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Abstract

Computing nice projections of objects in 2D and 3D is a well studied
problem in computational geometry. By nice projections we mean optimal
projections having some special geometric property. Aside from theoretical
interest, its application reaches in the domain of computer graphics, com-
puter vision, object recognition, 3D graph drawing, visualization, robotics,
knot theory etc. Considerable amount of research work has been done based
on different criteria of niceness. For 3D objects some common criteria of
niceness include maximizing (minimizing) the area of projection, minimizing
the number of crossing in the projection of 3D lines, minimum overlapping
among line segments and vertices, monotonicity of polygonal chains and gen-
erating silhouettes which meet some predefined criteria.

However, computing orthogonal projections of a set of line segments in
2D and 3D with the following optimality criteria have not been considered
so far: (i) sum of the projected length of the line segments in 2D is the
minimum and maximum, (ii) sum of the projected area of the triangles in
3D is the minimum and maximum, (iii) sum of the projected length of the line
segments in 3D is maximum and minimum. (iv) maximizing (minimizing)
the minimum (maximum) ratio between actual length and projected length
of line segments in 2D. This thesis addresses these four problems and gives
separate algorithms for each..

The underlying concept for Problem(i) and (ii) are similar. Here the idea
of McKenna-Seidls algorithm is used by extending the concept of view from
convex polyhedra to 2D and 3D scene. We have developed an O(n logn)
algorithm for finding an optimal direction in Problem(i) and an O(n2) algo-
rithm for that in Problem(ii). For problem (iii) we give several approximation
algorithms. Experimental result shows that our algorithm is within constant
factor of the optimum solution. In addition to our main objective on this
problem, the above algorithm can be used in a novel application, which is
to find the maximum (minimum) perimeter of a convex polyhedron in an
orthogonal projection and for which no solution is known. The running time
of this algorithm is O(n2). For Problem (iv), we developed an O(nlogn)
algorithm to find an optimal solution.
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Chapter 1

Introduction

A scene is made up of 2D and 3D objects. Projection of objects in 2D
and 3D is a well studied problem in computational geometry. Aside from
the theoretical interest, its application reaches in the domain of computer
graphics [13]' object reconstruction [5, 6]' machine vision [2]' computational -
geometry [11, 12]' and three dimensional graph drawing [8].

Projection involves a view point where our eye or camera is situated, a
plane on which the projection is taken and the object of interest. There
are two broad classes of projections. The view point, often called the center
of projection, may be at infinite distance from the plane of projection pro- .
ducing an orthogonal projection or may be at finite distance from the plane
of projection producing perspective projection of the object. Whether it is
orthogonal projection or perspective projection, different orientation of the
object (or equivalently different position of the view point) produces projec-
tions with different characteristics. Like, for some position of the view point
a particular set of faces, edges and vertices are visible and for some other
position the set of faces, edges and vertices may be completely different. All
projections of the same object is therefore not of same. Alteruatively, some
projections of an object may be more desirable than others.

Given 3D objects such as a set of line segments, triangles or polyhedra
it is a well studied problem to compute its "nice" projections based on dif-
ferent criteria for "niceness". In this work, nice projection implies optimal
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projection having some special geometric property. The term "nice" is a
relative term, it actually refers to optimal projection. The criteria for "nice-
ness" depends. on various geometric characteristics of the projection of an
object. Some of these criteria are more desirable than others depending on
the application on mind. For example, it might be more desirable to view a
line segment so that its projection does not reduce to a point. Some other
common and popular criteria of niceness includes but not limited to finding
the maximum and minimum area projections of convex polyhedra, finding
minimum crossing projection of 3D line segments, generation of silhouettes
of convex polyhedra with certain properties and finding the direction from
where the visibility ratio is optimal.

McKenna and Seidel [14]studied the problem of computing maximum and
minimum area projection of convex polytopes in Rd. They considered two
algorithms, one takes O(nd-1 )time and space and another takes O(nd-1Iog n)
time and O(n) space to find the optimal view point, where n is the number
of vertices of the polytopes. According to their idea, they divide the d-
dimensional space into a set of conical regions which are centered at the
. origin and correspond to the views of a given polyhedron. Then they cut
each conical region by a certain plane and the resulting bounded regions of
all cones form a zonotope. They showed that the largest(smallest) shadow
of convex polytopes equals the radius of the smallest circumscribed (largest
.inscribed) sphere of the zonotope. Figure 1.1 shows an example of maximum
and minimum area projection of a cuboid.

In a similar problem, Burger and Gritzmann [7Jhave studied the prob-
lem of computing minimum and maximum volume of orthogonal projections
of convex polytopes in arbitrary lower dimensions. They have shown that
although it might be easy to compute the volume of the projection in a fixed
dimension, computing it in arbitrary lower dimension is NP-hard. Then they
give several polynomial time approximation algorithms.

Bose et al. [4) studied this problem for line segments in 3D. In their
algorithms, the criteria for niceness include minimum crossings among line
segments, minimum overlapping among line segments and vertices and mono-
tonicity of polygonal chains. For example, in Fig 1.2 (a), there is a single

12
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Figure 1.1: (a) Minimum area projection and (b) maximum area projection
of a cuboid.

crossing in the projections of two line segments. But in Fig 1.2 (b), for a
. different view direction, the projections of these line segments does not have

any crossing. Eades et al. [8] also studied this problem with similar criteria
from the view point of three dimensional graph drawing.

A silhouette is formed by the boundary edges of the projections of convex
polyhedra. Recently, Biedl et al. [3] have studied the problem of computing
projections of convex polyhedra such that the silhouette (I.e., the projection
boundary) meets certain criteria. They have given several algorithms where
a given set of vertices, edges and/or faces appear on the silhouette. For
example, edges ej, e2 and e3 are on the boundary of all four projections of a
polyhedron in Figure 1.3.

Ashraful et al. [1] studied the problem of finding orthogonal projections
such that within a particular view the minimum visibility ratio over all visible
faces (similarly over all visible edges) is maximized where the "visibility ratio"
is the ratio of projected area and the actual area of a face. For example, for
the visible faces of the polyhedron in Figure 1.4(a), their algorithm generates
a projection like that in Figure 1.4(b) as a nice projection. Their algorithms

13
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Figure 1.2: (a) Only one crossing in the projections of two line segments and
(b) no crossing in the projections for a changed view direction.

also guarantee that no degeneration will occur for visible faces.

1.1 The problems

In this thesis, we study four new criteria of nice projections of 2D and 3D
scene that has not been considered so far. These are-

(a) finding the directions of projection in 2D for which the sum of projected
lengths of a set of line segments in 2D is maximum. and minimum.

(b) finding the directions of projection in 3D for which the sum of projected
areas of a set of triangles in 3D is maximum and minimum.

(c) finding the directions of projection in 3D for which the sum of projected
lengths of a set of line segments in 3D is maximum and minimum, and

(d) finding the directions of projection in 2D for which the minimum (max-
imum) visibility ratio of a set of line segments in 2D is maximized
(minimized) .

Here, we considered orthogonal projections only. We did not consider
perspective projections. This is because, all the criteria for optimal projec-
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Figure 1.3: The edges el, e2 and e3 of the polyhedron are visible in the
boundary of all the projections.

tions that we have considered in our thesis are not suitable for perspective
projections. For example, to maximize the the sum of projections of a set
of triangles in 3D, we can place the center of projection on the plane of any
triangle and the perspective projection becomes infinity. Similar argument
applies for other cases also.

1.2 Outline of the thesis

For solving the first two of our problems, we follow McKenna and Seidel's
approach closely. We extend the concept of view from convex polyhedra
to 2D and 3D scene and give similar algorithms to solve these problems.
For the third problem, we again extend the concept of view differently and
give heuristics to find optimal point within a view. We also present some
interesting experimental results. At last, we discuss the problem of finding
.optimal visibility ratio for 2D line segments.

15
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(0) (b)

Figure 1.4: (a) A maximum area projection, and (b) a nice projection where
the minimum visibility ratio is maximum.

The rest of the thesis is organized as follows. In Chapter 2, we discuss
the preliminaries. In Chapter 3, we give algorithms for nice projections of
line segments in 2D and triangles in 3D. In Chapter 4, we give heuristic
based algorithms to find the approximate direction for optimal projection
of line segments in 3D. In Chapter 5, we give algorithms related to optimal
visibility ratio of line segments in 2D. Finally, Chapter 6 concludes the thesis
with some future work.
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Chapter 2

Preliminaries

2.1 Orthogonal and perspective projection

In a planar projection, points are projected onto a plane. Based on the
position of the view point (or center of projection), projections can be in
general of two types - orthogonal and perspective. In orthogonal projection,
the view point is at infinite distance from the plane of projection and is
represented as a direction from the view point to the origin. All points
are projected in the same direction. In perspective projection, the center of
projection is at finite distance. Figure 2.1 shows the two types of projections.
In our work, we only consider orthogonal projections.

