EVOLUTIONARY ALGORITHM BASED SYNTHESIS OF
MULTI-OUTPUT TERNARY FUNCTIONS USING
- QUANTUM CASCADES

‘Md. Mujibur Rahman Khan

A Thesis Submitted to the Departmént of Computer Science and Engineering in the
Partial Fulfiltment of the Requirements for the
) Degree of
‘Master of Science in Engineering
(Computer Science'and Engineering) .

I

L

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY
DHAKA, BANGLADESH

_JUNE 2005°

The thesis “Evolutionary Algorithm Based S&nthesis of Multi-Output
Ternary Functions Using Quantum Cascades”, submitted by Md. Mujibur
Rahman Khan, Roll No. 040305011P, Registration No. 0403224, Session April
2003, to the Department of Computer Science and Engineering, Bangladesh
University of Engineering and Technology, has been accepted as satisfactory for
the partial fulfillment of the requirements for the degree of Master of Science and
Engineering (Computer Science and Engineering) and approved as to its style and

contents. Examination held on June 29, 2005.

Board of Examiners

Dr. Md. Mustofa Akbar Chairman
Assistant Professor (Supervisor)
Department of CSE

BUET, Dhaka-1000

2 W /z-/og

Dr. Md. Shafisul Alam Member
Professor and Head . (Ex-officio)
Department of CSE '

BUET, Dhaka-1000

Dr. Md. Abul Kashem Mia Member
Professor

Department of CSE

BUET, Dhaka-1000

4, . (. Tslaom

Dr. Md. Monirul Islam : Member
Associate Professor .

Department of CSE

BUET, Dhaka-1000

Dr. A. B. M. Harun Ur-Rashid Member
Associate Professor (External)
Department of EEE :

BUET, Dhaka-1000

1

)

Declaration

I, hereby, declare that the work presented in this thesis is the outcome of the
investigation performed by me under the supervision of Dr. Md. Mostofa Akbar,
Assistant Professor, Department of Computer Science and Engineering,
Bangladesh University of Engincering and Technology, Dhaka. | also declare that
'no part of this thesis and thereof has been or is being submitted ¢lsewhere for the

award of any degree or Diploma.

o

(Dr. Md. Mostofa Akbar) (Md. Mujibur Rahman Khan)

Supervisor

HI

AckndWledgement

Here I would like to take the opportunity to cxpress my greatest gratitude to the
patrons of this thesis work, without whom | could never have completed this -

arduous task.

For me, it has becn a ‘big journcy from the start to end. Nced];:ss to say, that the
only thing that kept me going was the support of a number of people. First and
foremost, fny thesis supervisor, Dr. Md. Mostofa Akbar, Assistant Professor,
Department of Computer Science and Engineering, Bangladesh University of
Engineering and Technology, “Without your unstinting support, faith in my work,
there is just no way that | could have completed my thesis. You have been always
' therc whencver I needed your help in any form. I guess no Words can adequately
describe what you have done for me and for my work as an advisor, and

companion. | thank you for everything.”

I would also like to express my heartiest gratitude to Dr. Mozammel H. A. Khan,
Professor and Dean, Faéulty of Engineering, East West University, Dhaka for his
fruitful suggestions whenever I needed. Without him, the field of Quantum
Computation ard Reversible Logic would remain unknown to me. He has been
guiding me in doing research for more than seven years. Without his affectionate

mentoring, it would not be possible for me to compiete this thesis.

I would also like to thank Dr. Md. Monirul Islam, Associate Professor,
Department of CSE, BUET, whom 1 visited time and again for both academic and
administrative help, guidance, and advice. His constant caring supports and

patience encouraged me throughout my studentship in BUET.

I must thank Dr. Md. Shamsul Alam, Professor and Head, Department of CSE
BUET. |

I would like to thank all the faculty members of this department as they have

helped me directly or'indirectly in var'iqus ways to complete this thesis.

I would like to thank all my course mates in BUET. Especially Rafiq, Abid,
Bipul, Monower, and 6thers, who took part in the group with me to discuss the

lessons while completing the course works.

1 would also like to thank all the staffs of Department of CSE, BUET. Especially
Mr. Syed Ehsan, Senior Lab incharge, Dept. of CSE, BUET, who arranged me a
machine on a secured corner of the Lab and ensured that nobody is using the

machine or turning the switch off during my absence.

And last but nct the least, | must acknowledge with due respect the constant
support and patience-of\ my family members for completing the thesis.
Particularly, my wife Syeda Shabrena Sultana and my father Khan Fazlay
Ahmcﬂ. I would also like to remember the ihspiration of my late mother Begum

Jahanara.

DIECLARATION eoeveceeceeeeeeecreae et ses i oseaseseseeseses s b ee s sassessessenseeaesesse s s ee st es s et s s e e oo

CONTENTS

L I

ACKNOWLEDGEMENT Lot vraeesesinr e e sssenon [Y
LIST OF TABLES ..o ettt ittt ittt e s a s e bt s s s en e v X1
ABSTRACT .l
CHAPTER 1 2
INTRODUCTION 2
1.1 MOTIVATION 3

1.2 BACKGROUND AND PRESENT STATE OF THE l’RbBLEM 5

1.3 OBJECTIVES AND FOCUS OF THE THESIS 7
1.4 ORGANIZATION OF THE THESIS 8
CHAPTZIR 2 9
QUANTUM COMPUTER:; FUNDAMENTAL CONCEPTS 9
2.1 INTRODUCTION 9
2.2 QUANTUM MECHANICS 10
2.3 QUANTUM BITS 10
2.3.1 SINGLE QUBIT il
232 MULTIPLE QUBITS 13
24 QUANTUM COMPUTATION 14
24.1 SINGLE QuUT GATES 15
242 MULTIPLE QUBIT GATLS 17
243 SINGLE QUBIT AND CNCT GATES ARL; UNIVERSAL 18
244 QUANTUM CIRCUITS : 21
2.4.5 CAN A QuBIT BE COPIED? 22
2.4.6 QUANTUM PARALLELISM 23
2.5 QUANTUM INFORMATION 24
2.6 PROSPECTS FOR QUANTUM INFORMATION PROCESSING 25
CHAPTER 3 17
QUANTUM COMPUTER: PHYSICAL REALIZATION 27
3.1 REALIZATION OF QUANTUM COMPUTER 27
3.2 CONDITIONS FOR QUANTUM COMPUTATION 28
3.2.1 REPRESENTATION OF QUANTUM INFORMATION 28
322 PERFORMING UNITARY TRANSFORMATION 29

Vi

3.2.3 PREPARATION OF FIDUCIAL INITIAL STATES 30
3.2.4 MEASUREMENT OF QUTPUT RESULTS 31
33 HARMONIC OSCILLATOR QUANTUM COMPUTER 32
3.3.1 THE QUANTUM HARMONIC OSCH.LATOR (Q110) e i e 32
33.2 PHYSICAL APPARATUS FOR QHO 34
333 THE HAMILTONIAN FOR QHO 35
3.3.4 QUANTUM COMPUTATION FOR QHO y 36
335 DRAWBACKS OF QHO 37
336 SUMMARY OF QHO PROPERTIES 38
34 OPTICAL PHOTON QUANTUM COMPUTER (OPQC? 38
34. PHYSICAL APPARATUS OF AN OPQC 39
3.42 QUANTUM COMPUTATION WITH OPQC 41
3.43 DRAWBACKS OF OPQC 44
344 SUMMARY OF OPQC PROPERTIES : 44
35 OPFICAL CAVITY QUANTUM ELECTRODYNAMICS (OCQED) 45
3.5.1 PHYSICAL APPARATUS FOR OCQED 46
352 SUMMARY OF OCQED PROPERTIES ; 47
3.6 [ON TrAPS —— 48
3.6.1 PHYSICAL APPARATUS FOR ION TRAPS 48
3.6.2 SUMMARY OF [ON TRAP PROPERTIES -=---=--=-mmnmenmms e e e e e i 51
3.7 NUCLEAR MAGNETIC RESONANCE (NMR) 52
3.7.1 SUMMeRY OF NMR PROPERTIES 52
38 “CHAPTER SUMMARY 53
CHAPTER 4 : ' 55

MULTI-OUTPUT TERNARY LOGIC AND QUANTUM CASCADE: A LITERATURE

SURVEY

4.1
4.1.1
4.1.2
413
4.1.4
4.1.5
4.2
42.1
422
4.2.3
42.4
4.2.4.1
42.4.2

55

REVERSIBLE LOGIC : 55
MOORE’S LAW 2 - ' 55
ARGUMENT FOR ALTERNATIVE TECHNOLOGY 56
BINARY REVERSIBLE LOGIC == s m s oo oo e 57
TERNARY REVERSIéLE LOGIC 62
SOME TERNARY REVERSIBLE GATES 62
GALOIS FIELD AND QUANTUM TECHNOLOGY : - 04
QUANTUM COMPUTATION 65
TERNARY QUANTUM COMPUTING 65
QUANTUM CIRCUIT: 67
GALOIS FIELD ‘ 67
GF(2) : 08
GF(3) . . - 08

VIi

4243 GF(4) 68
4,2.5 TERNARY GALOIS FIELD LOGIC 68
426 QUANTUM CASCADE (QC) 70
427 REALIZATION OF MVL USING QUANTUM CASCADE 71
4.2.8 SOME EXISTING METHODS OF REALIZING MVL USING QC 71
43 EVOLUTIONARY ALGORITHM 73
431 GENETIC ALGORITHMS 75
4.3.2 EVOLUTION STRATEGIES 75
433 LEVOLUTIONARY PROGRAMMING 76
4.4 SUMMARY 77
CHAMPTER 5 79

EA BASED SYNTHESIS OF MULTI-QUTPUT TERNARY FUNCTION USING
QUANTUM CASCADES 79
5.1 INTRODUCTION 79
5.2 "THE NEW 2%2 QUANTUM TERNARY GATES 79
5.3 REALIZATION OF MULTI-OUTPUT TERNARY FUNCTIONS USING THE NEW GATES -=-nn- 80
5.4 GTG VERSES THE NEW GATLES ' 81
.55 PROPOSED EVOLUTIONARY ALGORITHM 84
5.5.1 PROBLEM ENCODING 85
5.5.2 FITNESS COMPONENTS 86
5.5.3 DESCRIPTION OF THE EVOLUTIONARY ALGORITHM 91
CHAPTER & 97
EXPERIMENTAL RESULTS AND DISCUSSION 97
6.1 INTRODUCTION 97
6.2 EXPERIMENTAL SETUP AND FINDINGS 97
6.3 CONCLUSIONS 113
CHAPTER 7 114
CONCLUSION 114
7.1 - C.ONCLUDENG WORDS 114
7.2 RECOMMENDATIONS FOR FUTURE WORK 116
APPENDIX A 18
SOURCE CODE OF THE PROGRAM 118
APPENDIX B 144
DESCRIPTION OF THE BENCHMARK FUNCTIONS 144
BIBLIOGRAPHY 145
VI

List of Flgures

F1G 1. 1: GENERAL FORM OF EXTENDED DI VOS GATE... POV S USSR ¢
F1G 2.1: QUBIT REPRESENTED BY TWO ELECTRONIC LEVELS IN ATOM . .cceosecvcsreeecesesescereeeeeemsnrs 11
FI1G 2.2: BLOCH SPHERE REPRESENTATION OF A QUBIT. 1evvrveeeeieseneencresinmrmereseececesessesnessareasearses 12

FIG 2.3: VISUALIZATION OF HADAMARD GATE ON THE BLOCH SPHERE, ACTING ON THE INPUT STATE

FIG 2.4: SINGLE BIT (LEFT) AND SINGLE QUBLT (RIGHT) LOGIC GATES vveveveririeresisesserssssnesssnnennenes 17
FIG 2.5: GRAPHIC AND MATRIX REPRESENTATION OF CNOT GATE....vveeeeviereeeerereereeesseneeseneensnn |7
FIG: 2.6: CONTROLLED-U GATE. evevereeeeseeeeeereresreressrreror, ettt reeesnestereer s 8
" F1G 2.7: CIRCUIT IMPLEMENTING THE TWO-LEVEL UNITARY OPERATION DEFINED BY yeeerrrviennnnn 21

FIG 2.8: CLASSICAL AND QUANTUM CIRCULT TO COPY AN UNKNOWN BIT OR QUBIT. ..o, 22

FIG 2.9: QUANTUM CIRCUIT FOR EVALUATING f{0) and (1) simuLtANEOUSLY. U 15 THE

)

FIG 3.1: SKETCH OF THE FIRST FIVE SOLUTIONS OF THE SCHRODINGER EQUATION FOR W, (x)....33

QUANTUM CIRCUIT WHICH TAKES IN

FI1G 3.2: PARAMETRIC DOWN-CONVERSION FOR GENERATION OF SINGLE PHOTONS oo 46
FI1G 3.3: SCHEMATIC OF AN-OPTICAL BEAMSPLITTER. (B) 1S THE INVERSE OF (A)veeeveeeererereseenerens 411
FIG 3.4: OPTICAL CIRCUIT REPRESENTING A PHASE SHIFT BY 7T oo oo eeeeeeeeeor oo oo 43
FIG 3.5: SCHEMATIC DRAWING OF AN ION TRAP QUANTUM COMPUTER. c.eeveeeeeee e eseeinieerenrennenns 39
FIG 4,15 A REVERSIBLE GATE ¢.vvrss1vseore s ereessesneeesseesmeresessseossesesonrteeerene s eeressessssessesssosssesrnees 57
FiG 4.2: MATRIX AND GRAPHIC REPRESENTATION OF NOT GATE rrrrerseressssess 00
FIG 4.3: MATRIX AND GRAPHIC REPRESENTATION OF CONTROLLED-NOT GATE.ociiivviieeeeenennnn. 61
FI1G 4.4: MATRIX AND GRAPHIC REPR.ESENTATIC.)N OF CC-NOT GATE vveerverivncnnreiecresseesernennnnn 62
- FIG4.5: SOME TERNARY REVERSIBLE GATES vovecrvvovrersvsoerssesereessssseeesesssssesssosssreseeesssenmneress 63
F1G 4.6: TERNARY SHIFT OPERATIONS, GATE SYMBOLS, AND THEIR NUMBERS ...o.eceeeeeeaecrvirnennn. 63
FIG 4.7: QUANTUM CIRCUIT USING TOFFOLI GATES TO REALIZE THE FUNCTION, [(A,8,C)
=[0,1,2.1,0,2,2,2,2,2,1,0,0,1,2.1,1.1,1,1 1222000}7 64
FIG 4.8: GENERALIZED TERNARY GATES (GTG) caeeeerereeeseeeesereereseesresenesrseessesseenseseeseessasssnesnns 08

F1G 4.9: QUANTUM REALIZATION OF TERNARY SHIFT GATES 11vivvvieececeeecsse e s ssnestesnsssresssessesoeees 09

FIG 4.10: QUANTUM UNITARY TRANSFORMATION ... corrrinirirismirnisessrmssessssnsssssessssssssessssssessossnsessoee 10

FIG 4.11: QUANTUM CASCADE REALIZING AN ARBITRARY 3-INPUT 2-OUTPUT TERNARY FUNCTION.
.72
FIG 4.12: REALIZATION OF TERNARY SWAP GATE USING GTG GATES eoveovvvvecereiresressesresresesrensanas 72
F1G 4.13: GENERALIZED MULTI-VALUED GATE OF RADIX M1 (it eeeeeeeenennns 13
FIG 4.14: A CANONICAL GA c.iiiiiiiiiaiieiiiti s cee et re e e ates s et snssae e ssasnssansresrnnssnsressnres 13
FIG ;1.15: ASIMPLELS ottt s e s e s e e besstaeen et smseesenssnvennseere 1O
FIG 5.1: GENERAL FORM OF THE PROPOSED GATES ..c.viiiisisisiessiessiamreresesseessereeesessssssessassssssasesssanes 79
FIG 5.2: REALIZATION OF TERNARY HALF ADDER U3ING THE_NEW GATES wiiviiivenicnensimenerecnneene: 81

FiG 5.3: TERNARY HALF ADDER REALIZATION USING GTG GATES BY [36] vvverivreeneererceniernnanninnans 82

IX

FIG 5.4: REALIZATION OF (A,'B,O, y) AND (A,B,l,y) GATLES USING DE VOS GATES. oecreeecnn.

FIG 5.5: ENCODING OF THE TERNARY HALE ADDER CIRCUIT w.ucvvieeieevecvrrsie st sasonsresassssseessnone
FIG 5.6: CHROMOSOME REPRESENTING THE CIRCUIT IN FIGURE 5.5 1t viveeve st
FIG 5.7: SUB-VECTORS OF AN ARBITRARY 3~INPUT 2-OUTPUT TERNARY FUNCTION. woverennnenn..
FIG 5.8: REALIZATION OF SUB-VECTORS c.ovitrcmeerieressevessseresteessessenstensaessisesessssnoesssnsessssessssassons

FIG 5.9: FLOWCHART OF THE PROPOSED EVOLUTIONARY ALGORITHM .. vvvveesee e eeeeessesesssssnss o

FiG 5.11: CROSSOVER OPERATION
FIG 5.12: MUTATION OPERATION ...oeoioteeerrenreisnsosstesassesnsssesssestssssnasssessasseseeessosesaesesemeenesessrans

.83
.85
.86
e 87
.88

Y|
FI1G 5.10: RANKING OF THE INDIVIDUALS IN AN ARBITRARY POPULATIONcooeeseeeereeaee v s

.93
.94

.95

F1G 5.11: REDUNDANT COLUMNS AND UNUSED CONSTANT LINES IN AN ARBITRARY QUANTUM

CASCADE

F1G 5.14: INSERTION OF THE OFFSPRING INTO THE POPULATION WITH RANKING wecveveeeeveeieeenene

FIG 6.1: EFFECT OF P: AND £, ON COST OF SOLUTION
FIG 6.2: EFFECT OF PrrON LENGTH OF THE CIRCUIT. ..ottt en s senes s v

FIG 6.4: EFFECT OF Pyy ON LENGTH OF THE CIRCUIT .vvvvvereseeeeneeereeess oo

FIG 6.5: LFFECT OF Par ON WIDTH OF THE CIRCUIT Louvirviviirersieesincseestesseeaeisseresesseeesaaseorentessnssaees
FIG 6.6: CONVERGENCE OF QUTPUT VECTOR FITNESS FOR ABC2. .oovvivitieie e eeeeeeeeveesseveeesens
F1G 6.7: CONVERGLENCE OF LENGTH OF CASCADE FOR ABTZ2. w...vvvvereerceeseeesessvensssisese e
FIG 6.8: CONVERGENCE OF SCRATCHPAD WIDTH FOR ABC2. 1ourvuenreasesssessirneoesean e seeeene e enesesens.
FiG 6.9: CONVERGENCE OF OUTPUT VECTOR FlTNEss FOR MULZ. oot i
FIG 6.10: CONVERGENCE OF LENGTH OF CASCADE FOR MUL2

FIG 6.11: CONVERGENCE OF SCRATCHPAD WIDTH FOR MULZ..oevtcveeeiieeeieeeeecteecve v resen st sbest s
FIG 6.12: CONVERGENCE OF QUTPUT VECTOR FITNESS FOR A2ZBCC.
FIG 6.13: CONVERGENCE OF LENGTH OF CASCADE FOR AZBCC. 1vvuivarvereserereeeeeeeseeseneeveeesessssssess
FIG 6.14: CONVERGI;NCEOF SCRATCHPAD WIDTH FOR A2ZBCC. 1ciutteeiaeermeenteee e eneeesaeenraesrrs
F1G 6.15: CONVERGENCE OF QUTPUT VECTOR FITNESS FOR THADD.

FIG 6.16: CONVERGENCE OF LENGTH OF CASCADE FOR THADD oo veveee e eeeeeee e eeeeesessesvessssssenon
F1G 6.17:-CONVERGENCE OF SCRATCHPAD WIDTH FOR THADD. vivvvrieieeisresesemsceeesensssaessessssnnenas
F1G 6.18: CONVERGENCE OF OUTPUT VECTOR FITNESS FORAPR0D3...,..
F1G 6.29: CONVERGENCE OF LENGTH OF CASCADE FOR PROD3. ...vvtieiiceieeeeeececeeceeeeeereeeee e veesns
F1G 6.20. CONVERGENCE OF SCRATCHPAD WIDTH FOR PROD3.coiiicececrivierrerer s n e e e e ssnsenes
F1G 6.21: CONVERGENCE OF OUTPUT VECTOR FITNESS FOR AVG2. o eses st
FiG 6.22: CONVERGENCE OF LENGTH OF CASCADE FOR AVG2, .1ivivrierrisier e sses s anns
F1G 6.23: CONVERGENCE OF SCRATCHPAD WIDTH FOR AVG2.ociiivonrirreiets s reissrssnsressnsese e
F1G 6.24: REALIZATION OF MUL2 USING THE PROPOSED METHOD, ... ivviveesinsianiennississsesssesirnssssens
FIG 6.25: REALIZATION OF PROD? USING THE PROPOSED METHOD. w...e.eeevevereeveerenereeevesreseaseseens

FIG 6.26: REALIZATION OF AVG2 USING THE PROPOSED METHOD. .oveiivrciisiinsiisiinesninbenienan s

.95
.96
.98

.. 99
F1G 6.3: CFFECT OF P dN WIDTH OF THE CIRCUIT 1ivviiinii et cnnnies sees s sreressssnrnresssssmsres s s semsnnes

.99

.. 100
.. 100

1

102

102

.103

104
104

. 105
. 106
. 106
. 107
107

108

109"
e 109
110
. 110

Tit

ST
112
L2

113

List of Tables

TABLE 4.1: TRUTH TABLE OF SOME COMMON 2-INPUT [-QUTPUT IRREVERSIBLE GATES, .vvvvvvvirennnn. 56
TABLE 4.2: THREE INPUT — THREE OUTPUT DEVICES WHICH MAPS EIGHT POSSIBLE STATES ONTO
ONLY FOUR DIFFERENT STATES. c.eeeiieteeeeceteeienernre et ersissrssssonssrsssessnssnsssnssessnsssssssessss 38
TABLE 4.3: TRUTH TABLE FOR NOT GATE trieiiereret s e e se e eseeeseesssesnsasaeere e snssnssnssasssssnsee 0
TABLE 4.4: ADDITION AND MULTIPLICATION IN GF(2) oo . 68
TABLE 4.5: ADDITION AND MULTIPLICATION IN GF(3) .o seesee e neeens 08
TABLE 4.6: ADDITION AND MULTIPLICATION IN L Ll TR SRR 68
TABL% 5:1: TRUTH TABLE OF TERNARY HALF ADDER FUNCTION ..oucovvcrneeonrinesecsosensesossesssnsreesese 81

TABLE 6.1: RESULTS OBTAINED FOR DIFFERENT BENCHMARK TERNARY FUNCTIONS...occvccvrnrnenn 101

X1

Abstract

Quantum Computers, which run according te to the laws of quantum mechanics,
are said to be the future of today’s computers. They might have exponentially
more computational efficiency than-any classical 6ne. The fact that a quan'tum
particle can be in between many states, known as entanglement of states, made
Quantum Computer so powerful. Inspired by the challenge of formulating
Quantum Computer, this thesis presents the synthesis of multi-output ternary
quantum logic with primitive quantum gates. The main emphasis of thesis is given
on showing that any logic can be realized using quantum primitive gates. It is also
implied that these quantum circuits are reversible by nature. At the same time -
multiple-valued logic helps to reduce the complexity of thé circuit when compared

to binary logic.

This thesis presen{s a comprchensive study on the fundamentals of Quantum
Computations. Then a family of quantum primitive gaies is proposcd. These are
very simple 2-input, 2-output lernary reversible gates. These gates can be
physically realized using quantum technology. Then an Evolutionary Algorithm
based synthesis procedure using those primitive gates is proposed. It fas been
shown that a Quantum Computer capable of executing any logic function is
possible to construct usiﬁg the new gates only. The claim is supported by the
experimental findings. The effect of different EA parameters on the solution is
_also examined and shown. Finally some open problems for the physicists and

mathematicians are brought forward.

Chapter 1

Introduction

The synthesis of multi-valued Quantum logic is an interesting and challenging
problem in Computer Science. Ternary quantum circuits have ‘recently been
introduced to reduce the size of multi-valued logic for multi-level quantum
computing systems. It is implied that the quantum circuits will naturally be
reversible. However,' synthesizing these quantum circuits is not easy. The
following are the-issues related to multi-valued quantu}n logic synthesis:

e How the quantum cascades will be constructed to rcalize multi-valued,

~multi-output logic functions. |
s How the cost of the circuit will be minimized.
e What types of gates will be used.

o How the fundamental issues regarding reversible logic will be addressed.

This thesis addresses these above mentioned issues. The primary objective of this
thesis is to develeop a soft computing method to synthesis multi-valued multi-
output logic function. W‘ith this view, a complete synthesis process of multi-

valued multi-output reversible logic using quantum cascades is presented. To be

more specific, we have considered ternary reversible logic. We are also proposing

a family of elementary quantum reversible gates to construct the quantum cascade.
These gates are new and no such previous method exists that realizes multi-
valued, multi-output using the new quantum gates. Therefore, it is not possible to
directly compare the cost of the circuit. Instead, comparison with the circuit

obtained using few other temary quantum gates are done.

C hapter 1)
Introduction

1.1 Motivation

A quantum mechanical phenomenon that never occurs in classical physics and
which actually makes quantum computation interesting and powerful, is the
supcrposition of states (“entanglcment” ¢f states), wﬁich means that instead of
being totally in one single statc, a particle can be “in between many states".
Comuoare this to the elements' of classical computer, bits. A bit takes values zero or
one, but never anythirig between. In a quantum computer, one is able to store both
values simultaneously in one quantum bit, equally weighted or not. Moreover, in
the classical computer one can store a number from zero to 2" —1 in a register of
length n, whereas, in quantum computation, all the values could be stored
simultaneously. The computation, which is performed via unitary
transformations in the state vector space, then applies to all these values
simultaneously. Thus the powcr of the quantum computation lies not in the
absofute speed of the hypothetical quantum computer but in the possibility to
actually follow many computational paths s;ilnultancous!y, as a nondeterministic
automation does. Furthermore, the motivation bchind this thesis can be better

expleined by answering the following questions:

Why Quantum Logic?
— As the semiconductor-based cnrcu:ts are not capable of handlmg more
than two states, scientists are looking for aitcrnatlve technologies to realize
logic functions. Quantum Logic is one of the most prominent among the
alternative technologies. In fact, there are really an infinite number of

states possible to a quantum bit, not just two. The “entanglement” of

states, which means one unit can be at more than one logical state.
. !

simultaneously as a form of superposition of states. Thié'unique property

of quantum technology made it the best choice. [Chapter 2, Chapter 3, and
Section 4.2.3]

Why reversibie logic circuit?
— It is implied that the quantum computers will be, by nature, reversible.

The conventional irreversible logic is, now a day, rejected by the

3

Chapter 1
Introduction

reaercchers because they waste a significant amount of power as dissipated
heat. Reversible circuits consume less power than conventional
imeversible circuits by reducing the wastage of enérgy as dissipated heat.
[Section 4.1] |

Why multi-valued logic? _

. — Because the size of the logic circuit is directly dependent on the amount
of information (i.c. the logical statzs) stored in a single unit. Binary logic
can handle only two statcs — 0 and 1. On the other hand, multi-valued logic
circuits (:f constructed) are capable of storing more than two ét_ates, thus

reduced in size and complexity.. [Section 4.1.4]

Why EA?

- As there is no direct method to construct a quant.um cascade using the
new gaies, we have 1o go.for Evolutionary Algorithms (EA). Use of EA
will allow us to find an appropriate combination of the new gates that
realize (perhaps optimally) a multiple-valued ternary logic function. EAs
are very popular Soft Computing (SC) approach for solving problems with
no identified structure and high level of noise. The reasons behind this
popularity are— | ' |

» A large solution space can be searched. -

s The size of this search Space can be moderated by paramefers.

| ¢ A variety of new solutions can be produced, and
e With long enough time a solution can be obtained that is close to

the optimal one.

Because of these advantages we have selected EA for synthesizing ternary
functions using cascade of the new gates as the problem structure of such
cascade is still undefined and the search space itself is exponentially large.
[Section 4.3] '

Multi-valued quantum logic synthesis methods are still .very immature, though a

number of works have been done (see [1]-[4], [7], [34]-[38], [40], [42]-[44]).

4

Chapter |
Introduction

From these works, however, it is more or less cvident that Galois Field Sum of
Prodicts (GFSOP) is a good choice for multi-valued reversible I'ogic synthesis. In
this thesis, we focus only on ternary GFSOP synthesis with éascades of quanium

fates,

1.2 Background and Present State of the Problem

‘The unit of memory (information) for binary quahtum computation is a qubit, the

simplest quantum system that exists in a linear superposition of two basis statcs
labeled f0> and |I> In 1996, Malttle et al [60] uscdr the term frit for a ternary
equivalent of qubit (however, qutrit is appropriatc). In 1997, Chau t24] introduced
the concept of a gudit, a d-dimensional quantum system that generalizes a qubit
] 2),...0

multi-valued quantum logic. The work of Chau [24], Rains [22] and Ashikhmin

and has basis stales |0>,

d —1). Subsequently, limited work was done in

and Knill [5], cxtended quantum error-correcting codes to multi-valued logic for
correcling codes in single and muitiple qudité. Gottesman [19] and Aharonov and
Ben-Or [13] developed fault-tolerant procedures for implementing two-qudit and
threc-qudit analogs of universal binary gates. Burlakov [9] proposed to use
correlated photon pair to represent qutrit. Since 2000 the works have got

momentum.

Muthukrishnan and Stroud [7] developed multi-valued logic for m.ﬁlti—lcvel
quantum computing sy.stems and showed their realizability in linear ion trap
devices. However, this approach produces circuits of too large dimensions.
Universality of s-qudit gates was discussed in [28], and [7] but no design
algorithms were given. Picton [47] presented an approach called Universal
'Architeclure for multi-valued reversible logic but this approach produces circuits
that arc far from minimum and have no relation to quantum realization.
. i

Since 2001 Al-Rabadi et al proposcd Galois Field approach to quantum logic
synthesis (see [1], [2], [3], [4], and [42]). In this work Galois quantum matrices

~were proposed for swap and Toffoli gates, but without the proof that they can be -

Chapter 1
Introduction

_built from only 1*1 and 2*2 gates'. Several regular structures for multi-valued
_quantum logic were also proposed, including cascades, but these tascades do not
allow realization of powers of GFSOP and are thus non-universal. This work was
based on previous works on GFSOPs and similar forms of Galois and similar
logic, 1n which canonical expansions of Post literals and arbitrary functions were
shown, Howevel;, no constructive methods for GFSOP and cascade minimization
were given, nor programs were writlen for them. Factorized reversible cascades
and complex gates (which uéually yield better result) were not proposed. De Vos
proposed two ternary 1*1 gates and two ternary 2*2 gates [6], but no synthesis
method was proposed. New efficient reversible multi-valued gates?Well'e proposed
in [45] and quanturri realizations of multi-valued Toffoli gaté in [43]. However,
very little has been published on S;ynthesis algorithms {or multi-output multi-
valued quantum circuits. Thcrefdre, it is very important to look for efficient
methods to synthesize multi-output GFSOP functions using quantum cascades. In
this thesis, we concentratc. on quantum cascaded rcalization of only ternary

GFSOP {functions,

The major prbblem of logic synthesis is that any m-input/m-output gate (m*m
gate), where m > 2, is very difficult to realize in quantum technology {61, [7D-
Therefore it would be a better idea if the .quantum circuit is constructed using 2*2
gates (primitive gates) only. Most of the researches done so far in this field are
using the gates with m > 2. Thercfore the circuits are complex and almost

impossible to realize.

Coﬁtro]ling

input O’
Controlled 1 a4
B Coir;tr(l)lte y 0,
P yh shift of B if A=x
x=1{0,1,2} , Q, =)
B otherwise
v=£1,2,3,4,5}

Fig 1.1: General form of Extended De Vos Gate

! A m*n gate is one whose number of input is m and the number of output is n.

