
••

An Algorithm to Extract Rules from

Artificial Neural Networks

by

s. M. Kamruzzaman
111111" I 1111111 "" 11111" 1111111

#100852#

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

SUET

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

March 29, 2005



The thesis titled "An Algorithm to Extract Rules from Artificial Neural

Networks" submitted by S. M. Kamruzzaman, Roll No. 040005001P, Session

April 2000 has been accepted as satisfactory in partial fulfillment of the
••••

requirements for the degree of Master of Science in Computer Science and

Engineering. Examination held on March 29, 2005. Approved as to style and

contents by:

I.

2.

3.

4.

5.

()n. ~- L, la-.\""
Dr. Md. Monirul Islam (Supervisor)
Associate Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

~?/1{)r-
Dr. Md. Shamsul Alam .
Professor and Head
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

A~$vtv(M'
Dr. Muhammad Masroor Ali
Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

~
Dr. Md. Mostofa Akbar
Assistant Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

rjir
Dr. Mohammad Zahidur Rahman
Associate Professor
Department of Computer Science and Engineering
Jahangirnagar University, Savar, Dhaka, Bangladesh

Chairman

Member
(Ex-officio)

Member

Member

Member
(External)

r .. 1,- I
.. I

<c\ '\~\".~



Declaration

It is hereby declared that this thesis or any part of it has not been submitted

elsewhere for the award of any degree or diploma.

S. M.~zzaman
(Candidate) .



To my Parents and.Wife
for their support and encouragement



Acknowledgements

This thesis would not exist without the support and guidance of many others.

Happily, I can now thank some of the people who played an important role in my

graduate carrier.

First and foremost, I would like to thank Dr. Md. Monirul Islam, Associate Professor,

Department of Computer Science and Engineering, BUET, my supervisor, for his

endless patience, scholarly guidance, constant and energetic supervision, valuable

advice, suggestions and encouragement at all stages have made it possible to complete

th is thesis.

Special gratitude to Dr. Md. Shamsul Alam, Professor and Head, Department of

CSE, BUET for his kind cooperation in this research work. I would also like to thank the

other members of my thesis committee: Dr. Muhammad Masroor Ali, Dr. Md. Mostofa

Akbar, and the external member Dr. Mohammad Zahidur Rahman for their kind

suggestions.

I would like to express my profound gratitude to my former supervisor Prof. Dr.

Chowdhury Mofizur Rahman for his continuous support, indispensable advices and

encouragement during my study, specially, in the initial stage of my thesis work.

I am very grateful to Mr. Mohammad Mahfuzul Islam, my course teacher for his

valuable discussion and suggestions. I would like to thank to Mr. Ahmed Ryadh Hasan

of Independent University Bangladesh, my younger brother, for his continuous support

and encouragement.

Many thanks to my friends and colleagues of International Islamic University

Chittagong, Mr. Emdadul Haque, Mr. Shamsul Alam, Mr. Abul Hasan and Mr. !lias

Amin for making my graduate life enjoyable and memorable. I would also like to thank

my parents and brothers for their love and support, as well as the continuous contribution

for my higher studies. Most importantly, I would not have been able to accomplish my

goals in graduate carrier without the love, patience, support, and joy that my life partner

Jesmin and my daughter Rifa have provided.

v



Abstract

A new rule extraction algorithm, called rule extraction from artificial neural networks

(REANN) is proposed and implemented to extract symbolic rules from ANNs. A

standard three-layer feedforward ANN is the basis of the algorithm. A four-phase

training algorithm is proposed for backpropagation learning. In the first phase, the

number of hidden nodes of the network is determined automatically in a constructive

fashion by adding nodes one after another based on the performance of the network on

training data. In the second phase, the ANN is pruned such that irrelevant connections

and input nodes are removed while its predictive accuracy is still maintained. In the third

phase, the continuous activation values of the hidden nodes are discretized by using an

efficient heuristic clustering algorithm. And finally in the fourth phase, rules are

extracted by examining the discretized activation values of the hidden nodes using a rule

extraction algorithm, REx. Extensive experimental studies on several benchmarks

classification problems, such as breast cancer, iris, diabetes, wine, season, golf-playing,

and lenses classification problems, demonstrate the effectiveness of the proposed

approach with good generalization ability.
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Chapter 1

Introduction

1.1 Introduction

The last two decades have seen a growing number of researchers and practitioners

applying artificial neural networks (ANNs) to solve a variety of problems such as

pattern classification and function approximation or regression problem. The outputs,

and often the' inputs as well, are discrete for classification problems. On the other

hand, function approximation or regression problems have continuous outputs, and

the function or regression maybe nonlinear. In many applications, it is desirable to

extract knowledge from trained ANNs for the users to gain a better understanding

how the ANNs solve the problems. The classification concept represented as rules is

certainly more comprehensible to human users than a collection of ANNs weights.

While the predictive accuracy obtained by ANNs is often higher than that of other

methods or human experts, it is generally difficult to understand how ANNs arrive at

a particular conclusion due to the complexity of the ANNs architectures. It is often

said that an ANN is practically a "black box". Even for an ANN with only single

hidden layer, it is generally impossible to explain why a particular pattern is classified

as a member of one class and another pattern as a member of another class.



The rules generated from ANNs should be simple enough for human users to

understand. Unlike a collection of ANN weights, symbolic rules can easily be

interpreted and verified by human experts. They can also provide new insights about

application problems and the corresponding data. Getting an explanation about the

reasoning of the ANN is not very easy. This is mainly because the learned knowledge

is represented by the topology of the network and by the weight and bias values.

These are usually not meaningful for humans.

Lack of explanation capability is one of the most important reasons why ANNs do

not get the necessary interest in the industry. Users want to know the reasoning

behind the conclusion of a learning system in most of the real world applications such

as safety critical applications. It is therefore necessary that an ANN should be able to

explain itself. This can be done in several ways: extracting if-then rules, converting

ANNs to decision trees are some of them.

Extracting if-then rules is usually accepted as the best way of' extracting the

knowledge represented in the ANN. Not because it is an easy job, but because the

rules created at the end are more understandable for humans than any other

representation (i.e. decision trees). And the rules extracted form the trained network

can be used in other systems, like expert systems. Extracting rules from ANNs has

some other advantages:

i) Knowledge Discovery: ANNs are very powerful in discovering previously

unknown dependencies and relationships in the data sets. But these discoveries are

coded as weights within the network. Weights do not make much sense to human

users. By extracting rules these discoveries can be unrevealed.

ii) Knowledge Acquisition for Expert Systems: One of the biggest bottlenecks

of the expert systems is the difficulty in knowledge acquisition. Rules generated from

a trained ANN can solve the knowledge acquisition problem.

iii) Training Data Validation: An expert system can validate the data used in

training by looking at the rules created and can choose a less noisy sample from the

data.
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iv) User Explanation Capability: Absence of explanation capability in ANNs

limits the realization offull potential of such systems. Users need to explain about the

results in safety critical real life applications. Rules generated from an ANN will

make the realization.

v) Improving Generalization Ability of ANNs: Cross validation is widely used

for improving the generalization ability of ANNs. However, this may even fail in

some cases. If an experienced user knows the rules represented within the ANN

he/she can try to find under which cases the generalization fails. He/she can also find

the regions, which are not represented properly in the training set.

vi) Understanding of How Symbolic and Connectionist Approaches

Integrated: Rule extraction from ANNs can help us to understand how one can

profitably integrate symbolic and connectionist approaches.

Rule extraction algorithms can be categorized as "decompositional",

"pedagogical" and "eclectic". Decompositional rule extraction algorithms focus on

extracting rules at the level of hidden and output nodes. Pedagogical techniques see

the ANN as a black box. The techniques see the rule extraction as a learning task.

They try to extract rules that map inputs to outputs. Eclectic techniques try to

incorporate elements of both techniques.

There are four criteria to determine the quality of rules. These are: accuracy,

fidelity, consistency, and comprehensibility.

• Rule set is considered accurate if it can correctly classifY unseen cases.

• If the rule set can mimic ANNs it has a high level of fidelity.

• Rule sets are consistent if the rule sets extracted from the ANNs, which are

trained under different conditions, create the same classification.

• The comprehensibility is measured by the size of the rule set and by the

number of antecedents in each rule.
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1.2 Literature Review

A number of works exists in the literature that extracts rules from trained ANNs

[1-2]. Two methods for extracting rules from ANN are described in Towell and

Shavlik [3]. The first method is the subset algorithm [4], which searches for subsets of

connections to a node whose summed weight exceeds the bias of that node. The major

problem with Subset algorithms is that the cost of finding all subsets grows as the size

of the power set of the links to each node.

The second method, the M-of-N algorithm [5], is an improvement of the Subset

method that is designed to explicitly search for M-of-N rules from knowledge based

ANNs. Instead of considering an ANN connection, groups of connections are checked

for their contribution to a node's activation. This is done by clustering the ANN

connections. The weights of the connections in a cluster are then replaced by their

average weights. Cluster with small average and a few connections are checked for

possible elimination since their removal are not likely to have any effect on the

network classification. A rule is formed for each hidden and output node. This rule

consists of a threshold and the weighted antecedents of the remaining connections.

M-of-N approach only works well on knowledge-based networks, created from

domaiiJ knowledge rules (like KBANN or KBCNN). It cannot extract rules from

classical networks. This technique has some weaknesses. M-of-N algorithm makes the

assumption that each hidden node corresponds to a meaningful concept. Hidden nodes

are assigned symbolic names and the relationship between nodes and names should

not change during the learning. Preventing the change is very difficult in real world

applications.

Craven and Shavlik [6] proposes a method that uses sampling and queries. Instead

of searching for rules from the ANN, the problem of rule extraction is viewed as a

learning task. The target concept is the function computed by the network and the

ANN input features are the inputs for the learning task. Conjunctive rules are

extracted from the ANN with the help of two oracles.
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H. Liu and S. T. Tan [7] proposes X2R, a simple and fast algorithm that can be

applied to both numeric and discrete data, and generate rules from datasets. X2R can

generate concise rules from raw data sets. It only calculates first order information in

generating rules. It can generate perfect rules in the sense that the error rate of the

rules is not worse than the inconsistency rate found in the original data. The rules

generated by X2R, are order sensitive, i.e, the rules should be fired in sequence.

R. Setiono and H. Liu [8] presents a novel way to understand an ANN.

Understanding an ANN is achieved by extracting rules with a three phase algorithm:

first, a weight decay backpropagation network is built so that important connections

are reflected by their bigger weights; second, the network is pruned such that

insignificant connections are deleted while its predictive accuracy is still maintained;

and last, rules are extracted by recursively discretizing the hidden node activation

values.

Thrun [9] describes a rule extraction algorithm, which analyzes the input-output

behavior of a network using Validity Interval Analysis. VI-Analysis divides the

activation range of each network's node into intervals, such that all network's

activation values must lie within the intervals. The boundary of these intervals are

obtained by solving linear programs. Two approaches for generating the rule

conjectures, specific-to-general and general-to-specific, are described. The validity of

these conjectures are checked with VI-analysis.

R. Setiono [IO] proposes a rule extraction algorithm for extracting rules from

pruned ANNs for breast cancer diagnosis. The author describes how the activation

values of a hidden node can be clustered such that only a finite and usually small

number of discrete values need to be considered while at the same time maintaining

the network accuracy. A small number of different discrete activation values and a

small number of connections from the inputs to the hidden nodes will yield a set of

compact rules for problem.

R. Setiono proposes a rule extraction algorithm named NeuroRule [11]. This

algorithm extracts symbolic classificati0!l rule from a pruned network with a single

hidden layer in two steps. First, rules that explain the network outputs are generated in

5



terms of the discretized activation values of the hidden nodes. Second, rules that

explain the discretized hidden node activation values are generated in terms of the

network inputs. When two sets of rules are merged, a DNF representation of network

classification is obtained. Under DNF representation, the classification concept is

expressed as the disjunction of one or more subconcepts.

