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Abstract

Multiple-Choice Multi-Dimension Knapsack Problem (MMKP) is a variant of the

classical 0-1 Knapsack Problem. It has a knapsack with a multidimensional capacity

constraint and groups of items where each item having a utility value and a

multidimensional weight constraint. The knapsack is to be filled by picking up exactly

one item from each group. The problem is to maximize the total value of the items in the

knapsack but not exceeding the knapsack capacity. MMKP is an NP-Hard problem and

its exact solution is not suitable for real time decision making applications. Therefore

heuristic based approximation algorithms are developed. Khan developed a heuristic,

HEU, which achieves 93% of the optimal solution value. Later Akbar et al. presented M-

HEU, a modification ofHEU, achieving 96% of the optimal value with a time complexity

ofO(mn'I'), where n is the number of groups, I is the number of items in each group and

m is the number of resource constraints. But, these heuristic algorithms do not scale better

for larger systems. In this thesis, a new sequential heuristic algorithm is developed by

modifying M-HEU to some extent that would be parallelized. Later a parallel heuristic

algorithm is introduced that is the parallel version of the new sequential heuristic

algorithm. And the new sequential heuristic algorithm is used to compare the

performance of the parallel heuristic algorithm. Experimental result shows the new

heuristic algorithm achieves 94.5% of the optimal value. The time complexity of the

parallel algorithm is O(log nl(log n + log m + log log z)) with O(n log nl(log n + 1m)) number

of operations in Concurrent Read Concurrent Write (CRCW) PRAM model, i.e., the

required number of processors is O((n log n + nlm )/(log n + log m + log log I)). This also

means that we have a sequential heuristic algorithm running in O(n log nl(log n + 1m))

time which seems to be remarkable since M-HEU, a celebrated sequential heuristic,

although achieves 96% of optimal value, takes the time complexity of O(mn2l' ).



CHAPTER-l

Introduction
Knapsack problem and its variants are widely used in many resource management

problems such as resource scheduling in multimedia server, admission control and

profit maximization, menu planning etc. There are several variants of Knapsack

Problem (KP) such as Multiple-Choice Knapsack Problem (MCKP), Multi-

Dimensional Knapsack Problem (MDKP), Multiple-Choice Multi-Dimension

Knapsack Problem (MMKP) etc. In this chaptcr, we dcfine the classical 0-1 KP and

MMKP.

1.1 Definition of KP and MMKP
The 0-1 knapsack problem (0-1 KP) is a well-known problem in the field of computer

science. In KP, there is a knapsack with finite capacity and a set of items each having

a value and a weight. The knapsack is to be filled with the items, each item taken

completely or excluded. The 0-1 KP is to maximize the total value of the items in the

knapsack, so that the total resource required does not exceed the resource constraint of

the knapsack.

The classical 0-1 Knapsack Problem (KP) can be described as follows. Suppose there

are n objects, and a knapsack or bag. The value v; denotes value (or profit) provided

by Item i, weight r; denotes resource required by Item i, and R denotes the amount of

available resource. Here the problem is to allocate resource to a subset of items in

order to maximize the total value such that the total allocated resource does not

exceed the available resource.

Mathematically the problem is stated as follows:
n

V = maximize Ix;v;
;=1

n

such that I X;li ~ R ,
i",l

Xi E {O,l},

2

i = 1,2, ... ,11



Here xis for I = 1, 2, ... , II are variables. The problem is called the 0-1 knapsack

problem because variable Xi can either be taken or left behind, I.e. a value of 0

implying Item I is not picked, or a value of 1 implying hem I is picked. Any pick of

items which satisfy the constraint is called a feasible solution of the problem. The

solution of the 0-1 knapsack problem is the feasible solution which maximizes the

sum of the value of the picked items. Figure 1.1 illustrates a KP where maximum

value that can be achieved is 18 and the weight capacity of the knapsack is 10.

Item

~

L=J
~o R

~

Knapsack
Capacity

R = 10

Knapsack

Figure I.l: The classical 0-1 knapsack problem

The Multiple-Choice Multi-Dimension Knapsack Problem (MMKP)[I, 2, 3, 4] is a

variant of the classical 0-1 KP, where there are different groups of items and exactly

one item can be picked up from each group; and the constraints are multi-

dimensional. Let there be II groups of items, Group I containing I, items, Item j of

Group I has a utility value vij and an m dimensional resource cost rij = (rijl' r'j2 , ... , rijm)'

The resource constraint R = (R"R2, ••• ,R.,) is also m dimensional. The MMKP

problem is to maximize the utility value V =L:~,L~=lxij V'j subject to the resource

constraint "n ,,', Xj,r,'k $ Rk, where 1$ k $ m and x,, E {a,I}and "i. X = 1.
LJI==I L.Jj==1 ~ ~ ~ .L..j=1 IJ

Figure 1.2 illustrates an MMKP with 3 groups and 2 resource requirements. Values

and resource requirements of each item are shown inside the boxes representing

items. Objective is to pick up exactly one item from each group to maximize the total

value of picked items maintaining I r] of picked items $ 43 and I r2 of picked items

$ 45.
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V=20 V=25 V=12 Item

rl=15 r2=17 rl=12 r2=15 rl=17 r2=17

Maximum
V=30 V=16 V=9 Allowable

rl=14 r2=17 rl=18 r2=12 rl=15 r2=13 Resourcc

Typc R1=43

V=20 V=19 V=15 Type R2= 45

rl=15 r2=15 rl=16 r2=14 rl=IO r2=17

Group 1 Group 2 Group 3 Knapsack

Figure 1.2: Example of an MMKP

1.2 Applications of MMKP:
MMKP has its application in many resource management problems. For example, it

can be used to solve the resource management problem in the delivery of multimedia

streams from an Adaptive Multimedia System (AMS) [1,3] that has been proposed by

Khan. The users place request for sessions in these systems and pay according to the

Quality of Service (QoS) they are getting. As resources of servers such as CPU

cycles, memory, 1/0 bandwidth etc. are limited decisions have to be made whether

new users should be admitted or not and the QoS level of the session if it is admitted.

This decision-making must consider the amount of available resources and also the

maximization of total revenue that can be earned from sessions. This type of

admission control in these systems is a real-time problem that requires decisions of

admission or rejection within a certain amount of time. Problem of admission control

can be mapped to MMKP by mapping users to groups, quality of service profiles of

users to items in a group, server resources to resources and revenue earned to values.

We also consider a menu selection problem [I] that can be mapped to the MMKP. A

person wants to have a meal where he has to choose a beverage, an appetizer, a main

dish and a dessert. For each choice, his preference is expressed as a satisfaction value.

The problem is to find a meal which maximizes the total satisfaction subject to

4
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constraints such as maximum valucs of calorics, cholcstcrol and cost. Othcr

applications such as cargo loading, capital budgcting, industrial production can also

be mapped to the MMKP.

1.3 Different Types of Algorithms for Solving MMKP

There are two types of solutions for the MMKP: optimal solutions or exact solutions,

and near-optimal solutions or heuristic based solutions. The worst-case computation

time of the exact solutions for MMKP grows exponentially with the size of the

problem and its exact solution may not be feasible in any real time problem like

admission control problem in an adaptive multimedia system [I, 2, 3, 4]. Dynamic

Programming or Branch and Bound Algorithm can be used to obtain an optimal

solution to the MMKP. The heuristic based solutions is used to provide solutions

which are close to optimal values, but requirc computation times which are much

shorter than those of the optimal solutions. Different heuristic approachcs have bccn

developed to obtain near optimal solution to the MMKP. Khan developed a heuristic,

HEU [1, 2], based on the concept of aggregate resource consumption. Later Akbar el

at. presented a modification of HEU, M-HEU [3, 4], which finds the solution

achieving better optimality than HEU. Another heuristic, C-HEU [3], also developed

by Akbar finds the solution by constructing a convex hull. There are also some

parallel algorithms developed for solving knapsack type problems, but so far no

parallel algorithm has been reported for solving MMKP.

1.4 Motivation
Many practical problems in resource management can be mapped to the MMKP. The

utility model of adaptive multimedia system (AMS) has been proposed by Akbar [.3,

4]. Users place requests for sessions to AMS and pay the owners of the AMS

according to the Quality of Service (QoS) they are getting. As resources of servers

such as CPU cycles, memory, 1/0 bandwidth etc. arc limited decisions have to be

made whether new users should be admitted or not and if admitted which level of

QoS they will enjoy. Problem of admission control in an AMS exactly fits an MMKP

and can be mapped to the MMKP [4]. Users submitting their requests to a multimedia

system can be represented by the groups of items. Each level of QoS of a user's

5
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requested session is equivalent to an item. Each scssion is cquivalcnt to a group of

items. The values of the items are cquivalent to offered prices for the session. The

multimedia server is equivalent to the knapsack with limited resources, e.g. CPU

cycles, 110 bandwidth and memory. This type of admission control in these systems is

a real-time problem which requires decisions of admission or rejection within a

limited time frame.

The exact solution of MMKP IS not suitable for real time decision-making

applications. So heuristic based approximation algorithms are developed. These

heuristics for solving the MMKP can be used for solving real time admission control

problem in Adaptive Multimedia System (AMS). But if the number of groups of the

MMKP increases in a large multimedia system, it is not efficient to run M-HEU to

perfonn admission control. So, we need a faster algorithm to achieve the real-time

response in admission control. A parallel version of M-HEU can achieve batter

computational speed.

Parallel computation is currently an area subject to intense research activity. There

has always been a need to solve large-scale computational problems [5]. These

problems must be solved in a reasonable time scale, which implics fast computers to

do the job. In those cases, where the application must be presented by a well-

detennined deadline, the parallel computation will be applied. Recent technological

advances have opened up the possibility of performing massively parallel

computations cost effectively and have made the solution of such problems possible.

1.5 Problem Definition
Since MMKP is an NP-Hard problcm [6], algorithms for finding the exact solution for

MMKP are not applicable to the real time admission control problem. To meet up any

real time demand we often use heuristic solutions of such problem. There are several

heuristic algorithms developed for solving MMKP. M-HEU [3, 4] is the best among

these heuristics as far as percentage of achieved optimality is concerned. But

quadratic complexity M-HEU does not scale better when number of groups increases

in largc multimedia systems. We find that the timc rcquircmcnt for M-HEU can bc

furthcr reduced, if computations can be done in parallcl. However, it is seen that it is

not possible to provide a parallel algorithm from M-HEU directly. Therefore, a new

6
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heuristic algorithm is required for solving MMKP that would be parallclizcd and

provide a polylog time solution.

1.6 Scope and Focus
The main focus of this work is to present a parallel algorithm of a heuristic for

Multiple-Choice Multidimensional Knapsack Problem (MMKP). Development of

exact algorithms is beyond the scope of our work. Also PRAM machines are not

available in reality. So the implementation and developing the prototype of this

algorithm is beyond the scope of this thesis. As described in previous section, a new

serial heuristic algorithm is developed and we implemented it. Then we can get the

total value achieved from the algorithm by varying different parameters and we can

compare the performance of our algorithm with respect to M-HEU. We also compute

the performance of our algorithm in terms of achieved optimality. We also compare

the time requirement of the new serial heuristic algorithm and that of the M-HEU by

varying different parameters. But the comparison of time requirement of our proposed

parallel algorithm with M-HEU is beyond the scope of the current research. We

compute the time complexity and the total number of operations of the new sequential

heuristic algorithm and of the proposed parallel algorithm.

1.7 Outline
This thesis is organized in five chapters. In this section we briefly describe the

organization ofthe rest of the chapters.

In Chapter 2 a review of the literature of KP and its variants have been carried out.

We describe here the algorithms related to the KP and its variants. Parallel algorithms

for the KP and its variants are also descried in this chapter. The parallel random

access machine (PRAM) model has also been included in this chapter.

Chapter 3 presents the parallel heuristic algorithm to solve the MMKP. First two

sections of this chapter describe why we chose M-HEU for this thesis and the problem

of M-HEU to be parallelized. A new serial heuristic algorithm has been described in

the next section, developed by modifying the M-HEU that would be parallelized.

Then the parallel heuristic algorithm is described followed by the' analysis of the

algorithm.

7



In Chapter 4 we present the experimental results. A description of thc cxpcrimental

procedures has been given with the results presented in the graphs. An analysis of the

results of the experiments has also been performed at the end of this chapter.

We conclude the thesis in Chapter 5 by describing the contributions of the current

research. Some suggestions for future research work have also been included in this

chapter.
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CHAPTER 2

Background and Preliminaries
There are various algorithms for solving variants of Knapsack Problems. In this

chapter, we briefly describe some of these algorithms.

2.1 Related Research on KP and its variants, MDKP and MCKP

The MDKP, multidimensional Knapsack Problem is one kind of KP with multiple

resource constraints for the knapsack, i.e. the resources are multidimensional in this

type of KP. The MCKP, Multiple Choice Knapsack Problem is another KP where the

picking criterion for items is restricted. In this variant of KP, there arc one or more

groups of items. Exactly one item will be picked from each group subject to resource

constraint.

KP is an NP-Hard problem [6). The variants of KP are as hard as KP. So these are all

NP-Hard. There are two types of algorithms for solving the KP and its variants: one is

for obtaining exact solution and the other is for obtaining approximate solution.

2.1.1 Exact Solutions for KP, MDKP and MCKP

Dynamic Programming and Branch and Bound approach can be used to obtain

optimal solutions [1, 3) to the classical 0-1 KP. Dynamic Programming method [7)

uses sequence of decisions, regarding whether to pick an item or not, leading to an

optimal solution. It is a design method that can be used when the solution to a

problem can be viewed as the result of a sequence of decisions. It acts as the divide-

and-conquer method, solves problems by combining the solutions of subproblems.

Divide-and-conquer algorithms divide the problem into independent subproblems,

solve the subproblems recursively, and then combine their solutions to solve the

original problem. Dynamic programming is applicable when the subproblems are not

independent, i.e., when subproblems share sub subproblems. The solution to the

knapsack problem,can be viewed as the result of a sequence of decisions. Let there be

n items in the knapsack and Xi define the ith item. We have to decide the values of Xi

for I :s i :s n. First we make a decision on x\, then on X2, then on X3, and so on. An

9



optimal sequence of decisions maximizes the objective function satisfying the

resource constraints.

On the other hand, Branch-and-bound is a general and popular method for solving

combinatorial optimization problem. In this method the optimal solution is found

using iterative generation of a tree, called search tree [I].

A node in the search tree represents a solution state where there may be some

variables whose values are known (values are assigned) and that of some others' may

be unknown (values are not assigned). This method starts with a single-node tree

where the values of all the variables are unknown. A node of this tree may be

expanded based on a variable whose value is unknown at the current node. For

example, expanding a node based on binary variable Xi may generate two nodes: one

for Xi = 0 and the other for Xi = I. No node will be generated for Xi = I if it is not

feasible (that is picking item i violets the resource constraint). A node which has been

generated and whose children have not yet been generated is called a live node. The

expanding node or simply the e-node is the node which has the largest upper bound

among the live nodes. For exploration, upper bound of the objective function is

computed from the known values at each node. The node with the largest upper bound

is explored. A node producing the largest uppcr bound having no unknown variable is

the solution node. The upper bound is computed using linear programming technique.

Linear programming is a deterministic tool where all the model parameters are

assumed to be known with certainty. The Simplex Method is a very powerful

technique for solving linear programs. The Simplex Method requires that each of the

constraints be put in a special standard form in which all the constraints are expressed

as equations by augmenting slack or surplus variables as necessary. This type of

conversion normally results in a set of simultaneous equations in which the number of

variables exceeds the number of equations. Even though the worst case computational

complexity of the Simplex Method grows exponentially with the problem size, this

method is very efficient practically [I].

Kolesar [8] gave the first branch and bound algorithm for the classical 0-1 KP. This

algorithm uses a grccdy-Iike stratcgy whcrc at any c-nodc; it branches on thc not-yet-

decided item which provides a highest value per unit of required resource (v,lri). Shih

[9] presented a branch-and-bound algorithm for the MDKP. For upper bound

estimation, this algorithm treats the MDKP problem as III single dimensional KPs, and

10



calculates the optimal value of the objective function in cach case. Thc minimum of

these objective function values is then used as an upper-bound. Branch and bound

algorithm for the MCKP was proposed by Nauss [10].

2.1.2 Approximate Solutions for KP, MDKI' and MCKP'

Different heuristics have been developed to obtain approximate solutions to the KP

and its variants. These approaches use some kind of greedy like method to generate

solutions. For the classical 0-1 KP, a greedy approach to get a near optimal solution is

as follows: pick the item with the largest v;/r, (value per unit resource), then pick the

item with the second largest v;/ r" and so on until no more item can be picked

because the available resource is not enough or no item is left The greedy method is

perhaps the most straightforward technique and it can be applied to a wide variety of

problems. Most though not all, of these problems have 11 inputs and they require a

subset that satisfies some constraints. Any subset that satisfies these constraints is

called a feasible solution.

The greedy approach can be generalized for other variants of KP. Toyoda [II]

proposed a simple solution to the MDKP using the concept of aggregate resource. In

this algorithm the main idea was to penalize the not yet picked items depending in the

current resource state. This idea penalizcs the items with greater requirement of those

resources that are already consumed much, So, if two items produces the same value

then the item with less penalty is preferred. Suppose in an 111 resource MDKP

instances, the current resource usage vector is given as C=(CJ, C2, .• " Cm) and

resource requirement of Item i is given by ri=(rJ, r2, ... , rm). Then ap the aggregate

resource required by Item i is computed as follows:

a
i
= (riC, + r,C, + .....rmcl¥l = 'i,~f',wherelCI denotes the magnitude of vector C,

and' denotes the dot product of vector, Toyoda's algorithm starts with no item as the

initial solution and adds items iteratively one at a time. In each iteration, the item with
''''

the maximum V, / ai (value per unit of aggregate resource for item i) is picked.

