
EVOLUTIONARY ALGORITHM BASED SYNTHESIS OF
,

MULTI-OUTPUT TERNARY FUNCTIONS USING

.QUANTUM CASCADES

Md. Mujibur Rahman Khan

A Thesis Submitted to the Depart;~~nt of Computer Science and Engineering in the
Partial Fulfilhnent'ofthe Requirements for the

.. .Degree of
.Master of Science in Engineering
(Computer Science'and Engineering) ,

11111111111111 111111111111111" III
#100891#

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA, BANGLADESH

JUNE 2005"

The thesis "Evolutionary Algorithm Based Synthesis of Multi-Output

Ternary Functions Using Quantum Cascades", submitted by Md. Mujibur

Rahmail Khan, Roll No. 0403050 II P, Registration No. 0403224, Session April

2003, to the Department of Computer Science and Engineering, Bangladesh

University of Engineering and Technology, has been accepted as satisfactory for

the partial fulfillment of the requirements for the degree of Master of Science and

Engineering (Computer Science and Engineering) and approved as to its style and

contents. Examination held on June 29, 2005.

Board of Examiners

1.

2.

3.

4.

5.

Dr. Md. Mustofa Akbar
Assistant Professor
Departmentof CSE
BUET,Dhaka-WOO

~~/b/~Dr.M~/ I
Professorand H~d
Departmentof CSE
BUET,Dhaka-WOO

~
Dr. Md. Abul Kashem Mia
Professor
Departmentof CSE
BUET,Dhaka-WOO

f'tY\ . C'rh- . I~\il...'>l--
Dr. Md. Monirullslam
Associate Professor
DepartmentofCSE
BUET,Dhaka-WOO

Dr. A.B. M.HarunUr-Rashid
Associate Professor
Departmentof EEE
BUET,Dhaka-J000

Chairman
(Supervisor)

Member
(Ex-officio)

Member

Member

Member
(External)

II

o

Declaration

I, hereby, declare that the work presented in this thesis is the outcome of the

inves'.igation performed by me under the supervision of Dr. Md. Mostofa Akbar,

Assistant Professor, Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka. I also declare that

no part of this thesis and thereof has been or is being submitted elsewhere for the

award of any degree or Diploma.

~

(Dr. Md. Mostofa Akbar)

Supervisor

(Md. Mujibur Rahman Khan)

III

Acknowledgement

Here I would like to take the opportunity to express my greatest gratitude to the

patrons of this thesis work, without whom I could never have completed this

arduous task.

For me, it has been a big journey from the start to end. Needless to say, that the

only thing that kept me going was the support of a number of people. First and

foremost, my thesis supervisor, Dr. Md. Mostofa Akbar, Assistant Professor,

Department of Computer Science and Engineer;ng, Bangladesh University of

Engineering and Technology, "Without your unstinting support, faith in my work,

there isjust no way that I could have completed my thesis. You have been always

there whenever I needed your help in any form. I guess no words can adequately

describe what you have done for me and for my work as an advisor, and

companion. I thank you for everything."

I would also like to express my heartiest gratitude to Dr. Mozammcl H. A. Khan,

Professor and Dean, Faculty of Engineering, East West University, Dhaka for his

fruitf'JI suggesti,)ns whenever I needed. Without him, the field of Quantum

Computation aI'd Reversible Logic would remain unknown to me. He has been

guiding me in doing research for more than seven years. Without his affectionate

mentoring, it would not be possible for me to complete this thesis.

I would also like to thank Dr. Md. Monirnl Islam, Associate Professor,

Department of CSE, BUET, whom I visited time and again for both academic and

administrative help, guidance, and advice. His. constant caring supports and

patience encouraged me throughout my studentship in BUET.

I must thank Dr. Md. Shamsul Alam, Professor and Head, Department of CSE

BUET.

I would like to thank all the faculty members 0' this department as they have

helped me directly orindirectly in various ways to complete this thesis.

I would like to thank all my course mates in SUET. Especially Rafiq, Abid,

Bipul, Monower, and others, who took part in the group with me to discuss the

lessons while completing the course works.

I would also like to thank all the staffs of Department of eSE, SUET. Especially

Mr. Sycd Ehsan, Senior Lab inchargc, Dept. of eSE, SUET, who arranged me a

machine on a secured comer of the Lab and ensured that nobody is using the

machine or turning the switch off during my absence.

And last but net the least, I must acknowledge with due respect the constant

support and patience of my family members for completing the thesis.

Particularly, my wife Syeda Shabrena Sultana and my father Khan Fazlay

Ahmed. I would also like to remember the inspiration of my late mother Begum

Jahanara.

v

CONTENTS

DECL/.RATION .•••.•.. : III

ACKNO\VLEDGEMENT IV

CONTENTS VI

LIST OF FIGURES I~

LIST OF TABLES ••..•.•...........•.....•.•.•...•.............................•.......................... :•............... '....•............... X I

ABSTRACT I

CHA PTE R 1 --- 2

I NT ROD UCT ION ---------------------.-- 2

1.1 MOTIVATION--"--- 3

1.2 BACKGROUNDANDPRESENTSTATEOFTHEPROBLEM--------------------------------------5

1.3 OBJECTIVESANDFocus OFTHETHESIS---7

1.4 ORGANIZATIONOFTHETHESIS-----------------------------------.-----------------------------8

C HA l'T Z R 2 -------------------------------.-- 9

QUANTUM COMI'UTEI~: FUNDAMENTAL CONCEI'TS --9

2. I INTRODUCTION--- ----------------------------- 9

2.2 QUANTUMMECHANICS--,----- 10

2.3 QUANTUM BI7> -----.--- I a

2.3.1 SINGLEQUBIT --- II

2.3 .2 MUL1'1PLEQU 817>--- I 3

2.4 QUANTUMCOMPUTATION--- 14

2.4.1 SINGLEQUBITGATES--,---------------- 15

7..4.2 MULTIPLEQUBITGATES --- 17

2.4.3 SINGLEQUBITANDCNOTGATES AREUNIVERSAL--- 18

2.4.4 QUANTUMCIRCUITS--- 2 I

2.4.5 CAN A CUBITBE COPIED?-- 22

2.4.6 QUANTUM PARALLELISM--- -------------,--------------- 23

2.5 QUANTUM INFORMATION-------------------------------------,-------------------------------- 24

2.6 PROSPECTSFORQUANTUM INFORMATIONPROCESSING----------------------.------------ 25

C H A PT E R 3 --- 27

QUANTUM COMPUTER: PHYSICAL REALIZATION -----------------------------.----------- 27

3.1 REALIZATIONOFQUANTUMCOMPUTER-----------------------,----------------------------- 27

3.2 CONDITIONSFORQUANTU'MCOMPUTATION-- 28

3.2.1 REPRESENTATIONOFQUANTUM INFORMATION-----:.-------------------------------------- 28

3.2.2 PERFORMINGUNITARYTRANSFORMATION--- 29

VI

3.2.3 PREPARATIONOF FIDUCIAl. INITIAL STATES -- 30

3.2.4 MEASUREMENT OFOUTPUT RESULTS-- 31

3.3 I-IARMONIC OSCILLATOR QUANTUM COMPUTER --- 32

3.3.1 TilE QUANTUM I-IARMONIC OSCII.LATO" (QIIO)----------------------.--------------------- 32

3.3.2 PIIYSICAL ApPARAlUS FORQI-IO--- 34

3.3.3 TilE I-IAMILTONIAN FORQI-IO--- 35

3.3. t QUANTUM COMPUTATION FORQI-IO------------------------------------:-------------------- 36

3.3.5 DRAWIlACKS OFQI-I0 ---37

3.3.6 SUMMI,RY OFQI-IO PROPERTIES--- 38

3.4 OPTICAL PIIOTON QUANTUM COMPUTER (OPQC~ --- 38

3.4.1 PHYSICAL ApPARATUS OFAN OI'QC--- 39

3.4.2 QUANTUM COMPUTATION WITH OI'QC --- 41

3.4.3 DRAWIlACKS OFOPQC -- 44

3.4.4 SUMMARY OFOPQC PROPERTIES--:--------------- 44

3.5 OPTICAL CAVITY QUANTUM ELECTRODYNAMICS (OCQED)----------------------------- 45

3.5.1 PHYSICAL ApPARATUS FOROCQED--- 46

3.5.2 SUMMARY OFOCQED PROPERTIES-- c 47

3.6 ION TRA PS--------.- •• -•• ---------------------.----.--- 48

3.6.1 PHYSICAL ApPARATUS FORION TRAPS ---.-- 48

3.6.2 SUMMARY OF ION TRAP PROPERTIES-- 51

3.7 NUCLEAR MAGNETIC RESONANCE(NMR)-- 52

3.7.1 SUMM ..•.Ry OFNMR PROPERTIES --- 52

3.8 CHA PTERSUMMARY --- 53

CHA PTE R 4 -------------.-- 55

MULTI-OUTPUT TERNARY LOGIC AND QUANTUM CASCADE: A LITERATURE

SUR V E Y --- 55

4.1

4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

4.2

4.2.1

4.2.2

4.2.3

4.2.4

4.2.4.1

4.2.4.2

REVERSIII LE LOGIC--------------------------:-- -- 55

MOORE'SLAW --------------------------------,-------.------------------------------------- ----- 55

ARGUMENT FORALTERNATIYE TECHNOLOGY -- 56

131NARY REVERSIBLE LOGIC---,- --- ----- 57

TERNARY REVERSIBLE LOGIC --.--------- 62

SOME TERNARY REVERSIBLE GATES -- 62

GALOIS FIELD AND QUANTUM TECHNOLOGY --------~-------------------------------------- 64

QUANTUM COMPUTATION -- ------------------- 65

TERNARY Qu ANTUM Co MPUTING-- 65

QUANTUM CI RCUIT--- 67

GALOISFIELD--- 67
GF(2) c ----------------------------------- 68

G F(3) ------:---:-----------------'---------------- 68

VII

4.2.4.3

4.2.5

4.2.6

4.2.7

4.2.8

4.3

4.3.\

4.3.2

4.3.3

4.4

GF(4) --- 68

TERNARY GALOIS FIELD LOGIC -- 68

QUANTUM CASCADE (QC) -- 70

REALIZATION OF MVL USING QUANTUM CASCADE-------------------------------------- 7\

SOME EXISTING METHODS OF REALIZING MVL USING QC ------------------------------ 71

Evo LUTION ARY ALGOR ITHM ------ --- 73

G ENETIC A LGORITHMS -- 75

EV0 LUT ION STRATEG IES -- -------- 75

EVO LUTIONA RY P ROGRA M MIN G -------- -----:'"------------------ --------------------.-------.- 76

SUM MARY --- ------------------------ 77

C HA~'TI<;R 5 -- 79

EA BASED SYNTHESIS OF MULTI-OUTPUT TERNARY FUNCTION USING

QUA N TUM CA SCAD ES-- --- 79

5. I 1NTRODUCTION -- 79

5.2 THE NEW 2*2 QUANTUM TERNARY GATES --- 79

5.3 REALIZATION OF MULTI-OUTPUT TERNARY FUNCTIONS USING THE NEW GATES ------ 80

5.4 GTG VERSES THE NEW GATES ---~--------------,-- 81

5.5 PROPOSEDEVOLUTIONARY ALGORITIIM -- 84

5.5. \ PROBLEM ENCODING ----.-------------------------------------- --- --------------------- -------- 85

5.5 .2 FITNESSCOM PONENTS ---------------------------------.--------------------------------------- 86

5.5.3 DESCRIPTION OF THE EVOLUTIONARY ALGORITHM -----------,------------.--------------. 9\

C H A PT E R 6 -------------------------,--------------------------------------.--------------------------- 97

EXPLRIMENTAL RESULTS AND DISCUSSION -------------------------------------,----------- 97

6. 1 \NTRODUCTION --------------------------------.--- 97

6.2 EXPERIMENTAL. SETUP AND FINDINGS -------------. --- 97

6.3 CONC LVSIONS-- I 13

CH A PTE R 7 --- 114

CO NC L U S ION --- 114

7.1 CONCLUDING WORDS--- 1\4

7.2 RECOMMENDATIONS FOR FUTURE WORK --116

A PP END I X A -- 1 I 8

SOURCE CODE OF THE PROGRAM.--\18

A PPEN D I X B --------------,--- 144

DESCRIPTION OF THE BENCHMARK FUNCTIONS -- 144

BIB L IOG RA PH Y--- 145

VIII

'-

List of Figures
FIG I.:: (,ENERAL FORM OF EXTENDED DE VOS GATE•...•....................•................................. 6

FIG 2.1: QUOIT REPRESENTEDBY TWO ELECTRONIC LEVELS IN ATOM•.•.......................... 11

FIG 2.2: l3LOCH SPHERE REI'RESENTATJON OF A OUBIT ..•...•................•......................•.....••............. 12

FIG 2.3: VISUALIZATION OF HADAMARD GATE ON THE BLOCH SPHERE, ACTING ON THE INPUT STATE

~0) + 11))/.fi 16

FIG 2.4: SINGLE BIT (LEFT) AND SINGLE QUOIT (RIGHT) LOGIC GATES..........................•....••............ 17

FIG 2.5: GRAPHIC AND MATRIX REPRESENTATION OF CNOTGATE•.•.......................•... 17

FIG: 2.6: CONTROLLED- U GATE•.•...•.....•.......... 18

FIG 2.7: CIRCUIT IMPLEMENTING THE TWO-LEVEL UNITARY OPERATION DEFINED BY U.r 21

F'G 2.8: CLASSICAL AND QUANTUM CIRCUIT TO COPY AN UNKNOWN BITOR QUBIT•.. 22

FIG 2.9: QUANTUM CIRCUIT FOREVALUATING f(O) and f(1) SIMULTANEOUSLY. Uris THE

QUANTUM CIRCUIT WHICH TAKES INPUTS LIKE IX, y) to Ix, y EB f (x») 24

F'G'3.1: SKETCH OF THE FIRST FIVE SOLUTIONS OF THE SCHRODINGER EQUATION FOR 'I',,(x) 33

FIG 3.2: PARAMETRIC DOWN-CONVERSION FOR GENERATION OF SINGLE PHOTONS............•............ 40

FIG 3.3: SCHEMA TIC OF AN OPTICAL BEAMSPLlTI'ER. (B) IS THE INVERSE OF (A) 41

FIG 3.4: OPTICAL CIRCUIT REPRESENTING A PI-lASESI-IIFT BY n 43

FIG 3.5: SCHEMATIC DRAWING OF AN ION TRAP QUANTUM COMPUTER 49

FIG 4.1: A REVERSIBLE GATE 57

FIG 4.2: MATRIX AND GRAPHIC REPRESENTATION OF NOT GATE 60

FIG 4.3: MATRIX AND GRAPHIC REPRESENTATION OF CONTROLLED-NOT GATE 61

FIG 4.4: MATRIX AND GRAPHIC REPRESENTATION OF CC-NOT GATE 62

FIG 4.5: SOME TERNARY REVERSIBLE GATES 63

FIG 4.6: TERNARY SHIFT OPERATIONS, GATE SYMBOLS, AND THEIR NUMBERS 63

FIG 4.7: QUANTUM CIRCUIT USING TOFFOLI GATES TO REALIZE THE FUNCTION, F(A,B,C)
7 '

=[0,1,2.1,0,2,2,2,2,2,1,0,0,1,2.1,1,1, I, 1,1,2,2,2,0,0,0] , : 64

F'G 4.8: GENERALIZED TERNARY GATES (GTG) 65

F'G 4.9: QUANTUM REALIZATION OF TEJ<NARY SHIFT GATES 69

FIG 4.10: QUANTUM UNITARY TRANSFORMATION 70

FIG 4.1 I: QUANTUM CASCADE REAJ.lZING AN ARBITRARY 3-INPUT 2-0UTPUT TERNARY FUNCTION.'

.. 72

FIG 4.12: REALIZATION OFTERNAJ<Y SWAI' GATE USING GTG GATES 72

FIG 4.13: GENERAJ.lZED MULTI-VALUED GATE OF RADIX M+ 1 73

FIG 4.14: A CANONICAL GA , 75

FIG 4.15: A SIMPLE ES 76

fiG 5.1: GENERAL FORM OF THE PROPOSEDGATES ..•...••...•.•.•.•.•.•.•... 79

FIG 5.2: REALIZATION OF TERNARY HALF AODER USING THE NEW GATES ; 81

FIG 5.3: TERNARY HALF ADDER REALIZATION USING GTG GATES BY [36] 82

IX

FIG 5.4: REALIZATION OF (A,B,O,y) AND (A, B,I,y) GATES USING DE VOS GATES 83

FIG 5.5: ENCODING OF THE TERNARY HALF ADDER CIRCUIT•.•.•.....................•............. 85

FIG 5.6: CHROMOSOME REpRESENTI"IG THE CIRCUIT IN FIGURE 5.5•.....................•............. 86

FIG 5.7: SUB-VECTORS OF AN ARBITRARY 3-INpUT 2-0UTpUT TERNARY FUNCTION ..•.•................•. 87

FIG 5.8: REALIZATlnN OF SUB-VECTORS•..............•...•.....•..............................•......................•..... 88

FIG 5.9: FLOWCHART OF TilE PROPOSEDEVOLUTIONARY ALGORITHM ...•.•.•.•.•..•.•.•.•.............•..•.•... 91

FIG 5.10: RANKING OF THE INDIVIDUALS IN AN ARBITRARY POPULATION•...•.•.•.............•.•..•.•..•.. 93

FIG 5.11: CROSSOVER OPERATION .•.•.•.•.•......................•.•...•................... :.....•..•....•..•...................•.•• 94

FIG 5.12: MUTATION OPERATION .•.•.•..............•........•....•.....................................•.............•..•..•....... 95

FIG 5.11: REDUNDANT COLUMNS AND UNUSED CONSTANT LINES IN AN ARBITRARY QUANTUM

.CASCADE .•.•................................•.•...•.•..•......................•....•..........•.............................• 95

FIG 5.14: INSERTION OF THE OFFSPRING INTO THE POPULATION WITH RANKING•..•.................... 96

FIG 6.1: EFFECT OF Pc AND PM ON COSTOF SOLUTION•.•.•.•.•.•.•...........................••.•.•................ 98

FIG 6.2: EFFECT OF PeON LENGTH OF THE CiRCUiT ..•.•.•.•.•.•...................•................................••.•.... 99

FIG 6.3: EFFECT OF Pc ON WIDTH OF THE CIRCUIT •...•.•.•.................•.•.•..•.•.•.•.................•..•.•.•.•..•..... 99

FIG 6.4: EFFECT OF PM ON LENGTH OF THE CIRCUIT•...•.•.•.....................•...•..•.•.• : 100

FIG 6.5: EFFECT OF PM ON WIDTH OF THE CIRCUIT•..•.•.•.•.•.•..................•.•...•.•..•... 100

FIG 6.6: CONVERGENCE OFOUTPUT VECTOR FITNESS FORABC2•..•..•...•.•... 101

FIG 6.7: CONVERGENCE OF LEN9TH OFCASCADE FORABC2 ..•.•.•.•..•................•.•...••.•.••.•...•.......... 102

FIG 6.8: CONVERGENCE OF SCRATCHI'AD WIDTH FOR ABe2•........................... 102

FiG 6.9: CONVERGENCE OF OUTPUT VECTOR FITNESS FOR MLL2•.•.••.•...•......... 103

FIG 6.10: CONVERGENCE OF LENGTH OF CASCADE FOR MUL2 ...•....•....................•.•..•.••.•.••.•.•........ 104

FIG 6.11: CONVERGENCE OF SCRATCHpAD WIDTH FOR MUL2 .•.•...•.......................•.•.•.•.••.•.•.•. , 104

FIG 6.12: CONVERGENCE OF OUTPUT VECTOR FITNESS FORA2BCC ..•............................•..•.•...•.•.• 105

FIG 6.13: CONVERGENCE OF LENGTH OF CASCADE FORA2BCC ..••.•.•.•.•.•.•.......................•..•.•.•.•.•.• 106

FIG 6.14: CONVERGENCE OF SCRATCHPAD WIDTH FOR A2Bee ••..•...•..................................•.......•.. 106

FIG.6.15: CONVERGENCE OF OUTPUT VECTOR FITNESS FORTHADD••.•.•.••.•.•.•..•............ 107

FIG 6.16: CONVERGENCE OF LENGTH OF CASCADE FOR THADD•..•.••.••.•.•... 107

FIG 6.17: CONVERGENCE OF SCRATCHPAD WIDTH FOR THADD ...•....•...............•......•.•...•.•.•.•.•.•..... 108

FIG 6.18: CONVERGENCE OF OUTPUT VECTOR FITNESS FOR PROD3•.....•........•........................•..•.• 109 .

FIG 6.!9: CONVERGENCE OF LENGTH OF CASCADE FORPRoo3 ...•. 109

FIG 6.20. CONVERGENCE OF SCRATCHpAD WIDTH FOR pROD3•........................... 110

FIG 6.21: CONVERGENCE OF OUTI'UT VECTOR FITNESS FORAVG2•.......•..•.••.•.•.•.....•..•..•........ 110

FIG 6.22: CONVERGENCE OF LENGTH OF CASCADE FORAVG2•.•.•...• III

FIG 6.23: CONVERGENCE OF SCRATCHpAD WIDTH FORAVG2•.•.•.•.•........•.•.•.................. III

FIG 6.24: REALIZATION OF MUL2 USING THE PROPOSEDMETHOD •.•...•....•..................................... 112

FIG 6.25: REALIZATION OF PROD2 USING "THEPROPOSEDMETHOD•.....•........•....••......•........... 112

FIG 6.26: REALIZATION OF AVG2 USING THE PROPOSEDMETHOD•..•...•.•..•.•.•... ;.•.•.•........ 113

x

List of Tables
TABLE 4.1: TRUTH TABLE OF SOME COMMON 2-INPUT I-OUTPUT IRREVERSIBLE GATES••........... 56

TABLE 4.2: TIIREE INPUT - THREE OUTPUT DEVICES WHICH MAPS EIGHT POSSIBLESTATES ONTO

ONLY FOUR DIFFERENT STATES 58

TABLE 4.3: TRUTH TABLE FORNOT GATE 60

TABU: 4.4: AODITION AND MULTIPLICATION IN GF(2) : 68

TABLE 4.5: ADDITION AND MULTIPLICATION IN GF(3) 68

TABLE 4.6: ADDITION AND MULTIPLICATION IN GF(4) , 68

TAIlL': 5,1: TRUTH ',ABLE OF TERNARY HALF ADDER FUNCTION 81

TABLE 6.1: RESULTS OIlTAINED FOR DIFFERENT BENCHMARK TERNARY FUNCTIONS 101

XI

Abstract

Quantum Computers, which run according to to the laws of quantum mechanics,

are said to be the future of today's computers. They might have exponentially

more computational efficiency than any classical one. The fact that a quantum

particle can be in between many states, known as entanglement of states, made

Quantum Computer so powerful. Inspired by the challenge' of formulating

Quantum Computer, this thesis presents the synthesis of multi-output ternary

quantum logic with primitive quantum gates. The main emphasis oftliesis is given

on showing that any logie can be realized using quantum primitive gates. It is also

implied that these quantum circuits are reversible by nature. At the same time

multiple-valued logic helps to reduce the complexity ofthe circuit when compared

to binary logic.

This thesis presents a comprehensive study on the fundamentals of Quantum

Computations. Then a family of quantum primitive gates is proposed. These arc

very simple 2-input, 2-output ternary reversible gates. These gates can be

physically realized using quantum technology. Then an Evolutionary Algorithm

based synthesis procedure using those primitive gates is proposed. It lias been

shown that a Quantum Computer capable of executing any logic function is

possible to construct using thc new gates only. The claim is supported by the

experimental findings. The effect of different EA parameters on the solution is

. also examined and shown. Finally some open problems for the physicists and

mathematicians are brought forward.

Chapter 1

Introduction

The synthesis of multi-valued Quantum logic is an interesting and challenging

problem in Computer Science. Ternary quantum circuits have recently been

introduced to reduce the size of multi-valued logic for multi-level quantum

computing systems. It is implied that the quantum circuits will naturally be

rcversible. However, synthesizing these quantum circuits is not easy. The

following are th~ issues related to multi-valued quantum logic synthesis:

e How th(~ quantum cascadcs will bc constructcd to rcalizc multi-valucd,

. multi-output logic functions.

e How the cost of the circuit will be minimized.

• What types of gates will be used.

e How the fundamental issues regarding reversible logic will be addressed.

This thesis addresses these above mentioned issues. The primary objectivc of this

thesis is to devcleop a soft computing method to synthesis multi-valued multi-

output logic function. With this view, a complete synthesis process of muiti-

valued multi-output reversible logic using quantum cascades is presented. To be

more specific, W~ have considered ternary reversible logic. We are also proposing

a family of elell'entary quantum reversible gates to construct the quantum cascade.

These gates are new and no such previous method exists that realizes multi-

valucd, multi-output using the new quantum gates. Therefore, it is not possible to

directly compare the cost of the circuit. Instead, comparison with the circuit

obtained using few other ternary quantum gates are done ..

\c..••..•~"••••••

Chapler 1
Introduction

1.1 Motivation

A quantum mechanical phenomenon that never occurs in classical physics and

which actually makes quantum computation interesting and powerful, is the

superposition of states ("entanglement" cf states), which means that instead of

being totally in one single state, a particle can be "in between many states".

Com "are this to ~he elements of classical computer, bits. A bit takes values zero or

one, but never anything between. In a quantum computer, one is able to store both

values simultaneously in one quantum bit, equally weighted or not. Moreover, in

the classical computer one can store a number from zero to 2" -I in a register of

length n, whereas, in quantum computation, all the values could be stored

simultaneously. The' computation, which is performed via unitary

transformations in the state vector space, then applies to all these values

simultaneously. Thus the power of the quantum computation lies not in the

absolute speed of the hypothetical quantum computer but in the possibility to

actually follow many computational paths simultaneously, as a nondeterministic

automation docs. Furthermore, the motivation behind this thesis can be better

expl"ined by answering the following questions:

Why Quantum Logic?

- As the semiconductor-based eircui(s are not capable of handling more
1.

than two states, scientists arc looking for alternative technologies to realize

logic functions. Quantum Logic is one of the most prominent among the

alternative technologies. In fact, there are really an infinite number of

states possible to a quantum bit, not just two. The "entanglement" of

states, which means one unit can be at more than one logical state.
I

simultaneously as a form of superposition of states. This' unique property

of quantum technology made it the best choice. [Chapter 2, Chapter 3, and

Section 4.2.3]

Why reversible logic circuit?

- It is implied that the quantum computers will be, by nature, reversible.

The conventional irreversible logic is, nowaday, rejected by the

3

Introduction

reaercchers because they waste a significant amount of power as dissipated

heat. Reversible circuits consume less power than conventional

irreversible circuits by reducing the wastage of energy as dissipated heat.

[Section 4.1]

Why multi-valued logic?

- Because the size of the logic circuit is directly dependent on the amount

of information (i.e. the logical stat'~s) stored in a single unit. Binary logic

can handle only two states - 0 and I. On the other hand, multi-valued logic

circuits ('f constructed) are capable of storing more than two states, thus

reduced in size and complexity. [Section 4.1.4]

Why EA?

- As there is no direct method to construct a quantum cascade using the

new gates, we have to go for Evolutionary Algorithms (EA). Use of EA

will allow us to find an appropriate combination of the new gates that

realize (perhaps optimally) a multiple-valued ternary logic function. EAs

are very popular Soft Computing (SC) approach for solving problel)1s with

no identified structum and high "'vel of noise. The reasons behind this

popularity are-

• A large solution space can be searched ..

• The size of this search space can be moderated by parameters.

• A variety of new solutions can be produced, and

• With long enough time a solution can be obtained that is close to

the optimal one:

Because of these advantages we have selected EA for synthesizing ternary

functions using cascade of the new gates as the problem structure of such

cascade is still undefined and the search space itself is exponeniially large.

[Section 4.3]

MuW-valued qUdntum logic synthesis methods are still.very immature, though a

number of works have been done (see [1]-[4], [7], [34]-[38], [40], [42]-[44]).

4

Chaoter I
lnfroductiOl1

From these works, however, it is more or less evident that Galois Field Sum of

Prodllcts (GFSOP) is a good choice for multi-valued reversible logic synthesis. In

this thesis, we focus only on ternary GFSOP synthesis with cascades of quantum

gates.

1.2 Baci{ground and Present State ofthe Problem

The unit of memory (information) for binary quantum computation is a qubil, the

simplest quantum system that exists in a linear superposition of two basis states

labeled 10) and 11). In 1996, Mattie et al [60] used the term Iril for a ternary

equivalent of qubit (however, qulril is appropriate). In 1997, Chau [24] introduced

the concept of a qudil, a d-dimensional quantum system that generalizes a qubit

and has basis states 10),II),12),...,ld -I). Subsequently, limited work was done in

multi-valued quantum logic. The work of Chau [24], Rains [22] and Ashikhmin

and Knill [5], extended quantum error-correcting ~odes to multi-valued logic for

correcting codes in single and multiple qudits. Gottesman [19] and Aharonov and

Ben-Or [13] developed fault-tolerant procedures for implementing two-qudit and

threc-qudit analogs of universal binary gates. Burlakov [9] proposed to use

correlated photon pair to represent qutrit. Since 2000 the works have got

momentum.

Muthukrishnan and Stroud [7] developed multi-valued logic for multi-level

quantum computing systems and showed their realizability III linear ion trap

devi~cs. However, this approach produces circuits of too large dimensions.

Universality of n-qudit gates was discussed in [28], and [7] but no design

algorithms were given. Picton [47] presented an approach called Universal

Architecture for multi-valued reversible logic but this approach produces circuits

that arc far from minimum and have no relation to quantum realization.

Since 200 I AI-Rabadi et al' proposed Galois Field approach to quantum logic

synthesis (sec [I], [2], [3], [4], and [42]). In this work Galois quantum matrices

were proposed for swap and Toftoli gates, but without the proof that they can be

5

Chapter J
Introduction

built from only 1*1 and 2*2 gates!. Several rcgular structurcs for multi-valued

. quantum logic wcre also proposed, including cascades, but these cascades do not

allow realization of powers of GFSOP and are thus non-universal. This work was

bascd on previous works on GFSOPs and similar forms of Galois and similar

logic, in which canonical expansions of Post literals and arbitrary fillctions were

shown. However, no constructive methods for GFSOP and cascade minimization

werc given, nor programs were written for them. Factorized reversible cascades

and complex gatcs (which usually yicld better result) were not proposed. De Vos

proposcd two ternary 1*1 gates and two ternary 2*2 gates [6], but no synthesis

method was proposed. New efficient reversible multi-valued gates'werc proposed

in [45] and quantum realizations of multi-valued Toffoli gate in [43]. However,

vcry little has been published on synthcsis algorithms for multi-output multi-

valued quantum circuits. Thereforc, it is very important to look for efficient

methods to synthesize multi-output GFSOP functions using quantum cascades. In

this thcsis, wc concentrate. on quantum cascaded rcalization of only ternary

GFSOP functions.

Thc major problcm of logic synthesis is that any m-inputlm-output gate (m*m

gate), whcre m > 2, is very diJIicult to realize in quantum technology ([6j, [7]).

Therefore it would be a bettcr idca if the quantum circuit is constructed using 2*2

gates (primitive gates) only. Most of the researches donc so far in this field are

using the gatcs with m > 2. Therefore the circuits are complex and almost

impossible to realize.

••

A Controlling
mput

B Controlled
mput

x
y

x = {O,1,2}
y = {1,2,3,4,5}

0,

q=A

shift of B, if A = x
othetwise

Fig 1.1: Gcneral form of Extended Dc Vos Gate

1A m*n gate is one whose number of input is m and the number of output is n.

6

Chapter I
Introduction

Khan ct. al. proposed one complete synthesis process of ternary logic using

quantum cascades (see [37]). They have used ternary Toffoli -gates, Feynman

gates, and swap gates as building blocks of the quantum cascade. The widths of

-the gates are also more than two (1/1 > 2), hence the problem still remains.

Although those gates can be constructed using 2*2 gates, the cost of the circuit

becomes very high in terms of number of gates and the complexity of the circuil.