Ismail Taha and Joydeep Ghosh [12] proposes three rule extraction techniques for

knowledge Based Neural Network (KBNN) hybrid systems and presents their

implementation results. The suitability of each technique depends on the network

type, input nature, complexity, the application nature, and the requirement

transparency level. The first proposed approach (BIO-RE) is categorized as Black-box

Rule Extraction (BRE) technique, while the second (Partial-RE) and third techniques

(Full-RE) belong to Link Rule Extraction (LRE) category.

Binarized Input-Output Rule Extraction (BIO-RE) technique extracts a set of

binary rules from any ANN regardless of its kind. Partial-RE extracts partial rules of

most important embedded knowledge in MLP. The idea underlying Partial-RE

algorithm is that it first sorts both positive and negative incoming links to all hidden

and output nodes in descending order into two different sets based on their weight

values. Starting from the highest positive weight (say i), it searches for individual

incoming links that can cause a node j (hidden/output) to be active regardless of the

other input links to this node. If such link exists, it generates a rule: If

Node; ~ Node j , where cf represents the measure of belief in the extracted rule

and is equal to the activation value ofnodej.

Like the Partial-RE approach, Full.RE falls in the LRE category. It is notable

bec.ause: (i) It extracts rules with certainty factors from trained feedforward ANNs.

(ii) It extracts all possible rules that present in the semantic interpretation of the

internal structure of the trained ANN that they were extracted from. (iii) it is universal

since there is no restriction on the values that any input feature can take. (iv) it is

applicable to any ANN node with a monotonically increasing activation function.
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Huan Liu [13] reports a new rule induction method that handles noise effectively.

One of the purposes of a rule induction method is to find compact rules that

generalize well on the data. The single-pattern-based-rule induction method works as

follows: starting with a pattern, find a rule that differentiate the pattern from patterns

of other classes, remove the patterns covered by that rule from the training sample,

induce the next rule, and repeat this process until no patterns remain.

Andrzej Lozowski et al. [14] presents symbolic knowledge extraction from

mapping/extrapolating ANNs. An algorithm to obtain crisp rules in the form of

logical implications which roughly describe the ANN mapping is introduced. The

number of extracted rules can be selected using an uncertainty margin parameter as

well as by changing the precision of the soft quantization of the inputs. Crisp

linguistic terminology and input partitioning can be used to provide finer resolution of

input variables. However, a fuzzy methodology for handling various degrees of

membership of objects in classes now becomes necessary.

R. Setiono [15] proposes a rule extraction (RX) algorithm to extract rules from a

pruned ANN. The network is a standard feedforward backpropagation network with a

single hidden layer that has been trained to meet a prespecified accuracy requirement.

The process of extracting rules from a trained ANN can be made much easier if the

complexity of the ANN has first been removed. The pruning process attempts to

eliminate as many connections as possible from the ANN, while at the same time tries

to maintain the prespecified accuracy rate. It is expected that less connections will

result in more concise rules. No initial knowledge of the problem domain is required.

Relevant and irrelevant attributes of the data are distinguished during the pruning

process. Those that are relevant will be kept, others will be automatically discarded.

M. W. Craven and J. W. Shavlik develop an algorithm called TREPAN [16], for

extracting comprehensible, symbolic representations from trained ANNs. Given a

trained ANN, TREPAN produces a decision tree that approximates the concept

represented by the ANN. The tree extracted by TREPAN nearly matches the accuracy

of the ANN itself, and is fewer comple?,es than tree produced by conventional

decision-tree induction algorithms running directly on the training data

7



Huan Liu [17] describes a family of rule generators that can be used to extract

classification rules in various applications. It includes versions that can handle noise

in data, produce perfect rules, and can induce order independent or dependent rules.

The basic idea of the proposed algorithm is simple: using first order information in the

data to determine shortest sufficient conditions in a pattern that can differentiate the

pattern from patterns belonging to other classes. The sole use of first order

information avoids the combinatorial complexity in computation, although it is well

known that using higher order information may provide better results.

R. Setiono and W. K. Leow [18] proposes a method, Fast Extraction of Rules

from Neural Networks (FERNN), for extracting symbolic rules from trained

feedforward ANNs with a single hidden layer. The method does not require network

pruning and hence no network retraining is necessary. Given a fully connected trained

feed forward ANN with single hidden layer, FERNN first identifies the relevant

hidden nodes by computing their information gains. For each relevant hidden node, its

activation values is divided into two subintervals such that the information gain is

maximized. FERNN finds the set of relevant ANN connections from the input nodes

to the hidden nodes by checking the magnitudes of their weights. The connections

with larger weights are identified as relevant. Finally, FERNN generates rules that

distinguish the two subintervals of the hidden node activation values in terms of the

network inputs.

R. Setiono [19] presents MofN3, a new method for extracting M-of-N rules from

ANNs. The topology of the ANNs is the standard three-layered feed forward

networks. Nodes in the input layer are connected only to the nodes in the hidden

layer, while nodes in the hidden layer are also connected to nodes in the output layer.

Given a hidden node of a trained ANN with N incoming connections, show how the

value of M can be easily computed. In order to facilitate the process of extracting M-

of-N rules, the attributes of the dataset have binary values -lor 1.

R. Setiono, W. K. Leow and Jack M. Zurada [20] describes a method called rule

extraction from function approximating neural networks (REF ANN) for extracting

rules from trained ANNs for nonlinear regression. It is shown that REF ANN produces

8
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rules that are almost as accurate as the original networks from which the rules are

extracted. For some problems, there are sufficiently few rules that useful knowledge

about the problem domain can be gained. REFANN works on a network with a single

layer and one linear output node .

. Zhi-Hua Zhou et al. [21] proposes REFNE (Rule Extraction from Neural Network

Ensemble) which is designed to extract symbolic rules from trained NN ensembles

that perform classification tasks. REFNE utilizes trained ensembles to generate a

number of instances. It could gracefully breaks the ties made by individual ANNs in

prediction. Instead of discretizing all the continuous attributes at the beginning of the

extraction of symbolic rules, REFNE adopts a specific discretization scheme so that

different continuous attributes can be discretized to different number of intervals and

unnecessary discretization can be avoided.

1.3 Problems of Existing Works

The problems of existing works are summarized as follows:

i) Use predefined and fixed number of hidden nodes that require human

experience and prior knowledge of the problem to be solved.

ii) Clustering algorithms used to discretize the output values of hidden nodes

are not efficient.

iii) Computationally expensive.

iv) Could not produce concise rules.

1.4 Objective of the Thesis

Multilayer feedforward ANNs trained by using the backpropagation-leaming

algorithm is limited to searching for a suitable set of weights in an a priori fixed

network topology. This mandates the selection of an appropriate network topology for

the learning problem on hand. Too small networks are unable to learn the problem

well while overly large networks tend to overfit the training data, and consequently

result in poor generalization performance.

9



This thesis proposes a hybrid approach with both constructive and pruning

components for automatic determination of simplified ANN architectures. The

objective of the thesis are summarized as follows:

i) To develop an efficient algorithm for extracting rules from ANNs to explain

the functionality of ANN s.

ii) To find an efficient method for clustering the outputs of hidden nodes.

iii) To extract concise rules with high predictive accuracy.

1.5 Thesis Overview

The remaining chapters of this thesis are organized as follows:

CJ Chapter 2 provides background material for the rest of the thesis. Historical

backgrounds of ANNs, human brain, biological basis of the ANNs, model of a

neuron are first elaborated. ANN architectures, learning methods,

characteristics of ANNs, and some application domains of ANNs are

discussed next. Finally, the backpropagation training algorithm, which was

used for training the ANNs are presented.

CJ Chapter 3 presents the proposed algorithm REANN: Rule Extraction from

Artificial ANNs, which is the main contribution of this thesis. Descriptions of

the REANN are first elaborated; detailed descriptions of different components

used in REANN are then described.

CJ Chapter 4 presents a detailed experimental evaluation of REANN. In the

reported experiments, REANN is applied to ANNs that were trained to solve

classification problems. This chapter evaluates REANN performance on

several well-known benchmark classification problems. Experimental details,

results, comparison, and discussion are described.

CJ Finally, in chapter 5, the contributions and limitations of the research are

presented. The directions of future works to remove the limitations of present

work are proposed.

10
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Chapter 2

Background

2.1 Introduction

ANNs are simplified models of the biological neuron system. They are massively

parallel distributed processing system made up of highly interconnected computing

elements, neuron, that have the ability to learn and thereby acquire knowledge and

make it available for use.

Various learning mechanisms exist to enable the ANN acquire knowledge. ANN

architectures have been classified into various types based on their learning

mechanisms and other features. Some classes of ANN refer to this learning process as

training and the ability to solve a problem using the knowledge acquired as inference.

ANNs are simplified imitations of the central nervous system, and obviously

therefore, have been motivated by the kind of computing performed by the human

brain. The structural constituents of a human brain termed neurons are the entities,

which perform computations such as cognition, logical inference, pattern recognition,

and so on. Hence the technology, which has been built on a simplified imitation of

computing by neurons of a brain, has been termed Artificial Neural Systems CANS)

technology or Artificial Neural Networks or simply ANNs. In the literature, this

technology is also referred to as Connectionist Networks, Neurocomputers, Parallel

I I



Distributed Processors etc. Also neurons are referred to as neurodes, Processing

Elements (PEs), and nodes.

2.2 Historical Backgrounds of ANNs

The modem era of ANNs began with the pioneering work of McCulloch and Pitts

[22]. McCulloch and Pitts describe a logical calculus of ANNs that united the studies

of neuropsychology and mathen\atical logic. McCulloch and Pitts showed that a

network so constituted would, in principle, compute and computable function. This

was a very significant result and with it, it is generally agreed that the disciplines of

ANNs and of artificial intelligence were born.

In 1948,.Wiener's famous book Cybernetics [23] was published, describing some

important concepts for control, communications, and statistical signal processing. The

second edition of this book was published in 1961, adding new material on learning

and self-organization. In chapter 2 of both editions of this book, Wiener appears to

grasp the physical significance of statistical mechanics in the context of the subject

matter, but it was left to Hopfield (more than 30 years latter) to bring the linkage

between statistical mechanics and learning systems to full fruition.

The next major development in ANNs came in 1949 with the publication of

Hebb's book [24] The Organization of Behavior, in which an explicit statement of a

psychological learning rule for synaptic modification was presented for the first time.

Specially, Hebb proposed that the connectivity of the brain is continually changing as

organism learners differing functional tasks, and that neural assemblies are created by

such changes. Hebb's book was immensely influential among psychologists, but

unfortunately it had little or no impact on the engineering community.

In 1952, Ashby's book, Designfor a Brain: The Origin of Adaptive Behavior, was

published, which is just as fascinating to read today, as it must have been then. The

book was concerned with the basic notion that adaptive behavior is not inborn but

rather learned, and that through learning the behavior of an animal (system) usually
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changed for the better. The book emphasized the dynamic aspects of the living

organism as a machine and the related concept of stability.

In 1954, Miskey wrote a "neural network" doctorate thesis at Princeton

University, which was entitled "Theory of Neural-Analog Reinforcement System and

Its Application to the Brain Model Problem." In 1961, an excellent early paper by

Minsky on AI entitled "Steps Toward Artificial Intelligence," was published; this

latter paper contains a large section what is now termed ANNs. In 1967 Minsky's

book, Computation: Finite and Infinite Machines, was published. This clearly written

book extended the 1943 results of McCulloch and Pitts and put them in the context of

automata theory and theory of computation.