Magazine [12] proposed another heuristic based on Lagrange Multipliers to solve the

MDKP, for maximizing the objective function subject to constraints. All resource

constraints are incorporated into the maximization goal. Initially all Lagrange

11
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Multipliers are set to zero and this is in general not a feasible solution for the MDKP.

Next all actual resource consumptions arc determined and the most violated constraint

is identified. The corresponding multiplier is then increased as much as necessary to

update the resource consumptions. This step is repeated until the solution has become

feasible.

Tabu Search [13), Simulated Annealing [14) and Genetic Algorithms [15) can be

applied to solve the variants of Knapsack Problem. The Genetic algorithm has the

exponential worst case complexity - it can explore all of the items. This algorithm is

based on natural selection and genetics. The algorithm combines a random selection

by the survival of the fittest theory. The strongest individuals in a population will

have a chance to transfer their genes to the next generation. Simply it can be coded a

number of different solutions of a problem as a bitstring, and evaluate their fitness in

relation to each other. Every solution can be seen as an individual in a population, and

the bitstring can be scen as the genes of the individual. Then the individuals are

selected based on their fitness. Tabu search and simulated annealing are based on

looking at the neighbours. These are costlier than the heuristics using greedy

approach. The Tabu search begins by marching to local minima. To avoid retracing

the steps used, the method records recent moves in one or more Tabu lists. The

original intent of the list was not to prevent a previous move from being repeated, but

rather to insure it was not reversed. In Tabu Search, Simulated Annealing and Genetic

Algorithm approach current solution is moved to another solution by upgrading some

and downgrading some. This upgrade and downgrade at the same step requires more

time because we have to search all neighbouring combinations of current solution.

2.2 Related Research on MMKP
MMKP is actually the combination of MDKP and MCKP. As usual, there are two

methods of finding solutions for an MMKP: one is a method for finding exact

solutions and the other is heuristic solution.

2.2.1 Algorithms for Exact Solutions to the MMKl'

Khan [1) presented an exact algorithm for the MMKP using the Branch and Bound

Linear Programming (BBLP) technique. The Branch and Bound technique has been

discussed already in the previous section.
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2.2.2 Algorithms for Heuristic Solutions to the MMKl'

Since MMKP is an NP-hard problem, the computation time for any optimal

algorithm, such as BBLP, may grow exponentially with the size of the problem

instance in the worst case. This may not be acceptable for time-critical applications

such as admission control and dynamic resource allocation in a I!!ultimedia system.

These applications are forced to accept a near-optimal solution if the computational

time for optimal solution exceeds real-time bounds.

Moser's [16] heuristic algorithm uses the concept of graceful degradation from the

most valuable items based on Lagrange Multipliers to solve the MMKP. It starts with

the most valuable item of each group as the selected item and in general the resource

constraints to be violated in that case. The initial choice of items is adapted to obey

the resource constraints by repeatedly improving on the most violated resource

constraints. But this algorithm fails to find a feasible solution when the resources are

short. However in those cases, some other heuristics such as M-HEU, I-HEU [3, 4]

find a feasible solution by starting from the lowest valued items and try to find a

feasible solution by upgrading the solution if the current one is not feasible.

A new heuristic algorithm HMMKP is proposed for solving MMKP with the time

complexity of O(mn' (I' -I)) by Hernandez [17]. This heuristic needs to solve the

Linear Programming Relaxation (LPR) of a relaxation of the MMKP. In this heuristic,

an LPR of the MMKP is done, then the relaxed problem is solved and the Lagrange

multipliers are obtained. Later the Lagrange multipliers are used in order to compute

the pseudo-utility values needed for the MMKP solution.

The Guided Local Search (GLS) algorithm [18] is a recent approach for solving

MMKP, moves out of a local Maximum/minimum by penalizing particular solution

features that it considers should not occur in a near-optimal solution. The initial

feasible solution is obtained here by applying a Constructive Procedure (CP). CP is a

greedy procedure which generates a feasible solution by considering the Feasible

State (FS) process. The Complementary CP approach, called CCP [18, 19], uses an

iterative improvement of the initial feasible solution. A reactive local search based

algorithm is proposed in [18], where the algorithm starts by an initial feasible solution

and improved by using a fast iterative procedure. The aim of this process is to

improve the complementary solution obtained by CCP. Later a different procedure,

13



named unblocking procedure is introduced in order to escape to local optima. Finally,

a memory list is applied in order to forbid the repetition of configurations. The worst

case complexity of this algorithm isO(nlm') floating point operations.

HEU, a heuristic developed by Khan [I, 2], finds the solution of the MMKP using the

concept of aggregate resource consumption. Later Akbar [3, 4] presented a

modification of HEU, M-HEU, which achieves better optimality than HEU. In these

heuristics, the selection of the lowest valued item in each group is defined as the

initial solution of an MMKP. If this solution is not feasible then HEU terminates

notifying "No solution found". However, there may be a solution using higher-valued

items that requires fewer resources. Thus a new step should be added to find a feasible

solution if the initial solution is not feasible. Again HEU finds a solution by only

upgrading the selected items of each group. There might be some higher-valued items

in the MMKP, which makes the solution infeasible, but if some of the groups are

downgraded we can get a feasible solution. This method of upgrading followed by

downgrading may increase the total value of the solution. Thus M-HEU modifies

HEU by adding a pre-processing step to find a feasible solution and a post-processing

step to improve the total value of the solution. Incremental heuristic solution, I-HEU

also presented by Akbar [3, 4] with the same optimality as M-HEU. If the number of

groups in the MMKP is very large then it is not efficient to run M-HEU. An

incremental solution is a necessity to achieve a better computational speed. By

changing the technique of finding feasible solution we can use M-HEU to solve the

MMKP incrementally. C-HEU, another heuristic developed by Akbar [3] using the

concept of convex-hull, provides solution to the MMKP in logarithmic worst-case

time complexity. It is an incremental heuristic. It has lower order of complexity but

the optimality achieved by this heuristic is much inferior to the other heuristics.

There is a number of iteration in every heuristic and each iteration is highly dependent

on its previous iteration, so that it is really difficult to provide a parallel version from

these heuristics directly. In this research M-HEU is modified to s.ome extent that

would be parallelized. So it is better to describe the HEU and M-HEU in detail for

clear understanding of our new algorithm.

Algorithm HEU:

HEU [1,2] achieves 93% optimal solution with a complexity ofO(mn'I') operation.
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The principles of the HEU are as follows:

~ The items of each group are sorted in nondeereasing order according to the value

associated with them and it selects the lowest valued items from each group as the

initial solution. It then upgrades the solution gradually by choosing new items as

along as the solution remains feasible.

~ It uses Toyoda's concept of aggregate resource where the required resource vector

of an item is converted to a scalar index using penalty factors taken from the

current resource usage vector. Here the main idea is to penalize the use of

resources depending on the current resource state. It applies a large penalty for a

heavily used resource, and a small penalty for a lightly used resource.

~ To find the next item to be picked, it chooses the one which has the highest

positive change in aggregate consumed resource (one which gives the best

revenue with the least aggregate resource). But ifno such item is found, it chooses

the one which maximizes the value gain per unit aggregate resource. It can be

defined by a vector /';d ij, relative change of aggregate resource consumption and

the item is chosen with the maximum value of /';a'ij which is defined as follows:

/';d ij = {v, b ) is a vector, where

, _ {(/';Vij / /';alj'O) if /';a/j '" 0
/';aij - ( )

/';aij,1 if /';aij > 0

And /';d ij>/';dkl , if b(/';a'ij»b(/';dkl) or (b(/';a' ij)=b(/';J kJ) and v(/';J ij»v(/,;a'kl»

Where, the change of aggregate resource consumption, /';aij = L~IPW - rij')x C,,
and the change of revenue, /';vij = vlpJ'1 - vij'

C, = Lr'pJ'l' , p[i] is the currently selected item in group i.

Algorithm M-HEU:

A new heuristic algorithm, M-HEU [3, 4], modification ofl-lEU is proposed by Akbar

for solving MMKP with time complexity ofO(mn'I'). M-HEU finds 96% optimal

solutions on average with much reduced computational complexity and performs

favorably relative to other heuristic algorithms for MMKP.

The items in each group of the MMKP are sorted in non-decreasing order according

to the value associated with them. So, the bottom items in each group are to be

considered as lower-valued items than the top ones. Picking a higher-valued or 19wer-
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Start

Select the lowest valued item
from each group

Find a feasible solution

,

Update the solution and the
resource consumption vector

Infeasible upgrade followed by
one or more downgrades

No

Update the solution and the
resource consumption vector

Revive the previous updated
solution and terminate

Fig 2.1: Flow chart of M-HEU
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valued item than the currently selected item in a group is called an upgrade or a

downgrade respectively. In the heuristic it is necessary to find an upgrade or

downgrade frequently. It modifies HEU by adding a pre-processing step to find a

feasible solution if the initial solution is infeasible because there may be a solution

using higher valued items that requires fewer resources. It also uses a post-processing

step to improve the total value of the solution with one upgrade followed by one or

more downgrades. Because there might be some higher valued items in the MMKP,

selection of which make the solution infeasible, but if some of the others groups are

downgraded we can get a feasible solution. This method of upgrading followed by

downgrading may increase the total value of the solution.

Steps in the Algorithm:

Step]: Finds a feasible solution, if initial solution is not feasible.

Step2: Feasible Upgrades in each iteration.

Step3: Infeasible upgrade followcd by onc or morc downgradcs

Fig 2. I shows the steps ofM-HEU algorithm.

2.3 PRAM Model
The Parallel Random Access Machine (PRAM) [20) model is actually the

synchronous shared memory model, where all thc processors operate synchronously

under the control of a common clock. It consists of a number of processors, typically

of the same type, each of which has its own local memory and can execute its own

local program. The processors are interconnected in a certain fashion to allow the

coordination of their activities and the exchange of data through a shared memory

unit. Each processor is uniquely identified by an index, called a processor number or

processor !D, which is available locally and hence, can be referred to in the

processor's program. Figure 2.2 shows a general view of a shared memory model

with p processors. These processors are indexed 1, 2, ..., p. Shared memory is also

referred to as global memory.

The main purpose of parallel processing is to perform computations faster than can be

done with a single processor by using a number of proccssors concurrently. The

pursuit of this goal has had a tremendous influence on almost all the activities related

to computing. There are many applications in day-to-day life that demand real time
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solutions to problems. These inelude fluid dynamics, weather prediction, modeling

and simulation of large systems, information processing and extraction. image

processing, artificial intelligence and automated manufacturing. For example, weather

forecasting has to be done in a timely fashion. In the case of severe hurricanes or

snowstorms, evacuation has to be done in a short period of time. If an expert system is

used to aid a physician in surgical procedures, decisions have to be made within

seconds. And so on. Programs written for such applications have to perform an

enormous amount of computation.

In the forecasting example, large-sized matrices have to' be operated on. In the

medical example, thousands of rules have to be tried. Even the fastest single processor

machine may not be able to come up with solutions within tolerable limits. Parallel

machines offer the potential of decreasing the solution time enormously.

The running time of a parallel algorithm depends on the number of processors

executing the algorithm as well as the size of the problem input. Therefore we discuss

both the time and the number of processors required when analyzing PRAM

algorithms. Typically there is a trade-off between the number of processors used by

an algorithm and its running time.

Shared Memory

P,

Figure 2.2: The shared memory model

2.3.1 Concurrent versus Exclusive Memory Accesses

There are several variations of the PRAM model based on the assumptions regarding

the handling of the simultaneous access of several processors to the same location of

the global memory [20].
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A concurrent read algorithm is a PRAM algorithm during whose execution multiple

processors can read from the same location of shared memory at the same time. An

exclusive read algorithm is a PRAM algorithm in which no two processors ever read

the same memory location at the same time. We make a similar distinction with

respect to whether or not multiple processors can write into same memory location at

the same time, dividing PRAM algorithms into concurrent write and exclusive write

algorithms. The commonly used PRAM models are:

1) Exclusive Read Exclusive Write (EREW).

2) Concurrent Read Exclusive Write (CREW).

3) Concurrent Read Concurrent Write (CRCW).

The exclusive read exclusive write (EREW) PRAM does not allow any simultaneous

access to a single memory location. The concurrent read exclusive write (CREW)

PRAM allows simultaneous access for a read instruction only. Access to a location for

a read or a write instruction is allowed in the concurrent read concurrent write

(CRCW) PRAM. The three principle varieties of CRCW PRAMs are differentiated by

how concurrent writes are handled. The common CRCW PRAM allows concurrent

writes only when all processors are attempting to write the same value. Thc arbitrary

CRCW PRAM allows an arbitrary processor to succeed. The priority CRCW PRAM

assumes that the indices of the processors are linearly ordered and allows the one with

the maximum or minimum index to succeed.

2.3.2 Optimality of PRAM Algorithms

Suppose there is a computation problcm P of size n. Let the sequential time

complexity of P be T(n). That is there is a sequential algorithm that solves P within

this time bound and in addition, it can be proved that no sequential algorithm can

solve P faster. A parallel algorithm to solve P will be called optimal [20] if the work

W(n) required by the algorithm satisfies W(n)~ O(T(n)). Otherwise the parallel

algorithm is called non optimal.

2.3.3 Examples of PRAM Algorithms

Somc PRAM algorithms such as summing, sorting, searching, prefix sum are

described below:
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• Parallel Sum Algorithm: We can determine the sum or II clements by using a

balance binary tree constructed on the II input clements [20].

SUM=
M M22

Fig2.3: Summation of n elements

The running time of the parallel algorithm is O(log II) and the total number of

operations used is O(n). This parallel algorithm is optimal, since the work

performed matches the run time of the best known sequential algorithm of the

problem. As an example, the summation of 8 numbers (nil, nl2, ... , nlg) is shown in

Fig 2.3 .

• Prefix Algorithm: A prefix sum algorithm presented in [7] is described as follows:

Suppose there are n input elements, defined as X" X2, ••. , X". The prefix computation

is to compute the n elements as X" Xl +X2, XI + X2 + X3 •.•• , XI + X2 + X3 + ... + X". The

output elements are often referred to as the prefixes. Prefix computation on an n-

element input can be performed in O(log n) time using n/log n CREW PRAM

processors. The work done by this algorithm is O(n) and hence the algorithm has

an efficiency of 0(1) and is work-optimal.

Suppose there are n/log n processors assigning log n elements each. Processor i

(i=I, 2, ... , n/log n) computes the prefixes of its log n assigned elements in parallel.

Let the results be Z(i.I)log "+1, Z(i-I)log ,,+2 .... , Zi log ". Then a total of n/log n processors

collectively employ a non work-optimal algorithm to compute the prefixes of the

n/log n elements Zlog ", Zlog 2", Zlog 3", ... , Z". Finally each processor updates the

prefixes it computed in the first step except Processor I.

Let the input to the prefix computation be 5, 12, 8, 6, 3, 9, II, 12, I, 5, 6, 7, 10, 4,

3, and 5. Here n = 16 and log n = 4. So the number of processors is 4. In the first

step, each processor computes prefix sums on four numbers each. In the next step,
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prefix sums on the local sums is computed. And in the last step, the locally

computed results arc updated. In this step, Processor I docs not update the prefixes

that arc computed locally. The prefixes of Processor 2 arc updated by adding the 1"

prefix of the global computation (Computed in the previous step) with them. In the

similar way, 2"d and 3'd prefixes of the global computation arc added with the

locally computed prefixes of Processor 3 and 4 respectively. The prefix sums

computation is shown in Fig 2.4.

Processor 1 Processor 2 Processor 3 Processor 4

.-.-

Step I (local to processors)

1,6,12,)9 I 1 10, 14,!7~22 I
,/'i;cal SUiUS-' -' --

, -'
J<

31, 35, 19, 22

J} Step 2 (global computation)

111, 66.•.~5",-1-9?_L
/ .......•....

If .•.•.• ---' --'~-",••~--

_5,_1_7,_2_5,_3_1~1 1~_3_,1_2_,2_3_,3_5_1I 1,6,12,19 1 I 10,14,17,22 I

J} Step 3 (update)______ I

1 I 34,43,54,66 1 I 67,72,78,85 II 95,99,102,107

_5_,_12_,_8_,6_1 1_3_, 9_,_1_1,_1_2_1 I~_I_,5_,_6,_7_1; 1__ 10_,4_,_3,_5_

J}
5,17, 25, 31_LJ-_-3~-12-,-23-, 3-(1-

1
J} 1

- '-,

1 5, 17, 25, 31

Fig 2.4: An example of prefix computation

• Parallel Maximum Finding Algorithm: Finding the maximum of n arbitrary

numbers can be presented in O(loglog n) time using n/(loglog n) common CRCW

PRAM processors [20]. So the work done of the algorithm is O(n) and it is work-

optimal.