We are proposing a complete synthesis process to realize ternary logic using 2*2

gate5 d;rcctly. We are also proposing a family of extended ternary De Vos [6]

gates (sec Figure 1.1), those are realizable using quantum technology, to be used

as building blocks of the circuit. Our primary goal is to realize any ternary

reversible multi-output function using only those gates. In Figure 1.1, A and Bare

the two inputs. 01 and O2 are the two outputs while x and yare two parameters of,
the Gate. There are 15 possible combinations of x and y.

The main problem is there is no direct method to construct a quantum cascade

using De Vos gates. The problem also remains with the new gates. Hence we have

to go for Evolutionary Algorithms (EA). Use of EA will allow us to find an

appropriate combination of the gates that realize a multiple-output ternary logic

functioll. We might sometimes achieve the optimal solutions also.

1.3 Objectives and Focus ofthe Thesis

The main focus of this dissertation is to present- a complete synthesis process of

realizing ternary reversible logic using the new 2*2 primitive gates. Our ultimate

goals and objectives could be summarized as follows;

• Develop a complete synthesis process to synthesize ternary multi-

output function using cascade of primitive quantum gates proposed in

this thesis. And ev'~ntually prove that any ternary multi-output function

can be realized using the cascade of the new gates.

o Exploring the behavior of the EA parameters in solving this type of

problem.

7

eli""I",. J
!nlroducfiim

• Making guidelines for further research and future researchcrs in this

field.

To achieve our primary goal, wc have implemented the proposed synthesis

process using c++ and obtained encouraging results. Implementing the gates

using quantum technology and the physical realization of the circuit are beyond

the scope ofthis thesis.

1.4 Organization of the Thesis

Elementary discussion on quantum mechanics and quantum

computation.

Elementary discussion on the realization technologies of

quantum logic circuit.

Provides a literature review of the different strategies that

have been proposed in the context of Multiple-Valued

Logic Synthesis.

Detailed description of the proposed EA based synthesis

method.

Chapter 3:

Chapter 5:

Chapter 4:

The lhesis has b~en organized in different chapters, with each chapter discussing

different aspect, of the study. The arcas covered by different chapters arc brieHy

as follows:

Chapter 2:

Chapter 6:

Chapter 7:,

Experimental results and discussions.

Concluding remarks and ~'uggestion for future research

works.

8

Chapter 2

Quantum Computer: Fundamental Concepts

2.1 Introduction

Moor's Law has approximately held true in the decades since the 1960s.

Nevertheless, most observers expect that this dream run will end some time during

the first two decades of the twenty first century. Conventional approaches to the

fabrication of computer technology are beginning to run up against fundamental

difficulties of size. Quantum effects are beginning to interfere in the functioning

of electronic devices as they arc made smaller and smaller. One possible solution

to th': nroblem posed by tbe eventual failure of Moor's Law is to move to a

different computing paradigm. One such paradigm is provided by the theory of

Quantum Computation, Quantum Computation's based on the idea of using

quantum mechanics to perform computations, instead of classical physics. Tbe

quantum computers offer an essential speed advantage over classical computers.

Th is speed advantage is so sign ifieant that many researchers bel ieve that no

conceivable amount of progress in classical computation would be able to

overcome the gap between the power of classical computers and the power of

quantum computers.

Quantum Computation and Quantum Information is the study of the information

proe('ssing tasks that can be accomplished using quantum mechanical systems.

Like many simple but profound ideas it was a long time before anybody thought

of doing information processing using quantum n,echanicai systems. To see why

this is the case, we must go back in time and look .in turn at each of the fields

which have contributed fundamental ideas to quantum computation and quantum

information - quantum mechanics, computer science, information theory, and

cryptography, In the subsequent sections we discuss the different fundamental

aspects of Quantum Computation briefly.

Chapter 2
Ouantum Com[Juter:

Fundamental COl1ce[!/s

2.2 Quantum Mechanics

Quantum Mechanics is a mathcmatical framework or set of rules for the

construction of physical thcories. For example Quantum Electrodynamics - the

physical theory that describes the interaction of atom and light can be mentioned.

The relationship of quantum mechanics to specific physical theories like quantum

electrodynamics is like the relationship of a computer's Operating System to

specific applicat;on software. Thc rules of quantum mechanics are simpk but even

cxperts find H~em counterintuitive. Perhaps the long-standing desire of the

physicists to better understand quantum mechanics set a ground for Quantum

Computation and Quantum Information. One of the goals of Quantum

Computation and Quantum Information is to develop tools which sharpen. our

intuition about quantum mechanics, and make its predictions more transparent to

human minds.

Dcspite the intense interest, efforts to build quantum information processmg

systems have resulted. in modest success to date. Small quantum computers,

capable of doing few operations on a few qubits represent the state of the art in

quan:um compuLation. Experimental prototypes for doing quantum cryptography

have been demonstrated. However, it remains a great challenge to physicists and

engineers of the future to develop techniques fer making large-scale quantum

information processing a reality.

2.3 Quantum bits

The quantum counterpart of the classical binary digit (bit) is qubit. We are already

lumiliar with the Dirac notation of the states of a qubit - 10) and II). This is the
standard notation for states in quantum mechanics.

10

~ .

.",

Chapter 2
Quantum Computer:

Fundamental Concepts

2.3.1 Single qubit

The difference between bits and qubits is that a qubit can be in a state other than

10) or II). It is also possible to form lineal' combination of states, also known as .

superpo,,,,'ition:

Thc numbers a and fJ are complex numbers. 10) and II) are two special cases

and called computational basis states. The state of a qubit can also be thought as a

vcctor in a two dimensional complex vector space. Unlike the bits, a qubit can not

be eMmincd to determine whether it is in state 10).or II). Instead whcn a qubit is
,0

measured, we get either the result 0, with probability lal', or the result I, with

probability IfJl' and naturally lal' + IfJl' = I . Thus, a qubit's state is a unit v~ctor in

a two dimensional complex vector space. If a qubit is in the state ~IO)+~Il),

then it will give the result 0 fifty percent ofthc time, and the result I fifty percent

ofthc timc when measured.

Many different physical systems can be u<;ed to realize qubits, some of them are

mentioned below:

I. t\"O different polarizations of a photon,

II. thc alignment of a nuclear spin in a uniform magnetic field,

Ill. two states of an electron orbiting a single atom (see Figure 2.1) .

.
Fig 2.1: Qubit represented by two electronic levels in atom.

I I

Chapter 2
Quantum Computer:

Fundamental Conecols

In the atom model, an electron can exists in either 'ground' state or 'excited' state,

which we can call 10) and II), respectively. By shining light on the atom, with

appropriate energy and for an appropriate length of time, it is possible to move the

electron from 10) to II) state and vice versa. The interesting thing is that, by

reducing th~ time of shining the atom, an electron with initial state 10) can be

moved 'halfway' between 10) and II), this state is often denoted as 1+) state.
One important model to visualize the states of a qubit is Bloch Sphere as shown in

Figure 2.2. The state of the qubit is represented by

The numbers () 'and rp are real numbers and define a point on the unit three

dimensional sphere. The Bloch sphere serves as an excellent test bed for ideas

about quantum computation and quantum information.

/ I,,) ,

(~.."..: 1 ~\
," . ~
', f~.",.. :-:-.:: :-:-J .. , OJ

\ I ,J\ /. "
I
I
I
I..
I')

Fig 2.2: Bloch Sphere representation of a qubit.

Now the question is how much information is represented by a qubit?

Paradoxically, there are an infinite number of points on the unit sph9re. So, on

principle, we can store an entire text of Rabindranath Tagore in the infinite binary

extension of (). However, this conelusion turns out to be misleading, because of

the behavior of the qubit when observed. The m~asurcmcnt of a qubit wi II give

only two states either 0 or 1. Furthermore, a measurement changes the state ofa

12

ChaRIer 2
Quantum ~ompuler:

Fundamental Concepts

gubit, collapsing it from its superposition of 10) and II) to the specific state

consistent with the measurement result. For example, if measurement of 1+) gives

0, then the post-measurement state of the gubit will be 10). Nobody knows why

this type of collapse occurs [41).

There is something conceptually important here, because when Nature evolves a

closed guantum system of gubits, not performing any 'measurement', she

apparently keeps track of all the continuous variables describing the states, like a
and f3. In a sense, in the state of a gubit, Nature conceals a great deal of 'hidden

illform&tion' and the potential amount of this extra information grows

exponentially with the number of gubits. Understanding this hidden quantum

information lies at the heart of what makes quantum mechanics a powerful tool

for information processing.

2.3.2 Multiple qubits

Let us consider the case of two qubits. If these were two classic bits, then thcre

would be four possible states, 00, 01, 10, and II. Correspondingly a two qubits

system has four computational basis states denoted by 1°°),1°1),110), and II I). A

pair [,f gubits can also exists in a superposition of these four states, so the quantum

states of two qubits involve associating a complex coefficient - sometimes called

amplitude ~ with each computational basis state, such that the state vector

describing the two gubits is

1111) = aooIOO)+aOlIOI)+a,oIIO)+alllll).

Similar to the case for a single qubit, the measurement result x (= 00, 01, 10, or

II) occurs with probability!axl', with the states of the qubits after measurement

beinglx). There exists the normalization condition" ,Ia 1
2 = I for the two

L..Jxl':'IO.ll x

qubits system. We could measure just a mbset of the gubits, say the first qubi!.

Measuring the first gubit alone gives ° with probabilitylaoo!' +lao,I', leaving the

post-measurement state

13

Chapler 2
Quantum Compuler:

Fundamental Concerts

Iv/) - aooIOO)+ao,IOI)
. ~Iaool'+laOll2

An important two qubit state is the Bell state or EPR2 pair, 100)+111)12' This state

is responsible for many surprises in quantum computation and quantum

information. It is the key ingredient in quantum teleportation and super-dense,
coding. The Bell state has the property that upon measuring the first qubit,one

obtains two possible results: 0 with probability Ji, leaving the post-measuremcnt
state Iv/) ~ 100), and I with probability Ji, leaving the post-measurement state

. Iv/) ~ III) . As a result, a measurement of the second qubit always give the result

of the measurement of the first qubit. That indicates that the measurement

outcC'mes are correlated.

More generally, we may consider a system with n qubits. The computational basis

states of this system are of the form Ix,x, ...x,,), and so a quantum state of such a

system is specified by 2" amplitudes. For n ~ 500 this number is larger than the

estimated number of atoms in the univcrse. Trying to store all those complex

numbcr is not possible on any conceivable classical computer.

2.4 Quantum Computation

Changes occurring to a quantum state can be described using the language of

Quat'tum Computation. Analogous to the way a classical computer is built from

an electrical cirGuit containing wires and logic gates, a quantum computer is built

Irom a quantum circuit containing wires and elementary quantum gates to carry

around and to manipulate the quantum intormation. In this section we describe

some simple quantum gates.

, Einstein-Podolsky-Rosen

14

Chapter 2
Quantum Computer:

Fundamental Concerts

2.4.1 Single qubii Gates

The only classical single-bit logic gate is the NOT gate. In a classical NOT gate

the ° and I states are interchanged. The quantum NOT gate analogously

interchanges the 10) and II) states. However, specifying the actions of the gate on

the s~ates 10) an.1 II) does not tell anything about what happens to sup~rposition

of states 10) and II). In fact, the quantum NOT gate acts linearly, that is, it takes

the state aIO)+ ,oj I) to the corresponding state in which the role of 10) and [I)

have been interchanged, all) + PIO): This linear behavior is a general property of

quantum mechanics and very well motivated empirically.

There is a convenient way of representing the quantum NOT gate in matrix form,

which follows directly from the linearity of quantum gates. Suppose we define a

matrix X to represent the quantum NOT gate as follows:

X=[~ ~l
If the quantum ~tate aIO)+ pll) is written in a vector notation as:

with the top entry corresponding to the amplitude of 10) and the bottom entry

corresponding to the amplitude of 11), then the corresponding output from the

NOT gate is:

So the quantum gates for single qubit can be described by two by two matrices.

The aprropriate condition on the matrix V representing a single qubit gate is that

V be unitary [self], that is VIV = 1 . Where VI is the adjoint of V (obtained by

transposing and then complex conjugating U), ar.d 1 is the two by two identity

matrix. For example, it easy to verify that Xl X = 1 .'

15

Chapter 2
Quanlum COl1l{Julcr:

Fundamental Concerts

This unitarity constraint is the only constraint on quantum gates. Any unitary

matrix specifies a valid quantum gate [41]. The unitary quantum gates are

always reversible, since the inverse of a unitary matrix is also unitary, thus a

quantum gate ean always be inverted by another quantum gate.

There are a number of single qubit gates. Two very important ones are the Z gate:
> i

Z =[1 0],o -I
which leaves 10) unchanged, and flip the sign of II) to gIve -II), and the

Hadamard gate,

I [I I]H=..fil _I.

This gate is sometimes referred as 'square-root of NOT gate. This is because this

gate turns a 10) into ~O)+II))/..fi ,halfway between 10) and II), and turns a II)

into ~O)-ll))J..fi, halfway between 10) and II). However, H2 is not a NOT gate,

as simple algebra shows that H2=!, and thus applying H twice to a state dose

nothing to it.

The Hadamard gate is one of the most useful quantum gates and the Bloeh sphere

in Figure 2.3 shows its operation. The operation is a rotation of the sphere about

the y axis by 90° , followed by a reflection through the x - y plane.

zz

x

II)
Fig 2.3: Visualization of Hadamard gate on the Bloch sphere, acting on the input

16

Chapter2
Quantum Computer:

Fundamental Concents

There are infinitely many single qubit gates while there is only one single bit

classical gate. Some of the important single qubit gate along with the classical

single bit gate are shown in Figure 2.4.

aIO)+13lt) -rn-
aIO)+13lt) -I z f--
aIO)+1311) ----[EJ-

~O)+all)

aIO)-~I)

a_lo)~+~lt)+13_10)_-11
..fi .fi

Fig 2.4: Single bit (Icft) and single qubit (right) logic gates.

2.4.2 Multiple qubit Gates

Thc prototypical multi-qubit quantum logic gatc is thc Controlled-NOT or CNOT

gate. It is also known as binary Feynman gate. Figure 2.5 shows the graphic and

matrix representation of the CNOT gate.

IA)

IB)

Graphic Form

IAffiB)

I 000
o I 0 0

000 I

o 0 1 0

Matrix Form

Fig 2.5: Graphic and Matrix representation of CNOT gate.

The gate has two input qubits, known as control qubit (top line) and controlled

qubit or target qubit (bottom line). If the. control qubit is st to 0, then the

controlled qubit is left alone (pass through). If the control qubit is set to 1, then the

target qubit is flapped. In equations:

Another way of describing the CNOT gate is as a generalization of the classical

XOR gate. Thc matrix representation of the CNOT gate is denoted by V(,N is a

. .. VI V funitary matrix since (,N CN = ..

17

Chapler 2
Quantum Conmuler:

Fundamenlal Concepts

Suppose U be any unitary matrix acting on a number n of qubits, so U can be

regarded as a quantum gatc on those qubits. Then we can have a Controlled-U

gate which is a natural extension of the Controlled-NOT gate [Figure 2.6].

u

Fig: 2.6: Controlled-U gate.

Such a gate has a single control qubit, indicated by the line with the black dot, and

11 largel qubils, indicated by the boxed U. If the controlled qubit is set to 0 then

nothing happens to the target qubits. Irthe controlqubit is selto I then the gate U

is applied to the target qubits. Thc CNOT gale is a specific Conlro/led-U gale with

U=X,

.'Of course, there arc many interesting quantum gates other than the CNOT gate:

However, in a sense the CNOT gate and single qubit gates are the prototypes for

all other gates because of (he following remarkable universality result: Any

mulliple qubitlogic gate can be composedfrolll CNOT and single qubit gates. It is

the quantum binary parallel of the universality of the NAND gate. The following

section provides a comprehensive proof of the fact

2.4.3 Single qubit and CNOTGates are Universal

He~e we shall show that single qubit and CNOT gates can be used to implement an

arbitrary unitary operation on n qubits, and therefore are universal for quantum

computation.

Suppose U is a two-level unitary matrix on an n qubit quantum computer. Suppose

in particular that U acts non-trivially on the space spanned by the computational

basis states Is) and II), where s=Sj'''s, and t=t, ..J,are the binary expansions

18

Chapter 2
Quantum Comnuter:

Fundamental Concepts

for s and I. Let fJ be the non-trivial 2x2 unitary submatrix of U; fJ can be thought

of as a unitary operator on a single qubit.

Our immediate goal is to construct a circuit implementing U, using single qubit

and CNOT gates only. To do this we need to make use of Gray codes. Suppose we

have distinct binary numbers, s and I. A Gray code connecting sand 1 is a

sequence of binary numbers starting with s and concluding with I, such that

adjarent memb"rs of the list differ in cxactly one bit. For instance, with s =

10 I00 1 and 1= 1100 II we have thc gray code:

I 0 I 0 0
I 0 I 0 I
I 0 0 0 I
I I 0 0 I

Let g, through gm be the elements of a Gray code connecting s and I, with g, = s

and gm = t . Note that we can always tind a Gray code such that III $ n + I slllce s

and t can differ in at most n locations.

The basic idea of the quantum circuit implementing U is to perform a sequencc of

gates effecting the state changes Ig,) --+ Ig,) --+ --+ Igm-')' then to perform a

controlled-fJ operation, with thc target qubit located at the single bit where g",_,

and g", differ, and then to undo thl' first stage, transforming

Ig'H) --+ Ig",-,) --+ --+ Ig,). The implementation of these operations are

pretisely described as follows. The first step is to swap the states Ig,) and \g,).

Suppose g, and g, differ at the ith digit. Then the swap is accomplished by

. performing a controlled bit flip on the ith qubit, conditional on the values of other

qubits being idcntical to those in both g, and g,. Next a cantrall cd operation to

swap Ig,) and IgJ)' It is cC'ntinued in this fashion until the qubits Ig",-,) and

Igm-')' are swapped. The effect of this sequence of III - 2 operations is to achieve

the operation

19

Chapler 2~
(Juantum Computer:

Fundamental Cuncepts

Ig,)~lgm-')
Ig,)~lg,)
Ig,) ~ Ig,)

All other computational basis states are left unchanged by this sequence of

operations. Next, suppose !gm-') and Igm) differ in the jth bit. We apply a

controlled-V operation with thejth qubit as target, eondtional on the other qubits

having the same values as aprear in both Igm-') and !gm)' Finally the U operation

is completed by undoing the swap operations as mentioned earlier.

A simple example will illustrate the procedure further. Suppose we wish to

implement the two-level unitary transformation

a 0 0 0 0 0 0 c

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 1 0 0 0 0
U =,

0 0 0 0 1 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 1 0

b 0 0 0 0 0 0 d

Here, e, b, c, ana d are any complex numbers such that V = [~ ~] is a unitary

matrix. Notice that Ux acts non-trivially only on the states 1000) and 1111). We.

write Gray code connecting 000 and 111:

ABC

000

001

o 1 1

1 I 1

From this we read off the required circuit, shown in Figure 2.7.

20

f:hapler 2
Ouanlum Computer:

Fundamental Concepls

A

B

c

Fig 2.7: Circuit implementing the two-level unitary operation defined by Ux.

The first two gates shuffles the states so that 1000) gets swapped with 1011). Next

the operation [j is applied to the first qubit of the states 1011) and 1111),

conditional on the second and third qubits being in the state III). Finally, we

unshuffle the states, ensuring that 1011) gets swapped back with the statc 1000).

2.4.4 Quantum Circuits

A simple quantum circuit rcalizing an arbitrary function is shown in Figure 2.7.

This circuit is to be read from left-to-right. Each line in the circuit represents a

quantum wire in the quantum circuit. This wire does not necessarily correspond to

a physical wire, it may correspond instead to the passage of time; or perhaps to a

physical particle such as a photon moving from one location to another through

space. It is conventional to assume that the state input to the circuit is a

computational basis state, usually the states consisting of all 10) s.

There arc a few features allowed in classical circuits that are not usually present in

quantum circuits as listed below:

• Quantum Circuits do not allow any 'loop', that is, feedback from one

part of the circuit to another. Quantum circuits are said to be acyclic.

• Wires can not be joincd together. In classical circuits the wircs can be

joined and the resulting, single wire contains the OR or.,AND of the

joined wires, this is known as FANIN. Since this operational is not

reversible, it is not available in quantum circuits.

21 _.
, .

!

Chapter 2
Quantum Computer:

Fundamental Concepts

o The inverse of FANIN operation, FANOUT, is also absent for the same

..reason. Besides, FANOUT operation requires to make copies, quantum

mechanics does not allow cloning of the qubits.

Let us examine the third issue, copying a qubit, in a greater detail in the following

section.

2.4.3 Can a qubit be Copied?

Consider the task of copying a classical bit. This may be done using a classical

CNOT gate, which takes in the bit to copy (in some unknown state x) and a

scratchpad bit initialized to 0, as shown in Figure 2.8(a). The output is two bits

both of which are in the same state x.xoxx
o x .xEB Y x

(a)

llf1)~aIO)+pll) I [1fI)

10)- ._- aI00)+/3111)

(b)

Fig 2.8: Classical and Quantum circuit to copy an unknown bit or qubit.

Now, let us try ~ocopy a qubit in the unknown state 1'II)=aIO)+ ,Bll) in the same

manner by using a CNOT gate [Figure 2.8(b)]. Ti,e input state of the two qubits

may be written as

[aIO) + ~1)]0) = aIOO)+ ~ I0).
The funetion of the CNOT is to negate the second qubit when the firsr qubit is I,

and thus the output is simply aIOO)+~II). Have we successfully copied I'll)?

That is we have created the state 1'1/) Iv/)? In the case where 11fI) = 10) or Iv/) = II)
that is indeed what the circuit does; it is possible to use quantum circuits to copy

classical infon;nation encoded as a 10) or a II). However, for a general state Iv/)

we see lhat

Comparing with aIOO)+ ~11), we see that unless a,B = ° the 'copying circuit'
. . ,

above does not copy the quantum state input. In fact, it turns out to be impossible

22

Chapter 2
Ouantwn Computer:

Fundamental Concepts

to.make a capy af an unknawn quantum state. This property that, qubits can nat be

capied, is knawn as no-cloning thearem, and it is ane af the majar diffcrcnces

bctwccn classical and quantum infarmatian.

The na-claning can be explained in anather way. A qubit cantains 'hidden'

infarmatian nat directly accessible to. measurement. When ane afthe qubits afthe

state alaa)+ .BIll) is measured, we abtain either a ar I with probabilities lal' and
I.BI'. Hawever, when ane qubit is me~sured, the state af the ather ane is

campletely determined, and no. additianal infarmatian can be gained abaut

a anJ fJ. The extra hidden infannation carried in the ariginal qubit I'll) was last

in the first measurement, and cannat be regained. If, hawever, the qubit had been

capied, then the state af the ather qubit still cantains same af that hidden

infarmatian. Therefare, s eapy cannat have been created.

2.4.6 Quantum Parallelism

Quantum Parallelism is a fundament feature af quantum camputatian.

Heuristically, and at the ,risk af aver-simplifying, quantum parallelism allaws

quantum camputers to. evaluate a functian f(x) far many different values af x

simultaneausly. Let us see haw quantum parallelism warks, and same af its

limitati0n.

Suppase f(x): {a,l} --+ {a,l} is a functian with ane bit damain and range. A

canvenient way to. campute this functian an a quantum camputer is to. cansider a

twa-qubit quantum eamputer which starts in the statelx,y). With an appropriate

sequence af lagic gates, it is passible to. transfarm this state into. Ix,yEB f(x»)

where EB indicates madula-2 additian; the first register is called the 'data' register

and the sccand ane is the 'target' register. We give the transfarmatian defined by

the map Ix,y) --+ Ix,y EB f(x); a name, Ui ' arid nate that it is easily shawn to. be

unitary. Ify = a, then the final state afthe secand qubit is just the value f(x) ,

23

10)

x

y

x

yEll f(x)

Quantum Computer:
Fundamental Concepts

Fig 2.9: Quantum circuit for evaluating f(O) and f(l) simultaneously. UI is the.

quantum circuit which takes inputs like Ix,y) to Ix,y Ellf(x)).

Considcr the circuit in Figure 2.9, which appliesUfto an input not in the

computational basis. Instead, the data register is prepared in the superposition

~0)+11))/.j2, which can be crcated with a Hadamard gate acting on 10),

then Uf is appliC'i, resulting thc state:

I0,j(0)) + II,j(l))
Ii

This is a remarkable state! The different terms contain information about f(O) and

f(l); it is almost as if we have evaluated f(x) for two values of

xsimultaneously, a feature known as 'Quantum Parallelism'. Unlike classical

parallelism, where multiple circuits each built to compute f(x) are executed

simultaneously, here a single f(x) circuit is employed to evaluate the function for

multiple values of x simultaneously, by exploiting the ability of a quantum

computer to be in superposition of different states. This procedure can easily be

generalized to functions on an arbitrary number of bits (for detailed d~scription

see [41]).

2.5 Quantumlnformation

The term 'quantum information' is used in two distinct ways in the field of

quantum computation and quantum information. The first usage is a broad catch-

all for all manner of operations that might be interpreted as related to information

processing using quantum mechanics. This use encompasses subjects such as

24

Chapler 2
Quantum Computer:

Fundamental Concepts

quantum .computation, quantum teleportation, the no-cloning theorem, and

virtually all other topics in this field.

Th~ second use of 'quantum information' is much more specialized: it refers to the

study of clementary quantum information processing tasks. Quantum information

theor; may look like a disordered zoo to the beginner, with many apparently

unrclated subjects falling under the 'quantum information theory' domain. In part,

that is because the subject is still under development, and it is not yet clear how all

the pieces fit together. However, a few fundamental goals can be identified uniting

work on quantum information theory:

• IdentitY elementary classes of static resources in quantum mechanics

- One example is the qubit. Another example is the bit; classical

physics arises as a special case of quantum physics, so it should

also bc of grcat rclevancc in quantum information theory.

• Identify elementary classes of static resources in quantum mechanics

- A simple example is memory, the ability to store a quantum state

over some period of time. Less trivial processes are quantum

information transmission between two parties, copying a quantum

state, and the process of protecting quantum information

processing against the effect of noise.

• Quantify resource tradeotfs .incurred performing elementary dynamic

processes

- For example, what are the minimal resources required to reliably

transfer quantum information between two parties using a noisy

communications channel?

2.6 Prospects for Quantum Information Processing

Building quantum information processing devices is a great challenge for

scientists and engineers in the third millennium. The most fundamental question is

whether there is any point of principle that prohibits us from doing one or more

forms of quantum information processing? Two possible obstructions suggest

25

Quantum Compuler:
Fundamental Concepts

thcmselves: that noise may place a fundamencal barrier to useful quantum

information proccssing; or that quantum mechanics may fail to be correct.

The theory of quantum error-correcting codes strongly suggests. that while

quantum noise is a practical problem that needs to be addressed, .itdoes not

prescnt a fundamental problem of principle. In particular, there is a threshold

theorem for quantum computation. The theorem roughly states that provided a

level of noise in a quantum computer can be reduced below. a certain constant

thrcshold value. Quantum error-correcting codes can push it even further,

csscr.ti?lIy ad infinitum, for a small overhead in the complexity of the

computation.

A sccond possibility that may preclude quantum information processing is if

quantum mechanics is incorrect. Indecd, probing thc validity of quantum

mechanics is one of the rcasons bchind thc interest of building quantum

information proccssing deviccs.Ncvcr bcfore wc have cxplorcd the regime of

Naturc in which complete control has been obtained over large-scalc quantum

systems. And perhaps Nature may revcal somc new surprises in this regime which

are not adequately explained by quantum mechanics. If this occurs, it will be a

momcntous discovery in the history of science, and can be expected to have

cons;derable consequences in the other areas of science and technology, as did the

discovery of qUolntum mechanics. Until and unless such events occur, we have no

way of knowing how they might affect informatioil processing, so we can assume

that quantum mechanics is a complete and correct description of the world.

A c1car picture of the rclativc power of classical and quantum information

proccssing is ncedcd in ordcr (0 asses their relative mcrits. It requires furthcr

theoretical work on the foundations of quantum computation and quantum

information. It would be uscful to have a clear path of interesting applications at

varying Icvels of complexity to aid rescarchers aiming to experimentally realize

quantum information processing.

26

Chapter 3

Quantum Computer: Physical Realization

Given a path of potential applications for quantum information processing, how

can it be achieved in real physical system? At the small scale of a few qubits there

are already several working proposals for quantum information processing

devices. Mainly there are three technologies proposed for the purpose

I. Optical,

II. Ion Trap, and

'II. Nuclear Magnetic Resonance.

The different realization technologies are discussed later in this chapter in greater

details. But before the detailed description of specific technologies, let us consider

some important relevant issues.

3.1 Realization of Quantum Computer

To realize a quantum computer,. we must not only give qubits some robust

physical representation, but also select a system in which they can be made to

evolve as desired. Moreover, we must be able to prepare qubits in some speci.tied

set of initial states, and to measure the tinal output state of the system. The

chalkn:;e of quantum realization is that the basic requirements can often only be

partially met. j, coin has two states, and makes a good bit, but a poor qubit

because it cannot remain in a superposition state fer a long time.

A single nuclear spin can be a very good qubit, because superposition of being

aligned with or against an external magnetic tield can last a long time - even for

days. But their coupling to the world is so small that they are hard to measure the

orientation of single nuclei. The constraints are opposing is general: a quantum

computer has to be well isolated in \order to retain its quantum properties, but at

the same time its qubits have to be accessible so that they can be manipulated to

Chapter3
Quantum Computer:
PhYsical Realization

perform computations and to read out the results. A realistic implementation must

strike a delicate balance between these constraints. Therefore, the relevant

question is not 'how to build a quantum computer', but rather, 'how good a

quantum computer can be built' .

3.2 Conditions for Quantum Computation

The basic requirements for quantum computation are the abilities to:

I. Robustly represent quantum information

II. .Perform a universal family of unitary transformations

Ill. Prepare a fiducial initial state

IV. Measure the output result

These are discussed in the subsequent sections.

3.2.1 Representation of Quantum Information

For ele purpose of computation, it is crucial that the set of accessible siates should

be finite. The position x ofa particle along a one-dimensional line is not generally

a good set of states for computation, even though tile particle may be in a quantum

state [x) ,or even some superposition L,c,ix). This is because x has a continuous

range of possibilities, and the Hilbert space has infinite size, so in the absence of

noise the information. capacity is infinite. For example, in a perfect world,. the

entire works of Rabindronath Tagore could be stored in the infinite number of

digits in the binary fraction x = 0.0101 101000101001 110 This is clearly

umcalistic; instead, the presence of noise reduces the number of distinguishable

stales to a finite number.

It is generally desirable to have some aspect of symmetry dictate lhe finiteness of

the state space, in orderto minimize decoherence. For example, a spin-1/2 particle

lives in the Hilbert space spanned by the It) and 1-1.) states; the spin state cannot

be anything outside this two-dimensional space, and thus is a nearly ideal

quantum bil when well isolated.

28

Charter 3
Ouantum Computer:
Physical Realization

If the choice of representation is poor, then deeoherenee will result. For example,

a particle in a finite square well which is just deep enough to eOlitain'iwo bound

states would make a mediocre quantum bit, because transitions from the bound

states to the continuum of unbound states would be possible. These would lead to

deeoherenee since they could destroy qubit superposition states. For single qubits,

the figure of merit is the minimum lifetime of arbitrary superposition states.

3.2.2 Performing Unitary Transformation

Closed quantulT' systems evolve unitarily as determined by their Hamiltonians, but

to perform quantum computation one must be able to control the Hamiltonian to

effect an arbitrary selection from a universal family of unitary transformations.

For example, a single spin might evolve under the Hamiltonian

H = P,(t)X + l'y(t)Y,. where . J~,.ylare classically controllable parameters. By

manipulating Px and Pyappropriately, one can perform arbitrary I single spin

rotations.

Any unitary transform can be composed from single spin operations and

Controlled-NOT gates, and thus realization of those two kinds of quantum logic

gates arc natural goals for experimental quantum computation." However,

implicitly required also is the ability to address individual qubits, and to apply

these gates to selected qubits or pair of qubits. This is not simple to accomplish in

many physical systems. For example, in ion trap, one can direct a laser at one of

many individual ions to selectively excite it, but only as long as the ions are

separated by a wavelength or more.

