 (4810 |16033 | 8973 |1841048 930518
3000 | 25 | 25 |15112 [5848 |16329 |7437 122282 (113772563907 | 1183332
3500 | 25 | 25 18070 | 7200 |19893 |8312 9763 | 12869 2944193 | 1945537
4000 | 25 | 25 |24636 |10225 {25451 |12774 42126 18747 3990298 | 2403366
4500 | 25 | 25 |32840 |12227 |31886 14709 44003 [23764 (6825705 | 3067321
5000 | 25 | 25 |33559 |14951 |34599 (16034 46356 | 25036 9673518 | 3705088

51

Table ‘4.2 Time requirements in milliseconds by M-HEU and differcnt strategics of
MS-HEU for solving the MMKP with correlated and uncorrelated data sets varying m

n m ! Time requirement (in ms} of Time requirement (in
New Heuristic ms) of M-HEU
Strategy! Strategy 2 Strategy 3
Cor | Uncor | Cor |Uncor|Cor |Uncor Cor Uncor

2500 5 25 | 6870 | 3525 | 8989 |4031 {12263] 7521 | 280062 251702
2506 | 10 | 25 |7016 | 3Ble |9872 4390 013001 7721 | 667600 352117
2500 | 15 | 25 | 7621 3825 (10301 |4479 13009| 7611 | 910629 598060
2500 | 20 | 25 (11256 | 4276 |11952 (4853 [13520(8021 |1595173 748686
2500 | 25 1 25 |11767 | 4427 {12154 15032 [13069| 8020 (1851331 969344
2500 | 30 | 25 |13319 | 4847 |14664 (6052 14796| 8703 2430012 | 1073493
2500 | 35 | 25 |13614 | 5097 |15432 (6183 [14811| 9023 |3247459 | 1319017
2500 | 40 | 25]12188 | 5087 {15105 |6392 [[6531| 9543 (3775249 | 1430076
2500 | 45 | 25 (14235 | 5288 (15251 [7144 [i8136| 9834 |3895361 | 1713424
2500 | 50 [25 (14520 [5708 (15487 |7545 [19092| 10024 | 4100316 | 1905040

Table 4.3 Time requirements in milliseconds by M-HEU and different strategies of

MS-HEU for solving the MMKP with correlated and uncorrelated data sets varying /

n m) Time requirement (in ms) of Time requirement (in
New Heuristic ms) of M-HEU
Strategyl Strategy 2 Strategy 3
Cor | Uncor | Cor {Uncor|Cor |Uncor Cor Uncor

2500 1 25 5 3275 | 2124 | 4376 | 3047 4196 | 4957 | 233626 130968
2500 | 25 10 | 4156 | 2834 |[4840 |3309 |8853 | 6079 | 636224 316325
2500 [25 15 | 7460 | 3585 | 7864 |4300 [11687| 6249 | 943447 546916
2500 | 25 | 20 [8182 | 3705 |9348 |4641 [11687| 7611 |1277858 | 724492
2500 | 25 | 25 111276 | 4126 (11510 | 5042 |I18166) 8522 1500368 | 960421
2500 | 25 | 30 [I3058 | 4326 (13766 | 5123 [17956| 8791 |1786619 | 1156813
2500 | 25 | 35 |16964 | 5368 {17116 | 5172 R0630| 9292 |2853283 ; 1305908
2500 | 25 | 40 |15782 | 5538 |18069 5904 (21298| 9914 |3591443 | 1577083
2500 | 25 | 45 17056 | 5668 18447 | 6456 [3433| 9965 |3895822 -1850030
2500 | 25 | 50 (18744 | 6098 [20301 | 7034 pP4335| 9945 4103720 | 2284954

52

1.01

—— Strategy 1 MS-HEU
1 & T IL b ohde i | (Comrclated)
T Ak S }
5 0994 *-3e T e X —-#- - Strategy 1 MS-HEU
% 0.98 - (Uncorrelated)
= $ 4= x —»— Strategy 2 MS-HEU
E 0.97 1 {(Cormelated)
= 0.96 A = 3. =Strategy 2 MS-HEU
0.95 | W (Uncorrelated)
0.94 , —»— Stratcgy 3 MS-HEU
0 1000 2000 3000 4000 S000 6000 (Correlated)
—~-%-—Strategy 3 MS-HEU
Number of Groups (Uncorrelated)

Figure 4.1: Performance of different strategies of MS-HEU normalized with respect to
M-HEU for the MMKP data sets with /=25 and m=25

| 1.01 —e— Strategy 1 MS-HEU
d e] . I {Corrclated)
ju] 09;_ E%ﬁﬁ%ﬁ:j{—:ﬁz - - & -~ Stratecgy 1 MS-HEU
E 0.98 i (Uncorrelated)
= M —»— Strategy 2 MS-HEU
= 097 - (Correlated)
® 096 W -+ = Strategy 2 MS-HEU
0.95 + (Uncorrclated)
0.94 . ; : : : . —%— Strategy 3 MS-HEU
0 10 20 30 40 50 - 60 (Corrclated)

— - % -— Strategy 3 MS-HEU

Number of Resource Constraints (Uncorrelated)

Figure 4.2: Performance of different strategies of MS-HEU normalized with respect to
M-HEU for the MMKP data sets with »=2500 and /=25

53

—— Stratcgy | MS-HEU
1.01] :

(Cormrelated)
1 Loy — -4 -~ Strategy 1 MS-HEU
s JIE I R,
0.99 o3I R :ﬁ::;;; (Uncorrclated)

% of M-HEU

0.98 - —>¢— Stratcgy 2 MS-HEU
097 | M {Correlated)

0.96 - —-% - = Stratcgy 2 MS-HEU
0os | M {(Uncorrclated)

0.94 : : . : : ; —¥%— Strategy 3 MS-HEU
. (Correlated)
0 10 20 30 40 50 60 .- Strategy 3 MS-HEU
Number of [tems (Uncorrclated)

Figure 4.3: Performance of different strategies of MS-HEU normalized with respect

to M-HEU for the MMKP data sets with #=2500 and m=25

1.02 —a— M-HEU (Comelated}
N - - =: e = = - — A - —
g 1 E - g :'E §=E5: & =)% = t - & - - M-HEU (Uncomelated)
Z 098 —+—Strategy 1 MS-HEU
B 0.9 - . (Comelated)
z — T T ~ - - Stategy 1 MS-HEU
§ 094 1 {Uncorrclated)
2 —— Strategy 2 MS-HEU
2 092 4 ,:—_g:—_:’_—_,::g?*"ai* {Correlated)
& —-»-—Stratcgy 2 MS-HEU
0.9 1 M (Uncomelated)
—m»— Strategy 3 MS-HEU
0.88 y T T 1 {Comrclated)
0 200 400 600 800 —-%-—Strategy 3 MS-HEU
{Uncorrclated)
Number of Groups

Figure 4.4: Performance of different strategies of MS-HEU and M-HEU normalized
with the upper bound for the MMKP data sets with /=10 and m=10

54

1.02

P 11 . = - —F - - -
Q\i 5 "F"& —%:—S.—*-—X"_E'_!
£ 0984

]

E 096 - A
§ 0.54 -

3

2 0.52 A

<

0.9 - M

0.88 \ T T T

Numbecr of Resource Constraints

~—4&— M-HEU (Cormrelated}
— - & - —~M-HEU (Uncorrelated)

—e—Straicpy | MS-HEU
{Comrclated)
—-#-—Strategy 1 MS-HEU

(Uncormrelated)
—¢— Strategy 2 MS-HEU
{Cormclated)

— - -—Strategy 2 MS-HEU
(Uncormrclated)

—%— Strategy 3 MS-HEU
{Corrclated)

G % Strategy 3 MS-HEU

(Uncorrelated)

Figure 4.5. Performance of different strategies of MS-HEU and M-HEU normalized
with the upper bound for the MMKP data sets with =500 and /=10

1.02 1

I = S
P - Iy TR
0st | T S
! S

0.96

0.94 + ‘_‘ﬂ\‘—*—*\a—A—‘
092 Mm
09 X*_"M*

0.88 T T T T

Achieved Optimality(%e]

Number of ltems

—&— M-HEU (Correlated)
~ - & - = M-HEU (Uncorrelated)