Chapier |
Introduction

Khan ct. al. proposed one complcte synthesis process of.ternary logic using
quantum cascades (see [37]). They have used ternary Toffoli gates, Feynman
gates, and swap gates as building bloeks of the quantum cascade. The widths of
.the gates are also more than two (m > 2), hence the problem still remains.
Although those gates can be constructed using 2*2 gates, the cost of the circuit

becomes very high in terms of number of gates and the complexity of the circuit.

We are proposing a complete synthesis process to realize ternary logic using 2*2
* gates directly. We are also proposing a family of extended ternary De Vos [6]
gates (sce Figute 1.1), those are realizable using quantum technology, to be used
as building blocks of the circuit. Our primary goal is to realize any ternary
reversible multi-output function using only those gates. in Figure 1.1, 4 and B are
the two inputs. O, and O; are the two outputs while x and y are two parameters of

the Gatc. There are 15 possible combinations of x and y.

The main problem is there is no direct method to construct a quantum cascade
using De Vos gates. The probiem also remains with the new gates. Hence we have
to go for Evolutio-nary Algorithms (EA). Use of EA will allow us to find an
appropriate combination of the gates that realize a multiple-output ternary logic

function. We might sometimes achieve the optimal solutions also.

1.3 Objectives and Focus of the Thesis

The main focus of this dissertation is to present-a complete synthesis process of

realizing ternary reversible logic using the new 2*2 primitive gates. Our ultimate
goals and objectives could be summarized as follows:

¢ Dcvelop a complete synthesis process to synthcsize ternary muiti-

output function using cascade of primitive quantum gates proposed in

this thesis. And eventually prove that any ternary multi-output function

can be realized using the cascadc of the new gates.

o Exploring the behavior of the EA parameters in solving this type of

problem.

Ch&p!er /

Introduction

o Making guidelines for further research and future researchers in this

field.

To achieve our primary goal, we have implemented the proposed synthesis

process using C++ and obtained encouraging results. Implementing the gates

using quantum technology and the physical realization of the circuit are beyond

the scope of this thesis.

1.4 Organization of the Thesis

The thesis has bzen organized in different chapters, with cach chapter discussing

different aspects of the study. The arcas covercd by different chapters are briefly

as follows:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:.

Elementary discussion on quantum mechanics and quantum
computation,

Elementary discussion on the realization technologies of
quantum logic circuit.

Provides a literature review of the different strategies that
have been proposed in the context of Multiple-Valued
Logic Synthesis.

Detailed description of thel proposed EA based synthcsis
method. ‘ | |
Experimental results and discussions. _

Concluding remarks and suggestion for future rescarch

works.

Chapter 2 =

- Quantum Computer: Fuhdamen_tal Concepts

2.1 Introduection

Moor’s Law has approximately held true in the dccades since the 1960s.
Ncvertheless, most obse-rvers expect that this dream run will end some time during
the first two decades of the twenty first century. Conventional approaches to the
fabrication of computer technology are beginning to run up against fundamental
difficultics of size. Quantum effects are beginning to interfere in the functioning
of ¢lectronic devices as they arc made smaller and smaller. Onc possible solution
to thz problem posed by the cventual failure of Moor’s Law is to movce o a
different computing paradigm. One such paradigm is provided by the theory of
Quantum Computation. Quantum Computation s based on the idea of using
quantum mechanics to perform computations, instead of classical physics. The
quantum computers offer an essential speed'advantage over classical computers.
This speed advantage is so significant that many researchers belicve that no
conccivable amount of progress in classical computation would be able 1o
overcome the gap between the power of classical computers and the power of

quantum computers.

Quantum Computation and Quantum Information is the study of the informatioﬁ
processing tasks that can be-accomplished using quantum mechanical systems.
Like many simple but profound ideas it was a long time before anybody thought
of doing information processing using quantum mechanical systems. To sec why
this is the case, we must go back in time and lookjn' turn at each of the fields
which have contributed fundamental ideas to quantum computation and quantum
information — quantum mechanics, computer science, information theory, and
cryptography. In the subsequent sections we discuss the different fundamental

aspects of Quantum Computation briefly.

Ny

Chapter 2 .
‘ Ouantunt Computer:
Fundamental Concepts

2.2 Quantum Mechanics

Quantum Mechanics is a mathcmatical framework or set of rules for the
construction of physical theorics. For example Quantum Electrodynamics — the
physical theory that describes the interaction of atom and light can be mentioned.
The relationship of quantum mechanics to specific physical theories like quantum
clectrodynamics is like the relationship of a computer’s Operating System to
specific application software. The rules of quantum mechanics are simple but even
cxperts find them counterintuitive. Perhaps the long-standing desire of the
physicists to better understand quantum mcchanics set a ground for Quantum
Computation and Quantum Information. One of the goals of Quantum
Computation and Quantum Information is to develop tools which sharpen our
intuition about quantum mechanics, and make its predictions more transparcnt to

human minds.

Despite the intense interest, efforts to build quantum information proccssing
systems have resulted in modest success to date. Small quantum computers,
capable of doing few operations on a few qubits represent the state 6f the art in
quantzum compuation. Experimental prototypes for doing quantum cryptography
have been demonstrated. However, it remains a great challenge to physicists and
engineers of the future to develop techniques fer making large-scale quantum

information processing a reality.

2.3 Quantum bifs

The quantum counterpart of the classical binary digit (bit) is qubit. We are already
familiar with the Dirac notation of the states of a qubit — |0} and |I). This is the

standard notation for states in quantum mcchanics.

Chapter 2
Quantum Computer:

Fundamental Concepts

2.3.1 Single qubit

The difference between bits and qubits is that a qubit can be in a state other than

|0) or |1). It is also possible to form linear combination of states, also known as_

superpasition:
|w)=al0)+ A1)
The numbers a and S are complex numbers. |0} and |1} are two special cases

and called computational basis states. The state of a qubit can also be thought as a

veetor in a two dimensional complex vector space. Unlike the bits, a qubit can not

bc examincd to determine whether it is in state 10>‘0r]]) Instead when a qubit is
1]

measured, we get either the result 0, with probability ‘a:

2, or the result 1, with

probability J,B]2 and naturally |c:c|2 +| 4" = 1. Thus, a qubit’s state is a unit vector in
~ a two dimensional complex vector space. If a qubit is in the state

then it will give the result 0 fifty percent of the time, and the result 1 fifty percent
of the time when measured.
Many di‘ffercnt‘physical systems can be used to realize qubits, some of them are
mentioned below:
It two different polarizations of a photon,
if. the alignment of a nuclear spin in a uniform magnetic field,

iii. two states of an electron orbiting a single atom (see Figure 2.1).

Fig 2.1: Qubit represented by two electronic levels in atom.

1 I
ﬁm)*fm»:

Chapter 2
Cuantum Compuier:
Fundamental Concepts

In the atom modcl, an electron can exists in either ‘ground’ state or ‘excited’ state,
which we can call |O) and |l>, respectively. By shining light on the atom, with

appropriate encrgy and for an appropriate leng'fh of time, it is possible to move the

clectron from [0) to |I) statc and vice versa. The interesting thing is that, by
reducing the time of shining the atom, an electron with initial state |0) can be

moved ‘halfway” between [0) and |1}, this state is often denoted as |+) state.
Onc important model to visualize the states of a qubit is Bloch Sphere as shown in
Figure 2.2. The state of the qubit is represented by

) = cos—g—|0>+e"‘” singm .

The numbers & and ¢ are real numbers and define a point on the unit three

dimensional sphere. The Bloch sphere serves as an excellent test bed for ideas

about quantum computation and quantum information.

|0}
rll\z
lwry
o .1
! \
....................... e }
----- 1 ey
re~a ! |
................. A Tmde)
/
/
i’
.'/
! .
I
|
A xl\
%)

Fig 2.2: Bioch Sphere representation of a qubit.

Now the question is how much information is represented by a qubit?
Paradoxically, there are an infinitc number of points on the unit sphere. So, on
principte, we can store an entire text of Rabindranath Tagore in the infinite binary
extension of @. However, this conclusion turns out to be misleading, because of
the behavior of the qubit when observed. The measurement of a qubit will give

only two states either 0 or 1. Furthermore, a measurement changes the state of a

12

Chapter 2
Cuantum Compuier:
Fundamental Concepts

qubit, collapsing it from its superposition of |0> and |1> lo the specific state
consistent with the measurement result. For example, if measurement of |+) gives

0, then the post-measurement state of the qubit will be [0) Nobody knows why

this type of collapse occurs [41].

There is something conceptually important here, because when Nature evolves a
eloscd quantum system of qubits, not performing any ‘measurement’, she
- apparently keeps track of all the continuous variables describing the states, like ¢
and f. In a sense, in the state of a qubit, Nature concca-ls a great deal of ‘hidden
information” and the potential amount of this extra information grows
cxponentially - with the number of qubits. Understanding this hidden guantum

information lies at the heart of what makes quanium mechanics a powerful tool

for information processing.

2.3.2 Multiple qubits

Let us consider the case of two qubits. If these were two classic bits, then there
would be four possible states, 00, 01, 10, and 11. Correspondingly a two qubits

system has four computational basis states denoted by |00>, OI),

10),and|11). A

pair of qubits can also exists in a superposition of these four states, so the quantum

states of two qubits involv\e associating a complex coefficient — sometimes called

amplitude — with each computational basis state, such that the state vector

describing the two qubits is '
) = @ |00) + g, [01) + &,y |10) +, [11) .

Stmilar to the case for a single qubit, the measurement result x (= 00, 01, 10, or

11) occurs with probability|ax]2, with the states of the qubits afier measurement

bcing|x>. There exists the normalization condition Zx “ =1 for the two

efe.1)? ,

qubits system. We could measure just a subset of the qubits, say the first qubit.

2, leaving the

Measuring the first qubit alone gives 0 with probability|cy,|” +|cte,

post-measurement state

13

Chapter 2
Quantum Computer:
Fundamental Concepts

|l//') _ am,|00>+ am|01)
' |f""'00‘2 +|aos|2
100)+|11)
V2

is responsible for many surprises in quantum computation and quantum

An important two qubit state is the Bell state or EPR? pair, ~. This state

information. It is the key ingredient in quantum teleportation and super-dense

coding. The Bell state has the property that upon measuring the first qubit, one

obtains two possible results: 0 with probabilityy , leaving the post-measurement

state [} =]00), and 1 with probability y, leaving the post-measurement state

' |w’> = |1 1) . As a result, a measurement of the second qubit always give the result

of the measurement of the first qubit. That indicates that the measurement

outcomes are correfated.

More generally, we may consider a system with # qubits. The computational basis

states of this system are of the form |x|x2...x,,> , and so a quantum state of such a

system is specificd by 2" amplitudes. For n = 500 this number is larger than the
cstimated number of atoms in the universe. Trying to store all those complex

number is not possible on any conceivable classical computer.

2.4 Quantum Computation

Changes occurring to a quantum state can be described using the language of
Quartum Computation. Analogous to the way a classical computer is built from
an electrical circuit containing wires and logic gates, a quantum computer is built
from a guantum circuit conlaining wircs and clementary quantum gates 1o carry
around and to manipulate the quantum information. In this scction we describe

some simple quantum gates.

~ 2 Einstein-Podolsky-Rosen

14

Chapter 2 _
Chuantum Compuier:
Fundamental Concepls

- 2.4.1 Single qubit Gates

The only classical single-bit logic gatc is the NOT gate. in a classical NOT gate

the 0 and 1 states are interchanged. The quantum NOT gate analogously

interchanges the |0> and |I> states. However, specifying the actions of the gate on
the states |0) and |l> dogs not tcll anything about whallt happens to superposition
of states |0} and |1). In fact, the quantum NOT gate acts linearly, that is, it takes
the statc a|0)+ﬁ|i) to the corrcsponding state in which the rolc of |O) and [!)

have been interchanged, a|l>+ﬁ|0). This linear behavior is a general property of

quantum mechanics and very weil motivated cmpirically.

There is a convenient way of representing the quantum NOT galte in matrix form,
which follows directly from the linearity of quantum gates. Suppose we define a

matrix X to represent the quantum NOT gate as follows:

el

If the quantum state |0)+ A1) is written in a vector notation as:

ﬁ 3
with the top entry corresponding to the amplitude of |0} and the bottom entry

corresponding to the amplitude of |I), then the corresponding output from the

al-{e)

So the quantum gates for single qubit can be described by two by two matrices.

NOT gate is:

The apprbpriale condition on the matrix U representing a single qubit gate is that
U be unitary [sclf], that is U'U =1. Wherc U is the adjoint of U (obtained by
transposing and then complex conjugating U), ard [is the two by two identity

matrix. For example, it easy to verify that XTX =71

Chapiter 2
Quantim Computer:
Fundamental Concepls

This unitarity constraint is thc only constraint on quantum gatcs. Any unitary
matrix specifies a valid quantum gate [41]. The unitary quantum gates are
always reversible, since the inverse of a unitary matrix is also unitary, thus a

quantum gale can always be inverted by another quantum gate.

There are a number of single qubit gates. Two very important ones are the Z gatc:

o
4= ,
0 -1
which leaves |0> unchanged, and flip the sign of | |1) to give —Il), and the
Hadamard gate,

I 1 {1 1°

=5 ol

This gate is somctimes referred as ‘square-root of NOT gate. This is because this
gate turns a [0) nto 00)+|1))/ V2 ,-halfway between [0) and II), and turns a |1)
into (]0)—‘1))/ \/5 , halfway between [0) and |1) However, H is not a NOT gate,

as simple algebra shows that H’=/, and thus applying H twice to a state dose

nothing to it.

The Hadamard gate is one of the most useful quantum gates and the Bloch sphere

in Figure 2.3 shows its operation. The operation is a rotation of the sphere about

the p axis by 90°, followed by a reflection through the % — j plane.

9)

Fig 2.3: Visualization of Hadamard gate on the Bloch sphere, acting on the input

state 00)+ ll))/«/i .

16

Chapter 2
. . Quantum Compuier:
Fundamental Concepls

There are infinitely many single qubit gates while there is only one single bit
classical gate. Some of the important single qubit gate along with the classical

single bit gate are shown in Figure 2.4.

al0) s lt) — X Ao)valt)
[0z | e0iAd) —[Z1— elo-A)

' 0)+|1 0y -1
a0y sty —{H }— a1l 1010

Fig 2.4: Single bit (left) and single qubit (right) logic gates.

2.4.2 Multiple qubit Gates

The prototypical multi-qubit quantum logic gate is thc Controlled-NOT or CNOT
~ pate. It is also known as binary Feynman gate. Figure 2.5 shows the graphic and

matrix representation of the CNOT gate.

| 1) ' |4) 1 00 0
- yo_[0 100
|8) b | 4® B) Yo 0 0
00 10

| Graphic Form " Matrix Form

Fig 2.5: Graphic and Matrix representation of CNOT pate. .

The gate has two input qubits, known as control qubit (top line) and controlled

qubit or targéz qubit (bottom line). If the. control qubit is st to 0, then the

controlicd qubit is left alone (pass through). If the control qubit is set to 1, then the
target qubit is flapped. In equations: -
|00) —100);

oty —|ot); |10y =111y

1) - o).

Another way of describing the CNOT gate is as a generalization of the classical
XOR gate. The matrix representation of the CNOT gate is denoted by U, isa

unitary matrix since U, Ugy =1 .

w

Chapter 2
Quantum Computer:
Fundamental Concepts

Suppose U be any unitary matrix acting on a number # of qubits, so J can be
regarded as a quantum gate- on those qubits. Then we can have a Controlied-U/

gate which is a natural extension of the Controlled-NOT gate [Figure 2.6].

T

— Y & A —

Fig: 2.6: Controlled-U gate.

Such a gate has a single control qubit, indicated by the line with the black dot, and
n targel qubits, indicated by the boxed U. If the controlled qubit is set to 0 then
nothing happens to the target qubits. If the controf qubit is set to 1 then the gate U
is applicd to the target qubits. The CNOTgalc' is a specific Controfled-U gale with
U=X.

Of course, there are many interesting quantum gates other than the CNOT gate"i
However, in a sense the CNOT gate and sihglc qubit gates are the prototypes for
all other gates because \o'f the following remarkable universality result: Any
multiple qubit logic gate can be compbsed Sfrom CNOT and single qubit gates. It is
the quantum binary parallel of the universality of the NAND gate. The following

section provides a comprehensive proof of the fact.

2.4.3 Single qubif and CNOT Gates are Universal

Hecre we shall show that siﬁgle qubit and CNOT gates can be used to ifnplemenl an
arbitrary unitary operation on n qubits, and thercfore are universal for quantum

computation.
Suppose U is a two-level unitary matrix on an s qubit quantum computer. Supposc
in particular that U acts non-trivially on the space spanned by the computational

basis states [s) and |I), where s =4...5, and = .4, are the binary expansions

18

Chapiter 2
Cuantum Computer:
Fundamental Concepts

for s and £. Let U be the non-trivial 2x2 unitary submatrix of U; U/ can be thought

of as a unitary operator on a single qubit.

Our immediate goal is to construct a circuit implementing U, using Single qubit
and CNOT gates only. To do this we need to make use of Gray codes. Suppose we
have distinct binary numbers, s and 1. A Gray code connecting s and 7 is a
sequence of binary numbers starling with s and concluding with ¢, such that
adjacent members of the list differ in cxactly one bit. For instance, with 5 =

101001 and = 110011 we have thc gray code:

—_oo o

1
l .
I
]

~

—— — (T

I
I
|
1

SO ——
Soo O

Let g, through g, be the elements of a Gray code connecting s and ¢, with g, = s
and g, ={.Note that we can always find a Gray code such that m <n+1 since s

and ¢ can differ in at most » locations.

The basic idea of the quantum circuit implementing U is to perform a sequence of
gates effccting the state changes |g,) —|g,) —>....—>|gm_l), then to perform a
controlled-{/ operation, with the target qubit located at the single bit where -
“and g, differ, and then to wundo the first stage, transforming

Zoat) = |€ua)—> . |g). The implementation of these operations are

preéi:_s_ely described as follows. The first step is to swap the states |g,) and |g,).

Suppdse g, and g, differ at the ith digit. Then the swap is accomplished by
- performing a controlled bit flip on the ith qubit, conditional on the values of other

qubits being identical to those in both g, and g,. Next a controlled operation 1o

swap |g,) and |g,). It is continued in this fashion until the qubits |g,,) and

gn,7,>_ are swapped. The effect of this sequence of m — 2 opcrations is to achicve

the operation

S

Chapter 2-
Quantum Conmpulter:
Fundamental Concepis

-Igm-l>—>|gm-2)
All other computational basis states are left unchanged by this sequence of

- operations. Next, suppose

Z.a) and |g,) differ in the jth bit. We apply a

controlled-U operation with the jth qubit as target, condtional on the other qubits

having the same values as appear in both

g,,H) and gm>. Finally the J operation

is completed by undoing the swap operations as mentioned earlier.

A simple example will illustrate thc procedure further. Suppose we wish 1o

implcment the two-level unitary transformation -

a 000000 c
01 000000
00100000

U:0001000'0

*1o0 0001000
10 0000T1 00
00000O0T1 0
b 00000 0 d

'~ |a ¢
* Here, . b, e, anad are any complex numbers such that U =L d} is a unitary

matrix. Notice that U acts non-trivially only on the states |000)_ and |1 1 l). We

write Gray code connecting 000 and 111:
A

- o o <
—_— O O

C
0
i
1
1
From this we rcad off the required circuit, shown in Figure 2.7.

20

Chupter 2
Quuntum Computer:

Fundumental Concepts

Fig 2.7: Circuit implementing the two-level unitary operation defined by U..

The first two gates shuffles the states so that |OOO) gets swapped with |01 1). Next
the operation Jis applied to the first qubit of the states |011> and |111>,
conditional on the second and third qubits being in the state |11). Finally, we

unshuflle the states, ensuring that |Ol l) gets swapped back with the state 000).

2.4.4 Quantum Circuits

A simple quantum circuit realizing an arbitrary function is shown in Figure 2.7.
This circuit is to be read from lcft-to-right. Each' line in the circuit represents a
quantum wire in the quantum circuit. This wire does not necessarily correspond to
a physical wire, it may correspond instead to the passage of time; or perhaps to a
physical particle such as a photon moving ﬁdm one location to another through

space. It is conventional to assume that the state input to the circuit is a

computational basis state, usually the states consisting of all |O) S.

There are a few features allowed in classical circuits that are not usually present in
quantum circuits as listed below:
* Quantum Circuits do not allow any ‘loop’, that is, feedback from one
part of the circuit to another. Quantum circuits are said to be acyclic.
» Wires can not be joined together. In classical circuits the wires can be
joined and the resulting. single wire contains the OR or AND of the
joined wires, this is known as FANIN.' Since this operational is not

reversible, it is not available in quantum circuits.

21

Chapter 2

Quantum Computer:
Fundanental Concepts

o The inverse of FANIN operation, FANOUT, is also absent for the same
_reason. Besides, FANOUT operation requires to make copies, quantum
mechanics does not allow cloning of the qubits.

Let us examine the third issue, copying a qubit, in a greater detail in the following

section.

2.4.3 Can a qubit be Copied?

Consider the task of copying a classical bit. This may be done 'using a classical
CNOT gate, which takes in the bit to copy (in some unknown state x) and a
scratchpad bit initialized to 0, as shown in Figure 2.8(a). The output is two bits

both of which are in the same state x.

X —x

Lol

-) =al0)+ A1) —

|v)

0 xosfr 1) —EB— aloo)+ A1)

(a) (b)

Fig 2.8: Classical and Quantum circuit to copy an unknown bit or qubit.

Now, let us try to copy a tuit in the unknown statc |i//> = a| O)+ ﬂ|l> in the same

manner by using a CNOT gate [Figure 2.8(b)]. The input state of the two qubits

may be written as

[f0) + A13] 0) = 2| 00) + A1)
The funetion of the CNOT is to negate the second qubit when the first qubit is 1,
and thus the output is simply 0:|00>+ﬁ|1 1). Have we successfully cbpied 11;/)?
' That is we have created the state) [) 2 In the case where) =|0) or [)=|1})
.that is indced what the circuif. docﬁ;‘ il is possible to use quanium circuits 10 coby
classical information encoded as a |O) or a |l> However, for a general state |r,,'f)

we sce (hat
|v)|w) = @*|00) +aB|01) +aB[10) + B7|11) .
Comparing with a[00}+ A1), we sce that unless aff =0the ‘copying circuit’

above does not 'copy the quantum state input. In fact, it turns out to be impossible

22

Chapier 2
Quantum Compaiter:
Fundamenitul Concepts

to make a copy of an unknown quantum state. This property fhat, qubits cannot be
copied, is known as no-cloning theorem, and it is one of the major differcnces

between classical and quantum information.

The no-cloning can be cxplained in another way. A qubit contains ‘hidden’

information not directly accessible to measurement. When one of the qubits of the

state a|00) + ﬂ'i l) is measured, we obtain either 0 or 1 with probabilities |a:!2 and

}ﬁr.. However, when one qubit is measured, the sfate of the other one is
. compiletely determined, and no additional information can be gained about
a and /1. The extra hidden information carried in the original qubit ly/) was lost
in the ﬂrstlmeasurement, and éannot be regained. If, however, the qubit had been

copied, then the state of the other qubit still contains some of that hidden

information. Therefore, s copy cannot have been created.

2.4.6 Quantum Parallelism

Quantum Parallelism is a fundament feature of quantum. computation.
Heuristically, and at the risk of over-simplifying, quantum parallelism allows

quantum computers to cvaluate a function f(x) for many different values of x

simultaneously. Let us see how quantum parallelism works, and some of its

limitation.

Suppose f(x):{0,]} = {0,1} is a function with one bit domain and range. A
convenient way to compute this function on a quantum computer is to consider a

two-qubit quantum computer which starts in the state

X, y). With an appropriate

scquence of logic gates, it is possible to transform this state into

xy® f(x))
where @ indicates modulo-2 addition; the first register is called the ‘data’ register
and the sccond one is the ‘target’ register. We give the transformation defined by

x,y) —|x,y® f(x)) aname, U, , and note that it is easily shown to be

the map

unitary. If y = 0, then the final state of the second qubit is just the value f(x).

23

Chapter 2
Quantim Computer:
Fundamental Concepis

Uy)

‘0) |y y® f(x)

Fig 2.9: Quantum circuit for evaluating f(0)and f(1) simultaneously. U, isthe.

quantum circuit which takes inputs like

%y)to|x,y® f(x)).

Consider the circuit in Figure 2.9, which app]iesU_.,‘to an input not in the
computational basis. Instead, the data register is prepared in the superposition
GO>+|I))/«[2_, which can be created with a Hadamard gate acting on |0),

thenl/, lis applied, resulting the state:

0, £(0) +|1, £(1))
- .

This is a remarkable state! The different terms contain information about f(0)and

f(; it is almost as if we have evaluated f(x)for two values of
x simultancously, a feature known as ‘Quantum Parallelism’. Unlike classical
parallelism, where multiple circuits each built to compute f(x)are exccuted
simultancously, here a single f(x) circuit is employed to evaluate the function for
multiple values of xsirﬁultaneously, by exploitin-g the ability of a quantum
computer to be in superposition of different states. This procedure can easily be

generalized to functions on an arbitrary number of bits (for detailed d=scription
see [41]).

2.5 Quantum Information

The term ‘quantum information’ is used in two distinet ways in the field of
quantum computation and quantum information. The first usage is a broad catch-
all for all manner of operations that might be interpreted as related to information

processing using quantum mechanics. This use encompasses subjects such as

24

Chapter 2
Quantum Computer;
Fundamental Concepts

quantum ‘computation, quantum teleportation, thc no-cloning . theorem, and

virtually all other topics in this ficld.

The second use of ‘quantum information' is much more specialized: it refers to the
study of clementary quantum information processing tasks. Quantum information
thcory may look like a disordered zoo to the beginner, with many apparcntly
unrclated subjects falling under the ‘quantum information theory” domain. In part.,.
that is because the subject is still under development, and it is not yet clear how all
the picces fit together. However, a few fundamental goals can be identificd uniting_ '
work on quantum information theory:
o ldentify elcmentary classes of static resources in quantum mechanics
=~ One example is the qubit. Another example is the bit; classical
physics arises as a special case of quantum physics, so it should
also be of great .rclevance in quantum information theory.
o Identify elementary classcs of static resources in quantum rﬁechanics
- A simple example is memory, the ability to store a quantum state
over some period of time. Less trivial processes afe quantum
information transmission between two parties, copying a quantum
state, and the process of protecting quantum information
processing against the effect of noise. '
s Quantify resource tradeoffs .incurred performing elementary dynamic
processcs _
- For example, what are the minimal resources requircd to reliably
transfer quantum information between two parties using a noisy

communications channel?

2.6 Prospects for Quantum Information Processing

Building quantum information processing devices is a great challenge for
scicntists and engineers in the third millennium. The most fundamental question is
whether there is any point of principle that prohibits us from doing one or morc

forms of quantum information processing? Two possible obstructions suggest

25

Quantum Computer:
Fundamental Concepis

themsclves: that noise may place a fundamenial barrier to useful quantum

information processing; or that quantum mechanics may fail to be correct.

The theory of quantum error-correcting codes strongly suggests -that while
quantum noise is a practical problem that needs to be addressed, it does not
present a fundamental problem of principle. In particular, there is a threshold
theorem for quantum computation. The theorem roughly states that provided a
level of noise in a quantum computer can be reduced below-a certain constant
threshold value. Quantum error-correcting codes can push it even further,
esscrtially ad infinitum, for a small overhead in the complexity of the

computation.

A second possibility that -may preclude quantum information processing is if
quantum mechanics is -incorrect. ‘Indecd, probing the validity of quantum
mechanics is one of the rcasbns behind the interest of building quantum
information processing devices. Never before we have cexplored the regime of
Nature in which complete control has been obtained over large-scale quantum
systems. And perhaps Nature may reveal some new surprises in this regime which
are not adequately explained by quantum mechanics. If this occurs, it will be a
momentous discovery inl the history of science, and can be expected to have
considerable consequences in the other areas of science and technology, as did the
discovery dfquantum mechanics. Until and unless such events occur, we have no
way of knowitig how they m'ight affect information processing, so we can assume

that quantum mechanics is a complete and correct description of the world.

A clear picture of the relative power of classical and quantum information
processing is nceded in drdcr lo asses their relative mcrits..lt requires further
theoretical work on the foundations of quantum computation and quantum
information. It would be useful to have a clear path of interesting applications at
varying lcvels of compiexity to aid researchers aiming to experimentally realize

quantumn information processing,.

26

Chapter 3

Quantum Computer: Physical Realization

Given a path of potential applications for quantum information processing, how
can it be achieved in real physical system? At the small scale of a few qubits there
arc already several working proposals for quantum information processing
devices. Mainly there are three technologies proposed for the purpose

i Optical,

ii. Ion Trap, and

il Nuclcar Magnetic Resonance. _ .
The different rcalization technologics arc discussed later in this chapter in greater
dctails, But before the detailed description of specific technologies, let us consider

some important relevant issucs.

3.1 Realization of Quantum Computer

' “To realize a quantum computer,. we must not only give qubits some robust
phyvsical representation, but also select a system in which they can be made to
evolve as desired. Moreover, we must be able to prepare qubits in some specified
set of initial states, and to measure the final output state of the system. The
challznze of quantum realization is that the basic requirements can often only be
partially met. A coin has two states, and makes a good bit, but a poor qubit

because it cannot remain in a superposition state for a long time.

A singlc nuclear spin can be a very good qubit, because superposition of being
aligned with or against an external magnetic ficld can last a long time — even for
days. But their coupling to the wo‘rld is so small that they are hard to measure the
orientation of single nuclei. The constraints are opposing is general: a quantum
computer has to be well isolated in-order 10 retain its quantum properties, but at .

the same time its qubits have to be accessible so that they can be manipulated to

Chapter 3

Quanium Computer:
Physical Realization

perform computations and to read out the results. A realistic implementation must
strike a delicate balance between these constraints. Therefore, the relevant
question is not ‘how to build a qubntum computer’, but rather, ‘how good a

quantum compuier can be built’. C L

3.2 Conditions for Quantum Computation

The basic requirements for quantum computation are the abilities to:
i. Robustly represent quantum information
i, ‘Perform a universal family of unitary transfbi'mations
iii. Prepare a fiducial initial state
iv. Measure the output result

These are discussed in the subscquent sections.

3.2.1 Representation of Quantum Information

" For the purposc of computation, it is crucial that the set of accessible states should
be finite. The position x of a particle along a one-dimensional line is not generally

a godd set of states for computation, even though the particle may be in a quantum

state|x) , or even some superposition) ¢,

x) . This is because x has a continuous

range of possibilities, and the Hilbert space has inﬁn.ite size, so in the absence of
noise the information capacity is infinite. For example, in a perfect world, the
entire works of Rabindronath Tagore could be stored in the inﬁﬁitc number of
digits in the binary fraction'x =0.0101101000101001110.... This is eclearly
uniealistic; instead, the prescnee of noise reduces the number of distinguishable

states Lo a finite number.

It is generally desirable to have some aspect of symmetry dictate the finiteness of

the state space, in order to minimize decoherence. For example, a spin-1/2 particle
lives in the Hilbert space spanned by the H) and |~L) states; the spin state cannot

be anything outside this two-dimensional space, and thus is a nearly ideal

quantum bit when well isolated.

28

Chapter 3

Quantum Computer:
Physical Realization

If the choice of representation is poor, then decoherence will result. For example,
a particle in a finite square weil which is just deep enough to contain two bound
states would make a mediocre quantum bit, because transitions from the bound

states to the continuum of unbound statcs would be possibie. These would lead to

decoherence since they could destroy qubit superposition states. For single qubits,

the figurc of merit is the minimum lifetime of arbitrary superposition states.

3.2.2 Performing Unitary Transformation

Closed quantum systems evolve unitarily as determined by their Hamiltonians, but
to perform quantum computation one must be able to control the Hamiltonian to
cffect an arbitrary selection from a universal family of unitary transformations.