,
Two important ligures of merit for unitary transforms are the minimum achievable

fiddity, and the maximum time required to perform elementary operations such as

single spin rotations or a controlled-NOT gate.

29

/.,""' ,
','-~-....•

,-,.,
,':

CharIer 3
Quantum Computer:
Physical Realization

3.23 Preparation of Fiducial Initial States

One of the most important requirements for being able to perform a useful

computation, even classically, is to be able to rrepare the desire,d input. With

classical machines, establishing a definite input state is rarely a difficulty - one

merely sets some switches in the desired configuration and that defines the input

state. But in case of quantum systems, this can be very difficult, depending on the

realization of qubits. It is only necessary to be able to produce one quantum state

with high fidelity, since a unitary transformation can turn it into any other desired

input state. For example being able to put n spins into the 100... 0) state is good

enough.

Input slate representation is a significant problem for most physical systems. For

example, ion can be prepared in good input states by physically cooling them into

their ground state, but this is challenging. Moreover, for physical systems where

cnscmblcs of quantum computcrs arc involvcd, cxtra concerns arise. In nuclcar

magnetic resonance, each molecule can be thought of as a single quantum

computcr, and a large number of molecules are needed to obtain; measurable

signal strength. Although qubits can remain in arbitrary superposition of states for

relatively long times, it is difficult to put all of the qubits in all of th:: molecules

into the same state, because the energy difference hw bctween the 10) and 11)
states is much smaller than kT. On the other hand, simply letting the system

equilibrate establishes it in a very well-known state, the thermal one, one the

density matrixp",e~",k,;1' IZ, where Z is a normalization factor required to

maintain tr(p)= 1.

Two figures of merit are relevant to input state preparation: the minimum fidclity

with which the initial state can be prepared in a given state p;" and the entropy

of p;", The entropy is important because, for example, it is very easy to prepare

the state p;" = 1/2" with high fidelity, but that is a useless state for quantum

computation, since it is invariant WIder unitary transforms. Idcally, thc input stalc

30

Chaoter 3

Quantum COII/puter:
Physical Realization

is a pure state, with zero entropy. Generally, input states with non-zero entropy

reduce the accessibility of the answer from the output result.

3.2.4 Measurement of Output Results

For the purpose of our present discussion, let us think of measuremcnt as proccss

of coupling one or more qubits to a classical systcm such that after some interval

of time, the state of the qubits is indicated by the state of a classical system. For

example, a qubit statealO) + ,811), represented by ground and excited states of a

two-level atome, might be measured by pumping the excited state and looking for

lluorescencc. If an c1ectrometer indicates that lluorescence had bcen detected by a

photomultiplier tube, then the qubit would collapse into thell)state; this would

happen with probabilitylfJ1' . Otherwise, the electrometer would detect no charge,

and the qubit would collapse into thelO) state.

An important characteristic of measurement process for quantum computation is

the wave function collapse which describes what happens 'when a projective

measurement is performed. The output from a good quantum algorithm is a

superposition state which gives a useful answer with high probability when

measured. For example, one step in Shor's quantum factoring algorithm is to find

an integer r from the measurement result, which is an integer close to qc / r , where

q is the dimension of a Hilbert space. The output state is actually in a nearly

uniform superposition of all possible values of c, but a measurement collapses this

into a single, random integer, thus allowingrto be determined with high

probability.

Many difficulties with measurement can be imagined; for example,' inefficient

photon counters and amplifier thermal noise can reduce the information obtained

about measured qubit states in the scheme just described. Furthermore, projective

measurements (sometimes called 'strong' measurements) are often difficult to

implemcnt. They require that the 'coupling between the quantum and classical

systems be large, and switchable. Measurement should not occur when not

31

Chapler 3
Quantum Compute,.:
Physical Realizalion

desired; otherwise they can be a deeoherence process. However, strong

measurements are not necessary; weak measurements which are performed

continuously and never switched off are usable for quantum computation. This is

made possible by completing the computation in time short compared with the

measurement coupling, and by using large ensembles of quantum computers.

These ensembles together give an aggregate signal which is macroscopically

observable and indicative of the quantum state. Again, use of an ensemble

introduces additional problems. For example, in the factoring algorithm, if the

measurement output isq(e)lr, the algorithm would fail because (c) , the average.

value ofe, is not necessarily an integer. Fortunately, it is possible to modify

quantum algorithms to work with ensemble average readouts.

A good figure of merit for measurement capability is the signal to noise ratio

(SNR). This accounts for measurement inefficiency as well as inherent signal

strength available from coupling a measurement apparatus to the quantum system.

3.3 Harmonic Oscillator Quantum Computer

Before continuing on to desCribe a complete physical model for a realizable

quantum computer, let us consider a very e1cmentary system - the simple

harmonic oscillator - and discuss why it does not serve as a good quantum

computer. The formalism used in this example will also serve as a basis for

studying other physical system.

3.3.1 The Quantum Harmonic Oscillator (QHO)

Thc harmonic oscillator is an extremely important and uscful concept in the

quantum description of the physical world, and a good way to begin to understand

its properties is to determine the energy eigenstates of its Hamiltonian. One way to

do this is simply to solve" the Schrodinger equation

Ii' d'lf/ (x) . I____ "_ + _ m{j}' X'''J (x) = E '// (x)
2m dx2 2 'f" ". 11

32

Quantum Computer:
Physical Realization

For '/f,,(x) and the eigenenergies E, subject to VI(X) ~ 0 at x ,=:too, and

JllfI(x)12 = 1; the first five solutkms arc sketched here in Figure 3.1. The wave

functions describe the probability amplitudes that a particle in the harmonic

oscillator will be found at different positions within the potential.

andenergy E.

Although these pictures may give some intuition about what a physical system is

doing in co-ordinate space, we will generally be more interested in the abstract

algebraic properties of the states. Specifically, suppose IVI) satisfies with

Then defining operators a ar:d a t as a = ~ (nuox + ip),
. 2mhw

that is, atllfl) is an eigenstate of Ii, with energy E+hw! Similarly, £11./1) is an

eigenstate with energy E - flW. Because of this, a and at are called rising and

lowering operators. It fo!lows that at" IlfI) are eigenstates for any integer n, with

cigenenergies E + nhw. There are thus an infinite number of energy eigenstates,

whose energies are equally spaced apart, by hw ..

n =4

n = 3

n=2

n ~ I

n =0

. Fig 3.1: Sketch of the first five solutions of the Schrodinger equation for'll" (x).

33

Quantu;n Cmnnuter:
Physical Realization

Moreover, since H is positive definite, there must be some IlJIo) for which

allJl 0) = 0; this is the ground state - the eigenstate H with lowest energy. These

results efficiently capture the essence of the quantum harmonic oscillator, and

allow us to use a compact notation In) for the eigenstates, where n is an integer,

and Hln)=Ii(n+1/2~n).

3.3.2 Physical Apparatus for QHO

An example of simple harmonic oscillator is a particle in a parabolic potential

well, Vex) = rna/x' /2. In the classical world, this could be a mass on a spring,

which oscillates back and. forth as energy is transferred between the potential

energy of the spring and the kinetic energy of the mass. It could also be a resonant

electrical circuit, where the energy sloshes back and forth between the capacitor

and the inductor. In theses systems, the total energy of the system is a continuous

parameter.

In the quantum domain, which is reached when the coupling to the external world

becomes very small, the total energy of the system can only take on a discrete set

of values. An example is given by a single mode of electromagnetic radiation

trapped in a high Q cavity; the total amount of energy can only be integer

multiples ofliO) , an energy scale which is determined by the fundamental constant

Ii and the frequency ofthe trapped radiation, 0) •

The set of discrete energy eigenstates of a simple harmonic oscillator can be

labeled as In), where n = 0,1,, oc . The relationship to quantull.l computation

comes by taking a finite subset of these states to represent qubits: These qubits

will have lifetimes determined by the physical parameters such as the cavity

quality factorQ, which can b,,'made very large by increasing the reflectivity of the

cavity walls. Moreover, unitary transformations can be applied by simply allowing

the system to evolve in time. However, there are problems with this scheme, as

will become clear below. We begi~ by studying the system Hamiltonian, and then

34

Chapter 3
(Juantum Computer:
Physical Realization

discuss how one might implement simple quantum logic gates such as the

Controlled-NOT.

3.3.3 The Hamiltonian for QHO

The Hamiltonian for a particle in a one dimensional parabolic potential is

p' 1 "H=-+-mm x
2m 2

where p is the particle momentum operator, m is the mass, x is the position

operator, and m is related to the potential depth. The expression for H can also be

written as: H =lim(ala+~). where a1 and aare creation and annihilation'

operutors, defined as

a= ~(m(JJx+iP),
2mhm

al = ~(mmx-iP).
2mnm

The zero point energy lim / 2 contributes an unobservable overall phase factor,

which can be disregarded for our present purpose. The eigenstates In) of H,

.where n = 0,1,..., have the properties:
alaln) = nln)
a'\n)=~+Iln+l)
aln) = .j;;\n -I)

later, we will find it convenient to express interaction with a simple harmonic

oscillator by introducing additional terms involving aI and a, and interaction

betwccn oscillators with term such as a~a,+a,ai. For now, however, wc confine

our attention to a single oscillator.

Time cvolution of thc cigenstate is given by solving thc Schrodingcr equation,.

trom which wc find that the statc 1/1/(0))= L"cJO~n) cvolvcs in time to bccomc

35

. Chapter 3
Quantum Computer:
Physical Realization

We will assume for the purpose of discussion that an arbitrary state can be

perfectly prepared, and that the state of the system can be protectively measured,

but otherwise, there are no interactions with the external world, so thai the system

is perfcctly closed.

3.3.4 Quantum Computation for QHO

Suppose we wan to. perform quantum computation with the single simple

harmonic oscillator described above. What can be done? The most natural choice

for representation ofqubits are the energy eigenstatesln). This choice allows us to

perform a Controlled-NOT gatc in the following way. Recall that this

transformation performs thc mapping.

loa), ~Ioo),
101), ~IOI),
110), ~ll1),.
Ill),. ~IIO), ..

On two qubits states (here, the subscript L is used to clearly distinguish 'logical'

states in contrast to the harmonic oscillator basis states). Let us encode these two

qubits using the mapping

lao), ~Io)
101),.~12)
110),->~4)+11))/.J2
III),. ~~4)-ll))/.J2.

Now suppose that at t = 0 the system is started in a state spanned by these basis

stales, and we simply evolved the system to forward to time t = ;rr/ tuo. This

causes the energy eigenstates to undergo the transformation

In)-,exp(-i;rrala)n)=(-I)"ln), such that 10), \2), and 14) stay unchanged, but

11)~ -\1). As a result, we obtained the desired Controlled-NOT gate

transformation.

In general, a necessary and sufficient condition for a physical system to be able to

pcrfonn a unitary transform U is simply that the time evolution operator for the

36

\

Chapler 3
Quantum Computer:
Physical Realization

system, T = exp(- iHI), defined by its Hamiltonian H, has nearly the eigenvalue

spectrum as U. in the case above, the Controlled-NOT gate was simple to

implement because it only has eigenvalue +1 and -1; it was straightforward to

arrange an encoding to obtain the same eigenvalues from the time evolution

operator for the harmonic oscillator. The Hamiltonian for an oscillator could be

perturbed to realize nearly any eigenvalue spectrum, and any number of qubits

could be represented by simply mapping them into the infinite number of

eigenstates of the system. This suggests that perhaps one might be able to realize

an er.tire quantum computer in a single simple harmonic oscillator.

3.3.5 Drawbacks of QHO

Of eoursc therc are many problems with the above scenario. Clearly, one will not

always know thc eigenvalue spectrum of the unitary operator for a certain

quantum computation, even though onc may know how to construct the opcrator

from elementary gates. In fact, for most problems addressed ,by quantum

algorithms, knowledge of the eigenvalue spcctrum is tantamount to knowledge of,
the solution! Another obvious problem is that the technique used above does not

allow one computation to be cascaded with anothcr, because in general, cascading

two llllitary tran~forrns results in a two transform with unrelated eigenvalues.

Finally, thc idca of using a singlc harmonic oscillator to perform quantum

computation is flawed because it neglects the principle of digital representation of

information. A Hilbert space of 2" dimensions mapped into the state space of a

single harmonic oscillator would have to allow for the possibility of states with

energy 2"nw. In contrast, the same by using Hilbert space could be obtained n

two-level quantum systems, which has cnergy of at most nnw. Similar

comparisons can be made between a classical dial with 2" settings, and a register

of n classical bits. Quantum computation builds upon a digital computation, not

analog computation.

The main features of the harmonic, oscillator quantum computer are summarizcd

below (each system we consider will be summarized similarly, at the end of the

37

Quantum Computer:
Physical Realization

corrc:>ponding section.) With this, we leave behind us the study of single

oscillators, and tum next to systems of harmonic oscillators, made of photons and

atoms.

3.3.6 Summary of QHO Properties

Thc issues related to the Harmonic Oscillator Quantum Computer can be.

summarized as follows:

• Qubit Representation: Energy levels 10),11), ,[2") of a single quantum

oscillator give n qubits.

• Unitary Evolution: Arbitrary transforms U arc rcalized by matching thcir

eigcnval~e spectrums to that givcn by the Hamiltonian H = at a.

• Initial State Preparation: Not considered.

• Readout: Not considercd.

• Drawbacks: Not a digital representation. Also matching eigenvalues to

realize transformations is not feasible for arbitrary U, which generally

have eigenvalues.

3.4 Optical Photon Quantum Computer (OPQC)

An attractive physical system for representing is a quantum bit is the optimal

photon. Photons are charge less particles, and do not interact very strongly with

each other, or even with most matter. They can be guided along long distances

with low loss in optical fibers, delayed efficiently using phase shifters, and

combined easily using beamsplitters. Photon:' exhibit signature quantum

phcnomcna, such as the intcrferencc produced in two-slit experimcnts.

Furthermore, in principle, photons can be made to interactions. Thcre are

problems with this ideal scenario; nevertheless, many things can be learned from

studying the components, architecture, and drawbacks of an optimal photon

quantum information processor, as we shall see in this section.

38

Chapler 3
Quantum CO/J1Ruler:
Physical Realization

3.4.1 Physical Apparatus of an OPQC

Let us begin by considering what single photons are, how they can represent

quantum states, and the experimental components useful to manipulate photons.

The classical behavior of phase shifters, beamsplitters, and nonlinear optical Kerr

media is described.

Photons can represent qubits in the following manner. As we saw in the discussion

of the simple harmonic oscillator, the energy in an electromagnetic cavity is

quantized in units of nO) • Each such quantum is called photon. It. is possible for a
,

cavity to contain a superposition of zero or one photon, a state which could be

expressed as a qubit coIO)+c,ll), but we shall do something different. Let us

consider two cavities, whose total energy is liO) , and take the two states ora qubit

as being whether the photoll is in one cavity <1(1)) 'or the other (iIO)). The

physi.:al state of a superposition would thus be written as colO 1)+ c,IIO); this is

known as dual-rail representation. The actual focus is on single photons traveling

as a wave packet through free space, rather than inside a cavity, one can imagine

this as having a cavity moving along with the wavepacket. Each cavity in the

qubit state will thus correspond to a different spatial mode.

One scheme for generating single photons in laboratory is by attenuating the

output ofa laser. A laser outputs a state known as coherent state, la), defined as

la)= e-1al'12:t ~In),
.=0 .../n!

where In) is an n-photon energy eigenstate. It suffices to understand just that

coherent states are .naturally radiated Irom driven oscillators such as a laser when

pumped high above its lasing threshold. Note that the mean energy is

(a\n\a) = \nI' . When attenuated, a coherent state just becomes a weaker coherent

state, and a weaker coherent state can be made to have just one photon, with high

probability.

39

Charter 3
Quantum Computer:
Physical Realization

Better synchronicity can be achieved using parametric down-conversion. This

involves sending photons of frequency Wo into a nonlinear optical medium such

as KH2P04 to generate photon pairs at frequencies w, + to, = wo' Momentum is

also preserved, such that. k, + k, = kJ, so that when a single w, photon is

(destructively) detected, then a single Wo photon is known to exist (see Figure

3.2).

By coupling this to a gate, which is opened only when a single photon is detected,

and by appropriately delaying outputs of multipIe. down-conversion sources, one

can, in principle, obtain multiple single photons propagating in time

synchronously, within the time resolution .ofthe time detector and gate.

Laser Crystal

Fig 3.2: Pr.rametric down-conversion for generation of single photons._ ,i i"

Three of the most experimentally accessible devices for manipulating photon'

states are

i. Mirrors,

ii. Phase shifters, and

iii. Beamsplitters.

Mirrors with less than 0.01% loss arc not unusual. A phase shiller is nothing more

than a slab oftransparent medium with index of refraction n different from that of

free space, no' The beamsplitter is nothing more than a partially silvered piece of

glass which reflects a fraction R of incident light, and transmits j-R. In the

laboratory, a b~amsplilter is usually labrieatcd from two prisms, with a thin

metallic layer sandwiched in-betw~en, schematically drawn as in Figure 3.3. It is

40

Chapter 3
Quantum Computer:
.Physical Realization

convenient to define the angle e of a beamsplitter as cos e = R. Th~ two inputs

and two outputs of this device are related by

Gout = Gill cose + bin sin e
bmll = -ain sin 0 + bill cosO.

Nonlinear optics provides another useful component: a material whose index of

refraction n is proportional to the total intensity I of the light going through it:

n(I) = n +n,I . This is known as the optical Kerr effect, and it occurs (very

weakly) in materials as mundane as glass and sugar water. Experimentally, the

relevant behavior is that when two beams 0f light of equal intensity ani nearly co-

propagate through a Kerr medium, each beam will experience an extra phase shift

of e""II.w"'" compared to what happens in the single beam case.

b

a

(a)

b-a
.fi

a+b
.fi

b

a

(b)

a+b
.fi

a-b
.fi

Fig 3.3: Schematic of an optical beamsplitter. (b) is the inverse of (a). [e = ~]

3.4.2 Quantum Computation with OPQC

Arbitrary unitary transforms can be applied to qualltum information, encoded with

single photons in the co101)+ c,ll 0) dual-rail representation, using phase shifters,

beam splitters, and nonlinear optical Kerr media. How they work can be described

by giving a quantum-mechanical Hamiltonian description of each ohhem.
!

The time evolution of a cavity mode of electromagnetic radiation is modeled

quantum-mechanically by a harmonic oscillator, as was shown in the previous

section. 10) is the vacuum state, II) = a110) is a single photon state, and in

41

Chapter 3
Quantum Computer:
Physical Realization

. at" . '
general, In) = r; I0) is an n-pholon slalc, where at is lhc creation operator for

'J n!
the mode. Free soace evolution is described by the Hamiltonian

H =nwata ,

and applying IIf(t))=e-ufI'"llf(o))=2:c"e-"'"'ln), we find that the state
,

IVJ) = colO)+c,ll) evolves in time to become IVJ(t)) = Co I0) +c,e-'''''il). Notethat

the dual-rail representation is convenient because free evolution only changes

IljI)=coIOl)+c,\10) by an overall phase, which is undetectable. Thus, for that

manifold of states, the evolution Hamiltonian is zero.

Phase Shifter: A phase shifter P acts just like normal time evolution, but at a

different rate, and localized to only~the modes going through it That is because
• - I '. , •

light ,Irowsdown in a medium wilh larger index of refraction; specincally, illakcs

!'>. '" (n - no)L I '0 more time to propagate a distance L in a medium with index of

refraction n than in vacuum. For example, the action P on the vacuum state is t9

do nothing: pi0) = I0), but on a single photon state, one obtains p11) = e'• 11).

P performs a useful logical operation on a dual-rail state. Placing a phase shifter in

one mode retards its phase evolution with respect to another mode, which travels

the same distance but without going through the shifter. For dual-rail states this

transfonns coI01)+c,ll0) to coe-/612101)+c,eit>l'iI0), up to an irrelevant overall

phase. This operation is actually nothing more than a rotation

Rz (!'>.)= e-'Z6i'.,

where we take as the)ogieal zeroIOi.) =101) and onejl")=IIO), and Z is the

usual Pauli operator. One can thus think of P as resulting from time evolution

under the Hamiltonian

H=(no-n)Z,
where P = exp(-iHL I co), The following circuit in Figure 3.4 transforms a dual-

["rail state by IVI",,,) = eO

42.

Chapter 3

Ouantum Computer:
Physical Realization

where the top wire represents the 101) mode, the bottom as the .110) mode, and
the boxed 7(represents a phase shift by 7(.

Fig 3.4: Optical circuit representing a phase shift by 7(.

Beal1l1>plitter:A similar Hamiltonian description of the bcamsplitter also exists.

The beamsplitter acts on two modes which are described by the creation

(rnmihilation) operators a (at) and b (h t). The I-Iamiltonian is

HI>, = iO(ah t - at h).

And the beamsplitter performs the unitary operation

B=exn6\atb-abt)j.
The transformations effected by B on a and b are found to be

BaBt =acosB+bsinO and BbBt =-asinB+bcosO.

Nonlinear Kerr Media: The most important effect of Kerr media is the cross

Phase modulation it provides between two modes of light. That is classically

described by the n, term in n(I) = n +n,1 , which is effectively an interaction

between photons, mediated by atoms in the Kerr medium. This effect is described

by the Han1iltonian

]-["""= - Xat aht h.

Where a and b describe two modes propagating through the medium, and for a

crystal of length L we obtain the unitary transform K = eiZ'.ntUh'h •

By combining Kerr media with beam splitter, a Controlled-NOT gate can be

constructed in the following manner. For single photon states, we find that

43

Chapter 3

Quantwl1 Comnuter:
Physical Realization

Kloo) = 100)
KIOI)=IOI)
KIIO)=IIO)
Kill) =e"'III)

and let us take XL = 1f ,such that Kill) = -III).

3.4.3 Drawbacks of OPQC

The single photon representation of a qubit is attractive. Single photons are

relatively simple to generate and measure, and in the dual-rail representation,

arbitrary single qubit operations are possible. Unfortunately, interacting photons is

difficult - the best nonlinear Kerr media available are very weak, and cannot

provide a cross phase modulation of 1f between single photon states. Moreover,

there is always some absorption associated with the nonlinearity. Theoretically it

can be estimated that in the best such arrangement, approximately 50 photons

must be absorbed for each photon which experiences a 1f cross phase modulation

[41].

Historically, optical elassical computers were once thought to be promising

replacement for electronic machines, but they ultimately failed to live up to

expectations when sufficiently nonlinear optical materials were not discovered,

and when their speed and parallelism advantage did not sufficiently outweight

their alignment and power disadvantages.

3.4.4 Summary of OPQC Properties

The issues related to the Optical Photon Quantum 'Computer can be summarized

as follows:

• Qubit Representation: Location of single photon between two modes,

101) and 110), or polarization.

44

Chapter 3

Quantum Computer:
Physical Realization.

• Unitary Evolution: Arbitrary transfarms are canstructed from phasc

shifters (R, rotatians), beamsplitters (Ry rotatians), and nanlinear Kcrr

media, which allaw to. single phatans to. crass phase mad.ulate.

• Initial State Preparation: Create single phatan states (e.g. by attenuating

laser light).

• Readout: Detect single phatans (e.g. using a phatamultiplier tube).

• Drawbacks: Nanlinear Kerr media with large ratio. af cross phase

madulatian strength to. absarptian lass are difficult to. realize.

3.5 Optical Cavity Quantum Electrodynamics (OCQED)

Cavity quanlulIl electrodynamics (QED) is a field af study which accesses an
. ,

impartant regime invalving caupling af single atams to. anly a few aptical madcs.

Expcrimcntally, this is made passible by placing singlc atams within' aptical

cavities af very high Q; because anly ar twa electromagnetic mades exist within

the cavity, and each af this has a very high electric field strength, the dipale

eaupling between the atam and the field is very high. Because af the high Q,

phatan within the cavity has an appartunity to. interact many times with the atam

befare escaping. Thearetically, this technique present unique appartunity to.

eantrol and study single quantum systems, apening many appartunities m

quantum chaos, quantum feedback cantrol, and quantum computatian.

In particular, single-atam cavity QED methads affer a potential solutian dilemma

with the aptimal quantum computer described in the previaus sectian. Single

phatons can be gaad carriers of quantum informatian, but they require some other

medium in arder to. interact with each other. Bccause they are bulk materials,

traditianal nanlincar aptical Kerr media arc unsatisfactory in ,satisfying this need.

Hawever, well isalated single atorl1s might nat necessarily suffer from the same

decaherence effects, and mare over, they eauld also. provide cross phase

madulatian between phatons. In fact, if the state 0.1' single phatons cauld be

effIciently transferrcd to. and single atams, whase intcractions cauld be cantrolled?

This patcntial scenario. is the tapic this section.

45

, .

Chopler 3

OuolllUI1IC01ll{!uler:
Physico! Rea!izalioll

3.5.1 Physical Apparatus for OCQED

The two main experimental components of a cavity QED system are the

electromagnetic cavity and the atom. The basic physics of the cavity modes are

described here:

Fabry-Perot cavity:
The main interaction involved in cavity QED is the dipolar interaction

J.E between an electric dipole moment J and an electric field E. It is

difficult to change the size of J; however, /EI is experimentally

accessible, and one of the most important tools for realizing a very large

electric field in a narrow band of frequencies and in a small volume of

space, is the Fabry-Perot cavity.

In the approximation that the electric field is monochromatic and occupies

a single spatial mode, it can be given a very simple quantum-mechanical

deseription:

E(r)=iEEo[aeik' -ate-;"].

Here, k = OJ / c is the spatial frequency ofthe light, Eo is the field strength,

E is thc polarization, and r is the position at which the ~eld is desired ..

Note that the Hamiltonian governing the evolution of the field in the cavity

is simply

H field = n.{j)Q ta,

and this is consistent with the semi-elassic notion that the energy is the

volume integral of lEI' in the cavity.

Two-leveilltoms:
The electronic energy eigcnstatcs of an atom can be very complicated, but

for our purposes modeling ..an atom as having only two states is an

excellent approximation. This two-level atom approximation can be valid

because we shall be concerned with the interaction with monochromatic

46

Chapler 3

Quantum Computer:
Physical Realization

light and the only relevant, energy levels arc those satisfying two

conditions: their energy difference matches the energy of the incident

photons, and symmetries do not inhibit the transition. These conditions

arise from basic conservation law of energy, angular momentum, and

parity. Energy conservation is no more than the condition that

Jim = E, - E"

. where E, and E, are two eigenenel'gies of the atom, Angular momentum

and parity conservation requirements can be illustrated by considering the

matrix element of f between two orbital wave functions, (1"m,lfll"m,).
Without loss of generality, we can take f to be in the x - y plane, such

that it can .be expressed in terms of spherical harmonics as

f = ~ 8~ [(- r, + iry~,+, +k + iry)y"J. In this basis, the relevant terms in

(1"m,lfll"m,) are fY,,'m,Y,mY,,m,dQ. The first condition is the conservation

of angular momentum, and the second, parity, under the dipole

approximation where (1"m,lfll"m,) becomesrelevant. These conditions

.arc sele;tion rules which are important in the two-level atom

approximation.

3.5.2 Summary of OCQED Properties

The issues related to the Optical Cavity QED can be summarized as follows:

• .Qubit Representation: Location of single photon between two modes,

101) and 110), or polarization.

• Unitary Evolntion: Arbitrary transforms are constructed from phase

shifters (R, rotation~), beamsplitters (Ry rotations), and a cavity QED

system, comprised of a Fabry-Perot cavity containing a few atoms, to

which the optical field is coupled.

• Initial State Preparation: Create single photon states (e.g. by attenuating

laser light) .

• . Readout: Detect single photons (e.g. using a photomultiplier tube).,

47

!i-.~

Chapter 3

Quantum CompUler:
PhYsical Realization

• Drawbacks: The coupling of two photons is mediated by an atom, and

thus it is desirable to increase the atom-field coupling. However, coupling

the photon into and out of the cavity becomes difficult, and limits

easeadibility.

3.6 Ion Traps

Electron and nuclear spins provide potentially good representations for qubits.

Since the energy difference between different spin states is typically very small

compared with other energy scales (such as the kinetic energy .01'typical atoms at

room temperaturc), the spin states of an atom are usually difficult to observe, and

even more difficult to control. However, in carefully crafted environments,

exquisite control is possible.

Such circumstanccs arc provided by isolating and trapping small numbers of

charged atoms in electromagnetic traps, thcn cooling the atoms until thcir kinctic

cnergy is much lower than the spin energy contributions. After doing this, incident

monochromatic lights can be tuned to selectively cause transitions which change

certain spin states depending on other spin states. This is the essence of how

trapped ions can be made to perfonn quantum computation.

3.6.1 Physical Apparatus for Ion Traps

An ion trap quantum computer has as its main components an electromagnetic

trap with lasers and photo-detectors, and ions.

Trap geometry and lasers: The main experimental apparatus, an

clectromagnetic trap constructed trom lour cylindrical electrodes, is shown in

Figure 3.5.

48

(,
,.

ChaPter 3

Quantum Computer:
Phl'sica/ Rea/izatiall

Laser I Modulators
y x
••\I

\'-- .• Z

Photo-detectors

Fig 3.5: Schematic drawing of an ion trap quantum computer.

The end segments of the electrodes are biased at a different voltage Vo than the

middle, so that the ions arc axially confined oy a static potential

<1>d,='Kvolz' _(x2'+ y')J!2 along the z axis (K is a geometrical factor):

How,:ver, a result known as Earnshml' 's Theorem states that a charge cannot be
,

confined in three dimensions by static potentials. Thus, to provide confinement,

two of the electrodes are grounded, while . tile other two are drivcn by a fast

oscillating voltage which creates a radiofrequency (RF)' potential,
<1>if = (Vo cosOTt + V,)(1 + (x' - y')/ R') /2, where R is a geometrical.factor. The

segments of the electrodes are'capacitively coupled such that the RF potential is

constant across them. The combination of <1>,,,and <1>if creates, on average

(over 0,.), a harmonic potential of x, y, and z. together with the Coulomb

repulsion of the ions, this gives a Hamiltonian governing the inotion of the N ions.

in the trap,

\."!,~ " " "lp,I')~" e'If = £.., (J),x, +(J)yY, +(J),z, +-, +£..,£.., 1_ -I'
let 2 M . j ••1 j>/ 47Too If - rj

where M is the mass of each ion. Typically, (J)"u,. »(0, by design. so that the

ions all lie along the z axis.

In the ion trap, the energy eigenstates represent different vibrational modes of the

entire linear chain <if ions moving together as a body, with mass NM. These are

called the center of mass modes. Each 1i(J), quantum of vibrational energy is

49

Chopler 3

Quantum"Computer:
Phvsicol Realization

called a phonon, and can be thought as a particle. For the phonon description to

hold, certain criteria must hold. First, the coupling to the environment must be

sufficicntly small such that thermalization dose not randOlnize thc state of the

system, and second, the width of the ion oscillation in the trap potential should bc

small compared to the wavelength ofthe incident light. This Lamb-Dicke criterion

is conventionally expressed in terms of the Lamb-Dicke parameter l] :; 2JlZo / A. ,

where A. is the wavelength, and zO = .J/i /2NMOJ is the characteristic length scale

. of the spacing between ions in the trap. The Lamb-Dicke criterion requires

thatl]« I; this does not strictly have to be met in order for ion traps to be useful

for quantum computation, but it is desired to have that l] '" I at least, in order that

the individual ions can be resolved by different laser beams, but without making

their motional state too difficult to optically excite in order to perform logic

operations.

Atumic structure: The interr,al atomic states relevant to the trapped ion we shall

consider result from the combination F of electron spin Sand nuelear spin 1,

giving F = S + 1. This is formally known as the addition of angular momenta

theory. The theory not only describes important physics for understanding atomic

structure, bilt also is an interesting mechanism for quantum information. A single

photon interacting with an atom can provide or carry away one unit of angular

momentum. But there are numerous possible sources of angular momentum in an

atom: orbital, electron spin, and nuclear spin. The photon cannot distinguish

between different sources, and to describe what happens we must select a basis in

which the total angular momentum becomes a uniquely defined property of the

state.