—e—Stratepy | MS-HEU

(Correlated)
-~ - & -— Strategy 1 MS-HEU
(Uncormelated)
—»¢— Strategy 2 MS-HEU
(Correlated)

—-»-=Stralegy 2 MS-HEU

gUncom:lalcd
tratcgy 3 MS-HEU

(Comelated)
— % - = Strategy 3 MS-HEU

(Uncorrclated)

Figure 4.6: Performance of different strategies of MS-HEU and M-HEU normalized
with the upper bound for the MMKP data sets with n=500 and m=10

55

—&— M-HEU (Correlated)

— -&— + M-HEU (Uncorrclated)

Millions

—&— Strategy 1 MS-HEU
(Corrclated)

— - - Strategy 1 MS-HEU
(Uncorrelated)

—»— Strategy 2 MS-HEU
{Corrclated)

— > - Stratepy 2 MS-HEU
{Uncorrclated)

———— —¥— Strategy 3 MS-HEU

0 1000 2000 3000 4000 5000 6000 {Correlated)

— ¥ - Strategy 3 MS-HEU
(Uncorrelated)

Time Requirements {ms) i

Wumber of Groups

Figure 4.7: Time required by different strategies of MS-HEU and M-HEU for the
MMKP data sets with m=25 and /=25

—e— Strategy 1 MS-HEU

é 2 (Correlated)

£ 8 —- % -~ Stratcgy | MS-HEU

E 2 {(Uncormrclated)

g = —— Strategy 2 MS-HEU

g (Correlated)

e —-x- = Strategy 2 MS-HEU

E (Uncorrelated)

= '’ —w— Strategy 3 MS-HEU

0 2000 4000 6000 (Correlated)’

Number of Groups — - % - — Strategy 3 MS-HEU

{(Uncormrelated)

Figure 4.8: Time required by different strategies of MS-HEU for the MMKP data sets
with m=25 and /=25 "

56

—&— M-HEU (Comelated)

— - & - — M-HEU (Uncormelated)

Millions

—e—Strategy | MS-HEU
{(Conmrelated)
—-#-—Strategy 1 MS-HEU

(Uncomclated)
—»— Strategy 2 MS-HEU
{Comrelated)

—-» -~ Strategy 2 MS-HEU
{Uncomelated)

—%— Strategy 3 MS-HEU
(Comrelated)

—- % - —Strategy 3 MS-HEU
(Uncormrelated)

Time Requirements(ms’

Number of Resource Constraints

Figure 4.9: Time required by different strategies of MS-HEU and M-HEU for the
MMKP data sets with n=2500 and /=25

—e— Stralegy | MS-HEU

’g o 2 ' (Corrclated)
:g g 20 4 : —.®-=Strategy 1 MS-HEU
g § s] (Uncorrclated)
g2 B —— Strategy 2 MS-HEU
5- 10 1 IS ::i (Corrclated)
© 5 4 *_1;::*:5:,-;:::527&7-;3-&-4 — -%- - Strategy 2 MS-HEU
E (Uncorrelated)
= 0 ' 1 ' ' ' ! —-%— Stratcgy 3 MS-HEU
0 0 20 3 4 50 60 (Comrelated)
Number of Resource Constraints — - % - — Strategy 3 MS-HEU

(Uncorrclated)

Figure 4.10: Time required by different strategies of MS-HEU for the MMKP data
sets with n=2500 and =25

57

—a— M-HEU (Comrelated)

— - i - = M- (Uneormrclated)

Millions

—e—Strategy | MS-HEU
(Correlated)

— -4 -~ Strategy 1 MS-HEU
(Uncomelated)

—x— Stratepy 2 MS-HEU
(Corrclated)

— - % - —Strategy 2 MS-HEU
_ (Unconclated)
——w—— Strategy 3 MS-HEU
(Cormrelated)
Number of Items - - = Sirategy 3 MS-HEU

(Uncomclated)

Time Requirements{ms’

Figure 4.11: Time required by different strategies of MS-HEU and M-HEU for the
MMKP data sets with ~=2500 and m=25

—— Strategy | MS-HEU

g . 257 {Correlated)
~-
£ § 20 4 — - &= Strategy 1| MS-HEU
2 3 s (Uncorelated)
E £ —»— Strategy 2 MS-HEU
?'f 10 4 {Cormrelated)
a 5 - -3 - - Strategy 2 MS-HEU
E (Uncorrelated)
£ 0 . - ' ' ' ' —— Strategy 3 MS-HEU
0 10 20 30 40 50 60 (Correlated)
Number fo Items —-% - = Strategy 3 MS-HEU
(Uncormelated)

Figure 4.12: Time required by different strategies of MS-HEU for the MMKP data
sets with n=2500 and m=25

ﬁ

58

25000 -

20000 -
E
3 15000 - —- & - =Uppcr-Bound
- ---mee s M-HEU
S 10000 1 —a— Strategy | MS-HEU

5000 -
0 T T T T T 1
0 2 4 6 8 10 12

Data Set Number

Figure 4.13: Comparison of the total values of the items picked by Strategy 1 of MS-
HEU, M-HEU and Upper-Bound for 10 uncorrelated problem sets with =100, m=5,
=10

25000 1
20000
) .
% 15000 - - — Upper-Bound
= ---m--- M-HEU
i-g 10000 —a—Sirategy 1 MS-HEU
5000 -
0 : .
0 2 4 6 8 10 12

Data Set Number

Figure 4.14: Comparison of the total values of the items picked by Strategy 1 of MS-
HEU, M-HEU and Upper-Bound for 10 correlated problem sets with r=100, m=5,
=10 '

59

4.4 Observations

» M-HEU produces solutions which are close to the optimal solutions.provided by
the algorithm BBLP. Figure 4.1 to 4.3 show the performance of different
strategics of MS-HEU with respect to the M-HEU. It is shown that Strafégy 1 and
Strategy 3 of MS-HEU produce better solutions than Strategy 2 of MS-HEU. The
solutions achieved by Strategy 1 and 3 are close to the solutions of M-HEU and
sometimes the value achieved by these strategies is about 100% to the value
achieved by M-HEU. On an average Strategy 1 and 3 achieve about 98.5% and
98% of the value achieved by M-HEU, respectively.

In most of the cases, the solution achieved by Strategy 1 is better than that of
Strategy 3. This is likely because, in the later iterations, one or more than one item
may be upgraded in Strategy 1, but exactly one item is upgraded in Strategy 3,
Ar’iid it might happen that a single higher valued item may not give a feasible
solution, but two or more items may give a feasible solution. Because the
selection of a single item may not satisfy one or more resource constraints, if the
values of those resource constraints of the selected item are high. But when more
than one item is selected and if the values of the resource constraints of the next
selected items are small, the resource constraints may be satisfied and give a

feasible solution.

v=14 v=30 o
Resource 1: 15
Resource 2: 5
v=12 y=20
Item 1 r1=6,r2=8 f1=4,]‘2=5
Group 1 Group 2

Figure 4.15: Example of an MMKP with available resources
As an example, let the resources of an MMKP is two dimensional and the
av?ilablg resources are 15 and 5 respectivély for Resource 1 and 2 (shown in
Figure 4.15)i. Let there are two groups where upgrade is possible and let Item 1 be
ths:: currentlf selected item in these groups. The possible upgrades are, from Item 1

to Item 2 in these groups. But individually none of them does satisfy the available

60

resources. If Group 1 is upgraded, it does not satisfy the av'ailable'resources,
because the required resources are -1 and 6 respectively, where the available
resource is 5 for Resource 2. Similarly if Group 2 is upgraded, the required
resources are 16 and -1 respectively, where the available resource is 15 for
Resource [. But when two groups are simultaneously upgraded, the required
resources are 15 and 5 respectively which satisfy the available resources.

