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Abstract

Transmission Control Protocol (TCP) congestion control algorithm deals with

reducing the network load during congestion for achieving beller throughput. It

rcduces the transmission window size after a rctransmission timeout or reception of

consccutivc three duplicate acknowledgements (3-dupacks). It works well for the

wired networks where most of the timeouts and 3-dupacks are the result of

congestion. But we like to argue that in the wireless networks, where random segment

loss due to bit errors is a dominant concern, the arrival of duplicate

acknowledgements or even the retransmission timeouts do not necessarily denote

congestion. In those cases, throttling transmission rate is not necessary. As the basic

TCP congestion control algorithm cannot distinguish between congestion event and

bit crror event, it fails to perform well in wireless networks. In this thesis, we propose

some modifications to the basic TCP congestion control algorithm so that its

performance is enhanced in wireless networks. In particular, our algorithm refines the

multiplicative decrease algorithm of TCP NewReno. We are using some statistical

counters to track the frequencies of the occurrences of timeouts and 3-dupacks.

Different ratios of these counter values are then used to differentiate a congestion

event from a non-congestion event. We 'are also tracking the time difference between

two consecutive timeouts to figure out whether timeouts are caused by network

congestion or random bit errors. We tested our proposed algorithm using the Network

Simulator version 2 (ns-2) and found that it shows better performance than any other

TCP variants in wired-cum-wireless networks. Moreover, our algorithm is end-to-end

in nature and modifies only TCP sender's algorithm.
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1 Introduction
Advancements in wireless technology and ever-lI1creasll1g need for all-time

connectivity have made wireless networks a significant part of modern world.

Wireless communication technology is playing an important role in access networks

as evidenced by the widespread adoption of wireless local area networks (WLANs),

wireless metropolitan area networks (WiMAX - the Worldwide Interoperability for

Microwave Access), and cellular networks. Although wireless networks are quite

different when compared to their wired counterpart, popular protocols and

applications designed for and implemented in wired networks have found their way in

wireless networks too. Most of the heavily used applications in both wired and

wireless networks rely on the TCP/IP protocol suite.

Transmission Control Protocol (TCP) [I] is the principal transport protocol used in.

the Internet. TCP ensures a reliable, ordered, connection oriented, byte streamed full

duplex communication over an unreliable medium. It was originally designed to

provide reliable data delivery over conventional (wired) networks for a limited range

of transmission rates and propagation delays. It performs both f10w control and

congestion control. The purpose of f10w control is not to overwhelm the receiver of a

TCP connection. During TCP communication, the TCP receiver constantly informs

the TCP sender about its current buffer capacity and the TCP sender tunes its

transmission rate accordingly. On the other hand, congestion control is a network

wide issue. Its purpose is to control the transmission rate so that the sender does n6t

transmit in excess of the capacity of the network. One of the strengths of TCP lies in

its congestion control mechanism proposed in the cornerstone work by Van Jacobson

[2]. Generally, the congestion information is not advertised by the congested nodes.

The sending entity adjusts a congestion window based on successful transmissions

,~".J _,
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and timeouts and uses the congestion window as the maximum limit for transmission.

Setting the congestion window too small might result in under utilization of network

resources. On the other hand, a large congestion window may over feed the network

that might result in dropping of segments at the. congested nodes.

The congestion control algorithm used in the TCP/IP protocol suite [2], [3] is a sliding

window mechanism that uses segment loss to detect congestion. The TCP sender

probes the network state by gradually increasing the window of segments that are

outstanding in the network until the network becomes congested and drops segments.

Initially, the increase is exponential and this phase is called "Slow-start". This phase

is intended to quickly grab the available bandwidth. When the window size reaches a

slow-start threshold (called ssthresh), TCP enters into the second phase called

"Congestion Avoidance", where the increase becomes linear. This is done to make the

TCP sender less aggressive in probing for the available bandwidth. Clearly, it is

desirable to set the threshold to a value that approximates the connection's "fair

share". The optimal value for the slow-start threshold is the one that corresponds to

the number of segments in Oight in a pipe when TCP transmission rate is equal to the

available bandwidth [4], i.e. when its transmission window is equal to the available

bandwidth-delay product.