There is an algorithm based on the logarithmic-depth binary tree for finding the

maximum in O(log n) time and it is optimal. There is another algorithm that is

nonoptimal but runs in doubly logarithmic time, i.e. it requires O(loglog n) time

using O(n loglog n) operations. Then these two algorithms can be combined into an

optimal and a very fast algorithm. In the first step the binary tree algorithm is
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applied, starting from the leaves of a binary tree and moving up to Ilog log log /11

levels. Since the number of candidatcs reduccs by a factor of Y, per lcvel as we

grow up the binary tree, /1'= O( /1/log log /1) elements are generated at the end of

the binary tree algorithm. The total number of operations used so far is 0(/1) and

the corresponding time is O(log log log /1). Now we use the doubly logarithmic-

depth tree based on the /1' generatcd elements in the previous step. Then it requircs

O(log log /1') = O(log log /1) time and uses O( /1' log log /1') = O(/1)operations.

Therefore, the overall time is O(log log /1) and the total number of operations is

0(/1). The logarithmic binary tree algorithm for finding the maximum is same as

that .of computing the sum of /1 elements using balanced binary tree, described

earlier (in the I" example).

The doubly logarithmic-depth tree is described here. Suppose there is a rooted tree,

the level of a node u is the number of edges on the path between u and the root of

the tree. Hence the level of the root is O. Let there be /1 leaves in the tree. The root

of the tree has .,fn children. If/1 = 2" , then.,fn = 22>-<, then each children of the

root has 22'" children, and in general, each node at the ith level has22"'" children,

for 0 :5 i:5 k-I. Each node at level k will have two leaves as children.

Fig 2.5: Doubly logarithmic depth tree of 16 nodes

Figure 2.5 shows the doubly logarithmic depth tree for the case when the number

of items is 16. The root has four children and each of the other internal nodes has
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two children. Each internal node corresponds to computing the maximum of that

node's children. Thc number of nodes at the ith level of the doubly logarithmic-

depth tree is2k - 2k-l, for 0 :s: i < k. The number of nodes at the kth level is

2 ,'-' = n/2. The depth of this tree is k + I = log log n + I. The maxima required at

any given level can be computed in O( I) time using 0(p2) operations for p distinct

elements. Then the number of operations required at the ith level is

O( (2,.->-<) ) per node, for 0 < < k, giving a total of

O( (2"->-<) .2"-"-' ) = 0(2" )= O(n )operations per level. Hence the total number

of operations required by the overall computation is O(n log log n).

• Parallel Sorting Algorithm (Pipelined Merge Sort): A pipe lined merge sort

algorithm presented in [20] is described as follows:

Sorting of n general numbers can be done in O(log n)time using n CREW PRAM

processors by pipelined merge-sort algorithm. The work done of this algorithm is

O(n log n) and it is work-optimal. It consists of determining L[v] (L[v] is a sorted

list that contains all the numbers stored in the subtree rooted at v) over a number

of stages such that, at stage s, L,[ v] is an approximation of L[ v] that will be

improved at the next stage s+1. At the same timc, a sample of L,[v] is propagated

upward to be used for obtaining approximations of the lists to be generated at

higher heights. Let Lo[v] = 0 if v is an internal node; otherwise Lo[v] consists of

the item stored at the leafv of a binary tree. Let the altitude of a node v be defined

as all( v) = h(T) -level( v), where h(T) is the height of T, and level( v) is the length

of the path from the root to v. The list stored at node v will be updated over the

stages s satisrying alt(v) :s: s:S: 3all(v). In this algorithm v is active during stage s if

all(v):S: s:S: 3alt(v). The algorithm will update the list L,[v] such that node v will be

full (Le., Ls[v] = L[v]), when s <: 3all(v).

Let u and w be the children of an internal node v and

let L:+
1
[u] = Sample(L.( u]) and L;+I[w] = Sample(LJ1V]), where Sal1lple(L,[x]) for

an arbitrary node x is defined as:
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j
SamPle, (L.[x]) if s S; 3all(x)

Sample(L,[x])= sample, (L,[x]) if s = 3alt(x) + I

samplel (L, [x]) if s = 3all(x) + 2

Therefore, Sample(L,[x]) is the sub list consisting of every fourth element of L,[x]

until it becomes full; then Sample(L,[x]) is every other element in the following

stage (that is, stage 3all(x)+ I), and every element in stage 3alt(x)+2.

Then L:+1 [u] and L:+1 [ IV] arc merged into a sorted list L"I [v] and this can be

done in 0(1) time [20].

Let T be the binary tree in Fig 2.6 where leaf nodes contain 7, 8, 6, I, 5, 3, 4, 10,

9,15,2. The lists corresponding to asset of selected stages are shown in the Table

2.1.

Initially, there is no changes occur until stage s = 3. At the end of stage s = 3, all

the nodes of altitude 1 become full. Consider, for example, node 1'5.Since all(v5) =

I, 1'5 is active during stage 3. In this case, LJ'[vd = samplel(L2[vd) = (7) and

similarly LJ'[V2] = (8). Hence, L3[VS] = (7, 8). During this stage, we also obtain

LJ[ 1'6] = (I, 6).

Figure 2.6: A binary tree T for pipelined merge-sort algorithm

At the end of stage s = 6, the nodes at altitude 2 become full, at the end of stage s

= 9, the nodes at altitude 3 become full. Thc root 1'21 is active for all stagcs 5 :s s:S
15. However L,[V21] remains empty until stage s = 13 since, at each ofthc previous

stages, the lists of the children nodes 1'19and 1'20contain less than four elements.

At the end of stage s = 12, nodes 1'19and 1'20become full and each contain at least
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four clcments. Hcncc at stagc .I' = 13, L,[V2,] = (5, 15), which rcsults li'OI11 lhc

merging of samplc4(L[VI9]) and samplc4(L[V20]). At thc end of stage s =15.

(LI5[V21]) consists of the sorted list of all thc items stored in the trec.

Table 2.1: The lists arising during the execution of the indicatcd stages of thc

pipelined merge-sort algorithm

v .1'-0 .1'-3 s~5 s~6 s~B s~9 s~11 .1'=13 .1'=15

1 (7) (7) (7) (7) (7) (7) (7) (7) (7)

2 (B) (B) (B) (B) (B) (B) (B) (B) (B)

3 (6) (6) (6) (6) (6) (6) (6) (6) (6)

4 (1) (1) (1) (1) (1) (1) (I) (1) (1)

5 0 (7,B) (7,B) (7,B) (7,B) (7,B) (7,B) (7,B) (7,B)

6 0 (1,6) (1,6) (1,6) (1,6) (1,6) (1,6) (1,6) (1,6)

7 (5) (5) (5) (5) (5) (5) (5) (5) (5)

B (3) (3) (3) (3) (3) (3) (3) (3) (3)

9 0 0 (6,B) (1,6,7,B) (1,6,7,8) (I,6,7,B) (1,6,7,B) (1,6,7,B) (1,6,7,B)

10 0 0 0 (3,5) (3,5) (3,5) (3,5) (3,5) (3,5)

11 (4) (4) (4) (4) (4) (4) (4) (4) (4)

12 (10) (10) (10) (10) (10) (10) (10) (10) (10)

13 (9) (9) (9) (9) (9) (9) (9) (9) (9)

14 (15) (15) (15) (15) (15) (15) (15) (15) (15)

15 0 0 0 0 (5,6,B) 1,3,5,6,7,8 1,3,5,6,7,8 (1,3,5,6,7,8) (1,3,5,6,7,B)

16 (2) (2) (2) (2) (2) (2) (2) (2) (2)

17 0 0 0 0 0 (4,10) (4,10) (4,10) (4,10)

18 0 0 0 0 0 (9,15) (9,15) (9,15) (9,15)

19 0 0 0 0 0 0 (3,6,B) 1,2,3,5,6,7,B (1,2,3,5,6,7,B)

20 0 0 0 0 0 0 (10,15) (4,9,10,15) (4,9,10,15)

21 0 0 0 0 0 0 0 (5,15) 1,2,3,4,5,6,7,~

9,10,15)

2.4 Related Works on Parallel Algorithm for Knapsack Type

Problems
Knapsack Problems, sincc they are the simplcst NP-hard problcms havc becn subject

to much work on the developmcnt of efficient parallel algorithms. With the advent of
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parallel processors many researchers have concentrated their efforts on the

development of efficient parallel algorithms for solving Knapsack Problems. For

exact methods Branch and Bound (B&B) and Dynamic Programming (DP) are the

most useful approaches [5]. For serial machines, it is accepted that B&B has better

performance than DP for KP, but this observation has not been shown to translate to

the parallel case. The B&B method usually implemented on powerful large-grain

multiprocessors but involves complicated communication strategies. The

communications issues are often hard to solve and an anomalous behaviour of B&B is

observed. Even if these problems were solved it is shown that there exist hard

knapsack problems for which the number of alternate solutions grows exponentially

with problem parameters. Such growth makes the problem hard for B&B algorithms.

However the use of parallel DP to solve KP in these cases is possible. In addition DP

algorithms for Knapsack Type Problems (KTP) are suitable candidates offering the

possibility of further hardware acceleration [5].

Most of the recent work is related to the design of dynamic programming algorithms

for Unbounded Knapsack Problems (UKP) and 0/1 KP. For example, A DP algorithm

for 0- I KP which may run on any number of processors available was presented by

Lin [21]. Its time complexity is O(nclp) on EREW PRAM ofp processors, where e is

the capacity of the knapsack. Lee [22] proposed a hypercube implementation of the

DP approach is presented. The running time is 0(nclp+e2+c1og(p)). They also applied

the same algorithm for the two-dimensional 0-1 knapsack problem.

A divide and conquer approximation algorithm on a hypercube with a time

complexity O(log2 (n) log (e)) on O(nde) processors is presented by Gopalakrishnan

[23]. Another approximation algorithm realized on the hypercube architecture

described by Mayr [24] with a time complexity 0(log2, (n) log (e)) on 0(ne
2
)

processors. A pipeline-architecture containing a linear array of p processors is

proposed by Chen [25]. This architecture allows one to achieve an optimal speedup of

the KP algorithm with the time complexity of O(nclp + n) and an efficiency

O(I/(I+I/pe)) which approaches 0(1) as capacity, e increases. Teng [26] proposed an

algorithm derived by transforming it to the well solved circuit value problem in

O(log2(ne)) time using N(e) processors, where N(e) is the number of processors

needed for multiplying two e by e matrices. A parallel convolutive algorithm for the

unbound KP is presented by Morales [27] in 0(e2/p+n) time usingp processors.
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An efficient parallel algorithm for solving the knapsack problem on the hypercube

proposed by Goldman [28]. He proposed a scheduling algorithm for irregular meshes

on the hypercube. The efficiency of the algorithm is independent on the number of

processors. A parallel tabu search algorithm for the 0-1 multidimensional knapsack

problem is presented by Niar [29]. He proposed a new parallel meta-heuristic

algorithm based on the tabu search for the resolution for the 0-1 multidimensional

knapsack problem that reduces the execution time.

Parallel skeletons for tabu search method has been proposed by Blesa el 01. [30,31]

for 0-1 multidimensional knapsack problem. Tabu search can be parallclized in

several ways for a complete taxonomy of parallel tabu search hcuristics. Two parallel

implementation based on two different parallel models are presented here. The first

implementation, namely, the direct parallelization is based on independent runs model

with search strategies. The second implementation is based on the master slave model

in which the neighborhood exploration is done in parallcl by the slaves and cach slavc

exploring a part of the neighborhood.

A multiprocessor based heuristic is proposed by Shahriar [32, 33] for multiple-choice

multi-dimension knapsack problem. The work done of this heuristic is same as that of

M-HEU. The time complexity of this heuristic iso(rj p + j(p )), where Tis the time

required by the algorithm using single processor, p is the number of processors and

j(P) is the synchronization overhead. The time requirement is roughly inversely

proportional to the number of processors used for the computations. In this heuristic

multiple processes can be run independently by the operating systems. If the

processes are executed in a single processor machine then the operating system gives

the illusion of parallelism (pseudo parallelism) by fast switching from one process to

another. But if the machine has multiple processors then asynchronous parallelism can

be achieved by running each process on a different processor as long as number of

pr!=,cesses is less than the number of processors. Time requirement of an algorithm can

be reduced greatly if jobs can be divided among processes that run concurrently in a

multi-processor machine. If computations are divided among a number of

p' processes, where p'is less than the number of processors p thcn turnaround time

for the job is roughly divided by p' plus some overhead due to synchronization and

inter-process communication. In case of M-HEU synchronization is required in each

27



iteration. So, in the long run this overhead may sum up to a significant amount. In this

heuristic algorithm, the groups of MMKP arc divided among multiple processes for

computations.

There is a substantial number of sequential heuristics for MMKP problems in the

literature. The parallel algorithms proposed so far are for different variants of

knapsack problems other than MMKP. Unfortunately there is no parallel algorithm

already proposed for MMKP. The proposed parallel algorithms for KP variants do not

provide solutions in polylog time with polynomial number of processors. Finding

polylog algorithms for MMKP problems is still an unexplored interesting research

area. Thus our research concentrates on finding polylog algorithms by parallelizing

existing heuristics ofMMKP using PRAM model.
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CHAPTER 3

Proposed Algorithms for MMKP
In this chapter we introduce a parallel heuristic algorithm for solving MMKP in

polylog time. We find that it is not possible to find a parallel version of M-HEU in

polylog time. A new sequential heuristic algorithm is proposed here by modifying M-

HEU that would be parallelized. Later a parallel heuristic algorithm is introduced,

which is the parallel version of the new sequential algorithm.

3.1 Why M-HEU was Chosen for Parallelism

When a parallel algorithm is developed for any problem in PRAM model, the problem

can be solved in polylog time with a polynomial number of processors. As MMKP is

an NP-Hard problem, its exact solution may not be feasible in any time-critical

problem, since the exact solution of MMKP has an exponential time complexity. In

the quest to develop efficient algorithms, no one has been able to develop a

polynomial time algorithm for any NP-Hard problem. So if the exact algorithm of

MMKP is going to be parallelized, the number of processors will increase

exponentially with the increase in number of MMKP dataset and it is not possible to

provide a parallel version of an exact algorithm for MMKP in polylog time with a

polynomial number of processors. From this point of view, an exact algorithm has not

been chosen for parallelism; rather a heuristic based algorithm is chosen for

parallelism to solve the MMKP. There are different heuristic algorithms to obtain

approximate solution to the MMKP. But M-HEU achieves the maximum optimality

among these existing heuristic approaches. Again, the time complexity of M-HEU is

polynomial, so that it is possible to provide a parallel algorithm of M-HEU using a

polynomial number of processors. So M-HEU was chosen initially for parallelism in

our research. Parallelism using M-HEU is definitely worthy as it takes non real time

when the problem size gets larger.

3.2 Problem ofM-HEU to Be Parallelized
In M-HEU, an item in the current solution is replaced by another item of the same

group, with the highest positive !!.aij (the change in aggregate resource consumption),
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subject to the resource constraint. If no such itcm is found then an item with the

highest !!.vij/!!.aij (maximum value gain per unit aggregate resource expended) is

chosen. After each feasible upgrade, the change in aggregate consumed resource, !!.aij

or the maximum value gain per unit aggregate resource expended, (!!.vij)/(!!.aij) has

been calculated for each higher-valued item for the next iteration. Actually the result

of one iteration is the input to the next iteration. But in our algorithm, to achieve a

polylog time complexity, at best logarithmic number of iterations are permitted and in

each iteration items from different groups to be replaced in parallel with the items in

their respective groups. But it is not possible to upgrade more than one item

simultaneously in one iteration in M-HEU. So it is not possible to provide a polylog

time algorithm from M-HEU directly. Thus to provide a polylog time parallel

algorithm ofM-HEU, we have to modify thc M-HEU to some extent.

3.3 A New Sequential Heuristic, MS-HEU
3.3.1 The Main Principle
In this heuristic one or more new items are selccted in each iteration, so that the total

number of iterations is decreased significantly. That is, we have multiple upgrades in

each iteration. Evaluation (i.e., the relative change of aggregate resource

consumption, !!.d ij) of every candidate item is done once in every iteration for

multiple upgrades but the method of evaluation is exactly the same as M-HEU. M-

HEU requires one evaluation of every item for each upgrade. Actually, when a single

item is selected, the remaining evaluations are no more perfect. As we are ignoring

this in this new heuristic, this approach will loose some revenue but provide a faster,
solution. We call this as heuristic using multiple selections per iteration, abbreviated

as MS-HEU. Here M stands for Multiple and S stands for Selection.

3.3.2 The Process of Up gradation
Exactly one item is chosen with the maximum value of !!.d ij from each group. The

items chosen from different groups are sorted in descending order according to their

value of !!.dij. First few items from the sorted list will be selected for upgradation.

These items will be upgraded one by one if the resources are available, i.e., without

violating the resource constraints. The number of total iterations and the number of

upgrades in the iterations is fixed by the following strategies:
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Strategy 1: Finding solution with a fixed number of iterations and lixcd number of

total proposed upgrades.

Strategy 2: Finding solution with a fixed number of iterations and fixed number of

proposed upgrades in each iteration.

Strategy 3: Finding solution with iterations until no further actual upgrades available.

In M-HEU, the maximum number of iterations is nl in the worst case, so that we

consider lognl iterations in Strategy I and 2 of MS-HEU and the number of items to

be upgraded in hth iteration is nl/i'.

In Strategy 1, we call the number of items we want to replace as 'scheduled upgrade'.