Some 15 years after the publication of McCulloch and Pitt's classic paper, a new

approach to the pattern recognition problem was introduced by Rosenblatt [25] in his

on the perceptron, a novel method of supervised learning. The crowning achievement

of Rosenblatt's work was the so-called perceptron convergence theorem, the first

prooffor which was outlined by Rosenblatt [26]; proofs of the theorem also appeared

in Novikoff and others. In 1960, Widrow and Hoff [27] introduced the least mean

square (LMS) algorithm and used it to formulate the Adaline (adaptive linear

element). The difference between the perceptron and the Adaline lies in the training

procedure. One of the earliest trainable-layered ANNs with multiple adaptive

elements was the Madaline (multiple Adeline) structure proposed by Widrow and his

students [28]. In 1967, Amari [29] used the stochastic gradient method for adaptive

pattern classification. In 1965, Nilsson's book [30], Learning Machines, was

published, which is still the best-written exposition of linearly separable patterns in

hypersurfaces. During the classical period of the perceptron in the I960s, it seemed as

if ANNs could do anything. But then came the book by Minsky and Papert [3 I], who

used mathematics to demonstrate that there are fundamental limits on what single

layer perceptron can compute. In a brief section on multiplayer perceptrons, they

stated that there was no reason to assume that any of the limitations of single layer

perceptrons could be overcome in the multiplayer version.
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An important activity that did emerge in the 1970s was self-organizing maps using

competitive learning. The computer simulation work done by von der Malsburg [32]

was perhaps the first to demonstrate self-organization. In 1976 Willshaw and von der

Malsburg [33] published the first paper on the formation of self-organizing maps,

motivated by topological ordered maps in the brain.

In 1980s major contributions to the theory and design of ANNs were made on

several fronts, and with it there was a resurgence of interest in ANNs. Grossberg [34],

building on his earlier work on competitive learning [35-36], established a new

principle of self-organization known as adaptive resonance theory (ART). Basically,

the theory involves a bottom up recognition layer and a top down generative layer. If

the input pattern and learned feedback pattern match, a dynamical state called

"adaptive resonance" (i.e., amplification and prolongation of neural activity) takes

place. This principle of forward/backward projections has been rediscovered by other

investigators under different guises.

An important development in 1982 was the publication of Kohonen's paper on

self organizing maps [37] using a one-or two-dimensional lattice structure, which was

different in some respects from the earlier work by Willshaw and von der Malsburg.

Kohonen's model has received far more attention in an analytic context and with

respect to applications in the literature, than the Willshaw-von der Malsburg model,

and has beq)me the benchmark against which other innovations in this field are

evaluated.

In 1983, Kirkpatrick, Gelatt, and Vecchi [38] described a new procedure

called simulated annealing, for solving combinatorial optimization problems.

Simulated annealing is rooted in statistical mechanics. It is based on a simple

technique that was first used in computer simulation by Metropolis et aI. [39]. The

idea of simulated annealing was later used by Ackley, Hinton, and Sejnowski in the

development of a stochastic machine known as Boltzmann machine, which was the

first successful realization of a multiplayer ANN.

In 1986 the development of the bac~-propagation algorithm was reported by

Rumelhart, Hinton, and Williams [40]. In that same year, the celebrated two-volume
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book, Parallel Distributed Processing: Explorations in Microstructure of Cognition

[41], edited by Rumelhart and McClelland, was published. This latter book has been a

major influence in the use of back-propagation learning, which has emerged as the

most popular learning algorithm for the training of multiplayer perceptrons. In fact,

back propagation learning was discovered independently in two other places about the

same time. After the discovery of the back-propagation algorithm in the mid-1980s, it

turned out that the algorithm had been described earlier by Werbos in his Ph.D. thesis

at Harvard University in August 1974 [42]; Werbos's Ph.D. thesis was first

documented description of efficient reverse-mode gradient computation that was

applied to general network models with ANNs arising as a special case. The basic

idea of back-propagation may be traced further back to the book Applied Optimal

Control by Bryson and Ho [43]. In section 2.2 entitled "Multistage Systems" of the

book, a derivation of back-propagation using a Lagrangian fonnaJism is described. In

the final analysis, however, much of the credit for the back-propagation algorithm has

to be given to Rumelhart, Hinton, and Williams for proposing its use for machine

learning and for demonstrating how it could work.

In 1988, Broomhead and Lowe [44] described a procedure for design of layered

feedforward .networks using radial basis functions (RBF), which provide an

alternative to multilayer perceptrons. The basic idea of radial basis functions goes

back at least to the method of potential functions that was originally proposed by

Bashkirov, Braverman, and Muchnik [45], and the theoretical properties of which

were developed by Aizeman, Braverman, and Rozonoer [46-47]. A description of the

method of potential functions is presented in the class book, Pattern Classification and

Scene Analysis, by Duda and Hart [48]. Nevertheless, the paper by Broomhead and

Lowe has led to a great deal of research effort linking the design of ANNs to an

important area in numerical analysis and also linear adaptive filters. In 1990, Poggio

and Girosi [49] further enriched the theory of REF networks by applying Tikhonov's

regularization theory.

In 1989, Mead's book, Analog VLSI. and Neural Systems [50], was published.

This book provides an unusual mix of concepts drawn from neurobiology and VLSI
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technology. Above all, it includes chapters on silicon retina and silicon cochlea,

written by Mead and coworkers, which are vivid examples of Mead's creative mind.

In the early 1990s, Vapnik and coworkers invented a computationally powerful

class of supervised learning networks, called support vector machines, for solving

pattern recognition, regression, and density estimation problem [51-54]. This new

method is based on results in the theory of learning with finite sample sizes. A novel

feature of support vector machines is the natural way in which the Vapnik-

Chervonekis (VC) dimension is embodied in their design. The VC dimension

provides a measure for the capacity of a ANN to learn form a set of examples [55-56].

2.3 Human Brain

.. The human nervous system may be viewed as a three-stage system, as depicted in

the block diagram of Fig. 2.1 [57]. Central to the system is the brain, represented by

the neural (nerve) net, which continually receives information, perceives it, and makes

appropriate decisions. Two sets of arrows are shown in the figure, pointing from left

to right ind icate the forward transmission of information bearing signals through the

system. The arrow pointing from right to left signify the presence of feed-back in the

system. The receptors convert stimuli from the human body or the external

environment into electrical impulses that convey information to the neural net (brain).

The effectors convert electrical impulses generated by the neural net into discernible

responses as system outputs.

The struggle -to understand the brain has been made easier because of the

pioneering work of Ramon y Cajal [58], who introduced the idea of neurons as

structural constituents of the brain. Typically neurons are five to six orders of

magnitude slower than silicon logic gates, events in a silicon chip happen in the

nanosecond (10,9S) range, whereas neural events happen in the millisecond (10'\)

range.
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Fig. 2.1 Block diagram representation of human nervous system.

However, the brain makes up for the relatively slow rate of operation of a neuron

by having a truly staggering number of neurons (nerve cells) with massive

interconnections between them. It is estimated that there are approximately 10 billion

neurons in the human cortex and 60 trillion synapses or connections [59]. The net

result is that there is an enormously efficient structure. The energetic efficiency of the

brain is approximately 10-16 Jules/operation/second, whereas the best computers used

today is about 10-6 Jules/operation/second [60].

2.4 Biological Basis of ANNs

The human brain is a very complex system capable of thinking, remembering and

problem solving. There have been many attempts to emulate brain functions with

computer models, and although there have been some rather spectacular achievements

coming from these efforts, all of the models developed to date pale into oblivion when

compared with the complex functioning of the human brain.

A neuron is the fundamental unit of the brain's nervous system. It is a simple

processing element that receives and combines signals from other neurons through

input paths called dendrites. If the combined input signal is strong enough, the neuron

'fires', producing an output signal along the axon that connects to the dendrites of

many other neurons. Fig. 2.2 is a sketch of neuron showing the various components.

Each signal coming into a neuron along dendrites passes through a synapse or

synaptic junction. This junction is an infinitesimal gap in the dendrites that is filled
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with neurotransmitter fluid that either accelerates or retards the flow of electrical

charges.

4 Pol'ts of a-
Typical Nerve Cell

Dendrites: Aooept inputs

Soma: Process the inputs

Axon: Turn the processed inputs
into outputs

Sy napses: The electrochemica 1
contact between neurons

Fig. 2.2 Sketch of a biological neuron showing components.

The fundamental actions of the neurons are chemical in nature, and this

neurotransmitter fluid produces electrical signals that go to the nucleus or soma of the

neuron. The adjustment of the impedance or conductance of the synaptic gap is a

critically important process. Indeed, these adjustments lead to memory and learning.

As the synaptic strengths of the neuron are adjusted, the brain "learns" and stores

information.

18



2.5 Model of a Neuron

A neuron is an information-processing unit that is fundamental to the operation of

an ANN. The block diagram of Fig. 2.3 shows the model of a neuron, which forms the

basis for designing artificial ANNs. The three basic elements of the neural model are

discuss below:

i) A set of synapse or connecting links, each of which is characterized by a

weight. Specifically, a signal Xj at the input of synapse j connected to neuron k

is multiplied by the synaptic weight Wkj. It is important to make a note of a

manner in which the subscripts of the synaptic weight Wkj are written. The first

subscript refers to the neuron in question and the second subscript refers to the

input end of the synapse to which the weight refers. Unlike a synapse in the

brain, the synaptic weight of artificial neuron may lie in the range that includes

negative as well as positive values.

Output
y,

Activation
Function

Summing Junction

x
Input
Signals

Bias
b,

Synaptic
Weights

Fig. 2.3 Model of a neuron.

ii) An adder for summing the input signals, weighted by the respective synapse

of the neuron; the operations described here constitute a linear combiner.

iii) An activation function for limiting the amplitude of the output of a neuron.

The activation function is also referred to as a squashing function in that it
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squashes (limits) the permissible amplitude range of output signal to some

finite value. Typically, the normalized amplitude range of the output of a

neuron is written as the closed node interval [0,1] or alternatively [-1, 1].

The neural model of Fig. 2.3 also includes an externally applied bias denoted by bk.

The bias bk has the effect of increasing or lowering the net input of the activation

function, depending on whenever it is positive or negative, respectively.

In mathematical terms, a neuron k may describe by writing the following pairs of

equations:

and

"'
Uk =L WkjXj

j=1

y, = rp(u, +b,)

(2.1 )

(2.2)

where Xl, X2, ... , Xmare the input signals; Wk!,Wk2,... , Wkmare the synaptic weights of

neuron k; Uk is the linear combiner due to the input signals; bk is the bias; <p(.) is the

activation function; and Yk is the output signal of the neuron. The use of bias bk has

thc effect of applying an affine transformation to the output Ukof the linear combiner

in the model of Fig. 2.3, as shown by

(2.3)

In paJticular, depending on whenever the bias bk is positive or negative, the

relationship between the induced local field or activation potential Vkof neuron k and

the linear combiner output Uk is modified. The bias bk is an external parameter of

artificial neuron k. Formulate the combinations ofEqs. (2.1) (0 (2.3) as follows:

and

"'
vk = LWkjXi

j=O

y, = rp(v,)
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2.5.1 Types of Activation Function

The activation function, denoted by <p(v),defines the output of a neuron in terms

of the induced local field v. The three basic types of activation functions are describe

below:

2.5.1.1 Threshold Function

For this type of activation function, described in Fig. 2.4 we have

{
I ifv?O

q>(v)= 0 ifv<O (2.6)

In engineering literature, this type of threshold function is commonly referred to as

Heaviside function. Correspondingly, the output of neuron k employing such a

threshold function is expressed as

<p(v)

{
I ifv,?O

y, = o if v, <0

where Vk is the induced local field of the neuron; that is

m

v, =I W'jXj +b,
/""

1.2
1+---------

0.8
0.6
0.4
0.2

C ••• ----....,." _. ---_~~..-f"""".-------,___-~--___r-----,

(2.7)

(2.8)

-15 -10 -5 o 5 v 10 15

Fig. 2.4 Threshold function.

21



2.5.1.2 Piecewise-Linear Function

For the piece-wise linear function described in Fig. 2.5 we have

1
1,

tp(v) = v,

0,

v ~ + +
++>v>
v:::; _-1..

2

_J...
2 (2.9)

r----~----_,

-15 -10

.-----(j

-5 o 5 v 10 15

Fig. 2.5 Piece-wise linear function.