The value achieved by Strategy 2 of MS-HEU is worse than that of other
strategies and it achieves about 96% of the value achieved by M-HEU. This is
likely because the total number of upgradations of Strategy 2 is smaller than that
of other strategies. So some feasible upgrades are left unconsidered in this
strategy. As a result some resources are left unconsumed. In this strategy the
upgradation that is not feasible in previous iteration is not considered in the later
iterations. -

Wé find from Figure 4.1 to Figure 4.6 that M-HEU and different strategies of MS-
HEU give better results for uncorrelated data sets than correlated data sets. We
can give a plausibility argument of the behavioral differences between correlated
and uncorrelated data sets of MS-HEU. When the data sets are fully correlated,
the items of a group lie on a straight line. The items with high resource
consumption and high values are picked first. So that higher valued items are
selected quickly and resources arc fulfilled. In the later iterations the lower valued
items are not considered, where some of them would give a feasible solution. So
that we loose some revenue here. But if the data sets are random then the picking
of items will not be biased. Both high and low valued items will be picked with
the same probability and we get better solutions. This is likely the reason that
different strategies of MS-HEU have better optimality for uncorrelated MMKP
data sets than correlated MMKP data sets

We aiso find from Table 4.1 to Table 4.3 and Figure 4.7 to Figure 4.12 that for
correlated data sets, these algorithms take more time than uncorrelated data sets.
When a data set is correlated there is a chance that almost every combination is
feasible. In an uncorrelated data set, we generaily get more infeasible picking
constrair;ts than correlated data sets. We do not need to calculate the aggregate
res%)urces for those items. Therefore we can get a feasible solution with less

computation'for random data sets than for correlated data sets. That is why

6]

—

At

di!ffcrcnt strategies of MS-HEU have less time requirements for uncorrelated data
sets than correlated data sets.

The optimality achieved by different strategies of MS-HEU is almost stable for
larger problem sets shown in Figure 4.4, We find almost the same trend for an
increase in the number of resource dimensions shown in Figure 4.5.

Figure 4.6 shows that the achieved optimality decreases with an increase in the
number of items in each group. This is likely because we ignore some items while
picking items from different groups. We only consider feasible upgrade in MS-
HEU. The items with higher values, which give a feasible solution, are picked first
in each iteration. So that the lower valued items than the new selected items are
ignored in the subsequent iterations. But if these items are considered in the later
iterations, some of them may give feasible solution and the solution value may be
increased. The number of ignored items is increased with the increase in number
of items. Consequently the number of ignored lower valued items, which may
give a feasible solution, is also increased. So that we loose more revenue with the
increase in number of items. In M-HEU, when an upgradation gives an infeasible
solution, some groups are downgraded for feasible solution. So that some items
that are ignored in the previous iterations are considered in the later iterations in
M-HEU. So this behavior is more remarkable in MS-HEU than M-HEU.

Figure 3.7 to Figure 3.12 show that the time requirements of M-HEU and different
strategies of MS-HEU. It is shown that the time requirement of different strategies
of MS-HEU is much less than that of the M-HEU. From Table 4.1 to 4.3 and from
Figure 3.8, 3.10 and 3.12, it is also clear that the time requirement of Strategy 3 is
more than the time requirements of Strategy | and Strategy 2. This is likely
because the number of iterations in Strategy 3 is at most n/, where there is a
logarithmic number of iterations in Strategy 1 and Strategy 2. ’

If we observe the difference between estimated optimal total value achieved by
the Upper Bound and the total value of the items picked by Strategy 1 of MS-
HEU and M-HEU of the MMKP in Figure 4.13 and Figure 4.14, for 10 different
uncorrelated ddta and correlated data respectively, the performance of Strategy 1

of MS-HEU appears to be consistent to solve the MMKP.

02

! Chapter 5

Conclusions

There are several heuristic algorithms for solving the MMKP. These are sequential
algorithms and some of them are discussed briefly in Chapter 2. But there is no
parallel algorithm for solving the MMKP. In this thesis, we have proposed a heuristic
based parallel algorithm that runs on CRCW PRAM in O(log #»l (log n + log m +
loglog 1)) time using O(nlog ni(log n + lin)) operations exploiting O((nlog n + Imn) /
(log n + log m + loglog 7)) processors. In our parallel algorithm, we have used the
same candidate item evaluation criteria as used in HEU by Khan or M-HEU by
Akbar. Here we summarize the major contributions from our thesis and present

suggestions for the future research work.

5.1 Major Contributions

The major contributions made in this thesis are as follows:

¢ When the number of groups increases beyond a certain limit single processor
based solutions may not be able to provide real-time response. In this thesis
iwe proposed a parallel algorithm, PRAM-HEU in polylog time. The time
.complexity and the total number of operations are calculated for PRAM-HEU.

The tota! number of processors has also been calculated.

o In chapter 3, we discussed why it is not possible to provide a parallel
algorithm from M-HEU directly. Then to provide a parallel heuristic
algorithm, M-HEU is modified to some extent and a new heuristic algorithm,
MS-HEU is developed. Three different strategies of MS-HEU is proposed
depending on the number of iterations and the number of upgrades in each
iteration, from where one strategy is considered to develop the parallel
heuristic algorithm. The _complexities of different strategies of MS-HEU have
been calculated.

*» We can get the exact solution by BBLP technique, but that will take
exponential time complexity. So we actually compute an upper bound of the

value using the same technique but with less iteration. Then we compute the

63

pércentagc of the value computed by our algorithm as well as computed by M-
HEU with respect to the upper bound. This gives us the achieved optimality.

* We have performed experiments on an extensive set of data, We present the
comparison of performance and time requirements between our algorithm and

M-HEU (shown in graph). We also analyze the experimental results.

5.2 Future Research Work

We suggest the following research plans on heuristics for solving the MMKP:

o PRAM Mode! Simulator: We did not design the PRAM mode! simulator for
our a[gorithm; rather we implemented the serial version of PRAM-HEU to
calculate the performance of PRAM-HEU. So the design of PRAM model
simulator for PRAM-HEU is a good research topic from where the analysis of
time requirement and performance measurement of the PRAM-HEU can

easily be done with respect to other heuristics and also with respect to exact

algorithms, such as BBLP.

o Average Case Analysis: We presented the worst-casc complexities of MS-
HEU and PRAM-HEU for solving the MMKP. The analysis of time
requirement complexity and achieved optimality in the average case is a very
interesting research topic in theoretical computer science. -

* PRAM Algorithms for Exact Solution: There is no parallel algorithm for exact
solution of MMKP. 'We know that, the computation time for any exact
algorithm, such as BBLP, may grow exponentially with the size of the
problem instance in the worst case. But if we provide a PRAM algorithm for
gxact solution, then the problem can be solved in reasonable time. So, this is
an interesting unsolved problem and one may work on that further.

o PRAM Models for Other Heuristics: I-HEU having a little difference from M-
HEU is used as an incremental and scalable algorithm. This will be considered
in futuire to provide a PRAM model of I-HEU that can improve the scalability
and fault tolerance of adaptive multimedia with better computation
éomplexity. Another heuristic algorithm, C-HEU is developed for solving the

MMKP using convex-hull approach. This is remarkable, because this is a

64

—

sequcntial algorithm with O(nllog sl + nim). So these are also good research
topic to design PRAM model for other heuristics. |

Implementation of Admission Controller: Implementation of Admission
Controller nceds to be done using this system. We have not implemented an
Admission Controller using the parallel heuristic. The performance of an
Admission Controller using the parallel heuristic can be studied.
Implementation of distributed algorithms for the MMKP:. Distributed
algorithm for the MMKP can be implemented using socket programming. In
distributed systems, there are a collection of multimedia servers which can be
located anywhere in the world. These servers may exchange information about
the amount of resources available in each of them and the revenue earned by
them. The algorithm is run in each of the server and a new parameter is added
to the problem regarding which server to select to meet a particular request,

Socket programming can be used to exchange information among servers.