Essentially scheduled upgrade = nlli'. If scheduled upgrade is greater than 11 (i.e. the

number of groups), we cannot take them all and hence we have to consider only 11

items in such cases. We call the total number of items we tentatively calculate for

possible upgrade as 'tentative upgrade' and the difference between tentative upgrade

and scheduled upgrade is defined pending upgrade. To increase the performance, we

add the pending upgrade with the scheduled upgrade and it is the minimum of this

summation and 11, which is ultimately considered for possible upgrade. So, in effect,

in every iteration we have tentative upgrade = min (pending upgrade + scheduled

upgrade, n). But in Strategy 2 and 3, the pending upgrade is not considered. In

Strategy 2 we also want to upgrade our current solution by replacing n1l2" items with

larger valued items in Iteration h. But when the scheduled upgrade is greater than 11,

only 11 items is considered in such cases. In Strategy 3, we want to upgrade the current

solution with iterations until no further actual upgrade is available.

3.3.3 Steps of MS-HEU

Step 1: In each group, add one dummy item with value 0 and construct the initial

solution with the lowest valued items.

Step 2: In Iteration h (depending on the different strategies), find the feasible

upgrades.

Step 2.1: Compute the relative aggregate resource consumption, 6.arij of each item

having a higher utility value than the selected item from the same group.

Step 2.2: Find the item with the maximum value of 6.arij from each group.
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Step 2.3: Sort the items found in Step 2.2 in descending order, with respect to the

value of !!.aij of the items.

Step 2.4: One or more items found in Step 2.3 (different number of items for different

strategies) have been tried to upgrade one by one, without violating the constraint.

Step 3: Deliver the solution, if there is no dummy item in the solution. If there is a

dummy item in the final solution, it implies that 'no solution is found'. Also the

introduction of a dummy item can be used as a special case of MMKP where the

restriction of picking exactly one item from each group is relaxed and it indicates that

no item will be taken from the corresponding group.

3.3.4 Description of MS-HEU for Upgrading /I Items of an MMKP in an

Arbitrary Iteration in Step 2

Following are the variables and the procedures to describe the steps of the algorithm.

n: The total number of groups in the MMKP.

m: The total number of resources in the MMKP.

Ii: The number of items in the ith group.

rijk: The kth resource requirement ofthejth item of the ith group.

vij: The value ofthejth item of the ith group.

Ck: The amount of kth resource consumed by the selected items of the groups.

Rk: The total amount of the kth resource in the MMKP.

p[i] : The index of the currently selected item of the ith group.

current_solution: The solution vector containing the indexes of the current selected

items from each group.

candidate _item: The vector containing the items of groups selected by the procedure.

candidate Jjroup: The vector containing the groups selected by the procedure.

find_candidate_item (i): finds the candidate item of Group i with the highest !!.dij

among the higher valued items than the selected item. There might be no such item if

the highest valued item is already selected.

change_selection (i, j): p[i] ~ j and returns the increase of total value for this

selection. Positive increase denotes upgrade.

current_resource_usage: The resource consumption of the current selected items

from each group.
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3.

4.
5.

additional resource (candidate item, i): It determines additional resource

requirement if ith item of candidate_item is selected instead of the currently selected

item of the corresponding group.

Procedure multiple_selecion (num_items_to _select)

IIThisprocedure finds a feasible solution of the MMKP by upgrading one or more

Ilitems selected from different groups

1. candidate item= null

2. for i=lto n do

candidate_item ~ candidate_item + find_candidate_item (i)

endfor

proposed_candidates ~ sort_nondecrea.l'ing (candidate_item)

Iisorting the candidate_item in nondecreasing order with respect to the value

Ilof /';d ij using merge sort algorithm

6. return doJeasible _upgrade (proposedJandidates, nUIll_itellls_to_select)

7. end procedure

Procedure doJeasible _upgrade (proposedJandidates, nUIll_items_to_select)

I/This procedure does feasible upgrades as many as possible among

Ilnum_itellls_to_select from the beginning of proposedJandidates. At first it tries

Ilwhether all num_items_to_select can be upgraded or not. If it is not feasible to

Ilupgrade all, then feasibility is searched by ignoring the last item in the

Ilnulll_items_to_select in the subsequent iterations. If there is any feasible upgrade, it

Ilreturns true.

1. used_resource=current Jsource _usage

2. for (i ~ Ito nUIll_itellls_to_select)do

3. used resource = used resource + additional resource- - -

(proposed_candidates, i)

II This indicates a summation of vectors indicating k dimensional resource

4. endfor

5. for(i = nUIll_items_to_selectto I) do

6. if(usedJesource::;; totalJesource) then

II All k resource constraints are being checked
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7. for (j = I to i) do

8. change_selection (candidateJ!,rollp. candidate .. item)

IIUpgrading the selected feasible items

9. endfor

10. return true

II. else

12. used rsource = used resource - additiol1al resource- - -

(proposed Jandidates, i)

II This indicates a subtraction of vectors indicating k dimensional resource

13. endif

14. endfor

15 .el1dprocedure

Complexity analysis of an iteration in Step 2 of MS-HEU

In Step 2.1, III additions, m subtractions, m multiplications and I division arc needed

to calculate the relative change of aggregate resource consumption, /),a ij' The value of

/),a'ij is calculated for every item in each group, so Step 2.1 needs O(lmn) operations ..

Step 2.2 directly employs the maximum finding algorithm on I items in each group.

And to find the item with the highest /),a'ij from a group, the algorithm needs 0(1)

operations. Since there are n groups in the MMKP, total number of operations is

0(111). We apply the merge sort algorithm for sorting the items selected in the

previous step, in descending order with respect to their value of /),a ij, requires O(nlog

11) operations. In Step 2.4 the maximum number of items to be upgraded is n and so

the step needs O(n) operations.

So the overall complexity of an iteration of Step 2 of the algorithm is O(nlm + nlog n)

= O(I1(1m + log n)).

3.3.5 Description of MS-HEU

The variables and the procedures to describe the steps of the algorithm are same as

described in the previous algorithm. Two new variables are described below.

act upgrade: The number of items that will be upgraded satisfying the resource

constraints.
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tentative_upgrade: The total number of items we tentatively calculate for possible

upgrade.

pending_upgrade: The difference between the number of items that we want to

upgrade and the number of items of tentative_upgrade.

multiple_selection(tentat ive_upgrade)

ij(num_items_to_select !=1)

ij{pending_upgrade + num_items_to_selectfl) > n

tentative_upgrade = n

num items to select ~ nll/II items to selectfl- --

endij

else

endij

pending_upgrade

tentative_upgrade)

15. while (num_items_to_select >1)

16. end procedure

Procedure initial_ solution ()

/lThis procedure add one dummy item in each group and construct the initial solution

//with these dummy items.

1. for candidate.J5roups i= I to n

2. add item with value 0 alld constraillt 0

3. endfor

Algorithm MS-HEU (Strategy 1)
Procedure MS-HEU_Strategy I()

//Description of Strategy I ofMS-HEU

1. current_solution ~ initial_solution ( )

2. num_items_to_select = n x max(li)

3. pending_upgrade = 0

4. do

5.

6.

7.

8.

9.
10.

11.

12.

13.

14.

4. end procedure
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Algorithm MS-HEU (Strategy 2)
Procedure MS-HEU_Strategy 2()

//Deseription of Strategy 2 ofMS-HEU

1. current_solution f- initial_solution ()

2. num_items_to_select= nX max(/;)

3. do

4. if(num _items_to _selectl2) > n

5. tentative_upgrade = n

6. else

7. tentative_upgrade = num_items_to_selectl2

8. endif

9. multiple_selection(tentative _upgrade)

10. if(num_items_to_select! = 1)

11. num_items to select= nwn_items_to_selectl2

12. endif

13. while (num_items_to _select> 1)

14. end procedure

Algorithm MS-HEU (Strategy 3)
Procedure MS-HEU_Strategy 3( )

//Deseription of Strategy 3 of MS-HEU

1.

2.
3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

current_solution f- initial_solution ()

num items to select =nX max(/;)- --

sel success = 1

do

if(num_items_to_selectl2) > n

tentalive_upgrade = n

else

endif

sel_success = multiple_selection(tentative _upgrade)

if(num_items_toJelect! = 1)

num_item.,._to_select= mun_items_to_selectl2
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13. endif

14. while (nul1l_ilems_lo_selecl > = 1&& sel-",uccess = = I)

15. end procedure

Complexity analysis of different strategies of MS-HEU

Step 1 needs O(n) operations.

Step 2 iterates log nl times in Strategy 1. So the total number of operation in Step 2 is

O(log nl (lmn + nlog n))= O(nlog nl (1m + log n)) for Strategy 1. And the overall

complexity of this strategy is O(nlog nl (1m+ log n)).

Step 2 iterates also log nl times in Strategy 2. So the overall complexity of this

strategy is also O(nlog nl (1m+ log n)).

Step 2 iterates nl times in the worst case in Strategy 3. So the overall complexity of

Strategy 3 is O(nl (1m + log n)).

3.3.6 Some Arguments Regarding MS-HEU

Why null values arc introduced in MS-HEU?

A dummy item with null values is introduced in Step I; it gives always a feasible

solution since the dummy item does not consume any resource. But if any dummy

item does exist in the final solution, it implies that there is no feasible solution.

However, in some practical problems these null values bear significant roles in

decision making. For example, the problem of admission control can be easily

mapped to the MMKP. In this case, a dummy item in the final solution indicates the

rejection of a particular session in the admission control problem. Here, the session is

equivalent to a group and the QoS of a user's requested session is equivalent to an

item as described in Section 1.2. But in the cases where null values do not indicate

any significant meaning, our proposed algorithm docs not give a feasible solution

though there is a feasible solution using M-HEU. In M-HEU, if the initial solution is

not feasible, then a feasible solution is found by searching new items with better

revenue with less resource consumptions. But in this searching technique, the solution

of one iteration is dependent to the solution of previous iteration, so that it is not

possible to provide a parallel version for this part of MMKP solution in polylog time
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complexity. We can ignore this, becausc therc arc very good numbcr of applications

in practical problems, where null valucs play important roles.

Why sorting the items with respect to the value associated with them?

The lowest valued items are selected as the initial solution by sorting. Sorting is uscd

to reduce the search space. In the proposed algorithm, wc have to find the higher

valued items than the selected items for upgrading the current solution. So if the items

are not sorted, same computation is done for some lower valued items, which is

undesirable, as it consumes extra time and space.

Why not starting from the highest valu~d items?

There could be another approach to start with the items with the highest value from

each group, and then iteratively select lower valued items until feasibility is achicved.

The chance of having feasible solution with the highest valued items is very low as it

is expected in almost all cases that those items will consume more resources. The next

step would be to bring the solution to feasible solution. But it is not possible to

parallelize this approach in polylog iteration, because in this approach, every iteration

is fully dependent to its previous iteration and it might require nl iterations in the

worst case.

3.3.7 Example for Demonstrating Strategy 1 ofMS-OED

Since the pending upgrade is considered in Strategy 1, it gives better result than other

strategies and a parallel algorithm is proposed in the next section using this strategy.

So that Strategy 1 is demonstrating here. The other strategies differ from Strategy, 1

only in the number of upgrades. The upgradation process using other strategies is

similar to this. Thus it is expectcd that the other stratcgies could be understood casily

from this demonstration of Strategy 1.

Figure 3.1 shows an MMKP with 4 groups. Each group has 3 items sorted according

to the value associated with each item. The resource is two-dimensional.
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Demonstrating Step 1:

A dummy item with zero value is added in each group and these dummy itcms are

selected as the initial solution. Thus the solution vector can be written as (0, 0, 0, 0)

where ith element of the vector is the index of the selected item of the ith group. The

resource usage vector for this solution is (0, 0) where ith element denotes the ith

resource consumption.

y=24 y~36 y~23 y=34
Item 3 71=7,72=3 r)=9,r2=7 r,=2,r2~6 rl=3,r2=5

Maximum

y~14 y=30 y~19 y=25 allowable

Item 2 r,=7,r2=0 7,=7,r2=6 r[=3,1"2=1 rl=6,r2=8 resource
R,: 22
R2:20

y~12 y~29 y~16 y~19
Item 1 r,=4,r2=5 rl=7,r2=3 rl=2,r2=1 rl=2,r2=7

Group 1 Group 2 Group 3 Group 4 Knapsack

Figure3.l: Example of an MMKP

Demonstrating Step 2 (Feasible npgrades):

Iteration 1:

Values of !'.a~for all the feasible upgrades from the currently selected items are as

follows. The currently selected items are the dummy items. The value of !'.a~of the

higher valued items can be calculated using I~,pw- rijk)'
k

!'.a;, = {1.33,0}

!'.a;, = {2.9,0}
!'.a;, = {S.33,0}
!'.a;, = {2.l1,0}

!'.a;2 = {2,0}
!'.a;2 = {2.31,O}

!'.a;2 = {4.7S,0}

!'.a;2 = {l.79,O}

!'.a;, = {2A,0}
!'.a;, = {2.25,O}
!'.a;, = {2.88,0}
!'.a;, = {4.2S,0}

The computation of !'.a'" can be shown as follows:
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,
~Qll = L~IP[llk -r11k)

k=]

:::(rIOI -rIIJ+(rI02 -rI12)

=(0-4)+(0-5)

=-4-5 =-9

Since Ila'i < 0, Yij = 0 and Ilv"/Ila,, have to bc calculated where

IlV" = IlVIPII]-IlV"

=0-12

= -12

So IlV" / Ila" = - 17~9 = 1.33 and hence Ila'" = {1.33,0}.

There are four groups containing three items each. So in the first iteration, we want to

upgrade min (6, 4) groups simultaneously. So the number of pending upgrades is 2 in

this iteration. The items with the highest Ilelij from each group are selected. These

items are sorted in non descending order with respect to the value of Ilelij. Here we

get Item I from Group 2 and 3, and Item 3 from Group I and 4 with the highest Ilar
ij

from their respective groups. If four groups are upgraded, then the total resource

usages are 19 and 12 respectively and this is feasible. So Group 2, 3 are upgraded to

Item 1 and Group 1,4 are upgraded to Item 3. We get current solution (3, I, 1,3) with

resource usage (19,12).

Iteration 2:

Ila;, = {0.03,0}

Ila;, = {0.6,0}

Ila;, = {0.08,0}

Ila;, = {0.12,0}

The computation of lla'12 can be shown as follows:
,

Ila" = L ~'PII]' - r2l2,)x C,
k=1

:::(r211 - r221)x C) + (r212 - r2122)x C2

= (7 -7)x 19 +(3- 6)x 12

=0-36=-36

Since Ila" < 0, Yij = 0 and IlV,,/ Ilu" have to be calculated where

IlV" = IlV'pll]-IlV"

= 29-30

= -I
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So /',v22/ /',a22 = 0.03 and hence /',a' 22 = {0.03,O}.
In iteration 2, we want to upgrade min (3+2, 4) groups. But Group I and 4 will not be

possible to upgrade in this iteration, since these groups have already upgraded to the

highest valued items in the previous iteration. So it is possible to upgrade Group 2 and

Group 3 from Item 1 to Item 3 and from Item I to Item 2 respectively. We get

resource usage (22, 16), so the solution is feasible. And the current solution is (3, 3, 2,

3).

Iteration 3:

/',0;, = {0.07,0}
In this iteration there is only one item that will be upgraded: in Group 3, from Item 2

to ltem3. But if we select Item 3 in ,Group 3, it does not satisfy the resource

constraints. Hence the final solution is (3, 3, 2, 3) and resource usage (22, 16).

3.4 PRAM-HEU: A Heuristic for Solving the MMKP Using PRAM
Model
A parallel heuristic algorithm, PRAM-HEU is proposed using Strategy I ofMS-HEU.

In Strategy 1, pending upgrade is considered, i.e. an upgradation which is not feasible

in one iteration, is considered in later iterations. But in Strategy 2 and 3, the pending

upgrade is not considered. As a result some feasible upgrades are left unconsidered in

some iterations in Strategy 2 and 3, and it is shown that Strategy 1 gives belter result

than that of other strategies. Also there is no polylog time complexity of Strategy 3.

So that Strategy 1 of MS-HEU is considered to develop a parallel heuristic algorithm

forMMKP.

Finding maximum !'!aT ij: Items of each group in the MMKP are sorted in non-

decreasing order according to the value associated with them. First the relative change

in aggregate consumed resource, !'!cf ij of each item are calculated in parallel for each

group. Then we find the items with the highest /',a'ij from each group in parallel. We

start with the binary tree algorithm from the leaves and move until the size of the

problem is reduced to a certain value. Then we apply the doubly logarithmic-depth

tree based on the items generated in the first step (from the binary tree algorithm). A

CRCW PRAM model is used to find the items with the highest /',a'ij.
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Sorting candidatc itcms: The items found in the previous step, are sorted in non-

decreasing order with respect to the value of their relative change in aggregate

consumed resource using pipe lined merge sort algorithm on CREW PRAM model.

Finding feasibility:

Compnting prefix snm: In every iteration we have tentative upgrade = min (pending

upgrade + scheduled upgrade, n) as Strategy I of MS-HEU, described in the previous

section. The prefix sum is computed of the resource consumptions of the tentative

upgrade items using logarithmic time prefix computation algorithm. The PRAM

model to compute this prefix sum is CREW.

Finding feasible upgrades: The selected tentative upgrade items may not give the

feasible solution due to the resource constraints. If these items do not give the feasible

solution, then we find out the maximum number of items for which the solution will

be feasible and these items will be upgraded. The whole procedure runs on

Concurrent Read Concurrent Write Parallel Random Access Machine (CRCW

PRAM).