Consider, for example, two spin-Y,. spins. The computational basis for this two

qubit ~pace is 100),101),110),111), but to span the state space we could equally well

choose the basis

50

Quantum Computer:
PhYsical Realization

I) _101)-110)
0,0 I - .fi
11,-1)1 = 100)

I) 101)+110)
1,0 r;;

I '12

11,1) J = III).
These special basis states are cigenstates of total momentum operator, defined by

j, =(X, +X,)/2,jy =(1"; +Y,)/2,j, o.(Z, +Z,)/2,andJ' =j; + j: + /.

The states Ij,IIl)) J are eigenstates of J' with eigenvalue j(j + 1), and

simultaneously eigenstates of j" with eigenvalue Ill). These states are the natural

ones selected by many physical interactions; for example, in a z oriented

magnetic field the magnetic moment Jl in the Hamiltonian Jlf3, is proportional

to Ill) , the component of the total angular momentum in the z direction.

3.6.2 Summary of Ion Trap Properties

The issues related to the Ion trap Quantum Computer can be summarized as

follows:

• Qubit Representation: Hyperfine (nuclear spin) state of an atom, and

lowest level vibrational modes (phonons) of trapped ion.

• Unitary Evolution: Arbitrary transforms are constructed from application

of laser pulses which externally manipulate the atomic state via the

Jaynes-Cummings interaction. Qubits interact via a shared phonon state.

• Initial State Preparation: Cool the atoms (by trapping and using optical

pumping) into their motional ground state, and hyperfine ground state.

• Readout: Measure population of hyperfine states.

• Drawbacks: Phonons lifetimes are short, and ions are difficult to prepare.

in their motional ground states.

51

Chapter 3

Quantum Computer:
Physical Realization

3.7 Nuclear Magnetic Resonance (NMR)

Dircd manipulation and detection of nuclear spin states uSll1g radiofrequcncy

electromagnetic waves is a wcll-devcloped field known as Nuclear Magnelic

Resonance. These techniques arc widely used in chemistry, for example, to

measure properties of liquids, solids, and gases, to determine the structure of

molecules, and to image materials and even biological systems. Th,:se many

applications has lead the technology of NMR; to become quite sophisticated,

allowing control and observation of tens to hundreds and thousands of nuclei in
experiments.

However, two problems arise in using NMR for quantum computation. First,

because of the smallness of the nuclear magnetic moment, a large n'umber (more

than'" 10') of molecules must be present in order to produce a measurable

induction signal. The output of an NMR measurement is an average over all the

molecule's signals; can the average output of an ensemble of quantum computer

be meaningfill? Second, NMR is typically applied to physical systems in

equilibrium at room temperature, where the spin energy 1i0) is much less than

kilT. That means the initial state of the spins is nearly completely random.

Solutions to these two problems have made NMR a particularly attractive and

insightful method for implementing quantum computation, despite stringent

limitations which arise from thermal natureoftypical systems, Many lessons can

be learnt from NMR: for example, techniques for controlling realistic

Hamiltonians to perform arbitrary unitary transforms, methods for characterizing

and circumventing decoherence (and systematic errors), and considerations which

arise in assembling components in implementing full quantum algorithms on

entire systems.

3.7.1 Summary ofNMR Properties

The issues related to the NMR Quantum Computer can be summarized as follows:

• Qubit Representation: SpinoI' an atomic nucleus.

52

Charter 3

Quantum Computer:
'Physical/lealim/ioll

• Unitary Evolution: Arbitrary transforms are constructed from magnetic

field pulses applied to spins in a strong magnetic field. Coupling between

spins are provided by chemical bonds between neighboring atoms.

• Initial State I)reparation: Polarize the spins by placing them in a strong

magnetic field, then use 'effective pure state' preparation techniques.

• Readout: Measure voltage signal induced by precessing' magnetic

moment.

• Drawbacks: Effective pure state preparation schemes reduce. the signal

exponentially in the nuntber of qubits, unless the initial polarization is

sufficiently high.

3.8 Chapter Summary

The chapter Quantum Computers: Physical Realization can be summarized as

follows:

• Thcre are four basic requirements for implementation of quantum

computation:

I. Representation of qubits,

ii. Controllable unitary evolution,

iii. Preparation of initial qubit states, and

iv. Measurement of final qubit states.

• Single photons can serve as good qubits, using 101) and 110) as logical 0
and I, but conventional nonlinear optical materials which are sufficiently

strong to allow single photons to interact inevitably absorb or scatter the

photons.

• Cavity-QED is a technique by which single atoms can be made to interact

strongly with single photons. It provides a mechanism for using an atom

to mediate interaction between single photons.

• Trapped ions can be cooled to the extent that their electronic and nuclear

spin states can be controlled by applying laser pulses. By coupling spin

53

CharIer 3

Quantum Computer:
,Physical Realization

states through center-of-mass phonons, logic gates between different ions

can be performed.

• Nuclear spins are ncarly ideal qubits, and single molecules would bc

nearly ideal quantum computers if their spin states could only be

controlled and measured. Nuclear Magnetic Resonance makes this

possible using the large ensemblec of molecules at room temperature, but

at the expense of signal loss due to an inefficient preparation procedure.

54 '

(,

Chapter 4

Multi-Output Ternary Logic and Quantum

Cascade: A Literature ~urvey

Diffcrent thcoretical issues regarding logic synthesis are discusscd in this chaptcr.

Thc Galois Ficld and Quantum Tcchnology arc discussed here. Quantum cascade

is a good choicc for realizing multi-valued reversiblc logic. Reversible logic and

its uLiEty are also discusscd. Finally reccnt research works in this field are

rcviewed.

4.1 Reversible Logic

It is implicd that the quantum computcrs are inherently capable of performing

reversible computations. And it is also assumed that all the futurc computers will

be reversible. As this thesis deals with the synthesis of quantum logic, we have to

follow the rules and postulations of reversible logic. This Sections presents the

differcnt aspects ofreversiblc logic.

4.1.1 Moore's Law

In 1965 Moore [23] observed an cxponcntial grO\"th in the number of transistors.

pcr integrated circuit and predicted that this trend would continue which is well

known as "Moorc's Law". Through thc Ie producers' relentlcss tcchnology

advances, Moore's Law, the doubling of transistors every couple of years, has

becn maintained, and still holds true today. Experts expect that it will continue at

Icast through the end of this decadc.

Chanler 4
Mulli-Output Ternary Logic-and Quantum Cascade:

A Literature Survey

4.1.2 Argument for Alternative Technology

The number of transistors in a processo. are getting doubled every couple of

years. The power consumption and heat dissipation of the Integrated Circuits are

also :ncreasing \{ith the same pace. Another severe problem is that the capacity of

semiconductor technology will soon be saturated; under this circumstances VLSI

designers all over the world arc trying to tlnd alter~ative technology to design and

realize logic circuits:

Definition 4.1: A logic gate is irreversible if it is not possible to determine the

input combination uniquely by observing the corresponding output produced by

thc gate. A logic gate is reversible if it is possible to determine the input

combination uniquely by observing the corresponding output for all the output

produced by the gate.

For e-xample, AND gate is irreversible. If the output of an AND gate is 0, then we

can not exactly say what was the input combination by observing the output only;

it can be any of 00,01, or 10. Similarly OR, XOR, NAND, etc. gates are also

irreversible. Table 4.1 shows the truth table of some common 2-input I-output

irreversible gates.

lnDut OutDut
AlB AANDB AORB A XORB ANANDB ANORB
0 0 0 0 0, I 1
0 1 0 I 1 I 0
1 0 0 1 I I 0
1 1 1 I 0 0 0

Table 4.1: Truth table of some common 2-input I-output irreversible gates.

Figure 4.1 shows the block diagram and truth table of a popular reversible gate

named Feynman gate. Note that for every output combination of the gate, there is

exactly one distinct input combination in the truth table.

56

Chapter 4
Multi-Output Tern'.:l1Y Logic and Quantum Cascade:

A Literature Survey

A

B .. 1 QAXORII

(a) Block Diagram

Fig 4.1: A reversible gate

AB I f'Q
00 , 00
o I I 0 I
10 I' I I
I I I0

!
(b) Truth Table

Landauer [49) showed that a computational system built using traditional

irreversible logic gates such as AND, OR, etc. leads inevitably to energy

dissipation, regardless of the technology to realize the gates. The energy loss due

to irreversible gates is negligible for current silicon technologies using adiabatic

design. However, it is well known that Moor's Law will stop to function around

years 20 I0 - 2020 and some dramatic changes will therefore have to happen in

microelectronics not later than the middle of this century [26). In that time

reversible logic design will be of primary importance.

Bennett [10) showed that for power not to be dissipated in an arbitrary circuit, it is

necessary that the circuit be built from reversible gates. In principle, reversible

logic gates dissipate arbitrary little amount of heat and the use of reversible

operations are likely to become more attractive. It should be noted that Bennett's

theorem is only a necessary but not sufficient condition for the motivation of

researching reversible logic. Its extreme importance lies in the technological

necessity that every future technology will have to use reversible gates in order to

reduce power.

4.1.3 Binary Reversible Logic

The issue of reversible logic was first investigated by Landauer in 1961[49]. The

reversibility of computation became a matter of concern in the 1970s. There were

two (elated issues, logical reversibility and physical reversibility, which were

intimately connected. Logical reversibility refers to the ability to reconstruct the

input from the output of a computation, or gate function. For instance, the AND

gate is explicitly irreversible, taking two inputs to one output, while the NOT gate

57

Chapter 4
Multi-Output Ternary Logic and Quantum Cascade:

A Literature Survev

is reversible (it is its' own inverse). The connection to physical reversibility is

usually made as follows. Since the NAND gate has only one output, one of it's

inputs has effectively been erased in the process, whose infonnation has been

irretrievably lost. The change in entropy that would be associated with the lost of

one bit of information is In2, which, thermodynamically, corresponds to an energy

increase of kT In2, where k is Boltzman's constant and T is the temperature. The

heat dissipated during a process is usually taken to be a sign of physical

irreversibility, that the microscopic physical state of the system cannot be restored

exactly as it was before the process took place. This is better explained by the

following example, presented in [49).

Example 4.1: Consider a very small special-purpose computer, with three binary

elements p, q, and r. a machine cycle replaces p by r, replaces q by 1', and

replaces I' by pq. There arc eight possible initial states, and in thermal

equilibrium they will occur with equal probability. The initial and final machine

states are as follows-

Before Cycle After Cycle Final

p q r P, q, r, State

1 1 I I I 1 a
1 1 0 0 0 I B
I 0 1 I 1 0 y

1 0 0 0 0 0 Ii
0 1 1 1 1 0 y

0 1 0 0 0 0 Ii
0 0 1 1 1 0 y

0 0 0 0 0 0 Ii

Table 4.2: Three input-three output devices which maps eight

possible states onto only four different states.

There arc four distinct final states, namely a, 13, y, and Ii with their own frequency

of occurrence. State a and 13 occur with a probability of X each, while states y

and Ii occur with a probability .%' . The initial entropy was

58

Chapter 4
Multi-Output Ternarv Logic and Quantum Cascade:

A Literature Sun1ey

S, =klnW=-k" plnp1 1 L.
=-kL -ln~=3kln2

8 8
=2.0794k

The final entropy is

Sf =-kLplnp

= -k(~In~ +~ In~. + .3.In .3.+ .3.'n.3.)
88888888

=1.2554k

The difference S, - Sf is 0.824k. The minimum dissipation, if the initial statc

has no useful information, is thcrefore 0.824kT.

Th~re were two related questions, one is whether a computation can be done in a

logically reversible fashion (unlike .one that uses NAND gates, for example), and

thc othcr was whcthcr any hcat nccds to bc dissipatcd during a computation. Both

of these issues were quite academic however, as Feynman [51] pointed out, an

actual transistor dissipates close to 1010 kT of heat, and even the DNA copying

mechanism in a human cell dissipates about 1OOkT of heat per bit copied [which is

understandable from a consideration of the chemical bonds that nced to be broken

in the process], both are far from the ideal limit of kTln2 for irreversible

computing.

That classical computation can be done reversibly with no energy dissipated pcr

computational step was discovered by Bennett [10]. He showed this by

constructing a reversible model of the Turing machine [8] and showed that any

problem that can be simulated on the original irreversible machine can also be

simulated with the same efficiency on the reversible model. The logical

reversibility inherent in the revcrsible model implied that an implementation of

such a machine would also be physically reversible. This started the search for

physical models for reversible classical computation.

The models for reversible computation are similar to the models of classical

computation, except that the number of outputs of the functions will at least be the

59

Chapter 4
Multi-Output Ternary Logic and QlIantlim Cascade:

A Literature Sun1el'

same of the number of inputs, and there must be a bijection3 between the input

combinations and the output combinations of the function. Some reversible gates

are presented as follows.

Since reversible logic gates are symmetri~ with respect to the number of inputs

and outputs, we can represent them in ways other than the truth table, which

emphasizes this symmetry. We are readily familiar to one reversible gate - the

NOT gate, who~e truth table is-

A NOTA
0 I
I 0

Table 4.3: Truth table for NOT Gate

We could also write this in the form ofa matrix, or as a graphic [Figure 4.2]. The

matrix form lists the lines in the truth table in the form 0, I. The input lines. are

listed horizontally on the top and the output lines are listed vertically along the

side, in the same order.

Input
0 I

0 0 I

I 1 0 CD
Matrix Form Graphic Form

Fig 4.2: Matrix and Graphic representation of NOT Gate

We fill in the matrix with I's and O's such that each horizontal or vertical line has

exactly one I, which is to be interpreted as a one-to-one mapping of the input to

the output. For example, a 1 in column one, row two in the NOT means that a 0

input gets taken to a I output. The graphical representation to the right of the table

is a Gondensed representation of the NOT gate. The horizontal line represents a

bit, whose initial variable value, A, is listed on the left and whose final value,

NOT A, is listed on the right. The operation of the NOT gate in the middle is

3 That means, there is a unique output combination corresponding to every input

combination.

60

Chapler 4
.Multi-Output Ternary Logic and Quantum Cascade:

A Literature Survev

symbolized by the Et>sign. A two-bit gate closely related to the NOT gate is the

two-bit Controlled-NOT (or C-NOT) gate [Figure 4.3], which performs a NOT on

the second bit if the first bit is 1, but otherwise has no effect.

Input
. XOR=C-NOT 00 01 10 II

00 1 0 0 0 A A
::; 01 0 I 0 0
0.,
'5 10 0 0 0 1
0 1\ 0 0 I 0 B A+/J

Matrix Form Graphic Form

Fig 4.3: Matrix and Graphic representation of Control led-NOT Gatc

The CNOT is sometimes also called XOR, since it performs an exclusive OR

operation on the two input bits and writes the output to the second bit. The

graphical rcprcsentation of this gatc has two horizontallincs representing thc two

variable bits, and the conditionality of the operation is represented by the addition

of a vertical line originating from the first bit and terminating with a NOT symbol

on the second bit.

Two-bit gates are not sufficient for universal reversible computation. However, a

three-bit gate is sufficient. A universal three-bit gate was identified by Toffoli

[54], c?lIed the Controlled-Controlled-NOT (or CC-NOT), or simply the (binary)

Toffoli gate. It applies a NOT to the third bit if the first two bits are in 11, but

otherwise having no effect. The graphical represeLtation of this conditional three-

bit gate is given to the right of the table in Figure 4.4, where both A and Bare

checked to see if they are in I - denoted by the two solid circles on these bits -

before performing NOT on C.

The Toffoli gate is known to be universal for reversible Boolean logic, the

argument for which is based on the fact that the Toffoli gate contains.the NAND

gate within it. When the third bit is fixed to be I, the Toffoli gate writes the

NAND of the first two bits on the third, that is:

A, J3 ,1 ~ A, B , AB

61

Charier 4
Multi-Output Ternarv Logic and Quantum Cascade:

A Literature Survey

Input
CC-NOT 000001 010011 !OO 101 110 III

nOD I 0 0 0 0 0 0 0 A
001 0 I 0 0 0 0 0 0
DID 0 0 I 0 0 0 0 0

'::; 0 I 1 0 0 0 I 0 0 0 0 fJ
~ 100 0 0 0 0 I 0 0 0
o 101 0 0 0 0 0 1 0 0

CI 10 0 0 0 0 0 0 0 I
III 0 0 0 0 0 0 I 0

Matrix Form

~~,1B+C'

Graphic Form

Fig 4.4: Matrix and Graphic representation of CC-NOT Gate

4.1.4 Ternary Reversible Logic

Ternary quantum circuits have recently been introduced to help reduce the size of

multi-valued logic for multi-level quantum 'eomputing systems. While most of the

results arc for binary quantum computers, the multi-valued quantum logic

synthesis is very new research area. Unfortunately, previous synthesis methods

produce circuits that are unnecessarily complex. One promising alternative for

reducing the circuit size is to use gates that are ternary counterparts of the classical

binary Feynman gates and new 2-qudit ternary controlled gates (qudit is a

multiple-valued counterpart of binary quantum bit or qubit, for ternary logic it is

knuwn as qutril).

4.1.'5 Some Ternary Reversible Gates

Figure 4.5(a) shows a ternary Feynman Gate. Here A is the controlling input and

B is the conlrollcd input. P is equal to thc input !I. and Q is GF3' sum of !I. and B.

(note that GF3 sum is the same as modulo 3 sum). If B = 0, then Q = A, and the

gate acts as a copying gate. The ternary 2*2 Feynman Gate is practically

realizable [37] .

• Ternary Galois Field [see Section 4.3.2.2]

62

Charle!' 4
A4ulli-Ou/lJu/ Ternarv Logic and Quantum Cascade:

A Literature Survey

A P~A A, PI::::: Al

B Q~A+B A, Pk == Ak

(a) Ternary FeynmanGate f, flc ::::: arbitrQlY function of

A1,A2, ••• , Ak

A- P~A

Ahl Phi = tic + Ak~1

B Q~B

Ak+n Pk+" = fk t AkH1
C R~AB+C

(b) Ternary Toffoli Gate (e) Generalized Ternary Toffoli Gate

Fig 4.5: Some Ternary Reversible Gates

Figure 4.5(b) shows a 3*3 Toftoli Gate. Design of Galois Field Sum of Products

(GFSOP) arrays and factorized arrays is based on these gates. These arrays are the

multiple-valued counterpart of well-known binary Exclusive-OR Sum of Products

(ESOP) and factorized ESOP cascades. Here A and B are the controlling input and

C is ,he controll'~d input. A generalized Ternary Toffoli Gate is proposed by [35]

shown in Figure 4.5(c). There are k controlling inputs and n controlled inputs.

There are six ternary shift operations while binary logic has only two - no shift

and NOT. Six 1*1 ternary shift gates are shown in Figure 4.6. These gates are

realizable using ternary quantum Feynman primitive [35]. l'wo cascaded shift

gates can be replaced by a single equivalent shift gate.

Gate Name
Gate Symbol with Gate

operation* Number

Buffer x -{>-- x 0

Single-Shift x --D=>- x'~x + 1. I
-------------- ------

Dual-Shift x --8>- x'/~x + 2 2

Self-Shift x -0>- x'//=2x 3

Self-Single-Shift x ---{3>--X" ~2x + 1 4

Self-Dual-Shift x --G>--xA~2x + 2 5
.

Fig 4.6: Ternary Shift operations, gate symbols, and their numbers

63

: ,'".

Chapter 4
Multi-Gumu! Ternarv Logic and Quantum Cascade:

A Literature Survev

Realization of multiple-valued (ternary) logic function in quantum circuit using

complex gates like Toffoli is not feasible. This is because in general these gates

are having III inputs and III outputs where III > 2. Therefore it would be a better

idea ifthe quantum circuit is constructed using 2*2 gates (primitive gates) only.

Figure 4.7 shows the realization of an arbitrary ternary function using Toffoli

gates. Description of the synthesis process is beyond the scope ofthis'thcsis. (see

[37])

The success in the true quantum realization of some ternary permutation gates

now allows us to physically build ternary quantum computers using these gates.

One very promising 2*2 primitive gate is generalized ternary gates (GTG) is

shown in Figure 4.8. It was first introduced by Perkowski et. al. [43]. De-Vos

Gates and Ternary Feynman Gatcs arc spccial cascs of this gatc. Thcy claimed

that GTG can be realizcd using Quantum Technology such as ion traps [43]. Very

recently some works are being done on synthesizing reversible ternary circuits

using GTG (see [34], [36], [38], [44]).

c

II

o

A

o

o

o
'"--- ;}

'"
""~o
S

"0

S

A',{C"'
+A,B"
+A B

Toffoli gate

Fig 4.7: Quantum Circuit using Toffoli gates to realize the function,
F(A,lJ.C) =[0, I ,2, 1,0,2,2,2.2.2, I ,0,0, I ,2, I, I, I, I, I, I ,2,2,2,0,0,0]T

=A'B 'C'" +A "B' +A'B"

4.2 Galois Ficld and Quantum Technology

In this section we briefly discuss the theoretical background of Galois Field (GF)

and Quantum technology. The mathematical foundation of reversible logic

64

Chapter 4
Multi-OwpUI Ternarv Logic and Quantum Cascade:

A Literature Sui'vcv

synthesis is bas~d on the theory of GF and the practical implementation of the

reversible circuit can be done efficiently with the help of Quantum Technology.

4.2.1 Quantum Computation

The earliest formalism of quantum computation (exploiting the full power of

quantum computers) was introduced by Deutsch [16] in 1985, when he defined a

quantum physical analogue of a probabilistic Turing machine, but the first

surprising powerful result came almost ten years later. In 1994 Peter W. Shor

demonstrated how the quantum computation can be used for factoring integers

into prime factors probabilistically in polynomial time [48]. This invention is

naturally interesting theoretically, but also practically if a quantum computer

could be really constructed, since the securities of the RSA cryptosystem and

many protocols is based on the assumed non-tractability of the factoring problem.

The research on quantum computation naturally can be divided into physical and

mathematical part, although the border between these parts is not clear and stable.

The physical research concentrates more on the possibility of the implementation

of quantum computers and quantum cryptography, while the mathematical part

will be interested in the classification of quantum complexity classes and the

relations between classical ones.

A

B

Controlling
input

Controlled
input

q=A

{

X shifi of B if A = 0

02 = Y

z
' shift of B if A = 1

0, shiji of B if A = 2

Where x, y and z shifts arc any tcrl1ar~
shift operation including Buffer

Fig 4.8: Generalized Ternary Gates (GTG)

4.2.2 Ternary Quantum Computing

In multi-valued (MY) Qwmtum. Computing (QC), the unit. of memory

(information) is qudit. MY quantum logic operations manipulate qudits, which arc

65

Charier 4
Multi-Output Ternarv Logic and Quantum Cascade:

A Lilerolure Survey

microscopic entities such as a photon's polarizations or an elcmentary particle's

spins. Ternary logic values of 0, I, and 2 are represented by a set of

distinguishable different states of a qutri!. After encoding these distinguishable

quantities into multiple-valued constants, qutrit states are represented by the

notations 10), II), and 12).

Qudits exist in a linear superposition of states. In ternary logic, the notation for thc

supcr:Josition is. al 0) + pi)) + rI2). These intermediate states cannot bc

distinguishcd, rather a measurement will yield that the qutrit is in one of thc basis

. states, 10), II), or 12). The probability that a measurement of a qutrit yields state

10) is lal', st~tc II) is IPI', and statc 12) is Irl'. Sum of these probabilitics is I.

Thc absolute valucs are rcquircd sincc, in gcncral, ex, 13 and rare complcx

quantities.

Pairs of qutrits are capable of representing nine distinct states, 100), 101), 102),

110), III), 112), 120), 121), and 122), as well as all possible superposition ofthc

states. This property is known as "entanglemcnt", and may be mathematically

described using the Kronecker product (tcnsor product) operation @, defincd as -

1jI, =a,IO)+p,II)+r,12). When thc two qutrits are considered to rcprescnt a

statc, that statc Ij1I2 is thc supcrposition of all possible combinations of thc original

Superposition pDperty allows qubit states to grow much faster in dimension than

classical bits, and qudits states grow much faster than qubits states [7]. In a

classical system, n bits represent 2" distinct state~, whereas n qutrits correspond

66

Chapler 4
Multi-Olll'put Ternary Logic and Quantum Cascade:

A LUera/lire Survey

to a superpositiocl of 3" states. In the"above formula some coefficient can be equal

to zero, so there exists a constraint bounding the possible states in which the

system can exist. As observed in [7] - "Allowing d to be arbitrary enables

a tradeoff between the number of qudits making up the quantum computer and the

number of levels in each qudit". These all contribute to difficulty in understanding

the concepts of quantum computing and creating efficient analysis, simulation,

verification and synthesis algorithms for QC. Generally, however, we believe that

much can be learnt from the history of Electronic Computer Aided Design as well

as from MY logic theory and design, and the lessons learnt should be used to

design efficient Soft Computing tools for MY quantum computing.

4.2.3 Quantum Circuit

In terms of logic operations, anything that changes a vector of qudit states can be

considered as an operator. These phenOl~ena can be modeled using the analogy of

a "quantum circuit". In a quantum circuit, wires do not carry ternary constants but

correspond to 3-tuples of complex values, a, [3, and y. Quantum logic gates of the

circuit map the complex values on their inputs to complex values on their outputs.

Operations of quantum gates are described by matrix operations. Any quantum

circuit is a composition of parallel and serial connections of blocks, from small to

large. Serial connection of blocks corrcsp()nds to multiplication of their (unitary)

matrices. Parallel connection corresponds to Kronecker multiplication of their

matrices. So, tht'oretically, the analysis, simulation and verification are easy and

can bc based on matrix methods. Practically these are tough because the

dimensions of the matrices grow exponentially.

4.2.4 Galois Field

A Galois field is a finite field with p" elements where p is a prime integer. The

set of nonzero elements of the field is a cyelic group under multiplication. Here

we arc showing the clements and addition and multiplication operations of the

first three Galois Fields in the subsequent "ections.

67

Chapter 4
Mu/ti-Output Ternarv Logic and Quantum Cascade:

A Literature Survey

4.2.4.1 GF(2)

GF(2) consists of the elements 0 and 1 and is the smallest finite field. Its addition

and multiplication tables are as follows:

+ 0 1
o 0 J

1 I 0 -m:.0 I
000
101

Table 4.4: Addition and Multiplication in GF(2)

4.2.4.2 GF(3)

GF(3) consists of the elements 0, 1, and 2. Its addition and multiplication tables

are as follows (Table 4.5):

+ 0 1 2

~o
1 2

0 0 0 2 o 0 0 0
I I 2 0 I 0 J 2
2 2 0 J 2 0 2 J

Table 4.5: Addition and Multiplication in GF(3)

4.2.4.3 GF(4)

The definition of GF(4) is apparently a bit different from the previous two GFs.

Since 4 is a non-prime number, GF(4) is actually considered to be Gr(22). Its

elements are denoted here as (0, 1, A, B). Here are the addition and multiplication

tables for GF(4):

+ 0 1 A B 0 1 A B
0 0 1 A B 0 0 0 0 0
1 1 0 B A 1 0 I A B
A A B 0 1. A 0 A B 1
B B A 1 0 B 0 B I A

Table 4.6: Addition and Multiplication in GF(4)

4.2.5 Ternary Galois Field Logic

In Galois Field Sum of Products (GFSOP) the product terms are GF products and

the sums are GF sum operations. In this thesis ,we concentrate only on ternary

GFSOPs. Ternary Galois Field (GF3) consists of the set of elements T = {O, I, 2)

68
o

Chapter 4
Multi-Gulput Terr.arv Logic and Quantum Cascade:

A Literature Survey

and two basic binary operations - addition (denoted by +) and multiplication

(denoted by . or absence of any operator) as defined in Table 4.5. GF3 addition

and multiplication are closed, i. e., for A, BET, A +BET and AB E T. GF3

addition and multiplication are also commutative and associative, i. e.,

A+B=B+A and AB=BA (commutative), and

A +(B+C) = (A +B)+C = A +B+C and A(BC) = (AB)C = ABC
(associative). GF3 multiplication IS distributive over addition, I. e.,

A(B+C) = AB+.AC.

There are six reversible ternary unary operations corresponding to six possibk

permutations of 0, I, and 2. These unary operations are called reversible ternary

shift operations. We already have mentioned the names of these six shift

operations, their operator symbols and equations, and gate symbols in Figure 4.6.

Among these six shift operations only single-shill, dual-shill (both arc also called

Post cycles [32] and cyclic negations in [20]), and self-dual-shift (also called

inverse [21]) were previously used in the context of quantum computation. All

these six shift operators can be built as reversible ternary gates. Khan et. al. [34]

proposed quantum realization of the ternary shift gates (except the buffer, which is

quantum wire; see Fig 4.9). These realizations require two to three quantum wires.

AI r'=IA+1 ~L/+2 1~=rt1--r~':;2A2
(a) Singlc- (b) Dual-Shift l----~-I
Shift (c Self-Shift

A~" A'=2A+\ A =2A+2
1 - \ 2 2

2 2 I -I
(d) Self-Single-Shift (e) Self-Dual-

Shift

Fig 4.9: Quantum realization of ternary shift gates

The GF3 basic literal of a variable A is an ekment of the set

{I, 2, A, A', A", A~, A', A' ,A'}. It should be noted that all ternary literals, except

A', are reversible. A reversible ternary literal multiplied by 2 yields another

reversible ternary literal as follows: 2.1 = 2, 2.2 = I, 2A = A~, 2A' = A',

2A" = A', 2A~ = A, 2A' = A", and"2A' = A' . Again, a ternary literal may have

69

ChaNe!" 4
Multi-Output Ternary Logic and Quantum Cascade:

If. Literature Survey

a power of only 2, since A' ~ A (can be verified from Table I), A4 = A3 A = A',
and so on. A product term is a OF3 product of some literals. For example, AB" is

a product term. Ternary OFSOP is OF3 sum of some product terms. For example,

2 + AB" + B'C' + A'C" is a tcrnary OFSOP.

4.2.6 Quantum Cascade (QC)

Quantum circuits are quite different than the classical logic circuits. A quantum

COlnputer processes information in form of some unitary operation carries the

input qutrits to the output qutrits. This can be represented in the form of a block

diagram, similar to 4.1O(a). For example, the case of ternary single-shift opcration

is shown in figure 4.1O(b)and figurc 4.1O(c).All thc quantum gatcs perform in the

samc way. In ordcr to realizc any Ill-input n-output logic function, a numbcr of k*k

gatcs (k 2: mAA {Ill, n }) are appcndcd onc allcr anothcr following a particular

ordcr. The output qutrits of the first gate are the input to the second gate, and so

on. The final output is obtained at the output qutrits of the last gate. At this output

level, there are k qutrits, among them n qutrits are realizing the function and the

remaining k - n qutrits are known as garbage output. The whole thing is known as

Quantum Cascade. Figure 4.11 shows a quantum cascade realizing an arbitrary 2-

input 2-output tcrnary function (k ~ 6).

-~ q]

U(q" q,•. _.,qJ

(a) Block diagram of Quantum
Unitary Transformation

J:------1-->"1 ! I

(c) Quantum realization of
Single-Shift

[
0 0 11[al [rl100j1=a
o lOr j1

(b) Block diagram and Matrix representation
of the Unitary Transformation performing

Single-Shift

Fig 4.10: Quantum Unitary Transformation

70

Chapter 4
Multi-Output Ternary Lmiic and Quantum Cascade:

A Literature Survey

4.2.7 Realization ofMVL Using Quantum Cascade

Multiple-valued ternary logie ean be realized using Quantum Cascades. Very few

work~ have been done so far in constructing the Quantum cascades that are

capable of realizing ternary functions. The research in this field is.still in its very

primitive age. In most of the cases the researchers emphasized on just successfully

realizing the functions, rather than making it optimal as well. In figure 4.11 the

high number of garbage output gives an idea about the level of optimality

.achieved so far in this field. In the following article we describe some of the

methods of realizing MVL using QC.