2.2 ConvexPolygon, polyheron and polytope

A convex polygon is a region bounded by finite number of line segments called
edges such that line segment joining any two points inside the bounded region
lies entirely within it. A convex polyhedron is the bounded intersection of a
finite numb~r of half-spaces. In other words, a polyhedron is convex, if a line
segment connecting any of its two points is entirely inside of it, otherwise it
is non-convex. See Figure 2.2. The closed surface of a convex polyhedron is
made up of planar polygons, called faces. The faces meet at line segments,
called edges, and the edges meet at certain endpoints, called veTtices. A

17



(a)

E

(b)

Figure 2.1: (a) An orthogonal projection, and (b) a perspective projection.

convex polytope is a d-dimensional generalization of a 2D convex polygon
where d > 2.

(aJ (b)

Figure 2.2: (a) A convex polygon, and (b) a convex polyhedron.

2.3 View and view cone

A normal vector of line segment I in 2D is the unit vector perpendicular to
l. There can be two normal vectors of I which are opposite to each other.

18



From a given direction d, only one of these two normals are seen. Let"us call
this visible normal positive normal and the other normal negative normal.
Given a set of line segments in 2D, if we take a line parallel to each segment
Ii and translate it to the origin, then they altogether will divide the 2D space
and will create a set of conical regions. See Figure 2.3. Inside each cone, a
direction sees a different set of normals. We call each of these cones a single
view of line segment {Ii}' For example, in Figure 2.3, direction dl and dz sees
different sets of normals and between them the change is only the positive
and negative normal of II'

Figure 2.3: Formation in view cone by line segments in 2D. From dl to dz,
only I,'S normal changes direction.

Now consider the 3D counterparts of the above concept. A plane 7r in
3D has exactly two normal vectors which are opposite to each other. From
a given direction d in 3D only one of these two normals are seen. Let us call
this visible normal positive normal and the other normal negative normal. I
Given a set of planes in 3D, for each plane 7ri within the set, consider a plane
which is parallel to 7ri and passes through the origin. Intersection of all such.
planes divides the 3D space into a set of cones. See Figure 2.4. We call
each of these cones a view cone. Each view cone represents a single view of
the given set, i.e, within a view cone, all the view points will generate the
projections in which the set of visible normals remain the same.

For lines in 3D, the concept of view is defined in different approach.

19



Figure 2.4: Formation of view cone. Left figure shows the case for planes in
3D and right figure shows the case for line segments in 3D.

A line segment I in 3D has infinite many normals, but it has a plane 7f

that is orthogonal to it. Consider a plane that is parallel to tfi and goes
through the origin. This plane divides an origin centered unit sphere into
two hemespheres. A direction d is either one hemisphere or the other. Let
us call this hemisphere (on which d resides) a positive hemisphere and the
other one a negative hemisphere . For a given set of line segments in 3D, all
such planes corresponding to the line segments will divide the 3D space into
a set of cones. We call these cones view cones. Each view cone represents
a single view where all the view points lie within the same hemisphere of a
line segment.

2.4 Spherical coordinates

A point U in 3D can be defined by spherical coordinates . See Figure 2.5:
R is the radial distance of U from the origin 0, and 1; is the angle that U
makes with xz-plane, known as latitude of U. e is the azimuth of U, the
angle between the xy-plane and the plane through U and the y-axis. <p lies
in the interval -7f /2 :<:: <p :<:: 7f/2, and e lies in the range 0 :<:: e :<:: 27f. With
the use of simple trigonometry, it is straightforward to work out the rela-
tionships between these quantities and the Cartesian coordinates (ux, Uy, uz)

20



for U. The equations are: Ux = RcosrjJcose,uy = RsinrjJ,uz = RcosrjJsine.
Spherical coordinates can be used to generate almost all possible vectors in
3D by taking R = 1 and varying e and rjJwithin the range by small amount.

y

z

x

Figure 2.5: Spherical coordinates of U.

2.5 Geodesic distance

Geodesic distance between two points on the surface of a sphere is the mini-
mum distance between them on that surface. In other words, if we draw an
arc connecting two points on the surface of the sphere, then its length is the
geodesic distance between two points. If we connect these two points with
the center of the sphere, we shall get an angle e which is equivalent to the
geodesic distance of these points, provided that the sphere is of unit radius.
So, we can always represent the geodesic distance between spherical points
by the angle produced by them at the center, and vice versa. See Figure 2.6.

2.6 Visibility ratio

Given a line segment I in 2D and a direction vector d, the projection of I on
to a line orthogonal to d is length(l) 'sine where e is the acute angle between
I and d. The visibility ratio Tl of a line segment I is the ratio between the

21



Figure 2.6: Geodesic distance between PI and P2 is equivalent to e.

projected length and the actual length of l.

_ length(l) . sin e _ . e
rl - length(l) - 8111

See Figure 2.7.

Tj = 1
TI = 0

Figure 2.7: Visibility ratio rl of line segments.
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Chapter 3

Optimal projection of 2D and
3D scene

In this Chapter, we present two of our algorithms on nice projections. First,
we shall discuss the McKenna and Seidel's algorithm [14Jin detail. Later, we
shall give algorithms to solve the problems of finding the optimal projection
of line segments in 2D and triangles in 3D.

3.1 McKenna and Seidel's approach

McKenna and Seidel studied the problem of placing a light source at infinity
so as to maximize or minimize the shadow area of a polytope in Rd. By
shadow area they meant the (d - I)-volume of the orthogonal projections
of the polytope on a hyperplane normal to the direction of illumination.
McKenna and Seidel's algorithm can handle polytopes in arbitrary higher
dimension. However we will explain their algorithm for 3D for better under~
standing.

3.1.1 The problem

Given a convex polyhedron P in 3D, the problem is to find the direction for
which the area of the orthogonal projections of the polyhedron on a plane

23



normal to the direction is maximum (minimum). For an example, Figure 3.1,
the direction of projection is from the top. The left figure shows the minimum
area projection and the right one shows the maximum are projection of a
cuboid.

I----.------Y'/, ,,,,,,,

(a) (b)

Figure 3.1: (a) Minimum area projection and (b) maximum area projection
of a cuboid.

3.1.2 The solution

Let, f be a 2D facet of polyhedron P, and let Nf be the outward normal to
facet f with length equal to the area of f. For a facet f, let hf be the plane
that goes through the origin parallel to facet f. A point x is on the positive
side of hf if x. Nf 2: O. For a point x in 3D, let F be {facets f I x is on the
positive side of hf}. F is merely the set of faces visible from direction x at
infinity and is called the visibility set. Figure 3.2 shows a hexagonal prism of
which only 4 faces are visible from the front. These four faces form bne such
visibility set.

All the hI's taken together divide 3D space into conical regions. Figure
3.3 shows that all the planes parallel to the visible faces of the polyhedron
when translated to the origin, divides the origin centered sphere into conical

24



Figure 3.2: Four visible faces form a visibility set.

regions. Therefore, each such cone represents one visible set. For all points
in the same cone, the visibility set F is the same. Thus, each cone can be
indexed by a set F and thus labeled as CF. For a particular cone CF, let,
NF = Lj,FNj'

It is to be noted that, for any vector u of unit length and a facet f visible
from u the shadow area of f when illuminated from the direction u is u. Nf.
For any direction u within cone CF, the shadow area of P when illuminated
from direction u is Lj,F U. Nj = U. L.f,F Nj = u. NF. Thus for an arbitrary

x
point x in cone CF, Gl' NF is the area of the shadow when the polyhedron

is illuminated from the direction of x, where x is represented as a vector from
the origin.

Now, the plane which is perpendicular to NF, but displaced at a distance

of I ~ F I away from the origin is defined as 1rF = {x I x . NF = I}. Figure

3.4 shows one such plane. Now it can be stated:

Lemma 3.1.1. Define BF to be the interection of cone CF and plane 1rF.

If x is a point of BF then the area of the shadow of polyhedron P when
x 1

illuminated from the direction of x is r;\ .N F = r;\'

25



Figure 3.3: The four hI's divide 3D space into conical regions.

N

Figure 3.4: The plane, 1rF = {x I X. NF = I}
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The above lemma implies that to minimize the shadow area for the illu-
mination direction in CF one has to find a point v in BF most distant from
the origin. This is easy since BF is a polygon.

Corollary 3.1.1. Let v be a vertex of BF such that I v I is maximal. For

the illumination direction in CF the minimal shadow area of P is I ~ I and
it is real'ized by direction v.

For the shadow area maximization case, the above lemma by itself is not
as useful since in general it is not so easy to find the point in BF closest to
the origin and also NF is not in general contained in BF. However, for the
visibility set for which the shadow area of P is globally maximized, NF must
be in BF.

Lemma 3.1.2. Let HF be the halfspace defined by {x I X. NF ::; I}, and let
KF = CF nHF. A point x of R3 is in the union of all the KF's if and only
if x is in the intersection of all the HF halfspaces.

Corollary 3.1.2. The union of all the KF 's forms a convex polytope Y". The
facets of Yp are exactly the B F 's defined earlier.

Lemma 3.1.3. Yp is centrally symmetric about the origin.

Corollary 3.1.3. Yp has a largest inscribed sphere sp and a smallest circum-
scribed sphere Sp that are both centered at the origin.