63

Appendix

Program written using Java programming language:

// In this program:
// Sessiocn means group of the MMKP
// QoS level of session means Items of the MMKP

import java.util.*;
import: java.lang.*;
import java.io.*;

class Node{
int no_of fixed group:;
int statusi];
int next_branch_session;
double upper_bound;

class can_item{
int group_no;
int item_no;
double value;
int type; //1 means less resource more reveneu delr is positive
//0 otherwise
vold assgn_null can_item{) {
group_no=-1;
item_no=-1;
type=0;
value=-1.0;
}
void set can_item(int grp , int item, double delr, double
delp) {
group no=grp:;
item no=item;
if (delr<0){
type=0;
value=delp;
t
else(
type=1;
value=delr;
H
}
void print () {
System.out.println{group no+ " "+ item_no+ " "+typet"
"+valuet™ "} ;
}
}
class resourcef{
int no_of resources;
double r([]:

resource (int i) {

no_of_ resources=i;

r=new double[no_of_ rescurces];
)
void add_res (double s[]){

66

for {(int i=0;i<no_of resources;i++) r(il+=s[i];
}
void sub_res{double s[]){

for (int i=0;i<no_of_resources;i++) rl[i)l-=s{il;
}
int feasible({doukle s[])}{

for (int i=0;i<no_of_ resources;i++} |

if (r[il»s(1i]) return 0;

}

return 1;
}
vold print () {

System.out.println{"");

for (int i=0;i<no_of_resources;i++)

System.out.print(r(i]+" "):
System.out.println{("");

1

public class nnMMKP({

Node solutionNode;

static final double TOL=1.0e-6;

int kp=0,icase=0,ip=0;

double gl=0.0,bmax=0.0;

int 11(),12(]1,13([]:

int no_eof_sessions,no_of_resources,no_of_ qos;

int

no_of_variables,no_of_ equations,objective_equation,no_of_ live_variabl
es;

int inf_conét=0;

int max_res; //Maximum consumed resource

int lhs(],rhs_vari{l:

double rhs_coeff[][];

double cost[]{]),resourcel]l[]l[],total constraint(],used resource(]:
double cost_per unit[]; //per unit cost of the resources

int solution{],saved solution{],no_of_gos_levels{]:

can_item candidates([];

//solution[]: for holdin the current sclution
//saved_solution(]: saving a solution

//no_of qgos levels[]: Holding the number of items in each group
Vector head;

double parallel rev,serial_rev,bblp rev,upper_rev;

int increased_revenue=0;

veid datainit(int no_ses,int no_res,int no_gos) {
Random rand_var=new Random ({20} ;
int random=1;
int rc=10;
int pc=10;
no_of_ sesslons=no_ses;
no_of rescurces=no_res;
no_of_gos=no_gos;
cost=new double({no_of sessions] [no_of_gos];
resource=new
double[nc_of_resources] {no_of_sessions][no_of_gos};
total constraint=new double[no_of resources];

67

cost_per_unit=new double[no_ocf_ resources]:
used resource=new double[no_of resources];
no_of_gos_levels=new int[no_of_sessions]:
solution=new int[no of sessions];
saved_solution=new TJ.nt_[nc>_of:'_sr—3.€.s ions];
candidates=new can_item[no_of sessions];
for (int i=0;i<no_of sessions;i++) candidates[i]=new
can_item();

int total no_of resources;

int j,i,k;

double temp;

total no_of resources=no_of rescurces;

for (k=0;k<total nc of resources;k++)
total constraint[k]=0.5*rc*no_of sessions;
for (k=0;k<total no_of resources;k++)
cost_per_unit(k]=rand_var.nextInt (pc}:

for (i=0;i<no_of sessions;i++)}{ //Initializing
rescurce req of the items
no_of gos_levels[i]l=no_of gos; //Noc of items

in each group
for (3=0;j<no_of gos_levels[i]l;j++)}{
for (k=0;k<total_no_ of resources;k++) {
resource[k] [i] [(ji=rand_var.nextInt(rc}:

}
}

1if (random==1) {
// The value of item is not propertional to resocurce
consumption
for (i=0;i<no_of_ sessions;i++){
for (§=0;j<no_of gos levels[i]:Jj++){

do{
temp=0.0;
for
(k=0; k<total_no_of_ resources;k++)

tempt=resource (k] [i] [j]*cost_per_unit([k];
cost[i]{j]=rand_var.nextInt(total_no_of_resources*(rc/2)*(pc/2)

cost[il [J1=(cost[i][j]1*{]j+1})}/no_of gos;
. }while {(temp<cost[i]I[j}l}:

} 1
' elsel
// The value of item is proportional tc resource consumption
for (i=0;i<no_of_ sessions;i++){ '
for (3=0;j<no_of gos_levels[il;j++){
cost[1]1{]]=0.0;
| for (k=0;k<total no_of resources;k++)
cost{i] [jl+=resource([k][i][]j]l*cest_per_unit([k];

cost[i][j]+=rand_varnnextInt(total*no_of_resources*B*(rc/lO)*(p
c/10)); '

68

for {i=0;i<no_of sessions;it++) ({ //The items are
sorted according to the value
sort pile(i);
solution([i]=0; //Initial solution

]
void init_selutien(){
for (int i=0;i<no_of sessions;it++}{
sclution[i]=0;
} .
for (int, k=0;k<no_of_resources;k++) {
used_resource(k]=0.0;
for{int i=0;i<no_of_sessions;i++)
used_resource(k]+=resource[k] [i] [solution[i]];
}
}

void max_res_cons () |

max_res=0;

for {int i=l:;i<no_of resources;i++){

if {used resource[i]>used_resource[max_res]) max_res=i;

}
}
double scaled _res_cons(int %k} {

//return (used resource[k]*used_resourcel[k]);

if ((used_resource[max_res]/used_resource[k])>2.0) return
used_resource[k];

if ((used_resource[max_res]/used_resource[k])>l.6) return
(used_resource[k]*used_resource[k]);)

if ((usedwresource[max_res]/used_resource[k])>1.3) return
{used resource[k]*used resource (k] *used_rescurce(k]);

else return
{used_resource (k] *used_resource[k] *used_resource[k]*used_resource [k]}

]

voilid calculate_can_items () {

double delr,delp:
int j,k;
max_res_cons{);
for{int i=0;i<no_of sessions;i++){
candidates[i].assgn_null_can_item();
" for(j=solution[il+l;j<no_of gos_levels{i];j++){
delr=0.0;
double delrl=0.0,delr2=0.0;
for(k=0;k<no_of resources;k++}{
if (Math.abs(usedwresource[k])>TOL) [:

delrl+=resource[k] [1i] [sclution([i]]*scaled_res_cons(k):

delr2+=resourcel[k] [i][j]*scaled_res_cons(k};

}

69

else |
delrl+=resource(k] [i] [sclution[i]];
delr2+=resource[k] (1] [J]:
}
)
delr=delrl-delr?;
// Finding the change of aggr res consumption
delp=((double) (cost(i] [solution(i]]-
cost[i]1[31))/ {{double)delr);
can_item t_can_item=new can_item();
t_can_item.set can_item({i,]j,delr,delp);
if (compare_can_item(t_can_item, candidates[i]l)==1)
assgn_can_item(candidates[i],t_can_item);

void sort_can_items () {
for (int i=0;i<no_of sessions;i++){
for (int j=i+l:j<no_of sessions;j++){
if
(compare can_item{candidates{i],candidates[]j]}==0}{
| //Candidate Item i is less than j
can_item temp=new can_item{);
assgn_can_item(temp,candidates{il]);
assgn_can_item{candidates([il,candidates([j]};
assgn_can_item{candidates(j],temp);
}
}
//candidates[i].print();

1

double[] get resource{int group_no,int item_no) |{
double r[];
r=new doublel[no_of resources]:
for {int k=0:k<no_of_resources;k++)
r[k]=resourcelk] [group_no] [item_no];
return r;

}

int select items({int num) {
int i;

resource t_resource=new resource(noﬂof“resources);
t_resource.add res{used_resource);
for (i=0;i<num;it++){

t_resource.add_res(get_resource(candidates[i].group_no,candidat

es[i].item_no}};

t_resource.sub_res(get_resource{candidates(i].group_no,solution

[candidates[i].group_noj));

1

for (i=num-1;i>=0;i--){ ‘
: if (t_resource.feasible{total_constraint)==1) break;
! elsel

70

t_resource.sub_res{get_resource(candidates[i]}.group_no,candidat

es(i].item no));

t_resource.add_res{get_resource(candidates[i).group_no,solution

[candidates[i].group_no]));

}

}
}

if (i==-1) return 0;
for (int j=0:j<=i;j++)
solution[candidates([j].group_nol=candidates[j].item no;
for (int k=0;k<no_of_ resources;k++) {
used_resource[k]=0.,0;
for (i=0;i<no_of sessions;i++)
used_resource[k]+=resource([k] (i] [solution([i]]:

return 1;

int compare_can_item({can_item cl,can_item c2}{

}

if (cl.type<cZ.type) return 0;
if (cl.type>c2.type) return 1;
if (cl.value<c2.value) return 0;
else return 1;

void assgn_can_item(can_item cl,can_item c2){

}

cl.group no=c2.group_no;
cl.item_no=cZ.item_no;
¢l.value=c2.value;
cl.type=cZ.type;