4.2.8 Some Existing Methods of Realizing MVL Using QC

Khan et al. [37] first proposed a complcte method of realizing ternary logic using

quantum cascade in 2004. In this literaturc various basic and composite ternary

literals are proposed for defining TGFSOP expression. They also proposed 16

Ternary Galois Field Expansions (TGFE), like Shannon's Expansions, using these

literals and three new types of Ternary Galois Field Decision Diagrams (TGFDD)

using the proposed expansions. A heuristic for creating optimal Kronecker

TGFDD and methods for flattening the TGFDDs for determining ncar-minimum

TGFSOP expressions is also proposed there. Finally, they proposed a method of

synthesizing multi-output TGFSOP using cascade of ternary shift gates, swap

gate, and generalized Toffoli gate. They have used some sorts of local

optimization technique by selecting the TGFE that generates lowest number of

non-zero constants in the output vector in each level. Figure 4. I 1 shows the

realization of one ternary multi-output function using their method. Two major

drawback of the method are as follows-

e They have used generalized ToiToli gates that are not primitive ternary

gates; therefore can not easily be implemented using quantum

tcchnology. Howevcr, Khan [38] shows a quantum realization of

tcrnary Toffoli gatc using primitive ternary gates.

• They have used local optimization in each level; it may easily fall into

local optima.

71

Charter 4
Alli/li-Oulaut Ternarv Logic and Quantum Cascade:

A Literature Survey

Shift
Gate

F,y--
F_______ -1_

Toffoli
Gate

Swap
Gate

Fynman
Gate

2

x

o -

o
y

Fig 4.11: Quantum Cascadc realizing an arbitrary 2-input 2-output tcrnary

function using differcnt typcs of ternary gates.

Thc solution of thc formcr problcm is an open problem fur the quantum' physicists

and mathematicians while thc later one can bc handled by developing bettcr

heuristics.

-6' 0', Is 0 I

~"
II 1 ,.- 3,- ~

I.q> 2/. 2
•
,.

B'-r- 0

JJ A2
"

1°., /2/
/ •

Fig 4.12: Realization of ternary Swap gate using GTG gates

Khan and Perkowski [36] proposed an EA based synthesis process of ternary logic

in 2004. They have used the cascades or GTG gates to torm the quantum circuit.

They proposed a method for synthesizing both completely and incompletely

specified ternary functions. EA to synthesize ternary functions is first proposed by

them and that is why the result could not be compared to any other EA based

method. But their method has produced better results than other non EA based

synthesis methods. For example, the,previous best design of ternary swap gate had

4 Feynman gates and one l-qubit permutative gate; while their proposed design

72

Chapter 4
Multi-Output Ternarv Logic and Quantum Cascade:

. A Literature S'urvev

requires only 3 GTG gates and it has the same symmetry as the well known design

of Swap from Feynman gates in binary. Figure 4.12 shows the realization of

ternary Swap gate using GTG gates.

Denier et al [44] presented a new type Of realizable quantum cascade. Then they

have proposed algorithms to synthesize arbitrary single-output ternary functions

using those reversible easeades. The cascades use "Generalized Multi-Valued

Gates" (GMVG) introdueed by them, which extend the concept of GTG gates.

While there are 216 GTG gates, a total of 12 ternary gates of this type (GMVG)

are suffieient to realize any ternary funetion. Such gates are also claimed to be

realizable in quantum ion trap deviees. They have implemented the algorithm only

for ternary logic, but its generalization to arbitrary radix is straightforward and

might give. better praetical advantages if quantum gates with higher radices were

realizable. Figure 4.13 shows the GMVG.

A

IJ x 2
1
xo(B)

0, = x,(B)
etc.

xM (B)

if A=O
if A = I

if A=M

Wherex. is some reversible
operation of radixM+ I

Fig 4.13: Generalized Multi-valued Gate of radix M+ I

4.3 Evolutionary Algorithm

In the 1950s and the 1960s several computer scientists independently studied

evolutionary systems with the idea that evolution could be used as an optimization

tool for engineering problems. The idea in all these systems was to evolve a

population of candidate solutions for a given problem, using operators inspired by

natuf'll genctk aoldnaturalseleetion.

73

Chapter 4
Muili-Output Ternary Logic and Quantum Cascade:

A Literature Survey

EAs are computer programs that attempt to solve complex problems by

mimicking the processes of Darwinian evolution [II]. In an EA a number of

artifi:ial creaturts search over the space of the problem. They compete continually

with each other to discover optimal areas of the search space. It is hoped that over

time the most successful of these creatures will ~volve to discover the optimal

solution.

The artificial creatures in EAs, known as individuals, are typically represented by

IIxed length strings or vectors. Each individual encodes a single possible solution

to the problem under consideration. EAs manipulate pools or populations of

individuals. The EA is starttd with an initial population of size m comprising

random individuals (that is, each value in every string is set using a random

number generator). Every individual is then assigned a fitness value. To generate a

fitness score th.: individual is decoded to produce a possible solution to the

problem. The value of this solution is then calculated using the fitness function.

Population members with high fitness scores therefore represent better solutions to

the problem than individuals with lower fitness seores ..Foliowing this initial phase

the main iterative cycle of the algorithm begins. Using mutation (perturbation) and

recombination operators, the m individuals in the current population produce n

children. The n children are assigned fitness scores. A new population of III

individuals is then formed from the m individuals in the current population and the

n children. This new population becomes the current population and the iterative

cyele is repeated. At some point in the cycle evolutionary pressure is applied. That

is, the Darwinian strategy of the survival of the fittest is employed and individuals

compe(;~ against each other. This is achieved by selection based on fitness scores,

with 'better fit' individuals more likely to be selected. The selection is applied

either when choosing individuals to parent children or when choosing individuals

to form a new population.

There have been three main independent implementation instances of EAs: GAs,

developed by Holland [27] and thoroughly reviewed by Goldberg [18]; evolution.

strategies (ESs), developed in Germany by Reehenberg [30] and Sehwefel [25];

and evolutionary programming (EP); originally developed by L. J. Fogel et al.

74

Chapler 4
Mulli-OU/pul Ternary Logic and Quanlum Cascade:

A Li/erature Survey

[31] and subsequently refined by D. B. Fogel. [15]. Each of these three algorithms.

has been proved capable of yielding approximately optimal solutions given

complex, multimodal, non-differential, and discontinuous search spaces. Success

has also been achieved for noisy and time-dependent landscapcs. A simple

description of each technique is given here. Finally, it is worth noting that the

implemcntcr is free to modify these algorithms.

In thc subsequent sections we describe different EAs briefly with thcir rcspective

gencraloutline.

4.3.1 Genetic Algorithms

Figure 4.14 shows the canonical GA as developed by Holland [27]. The canonical

GA encodes the problem within binary string individuals. Evolutionary pressurc is

applied in Step 3, where the stochastic technique of roulette wheel parent selection

is used to pick parents for the new population.

1. A population of m randomindividuals is initia1iz ••d.

2. Fitness scores are assigned to each individual.

3. Using roulette wheel parent sE'lection m/2 pairs of
parents are chosen from the current population to form
a new population.

4. With probability Pc< children are formed by performing
crossover on the m/2 pairs of parents. The children
replace the parents in the newpopulation.

5. With probability Pm, mutation is performed on the new
population.

6. The new population becomes the current population.

7. If the teDmination conditions are satisfied exit,
otherwise go to step 3.

Fig 4.14: A Canonical GA

4.3.2 Evolution Strategies

Figure 4.15 shows the ES as developed by Rechenberg [30] and Schwefel [25].

Historically ESs were designed for parameter optimization problems.

75

:..•.

Multi-Output Ternary Logic and Quantulll Cascade:
A Literature Survey

1. A current population of m individuals is ~~ndomly
initialized.

2. Fitness scores are assigned to each of the m
individuals.

3. n new offspring are generated by recombination'from the
current population.

4. The n new offspring are mutated.

5. Fitness scores are assigned to the n new offspring.
6. A new population of m individuals is selected.

7. The new population becomes the current population.

8. If the termdnation conditions .are satisfied exit,
otherwise go to step 3.

Fig 4.15: A simple ES

The encoding used in an individual is therefore a list of real numbers: these are

called the object variables of the problem. Additionally, each individual contains a

number of strategy parameters, these being the variances and co variances of the

object variables (the co variances are optional, but when used are normally

defined using the rotation angles of the covariance. matrix). The strategy

paral~eters are used to control the behavior of the mutation operator and are not

required when decoding an individual.

4.3.3 Evolutionary Programming

Figure 4.16 illustrates the form of an EI' scheme. EP was originally developed by

L. J. Fogel et al. [31] for the evolution of finite state machines using a limited

symbolic alphabet encoding. Subsequently D. B. Fogel extended the EP to encode

real numbers, thus providing a tool for variable optimization [15].

Individuals in the EP comprise a string of real numbers, as in ESs. EP differs from

GAs and ESs in that there is no recombination operator. Evolution is wholly

dependent on the mutation operator, which uses a Gaussian probability

distribution to perturb each variable. The standard deviations correspond to the

76

,.... '" .

\

/,1 . .1

Chapler 4
Muili-Ou'Rul Ternary Logic and Quantum Cascade:

A Literature Survey

square root of a linear transform of the parents' fitness score (the user is required

to pa.ameterize this transform).

1. A current population of m individuals is randomly
initialized.

2. Fitness scores are assigned to each of the m
individuals.

3. The mutation operator is applied to each
individuals in the current population to
offspring.

of the m
produce m

4. Fitness scores are assigned to the m offspring.

5. A new population of size m is created from the m
parents and the m offspring using tournament selection.

6. If the termdnation conditions are satisf1ed exit,
otherwise go to step 3.

Fig 4.16: A simple EP schcmc

To overcome parameterization problems associated with the linear transform

Fogel developed meta-evolutionary programming (meta-EP) [14]. In meta-EP

individuals encode both object variables and variances (one variance for each

object variable). As in ESs the variances are self-adapted and used to control the

Gaussian mutation operator.

4.4 Summary

We have discussed Reversible Logic, Galois Field and Quantum Computation,

and Evolutionary Algorithm in this chapter. Reversible logic provides a way to

construct circuits that will, theoretically, dissipate no heal - thus less power will

be consumed. Binary reversible logic deals with two states namely 0 and 1, while

ternary reversible logic has three states -,0, 1,and 2. The mathematical foundation

of reversible logic lies on Galois Field. Specifically for ternary reversible logic,

GF3 arithmetic is used. Quantum Computation can be achieved by the circuits

constructed using Cascades of Quantum Gates (Quantum Cascades). Finally we

77

\" ;!:p
s>

("', "

Chap/er 4
Multi-Outnut Ternarv Logic and Quantum Cascade:

tI Literature Survey

discussed the basic concepts of Evolutionary Algorithms (EA) as wc have used. ,

EA for synthesizing the Quantum Cascade.

78

Chapter 5

EA Based Synthesis of Multi-Output Ternary

Function Using Quantum Cascades

5.1 Introduction

In this chapter we first propose a family of ternary 2*2 quantum primitive gates.

Then an EA based synthesis process of Multi-output Ternary function is .

presented. Here we propose a practical approach to synthesize directly with the

new gates, but the problem is there is no direct method to construct a quantum

cascade using those gates. Hence we have to go for Evolutionary Algorithms

(EA). Use ofEA will allow us to find an appropriate combination of the gates that

realize (perhaps optimally) a multiple-valu';d ternary logic funclion.

5.2 The New 2*2 Quantum Ternary Gates

A family of 2*2 Quantum ternary gates is proposed here. These gates are the

extensions of De Vos gates pr?posed in [6]. Muthukrishnan [7] showed that these

types of gates are practically realizable in quantum ion trap. The general form of

our proposed gates is shown in Figure 5.1.

A Controlling
Ofinput

1'1 C1 =A
B Controlled 0]input YI

x = {O,I,2} o,=t; shift of . if A=x
otherwise

y = {1,2,3,4,5}

Fig 5.1: General form oflhe proposed Gales

Charter 5
EA Based Synthesis o(Multi-Output TanalY Function

Using Quantum Cascades

The gate has two parameters - x and y. There are two input lines called controlling

input and the controlled input. The controlling input passes to the output without

any modification, while the controlled input is modified only if the controlling

input line carries the signal equal to x; in that case the corresponding output is the

yth shift of the controlled input signal. Lct us use the 4-tupple notation (A,B,x,y)
to denote this new gate, where A is the controlling input, B is the controlled input,

and x and yare thc.parameters of the gate. The parameter x can takc any value

from {O, I, 2} and y can takc a value from {I, 2, 3,4, 5}. There are fiftccn

differcnt combinations of the parameters, hence 15 different gates. Among those,

the gates with (x=2, y=l) and (x=2,)F2) are proposed by De Yos [6]. We are

proposing two more values for x and three more values for y.

5.3 Realization of Multi-output Ternary Functions using

the New Gates

In realization of multi-output ternary functions using our proposed gates we

assumed the following:

• A Gate can be controlled either from top or from bottom,

• A limited vertical wire crossing for the controlling signal of the gates

are allowed,

o Constant input signals 0, I, and 2 are added as needed,

o Output may be realized along any primary input line or any constant

input line, and

o Each of the gates forms a column where the remaining lines represent

quantum wires. The columns are cascaC:edto realize the circuit.

Figure 5.2 shows the realiZation of ternary half adder circuit using the new gates.

To verify the circuit, the interrnediate states of the quantum wires are also shown.

Each of the gates forms a quantum column and cascades of such columns

construct the whole circuit. Table 5.1 shows the truth table of the Ternary Half

Adder. The output functions arc normally shown as a transpose form as shown in

80

Chapler 5 , .• J

, ,,', .
EA Based Synthesis orMu/li-Gumul Ternary Function

Using Quantum Cascades

Figure 5.2; i.c. sum = [0,1,2,1,2,0,2,0,1]' and cany = [0,0,0,0,0,1,0,1,1]' in Figurc
. ,

5.2 are actually the transpose of columns Sum and Carry inTable 5.1 rcspectively.

A~
o
1

o 1 2
o 1 2
120

2 0 I 2

01 2
I I I
1 1 1
000

8
A 0

o 1
1 1
2 0

1 2
o 0
1 2
2 2

A~ 0 I 2
o 0 0 0
I 0 0 I
2 0 1 1

.8
A' 0 I 2

o 0 1 2
1 1 2 0
220 1

A

8

o
2

4

I
-~ Sum

~- - ,,]201- -----

1 ~ _ carry

Sum ~ [0,1,2,1,2,0,2,0,1]"
carry~ [0,0.0,0,0,1,0,1, I]"

Fig 5.2: Realization ofTcl'l1ary Half Addcr using Ihc new gates

AB Sum CarrY
00 0 _L
01 I 0
02 2 0
10 I 0
II 2 0
12 0 1
20 2 0
21 0 I .
22 1 I

Table 5.1: Truth table of Ternary Half Adder function

5.4 GTG Verses the New Gates

The GTG gates are proposed by Perkowski et. AI. [43]. Since then it has become

very popular among the researchers in this field. They claimed that the GTG gates

can directly be constructed in linear ion trap. They referred [7] as the basis ofthcir

claim. In [7] it is shown that any d-valued primitive quantum gate can bc

constructed in lincar ion trap. Thcse gates are generally callcd "conditional gates"

as they are' :capable of performing any unitary transformation on the controlled

81

1':ABased Synthesis o(Mu/ti-Output Ternarv Function
Using Quantum Cascades

input if all the controlling inputs are at state Id - 1). In other words, a ternary

(d = 3) conditional quantum gate will perform any unitary transfornlation if all its

controlling inputs are at state 12). De Vos [6] also stated the same.

Now the GTG gates perform different transformations depending on the different

states of the controlling inputs including 10) and 11). At this moment we have not

found any literature proving that the ternary transformations can be perfonned

when the controlling states arc 10) or 11). Therefore, we are not sure whether the

GTG gates are directly realizable in quantum technology or not. However, later in

this section, we are showing how to achieve those operations using De Vos gates.

A

B

Fig 5.3: Ternary Half Adder realization using OTO gates by [36J

s

c

In case of the new gates (A,B,x,y), we know that (A,B,2,1) and (A,B,2,2) are

nothing but De Vos gates. Now, (A,B;2,3), (A,B,2,4), and (A,B,2,S) are direct

extensions of Dc Vos gates and the transformations numbered 3, 4, and 5 arc also

unitary transformations. So according to [7] these gates can directly be

constructed using quantum technology.

About the gates (A,B,O,y) and (A,B,I,y), we do not have any proof, neither

from the quantum physicists nor froin the mathematicians, that these type of gates
, .

are directly realizable in quantum technology. However, each of those gates can

be constructed using three De Vos ((A,B,2,y)) gates. Figure S.4 shows that.

82

o

Chapter 5
FA Based Synthesis ofMulti-Ouf{Jut Ternary Function

U8ing Quantum Cascades

The "ame idea can be applied for GTG gats. The third conditional transformation

can be implemented directly using one (A,B,2,y) gate. For the first and second

conditional transformation, it will require six (=3+3) (A,B,2,y) gates. So we can

say roughly that, every GTG gate can be constructed using seven (A,B,2,y)

gates.

:-~]2.~-:
B •. [2] Q
P=4

{

yth shift of B, if A = 0
Q=

B otherwise'

2--l. L 2

A--QJ-I~~p

B~~~GJ--Q
P = fyth shift of B, if A = I
Q=

.B otherwise

(~ (b)

Fig 5.4: Realization of (A,B,O,y) and (A,B,I,y) gates using De Vos

«(A,B,2,1) and (A, B,2,2)) gates.

As we are constructing quantum circuit using (A, B,x,y) gates, we can calculate

the cost of the c.ircuits in terms of number of (A,B,2,y) gates. Assuming that each

(A,B,O,y) and (A,B,l,y) gate requires three (A,B,2,y) gates. Now we can

compare the cost of the quantum circuit constructcd using GTG gates with'

quantum circuit constructed using (A,B,x,y) gates. For example the ternary half

On thc othcr hand the cost orthe ternary hair adder circuit in Figure 5.2 is-

(3+ I+ 3+ 1+ 3) = 11

83

•

EA Based SVnlhesis of Multi-Output Ternary Function
Using Quantum Cascades

It clcarly indicates that the (A,B,x,y) gates are better candidate for constructing

quantum circuits than the GTG gates.

5.5 Proposed Evolutionary Algorithm

We have uscd EA to synthesis Multi-output Temary function because EAs are

very popular Soft Computing approach for solving problems with no idcntified

structure and high level of noise. EAs are popular because-

o A hugc problem space can be searched.

o The size of the search space can be modcrated by parameters.

• A variety of new solutions can be produced.

• With long enough time, a solution might be obtained that is close to thc

optimal onc.

These advantages made us inspircd to use EA since the problem structure of the

cascades of the new gates is still unidentified and the search space is exponentially

large. The following cxample explains the complexity of this type of problems.

For example, Consider the Ternary Half Adder in Figure 5.2. It shows an n-input

III-output function (n=2, 111=2) is realized using quantum cascades of the new

gates. Fivc columns of the gates are required here. But for any multi-output

function, there is no method known to find out the required number columns,

order of the columns, parameter values of the new gates, or even the controlling

and controlled input prior to the synthesis. There might be any number of

columns, assuming for a particular case that there are L (=5 in Fig. 5.2) columns

and K (=4 in Fig. 5.2) input wires. There are 15 different combinations of x and y

parameter values, two input wires can be selected from K lines in KC2 ways, and

the controlling and controlled inputs have 2 different combinations; so a column

can be constructed in 15xK C2 x 2 differcnt ways. Again any of the columns could

be placed in any position in the cascade. Hence there are (l5xK C2 x 2)" different

cascades. Thcre are (15x 6x 2)' = 188956800000 different combinations of a 2-

variable function realized by a 5~column cascade (ignoring the fact that the

number of columns required is unknown at the time of beginning of the synthesis

84

ftI

CI/l/[ltcr 5
EA Based Synthesis ,,(Multi-Output Ternarv Function

Using Quantum Cascades

process). So the search space to find a proper or optimal solution is exponentially

largc. Hence it will not be feasible at all to use any deterministic or direct method.

That is why we have chosen EA which is capable to search a huge solution space

within a reasonable amount of time .. In our method we have used Genetic

Algorithm' (GA) with real-valued encoding of the chromosome using complcx

data structures. Different aspects of our proposed algorithm are prescntcd in the

subsequent sections.

5.5.1 Problem Encoding

In the proposed EA We use the model of synthesizing multi-output ternary

function using cascades of the new proposed gates as discussed in Section 5.3. In

this model, for initial input to thc EA, we added three constant signals 0, I, and 2

lor a numbcr oftimcs. Thcn alier convcrgence of the lOAwe eliminale the unused

constant input lines from the tinal circuit. We use variable length chromosome,

however, we kept the maximum length 3n+3 tor an n-variable function.

Line Inpul I Column I Column Column Column Column
No. Signal: #1 : #2 #3 #4 #5

0 A .. I TI .. 1 II I

t
Garbage

1 1 outpul
I 1 10I III I

1
2

1

Sum
IJ I I'
,I I

r
I I

2 0 I I
I' 1

carry
1 I
I I 2

3 I. I . I
14["

Garbage
1 I outputr [Otl II 1 [0324J [100lJ [0221] 13102]

I 1
Numeric representation of the column (digits representing controlling wire no.,

controlled wire no.,x, and y respectively)

Fig 5.5: Encoding of the Ternary Half Adder circuit

Initiaily the chromosomes are generated with different length, and then due to

mutation, the length is (possibly) changed. Aftcr convergencc of thc EA, some

columns may be thcre in thccircuit who do not contributc to thc function output at

all. These columns are also eliminated from the circuit.

85

Chapler 5
EA Based Synthesis ofMu/ti-Outnut Ternarv Function

Using Quantum Cascades

The primary input lines and the constant signal lines are numbered starting from 0

as shown in Figure 5.5. Each of the columns in the circuit is represented by an

ordered 4-tupple consisting of controlling wire number, controlled wirc numbcr,

parameter x, and parameter y of the associated gate as shown in Figure 5.5. Using

this notation the chromosome. representing the circuit of Figure 5.5 is shown in

Figure 5.6. Here each of the columns in the circuit is a gene in the chromosome.

I ow I 0324 [J.!!QU 0221 I 3102 I
Fig 5.6: Chromosomc rcprcscnting the circuit in Figure 5.5

5.5.2 Fitness Components

In the proposed EA, we try to optimize the cost ofIhe circuit by

• Reducing the numbcr of gcncs in thc chromosomc, 111 other words

rcducing the number of columns (i.c. gates) in the circuit.

• Reducing the number of wires in the circuit (the width of the

scratchpad register), Le. incrcasing the number of unused constant

input lines.

For this rcason we used three fitness componcnts-

I. Output truth vector fitness,

II. Chromosome length fitness, and

III. Scratch pad width titness.

In order to determine the output truth vector titness we group the truth values as

stated in Definition 5.1.

Definition 5.1: Given an n-input tn-output ternary function f represented as tn

truth vectors (one vcctor for each output), where the locations of the truth values

. arc designated from 0 to 3" - I lor each truth vcctor. Evcry truth vcctor is

partitioncd into n types of sub-vectors, each type having a sub-vector length 3""

consisting of consecutive truth values starting from location j3"" for i = 1,2,... ,n

and .i = 0,1,...,(3' -1).

86

.~:"~
iIioiiL,i:

ChaNa 5
EA Based Synlhesis o(Multi-OUlput Ternary Funclion

U'ing Quanlum Cascades

In this partitianing afthe truth vector, i determines the length af a sub-vcctar and}

determines the starting lacatian af the sub-vectar. Far example, if n = 3, then far

i = I the sub-vcctar length is 3"-' = 33
-' = 9 and } = 0,1,(3' -I = 3' -I =)2.

Therefore the starting lacatians af the sub-vectars are 0, 9, and 18. Similarly, this

partitianing technique partitians the truth vectars into.

Type I:3,,-0 sub-vectars aflength I starting from lacatians 0, 1,2, , 3" -I.

Type 2: 3"-' sub-vectars aflength 3 starting fram lacatians 0, 3, 9, ,3" - 3.

Type 3: 3,,-2 sub-vcctars af length 9 starting from lacatians 0, 9, 18, ,3" - 9 .

•
•

Type n: 3"-1"-1)= 3 sub-vectors 0.1' length 3"-' starting from lacatians 0, 3"-', and

2x3"-' .

Far example, Figure 5.7 shaws the three types 0.1' Sub-vectors of an arbitrary 3-

input 2-autput ternary functian.

,
12 13 14 15 16 17'18 19 20 21 22 23 24 25 26

012111:2012110

I 1 2 0 1 2:0 1 2 0 1 2 1 0

,
45678'91011

20201:212

o 1 2 2 2: 0 I 0

i = I.
j~O, 1,2.

Location 0 2 3
F~ 0 2I

F= 0 2 0 2,

The 3-input 2-output fi.mction,f(A,B.C) is defined as-
F, ~ [II, 1,2, 1,2,11,2,11, 1,2,1,2, II, 1,2,1, 1,1,2,11, 1,2,1,1, I, II, I)'
F, ~ [11,2,11,2,11, 1,2,2,2,11, 1,11,1, 1,2,11, 1,2,11, 1,2,11,1,2, I,O,/}'

Sub~vcctor 0 Sub-vector J Sub-vector 2
i= 2.
j=O, I •... , 8.

, , , ,
Location 0 2, 3 4 5 '6 7 8'9 10 11'12
F~ 0 I 2' I 2 0'2 0 I' 2 2 ' 0I

F~ 0 2 0: 2 0 I : 2 2 2: 0 I 0:.,
Suh-vector 0 2 3

, , , ,
13 14'15 16 17, 18 19 20'21 22 23'24 25 26

I 2 ' I I '2 0 1'2 1 ' I 0
I 2:0 2:0 2 : 0 2: 1 0
4 5 6 7' 8

i=3.
j=0,1,2, ... ,26.

Location

F~
1

F=,
Sub-veclor

I 1 I I I I I I I I I I I I I r I I I I I I I I I Io I 1 121 3, 4 I 5 16 17 I 8 i ? I 101 11112113,14115116 d7118, 19,20121,22,23124,25126
iii jo .IIZI l' 2.0 '2 10 III 2 I 1 1210 I 1 12 11 I J I J 1210 I I 121 I I I I 1 101 1

012' 0' 2' 0 I I 1212' 21 0 I 1 I 0 I I I 1 I 2 I 0 I] I 2 f 0 I I t 2 I 0 I I I 2 1 I I 0 I 1
I I 1 I I I I I I I I I I I I I I I , I I 1 I I I I
I I I 1 I I I I I 1 I I I I I I I Io 3 6 9 12 15 18 21 24 2(,

.<'ig 5.7: Sub-vectors of an arbitrary 3-input 2-output Ternary Functian.

87
I ..~..~,•t, ~

Chapter 5
AA Based Synthesis ,,(Multi-Output Ternary FunctiOJ!

Using Quantum Cascades

Sub-vector fitness: The sub-vector fitness, for a given output k (k = 1,2,...,m), for

sub-vector type i (having sub-vector length 3"") is defined as follows:

NrkiS --'
k,i - 3i

Whcrc, Nrk,i is the number of totally realized sub-vectors of Type i for the kth

output along any wire.

When, for a given output k, all the sub-vectors of type i are totally rcalizcd,

then Sk.i = 1.

Output obtained from a Chromosome at line P and line Q
I ,

Location 0 I 2 3 4 5 6 7 81 9 10 II 12 13 14 15 16 17118 19 20 21 :<2 23 24 25 26

Output P I I 0 I 2 0 2 0 2' 2 2 0 1 2 t I I 0 2 2 0 I I 0

Output Q 0 2 0 2 0 2 2 2: n 0 2 0 2:0 2 0 2 1 0

i= 1.
j=0,1,2. ---- Realized Sub-vector

-

19 ~~'1:1.,22 23 24 25 26

012 I 101
2_Q'.I: 2J .. O' 1)

Location

F~
I

F~
2

o I 2 3

o I 2 I
(O-~--Q_j

"... 1 I' -., • I

4)1"6 7 819 10 11'12 13 14 t~ 16 17118

o 2 0 I'(~. !. 2 -0) 2 i'L I) 2
Q 1 .2..i }:(il:'--i:~:(j~~':.~:~-.--~ 0 ~i~_~:iJ:(~:_._

i~2.
j=O. I, ...• 8.

Sub-vector 0 Sub-vector 1 Sub-vector 2

Location

F~
I

F~,
Sub-vector

1 I Io I 21 3 4 516 7 819

o I 2(iJ'QJ'2 0 I'(~

C~):.j,-~:o-9_~jIi 2 --ij '9.. 1
o 1 2 3

f:2
1 ~;: (0

5

01;2 J 1:(1

1 21:(0 1_21:("-

6 7

II I)
Ii --t)
8

F~
1

F~
2

j= 3.
j=0,1,2, ...,26.

I I I I I I I "I I I I I I I I , I I 1 I I I I I I
Location 0 I J 121 3, 4, 5 16 .7. 81 9 I)0111112113.141"15116117118,19120121122123124125,126

II:DI21(i!1J\9)''2J(ii I :(i!(I):(i!:(~J:(W~):(i):(\):(I-:: 2 :CO): I :ri): I :m:(DiCOJ:(i}
(~~@:(QKiKjJJ:(iJi)fl](i~(II1.((I :(9):(141): (i] :(II):(i): (2):.0 ::(I):(i):(o):(i]: (i): (I): (0):(i)

I I 1 1 I I 1 1 I 1 I 1 1 I I I 1 1
Sub-vector 0 . 3 6 9 12 15 18 21 24 26

Fig 5.8: Realization of sub-vectors

For cxample, consider Figure 5.8; Output P and Output Q are rcspectively

obtained at two arbitrary output lines P and Q of a quantum cascadc while

realizing the 3-input 2-output functionj(A,B,C) shown in Figure 5.7. The realized

sub-vectors are shown marked in Figure 5.8. Since n = 3 , there are three types of

88

Cftapter 5
EA Based Synthesis afMulti-()u/[Jut Ternarv Function

Using Quantum Cascades

sub-vectors - Type 1, Type 2, and Type 3. Let us explain Figure 5.8 for each of

the types of subvcctors.

TypeJ..:. Both F, and F, are having 3 sub-vectors each. Only the Sub-vector I is

realized for F" while all three sub-vectors arc realized for F,. Therefore,

the Sub-vector fitness of F, of type I is S,., =~ =~ and that of F, is

TYP,e 2: Both F, and F, arc having 9 sub-vectors each. Five sub-vectors arc

realized for F" while all the nine sub-vectors arc realized for 1",.

Therefore, the Sub-vector fitness of F,

of F, is S" =.2- =2.= I., . 3' 9

of type 2 is S" =2, = ~ and that. 3 9

Type 3: In the similar way the Sub-vector lltness of F, of type 3 IS

21 21
S, 3 = -, = - and that of F,
. 3 27

Individual output truth vector fitness; Individual output truth vector fitness for,

output k is defined as follows:

"
0, = P+ LS'.I

;=1

Where P = 1if output k is totally realized along any wire, 0 otherwise. When an

output k is totally realized along a wire, then 0, = 1+ n as there are n types of

sub-\ eetors.

For example, consider Figure 5.8 again. Earlier we have calculated the values of

S,., . Note that f~ is totally realized along Output Q.Now, individual output truth

3 I 5 21 45
vector fitness of F, is - 0, =0+ LS\., =-'+-+-=-, and that of F, is-

1=' 3 9 27 27 '

3

0, =1+ LS'J =1+(1+1+1)=4, which iscqualto I+n.
j",l

89

Chapter 5
Elf Based Synthesis ofMulti-OulQul Ternary Function

Using Quantum Cascades

Output truth vector fitness: The output truth vector fitness is defined as

follows:
m

0= LO,
.1:=1

When all the m outputs are realized, then eventually it becomes 0 =m(1+ n). For

the case of our continuing example of Figure 5.8, the Output truth vector fitness is

0=0
1

+ 0, = 45 + 4 = 5.667 < m(1 + n) = 3(1 + 2) = 9. Hence, observing the value
27 .

of 0, we can say that the funetionf(A.B,C) is not realized.

To find the output truth vector fitness, we compute the resulting truth vector for

all wires and then the best fit wire is selected for each of the given output.

Chromosome Length Fitness: The Chromosome Length Fitness (or cascade

length fitness) is defined as follows-

Whe•.e, L
m
" is the maximum allowable length of the chromosomes and Ld,,,,, is

the length of the chromosome under consideration.