From the above results, McKenna and Seidel achieve an O(n2)-time al-
gorithm for finding the directions for which the shadow area is maximum
(minimum).

Theorem 3.1.1. Let, R be the radius of the origm centered smallest cir-
cumscribed sphere Sp of Y". The minimum shadow area of P can be found

1
in O(n2) time. The minimum shadow area of P is R and it is realized for
any illumination direction v, where v is a vertex ofYp that also lies on Sp.

Theorem 3.1.2. Let, r be the radius of the origin centered largest inscribed
sphere sp ofy". The maximum shadow area of P can be found in O(n2) time.

The maximum shadow area of P is ~ and it is realized for any illumination
r

direction w, where w is any intersection point of Sp and the boundar'lJ of Yp.

27 ,
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Figure 3.5: The union of all the KF's forms a convex polyhedron Y". Yp has
a smallest circumscribed sphere (left) and a largest inscribed sphere (right)
that are both centered at the origin.

3.2 Lines in 2D

McKenna and Seidel worked with polytope in arbitrary dimension. In our
work, we used similar idea to solve the problem of finding optimal projection
of line segments in 2D and also triangles in 3D. In this section, we describe
the problem of finding the optimum projection of line segments in 2D.

3.2.1 The problem

Given n line segments in 2D, the problem is to find a direction vector d for
which the sum of projected lengths of the line segments on line perpendicular.
to d is maximum (minimum). For a particular direction vector d and a line
segment I, the length of the projection is Isine, where e is the acute angle
between the linesegment 1and the direction d. So for n such lines the quantity
we want to maximize (minimi~e) is L~=llisinei'
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Figure 3.6: The maximum and minimum sum projection of a set of line
segments shown by the directions dmax and dmin respectively.

3.2.2 Concept of view

In McKenna and Seidel, for a particular direction of illumination, they used
the concept of view by defining the visibility set. Since they worked with
polytopes, it is simply the set of directions from which a particular set of faces
of the polytope is visible. But in our case, we are dealing with line segments
and for a given direction of illumination we take the sum of projected lengths
of all line segments. Alternatively, we see all the line segments from all
directions and so we do not have any such visibility set. Yet we use the
concept of view in our setup by introducing the two opposite normals of each
line segment.

Every line segment Ii has exactly two normal vectors: nil and ni2 which
are opposite to each other; Le. nil = -ni2. From the direction d only one of
these two normals are seen. Now we can define the set F as {ni I ni.d ~ O}
where ni is one of the two normal vectors of Ii' This set F is therefore the
set of normal vectors that are seen from the direction d. We call it visible
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normal set. In Figure 3.7 the solid normals form one such set.

(a) (b)

Figure 3.7: (a) Every line segment has two normals. Only one normal (solid)
is seen from the direction d, and (b) lines parallel to lis divides the origin
centered unit circle .into conical regions.

3.2.3 Forming the view cone

Let, hi be the line that goes through the origin parallel to line Ii' All the
his taken together divide R2 into conical regions. Figure 3.7 shows that, all
the lines parallel to the line segments when translated to the origin divides
the origin centered circle into conical regions. Therefore, each such cone
represents one visible normal set. For all points in the same cone, the visible
normal set F is the same. Thus, each cone can be indexed by a set F and
thus labeled as Cp. For a particular cone Cp, let, Np = L:~=lni" where ni

is that normal of Ii for which ni . d 2: o.

Now, from one such view cone to next vIew cone exactly one normal
vector changes its sign. One thing to be noted that, since we are now working
with different normals of the same line in different cones, we can rewrite the
quantity we want to maximize (minimize) as L:~=lniCOSQi, where Q is the
angle between the visible normal ni and the direction d. Using simple vector
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notation, it can be written as 2:7~1ni . d or d . 2:7=1ni or simply d. N F

3.2.4 Finding the optimal point

For any vector u of unit length and a normal ni visible from u the projected
length of Ii when illuminated from the direction u is u. ni' For any direction
u within cone CF, the quantity we want to maximize (minimize) is d. NF.

Thus for an arbitrary point x in cone CF, I:I.N F is the sum of the projected

lengths when the direction of projection is x.

Now, the line which is perpendicular to NF, but displaced at a distance

of I ~ F I away from the origin is defined as 1fF = {x I x . N F = I}. Figure
3.13 shows one such line. .

NF

1fF = {x I x.NF,= 1

Figure 3.8: The line 1fF = {x I X. NF = I} is perpendicular to NF and is at

a distance of I ~ F I away from the origin.

Now it can be stated:

Lemma 3.2.1. Define BF to be the interection of cone CF and line 1fF'

. If x is a point of B F then the sum of projection from the direction x is
x 1
r;;l' NF = r;;l
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The above lemma implies that, to minimize the sum of projected length
for the illumination direction in OF one has to find a point v in BF most
distant from the origin.

Corollary 3.2.1. Let, v be a vertex of BF such that I v I is maximal. For
the illumination direction in OF the minimal value of the sum of projected

lengths is I ~ I and it is realized by direction v.

For the maximization case, the above lemma by itself is not as useful since
in general it is not so easy to find the point in BF closest to the origin and
also NF is not in general contained in BF. However, for the visible normal
set for which the quantity is globally maximized, NF must be in BF.

The argument is as follows: first, we show that the BF's taken together
form the boundary of a convex polygon y;,. This polygon is centrally sym-
metric about the origin and therefore has a maximal inscribed sphere sp

centered at the origin. Any point w on the boundary of Yp that is closest to
the origin must be a point on sp' The BF containing w must be tangent to
sp which, since the origin is the center of sp, implies that w is a multiple of
NF, the normal vector of BF, i.e. w must be NF.

Lemma 3.2.2. Let, HF be the hal/plane defined by {x I X. NF ~ I}, and let
KF = OF nHF. A point x 0/ R2 is in the union 0/ all the KF's i/ and only
if x is in the intersection 0/ all the HF hal/planes.

Proof. (=» Let, x be a point in the KF corresponding to some normal
vector collection F, i.e. x. NF ~ 1. Now x . ni 2': 0 for all normals ni in
F, and x. ni ~ 0 for all normals ni not in F. Let, G be any other normal
collection. Note that, G = FU (G - F) - (F - G), so X. NG = x . .Ln.<G ni =.

x . L:ni€F,ni + x . L:nicG-F ni - x . L:ni£F-G ni
Point x is in K F, so the first of the three latter terms is ~ 1. The summands
in the second of these three terms are all negative and summands in the third
term are all positive; so the sum of the three terms is ~ 1. Thus, x.NG ~ 1.
Therefore, x is in HG.
«=) Let point x lie in all the halfplanes determined by the HF's. Now x is
in some cone OF; so x lies in OF nHF = KF. 0
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Corollary 3.2.2. The union of all the KF 's forms a convex polygon Yp. The
edges of Yp are exactly the BF 's defined earlier.

Now observe that, sum of projected lengths is the same for opposite

directions of projection. Thus, I:I.NF = l-::xl.Ne for all pairs of (x, -x) of

points in opposite cones CF and Ce. Thus NF = -Ne; i.e, the NF's form
a centrally symmetric set about the origin. Therefore He = {x I X. -NF ::;

I} = -HF Hence, the intersection of all the different HF halfplanes forms a
convex polygon centrally symmetric about the origin.

Lemma 3.2.3. Yp is centrally symmetric about the origin.

Corollary 3.2.3. Yp has a largest inscribed circle sp and a smallest circum-
scribed circle Sp that are both centered at the origin.

(a)

o

(b)

Figure 3.9: The union of all the KF's forms a convex polygon Yp. Yp has (a)
largest inscribed circle sP' and (b) smallest circumscribed circle Sp that are
both centered at the origin.

These immediately imply the following two theorems:

Theorem 3.2.1. Let, R be the radius of the origin centered smallest circum-
scribed circle Sp of 1';,. The minimum value of the sum of projected lengths

can be found in O(nlogn) time complexity and the value is ~ and it is real-
ized for any illumination direction v, wheTe v is a vertex of Yp that also lies

on Sp.
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Proof. Translating the line segments to the origin takes O(n) time. In' order
to form the cones, we need to sort the line segments based on their polar
angles, which takes O(n log n) time. We associate ni at each point that we
get at the intersection of the origin centered unit circle and lis. Calculation
of NF for an arbitrary cone CF takes O(n) time. Since from one cone to the
adjacent cone only one normal changes direction, we can compute NF for
succeeding cones in just 0(1) time. While going from one cone to another
we keep track of the largest NF. While computing NF's in this fashion we
can keep track of the longest NF. The maximum sum of projected lengths is
the INFI corresponding to the longest NF and the optimal direction is also
the direction of NF. This step takes O(n) time. Sorting of line segments
dominates the time complexity. Overall complexity of our algorithm is thus
O(nlogn). 0

Theorem 3.2.2. Let, r be the radius of the origin centered largest inscribed
circle Sp of Yp• The maximum value of the sum of projected lengths can be

1
found in O(n log n) time complexity and the value is - and it is realized for

r
any illumination direction w, where w is any intersection point of Sp and the
boundary of Yp•

Proof. Translating the line segments to the origin takes O(n) time. In order
to form the cones, we need to sort the line segments based on their polar
angles, which takes O(nlogn) time. We associate ni at each point p that we
get at the intersection of the origin centered unit circle and lis. Calculation
of NF for an arbitrary cone CF takes O(n) time. Since from one cone to
the adjacent cone only one normal changes direction, we can compute NF
for succeeding cones in just 0(1). Optimal direction is determined by the
point for which I~I.N F is smallest. Checking all 2n points we can compute,

the optimal direction in O(n). Sorting of line segments dominates the time
complexity. Overall complexity of our algorithm is thus O(nlogn). 0
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3.3 Triangles in 3D

In this section, we describe the problem of finding the optimum projection
of triangles in 3D. The reason of considering triangles instead other objects
is that any 3D object with planar surface can be triangulated. Although
in this section we deal with triangles in 3D, the problem if finding the op-

. timum exposure for line segments in 2D (discussed in the previous section)
is mathematically similar. We now state the problem formally and describe
the solution.