2.5.1.3 Sigmoid Function

The sigmoid function, whose graph is s-shaped, is by far the most common for

activation function used in the construction of artificial ANNs. It is defined as a

strictly increasing function that exhibits a graceful balance between linear and

nonlinear behavior. An example of sigmoid function is logistic function, defined by

1
tp(v) =

I+exp(-av)
(2. I0)

where a is the slope parameter of the sigmoid function. By varying the parameter a,

obtain sigmoid functions of different slopes. In the limit, as the slope parameter

approaches infinity, the sigmoid function becomes simply a threshold function.

Whereas a threshold function assumes the value 0 or 1, a sigmoid function assumes a

continuous range of values from 0 to I. More important point is that the sigmoid

function is differentiable, whereas the threshold function is not.
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(2.11 )

Fig. 2.6 Logistic function.

The activation functions defined by Eqs. (2.6), (2.9), and (2.10) range from 0 to +I. It

is sometimes desirable to have the activation function range from -1 to +I, in which

case the activation function assumes an antisymmetric form with respect to the origin;

that is, the activation function is an odd function of the induced local field.

Specifically, the threshold function ofEqs. (2.6) is now defined as

II ifv>O
q;>(v)= 0 ifv=O

-I ifv<O
which is commonly referred to as the signum function. For the corresponding form of

a sigmoid function hyperbolic tangent function described in Fig. 2.7 may use, defined

by

. eQl' - e-oll

q;>(v)= tanh(v) = ea, + e-a,
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Fig. 2.7 Hyperbolic tangent function.

2.6 ANN Architectures

The manner in which the nodes of a network are structured is intimately linked

with the learning algorithm used to train the network. Three fundamental different

classes of network architectures are describe below:

2.6.1 Single Layer Feedforward Networks

In a layered ANN the nodes organized in the form of layers. In the simplest form

of a layered network, we have an input layer of source node that projects onto an

output layer of nodes, but not vice versa. In other words this network is strictly a

fcedforward or acyclic type. It is illustrated in the Fig. 2.8 for the case offour nodes in

both the input and output layers. Such a network is called single layer network, with

the designation "single layer" referring to the output layer of computation nodes

(neurons).
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Input layer of
source nodes

Output layer of
nodes

Fig. 2.8 Single layer feedforward network.

2.6.2 Multilayer Feedforward Networks

The second class of feedforward network distinguishes itself by the presence of

one or more hidden layers, whose computation nodes are correspondingly called

hidden nodes. The function of hidden nodes is to intervene between the external input

and the network output in some useful manner. By adding one or more hidden layers,

the network is enabled to extract higher order statistics.

Input layerof
source nodes

Layerof hidden
nodes

Layer of output
nodes

Fig. 2.9 Multilayer feedforward network.
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2.6.3 Recurrent Networks

A recurrent network distinguishes itself from a feedforward network in that it has

at least one feedback loop. For example, a recurrent network may consist of a single

layer of nodes with each node feeding its output signals back to the inputs of all other

nodes as illustrated in the architecture graph in Fig. 2.1O. In the structure depicted in

this figure there are no self-feedback loops in the network; self-feedback refers to a

situation where the output of a node is fed back into its own input.

Unit delay
operators

Fig. 2.10 Recurrent network with no self-feedback loops.

2.6.4 Architecture Determination

The architecture of an ANN depends on the number of nodes in the input layer,

hidden layer, and output layer. The number of nodes in the input and output layers is

. the same as the number of inputs and outputs of the problem. Generally, the number

of nodes in the hidden layer is determined based on previous experience in traditional

backpropagation.
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It has been known that the performance of ANNs is greatly dependent on their

architecture. Too small networks are unable to learn the problem well while overly

large networks tend to overfit the training data, and consequently result in poor

generalization performance. In practice, a variety of architectures are tried out and the

one that appears best suited to the given problem is picked. Such a trial-and-error

approach is not only computationally expensive but also does not guarantee that the

selected network architecture will be close to optimal or will generalize well. This

suggests the need for algorithms that learn both the network topology and the weights.

The automated design of ANNs is an important issue for any learning task. There

have been many attempts to design ANNs automatically, such as constructive,

pruning, and evolutionary algorithm. The important parameters of any design

algorithms are the consideration of generalization ability and of training time of

ANNs.

The main difficulty of evolutionary algorithm is that they are quite demanding in

both time and user defined parameters. In contrast, constructive algorithm requires

much smaller amounts of time and used defined parameters. The most well known

constructive and pruning algorithms to determine ANNs architecture automatically

are described in the next chapter.

2.7 Learning Methods

Learning is a process by which the free parameters of an ANN are adapted

through a process of stimulation by the environment is which the network is

embedded. The method of learning is determined by the manner in which the

parameter changes take place. Learning methods in ANNs can be broadly classified

into three basic types: supervised, unsupervised, and reinforced.

2.7.1 Supervised Learning

In supervised learning both inputs and outputs are provided. The network then

processes the inputs and compares the outputs against the desired outputs. Errors are
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then propagated through the system, causing the system to adjust the weights, which

control the network. This process occurs over and over as the weights are continually

tweaked. The set of data, which enables the training, is called the "training set".

During the training of a network the same set of data is processed many times as the

connection weights are ever refined. A very popular example of supervised learning is

the backpropagation algorithm.

2.7.2 Unso pervised Learning

The other type of training is called unsupervised learning. In unsupervised

learning, the network is provided with inputs but not with desired outputs. The system

itself must then decide what features it will use to group the input data. This is often

referred to as self-organization. At the present time unsupervised learning is not well

understood. This adoption to the environment is the promise, which would enable

science fiction types of robots to continually learn on their own as they encounter new

situations and new environments.

2.7.3 Reinforced Learning
In this method, a teacher though available, does not present the expected answer

but only indicates if the computed output is correct or incorrect. The information

provided helps the network in its learning process. A reward is given for a correct

answer computed and a penalty for a wrong answer. But, reinforced learning is not

one of the popular forms oflearning.

2.8 Characteristics of ANNs

ANNs have profound strengths and weaknesses, and these must be recognized if

they are to be used properly. Although ANNs are sometimes called neural computers,

they are infact not computers; but rather, they are basically memories that memorize

results, just as human brain memories certain results. ANNs use memory-based

storage of information in ways that are different and more flexible than simple storage

in a look-up table. In the ANN, as in the brain, the storage of information is
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distributed through the network. Although this makes it hard to keep things separate

that should be kept separate, it does give rise to the ANNs ability to make

generalizations that are so important to the practical applications of ANNs. The

characteristics of ANNs are described as follows:

i) The ANNs exhibit mapping capabilities, that is, they can map input patterns

to their associated output patterns.

ii) The ANNs learn by examples. Thus, ANN architectures can be 'trained'

with known examples of a problem before they are tested for their

'inference' capability on unknown instances of the problem. They can,

therefore, identify new objects previously untrained.

iii) The ANNs process the capability to generalize. Thus, they can predict new

outcomes from past trends.

iv) The ANNs are robust systems and are fault tolerant. They can, therefore,

recall full patterns from incomplete, partial or noisy patterns.

v) The ANNs can process information in partial, at high speed, and in a

distributed manner.

2.9 Some Application Domains for ANNs

Using ANNs can solve many computationally intensive problems in pattern

recognition and classification. These problems include character recognition, speech

recognition, speaker recognition, medical diagnosis, financial data analysis, finger

print identification, photographic image identification, image and signal restoration,

chromosome classification, and robot movement and manipulation.

2.10 Backpropagation Algorithm

The backpropagation (BP) network is a layered, feedforward network that is fully

interconnected by layers. Thus, there are no feedback connections and connections

that bypass one layer to go directly to a latter layer. Although only three layers are

used in the discussion, more than one hidden layer is pennissible.
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The BPleaming algorithm involves two phases. During the first phase the input is

presented and propagated forward through the network to compute the output value

Opk for each node. This output is then compared with the targets, resulting an error

signal for each output node. The second phase involves a backward pass through the

network during which the error signal Opk is passed to each node in the network and

the appropriate weight changes are made. This second backward pass allows the

recursive computation of 0 as indicated above. The first step is to compute 0 for each

of the output nodes. This simply the difference between the actual and desired output

values times the derivative of the squashing function. Then the weight changes for all

connections that feed into the final layer can be computed. After this is done, then

compute o's for all nodes in the penultimate layer. This propagates error back one

layer and same process can be repeated for every layer.

Output layer

• • •

Input layer

Xpl Xpi XpN

Fig. 2.11 The three-layer BP network architecture.
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The significance of the process is that, as the network trains, the nodes in the

intermediate layers organize themselves such that different nodes learn to recognize

different features of the total input space. After training, when presented with an

arbitrary input pattern that is noisy or incomplete, the nodes in the hidden layer of the

network will respond with an active output if the new input contains a pattern that

resembles the feature the individual node learns to recognize during training.

Let us consider an input vector, xp = (x), xz, ... , xpn)" is applied to the input layer

of the network. The "p" subscript refers to the p training vector. The input nodes

distribute the values to the hidden layer nodes. The net input to the jth hidden node is,

N
h "h B"netpj=L..JWjiXpi+ j

i=1
(2.13)

Where w;; is the weight on the connection from ith input node to jth hidden node, and

e;' is the bias term. The "h" subscript refers to the quantity on the hidden layer.

Assuming that activation of the node is equal to the net input; then, the output of the

node is,

. Ih( ")lpi = j netpj

Where the function Ii' (net;j) is referred to as an activation function.

The equations of the output nodes are,

I.
o "" 0- B"

netpk = L,Wkjlpj + k
j=1

0pk = I," (net;k)

Where "0" superscript refers to quantities on the output layer.

2.10.1 Update of Output-Layer Weights

(2.14)

(2.15)

(2.16)

The error at a single output node is defined as <5pk = Y pk - 0 pk , where the subscript

"p" refers to the pth training vector, and "k" refers to the kth output node. In this case
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Ypk is the desired output and 0pk is the actual output of the kth node. The error to be

minimized is the sum of the squares of the errors for all output nodes:

(2.17)

To determine the direction in which the change of weights, the negative of the

gradient of Ep• aEp• with respect to weights, Wkj is calculated. Then the values of the

weights can adjust such that the total error can be reduced. It is often usual to think of

Ep as a surface in the weight space.

From Eq. (2.17) and the definition of Opk

(2.18)

(2.19)

(2.20)

Where Eq. (2.16) is used for the output value, Opk. and the chain rule for partial

derivatives. The last factor of Equation (2.19) is,

a(net;,) a ~ o. B" .
--0- = --0 £...J Wkjlpj + k = Ip)
Ow'j Ow~ j"

Combining Eqs. (2.19) and (2.20), the negative gradient,

(2.21 )

As far the magnitude of the weight change is concerned, it has been taken to be

proportional to the negative gradient. Thus the weights on the output layer are updated

according to

(2.22)

Where,

(2.23)

The factor TJ is called the learning rate parameter. If the sigmoid function is used then

the weight update equation for output node is,
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w~(t + I) = w~(t) + 1](Yp' -Opk )Op' (1- 0p' )ipj

By defining output layer error term,

By combining Eqs. (2.24) and (2.25) the weight update equation becomes,

2.10.2 Update of Hidden-Layer Weights

The error of the hidden layer is given by,

The gradient of Ep with respect to hidden layer weights,

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

Each of the factors of Eq. (2.28) can be calculated explicitly from previous equations.

The result is,

The hidden layer weights update in proportion to negative of the Eq. (2.29)
, ,

~ pW;, = 1Jff' (net;)x pi L: (y pk - 0 pk)f: (net;, )WZ;
k

By using Equation (2.25),
,

~pW;, = 1Jft (net~j)xpi L:t5;kW~,
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Every weight update on the hidden layer depends on all error terms, 0;" on the

output layer. The known errors on the output layers are propagated back to the hidden

layer to determine the appropriate weight changes on that layer. By defining hidden

layer error term,
,

~" flo ( " )"~" "Upj = j netpJ LJUpkWk),
So the weight update equation becomes analogous to those for the output layer

w;; (t + 1) = w;; (t) + 1]O;jX p;

(2.31 )

(2.32)

The amount of weight adjustment depends on three factors: 6, TJ, x. The size of the

weight adjustment is proportional to 6, the error value of the node. Thus a larger error

value of that node results in the larger adjustments to its incoming weights.