For -ecxample, a single spin might evolve under the Hamiltonian

H=P@X+P0Y, ~where | P, arc classically controllablsz parameters. By

manipulating P, and P, appropriatcly, one can perform arbitrary | single spin

rotations.

Any unitary- transform can be composed from single spin operations and

Controlled-NOT gates, and thus realization of those two kinds of quantum logic
gates arc natural goals for cxperimental quantum computation.” However,
implicitly required also is the ability to address individual qubits, and to apply
these gates to selected qubits or pair of qubits. This is not simple to accomplish in
many physical systems. For example, in ion trap, one can direct a laser at one of
many individual ions to selectively excite it, but only as long as the ions are

separated by a wavelength or more.
Two important figures of merit for unitary transforms arc the minimum achievablc

fidelity, and the maximum time required to perform elementary operations such as

single spin rotations or a controlled-NOT gate.

29

Chapter 3

Quanitm Computter:
Physical Realization

3.2.3 Preparation of Fiducial Initial States

One of the most important requirements for being able to perform a useful
computation, even classically, is to be able to prepare the des:rcd input. With
classical machines, establishing a definite input state is rarely a dlfﬁculty -~ one
merely sets some switches in the desired configuration and that defines the input
state. But in case of quantum systems, this can be very difficult, depending on the
rcalizatioh of qubits. It is ohly necessary to be able to produce one quantum state

with high fidelity, since a unitary transformation can turn it into any other desired

input state. For example being able to'put n spins into the |00...0> state is good

cnough.

Input state representation is a significant problem for most physical systems. For
example, ion can be prepared in good input states by physically cooling them into
their ground state, but this is challenging. Moreover, for physical systems where
cnsembles of quantum compulers are involved, extra concerns arise. In nuclear
magnetic resonance, cach molecule can be thought of as a single quantum
computer, and a large number of molecules are needed to obtaini measurable
signal strength. Although qubits can remain in arbitrary superp051t10n of states for

relatively long times, it is difficult to put all of the qubits in all of the molecules
‘into the same state, because the energy difference he between the |0> and|l)
states is much smaller than 4T . On the other hand, simply lcttjng the system
equilibrate establishes it in a very well-known state, the ‘ti’lcrmal on'e; one the
density matrix o~e ™" /Z, where Z is a normalization factor required to

maintain tr(p)=1.

~

Two figures of merit are relevant to input state preparation: the minimum fidelity

with which the initial state can be prepared in a given state p, and the entropy
of p,,. The entropy is important because, for example, it is very easy to prepar¢

the state p,, =//2" with high fidelity, but that is a usciess state for quantum

computation, since it is invariant under unitary transforms. Ideally, the input state

30

Chapter 3

Quantum Computer:
Physical Realization

is a pure state, with zero entropy. Generally, input states with non-zero entropy

reduce the accessibility of the answer from the output result.

3.2.4 Measurement of Output Results

For the purpose of our present discussion, let us think of measurement as process
of coupling one or more qubits to a classical system such that after some interval
of time, the state of the qubits is indicated by the state of a classical system. For
example, a qubit statea|0}+ f|1), represented by ground and excited states of a
two-level atome, might be measured by pumping the excited state and looking for
{luorescence. If an electrometer indicates that fluorescence had been detected by a

photomultiplier tube, then the qubit would collapse into the|l) state; this would

happen with probabilily|ﬂ|2 . Otherwise, the electrometer would detect no charge,

and the qubit would collapse into the|0} state.

An important characteristic of measurement process for guantum computation is
the wave function collapse which describes what happens when a projcclivé
measurement is pérformcd. The output from a good quantum’ algorithm is a
superposition state which gives a useful answer with high probability when

measured. For example, one step in Shor’s quantum factoring algorithm is to find

an integer » from the measurement result, which is an integer close to qc/ v, where ‘

g is the dimension of a Hilbert space. The output state is actually in a nearly
uniform superposition of all possible values of ¢, but a measurement collapses this

into a single, random integer, thus allowingrto be determined with high

probability.

Many difficultics with measurement can be imagined; for example, -inefficient
photon counters and amplifier thermal noise can reduce the information obtaincd
about measured qubit states in the scheme just described. Furthermore, projective
measurements (sometimes called ‘strong’ measurements) are often difficult to
implement. They require that the -coupling between the quantum and classical

systems be large, and switchable. Measurement should not occur when not

31

Chapter 3

- Quantum Compulei.
Physical Realization

desired; otherwise they can be a decoherence process. However, strong
measuremenis are not necessary; weak measurements which are lperformed
" continuously and never switched off are usable for quantum computation. This is
made possible by completing the computation in time short compared with the
measurement coupling, and by using large ensembles of quantum cdmputers.
These enscmblcs together give an aggregate signal which is macroscopically
obscrvable and indicative of the quantum state. Again, use of an enscmble

introduces additional problems. For examplé, in the factoring algorithm, if the

mcasurcment output isg(c)/r, the algorithm would fail because (¢}, the average.

value ofc, is not necessarily an integer. Fortunately, it is possible to modify

quantum algorithms to work with ensemble average readouts.

A good figure of merit for measurement capability is the signal to noisc ratio
(SNR). This accounts for measurement incfficiency as well as inherent signal

strength available from coupling a measurement apparatus to the quantum system.

3.3 Harmonic Oscillator Quantum Computer

Before continuing on to describe a complete physical rmodel for a rcalizable
quantum computer, fet us consider a very elcmentary system — the simple
harmonic oscillator — and discuss why it does not serve as a good quantum
computer. The formalism used in this example will also serve as a basis for

studying other physical system.

3.3.1 The Quantum Harmonic Oécillator (QHO)

The harmonic oscillator is an extremely impbrtant and useful concept in the
quantum description of the physical world, and a good way to begin to understand
its properties is to determine the energy cigenstates of its Hamiltonian. One way 10
do this is simply to solve the Schrodinger equation

idll//u(x)
2m dx’

+ lzma)zxzt;/" (x)=Fy, (x)

\

32

Chapter 3 !

Quanium Compuler:
Physical Realization

For y,(x) and the ecigenencrgies £, subject to w(x)—~>0 at x:=zo, and
I|w(x)|2 —1; the first five solutions arc sketched herc in Figure 3.1. The wave

functions describe the probability amplitudes that a particle in the harmonic

oscillator will be found at differcnt positions within the potential.

Although these pictures may give some intuition about what a physical system is

doing in co-ordinate space, we will gencrally be more interested in the abstract

alpebraic properties of the statcs. Specifically, suppose) satisfics with
D | :
encrgy £ . Then defining operators a ard a' as a=——=—={mawx+ip), and
s . \mehw()

i)
at =——— {mwx—ip), we find that since |H,a' |=haou',
a ——— (mox p) we fi l a J

Ha'|y)= (lH,ot1]+ a*H)w) =(hw+ E)|y),
that is, afll#’) is an eigenstate of H , with energy E+ﬁw Similarly, ajy/) is an

eigenstate with energy £ —he. Because of this, aanda’ are called rising and

lowcring operators. It follows that a*"|t//> are cigenstates for any integer#, with

cigencnergies E +nhe . There are thus an infinite number of energy cigenstates,

whose energies are equally spaced apart, by fiw .

" Fig 3.1: Sketch of the first fivc solutions of the Schrodinger equation forys, (x).

33

Chupter 3

Quantum Computer.
Physical Realization

~ Morcover, since H is positive definite, there must be some |l//0> for which

'al %) =0; this is the ground state — the cigenstate with lowest energy. These
results efficiently capture the essence of the quantum harmonic oscillator, and

allow us to use a compact notation]n) for the eigenstates, where n is an integer,

and Hin)=n(n+1/2)n).

3.3.2 Physical Apparatus for QHO

An example of simple harmonic oscillator is a particle in a parabolic potential
well, ¥ (x)=ma*x’/2. In the classical world, this could be a mass on a spring,
which oscillates back and.forth as energy is transferred between the potential
cnergy of the spring and‘ the kinctic encrgy of the mass. It could also be a resonant
clectrical circuit, where the cnergy sloshes back aﬁd forth between the capacilof
and the inductor. In theses systems, the total energy of the system is a continuous

parameter.

In the quantum domain, which is reached when the coupling to the external world
becomes very small, the total energy of the system can only take on a discrete set
of values. An example is' given by a single mode of clectromagnetic radiation
trapped in a high ¢ éavity; the total amount of energy can only be integer
multiples of i@ , an energy scale which is determined by the fundamental constant

and the frequency of the irappcd radiation, @ .

The set of discrete energy cigenstates of a simple harmonic oscillator can be
labcled as \) wheren = 0,1,...;, « . The relationship to quantum computation
comes by taking a finite subset of thesc states to represent qubits. These qubits
will have lifetimes dctermlned by the physical parameters such as the cavny
quality factorQ, which can be ' made very large by increasing the reflectivity of the
cavity walls. Morcover, unitary transformations can be applled by simply allowing
the system to evolve in time. However, there are problcms with this scheme, as

will become clear below. We begi;l by studying the system Hamiltonian, and then

34

Chapter 3

Quantum Compuler:
Physical Realizdation

discuss how one might implement simple quantum logic gates such as the
Controlled-NOT.

3.3.3 The Hamiltonian for QHO

* . The Hamiltonian for a particle in a one dimensional parabolic potential is

2

H=2 —meo?s?
2m 2

where pis the particle momentum operaltor, mis the mass, xis the position

operator, and @ is related to the potential depth. The expression for A can also bc
written as: H:ha)(afa+—2—), where «' and «are creation and annihilation

operators, defined as :

1 .
a=————{(mwx+ip),
J2n1)"1a)(/)
aT

] .
= ———M (ma)x - Ip).
The zero point energy Aw/2 contributes an unobservable overall phasc_ factor,
which can be disreg;alrd.ed for our present purpose. The éigcnstatcs [n) of H,
“where n =0,1,..., have the propertics:
a*a\ n) = n| n)
at\n>:\/;ﬁ\n+l)
a‘n) = J—rzln - l)
later, we will find it convenient to express interaction with a simple harmonic
oscillator by introducing additional terms involving a' and .a, and interaction
between oscillators with term such as aa, +a,a) . For now, however, we confine

our attention to a single oscillator.

Time cvolution of the eigenstate is given by solving the Schrodinger cquation,

from which we find that the state |(0)) = Y ¢,(0)n) cvolves in time to become

\y/(t)) = |l//(0)> = ;c"e“"’ﬂn))

35

' Chapter 3

Quantum Compuier:
Physical Realization

We will assume for the purpose' of discussion that an arbitrary state can be
perfectly prepared, and that the state of the system can be protectively measured,
but otherwise, there are no interactions with the external world, so that the system

is perfcctly closed.

3.3.4 Quantum Computation for QHO

Suppose we wan to perform quantum compuation with the single simple

harmonic oscillator described above. What can be done? The most natural choice
for representation of qubits are the energy eigenstates|n) . This choice allows us to

perform a Controlled-NOT gatc in the following way. Recall that this
transformation performs the mapping - '
|00}, —|00)
lo1), —»101

[

)
|10), =17

i

[11), — 10}, .
On two qubits states (here, the subscrlpt L is used to clearly distinguish ‘logical’

A

i

states in contrast to the harmonic oscillator basis states). Let us encode these two

qubits using the mapping |
|00), —[0)

[o1), —|2)

l10), > {(4)+[1))/V2

1), — () -[)"2

Now suppose that at £ =0 the system is started in a state spanned by these basis

[B

2
)

states, and we simply evolved the system to forward to time t=m/he. This

causes the cnergy eigenstates to undergo the transformation
|72) — exp(ina a] y=(-1)'|n), such that |0}, 12}, and |4) stay,uﬁchangcd, but
[) > ~{1). As a result, we obtained the desired Controlled-NOT gate

transformation. j

In general, a necessary and sufﬁcnent condition for a physwa] system to be able to

perform a unitary transform U is 51mply that the time evolution operator for the

36

Chapier 3

Quantum Compuler.
Physical Redlization

system, T =exp(—- th), defined by its Hamiltonian H, has nearly the eigenvalue

spectrum as U. in the case above, the Controlled-NOT gate was simple to:
implement because it only has eigenvalue +1 and -1; it was straightforward to
arrange an encoding to obtain the same eigenvalues from the time evolution
operator. for the harmonic oscillator. The Hamiltonian for an oscillator could be
perturbed to realize nearly any eigenvaluc spectrum, and any number of qubits
could be represented by simply mapping them into the infinite number of-
eigenstates of the system. This suggests that perhaps one might be able to realize

an er.tire quantum computer in a single simple harmonic oscillator.

3.3.5 Drawbacks of QHO

Of course there are many problems with the above scenario. Clearly, onc will not
always know the cigenvaluc spectrum of the unitary operator for a cerlain
quantum computation, even thoubh onc may know how to construct the opcrator
from elementary gates. In fact for most problems addressed by quantum
algorithms, knowledge of the cigenvalue spectrum is tantamount to knowledge of
the solution! Another obvious problem is that the technique used above does not
allow one computation to be cascaded with another, becéuse in general, cascading

two unitary transforms results in a two transform with unrelated eigenvalues.

Finally, the idea of using a single harmonic nscillator to perform quantum
© computation is flawed because it neglects the principle of digital representation of
information. A Hilbert space of 2" dimensions mapped into the state space of a
single harmonic oscillator would have to allow for the possibility of states with
energy 2"he . In contrast, the same by using Hilbert space could be obtained n
two-level quantum systems, which has energy of at most nho . Similar
comparisons can be made between a classical dial with 2" settings, and a register

of n classical bits. Quantum computation builds upon a digital computation, not

analog computation.

The main features of the harmonic oscillator quantum computer are summarized

below (each system we consider will be summarized similarly, at the end of the

37

Chapter 3

Quantum Conipuier:
Physical Realization

corresponding section;) With this, we leave behind us the study of single

oscillators, and turn next to systems of harmonic oscillators, made of photons and

atoms.

3.3.6 Summary of QHO Properties

The issues rclated to the Harmonic Oscillator Qu-aritum Compuier can bc .

summarized as follows:

e Qubit Representation: Energy levels |0),]1),....,

2") of a single quantum

oscillator give'n qubits.
"« Unitary Evolution: Arbitrary transforms U arc rcalized by matching their
cigenvalue spectrums to that given by the Hamiltonian H = a'a.
¢ Initial State Prc[;arati()n: Not considered.
¢ Readout: Not considercd. |
e Drawbacks: Not a digital representation. Also matching eigenvalues to
realize transformations is not feasible for arbitrary U, which generally

have eigenvalues.

3.4 Optical Photon Quantum Computer (OPQC)

An attractive physical system for representing is a quantum bit is the optimal
photon. Photons are charge less particles,' and do not interact very strongly with
cach other, or even with most matter. They can be guided along long distances
Vwith low loss in optical fibers, delayed efficiently using phase shifters, and
combined easily using beams:plittcfs. Photons exhibit signature quantum
phenomena, such as the interference produced in two-slit experimcents.
“Furthermore, in principle, photons can bc made to interactions. Thcre arc
problems with this ideal scenario; nevertheless, many things can be learned from
- studying the components, architecture, and _drawbacké of an optimal photon

quantum information processor, as we shall sce in this section.

38

Chapter 3

Ouantum Compufer:
Physical Realization

3.4.1 Physical Apparatus of an OPQC

Let us begin by considering what single photons are, how they can represent
quantum states, and the experimental components useful to manipulate photons.
The classical behavior of phase shifters, beamsplitters, and nonlinear optical Kerr

media is described.

Photons can represent qubits in the following manner. As we saw in the discussion
of the simple harmonic oscillator, the enefgy in an electromagnetic cavity is
quantlzcd in units of K . Each such quantum is called photon. It is possible for a

cavity to contain a superposition of zero or one photon, a state which could be
. :cxpresscd as a qubit CO|O>+C||1>, but we shall do something different. Let us
consider two cavities, whose total energy isfiw , and take the two states of-a qubit
as being whether the photon is in onc cavity (|0I>) or the other '(]IO)). The
physical state of a superposition would thus be written as c0|01)+é,l10>; this is
known as dual-rail representation. The actual focus is on single photons traveling
as a wavepacket through free space, rather than inside a cévity, one can imagine

this as having a cavity n;loving along with the wavepacket. Each cavity in the

qubit state will thus correspond to a different spatial mode.

One scheme for generating single photons in laboratory is by attenuating the

output of a laser. A laser outputs a state known as coherent state, \a) , defined as

o) =e "“'”T I

where]n} is an n-photon energy eigenstate. It suffices to understand just that

coherent states arc naturally radiated from driven oscillators such as a laser when

pumped hlgh above its lasing threshold. Note that the mean energy is
(aln\a) \n| When attenuated, a coherent state just becomes a weaker coherent

state, and a weaker coherent state can be made 1o have just onc photon, with high

probability.

39

Chapter 3

Quantum Computer:
Physical Realization

Better synchronicity can be achieved using paramétric down-conversion. This

involves sending photons of frequency @, into a nonlinear optical medium such
as KH,PO, to generate photon pairs at frequencies o, +w, = @, Momentum is
also preserved, such that _E,+E2 =I;3, so that when a single @, photon is

(destructively) detected, then a single @, photon is known to exist (see Figure

3.2).

By coupling this to a gatc, which is opened only when a single photon is detected,
and by appropriately delaying outputs of multiple down-conversion sources, one
can, in principle, obtain multiplc single photons propagating in lime

synchronously, within the time resolution of the time detector and gate.

Laser ' »| Crystal

Fig 3.2: Parametric down-conversion for generation of single photons.

Three of the most .experimentally accessible devices for manipulating photon’

states are
i. Mirrors, ;
ii. Phase shifters, and
iii. Beamsplitters.

Mirrors with less than 0.01% loss arc not unusual. A phasc shifter is nothing more
than a slab of transparent medium with index of refraction # different from that of
free space, n, . The beamsplitter is nothing more than a partially silvered piece of
glass which reficcts a fraction R of incident light, and transmits 1-R. In the
laboratory, a bzamsplitter is usually fabricated from two prisms, with a thin

metallic layer sandwiched in-bctween, schematically drawn as in Figurc 3.3. It is

40

Chapter 3

Quantum Compuler.
. Physical Realization

convenient to define the angle & of a beamsplitter as cosé¢ = K. The two inputs
and two outputs of this device are related by '

a, =a, cost9+b siné

raul

b =-a,sind+b,cosd.

ot

Nonlinear optics provides another useful component: a matcrial whose index of
refraction # is proportional to the total intensity / of the light going throug,h |t
n(l)=n+n,I. This is known as the optical Kerr effect, and it occurs (very
weakly) in materials as .mundanc as glass and sugar water. Experimentally, the
relevant behavior is that when two beams of light of cqual intensity are nearly co-
propagate through a Kerr medium, each beam will experience an extra phase shift

of e""*®'* compared to what happens in the single bcam case.

b-a i a+b

b B 5 b B =

) a+b a a-b

a . "l 7
(a) (b)

Fig 3.3: Schematic of an optical beamsplitter. (b) is the inverse of (a). [= %]

3.4.2 Quantum Computation with OPQC

Arbitrary unitary transforms can be applied to quaiitum infonnation,.enéoded with
single photons in the c°]0])+c,|10) dual-rail rcprcscnfation, using phase shifters,
beamsplittcrs, and nonlincar optical Kerr media. How they work can be described
by giving a quantum-mechanical Hamiltonian description of each of them.

The time evolution of a cavity mode of electromagnetic radlation is modeled

guantum-mcchanically by a harmonic oscillator, as was shown in the previous

section, lO) is the vacuum slate, ||)=a*]0) is a single photon state, and in

41

Chapter 3

Quantum Compuler:
Physical Realization

general, |n) = J_l) is an n-photon statc, where a' is the creation operator for

the mode. Free snace evolution is described by the Hamiltonian
H=howa'd,
and applying () =e™""|w(0)) = S c,e™™|n), we find that the state

L) = €,|0) +¢,|1) evolves in time to become 0) - ¢,|0)+c,e|1) . Note that
the dual-rail representation is convenient because free evolution only changes
lw) = ¢,|01)+¢,|10) by an overall phase, which is undetcctable. Thus, for that

manifold of states, the evolution Hamiltonian is zero.

Phase Shifter: A phase shiffer P acts just like normal time evolutlon but at a
diffcrent rate, and localized to on!y\thc modes going through it. That lq bccause

light slows down in a medium with larger index of refraction; specifically, it tdkcs

A= (n n)L/ ¢, more time to propagate a distance L in a medium with index of

refraction # than in vacuum. For example, the action P on the vacuum state is to

"0

do nothing: P|0)=|0), but on a single photon state, one obtams Pll)=¢'

* . P performs a useful logical operation on a dual-rail state. Placing a phase shifter in
one mode retards its phase evolution with respect to another mode, which travels

the same distance but without going through the shifter. For dual-rai} states this
transforms ¢,|01)+¢,[10) to coe‘m”‘Ol)# ¢,e™?}10), up to an irrelevant overall
phasc. This operation is actually nothing more tha.n a rotation |

R, (A)=e"2,
wherc we take as theh'llcN)gical zcro|0,) =|01) and one | l-,') =10}, and Z is the

usual Pauli operator. One can thus think of P as resulting from time cvolution

undcr the Hamiltonian
H= (no - n)Z

where P = exp(- iHL/co). The following circuit in Figure 3.4 transforms a dual-

rail statc by ‘l//‘m,> = [@({; (l)]l tf”l:t)

42 .

Chapter 3

Quantumn Compuier:
Physical Realization

where the top wire represents the |01) mode, the bottom as the. |10> mode, and

the boxed 7 represents a phase shift by .

|W|’rr> V . Wour)

Fig 3.4: Optical circuit representing a phase shift by .

Beamsplitter: A similar Hamiltonian description of the becamsplitter also'.cxists.
The beamsplitter acts on two modes which arc described by the creation
(annihilation) opcrators a{a') and & (b"). The Hamiltonian is ‘

M, =iolab’ —a'b). |
And the beamsplitter performé the unitary operation

B= ex;{é(aTb ~ab')J :
The transformations effected by B on aandbare rfound to be

BaB' =acos@+bsin@ and BHB' = —asin@+bcosl .

Nonlinear Kerr. Media: The most important effect of Kerr media is the cross
Phase modulation it provides betwecn two modes of light. That is classically
. described by the n, term in n(f) =n+n,J, which is effectively an interaction
between photons, mediated by atoms in the Kerr medium. This effect is described
by the Hamiltonian |

H,,, = —ya'ab'h .

Where ¢ and b describe two modes propagating through the medium, and for a

crystal of length L we obtain the unitary transform K = ¢@“'*"
By combining Kerr media with beamsplitter, a Controlled-NOT gate can be

constructed in the following manner. For single photon states, we find that

43

Chapter 3

Quantum Computer:
‘ : Physical Realization

K|00) = |00}
Kfot)=|o1y
K10y =|10)
K[y =" 1) -

and let us take yL =, such that K|11)=-1 1} |

3.4.3 Drawbacks of OPQC

The singlc photon represcntation of a qubit is attractive. Singlc photons are
rclatively simple to generatc and mcasurc, and in the dual-rail representation,
arbitrary single qubit operations are possible. Unfortuhately, interacting photons is
difficult — the best nonlinear Kerr media available are very weak, and cannot
_provide a cross phase modulation of 7z between single photon states. Morcover,
there is always some absorption associated with the nonlincarity. Theorctically it
can be estimated that in the best such arrangement, approximately 50 photons

must be absorbed for each photon which experiences a. z cross phase modulation

C[41].

Historically, optical classical computers were once thought to be promising
replacement for clectronic machines, but they ultimately failed to live up to
expectations when sufficiently non'linear optical materials were not discovered,
and when their spéed and parallclism advantage did not sufﬁcientl):f outwcight

their alignment and power disadvantagcs.

3.4.4 Summary of OPQC Properties

The issucs related to the Optical Photon Quantum Computer can be summarized
as follows:

* Qubit Representation: Location of single photon between two modes,

|0]) and |10), or p-(-)larizalion. |

44

Chapter 3

Quantum Computer:
Physical Realization

Unitary Evolution: Arbitrary transforms are constructed from phasc

shifters (R, rotations), beamsplitters (R, rotations), and nonlinear Kerr

media, which allow to single photons to cross phase modulate.

* Initial State Preparation: Create single photon states (c.g. by attenuating
laser light), |

s Readout: Detect single photons (e.g. using a photomultiplier tube).

o Drawbacks: Nonlinear Kerr media with large ratio of cross phase

modulation strength to absorption loss are difficult to realize. -

3.5 Optical Cavity Quantum Electrodynamics (OCQED)

Cavity quantum electrodynamics (QED) is a field of study which accesses an
important regimc involving coupling of single atoms to only a few optic'éii modes.
Expecrimentally, this is madc possible by placing single atoms within- optical
cavities of very high Q; because only or two clectromagnetic modes exist within
the eavity, and each of this has a very high electric field strength, the dipole
coupling between the atom and the ficld is very high. Because of the high Q,
photon within the cavity'has an opportunity to interact many times with the atom
before escaping. Theoretically, this tcchhiquc present unique opportunity to
control and study single quantum systems, opening many opportunities in

quantum chaos, quantum feedback control, and quantuin computation.

In particular, single-atom cavity QED methods offer a potential solution dilemma
with the optimal quantum computer described in the previous section. Single
photons can be good carrier-s of quantum information, but they require some other
medium in order to interact with cach other. Becausc they arc bulk materials,
. lradililonal nonlinear optical Kerr media are unsatisfactory in satisfying this need.
However, well isolated single atoms might not neceésari!y suffer from the samé
~ - decoherence effects, and more bver, thcy could also provide 'cross phase
modulation between photons. In fact, if the state of single photons could be
cfficiently transferred to and single atoms, whose intcractions could be controlled?

This potcntial scenario is the topic this section.

45

Chapter 3

Quantum Computer:
Physical Realization

3.5.1 Physical Apparatué for OCQED‘

The two main experimental components of a cavity QED system are the
electromagnetic cavity and the atom. The basic physics of the cavity modes are

described here:

Fabry-Perot cavity:

The main interaction invoh?cd in cavity QED is the dipolar interaction
d.E between an eleetric dipole momént d and an electric ficld £ . It is
difficult to change the size of d; however, |EI is (.:'xperimentally
accessible, and one of the most impbrtant tools for realizing a very large

clectric field in a narrow band of frequencics and in a small volume of

space, 1s the Fabry-Perot cavity.

In the approximation that the electric field is monochromatic and occupies
a single spatial mode, it can be given a very simple quantum-mechanical

description:
E(r)=i&E, [ae”" —aTe_”"].

Here, k = @/c is the spatial frequency of the light, E, is the ficld strength,

& is the polarization, and r is the position at which the ficld is desired.

Note that the Hamiltonian governing the evolution of the field in the cavity
is simply
H pera = hod'a,

and this is consistent with the semi-classic notion that the encrgy is the

2
volume integral of IE| in the cavity.

Two-level atoms:
The clectronic encrgy cigenstates of an alom can be very complicated, but
for our purposes modeling.an atom as having only (wo states is an
excellent approximation. This two-level atom approximation can be valid

because we shall be concerned with the interaction with monochromatic

46

A

Chapter 3

Quantum Compuler:
Physical Realization

light and the only rclevant. cnergy levels are those satisfying two
conditions: their encrgy difference matches the cnergy of the incident
photons, and symmetrics do not inhibit the transition. These conditions
arisc from basic conservation law of cnergy, angular momentum, and
parity. Encrgy conservation is no more than the condition that
') ho=E,-E,, |

-.where E, and E, are two cigenenergies of the atom. Angular momentum
and parity conservation requirements can be illustrated by considering the

matrix element of 7 between two orbital wave functions, (1, m, 7|1, m,) .

Without loss of generality, we can take 7 to be in the £— § plane, such

that it can -be expressed in terms of sp-herica! harmonics as
F= g[(— ro+in)Y +(r_\, +ir,)}’,_Ti]. In this basis, the relevant terms in

{l,m |F|ly,m,) are [V, Y, ¥, dQ. The first condition is the conservation
1777 22 .

of angular momentum, and the second, parity, under the dipole

approximation where {I,,m,|f{/,,m,) becomes relevant. These conditions

-are seleztion rules which are important in the two-level atom

approximation.

3.5.2 Summary of OCQED Properties

The issues rclated to the Optical Cavity QED can be summarized as follows:

¢ Qubit Representation: Location of singlc photon between two modcs,
|01) and [10), or polarization.

¢ Unitary Evolution: Afbitrary transforms are constructed from phase
shiftersl(Rz rotations), beamsplitiers (R, rotations), and a cavity QED
system, comprised of a Fabry-Perot cavity containing a few atoms, to
which the optical field is coupled.

* Initial State Preparation: Create single photon states (e.g. by attenuating

h laser light).

e - Readout: Detect single photo'ns (e.g. using a photomultiplier tube).

47

Chapter 3 .

Cluantum Computer:
Physical Realization

e Drawbacks: The coupling of two photons is mediated by an atom, and
thus it is desirable to increase the atom-field coupling. However, coupling
the photon into and out of the cavity becomes difficult, and limits

cascadibility.

3.6 Ion .Trz'lps

Electron and nuclear spins provide ﬁotcntialiy good representations for qubits.
Since the energy difference between different spin states is typically very small
compared with other energy scales (such as the kinetic energy of typical atoms at
room temperature), the spin states of an atom are usually difficult to observe, and
even more difficult to control. However, in carcfully crafted environments,

exquisite control is possible.

Such circumstances arc provided by isolating and trapping small numbers of
charged atoms in elcctrombgnctic trapé, then cooling the atoms until their Kinctic
energy is much lower than the spin energy contributions. After doing this, incident
monochromatic lights can be tuned to sélectively cause transitions which change
certain spin states depending on other spin States. This is the essence of how

trapped ions can be made to perform quantum computation.

3.6.1 Physical Apparatus for lon Traps

An ion trap quantum computer has as its main components an electromagnetic

trap with lasers and photo-detectors, and ions.

Trap geometry and lasers: The main experimental apparatus, an
clectromagnetic trap constructed from four cylindrical electrodes, is shown in

Figure 3.5.

48

Chapiter 3
Quantum Computer:

Physical Realization

Modulators | =~ %

&

St 7; i,;fgﬁ ﬂ‘gf‘cl &‘“ S EVAY
' . lI. 9 &80 L \ !
rwn?‘ifr’:ﬂl-;’ ﬂ”f,-" YA'L"“‘E “J t}h A

Y ! B _-.-.-1'
p;:,;%,: :'ﬁ 5; 1§ ,,3;.:‘ it :,:;;z \
\ VocosQr+U,
Photo-detectors

Fig 3.5: Schematic drawing of an ion trap quantum computer.

The end scgments of the e]cclrodcs are blascd at a different voltage U, than the
middle, so that thc ions arc axially . conﬁncd by a static potential
O, =-onlz —(x +y)sz along the Z axis (x is a geometrical factor).
However, a result known as Earnshaw’s Theorem states that a charge cannot be
confined in threc dimensions by static potentials. Thus, to provide conﬁnémenl,
two of the clectrodes are grounded, while-the other two are driven by a fast
oscillating voltage which creates a radiofrequency (RF) Ipotcntial
®_ =(Vycos Qe+ U,)1 +(x* - y*)/R*)/2, where R is a geometrical factor. The
segments of the clectrodes are capacitively coupled such that the RF potcntial is

constant across them. The combination of @, and @ crecates, on avecrage

(over€);), a harmonic potential of x, y, and z. togcther with the Coulomb

rcpulsion of the ions, this gives a Hamiltonian governing the motion of the N ions. .

in the trap,

CH= L .:”r,+.:oyy,+.:ozzz+|p‘2 +ZZ
i=1 ©odml i 4”60' -’l

where M is the mass of each ion. Typically, w;,ul., >> w. by design, so that the

-

ions all lic along the z axis. : i N '
In the ion trap, the cnergy cigenstates represent different vibrational modes of the
entire lincar chain of ions moving together as a body, with mass NM. These arc

callcd the center of mass modes. Each ho, QUanlum of vibrational encrgy is

49

Chapter 3

Quantum Computer:
Physical Realization

called a phonon, and can be thought as a particle. For the phonon description to
hold, certain criteria must hold. First, the coupling to the environment must be
. sufficicntly small such that thermalization dose not randomize the state of the
system, and sccond, the width of the ion oscillation in the trap potential should be
stnall compared to the wavelength of the incident light. This Lamb-Dicke criterion

is conventionally expressed in terms of the Lamb-Dicke parameter n = 2z, /A,

where A is the wavelength, and z0 = Jh/2ZNMao is the characteristic length séale
- of the spacing between ions in the trap. The Lamb-Dicke ecriterion requires
thatz <<1; this does not strictly have to be met in order for ion traps to be useful
for quantum computation, but it is desired to have that n =1 at least, in ordcr that
the individual ions can be resolved by differg;,nt laser beams, but without making

their motional state too difficult to optically excite in order to perform logic

operations.