3.3.1 The problem

Given n triangles in 3D, the problem is to find a direction vector d for which
the sum of projected area of the triangles on plane perpendicular to d is
maximum (minimum). For a particular direction vector d and a triangle t,
the projected area of tis tcose, where e is the angle between the normal
to the plane containing t and the direction d. So for n such triangles the
quantity we want to maximize (minimize) is 2:~~1ti cosei•

3.3.2 Concept of view and VIewcone,

Like line segments in 2D, we define similar concept of view for the triangles.
Every triangle ti has exactly two normal vectors: nil and ni2 which are
opposite to each other; i.e. nil = -ni2' From the direction d only one of
these two normals are seen. Now we can define the set, F as {ni I ni . d ~ a}
where ni is one of the two normal vectors of t,. This set F is therefore the
set of normal vectors that are seen from the direction d. We call it visible
normal set for the direction d.

Let, hi be the plane that goes through the origin parallel to the plane
containing triangle ti' All the h,'s taken together divide R3 into conical
regions. Figure 3.12 shows that all the h,'s divides the origin centered unit
sphere into conical regions. Therefore, each such cone represents one visible
normal set. For all points on the same cone, the visible normal set F is the
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(a)

Figure 3.10: (a) () is the angle between the normal to the plane containing t
and the direction d, and (b) projection of triangles on the plane perpendicular
to d.

Figure 3.11: Every triangle has two normals. Only one normal (solid) is seen
from top and the other normal (dashed) is not seen.
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same. Thus each cone can be indexed by a set F and thus labeled as Cp.

For a particular cone Cp, let, Np = 2:7~1ni, where ni is that normal of ti
for which ni . d 2: o.

Figure 3.12: All the hi'S divides the origin centered unit sphere into conical
regions.

From one view cone to next view cone exactly one normal vector changes
its sign. One thing to be noted that, since we are now working with different
normals of the same triangle in different cones, we write the quantity we want
to maximize (minimize) as 2:7=1nicoSC>i, where C>iis the angle between the
visible normal ni and the direction d. Using simple vector notation it can be
written as 2:7=1ni . d or d . 2:~1 ni or simply d. N p

3.3.3 Finding the Optimal point

For any vector u of unit length and a normal ni visible from u, the projected
area of ti when illuminated from the direction u is u. ni. For any direction u

within cone Cp, the quantity we want to maximize (minimize) is d.Np. Thus,
x

for an arbitrary point x in cone Cp, r;:[ .Np is the sum of the projected

areas when the direction of projection is x.
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Now, let us define the plane which is perpendicular to NF, but displaced
1

at a distance of I NFl away from the origin as 7rF = {x I x .N F = I}. Figure

3.13 shows one such plane.

N

Figure 3.13: The plane 7rF = {x I x .NF = I} is perpendicular to NF and is
1

at a distance of I NFl away from the origin.

Now we get the following lemma:

Lemma 3.3.1. Define BF to be the interection of cone OF and plane 7rF'

If x is a point of BF, then the sum of projected area from the direction x is
x 1
~.NF=~'

The above lemma implies that to minimize the sum of projected area for
the illumination direction in OF one has to find a point v in BF most distant
from the origin.

Corollary 3.3.1. Let, v be a vertex of BF such that I v I is maximal. For
the illumination direction in OF the minimal value of the sum of projected

1
areas is Gl and it is realized by direction v.
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For the maximization case, the above lemma by itself is not as useful since
in general it is not so easy to find the point in Bp closest to the origin and
also Np is not in general contained in Bp. However, for the visible normal
set for which the quantity is globally maximized, Np must be in Bp. The
argument is as follows: first we show that the Bp's taken together form the
boundary of a convex polyhedron Ypo This polyhedron is centrally symmetric
about the origin and therefore has a maximal inscribed sphere sp centered at
the origin. Any point w on the boundary of Yp that is closest to the origin
must be a point on sp' The Bp containing w must be tangent to sp which,
since the origin is the center of sp, implies that w is a multiple of Np, the
normal vector of Bp, i.e. w must be Np.

Lemma 3.3.2. Let, Hp be the halfspace defined by {x I x. Np $ I}, and let
[(p = Cp n Hp. A point x of R2 is in the union of all the [(p's if and only
if x is in the intersection of all the Hp halfspaces.

Proof. (=» Let, x be a point in the [(p corresponding to some normal
vector collection F, i.e. ,x. Np $ 1. Now x . n; 2: a for all normalsn; in
.F, and x . n; ::; a for all normals n; not in F. Let, G be any other normal
collection. Note that, G = F U(G - F) - (F - G), so x. Ne = x. Ln,<e ni =
x. Lni'P n; +x. Lni,e-p ni - x. Ln,<p-e ni. Since point x is in [(p, the first
of the three latter terms is < 1. The summands in the second of these three
terms are all negative and summands in the third term are all positive; so
the sum of the three terms is < 1. Thus x . Ne $ 1. Therefore, x is in He.
«=) Let, point x lie in all the halfplanes determined by the Hp's. Now x is
in some cone Cp; so x lies in Cp nHp = [(p. 0

Corollary 3.3.2. The union of all the [(p 's forms a convex polygon Yp. The
edges of Yp are exactly the B p '8 defined earlier.

Now observe that sum of projected areas is the same for opposite direc-
x -x .'

tions of projection. Thus j"XTNp = I"XTNe for all pairs of (x, -x) of points

in opposite cones Cp and Ce. Thus Np = -Ne; i.e, the Np's form a centrally
symmetric set about the origin. Therefore He = {x I x. -Np $ I} = -Hp
Hence, the intersection of all the different Hp halfspaces forms a convex
polytope centrally symmetric about the origin.
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Figure 3.14: The union of all the KF's forms a convex polyhedron Yp. Yp has
a smallest circumscribed sphere (left figure) and a largest inscribed sphere
(right figure) that are both centered at the origin .

. Lemma 3.3.3. Yp is centrally symmetric about the origin.

Corollary 3.3.3. Yp has a largest inscribed sphere sp and a smallest circum-
scribed sphere Sp that are both centered at the origin.

These immediately imply the following two theorems:

Theorem 3:3.1. Let, r be the radius of the origin centered largest inscribed
sphere sp of Yp. The maximum value of the sum of projected areas can be

1found in O(n2) time. The maximum value of the sum of projected areas is -
. r

and it is realized for any illumination direction w, where w is any intersection
point of sp and the boundar1j of Yp.

Proof. Let, Xl be the plane Xl = {x I x. (1,0,0) = 1}. For every plane
hi let Ai = Xl n hi which is a line on Xl. So for every cone bounded by
his there is a polygon in Xl bounded by Ais. Using the algorithm shown
in [9] [10] we can construct the graph of all the polygons that results from
intersections of Ais. Each node of the graph is either a polygon, an edge or
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a vertex. Each polygon-edge pair and edge-vertex pair is connected by an
arc of the graph. Let us call this structure an arrangement that takes 0(n2)
time to construct. Each node corresponding to an edge is assigned ni and for
each node representing a vertex we keep a pointer that points to the vertex
of any incident polygon. Now we can take any polygon of the arrangement
and construct the N F of the cone OF corresponding to the chosen polygon in
O(n). Using the graph, all other nodes corresponding to polygons are visited
and we assign them appropriate NF's. Note that, using the NF of current
OF we can incrementally compute NF for the next adjacent polygon in 0(1)
since two polygons of the arrangement sharing a common edge will have the
same NF except for the difference of the ni held in the sharing edge. While
computing NF's in this fashion we can keep track of the longest NF. The
maximum sum of projected areas is the INFI corresponding to the longest
NF and the optimal direction is also the direction of N F. Construction of
arrangement dominates the time complexity. Thus, the overall complexity
of our algorithm is 0(n2). 0

Theorem 3.3.2. Let, R be the radius of the origin centered smallest circum-
scribed sphere Sp of Yp. The minimum value of the sum of projected areas
can be found in 0(n2) time. The minimum value of the sum of projected

1
areas is J3 and it is realized for any illumination direction v, where v is a
vertex of Yp that also lies on Sp- -