// for Strategy 3 of MS HEU
/*void do_ms_heul(){

int num_items to_ select=no_of sessions*no_of qos;
int sel_success;
int act_upgrade=0;
do{
calculate can_items():
sort_can_items () ;
int n;
for (n=0;n<no_of_ sessions;n++){
if (candidates(n] .group_no==-1)break:
}
if{num_items_to_select/2>{n-1})
act_upgrade=n-1;
else
{
LE(num_items_to_select==1)
act_upgrade=num_items_to_select;
else
act_upgrade=num_items_to_select/2;
}
sel success=select_items(act_upgrade);
if (num_items_to_select!=1l) num_items_to_select/=2;
twhile (num_items_to_select>=1 && sel_success==l});
parallel rev=netrev()};
//System.out ,println{"Revenue earned by Parallel HEU"+"
"+netrev());

71

'
//for Strategy? of MS HEU
void do_ms_heu () {
int num_items_tc_select=nc_of sessions*nc_of qos;
int sel success;
int act_upgrade=0;
do{
calculate_can_items();
sort_can_items ()
int n;
for (n=0;n<no_of_sessions;n++}{
if{candidates[n].groupﬂno==—l)break;
}
if (num_items to_select/2>(n-1})
act_upgrade=(n-1);
else
act_upgrade=num_items_ to_select/2;
sel_success=select items(act_upgrade);
if (num_items_tc select!=1l) num items tc select/=2;

}while (num_items_to_select>l && sel success==1);
parallel rev=netrev(}:
//System.out.println("Revenue earned by Parallel HEU"+"
“"tnetrev());
H
*/7
//Strategy 1 of MS_HEU
void do_ms_heu(} {
int num_items to_select=no_of sessions*no_of gos;
int pending_upgrade=9Q;
int act_upgrade=0;
int sel_success;
doi
calculate can_items(};
sort_can_items(};
int n;
for{n=0:n<no_of sessions;n++){
if (candidates[n].group_no==-1)break;

}

if((pending upgrade+num_items_to_select/2)>no_of_sessions)
act_upgrade=n-1;
else
act_upgrade={pending_upgrade+num_ items_to_select/2);
Lf {(num_items_to_select!=l) num_items_to_select/=2;
sel success=select_items(act_upgrade);
pending upgrade=pending upgrade+ (num_items_to_select-
act_upgrade};

twhile (hum_items to_select>l && sel_success==1};

parallel rev=netrev();

//System.out.printlin("Revenue earned by Parallel HEO"+"

"+netrevi(});

1

void write_to_file(} {
try{
String S=new String(""):;
S+=no_of sessions+ "\t"+ no_of resources+ "\t"+no_of_ gos+
"\t"+5ar§llel_rev +"\t"+ serial rev+ "\t"+

72

upper rev+"\t"+parallel rev/serial_rev+ "\t"+
serial rev/upper rev+"\t"+ parallel_rev/upper_rev+"\n";
RandomAccessFile p=new
RandomAccessFile {"pMMKP. txt", "rw") ;
p.seek({p.length());
p.writeBytes (S}
p.cleose(}:
tcatch (IOException e) |
System.cut.println("An Error Qccurred in writing");
}
}
void revive_solution{){
//Revives the previously saved solution
int i,k;
for {i=0;i<no_of sessions;it+)
selution(i]=saved_solution[i];
for (k=0;k<no_of resources;k++){
used_resource [k]=0;
for(i=0;i<no_of_sessions;i+t+)
used_resourqe[k]+=resource[k][i][solution{i]];

J

double netrewv(){

//Calculates the total revenue : summation of the value of the

//selected items

int i;

double total_rev;

total rev=0.0;

for {i=0;i<no_of_sessicons;i++} |
tetal rev+=cost(i] {solution[i]];
//8ystem.out.printin({solution[i]};

}

return total rev;

]

void sort_pile(int 1)({
//Sorts the ith group of the MMKP
int 5,k,1;
double temp;

for (j=0;j<no of_qgos_levels{ij;j++}{
for (k=j+1l;k<no_of gos_levels[i];k++){
if {cost{i][jl»costii]l[k]}{

temp=cost[i] []];

cost{i] (jl=cest{i] [k];

cestii] [k]=temp;

for (1=0;1l<no_of_resources;l++}{
temp=resource[l] [i]1[]];
resource[l] [i} [jl=resource[1] [i]} [k];
resource([l] [i] [k]=temp;

}
}
void infeasible constraint () {
//Determines the most infeasible rescurce constraint for the
//current resource consumption
double inf,cinf;

73

int i;

inf=0.0;
cinf=0.0;
inf const=0;
// A global variable determining the most infeasible resource
for (i=0;i<no_of resources;it++){
if (Math.abs(total constraint[i]}<TOL){ // if total
constraint is 0
if (Math.abs({used_resource[i])>TOL) { /7 id
consumed resource is more than 0
inf_const=i;
return;
}
lelse(
cinf=used_resource(i]/total_constraint(i];
if (ecinfr»inf){
inf=cinf;
inf const=i;

}
}
int find_feasible () {
// Step 1 of the heuristic: Finding a feasible solution
int 1i;
do{
infeasible_constraint{);
if
(used_resource[inf_const]<=total_constraint[inf_const]) return 1;
i=resource_conservation{); ’
// Finding an item with less resource consumption
twhile (i==1};
return Q;

)

int downgradepossible{int session_no,int gos_no)
//Whether Group session .no can be downgraded to Item gos_no to £find a
feasible soltiecn
{

int i;

if {qos_no==solution[session_no]) return 0;

for {i=0;i<no_of resources;i++] (

if (total_constraint[i]<used_resource[i] &&

resource[inf_const][Session_no]{qos_no]>#resource[inf_c0nst][session_

no) [solution{session_nol])
return 0;
// Makes an infeasible resource more infeasible
else(
if i
(resource[i}{session_no}[qosﬂno]>resource[i][session_no][solution[ses
sion_nol]l}{
if {(used_resource(i]-
resource (i) (session_no] [solution([session_ne]]+resourcel(i] [session_no]
[gos_no))>total_constraint(i})
return Q; ‘
// Makes a feasible resource infeasible

74

return 1;

}

int resource_conservation(}{
doukrle delr,mdelr;
int tsession,tgos,k,i,j.m;
m=0;
mdelr=0.0;

tsession=-1;
tqos=-1;
for(i=0;i<no_of_sessions;i++)[
m=solution[i]+1;
for(j=m;j<no_of qgos_levels([i};j++){
"if {downgradepossible({i,]j) !=0}{
delr=0.0;
for(k=0;k<no_of resources;k++){
// Calculating delr: change of aggregate resource
. if (Math.abs(used resource(k]}>TOL)
delr+={resource[k] [i] {solution[i]]-
resource[k] [i] [j]) *used_resource(k];
else
delr+=(resourceik] [i] [solution[i]]-rescurce(k]} [1]1([]]);
}
//if (absc>TOL) delr=delr/absc;
if(delr>mdelr || tsession==-1}{
// Finding the higest delr
tsession=i;
: tgos=j;
mdelr=delr;

}
}
if (tsession!=-1}{
// Bn item is found to find feasible solution
for (k=0;k<no_of resources;k++)} _
used_resource[k]+=resource[k][tsession}{tqos]—
resource (k] [tsession] [solution([tsession]j;
solution[tsession]=tgos;
return 1;
}
return 0; // No item is found to find feasible solution

}
int rescurce_upgradation(){
// Selecting new items by upgrading only

double delr,mdelr;
double delp,mdelp;

int tsession,tgos,k,1,3;
mdelr=0.0;

mdelp=0.0;

tsession=-1;

tgos=-1; .