Atomic structure: The interral atomic states relevant to the trapped ion we shall

consider result from the combination / of electron spin S and nuclear spin /,

giving F=S5+17. This is formally known as the addition of angular momenta

theory. The theory not only describes important physics for understanding atomic
structure, but also is an interesting meehanism for quantum information. A single
photon interacting with an atom can provide or carry away one unit of angular
momentum, But there are numerous possible sources of angular momentum in an
atom: orbital, electron spin, and nuclear spin. The photon cannot distinguish
between di'fﬂ_erenl sources, and to describe what happens we must select a basis in
which the total angular momentum becomes a uniquely defined proplcrty of the

' state.

Consider, for example, two spin-'4 spins. The computational basis for this two

qubit §pace is |00),|01),l10>,

1 I), but to span the state space we could equally well

choose the basis

50

Chapier 3

QOuantum Computer:
Physical Realization

0,0)_,' _ |0])J§|] 0)
1:-1), ={00)
10), - 01} +]10)

V2

LI, =|1).
These special basis states are cigenstates of total momentum ‘operator, defined by

Jo= (X + X)2, j, =+ X))/ 2, j, =(Z,+Z,) 2, and J* = j] + j2 + 2.

The states

j,mJ.>J are ecigenstates of J’ with cigenvalue j(j+1), and
simultaneously eigenstates of j,, with cigenvalue m, . These states are the natural

ones selected by many physical interactions; for examp]é, in a 7 oriented

magnetic field the magnetic moment x4 in the Hamiltonian ug, is proportional

tom,, the component of the total angular momentum in the Z direction.

3.6.2 Summary of Ion Trap Properties

The issues related to the lon trap Quantum Computer can be summarized as
follows: | | ,
* Qubit Representation: Hyperfine (nuclear spin) state of an atom, and
lowest level vibrational modes (phonons) of trapped ion.
¢ Unitary Evolution: Arbitrary transforms are constructed from‘ application
of laser pulses which externally manipulate the atomic state via the
Jaynes-Cummihgs interaction. .Qubits interact via a shared phonon state.
» Initial State Preparation: Cool the atoms (by trapping and us'ing optical
| pumping} into their motional ground state, and hyperfine ground state.
s . Readout: Measure population of hyperfine states. , _
* Drawbacks: Phonons lifetimes are short, and ions are ditficult to prepare

in their motional ground states.

51

Chapler 3

Quantum Computer:
Physical Realization

3.7 Nuclear Magnetic Resonance (NMR)

Dircct manipulation and detection of nuclear spin states ﬁsing radiofrequency
electromagnetic waves is a well-devcloped field known as Nuclear Magnetic
Resonance. These techniques are widely uscd in chemistry, for example, to
measure properties of liquids, solids, and gases, to determine the structure of
molecuies, and to image matcrials and even biological systems. These many
applications has lead the technology of NMR: to become quite sophisticated,
allowing control and observation of tens to hundreds and thousands of nuclei in

experiments.

However, two problems arisc in using NMR for quantum computation. First,

becausc of the smallness of the nuclear magnetic moment, a large number (more

than_zIOs) of molecules must be present in order to produce'a measurable
induction signal. The output of an NMR measurcment is an average over all the
molccule’s signals; can the average output of an ensemble of quantum computer
bc meaningful? Second, NMR is typically applied to physical systems in
cquilibrium at room temperature, where the spin energy A is much less than

k,T . That means the initial state of the spins is nearly completely random.

Solutions to these two problems have made NMR a particularly attractive and
insightful method for implementing quantum computation, despite stringent
limitations which arise from thermal nature of typical systems. Many lessons can
bec leamt from NMR: for example, techniques for controlling realisticl
Hamiltonians to perform arbitrary unitary transforms, methods for characterizing
and circumventing decoherence (and systematic errors), and considerations which
arise in assembling components in implementing full quantum algorithms on

entirc systems.

3.7.1 Summary of NMR Properties

The issucs related to the NMR Quantum Computer can be summarized as follows:

o Qubit Representation: Spin of an atomic nucleus.

52

Chapter 3

‘Quantum Computer:

‘Physical Realization

Unitary Evolution: Arbitrary transforms are constructed from magnetic
field pulses applied to spins in a strong magnetic field. Coupling between
spinsl are provided by chemical bonds between neighboring atoms.

Initial State Preparation: Polarize the spins by placing them in a strong
magnetic field, then use ‘effective puré state’ preparation techniques. |

Readout: Measure voltage signal induced by precessing-‘maghetic

. moment.

Drawbacks: Effective pure state preparaiion schemes reduce the signal

“exponentially in the number of qubits, unless the initial polarization is

sufficiently high.

3.8 Chapter Summary

The chapter Quantum Computers: Physical Realization can be summarized as

follows:

o There are four basic requircments for implementation of quantum

computation:
i. Representation of qubits,
ii. Controllable unitary evolution,
iii. Preparation of initial qubit states, and

iv. Measurement of final qubit states.

» Single photons can serve as good qubits, using |01) and |10) as logical 0

and 1, but conventional nonlinear optical materials which are sufficiently
strong to allow single photons to interact inevitably absorb or scatter the

photons,

Cavity-QED is a technique by which single atoms can be made to interact
strongly with single photons. It provides a mechanism for using an atom

to mediate interaction between Single photons.

Trapped ions can be cooled to the extent that their electronic and nuclear

spin states can be controlied by applying laser pulses. By coupling spin

53

Chapter 3

Quantum Compuier:
LPhysical Realization

states through center-of-mass phonons, logic gates between different ions

can be performed.

* Nuclear spins are ncarly ideal qubits, and single molecules would be
nearly ideal quantum computers if their spin states could only be
controlled and méasurcd. Nuclear Magnetic Resonance makes this
possible using the large cnsembles of molecules at room temperature, but

at the expense of signal loss duc to an inefficient preparation procedure.

54

Chapter 4

Multi-Output Ternary Logic and Quantum

Cascade: A Literature Survey

Different theorctical issues rcgarding logic synthesis are discussed in this chapter.
The Galois Field and Quanturn Technology arc discussed here. Quantum cascade
is a good choice for realizing multi-valued reversible logic. Reversible logic and
its uiility are also discussed. Finally recent rescarch works in this field are

reviewed.

4.1 Reversible Logic

It is implied that the quantum computers are inherently capable of performing
reversible computations. And it is also assumed that all the future computers will
be reversible. As this thesis deals with the synthesis of quantum logic, we have to
follow the rules and postulations of reversible logic. This Sections presents the

differcnt aspects of reversible fogic.

4.1.1 Moore’s Law

In 1965 Moore [23] observed an exponential growth in the number ofiransistors.
per integrated circuit and predicted that this trend would continue which is well
known as “Moorc’s Law”. Through the IC producers’ relentless technology
advances, Moore's Law, the doubling of trans.istors every ._couple of years, has
becn maintained, and still holds true today. Experts expect that it will continue at

[cast through the end of this decadc.

Chapter 4 : :
Multi-Quiput Ternary Logic and Quantum Cascade:
' A Literature Survey

4.1.2 Argument for Alternative Technology

The number of transistors in a processor are getting doubled every couple of
years. The power consumption and heat dissipation of the Integrated Circuits are
also ‘ncreasing wvith the same pace. Another severe problem is that the capacity of
semiconductor technology will soon be saturated; under this circumstances VLSI
designers all over the world arc trying to find alternative technology to design and

realize logic circuits.

Definition 4.1: A logic gate is irreversible if it is not possible to determine the
input combination uniquely by observing the corresponding output produced by
the gate. A logic gate is reversible if it is possible to determine the input
combination uniquely by observing the corresponding output for all the output
produced by the gate.
!

For example, AND gate is irreversible. If the output of an AND gate is 0, then we
can not exactly say what was the input combination by obscrving the oﬁtput only;
it can be any of 00, 01, or 10. Similarly OR, XOR, NAND, efc. gates are also
irreversible. Table 4.1 shows the truth table of some common 2-input 1-output

irreversible gates.

Input ' Output

AIB AANDB | AORB | AXORB | ANANDRB ANOR B
0 0 0 0 0. 1 1

0 1 0 1 1 i 0

1 0 0 1 i I 0
11 1 1 0 0 0

Table 4.1: Truth table of some common 2-input -output irreversible gates.

Figure 4.1 shows the block diagram and truth table of a popular reversible gate
namcd Feynman gate. Note that for every output combination of the gate, there is

cxactly one distinct input combination in the truth table.

56

Chapter 4 :
Mulli-()utput Terrary Logic and Quantum Cascade:
A Literature Survey

AB | PO
A - Pd 00 | 00
o1 1ol
_ , | b
B J (= XOR B ol to
(a) Block Diagram " (b) Truth Table

Fig 4.1: A reversible gate

Landauer [49] showed that a computational - system built using traditional
irreversible logic gates such as AND, OR, etc. leads. ingvitably to energy
dissipation, regardless of the technology to realize the gates. The energy loss duc
to irreversible gates is negligible for current silicon technologies using adiabatic
design. However, it is well known that Moor’s Law will stop to function around
years 2010 — 2020 and some dramatic changes will therefore have to happen in
microclectronics not later than the middle of this century [26]. In that time

reversible logic design will be of primary importance.

Bennett [10} showed that for power not to be dissipated in an arbitrary circuit, it is
neccssary that the circuit be built from reversible gates. In principle, reversible
logic gates dissipate arbitrary little amount of heat and the use of reversible
operations are likely to become more attractive. It should be noted that Bennett’s
theorem is only a nccessary but not sufficient condition for the motivation of
rcsearching reversible 'logic. Its extreme importance lies in the technological

necessily that every future tcchnology will have to use reversible gates in order to

reduce powcr.

4.1.3 Binary Reversible Logic

The issue of reversible logic "vas first investigated by Landauer in 1961[49]. The
reversibility of combutatioln became a matter of concern in the 1970s. There were
two rclated issucs, logical reversibility and physical reversibility, which were
intimately connected. Logical reversibility refers to the ability to rcconstruct the
input from the output of a computation, or gate function. For instance, the AND

gate is explicitly irreversible, taking two inputs to one output, while the NOT gate

57

Chapter 4
Multi-Qutput Ternary Logic and Quantum Cascade:
A Literature Survey

is reversible (it is its’ own inverse). The connection to physical reversibility is
usually made as follows. Since the NAND gate has only one output, one of it’s
inputs has effectively been erased in the process, whosce information has been
irretricvably lost. The change in entropy that would be associated with the lost of
one bit of information is /n2, which, thermodynamically, corresponds to an cnergy
increase of kT [n2, where k is Boltzman’s constant and 7 is the tcmperature. The
hcat dissipated during a process is usually taken to be a sign of physical
irreversibility, that the microscopic physical state of thc system cannot be restored
exactly as it was before fhe proccss took place. This is better cxplained by the

following example, presented in [49].

Example 4.1: Consider.a very small special-purpose computer, with three binary
clements p, g, and r. a machine cycle replaces p byl r, repiaccs g by r,and
replaces + by pg. There arc cight possible initial states, and in thermal
equilibrium they will occur with equal probability. The initial and final machine

states are as follows —

Before Cycle After Cycle Final
P q r D q, " State
| 1 1 | | 1 |
| 1 0 0 0 1 B
I 0 1 1 1 0 |y
1 0 0. 0 0. 0 |5
0 | | 1 1 i 0 |y
0 1 0 0 0 0 |58
0 0 1] 1 0 |y
0 0 0 0 0 0 |8

Table 4.2: Three input-three output devices which maps eight

possible states onto only four different statcs.

There are four distinct final states, namcly o, B, v, and 8 with their own frequency

of occurrence. State a and occur with a probability of % cach, while states y

and 8 occur with a probability % . The-initial entropy was

38

LN

Chapter 4 .
Multi-Owiput Ternary Logic and Quanium Cascade:
A Literature Survey

Sj:kln!/liz—‘kz,'olnp
=k —In—=3kIn2
Zs 8

=2.0794k

The final cntropy is

S, = hkz plnp

L 11 3.3 3 3
=—kj=In—+—=In-+-In=+=In—=
8§ 8 8 8 8 8 8 8

=1.2554%
The difference S, —§, is 0.824k. The minimum dissipation, if the initial state

has no uscful information, is thcrefore (.8244T .

There were two related questions, one is whether a computation can be done in a
logically reversible fashion (unlike ‘one that uses NAND gates, for example), and
the other was whether any heat needs to be dissipated during a computation. Both

of these issues were quite academic however, as Feynman [51] pointed out, an

actual transistor dissipates close to 10'°AT of heat, and even the DNA copying
mechanism in a human cell dissipates about 100k of heat per bit copied [which is -
understandable from a consideration of the chemical bonds that need to be broken
in the process], both are far from the ideal limit of A7T'In2 for irreversible

compuﬁng.

That classical computation can be done reversibly with no energy dissipated per
computational stép was discovered by Bennett [10]. He showed this by
constructing a reversible model of the Turing machine [8] and showed that any
problem that can be simulated on the original irreversible machine can also be
simulated with thc sﬁme efﬁciency on the reversible model. The logical
reversibility inherent in the reversible model implied that an impicrﬁentation of
such a machine would also be physically reversible. This started the search for

physical models for reversible classical computation.

‘The models for reversible computation are similar to the modeils of classical

computation, except that the number of outputs of the functions will at least be the

59

Chapter 4
Multi-Cutput Ternary Logic and Quantum Cascade:
A Literature Survey

same of the number of inputs, and there must be a bijection® between the input
combinations and the output combinations of the function. Some reversible gates

are presented as follows.

Since reversible logic gates are symmetric with respect to the number of inputs
and outputs, we can represent them in ways other than the truth table, which
emphasizes this symmetry. We are readily familiar to one reversible patec — the

NOT gate, whose truth table is —

A | NOT 4
0 1
1 0

Table 4.3: Truth table for NOT Gate

We could also write this in the form of a matrix, or as a graphic [Figure 4.2]. The
matrix form lists the lines in the truth table in the form 0,. 1. The input lincs are
listed horizontally on the top and the output iines are listed vertically along the

side, in the same order.

[nput

01 : . ,
= '
2 0,01
B
S0 lio 4 @ NOTA
Matrix Form Graphic Form

Fig 4.2: Matrix and Graphic representation of NOT Gate

We fill in the matrix with 1’s and 0’s such that each horizontal or vertical line has
exactly one 1, which is tokbe interpreted as a one-to-one mapping of the input to
the output. For example, a 1 in column one, row two in the NOT mecans that a 0
input gets taken to a 1 output. The graphical representation to the right of the table
isa condenéed representation of the NOT gate. The horizontal line represents a
bit, whose initial variable value, A, is listed on the left and whose final value,

NOT 4, is listed on the right. The opcrationlof the NOT gate in the middle is

3 That means, there is a unique output combination corresponding to every input

combmaHon.

60

Chapter 4
Muln Quiput Ternary Logic and Quantum Cascade:
A Literature Survey

symbolized by the @ sign. A two-bit gate closely related to the NOT gate is the
two-bit Controlled-NOT (of C-NOT) gate [Figure 4.3], which performs a NOT on

 the second bit if the first bit is 1, but otherwise has no effect.

: Input.
- XOR=C-NOT{ 090 01 10 11
w10 0 0 A | A
20010 1 0 0
51000 0 0 ‘
Sirjo o 1 0 B fe o AB
Matrix Form ' - Graphic Form

Fig 4.3: Matrix and Graphic representation of Controlied-NOT Gate

‘The CNOT is sometimes also called XOR, since it performs an exclusive OR
operation on the ‘two input bits and writes the output to the.second bit. The
graphical representation of this gate has two horizontal lines representing the two
variable bits, and the conditionality of the operation is represented by the addition
“of a vertical line originating from the first bit and tenﬁinating with a NOT symbol

on the second bit.

Two-bit gates are not sufficient for universal reversible computation. However, a
" three-bit gate is sufficient. A universal three-bit gate was identified by Toffoli
[54], celled the Controllcd-Contrélled-NOT (or CC-NOT), or simply the (binaryj
Toffoli gate. It applies a NOT to the third bit if the first two bits are in 11, but
otherwise having no effect. The graphical represer.tation of this conditional three-
bit gate is given to the right of the table in Figure 4.4, where both A and B are
checked to sce if they are in 1 - denoted by the two solid circles on these bits —

before performing NOT on C.

The Toffoli gate is known to be universal for reversible Boolean logic, the
argument for which is based on the fact that the Toffoli gate'contains-the NAND
pate within it. When the third bit is fixed to be I, the Toffoli gate writcs the
NAND of the first two bits on the third, that is: -

A,8,1 > A,B,AB

61

Chapter 4
Multi-Output Ternary Logic and Quantuim Cascade:
B A Literature Survey

. Input
CC-NOT| 000 001 010 01i 00 101 110 14)
ool 0 6 0 0 0 0 0 A A
0olfo 1t 0 0 0 0 0 0
0100 0 1. 0 0 0 0 O .
00 0 0 1 0 0 0 0 B ! I3
gi0000 0 0 0 1 0 0 O
Qoo o 0 0 0 1 0.0 _

‘ . PSR e
molo o o o 0 0 0 | ¢ o AB+C
Mo -0 0 0 0 0 1 0

Matrix Form Graphic Form

Fig 4.4: Matrix and Graphic representation of CC-NOT Gate

4.1.4 Ternary Reversible Logic

Ternary quantum circuits have recently been introduced to help reduce the size of
muiti-valued logic for multi-level quantum computing systems. While most of the
results are for binary quantum computers, the multi-valued quantum logic
synthesis is very new research area. Unfortunately, previous synthesis methods
produce circuits that are unnecessarily complex. One promising alternative for
‘reducing the circuit size is to use gates that are ternary counterparts of the classical
binary Feynman gates and new 2-qudit ternary controlled gates (qudit is a
multiple-valued counterpe‘lrt of binary quantum bit or qubit, for ternary logic it is

known as qutrit).

4.1.5 Some Ternary Reversible Gates

F'igure 4.5(a) shows a ternary Feynman Gate. Here. A is the éontrolling input and
B is the controlled input. P is cqual to the input A and Q is GF3* sum of A and B.
(note that GF3 sum is the same as modulo 3 sum). If B = 0, then Q = A, and the
gate acts as a copying \gatc. The ternary 2*2 Feynman Gate is practically
realizable [37]. | |

* Ternary Galois Field [see Section 4.3.2.2] .

62

20022 7

Chapter 4

A P=

B A =A+
N Q=A+8

{a) Ternary Feynman Gate

A ~ P=A

B Q=B
I -

C W R=AB+C

{b) Ternary Toffoli Gate

Multi-Output Ternary Logic and Quantum Cascade:

A Literature Survey

4, P=4
A, < Fo=4,
@ S, = arbitrary function of
I P

[
A \<{> Pen =1 + 4

'y
Ahn @] Piu.n = fk + Akm

{c) Generalized Ternary Toffoli Gate

Fig 4.5: Some Ternary Reversible Gates

Figurc 4.5(b) shows a 3*3 Toffoli Gate. Design of Galois Field Sum of Products

(GFSOP) arrays and factorized arrays is bascd on these gates. Thesc arrays are the

multiplc-valucd counterpart of well-knowr: binary Exclusive-OR Sum ol Products

(ESOP) and factorized ESOP cascades. Here A and B are the controlling input and

C is ihc controlizd input. A generalized Ternary Toffoli Gate is proposed by [35]

shown in Figure 4.5(c). There are k controlling inputs and n controlted inputs.

Therc are six ternary shift operations while binary logic has only two — no shift

and NOT. Six 1*1 termary shift gates are shown in Figure 4.6. These gates are

rcalizable using ternary quantum Feynman primitive [35]. Two cascaded shift

gates can be replaced by a single equivalent shift gate.

Buffer x b— x .0
Single-Shift x T w1 l
Dual-Shift x > =+ 2 R
Self-Shift X ///,//r—- x=2x . 3
Self-Single-Shift | x —@vxﬂ —2x +J 4
Self-Dual-Shift | x —{T>—x=2x +2 5

Fig 4.6: Ternary Shift operations, gate symbols, and their numbers

63

Chapter 4

Multi-Output Ternary Logic and Quantum Cascade:
' A Literature Survey

Realization of multiple-valued (lernary) logic function in quantum circuit using
complex gates like Toffoli is not feasible. This is because in general these gates
arc having m inputs and m outputs where m > 2. Therefore it would be a bctter

idea if the quantum circuit is constructed using 2*2 gates (primitive gates) only.

Figure 4.7 shows the realization of an arbitrary ternary function using Toffoli
gates. Description of the synthesis process is beyond the scope of this thesis. (sce

[37)

The success in the true quantum realization of some ternary pcrmutation gates
now allows us to physically build ternary quantum computers using these gates.
Onc very promising. 2*2 primitive gate is generalized ternary gates (GTG) is
shown in Figure 4.8. It was first introduced by Perkowski et. al. [43]. Dc-Vos
Galés and Ternary Feynman Gates arc special cases of this gate. They claimed
that GTG can be realized using Quantum Technology such as ion traps [43). Very
reccntly some works are being done on synthesizing reversible ternary circuits

using GTG (see [34], [36]), [38], [44]).

. [~]
[i fr
| -] o
8 —— [C] P o
0 Tan / SNW e e o
= o
A H\ /] "\5:‘
0 eyt A /N N ”
— \ Dr—; 2 L f
A"BC” ARG .
Swap gatc — YA H — +A
Shilt P& ABC 4B A"B
gatc
Tofloli gate -
Fig 4.7: Quantum Cireuit using Toffoli gates to realize the functlon
F(4,8.0) ={0,1,2,1,0,2,2,2,2.2,1,0,0,1,2,1,1,1,1,1,1,2.2,2,0.0 0]

=ABCV+AB +AB”

4.2 Galois Ficld and Quantum Technology

In this section we briefly discuss the theoretical background of Galois Field (GF)

and Quantum technology. The mathematical foundation of reversible logic

64

==y

N

Chapter 4

Multi-Ouiput Ternary Logic and Quantum Cascade:
' A Literature Suivey

synthesis is based on the theory of GF and the practical implementation of the

_ reversible circuit can be done efficiently with the help 0‘fQuaﬁtu1n Technology.

4.2.1 Quantum Computation

The carlicst formalism of quantum computation (cxploiting the full power of
guantum computers) was introduced by Deutsch [16] in 1985, when he defined a
quantum p_hysical analoguc of a probabilistic Turing machine, but the first
surprising powerful result came almost ten ycars later. In 1994 Pcter W. Shor
demonstrated how the quantum computation can be usced for factoring integers
into prime factors probabilistically in polynomial timc [48]. This invention is
naturally interesting theoretically, but also practically if a quantum computcr
could be really constructed, since the securities of the RSA cryptosystem and

many protocols is based on the assumed non-tractability of the factoring problem.

The research on guantum computation naturally can be divided into physical and
mathematical part, although the border between these parts is not clear and stablc.
The physical research éonccntrates morc on the possibility of the implementation
of quantum computers and quantum cryptography, whilc the mathematical part
will be interested in the classification of quantum complexity classes and the

rclations between classical ones.

Controlling
input

A

0 =4

x shift of B if A=0
O, =<y shift of B if A=1
— 0, z shift of B if A=2

Controlled ![>_
- y 1
input /

Where x, ¥y and z shifts arc any ternary
shift operation including Buflfer

Fig 4.8: Generalized Ternary Gates (GTG)

4.2.2 Ternary Quantum Computing

In multi-valued (MV) Quantum. Computing (QC), the unit -of memory

(information) is qudit. MV quantum logic operations manipulate qudits, which arc

65

Chapter 4 - .
Multi-OQuitput Ternary Logic and Quantum Cascade:
A Literoture Survey

microscopic entities such as a photon’s polarizations or an elementary particie’s
spins. Ternary logic valucs of 0, I, and 2 are represcnted by a set of
distinguishable different states of a qutrit. After encoding these distinguishable
quantities into multiple-valued constants, qutrit states are represented by the

notations [0}, |1),and [2).

Qudits exist in a linear superposition of states. In ternary logic, the notation for the
superposition is . |0} +B|1}+v|2). These intermediate states cannot be

distinguished, rather a measurement wiil yield that the qutrit is in one of the basis

states, 0} . |l> , or |2> The probability that a measurement of a qutrit yields state

‘0) is ‘az, state [1} is |B

? , and state 12} is |7|2. Sum of thesc probabilities is 1.

The absolute values are required sinee, in gencral, o, B and y are complex

quantilics.

“Pairs of qutrits are capable of representing nine distinct states,

00),

01),

02),
|IO), '|l I), l12>, |20), l2l>, and !22}, as well as all possible superposition of the

states. This property is known as “entanglement”, and may be mathematically

described using the Kronecker product (tensor product) operation &, defined as —
Xy x y§‘ ax ay bx by
: a b T
ab@xykzv z v| _|az av bz by
c d z v J4F Y dx y|| x ¢y dx dy
z v z v ‘

z ¢cv dz dv
As an cxample, consider two qutrits with y, =a,[0)+B,|1)+7v,2) and

jw)

&

I

v, =@,]0)+B,|1) +7,]2). When the two quirits are considered to represent a
stale, that state y, is the supcrposition of all possible combinations of the original

qutrits, where v, = v, @ v, = q,a,[00) + B, 01) + ... +v,y,|22).

Superposition praperty allows qubit states to grow much faster in dimension than

classical bits, and qudits states grow much faster than qubits states [7]. In a

classical system, n bits represent 2" distinct states, whereas » qutrits correspond

66

Chapter 4
Multi-Cuiput Ternary Logic and Quantum Cascade:
A Literature Survey

to a supcrposition of 3" states. In the above formula some coefficient ;:an be equal
to zero, so there exists a constraint bounding the possible states in which the
system can exist. As observed in [7] — “Allowing 4 to be arbitrary enables
a tradeoff between the number of qudits making up the quantum computer and the
number of levels in each qudit”. These all contribute to difficulty in understanding
the concepts of quantum computing and creating efficient analysis, simulation,
verification and synthesis algorithms for QC. Generally, however, we belicve that
much can be learnt from the history of Electronic Computer Aided Design as well
as from MV logic theory and design, and the lessons learnt should be used to

design cfficient Soft Computing tools for MV quantum computing.

4.2.3 Quantum Circuit

In terms of logic operations, anything that changes a vector of’qudil states can be
considered as an operator. Thesc phenomena can be modcled using the analogy of
a “quantum circuit”. In a quantum circuit, wires do not carry ternary constants but
correspond to 3-tuples of complex values, «, 3, and y. Quantum logic gates of the
circuit map the complex values on their inputs to complex values on their outputs.
Operations of quantlum gates are described by matrix operations. Any quantum
circuit is a composition of parallel and serial connections of blocks, from smalil to
large. Serial connection of blocks corresponds to multiplication of their (unitary)
matrices. Parallel connection corresponds to Kronecker multiplication of their
matrices. So, theoretically, the analysis, simulation and verification are easy and
can be based on matrix methods. Practically these are tough because the

dimensions of the matrices grow exponentially.

4.2.4 Galois Field

A Galois field is a finite field with p” clements where p is a prime integer. The

sct of nonzero elements of the field is a cyclic group under multiplication. Here
we arc showing the clements and addition and multiplication opcrations of the

first three Galois Fields in the subsequcnt sections.

67

Chapter 4 .
Multi-OQutput Ternary Logic and Quantum Cascade:
A Literature Survey

4.2.4.1 GFQ)

GF(2) consists of the elements 0 and 1 and is the smallest finite field. Its addition
and multiplication tables are as follows:

0
0
0

—_ |4
-_—0| o

1 . |
I 0 0
0 1 |

Table 4.4: Addition and Multiplication in GF(2)

42.42 GF(@3)

GF(3) consists of the elements 0, 1, and 2. Its addition and multiplication tables

are as follows (Table 4.5):
+]l0 1 2 Jo o1 2
010 0 2 g {0 0 0
{1 2 0 P {o 12
2 12 0 1 2.10 2 1

Table 4.5: Addition and Multiplication in GF(3)

4243 GF@4)

The definition of GF(4) is apparently a bit different from the previous two GFs.
Since 4 is a non-prime¢ number, GF(4) is actually considered to be'GF(Zz). Its

clements arc denoted here as (0, 1, A, B). Here are the addition and multiplication

tables for GF(4):
+/0 1 4 B Jo 1 4 B
0 {0 1 4 B 0 [0 0 0 0
1 {1 0 B 4 1|0 ' 4 B
A4 B 0 1, 410 4 B 1
B|B 4 1 0 B0 B 1 4

Table 4.6: Addition and Multiplication in GF(4)

4.2.5 Ternary Galois Field Logic

In Galois Ficld Sum of Products (GFSOP) the product terms-are GF products and

the sums are GF sum operations. In this thesis we concentrate only on (crnary

GFSOPs. Ternary Galois Field (GF3) consists of the set of elements /=012

68

. .

Chapter 4 :
Multi-CQuigat Terr.ary Logic and Quantum Cascade:
A Literature Survey

and two basic binary ofJerations — addition (denoted by +) and muitiplication
{denoted by - or absence of any operator) as defined in Table 4.5. GF3 addition
and multiplication are closed, i. e., for 4, BT, A+BeT and ABeT. GF3

addition and multiplication are also commutative and associative, i. e.,
A+B=8B+4 and AB = BA | (commutativc),, and
A+(B+C)=(A+B)+C=A+B+C and © A(BC) = (AB)C = ABC
(associative). GF3 multiplication is distributive over addition, i. e,

AB+C)=AB + AC.

There are six reversible ternary unary operations correspoﬁding to six possible
permutations of 0, I, and 2. These unary operations are called reversible ternary
shift operations. We already have mentioned the names of these six shift
opcerations, their operator symbols and equations, and gate symbols in Figurc 4.6.
Among these six shift operations only singlc-shift, dual-shifl (both arc also called
Post cycles [32] and cyclic negations in [20]), and self-dual-shift (also called
inverse [21]) were previously used in the context of quantum computation. All
these six shift operators can be built as reversible ternary gates. Khan et. al. [34]
proposed quantum realization of the ternary shift gates (except the buffer, which is

quantutn wire; see Fig 4.9). These realizations require two to threc quantum wires.

rat Fat Y

A O s AT g B EEEY
| ———o——| 2—o—2 2 —-e--p—e—Cp—-2
{a} Single- (b) Dual-Shift | o by
Shift (c) Self-Shift

A *—P—o—; A = ;

. A" =24 +1 A =24+12

1 —B—e—B-P—1 2 —be—PHh—2

2 < 2 1 : 1

(d) Self-Single-Shift (e) Self-Dual-

Shift

Fig 4.9: Quantum rcalization of ternary shift galcs

The GF3 basic literal of a wvariable 4 is an element of the set
{1,2, 4, A", A", A", A", 4", A*}. It should be noted that all ternary literals, except

A*, are reversible. A reversible ternary litcral multiplied by 2 yiclds another

A

reversible ternary literal as follows: 2-1 =2, 2:.2=1, 24=A", 24" =4

k)

24" =A" 24" =A, 24" = 4", and 24" = 4". Again, a ternary literal may have

69

Chapter 4
: Multi-Output Ternary Logic and Quantum Cascade:
A Literature Survey

a power of only 2, since 4’ =4 (can be verified from Tabie D, A'=4°4=4%,
and so on. A product term is a GF3 product of some literals. For example, 4B" is
a product term. Ternary GFSOP is GF3 sum of some product terms. For example,

24+ AB" + B*C'+ A'C" is a ternary GFSOP.