The algorithm PRAM-HEU consists ofthe following steps:

Step 1: In each group add one dummy item with value 0 and constraints o. Construct
the initial solution with the lowest valued item (i.e. dummy item) in each group.

Step 2: In Iteration h (0 ~ h ~ log nT), execute the following sub-steps.

Step 2.1: For all group, relative aggregate resource consumption, /';a ij of each item

having a higher utility value than the item selected from the same group are computed

in parallel.

Step 2.2: Find the item with highest I'.aij in each group using parallel maximum

finding algorithm.

Step 2.3. Sort the items found in Step 2.2 in descending order of /';ar
,} using parallel

sorting algorithm.

Step 2.4: Compute prefix sums of consumed resources for the first mm (pending

upgrade + nl/2h
, n) items found in Step 2.3

Step 2.5: Using parallel maximum finding algorithm, find the maximum number of

items that can be upgraded at a time in this iteration without violating the constraint

and then perform the upgrade.
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Step 3: Deliver the solution, if there is no dummy item in the solution. If there is a

dummy item in the final solution, it implies that 'no solution is found'. Also the

introduction of a dummy item can be used as a special case of MMKP where the

restriction of picking exactly one item from each group is relaxed and it indicates that

no item will be taken from the corresponding group.

3.4.1 Description of the Algorithm PRAM-HEV

additionalJesource _usingyreflX _array(i): It determines additional resource

requirements of the i items, directly from the prefix sum, if these i items are selected

from different groups instead of currently selected items of the corresponding groups.

find_candidate_item (i): It finds the candidate item of Group i with the highest !'>dij

among the higher valued items than the current selected item in polylog time (the

algorithm is described in Chapter 2). There might be no such item if the highest

valued item is already selected.

Procedure PRAM-HEU ( )

I/This procedure finds a feasible solution of the MMKP by upgrading the items of

Iidifferent groups in parallel

1. current_solution ~ initial_solution ()

2. num_items_to_select = n x max(li)

3. pending_upgrade = 0

4. do

5. for i=l to n do

6. candidate_item ~ candidate_item + find Jandidate _item(i)

7. endfor

8. pipelined _merge_sort (candidate_item)

lilt sorts the candidate_item in nondecreasing order with respect to the value

Ilof !'>d ij using pipelined merge sort algorithm. The algorithm is described in

IIChapter 2.

9. ij(pending_upgrade+num_items_to_select/l) > n

10. tentative_upgrade = n

I!. else
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tentative_upgrade ~ pending_upgrade + num _items_to _selectl2

endif

prefix _sum (tentative_upgrade)

act _upgrade ~ find_max _J1llm_items_upgrade (tentative_upgrade)

doJeasible_upgrade (acU,pgrade)

if(num_items_to_select != I)

num_items_to_select = nllln_items to selectl2

12.

13.

14.

15.

16.

17.

18.

19.

20.

endif

pending_upgrade

tentative_upgrade)

21. while (num_items _to_select> I)

22. end procedure

Procedure initial solution()

/lfhis procedure adds one dummy item in each group and construct the initial solution

Ilwith these dummy items

I. for candidate -.J;roup i= I to n pardo

2. add item with value 0 and constraint 0

3. endfor

4. end procedure

Procedure prefix _sum (x)

IfThis procedure calculates the prefix sum of tentative_upgrade items for each

Ilresource constraint. Here we find out the prefixes of 1,2, .... tentative_upgrade -I.

Iitentative _upgrade items for the kth resource constraint in parallel.

I. prefix_ array = {x}

2. for resource constraint k= I to m pardo

3. for processor i (i ~ 1 to x/logx) pardo

4. computes the prefixes of its logx assigned items (i-I )logx+ 1, (i-I)

logx+ 2, ..... , ilogx. let the results be Z(;_1)Iogx+1, Z(;_1)Iogx+ 2, ... ZUogx,

5.

6.

7.

8.

endfor

for processor i (i = 1 to x/logx) pardo

compute the prefixes of x/logx items Zlogx,Z210gx,... , Zxfound in the

previous step. let Wlogx,W210gx,... , Wxbe the result

endfor
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9.

10.

11.

processor 1 outputs ZI, Z2, ... , Zlogx

for processor i (i = 2 to x/logx) pardo

computes and outputs WU. 1)logx+ Z(i.l)logx+ I. wu. 1)logx+ Z(i.I)/ogx+ 2•..••

W(i _ 1 )/ogx + Zi/ogx,

12. endfor

13. store the outputs inprejix_array

14. endfor

IS. returnprejix_array

16. end procedure

Procedure jind _max_num_items_upgrade (tentative_upgrade)

IIThis procedure finds the number of possible feasible upgrades. At first it finds

Ilwhether all tentative_upgrade items can give feasible upgrade or not. If it is not

Ilfeasible to upgrade all, then feasibility is searched by ignoring the last item in the

Iitentative_upgrade in the subsequent iterations. If there is any feasible upgrade, it

Ilreturns true.

1. used_resource = current_ resource_usage

2. index_array = {tentative_upgrade}

3. for (i = I to tentative_upgrade) pardo

4. used resource = used rsource +- -

additional Jesource _using"'prejix_array(i)

S. if(usedJesource:s; totalJesource) then

II All k resource constraints are being checked in parallel

6. write the value of i in the index_array

7. else
8. write negative number in the index_array

9. endif

10. endfor

11. if there is no positive number in the index array

12. return false

13. else
14. employ parallel maximum jinding algorithm

IS. return true

16. endif
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17. endif

18. end procedure

An example of the parallel maximum finding algorithm is given below. The parallel

maximum finding algorithm is employed on the indices of the Boolean array giving

"Yes" in the Figure 3.2.

Each processor, instead of writing "No", just writes a negative number to indicate a

negative verdict and the array of indices is initialized with the index of the Boolean

array. Then the parallel maximum finding algorithm is employed, same as that

described to find the candidate item with the highest !!.a'ij in Procedure

jindJandidate_item(i). The maximum in the array of indices will indicate the number

of act_upgrade.

Boolean Array Array of Indices

rade

of the
Array

will

1
Maximum

2 elements in

-1 of indices
indicate

4 actual_upg

-1

6

7

-1

2

3

4

5

6

7

8

Yes

Yes

No

Yes

No

Yes

Yes

No

2

3

4

5

6

7

8

Figure 3.2: Finding actual number of upgrades

Procedure doJeasible _upgrade (act_upgrade)

/lThis procedure upgrades act_upgrade items from different groups in parallel.

1. for (i = 1 to act_upgrade) pardo

2. change_selection (candidateJjroup, candidate_item)

3. end/or

4. return true

5. end procedure
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3.4.2 Complexity Analysis of Algorithm PRAM-HEU

For the convenience of the analysis we assume all the groups have the same number

of items i.e. I, = I, = I, = = I" = I.

Step 1 and Step 3 can be performed easily in 0(1) parallel time, O(n) operations on

EREW PRAM. Howevcr, Stcp 2 with a number of nontrivial sub-steps needs some

analysis.

In Step 2.1, m additions, m multiplications and m subtractions are needed. The

additions can be done in parallel in log m time using Oem) operations. For the

subtraction, m processors are directly employed and it can be done in 0(1) time using

Oem) operations. m multiplications can also be done in 0(1) time using Oem)

processors, i.e. total number of operations is Oem). Then the results of m subtractions

and m ,multiplications should be added and it can be added in parallel. Similarly, to

calculate the value of Ck, we need n additions, which can be done in parallel in log n

time spending O(n) operations. We have to calculate the relative change of aggregate

resource consumption, /',a'u for each item (I items) from each group (n groups). So in

total Step 2.1 runs in O(log m + log n) time using O(lnm + nm) = O(lnm) operations

on CREW PRAM.

Step 2.2 directly employs the parallel maximum finding algorithm on I items in each

group. Since there are n groups this can be done in O(loglog /) time with O(n/)

operations on CRCW PRAM.

In Step 2.3 we apply the parallel sorting algorithm on n elements which can be done

in O(log n) time, O(nlog n) operations on CREW PRAM.

In Step 2.4 we compute prefix sums of consumed resources for tentative_upgrade

clements. Computing prefix sum on k elements in parallel takes O(log k) time using

O(k) operations in EREW PRAM. Since the resources are m dimensional we can do

the prefix sum separately on different dimensions in O(lg(tentative_upgrade)) time

using Oem x tentative_upgrade) operations. However, to construct the Boolean array

indicating whether resource constraints are met or not we have to check all the

dimensions in parallel. We can do the job in 0(1) parallel time using
• •

O(tentt;ttive_upgrade x m) operations as follows. We employ one processor each for

each df the resource dimensions for each of the tenlative _upgrade elements. Each

processor checks the assigned dimension against the corresponding available resource
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dimension. A group of m processors, corresponding to the m resource dimension of a

particular element writes to particular entry of the array. The array is initialized with

"Yes" .

If any cheek of any processor turns out to be negative, it just writes "No" in the

corresponding entry. So the PRAM model needed is CRCW. Since maximum value of

tentative_upgrade is n, Step 2.4 can be performed in O(log n) time using O(mn)

operations in CRCW PRAM.

In Step 2.5, we find the maximum number of items, i.e., the value of actual upgrade, -
for which the solution is feasible. In this step we can employ the parallel maximum

I

finding algorithm directly and it will take O(loglog n) time with O(n) operations on

CRCW PRAM, since maximum value of tentative _upgrade can be in the worst ease

n.

Finally performing the upgrade can be done in 0(1) parallel time using O(n)

operations. The complexity analysis of the steps is summarized in Figure 3.4.

Since the Step 2 iterates for lognl time, the overall running time of Step 2 should be

O(lognl(logm+logn+loglogl)) parallel time. The number of oper~tions needed is

O(nlognl(logn+lm)). It is easy to see that the running time and the total operations of

the algorithm remain those of Step 2 and the PRAM model required is CRCW.

Table 3.1: Summary of the complexities of different steps

Step rime Operation PRAM

I 0(1) O(n) EREW

2. I O(log n +Iog m) O(lmn) CREW

2.2 O(loglog !) O(n!) CRCW

2.3 O(log n) O(n log n) CREW
I

2.4 I O(log n) O(mn) CRCW

2.5 O(loglog n) O(n) CRCW

3 0(1) O(n) EREW
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CHAPTER 4

Experimental Results
In order to study the performance of PRAM-HEU, we do not simulate the PRAM

algorithm actually. The corresponding serial algorithm is used to compare the

pcrformance (such as earncd revenuc) of PRAM-HEU and wc comparc thc rcsults

with the value achieved by M-HEU, modified Heuristic for MMKP and the upper

bound, a bound which is equal to or higher than the optimal value of the objective

function of the MMKP.

We have performed experiments on an extensive set of problem sets. We used

randomly gencrated and correlated MMKP instances for our test cases. The average

of the results achieved from multiple MMKP sets are presented in tables and graphs.

4.11nitializing the Data

We performed experiments on extensive sets of problem set. The MMKP problems

were generated using pseudo-random number generators. The data generation

procedure that is used here is the same as that was used for generating data for M.

HEU [3,4]. The data sets for testing the performance of the heuristic were initialized

as follows:

R, = Maximum amount of a resource consumption by an item.

P, = Maximum value per unit resource.

Rk = Total constraint for the kth resource. type = n x R, x 0.5. Here we assume

R, x 0.5 amount resource on the average for each session.

Pk = Value of the kth resource= Random (pJ = A uniform discrete random number

from 0 to (p, -1).
r,jk = The kth resource ofthejth item of the ith group = Random (R,).

(
R Pc) j+1v = Value ofthejth item of the ith group = Random mx-' x- X--, when the

'1 10 10 I

item values are not correlated with the resource requirement.
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Vlj = L>if' x P, +RandOIll(1II x 3 x R,. x P,), when thcrc is a positive corrclation
10 J 0

between the resource consumption and item values.

For the experimental results reported in this chapter, we used R, = 10 and P, = 10.

Plcase see ftp://panoramix.univ-paris1.fr/pub/CERMSEM/hifi/MMKP for some

benchmark data sets on the MMKP. Although in our experiments we used larger data

sets, but the data generation procedure is the same as that was used for creating

benchmark datasets. The performance and the time complexity of MS-HEU have been

observed for random and correlated data sets.

4.2 Methods of Experiment

It is not possible to provide a PRAM machine by using normal multiprocessors and

normally the PRAM machine is not available, so that we can't get actual performance

of the'algorithm in the desired environment. MS-HEU gives exactly the same result of

the PRAM algorithm. That is why MS-HEU is implemented to determine the total

value to be earned by PRAM-HEU. MS-HEU has been implemented for different

strategies using the Java programming language and ran the algorithm on a Pentium

IV 1.7 GHz with 128 MB of RAM running Windows XP. We also compare the time

requirement of MS-HEU using ditferent strategies. These time requirements do not

represent the time requirement of PRAM-HEU. For the same data, M-HEU has also

been executed. Our solution is then bench marked with the result ofM-HEU.

We can get the exact solution by BBLP technique, but that will take exponential time

complexity. In this experiment we compute an upper bound of the value using the

same tcchnique but with one iteration only, where an indefinite number of iterations

finds the optimal value. The percentages of the value achieved by our algorithms with

respect to this upper bound are presented, which is defined as the optimality of the

solution in our algorithm.

4.3 Test Results

It is observed that PRAM-HEU achieves on an average 98% of the value 'of M-HEU

and about 94.5% of the optimal solution. We presented the experimental results in the

tablesand graphs.
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Table 4.1,4.2 and 4.3 show the comparison of the time requirements among different

stratcgies of MS-HEU and M-HEU for correlated and uncorrelated (random) data sets

for varying number of groups, number of resource dimensions and number of items in

each group respectively.

The graphs of Figure 4.1 to 4.3 show the performance of different. strategies of MS-

HEU with respect to M-HEU for different number of groups, resource dimensions and

items in each group. Similarly the graphs of Figure 4.4 to 4.6 compares the optimality

achieved by the M-HEU and different strategies of MS-HEU for different number of

groups, resource dimensions and items in each group. The optimality of M-HEU and

different strategies of MS-HEU are compared for smaller data sets, because it takes

lots of time to calculate the optimality when the data sets are larger, due to the

exponential complexity of upper bound finding algorithm. The graphs of Figure 4.7 to

4.12 compare the time required by M-HEU and different strategies ofMS-HEU.

All the plotted data in the above mentioned graphs are the average of 10 problem sets.

To verify the consistency of the results we present graphs showing Upper-Bound and

total values from Strategy 1 of MS-HEU and M-HEU for 10 correlated and

uncorrelated data sets in Figure 4.13 and Figure 4.14.

Table 4.1 Time requirements in milliseconds by M-HEU and different strategies of

MS-HEU for solving the MMKP with correlated and uncorrelated data sets varying n

N rn I Time requirement (in ms) of Time requirement (in

MS-HEU ms) ofM-HEU

Strategy 1 Strategy 2 Strategy 3
Cor Uncor Cor Uncor Cor Uncor Cor Uncor

500 25 25 1032 451 1182 641 1482 811 67467 46297
1000 25 25 2944 1101 3136 1273 3846 1683 243850 128224
1500 25 25 4850 1803 5339 1984 6059 3465 771729 331136
2000 25 25 5708 2994 6474 3518 10014 5608 912402 563500
2500 25 25 10275 4666 11053 4810 16033 8973 1841048 930518
3000 25 25 15112 5848 16329 7437 2282 11377 2563907 1183332
3500 25 25 18070 7200 19893 8312 9763 12869 2944193 1945537
4000 25 25 24636 10225 25451 12774 2126 18747 3990298 2403366
4500 25 25 32840 12227 31886 14709 4003 23764 6825705 3067321
5000 25 25 33559 14951 34599 16034 .6356 25036 9673518 3705088
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Table 4.2 Time requirements in milliseconds by M-HEU and different strategies of

MS-HEU for solving the MMKP with correlated and uneorrelated data sets varying m

11 111 I Time requirement (in ms) of Time requirement (in

New Heuristic ms) ofM-HEU

Strategy I Strategy 2 Strategy 3
Cor Vncor Cor Vncor Cor Vncor Cor Uneor

2500 5 25 6870 3525 8989 4031 12263 7521 280062 251702
2500 10 25 7016 3816 9872 4390 13001 7721 667600 352117
2500 15 25 7621 3825 10301 4479 13009 7611 910629 598060
2500 20 25 11256 4276 11952 4853 13520 8021 1595173 748686
2500 25 25 11767 4427 12154 5032 13069 8020 1851331 969344
2500 30 25 13319 4847 14664 6052 14796 8703 2430012 1073493
2500 35 25 13614 5097 15432 6183 14811 9023 3247459 1319017
2500 40 25 12188 5087 15105 6392 16531 9543 3775249 1430076
2500 45 25 14235 5288 15251 7144 18136 9834 3895361 1713424
2500 50 25 14520 5708 15487 7545 19092 10024 4100316 1905040