The weight adjustment is also proportional to x, the output value for that

originating node. If this output value is small, then the weight adjustment is small. If

the output value is large, then the weight adjustment is large. Thus a higher activation

value for incoming node results in a larger adjustment to this outgoing weight.

The value of TJ is commonly between [0.1, 1.0] is chosen by the network user, and

usually reflect the rate of learning of the network to ensure that the network will settle

to a solution. A small value of TJ means that the network will have make a large

number of iterations, but that is the price to be paid. It is often possible to increase the

size of TJ as learning proceeds. Increasing TJ as the network error decreases will often

help to speed convergence by increasing the step size as the error reaches a minimum,

but the network may bounce around too far from the actual minimum value if TJ gets

too large.
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Chapter 3

Rule Extraction from ANNs (REANN)

3.1 Introduction

It is becoming increasingly apparent that without some form of explanation

capability, the full potential of ANNs may not be realized. The rapid and successful

proliferation of applications incorporating ANNs in many fields, such as commerce,

science, industry, medicine etc., offers a clear testament to the capability of ANN

paradigm. Extracting rules from trained ANN is one of the promising areas that are

commonly used to explain the functionality of ANNs. The aim of this chapter is to

introduce a new algorithm to extract rules from trained ANNs. The new algorithm is

known as rule extraction from ANNs (REANN). Detailed description ofREANN and

its different components are presented in this chapter.

3.2 The REANN Algorithm

A standard three-layer feedforward ANN is the basis of the proposed algorithm

y -y

REANN. The hyperbolic tangent functiono(y) = e -:-e_ , which can take any value
. eY + e Y

in the interval [-1, I], is used as the hidden node activation function. Rules are
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extracted from near optimal ANN by using a new rule extraction algorithm, REx. The

aim of REANN is to search for simple rules with high predictive accuracy. REANN

uses first order information of training examples to find a smaller number of

conditions that can differentiate one examples of a particular class with other

examples of different classes. The reason for using first order information is to avoid

the combinatorial complexity in computation. However, the use of second or higher

order information may provide better results with high computational cost.

In comparison with other existing algorithms in the literature, the major

advantages of REANN include i) it determines the near optimal architecture

automatically by using a constructive-pruning strategy ii) it uses an efficient method

to discretize the output values of hidden nodes iii) it is computationally inexpensive

and iv) the extracted rules are concise, comprehensible, order insensitive and highly

accurate.

The major steps of REANN are summarized in Fig. 3.1, which are explained

further as follows:

Step 1Create an initial ANN architecture. The initial architecture has three layers, i.e.

an input, an output, and a hidden layer. The number of nodes in the input and

output layers is the same as the number of inputs and outputs of the problem.

Initially, the hidden layer contains only one node. The number of nodes in the

hidden layer is automatically determined by using a basic constructive

algorithm. Randomly initialize all connection weights within a certain small

range.

Step 2 Remove redundant input nodes, and connections between input nodes and

hidden nodes and between hidden nodes and output nodes by using a basic

pruning algorithm. When pruning is completed, the ANN architecture

contains only important nodes and connections. This architecture is saved for

the next step.

Step 3 Discretize the outputs of hidden nodes by using an efficient heuristic

clustering algorithm. The reason for discretization is that the outputs of hidden

nodes are continuous, thus rules are not readily extractable from the ANN.
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Step 4 Generate rules that map the inputs and outputs relationships. The task of the

rule generation is accomplished in three phases. In the first phase, rules are

generated by using rule extraction algorithm, REx, to describe the outputs of

ANN in terms of the discretized output values of the hidden nodes. In the

second phase, rules are generated by REx, to describe the discretized output

values of the hidden nodes in terms of the inputs. Finally in the third phase,

rules are generated by combining the rules generated in first and second

phase.

Step 5 Prune redundant rules generated in Step 4. Replace specific rules with more

general ones.

Step 6 Check the classification accuracy of the network. If the accuracy falls below

an acceptable level, i.e. rule pruning is not successful then stop. Otherwise go

to Step 5.

Determine ANN architecture automatically

Remove redundant connections

Discretize the output values of hidden nodes

Generate rules

Prune redundant rules

Fig. 3.1 Flow chart of the REANN algorithm.

37



The rules extracted by REANN are compact and comprehensible, and do not

involve any weight values. The accuracy of the rules from pruned networks is high as

the accuracy of the original networks. The important features of REANN are the rule

generated by REx is recursive in nature and is order insensitive, i.e, the rules need not

be required to fire sequentially.

3.2.1 Constructive Algorithm

One drawback of the traditional backpropagation algorithm is the need to

determine the number of nodes in the hidden layer prior to training. To overcome this

difficulty, many algorithms that construct a network dynamically have been proposed

[61-63]. The most well known constructive algorithms are dynamic node creation

(ONC) [64], feedforward neural network construction (FNNC) algorithm and the

cascade correlation (CC) algorithm [65].

The constructive algorithm used in REANN is based on the feedforward neural

network construction (FNNC) algorithm proposed by Rudy Setiono and Huan Uu

[66]. In FNNCA the training process is stopped when the classification accuracy on

the training set is 100% [67]. However, it is not possible to get 100% classification

accuracy for most of the benchmark classification problems. In addition, higher

classification accuracy on the training set does not guarantee the higher generalization

ability Le. classification accuracy on the testing set. Thus a validation set is used in

this study to stop the training of the network.

The major steps of constructive algorithm used in REANN are summarized in Fig.

3.2, which are explained further as follows:

Step 1 Create an initial ANN consisting of three layers, i.e., an input, an output, and a

hidden layer. The number of nodes in the input and output layers is the same

as'the number of inputs and outputs of the problem. Initially the hidden layer

contains only one node Le. h=I. Randomly initialize all connection weights

within a certain range.
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Step 2 Train the network on the training set by using BP algorithm until the error is

almost constant for a certain number of training epochs, 't, is specified by the

user.

Step 3 Compute the ANN error E on validation set. If E is found unacceptable (Le.,

too large), then assume that the ANN has inappropriate architecture, and go to

the next step. Otherwise stop the training process. The ANN error E is

calculated according to the following equations:

(3.1 )

where, k is the number of patterns, C is the number of output nodes, and tpiis

the target value for pattern Xiat output node p. Spiis the output of the network

at output node p.

(3.2)

. h is the number of hidden nodes in the network, Xiis an n-dimensional input

pattern, i=l, 2, .... , k, Wm is an p-dimensional vector weights for the arcs

connecting the input layer and the m-th hidden node, m=I, 2, ... , h, Vm is a C-

dimensional vector of weights for the arcs connecting the m-th hidden node

and the output layer. The activation function for the output layer is sigmoid

function a(y) = 1/(1+e-Y) and for the hidden layer is hyperbolic tangent

function /iCy)= (eY - e-Y)/ (eY + e-Y).

Step 4 Add one hidden node to hidden layer. Randomly initialize the weights of the

arcs connecting this new hidden node with input nodes and output nodes. Set

h = h+l and go to step 2.

39

(
(



Create an initial ANN architecture and
set h = I

Train the network

Yes

Add one hidden node and set h = h + 1

Fig. 3.2 Flow chart ofthe constructive algorithm used in REANN.

Although other architecture determination algorithms, such as pruning and

evolutionary algorithms could be used in REANN, the reasons for using constructive

algorithm are fourfold. First, it is straightforward in constructive algorithms to specifY

an initial network, while it is problematic in pruning algorithms, one does not know in

practice how big the initial network should be. Second, constructive algorithms

always search for small network solutions first. They are thus computationally more

efficient than pruning algorithms, in which the majority of the training time is spent

on networks larger than necessary. Because of smaller solutions, the ANN is less

likely to overfit the training data and, thus, more likely to generalize better. Third, the

strong convergence of a constructive algorithm follows directly from its universal

approximation ability. Fourth, a constructive approach usually requires a relatively

small number of user specified parameters. The use of many user specified parameters

requires a user to know rich prior knowledge, which often does not exist for complex

real world problems.
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3.2.2 Pruning Algorithm

Pruning offers an approach for dynamically determining an appropriate network

topology. Pruning techniques begin by training a larger than necessary network and

then eliminate weights and nodes that are deemed redundant [68-69].

As the nodes of the hidden layer are determined automatically by constructive

algorithm in REANN, the aim of this pruning algorithm used here is to remove, as

many unnecessary connections as possible. A node is pruned if all the connections to

and from the node are pruned. Typically, methods for removing weights from the

network involve adding a penalty term to the error function. It is hope that by adding

a penalty term to the error function, unnecessary connections will have small weights,

and therefore pruning can reduce the complexity of the network significantly. The

simplest and most commonly used penalty term is the sum of the squared weights.

Given a set of input patterns x, E 9\" , i= 1, 2, ... , k. Let Wm is an p-dimensional

vector weights for the arcs connecting the input layer and the m-th hidden node. The

weight of the connection from the I-th input node to the m-th hidden node is denoted

by wm[, Vm is a c-dimensional vector of weights for the arcs connecting the m-th

hidden node and the output layer. The weight of the connection from the m-th hidden

node to the p-th output node is denoted by vpm It has been suggested that faster

convergence can be achieved by minimizing the cross entropy function instead of

squared error function [70]. The backpropagation algorithm is applied to update the

weights (w, v) and minimize the following function:

8(w, v) = F(w, v) + pew, v),

Where F(w, v) is the cross entropy function

k 0

F( w, v) = - II(tp, 10gSp, + (I-lp,)log(l- Sp,)),
;=1 p=1

Sp, is the output of the network

"Sp, = u(Io((x,)' woo)vpoo)
111=1
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Where (Xi)" Wm denotes the scalar product of the vectors X; and wm, 8(.) is the

hyperbolic tangent function and a(.) is the logistic sigmoid function.

p (w, v) is a penalty term used for weight decay

(
" "p(wm,)' "" P(v,m,)' J ("" 2 h" ,)p(w,v)=c, II , +II , +&, II(wm,) + II(vpm)

m=11=11+p(wm1) m=lp=ll+p(Vpm) _ m=II=1 m=lp=1

(3.6)

The values for the weight decay parameters EI, E2> 0 must be chosen to reflect the

relative importance of the accuracy of the network verses its complexity. More

weights may be removed from the network at the cost of a decrease in the network

accuracy with larger values of these two parameters. They also determine the range of

values where the penalty for each weight in the network is approximately equal to EI'

The parameter 13> 0 determines the steepness of the error function near the origin.

The pruning algorithm used in REANN is briefly described below. This pruning

algorithm removes the connections of the ANN according to the magnitudes of their

weights. As the eventual goal of REANN is to get a set of simple rules that describe

the classification process, it is important that all unnecessary connections and nodes

must be removed. In order to remove as many connections as possible, the weights of

the network must be prevented from taking values that are too large [71]. At the same

time, weights of irrelevant connections should be encouraged to converge zero. The

penalty function is found to be particularly suitable for these purposes.

The steps of the weight-pruning algorithm are summarized in Fig. 3.3, which are

explained further as follows:

Step 1 Train the network to meet a prespecified accuracy level with the following

condition (3.7) satisfied by all correctly classified input patterns.

max Iepi 1= max lsI" - tpi 1<; 17" P = 1,2, ...,C. (3.7)
I' I'
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Let 111 and 112 be positive scalars such that 111 + 112 < 0.5 (111 is the error

tolerance, 112 is a threshold that determines if a weight can be removed), where

1), E [0, 0.5). Let (w, v) be the weights of this network.

Step 2 Remove connections between input nodes and hidden nodes and between

hidden nodes and output nodes. This task is accomplished in two phases. In

the first phase, connections between input nodes and hidden nodes are

removed. For each w.i in the network,

if (3.8)

then remove Wni from the network. In the second phase, connections between

hidden nodes and output nodes are removed. For each vpm in the network,

(3.9)

then remove vpm from the network.