The current strategy taken by TCP in controlling network congestion is not adequate

to perform well in wireless networks. When a loss is detected either through duplicate

acknowledgements, or through the expiration of the retransmission timer, the

connection backs off by shrinking its congestion window. If the loss is indicated by

the three duplicate acknowledgement event, TCP Reno, one of the variants of the

original TCP algorithm, attempts to perform a "fast recovery" by retransmitting the

lost segment and halving the congestion window. If the loss detected through a

retransmission timeout, the congestion window is reset to 1. In either case, when the

congestion window is reset, TCP's window-based probing needs several round-trip

times to restore its value to the near-capacity. This problem is exacerbated when

random or sporadic losses occur. Random losses are losses not caused by congestion'

at the bottleneck link. They are common in the wireless channels. In this case, a burst

of lost segments is erroneously interpreted by a TCP source as an indication of

congestion, and dealt with by shrinking the sender's window. Such action, clearly,

2
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does not alleviate the random loss eondition and it merely results in reduced

throughput. The larger the bandwidth-delay product, the larger the performanee

degradation caused by such action.

For this reason, the congestion control strategy employed by TCP works fine in wired

networks, where most of the timeouts and delivery of misordered segments are caused

by network congestion. However, in wireless networks, a good percentage of time outs

and reception of out of order segments happen due to the bit error rather than

congestion. In those cases, throttling transmission rate does not help as this aetion

results in under utilization of network bandwidth without any improvement in

network activities. As the basic TCP congestion control algorithm cannot distinguish

between congestion and bit error timeouts, it fails to give good performance In

wireless networks. This thesis proposes a new TCP congestion control algorithm III

order to get better performance in wireless networks. We have also designed our

algorithm to perform well in wired and wired-cum-wireless networks. We have

designed our algorithm with the following objectives in our mind:

• Develop a new TCP congestion control algorithm (we call it TCP K-Reno) in

order to get better performance in both wired and wireless networks.

• Modify only the sending host software keeping the internal network devices

and protocols unchanged.

• Develop an algorithm that will be able to differentiate between congestion and

non-congestion losses and react accordingly.

• Keep TCP less aggressi ve during network overload.

• Utilize most of the available bandwidth in the network.

• Ensure a good throughput for connections that incorporate at least one

wireless link (characterized by much longer round-trip time).

• Perform all the complex functionalities at the end hosts so that the network

(i.e. routers) can be kept simple and is not filled with extra responsibilities to

avoid affecting its packet forwarding speed and efficiency.

The rest of the thesis is organized as follows. Chapter 2 explains the basic TCP

operations and its congestion control strategy in detail. Related research' works done

3



by other researchers arc discussed in Chapter 3. auI' proposed new TCP congestion

control algorithm is presented in Chapter 4. Detailed performance analysis of the

proposed algorithm with the help of Network Simulator version 2 (ns-2) [5] is

presented in Chapter 5. Chapter 6 concludes the thesis with some pointers for future

study.
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2 TCP Basics
TCP is a predominant transport protocol used in public and private IP (Internet

Protocol) networks. IP, being a connectionless protocol, have no provision for

detecting damaged, lost, duplicated or misordered data. That is why applications that

require a reliable data transfer service use TCP or similar transport layer protocols

(such as SCTP [6]) to establish virtual connections across an unpredictable and

unreliable network. Without TCP, application developers would have to build

reliability into each application.

The fundamental characteristics ofTCP include the following:

• TCP is a connection-oriented service. A connection is established before data

is being transmitted. Parameters that control the data transmission are

exchanged between the sender and the receiver when the handshaking for the

connection is done.