for(i=0;i<no_cf_ sessionsg;i++) {

for(j=solution[i]+1l;j<no_of gos levels[i];j++){

75

I

// Only upgrading
if (resource_constraint (i, j}==1){
//0nly feasible upgrades are allowed
delr=0.0;
double delrl1=0.0,delr2=0.0;
for (k=0;k<no_of_resources; k++} {
if (Math.abs(used resourceik])>TOL} {

delrl+=resource[k] [i] [solution{i]]*used_rescurcel[k]:

delr2+=resource[k] [i] []]*used resourcelk];
}

else |{

delrl+=resource(k] [i] [selution[i]];
delrZ+=resource (k] [1] [3]:
}
}
delr=delrl-delr?2;
// Finding the change of aggr res consumption
if{delr>mdelr || tsession==-1)
tsession=i;
tgos=j;
mdelr=delr;
}
. if (mdelr<0){
// 1If the change of agrregate res is negative then looking for items
//with higest change of value with respect to the change of aggregate
//res consumption
delp=(({double) (cost[i] [solution[i]]-
cost[i][31))/ ({double)delr);

if (delprmdelp){
mdelp=delp;
tsession=i;
tgos=j;

]

if (tsessioni=-1){
' // An upgradeable item found
for (k=0;k<no_of resources;k++)
used resource[k]+=resource[k] {tsession] [tgos]-
resource[k] [tsession] [selution(tsession]]);
solution[tsession]=tgos;
return 1;
}
else return 0; // Wo item is found to upgrade the solution
}

int resource_up_de gradationi){
// upgrading following downgrades
double delr;
double target;
double delp,mdelp,cmdelp;

-int tsession,tgos,k,i,j,tsessionl,tgosl, tsession2,tgos?;

76

mndelp=0.0;

tsession=-1;
tgos=-1;

//Finding an infeasible upgrade
for(i=0;i<no_of_ sessicns;i++){
for{j=solution(il+1;j<no_vf qgos_levels[i];j++) {
delr=0.0;
for (k=0;k<no_of resources;k++]{
// Determining delr(prime)
if (Math.abs(total constraint{k]=-
used resource[k]})>TOL) delr+={resource(k] [i] [solution{i]]-
resource [k} {i][§])/ (total_constraint[k]-used_resourcelk]);
else delr+=(resourcel[k] [i] [sclution[i]]-
resource[k] [i][J]):
}
// Determining delv/delr {prime)
delp=((double} ({(cost[i] [sclution{i]]-
cost[i]){j]))/ ({double) delr);

if {(delp>mdelp || tsession==-1} {
mdelp=delp;
tsessicn=i;
tgos=j;
1
J
}
if (tsession==-1} return 0; // No upgrade found

target=-
cost([tsession]) [solution[tsession] J+cost(tsession] [tqos]);
// Determining how much downgrade is allowed
for (k=0;k<no_of_ resources;k++)
used resource[kj+~=resource{k] [tsession] [tgos]-
resource [k] [tsession] [solution[tsession]];
solution{tsessionj=tgos;

do{
tsessionl=-1;
tgosl=-1;
tsession2=-1;
tgqos2=-1;
mdelp=0.0;
cmdelp=0.0;

for(i=0;i<no_of_sessions;i++) |
for (j=0;j<solution[il];j++)}{

if (cost_improved(i,j,target)==1 && i!=tsession) {
// The selection which downgrades less than target
delr=0;

for (k=0; k<no_of_ resources;k++) {
//Detarmining delr
if (Math.abs{used resource(k]-
total censtraint[k])>TOL)
delr+={resource(k] [i] {sclution[i]]-
resource (k] [1][j]}/(used resource[k]-
total constraint([kl};
else :
delr+=(rescurcel[k] [i] [solution[i]]-
resource k] [1](j]):

}

//Detarmining delr/delv

77

LY

delp={(double)delr)/{{double) (cost{i] [solution[i]]-
cost[i]{j]1)):
if (delp>mdelp || tsessionl==-1) {
mdelp=delp; ’
tsessionl=i;
tgosl=j;
}
if (resource_constraint(i,j}==1)}{
// 1If feasibility retained
if {delp>cmdelp || tsession2==-1){
cmdelp=delp;
tsession2=i;
tgosz=j;

}
}
if (tsession2!=-1){
// B feasible solution found
for (k=0;k<no_of resources;k++){
used resource[k]+=rescurce(k] [tsessionZ] [tgos2Z]-
resource [k] [tsessionZ] [solution[tsession2]l;
}
solution[tsession2]=tqosZ;
return 1;
telse if (tsessionl!=-1){
// B downgrade found but not feasible soluticn
for (k=0;k<no_of_ resources;k++){
used_resource[k]+=resource{k] [tsessionl] [tgosl]-
resourcelk] [tsessionl] [solution[tsessionl]];
}
//updating the target of downgrade
target=target+cost[tsessionl] {tgosl]-
cost[tsessionl] [solution[tsessionl]]:
solution([tsessionl]=tqgosl;
)
else return 0;
}while (tsession!=-1});
return 1;

}

int resource_constraint{int i, int j){
// Determines whether the upgrade or downgrade is feasible
int k;
for (k=0;k<no_of resources;k++){
if {(used_resource(k]-
resource (k] {i] [solution(i]]+resourcel[k}{i][j]l)>total cons
traint(k])
return 0;
}
return 1;
H
void save_solution{){
// Saves the soluticn to saved_solution
int 1i;
for (i=0;i<no_of sessions;it+}
saved_solution{i]=solution[i];

78

int cost improved(int i, int j, double target}{
// Determines whether the selection of Item j of Group i
//dovwngrades the total solution value target

if ((cost[i] [solution[i]]=~cost(i][j])<target) return 1;
else return 0;

}

int verify solution{(){
// Verifies whether the solution is infeasikle
int k;
for (k=0;k<no_of resources;kt++) |
if (used resource[k]>total constraint[k]} |{

System.out.println("Sclution invalid");
return 0; '
}
}
return 1;

}

void do_heu(}{

// Main function to determine the heuristic of the MMKP
int i, k,3:

for (k=0;k<no of resources,k++){
used resource[k]—
for (i= 0,1<no_of_sessions;i++)
used_resource[k]+=resource[k] [i][solution[i]];

}

i=find feasible(}: // Step 1: Finding feasible solution
if (i==0} ({
System.out.println (" Solution not Available by HEU"):
return;
}
do{ // Step 2: Upgrading only

i=resource_upgradation(};

jwhile{i==1); . .
//System.out.println{"Revenue earned by HEU"+" "+ netrev())};

do{
save_solution(); // Saving solution
i=resource up de gradation();
// Step 3: Infeasible upgarde followed by Downgrades
if (i==1){ // Step 3 is successful to upgrade
do({ // Step 2 again
j=resource_upgradation(};

Jwhile (§==1);

lelse revive_solution{};

// Step 3 failed, so solution revived
twhile {i==1};
for (k=0;k<no_of_resources;k++)
System.out.println{used_resocurcel[k]);
System.out.println("Revenue earned by M- HEU"+" "+netrev()),
serial_rev=netrev(};
if (verlfy_solutlon()==) |
System.out.println{"Error in HEU");
System.exit (C);

}

79

e

}

void load_equations (Node candidate)

// Loading the MMKP to the equations of the linear programming

{

int i,3,k,L;

no_of variables=0;
no of live variables=0;
for(i=0;i<no_of_sessions;i++){
no_of variables+=no_of_gos_levels[i];
if {candidate.status{i]==-1)
no_of live variables+=no _of gos_levels[i]:

}

no_of equations=no_of_sessions-
candidate.no_of_ fixed group+no_of resources;
lhs=new int[no_of_ equations+3];

rhs_var=new intino_of_ live_variables+l];
rhs_coeff=new

double[no_of equations+3}[no_of live variables+2};
rhs_coeff[1]1{1]1=0.0;

k=2; /*Objective Equation*/
for (i=0;i<no_of sessions;i++)}{
if (candidate.status[i]===1}{

for (j=0;j<no_of qos_levels{i];j++) {
rhs_coeff{l] (ki=cost[i](j]:
: k++;
! b
}

for (i=0;i<no_of_resources;it+){

rhs_coeff[i+2][1]=total constraint[i};

k=2;

for (j=0:;j<no_of sessions;j++){ : .
if ({candidate.status([j]>=0) rhs_coeff[i+2][1]-
=resource[i] [j] [candidate.status([j]];
elsef

for (1=0;1l<noc_of gos_levels[jl:;1++){
rhs_coeff[i+2][k]=-resource[i][j}[l];

k++;
}
}

}
}
k=2;