Proof. Let, Xl be the plane Xl = {x I x. (1,0, 0) = I}. For every plane
hi let Ai = Xl n hi which is a line on Xl' So for every cone bounded by
h;'s there is a polygon in Xl bounded by A;'s. Using the algorithm shown
in [9] [10] we can construct the graph of all the polygons that results from
intersections of Ai'S. Each node of the graph is either a polygon, an edge or .
a vertex. Each polygon-edge pair and edge-vertex pair is connected by an
arc of the graph. Let us call this structure an arrangement that takes 0(n2)
time to construct. Each node corresponding to an edge is assigned ni and for
each node representing a vertex we keep a pointer that points to the vertex
of any incident polygon. Now we can take any polygon of the arrangement
and construct the N F of the cone OF corresponding to the chosen polygon
in O(n). Using the graph, all other nodes corresponding to polygons are
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visited and we assign them appropriate NF's. Note that, using the' NF of
current CF we can incrementally compute NF for the next adjacent polygon
in 0 (1) since two polygons of the arrangement sharing a common edge will
have the same NF except for the difference of the ni held in the sharing edge.
,For each vertex v of 1';" there exists a vertex v' of the arrangement in Xl
that has the same direction as v. Exploring the vertices in the arrangement

I

graph and keeping record of the smallest I~'I.NF the optimal direction is

found. Construction of arrangement is the dominating step. Thus, the overall
complexity of our algorithm is O(n2). 0
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Chapter 4

Lines in 3D

In this chapter, we present our heuristic based algorithm on nice projection
of line segments in 3D . First, we shall describe the problem. Then we shall
explain our heuristic and give the algorithm in detail. Later, we shall show
the experimental results.

4.1 Theproblem

Given n line segments in 3D, the problem is to find a direction vector d
for which the sum of projected lengths of the line segments on the plane
perpendicular to d is maximum (minimum). For a direction vector d and
a line segment I, the length of the projection is IsinIJ, where IJ is the acute
angle between the line seg,?ent I and the direction d. So for n such lines
the quantity we want to maximize (minimize) is 2:7=llisinIJi. Using vector
notation it can be written as 2:~1 Iii X dl.

4.2 The solution

At first glance, the formal definition of the problem seems similar to the
problems we have described in Chapter 3. Although they are similar in
nature, this problem is more difficult as it deals with line segments in 3D.
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Figure 4.1: Projection of line segments in 3D.

Figure 4.2 shows the plot of 2:~=1Iii X dl for all possible directions. In this
figure, there are only 10 line segments, yet we see that there are multiple
local maxima and minima on the curve. It is to be noted that for line seg-
ments in 2D (and triangles in 3D) we restated the quantity to optimize from2::1 lisinOi to 2:~=1ni.COSC>i, by introducing the concept of visible normal ni

from the direction d. We then expressed the expression using dot product of
vectors and solved the problem analytically. But for this problem, we cannot
do this since a line segment in 3D has infinite number of directions that are
orthogonal to it. So, the expression remains as it is and we could not find
an straight forward analytical solution to this. We instead give a heuristic
based iterative algorithm for this problem.

4.2.1 Concept of view

For line segments in 3D, we cannot find two opposite normals that could
be used to define the concept of view as we have done in previous chapter.
Instead, we see that, for each line segment Ii we can draw a plane that is
orthogonal to the line segment. Figure 4.3 shows the such planes for a line
segment and also for a set of line segments. We now define plane 1l'i that is
parallel to this plane and passes through the origin. An origin centered unit
sphere S intersects 1l'i and we get a great circle c; = 1l'i n S. 1l', essentially
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Figure 4.2: The plot of 2:~=!IIi X dl for all possible directions.

divides S into two hemispheres hi! and hi2. Any direction from a point on
the perimeter of Ci towards the center of e; sees Ii to its greatest length. For
any other point x E (S - e;)the observer sees Ii shorter. A point xES is
either on the perimeter of e; or on hi! or on hi2. Including e; into any of these
two hemispheres, we can, in general, comment that Ii is seen from either hi!
or hi2. Now, for all n line segments, all the nis will divide S into a number
of conical regions. From any point x on any such conical regions CH, we see
each Ii from exactly one of its his. Let us call this hemisphere a positive
hemisphere for Ii and let us call the other one a negative hemisphere for Ii.
Each CH, therefore, serves the purpose of a view. 'vVenow search for the
optimal point in each such CH. Let us define SCH as the spherical portion
of CH that is bounded by the nis.

4.2.2 The heuristic for maximization case

In this section, we describe our algorithm for maximization problem. Our
algorithm is heuristic based. Since there are infinite number of normal vectors
to a line segment, we give a heuristic to choose one that closely approximates
the actual direction. We now describe the trivial cases at first and then
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Figure 4.3: Planes parallel to line segments. A single line segment is shown
on the left and a set of line segments are shown to its right.

discuss our iterative approach.

The trivial cases

When n < 2 we can state the following:

For n = 1, Le. when there is only one line segment 11, from any point
x E C1, h is seen with its maximum length which is 11.

For n = 2, Le. when there are exactly two line segments: 11, 12, the
direction d from which these are seen largest is the direction perpendicular
to the plane of 11 and h. The sum of projected lengths of 11 and 12 is 11 + 12

The general case

For n > 2, we adopt an incremental approach. Suppose, we have already
found the approximate best direction dn-1 for (n - 1)- line segments and
now we are presented with the n-th line segment In. We give heuristic is to
combine dn-1 with In to find dn.

For single line segment we know that, in order to see In at its maximum
length, any point x on the perimeter of the corresponding great circle en
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Figure 4.4: (a) For a single line segment, there are infinite many orthogonal
directions, and (b) for two line segments, the direction of the cross product
is the optimal one.

is the direction. And we already have the approximate best direction dn-1
for the previous (n - 1) line segments. So, naturally dn should be as close
as possible to the direction dn_1 and also at the same time it should lie as
close as possible to the perimeter of en. For this, we find the point xp on
en that is geodesically closest to dn-1. Figure 4.5 shows that point xp lies
on a line that is the intersection of two planes: one is 7fn and the other is
the plane containing In and dn-1. Let us denote the plane containing In and
dn-1 as 7f(ln,dn_I). Now In is the normal to 7fn and a normal to 7f(ln,dn_l) is
(dn-1 x In)' Since both 7fn and 7f(l,,,dn_l) pass through the origin, the cross
product of their normals determine their intersecting line. The intersection
line is therefore In X (dn-1 X In). Now xp being at unit distance from origin

In X (dn-1 X In)
X
p
= lin X (dn-1 X In)l'

Once we have got xP' we compute dn as the weighted summation of di~
rections denoted by xp and dn_1. dn-1 is weighted by an amount equal to the
sum of projected lengths of (n-l) line segments when the direction of projec-
tion is dn-1. And xp is weighted by the amount equal to the projected length
of In when seen from xp' Hence, we get dn = (2:~:lllli X dn-11)dn-1 + 11nlxp.
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Figure 4.5: Heuristic to determining dn.

(a) (b)

Figure 4.6: (a) Four planes forming the SOH, and (b) three different cases
are shown while bounding dn to dn.
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Bounding the direction

We have just described the heuristic which must be applied to all the views
(i.e. to all the 3D cones CH). But point to be noted that, in general the
direction dn calculated thus is not always within CH. So, we need to bound
dn inside the view cone CH when it is not.

To do this, we at first find SCH. It is merely a spherical polygonal area
with maximum n vertices. Now, to bound dn within SCH, we find the point
on the boundary of SCH that is geodesically closest to dn. For this, we
take the projection of dn on only those pis for which dn is on the negative
hemisphere. When the projected point is on any of the edges of SCH then
we are done; otherwise we take the corner point of SCH which is closest to
dn. We denote this bounded dn as d~.

Time complexity

For each line segment In, we at first compute xp in 0(1) and then compute
dn. Computation of dn involves (n-1) vector products each taking 0(1). So,
computing dn takes O(n) time. Considering all n line segments, the overall
complexity of our algorithm for a given view is 0(n2).

4.2.3 The heuristic for minimization case

In this section, we describe our algorithm for minimization problem. Here
once again we adopt an incremental approach. But this time, instead of
considering each view cone separately, we calculate the approximate direction'
globally.

The trivial cases

For n = 1, i.e. when there is only one line segment h, the direction for which
h's projection is minimum is the direction parallel to h and the projected
. length is O.
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For n = 2, i.e. when there are exactly two line segments, we at first show
that the optimal direction from which the summation of projected lengths
is minimized lies on the plane containing the line segments. The argument
follows. Suppose, 7f(I,h) is the plane that is parallel to the plane containing
-II and 12 and passes through the origin. An origin centered unit sphere S
intersects 7f(I,h) and we get a great circle c = 7f(I,h) n S.7f(l,h) essentially
divides S into two hemispheres hI and h2. For any point x on the surface
of the sphere, the sum of projected lengths is II sin 8(l,x) + 12sin 8(2,x) where
8(l,x) and 8(2,x) are the acute angles that hand 12 make with ox. Now for
every such x we can define a point Xc that lies on c and geodesically closest
to c from x. Let 8(I,xo) and 8(2,xo) are the acute angles that 11 and 12 makes
with direction oXc' Note that oXc is the projection of ox on the plane 7f(l[h)'

Thus 8(I,xo) :s 8(l,x) and 8(2,xo) :s 8(2,x)' Therefore 11sin 8(l,xo) + 12 sin 8(2.xo) :s
11sin 8(I,x) + 12 sin 8(2,x)' So we get a smaller sum of projected lengths at xc'
Hence the optimal point is on c. The problem (for n = 2) now is reduced to
2D for which we already have given an exact solution in Section 3.2. Using
that for n = 2 we conclude that the direction of the larger line segment is
the optimal direction.