Step 3 Remove connections between input nodes and hidden nodes further. If no

weight satisfies condition (3.8) or condition (3.9), then for each Wm1 in the

network, computewml = maxlvpmwm/l. Remove Wml with smallest Wm1.
p

Continue, otherwise stop.

Step 4 Retrain the network and calculate the classification accuracy of the network.

Step 5 If classification rate of the network falls below an acceptable level, then stop

and use the previous setting of network weights. Otherwise, go to Step 2.

The pruning algorithm used in REANN intended to reduce the amount of training

time. Although it can no longer be guaranteed that the retrained pruned ANN will

give the same accuracy rate as the original ANN, the experiments show that many

weights can be eliminated simultaneously without deteriorating the performance of

the ANN. The two conditions (3.8) and 3.9) for pruning depend on the weights for

connections between input and hidden nodes and between hidden and output nodes. It

43

,
~,
,I,



Start

Train the network

No

Remove v pm

No

Yes

Remove W ml

rnJ';X Iv pm Wm/ I::;; 4112

satisfied?

Retrain the network

No

Fig. 3.3 Flowchart of the pruning algorithm.

is imperative that during the training these weights be prevented from getting too

large. At the same time, small weights should be encouraged to decay rapidly to zero.
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3.2.3 Heuristic Clustering Algorithm

The process of grouping a set of physical or abstract objects into classes of similar

objects is called clustering. A cluster is a collection of data objects that are similar

within the same cluster and are dissimilar to the object in other clusters. A cluster of a

data objects can be treated collectively as one group in many applications [72]. There

exist a large number of clustering algorithms in the literature such as k-means, k-

medoids [73-74]. The choice of clustering algorithm depends both on the type of data

available and on the particular purpose and application.

After applying pruning algorithm in REANN, the ANN architecture produced by

constructive algorithm contains only important connections and nodes. Nevertheless,

rules are not readily extractable because the hidden node activation values are

continuous. The discretization of these values paves the way for rule extraction.

o

t
-Iloo
c
-Il
"0
:.2
1;l, 0.5
~<

Constant output

L-

o 100 200 300 400 500
Convergence in epochs

Fig. 3.4 Output of hidden nodes.

It is found that some hidden nodes of an ANN maintain almost constant output

while other nodes change continuously during the whole training process [75]. Fig.

3.4 shows a hidden node maintains almost constant output after some training epochs.

In REANN, no clustering algorithm is used when hidden nodes maintain almost
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constant output. If the outputs of hidden nodes do not maintain constant value, a

heuristic clustering algorithm is used.

The aim of the clustering algorithm is to discretize the output values of hidden

nodes. The algorithm places candidates for discrete values such that the distance

between them is at least a threshold value E.A very small Ewill always guarantee that

the network with discrete activation values will have the same accuracy as the original

network with continuous activation values. The algorithm can then be run again with

a larger value of Eto reduce the number of clusters.

The steps of the heuristic clustering algorithm are summarized in Fig. 3.5, which

are explained further as follows:

Step 1 LetE E (0, I). D is the activation values in the hidden node. 01 is the

activation value for the first pattern. The first cluster, H(I) = 01, count = I,

and sum(l) = 01 set D = 1.,

Step 2 For each pattern Pi i = 1,2,3, ..... k. Checks whether subsequent activation

values can be clustered into one of the existing clusters. The distance between

an activation value under consideration and its nearest cluster, 10 - HU)I, is.

computed. If this distance is less than £, then the activation value is clustered

in cluster j. Otherwise, this activation value forms a new cluster. Let 0 be its

activation value. If there exists an index j such that

10-H(j)I= . min 10-HU)1 and 10-HcJ)1 $&
lsI1,2, ......lJ}

- - - -
then set count(j ):=count(j)+ I, sum(j ):=sum(j )+ 0 else D = D+ I

H(D) = 0, count(D) = I, sum (D) = o.
Step 3 Replace H by the average of all activation values that have been clustered into

this cluster: HG):=sumG)/countG),j=l, 2, 3, ..... D.
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Stcp 4 Once the activation values of all hidden nodes have been obtained, the

accuracy of the network is checked with the activation values at the hidden

nodes replaced by their discretized values. An activation value (; is replaced
- -

by H(j), where index j is chosen such that j = arg min j 15- H(j) I. If the

accuracy of the network falls below the required accuracy, then e must be

decreased and the clustering algorithm is run again, otherwise stop.

Initialization.
Start with first activation value

Replace the cluster value by averaging

Clustered into
existing clusters?

No

No

Yes

Yes

Accuracy
falls?

Fig. 3.5 Flow chart of the heuristic clustering algorithm.

For a sufficiently small e, it is always possible to maintain the accuracy of the

network with continuous activation values, although the resulting number of different

discrete activations can be impractically large.
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The best E value is one that gives a high accuracy rate after the clustering and at

the same time generates as few clusters as possible. A simple way of obtaining an

optimal value for E is by searching in the interval (0, 1). The number of clusters and

the accuracy of the network can be checked for all values of E = is, i= 1, 2, ... , where

S is a small positive scalar, e.g. 0.10. Note also that it is not necessary to fix the value

of E equal for all hidden nodes.

3.2.4 Rule Extraction Algorithm (REx)

Classification rules are sought in many areas from automatic knowledge

acquisition [76-77] to data mining [78-79] and ANN rule extraction. This is because

classification rules possess some attractive features. They are explicit, understandable

and verifiable by domain experts, and can be modified, extended and passed on as

modular knowledge. The REx is composed of three major functions:

i) Rule Extraction: this function iteratively generates shortest rules and

remove/marks the patterns covered by each rule until all patterns are

covered by the rules.

ii) Rule Clustering: rules are clustered in terms of their class levels and

iii) Rule Pruning: redundant or more specific rules in each cluster are

removed.

A default rule should be chosen to accommodate possible unclassifiable patterns.

If rules are clustered, the choice of the default rule is based on clusters of rules.

The steps of the Rule Extraction (REx) algorithm are summarized in Fig. 3.6,

which are explained further as follows:

Step 1 Extract Rule:

i=O;while (data is NOT empty/marked){

generate Ri to cover the current pattern and differentiate it from patterns in

other categories;

remove/mark all patterns covered by Ri ; i++}
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The core of this step is a greedy algorithm that finds the shortest rule based on

the first order information that can differentiate the pattern under

consideration from the patterns of other classes. It then iteratively generates

rules and removes the patterns covered by the rules.

Step 2 Cluster Rule:

Cluster rules according to their class levels. Rules generated in Step I are

grouped in terms of their class levels. In each rule cluster, redundant rules are

eliminated; specific rules are replaced by more general rules.

Step 3 Prune Rule:

replace specific rules with more general ones;

remove noise rules;

eliminate redundant rules;

Step 4 Check whether all patterns are covered by any rules. If yes then stop,

otherwise continue.

Step 5 Determine a default rule:

A default rule is chosen when no rule can be applied to a pattern.

Yes

Fig. 3.6 Flow chart ofthe rule extraction (REx) algorithm.
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REx exploits the first order information in the data and finds shortest sufficient

conditions for a rule of a class that can differentiate it from patterns of other classes. It

can generate concise and perfect rules in the sense that the error rate of the rules is not

worse than the inconsistency rate found in the original data. The novelty of REx is

that the rule generated by it is order insensitive, i.e, the rules need not be required to

fire sequentially.
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Chapter 4

Experimental Evaluation

4.1 Introduction

This chapter evaluates the performance of REANN on several well-known

benchmark classification problems. These are the breast cancer, iris, diabetes, wine,

season, golf playing, and lenses classification problems. They are widely used in

machine learning and ANN research. The data sets representing all the problems were

real world data and obtained from the uel machine learning benchmark repository.

Experimental details, results, comparisons with other works and discussion are
described in this chapter.

4.2 Data Set Description

The following subsections briefly describe the data set used in this study. The

characteristics of the data sets are summarized in Table 4.1. The detailed descriptions

of the data sets are available at ics.uci.edu (128.195. I I) in directory /pub/machine-
learning-databases [80-81 J.

4.2.1 The Breast Cancer Data

The purpose of this problem was to diagnose a breast tumor as either benign or

malignant based on cell descriptions gathered by microscopic examination. Input
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attributes were for instance the clump thickness, the uniformity of cell size and cell

shape, the amount of marginal adhesion, and the frequency of bare nuclei.

The data set representing this problem contained 699 examples. Each example

consisted of nine-element real valued vectors. This was a two-class problem. All

inputs'are continuous; 65.5% of the examples are benign. This makes for an entropy

of 0.93 bits per example. This dataset was created based on the "breast cancer

Wisconsin" problem dataset from the UCI repository of machine learning databases.

4.2.2 The Iris Data

This is perhaps the best-known database to be found in the pattern recognition

literature. The data set contains 3 classes of 50 instances each, where each class

refers to a type of iris plant. One class is linearly separable from the other 2; the latter

are not linearly separable from each other.

Number of Instances: 150 (50 in each of three classes). Number of Attributes: 4

numeric (sepal length, sepal width, petal length and petal width). This was a three-

class problem: Iris Setosa, Iris Versicolour and Iris Virginica. Class Distribution:

33.3% for each on classes.

4.2.3 The Diabetes Data

The objective of this data set was diagnosis of diabetes of Pima Indians. Based on

personal data, such as age, number of times pregnant, and the results of medical

examinations e.g. blood pressure, body mass index, result of glucose tolerance test,

etc., try to decide whether a Pima Indian individual was diabetes positive or not.

There were 768 examples in the data set, each of which consisted of eight-element

real valued vectors. This was a two-class problem. All inputs are continuous. 65.1%

of the examples are diabetes negative; entropy 0.93 bits per example. This dataset was

created based on the "Pima Indians diabetes" problem dataset from the UCI repository

of machine learning databases.
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Table 4.1 Characteristics of data sets.

Data Sets No. of Examples Input Attributes Output Classes

BreastCancer 699 9 2

Iris 150 4 3

Diabetes 768 8 2

Wine 178 13 3

Season 11 3 4

Golf Playing 14 4 2

Lenses 24 4 3

4.2.4 The Wine Data

In a classification context, this is a well-posed problem with "well behaved" class

structures. A good data set for first testing of a new classifier, but not very

challenging. These data are the results of a chemical analysis of wines grown in the

same region in Italy but derived from three different cultivars. The analysis

determined the quantities of 13 constituents found in each of the three types of wines.

Number of instances 178, number of attributes 13. All attributes are continuous. This

was a two-class problem.

4.2.5 The Season Data

The season data set contains discrete data only. There were 11 examples in the

data set, each of which consisted of three-elements. These are weather, tree and

temperature. This was a four-class problem.

4.2.6 The Golf Playing Data

The Golf playing data set contains both numeric and discrete data. There were 14

examples in the data set, each of which consisted of four-elements. These are outlook,

temperature, humidity and wind. This was a two-class problem.
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4.2.7 The Lenses Data

The data set contains 24 examples and are complete and noise free. The examples

highly simplified the problem. The attributes do not fully describe all the factors

affecting the decision as to which type, if any, to fit.

Number of Instances: 24. Number of Attributes: 4; age, spectacle prescription,

astigmatic and tear production rate. All attributes are nominal. This was three-class

problem: hard contact lenses, soft contact lenses and not contact lenses.

4.3 Experimental Setup

In all experiments, one bias node with a fixed input 1 was used for hidden and

output layers. The learning rate was set between [0.1, 1.0] and the weights were

initialized to random values between [-1.0,1.0]. The number of training epochs ~ was

chosen between 5 and 20. Value OfE for clustering was set between [0.1,1.0]. Values

of weight decay parameters E\, E2, were set between [0.05, .5] and [10-4, lQ.8] and 13

eY - e-Y
was 10 for penalty function. Hyperbolic tangent function S(y) = y _y is used as

e +e

hidden node activation function and logistic sigmoid function a(y) = 1 as output
I+e-Y

node activation function.

In this study, all data sets representing the problems are divided into two sets. One

is the training set and the other is the testing set. Note that no validation set is used in

this study. The numbers of examples in the training set and testing set are based on

numbers in other works, in order to make comparison with those works possible. The

sizes of the training and testing data sets used in this study are given as follows:

• Breast cancer data set: the first 350 examples are used for the training set

and the rest 349 for the testing set.