Table 4.3 Time requirements in milliseconds by M-HEU and different strategies of

MS-HEU for solving the MMKP with correlated and uncorrelated data sets varying I

11 111 I Time requirement (in ms) of Time requirement (in

New Heuristic ms)ofM-HEV

Strategy I Strategy 2 Strategy 3
Cor Vncor Cor Vncor Cor Uncor Cor Uncor

2500 25 5 3275 2124 4376 3047 4196 4957 233626 130968
2500 25 10 4156 2834 4840 3309 8853 6079 636224 316325
2500 25 15 7460 3585 7864 4300 11687 6249 943447 546916
2500 25 20 8182 3705 9348 4641 11687 7611 1277858 724492
2500 25 25 11276 4126 11510 5042 18166 8522 1500368 960421
2500 25 30 13058 4326 13766 5123 17956 8791 1786619 1156813
2500 25 35 16964 5368 17116 5172 ~0630 9292 2853283 1305908
2500 25 40 15782 5538 18069 5904 ~1298 9914 3591443 1577088
2500 25 45 17056 5668 18447 6456 3433 9965 3895822 1850030
2500 25 50 18744 6098 20301 7034 4335 9945 4103720 2284954

52

••



1.01

I ~ . .~,~,~.~.~-~._.+.~ ~ ~
=> 0.99 )f--* . ..;<-" : .""*".*.~.*.
OJ::r; 0.98

~::;: to :>~.~ 0.97 ;:0
:!1 0.96•

H H IE l:
0.95 ----" lE

><- >< ><
0.94

0 1000 2000 3000 4000 5000 6000

Number of Groups

---+- Strategy 1MS-HEU
(Correlated)

- .+ . - Strategy I MS-HEU
(Uncorrelated)

~ Strategy 2 MS-HEU
(Correlated)

_.". - Strategy 2 MS-HEU
(Uncorrclatcd)

___ Strategy 3 MS-HEU

(Correlated)
- ." . - Strategy 3 MS-HEU

(Uneorrelated)

Figure 4.1: Performance of different strategies of MS-HEU normalized with respect to

M-HEU for the MMKP data sets with 1=25 and m=25

••• Jl 11 , t t • ,<;7
,,...-"" )( )( H l:

~H H H

NumberofResource Constraints

1.01
1

::l 0.99
gj. 0.98::;:
'- 0.97o
?J. 0.96

0.95
0.94

o 10 20 30 40 50 60

--+-- Strategy 1 MS-HEU
(Correlated)

_. +. - Strategy I MS-HEU
(Uncorrclated)

~ Strategy 2 MS-HEU
(Correlated)

- . " . - Strategy 2 MS-HEU
(Uncorrclated)

__ Strategy 3 MS-HEU
(Correlated)

-." - - Strategy 3 MS-HEU
(Uneorrelated)

Figure 4.2: Performance of different strategies ofMS-HEU normalized with respect to

M-HEU for the MMKP data sets with n=2500 and 1=25

53



Number of Items

1.01
1::0

~ 0.99
::E 0.98
••.• 0.97o
'#. 0.96

0.95
0.94

o 10 20 30 40 50 60

__ Strategy 1MS-HEU
(Correlated)

_.+. - Strategy 1MS.HEU
(Uneorrelated)

--><- Strategy 2 MS-HEU
(Correlated)

_. X. - Strategy 2 MS-HEU
(Uneorrelated)

__ Strategy 3 MS-HEU
(Correlated)

_. "'. - Strategy 3 MS-HEU
(Un correlated)

Figure 4.3: Performance of different strategies of MS-HEU normalized with respect

to M-HEU for the MMKP data sets with n=2500 and /11=25

1.02 -.- M-HEU (Correlated)

-+-- Strategy I MS-HEU
(Correlated)

- .•. - Strategy I MS-HEU
(Un correlated)

~ Strategy 2 MS-HEU
(Correlated)

_.)t. - Strategy 2 MS-HEU
(UncoITclatcd)

---?lE-- Strategy 3 MS.HEU
(Correlated)

- ..~ - - Strategy 3 MS-HEU
(Un correlated)

- -. - - M.HEU (Un correlated)

t=
, I :t

0.92 l' • •
0.9 ~l( )(

)(
;E H l: H

0.88

0 200 400 600 800

Number of Groups

"-/'-'
~ 0.98

••.g 0.96
[)
"2 0.94
>
"~
~

Figure 4.4: Performance of different strategies of MS-HEU and M-HEU normalized

with the upper bound for the MMKP data sets with 1=10 and /11=10

54



1.02 -a--- M-I-1EU (Correlated)

_.-r' -~.-~--~'_•.--•..-~--~
~

.-. ~.-.~, =*, .••. , _ : = . - . -)(- . -)(- . - . -._~.-~

• • • • • •• • • •
lei • • •• I

~ • 1 :Ii---
~ H -";: l:

.E lE i( )( )(

NumbcrofRcsourcc Constraints

i,'~
.~ 0.98
;;;
g 0.96
8-
"0 0.94
">
~ 0.92
.';'

0.9

0.88
o 10 20 30 40 50

_.*.- M-HEU (Uneorrelated)

---+-- Strategy I MS-HEU
(Correlated)

- -. - - Strategy I MS-HEU
(Un correlated)

--*"'- Strategy 2 MS-HEU
(Correlated)

- ')E • - Strategy 2 MS-HEU
(UncolTclated)

~ Strategy 3 MS-HEU
(Correlated)

60-'''' - Strategy 3 MS-HEU
(Un correlated)

Figure 4.5: Performance of different strategies of MS-HEU and M-HEU normalized

with the upper bound for the MMKP data sets with n=500 and [=10

1.02 -a--- M-HEU (Correlated)

- -*.- M-HEU (Uneorrelated)

---+-- Strategy I MS-HEU
(Correlated)

- .•. - Strategy I MS-HEU
(Uncorrclated)

_______ Strategy 2 MS-HEU
(Correlated)

- - ~ . - Strategy 2 MS-HEU
(Uncorrclatcd)-*- Strategy 3 MS-HEU
(Correlated)

- . ~ . - Strategy 3 MS-HEU
60 (Uneorrelated)5040

k::: : :Ii :li=::::t
H H l( l: --><

302010

"--.." •.., -*-----><---><---><--*-.....,<---><-H lE J(

0.88
o

0.9

~'

~ 0.98
;;;
g 096
8-
-0 0.94
">":a 0.92
.';'

Number ofItcm<;

Figure 4.6: Performance of different strategies of MS-HEU and M-HEU normalized

with the upper bound for the MMKP data sets with n=500 and m=1 0

55

,
••



Number of Groups

__ M-HEU (Correlated)
~ 12
c.- ~
:E 10~

5
8:g

0

E 6~
'5
0-

40

'"0
E 2f=

0
0 1000 2000 3000 4000 5000

- -k- - M-HEU (Uneorrelated)

-'--+- Strategy 1 MS-HEU
(Correlated)

- .•..• Strategy 1 MS-HEU
(Uneorrelated)

__ Strategy 2 MS-I-1EU
(Correlated)

- .>+-- . Strategy 2 MS-HEU
(Uneorrelated)

, ----lIE-- Strategy 3 MS-I-1EU
6000 (Correlated)

- .~ . Strategy 3 MS-I-1EU
(Uncorrclatcd)

Figure 4.7: Time required by different strategies of MS-HEU and M-HEU for the

MMKP data sets with m=25 and 1=25

.~.
505 ~

-0~ c 40C ~
0
~~E 0 30~ .c

'5 f-
0- 20
0
0::

100
E
f= 0

0 2000 4000

Number o fCio ups

--+-- Strategy 1 MS-I-1EU
(Correlated)

_. +. - Strategy 1 MS-I-1EU
(Uneorrelated)

~ Strategy 2 MS-J-1EU
(Correlated)

_.,.. - Strategy 2 MS-I-1EU
(Uncorrelatcd)

__ Strategy 3 MS-J-1EU
6000 (Correlated)

_." - - Strategy 3 MS-I-lEU
(Uneorrelated)

Figure 4.8: Time required by different strategies of MS-HEU for the MMKP data sets

with m=25 and 1=25

56



.-c.-If:
.-r.-k"

_¥,-J4
.-1('"

Number of Resource Constraints

~ 5
"

~ ~ 4
c' ::E
"E 3~
'5~ 2"'""E
i=

0
0 10 20 30 40 50

---+- M-HEU (Correlated)

- - • - - M-l-IEU (Uncorrclated)

~Stratcgy 1 MS.HEU
(Correlated)

- .•. - Strategy I MS-HEU
(Uncorrclated)

~ Strategy 2 MS-HEU
(Correlated)

- . )< • - Strategy 2 MS-HEU
(Uncorrelated)

60 ---;0- Strategy 3 MS-HEU
(Correlated)

- - ~. - Strategy 3 MS-HEU
(Uncorrclatcd)

Figure 4.9: Time required by different strategies of MS-HEU and M-HEU for the
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4.4 Observations

» M-HEU produces solutions which are close to the optimal solutions provided by

the algorithm BBLP. Figure 4.1 to 4.3 show the performance of different

strategies ofMS-HEU with respect to the M-HEU. It is shown that Strategy 1 and

Strategy 3 of MS-HEU produce better solutions than Strategy 2 of MS-HEU. The

solutions achieved by Strategy I and 3 are close to the solutions of M-HEU and

sometimes the value achieved by these strategies is about 100% to the value

achieved by M-HEU. On an average Strategy I and 3 achieve about 98.5% and

98% of the value achieved by M-HEU, respectively.

In most of the cases, the solution achieved by Strategy I is better than that of

Strategy 3. This is likely because, in the later iterations, one or more than one item

m,!y be'upgraded in Strategy I, but exactly one item is upgraded in Strategy 3.

Atjd it inight happen that a single higher valued item may not give a feasible

solution, but two or more items may give a feasible solution. Because the

selection of a single item may not satisfy one or more resource constraints, if the

values of those resource constraints of the selected item are high. But when more

than one item is selected and if the values of the resource constraints of the next

selected items are small, the resource constraints may be satisfied and give a

feasible solution.

v=14 v=30 AvailableItem 2 r[=5,r2=,14 r,~20,r2=4 resource
Resource 1 : 15
Resource 2 : 5

v~12 v~29
Item 1 r]=6,r2=8 rl=4,r2=5

Group I Group 2

Figure 4.15: Example of an MMKP with available resources

As an example, let the resources of an MMKP is two dimensional and the

available resources are 15 and 5 respectively for Resource 1 and 2 (shown in, .
Figure 4.15)'. Let there are two groups where upgrade is possible and let Item 1 be

the currently selected item in these groups. The possible upgrades are, from Item 1

to Item 2 in these groups. But individually none of them does satisfy the available
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resourccs. If Group 1 is upgraded, it does not satisfy the available resources,

because the required resources are -1 and 6 respectively, where the available

resource is 5 for Resource 2. Similarly if Group 2 is upgraded, the required

resources are 16 and -1 respectively, where the available resource is 15 for

Resource I. But when two groups are simultaneously upgraded, the required

resources are 15 and 5 respectively which satisfy the available resources.

The value achieved by Strategy 2 of MS-HEU is worse than that of other

strategies and it achieves about 96% of the value achieved by M-HEU. This is

likely because the total number of upgradationsof Strategy 2 is smaller than that

of other strategies. So some feasible upgrades are left unconsidered in this

strategy. As a result some resources are left unconsumed. In this strategy the

upgradation that is not feasible in previous iteration is not considered in the later

iterations ..

»- We find from Figure 4.1 to Figure 4.6 that M-HEU and different strategies ofMS-

HEU give better results for uncorrelated data sets than correlated data sets. We

can give a plausibility argument of the behavioral differences between correlated

and uncorrelated data sets of MS-HEU. When the data sets are fully correlated,

the items of a group lie on a straight line. The items with high resource

consumption and high values are picked first. So that higher valued items are

selected quickly and resources are fulfilled. In the later iterations the lower valued

items are not considered, where some of them would give a feasible solution. So

that we loose some revenue here. But if the data sets are random then the picking

of items will not be biased. Both high and low valued items will be picked with

the same probability and we get better solutions. This is likely the reason that

different strategies of MS-HEU have better optimality for uncorrelated MMKP

data sets than correlated MMKP data sets

»- We also find from Table 4.1 to Table 4.3 and Figure 4.7 to Figure 4.12 that for

correlated data sets, these algorithms take more time than uncorrelated data sets.

When a data set is correlated there is a chance that almost every combination is

feasible. In an uncorrelated data set, we generally get more infeasible picking

constraints than correlated data sets. We do not need to calculate the. aggregate

resources for those items. Therefore we can get a feasible solution with less

computation for random data sets than for correlated data sets. That is why

61

, • !



I

different strategies of MS-HEU have less time requirements for uncorrelated data

sets than correlated data sets.

~ The optimality achieved by different strategies of MS-HEU is almost stable for

larger problem sets shown in Figure 4.4. We find almost the same trend for an

increase in the number of resource dimensions shown in Figure 4.5.

~ Figure 4.6 shows that the achieved optimality decreases with an increase in the

number of items in each group. This is likely because' we ignore some items while

picking itcms from diffcrent groups. We only consider feasible upgrade in MS-

HEU. The items with higher values, which give a feasible solution, are picked first

in each iteration. So that the lower valued items than the new selected items are

ignored in the subsequent iterations. But if these items are considered in the later

iterations, some of them may give feasible solution and the solution value may be

increased. The number of ignored items is increased with the increase in number

of items. Consequently the number of ignored lower valued items, which may

give a feasible solution, is also increased. So that we loose more revenue with the

increase in number of items. In M-HEU, when an upgradation gives an infeasible

solution, some groups are downgraded for feasible solution. So that some items

that are ignored in the previous iterations are considered in the later iterations in

M-HEU. So this behavior is more remarkable in MS-HEU than M-HEU.

~ Figure 3.7 to Figure 3.12 show that the time requirements ofM-HEU and different

strategies ofMS-HEU. It is shown that the time requirement of different strategies

ofMS-HEU is much less than that of the M-HEU. From Table 4.1 to 4.3 and from

Figure 3.8, 3.1O.and 3.12, it is also clear that the time requirement of Strategy 3 is

more than the time requirements of Strategy 1 and Strategy 2. This is likely

because the number of iterations in Strategy 3 is at most nl, where there is a

logarithmic number of iterations in Strategy 1 and Strategy 2.

~ If we observe the difference between estimated optimal total value achieved by

the Upper Bound and the total value of the items picked by Strategy 1 of MS-

HEU and M-HEU of the MMKP in Figure 4.13 and Figure 4.14, for 10 different

uncorrelated data and correlated data respectively, the performance of Strategy 1

of MS-HEU appears to be consistent to solve the MMKP.
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Chapter 5

Conclusions
There are several heuristic algorithms for solving the MMKP. These are sequential

algorithms and some of them are discussed briefly in Chapter 2. But there is no

parallel algorithm for solving the MMKP. In this thesis, we have proposed a heuristic

based parallel algorithm that runs on CRCW PRAM in O(log nl (log n + log m +
loglog I) time using O(nlog nl(log n + 1m» operations exploiting O((nlog n + Imn) /

(log n + log m + loglog l)) processors. In our parallel algorithm, we have used the

same candidate item evaluation criteria as used in HEU by Khan or M-HEU by

Akbar. Here we summarize the major contributions from our thesis and present

suggestions for the future research work.

5.1 Major Contributions
The major contributions made in this thesis are as follows;

• When the number of groups increases beyond a certain limit single processor

.based, solutions may not be able to provide real-time response. In this thesis

we proposed a parallel algorithm, PRAM-HEU in polylog time. The time

complexity and the total number of operations are calculated forPRAM-HEU.

The total number of processors has also been calculated.

• In chapter 3, we discussed why it is not possible to provide a parallel

algorithm from M-HEU directly. Then to provide a parallel heuristic

algorithm, M-HEU is modified to some extent and a new heuristic algorithm,

MS-HEU is developed. Three different strategies of MS-HEU is proposed

depending on the number of iterations and the number of upgrades in each

iteration, from where one strategy is considered to develop the parallel

heuristic algorithm. The complexities of different strategies of MS-HEU have

been calculated.

• We can get the exact solution by BBLP technique, but that will take

exponential time complexity. So we actually compute an upper bound of the

value using the same technique but with less iteration. Then we compute the
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percentage of the value computed by our algorithm as well as computed by M-

HEU with respect to the upper bound. This gives us the achieved optimality.

• We have performed experiments on an extensive set of data. We present the

comparison of performance and time requirements between our algorithm and

M-HEU (shown in graph). We also analyze the experimental results.

5.2 Future Research Work

We suggest the following research plans on heuristics for solving the MMKP:

• PRAM Model Simulator: We did not design the PRAM model simulator for

our algorithm; rather we implemented the serial version of PRAM-HEU to

calculate the performance of PRAM-HEU. So the design of PRAM model

simulator for PRAM-HEU is a good research topic from where the analysis of

time requirement and performance measurement of the PRAM-HEU can

easily be done with respect to other heuristics and also with respect to exact

algorithms, such as BBLP.

• Average Case Analysis: We presented the worst-case complexities of MS-

HEU and PRAM-HEU for solving the MMKP. The analysis of time

requirement complexity and achieved optimality in the average case is a very

interesting research topic in theoretical computer science.

• PRAM Algorithms for Exact Solution:There is no parallel algorithm for exact

solution of MMKP. We know that, the computation time for any exact

algorithm, such as BBLP, may grow exponentially with the size of the

problem instance in the worst case. But if we provide a PRAM algorithm for

exact solution, then the problem can be solved in reasonable time. So, this is

an interesting unsolved problem and one may work on that further.

• PRAM Modelsfor Other Heuristics: J-HEU having a little difference from M-

HEU is used as an incremental and scalable algorithm. This will be considered

in future to provide a PRAM model of J-HEU that can improve the scalability,
~nd fault tolerance of adaptive multimedia with better computation

complexity. Another heuristic algorithm, C-HEU is developed for solving the

MMKP using convex-hull approach. This is remarkable, because this is a
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sequential algorithm with O(nllog nl + nlm). So these are also good research

topic to design PRAM model for other heuristics.