Scratch pad Width Fitness: The Seratehpad Width Fitness is defined as follows-

w= Ncu
Nc

Where, Nc is the total number of constant lines used in the synthesis and Ncu IS

the number of constant line those do not contribute in the realization of the

function.

We rank the population using 0, C, and Was primary, secondary, and, tertiary key

resp(;et:vcly. When all the m outputs arc realized by any chromosome then the

value of 0 will be m(l + n). Therefore, if the output vector fitness 0 of any

chromosome is m(l + n), then the chromosome is a solution for the given

function.

90

EA Based Synthesis ofMulti-OutpUI Ternan' Functioll
Using Quantum Cascades

f"
Randomize Seed

••Generate initial population ofsizePhaving maximum length of
chrOiTIosomeL

I. Evalu"-te each ;ndiv;dua~:~nd mnk the population_. 10 -
S~le~t~h~~-i~~di~'idualsas parents usingT-ary tournament sc.lection with \

replacement
.. . _.. ..~.-
With a high probabiI ity.Pc> perform uniform erossovel' on the parents t01generate two offspring. Ir crossover is ,not performed at all. then copy th

parents unchanged to thc offspring

••Mutate the offspring with small probabilityrM I
.... ..•.-- . . •.
Ir any' of the O'ffspring is a duplicate of any individual in the POPulation'l

then rejcct that
... . ..- •.

Evaluate o'ffspring

••
\

In5(.,rtthe offspring into the population with maintaining the ranking Of1

1the population .
..- ... --- --_.-_.

1

- ~ii~~;~th~-P-i~di;id~~ls a~~tll~~e~d-i~ard the worst individuals 1rom 1
the population so that the s!ze remains same asP .

. ... •.

Step
0:

I:

2:

3:

4:

5:

6:

7:

K:

9:

10:

yes _~_._.. ,__

Fitness values not improved inS
consecutive generations?

-Docs the highest fitness value
exceed the threshold value?

•. no

Is within M gcnciations?

••Return thc Best Found Solution

••

yes

yes

no

-

Fig 5.9: Flowchart of the proposed Evolutionary Algorithm

5.5.3 Description of the Evolutionary Algorithm

As the model of our circuit synthesis is not well structured, we want to make sure

that the "so far best found" solution is not lost in the successive generations.

91

Chapter 5 EA !lased Synthesis o[Multi-Output Ternary Function
. Using Quantum Cascuues

Therefore, we used the simp!e steady-state GA with T-ary tournament selection

with replacement for selecting the parents, classical uniform crossove,r operator,

mutalicn operator, and a problem specific repairing operation. The proposed EA is

shown in Figure 5.9. For a given set of population size P, crossover probability,
Pc, mutation probability PM, tournament size T, and maximum number of

generations M, we repeat the EA at most R times with random seed. If for a given

run of the EA, the fitness value does not improve within S consecutive generations

then we do the following:'
i. Stop the run and go to the next repetition with random seed if no

solution is found yet,
ii. Stop the EA and return the best solution otherwise.

iii. If no solution is obtained in R repetitions, then generate "Fail" and

stop the EA.
The ,tejJs of our proposed EA arc explained in the following sub-sections.

Step 0:
This is the initialization of the EA. At this step we reset the random

number generator if it is the first repetition; for all subsequent repetition,

the generator is initialized with a random seed.

Step 1:
At this step the population is initialized. A total number of P individuals

are generated randomly. The length of each individual is also selected

randomly between I to L. Each of the individuals is randomly generated

according its respective length.

Step 2:
Each of the individuals is evaluated as described in Section 5.5.2. The

output produced at every primary and constant: line is evaluated for all the

given m functions. Then we applied "marriage matching" strategy to get

the best output vector fitneSs for each of the individuals. Then the

individuals are ranked according to their respective fitness. In doing this,

we considered output vector fitness 0 first. If more than one individual are

92

Chapler 5 EA lJased .\'vnlhesis o{Multi-()utrut Ternarv Function
. Using Quantum Cascades

having the same 0 value, then we consider the Length fitness C. If two or

more individual are having the same 0 value as well as same C value, then

the Width fitness W is considered. For example Figure 5.10 shows the

ranking of five chromosomes realizing an arbitrary function.

Chromosome !J C W Rank Chromosome 0 C W

Chrl 4 0.6 0.5 I Chr2 6 0.4 0.6

Chr2 6 0.4 0.6 2 Chr4 4 0.8 0.7

Chr3 3 0.7 0.5 3 Chr5 4 0.6 0.9

Chr4 4 0.8 0:7 4 ChrJ 4 0.6 0.5

Chr5 4 0.6 0.9 5 ChrJ 3 0.7 0.5

(a) Before Ranking (b) After Ranking

Fig 5.10: Ranking of the individuals in an arbitrary population

Stcp3:
This step selects the parents to generate the offspring. The whole

population is divided into two (perhaps non-disjoint) scts of individuals

randomly. Then the two best individual from the two sets are selected as

thc parents. As the scts are non-disjoint, it is to be ensured that the two

parents are not the same one. Actually the copies of the parents are taken

to apply further operations on them keeping the population unchanged.

Step 4: (Crossover)
The crossover operation is applied in this step. We are using uniform

crossover. That means for each and every gene in.the parent chromosomes

are to be checked for availability of crossover for that position. Since the

parents can be of different lengths, we have to take some extra measure to

perform the operation. Assuming that the lenb>ths of the two parents are AI

and A2. Also assuming that AI > A2. for every gene position i (i = 1,2, ... ,

A2), a random probability Pi is generated. If P, < Pc:, then the gene pair

at location i arc exchanged in the parents. The newly obtained individuals

are the offspring. Figure 5.1 I explains the crossover operation.

. 93

J

Chaptet 5
EA Based Synthesis o(Multi-Ou/{Jut Ternary Function

Using Quantum Cascades

Pc =0.8

Parent#l [A, =5]

Parent#2 [A.,~ 7]
Pi -+ 0.9 0.3 0.65 0.89 0.7

(a) Selected parents before crossover.
The genes to be interchanged are marked.

Offspring#l

Offspring#2

(b) Obtained offspring after crossover.

. Fig 5.11: Crossover operation

Stell 5: (Mutation)
At this step mutation is applied to the offspring. For each offspring, one

random probability f.l is generated. If f.l < PM , then mutation will be

applied according as the following rules-

I. Randomly sclect a gene in the selected off~pri.ng.

ii. Select one of the following mutation operation' randomly and

perform:
a. Delete the gene provided that the ICngth of the offspring

does not become zero.
b. Insert a randomly generated gene after this one provided

that the length of chromo,ome does not exceed the

maximum length, L.

c. Modify this gene randomly.

This is shown in Figure 5.12 assuming that f.1 < PM lor all cascs.

Step 6:
If any of the offspring is the duplicate of any individual alrcady in thc

populatiun, reject the offspring.

94

Chapter 5
EA Based Synthesis a[Multi-Output Ternary Functian.

Using Ouanlum Cascades

Offspring# I

Offspring#2

(a) Offspring before mutation.

Offspring No. Mutation Point Mutation Type

I 3 Modiry

2 6 Delete

(b) Randomly generated mutation points and type~.

Offspring# I

Offspring#2

(c) Offspring after mutation.

Fig 5.12: Mutation Operation

Step 7:
Evaluate the offspring as described in Article 5.4.2. If the output vector

fitness of the offspring exceeds the fitness threshold value, then eliminate

redundant columns and unused constant lines from the offspring. Figure

5.11 shows redundant columns and constant lines in an arbitrary circuit.

4

13

o -}
2 I
- I
4

\
\ 2

I

2
o

F(A,B)

\
\,
"2- J

Unused Constant ;
Lines --'"

Fig 5.11: Redundant Columns and Unused Constant Lines in an arbitrary
Quantum Cascade

Stw 8:

95

Chapter 5 EA Based Synthesis ofMulli-Output Ternary Function
Using Quantum Cascades

Insert the offspring into the population maintaining the ranking according

to their fitness. This is shown in Figure 5.14 for an arbitrary population of

sizc 5.

Chromosome 0 C W
ChrJ '5 0.4 0.6
Chr2 4 0.8 0.7
Chr3 4 0.6 0.9
Chr4 4 0.6 0.5
Chr5 3 0.7 0.5

(a) Population before insertion

tffiBID5 0.4 0.3
(b) Offspring

*
*

Rank Chromosome 0 C W
I ChrJ 6 \).4 0.6
2 Offsf}2 5 0.4 0.3
3 Chr2 4 0.8 0.7
4 ChrJ 4 0.6 0.9
5 Chr4 4 0.6 0.5
6 . Chr5 3 0.7 0.5
7 Off Sf}1 3 0.7 0.4

(c) Population after insertion

* Individual to be discarded in step 9.

Stcp9:

Fig 5.14: Insertion ofthc offspring into the Population with Ranking

Discard the worst ranked individuals from the population so that the size

of population remains same. For example, in Figure 5. I4(c), Chr5 and

.~ Offspl are to bc discarded from the population (marked with *). Then do

the following conditional actions:
I. If the fitness is not improved in consccutive S generations, i.e.

there is no change in the population for a long time; it

indicates that the EA is in stagnation. In that case go to Step

o to restart the whole process. Otherwise go to the next

condition checking (in ii).
II. If the output vector fitness of the top ranked individual exceeds

the threshold value defined in Definition 5.1, Le. at least one

solution has been found; then go to Step 10. Otherwise go to

the next condition checking (in iii).

ilL If the maximum number of generation limit is reached, then go

to Step 0 to restart the whole process. Otherwise go to Step 3

to continue the iteration of the EA.

Stcp 10:
Return the solution produced by the top ranked individual.

96

Chapter 6

Experimental Results and Discussion

6.1 Introduction

We have presented an EA based synthesis meth0d of multi-output ternary logic

using quantum cascades. We also discussed the theoretical back ground of multi-

output, multi-valued logic, reversible logic, quantum computation, Evolutionary

Algorithms, etc earlier. Now in this chapter we present the experimental findings .

. Mainly the results arc comparcd with the rcsults shown in [36] as it is thc only

work of same type in this field done so far.

. To compare the efficiency of our propos(,d EA based method we used two cost

factors. They help us to estimate the cost of the circuit synthesized by our

proposed mcthoG. These arc-
1. Lcnllth of the Cascade: This is the total number of columns in the

cascadc. Each column is realized using one gate. Thercfore,

this is the number of gates required to realize the circuit.

2. Scratch pad width: This is the total number of constant input/output

lines and the primary input/output lines required to realize

the circuit.

It is worthless to mention that the cost of the quantum cascade is directly

. proportional to both of these factors. So an optimal realization is supposed to be of

minimum length as well as of minimum width.

6.2 Experimental Setup and Findings

We have written .c++ program to implement the proposed EA. We used the
program to realize the benchmark functions given in [36]. We experimented with

Chapter 6 Experimental Results and Discussion

the ternary half adder function with different EA parameter combinations to see

thc effect of the parameters on this type of problems. We used population size

r = 100,200,300; crossover probability Pc = 0.5,0.6,0.7,0.8,0.9,1.0; and

mutation probability PM = 0.02,0.04,0.06,0.08,0.10 . We selected two

parents using tournament selection using tournament size T = 2. Uniform

crossover is used as [36) showed that among different classical crossover

technique, uniform crossover performs better than the others.

Errcd of I'c alllll'" OilCost of Solllti'H1

0.12

0.1 lit 0 e •• $ • '<1>

0.08 e ... 4} • CD It • CD..

~. 0.06 • • \9 • • • •~

004 • • E) CIt e ., •
0.02 4) ..e • • \'t • •

0
0.3 04 0.5 0.6 0.7 08 09 1 1 1

1'"

Fig 6.1: Effect of Pc and PM on cost of Solution

Figure 6.1 shows the overall effect of the Crossover probability (Pc) and mutation

probability (PM) on the cost of the circuit. The sizes of the cireles are proportional

to the sum of length and width of the circuit obtained from the respective r c-PM

combination. For every PC-PM combination we have averaged the cost of the

circuit obtained from population size (1') of 100,200, and 300. We can see that the

EA pcrforms bettcr when Pc is witin thc rangc 0.6 to 0.8 and PM is within 0.08 to

0.1. Unusual behavior shows at (0.6, 0.06) and (0.5, 0.04). Perhaps, if we allow

the EA to run for much longer time, then it would no longer remain.

Figure 6.2 shows the efeect of Pc on the length and width of the circuit separately.

For a particular value of Pc the obtained length (and witdth) for

PM = 0.02,0.04,0.06,0.08,0.\ arc avcraged. Both the graphs shows a tecdency of

98

.(

Chupler 6 Experimental Results and Discussion

having better solution with lower values of Pc but, unusual behavior can be

noticed around Pc =0.6, and 0.7.

Effect of I' c on Lcngth
40

35

~) 30
;.;:;

: 25
-a
r,1

"8 20

0.9 08 07

"

06 05 04

~-I) 100

-(3- I' ..2(j(l

-£;-1). ,~(lO

Fig 6.2: Effect of Pc on length of the circuit

Effect of I' c 011 Width
21 .--_ •••••. ~_.- •...

-0-- p-,:: 100

~0-1',-:2()(l

, -''"It:--l):,o','':itl()

7
0.9 0.8 0.7,., 06 0.5 0.4

Fig 6.3: Effect of Pc width of the circuit

Figure 6.3 shows the efeeet of PM on the length and width of the circuit separately.

For a particular value of PM the obtained length (and witdth) for

F.: = 0.4,0.5,0.6,0.7,0.8,0.9,1.0 arc averaged. Both the graphs shows a teedeney of

99

:

Chapler 6 Experimental Results and Discussion

having better solution with higher values of PM but, again, unusual behavior can

be noticed around PM=0.06.

ElIeet of P M on Lellglh

15

30

__ 1'.100 .

~iilll-- I"" 21m

-A-l)--"JO(}

10
0.1 0.08 006

e,\!

004 002

Fig 6.4: Effect of PM on length of the circuit

Effect of P M Oil Width
18
17
16

-;S 15::2
~ 14
"0

"c. 13,c

""2 12"V'J
11
10
9

0.1 0.08 0.06

1',\1

004 0.02

-+-l)::::,](j{!

-~ P::;.:200

-.- 1)"'::.]00

Fig 6.5: Effect of PM on width of the circuit

Table 6.1 shows the length and width obtained for some benchmark ternary

function using the proposed EA. Here initial length (also width) means the length

(width) of the circuit when the EA'found a solution for the first time. And the final

100

Chapter 6
Experimental Results and Discussion

length (width) means the length (width) of the solution when the 'EA stops.

Descriptions of the benchmark functions are given in Appendix B.

Function Initial Final Initial Final

Name Lcn!!th Len!!th Width Width

3cy2 427 425 39 36
avg2 135 16 28 9
sum2 124 9 29 3
sum3 . 135 106 36 34
thadd 55 12 28 9
A2bcc

,
34 34 20 20

mul2 37 23 23 1I
prod2 44 12 20 5
prod3 116 48 39 19

Table 6.1: Results obtainedfi)r different
. benchmark ternary functions.

The remainig part of this section shows the cxpcrimcntal find.ingsfor different

tcrnary benchmark functions. Complete description of thc ternary benchmark

functions are given in Appendix B.

abc2:
This is a ternary function with 3-input and I-output. Therefore the output vector

fitness of a chromosome representing a solution is 1(3+ I) = 4 .

.Fitness Cnuvcl'g,c nce of abc2

to to <0 '" to '" <0
0 a 0 a a a a
+ + + + + + +
IlJ W W W W W IlJ
N N N '" '" <" '" (l

g g ~
+ + +
lLJWWN N N

Gem'rations

.-, -""'1-

4.5

4

3.5

3:::~ 2.5.5
ii:

2

1.5

1

0.5
a a a a a 0 to to

a a a a a a a
a a a a a .+ +
'" <0 •.... <0 <0 W W

'" <0 •.... '"

Fir.. 6.6: Convergence of output vector fitness for abc2.

101

Chopler 6
Experimental Results and Discussion

Figure 6.6 shows the convergence of the output vector fitness. The EA starts with

a very low fitness. Then there is an exponential convergence up to 325000

generations. After a long'stagnation, there was a big jump and the EA achicved

the fitncss threshold at around 2755000 generations.

Length COll,'c'rgcncc of ~,bc2

800
700
600

.c 500

"c 400~
..J 300

200
100
o _'~_',___'''''-'_~':____"_.---,-:--.':-,.,•.-,-".. ,...•"--~--,-----:~:'-7'-'"•

0 '" '" '" '" '" <D <D <0 '" <D '" <0 <D <D <0 '0
0 0 0 0 0 0 0 0 0 0 co 0 co 0 0 <0

+ + + + + + + + + + + + + + + +
w w w w w w w w w w w w w w w W
N .,. <D ro ~ N N N N N ,.., <"', '" '"

GClI('l'ationo.;

Fig 6.7: Convcrgence of length of cascade for abc2.

37
36

.c 35:s
~ 34

33
32 '.'-"" --, .." ,,--- .

0 '" '" '" </, '0 <D '" <D <D <D <D '" '" <D '" <D
co 0 0 0 co 0 <0 <0 0 0 0 0 0 0 0 0

+ + + + + + + + + + + + + + + +
w w w W UJ W W W W W W W UJ W UI W

N .,. '" ro N N N N N '" '" '" '"
GClIcrHt'ions

Fig 6.8:"Convergence of scratchpad width for abc2.

Figure 6.7 shows the length convcrgence for the function. There is also a big jump

at around 2755000 generations, when the EA achieved the fitness threshold. At

102

Chapler 6

Exncrimenlal Results and Discussion

this point our proposed method eliminates the columns that do not have any

contribution to the final output.

Figure 6.8 shows the convergence of scratchpad width for the same function. We

can see that there is no significant change in the wIdth until the fitness threshold is

achieved. Again at this point our proposed method eliminates the constant lines

that do not contribute to the final output.

mull:

This is a tcrnary function with 2-input and 2-output. Therefore the output vector

fitpcss of a chromosome rcprcsenting a solution is 2(2+ I)~6.

Figure 6.9 shows the convergence of the output vector fitness. The EA starts with

a lower fitness. Then therc is a quick convergence up to 20000 generations. Aller

a long stagnation, there was a big jump and the EA achieved the fitness threshold

at around 785000 generations.

Fitness COllvergence of 11\1112

6.5 ,
!

6
,
I
I

5.5 I
~ 5

I
~~
E

4.5c;:
4

3.5

3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <D <0 <D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 a a a +. , +0~ <0 If) C'J en <D '" 0 "- ... cr; <0 UJ III UJ"- ~ C'J C'J '" .•. ... "' <D I~ I~ <0 Q)

CCII('I .••lioIlS

Fig 6.9: Convergence of Output Vector Fitness for mul2.

Figure 6.1 0 shows the length convergence for the function. There a exponential

convergence for around 10000 generations. Aller that there was a long stagnation.

103

o

Chapter 6
Experimental Results and Discussion

We can notice a gradual convergence after the EA have achieved the fitness

threshold.

Length Convergcncc of mnl2
250

200

"" 150~c('o,
..;; 100

50

g g ?S ~ gs ~
00++++~ ~ w w w w

Fig 6.10: Convergence oflength of cascade for mul2.

Figure 6.11 shows the convergence of scratchpad width for the same function. We

can see that there is no significant change in thc width until thc fitness threshold is

achirved. Again at this point our proposed method eliminates the constant lines

that do not contribute to the final output. The width is also decreased after that in

an exponential manner.

Width Convc I"~ence of m:d2

40
35
30
25

." 20
""~ 15

10
5
0
a a 0 a 0 0 a 0 a 0 a
0 0 0 0 0 0 0 0 0 0
0 a 0 0 0 0 0 0 0 0.::> ill " N 0 '" ill " N 0

'" ~ N <'") " "" "' ill ,~'"
G('nt'riltioIlS

....-._--_.-- ... - .
a a <f) ill <0 ill
0 0 0 0 0 0a 0 "' + + +
'" ill W W W W
'" 0>

Fig 6.11: Convergence of scratchpad width for mul2.

104

CharIer 6
Experimental Results and Discussion

a2bcc:

This is a ternary function with 3-input and I-output. Therefore the output vector

fitness of a chromosome represcnting a solution is I(3+ I) = 4.

Figurc 6.12 shows the convergcnce of the output vector fitness. The EA starts

with a very low fitness. Then there is an exponential convergence up to 175000

generations. And then the EA achieved the fitness threshold at around after a

sharp rise of the fitness.

Fitncss Com'crgcncc ofa2bcc

3.5
3

2
1.5

1
0.5
o . .
'0 <s>'0 <s>'0 r;:,'0 <s>'0,so'0 l;J'0 ,,'0' ,,'0 ,,'" ,,'0 ,,'0 ,,'0 ,,'0 '0'0
"v) ",,<::5 "".,<:) '0<::5 ,\V) o,'0G '0<SJ '0'0<::5",,<SJ .,05 'O<SJ '/)'0<::5o,<SJ ,,05~ ~ ~ , , ~ ,. ~

Gl'llcrntions

~ 2.5
c

, "-

4.5
4

Fig 6.12: Convergence of Output Vector Fitness for a2bcc.

Figure 6.13 shows the length convergence for the function. The EA converged

almost in an exponential fashion throughout the whole process. There is also a

relatively big jump when the EA achieved the fitness threshold. At this point our

proposed method eliminates the columns that do not have any contribution to the

final output.

Figure 6.14 shows the convergence of scratchpad width for the same function. We

car, see that there is no significant change in the width until the fitness threshold is

achicved. Again at this point our proposed method eliminates the constant lines

that do not contribute to the final output.

lOS

. Chapter 6
Experimental Results and Discussion

Length Convergence of a2bcc
800

100
600

"'500~
~'400
". ..J 300
200
100

o •••••••• 1".".

10 ,~<S'<::> ~10 ~<::> ",1010 ,~<S'10 ",10<::; ",<::;10 ",1010 _<:;1010 "'<::;<::>",1010 .sc,<::;<::> ",<::;10 ",1010
"J ",,'5 t>"5 ",'5 "'"J 0,'5 10':) ').'0 ""VJ '0'0 IQ':) "," '1>':) ,,'0~ , ~ ~ ~ ~ , ~

G('II(' ral iOllS

Fig 6.13: Convergcnce of length of cascade for a2bcc.

40
Width COllvt'rgel1cc ofa2bcc

I
35 '

j,
"' 30 I.

~ i25 ,
i

20

Gl'nl~n,tjons

Fig 6.14: Convergence of scratchpac' width for a2bcc.

thadd:

This is a ternary function with 2-input and 2-output. Therefore the output vector

fitness of a chromosome representing a solution is 2(2+ I) = 6.

106

Chapler 6
Experimental Results and Discussion

Figure 6.15 shows the convergence of the output vector fitness. The EA starts

with a very low fitness. Then there are two almost big jumps and the EA achieved

the fitness threshold at around 210000 generations.

Fitncss Convcrgcncc of thadd

6.5
6

5.5
5~

:;::4.5
";<;:: 4
"" 3.5

3
25
2 .•.,........ T •..

~~#~&&&&&&&&&&&~&
"'~'S '1:><::5'),~<::5 'O~<::5 ~~<::5 ",& '1:>& ",,& 'orSi ~rSi ",rSi 'b~~ ",,~<::5 '0<::5<::5'0rSi t><rSi

, ~ ~ ~ ~ ~ ~ '" '" '" ~ ~ '0 '0
G"'HCl'al'iolls

Fig 6.15: Convergence of Output Vector Fitness for thadd.

Figure 6.16 shows the length convergence for the function. After an initial

ncgative convergence, there is an exponential convergence.

Lcngth Convc rgc ncc of t113dd

200
180
160
140

oS 120
~' 100~
.J 80

60
40
20
o

co co co co co co co co co co co co co co co co co
co co co co co co co co co co co co co co co co
co co co co co co co co co co co co co co 0 co
co co N <D co " OC) N <D co ..,. OC) N <D co "..,. OC) ~ N N N '" '" " " " "' "' -£> <D

Gl'ncr:dions

Fig 6.16: Convergence of length of cascade for thadd.

107

Chapter 6
Experimental Results and Discussion

Figure 6.17 shows the convergence of scratehpad width for the same function. We

can see that there is no significant change in the width until the fitness threshold is

achieved. Again at this point our proposed method eliminates the constant lines

that do not contribute to the final output.

Widlh CUlIVCI"l'lICC of thadd"40
35
30

.-:: 25
'0

~ 20
15
10
5
a a a U) U) U) lOa a a a a aa a + + + +a a W W W W..,. <Xl ~ N N N

---,

lO co co co co lO lO lO '" lOa a a a a a a a a a
+ + + + + + + + + +
W W W W W W W W W W
M M ..,. ..,. ..,. lO co <0 <0 <0

Generations

Fig 6.17: Convergence of scratch pad width for thadd.

prod3:

This is a ternary function with 3-input and I-output. Therefore the output vector

fitness 0f a chromosome representing a solution is I (3+ I) = 4.

Figure 6.18 shows the convergence of the output vector fitness. Like the

previously mentioned functions, the EA starts with a very low fitness, then there .is

an exponential convergence at primary stage, then a long stagnation, and finally it

achieved the fitness threshold at around 470000 generations.

Figure 6.19 shows the length convergence for the function. There is also a big

jump indicating thet the EA has found a better fit.ehromosome with smaller length

at that time.

108

Chapter 6
Experimental Results and Discussion

Fitness Conve rgellee ;)r pm1l3

4

3.5

~ 3
c:
. ~ 25

---;-.---.---'-T•.•... "..•.•-'T.. ,•...

a a a '" '" '" '" '" <i1 '" '" <i1 <i1 <i1 <i1 <i1
0 a 0 a a 0 0 0 0 0 0 0 0 a 0 0
0 0 0 + + + + + + + + + + + + +
0 0 a W W W W W W W W W W W W W
'" ID Ol ~ N N N N '" '" '" v v V <i1 <i1

Cenerations

a

2

15

1

Fig 6.18: Convergencc of Output Vector Fitness for prod3.

Figure 6.20 shows the convergence of scratchpad width for the same function. We

can see that there is again an exponential convergence after the fitness threshold is

achieved.

Length Convergence of pmd3
450
400
350
300

.:: 250;
~ 200-' 150

100 I50 ,
0 I•.
0 0

0
0

'"«)

:...,,,,, ",."""-, .., "''','''''-
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 '" 0 <i1 0 '" 0 '" 0 '" 0

'" Ol ID N Ol '" N co '" ~ co
N '" '" v '" '" «) !'- !'-

GCJIt.'r:ltiun~

Fig 6.19: Convergence of length of cascade for prod3.

109

I

CharIer 6
Experimental Results and Discussion

Fig 6.20: Convergence of scratch pad width lor prod3.

avc2:

This is a ternary function 'with 2-input and I-output. Therefore the output vector

fitness of a chromosome representing a solution is I(2+ I) = 3.

Fitncss Co n'vcrgc m'c of avg2
3.5

3

~ 2.5
"<-
E
ti: 2

1,5

Gcncntiolls

Fig 6.21: Convergence of Output Vector Fitness for avg2.

I

Figure 6.21 shows the convergence of the output vector fitness. The EA starts

with a low fitness. Then there ISa very quick convergence and reaches the fitness

threshold within 7500 generations.

110

Experimen/al Resul/s and Discussion

Figure 6.22 shows the length convergence for th~ function. There is also a big

jump indicating thet the EA has found a better fit chromosome with smaller Icnf,>th

at that time.

Length Conver<,.;enceofavg2
160
140
120
100

;n 80~.
~

60
40

.20
0

CClIl'ralilln.':'o

Fig 6.22: Convergence of length of cascade for avg2.

Figure 6.23 shows the convergence of scratchpad width for the same function. We

can see that thcre is a consistcnt improvement throughout the whole eolution.

Width Convc rgcncc or avg2
30

25

"" 20
.~

~ 15

I

10

5
C)

Cl'IICI'a1ions

Fig 6.23: Convergence of scratchpad width for avg2.

11 I

Clla"te,. 6
nxpe,.imenta! Resu!ts and Discussion

Figure 6.24, Figure 6.25, and Figure 6.26 shows the realizations, of three ternary

benchmark functions obtained by the proposed method. Realizations of other

circuits are a bit complex with a large number of columns, hence not shown.
A

[J

°
°
°

o

2

°

r151 141 III
c..

IJ11rs:1
2 I

1I

I~I - . ..

141 121
2

II] 121121
2

III 141 13] 141 12]
In

2 2 r 11 rIII
" .. _-.-. _ ..

111121121
I 2 I 1° 1°--- - ----- ----- --_._-------,.

111141
141 . .

2

Fig 6.24: Realization ofmulZ using the proposed method.

A -

F
2

.141

"r;-
l.zl ..

B ~.

1 0 .. -_ ••• __ ••••

"'0 .. -~----f4} .
210 ,

, 1"li+I~1 I ',I],

-121 . °
1
2

1

o .

I .

Fig 6.25: Realization of prod2 using the proposed method.

lIZ

I

Chapler 6
Experimental Results and Discussion

A

B

2

2

o

o

2

I

i'l-

11 I i I I
o 0

Fig 6.26: Realization of avg2 using the proposed method.

6.3Conclusions

Experimental results obtained from our proposed EA based synthesis method is

presented in thisehapter. First, we have shown the effect of the EA parameters on

the solution. We have shown the ranges of the parameter values for which the EA

pertams better. Then we have shown the results obtained for some benchmark

ternary functions so that it could be compared with other methods later on.

113

Chapter 7

Conclusion

7.1 Concluding Words

We have presel'ted an EA based method to synthesize multiple-output ternary

functions using quantum cascades. Quantum computation is .known to be the most

promincnt tcchnology for future computers. Thc most important feature that

attracts the attcntion of rcscarchcrs is thc "cntanglemcnt" of logical statcs.

Morcovcr, rcvcrsiblc computcrs can bc madc using quantum technology that,

thcorctically, dissipates zero amount of heal. We havc described thc relcvant

theoretical background of Multiple-Valued Logic, Quantum Computations,

Reversible Logic, and Evolutionary Algorithms.

A family of 2*2 quantum primitive gates is proposed. These gates are reversible

and can directly be implemented using quantum technology. Besides, these gates

are universal for ternary. logic. We compared these gates with the most popular

Generalized Ternary Gates. We have shown that ternary quantum circuits can be

constructed in a better optimized way using the new gates. We hope that thcse

gates will attract the interest of the researchers in this field.

We also proposed an EA based synthesis method of ternary Quantum Circuit

using the new gates. Experimental results are presented and it goes in favor of our

claims.

The main contributions of this thesis are summarized as follows:

1. To construct multiple-valued quantum computers, it is strongly required that

the gates will be built using quantum primitives. In this thesis wc have

proposed a family of ternary 2*2 quantum primitive gates. This family of

gates is universal, i.e. any ternary function can be realized using these gates

Chapler 7
Conclusions

only. Besides, these gates can directly be realized using quantum technology.

We have shown the effectivcness of using the new gate as the building blocks

of tcrnary quantum computers. It is also shown that the new gates outperform

other ternary primitive gates.

2. The most popular ternary primitive gate today is the Generalized Ternary

Gates (GTG). The proposers of GTG claims that these gates can be

constructed directly using quantum tcehnology in linear'ion trap. We, .in this

thesis, are raising a strong doubt about this claim. We have shown that all the

GTG gates cannot be realized directly in linear ion trap. However, these gates

can be constructed using our proposcd gates.

3. An EA based synthesis of ternary logic usmg the new gates has been

proposed. Since there is no direct mcthod of synthesizing ternary logic using

the new gates is known, and the structure of the problem is still undefined, we

used EA for solving the problem. However, we helieve that researchers in the

field of multiple-valued logic will be' interested in developing heuristic or

deterministic mcthods of synthesizing ternary logic using the new gates.

4. An extensive study on the effect of EA parameters in solving this type of

problems is carried out. Through the experimentations we have identified the

range of different EA parameters for which the EA produces better solutions.

5. Other popular ternary reversible gates can be constructed using the new gates.

For example, teinary TotToli gate, Generalized Ternary Toffoli gates" ternary

swap gate, etc. These non-primitive gates are widely used in ternary logic

synthcsis. So e<;mstructionof those gatcs in a cost effective way is a burning

question. Use of the new gates in constructing the complex gates will help us

to reduce the cost of quantum circuit effectively. Thcrefore, realizing the non-

primitive quantum gates using the new gates carries huge significance.