• Iris data set: the first 75 examples are used for the training set and the rest 75

for the testing set.

• Diabetes data set: the first 384 examples are used for the training set and the

rest 384 for the testing set.
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• Wine data set: the first 89 examples are used for the training set and the rest

89 for the testing set.

4.4 Experimental Results

Tables 4.2-4.8 show ANN architectures produced by REANN and training epochs

over 10 independent runs on seven benchmark classification problems. The initial

architecture was selected before applying the constructive algorithm, which was used

to determine the number of nodes in the hidden layer. The intermediate architecture

was the outcome of the constructive algorithm, and the final architecture was the

outcome of pruning algorithm used in REANN.

It is seen that REANN can automatically determine compact ANN architectures.

For example, for the breast cancer data, REANN produces more compact architecture.

The average number of nodes and connections were 6.8 and 5.8 respectively; in most

of the 10 runs 5 to 6 input nodes were pruned. For the diabetes data one hidden node

was pruned in some iterations, as all the connections to and from this node were

pruned by pruning algorithm. The average number of nodes and connections were

12.5 and 19.4 respectively.

Table 4.2 ANN architectures and training epochs for breast cancer data. The results

were averaged over 10 independent runs.

Initial Architecture Intermediate Architecture Final Architecture
No. of

No. of No. of No. of No. of No. of No. of
Epoch

Node Connection Node Connection Node Connection

Mean 12 (9-1-2) 11 12.7 18.1 6.8 5.8 233.2

Min 12(9-1-2) 11 12 11 5 5 222

Max 12 (9-1-2) 11 14 33 10 9 245
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Table 4.3 ANN architectures and. training epochs for iris data. The results were

averaged over 10 independent runs.

In!tial Architecture Intermediate Architecture Final Architecture
No. of

No. of No. of No. of No. of No. of No. of
Epoch

Node Connection Node Connection Node Connection

Mean 8 (4-1-3) 7 9 14 8.8 10.2 196.7

Min 8 (4-1-3) 7 8 7 8 7 183

Max 8 (4-1-3) 7 10 21 10 14 217

Table 4.4 ANN architectures and training epochs for diabetes data. The results were

averaged over 10 independent runs.

Initial Architecture Intermediate Architecture Final Architecture
No. of

No. of No. of No. of No. of No. of No. of
Epoch

Node Connection Node Connection Node Connection

Mean 11(8-1-2) 10 13.2 30 12.5 19.4 302.6

Min 11 (8-1-2) 10 12 20 12 14 279

Max 11 (8-1-2) 10 14 40 13 24 326

Table 4.5 ANN architectures and training epochs for wine data. The results were

averaged over 10 independent runs.

Initial Architecture Intermediate Architecture Final Architecture
No. of

No. of No. of No. of No. of No. of No. of
Epoch

Node Connection Node Connection Node Connection

Mean 17(13-1-3) 16 18.5 40 18 26.5 213

Min 17 (13-1-3) 16 17 16 17 20 193

Max 17 (13-1-3) 16 20 64 19 43 237
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Table 4.6 ANN architectures and training epochs for season data. The results were

averaged over 10 independent runs.

Initial Architecture Intermediate Architecture Final Architecture
No. of

NO.of No. of No. of No. of No. of No. of

Connection
Epoch

Node Connection Node Connection Node

Mean 8(3-1-4) 7 8.9 13.3 8.7 11.2 88.2

Min 8 (3-1-4) 7 8 7 8 9 73

Max 8(3-1-4) 7 10 14 10 16 101

Table 4.7 ANN architectures and training epochs for golf playing data. The results

were averaged over 10 independent runs.

Initial Architecture Intermediate Architecture Final Architecture
No. of

No. of No. of No. of No. of No. of No. of
Epoch

Node Connection Node Connection Node Connection

Mean 7 (4-1-2) 6 8.2 13.2 7.9 10.5 94.5

Min 7 (4-1-2) 6 7 6 7 6 86

Max 7 (4-1-2) 6 9 18 9 14 103

Table 4.8 ANN architectures and training epochs for lenses data. The results were

averaged over 10 independent runs.

Initial Architecture Intermediate Architecture Final Architecture
No. of

No. of No. of No. of No. of No. of No. of
Epoch

Node Connection Node Connection Node Connection

Mean 8 (4-1-3) 7 9.1 14.7 8.9 12.1 109.2

Min 8 (4-1-3) 7 8 7 8 7 97

Max 8 (4-1-3) 7 10 21 10 17 128
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Figs. 4.1-4.2 show the smallest of the pruned networks over 10 runs for breast

cancer and diabetes problem. The pruned network for breast cancer problem has only

I hidden node and 5 connections. The accuracy of this network on the training data

and testing data were 96.275% and 93.429% respectively. In this example only three

input attributes AI, A6 and A9 were important and only three discrete values of hidden

node activation's were needed to maintain the accuracy of the network. The discrete

values found by the heuristic clustering algorithm were 0.987, -0.986 and 0.004. Of

the 350 training data, 238 patters have the first value, 106 have the second value and

rest 6 patterns have third value. The weight of the connection from the hidden node to

the first output node was 3.0354 and to the second output node was -3.0354.

The pruned network for diabetes problem has only 2 hidden nodes. No input

nodes were pruned by pruning algorithm. One hidden node was pruned, as all the

connections to and from this node were pruned. The accuracy on the training data and

testing data were 76.30% and 75.52% respectively. The weight of the connection

from the first hidden node to the first output node was -1.153 and to the second output

node was 1.153 and the weight of the connection from the second hidden node to the

first output node was -32.078 and to the second output node was 32.084.
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Fig. 4.1 A pruned network for breast cancer diagnosis problem. The accuracy on

training and testing data sets were 96.275% and 93.429% respectively.

Vii ~ -/.1526
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Fig. 4.2 A pruned network for diabetes problem.
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Fig. 4.3 Training time error for breast cancer data.

Fig. 4.4 Training time error for diabetes data.
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Fig. 4.5 Hidden node addition for the diabetes data.

Figs. 4.3-4.4 show the training time error for breast cancer and diabetes problem.

For breast canc:r problem, it was observed that the training error decreased and

maintained almost constant for a long time after some training epochs and then

fluctuates. The fluctuation was made due to the pruning process. As the network was

retrained after completing the pruning process thus the training error again maintained

almost constant value. For diabetes problem, it was observed that the training error

decreased and maintained almost constant after some training epochs, it was further

decreased when additional hidden nodes were added. The fluctuation was observed

due to the connection pruning and finally maintained almost constant value in account

of retraining the pruned network. Fig. 4.5 shows the effects of hidden node addition

with increasing the training epochs for diabetes problems. It is seen that the number of

hidden node was one at the beginning of the training process. As the training process

progressed, the number of hidden nodes increases gradually. Finally the number of

hidden nodes is 3 at 300 epochs.
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Table 4.9 Number of extracted rules and rules accuracy for seven benchmarks

problems.

Data Sets No. of Extracted Rules Accuracy on Rules Accuracy on
Rules Training Set Testing Set

BreastCancer 2 96.28 % 93.43 %

Iris 3 98.67 % 97.33 %

Diabetes 2 76.56 % 72.14%

Wine 3 91.01 % 83.15 %

Season 4 100 % 100 %

GolfPlaying 3 100% 100 %

Lenses 8 100 % 100 %

Table 4.9 shows number of extracted rules and rules accuracy for seven

benchmark problems. In most of the cases REANN produces fewer rules with better

accuracy. It was observed that two to three rules were sufficient to solve the problems.

The accuracy was 100% for three data sets include season, golf playing, and lenses

classification. These data sets having lower number of examples. The accuracy for

other data sets was also encouraging and better compared to other works.

4.4.1 Extracted Rules

The number of rules extracted by REANN and the accuracy of the rules in training

and testing data sets were described in Table 4.9. But the visualization of the rules in

terms of the original attributes ware not discussed. The following subsections

discussed the rules extracted by REANN in terms of the original attributes for breast

cancer, iris, diabetes, wine, season, golf playing, and lenses classification problems.

The number of conditions per rule and the number of rules extracted were also

visualized here.
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4.4.1.1 Breast Cancer Data

Rule 1: If Clump thickness (Ail <~0.6 and Bare nuclei (A6) <~0.5

and Mitosis(A9) <~0.3, then benign

Default Rule: malignant.

4.4.1.2 Iris Data

Rule 1: If Petal-length (A3) <~1.9 then Iris setosa

Rule 2: If Petal-length (A3) <~4.9 and Petal-width (A.) <~1.6

then Iris versicolor

Default Rule: Iris virginica.

4.4.1.3 Diabetes Data

Rule 1: If Plasma glucose concentration (A2) <~0.64

and Age (As) <~0.69

then tested negative

Default Rule: tested positive.

4.4.1.4 Wine Data

Rule 1: IfInput 10 (AIO) <~3.8 then class 2

Rule 2: IfInput 13 (AI3) >~845 then class I

Default Rule: class 3.

4.4.1.5 Season Data

Rule 1: If Tree (A2) ~ yellow then autumn.

Rule 2: If Tree (A2) ~ leafless then autumn

Rule 3: If Temperature (A3) ~ low then winter

Rule 3: If Temperature (A3) ~ high then summer

Default Rule: spring.
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4.4.1.6 Golf Playing Data

Rule 1: If Outlook (AI) = sunny and Humidity>=85 then don't play

Rule 2: Outlook (AI) = rainy and Wind= strong then don't play

Default Rule: play.

4.4.1.7 Lenses Data

Rule 1: If Tear Production Rate (A4) = reduce then no contact lenses

Rule 2: If Age (AI) = presbyopic and Spectacle Prescription (A2)=

hypermetrope and Astigmatic (A3)= yes then no contact lenses

Rule 3: If Age (AI) = presbyopic and Spectacle Prescription (A2)

= myope and Astigmatic (A3)= no then no contact lenses

Rule 4: If Age (AI) = pre-presbyopic and Spectacle Prescription (A2)=

hypermetrope and Astigmatic (A3) = yes and Tear Production

Rate (A4) = normal then no contact lenses

Rule 5: If Spectacle Prescription (A2)= myope and Astigmatic (A3)= yes

and Tear Production Rate (A4) = normal then hard contact lenses

Rule 6: If Age (AI) = pre-presbyopic and Spectacle Prescription (A2)=

myope and Astigmatic (A3)= yes and Tear Production Rate (A4)

= normal then hard contact lenses

Rule 7: If Age (AI) = young and Spectacle Prescription (A2)= myope

and Astigmatic (A3)= yes and Tear Production Rate (A4)

= normal then hard contact lenses

Default Rule: soft contact lenses.
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Table 4.10 Performance comparison ofREANN with other algorithms for

breast cancer data.

Data Feature REANN NN DT C4.5 NN- OCI CART

Set RULES RULES C4.5

No. of Rules 2 .4 7 - - - -

Breast Avg. No. of

Cancer Conditions 3 3 1.75 - - - -
Accuracy % 96.28 96 95.5 95.3 96.1 94.99 94.71

Table 4.11 Performance comparison ofREANN with other algorithms for iris data.

Data Set Feature REANN NN DT BIORE Partial Full

RULES RULES RE
RE

No. of Rules 3 3 4 4 6 3

Avg. No. of

Iris Conditions 1 I 1 3 3 2

Accuracy % 98.67 97.33 94.67 78.67 78.67 97.33

Table 4.12 Performance comparison ofREANN with other algorithms for

diabetes data.

Data Set Feature REANN NNRULES C4.5 NN- OCI CART

C4.5

No. of Rules 2 4

Avg. No. of 2 3

Diabetes Conditions

Accuracy % 76.56 76.32 70.9 76.4 72.4 72.4
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Table 4.13 Performance comparison of REANN with other algorithms for

season data.