1=2;

for (i=0;i<no_of_sessions;i++){

if (candidate.status[i]==-1){

rhs_coeff[k+no_of_resources] [1]=1.0;
for {j=0;j<no_of_qos_levels[i];j++) |
rhs_coeff[k+no_of_resources][l+j]=—l.0;
1
l+=no_of_gos_levels[i];
k++;

80

int testforallselection (Node candidate)

{

}

int i;
for {i=0;i<no_of_resources;i++){
if (rhs coeff{1+2][1]<0 0) return 0;
}
if (candidate.no_of_ fixed_group'!=no_of_sessions) return 2Z;
return 1;

int evaluate node {Node candidate)

// Running Linear programming to find the upper bound of a partial
solution

{

int i;
double tmax;

load_equations (candidate):
candidate.upper_bound=0.0;
for (i=0:;i<no_of_sessions;it++) {
if (candidate.status[i]>=0)
candidate.upper_bound+=cost[i][candidate.status[i]]
h
i=testforallselection{candidate);
if {(i==0) {
return 0O;
}
else if (i==1}{
return 1;
}
simplx{no_of eguations,no_of_live_variables,no_of_resources,0,
no_of_ sessions-candidate.no_of_fixed_group);
if (icase!=0}{
return 0O;
}

candidate.upper_bound+=rhs_coeff[1][l];
candidate.next branch_session=-1;
tmax=0.0;
for (i=2;i<no_of_equations+2;it+){
if (rhs coeff[i] [l]>tmax && lhs[i-
11<=no_of live_variables){
candidate.next_branch_session=lhs[iul];
tmax=rhs_coeff[i][1];
}
}
if (candidate.next_branch_session==—l) {
return 0;
)
i=0;
while {candidate.next_branch session>0} (
if {candidate.status[i]==-1)
candidate.next_branch_session-=no_of_gos_levels([i];
it+; .
}
candidate.next_branch_session=i-1;
return 1;

81

double find upper bound()

// Finding the upper bound of the MMKP

{

}

Node ptr;
int i,counter=0;

solutionNode= new Node():;

head=new Vector(}:

ptr=new Node ()
ptr.no_of fixed group=0;
ptr.status=new int[no_of sessions];

for (i=0;i<no_of_ sessions;i++) ptr.status{i]=-1;
i=evaluate_ node{ptr);
if (i==0){

System.out.println("No Feasible Solution");
return 0.0;
}
upper rev=ptr.upper bound;
System.out.println("Revenue earned by Upper"+"
"+ptr.upper_bound);
return ptr.upper_bound;

void simplx(int m,int n,int ml,int m2,int m3)
// Linear programming algorithm using the simplex method

{

int i,ir,is,k,kh,ml2,nll,nl2, jumpv=0;

if (m !'= {ml+m2+m3}) {
System.out.println("Bad input constraint counts in
simplx");
System.exit (0);

}

-ll=new int[n+2];

12=new int[m+1]; .
1l3=new int[m+1];

nll=n;)
for {k=1;k<=n;k++} 1ll[k]=rhs_var[k]=k;
nl2=m;
for (i=1l;i<=m;i++) {
if (rhs_coeff[i+1][1] < 0.0){
System.out.println{“Bad input tableau in 51mplx")
System.exit (0);
}
12[i)=i:
lhs{i]=n+i;
1
for (i=l;i<=m2;i++) 13[i]=1;

ir=0;
if (m2+m3>0) {
ir=1;
for (k=1;k<=(n+l);:k++) {
qgl=0.0;
for {(i=ml+l;i<=m;i++) gl += rhs_coeff(i+1] [k];
rhs coeffim+2] (k] = -gl;

82

do

Fumpv=0;
simpl {m+1,nll,0);
if (bmax <= TOL && rhs_coeff(m+2]{1} < -TOL) {
icase = -1;
return; }
else if (bmax <= TOL && rhs_coeff[m+2][1] <=
TOL) {
mlZ=ml+m2+1;
if (ml2 <= m) |
for (ip=ml2;ip<=m;ip++) {
if (lhs(ip] == (ip+n)} |
simpl (ip,nll,1);
if (bmax > 0.0){
Jumpv=1;
break;

else
Jjumpv=0;

if (jumpv==0) {
ir=0;
--ml2;
if (ml+l <= ml2)
for (i=ml+1;i<=ml2;i++)
if {(13[i-ml] == 1)
for (k=1;k<=n+l;k++)
rhs_coeff[i+l] [k] = -
rhs coeff{i+l}(k];
break;

}

if {(Jumpv==0} {
simp2 (n,nlZ2);
if {ip == 0) {
icase = -1;
return;
}
}
simp3 (m+l,n);
if (lhs[ip] >= (n+ml+m2+1))} {
for (k=1;k<=nll;kt++)}
if (11(k] == kp) break:
--nll;
for (is=k;is<=nll;is++) 11[is]=11[is+1l};
++rhs_coeff{m+2] (kp+1l];
for {i=l;i<=m+2;i++} rhs_ceceff[i] [kp+l] = -
rhs_coeff[i][kp+l];
} else {
if (lhs[ip] >= (n+ml+1l)} (
kh=lhs[ip]-mi-n;
if (13{kh]>0) {
13(xh1=0;
++rhs_coeff£m+2][kp+l];
for (i=1;i<=m+2;i++)
rhs_coeff[i] [kp+l] = -
rhs_coeff[i] [kptl];

83

}

1
is=rhs var[kp]:
rhs_var (kpl=lhs(ip];
lhs(ip}=is:

} while (ir!=0};

}
for (;;) {

simpl{0,nll,0);

if {bmax <= 0.0} {
icase=0;
return;

}

simp2 (n,nl2);

if (ip == 0) {
icase=1;
return;

}

simp3 (m,n);

is=rhs_var[kp];

rhs_var[kpl=lhs[ip];

lhs{ip]=is;

}
}

void simpl (int mm,int nll,int iabf)

{
int k;
double test;

kp=11[1];
bmax=rhs_cceff[mm+l] [kp+1];
for (k=2;k<=nll;k++) {
if {iabf == 0)
test=rhs_coeff[mm+1] [11{k]+1]-(bmax]);
else .
test=Math.abs (rhs_coeff[mm+1] [11[k]+1])-
Math.abs (bmax) ;
if {(test > 0.0) {
bmax=rhs_coeff{mm+1} [11[k]+1];
kp=11[k]:

}

}
void simp2(int n,int nl2)

{
int k,ii) i;
double gp=0.0,g0=0.0,g9=0.0;

for (i=l;i<=nl2;i++) {
if {rhs coeff[12[i]+1] (kp+l] < -TOL) ({
gql=-rhs_coeff[12[i]+1][1)/rhs_coeff[12[i]+1] [kp+l];

ip=12[i];
for (i=i+l;i<=nl2;i++} { .
1i=121{i); :

if (rhs_coeff{ii+l] [kpt+l] < -TOL) {
. g=-rhs_coeff[ii+1][1]1/
rhs_coeff(ii+1] [kp+1]:
if (g < ql} |

84

ip=ii;

ql=g;
} else if (g == gl} {
for {(k=l;k<=n;k++) {
qp = = .
rhs_coeff[ip+1] [k+1]/rhs_coeff([ip+l] [kp+l];
q0 = -

rhs_coeff[ii+l] [(k+1]/rhs_coeff[ii+1] [kp+1];
if (g0 t= gp) break:
}
i
if (gl < gp) ip=ii;

h
void simp3({int il,int k1)

{
int kk,ii:
double piwv;

piv=1.0/rhs_coeff[ip+1] [kptl];
for {ii=1;ii<=il+1;1ii++)
if (ii-1 != ip) |
rhs_coeff[ii][kp+l] *= piv;
for (kk=1;kk<=kl+1l;kk++)
if (kk-1 != kp)
rhs coeff(ii] (kk] -=
rhs_coeff[ip+l][kk]*rhs_coeff[ii][kp+l];
}
for {kk=1;kk<=k1l+1l;kk++)
if (kk-1 != kp) rhs_coeffiip+l] [kk] *= -piv;
rhs_coeff[ip+l] [kp+l]=piv;
} -

public static voild main (String argv(]){
for (int i=1;i<1ll;i++){ ’
long secl, sec2, sec3, secd;
nnMMKP b=new nnMMKP();
b.datainit (500*1i,25,25};
b.find upper_bound():
b.init_solution{);
secl=new Date().getTime();
b.do_ms_heu(};
sec2=new Date() .getTime();
System.out.println("The MS_HEU Time "+" "+ (secZ2-secl));
sec3=new Date().getTime ()’
b.do_heul);
secd=new Date().getTime()};
System.cut.println{"The M_HEU Time"+" "+{secd-sec3));
b.write tc file(}:

}

for (int i=1;i<11l;i++){
long secl, sec2, sec3, secd;
nnMMKP b=new nnMMKP{) ;
b.datainit (2500,5*1,25);

85

s

/

b.find upper_bound();

b.init_seclution{)};

secl=new Date().getTime({):

b.do_ms_heu(};

secZ=new Date() .getTime();

System.out.println{"The MS_KEU Time "+" "+ (sec2-secl));
sec3=new Date().getTime();

b.do_heu();

secd=new Date{).getTime (};

System.out.println("The M_HEU Time"+" "+ (secd-sec3));
b.write to file{);

}

for (int i=1;i<l1l;i++){

long secl, secZ, sec3, secd;

nnMMEKP b=new nnMMKP () ;"

b.gdatainit (2500,25,5*1i);

b.find_uppez_bound();

b.init_solution();

secl=new Date().getTime (};

b.do_ms_heu();

secZ=new Date (}.getTime(};

System.out.println{"The M3 HEU Time "+" "+ (secZ2-secl));
sec3=new Date().getTime({);

b.do_heu(};:

secqd{=new Date().getTime (),

System.out.println("The M_HEU Time"+" "t (secd-sec3));
b.write_to_file();

)

86

[12]M. Magazine and O. Oguz, A Heuristic Algorithm for Multidimensional Zero-
One Knapsack Problem, European Journal of Operational Research, pp 319-326,
Vol. 16(3), 1984.

[13]F. Dammeyer and S. Voss, Dynamic Tabu List Management Using the Reverse
Elimination Method, Annals of Operations Research, 1991.

[14]A. Drexel. A Simulated Annealing Approach to the Multiconstraint Zero-One
Knapsack Problem. Annals of Computing, Vol 40, pp 1-8, 1988.

[15]S. Khuri, T. Back and J. Heitkotter. The Zero/One Multiple Knapsack Problem
and Genetic Algorithms, ACM Simposium of Applied Computation, 1994.

[L6]R. Parra-Hernandez and N. Dimopoulos, A new Heuristic for Solving the Multi-
choice Multidimensional Knapsack Problem, IEEE Transaction on Systems, Man

and Cybernetics. Part A: Systems and Humans, 2002.

[17]M. Moser, D. P. Jokanovic and N. Shiratori, An Algorithm for the
Multidimensional Multiple-Choice Knapsack Problem, IEICE Transactions on
Fundamentals of Electronics, pp 582-589, Vol. 80(3), 1997.

[18]M. Hifi, M. Michrafy and A. Sbihi, Algorithms for the multiple-choice multi-
dimensional knapsack problem, Journal of the Operational Research Society, pp.
1323-1332, Volume 55, 2004,

[19]M. Hifi, M. Mlchrafy and A. Sbihi, A reactive local search-based algonthm for
the multiple-choice multi-dimensional knapsack problem, Computational

Optimization and Applications, 2003.
[20]J. Jaja, An Introduction to Parallel Algorithms, Addison-Wesley, 1992,
[21]J. Lin and J. Storer, Processor Efficient Hypercube Algorithm for the Knapsack

Problem Journal of Parallel and Distributed Computmg, pp- 332-337, Volume
13, 1991

[22]J. Lee, E. Shragowitz and S. Sahni, A Hypercube Algorithm for the 0/1 Knapsack
Problem, Journal of Paralle! and Distributed Computing, pp. 438-456, Volume
5, 1988.

88

[23]Gopalakrishnan, Ramakrishnan and L. N. Kanal, Parallel Approximate
Algorithms for 0/1 Knapsack Problem, International Conference of Parallel

Processing, pp. 444-451, 1986

[24]E. Mayr, Parallel Approximation Algorithms, International Conference on
FGCS, pp. 542-551, 1988. '

[25]H. Chen, S. Chern and H. Jang, Pipeline Architectures for Dynamic
Programming Algorithms, Parallel Computing, pp. 111-117, Volume 13, 1990.

[26]S. Teng, Adaptive Parallel Algorithms for Integral Knapsack Problems, Journal
of Parallel and Distributed Computing, pp. 400-406, Volume 8, 1990.

[27]D. Morales, L.Roda, C. Rodriguez, F. Almeida and F. Garcia, A Parallel
Algorithm for the Integer Knapsack Problem, FUROPAR 95, Sweden, 1995.

[28] A. Goldmén and D. Trystram, An Efficient Parallel Algorithm for Seolving the
Knapsack Problem on the Hypercube, An Apache Project Supported by CNRS,
INRIA, INPG and UJF, CNPq 200590/95-2, Brazil.

[29]S. Niar and A. Frevile, A Parallel Tabu Search Algorithm for the 0-1
Multidimensional Knapsack Problem, 11" International Parallel Processing

Symposium, Geneva, Switzerland, pp. 512-516, April 01-05, 1997.

[30]M. J. Blesa, LI. Hernandez, F. Xhafa, Parallel Skeletons for Tabu Search Method,
8" International Conference on Parallel and Distributed Systems (ICPADS’01),
IEEE Computer Society Press, pp. 23-28, 2001.

[31]M. J. Blesa, LI. Hernandez, F. Xhafa, Parallel Skeletons for Tabu Search Method
Based on Search Strategies and Neighborhood Partition, 4" International
Conference on Parallel Processing and Applied Mathematics (PPAM’0)),

Lecture Notes in Computer Science, Springer-Verlag, pp. 185-193, Volume
2328, 2002,

[32]A. Z. M. Shahriar, M. A. H. Newton, M. M. Akbar, A Multi-processor based
Heuristic for Multi-dimensional Multiple Choice Knapsack Problem, 6"
International Conference on Computer & Information Technology, Dhaka,
Bangladesh, pp. 520-525, December 19-21, 2003, |

i

89

[33]A. Z. M. Shahriar, 4 Multiprocessor Based Heuristic For Multidimensional
Multiple-Choice Knapsack Problem, MSc Thesis Paper, Department of Computer
Science and Engineering, Bangladesh University of Engineering and Technology,
March 2004,

[34]R. Armstrong, D. Kung, P. Sinha and A. Zoltners, A Computational Study of
Multiple Choice Knapsack Algorithm,'ACM Transaction on Mathematical
Sofiware, pp 184-198, Vol. 9, 1983.

[35]S. Chatterjee, J. Sydir and B. Sabata and T Lawrence, Modeling Applications for
Adaptive QoS - based Resource Management, 2nd IEEE High Assurance
Systems Engineering Workshop, August, 1997.

[36]P. C. Chu and J. E. Beasley, A genetic algorithm for the multidimensional
knapsack problem, Journal of Heuristic, pp 63-86, Vol. 4, 1998.

[37]K. Dudziniski and W. Walukiewicz, A Fast Algorithm for the Linear Multiple
Choice Knapsack Problem, Operation Research Letters, pp 205-209, Vol. 3,
1984,

[38]M. E. Dyer, J. Walker, Dominance in Multi-Dimensional Multiple-Choice
Knapsack Problems, Asia pacific Journal of Operational Research, pp 159-168,
Vol. 15, 1998. '

[39]R. P. Hernandez, N. Dimopoulos, 4 New Heuristic for Solving the Multi-Choice
Multidimensional Knapsdck Problem, Technical Report, Department of Electrical

and Computer Engineering, University of Victoria, 2002.

[40]M. Kearns and S. Singh. Near-optimal Reinforcement Learning in Polynomial

Time, International Conference on Machine Learning, 1998,

[411M. Vasquez, Jin-Kao Hao, An Hybrid Approach for the 0-1 Multi Knapsack
Problem, 4" Metaheuristics International Conference, IICAI-01, Seatle,

Washington, pp 221-226, August 2001.

90

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098