The general case

Being inspired by the trivial cases, we giye a simple heuristic to find the
direction dn that minimizes the sum of projected lengths of n line segments
in 3D. We hypothesize that, the optimal direction dn will be the same as the
direction of any of the n line segments. We, therefore, take each of the n
line segments Ik in turn and compute the value f(k) = Z:=7~1Iii X Ikl. The
direction d is therefore the the direction of Ik for which f(k) is minimum.

Time complexity

For each line segment Ik where 1 :s k :s n, we compute f(k). Computation
of f(k) takes O(n) times since we have to perform n vector products each
taking 0(1) time. Overall time complexity is therefore 0(n2).
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4.2.4 Experimental results for maximization problem

We have conducted several experiments. All the experiments were run in a
PC having Intel Core 2 duo processor and 2GB RAM. Experimental results
shown in the figures and tables are the average values of several independent
runs. Input to the programs are all generated at random. In this section, we
summarize the results for the maximization problem.

Finding optimal solution using brute force

Since there is no known algorithm to find the optimal solution for this prob-
lem, we at first compute it using a brute force solution. Let, C be an origin
centered sphere of unit radius. A point U on the spherical surface of C cor-
responds to a direction which is from the origin 0 to U. Considering all
such U on the surface of C we can generate every possible direction in 3D.
Although, U is in 3D, it can be expressed using only two variables if we
consider spherical coordinates. We have seen in Chapter 2, how a point U
is defined in spherical coordinates. ifJ is the angle that U makes with xz-

plane, known as latitude of U. e is the azimuth of U, the angle between
the xy-plane and the plane through U and the y-axis. ifJ lies in the interval
-1r /2:::; ifJ :::; 1r/2, and e lies in the range 0 :::; e :::;21r. With the use of sim-
ple trigonometry, it is straightforward to work out the relationships between
these quantities and the Cartesian coordinates (ux, uy, u,) for U. The equa-
tions are: Ux = cos ifJcos e, lty = sin ifJ, Uz = cos ifJsin e. So varying ifJ within
the range -1r /2 :::;ifJ :::; 1r/2 by a small amount liifJ and varying e within the
range 0 :::;e :::;21r by a small amount lie we can generate 3D vectors in almost
every possible direction.

In our problem, since we are searching for the optimal point within a
view cone, we therefore choose only those U that are within the view cone
of our interest. It is easy to check whether U is within the cone or not, as
for a particular cone CH we know exactly which planes Pi form the view and
exactly from which side of the plane, Ii is being seen within CH. So before
evaluating the expression we just test for U whether it falls within CH.So
for each such direction U(ux, uy, uz) we calculate the value 2::':111; x UI and

51

.~: r



take the direction that maximizes the expression.

Accuracy of our algorithm within a bounded cone

In order to verify the accuracy of our algorithm, we compare it with the
solution obtained using brute force. Figure 4.7 shows the comparison of the
expression value by our algorithm with that of brute force within a particular
view cone. In the figure, we see the percentage of error of the heuristic based
algorithm's output with respect to the optimal value for various nU~lbers
of line segments N. There is a gradual decrease in error as N increases.
The reason is that, with larger values of N the spherical polygonal area BCH
becomes smaller and hence there is less chance for our algorithm's output
to make larger errors. In average percentage of error is small (just 1.48%).
Figure 4.8 shows the angular deviation (i.e. the angle between the optimal
direction and dn) for the same set of line segments. Average deviation is
small (just 9.89°). Bothfigures agree, as for smaller percentage of error the
angular deviation is smaller. It justifies the fact that, our algorithm in deed
finds a good approximate direction; not merely a direction that is way distant
from the optimal direction yet showing small error.
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Figure 4.7: Accuracy of our algorithm within a bounded cone.
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Figure 4.11: Angular deviation with respect to maximal direction within
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Figure 4.12: Angular deviation with respect to globally maximum direction
when dn is not bounded to dn.
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Effect of ordering of the line segments

Since our algorithm is incremental and we are unable to find the exact optimal
solution, our solution is sensitive to the order of the line segments. To check
this, we have applied our algorithm on a set of line segments varying the
order of the line segments. Table 4.1 shows that the percentage of error
as well as the angular deviation changes for the same set of line segments
when the line segments are presented in increasing order, decreasing order
and random order of their lengths.

N Increasing Decreasing Random
%error angle %error angle %error angle

2 0 0 0 0 0 0
5 30 79 1 13 18 48
7 5 34 4 35 4 34
10 0 1 0 1 3 10
12 0 0 1 3 0 3
15 2 12 0 4 9 38
20 0 11 0 8 0 14
25 2 19 12 54 12 54
30 3 16 2 13 0 0
50 0 0 2 22 0 0
60 2 22 1 14 0 0
75 0 I. 1 0 1 0 0
100 1 5 1 6 0 0
200 0 3 0 3 0 3
500 0 3 0 2 0 3
750 0 0 0 0 0 1
1000 0 0 0 0 0 0

Table 4.1: For the same set of line segments the error depends on their
ordering.

Position of optimal point within a view cone

We have also conducted experiments to see where the optimal point lies
within a view cone. Table 4.2 summarizes the result. For varying numbers
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of line segments, column 2 shows the number of planes that actually form
the view cone of our interest. Column 3 shows the distances of each of these
planes. We do not see exact zero distance from any of the planes although
for some values of N (like- 5, 20, 100, 750, 1000) it seems that the optimal
point is very close to a plane and even for some N (like- 10, 75lit seems very
close to a vertex of SCH. For other values of N the optimal point seems
rather well inside SCH.

N Number of planes Minimum distances from the planes
2 2 {0.000390, 0.000466}
5 4 {0.000203, 0.009113, 0.011231, 0.582377}

.10 5 {0.000318, 0.000753, 0.266885, 0.457950, 0.643922}
15 4 {0.000646, 0.001887, 0.099063, 0.115297}
20 4 {0.000189, 0.001294, 0.131297, 0.189344 }
25 5 {0.002149, 0.002188, 0.095061, 0.110113, 0.131350 }
30 5 {0.000392, 0.012080, 0.013770, 0.017340, 0.151812 }
50 3 {0.00091O, 0.002890, 0.037029 }
75 3 {0.000120, 0.000343, 0.062127 }
100 4 {0.000020, 0.009598, 0.022386, 0.109364 }
200 5 {0.000546, 0.003377, 0.017035, 0.034460, 0.060357 }
750 5 {0.000409, 0.002131, 0.002316, 0.003228, 0.012894 }
1000 4 {0.0002S9, 0.000858, 0.001025, 0.001799 }

Table 4.2: Distance of the optimal point from each plane forming the view
cone.

We have conducted this same experiment for our d also. Our heuristic
outputs d that is sometimes inside, sometimes on the edge and sometimes on
a vertex of SCH' Table 4.3 summarizes the result. The distances are sorted
in increasing order. For some N (like- 2, 15, 20 etc) first two distances are
zero; this means that d is on a vertex of SCH' For some N (like- 5, 20) only
the first distance is zero; this means that d is on an edge of SCH'

4.2.5 Experimental results for minimization problem

We have conducted several experiments for the minimization problem also.
All the experiments were run in a PC having Intel Core 2 duo processor
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N Number of planes Minimum distances from the planes
2 2 {O.OOOOOO,O.OOOOOO}
5 4 {O.OOOOOO,0.040126, 0.341487, 0.536006 }
10 5 {0.003250, 0.153620, 0.201364, 0.347828, 0.525232 }
15 4 {O.OOOOOO,0.000000, 0.098657, 0.116629 }
20 4 {O.OOOOOO,0.004000, 0.030390, 0.191016 }
25 5 {O.OOOOOO,0.000000, 0.044029, 0.206483, 0.373161 }
30 5 {O.OOOOOO,0.000000, 0.052567, 0.073266, 0.138332 }
50 3 {O.OOOOOO,0.000000, 0.041413 }
75 3 {O.OOOOOO,0.000000, 0.126531 }
100 4 {O.OOOOOO,0.000000, 0.043050, 0.106392 }
200 5 {O.OOOOOO,0.000000, 0.018908, 0.023165, 0.071857 }
750 5 {O.OOOOOO,0.000000, 0.008202, 0.009178, 0.015052 }
1000 4 {O.OOOOOO,0.000000, 0.000315, 0.003253}

Table 4.3: Distance of d from each plane forming the view cone .