• Implementation of Admission Controller: Implementation of Admission

Controller needs to be done using this system. We have not implemented an

Admission Controller using the parallel heuristic. The performance of an

Admission Controller using the parallel heuristic can be studied.

• Implementation of distributed algorithms for the MMKP: Distributed

algorithm for the MMKP can be implemented using socket programming. In

distributed systems, there are a collection of multimedia servers which can be

located anywhere in the world. These servers may exchange information about

the amount of resources available in each of them and the revenue earned by

them. The algorithm is run in each of the server and a new parameter is added

to the problem regarding which server to select to meet a particular request.

Socket programming can be used to exchange information among servers.

65



Appendix

Program written using Java programming language:

II In this program:
II Session means group of the MMKP
II QoS level of session means Items of the MMKP

import java.util.*;
import' java .lang. *;
import java.io.*;

class Node{
int no of flxed group;
int status[];
int next_branch_sessioni
double upper_bound;

}
class can_item!

int group no;
int item_nOi
double value;
int type; III means less resource more reveneu delr is positive

//0 otherwise
void assgn_null_can ltem{) {

group_no=-l;
item_no=-l:
type=O:
value=-1.0:

I
void set_can item(int grp , int item, double delr, double

delp) I
group_TIo=grpi
item_no=item;
if (delr<O) (

type~O;
value=delpi

)

else{
type=l:
value=delr;

)

void print() {
System.out.println(group_TIo+ " "+ item no+ " "+type+"

"+value+" ");

I
class resource{

int no_of resources;
double r[];

resource(int i) {
no_of_resources=i;
r=new double[no of_resources];

)

void add_res (double s[]) {
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for (int i=O;i<no_of_resources;i++) r[i]+=s[i];
)

void sub res (double s[)) {
for (int i=O;i<no_of_resources;i++) r[i]-=s[i];

}
int feasible (double s []) I

for (int i=O;i<no_of resources;i++)
if (r[i]>s[i]) return 0;

return 1;
}
void print() I

System.out.println("");
for (int i=O;i<no_of_resources;i++)

System.out.print(r[i]+" ");
System.out.println("");

public class nnMMKP{
Node solutionNode;
static final double TOL~1.Oe-6;
int kp=O,icase=O,ip=O;
double ql~O.O,brnax~O.O;
int 1l1].12[].13[];
int no_of_sessions,no_of_resources,no of gos;
int
no_of_variables, no_of_eguations, objective_equation, no_ of_live_variabl
es;
int inf_const=O;
int max res; IIMaximum consumed resource
int lhs[],rhs var[];
double rhs coeff[] [];
double cost[] [],resource[] [] [],total constraint[],used_resource[];
double cost_per_unit[]; Ilper unit cost of the resources
int solution[],saved_solution[],no of_gas levels[];
can_item candidates[];

Iisolution[]: for holdin the current solution
/Isaved_solution[]: saving a solution
Ilno_of_qos_levels[]: Holding the number of items in each group
Vector head;
double parallel_rev,serial_rev,bblp_rev,upper_rev;

int increased_revenue=O;

void datainit(int no_ses,int no_res,int no gos)
Random rand_var=new Random(20};
int random=l;
int rc=lO;
int pc=lO;
no_of_sessions=no_ses;
no_of_resources=no_res;
no_of_qos=no_qos;
cast=new double[no_of sessions] [no of_gos];
resource=new
double [no_of_resources] [no_of_sessions] [no_of_qos];
total constraint=new double[no_of resources];
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cost_per_unit=new double[no_of_resources];
used_resource=new double[no_of_resources];
no_of_qos_levels=new int[no_of_sessions];
solution=new int[no_of_sessions];
saved_solution=new int[no_of_sessions];
candidates=new can_item[no_of_sessions];
for (int i=O;i<no_of sessions;i++) candidates[i]=new
can_item() ;
int total_no of resources;
int j,i,k;
double temp;
total_no_of_resources=no of_resources;
for (k=O;k<total_no_of_resources;k++)
total constralnt[k]=O.5*rc*no_of_sesslons;
for (k=O;k<total_no_of_resources;k++)
cost_per_unit[k]=ranct_var.nextInt(pc);
for (i=O;i<no_of_sessions;i++) { II Initializing
resource req of the items

no_of_qos_levels[i]=no_of_qos; IINo of items
in each group

for (j~O;j<no_of_qos_levels(i];j++) {
for (k=O;k<total_no_of_resources;k++) (

resource[k] [i] [j]=rand_var.nextInt(rc);

if (random~~l) {
II The value of item is not proportional to resource
consumption

for (i=O;i<no_of_sessions;i++) {
for (j=O;j<no_of_qos_levels [i];j++) {

do!
temp~O.O;
for

(k=O;k<total_no_of resources;k++)

temp+~resouree (k] [i] [j) *eost_per_unit [k] ;

cost[i] (j]=rand_var.nextInt(total_no_of_resources*(rc/2)*(pcl2)
) ;

cost (i] (j] = (cost (i] (j) * (j+l)) Ino_of_qos;
}while (temp<cost [i][j]);

} ,
else{

II The value of item is proportional to resource consumption
for (i=O;i<no_of_sessions;i++) {

for (j=O;j<no_of_qos_levels Ii] ;j++) {
cost[i] [j]~O.O;
for (k=O;k<total_no_of_resources;k++)

cost [i] [j] +=resource [k][i][j] *costyer_unit [k];

cost[i] ~j)+=rand_var..nextInt(total_no_of_resources*3*(rc/l0)*(p
ellO) );
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for (i=O;i<no_of_sessions;i++) liThe items are
sorted according to the value

sort_pile Ii),
solution[i]=O; IIInitial solution

)

void init_solution() {
for (int i=O;i<no_of sess~ons;i++) {

solution[i]=O;
}
for ('int,k=O;k<no_of resources:k++) j

used_resource[k]=O.O;
for(int i=O:i<no_of_sessions:i++)

used resource[k] +=resource [k][i][solution[i]];
)

void max_res_cons() {
max_res=O;
for (int i=l:i<no of_resources;i++) {

if (used_resource[i]>used_resource[max res]) rnax_res=i;

)
double scaled_res_cons(int k) {

/Ireturn (used_resource[k]*used_resource[k]);
if ((used_resource[max res]/used_resource[k]»2.0l return

used resource[k];
if ((used_resource[max_res]/used_resource[k]»1.6) return

(used resource[k]*used resource[kJ);
if ((used_resource[max_res]/used_resource[k]»1.3) return

(used_resource[k]*used_resource[k]*used_resource[k]);
else return

(used_resource[k] *used_resource[k] *used_resource[k] *used_resource[k])

void calculate can_items() (

double delr,delp;
int j,k:
max_res_cons();
for(int i=O;i<no_of sessions;i++) {

candidates[i] .assgn_null_can_item():
for(j=solution[i]+l;j<no_of_qos_levels[i] ;j++) {

delr~O.O;
double delrl~O.O,delr2~O.O;
for(k=O;k<no_of_resources;k++) {

if (Math.abs(used_resource[k]»TOL)

delrl+=resource[k] [i] [solution[i]]*scaled_res cons(k);

delr2+=resource [k][i][J] *scaled_res cons (k);
)
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else {
delrl+~resource[kJ [i] [solution[i]];
delr2+~resource [k] Ii] [j];

}
delr=delrl-delr2;
II Finding the change of aggr res consumption
delp~( (double) (cost[i] [solution[i]]-

cost [i] [j ] ) ) / ( (double) delr) ;
can ~tem t can ltem=new can_ltem();
t_can_item.set_can_item(i,j,delr,delpl;
if (compare can ltem(t_can_ltem,candldates[i] )==1)

assgn can ltem(candldates[i],t_can_itern)i

void sort can_items() {
for (int i=O;i<no_of_sessions;i++) {

for (int j=i+l; j<no_of_sessions; j++) {
if

(compare_can_item(candidates[i],candidates[j])==O) {
I //Candidate Item i is less than j

can_item temp=new can_item();
assgn can ltem(temp, candidates [1] )i
assgn_can_itemlcandidates[i],candidates[j]);
assgn_can_item(candidates[j],temp) ;

}
//candidates[i] .print();

doubler] get resource (lnt group no,lnt item_no)
double r [J ;
r=new double[no_of_resources];
for (int k=O;k<no~of_resources;k++)
r[k)=resource[k] [group_no] [item_no];
return r;

int select_items (int num)
int i;

resource t_resource=new resource(no_of_resources);
t_resource.add_res(used_resource);
for (i=O; i <nUffi; i ++) {
t_resource.add_res(get_resource(candidates(i] .group_notcandidat

es [i] .itern no));
t_re;ource.sub_res (get_resource (candidates [i) .group_no, solution

[candidates[i] .group_no]));
}

for (i=nurn-1;i>=O;i--) {
if (t_resource.feasible(total constraint) ==1) break;
else{
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t resource. sub res (get resource (candidates [i) .group no,candidat
es(iJ.iteffi_no)); - - -

t resource. add res (get resource (candidates [i) .group no, solution
(candidates (i].group::no])); - -

)

if (i==-l) return Oi
for (int j=O;j<=i;j++)
solution[candidates[j] .group_no]=candidates[j] .item_noi
for (int k=Oi k<no_of_resourcesi k++) {

used_resource[k]=O.O;
for (i=O;i<no_of_sessions;i++)
used_resource [k]+=resource [kJ [i] [solution [ill;

return 1i

int compare_can_item(can_item c1,can_item c2) {
if (cl.type<c2.type) return 0;
if (c1.type>c2.type) return 1;
if (c1.value<c2.value) return 0;
else return 1;

}
void assgn_can_item(can_item c1,can_item c2) {

c1.group_no=c2.group_no;
c1.item_no=c2.item_no;
c1.value=c2.value;
cl.type~c2.type;

)

II for Strategy 3 of MS HEU
I*void dO_ffis_heu()(

int num_items_to select=no_of_sessions*no_of_qos;
int sel_successi
int act_upgrade=O;
dol

calculate_can items();
sort_can_items();
int ni
for (n=O;n<no_of_sessionsin++) {

if (candidates [n] .group_no==-l) break;
}
if(num_items_to_select/2>(n-1})

act_upgrade=n-1;
else

if (num_items_to_select==ll
act_upgrade=num_ltems to selecti

else

}
sel success=select ltems(act upgrade);
if (num_items_to_select!=l) num_items_to select/=2;

}whi1e (nuID_items_to_select>=l && sel~success==l)i
parallel_rev=netrev() ;
//System.out.println("Revenue earned by Parallel HEU"+"
"+netrev ());
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}
Ilfor Strategy2 of MS HEU
void dO_ffis_heu(} I

int nUffi_items_to_select=no_of_sessions*no_of_qosi
int sel_success;
int act_upgrade=O;
dol

calculate_can items();
sort_can_items() ;
int OJ
for (n=O;n<no_of_sessionsin++) {

if{candidates[n] .group~no==-l)break;
)

if(nuffi_items_to_select/2>(n-l))
act_upgracte=(n-l);

else
act upgrade=num items to_select/2;

5el success=se!ect ltems(act upgrade);
if (nuffi_items_to_se!ect!=l) num_items to select/=2i

}while (nuffi_items_to_select>l && sel_success==l);
parallel_rev=netrev()j
//Systern.out.println("Revenue earned by Parallel HEU"+"
"+netrev()) ;

}
*1
II Strategy 1 of MS HEU
void dO_IDS heu{} (

int nUID_items_to_select=no_of_sessions*no_of_qos;
int pending_upgrade=O;
int act_upgrade=O;
int sel_success;
dol

calculate_can items();
sort_can_items() ;
int n;
for (n=O;n<no_of_sessions;n++) {

if (candidates [n] .group_no==-l) break;

if( (pending_upgrade+num_items_to_select/2»no_of_sessions)
act_upgrade=n-l;
else
act upgrade=(pending upgrade+num items to select/2);
if (num_items_to_sel~ct!=l) num_Items_to ;elect/=2;
sel success=se!ect items (act upgrade);
pending upgrade=pe~ding_upgrade+(num_items_to_select-
act_upgrade);

}whlle(nuffi_ltems_to_select>l && sel success==l);
parallel rev=netrev();
/ISystem.out.println("Revenue earned by Parallel HEU"+"
"+netrev ());

void write to filet)
try!

String S=new String("");
S+=no_of_sessions+ "\t"+ no of resources+ "\t"+no of qos+
"\t"+parallel rev +"\t"+ se;;ial rev+ "\t"+ - -
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upper rev+"\t"+parallel rev/serial rev+ I'\tl'+
serial_rev/upper_rev+"\t"+ parallel_rev/upper_rev+"\n";
RandornAccessFile p=new
RandornAccessFile(lpMMKP.txt","rw");
p.seek(p.length(1 I;
p.writeBytes(S);
p.close();

}catch ( IOException el (
System.out.println("An Error Occurred in writing");

}
void revive_solution() {

//Revives the previously saved solution
int i,k;
for (i=O;i<no_of_sessions;i++)

solution[i]=saved_solution[i];
for (k=O;k<no_of_resources;k++l {

used_resource [k]=O;
for(i=O;i<no_of_sessions;i++l
used_resourGe [k]+=resource [k] (i] [solution [i]];

double netrev() {
I/Calculates the total revenue summation of the value of the
Iiselected items
int i;
double total_rev;
total_rev=O.O;
for (i=O;i<no_of_sessions;i++) {

total_rev+=cost[i] [solution[i]];
//System.out.println(solution[i]};

}
return total_rev;

void sort_pile (int i){
IISorts the ith group of the MMKP
int j,k,l;
double temp;

for (j~O;j<no_of_qos levels[l];j++) {
for (k~j+l;k<no_of_qos_levels[i);k++) (

if (cost[i) [j]>cost[i] [k]) {
temp~cost Ii) [jI;
cost[i] Ij]~cost[i] [k];
cost[i] [k]~temp;
for (l=O;l<no_of_resources;l++l {

temp~resource [1] [i] [j];
resource [1] [i] [j]-resource[l] [i] [k];
resource[l] Ii] Ik]-temp;

}
void infeasible constraint() {

/IDetermines the most infeasible resource constraint for the
I/current resource consumption
double inf,cinf;
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int i;

inf=O.O;
cinf=O.O;
inf_const=O;
II A global variable determining the most infeasible resource
for(i=O;i<no~of_resources;i++) {

if (Math. abs (total constraint [i] ) <TOL) { II if total
constraint is 0

if (Math.abslused_resource[i]»TOL) { II id
consumed resource is more than 0

inf_const=i;
return;

}
}else{

cinf=used_resource[i]/total constraint[i];
if Icinf>inf) (

inf=cinf;
inf const=i;

)

int find feasible() {
II Step 1 of the heuristic: Finding a feasible solution
int i;
dol

infeasible_constraint();
if

(used_resource [inf_const] <=total_constraint [inf_const] ) return 1;
i=resource_conservation();
II Finding an item with less resource consumption

}while li==l);
return 0;

int downgradepossible(lnt sesslon_no,lnt qos no)
IIWhether Group session~no can be downgraded to Item qos_no to find a
feasible soltion

int i;
if (qos oo==solutioo[sessioo_oo]) return 0;
for (i=O;i<oo_of_resources;i++) {

if (total_constraint [i]<used_resource [i] &&
resource [inf_const] [session_no] (qos_no]>=resource[inf_const] [session_
no] [solution(session_oo]])

return 0;
II Makes an infeasible resource more infeasible

else{
if

(resource[i] [session_no] [qos_no]>resource[i] [session_no] [solution[ses
sion_no]]) {

if ((used_resource[i]-
resource[i] [session_no] [solution[session_no)]+resource[i] [session_no]
[qos_no))>total constralnt[i]l

return 0;
II Makes a feasible resource infeasible
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return 1;
}

int resource_conservation(} {
double delr,mdelr;
int tsession,tqos,k,i,j,m;
m=O;
mdelr=O.O;

tsession=-l;
tqos=-l ;
for(i=O;i<no_of sessions;i++) {

m=solution[i]tl;
for(j~m;j<no_of_qos_levels(i] ;j++) (

if (downgradepossible ii,j) !~O) (
delr~O.O;
for(k=O;k<no_of_resources;k++) {

II Calculating delr: change of aggregate resource
if (Math.abs(used resource[k]»TOL)

delr+= (resource [k] [i) [solution [i]) - -
resource[k] [i] [j])*used_resource[k]i

else
delr+~(resource[kJ (i] [solution[i] ]-resource(k] (i] (j]);

)
Ilif (absc>TOL) delr~delr/absc;
if(delr>mdelr II tsession~~-l) (

II Finding the higest delr
tsession=i;
tqos=j;
mdelr=delri

}
if (tsession!=-l) {

II An item is found to find feasible solution
for (k=O;k<no of_resources;k++)

used_resource [k]+=resource [k] [tsession] [tqos] -
resource[k] [tsession] [solution[tsession]];

solution[tsession]=tqos;
return 1;

}
return 0; II No item is found to find feasible solution

int resource_upgradation() {

II Selecting new items by upgrading only

double delr,mdelr;
double delp,mdelp;

int tsession,tqos,k,i,j;
mdelr~O.O;
mdelp~O.O;

tsession=-l;
tqos=-l;
for(i=O;i<no_of_sessions;i++) {
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II Only upgrading
if (resource_constraint (i,j}==l) {