6. Finally, this thesis can be considered as a eomprehensivc collection of

information relevant to Quantum Computation, Multiple-Valued' Logic,

115

Chapler 7
.Conclusions

Reversible Logic, and Evolutionary Algorithms. Along with theoretical

fundamentals, the recent trend of research and development in multiple-valued'

logic, specifically ternary logic, is dis<.:ussedhere. Therefore, we bel ievc that

this thesis will go a long way in research and development in this field.

7.2 Recommendations for Future Work

In order to design and develop quantum computers in an efficient way, w~ believe

that, there arc a number of areas that require further study and research. Actually

this is a very new and promising research field. So there are lots of scopes to

conduct research in this field. Moreover, this thesis has some limitations that can

also be investigated further. Such as EA takes long time to find solutions,

therefore, in order to overcome that, different strategies could be sought to make it

laster.

This section ess-:ntially provides some pointers to persue further investigation in

this field.

I. In this thesis we were confined only with ternary logic. Other Multiple-

Valued cases can be taken into account. The mathematical foundation of

Ternary Reversible Logic lies in GF3. Other Galois Fields like GF5, GF7,

etc. can be considered. Developing quantum primitive operations and logic

gates under those Galois Fields can be an excellent field of research.

Realizing higher values Galois Field Logic means' storing more

information in a single unit; thus reducing the size of circuit. On the other

hand, measuring and manipulating the information in this. case will

becom~ more complex. So, it requires a trade off. Through investivation in

realization of Multiple Valued logic lor high<.:rvalues arc of great

. importance.

2. Study can be carried on developing generalized rules and synthesis process

instead of remain confined with ternary logic. General formulation of the

quantum primitive operations and the logic gates would be quite

interesting and challenging as well.

116

Cha{J/er 7

9nnclusinns

3. In this thesis we proposed a set of quantum primitive gates. And it is a set

of universal quantum gates. But we did not investigate if there is a subset

or not which is also universal. If there exist any such subset of universal

gates, then with this less number of gates, perhaps logic synthesis will be

much easier. Therefore, study and research can be carried to find the

subset of universal gates if there is any.

4. A limited extent of interference could be allowed to apply to the

Evolutionary Algorithm so that it can get rid of stagnation and converges

towards a solution. For example, if the output vector fitness of the best

invividual remains less than but very close to the fitness threshold for a

long time, then some sorts of "Genetic Engineering" to make the

individual achieve the desired Iitness threshold. Research can be done on

developing suitable "Genetic Engineering" tenchnique. In fact we are, at

present, trying to develop one such method.

5. We have used EA based method for logic synthesis using the new gates.

Application of other such strategies (especially AI techniques) for doing

the same can be developed. To do that we need a better structure and

formalizaton of the problem. This is definitely going to be quit diflicult,

but we believe that is not impossible. So finding deterministic or heuristic

methods can be a good ground of research.

6. The proposed EA based could be applied together with other synthesis

methods. For example, the quantum circuit generated by other methods

can be transformed into the genotype of our proposed EA based

method.then this genotype can be used as the initial seed ofthe EA so that

it can find a better solution afterwards. Formulating this type of hybrid

methods could be done.

7. Finally, study and research could be carried to realize popular ternary gates

using the new gates in a better way.

117

Appendix A

Source Code of the Program

File Name: evTGF.cpp

/1 EA- using ranking of individuals
#includc<ioslrcam>
#includc<fslrcam>
#includc<vcclor>
#include <stdlib.h>
#includc <math.h>
#includc <timc.h>

using namcspacc std;

class charVcct;
class chal'2Dvcct;
class lloatVcct;
class floal2Dveel;
class chromosome;
class population;

fi*******************
char gclShifl(char A, char B, int x, int y);
void rem\l(ehromosome& ehr, eharVeet& male);
int isln(const charVcct& CV, char val, int 1101Pos);
int MarriageMatehing(floal2Dveel wbpg, eharVeet& mate);
int takeCareeOlDuplieale(eonst population& pop, PQPulation& orfsp);
int ehk_NJeplaee(population& pop, floatVeet& popFil,

populalion& ol'!Sp, floatVeel& orn'it);

1/**** 1<**********"***
class Param

static int inLcngth; II input length - number of variable
static int outLcngth; /1 number of outputs
static 110at Pc; /1 cross over probability
static Iloat Pm; /1 mutation probability;
static inl NCmax; II-maximum number of generation in one repetation
static int Lpop; II population sizc
static int rep; II maximum number ofrepetation
static int gen; II maximum number of generation to wait to exhaust
static char tC; II crossover type; u-uniform, 0-1 point, t-2 point

public:
static void read(ifstrcam& lin)
{fin> >inLength»outLcngth»Pc> > Pm> >NCmax»Lpop> >rep> >gen> >tC;} .
static void writc(ofstream& fnut)
{10ut<<inLcngth< <cndl<<outLcngth< <endl <<Pc< <cndl«Pm< <endl
«NCmax< <endl «Lpop< <cnol«rcp< <cndl< <gcn«cnol«tC< <endl; J
static .void inputO {cin»inLcngth»outLcngth»Pc»Pm»NCmax»Lpop;]

A{'Pendix A
Source Code of/he PrOFram

static void output() {clout«":"«inLcngth«":"«outLcngth«":"«Pc
«":" «Pm< <":" «NCmax«":" <<Lpop;}
static void il1putGP(ifstrc~rn& fin) /1 Reads Global Parameters
(
fin> >Pc» Pm> >NCmax»Lpop> >rcp> >gcn> >tC;

swileh(lC)
{

case 'U':
case lUI:

coul«"\nUniliJrln CrossOver ... ll; hreak;
case '0':
case '0':

cout«"\nOne Point CrossOvcr. .. "; break;
case '1':
case'T':

cout«"\nTwo Point CrossOver .. ,"; break;
del.ull:

cout«U\n!! !I\V\V\VUNKNOWN CrossOver ... ";
}

}
static void inputFP(ifstrcam& lin){ fin»inLcngth»outLcngth;J

I/Rcads Function specific Parameters
sIalic void oulpuIGP(ofslream& l'oul)
{foul «"\t" «Pc«"\lll< <PI11<<"\1"<<NCmax< <"\t"«I ..j'X)p<<"\1"
«rcp< <"\i"«gcn< <"\1"«tC «"\111AtI)c\tPm\tNCmax\t1.pop\tRep\tGcn\tcrs'ryp"; :
static void outputFP(ofstrcam& toutH IllUt«" "«inLcngth«" "«outLcngth;:
static void set(int a, int b, float c, float d, int e)

{inLcngth = a;outLcngth=b;Pc=c;Pm=d;NCmax=e;}
sIalic void gel(inl& a, inl& b, tloal& e, tloal& d, inl& e)

{a=inLengt1f;b=outLength;c=Pc;d=Pm;c=NCmax; }
static int inLcnO {return inLcngth; l
sIalic void sellnLen(inl I) {inLenglh ~ I; l
slalie inl gellnLenO {relurn inLenglh;}
sIalic inl oulLenO {relurn oulLenglh;}
sIalic inl getLpop() {relurn Lpop;}
sIalic floal gelPeO {relurn Pc;}
sIalic noal gelPmO {return Pm; l
static int getNCmaxO {return NCmax;:
sIalic inl RepO {relurn rep;}
sIalic inl GenO {relurn gen; l
slatie ehar TeO {relurn Ie;}
static int rnaxCrLenO llcale & returns: max length 01' chromosome

{int mel; mel = 3"pow(3,inLcngttl+2); return mel;}
static int constLincsO II calc & returns: number of constant input lines

{ relurn (inLenglh+ouILenglh)*9; }
}; II E'.ld ofelass Paramo

int Pararn::inLcngth; II input length - number of variable
int Pararn::outLength; II number of outputs
noal Param::Pe; II cross over probabilily
float Param::Pm; II mutation probability;
int Param::NCmax; II maximum number or gcncration
int Param::Lpop; II population size
int Param::rcp;
int Parmn::gcn;
char Parum::tC;

II •••••••••••••••••••

class floatVcct

119

~'" ""\/ .. ,
Il!!i

Appendix A
Source ende o(the Pmgrom

vcctor<noat> fv;
public:

void clcarO {fv.clearO;}
void push_back(float c) {fv.push_back(c);)
int sizeOconst {return fv.sizcO;}
const floal& operalor[](int pos) consl {rclurn fv[pos];};
floal& opcralor[](inl pos) {relurn fv[pos];l
int opcrator==(floatVcct& c)const {int i,n=fv.sizcC);itln!=c.sizcO)rcturn 0;

for(i~O;i<n;i++){ ij\!(fv[i]~~c.fv[i])) relurn O;)relurn 1;:
void outpulO;
bool emplyO {relurn fv.emplyO;}
void insert(inl id, float fvl) {fv.insert(fv.beginO+id,fvl);)
void pop_b1CkO {fv.pop_backO;}
void read(ifslream& fin)
{

int i,n;
Iloall;
Iv.clearO;
iill»n;
for(i=O;i<n;i++)
{

fin»t;
fv.push_back(t);

l
void wrilc(ofslrcam& foul)
{

int i,n;
n ~ fv.sizeO;
fout«n«"\t";
for(i=O;i<n;i++)

foul«fv[i]«endl;

l; II END class lloclVecl

V************************
class lloal2Dvecl
(

vcctor<tloat Vcct> fmat;
public:

void clearO {fmal.clcarO:)
void push_back(floalVecl c) {fmal.push _back(c); l
int sizcOconst {return fmaLsize();)
consllloalVecl& operalor[](inl pos) consl {relurn linal[pos];l;
lloalVecl& operalor[](inl pos) {relurn final[pos];)
int opcrator==(float2Dvcct& c)eonst {int i,n=fmaLsizcO;itln!=c.sizcO}rctum 0;

for(i~O;i<n;i++){ if(!(fmatli]~~c.linal[i])) relurn 0;) relurn I;)
void oulputO;
void read(ifslrcam& fin)
{

int i,n;
lluat Veet t;

fmal.clcarO;
lin»n;
for(i=O;i<n;i++)
(

l.rcad(tin);
fmal.push _back(l);

120
~..

Avoendix .If
Source Code oOh? Program

}
void write(ofstrcam& fout)
{

int i,n;
n ~ fmat.sizcO;
fout«n«endl;
for(i=O;i<n;i++)
{

linal[ij.wrile(foul);
foul«endl;

}; ;/END class lloat2Dveel

V*****************************
class gClle

{
int etrling;
int ctrlcd;
illt x;
illt y;

public:
void illput()l cin»ctrling»clrlcd»x»y;:
voidoulput()' clout«"["«clrling«" ,"«clrlcJ«" ,"<.<x«" ,"«y«"J"; I
void oulpul(ofstream& oulf)

{outf< <II["«ctrl ing< <","<<ctrled< <","<<x< <","<<y< <"]";}
void randOencO
{

int n,w;
n ~ Param::inLcnO;
w = ri + Param::constLincsO; II total number ofinputJoutput lines
dol

ctrling = randO% w;
ctrled ~ IandO% w;

}whiIc(elrling~~elrlcd);
x ~ randO % 3;
Y ~(randO%5)+ I;

}
void selOcne(int a, int b, int e, inl d) {clrling~a;etrled~b;x~e;rd;}
int CingOconst {return ctrling;}
int CedOeonsl {relurn clrled;}
void Cing(int e) {elrling ~ e;}
void Ced(inl e) {elrled = e;}
inl XOeonst {relurn x;}
int YOeonsl {relurn y;}
int operator==(const gCllc& g)const
t relurn « elrling~~g.elrling)&&(elrled~~g.elrled)&&(x=~g.x)&&(y~~g.y»);}
void repairO {if(elrling~=elrled) x ~ y ~ O;}
void read(ifstream& fin) {fin»ctrling»ctrlcd»x»y;}
void wrile(ofslrcam& foul)

{ lout«ctrling«cl1'dl«ctrlcd«cndl«x«cndl«y«cndl~ :

}~II END c1uss gene

V**************************
class c~romosomc

vcctor<genc> ch~;

121

Appendix A
Source Code of/he Program

public:
void dcarO {chnn.dcarO;}
void push_back(gcnc& g) {chrm.push~back(g); I
int sizcO const {return chrm.sizcO; I .
const gcnc& opcrator[)(int pos) canst (return chnn[pos];);
gcnc& opcrator[)(int pos) {return chnnl pos];}
charYcct gctOncOutput(charYcct ipop, int insizc)const;
int gctChromoOutput(char2Dvcct& opvcct)const;
int mutationO;
int opcrator==(const chromosomc& c)const

{int i,n=chnn.sizcO;if(n!=c.sizeO)rcturn 0;
for(i=O;i<n;i++){if(!(chrm[i]~~c.chnn[i])) return 0;Ireturn I;}

void repairO lint i,n~chnn.sizcO;for(i~O;i<n;i++) chrm[i].repairO;};
void diminatcRcdundantO; .
void chromosornc::outputO;
void output(ofstream&);
void unWccd(const charVcct&, charVccl&, charVcct&);
int crasc(int id)

{ill chrm.crasc(chrm.bcginO+id, chrm.end())~~N lJl.I.) return 0; return I; I
charYect evaluatc(char2Dvect& , Iloat& , Iloal&. Iloat&);
void rcad(ifstrcam& fin)
(

int i, n;
gene t;
chrm.dcarO;
fin»n;
for(i~O;i<n;i++) .
(

t.read(lin);
chrm.push _back(t);

I
void write(ofstrcam& fout),,

int i, n;
n = chrm.sizcO;
fout«n«cndl;
for(i=O;i<n;i++)

chrm[i]. writc(fout);
}

}; II END class chromosome

V****************************
dass populalion
{

vcctor<chromosome> popl;
. l10atVcct iFit;
110atYcelll'it;
tloatVcct wFit;

public:
110atlSum(int i) {return IFit[i]+0.7*IFit[i]+0.3*wFit[i];1
Iloat FFit(int i) {return IFit[i]; I
Iloat LFit(int i) {return IFit[i];}
Iloat WFit(int i) {return wFit[i];1

void init(char2Dvcct& opYcct);
void oulputO;
void dcarO{ popl.dcar(); I
void crase(int i) {if(i<popl.sizc()) popl.erase(popl.bcginO+i);}
void push_back(ehromosome& cr) (popl.push _baek(cr); I

122

t.rcad(lin);
popl.push_ baek(I);

Appendix A
Source Code of the Program

,int sizcOconst {rcturn popl.sizcO;}
canst chromosomc& opcratorl](int pos) const ~return popllposj;};
chrornosome& operator[](int pos) {rclurn popllpos);l
population& erossOverUnfO;
population& crossOverlptO;
int opcrator='~(eonst population& c)const

lint i,n~popl.sizcO;if(n!~e,size())rcturn 0;
for(i=O;i<n;i++){if(!(popl[i)~~c,poplli])) return 0;) relurn I;}

population seleclParcntT _ary(int T, const floatVeet& erFit);
void repairGeneO lint i,n~popl.sizeO;for(i~O;i<n;i++) popl(i].repairO;};
void swap(int i, intj);
void rankp"Jpl();
int inscrtWithRank(population&,int&);
void trankWorst(int);
void cvaluate(char2Dveel&);
void read(ilstrcam& lin)
{ ,

int i, n;
chromosome t;
popl.c1earO;
fin»n;
for(i~O;i<n;i++)
{

}
fFit.read(lin);
IFit.read(lin);
wFit.read(fin);

}
void writc(ofslrcam& tout)
f
• int i, n;

n ~ popl.sizeO;
fout«n«endl;
for(i~O;i<n;i++)
{

popl(i]. write(fout);
fout«cndl;

}
IFit.writc(fout);fout <<endl;
IFit.writc(fout);fout«endl;
wFit.write(fout);fout< <endl;

}
};II END class population

a******************************
class charVcct

vector<char> cvect;
public:

void clcarO {cvcct.clcarO;}
void push_back(char c) {cvecl.push_back(c);)
int sizcOconst {return cvcct.sizc();J
const char& opcrator[](int pos) cons! Irclurn evedl pmd;};
ehar& operator[](inl pos) {return evcell pos]; I
charVccl& incComb(int n);
int allarc(char c, int n);
int opcrator==(charVect& c)const

123

Appendix A
Source Code ofthe Program

(int i,n~eveeLsizeO;il(n!~e.size())retum 0;
for(i=O;i<n;i++){ ir(!(cvcct[i)==c.cvcct[iD) return O;}return I;}

void output(char d~'O')
tint i,n=cvccLsizcO;for(i=O;i<n;i++) cfout«char(cvcctli]+ d)«" ";}

floatVcct cvaluatc(char2Dvcct& opv)const; -
void output(ofstrcam& oull', char eh =: '#1);
void outputChar(ofstream& outf, char eh ~ '#');
void outputChar(ehar eh ~ '#');
void input(ifstream& inf, char eh ~ 'W);
int eount(ehar eh)
(.

int i,n=cvect.sizeO;
int c=O;
for(i=O;i<n;i++)

if(eveelli]~~eh)
c++;

return c;
I
void rcad(i fstrcam& lin)
{ illt i, 0;

char t;
eveel.elearO;
fin»n;
for(i=O;i<n;i++)
(

fin»t;
eveeLpush_baek(t-'0');

}
void write(ofslream& fout)
(

int i, 11;

n = cvecLsizcO;
fout«n«"\t";
for(i=O;i<n;i++)

fout«(eveet[i]+'O')<<ends;

I; IIEND elass eharVeet

V******************************
class char2Dvcct
{

vcctor<charVcct> ernaL;
public:

void elearO (cmaLelearO;)
void push_back(charYeet& ev) {emaLpush_baek(ev);}
void outpulO;
void outpul(olstream&);
void oulputVeet(ofstrcam&);
int sizeO{retum emaLsizeO;}
eonst eharVcct& operator[J(int pos) eonsl (return emat[pos];};
eharVect& operator[](int pos) (relum ematlpos];}
int operator==(ehar2Dveel& c)eonsl

tint i,n=cmat.sizcO;if(n!=c.sizcO)rcturn 0;
for(i~O;i<n;i++){ il\!(cmatli]~~e.cmatli])) return 0; Ircturn I;}

lloat2Dvcct cvalmitc(char2Dvcct& opv)const;
void wrilc(ofstrcam& fout)
{

int i, n;

124

Appendix A

n ~ emal.sizeO;
fout«n«"\nn;
for(i=O;i<n;i++)
{

emal[i]. writer fout);
foul«endl;

I
I; IIEND class ehar2Dveet

V*************************************
void tloatVeet::outputO
(

int i,n~fv.sizcO;
for{i=O;i<n;i++)

cfout«fv(i]«" n;

void tloat2Dveet::outputO
{

int iJ,ni~tinal.sizeO,nj~fmat[O].sizeO;
for(i~O;i<ni;i++)
f
l

clout«cndl;
1,)r(j~O;j<nj;i++)

clout «linatli JIi J<<ends;

void ehar2Dvcct::outpuIO
{

int iJ;
lorei~O;i<emat.sizcO;i++)
{

cfout«cndl;
forG~OJ<emat[i].sizeOJ++)

efout«ehar(emal[i] Ii]+'0')<<ends;

void ehar2Dvcet::output(ofstrcam& outt)
(

int ij;
for(i~O;i<emat.sizcO;i++)
{

outf«cndl;
forG~OJ<emat[i] .sizeOJ++)

outf«ehar(emat[i] li]+'O')<<ends;

void ehar2Dvcet::out.putVcel(ofstrcam& outt)
{

int i;
lorei~O;i<emat.sizeO; i++)
{

outf«cndl;
emat[i].output(outt);

Source Code ofthe Program

125

Appendix A
Source Code oft"" Program

void populalion::evaluate(ehar2Dveet& opYect)
{

int i, n=popl.sizcO;
floal fT,If, wf;
fFit.clearO;
IFit.clearO;
wFit.clearO;
for(i=O;i<n;i++)
{

popl[i] .evaluate(opYeet,ff, If,wI);
fFit.push_ baek(fI);
IFit.push_baek(ll);
wFit.push_baek(wl);

void pnpulalion::inil(char2Dveet& opYeel)
{

int popsize ~ Param::getLpopO;
iot i,varlcn = Param::gctlnLcnC);// varlen - number of variables in the function
gene g;
chromosome cr;
int erlcn, mcr,j;
!loat IT,II; wi;
mer = Param::maxCrLcnO ;
popl.elearO;
fFit.clearO;
IFit.clearO;
wFit.clearO;
lor(i~O;i<popsize;i++)
{

cr.c1carO;
erlen ~ (randO % mer) + I;
for(j~O;j<erlen;j++)
{

g.randGeneO;
er.push_back(g);

}
cr.evaluate(opVect, 'fT, If, wi);
popl.push_baek(er);
fFit.push_baek(fl); IFit.push_baek(ll); .

}
rankPoplO;

void population::swap(int i, intj)
I

chromosome temper;
noat tfT,tlf, twf;
tempCr ~ popl[i]; popl[i] ~ popl[j]; popl[j] ~ tempCr;
t1T~ fFit[i]; fFit[i] ~ l1'itO]; l1'it[j] ~ Iff;
tlf~ IFit[i]; IFit[i] ~ IFil[i]; IFilUl ~ 11I;
twf~ wFit[i]; wFitli] ~ wFilU]; wFilli] ~ (wi;

void populal;on::rankPopIO
{

int n = population::size();
iilt iJ;

wFit.push _baek(wI);

126

Appendix A
Source Code of/he Program

Cor(i~O;i<n-l;i++)
(

CorG~i+ I J<nJ++)
{

if(IFit[i] < IFitlJ])
population: :swap(ij);

else
if(fFit[i] ~~ I1'itlJl)
(

iC(IFit[i] < lFillJ])
population: :swap(i,j);

else
iC(IFit[i] ~~ IFitlJl)

iC(wFit[i] < wFitlJ])
population: :swap(ij);

}

int population::insertWithRank(populalion& pp, inl& newBest)
(

int i,j, n = pp.sizcO;
int ret = 0;
int rlst = si'.~cO~

newBest ~ 0;// new best chromosome NOT found
Cor(i~O;I<n;i++)
{

IC(fSum(r1st-l) < pp.rsum(i))
(

forG~OJ<rlstJ++)
{

iC((pp.tl'it[1]>IFitij])
III(pp. fFit[I]~~IFitlJ])&&(pp.1 Fit[i]> IFitl]l))

III(PP: tl' it[I]~~ IFIt[j 1)&&(pp.1I' il[i]~~ IFitl] 1)&&(pp. wFitlil> wI' itl]])))
{
popl.i nscrt(popl.hcgin()+j,pp.popl [II);
fVit.inscrtG,pp. tl'lt[iI);
IFit. insertG,pp.1 Fit[II);
wFit.insertG,pp. wFlt[II);
popI.pop_ back();
t1'lt. pop _backO;
IFit.pop _ backO;
wFit.pop _backO; .
ifG~~O)
ncwBcst = I;/1 new best chrosomc found!!!!
break;

ret++;

return ret;

void population::trankWorst(int w = 2)
{ .

int i;
for(i=O;i<w;i++)

127

Appendix A
Source Code o(ihe Program

void population::output()
{

int ij,ersize,popsize ~ popl:size();
ror(i~O; i<popsize;i++)
{

ersize ~ popl[ij.size();

it(fFil.empty())
cfout«cndl«crsizc

else
«"\n";

cfout«cndl< <crsizc< <"\t[** *"<<H;'jtl iJ
<<w,Fit[i J< <" '"'"*]\n";

for(j~Oj<ersize;.i++)
popl [i] [j).outpulO;

«" "«IFil[i]«" "

eharVeet ehromosome::evaluate(ehar2Dveel& opVeet, 110at& ffit, float& !lil, 110al& wfit)
/1 calculates the fitness components of a chromosome and returns'mate
{

const int n = Param::inLcnO;
lloa12Dvcct l'uncFit;
char2Dvccl crOP;
charVcct male;
int maxCrLn ~ Param::maxCrLenO;
int i;
int oi; II = matc.sizcO; this is also the number of output - m.

getChromoOutput(crOP);
funeFit ~ opVeet.evaluate(erOP);
MarriageMatehing(I'uneFil,mate);
flit ~ 0.0;
ni = mate.sizcO;
for(i~O;i<ni;i++)
{
flit +~ (funeFit[i][mate[i]]~~n)'?funeFit[i]l matc[i]]+ 1: limeFil[i][mate[i]];
}
float threshJfit ~ (Param::inLenO+ I) • Param::outLen();
charYeet gF; //wccd-crop llags for the genes in chromosome
eharVeet wI'; //weed-erop flags for I/O lines
int unused, cs;
cs = unused = Param::constLinesO;
if(ffit >~threshJfit)
I

unWeed(malc, wF, gF);
for(i~n;i<es;i++)

if(wF[ij~~'c')
unuscd--;

II if the I/O line contributes to realize a function, it is used,
else

unused = 0;
int crLnP = ehromosomc::sizcO;
lfit ~ I - (doublc(crLnP)/maxCrLn);
wfit ~ double(unused)/es;

128

Source Code of/he Program

return mate;

int chromosome: :gctChromoOutput(char2Dvecl& opvcct)consl
(

charVcct ipcomb;// input combination likc ABCOI201 ... for 3 var function
charVcclopcomb,l;
ipcomb.c1carO;
int insizc = Param::inLcnO;
int constSizc = Param::constLincs();
int i;.
for(i=O;i<insizc;i++)

ipcomb.push _back(O);
ror(i=O;i<constSizc;i++)

ipcomb.push_back(i % 3);
opvecLcIcarO;
dol

opcomb = ipcomb;
t.c1carO;
t = gctOneOutput(opcomb,insizc);
opvcct.push _ back(I);
ipcomb. incComb(insize);
opcomb.c1car();

}whi Ic(! ipeomb.allare(O,insize»:
il(opvcct.sizcO !~(pow(3,insizc)))

erout«"\nDal me kuch kaala hay ... ";
rcturn opvcct.sizcO;

charVect chromosomc::gctOncOutput(charVcct ipop, int insizc)const
{

int i,-ersize;
eharVcct opop;
opop = ipop;
ersize = sizeO;
!,or(i=O;i<crsizc;i++)

opopl chrm[i]'CcdO] ~
gctShi fi(opop[chrm [i]'CingO],opopl chrm [i].CcdO],chrm [ij.XO,chrm [i]. YO);
return opop;

charVcct& charVcct::incComb(int n)
{

cvcct[n-I]++;
whi1c«n>O)&&(cvcct[n-I]>2»
(

cvcctln-I] -~ 3;
il(n>~2)

cvcctl n-2]++;
n--;

l
return *this;

int charVcct::allarc(ehar c, int n)
{

whilc(n>O)
{

if(cvcct[n-I]!~ c)

129

Appendix A

return 0;
n--;

}
return 1;

population& population::erossOvcrUnfO
{

float Peross ~ Param::getPeO;
int i,crlcn,m,n;
float prob;
gene temp;
m ~ popl[O]'sizeO;
n ~ popl[1].sizeO;
erlcn = (m<n)?m:n;
for(i=O;i<erlen;i++)
{

prob ~ lloat(randO % 100)/100;
if(prob> Peross) continue;
temp ~ popl[O][i];
popl[O][i] ~ popl[I][i];
popl[l][i] ~ temp;

I
return "'this;

int ehromosome::mutationO
(

float Mprob = Param::gctPmO;
gene temp;
int i;
float prob;
int mt;
mt = randO % 3;
prob ~ float(randO % 100)/100;
if(prob> Mprob) return 0;
int erSize = ehnn.sizcO;
il\erSize~~O)

il\mt =~2)
i =0;

else
return 0;

else
i = randO % (erSize);

switeh(mt)
{
case O://dcletc the gene; all enjoy same probability

it\chrm.sizcO> 1)
chrm.erase(ehrm.beginO+i);

break;

case 1:llmodify
tcmp.randGeneO;
chrm[i] ~ temp;
break;

case 2://insert
if(ehrm.sizeO«Param: :maxCrLenO))
{

temp.randGeneO;

Source Code of/he Program

130

Appendix A
Source Code of/he Program

ehnn.insert(ehrm .begin()+i,temp);

}
return 1;

floatYeet eharYeet: :evaluale(ehar2Dveet& opv)eonst
{

lloatVeet ee;
int iJ,k,etF'O,a,fail;
tloat eval~O.O;
int w ~ opv[Oj.size();
int 1~ opv.size();
int n ~ Param::inLenO;
tbr(i~O;i<w;i++)
{

eval ~ 0.0;
for(k~O;k<n;k++)
{

etr = 0;
forU~O;j<1,i+~JX!w(3,k»
{

fail ~ 0; .
for(a=j ;a<:i+pow(3,k);a-l+)
{

it(opv[allij !~eveet[a])
{

fail ~ 1;
break;

}
if(!fail) etr++;

}
eval += elr/pow(3,(n-k));

}
ee.push~baek(eval);

return ee;

tloal2Dveet ehar2Dveet::evaluate(ehar2Dveet& opv)eonst
{

tloat2Dveet et;
IloatVeet ee;
int i,n=cmat.sizeO;
for(i~O;i<n;i++),,

cc = cmatli].cvalualc(orv)~
et.push_baek(ee);

return et;

void charVect::output(ofstream& outf, char ch)
{

int i,n=cvccLsizc();
lor(i=O;i<n;i++)
{

if(!(i%3)) outf«"lt";
outf«int(eveet[ij)«ends;

131

}
outf«ends«ch;

void charVect::outputChar(ofsiream& outf, char ch)
{

int i.n=cvect.sizc();
ror(i~O;i<n;i++)
f,

if{!(i%3» outf"«cnds;
outf«cvcct[i];

}
outf«ends«ch;

void clmrVcct::outputChar(char ch)
(

int i,n=cvect.sizeO;
for(i~O;i<n;i++)
{

if(!(i%3)) cout«ends;
cout«cvect[i];

}
cout«cnds«ch;

void charVcct::input(ifstrcam& int: char cil)
{

char cb ~ ch+ I;//make sure cb !~ch
cvect.clearO;
inf»cb;
while(cb!~ ch)
{

cvect.push _back(cb - '0');
inf»cb;

Sou~eCOMo(meProgrom

population ropulali(m::seleclParcnn~.lry(int 'I'. ellllst tloatVcct& crf'it)
{ .

population olTsp;
chromosome cr;
int ij,id,maxID, prcvlD;

prevID = -I; II to ensure that the parents arc different.
ror(i~0;i<2;i++)
(

maxlD ~ Param::gctLpopO;
forU~O;j<T;i++)
{

id ~ randO%Param::getLpopO;
if(id ~~ prevlD) continue;
if(id < mlxlD)
(

rnaxlD:;= id;

)
cr ~ popl[maxlD];
prevlD ~ maxlD;
offsp.push _back(cr);

132

Appendix A

}
return offsp;

void c~romosomc::f)utputO
{

int i,n = chrm.sizcO;
for(i~O;i<n;i++)

chrm[i].oulpulO;

void chromosome::output(ofstream& outl)
(

int i,n ~ chrm.sizeO;
1()r(i=~O;i<n;i"'H)

chrml ij.()ulpul(out I);

Source Code ofthe Program

Gene[I] is weed
Gencri].controlling as it was

voi~chromosorne::unWccd(const charVcct& mate, charVect& wFlag, charVcct& gflag)
{

int n = Param::inLenO;
int w = n + Param::constLincs();
int ni = ma:e.sizeO;
int s = sizeO;
int i;
wFlag.clearO;
for(i=O;i<w;i++)

wFlag.push~hack('w');
gFlag.e1earO;
for(i=O;i<s;i++)

gFlag.push~hack('w');
f{)r(i=O;i<m;i++)

wFlag[mate[i]] ~ 'c';
/* "',..'"'"**,.. '"*** '"**Algorithm'" '"'"*** ** * '"* ** *** ** *1
/1 w - for weed. c - for crop
II for all i [~n,n-I, ...,l]
llifGene[ij.conlrolied is a crop then
1/ -GeneJ i] is a crop
/1 Genel i].controlling is a crop
II else.
II
II
,II endif
/* '"'"* '"'"'"* '"'"'"'"'"* '"/\ 19orithm End*'" '"** .•.'"'""',..* "'.•."'.•.'"'"'""'I

fur(i=s-l ;i>=O;i--)
I

i1\wFlag[chrm[i] .CedO]~~'c')
{

gFlag[i]~'c';
wFlag[chrni[i].cingOJ ~ 'c';

}
else

gFlag[i] ~ 'w';

}
for(i~O;i<s;i++)
{

int dcing ~ chrm[i].Cinf,();
int ,ki, fl;

133

-
Appendix A.