. and 2GB RAM. Experimental results shown in the figures and tables are the
average values of several independent runs. Input to the programs are all
generated at random. Below we summarize them all.

Finding optimal solution using brute force

Like maximization problem, we at first compute the optimal solution using
brute force. Let C be an origin centered sphere of unit radius. A point
U on the surface of C corresponds to a direction from the origin 0 to U.
Considering all such U on the surface of C we can generate every possible
direction in 3D. Here again we express U in spherical coordinates and then
find the optimal direction and later we compare it with our solution.

Accuracy of our algorithm

In order to verify the accuracy of our algorithm, we compare it with the
solution obtained using brute force. Figure 4.13 and Figure 4.14 shows the
comparison of the expression value by our algorithm with that of brute force.
In Figure 4.13 we see the percentage of error ofthe heuristic based algorithm's
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output with respect to the optimal value for various numbers of line segments
N. The average percentage of error is very small (just 0.14%). The error
is surprisingly small for most of the values of N. Rather in some cases
the error is negative. It is due to the cause that, we could not generate
all possible direction in brute force. If we could vary r/J within the range
-7r /2 :<::: r/J :<::: 7r/2 by an infinitesimally small amount lir/J and vary B within
the range 0 :<::: B :<::: 27r by a infinitesimally small amount liB we could generate
3D vectors in almost every possible directions and in that case the error would
not have been negative. But the important thing is that yet the average error
will be very small and we have a very good approximation of the optimal
direction. Figure 4.14 shows the angular deviation (i.e. the angle between
the optimal direction and d,,) for the same set of line segments. Average
deviation is small (just 1.68°), conforming to our earlier claim of having a
very good approximate solution.

0.2

0.1

o

"e -0.1
~
'6 -0.2
•E -0.3,
~
~ -0.4

-0.5

-0.6

-0.7o 20 40 60 80
Numberof line segments, N

Figure 4.13: The percentage of error.
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4.3 A novel application

The above algorithms can be used in a novel application, which is to find
the maximum (minimum) perimeter of a convex polyhedron in an orthogonal
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Figure 4.14: The angular deviation.

projection and for which no solution is known. As described in Chapter 2, the
faces of a convex polyhedron meet at line segments, called edges. For a given
direction, only a set of faces of the polyhedron is visible. Considering all
possible directions, there can be finite number of different sets, each of which
sets corresponds to a view. In each view, the visible faces are the same and so
the visible edges are also the same. Projections of these visible edges forms
the perimeter in an orthogonal projection of the polyhedron when viewed
from that view. Given a polyhedron, algorithms exist for finding the set of
visible edges of a view. We can consider each of the visible edges as a line
segment and using our algorithm we can find the approximate direction for
which the sum of projection of these edges is maximum (minimum). This
direction is the direction of maximum (minimum) perimeter of the polyhe-
dron in an orthogonal projection within a view. Repeating the process for all
views of the polyhedron we can find a good approximation of the maximum
(minimum) perimeter of a convex polyhedron in an orthogonal projection.
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Chapter 5

Optimal visibility ratio for line
segments in 2D

In this chapter, we present our algorithms for finding optimal visibility ratio
for a set of line segments in 20'. We consider both maximizing the minimum
visibility ratio and minimizing the maximum visibility ratio. This problem is
relatively easier than our previous three problems. We give O(n log n) time
algorithms to solve the problem. We at first describe the problem formally
and then give our algorithms in detail.

5.1 Maximizing the minimum visibility ratio

5.1.1 The problem

Given n line segments in 2D, the problem is to find the direction d in 2D for
which the minimum visibility ratio is maximized. The visibility ratio rl for
line segment Ii as already defined in Chapter 2 is just sin Oed,!;) where O(d,l;) is
the acute angle between d and Ii. Therefore, our goal is to find the optimal
direction d where d = maxx{mindsinO(x,!;)}}
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Figure 5.1: Visibility ratio r of line segments.

5.1.2 Mapping the problem to unit circle

An alternate setting of this problem is some what easier to understand and so
we adopt this strategy of mapping the line segments into an origin centered
unit circle. Since visibility ratio does not depend upon the length of the line
segment we just work with O(d,I,). Let, his be the lines that pass through
the origin and parallel to lis. Let, C be an unit circle centered at the
origin. All the his divide C into a number of disjoint conical regions CH.
Two such cones are separated by exactly one line. Any point x on the
perimeter of C corresponds to a direction vector from the center of C to x.
Henceforth, we use x to denote this vector. Now the visibility ratio for any
line segment Ii is sinO(x,h;), where O(x,h,) is the acute angle between x and hi.

Since O(x,h,) is acute and sin ° 0< 0. for ° :s; 90°, we only consider to maximize
the minimum O(x,h,). Therefore, our goal is to find the optimal direction d

where d = maxx{minh, {O(x,h,)} }.

5.1.3 Finding the optimal direction

Let us at first find out the optimal direction for a particular cone CH. Each
CH is bounded by exactly two lines. Let us denote a cone that is bounded
by hi and hj as CH(i,j)' Now we state the following:

62



I,

(a)

(b)

Figure 5.2: (a) Original line segments, and (b) line segments after mapping
to circle are shown.

Lemma 5.1.1. For a given cone CH(',j), the direction that maximizes the
minimum visibility ratio is the bisector of the angle formed by h, and hj.

Proof. By the definition of CH(',j), all other lines except h, and hj makes
larger angle with any direction within the cone. So, the minimum visibility
ratio is determined by hi or hj only. Now for any direction inside CH(i,j)
other than the bisector, either hi or hj makes smaller angle and therefore
producing a smaller minimum visibility ratio. 0

hj

Figure 5.3: OXm is the bisector of Lh,ohj. Any other direction ox, makes
smaller angle with either hi or hj.
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Lemma 5.1.1 immediately suggests an algorithm that checks the mid point
of all the arcs of CH's to find out the direction that maximizes the minimum'
visibility ratio. Yet instead of checking all the CH's we can just take the cone
that have the largest arc.

Theorem 5.1.1. Let d be the bisector of the angle between the bounding lines
I; and Ij of the cone CHU.j) having largest arc. The minimum visibility ratio
is maximized in the direction d and it can be found in O(nlogn) time.

Proof. The mid point of the arc of a cone denotes the direction for which the
minimum visibility ratio is maximized inside that cone and value of the ratio
is proportional to the half-angle between the bounding lines. So the global
maximum value must be found at the cone whose bounding lines makes the
largest angle at the origin. Now, formation of the cones takes O(nlogn)
time as we need to sort the lines according to their polar angle. Finding
CH having the largest arc takes O(n) time since there are 2n cones in total
and the mid-point is obtained in 0(1). Thus, the overall time complexity is
O(nlogn). 0

5.2 Minimizing the maximum visibility ratio

5.2.1 The problem

Given n line segments in 2D, the problem is to find the direction d in 2D
for which the maximum visibility ratio is minimized. The visibility ratio for
line segment I; as already defined in Chapter 2 is just sin Ii(d,l;) where li(d,li) is
the acute angle between d and Ii. Therefore, our goal is to find the optimal
direction d where d = minx {maxI;{ sin li(x,li)}}

5.2.2 Mapping the problem to unit circle

Like the maximization case, we again map the problem to unit circle. Let
h;'s be the lines that pass through the origin and parallel to I;'s. Let C be
an unit circle centered at the origin O. Each h; intersects C at exactly two
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points and we get 2n intersection points {PI, P2, ... P2n}' Let us assume that
{p;} are sorted according to their polar angles and we define the set 8k as
{Pk,Pk+l,Pk+2, ... ,Pk+n-d where 1 ~ k ~ n. The set 8k contains exactly'n
points and let us define the arc bounded by Pk and Pk+n-I as Ak. All the
Ak's are disjoint.

Any point x on the perimeter of C corresponds to a direction vector from
the center of C to x. Henceforth, we use x to denote this vector. Now the
. visibility ratio for any line segment Ii is sin l1(x,h,), where l1(x,h,) is the acute
angle between x and hi. Since l1(x,h,) is acute and sin 11 ex 11 for 11 ~ 900, we
only consider l1(x,h,).

P2

(a)

(b)

Figure 5.4: (a) Original line segments, and (b) the arc A3 corresponding to
83 = {P3,P4,PS} are shown.

5.2.3 Finding the optimal direction

We, at first, find the optimal direction for each of Ak and then take the
minimum over all 1 ~ k ~ n. For a particular Ak we state the following:

Lemma 5.2.1. Within Ak the two end points Pk and Pk+n-I determine the
direction for maximum visibility ratio.
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Proof. Suppose dk is the direction for maximum visibility ratio within Ak.

Now it cannot make greater angle with any direction other than Pk or Pk+n-j.
The argument follows. Suppose, point Pj where k < j < (k+ n - 1) makes
the largest angle with dk. Now Pj lies between Pk and Pk+n-j. If both Pj
and Pk lie on the same side of dk then clearly LdkoPk > Ldkopj. Otherwise
both Pj and Pk+n-l lie on the same side of dk and LdkoPk+n_1 > Ldkopj.
This contradicts to the assumption that Pj makes the largest angle with dk.