4.2.6 Quantum Cascade (QC)

Quantum circuits are quite different than the classical logic circuits. A quantum
cotnputer processes information in form of some unitary operation carries the
input qutrits to the output qutrits. This can be represented in the form of a block
diagram, similar to 4.10(a). For example, the case oftérnary single-shift operation
‘is shown in figure 4.10(b) and figurc 4.10(c). All thc quantum gates perform in the
samc way. In order to realize any m-input n-output logic function, a number of k*k

gates (k= ., {m , 1 }) arc appended one aller another ijollowing a particular

order. The output qutrits of the first gate are the input to the second gate, and so
on. The final output is obtained at the output qutrits of the last gate. At this output
level, there are & qutrits, among them » qutrits are realizing the function and the
rcm'aining k — n qutrits are known as garbage output. The whole thing is known as
Quantum Cascade. Figure 4.11 shows a quantum caseade realizing an arbitrary 2-

.input 2-output tcrnary function (k = 6).

6 —» - q .
: : 0 1 2 O +aly+ 42
Peewm U(g 409y a|)M 35 1>_____L>_ ﬂ' >
qn_" - qnI
(a) Block diagram of Quantum .
Unitary Transformation 00 1|e Y
Ai=|a
|| e e | o1 ojy] A
A <> ;-‘f I B (b) Block diagram and Matrix representation
(c) Quantum realization of of the Unitary Transformation performing
Single-Shift Single-Shift

Fig 4.10: Quantum Unitary Transformation

70

Chapter 4
Multi-Qutput Ternary Logic and Quantum Cascade:
A Literature Survey

4.2.7 Realization of MVL Using Quantum Cascade

Multiple-valued ternary logic can be realized using Quantum Cascades. Very few
works have been done so far in constructing the Quantum cascades that are
capable of realizing ternary functions. The research in this field is still in its very
primitive age. In most of the cases the researchers emphasized on just successfully
realizing the functions, rather than making it optimal as well. In figurc 4.11 the
high .number of garbage output gives an idea about the level of optimality
‘achieved so far in' this field. In the following articlc we describe some of the

methods of realizing MVL using QC.

1

4.2.8 Some Existing Methods of Realizing MVL Using QC

Khan et al. [37] first proposed a complete method of realizing ternary logic using
quantum cascade in 2004. In this literature various basic and composite ternary
litcrals are proposed for defining TGFSOP expression. They also proposed 16
Ternary Galois Field Expansions (TGFE), like Shannon’s Expansions, using these
literals and three new typf;s of Ternary Galois Field Decision Diagrams (TG FDD)
using the proposed expansions. A heuristic for creating optimal Kronecker
TGFDD and methods for flattening the TGFDDs for determining near-minimum
TGFSOP expressions is also proposed there. Finally, they proposed a method of
synthesizing multi-output TGFSOP using cascade of ternary shift gates, swap
gate, and generalized Toffoli gate. They have used some sorts of local
optimization technique by selecting the TGFE that gencrates lowest number of
non-zero constants in the output vector in each level. Figure 4.11 shows the
realization of onc ternary multi-output function using their method. Two major
drawback of the method are as follows —
e They have used generalized Toffoli gates that are not primitive ternary
gates; therefore can not easily be implemented using quantum
technology. However, Khan [38] shows a quantum realization of .

ternary Toffoli gate using primitive ternary gates.

» They have used local optimization in each level; it may easily fall into

local optima.

71

Chapter 4
Multi-Output Ternary Logic and Quantum Cascade:
A Literature Survey

Fynman Swap Toffoli . Shift
[Gate \ Gate) '/ Gate \ QGate
X
0 N, >< - &
[4]
. ~ L
.]\F\\ - g
. 2
0 NP -
! san P
) G'“\ 2

Fig 4.11: Quantum Cascade realizing an arbitrary 2-input 2-output tcrhary

function using different typcs of ternary gates.
The solution of the former problem is an open problem for the quantum physicists

and mathematicians while thc later onc can be handled by developing better

heuristics.

A

R I A
R
H i S
Li ‘ "

B

0/

Fig 4.12: Realization of ternary Swap' gaie using GTG gates

Khan and Perkowski [36] proposed an EA bascd synthesis proeess of ternary logié
in 2004. They have used the cascades of GTG gates to form the quantum circuit.
“They proposed a method for synth'csizing both completely and incompletely
specified ternary functions, EA to synthesize ternary functions is first proposed by
them and that is why the result could not be compared to any other EA basced
method. But their mcthod has produced better results than other nori EA bascd
synthesis methods. For example, the previous best design of ternary swap gate had

4 Feynman ‘gatcs and one 1-qubit permutative gate; while their proposed design

72

Chapter 4 .
Multi-Output Ternary Logic and Quantum Cascade:
" A Literature Survey

requires only 3 GTG gates and it has the same symmetry as the well known design
of Swap from Feynman gates in binary. Figure 4.12 shows the realization of

ternary Swap gate using GTG gates.

Denler ct al {44] presented a new type of realizable quantum cascade. Then they
have proposcd algorithms to synthesize arbitrary single-output ternary functions
using those reversible cascades. The cascades use “Generalized Multi-Valued
Gates” (GMVG) introduced by them, which extend the concept of GTG gatcs.
While there are 216 GTG gates, a total of 12 ternary gates of this type (GMVG)
are sufficient to realize any ternéry function. Such gates arc also claimed to be
rcalizable in quantum ien trap devices. They have implemented the algorithm only
for ternary logic, but its generalizétion to arbitrary radix is straightforward and
might give betier [')ractical advantages if quantum gates with higher radices were .

rcalizable. Figure 4.13 shows the GMVG.

Q=4

0 [x,(B) if A=0
0, -] WB if A=l
elc.
x (B) if A=M
B—

Wherex, is some reversible
operation of radix M+1

M

B

Fig 4.13: Generalized Multi-valued Gate of radix M+1

4.3 ’E'volutionary Algorithm

In the 1950s and thc 1960s several computer scientists independently studied
evolutionafy systems with the idca that evolution could be used as an optimization
tool for engineering problems. The idea in all these systems was to evolve a
population of candidate solutions for a givcﬁ problem, using operators inspired by

natural gen(;t'ic aad natural selection.

73

Chapter 4

Multi-Output Ternary Logic and Quantum Cascade:
: A Literature Survey

EAs are computer programs that atteinpt to solve complex problems by
mimicking the processes of Darwinian evolution [11]. In an EA a number of
artifizial creatures search over the space of the problem. They compete continually
with each other to discover optimal areas of the search space. It is hoped that over
time the most successful of these creatures will 2volve to discover the optimal

solution.

The artificial creatures in EAs, known as individuals, are typically represented by
lixed length strings or vectors. Each individual encodes a single possible solution
to thc problem under consideration. EAs manipulate pools or populations of
individuals. The EA is started with an initial population of size m comprising
random individuals (that is, cach value in'every string is set using a random
number generator). Every individual is then assigned a fitness value. To generate a
fitness scorc the individual is dccoded to produce a possible solut%on to the
problem. The value of this solution is then calculated using the fitness function.
Population members with high fitness scores therefore represent better solutions to
the problem than individuals with lower fitness scores..Following this initial phase
the main tterative cycle of the algorithim begins. Using mutation (perturbation) and
recombination operators, the m individuals in the current population produce #
children. The » children are assigned fitness scores. A new population of m
indiﬁduals is then formed from the m individuals in the current population and the
n children. This new population becomes the current population and the iterative
cycle is repeated. At some point in the cycie evolutionary pressure is applied. That
is, the Darwinian strategy- of the survival of the fittest is employed and individuals
compclz against cach other. This is achieved by selection based on fitness scores,
with ‘better fit’ individuals more likely to be selected. The selection is applicd
cither when choosing individuals to parent children or when choosing individuals

to form a new population.

There have been three main independent implementation instances of EAs: GAs,

developed by Holland [27] and thoroughly revicwed by Goldberg [18]; cvolution
| stratcgies (ESs), developed in Germany by Rechenberg [30] and Schwefel [25];
and evolutionary programming (EP)‘,' originally developed by L. J. Fogel et ai.

74

Chapter 4
Multi-Owiput Ternary Logic and Quantum Cascade:
A Literature Survey

[31] and subsequently refined by D. B. Fogel. [15]. Each of these three algorithms

has been proved capable of yielding approximately optimal solutions given
complex, muitimodal, non-differential, and discontinuous search spaces. Success
has also been achieved for noisy and time-dependent landscapes. A simple
description of each techniquc is given here. Finally, it is worth noting that the

implementer is free to modify these algorithms.

In the subsequent scctions we describe different EAs bricfly with their respective

general outline.

4.3.1 Genetic Algorithms

Figure 4.14 shows the canonical GA as devcloped by Holland [27]. The canonical
GA encodes the problem within binary string individuals. Evolutionary pressure is
applied in Step 3, where the stochastic lechnique of roulettc wheel parent selection

is uscd to pick parents for the new population.

1. A population of m random individuals is initialized.

2. Fitness scores are assigned to each individual.

3. Using roulette wheel parent selection m/2 pairs of
parents are chosen from the current population to form
a new population.

4. With probability P., children are formed by performing

crossover on the m/2 pairs of parents. The children
replace the parents in the new population.

5. With probability P,, mutation is perfoﬁned on the new
population. ‘

6. The new population becomes the current population.

7. If the termination conditions are satisfied exit,
ntherwise go to step 3.

Fig 4.14: A Canonical GA

4.3.2 Evolution Strategics

Figure 4.15 shows the ES as developed by Rechenberg [30] and Schwefel [25].

Hisforically ESs were designed for parameter optimization problems.

75

Chapter 4 -
Multi-Quiput Ternary Logic and Quantum Cascade:
A Literature Survey

1. A current population of m individuals is randomly
initialized. - ’

2. Fitnegs scores are assigned to each of the m|.
individuals. -

3. n new offspring are generated by recombination’ from the
current population.

4. The n new offspring are mutated.

5. Fitness scores are assigned to the n new offspring.
6. A new population of m inr.liividu_als is selected.

7. The new population- becomes the current population.

8. If the termination conditions _ are satisfied exit,
otherwise go to step 3. i ’

Fig 4.15: A simple ES

The encoding used in an individual is therefore a list of real numbers: these are
callcd the object variables of the problem. Additionally, each individual contains a
number of stralegy paramclers, these being the variances and co variances of the
object variables (the co variances arc coptional, but when used are normally
defined using the rotation angles of the covariance, matrix). The strategy
parameters are used to control the behavior of the mutation operator and are not

required when decoding an individual.

4.3.3 Evolutionary Programming

Figure 4.16 illustrates the form of an EP scheme. EP was originally developed by
L. J. Fogel et al. [31] for thc evolution of finite state machines using a limited
symbolic alphabet encoding. Subsequentiy D. B. Fogel extended the EP to encode D‘h’

real numbers, thus providing a tool for variable optimization [15].

Individuals in the EP comprise a string of real numbcrs,'aslin ESs. EP differs from
GAs and ESs in that there is no rccombination operator. Evolution is wholly
dependent on the mutation operator, which uses a Gaussian. probability
distribution to perturb each variable. The standard deviations correspond to the

76

§i

Chapter 4
Multi-Output Ternary Logic and Quantum Cascade:

A Literature Survey

. square root of a linear transform of the parents’ fitness score (the user is required

to parameterize this transform).

1. A current population of m individuals is randomly
initialized. '

2, Fitness scores are assigned to each of the m
individuals.

3. The mutation operator is applied to each of the m
individuals 4in the current population to produce m
offspring.

4. Fitness scores are assigned to the m offspring.

5. A new population of size m is created from the m
parents and the m offspring using tournament selection.

6. If the termination conditions are satisfied exit,
ntherwise go to step 3.

Fig 4.16: A simple EP scheme

To overcome parameterization problems associated with the linear transform
Fogel developed meta-evolutionary programming (meta-EP) [14]. In mecta-EP
individuals encode both object variables and variances (one variance for each
object variable). As in ESs the variances are seif-adapted and used to control the

Gaussian mutation operator.

4.4 Summary

We have discussed Reversible Logic, Galois Field and Quantum Computation,

and Evolutionary 'Algorithm in this chapter. Reversible logic provides a way to

construct circuits that will, theoretically, dissipate no heat — thus less power will
be consumed. Binary reversible logic deals with two states namely 0 and 1, while
ternary reversible logic has three states —0, 1, and 2. The mathematical foundation
of reversible logic lies on Galéis Field. Specifically for ternary revers_iblc logic,
GF3 arithmetic is used. Quantum Computation can be achieved b3} the circuits

constructed using Cascades of Quantum Gates (Quantum Cascades). Finally we

77

Chapter 4

Multi-Output Ternary Logic and Quantum Cascade:
A Literature Survey

discussed the basic concepts of Evolutionary Algorithms (EA) as we have used

EA for synthesizing the Quantum Cascade.

78

Chapter 5

EA Based Synthesis of Multi-Output Ternary

Function Using Quantum Cascades

5.1 Introduction

In this chapter we first propose a family of ternary 2*¥2 quantum primitive gates.
Then an EA based synthesis process of Multi-output Ternary function is
presented. Here we proposc a practical approach to synthesize dircctly with the
new gates, but the problem is there is no direct mcthod to construct a quantum
cascade using those gates. Hence we have to go for Evolutionary Algorithms
(EA). Use of EA will allow us to find an appropriatc combination of the gates that

realize (perhaps optimally) a multiple-valucd ternary logic function.

5.2 The New 2*2 Quantum Ternary Gates

A family of 2*2 Quantum lernafy gates is proposed here. These gates arc the
extensions of De Vos gates proposed in [6]. Muthukrishnan [7] showed that these
types of gates are practically realizable in quantum ion trap. The general form of

our proposed gates is shown in Figure 5.1.

Cnnlrolling

-]
input {
A A
Controfled
input 7] > hoshift of . if 4
shilt of . i =x
x=1{0,1,2) 0,={" ,
B otherwise

y=1{1,2,3,4,5}

Fig 5.1: General form of the proposed Gates

Chapter 5
EA Based Svnthem of Multi-Output Ternary Function
Using Quantum Cascade

~

The gate has two parameters — x and y. There are two input lines called controlling
input and the controlled input. The controlling input passes to the output without
any modification, while the controlled input is medified only if the controlling

input line carries the signal equal to x; in that case the corresponding output is the
yth shift of the controlled input signal. Let us use the 4-tupple notation (A, B, x,y)

to denote this new gate, where 4 is the controlling input, B is the controlled input,
and x and y are thc parameters of the gate. The parameter x can take any valuc
from {0, 1, 2} and y can takc a valuc from {l, 2, 3, 4, 5}. There are fiftecn
differcnt combinations of the parameters, hence 15 different gatcs. Among those,
the galcs with (x=2, y=1) and (x=2, »=2) are proposcd by De Vos [6]. We are

proposing two more values for x and three more values for y.

5.3 Realization of Muiti-output Ternary Functions using
the New Gates "

ot
In realization of multi-output ternary functions using our proposed gates we
assumed the following: R
s A Gate can be controlicd either from top or from bottom,
o A limited vertical wire crossing for the controlling signal of the gates
are allowed, '
o Constant input signals 0, 1, and 2 arc addcd as needed,
‘o Qutput may be realized along any primary input lin¢ or any constant
input line, and
o Each of the gates forms a column where the reméining lines represent

quantum wires. The columns are cascaced to realize the circuit.

Figure 5.2 shows the realization of tci'nary half adder circuit using the new gates.
To verify the circuit, the intermediate states of the quantum wires are also shown.
Each of the gates forms a quantum column and cascades of such columns
construct the whole circuit. Table 5.1 shows the truth table of the Ternary Half

Adder. The output functions arc normally shown as a transpose form as shown in

80

Chaprer 3 RY
EA Based Synthesis of Multi-Outpwt Ternary Function
Using Quantum Cascades

Figure 5.2; i.c. Sum:[0,1,2,1,2,0,2,0,1]"' ‘and carry:[0,0,0,0,0,],0,1,1]7'in Figurc

5.2 are actually the transpose of columns Sum and Carry in Table 5.1 rjcépcclivcly.

B B B B B
AN 012 AN o012 AN o012 AN012 A 012
olol112] olti1]1] ol1Jolo] ofoloJo] ololi]2
yzl0] 1 Tz ijololt, 1[T[z]o
20[712] 200(0lo] 2[0l2/2| 2[o1T1] 2[2[of1
A ’ _ﬂ
]/ | / _“_0 /
: - Sum
S R
2 0
0 rl—l carry

Sum= [0,1,2,],2,0,2,0,]]"'.
carry = [0,,0,0,0,1,0,1,17

Fig 5.2: Realization of Ternary Half Adder using the new gates

AB
00
01
02
10
11
12
20
21
22

Carry
0

w
-—owom—-m—-os

O - SO oS

Table 5.1: Truth table of Ternary Half Adder function

5.4 GTG Verses the New Gates

The GTG gates are proposed by Perkowski et. Al. [43]. Since then it has become
very popular among the researchers in this field. They claimed that the GTG gates
can directly be constructed in linear ion trap. They referred [7] as the basis of their
claim. In [7] it is shown that any d-valued primitive quantum ga{e can be
constructed in linear ion trap. These gates are generally called “conditional gates”

as they are capable of performing émy unitary transformation on the controlled

81

Chapier 3 .
. EA Based Synthesis of Multi-Output Ternary Function
Using Ouantum Cuscades

input if all the controlling inputs are at state Id - l). In other words, a ternary
(d = 3) conditional quantum gate will perform any unitary transformation if all its

controlling inputs are at state ’2) De Vos [6] also stated the same.

Now the GTG gates perform different transformations depending on the different

states of the controlling inputs including |0> and ll) . At this moment we have not

found any literature proving that the ternary transformations can be performed

when the controlling states are IO) or]l) . Therefore, we are not sure whether the

GTG pates are directly realizable in quantum technology or not. However, later in

this section, we are showing how o achicve those operations using De Vos gates.

A

VYY

RN RN BN

A Y

Fig 5.3: Ternary Half Adder realization using GTG gates by [36]

In case of the new gates (A,B,x,y), we know that -(A,B,2,1> and (A,B,2,2> are
nothing but De Vos gates. Now, (A,B;2,3>, (A,B,2,4), and (A,B,Z,S) are direct.

extensions of De Vos gates and the transformations numbered 3, 4, and 5 arc also
unitary transformations. So according to [7] these pates can directly be

construcied using quantum technology.

About the gates (A,B,O, y) and (A;B,], y), we do not have any proof, neither

from the quantum physicists nor from the mathematicians, that these type of gates

are directly realizable in quanti.lm technology. However, each of those gates can

be constructed using three De Vos ((A,B,Z, y)) gates. Figure 5.4 shows that.

82

Chapter 5
EA Based Synthesis of Multi-Output Ternary Function

Using OQuantum Cascades

The same idea can be applicd for GTG gats. The third conditional transformation

can be implemecnted directly using one ‘(A,B,Z,y) gate. For the first and second
conditional transformation, it will require six (=3+3) (4,B8,2,y) gates. So we can

say roughly that, every GTG gate can be constructed using seven (A4,B,2,y)

gates,
2 - 2 2 — ‘ 1 2
2 ' 2 2 2
- A 2 1 P A] .- 2 P
: | B
B : Y Q B 1Y _ o
P=g P=
vih shift of B, if A=0 yth shift of B, if A=1
Q:) 0=
{B otherwise - B othcrwi.s'e
(a) (b)

Fig 5.4: Realization of {4, B,0,y)and {4, B,,y) gates using De Vos
({4,B,2,1) and {4, B,2,2)) gates. *

As we are constructihg quantum circuit using (A,B, x,y} gates, we can calculate
the cost of the circuits in terms of number of (4,B,2,y) gates. Assuming that each

(A,B,O,y) and (A,B,'l,y), gate rcquires three (A,B,Z,y) gates. Now we can
compare the cost of the quantum circuit ‘construclcd using GTG gates with
quantum circuit constructed using (4, B,x,y) gates. For example the ternary half
adder circuit in [36] has four GTG gates (sec Figure 5.3). 1'“he total number of
{4,B2,y) gatesis—
B34+ (0+3+0)+(0+3+1)+(0+3+1)=18

Note that the Otk shift is the buffer and implemented by quantum wire only; no

gate is required for that.

On the other hand the cost of the ternary hall adder circuit in Figure 5.2 is —

(B+14+3+1+3)=11

83

Chapter 5
EA Based Synthesis of Multi-Ouiput Ternary Function

Using Quanitum Cascades

It clearly indicates that the (A,B,x,y) gates are better candidate for constructing

quantum circuits than the GT(gates.

5.5 Proposed Evolutionary Algorithm

We have used EA to synthesis Multi-output Ternary t‘unctioﬁ because EAs are
very popular Soft Computing approach for solving problems with no identified
structure and high level of noise. EAs are popular because —
e A huge problem space can be searched.
s The size of the scarch space can be modcrated by parameters.
¢ A variety of new solutions can be produced.

e With long enough time, a solution might be obtained that is close to the

optimal one.

These advantages made us inspired to use EA since the problem structure of the
cascades of the new gates is still unidentified and the search space is cxponéntially
large. The following cxample explains the complexity of this type of problems.
For example, Consider the Ternary Half Adder in Figure 5.2. It shows an n-input
m-output function (n=2, m=2) is realized using quantum cascades of the new
gates. Five columns of the gales are required here. But for any multi-output
function, thcre is no method known to find out the .required number columns,
order of the colurﬁns, parameter values of the new gates, or even the controlling
and controlled input prior to the synthesis. There might be any number of
‘columns, assuming for a particular case that thére are L (=5 in Fig. 5.2) columns
and K (=4 in Fig. 5.2) input wires. There are 15 different combinations of x and y
parameier values, two input wires can be selected from K lines in “C, ways, and
the controlling and controlled inputs have 2 different combinations; so a column
can be constructed in 15x*C, x2 different ways. Again any of the columns could

be placed in any position in the cascade. Hence there are (15x* C, x 2)" different

cascadcs. There are (15x6x2)° = 188956800000 different combinations of a 2-
variable function rcalized by a 5-column cascade (ignoring the fact that the

number of columns required is unknown at the time of beginning of the synthesis

84

C ha[}(c'r 5

EA Based Synthesis of Multi-Output Ternary Function
' Using Quantum Cascades

process). So the search space to find a proper or optimal solution is exponentially
largc. Henqe it will not be feasible at all 1o use any deterministic or direct method.
That is why we have chosen EA which is capable to search a huge solution space
within a reasonable amount of time. In our method we have used Genetic
Algorithm' (GA) with real-valued encoding of the chromosome using complex
data structures. Different aspects of our proposed algorithm arc presented in the

subsequent sections.

5.5.1 Problem Encoding

In the proposed EA we use the model of synthesizing multi-output ternary

function using cascades of the new proposed gates as discussed in Section 5.3. In |

this model, for initial input to thc EA, we added three constant signals 0, 1, and 2
for a number of times. Then alicr convergence of the EA we climinate the unused
constant input lings from the final circuit. We usc variable length chromosome,

however, we kept the maximum length 3™ for an n-variable function,

* Ling Input} Columni Celumn ! Column ' Column |- Column |
No. Signal : #1 : #2 : #3 : #Hq : #5 :
0 A Vg g ‘ 1 ’ 1 | | Garbage
I I ' 1 I I output
: H : : 10 : : ' : Sum
I B I\Il'"r" 1 [' l2| 1
P B e
2 0o | 1- (i ‘ 1 1 | §earry
A O R B
3 poob ‘ P] ot b I | Garbage
| : L : : : : output
= }[om] S C2Z) R S €113 S (G~ IV R S 3 1o0) B

Numeric representation of the column (digits representing controlling wire no.,
controlled wire no.,x, and y respectively)

Fig 5.5: Encoding of the Tcrnary Half Adder circuit
Initiaily the chromosomes are gencrated with different length, and then duc to
mutation, the length is (possibly) changed. Afier convergence of the EA, some

columns may be there in the circuit who do not contribute to the function output at

all. These columns are also eliminated from the circuit.

85

P

Chapter 5
EA Based Synthesis of Multi-Output Ternary Function
Using Quantum Cuscedes

The primary input lines and the constant signal lines are numbered starting from 0
as shown in Figure 5.5. Each of the columns in the circuit is represented by an
ordered 4-tupple consisting of controlling wire number, controlled wirc number,
'parameter x, and paramete;' y of lthe associated gate as shown in Figure 5.5. Using
this notation the chromosome, rcbrcscnting the circuit of Figure 5.5 is shown in

Figure 5.6. Here each of the columns in the circuit is a gene in the chromosome.

[To111 | 0324 [1001 | 0221 | 3102 |

Fig 5.6: Chromosomc representing the circuit in Figure 5.5

5.5.2 Fitness Components

In the proposed EA, we try to optimize the cost of the circuit by
e Reducing the number of gencs in the chromosome, in other words
rcducing the nuimber of columns (i.c. gates) in the circuit.
¢ Reducing the number of wires in the circuit (the width of the
scratchpad register), i.c. incrcasing the number of unused constant
input lincs.
For this rcason we uscd three fitness components —
i. Output truth vector fitness,
ii. Chromosome length fitness, and -
iii. Scralchpad width fitness.
In order to determine the output truth vector fitness we group the truth values as
stated in Definition 5.1. |
Definition 5.1: Given an n-input m-output ternary function jf represented as m
~ truth vectors (one vector for each output), where the locations of the truth values
- arc designated from 0 to 3" -1 i'or. each truth vector. Every truth vector is
partitioned into n types of sub-vectors, each type having a sub-vector length 3!

consisting of consecutive truth values starting from location j3 for i=12,..,n

and j=0,,.,3 =1).

86

A &

T

Chapter 5

In this partitioning of the truth vector, i determines the length of a sub-vector and /
dctermines the starting location of the sub-vector. For example, if n=3, then for -

i=1 the sub-vector length is 3"

Therefore the starting locations of the sub-vectors are 0, 9, and 18. Similarly, this

EA Based Svnthesis of Multi-Cutput Ternary Fumetion

Using Quantum Cascades

partitioning technique partitions the truth vectors into

Type 1: 3" sub-vectors of length 1 starting from locations 0, 1, 2, ...,3" —1.
dype 1: 2 ;

Type 2: 3" sub-vectors of length 3 starting from locations 0, 3, 9, ...,3" - 3.

Type 3: 3" sub-vectors of length 9 starting from locations 0,9, 18, ...,3" ~9.

Type n: 3" =3 sub-vectors of length 3" starting from locations 0, 3", and
iype n: Y tH

2 % 3n—| .

For ecxample, Figure 5.7 shows the three types of Sub-vectors of an arbitrary 3-

input 2-output ternary function.

The 3-input 2-output function, f(4,B.C) is defined as -

=01,
i=1. F, =102,

j=0,1,2.

Location 012345¢67

2,01,2,02,01,2,120,121,1,1,20121,1 10,1}

0.2,0,1,22201,01 1201201201210}

\ :
B9 10 11 12 13 14 15 16 17;]8 19 20 21 22 23 24 25 26

=3""'=9 and ;=0],(3 -1=3"-1=)2"

Fi= 0121202

—]

]:2120]2]1I20121]]01

F= [02020122

|
|

210 1 01 1201201201210t
T T

Sub-vector 0 Sub-vecior 1 . Sub-veetor 2
i=2.
i=0,1,...,8
I | 1 1 | 1 1]

Location 10 1 213 4 516 7 819 10 11112 13 14115 §6 17118 19 20121 22 23124 25 26
F,= 012120201321 2101 281 1!20 1!211'1 0 1
F, = 020,20 1/2220 1 01 1 2/01i2012/01210 1
Subveetor O 1 2 3 ' a4 ' s ' ¢ ' 777 4
i=3.

F=0,1,2,..,26. ‘

o, [L N LI I AR R D Y SVRY B SN SR A D S S B SRS S B P
Location 0|]|2!3|4:5:6|7|8‘|9:’01]1!]2||3|]4!]5|]6|]7‘|]8||9|20!2||22|23!24|25|2()
Fi= [0111211727002701 /2111230 112 1011021000 20011 13001
F=__[ej210i2j00812{2120 116,10 11270 10270 11 2{0 1/2]1'0!'1

[N L L L L T T S S R T S O S
6 9 12 15 8 21 24 26

Sub-veclor g 3

Fig 5.7: Sub-vectors of an arbitrary 3-input 2-output Ternary Function.

87

Chapter 5 .
EA Based Synthesis of Multi-Output Ternary Function

Using Quantum Cascades

Sub-veetor fitness: The sub-vector fitness, for a given output & (k +=1,2,...,m), for

n—i

sub-vector type i (having sub-vector length 3"™) is defined as follows:

Nr,

Sk,r' = 3,'

Where, Nr,; is the number of totally realized sub-vectors of Type i for the kth

output along any wire.
When, for a given output , all the sub-vectors of type i arc totally realized,

thens§, ; =1.

Output obtained from a Chromosome at line £ and line Q

| .
Location |0 1 2 3 456 7 819 10111213 1415 16]7;18 19 20 21 22 23 24 25 26

Guiput? {1 1012020221201 2111162206171 01

Quiput Q@ [0 202012220 101 120120120121 01

i=1.
j=0,1,2.

e Rca]izEd Sy_b—vcclor el

Location [0 12 3 4 576 7 819 50 1142 13 14} 16 17118 19 2024 22 23 24 25 26
7= 0121;0201"212012111,1‘1201211101
= 0202012220 e 1201 2 1700121 07

Sub-vector 0 I Sub-vector | Sub-vector 2
i=2.

j=0,1,..,8.

Location |0 1 213 4 516 7 819 10 11112 13 14115 16 17118 19 20121 22 23124 25 26
= |o1 20 2@2011¢ 1 29 1 21'(1 U el2 0 1121 1 0
F=_ (0.2 02 0 i3 ii'_ii"'z,' G106 1 20 1 200 1 200 1 24 9D

; : [[[

Sub-vector 0 1 2 3 4 5 (] 7 8
i=3.
j=0,1,2..., 2.

Location 0.1.2-3.4.5-6.7.s|9 101111 IZ.IB.M!IS.IG.I?I]R.19|2012]|22|23124.25|26
F, = oﬂlz'(l z](o);z)uﬂ1'@[1)«(2"'61' 1)(2"(1] "zu W lfz}l .ml ﬂl_)uﬂ
r=_ |02 :(’q_,(z)'U); z)f i;z(n ,{1)(0,. 1"f 1) {0) ﬂ:(z;ﬂoﬁ.'\.l ,r. (l] (2 on (1)

) T
Sub-vector ¢ -3 6 9 '12 15 18 2l 24 26

Fig 5.8: Realization of sub-vectors

For cxample, consider Figure 5.8; Qupwt P and Output are respectively
obtained at two arbitrary output lines P and @ of a quantum cascade whilc
realizing the 3-input 2-output function f{4, B,C) shown in Figure 5.7. The realized

sub-vectors are shown marked in Figure 5.8. Since n =3, therc arc three typés of

88

Chapter 5
EA Based Synthesis of Multi-Output Ternary Function
Using Quantum Cascades

sub-vectors — Type 1, Type 2, and Type 3. Let us explain Figure 5.8 for each of
the types of subvectors.

Type 1: Both F, and F, are having 3 sub-vectors each. Only the Sub-vector 1 is

realized for F,, while all three sub-vectors are realized for F,. Therefore,

the Sub-vector fitness of F, of type | is S, ;517:% and that of F, is

S, ===2=1.

Type 2: Both F, and F; are having 9 sub-vectors cach. Five sub-vectors are

realized for F,, whilc all the nine sub-vcctors are rcalized for F;

Thercfore, the Sub-vector fitness of F, of type 2 is S, :%,:wsgw and that
2

of I, is 8, = 3

2o
9.

Type 3: In the similar way the Sub-vector fitncss of F of type 3 is

Sl,3=-2“l i_l, and that of F, is S;,_3 iz i;

33

Individual output truth vector fitness: Individual output truth vector fitness for,

output & is defined as follows:

Ok =p+ZSk,|' |

i=l

Where p =lif output k is totally realized along any wire, 0 otherwise. When an ~

output & is totally realized along a wire, then O, =1+n as there arc n types of
sub-vectors. _
For example, consider Figurc 5.8 again. Earlier we have calculatcd thc values of

Sy, Note that £ is totally realized along Quiput (). Now, individual output truth

| . 1.5 21 4 .
vector fitness of F, is — O, = O+Z 1.=3 EeL 22 and that ofF is —

927

3
02=I+ZS”=1+(l+1+1):4,which iscqual to 1+n.