//Only feasible upgrades are allowed
delr~O.O;
double delrl~O.O,delr2~O.O;
for (k=Q; k<no_of_resources; k++) {

if (Math.abs(used_resource[k]»TOL)

delrl+=resource[k] [i] [solution[i]]*used_resource[k];

delr2+=resource [k] [i] [j] *used_resource [k];
}
else {

delrl+=resource[k] [iJ [solution[i]];
delr2+~resource[k] [i] [j];

)

delr=delrl-delr2;
II Finding the change of aggr res consumption
if(delr>mdelr II tsession~~-l) (

tsession=i;
tqos=j;
mdelr=delr;

}
if (mdelr<O) {

/1 If the change of agrregate res is negative then looking for items
/Iwith higest change of value with respect to the change of aggregate
fires consumption

delp~( (double) (cost[i] [solution[i]]-
cost[i] [j]) )/( (double)delr);

if (delp>mdelp) I
mdelp~delp;
tsession=i;
tqos~j;

if (tsession!=-l) {
II An upgradeable item found
for (k=O;k<no_of_resources;k++)

used_resource[k] +=resource [kl [tsession] [tqos]-
resource [k] [tsession] [solution (tsession] J;

solution[tsession]=tqos;
return 1;

)
else return 0; II No item is found to upgrade the solution

int resource_up_de_gradation() {
II upgrading following downgrades
double delr;
double target;
double delp,mdelp,cmdelp;

int tsession,tqos,k,i,j,tsession1,tqos1,tsession2,tqos2;
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mdelp~O.O;

tsession=-li
tqos=-1;

//Finding an infeasible upgrade
for(i=O;i<no_of_sessions;i++) {

for{j=solution[i}+lij<no_of_qos_levels[i];j++l {
delr~O.O;
for (k=Q; k<no _ of_resources; k++) {

II Determining delr(prime)
if (Math.abs(total_constraint[k]-

used_resource[k] »TOL) delr+~(resource[k] Ii] [solution[i]]-
resource[k) Ii] [j] )/(total_constraint[k]-used_resource[k]);

else delr+=(resource[k] [i] [solution[i]]-
resource (k] [i] [j J);

)

/1 Determining delv/delr(prime)
delp-( (double) Icost[i] [solution[i])-

cost Ii] [i])) I I(double) delr);
if (delp>mdelp II tsession---l) [

mdelp~delp;
tsession=i;
tqos=j;

)
if (tsession==-l) return 0; II No upgrade found
target=-
cost [tsession) [solution [tsession]] +cost [tsession] [tqos];
II Determining how much downgrade is allowed
for (k=Oik<no of resourcesik++)

used_resource [k)+=resource[k] [tsession] [tqos]-
resource [k] [tsession] [solution [tsession]];

solution[tsession]=tqos;
dol
tsessionl=-l;
tqosl~-l;
tsession2=-1;
tqos2=-1;
mdelp~O.O;
cmdelp~O.O;
for (i=O; i<no of_sessions; i++) {

forli~O;i<solution[i);i++) (
if (cost_irnproved(i,j,target}==l && i!=tsession) {
II The selection which downgrades less than target"

delr=O;
for(k=O;k<no_of_resources;k++) {

IIDetarmining delr
if (Math.abs(used_resource[k]-
total_constraint[k]»TOL)
delr+~ (resource [k] [i) [solution Ii]J-
resource[k) Ii] [i])/(used_resource[k]-
total_constraint[k]);
else
delr+~lresource[k] Ii] [solution[i])-
resource [k] [i] Ii));

}
IIOetarmining delr/delv
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delp= ( (double Idelr) / ( (double) (cost [i] [solution [i] ]-
cost[i][j]));

if (delp>mdelp II tsessionl==-l) (
mdelp=delp;
tsessionl=i;
tqosl=ji

)
if (resource_constraint(i,j}==l) {

II If feasibility retained
if (delp>cmdelp I I tsession2==-l) (

crndelp=delpi
tsession2=ii
tqoS2=ji

)
if (tsession2!=-1) {

II A feasible solution found
for (k=Oi k<no_of resources; k++) (

used_resource [k]+=resource[k] [tsession2) [tqos2)-
resource [k] [tsession2] [solution [tsession2)];

)

solution[tsession2]=tqos2j
return 1;

}else if (tsessionl!=-l) {
/1 A downgrade found but not feasible solution
for (k=Oik<no_of_resourcesik++l {

used_resource[k]+=resource[k] [tsessionl] [tqosl]-
resource [k] [tsessionl] [solution [tsessionl]];

)
//updating the target of downgrade
target=target+cost[tsessionl] [tqosl]-
cost [tsessionl] [solution [tsessionl] ] ;
solution[tsessionl]=tqosli

)
else return Oi
}while (tsession!=-l);

return 1;

int resource_constraint(int i, int j) {
II Determines whether the upgrade or downgrade is feasible
int k;
for (k=O; k<no _ of resources; k++) {

if ((used resource[kJ-
resource [k] [i] [solution [i J ] +resource [kJ [i] [j] ) >total_ cons
traint[k))

return 0;

teturn 1;
}
void save_solution() {

II Saves the solution to saved_solution
int i;
for (i=Oii<no_of_sessions;i++)

saved solution[i]=solution[i];
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int cost_improved(int i, int j, double target) {
II Determines whether the selection of Item j of Group i
Iidowngrades the total solution value .target
if ((cost[i] [solution[i] ]-cost(i] [j])<target) return 1;
else return 0;

int verify_solution() {
II Verifies whether the solution is infeasible
int k;
for (k=O;k<no_of_resources;ktt) {

if (used_resource[k]>total_constraint[k]) {
System.out.println{"Solution invalid");
return 0;

)

return 1;

void do_heu() {
II Main function to determine the heuristic of the MMKP
int i,k,j;

for (k=O;k<no of_resources;ktt) {
used_resource [k]=O;
for (i=O;i<no_of_sessions;itt)

used_resource[k]+=resource[k] [i] [solution[i]];
)
i=find feasible(); II Step 1: Finding feasible solution
if (i~~O) (

System.out.println (" Solution not Available by HEU");

return;
)

dol II Step 2: Upgrading only
l=resource upgradatlon();

)while (i~~ll ;
IISystem.out.println("Revenue earned by HEU"+" "+ netr"ev());

dol
save_solution (); I I Saving solution
i=resource_up_de_gradation();
II Step 3: Infeasible upgarde followed by Downgrades
if (i==l) { II Step 3 is successful to upgrade

dol II Step 2 again
j=resource_upgradation();

)while (j~=ll;
}else revive_solution();
II Step 3 failed, so solution revived

)while (i==ll;
for (k=O;k<no_of_resources;k++)
System.out.println (used_resource [k]);
System.out.println("Revenue earned by M-~EU"+" "+netrev,());
serial_rev=netrev(};
if (verify_solution()~~O)
System.out.println("Error in HEO");
System. exit (O);

)
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}
void load_equations (Node candidate)

1/ Loading the MMKP to the equations of the linear programming
(

int i,j,k,li

no_of_variables=O;
no_of_live_variables=Oi
for (i=Oii<no_of_sessions;i++) {

no_of_variables+=no_of_qos_levels[i];
if (candidate.status[i]~~-l)

no of live_varlables+=no_of_qos levels[i];

no_of equatlons=no_of_sesslons-
candidate.no_of_fixed_group+no_of_resourcesi
Ihs=new int[no_of_equations+3];
rhs_var=new int[no_of_live_variables+l];
rhs coeff=new
double [no_of_equations+3] [no_of_live_variables+2];
rhs_coeff[l] [1]=0.0;
k=2; /*Objective Equation*/
for (i=Oii<no_of_sessionsii++) {

if (candidate.status[i]~~-l) {
for (j=O;j<no_of_qos_levels[i];j++)

rhs_coeff[l] [k]~cost[i] [i];
k++i

for (i=Oii<no_of_resourcesii++l {
rhs_coeff[i+2] [1]~tota1_constraint[i];
k=2i
for(j=O;j<no_of_sessions;j++) {

if (candidate. status [i] >~O) rhs_coeff [i+2] [1]-
-resource[i] [j][candidate.status[j]];
e1se{

for(1~0;1<no_of_qos_1eve1s[j];1++) (
rhs_coeff[i+2] [k]~-resource[i] [i] [I];
k++i

)

k=2;
1=2;

for (i=O;i<no_of_sessionsii++) {
if (candidate.status[i]~~-l) {

rhs_coeff[k+no_of_resources] [1)=1.0;
for (j~0;j<no_of_qos_1eve1s[i];j++) (

rhs coeff [k+no of_resources J [1+j]=-1. 0;
)

l+=no_of qos_1evels[l];
k++;
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int testforallselection(Node candidate}

int ii
for (i=Oii<no of_resourcesii++) {

if (rhs coeff[i+2] [1]<0.0) return 0;
}
if (candidate.no_of_fixed_group!=no_of_sessions) return 2i
return Ii

I
int evaluate_node(Node candidate)
II Running Linear programming to find the upper bound of a partial
solution

int ii
double tmaxi

load_equations(candidateli
candidate.upper_bound=O.O;
for (i=O;i<no_of_sessions;i++) {

if (candidate.status[i]>=O)
candidate.upper_bound+=cost[i] (candidate. status [i]]

}
i=testforallselection{candidate};
if (i~~O) (

return 0;
}
else if (i==l) (

return Ii
)
sirnplx(no_of_equations,no_of_live_variables,no_of_resources,O,
no_of_sessions-candidate.no_of_fixed_group} ;
if (icase!=O){

return 0;

candidate. upper_bnund+=rhs_coeff [1] [1];
candidate.next_branch_session=-I;
tmax=O.O;
for (i=2;i<no_of_equations+2;i++) {

if (rhs_coeff[i] [l]>tmax && lhs[i-
l]<~no_of_live_variables) {

candidate.next_branch_session=lhs[i-l];
tmax~rhs_coeff[i] [1];

}
if (candldate.next_branch_session==-I)

return 0;
}

i=Oi
while (candidate. next_branch session>O} (

if (candidate.status[i]==-I)
candidate.next_branch_session-=no_of_qos levels[i)i

i++;
)
candidate.next_branch_session=i-1i
return 1;
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II Finding the upper bound of the MMKP
(

Node ptr;
int i,counter=O;

solutionNode= new Node();
head=new Vector();
ptr=new Node();
ptr.no_of_fixed_group=O;
ptr.status=new int[no_of_sessions];
for (i=O;i<no_of_sessions;i++) ptr.status[i]=-l;
i=evaluate_node{ptr) ;
if (i==O)(

System.out.println("No Feasible Solution");
return 0.0;

I
upper_rev=ptr.upper_bound;
System.out.println("Revenue earned by Upper"+"
"+ptr. upper_bound) ;
return ptr.upper_bound;

void simplx(int m,int n,int ml,int m2,int m3)
II Linear programming algorithm using the simplex method
(

int i,ir,is,k,kh,m12,nll,n12,jumpv=0;

if (m != (ml+m2+m3)) (
System.out.println("Bad input constraint counts in
simplx");
System. exit (0);

)
.11=new int[n+2];
12=new int[m+1];
13=new int[m+1];

nll=n;
for (k=l;k<=n;k++) 11[k]=rhs_var[k]=k;
n12=m;
for (i=l;i<=m;i++) {

if (rhs_coeff[i+1] [1] < 0.0) {
System.out.println("Bad input tableau in simplx");
System. exit (0);

)
12[i]=i;
Ihs[i]=n+i;

)

for (i=1;i<=m2;i++) 13[iJ=1;
ir=O;
if (m2+m3>O)

ir=l;
for (k=1;k<=(n+1);k++)

q1=O.O;
for (i=ml+l;i<=m;i++) ql += rhs coeff[i+l] [k];
rhs_coefflm+2] [k] = -q1;
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do (
jumpv=O;

simpl(m+l,nll,O);
if (bmax <~ TaL && rhs_coeff[m+2J [lJ < -TaL) {

icase = -Ii
return; }
else if (bmax <= TOL && rhs coeff[m+2] [1] <=
TOL) {
m12=ml+rn2+1;
if (m12 <~ m) (

for (ip=m12iip<=rn;ip++) {
if (lhs[ipJ ~- (ip+n))

simpl(ip,nll,l)j
if (bmax > 0.0) {

jumpv=!;
break;

else
jumpv=O;

if (jumpv-~O){
ir=O;
--m12 ;
if (m1+1 <~ m12)

for (i=rnl+lii<=m12ii++)
if (13[i-m1J ~~ 1)

for (k~1;k<-n+1;k++)
rhs_coeff[i+1J [kJ ~ -
rhs_coeff[i+1] [kJ;

break;
}

if (jumpv~~O)(
simp2(n,n12);
if (ip ~~ 0) {

icase = -1;
return:

}

simp3 (m+l,n);
if (lhs[ipJ >~ (n+m1+m2+1))

for (k~1;k<~n11;k++)
if (ll[k] ~~ kp) break;

--nll;
for (is=kiis<=nll;is++) 11[is]=11[is+l];
++rhs_coeff[mt2] (kp+lJ;
for (i=1;i<=m+2;i++) rhs coeff[i] [kp+l]
rhs_coeff [iJ[kp+1J;

else {
if (lhs[ipJ >~ (n+ml+l))

kh~lhs[ipJ-ml-n;
if (13[khJ>O) {

13[kh]-O;
++rhs_coeff[m+2J [kp+1];
for (i=lii<=rnt2ii++)

rhs_coeff [iJ[kp+1J
rhs_coeff[i] [kp+1J;
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J
is=rhs_var [kp];
rhs_var[kp]=lhs[ip];
lhs[ip]~is;

while (ir!=O);
J
for (;;) {

simpl (O,n11, 0);
if (bmax <= O.O)

icase=O;
return;

}
simp2(n,n12);
if (ip ~~ 0) {

icase=l;
return;

)
simp3 (m,n);
is=rhs_var[kp];
rhs_var[kp]~lhs[ipl;
lhs[ip]~is;

}
void simpl(int rom,int nll,int iabf)

int k;
double test;

kp~l1 [1];
bmax=rhs_coeff[mm+1] [kp+l];
for (k~2; k<~n11; k++) {

if (iabf ~~ 0)
test~rhs coeff[mm+l] [11 [k]+1]-(bmax);

else
test~Math. abs (rhs_coeff [mm+1) (11 (k] +1] ) -
Math.abs (bmax);

if (test> 0.0) (
bmax~rhs_coeff[mm+1J (ll[k]+l];
kp~l1(k];

)

void simp2(int n,int n12)

int k,iil,i;
double qp~O.O,qO~O.O,q~O.O;

for (i=1;i<=n12;i++) {
if (rhs_coeff(12(i]+1] [kp+1] < -TOL) (

q1=-rhs_coeff(12(i]+1] (1]/rhs_coeff(12[i]+1] [kp+l];
ip~12 (i];
for (i=i+1;i<=n12;i++) {

ii=12[i];
if (rhs coeff[ll+l] [kp+l] < -TOL)

q~-rhs_coeff(ii+l] [1]/
rhs coeff[ll+l] [kp+l];
if (q < ql) (
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ip=ii;
ql=qi

else if (q == ql) (
for (k=li k<=ni k++) (
qp = -

rhs coeff[ip+l] [k+l]/rhs coeff[ip+l] [kp+l']i
qO = -

rhs_coeff [ii+l J [k+l] /rhs_coeff [ii+l] [kp+l] ;
if (qO != qp) break;
)

if (qO< qp) ip=ii;

void simp3(int il,int kl)

int kk,ii;
double piv;

piv=l. O/rhs_coeff [ip+l] [kp+l];
for (ii=l;ii<=il+l;ii++)

if (ii-l != ip) (
rhs_coeff[iil [kp+l] *= piv;
for !kk=l;kk<=kl+l;kk++)

if (kk-l != kp)
rhs_coeff[ii] [kk] -
rhs coeff[ip+l] [kk]*rhs_coeff[ii] [kp+l]i

)
for (kk=l;kk<=kl+likk++)

If (kk-l != kp) rhs coeff[lp+l] [kk] *= -piv;
rhs_coeff[ip+l] [kp+l]=piv;

public static void main (String argv(]) {
for (int i=l;i<l1;i++) {
long secl, sec2, sec3, sec4;
nnMMKP b=new nnMMKP();
b.datainit(SOO*i,2S,2S);
b.find_upper_bound();
b.init_solution();
secl=new Date() .getTime();
b.do_rns_heu!);
sec2=new Date() .getTime();
System.out.println("The MS_HEU Time "+" "+(sec2-secl));
sec3=new Date() .getTirne();
b.do_heu ();
sec4=new Date{) .getTime();
System.out.println{"The M_HEU Time"+" "+ (sec4-sec3));
b.write to_filet};

}
for (int i=1;i<l1;i++)(

long secl, sec2, sec3, sec4;
nnMMKP b=new nnMMKP();
b.datainit(2S00,S*i,2S);
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b.find upper bound();
b.init=solutlon{)i
secl=new Date() .getTime()i
b.do_ms_heu();
sec2=new Date() .getTime();
System.out.prlntln{"The MS HED Time "t" "+(sec2-secl));
sec3=new Date() .getTime();
b.do_heu();
sec4=new Date () . getTime () i
System.out.println("The M HEU Time"+" "+(sec4-sec3));
b.write_to_file();

for (int i=1:i<11;i++) {
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