Therefore, dk can make greatest angle with the two end points only. 0

. Figure 5.5: Al corresponding to Sj = {PI,P2,P3} is shown. OXI is the bisector
of LpjOP3 and hence Xl denotes the optimal direction for AI.

Lemma 5.2.2. The bisector dk of the directions denoted by Pk and Pk+n-l
is the direction that minimizes the maximum visibility ratio within Ak•

Proof. From lemma 5.2.1 we know that either Pk or Pk+n-l is responsible for
the maximum visibility ratio within Ak. Now any direction other than dk
makes greater angle with either Pk or Pk+n-l and hence leaving an opportunity
to minimize the angle further by moving it towards dk• At dk the maximum
visibility ratio is minimized. 0

From the above lemmas we state the following:

Theorem 5.2.1. The direction d that minimizes maximum visibility ratio
can be found in 0 (n log n) time.
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Proof. Finding the 2n intersection points take O(n) time. Points are then
sorted according to the polar angles. This step is 0 (n log n). The maximum
visibility ratio within each Ak can be computed in 0(1) and we have n such
sets; so it will take O(n) time to find the minimum. Hence, the overall
running time is O(n log n) + O(n) = O(nlogn). D
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Chapter 6

Conclusion

In this thesis, we studied computing nice projections of some basic objects like
line segments and triangles in 2D and 3D for several criteria of niceness. For
a set of line segments we have given exact algorithms for finding the optimal
projection of line segments in 2D and also given approximation algorithms
for line segments in 3D. We have also worked with triangles in 3D and given

.exact algorithms for finding the optimal projection.

For line segments in 2D, our algorithms run in O(nlogn). We followed
McKenna and Seidel's approach closely for this problem by extending the
concept of view from convex polyhedra to line segments in 2D. We mapped
the problem to unit circle and formed view cones. For each view cone we
defined a line with certain property and then showed that all these lines form
a centrally symmetric convex polygon. We proved that the direction denoted
by the radius of the largest inscribed circle maximizes the sum of projection
and the direction denoted by the radius of the smallest circumscribed circle

. minimizes the sum of projection.

For triangles in 3D, our approach is similar to the one with line segments
in 2D. In this problem, we defined similar concept of view for planes in 3D.
Each plane parallel to the plane of a triangle and passing through the origin
divides the 3D space and forms view cones. For each view cone we defined
a plane with certain property and then showed that all these plane form
a centrally symmetric convex polyhedron. We proved that the direction
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denoted by the radius of the largest inscribed sphere maximizes the sum
of projected area and the direction denoted by the radius of the smallest
circumscribed sphere minimizes the sum of projected area. The running
time of our algorithm in O(n2).

For line segments in 3D, our algorithm is heuristic based. Experimental
results show that for the maximization case, the heuristic is a good one and
for minimization case it is surprisingly close to brute force optimal solution.
The heuristic for minimization case might be a good starting point for further
research on finding an exact solution. The algorithms run in O(n2). Using
efficient data structure and some precomputation it might be possible to
improve this time complexity.

For the problem of maximizing (minimizing) the minimum (maximum)
visibility ratio of line segments in 2D, we have given exact algorithms. Both
algorithms run in O(n logn) time. To solve the problem, we translate all the
line segments to the origin. These line segments divide the perimeter of an
origin centered circle into a number of arcs. We showed that the direction
that maximizes the minimum visibility ratio is denoted by the direction of
the mid point of the largest arc. For minimizing the maximum visibility
ratio, we take the 2n intersection points of the lines with the circle. After
sorting these points, we consider every two point at a gap of n within the
sorted list and the optimal direction is denoted by the direction of the mid
point of those pair of points that are closest.

6.1 Future works

The running time of the problem of finding the maximum (minimum) sum
of projection for line segments in 2D is O(nlogn). This running time might
be improved to O(n) since there exists an O(n) time algorithm for finding
the maximum (minimum) projection of a polygon. So, this problem is worth
investigating in future.

For the problem of finding the maximum (minimum) sum of projection
of line segments in 3D we have given heuristic based approximate solutions.
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For a particular view, our algorithm often outputs a direction that might
fall outside the view cone and thus making it necessary to bound it within
the cone. Even during considering the line segments incrementally, the in-
termediate directions may go outside the view cone. So the heuristic can
further be modified so that the direction is always within the view cone.In
this work, our algorithm is analytical. We cannot guarantee that our solution
reaches any local (or global) maxima. To obtain this, genetic algorithm can
be applied to it.

In order to generate the brute force optimal solution for our third problem,
we used global searching. To generate a better quality solution, an adaptive
version of this can be used. After getting the brute force solution as now, we
can search for a better one using coarser searching.

In future, this problem can further be studied to find an exact solution.
For the minimization problem, the heuristic we have given can be a good
starting point to an exact algorithm. An exact solution to these problems
will lead to the solution of the problelp of finding maximum and minimum
perimeter projection of a convex polyhedron, for which we do not know any
result. The problem of finding the maximum (minimum) perimeter projec-
tion of a convex polyhedron is a special case of the problem of maximum
(minimum) sum of projection of line segments in 3D, where the line seg-
ments corresponds to the edges of the polyhedron. Considering each of the
edges present in each view as a separate line segment in 3D and finding the
maximum (minimum) sum of projections of those line segments, we can find
the maximum and minimum perimeter projection of a convex polyhedron.
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Index

Acute angle, 65
Arrangement, 41
Azimuth, 20

Brute force, 51

Cone, 19
View cone, 19
Conical region, 19
View cone, 19, 20

Cuboid, 12

Edge, 17

Face, 17

Geodesic distance, 21

Hemisphere, 20
Negative hemisphere, 20
Positive hemisphere, 20

Heuristic, 43

Incremental approach, 46

Latitude, 20
Line segments in 3D, 43

Maximum (minimum) area projection,
12

Minimum crossing projection, 12

Nice projections, 11

Biedl et ai's criteria, 13
Criteria of niceness, 11
Bose et ai's criteria, 12
Burger and Gritzman's criteria, 12
McKenna and Seidel's criteria, 12
Visibility ratio criteria, 13

Normal vector, 18
Negative normal, 19
Positive normal, 19

Plane, 19
Polygon, 17
Polyhedron

Convex polyhedron, 17
Polytope, 18

Shadow area of polytope, 23
Projection, 11

Center of projection, 11
Orthogonal projection, 11
Perspective projection, 11
Planar projection, 17
Plane of projection, 11

Scene, 11
Silhouette, 13
Spherical coordinates, 20
Spherical polygon, 49

Vertex, 17
View point, 11

73



Visibility ratio, 13, 22, 61
Maximum visibility ratio is mini-

mized,64
Minimum visibility ratio is maxi-

mized,61

74

c'



Glossary

Ak: The arc bounded by Pk and Pk+n-l.

BE": The intersection of cone CF and plane 1rF.

CF: A view cone corresponding to a set of visible faces.

CH: A conical region formed when the 1r;'S divide S,

CH(i,j): A cone that is bounded by hi and hj.

F: The set of visible faces.

HF: The halfspace defined by {x I X. NF :'s: I}.

J(F: The intersection of CF and HF.

NF: The sum of normals within a view cone.

Nf: An outward normal of a facet.

P: A convex polyhedron.

R: Radius of Sp'

S: An origin centered unit sphere.

Sp: A smallest circumscribed sphere (or circle) of)'p.

SOH: The spherical portion of CH that is bounded by the 1r;'s.

Yp: A convex polytope or polyhedron.

75
,r- " __

I ,
\ .. \
rt



dn: The approximate optimal direction after bounding dn within a view.

1r: A plane.

1rF: The plane which is perpendicular to NF but displaced at a distance of
1I NF I away from the origin.

1ri: A plane that is orthogonal to Ii and passes through the origin.

1r(I"lj): The plane that is parallel to the plane containing Ii and Ij and passes
through the origin.

(J: An angle between the view direction and the outward normal; an acute
angle between the line segment I and the direction d.

(J(d,!;): The acute angle between d and Ii.

(J(i,x): The acute angles that Ii makes with ox.

(J(x,h,): The acute angle between x and hi.

c: A great circle.

c;: A great circle formed by 1ri n S.

d: A unit direction vector.

dk: The direction for maximum visibility ratio within Ak.

dn: An approximate optimal direction after considering n-th line segment.

rimax: A direction that maximizes the sum of projections.

dmin: A direction that minimizes the sum of projections.

f: A 2D facet of polyhedron.

hf: A plane that is parallel to a face and pass through the origin.

hi: The positive hemisphere of Ii; lines that pass through the origin and
parallel to I;'s.

I: A line segment. The i-th line segment is Ii.
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n: Number of line segments or triangles.

ni: The visible normal of plane "lfi.

p: A point.

Pk: The k-th point of a sorted list of points.

1': Radius of sp'

1'/: Visibility ratio of a line segment.

Sp: A largest inscribed sphere (or circle) of Yp.

t: A triangle.

v: A single vertex.

x: A point on the origin centered unit sphere (or circle) denoting a direction
from the origin to x.
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