89

Chapter 3
: Fd Based Svathesis of Multi-Quiput Ternary Function
Using Quantum Cascudes

Output truth vector fitness: The output truth vector fitness is defined as
follows: '

0=>0,
When all the m outputs are realized, then eventually it becomes O =m(l+n). For

the case of our continuing example of Figure 5.8, the Output truth vector fitness is

4
0=0,+0,= 2—3 +4=5.667 <mll+n)=3(1+ 2)=9. Hence, observing the value

of O, we ean say that the function f{4,8,C) is not rcalized.

To find the output truth vector fitness, we compute the resulting truth vector {or

all wires and then the best fit wire is selected for each of the given output.

Chromosome Length Fitness: The Chromosome Length Fitness (or cascade

length fitness) is defined as follows —

C — Lc!rrm

L

max

Where, L

nmax

is the maximum allowable length of the chromosomes and L, 1s

the length of the chromosome under consideration.

Scratchpad Width Fitness: The Scratchpad Width Fitness is defined as follows —
Neu ’
Ne

Where, Nc is the total number of constant lines used in the synthesis and Ncu is

W =

the number of constant line those do not contributc in the realization of the

function.

We rank the population using O, C, and W as primary, secondary, and tertiary key
respectively. When all the m outputs arc rcalized by any chromosome then the
vﬁluc of O will be m(1+n). Thercfore, if the output veetor fitness O ol any
chromosome is m(1+n), then the chromosome is a solution for thc given

function.

90

Chapiter 3
EA Based Synthesis of Multi-Output Ternary Function
Using Ouaniun Cascades

Siep o . r

0. l 7 Randomizc Sccd l

i Generatc initial population of size# having maximum length of’
: : chromosomelL

b

| " Evaluate cach individual and rank the population) I
Sclect two individuals as parcnts using T-ary tournament sclection with
replacement

With a high probability £, perform uniform crossover on the parcnts 1o
4: generate two offspring. Il crossover is not performed at all, then copy th
parcnts unchanged to the offspring

51 k - trMutmc the ofTspring with small probability ”,, |

6 ll'anyof lhc o}fspring is a duplicatc ol any individual in the population,
. then rgject that

v

7: ‘ T © Evaluate ofTspring |

8- Inscrt the offspring into the population with maintaining the ranking 01"
’ thc population. l

If morc than P individuals are there, discard the worst individuals from
the population so that the sizc remains same as r

v

. = Fitness values not improved inS . Yes
e L consecutive gencrations? '

e T Docs the highest Titness value ycs
- ... ecxceed the threshold valuc?

yro

- . B A I within M generations? . -

no

Return the Best Found Solution

Fig 5.9: Flowchart of the proposcd Evolutionary Algorithm

5.5.3 Description of the Evolutionary Algorithm

As the mode! of our circuit synthesis is not well structured, we want lo make surc

that the “so far best found” solution is not lost in the successive generalions.

g1

¢

Chapter 5
EA Based S‘ymhem of Multi-Ouiput Ternary Funclion
Usm;: ()uumum Cascudes

Thercfore, we used the simple stcady-state GA with T-ary tournament selection
with replacement for selecting the parents, classical uniform crossover operator,
mutaiicn operator, and a problem specific repairing operation. The proposed EA is
shown in Figure 5 9. For a given set of population size P, crossover probability
Pc, mutation probability Pus tournament size 7, and maximum numbcr of
generations M, we repeat the EA at most R times with random secd. 1f for a given
run of the EA, the fitness value does not improve within S consecutive generations
* then we do the following: |

i. Stop the run and go to the next repetition with random sced if no

solution is found yet,

il. Stop the EA and return the best solution otherwise.
iii. If no solution is obtained in R repetitions, then generate “Fail” and
stop the EA. 7 '

The steps of our proposed EA arc cxplained in the following sub-scctions.

Step 0:

Thls is the lmtlallzatlon of the EA. At this step we reset the random
number generator if it is the first repetition; for all subsequent repetition,

the generator is initialized with a random seed.

At this step the population is initialized. A total number of P indiyiduals :
are generated randomly. The length of each individual is also selected
randomly between 1 to L. Each of 1hc individuals is randomly generated

according its respective length.

Each of the individuals is evaluated as described in Section 5.5.2. The
output produced at cvery primary and constant-line is evaluated for all the
given m functions. Then we applied “marriage matching” stratcgy to gct
the best output vector fitness for cach of the individuals. Then the
- individuals are ranked accprding to their respective fitness. In doing this,

we considered output vector fitness O first. If more than one individual are

92

Chapter 5
. A Based Synthesis of Multi-Output Ternary FFunction
" Using Quanitum Caseades

having the same O value, then we consider the Length fitness C. 107 two or
more individual are having the same O value as well as same C value, then
the Width fitness W is considered. For example Figure 5.10 shows the

ranking of five chromosomes realizing an arbitrary function.

Chromosome |9 | C W Rank Chromosome | 0 | C 4 B

Chrl 4 0.6 |05 1 Chr2 6 04 10.6

Chr2 6 04 0.6 2 Chrd 4 |08 |07

Chr3 3 0.7 105 3 Chr3 : 4 0.6 109

Chrd 4 0.8 0.7 4 | Chrl 4 0.6 | 0.5

Chr5 4 06 |09 5 Chr3 3 07 105
(a) Before Ranking (b) After Ranking

Fig 5.10: Ranking of the individuals in an arbitrary population

This step selects the parents 10 generate the offspring. The whole
population is divided into two (perhaps non-disjoint) sets of individuals
randomly. Then the two best individua! from the two scts are sclected as
the parents. As the sets are non-disjoint, it is to be ensured that the two
parcnts are not fhe same one. Actually the copies of the parents are taken

to apply further operations on them keeping the population unchanged.

Step 4: (Crossover)

The crossover opera'tion is applied in this step. We are using uniform
crossover. That means for each and every gene in.the parent chromosomes
are to be checked for availability of crossover for that position. Since the

parents can be of different lcngths, we have to take some extra measure to
perform the operation. Assuming that the lengths of the two parents arc A
and A;. Also assuming that &, > A,. for every gene position i (i = 1,2, .o
A2), @ random probability po; is generated. 1T o, < P., then the genc pair

at location i are cxchanged in the parents. The newly obtaincd individuals

are the offspring. Figure 5.11 explains the crossover operation.

" 93

Chapter §
EA Based Synthesis of Multi-Quiput Ternary Function
Using Quantum Cascades

P.=08

Yy ¥V Y
parenté] [4=5] [2014]8221] 1001]0304 | 2412]

Parent¥2 [, =7] Dzz3|182110124(3311|4102[8903]10J
p,—> 09 03 065 08 07

(a) Sclected parents before crossover.
The genes to be interchanged are m arked.

Offspring#tl [2014] 1821] 0124] 0304 | 4102

Offspringltz | 3223 | 8221 | 1001 3311 2412 8903 | 1011 |

(b) Obtained offspring after crossover.

. Fig 5.11: Crossover operation

Step 5: (Mutation)

At this step mutation is applied 1o the offspring. For cach offspring, onc
random probability £ is generated. If U < P,,, then mutation will be
applled according as the following rules —
i. Randomly select a gene in the selected offsprmg
ii. Select one of the following mutation operation randomly and
perform: '
a. Delcte the gene provided that the length of the offspring
does not become zero. |
b. Insert a randomly generated gene after this one provided
that the length of chromosome ldoes not exceed' the
maximum length, L.

¢. Modify this gene randomly.

This is shown in Figurc 5.12 assuming that 4 < Py, for all cases.

Step 6:
If any of the offspring is the duplicate of any individual alrcady in the
population, reject the offspring.

94

Chapter 5 .
FA Based Synthesis of Multi-Quiput Ternary F unction .
Using Quantum Cascades

M o2 Bl e ()
Offspring#l | 2014 | 1821] 0124] 0304 {4102 |
(3223 [8221] 1001 [3311] 2412 | 8003 | 1011

Offspringh2

(a) Offspring before mutation.

Offspring No. | Mutation Point Mutation Type
1 3 Medify
2 6 Delete

(b) Randomly generated mutation points and types.

Offspringttl [2014 | 1821 [3821] 0304 [4102 |
[3223 | 8221] 1001 [3311 [2412] 1011 |

(c) Offspring after mutation.

Offspring#2

Fig 5.12: Mutation Operation

Step 7:

Evaluate the offspring as described in Article 5.4.2. 1f the output vector

fitness of the offspring exceeds the fitness threshold value, then eliminate

redundant columns and unused constant lines from the offspring. Figure

5.11 shows redundant columns and constant lines in an arbitrary circuit.

. — Redundant

"/’ . ,Columns
4 £ —I_l I :,
B— | . ! oL fAD
[\ L\J_
\ J% 5
0 f %‘j
2 !
: {ﬂ v
\
2 \\ +
~ ‘Unused Constant 7

—

Lines

Fig 5.11: Redundant Columns and Unused Constant Lines in an arbitrary
Quantum Cascade

Step 8:

95

Chapter 5

EA Based Synthesis of Multi-Output Ternary Function

Using Quantum Cascades

Insert the offspring into the population maintaining the ranking' according

(o their fitness. This is shown in Figure 5.14 for an arbitrary pbpulation of

sizc 5.

Chromosome | O C W Rank | Chromosome | O C |14
Chrl 5 04 0.6 1 Chrl 6 0.4 |06
Chr2 4 08 (0.7 2 Offsp2 5 04 |03
Chr3 4 06 109 3 Chr2 . 4 0.8 0.7
Chrd 4 0.6 |05 4 Chr3 4 |06 109
Chr5 3 0.7 105 5 Chrd 4 0.6 (0.5
(a) Population before insertion 6 Chr5 3 0.7 105
7 Offspl 3 0.7 104

Offsp!

Offsp2

3 07 104
5 04 103

(b) Offspring

(c) Population after insertion

~ Fig 5.14: Insertion of the offspring into the Population with Ranking

Step9:

Discard the worst ranked individual

of population remains same. For exam

I

* Individual to be discarded in step 9,

s from the population so that the size

plc,' in Figure 5.14(c), Chr5 and

Offspl are to be discarded from the population (marked with *). Then do

the following conditional actions:

Step 10:

Réturn the solution produc‘ed by the top ranked individual.

i, If the fitness is not improved in consecutive S generations, i.e.

there is no change in the population for a long time; it

indicates that the EA is in stagnation. In that case go to Sicp

0 to restart the whole process. Otherwise go 10 the next

condition checking (in ii).

ii. If the output vector fitne

ss of the top ranked individual exceeds

the threshold value defined in Definition 5.1, i.e. at least one

solution ha:s. been found; then go to Step 10. Otherwise go Lo

the next condition checking (in iii).

s1i. If the maximum number of generation limit is reached, then go

10 Step 0 to restart the whole process. Otherwise go to Stcp 3

10 continue the iteration of the EA.

96

Chapter 6

Experimental Results and Discussion

6.1 Introduction

We have presented an EA based synthesis methbd of multi-output ternary logic
using gquantum cascades. We also discussed the theoretical back ground of multi-
output, multi-valued logic, reversible logic, quantum corﬁpulation, :'Evolutionary
Algorithms, cte earlier. Now in this chapter we present the experimental findings.
Mainly the results are compared with the results shown in [36] as it is the only

work of same type in this ficid done so far.

To compare the efficiency of our proposed EA based method we used two cost
factors. They help us to estimate the cost of the circuit synthesized by our
propnsed method. These are —

1. Length of the Caseade: This is the total number of columns in the
cascade. Each column is rcalized using one gale. Therefore,
this is the number of gates rcquircd. to realize the circuit.

2. Scratchbad width: This is the total number of constant iﬁpub’outbut
lines and the primary input/output lines required to realize
the circuit.

It is worthless to mention that the cost of the quantum cascade is directly

- proportional to both of these factors. So an optimal rcalization is supposed 1o be of

minimum length as well as of minimum width.

6.2 Experimental Setup and F indings

We have written C++ program to irﬁplement the proposed EA. We uscd the

program to realize the benchmark functions given in [36]. We expcrimented with

~ Chapter 6 .
Experimental Results and Discussion

the ternary half adder function with different EA parameter combinations to see

the effect of the paramcters on this type of problems. We used population size

P = 100,200,300; crossover probability F. = 0.5,0.6,0.7,0.8,0.9,1 .0; and
mutation probability P,, ;0.02 ,0.04,0.06,0.08,0.10 . We selected two
parents using tournament selection using tournament size T =2. Uniform
‘crossover is used as [36] showed that among different classical crossover

technique, uniform crossover performs better than the others.

Effeet of I and Py on Cost of Solution
0.12 |

011 -

e
o
2

.

o
0.06 | ey

®

@

Py

0.04 L

¥ EEX
é@@@

0.02 v

0.6 0.7 0.8 09 1 11 .

P

1 I

0.3 C.4 0.

Fig 6.1: Effect of P¢ and Py on cost of Solution

Figure 6.1 shows the overali éffcct of the Crossover probability (P¢) and mutation’
probubility (Ps) on the cost of the cfrCuit. The sizes of the circles are proportional
to the sum of length and width of the circuit obtained from the respective Pc-Py
combination. For every Pc-Pu combination we have averaged the cost of the_
circuit obtained from population size (P) of 100, 200, and 300. We can see that the
EA performs better when Pe is witin the raﬁgc 0.6t0 0.8 aﬁd P is within 0.08 to
0.1. Unusual behavior shows at (0.6, 0.06) and (0.5, 0.04). Perhaps; if we allow

the EA to run for nuch longer time, then it would no longer remain.

Figure 6.2 shows the efeect of Pc on the length and width of the circuit separately.
For a particular value of Pc ‘the - obtained lcngth (and witdth) for
' P, =0.02,0.04,0.06,0.08,0.1 are ﬁvcraged. Both the graphs shows a tecdency of

98

Chapter 6

Experimental Results and Discussion

having better solution with lower values of Pc but, unusual behavior can be

noticed around Pc =0.6, and 0.7.

Length

Cuascade

21

19

17

15

13

Seratchpad Width

"

Figure 6.3 shows the efecct of Py on the length an

Effect of P on Length

—o— 1100,
e 200
e %3000
1 0.9 0.8 0.7 0.6 0.5 0.4
I,
Fig 6.2: Effect of ¢ on fength of the circuit
Effect of 2~ on Width
—— I 11

el 112200
;e P 300,

1 0.9 0.8 0.7 06 0.5 0.4.
I

Fig 6.3: Effect of Pc width of the circuit

d width of the circuit scparatcly.

For a particular value of Py the obtained fcngth (and witdth) for

P.o= 0.4,0.5,0.6,0.7,0.8,0.9,1.0 are averaged. Both the graphs shows a tecdency of '

99

to

Chapter 0

Experimental Results and Discussion

havilng better solution with higher values of Py but, again, unusual behavior can

be rnoticed around Py =0.06.

Effect of Py on Length

35
30
h .
g 25 —o— 100
':5 B Pz H)D
¥ 20 —— P30
Tt
15
0.1 0.08 0.06 0.04 0.02
P Ry,
Fig 6.4: Effcct of Py on length of the circuit
Effect of P 3 on Width
18 .
" —— 1100

N

e P00

-

e [300)

Seratchpad Width

0.1 0.08 0.06 0.04 0.02

Fig 6.5: Effect of Py 0n width of the circuit
Table 6.1 shows the length and width obtained for some benchmark ternary

function using the proposed EA. Here initial length (also width) means the I_cngth

(widih) of the circuit when the EA*found a solution for the first time. And the final

100

Chapter 6
Experimental Results and Discussion

length (width) means the length (width) of the solution when the ‘EA stops.

Descriptions of the benchmark functions are given in Appendix B.

Function Initial | Final | Initial | Final

Name Length | Length | Width | Width
' . 3cy2 427 425 39 36
avg2 135 16 28 9
‘sum?2 124 9 29 - 3
sum3 . . 135 106 36 34
thadd 55 12 28 9
Albcc 34 34 20 20
mul2 37 23 23 11
prod2 44 12 20 "5

prod3 A 116 48 39 19

Table 6.1: Results obtained for differcnt
. benchmark ternary functions. .

The rcmainig part of this section shows the experimental findings for dilfcrent
ternary benchmark functions. Complete description of the ternary benchmark
functions are given in Appendix B.

This is a ternary function with 3-input and 1-output. Therefore the output vector

fitness of a chromosome representing a solation is 3+1)=4.

Fitness Convergence of abe2

45
4 i P
;
3.5 & {
!
23] i +
4 ;
s 2.0 1 - i
X
G L i
2 r_,r‘l .
15 {- - - -
1 -
;
0.5 benpr e e e g - e e g e LR S
o o a o O 9O WY © v e es © ©w W W P
S 83 8 & 8 s o dH o o < 9 S o o O
o o o 9 9O . 4+ o+ T + + + + + + + + +
S &2 R @ © ' ow W oW Wwowow o wowow w
L PR S S = T R T R S S I

(. Generations

Flpr 6.6: Convergence of output vector fitness for abc2.

101

Chapter 6
Experimental Results and Discussion

Figure 6.6 shows the convergence of the output vector fitness. The EA starts with
a very low fitness. Then there is an exponential convergence up to 325000
generations. After a long stagnation, there was a big jump' and the EA achicved

the fitness threshold at around 2755000 generations.

Length Convergence of abe2

L v s e e o v
700 |
600
= 400 ! .
200 |
100 |
s T P e e e e o
ommmmm<0to'commw<o<ocomco
o O o o O o o O o o (o) o O 0O o
T 9 F F F + o+ F F + + 4+ + 4+ + o+
O o W oW oW oW ow o wow wowowowooul
(ST S () 0 o — N NN NN ™ M Lyr]
Generations
Fig 6.7: Convergence of length of cascade for abc2.
Width Convergence of abel
5
36 |
H
= : , :
Z 34 | L
33 | EEPRE-
% .
] u u uw un 10 [{n} w L(=] {O [{a] w [(n] w w w [is]
o O o o [} [}] [o O o O [] o o O
? S T T FFFOFOF oy o+ o4+ 0+ 4+ 4+ F
oW W oW WoWw ow owowowouwowouwouloubol
o O w0 ™ v o~ o N NN Mmoo ™M M
Generations

Fig 6.8: Convergence of scratchpad width for abc2.

Figure 6.7 shows the length convergence for the function. There is also a big jump

at around 2755000 generations, when the EA achieved the fitness threshold. At

102

Chapter 6
Experimental Results and Discussion

this point our proposed method eliminates the columns that do not have any '

contribution to the final output.

Figure 6.8 shows the convergence of scratchpad width for the same function. We
can sec that there is no significant change in the width until the fitness threshold is
achieved. Again at this point our proposed method eliminates the constant lines

that do not contribute to the final output.

mul2:
This is a ternary function with 2-input and 2-output. Therefore the output vector

fitncss of a chromosome representing a solution is 2(2+1) = 6.

Figure 6.9 shows the convergence of the output vector fitness. The EA starts with
a lowet fitness. Then there is a quick convergence up to 20000 generations. After
a long stagnation, there was a big jump and the EA achieved the fitness threshold

at around 785000 generations,

Fitness Convergence of mul2

B.15 o o i ensmsmmevinsn o s nn s oo o F s e
G
5.5 {
b4 5 1 :
w '
B :
- 45 .
5
4 g
!
35 - i
H
3 T AT e e P H
o o o O o 9 O O O 9O o O O O O W P W
Q 9Q 9O 9O 0O O 9O O 9O QO Q0 O O O O G &
Q QO O O QO O Q9 O g 9 O O O O ¥ + 4
O & e O N O M DO I~ F = @® W i
~ ~ &N N O ¥ F n @ K~ o o o - W

Generations

_ Fig 6.9: Convergence of Output Vector Fitness for mul2.

Figure 6.10 shows the leng{h éonvérgence for the function. There a exponential

convergence for around 10000 generations. After that therc was a long stagnation.

103

Chapter 6
Experimental Results and Discussion

We can notice a gradual convergence after the EA have achicved the fitness

threshold.

Length Convervence of mui2

—
O QO Q QO QO O 9O 0O 0. 9 9 9O 9O W O W W
o o O Qo O O o QO O O o o [T s B o | o
o O o [o Q o Qo o O (=] [+ + + +
[a) O < o [[+'n] D < (=) (i) (%] 0%} 04} 54} wi
©W — NN I < <+ N W K~ O W O - = = =

Generalions

Fig 60.10: Convergence of length of cascade for mul2.

Figure 6.11 shows the convergence of scratchpad width for the same function. We
can sce that there is no significant change in the width until the fitness threshold is
achicved. Again at this point our proposed method climinates the constant lines
that do not contribute to the final cutput. The width is also decrecased afier that in

an exponential manner.

Width Convergence of mul2

40 - v e e v+ v v o o oo e s
35
30
_ 25
220
=
15
10
0 Lo . et e e £ e e 4 e e e e
o 0 0 90 0 0 Q0 0O 2 0 0 9 O W O O ©
o o O O o o o O & & & & © & O o
2 o o & &2 © 2 & & & O 9 ¥ + ¥ ¥
S © ¥ N O & © I N O © © W ow ow W
D < N O F F O D I~ DB O O = = = o=

Generations
|
4

Fig 6.11: Convergence of scratchpad width for mul2.
104

Chapier 6 o
Experimenial Results and Discussion

aZbee:
This is a ternary function with 3-input and 1-output. Therefore the output vector

fitness of a chromosome represcnting a solution is 1(3+1) = 4.

Figurc 6.12 shows the convergence of the output vector fitness. The EA starts
with a very low fitness. Then there is an exponential convergence up to 175000
generations. And then the EA achieved the fitness threshold at around after a

sharp rise of the fitness.

- Fitness Convergence of a2bec

Y

(9]

Fitness

—_

N
s N w o A

[=]

<

O H H O L& L D

@@Q@@@ QQQQQQQQQ

RS I Ngsv@ O
Generations

Fig 6.12: Convergence of Output Vector Fitness for aZbcc.,

Figure 6.13 shows the length convergence for the function. The EA converged
almost in an exponential fashion throughout the whole process. There is also a
rclativeiy big jump when the EA achieved the fitness threshold. At this point our
proposcd method eliminates the columns that do not have any contribution to the

final output.

Figure 6.14 shows the convergence of scratéhpad width for the same function. We
car: see that there is no significant change in the width until the fitness threshold is
achieved. Again at this ‘point our proposed method eliminatcs the constant lines

that do not contribute to the final output.

105

e hapier 6

Experimental Results and Discussion

Length Convergence of aZbec

800
700
600
= 500
= 400
G
~ 300
200
100
O .
T R N N S N S S S T S S
S S PP S
& o A Qco\q’ R \@QQ@ RS
Generations
Tig 6.13: Convergence of length of cascade for a2bec.
Width Convergence of a2bec
35
2 3
20
O L H O] L O
S & P S c§> PP
(fiuuur:ltions
Fig 6.14: Convergence of scratchpad width {or a2bce.
thadd:

This is a ternary function with 2-input and 2-output. Therefore the output vector

fitness of a chromosome representing a solution is 2(2+1) = 6.

106

Chapter 6
Experimental Results and Discussion

Figure 6.15 shows the convergence of the output vector fitness. The EA starts
with a very low fitness. Then there are two atmost big jumps and the EA achieved

the fitness threshold at around 210000 generations.

Fitness Convergence of thadd

65 s — e e e enr s e i it e+ . [,
6
5.5
: 5
"
445
=
= 4
.35
3
25
2
0D OO O O OO DO OO OO OB ®
@QQ%Q@ @Q%@QQQQQD@Q_%‘é)Q @Q%@Q @Q‘)@Q%QQ @Q%@QQ@Q\JD@Q
NSNS Y S s R S N S

Generations

Fig 6.15: Convergence of Output Vector Fitness for thadd, -

Figure 6.16 shows the length convergence for the function. After an initial

negative convergence, there is an cxponential convergence.

Length Convergence of thadd

DO e e emr s e e 1 e e i xaek e L e e
w60 g4y - e ;
140

£ 120 :

2100 - e e :

© i

60
40 o . . o i
i
o o o O O O © 0 Q0 © ©C o 9 9o o 9
S O 0 O & & 6 © © o o o © o o O
S O & o0 O & & 686 6 &6 & & o o DO
S &5 N DO O ¥ OO N O O F 0 N4 D S T
~t [+ — Ll o o™ [aV] (30 ™) =t =T ~ u u [de) «w
Generations

Fig 6.16: Convergence of length of cascade for thadd.

107

Chapter 6
Experimental Results and Discussion

Figure 6.17 shows the convergence of scratchpad width for the same function. We
‘can sce that there is no significant change in the width until the fitness threshold is
achicved. Again at this point our proposed method eliminates the constant lines

that do not contribute to the final output.

Width Convergence of thadd

40
35
30
£ 25
5 :
15
——— e —
10 :
QO 9O O W W N W W w W W wn w w W WD
o o O o o o o o o o o o o o o o
c c + + + + F+ F+ + + + + + + * +
S © W oWoWoWoWoW W W Wwow oW oW W
¥ 0 - NN N ™M T <t w W O WO W
Generations
Fig 6.17: Convergence of scratchpad width for thadd.
prod3:

“This is a ternary function with 3-input and 1-output. Therefore the output vector

fitness of a chromosome represcntmg, a solution is I(3+]) 4,

Figure 6.18 shows the convergence of the output vector fitness. Like the

previously mentioned functions, the EA starts with a very low fitness, then there is

an exponential convergence at primary stage, then a long stagnation, and finally it

achieved the fitness threshold at around 470000 gencrations.
Figurc 6.19 shows the length convergence for the function. There is also a big

jump indicating thet the EA has found a better fit chromosome with smaller length

at that time.

108

4

Chapter 6
Experimental Results and Discussion

Fitness Convergence of prod3

A5 o commrmmriemsimentien oo oo e e

3.5
& 3
s
in

=
B

O O QO O W W W W W W W oW W n W W w

S © O 0O 0O 0O 0O ©C O O 0O o0 o0 o0 O o

o o O + *+ + + + + + + ¥ + + + +

o © O W W ow o w w o w w oW owow W o

M O W~ NN NN MmN T T T W W0
Generations

Fig 6.18: Convergence of Output Vector Fitncss for prod3.

Figurc 6.20 shows thc convergence of scratchpad width for the same function, We
can see that there is again an exponential convergence after the fitness threshold is

achieved.

Length Convergence of prod3

400
350
H
300 ;
-_— P ;
T 250 :
= ;
& H
M 200 :
150 :
100 :
50
0 Lo sy e+ - S e e g ’ e
o o o o 9 o 9 O o o O o o [T -] o W [{a]
f] = = o (=) o o o o o o = = = o o o
o = L o [V} = [Tp] o u o L = Lip} o) + +
0 O o @O N T 0N @ WD e W e M~]
w - ™ O M o) < uw w0 O M~ I~ 0oom L2 o
Cenerafions

Fig 6.19: Convergence of length of cascade for prod3.

109

Chapter 6 .
Experimental Results and Discussion

© Width Conve rgence of prod3

|
35 |
- 30 |
- H
- 25 .
20 |
| L
o o oo o o o O O 9O 9O OO O 9O O 9 9O W D
[} Qo O O o O O O O O (=] o (e o (=] o f)
(e (e w o g o O ouxy O [Te] (] L0 o n + +
w o B W M N Qo — g o Moy
W <~ -~ N MM D0~ Do ® o W
Generations
Fig 6.20: Convergence of scratchpad width for prod3.
avpl:

This is a ternary function with 2-inpﬁt and 1-output. Therefore the output vector

fitness of a chromosome representing a solution is 1(2+1) = 3.

Fitness Convergence of avgl

Fitness

Generations

Fig 6.21: Convergence of Qutput Vector Fitness for avg2.

Figurc 6.21 shows the convergence of the output vector fitness. The EA starts
with a low fitness. Then there is a very quick convergence and reaches the fitness

threshold within 7500 generations.

110

Chaprer 6 : -
Experimental Results and Discussion

Figure 6.22 shows the length convergence for ths function. There is also a big
jump indicating thet the EA has found a better fit chromosome with smaller length

at that time.

Length Convergence of avg2

140
120 - - -
100
. 80
60
40

Length

Cenerations

Fig 6.22: Convergence of length of cascade for avg2.

Figure 6.23 shows the convergence of scratchpad width for the same function. We

can see that there is a consistent improvement throughout the whole eolution.

- Width Convergence ol avg2

30 e
: 20
£ 20
=
=15
10 “
5 i
O ® & & & P P D O &
S & & & & © & &
& $ S $S & &
I T S S S

Generations

Fig 6.23: Convergence of scratchpad width for avg2.

111

Chapter 6

Experimental Resulis and Discussion

Figure 6.24, Figure 6.25, and Figure 6.26 shows the realizations of three ternary

benchmark functions obtained by the proposed method. Realizations of other

circuits are a bit complex with a large number of columns, hence not shown.

A - -9

o | ’

—_
>)
-y

el

»

2| "

ez l *

I
il

Fig 6.24: Realization of mul2 using the proposed method.

-*

Fig 6.25: Realization of prod2 using the proposed method.

112

Chapter 0
Experimental Results and Discussion

ool

2 . e,

Fig 6.26: Realization of avg2 using the proposed method.

6.3Conclusions

Experimental results obtained from our proposed EA based synthesis method is
presented in this‘chaiater. First, we have shown the effect of the EA parameters on
the solution, We have shown the ranges of the parameter valucs for which the EA
perfoms better. Then we have shown the results obtained for some benchmark

ternary functions so that it could be compared with other methods later on.

113

Chapter 7

Conclusion

7.1 Concluding Words

We have presented an EA based method to synthesize multiple-output ternary
functions using quantum cascades. Quantum computation is known to be the most
promincnt technology for future computers. The most important feature that
attracts thc aftention of rescarchers is the “entanglement™ of logical statcs.
Morcover, reversible computers can be made using quantum technology that,
thcorcticaily, dissipates zero amount of heat. We have described the relevant
theorctical background of Multiple-Valued Logic, Quantum Computations,

Reversible Logic, and Evolutionary Algorithms.

A family of 2*2 quantum primitive gates is proposed. Thése gatcs are reversible
and can directly be implemcntt_:d using quantum tcchnology.' Besides, these gates
are universal for ternary logic. We compared thesc gates with the most popular
Generalized Ternary Gates. We have shown that tcrhary quantum circuils can be
constructed in a better optimized way using the new gates. We hope that these

.gates will attract the interest of the researchers in this field.

‘We also proposed an EA based synthesis method of ternary Quantum Circuit
using the new gales. Experimental rcsults are presented and it goes in favor of our

claims.

The main contributions of this thesis dre summarized as follows:

1. To construct multiple-valued quantum computers, it is strongly required that
the gates will be built using: quantum primitives. In this thesis we have
proposed a family of ternary 2*2 quantum primitive gates. This family of

gates is universal, i.e. any ternary function can be realized using these gates

Chapter 7
Conclusions

only. Besides, these gates can directly be realized using quantum technology.
We have shown the cffectiveness of using the new gate as the building blocks
of ternary quantum computers. It is also shown that thc new gates outperform

other ternary primitive gates.

2. The most popular ternary primitive gate today is the Generalized Ternary
Gatcs (GTG). The proposers of GTG claims that ‘these gates can be
constructed directly using quantum technology in linearion trap. We, in this
thesis, arc raising a strong doubt about this claim. Wc¢ have shown that all the
GTG gates cannot be realized dircetly in lincar ion trap. Howcver, these gales

can be constructed using our proposed gatcs.

3. An EA based synthesis of ternary logic using the new gales has been
proposed. Since there is no direct method of synthesizing ternary !ogic using
the new gates is known, and the structure of the problem is still undefined, we
used EA for solving the problem. However, we Believe that researchers in the
field of multiple-valued logic will be interested in developing heuristic or

deterministic mcthods of synthesizing ternary logie using the new gates.