Data set Feature REANN RULES X2R

No. of Rules 5 7 6

Avg. No. of

Season Conditions 1 2 1

Accuracy % 100.0 100.0 100.0

Table 4.14 Performance comparison ofREANN with other algorithms for

golf playing data.

Data set Feature REANN RULES RULES-2 X2R

No. of Rules 3 8 14 3

Avg. No. of 2 2 2 2

Golf Playing Conditions

Accuracy % 100.0 100.0 100.0 100.0

Table 4.15 Performance ofREANN for wine data.

Data set Feature REANN

No. of Rules 3

Avg. No. of

Wine Conditions 3

Accuracy % 91.01
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Table 4.16 Performance comparison ofREANN with other algorithm for lenses data.

Data set Feature REANN PRISM

No. of Rules 8 9

Avg. No. of

Lenses Conditions 3 -
Accuracy % 100.0 100.0

16 .. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Fig. 4.6 Comparison of number of rules for various algorithms.
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4.5 Comparison

This section compares experimental results of REANN with the results of other

works. The primary aim of this work is not to exhaustively compare REANN with all

other works, but to evaluate REANN in order to gain a deeper understanding of rule

extraction.

Table 4.10 compares REANN results of breast cancer problem with those

produced by NN RULES [II], DT RULES [II], C4.5 [76], NN-C4.5 [82], OCI [82],

and CART [83] algorithms. REANN achieved best performance although NN RULES

was closest second. But number of rules extracted by REANN are 2 whereas these

were 4 for NN RULES.

Table 4.11 compares REANN results of iris data with those produced by NN

RULES, DT RULES, BIO RE [12], Partial RE [12], and Full RE [12] algorithms.

REANN achieved 98.67% accuracy although NN RULES was closest second with

97.33% accuracy. Here number of rules extracted by REANN and NN RULES are

equal.

Table 4.12 compares REANN results of diabetes data with those produced by NN

RULES, C4.5, NN-C4.5, OCI, and CART algorithms. REANN achieved 76.56%

accuracy although NN-C4.5 was closest second with 76.4% accuracy. Due to the high

noise level, the diabetes problem is one of the most challenging problems in our

experiments. REANN has outperformed all other algorithms.

Table 4.13 compares REANN results of season data with those produced by

RULES [84] and X2R [7]. All three algorithms achieved 100% accuracy. This is

possible because the number of examples is low. Number of extracted rules by

REANN are 5 whereas these were 7 for RULES and 6 for X2R.

Table 4.14 compares REANN results of golf playing data with those produced by

RULES, RULES-2 [85], and X2R. All four algorithms achieved 100% accuracy

because the lower number of examples. Number of extracted rules by REANN are 3

whereas these were 8 for RULES and 14 for RULES-2.
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Table 4.15 shows REANN results of wine data. REANN achieved 91.01%

accuracy on wine data by extracting 3 rules. No detailed previous work found for

showing comparison of this data set.

Table 4.16 compares REANN results of lenses data with those produced by

PRISM [86]. Both algorithms achieved 100% accuracy because the lower number of

cxamples. Number of extracted rules by REANN are 8 whereas these were 9 for

PRISM.

Fig. 4.6 shows the comparison of number of rules graphically for various

algorithms. It was found that number of rules extracted by REANN is lower in most

of the cases for seven benchmark classification problems compared to other works.

Fig. 4.7 shows the comparison of number of conditions per rule graphically for

various algorithms. It was found again that number of conditions per rule is

encouraging. REANN and NN RULES emphasis the use of parallel features; while

DT RULES focus on individual feature, that's why number of conditions of rules

extracted by REANN and NN RULES are greater than DT RULES.

4.6 Discussion

This thesis has shown how rules can be extracted from a trained ANN without

making any assumptions about the network's activations or having initial knowledge

about the problem domain. If some knowledge is available, however, it can always be

incorporated into the network. For example, connections in the network from inputs

thought to be not relevant can be given large penalty parameters during training, while

those thought to be relevant can be given zero or small penalty parameters [87]. The

REANN algorithm does not require threshold activation function to force the

activation values to be zero or one [3-4], nor does it require the weights of the

connections to be restricted in a certain range [88]. Network training and pruning is

done via the simple and widely used backpropagation method [40].

REANN was capable of finding a satisfactory ANN architecture through the

constructive process. It could dynamically add hidden nodes to ANN during training,

depending on the performance of the training data. For example, the initial number of
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hidden node was one, which was small. REANN first added one node to ANN, when

adding hidden nodes had not achieved the minimum mean square error, REANN

started adding new nodes to the ANN.

It is known that constructive algorithms in some cases might produce larger sized

networks than necessary [89], and that pruning algorithms are computationally

expensive [90]. Network size and computational expense affect classification

accuracy and training time, respectively. Thus, the synergy between constructive and

pruning algorithms is suitable for producing simplified ANN architectures at a

reasonable computational expense. The use of pruning algorithms in conjunction with

constructive algorithms reduces the ANN size in terms of hidden nodes and/or

connections. For example in breast cancer problem the network architecture

determined by constructive algorithm was 9-1-2, after applying the pruning algorithm

only three connections from input to hidden node were remaining. Hence 6 input

nodes were pruned and the resulting simplified network contains 5 connections only.

The penalty function used in REANN consists of two components. The first

component is to discourage the use of unnecessary connections and the second

component is to prevent the weights of these connections from taking excessively

large values. Simple criteria for eliminating connections are also given. The two

components of penalty function have been used individually in the past. However,

applying the approach that combines the penalty function and the magnitude based

weight elimination criteria, pruning algorithm used in REANN is able to get smaller

networks than those reported in the literature.

An efficient heuristic clustering algorithm is used in REANN for discretizing the

continuous activation values of the hidden nodes. In this clustering algorithm, the first

activation value forms the first cluster. The next step is to checks whether subsequent

activation values can be clustered into one of the existing clusters. The distance

between an activation value under consideration and its nearest cluster is computed. If

this distance is less than E, then the activation value is clustered in this cluster.

Otherwise, this activation value forms a new cluster.
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Once the discrete values of all hidden nodes have been obtained, the accuracy of

the network is checked again with the activation values at the hidden nodes replaced

by their discretized values. If the accuracy of the network falls below the required

accuracy, then e must be decreased and the clustering algorithm is run again. For a

sufficiently small e, it is always possible to maintain the accuracy of the network with

continuous activation values, although the resulting number of different discrete

activations can be impractically large.

The best e value is one that gives a high accuracy rate after the clustering and at

the same time generates as few clusters as possible. A simple way of obtaining an

optimal value for l: is by searching in the interval (0, 1). The number of clusters and

the accuracy of the network can be checked for all values ofe = iy, i = 1,2, .... , where

y is a small positive scalar, e.g. 0.1O.

This thesis also introduces a basic rule extraction (REx) algorithm. REx is

composed of three major functions: rule extraction, rule clustering, and rule pruning.

The rule extraction function iteratively generates shortest rules and remove/marks the

patterns covered by each rule until all patterns are covered by the rules. On the other

hand the rule clustering clustered the rules in terms of their class levels, and finally,

redundant or more specific rules in each cluster are removed by rule pruning function.

A default rule should be chosen to accommodate possible unclassifiable patterns. REx

exploits the first order information in the data and finds shortest sufficient conditions

for a rule of a class that can differentiate it from patterns of other classes.

REx can generate concise rules from raw data sets. It only calculates first order

information in generating rules. 1t can generate perfect rules in the sense that the error

rate of the rules is not worse than the inconsistency rate found in the original data.

The novelty of REx is that the rule generated by it is order insensitive, i.e, the rules

need not be required to fire sequentially.
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Chapter 5

Conclusion

5.1 Introduction

ANNs are one of the most widely used approaches to inductive learning. They

have been applied to classification, regression, and reinforcement learning tasks, and

they have demonstrated good predictive performance in a wide variety of interesting

problem domains. They suffer from a significant limitation; however, their learned

hypotheses are usually incomprehensible. To address this limitation, a number of

research groups have developed techniques for rule extraction. Rule extraction

involves approximating the function represented by a trained network, such as

symbolic inference rules, that facilitates better comprehensibility. The focus of this

thesis has been the development of a rule-extraction algorithm, called REANN, which

overcomes the significant limitations of previous algorithms.

In this concluding chapter, the contributions and limitations of the research are

presented, and propose future research tasks aimed at addressing the limitations.

5.2 Contributions

ANNs are often viewed as black boxes. While their predictive accuracy is high,

one usually cannot understand why a particular outcome is predicted due to the
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complexity of the network. This thesis is an attempted to open up these black boxes

by extracting rules from it through the proposed efficient rule extraction algorithm

(REANN). Three factors make this possible. The first factor is that, the number of

hidden nodes of the network is determined automatically in a constructive fashion by

adding nodes one after another based on the performance of the network on training

data. The second factor is a robust pruning algorithm. Using penalty function, it have

been able to prune connections and nodes such that only very few input nodes, hidden

nodes and connections left in the networks. By eliminating redundant weights,

redundant input and hidden nodes are identified and removed from the networks.

Removal of these redundant nodes significantly simplifies the process of rule

extraction and the extracted rules themselves. The third factor is the clustering of the

hidden nodes activation values. The fact that the number of distinct activation values

at the hidden nodes can be made small enough enables to extract simple rules.

The REANN algorithm can extract concise rules from standard feedforward ANN.

Network training and pruning is done via the simple and widely used backpropagation

method. No restriction is imposed on the activation values of hidden nodes or output

nodes. An important feature of rule extraction algorithm, REx, is its recursive nature.

They are concise, comprehensible, order insensitive and do not involve any weight

values. The accuracy of the rules from a pruned network is as high as the accuracy of

the fully connected network.

Extensive experiments have been carried out in this thesis to evaluate how well

REANN performed on several benchmark classification problems in ANNs including

breast cancer, iris, diabetes, wine, season, golf playing, and lenses in comparison with

other algorithms. In almost all cases, REANN outperformed the others. With the

rules extracted by the method introduced here, ANNs should no longer be regarded as

black boxes.
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5.3 Limitations ofREANN and Future Work

The REANN algorithm has some limitations that could be addressed in future

work. Firstly, it is dependent on five user specified parameters. These are number of

training epochs "t, threshold value for clustering E, weight decay parameters E1 and E2,

and penalty parameter ~. The use of many user specified parameters requires a user to

know rich prior knowledge, which often does not exist for complex real-world

problems. Adaptive process could be used in future for making REANN less

dependent to user specified parameters.

Secondly, REANN is not tested on classification problems having large number of

output classes and regression problems. It would be interesting in the future to analyze

REANN further on large classification problems. The analysis would help to find the

strength and weakness of REANN on large classification and regression problems.

Thirdly, REANN is not applied to data mining problems. Classification is one of

the data mining problems receiving great attention recently in the database

community. Various classification algorithms have been designed to tackle the

problem by researchers in different fields such as mathematical programming,

machine learning, and statistics. Recently, there is a surge of data mining research in

database community. In data mining, classification problem is re-examined under the

context of large databases. Unlike researchers in other fields, database researchers pay

more attention to the issue related to the volume of data. They are also concerned with

the effective use of the available database techniques, such as efficient data retrieval

mechanisms. With such concerns, most algorithms proposed are basically based on

decision trees. The general impression is that the ANNs are not well suited for data

mining. On the other hand, the use of ANNs in classification is not uncommon in

machine learning community. In some cases, ANNs give a lower classification error

rate than the decision trees but require longer learning time. In future, REANN could

be applied for mining classification rules for large databases.

Fourthly, REANN is not considered the rule extraction technique for neuro-fuzzy

network. A neuro-fuzzy network can be defined as a fuzzy system trained with some
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algorithm derived from ANNs. The integration of ANNs and fuzzy systems aims at

the generation of a more robust, efficient and easily interpretable system where the

advantages of each system are kept and their possible disadvantages are removed.

Some ANN models such as the multilayer preceptron have been successfully applied

to the training of neuro-fuzzy networks with back propagation algorithm to adjust the

membership functions and connection weights of the processing nodes. In future,

REANN could be applied for extracting rules for neuro-fuzzy network.
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