Source Code of/he Program

if((gFlag[ki j~~' c')&&(chnn[ki].CedO==cicing))
{

i1rcicing >= n)
(
fl ~ I;
for(ki~O;ki<i;ki++)
{

fl ~O;
break;

l
if(!fl) continue;
int'constLineValue = (cicing. n) % 3;

if(chrm[i].XO !~constLineValue)
gl'lagJ i I~'w';

l
for(i=s-I ;i>~O;i--)
{

if(gFlag[i]=~'w')
chnn .erase(chrm.beginO+i);

char gcIShil\(char A, char II. int x. int y)
{

if(int(A) !~x)
return 13;

return ««(,,13)+1) * B) + (y % 3)) % 3);

charVcct Evaluatc(population& popu, const char2Dvect opYcct, floatVcct& crFit)
II calculates the fitness of each chromosome and returns the n'ate
{

const int n ~ Param::inLeriO;
float2Dvect funcFit;
char2Dvcc.t crOP;
charVccl matc~
. int p: rnaxCrLn = Param::rnaxCrLcnO;'
const int or = popu.sil'.c();
int i;
int oi;// = mate.sizcO; this is also the number of output - tn.
float mt, Int. wnt.totrit;
crFit.c1earO;
for(p=O;p<np;p++)/1 generate the fitness tahle and find mates
{

popu[pj .getChromoOutput(crOP);
funcFit ~ opVect.evaluatc(crOP);
MmiageMatching(funcFit,mate);
charVecf gF; I/weed-crop flags for the genes in chromosome
c'larVect wF; //weed-erop flags for I/O lines
popu[p].unWeed(mate, wF. gF);
flit ~ 0.0;
ni = matc.sizeO;
for(i~O;i<ni;i++)
{

mt+~
(funcFit[i] [mate[i]]~~n)?funcFit[i j [mate[i]]+ I :funcFit[i][mate[i]];

}
int crLnP ~ popu[pj.sizeO;

134

,

Appendix A
Source Code ofthe Program

lfit ~ 1 - (double(crLnP)/maxCrLn);
int unused, cs;
cs = unused = Param::constLincsO;
for(i=n;i<cs;i++)

if(wF[iJ~~'c')
unuscd--;

1/ if the I/O line contrihutes to realize a function, it is used
wfit ~ double(unused)/cs;
totFit ~ flit + 0.7*lflt + 0.3*wtit;
crFiLpush_back(totFit);

}
return mate;

lloatrr.ax(lloaIYcct& fv),
• int i,mi=O,n = fv.sizeO;

Iloat m ~ 1'v[OJ;
for(i=l;i<n;i++)
i .

if(fv[iJ>m)
{

m ~ fv[i);
mi=i;

l
return m;

int maxID(lloaIYccl& fv)
}

int i,mi=O,n = rV.sizeO;
Iloat m ~ fv[OJ;
for(i~l ;i<n;i++)
{

if(fv[i»m),,
m ~ fv[iJ;
mi=i;

)
.return mi;

noat min(noatVccl& rv)
}

int i,mi=O,n = fv.sizc();
Iloat m ~ fv[OJ;
for(i~ I;i<n;i++)
I

if(fv[i)<m)
}

m ~ fv[i);
mi=i;

return m;

int minlD(lloatYect& fv)
135

Appendix A

int i,mi~O,n ~ fV.sizeO;
noat m ~ fv[OJ;

. ror(i=l;i<n;i++)
I

il\fv[i]<m)
f•

m ~ Iv[iJ;
mi=i;

I
return mi;

int isln(const charVcct& cv, char val, int notl'os)
{

int i,n=cv.size();
for(i=O;i<n;i++)
{

if(i == notPas) continue;
if(ev[i] ~~ val)

return i;

return -1;

int MarriagcMatching(float2Dvect wbpg, charVcct& mate)
{

int i,tj;n;
n ~ wbpg.sizeO;
matc.clcar();
for(i~O;i<n;i++)

mate. push_baek('?');
for(i~O;i<n;i++)
f
• ir(mate[iJ!~'?') enntinue;

matc[il ~ maxlD(wbpgfiD;
j ~ isln(matc,matc[ij,i);
if0 !~-I)
{

Source Code ofthe Progrom

if(wbpg[iJlmatclilJ> wbpg[j][mateD]])
f• wbpgUJImate[.ill ~ 0.0;

matcl.i] ~ "1';
i = -1;,

I

else
{

wbpg[i][matc[i]] =' 0.0;
matc[i] = '?';
i = -1;

}
return 0;

char* ncxtPrcamble(ifslrcarn& inf, char* pr)
I

136

Appendix A

char tpr[lOO);
dot
inf» tpr[O);
jwhile(tpr[O) !~'.o);

inf»tpr;
iIltprIOI~~'.o)

strcpy(pr," ")~
else

strcpy(pr,lpr);
return pr;

int process(char2Dvcct& opVect. chromosome& maxCr,
£1oat& maxFit, char'" functionNamc)

of stream resOut;

Source Code oUhe Program

_ofstream fout;
population pop, parent_ N_offsp;
float2Dvect funeFit;
lloatVect popFit,oftl'it;
int S;
int withlnit = 1;
int notlmprovcd,ctr=O,rcp = 0;
int miD;
int wfCtr;
int replaced;
int newBestFound;
int solution Found = 0;
int maxCtr = Param::getNCmax();
Ooat fitnessThreshold = Param::outLcnO*(Param::inLcnO+ 1);
of stream tmprcs;
char convFName[50];

char paraTemp[lO];
strcpy(cony FNarne, function N arne);
Jtoa(int(Param::getPcO*l OOO),paraTemp, 10);
strcat(con.vFNamc," _")~
slrcat(convFNamc,para'rcmp);
_iloa(int(l'aram::getPm()*1OOO),paraTemp, 10);
strcat(convFN amc,"_");
streat(convFName,paraTemp);
_itoa(int(Param::getLpop()),paraTemp,10); .
strcat(convFName," ~");
strcat(convFN arnc,paraTcmp);
slrcat(convFNamc," .conv");

iltrcsumc)
{ II resume process;

cout«"\nProgram Resuming ... ";
if~trcam resumeFile("progstaLsav");
resumeFi Ie>>sol utionF ound> >ootl mproved> >ctr»rep»m ID

. »wfCtr»replaced»maxFit;
Param: :read(resumeFi Ie);
popFit.read(resumeFi Ie);
offFi l.read(resumeri! e);
foncFit.read(resumeFile);
parent_ N_offsp.read(resumeFile);
pop. read(resumeFile);
maxCr .read(resumeFile);
opVecl.read(resumeFi Ie);
rcsumeFilc.close();

137

Appe:ldix A

resume = 0;
wilhlnil ~ 0;
cout«"\nProgram Resumed...";

}
whilc(l)l
iHwithlnit)
{

Source Code ofthe Program

tmprcs.opcn(convFNamc);
tmpres< <function Name;
tmpres«"\nParam: ";
Param: :OUlputGP(Impres);
tmpres «"In InGeo IliF ilIIIr itItw ri lIlfS urn10-- 11--- 11---11---11--- In";
Imprcs.e1oscO;
ctout< <cndl«"initial izi ng : '.' ";
iflrep)

srand((unsigned)(rand()));
maxFit ~O.O;
noUmprovcd ""0;
wfCtr = elT = 0;
rep++;
maxCr.e1earO;
pop.inil(opVecI);
maxril ~ pop.rril(O);

l
parenl_N _offsp ~ pop.selectParenlT _ary(Param::getLpopO/2,popril);
switch(Param::TcO)
{
case 'u':
case 'U':

parcnt_N _offsp.crossOvcrUn In;
break;

case '0':
case '0':

parent_N _offsp.erossOver IplO;
break;

:
parcnl_ N_onsp[O].mulalion();
parcnl_N _olTsp[I].mulalion();
parenl_N _olTsp.repairGeneO;
lakeCarecOIDupl icale(pop,parenl_N _oflSp);
replaced ~ 0;
if(parenl_N_offsp.sizeO > 0)
{

parenl_ N_offsp.eval ualc(op Vect);
replaced = pop.inscrlWithRank(parcnLN_off.c;p, ncwBcstFound);

:
mID ~ 0;

il(clr%20000~~O)
{II save slale
of stream resumeFile("progstat.sav");
resumcFi le«solutionF ound< <endl< <nott mproved«endl< <ctr«endl< <rep

<<endl<<rnID< <endl <<wfCtr< <endl< <replaced< <endl«maxFit< <endl;
Param: :write(resumeFi Ie); resurnef'i le«endl;
popFit.write(resumeFi Ie); resurneFi le< <endl;
off Fit.writ<:(resumeFile); resumcFi le«endl;
funcFit. write(resurneFile); resurneFile«endl;
parenl_ N_offsp. wrile(resumeFiJe); resumeFi le< <endl;
pop.write(resumeFilc); rcsumeFile«cndl;
maxC.r.writc(rcsumcFile); rcsumcfile«endl;.

138

Appendix A
Source Code ofthe Program

opV eel. write(resumeFi Ie); resumeFi Ic<<cndl;
rcsumcFile.closeO;
l

if(newBesIFound)
{
maxFit ~ pop.FFil(O);
maxCr ~ poprO];
wfClr ~ clr+ I ;
if« !solutionFound) && (maxFit >= litncssThrcshold»

1/ the tirst time a solution is found

solutionFound = 1;
char rcsFNamc[50];
char paraTcmpr10];
strcpy(rcsFNamc,functionNamc);
_iloa(inl(Param::gclPcO*l OOO),paraTcmp, 10);
streat(resFName," _It);
streat(resFNamc,paraTemp);
Jtoa(int(Param::gclPmO*) OOO),paraTemp, 10);
strcat(resFName,"_"); -
slrcat(resFName,paraTcmp);
Jtoa(int(Param::gclLpopO),paraTcmp, 10);
streat(resFNarne," _");
streat(rcsFNamc,paraT cmp);
streat(rcsfNarnc," .rslt");
rcsOuLopcn(resFNarnc, ios::app);
floal d I ,d2,d3;
charVccl pmale, dg, dw;
pmale ~ maxCr.cvaluatc(opVcel,d l,d2,d3);
max Cr. un Wecd(pmale,dw,dg);
rcsOut«"\n/** The First Found Solution ... **/";
rcsOut«"\n.sizc "«maxCr.sizeO«endl;
rcsOut«"\n.solution ";
maxCr .outpul(resOul);
resOut«"\nMate : "; pmate.output(resOut,O);
resOut«"\nwFlag[1t <<dw .countCc')< <"/"«dw.size()«"]: It;
dw .outputChar(rcsOut,O):
rcs()ut«"\ngl:lagl." <<dg.count('c')< <" /"<<dg.sizc()< <"]: "~
Jg.outpu'Char(rosOul,O);
rcsOut«"\n.gcncration "«wfCtr;
rcsOut«"\n. \n/** And The Final Solution **I\n";
rcsOu1.c1osc();
l

}
if(!rcplaecd)

notlmproved++;
else

notlmprovcd = 0;

ctr++;
H*********************~************************
// Logic for controlling this Loop
II cI -> (rep < R)
II e2 -> (elr < maxCtr)
II e3 -> (nolimproved >~ S)
II e4 -> (maxFi! < filnessThcrshold)
II e2 e3 e4 IcI~O lel~1
11-------------------------------
V 0 0 0 D
II 0 0 1 I'

D
1

[D: Donc
IF: Fail

139

Appendix A Source Code ofthe Program

II 0 1 0 I [) I [) j1: With Init

II 0 1 I I F I 1 12:With OUT Init

II 1 0 0 1 [) I 2 I
II 1 0 1 I F I 2 I
II 1 I 0 I D I [) I
II I 1 I I r I I I
~***.**

in~cl, c2, c3, c4;
S ~ (Iloat(maxFit)*Param: :Gcn()*I'aram:: inLcnO)/fitncssThrcshold;
c1 ~ (rcp < Param::RcpO/* R*f);
c2 ~ (ctr < Param::gctNCmaxOf*maxCtr*f);
c3 ~ (notlmprovcd >~S);
c4 ~ (maxFit < fitncssThrcshold);
I/conditions l'orDone c3-c4+-cl-c4+-c2-c4
ilHc3 && !(c4))1I(lc1&& Ic4)1I(!c2&& Ic4))
{

maxCr ~ pop[O];
return wfCtr;

}
/Iconditions for Fail-clc4
if(lcl && c4)
{

return 0;
I
I
ffconditions for 1 c1c3c4+cl-c2c4
if«c1 && c3 && c4)1I(c1&& Ic2 && c4))
{

withlnit ~ 1;
continue;

l
I/conditions Jor 2 c 1c2-c3
if(c1 && c2 && !c3)
{

.withlnit ~ 0;
continue;',,

1/ else if none or ahovc ... not possihle
cout«"\n\tcl c2 c3 c4 \n\t"«cl «cnds«c2«ends«c3«cnds«c4;
cout«"\nlmpossible combination FAILED!!!Il;
brcak;

if(offsp[i].sizcO ~~ popO].sizc())
if(offsp[i]~~poplj])
{

forG~OJ<pJ++)
{

int i,i,p ~ Param::gctLpopO;
int rem = 0:,
for(i~0;i<2;i++)
{

int takcCarccOfDuplicatc(const popalatioo& pop, 1",pulation& offsp)
{

offsp.crasc(i);
rern++;
break;

140

Appendix A

•,
return rem;

Source Code oUile Program

inl ehk_N_replaee(populalion& pop, floalVeel& popFil,
pnpulalion& orlsp, 11oaIVeet&of11'it)

{
int miD;
if(offsp.size() ~~ 0) relurn 0;
il(olTsp.size() ~~ I),,

mID ~ minlD(porFil);
if(of11'il[0] > popFit[mlD])
{

poplmlD] ~ orl;;pIOI;
popFit[mID] ~ oriFillOI;

}
return 1;

}
if(offl'it[O) > of11'it[l])
{

110altf;
chromosome tc;
lf~ offFil[O];
oFlFi1[0J~ orlFil(1];

. orlFil(l] ~ II; .
te ~ olhpIO];
offsp[O] ~ offsp(1];
ofFsp[1] ~ te;

mID~' minID(popFit);
if(oflFit[1] < popFil[mlD]) relurn 0;
if(of11'it[0] > popFil[mlD])
[

pop[mlD) ~ offsp[O);
popFit[mID] ~ oflFit[O];,,

miD = minID(popFil);
iF(offFil[1] > popFitlmlD])
(

poplmlD] ~orl;;p[I];
popFit[mID] ~ oftFit(1];

l
return 1';

141

Appendix A Source Code of/he Program

cout«"\nResurne?[1/0] ..";cin»resume;
ifstream fin;
of stream fout;
char prcamblcI20];
char namcfT201;

int mainO
{

charVcct lev;
char2Dvcct opVcct;
chromosome result;
fin.open("param. in");
Param:: inputGP(fin);
fin.closeO;
fin.opcn(" input. in tI);

dol

nextPreamble(tin, preamble);
ifl!stremp(preamble,"end")) break;
if(! stremp(preamble," function"» fin> >namef;
iit !strcmp(prcamble,"param "»
(

nextPreamble(tin,preamble);
}while(strcmp(preamble,"begin ';»;
while(l)
{

nextPreamble(tin,preamble);
if(strcmp(preamblc,"vector") ,

{cfout«"\nERROR reading inpuLin ~unknown file format";
return I;}

tev.input(tin);
opVect.push _ back(tcv);

Param:: inputFP(lin);
opVect.clearO;
for(int i~O;i<Param::outLenO;i++)
(

ifslrcarn rcsT(tlprogstat.sav");
resT»resF;
resT.eloseO;

}
int rcsF = 0;
iHrcsllml~)
{

}
char resFileName[50];
char paraTemp[I0];
strcpy(rcsFi IeNamc,namcl);
_itoa(int(Param::getl'eO+l OOO),paraTemp, I0);
strcat(resFi IcNarnc, "_");
strcat(resFi leName,pararemp);
_itoa(int(l'aram::getl'mO+j OOO),paraTemp, I0);
strcat(resFileName." _");
strcat(resFileName,para Temp);
_itoa(int(Param ::getLpopO),paraTemp, I0);
strcat(resFilcName," _");
streat(resFileName,paraT emp);
strcat(resFileName," .rslt");
if(!resF)
(

fout.open(resFi leName);
fout«" .begin\n";

142

Appendix A

if(n)

else

Source Code ofthe Program

fout.c1ose();

float fitness;
srand(!);
int n = proccss(opVcct, result, fitness, namet);
fout.opcn(rcsFilcNamc, ios::app);
fout«"\n ";
fout«"\n.function "«namer;
fout <<lI\n .rem \ti "put \tou tput ";

fout< -:<"\n.param\ttl< <Param: :inLcn()< <"\t"«Param::outLenO«cndl;
op Veet.outpul Veel(foul);

!luat d I ,d2,d3;
charVcct mate, dg, dw;
male ~ result.evaluale(opVeel,dl ,d2,d3);
result.un Weed(male,dw,dg);
fout«"\n.size n«resuILsizeO«endl;
fout«"\n.solution ";
result.oulpul(fout);
fout«u\nMate : "; mate.output(fout,O);
fout«"\nwFlag("«dw .count('c')«" /"< <dw .sizeO«"]: It;
dw .0ulputChar(foul,O);
fout< <"\ngFlagf" «dg.count('c')«" j"< <dg.sizc()«"]: ";
dg.outpuIChar(fout,O);
fout«"\n.gcncration "«n;
fOut«"\n.litncss "«litncss«cndl;
lout«"Param: ";
Param: :oulputGP(foul);
}

fout«"\n\t\tFailed !!!II;

...,

l
return 0;
I

fout«"\n ----------
fout«"\n.end";
fout.c1ose();
I

143

Appendix B

Description ofthe Benchmark functions

prodn: input Xo x""x,,~,; output y = (xox, ...x,,_,)mod3. [Output is the GF3

product of II input variables.]

sumn: input Xu x, .. .x,,_,; output y = (xu + X2 + ... + x,,) mod 3. [Output is the GF3
,

sum of II input variables.]

neyr: input Xo x, ...x,,~,;output y =[~>(ftX(i+nmod".)]mod3. [A ternary GFSOP
,,,,0 J"'O

function of II input variables, where the 'products consist of r input

variables in cyclic order. Example: For 3cy2, y(a,b,c) = ab + bc +ca.]

sqsumn: input Xu x, ...x,,_,; output y = (x,; + x~ + ...+ .,;_,)mod3. [Output is the

GF3 sum of squares of II input variables]

avgn: input Xo x, .. .x,,_,; output y = int[(xo + x, + ... + X"_i) 1lI]mod3. [Output is the

integer part of the average of II input variables expressed as mod 3 value.]

a2bcc: input a, b, c; output y = (a2 + bc + c) mod 3. [An arbitrary function]

thadd: input a b; output c.=int[(a+b)!3] ,s=(a+b)mod3. [Ternary halt~

a.dder]

tfadd: input abc; output Y = int[(a+b+c)/3], s = (a+b+c)mod3. [Ternary

full-adder]

mul2: input a b; output e = int[ab 13], 111 = ab mod 3. [2-trit ternary multiplier]

mul3: input abe; output c = int[abe 13], m ~ abc mod 3. [3-trit. ternary

multiplier]

mami4: input abc d; outPUt Y = max(a,b), z = min(e,d). [The output y is the

maximum of the inputs a and b; the output z is the minimum of the inputs

c and d.]

'". ~,

[I]

[2]

[3]

[4]

[5]

[6]

[7]

Bibliography

A. AI-Rabadi and M. Perkowski, "Multiple-Valued Galois Field SID Trees
for GFSOP Minimization and their Complexity", Proe. 31st IEEE lnt.
Symp. on Multiple-Valued Logic, Warsaw, Poland, May 22-24, 2001,
Pl'. 159-166.

A. AI-Rabadi, "Synthesis and Canonical Representations of Equally Input-
Output Binary and Multiple-Valued Galois Quantum Logic: Decision
Trees, Decision Diagrams, Quantum Butterflies, Quantum
Chrestenson Gate, Multiple-Valued Bell_Einstein-Podolsky-Rosen
Basis States", Technical Report #2001/008, ECE Dept., PSU, August
2001,

A. AI-Rabadi, L. W. Casperson, M. Perkowski and X. Song, "Multiple-
Valued Quantum Logic", Booklet of 11th Workshop on Post-Binary
Ultra-Large-Seale Integration Systems (ULSI), Boston,
Massachusetts, May 15,2002, pp. 35-45.

A. AI-Rabadi, "Novel Methods for Reversible Logic Synthesis and Their
Application to Quantum Computing", Ph. D. Thesis, PSU, Portland,
Oregon, USA, October 24, 2002.

A. Ashikhmin, and E. Knill, "Non-binary quantum stabilizer codes",
http://e itcsecr.nj .nee.com/ash ikhminO(lnonbinary,htmI .

A. De Vos, B. Raa, and L. Storme, "Generating the group of reversible logic
gates", Journal of Physics A: Mathematical and General, Vol. 35,
2002,pp.7063-7078.

A. Muthukrishnan, and C. R. Stroud Jr., "Multivalued Logic Gates for
Quantum Computation", Physical review A, vol. 62, No.5, 0530911-8,

2000.

[8]

[9]

A. Turing, "Dn computable numbers with an application to the
Entseheidungs-problem," Proe. Lond. Math. Soc. Ser. 2, 42 (1936).

A. V. Burlakov, M. V. Chekhova, O.V.Karabutova, D.N. Klyshko, and S.
P. Kulik, "Polarization state of a biphoton: quantum ternary", Physical
Review A, Vol. 60, R4209, 1999.

[10] C. Bennett, "Logical Reversibility of Computation", IBM Journal of
Research and Development, vol. 17, pp. 525-532, 1973.

[II] C. Darwin, "The Origin of Species", Dent Gordon, London, 1973.

.:.-:---
,.i

'?' •.~~
-",.:'P--...

Bihliography

[12] C. P. Williams, and S. H. Clearwater, "Exploration In Quantum
Computing", New York: Springer-Verlag, 1998.

[13] D. Aharonov, and M. Ben-Or, "Polynomial Simulations of Decohered
Quantum Computers", (Online preprint quant-ph/9611029), 37th
Annual Symp. on Foundations of Computer Science, Burlington,
Vcrmont, October 1996, pp. 4655.

[14] D. B. Fogel, "Evolving Attificial Intclligencc", Ph.D. Thesis, University of
California, San Diego, CA, 1992

[15] D. B. Fogel, "Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence", IEEE Press, Piscataway, NJ, 1995.

[16] D. Deutsch, "Quantum theory, the Church-Turing principle and the
universal quantum computer", In Proccedings of the Royal Society of
London, Vol A400 (1985) 97-117.

[17] D. Dcutsch, "Quantum Computational Networks", Proc. Ro. Soc. Lond. A
425, pp. 73-90, 1989. .

[18] D. E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine
Learning", Addison Wesley, 1989.

[19] D. Gottesman, "Fault-tolerant quantum computation with higher-
dimensional systems", Chaos, SolitoCls, Fractals, Vol. 10, No. 10,
1999, pp. 1749-1758.

[20] D. M. Miller, and R. Drechsler, "On the Construction of Multi-Valued
Decision Diagrams", Proc. 32nd IEEE In!. Symp. on Multiple-Valued
Logic, Boston, Massachusetts, 2002, pp. 245-253.

[21] E. Dubrova, and J.e. Muzio, "Generalized Reed-Muller canonical form of a
multiple-valued algebra", Multiple-Valued Logic - An International
Journal, 1996, pp. 65-84.

[22] E. M. Rains, "Nonbinary Quantum Codes", IEEE Trans. on Information
Theory, Vol. 45, 1999, pp. 1827 -1832.

[23] Gordon E. Moore, "Cramming more components onto integrated circuits",
Electronics, Volumc 38, Number 8, April 19, 1965.

. [24] H. F. Chau, "Correcting quantum errors. in higher spin systcms", Physical
Review A, Vol. 55, R839-R841, 1997.

[25] H.-P. Schwefe1, "Numcrical Optimization of Computer Models", Wiley,
Chichester, 1981.

[26] J. Birnbaum, "Computing Alternatives", Talk given at ACM97, March 3,
1997, San Jose, Califor.nia.

146

l3ihliograph)'

[27] J. H Holland, "Adaptation in Natural and Artificial Systems", MIT Press,
Cambridge, MA, 1992.

[28] J. L. Brylinski and R.Brylinski, "Universal Quantum Gates", (Mathematics
of Quantum Computation, CRC Press, 2002) LANL e-print quant-
ph/010862.

[29] K-I-1.Han, and J-H. Kim, "Quantum Inspired Evolutionary Algorithm for a
Class. of Combinatorial Optimization", IEEE trans. Evolutionary
Computation, 6(6), pp. 580 - 593, 2002.

[30] I. Rechenberg, "Evo!utionsstrategie: Optimierung Technischer Systeme
nach Prinzipien der Bio!ogischen Evolution", Frommimn-Holzboog,
Stuttgart, 1973.

[31] L. J. Fogel, A. J. Owens, and M. J. Walsh, "Artificial Intelligence through
Simulated Evolution", Wiley, New York, 1966..

[32] L. Macchiarulo, and P. Civera, "Ternary Decision Diagrams with Inverted
Edg<:sand Cofactors - an Application to Discrete Neural Networks
Synthesis", Proc. 28th IEEE Int. Symp. on Multiple-Valued Logic,
1998, pp. 58-63.

[33] L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, "Finding a better-
than-classical Quantum AND/OR Algorithm Using Genetic
Programming", Proc. of 1999 Congress on Evolutionary Computation,
.vol. 3, Washington DC. IEEE, Piscataway, NJ, pp. 2239-2246, 6 - 9
July 1999.

[34] M. H. A. Khan, M. A. Perkowski, and P. Kerntopf, "Multi-Output Galois
Field Sum of Products Synthesis with New Quantum Cascades", Proc.
33'd IEEE International Symposium on Multiple-Valued Logic.
Tokyo, May 16-19, pp. 146-153, 2003

[35] M. H. A. Khan, M. A. Perkowski, and M. R. Khan, "Ternary Galois Field
Expansions for Reversible Logic and Kronecker Decision Diagrams
for Ternary GFSOP Minimization", in Proceedings of the 34

th
IEEE

International Symposium on Multiple-Valued Logic (ISMVL 2004),
Toronto, Canada, 19-22 May 2004.

[36] M. H. A. Khan, and M. A. Pcrkowski, "Genetic Algorithm Based Synthesis
of Multi-Output Ternary Functions Using Quantum Cascades of
Generalized Ternary Gates", in Proc. of 2004 IEEE Congress on
Evolutionary Computation (CEC 2004), Portland, Oregon, USA, 19-
23 June 2004.

[37] M. H. A. Khan, M. A. Perkowski, M. R. Khan, and P. Kerntopf, "Ternary
GFSOP Minimization using Kroneckcr Decision Diagrams and Thcir
Synthesis with Quantum Cascades", Journal of Multiple-Valued Logic
and Soft Computing: Special issue to recognize T. Higuchi's
contribution to Multiple-Valued VLSI Computing, 2005.

147

Bibliograohv'

[38] M. H. A. Khan, "Quantum Realization of Ternary Toffoli Gate", in Proc. of
the 3rd International Conference on Electrical and Computcr
Engineering ICECE 2004, 28-30 December 2004, Dhaka, Bangladesh.

[39] M. Hirvensalo, "Quantum Computing", Springer Verlag, 2001

[40] M. Lukac, M. A. Perkowski, 1-1.Goi, M. Pivtoraiko, C. 1-1.Yu, K. Chung, H.
lee, B-G. Kim, and Y-D. Kim, "Evolutionary Approach to Quantum
and Reversible Circuits Synthesis", Artificial Intelligence Review,
Kluwer Academic Publishers, 20, pp. 361- 417,2003.

[41] M. A. Neilsen, and I. L. Chuang, "Quantum Computation and Quantum
Infonnation", Cambridge University Press, 2000.

[42] M.

[43] M.

[44] N.

A. Perkowski, A. AI-Rabadi, P. Kerntopf, A. Mishchenko, and M.
Chrzanowska-Jcske, "Three-Dimensional Realization of Multivalued
Functions Using Reversible Logic", Booklet of 10th lnt. Workshop on
Post-Binary Ultra-Large-Scale Integration Systems (ULSl), Warsaw,
Poland, May 2001, pp. 47- 53.

A. Perkowski, A. AI-Rabadi, and P. Kerntopf, "Multiple-Valued
Quantum Logic Synthesis", Proc. of20021nternational Symposium on
New Paradigm VLSI Computing, Sendai, Japan, December 12-14,
2002, pp. 41-47.

DenIer, B. Yen, M. A. Perkowski, and P. Kerntopf, "Synthesis of
Reversible Circuits from a Sub-set of Muthukrishnan-Stroud Quantum
Multi-Valued Gates", in Proc. lWLS 2004, Tamecula, California, 2-4
June 2004.

[45] P. Kerntopf, "Maximally efficient binary and multi-valued reversible gates",
Booklet of 10th IntI Workshop on Post-Binary Ultra-Large-Scale
Integration Systems (ULSI), Warsaw, Poland, May 2001, pp. 55-58

[46] P. Mazumder, and E. M. Rudnick, "Genetic Algorithms for VLSI Design,
Layout & Test Automation", Pearson Education Asia, 2002.

[47] P. Picton, "A Universal Architecture for Multiple-Valued Reversible
Logic", Multiple-Valued Logic - An International Journal, Vol. 5,
2000, pp. 27-37.

[48] Peter. W. Shor, "Algorithms for Quantum Computation: Discrete Log and
Factoring", In Proceedings of the 35th Annual symposium on the
Foundations of Computer Science (http://xxx.lanl.gov/abs/quant-
ph/9508027).

[49] R. Landauer, "Irreversibility and Heat Generation in the Computing
Process", IBM Journal of Research and Development, vol. 5, No.3,
pp. 183-191, 1961.

148

http://xxx.lanl.gov/abs/quant-

fJihliography

[50] R. P. Feynman, "Simulating Physics with Computers", International Journal
of l'heoretical Physics, Vo121, Nos 617,1982.

[51] R. P. Feynman, "Quantum mechanical computers," Found. Phys., 16 (1986),
507.

[52] T. B"aek, H-P Sehwefel, "An overview of evolutionary algorithms for.
parameter optimization", Evolutionary Computation 1(1) pp 1-23,
(1993).

[53] T. B"ack, "Evolutionary Algorithms In Theory and Practice", Oxford
University Press, Oxford, 1996.

[54] T. Toffoli, "Reversible Computing," Tech. Memo MIT/LCS/TM-151, MIT
Lab. for Com. Sci. (1980).

[55] T. Yabuki, and H. Iba,."Genetie Algorithms and Quantum Circuit design,
Evolving a Simpler Teleportation Circuit", In Late Breaking Papers at
the 2000 Genetic and Evolutionary Computation Conference, pp. 421
- 425, 2000.

. [56] Y. Z. Ge, L. T. Watson, and E. G. Collins, "Genetic Algorithms for
Optimization on a Quantum Computer", In Unconventional Models of
Computation, London: Springer Verlag, pp. 218 - 227, 1998.

[57] Z. Michalewicz, "Genetic Algorithms + Data Structures = Evolution
Programs (3rd edn.)", Springer, 1996.

[58] Michael Gibbs' Home Page, [contains a good description of fundamental
issues of Galois Fields] hltp://mcmhcrs.aol.com/jmtsgihhs/l.:'alois.hlm

[59] Website of Centre for Quantum Computation (Ccq, hltp:l/w\Vw.Quhit.Q!~/

[60] K. Mattie, H. Weinfurter, P.G. Kwiat, and A. Zeilinger, "Dense Coding in
Experimental Quantum Communication", Physical Review Letters,
Vol. 76,1996, pp. 4656-4659.

149

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154
	00000155
	00000156
	00000157
	00000158
	00000159
	00000160