4. An cxtensive study on the effect of EA parameters in solving this type of
problems is carried out. Through the experimentations we have identified the

range of different EA paraineters for which the EA produces better solutions.

5. Other popular ternary reversible gates can be constructed using the new gates.
For example, tei’nary Toffoli gate, Generalized Ternary Toffoli ‘gates, ternary
swap gate, etc. These non-primitive gates are widely used in ternary logic
synthesis. So construction of thosc gatcs in a cost cffcctive way is a burning
question. Use of the new gates in constructing the complex gates will help us
to reduce the cost of quantum circuit effectively. Therefore, realizing the non-

primitivc quantum gates using the new gales carrics huge significance.

6. Finally, this thesis can be considered as a comprchensive collection of

information rclevant to Quantum Computation, Multiple-Valued - Logic,

115

PR <

Chapter 7

Conclusions

Reversible Logic, and Evolutionary Algorithms, Along with theoretical

fundamentals, the reeent trend of research and development in multiple-valued

logic, specifically ternary logic, is discussed here. Therefore, we belicve that

this thesis will go a long way in research and development in this field.

7.2 Recommendations for Future Work

In order to design and develop quantum computérs in an efficient way, we believe

that, there are a number of areas that require further study and research. Actually

this is a very new and promising rescarch ficld. So there are lots of scopes to

conduct rescarch in this field. Morcover, this thesis has some limitations that can

also be investigated further. Such as EA takes long time to find solutions,

therefore, in order to overcome that, different strategies could be sought to make it

{aster.

'

. This section essentially provides some pointers to persue further investigation in
this field.

In this thesis we were confined only with ternary logic. Other Multiple-
Valued cases can be taken into account. The mathematical foundation of’
Ternary Reversible Logic lies in GF3. Other Galois Ficlds like GF5, GF7,
ctc. can be éonside[cd. Devcloping quantum primi'tive operations and logic
gates under those Galois Fields can be an excellent field of research.
Realizing higher values Galois Field Logic means™ storing more
information in a single unit; thus reducing the size of cifcuit. On the other
hand, measuring and manipulating the information in this.case will
become more complex. So, it requires a trade off. Through invc_sti_vation in

rcalization of Multiple Valued logic for higher values arc of great

- importance.

Study can be carried on developing generalized rules and synthesis process
instead of remain confined with ternary logic. General formulation of the
quantum primitive opcrations and the logic gates would be quite

intercsting and challenging as well.

116

Chapter 7 .
Conclusions

3. In this thesis we proposed a set of quantum primitive gates. And it is a set

of universal quantum gates. But we did not investigate if there is a subset

or not which is also universal. If there exist any such subset of universal
gates, then with this less number of gates, perhaps logic synthesis will be
much casicr. Therefore, study and research can be carried to find the

subset of universal gates if there is any.

4. A limited cxtent of interfercnce could be allowed to apply to the
Evolutionary Algorithm so that it can get rid of stagnation and conv'crgcs
towards a solution. For example, if the output vector fitness of the best
invividual remains less than but very close to the fitness threshold for a
long time, then some sorts of ‘.‘Gcnetic Engineering” to make the
individual achieve the desired fitness threshold. Rescarch can be done on
devcloping suitable “Genetic Enginecring” tenchnique. In fact we are, at

present, trying to develop one such method.

5. Wc have used EA based method for logic synthesis usihg the new gates.
Application of other such strategies (especially Al techniques) for doing
the same can be ldevc'loped. To do that we need a better structurc and -
formalizaton of the problem. This is definitely poing to be quit difficult,
but we believe that is not impossible. So finding deterministic or heuristic

methods can be a good ground of rescarch.

6. The proposed EA based could be applied together with other synthesis
methods. For example, the quantum circuit genérated by other methods
“can be transformed into 'lhe genotype of our proposcd EA based
method.then this genotype can be used. as the initial seed of the EA so that

it can find a better solution afterwards. Formulating this fype of hybrid

| methods could be donc.

7. Tinally, study and rescarch could be carried to realize popular ternary gates

using the new gates in a better way.

i17

Appcndifx A

‘Source Code of the Program

File Name: evTGF.cpp

/1 EA- using ranklnb ol‘mdmdualb
#includc<iosircam> -
#includc<fstrcam>
#include<vector>

#include <stdlib.h>

#inciude <math.h>

#include <time.h>

using namespace std;

class charVeet;
class char2Dvecl;
class floatVect;
class float2Dvect;
class chromosomc;
class population;

”*1**!*!*1******!*!*
char getShili{char A, char B, int x, inl y);
void remlt{chromosome& chr, charVect& mate);
int isIn(const charVect& cv, char val, int notPos),
int MarringcMatching{float2Dvect wbpg, charVeel& maic);
int takeCarccOfDuplicate{const population& pop, population& ofTsp);
int chk_N_replace(population& pop, floatVecl& popfFit,
population& offsp, floatVecté& olf¥Fit);

ﬂ**i#l*i#*#***i*ﬂ*l*

class Param
{ . :
static int inLength; /! input length - number of varlablc
stalic int outLength; // numbecr of outputs
static float Pc; /1 eross over probability
static float Pm; // mutation probability;
static int NCmax; //-maximum numbcr of geacration in one repetation
static int Lpop; /f population size
static int rcp; - /f maximum number of repetation
static int gen; // maximum number of gencration to wait to cxhaust
static char tC; // crossover type; u-uniform, o-1 point, t-2 point
public:

static void read(ifstreamé fin)

{ fin>>inLength>>outLength>>Pc>>Pm>>NCmax>>Lpop>>rep>>gen>>1C;

static void wrile{ofstreamé& {out)
{1out<<mLcng1h<<cndl<<0uLLcn5Lh<<c,mll<<]’(.<<cndl<<l’m<<u,ndl
<<NCmax<<endl<<Lpop<<cndi<<rep<<endl<<gen<<endi<<tC<<cnd];)

static void input() {cin>>inLength>>outl.ength>>Pc>>Pm>>NCmax>>Lpop;) '

Appendix A

Source Code of the Provram

static void outpul(} {clout<<""<<inLcngth<<":"<<outLcngth<<":"<<Pg

<" MeaPme<" " <<NCmax<<""<<Lpop;}
static void inputGP(ifstreamé& (in)} // Reads Global Parametcrs

{
(in>>Pc>>Pm>>NCmax>>Lpop>>rep>>gen>>1C;
switch(1C) .
{
case 'u':
case 'U"; _
cout<<"\nUnilorm CrossOver..."; brcak;
casc 'o:
casc 'O":
cout<<"\nOn¢ Point CrossOver..."; break;
casc't’;
casc "1™
- ecout<<"\n'I'wo Point CrossOver..."; break:
dclault:
cout<<"\n! HAVWUNKNOWN CrossOvcer...";
}
'

static void inputFP(ilstrcamé& fin}} fin>>inlLength>>outl.cngth; }
//Rcads Funetion specific Parameters
static void outpulGP(ofstrecamd: fout)

{fout<<"" <<Pe<"" << Pm< <"t <<NCmax<<"W'<<L pop=<<"\"
<<rep<<\tt<<gen<<"" << C <<"\n/APAPMUINCmaxMLpopMRepiGentters Typ”; |
static void outpulFP(ofstrcamde fout) { fout<<" "<<inLength<<" "<<outLength;!

static void set(int a, int b, float c, float d, int e} .
{inLength = a;outLength=b;Pc=c;Pm=d;NCmax=c¢;}

static void get(int& a, int& b, float& c, float& d, int& c)

’ {a=inLenguli;b=outLcngth;e=P¢;d=Pm;c=NCmax;}

static int inLen() {rctum inLength;)

static void sctInLen(int 1y {inLength = 13}

static int getinLen{) {return inLength;}

static int outLen() {return outLength;)

static int getLpop() {return Lpop;}

static float getPe() {return Pc;}

static float getPm() {return Pm;} -

static int gctNCmax{) {rcturn NCmax;}

static int Rep() {return rep;}

static int Gen() {retum gen; }

static char Te() {retumn tC;}

static int maxCrLen() //calc & returns: max length of chromosome

{int mcl; mcl = 3*pow(3,inLength+2); return mel; }

static int consiLincs() // cale & returns: number of constant input lincs

) { rcturn (inLength+outLength)*9; }
}; #/ End of class Param, :

int Puram:iinLength; / input length - number of variable
int Param::outLength; /! number of outpuls

float Param::Pc; /f cross over probability

float Param::Pm; // mutation probability;

int Param:NCmax; /f maximum number of generation

int Param::Lpop; // population size
int Param:rep;
inl Param;:pen:
char Param::iC;

//ll*lllltt*lllll*lhlll*ll*i*

class floatVect

{

119

Appendix A

public:

Source Code of the Program

vector<floal> 1v;

void clear() {Iv.clcar();} .

void push_back{float ¢) {{v.push_back{c);}

int size()const {return fv.size();}

const float& opcrator[j(int pos) const {return fv[pos];};
Noat& operator[](int pos) {return fv[pos];}

int operator==(f{loatVcet& c)const {int i,n=Iv.sizc();if(n!=c.size(})rcturn 0; .

for(i=0zi<n;i++H){ if{1(fv[i]==c.fv{i1)) return O; }return 1;}
void output(); .
bool ecmpty() {rcturn fv.cmpty();}
void insert({int id, {loat fvi) {fv.inseri(fv begin()+id,v1);}
void pop_back() {fv.pop_back();}
void read(ifstrcam& fin)
{ - .
inti,n,
{loal t;
fv.clcar();
fin>>n;
for(i=0;i<n;i++)
{
fin>>4;
fv.push_back(1);
}
H
void writc{ofstreamé& fout)
{ £l .
int 1,n;
n = fv.size();
lout<<n<<"t";
for(i=0;i<n;i++)
fout<<fv[i]<<cndl;

}

./ END class floztVect

'Ifi**I*l*i**i*l*l*i*l*l*l*

class tloat2Dvect

{

public:

vector<tloatVeel> fmat;

void cicar{) {fmat.clear();}

void push_back(floatVect ¢) {fmat.push_back(c);}

int size()const {rctum fmat.size();}

const floatVect& operator[J{int pos) const {return fmat[pos]; };
floatVeet& operator{](int pos) {return fmat[pos];} -

int opcrator==(floai2Dvect& c)const {int i,a=lmat.size{};it(n!=c.size())rcturn 0;

for(i=0;i<n;i+H) {if{!{fmat]i]==c.Imat{i])) rcturn 0;}rcturn 1;}
void output();
void read(ifstream& fin)

{

intin;
{lvatVeet t;

finat.clear();

{in>>n;

for(i=0;i<n;i++)

{
t.rcad(fin);
fimat,push_back(t);

120

AR ﬁ‘r

Appendix A

- Source Code of the Program

)
H
void writc{olstrcam& fout)
{ _ ‘
inti,n;
n = {mat.sizc();
lout<<n<<cndl;
for(i=0;i<n;i++)
[mat{il.writc{fout);
fout<<endi;
;)
}

}; /END class float2Dvect

”‘**.****.*!*i*i*t*i*i!'**"*'

class gene

{

public:

int ctriing;
int ctrlcd;
int x;
inty;

void input(}{cin>>ctrling>>clrled>>x>>y; |
void oulput(){ctout<<"{"<<clrling<<","<<cirled<<","<ox <<, "<<y<<" ' }
void output(ofstream& outf)
{outl<<"["<<clrling<<","<<e¢lried<<","<<x<<" My <<"]";)
void randGene()
{ -
int n,w;
n = Param::inLen(); .
w = n + Param::consiLincs(); // tolal number of input/output lincs
dof ‘ ‘ ’
ctrling = rand()% w;
ctrled = 1and()% w;
twhile(ctrling==ctrled);
x = rand() % 3;
y =(rand() % 5} + 1;
} :
void sctGenelint a, int b, int ¢, int d) {ctrling=a;ctrled=b;x=c;y=d;}
int Cing{)const {rcturn ctrling;}
int Ced()const {return ctrled;}
void Cing(int ¢) {ctrling = ¢;}
void Ced{int ¢} {ctrled = c;}
int X(Jconst {rcturn x;}
int Y{)const {rcium v;}
int operalor==(const geneé gconst :
treturn ((ctriing==g.cirling)& & ctrled==p.ctrled)& &(x==g.x)& &(y==g.y));}
void repair() {if{ctrling==ctrled) x =y = 0;}
void read(ifsircam& fin) { fin>>ctrling>>ctrled>>x>>y; }
void write{ofstrcam& fout} S
{ fout<<ctrling~<cendl<<ctrled<<cndi<<x<<endi=<<y<<endl: }

3. // END class gene

ﬁ'**i*l*'*i***!*-#'*i*t*t*.

class chromosome

{

vector<genc> chrm;

121

s

Appendix A

public:

Source Code of the Program

void clear() {chrm.clcar(};}
void push_back(genc& g} {chrm.push _back(g);
int size() const {return chrm.sizc();} '
const genc& operator[](int pos) const {return chrm[pos];}):
gene& operater{]{int pos) {rcturn chrm|pos};}
charVect getOneOutput(charVect ipop, int insizc)const,
int getChromoQutput{char2Dvcetd opveet)const;
int mutation();
int operator==(const chromosome& c¢)jconst
{int i,n=chrm.size();il(n'=c.size()Ircturn 0;
for(i=0i<n;i++){if{!(chrm[i]==c.chrm(i])) rcturn 0;} return 1; 3
void repair() {int i,n=chrm._sizc();lor{i=0; |<n ;i++) chem(i]. rcpalr() 14
void climinatcRedundant(};
void chromosome::output();
void output{ofstreamé:);
void unWeced{consl charVecté&, (..!'ICII'VLLI& charVect&);
int crase{int id)
{il{chrm.crasc{chrm.begin(}+td, chrm.cnd())==NULL.) return 0; rcturn 1;}
charVeel cvaluate(char2Dveeldk , 1loat& , float& , float&);
void recad(ifstrcamé& fin)
{ -. -
inti, n;
genct;
chrm.clear();
fin>>n;
for(i=0si<n;i++)
{
t.read{fin);
chrm.push_back(t);
}
H
void wrile{ofsircamé& foul)
{ -
inti, n;
n = chrm.size();
fout<<n<<endl;
for(i=0;i<n;i++)
chrm[i].writc(fout);

h

}; /END class chromosomc

J7 AR o o kR ko ok ok ok

.- class population

{

public:

. vector<chromosome> popl;
. lleatVect 1Tt

floatVeel IFit;
lloatVeet wFit;

float fSum{int i) {return fFit[i]+0.7*IFit[i}+0.3*wFit{i];}
float FFit{int i) {return fFit[i];}

Nloat LFit(int i) {return IFit[i];}

loat WFit{int i) {rcturn wFit[i];}

void init{char2Dveet& opVecet);

void output(};

void clear(){popl.clcar();} .

void erase(int i} {if{i<popl.size()) popi crasc(popl.begin()+i);}
void push_back{chromosomeé& cr) {popl.push_back(cr);}

122

" Appendix A

Source Code of the Program.

int size(yconst{return popl.size();}

const chromosome& operator| J(int pos) const return pupllpOb], N
chromosomed& operator|](int pos) {rclurn popl[pos]
population& crossOverUnl{();
population& crossOver1pl();
int operator==(const population& c)const .
{int i,n=popl.size(};if{(n!=c.size())rcturn 0;
for(i=0;i<n;i++){if(!(popl[il==c.popl[i])) return 0; }return 1;}
population sclectParentT _ary(int T, const floatVect& crFit);

void repairGene() {int i,n=popl.size();for(i=0;i<n;i++) popl{i].repair();};

void swap(int i, int j);

void rankPapl();

int insertWithRank(population&,int&);

void trank Worst(int),

void cvaluate{char2Dvectdr);

void read(ifstream& fin})

(! .
inti, n;
chromosome t;
popl.clcar();
lin>>n;
for(i=0;i<n;i++)

]
)

t.rcad(fin);
popl.p_ush_buck(l); .

fFit.rcad(fin);
1Fit.rcad(fin);
wFiL.rcad(fin);

void writc(ofstrcam& fout)

f
3

inti, n;
= popl.sizc();
fout<<n<<endl;
for(i=0;i<n;i++)
t
pop!{i].write(fout);
fout<<cndl;
!
fFit.write(fout); fout<<endl;
1Fit.write(fout);fout<<end!;

wFit.write{fout); fout<<cndl,
1 o
3

}+// END class population

”!*!****!*I*t****t*l*l*l*t*****

class charvect

!
L]

. public:

vector<char> cvect;

void clear() {cvect.clear();}

void push_back{char ¢} {cvecl.push_back(c);)

int size(eonst {return cveet.size();)

const char& operator[[(int pos) const {return evectfpos];);
char& opcrator[](int pos) {return cvecl|pos}; }

charVecl& incComb(int n);

int allarc{char ¢, int n); :

int operator=={charVect& c¢)const

123

Appendix A
Sourcle Code of the Program

fint i,n=cveet.size();il{n!=c.size())return 0;
Tor(i=0;i<n; |++){:f('(cvccl[|} =c¢.cveet{i])) return Oy freturn 153
void outpul(char d='0")
{int i,n=cvect.size(};Tor(i=0;i<n;i++) clout<<char{cvect[i]+ d)y<<" ;)
floatVecet cvaluatc(char2Dvoct& opv)const;
void output(ofstrcamé& outf, char ch = %');
void outputChar(ofstream& outf, char ch ='#');
void outputChar(char ch ="#");
void inpul(ilstream& inf, char ch ="#";
int count(char ch)

{
int i,n=cvect.size();
int ¢=0;
Tor(i=0;i<n;i++)
if{cvect[i]==ch)
¢t
return ¢
i
void read(ilstrcam& (in)
{ inti, n;
chart;
cvecl.elear();
fin>>n;
lor(i=0;i<n;i++)
{
fin>>1;
cveet.push_back(t-'0');
) .
H
void write(ofstrcam& foul)
{ . .
mti, n;
n = cveet.size();
fout<<n<<"\t";
lor(i=0;i<n;i++)
fout<<(cvect|i]+'0')<<cnds;
H

Vi IIEND claés charVect

JAEFEREEREREEER AT RAR RN AN

class char2Dvect

{

public:

vector<charVect> cmat;

void clcar() {cmat.clear();}

void push_back(charVect& cv) {cmat.push_back{cv);}

void outpul();

void outpul{ofstrcam&);

void outputVect{ofstrcam &),

int size(){return cmat.size();}

const charVect& opcerator[}(int pos) const {return cmat[pos];};

charVect& operator[]J(int pos) {rcturn cmatfpos];}

int operalor==(char2Dvect& c)const
{int i,n=cmat.size();if{n1=c.size()return 0 :
for(i=0;i<n;i+H){ (I {cmatli|==c.cmat]i})} rcturn 0; }rclurn ;3

Moat2Dvect cvaluate(char2 Dvect& opv)const;

void write{ofstrcam& lout)

{

int i, n;

124

n = cmat.size();

fout<<n<<"\n";

for(i=0;i<n;i++)

{ ' . .
cmat[i].write(fout);
fout<<endl; -

1

]

}
}; #/END class char2Dvect

”it‘tttt"***tt*'"*'*ii***i****t**i*.
void floatVect:zoutput()
(.

int i,n=fv.sizc();

for(i=0;i<n;i++)

clout<<fv[i]<<" ",

V.
]

. void fleat2Dvecet::output()

{ .
int i,j,ni=fmat.size(),nj=lmat[0].sizc();
for(i=0;i<ni;i++)
f
[
clout<<end!;
for(j=03j<nj;j++)
clout<<Imat{i][j]<<cnds;
}
} .
void charZDvect::output()
{
intij; “
for(i=0;i<cmat.size();i++)
{
clout<<cndl;

Tor(j=0yj<cmat[i].size();j++)
cfout<<char(cmat[i]{j]+'0"y<<cnds;

'

void char2Dvect::output(ofstrcam& outf)

{

int i,;

for(i=0;i<cmat.size();i++)

{ ' .
outf<<endl; '
for(j=0;j<cmat[i].sizc();j++)

outf{<<char(cmat[i]|i]+0"y<<cnds;

1

)
void char2Dvect::outputVeci(ofstreamée outf)
{ - .

inti; '

for(i=0si<emat.sizc();i++)

$

t
outf<<cndl;
cmal[i].output{outf); \

y

!

Source Code of the Program

125

Appendix A

Source Code of the Program

void population::evaluatc(char2Dvect& opVect)
{

int i, n=popl.sizc();

float [T, I, wi:

fFit.clcar();

IFit.clear();

wFit.clear(};

for(i=0;i<n;i++)

{
popl(i].evaluatc{opVcet, {1, 11, wi);
fFit.push_back({T);
IFit.push_back(if);
wFit.push_back(wf);

) .

1
¥

void populationzzinit{char2Dvect& opVecet)
{
int popsize = Param::getLpop();
int i,varlen = Param::getinLen();// varlen - number of variables
gence g;
chromosome cr;
int crlen, mer, j;
{loat ¥, I, wi; .
iner = Param::maxCrlen() ;
poplclear(); -
fFit.clcar();
1Fit.clcar();
wFit.clear();
{or(i=0;i<popsizc;i+t)
0
cr.clear();
erlen = (rand(} % mce) + 1;
' for(j=03j<crlenyj++)
{
grandGene();
cr.push_back(g);
} .
cr.cvaluate{opVect, 1T, If, wi);
popl.push_back(cr);
{Fit.push_back({ff), IFit.push_back(1f); '
1 R
] - .
rankPopl();
}

void population::swap(int i, int j}
|
chromosomc tcmpCr;
float 1T, tif, twl;

tempCr = popl[i]; popi[i] = popl[jl; popi[j] = tcmpCr;
tF = fFitfi); fFiti] = (Fit[jl; 1Fit[j] = urf;
tF = IFit[i]: IFitfi] = IFitlj}; IFit]j] = U

wl=wFit[il; - wFit]i] = wFillj]; wlit{j} = twf;

1
t

" void population::rankPopl()

{ ,
int n = population::size();
intij;

in the Tunction

wFit.push_back({wf);

126

ay

Appendix A
Source Code of the Program

for(i=0;i<n-1;i++)

i

f ,
' for(j=i+1j<ngj++)
i) < Filj)) ,
population::swap(iy);
clse
HFi[i] == {Fit[j])
{
(IR < IFILGT)
population::swap(i,));
clse
H{IFit[i] == It}
i{wEit[i] < wFit[]
population::swap(i,j);
H
_ }
}
H
int population::insertWithRank(population& pp, ini& newBest)
int ijj, n = pp.size();
it rel=0;
int rlst = sive();
newl3est = 0;// new best chromosome NOT found
for{i=0;i<n;i++)
§ .
[§ .
if{(fSum(rlst-1) < pp.MSum(i})
t
for(j=0;j<rlst;j++)
{
if{(pp.IFitlil>{Fiti])
[IK(pp-1Fitfil==MFit[j}}&&(pp.IFit[i}>1Fit]j]))
[I{pp-fFii]==Fit[i])&&(pp.IFit]i]==1Fit[j])&&(pp.wEit[i|>wFit[j])))
{ .
popl.insert{popl.begin()+j,pp.popllil);
fFit.insent(j,pp.(Fit]i]);
IFitinsert(],pp.IFit[il);
wFit.inscrt(j,pp.wFit[i]);
popl.pop_back();
{Fit.pop_back(};
IFit.pop_back();
wFit.pop_back();
if(j==0)
newbBest = 13/ new best chrosome found!!!!
break;
H
}
ret++;
H
\ .
return ret;
)
void population::trank Worsi{int w = 2)
{ ; | S

int i;
for(i=0;i<w;i++)

127

Appendix A
: Source Code of the Program

popl.pop_back();
}

- void population::output()
{ .

int i,j,crsize,popsize = popl.size();

for(i=0;i<popsize;i++)

crsize = popl[i].size();

if((Fit.cmpty()) _
cfout<<endl<<ersize <<"\n";
clse)
clout<<endl<<ersize<<"\t***"<<(Fit| i << M Fififee

) . <<\v'l'_l-"it[i]<<"*.*]\n";
for(j=0yj<ersize;j++)
popl[il[jl.output();

¥
§

charVect chromosome::cvaluate(char2Dveet& opVeet, float& ffit, float& Ifit, Moat& wfit)
// calculates the fitness components of a chromosomc and returns mate
{

const int n = Param::inLen();

. {loal2Dveet funcFit;

char2Dvcct crOP;

charVcct malc;

int maxCrLn = Param::maxCrLen{);

int i;

int ni; /= mate.size(); this is also the number of output - m.

(]

L
getChromoQOutput(erOP);
funcFit = opVect.cvaluate(crOP);
MarriageMatching(funcFit,maic);
flit=00; '
ni = mate.size();
for(i=0;i<ni;i++)

(it += (funcFit[i][matefi}]==n)MuncFit{i]{matc}i]]+1: funcFit[i}{matc[i]];

float thresh_{fit = (Param::inLen{)+1) * Param::outl.cn(); .
charVect gF; ffweced-crop flags for the genes in chromosome
charVect wk; /hweed-crop flags for 1/O lines
int unused, cs;
¢s = unuscd = Param::constLines(};
if{({fit >= thresh_{Tit)
{

unWeed(mate, wk, gF);

for(i=n;i<cs;i++)

if(wF[i]=="¢")
unused--;

/ if the 17O linc contribuies 1o realize a function, it is used
} .
clse

unuscd = 0;
int erL.nl’ = chromosome::size();
1fit = 1 - (double(erL.nP)/maxCrLn);
wiit = double(unused)/cs;

128

S

-

Appendix A

—

rclurn matc;

int chromosome::getChromoQutput(char2Dveclé opveet)const

{

)

charVect ipcomb; // input combination like ABC01201
charVeel opcomb,i;
ipcomb.clcar();
int insizc = Param::inLen();
int constSize = Param::constLines();
inti;
for(i=0;i<insizc;i++)
ipcomb.push_back{0};
lor(i=0;i<constSizc;i++)
ipcomb.push_back(i % 3);
opvect.clear();
do{
opcomb = ipcomb;
t.clcar(); .
{ = gctOncOutpui(opcomb,insize);
opveet.push_back(t);
ipcomb.incComb(insize);
opcomb.clear();
twhile(!ipcomb.allare(Q,insize));
if(opvect.size() = (pow(3,insizc)))
clout<<™nDal mc kuch kaala hay...";
rcturn opvect.size();

Source Code of the Program

... for 3 var function

charVect chromosome::getOncOutput({charVect ipop, int insizc)const

{

}

int i,-crsize;

charVect opop;

opop = ipop;

ersize = size();

for(i=0;i<crsize;i++)
opop|chrm[i].Ced(}] =

rcturn opop;

charVect& charVect::incComb(int n)

I
\

}

cveet[n-11H4+; :
while({n>0)&&(cvect[n-1]>2))

{
ceveeln-1§-=3;
if{n>=2) .
cveet[n-2]++;
n--; g
H

return *this;

int charVecet::allare(char ¢, int n)

{

whilc(n=0)
(.

iflcvect[n-1] 1=¢)

" getShifi(opop[chrm[i}.Cing{)].opoplchrm[i].Ced(}],chrm[il. X(},cbrm[i]. Y (});

129

Appendix A

}

return 0;
n--;

}

return 1

population& popuIation::crossOvcrUnf()

{

H

float Pcross = Param::getle();
int i,cricn,m,n;

foat prob;

gene temp;

m = popl[0].size();

n = popl[1]-size();

crlen = (m<n)?m:n;
for{i=0;i<crlen;i++)

{

' prob = 1loat{rand() % 100)/100;
if{prob > Pcross) continuc;
temp = popl[0]il;
popl[0][i] = popi{ !]lil;
pop[11[i] = temp;

!

return *this;

int chromosome::mutation()

{

float Mprob = Param::getPm();
genc tcmp;

inti;

float prob;

int mt;

mt = rand() % 3;

prob = flpat(rand() % 100)/100;
il{(prob > Mprob) return 0;

int erSize = chrm.size();
if{crSize==0}

if{mt==12)
i=0;
clse
rcturn 0
clsé
i = rand() % (crSize);
switch(mt)

case U:/7delete the gene; all enjoy same probability
if{chrm.size()>1)
chrm.crasc(chrm.begin()+i);
break; '

case 1:/modify
temp.randGene();
chrm[i] = temp;
break;
casc 2:/finsecrt
if{chrm.size{)<(Param::maxCrLen{}})
{
temp.randGene();

Source Code of the Program

130

Appendie A

Source Cade of the Pm,qr&m

chrm.inscrt(chrm.begin{}+i,temp);

}

rcturn 1

}

floatVect charVect::evaluate(char2 Dveet& opv)const

{

floatVeet cc;

int i,,k,ct=0,a,fail;
tioat cval=0.0;

int w = opv[0].sizc();
int | = opv.size();

int n = Param::inLen();
for{i=0;i<w;i++) '

{
cval = 0.0;
for(k=0;k<n;k++)
{ .
cir=10;
for(j=0;j<l;j+=pow(3.k))
fail =0,
for(a=ja<jpow(3.k)sad-+)
{
iftopv[alli] = cvect[a]
{ .
fail = 1;
break;
; .
if(tlail) ctr++;
H
cval += ctr/pow{3.(n-k));
} -
. cc.push_back(cval);
H
relurn ec;

}

float2Dveet char2Dvect::evaluate(char2Dvect& 0pv)const
{
floai2Dvect ct;
floatVect cc;
_int i,n=cmat.sizc();
lor(i=0;i<n;i++)

v ™

t
ce = cmat]i].evaluate(opv);
el.push_back(ec);

}

return et; N

}

void charVect::outpul{olstream& outf, char ch)
{ .
int i,n=cvect.size(); -
for(i=0;i<n;i++)

if{!1(i%3)) outf<<"\t";
outf<<int(cvect[i])<<cnds;

131

Appendix 4 |
Source Code of the Program

H

outf<<ends<<ch;

}

void chaerct::outputChar(ofsircam& outf, char ch)

{

int i.n=cvect.size(});

lor{i=0;i<n;i++)

i

1
H(1(1%3)) oulf<<ends;
outf<<cveet(i];

t

§

outf<<ends<<ch,

}

void charVect::outputChar(char ch)
{
int i,n=cvect.size(),;
for(i=0;i<n;i++)
)
1
if(1(i%3)) cout<<ends;
cout<<cvectfi};

1
I

cout<<cnds<<ch;
1
i

void charVeet::input(ifstreamé inf, char ch)

{
char cb = ch+1;//make sure cb !=ch
cvect.clear();
inf>>ch;
while(cb 1= ch)
{
cvect.push_back{cb - '0");
inf>>cb:
| .
H
population population::sclectParentT_ury(int ‘T, const {loatVeet& crfit)
i .

population olTsp;
chromosome cr; -
int i.),id,maxID, previD;

previD = -1; /f to ensure that the parents arc difTerent.
for(i=0;i<2;i++) :
{

maxID = Param::getLpop();
for(j=0:j<T;j++)
{

id = rand()%Param::getLpop(});
if{id == prevID) continue;

iftid < maxID) ,)
{ .

maxID = id;
}

}

¢r = popl{maxID];
previD = maxID;
offsp.push_back{er),

132

Appendix A

;

void chromosome::utput() A

{

3
I

f
retun ofTsp;

Source Code bf the Program

int i,;n = chrm.size();
for(i=0;i<n;i++)

chrm[i].output(};

void chromosome::output({ofstream& outf)

]
1

]
f

int i,n = chrm.size();
for(i=0;i<n;i4-t)

chrm|i].output{outl);

void chromosome::unWeed(const charVect& mate, charVect& wFlag, charVect& gllag)

{

N
i
lelse -
I
i
X endif

/"****l.*-*‘*-*-AlgOrilhm Endtiiﬁiﬁ*l**itt**Sllilf

int n = Param::inLen();

int w= n + Param::constLines(};
int m = ma‘e.size();

int s = size();

inti;

wFlag.clear();

for(i=0;i<w;i++)

wllag.push_back{'w'};

gFlag.clear(});
for(i=0;i<s;i++)

gFlag.push_back("w');

lor(i=0;i<m;i++)

wFlag{mate[i]] = 'c;

/*il*l*1-*1**iii**A‘gorithm‘*1***#*********#‘il’f
/f w - for weed, ¢ - for crop '
/Hor all i [=n,n-1,...,1]

/14 Gene[i].controlled is a crop then

‘Genelil is a crop

Geng|i}.controlling is a crop

Gene[i] is weed
Gengcli].controlling as it was

for(i=s-1;i>=0;i--}

;
ilfwFlagl{chrm[i].Ced()]=="¢")
{

gFlagli}='c’;
wFlag[chrm{i].Cing()] ='c";

gFlag[i] ='w";
1
[

f
for(i=0;i<s;i++)
J
]
int cicing = chrm[i].Cing();)
~int ki, f1; -

133

Appendix A

}

Source Code of the Program

iftcicing >= n)
{
fl=1;
for(ki=0;ki<i;ki++)
if((gFlag[ki]=='c')&&(chrm[ki].Ced()==cicing))
{ .
fl=40;
break;

H

1

i

if{!M) continue;

int-constLineValue = {cicing - n) % 3;

‘ iflchrm[i].X() = constLincValuc)
gllagji] ='W,
1
i

for(i=s-1;i>=0;i--)

ifigFlaglil="w") :
chrm.erase(chrm.begin()+i);

char getShifl{char A, char B, int x, inty)

¥
§

if{int(A) 1= x)

rcturn B;

return (((((+/3)+1) * B) + (y % 3)) % 3);

charVeet Evaluate(population& popu, const char2Dvect opVect, floatVeet& crlit)
// calculates the fitness of each chromosome and returns the mate

{

const int n = Param::inLen();
float2Dvect funcFit;
char2Dvect crOP;

charVect mate;

“int p, maxCrLn = Param::maxCrlen()

const int np = popu.size();

int i;

int niz// = mate.size(); this is also the number of output - m.
float {Tit, IMit, whttotFit;

crfit.clear();

for(p=0;p<np;p++)// generate the fitness tablc and find mates

{

popu[p].getChromoOutput{crOP);
funcFit = opVect.evaluate(crOP);
MarriageMatching(funcFit,mate);
charVect gF; /iweed-crop flags for the genes in chromosome
charVect wF; /fweed-crop flags for 1/0 lines -
popu[pl.unWeed(matc, wl, gF);
ffit = 0.0;
ni = mate.size();
for(i=0;i<ni;i++)
{
ffit +=
(TuncFitfi]fmatc[i]]==n)?funcFit[i][mate[i]]+] :funcFit[i][mate[i]];

¥ ,
int crLnP = popul[p].size();
134

Appendix 4 -

it =1 - (double{crLnP)/maxCrln);

int unused, cs;

cs = unused = Param::constLines(};

for(i=n;i<cs;i++)

if{wF[i]=="c")
unused--;

Source Code of the Program

/1 if the 1/O line contribules o realize a function, it is used

wiit = double{unuscd)/cs;
OtFit = [Tit + 0.7*10L + 0.3*wiit;
crFit.push_back(totFit);

1
1

return mate;

}

loat max{NoatVect&k fv)

f
Ll

int i,mi=0,n = fv.size();
float m =1v[0];
for(i=L;i<n;i++)
f
L

if(fv[i]>m)

m = fv[il;
mi = i;
¥
§
i
return m;

!
!

int maxID(floatVect& [v)

1 .
t

int i,mi=0,n = [v.size();
float m = fv[0];
for(i=1;i<n;i++)

1
1
if(fvlil>m)
i
m = fv[i];
mi = i
}
1
I
“return mi;

]
L]

float min(MoalVectl& v}

{ .
int i,mi=0,n = v.size();
float m = (v[0];
for(i=1:1<n;i++)

if{fv[i}<m)
m = Iv[i];
mi=1i
;
H
return m;

‘1
I

int minlD({loatVect& [v)

135

Appendix A

vy

int i,mi=0,n = [v.size();
oat m = {v[0];
- for(i=1:i<n;i++)

1]
t

if(fv[i]<m)
]
m = Iv[i};
mi =i;
'
}
return mi;

}

int isIn(const charVeel& cv, char val, int notPos)
{

int i,n=cv.size();

for(i=0;i<n;i++)

{
if(i == notPos) continue;
if(cv[i] == val)
return i;
}
return -1;

1
¥

int MarriageMatching(Noat2Dvect whpg, charVect& mate)

I
1

int i,jin; :

n = whpg.size();

mate.clear();

for(i=0;i<n;i++)
mate.push_back("?");

for(i=0;i<n;i++)

A

t
if(mate[i]!="?") continue;
mate|i] = max1D{wbpg[il}
j = isIn{mate,matefilik
i t=-1
{

if(wbpgli)fmateli]] > whpg[j)[mate[j}})

wbpgljl[mate[j]] = 0.0:.
mate[i] ="7"

i=-1;

clse
{
wbpgfi][mate[i]] = 0.0;
mateli] =7
i=-1;
¥
5
1
1
'
return 0;

}

char* nextPreamble(ifstreamé& inf, char* pr)

{

Source Code of the Program

136

Appendix A
Source Code of the Program

char tpr{100];
dof
inf>> tpr[O],
twhile(tpr[0] '="");
inf>>tpr; . §
il{tpr{O]==
strepy(pr.” "k
clse
strepy(protpr),
return pr;
H

int process(char2Dvect& opVect, chromosome& maxCr,
float& maxFit, char* functionName)

{

ofstream resOut;

_ofstream fout;
population pop,parent_N_ofTsp;
Noat2Dvect funcFit;
floatVect popFit,oflFit;
int §;
int withInit=1;
‘int notimproved,ctr=0,rep = 0;
int mID;
int wiCtr;
int replaced;
int newBestlFound;
int solutionFound = (;
int maxCtr = Param::getNCmax();
{loat fitnessThreshold = Param::outlen{)*(Param:zinLen(}+1};
ofstream tmpres;
char convFName[50];
char paraTemp[10];
strepy(convFName, functionName);
_ifoa(int(Param::getPc()* 1000),paraTemp,10);
streat(convi’Name,”_");
ercal(convFNamc,para [cmp)
_itoa(int(ParamzgetPm()* 1000),paraTemp,10);
strcal{convlFName,"_");
strcat(conv'Name, paraTemp);
_itoa(int(Param::getLpop()), paraTcmp,lO)
strcat(convFName," "); -
strcat(convFName,paraTemp);
streat{convFName,”.conv");
if{resume)
{ // resume process;
cout<<"\nl’robr.1m Resuming,..”
if=tream resumclile("progstat.sav”);
resumeFilc>>solutionFound>>notimproved=>ctr>>rep>>mli
" >>wlCtr>>replaced>>maxFit;
Param::read{resumeFile);
poplit.read(resumelile);
offFit.read(resumelile);
funcFit.read(resumeFile);
parent_N_offsp.read(resumeFile);
pop.read{resumeFile);
maxCr.read(resumeFile);
opVect.read{resumeFile);
resumeFile.close();

137

Appendix A

Source Code of the 'rogram

resume = 0;

withlnit=0;

cout<<"\nProgram Resumed...";
}
while(1)
if{withlnit)

{

tmpres.open{conviName);
tmpres<<functionName;
tmpres<<"\nParam: ";
Param: outputGP(tmpres), :
tmpres<<"\n\nGen\{F :t\tll"lt\twﬂt‘\tf’Sum\n—-\l—--\t---‘\t---\t-—-‘\n"
tmpres.close(); ;
cfout<<endi<<"initializing g "
ilirep)
srand{ (unsigned)(rand()}));
maxFit=10.0;
notimproved = 0;
wiCtr=ctr=10;
GCH;
maxCr.clear(};
pop-init{opVect);
max[Fit = pop.FFit(0);
}
]
parent N_offsp = pop.selectParentT ary(Param :getLpop{)/2,popFit);
switch(Param::Te())
{
case 'u"
case 'U":
parent_N_offsp.crossOverUnl();
break;
case 'o":
case "0
parent N_ofTsp. crossOverIpt()
break;
\
§
parent_N oﬁsp[O] mulation(});
parcnt_N_oflsp| I].mutation();
parent_N_olTsp. repairGene():;
takeCarecODuplicate(pop,parent_N oﬁsp),
replaced =0y
if(parent_N_ofTsp.size() > 0)
{
. parent_N_offsp.cvaluate(opVect);
replaced = pop. msuthhRdnk(parcnl N_offsp, newBestFound);
t
3
miD =
i{etr%20000==0)
{// save state
ofstream resumeFile("progstat.sav");
resumcFlle<<solutlonFound<<endI<<nollnprovcd<<endl<<ctr<<cndl<<rcp ,
<<end|<<mlD<<cndl<<w[Ctr<<cnd1<<replaccd<<cndl<<maxF1t<<cndl;
Param::write(resumeFile); resumelFile<<endl;
popFit.write(resumeFile); resumcFile<<endl;
offFit.write(resumeFile); resumcFile<<endl;
funcFit.write{resumeFile); resumelFile<<endl;
parent N_offsp.write(resumeFile); resumcFile<<endl;
pop.write(resumeFile); re%umerile<<cndl;
maxCr.write(resumeFile); resumeFile<<cndl;

138

Appendix A
Source Code of the Program

ochct.writc(rcsumeFich; resumelile<<end!;
resumcFile.close();

Ve
i

if(newBestFound)
{ "
(] .
maxFit = pop.FFit((};
maxCr = pop[0];
wiCltr = ctrt+1;
ift(!solutionFound) && (maxFil >= [itness’ Threshold))
/f the Tirst time a solution is found
{ .
solutionFound = 1;
char resTName{50];
char paraTemp[10];
strepy(resFFName, functionName);

_itoa(int(Param::getPc()* 1000), paraTemp,l{])
streat(resFName,"_");
streat{resFName,paraTemp);

_itoa(int(Param: spetPm()* 1000),paraTemp, 103
strcat(resFName,”_"); ’
strcat(resFName,paraTemp};
_itoa(int(Paramz:getLpop()),paraTemp, 10);
streat(resFName," ")
streat(resFName,paraTcmp);
streat{resT"Name,".rsIt"),
resQut.open{resFName, ios::app);
float d1,d2,d3;
charVect pmate, dg, dw;
pmate = maxCr.cvaluate(opVect, d1,d2,d3),
maxCr.unWeed(pmate,dw,dg);
resOut<<"\n/** The First Found Solution...**/";
resQut<<"n.size "<<maxCr.size(y<<endl;
resQut<<"\n.solution ";
maxCr.output{resOut);
resQut<<"nMate : "; pmate.output{resQut,0),
resOut<<"\nwFlag["<<dw. count('e’y<<"/M<<dw.size()<<"]: ";
dw.outputChar{resOut,0);
resOut<<"ngFlag] "<<dg.counl{'c'y<<"/"<<dg size(}<<"|: "
dg.outpuChar(resOul,D);
resOut<<"\n.generation "<<wi{Ctr;

resOut<<"\n An/** And The Final Solution **An";
resOut.close();
H
!
if(treplaced)
notlmproved+t;
clse
notimproved = 0,
ctr++;

”***#***i#i*itl*ii#*i*#*l*i*l*i*###**i*i*i*i*l*

! Logic for controlling this Loop
/¢l -> (rep<R)

{f ¢2 -> (ctr < maxCtr}

/f ¢3 => (notlmproved >= 5) :

// e4 > (maxFit < fitnessThershold)

i c2 c3 cd [e1=0 lel=1 |

/

i 0 0 0 | D 1 D |D: Done
/" 0 0 1 | F | 1 |F: Fail

139

Appendix A

Source Code of the Program

i 0 1 0 | D | D i1: With Init
i 0 1 ! | F | 1 (2: With OUT Init
I 1 0 0 1 D | 2 |

1 1 0 i -| F | 2 |

/" 1 ! 0 | D I D |

i [1 1 F | . N

,{’t***t#lt#*itit*l#!*ttt*#*!**t*tt!*i#t*tt*!*it*t

in.cl,c2,c3, cd;
S = (ftoatf maxFit)* Param::Gen()* Param: mLen())Iﬁtncsq'I hreqhold
cl = (rep < Param::Rep()/* R*/);
= (ctr < Param::getNCmax()/*maxCtr*/);
c3 = (notImproved >= 8);
¢4 = (maxFit < fitnessThreshold);
Jfconditions [or Dong ¢3~cd-r~c¢ | ~cd+~c2~cd
(3 && He)l(le) && ted)l|(le2 && 1cd))
{ ‘
maxCr = pep[01;
return wiCtr;
1
§
/fconditions for Fail ~clcd
if(le] && cd)
{

]
]

rcturn 0;

/iconditions for 1 cl¢3cd+ci~c2cd

iM(c] && ¢3 && cA)jj(c! && 1e2 && c4))

!
1

withlnit = 1; .
continue; '

H

/fconditions.for 2 ¢1¢2~c3

iflcl && c2 && 'c3)

{ .

_withlnit = 0;

continue;’

i

// ¢lse ... it none of above ... not possihle

cout<<"\n\tc| c2c3cd \n\l"<<cl<<Lnds<<c2<<endq<<c3<<cnds<<c4

cout<<™nimpossible combination FAILEDI!";

break;

=
!

int takcCarecOfDuplicatc(const popilation& pop, population& oflsp)
{

int i,j,p = Param::getl.pop();

int rem = 0,

for(i=0;1<2;i++)

i

for(j=03<pif+-+)

if(offspli].size() == pop[i].sizc()) _'
if(offspfi]==poplil}

{ .
offsp.erasc(i);
rem++; ’
break;

H

—

140

t
]

int chk_N_replace(population& pop,

i

' Appendix A

]
1

return rem;

floatVect& poplit;

Source Code of the Program

population& olTsp, floatVect& ofiTit)

int miD;
iftofTsp.size() == 0} veturn 0;
if{olMsp.size() == 1)

]
[

mlD = min1D{pogFit);
if{offFit[0] > popFit{mID])

{
pop|mID] = oflspl0];
popFitml1D] = of fFit]0];
}
return 1;

I

h

if(ofiFi 0] > offFit[1])

{
float tF;
chromosome tc;
tF= of (Fit[0];
olfFit| 0] = of TFit[1]; .

CoffFif 1] =t

te = olTsp]0];
offsp[01 = ofTsp[1];
offsp{1] = tc;

}

miD = miniD{popFit};
if(offFit[1] < popFit[mID]) return 0;

if(of fFit[0] > popFit[mID])

{
A

pop{mID] = offsp{0];
popFit[mID] = of T[0T
] : .
milD> = minlD{popFit),
iftofiFitf 1] > popFit[mID])
¢ —
poplm1D] = offsp[1];
popFit[miD] = oftFit[1];
)
]
reiurn I

- 14

Appendix A

Source Code of the Program

int main()

{

cout<<"\nResume?[1/0].."; cin>>resume;
ifstream {in;

ofstream fout;

char preamble{201;

char namel]207;

charVect icv;
char2Dvect opVect;
chromosome resull;
fin.open("param.in"};
Param::inputGP{fin);
fin.close(); -
fin.open(“inpuL.in”);
do{
nextPreamble(fin,preamble);
}while(stfcmp(preamble,"begin"‘));
while(1}
{
nextPreamble(fin,preamblc);
ifi'stremp(preamble,”end")) break;
if(*stremp{preamble,” function™)) fin>>namef;
itUstremp{ preamble,”param™))
i
]
Param::inputFP{[in);
opVect.clear();
for{int i=0:i<Param::outLen();i++)
!
nextPreamble({in,preamble);
;f(strcmp(prcamblg,"veclor" »-

" {cfout<<"\nERROR reading input. in - unknown file format";

return 15}
tev.input(fin);
opVect.push_baek(tev);

1
H

int resl” = 0;

ittresume)

i

ifsiream rcsT("progstat sav");
resT>>resl;

resT.close();

v .

y

char reslFilcName[50];

char paraTemp[10];
strepy(resTileName,namef);

_itoa(int{Param;: :petPc()* 1000}, paraTemp,lO), E

streat{resFileName,”_");
* streat(resFileName,paraTemp);

_itoa(int(Param::getPm()* 1 (00}, paraTcmp, 10);

strcat(rcsl"llcN'ime," "Y;
slrcat(resF|IeName,paraTemp),
_itoa(int(Param: :getLpop()).paraTemp,10);
streat{resFileName,"_");
strcat{resFileName,paraTemp),
streat(resFileName,” .rslt");
if{!reslF)
{
fout.open{resl’ileName);
fout<<".begin\n";

142

Aggend‘ix A :
Source Code of the Program

fout.close();

}

float fitness;
srand{1);
‘int n = process{opVect, result, fitness, namef);
fout.open(resFileName, ios:app);
fout<<"\n "
fout<<"\n.lunction "<<namef;
Tout<<"n.remitinputitoutput”;

fout<<"\n.param\t"<<Param: mLcn()<<"\1"<<Param :outLen()<<endl;
opVect outputVect(fout);

if{n)
] .
i
{Toat d!,d2.d3;
charVect mate, dg, dw; ' .
mate = result.cvaluate{fopVect,d1,d2,d3);
result.unWeed(mate,dw,dg);
fout<<"n.size "<<result.size()<<endl;
fout<<"wn.solution ";
result.output{fout);
fout<<nMate : "; mate.output{fout,0); :
fout<<"\nwFlag[" <<dw. count('cy<<"/"<<dw.size(y<<": "5 -
dw.outputChar(fout,0);
fout<<"\ngllag["<<dg.count(’'c)<<"/"<<dg q17c;()<<“] "
dg.outputChar({ fout,0);
fout<<™n,generation "<<n;
fout<<"wn.fitness "<<fitncss<<endl;
fout<<"Param: ";
FParam::outputGP(fout);

¥
f

clse
fout<<"\n\t\lFailed {11";

fout<<™n "
fout<<"\n.end";
fout.close();

143

Appendix B

Description of the Benchmark functions

prods: input xg X...

x,.,; output y =(x,%,...x,,)mod3. [Output is the GF3

product of r input variables.]

sum#: input x, X..x,_; outpui)H(qu—twc2 +ot X,)m0d3 [Output is the GF3
sum of n input variablcs.]

neyr: input X, x,..x,_,; output y = |:i+[nxm ”mod”ﬂ mod3. [A ternary GFSOP

=0 =0
function of n input variables, where the products consist of r input
" variables in cyclic order. Example: For 3¢y2, y(a,b,c)=ab+bc+ca]
sqsums: input X, X;..x, ; oulput y:(xﬁ +x.l2 +..+x2,)mod3. [Output is the
| GF3 r;um of squares of n input variables]
avgn: input x; x,..x, ; output y—mt[(xo + X ot X, ,)/n]mod3 {Output is the

integer _part o'f the average of n input variables expressed as mod 3 \falue.]

aZbee: input a, b, ¢ ; oulput y = (a® +bc+c)mod3. [An arbitrary function]

thadd: input a b; output c¢-= int[(a +b)/3] ,s=(a+b)mod3. [Ternary half-
adder]

tfadd: input @ b ¢; output y = int[(a +b +c)/3], s=(a-+b+cymod3. [Ternary
full-adder]

mul2: inf)ut a by output ¢ = int[ab /3], m=ab rﬁod 3. [2-trit ternary multiplier]

mul3: input a b c; output c= int[abc/3], m =abcmod3. [3-trit- ternary
multiplier]

‘mami4: input a b ¢ d; outpu{ y= méx(a,b) , 2= miﬁ(c,d). [The output y is the
maximum of the inputs a and &; the output z is the minimum of the inputs
¢ and d.] 7

Bibliography

[I] A. Al-Rabadi and M. Perkowski, “Multiple-Valued Galois Field S/D Trees
for GFSOP Minimization and their Complexity”, Proc. 31st IEEE Int.
“Symp. on Multiple-Valued Logic, Warsaw, Poland, May 22-24, 2001,

pp. 159-166.

2] A. Al-Rabadi, “Gynthesis and Canonical Representations of Equally Input-
Output Binary and Multiple-Valued Galois Quantum Logic: Decision
Trces, Decision Diagrams, Quantum Butterflics, Quantum .
Chrestcnson Gate, Multiple-Valued Bcll-Einstein-PQdolsky-Roscn
Basis States”, Technical Report 42001/008, ECE Dept., PSU, August
2001,

[3] A. Al-Rabadi, L. W. Casperson, M. Perkowski and X. Song, “Multiple-
valued Quantum Logic”, Booklet of 11th Workshop on Post-Binary
Ultra-Large-Scale Integration Systems (ULSI), Boston,
Massachusetts, May 15, 2002, pp. 35-45.) :

[4]1 A. Al-Rabadi, «“Novel Mcthods for Reversible Logic Syntﬁcsis and Their
Application to Quantum Computing”, Ph. D. Thess, PSU, Portland,
Oregon, USA, October 24, 2002.

[5] A. Ashikhmin, and E. Knill, “Non-binary quantum stabilizer codes”,
hl‘tp:f/citcsccr,nl.Lcc.c:{_nn./ashikhminOOnonbinary.hlm] :

{6] A.De Vos, B. Raa, and L. Storme, “Generating the group of reversible logic
gates”, Journal of Physics A: Mathematical and General, Vol. 35,
2002, pp. 7063-7078.

(711 A Muthukrishnan, and C. R. Stroud Jr., “Multivalued Logic Gates for
Quantum Computation”, Physical review A, vol. 62, No. 5, 05309/1-8,
2000. :

(8] A Turing, “On computablc numbers with an application to the
Entscheidungs-problem,” Proc. Lond. Math. Soc. Ser. 2, 42 (1936).

91 A.V. Burlakov, M. V. Chekhova, 0.V. Karabutova, D.N. Klyshko, and S.
P. Kulik, “Polarization state of a biphoton: quantum ternary”, Physical
Review A, Vol. 60, R4209, 1999.

[t0] C. Bcnnett, “Logical Reversibility of Computation”, 1BM Journal of
Research and Development, vol. 17, pp. 525-532, 1973.

[t C. Darwin, “The Origin of Specics”, Dent Gordon, London, 1973.

[12]

3]

[14]
{15]

[16]

[17]
(18]

[19]

120]

[21]

[22]

{231
[24]

[25]

[56]

Biblingraphy

C. P. Williams, -and S. H. Clearwater, “Exploration in Quantum
Computing”, New York: Springer-Verlag, 1998.

D. Aharonov, and M. Ben-Or, “Polynomial Simulations of Decohered
Quantum Computers”, (Online preprint quant-ph/9611029), 37th
Annual Symp. on Foundations of Computer Science, Burlington,
Vermont, October 1996, pp. 4655. '

D. B. Fogel, “Evolving Artificial Intelligence”, Ph.D. Thesis, University of
California, San Dicgo, CA, 1992 .

D. B. Fogel, “Evolutio'nary Computation: Toward a New Philosophy of
Machine Intelligence”, IEEE Press, Piscataway, NJ, 1995.

D. Deutsch, “Quantum theory, the Church-Turing principle and the
universal quantum computer”, In Proceedings of the Royal Socicty of
London, Vol A400 (1985) 97-117.

D. Dcutsch, “Quantum Computational Networks™, Proc. Ro. Soc. Lond. A
425, pp. 73-90, 1989.

D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine
Leaming”, Addison Wesley, 1989.

D. Gottesman, “Fault-tolerant quantum computation with higher-
~ dimensional systems”, Chaos, Solitons, Fractals, Vol. 10, No. 10,
1999, pp. 1749-1758. -

D. M. Miller, and R. Drechsler, “On the Construction of Multi-Valued
Decision Diagrams”, Proc. 32nd IEEE Int. Symp. on Multiple-Valued
Logic, Boston, Massachusetts, 2002, pp. 245-253. '

E. Dubrova, and J.C. Muzio, “Generalized Reed-Muller canonical form ofa

multiple-valued algebra™, Multiple-Vatued Logic - An International
Journal, 1996, pp. 65-84.

E. M. Rains, “Nonbinary Quantum Codes”, IEEE Trans. on Information
Theory, Vol. 45, 1999, pp. 1827 -1832. '

Gordon E. Moore, “Cramming more components onto integrated circuits”,
Electronics, Volume 38, Numbcer 8, April 19, 1965.

H. F. Chau, “Correcting quantum errors-in higher spin systems”, Physical
Review A, Vol. 55, R839-R841, 1997.

H.-P. Schwefel, “Numerical Optimization of Computer Models”, Wiley,
Chichester, 1981,

J. Birnbaum, “Computing Alternatives”, Talk given at ACM97, March 3,
1997, San Jose, California,

146

Bibliography

[27] J. H l-lolland,"‘Adaptation in Natural and Artificial Systems”, MIT Press,
Cambridge, MA, 1992 :

[28]). L. Brylinski and R. Brylinski, “Universal Quantum Gates”, (Mathematics
of Quantum Computation, CRC Press, 2002) LANL e-print quant-
ph/010862. ‘ -

[29] K-H. Han, and J-H. Kim, “Quantum Inspired Evolutionary Algorithm for a
Class, of Combinatorial Optimization”, IEEE trans. Evolutionary
Computation, 6(6), pp. 580 - 593, 2002.

[30] 1. Rechenberg, “Evolutionsstrategie: Optimicrung Technischer Systeme
nach Prinzipicn der Biologischen Evolution”, Frommann-Holzboog,
Stuttgart, 1973. :

[31] L. J. Fogel, A. J. Owens, and M. J. Walsh, “Artificial Intelligence through
Simulated Evolution”, Wiley, New York, 1966.

[32] L. Macchiarulo, and P. Civera, “Ternary Decision Diagrams with Inverted
Edgaes and Cofactors — an Application to Discrete Neural Networks
Synthesis”, Proc. 28th IEEE Int. Symp. on Multiple-Valued Logic,
1998, pp. 58-63.

[33] L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, “Finding a better-
than-classical Quantum AND/OR Algorithm Using Genetic
Programming”, Proc. of 1999 Congress on Evolutionary Computation,
~vol. 3, Washington DC. IEEE, Piscataway, NJ, pp. 2239-2246, 6 — 9

July 1999,

. [34] M. H. A. Khan, M. A. Perkowski, and P. Kerntopf, “Multi-Output Galois
Field Sum of Products Synthesis with New Quantum Cascades”, Proc.
33¢ |EEE International Symposium on Multiple-Valued Logic.
Tokyo, May 16-19, pp. 146-153, 2003

[35] M. H. A, Khan, M. A. Perkowski, and M. R. Khan, “Ternary Galois Field
Expansions for Reversible Logic and Kronecker Decision Diagrams
for Ternary GFSOP Minimization”, in Proceedings of the 34" [EEE
International Symposium on Multiple-Valued Logic (ISMVL 2004),
Toronto, Canada, 19-22 May 2004.

[36] M. H. A. Khan, and M. A. Perkowski, “Genetic Algorithm Based Synthesis
of Multi-Output Ternary Functions Using Quantum Cascades of
Generalized Temnary Gates”, in Proc. of 2004 IEEE Congress on
Evolutionary Computation (CEC 2004), Portland, Oregon, USA, 19-
23 June 2004.

[37] M. H. A. Khan, M. A. Perkowski, M. R. Khan, and P. Kerntopf, “Ternary
GFSOP Minimization using Kronecker Decision Diagrams and Their
S'ynlhesis with Quantum Cascades”, Journal of Multiple-Valued Logic
and Soft Computing: Special issue to recognize T. Higuchi’s
contribution to Multiple-Valued VLSI Computing, 2003.

147

Bibliography

[38] M.H. A, Khan, “Quantum Realization of Ternarerof_foli Gate”, in Proc. of
the 3rd International Conference on Electrical - and Computcr
Engineering ICECE 2004, 28-20 December 2004, Dhaka, Bangladesh.

[39] M. Hirvensaio, “Quantum Computing”, Springer Verlag, 2001

[40] M. Lukac, M. A. Perkowski, H. Goi, M. Pivtoraiko, C. H. Yu, K, Chung, H.
Jee, B-G. Kim, and Y-D. Kim, “Eyolutionary Approach to Quantum
and Reversible Circuits Synthesis”, Artificial Intelligence Review,
Kluwer Academic Publishers, 20, pp. 361 ~ 417, 2003.

[41] M. A. Neilsen, and 1. L. Chuang, “Quantum Computation and Quantum
Information”, Cambridge University Press, 2000.

[42] M. A. Perkowski, A. Al-Rabadi, P. Kerntopf, A. Mishchenko, and M.
Chrzanowska-Jeske, “Three-Dimensional Realization of Multivalued
Functions Using Reversible Logic”, Booklet of 10th Int. Workshop on
Post-Binary Ultra-Large-Scale Integration Systems (ULSI), Warsaw,
Poland, May 2001, pp. 47- 53.

[43] M. A. Perkowski, A. Al-Rabadi, and P. Kerntopf, “Muitiple-Valued
Quantum Logic Synthesis”, Proc. of 2002 International Symposium on
New Paradigm VLSI Computing, Sendai,” Japan, December 12-14,
2002, pp. 41-47.
~ [44] N. Dcnler, B. Yen, M. A. Perkowski, and P. Kerntopf, “Synthesis of
- . Reversible Circuits from a Sub-set of Muthukrishnan-Stroud Quantum
Multi-Valued Gates”, in Proc. IWLS 2004, Tamecula, California, 2-4
June 2004, '

[45] P. Kemtopf, «“Maximally efficient binary and multi-valued reversible gatcs”,
Booklct - of 10th Intl Workshop on Post-Binary Ultra-Large-Scale
Integration Systems (ULSI), Warsaw, Poland, May 2001, pp. 55-58

[46] P. Mazumder, and E. M. Rudnick, “Genetic Algorithms for VLSI Design,
g © Layout & Test Automation”, Pearson Education Asia, 2002.

[47] P. Picton, “A Universal Architecture for Multiple-Valued Reversible
Logic”, Multiple-Valued Logi¢ - An International Journal, Vol. 5,
2000, pp. 27-37. : '

[48] Peter. W. Shor, “Algorithms for Quantum Computation: Discrete Log and
Factoring”, In Procecdings of the 35th Annual symposium on the
Foundations of Computer Science (http://xxx.lanl.gov/abs/quant-
ph/9508027).

[49] R. Landauer, “Irreversibility and Heat Generation in the Computing

Process”, IBM Journal of Research and Development, vol. 5, No. 3,
pp. 183-191, 1961.

148

http://xxx.lanl.gov/abs/quant-

Bibliography

(50} R.P.Fcynman, “Simulating Physics with Cdmputers”,'lnternationzil Journal
of Theoretical Physics, Vol 21, Nos 6/7, 1982.

[51] R.P.Feynman, “Quantum mechanical computers,” Found. Phys., 16 (1986),
507. '

[52] T. B ack, H-P Schwefel, "An overview of evolutionary, algorithms for |
- parameter optimization”, Evolutionary Computation 1(1) pp 1-23,
(1993). '

[53] T. B ack, “Eyolutionary Algorithms in Theory and Practice”, Oxford
University Press, Oxford, 1996. _ '

[54] T. Toffoli, “Reversible Computing,” Tech. Memo MIT/LCS/TM-151, MIT
Lab. for Com. Sci. (1980). »

- [55] T. Yabuki, and H. lba;-“Genetic Algorithms and Quantum Circuit design,
Evolving a Simpler Teleportation Circuit”, In Late Breaking Papers at

the 2000 Genetic and Evolutionary Computation Conference, pp. 421
— 425, 2000,

'(56] Y. Z. Ge, L. T. Watson, and . G. Collins, “Genetic Algorithms for
Optimization on a Quantum Computer”, In Unconventional Models of
Computation, London: Springer Verlag, pp. 218 - 227, 1998.

(571 Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution
Programs (3" edn.)”, Springer, 1996. :

[58] Michael Gibbs' Home Page, [contains a good description of fundamental
issucs of Galois Fields] http://members.aol.com/] misgibbs/galois.htm

[59] Wcbsite of Centre for Quantum Computation (CCC), http://www.qubit.org/

[60] K. Mattie, H. Weinfurter, P.G. Kwiat, and A. Zeilinger, “Dense Coding in
Experimental Quantum Communication™, Physical Review Letiers,
Vol. 76, 1996, pp. 4656-4659. '

149

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154
	00000155
	00000156
	00000157
	00000158
	00000159
	00000160