• TCP provides a reliable delivery service. While the data stream is transmitted,

the receiving host sends back acknowledgements (ACKs) confinning that the

data has been received in correct order and without errors. TCP source

maintains a record of the segment that it has sent and waits for the ACK

before sending the next set of segments. TCP source also starts a timer when it

sends a segment and retransmits the segment if the timer expires before the

ACK is received from the receiver.

• TCP source always attempts to fill the "pipe" between the sending and

receiving hosts while. adapting its transmission rate to avoid potential

congestion in the network. TCP source continually monitors and modifies its

5



transmission rate so that the rate at which it injects segments into the network

is just below the point at which segment loss starts to occur.

• All TCP connections are full duplex. This means that a TCP connection

supports simultaneous transfer of data in both directions.

2.1 TCP Segments

The basic unit of transfer between two hosts in a TCP connection is called a segment.

A segment consists of a TCP header and its associated data. Since each TCP segment

is transmitted in an IP datagram and because IP datagrams can be reordered as they

cross the network, TCP scgments can arrive at TCP destination in a different order

than that was originally followed by the TCP source to transmit them. TCP segments

can also be cOlTupted, dropped, or duplicated along the way.

A TCP source assigns a sequence /lumber to each byte in the stream that it transmits

to the destination. A TCP header carries a 32-bit sequence number that is used to

identify the TCP segment. The sequence number field in the TCP header is set to the

sequence number that the source has assigned to the first byte of the transmitted

stream. TCP destination keeps track of received segments and identifies the out of

order segments using the sequence number present in the segment header.

2.2 TCP Acknowledgments

TCP uses acknowledgements (ACKs) to support the reliable transmission of data.

When TCP source transmits segments, it expects TCP destination to acknowledge the

segments when they are received. The ACK number used by a TCP destination is the

number of the next byte in the stream that the destination expects to receive from the

source. For example, if a TCP destination ACKs 1001, it info1111sa TCP source that it

has successfully received all bytes up to and including byte 1000 and expecting the

next segment with the first byte sequence number 1001.

2.3 TCP Receiver and Congestion Windows

As mentioned earlier, TCP uses a sliding window mechanism to control its rate of

transmission. It is both receiver and network friendly. The actual transmission rate of

TCP depends on two windows - the current receiver window that is advertised by the

6



followings in detail.

• Slow-start

• Congestion avoidance

• Fast retransmission

• Fast recovery

2.4.1 Slow-Start

When a TCP connection IS

receiver (called rwnd) and the current congestion window (called cwnd) that depends

on sender's perceived bandwidth of the network. A TCP sender sets its transmission

rate according to the minimum of the two windows to avoid both the receiver and the

network overOow. The receiver always advertises the receiver window using the

window size field in the TCP header. However, TCP has to estimate the available

network bandwidth with the help of acknowledgements received from the receiver.

TCP maintains a retransmission timer for every segment it transmits. If the timer

times out before the arrival of the acknowledgement against a pmiicular segment,

TCP considers the segment has been lost and retransmits the lost segment. Moreover,

TCP assumes that the segment has been lost due to buffer overOowin an intermediate

router, i.e. congestion in the network, and throttles its transmission rate by reducing

its congestion window with a hope that the reduced transmission rate will ease the

congestion from the network.

2.4 TCP Congestion Control

TCP congestion control prevents a source from exceeding network capacity by

adapting its transmission rate to avoid congestion in the network. This section sheds

more light on thc basic congestion control mechanisms used in TCP by discussing the

first establishcd, the TCP source remains a bit

conservative and starts transmitting only a few segments, waits for the ACKs against

those segments, and then gradually increases its' transmission rate upon successive

reception of acknowledgements. This allows the TCP source to probe the network

gently to detell11ine the amount of bandwidth that is available for the connection. This

slow-start mechanism is used in the following cases.

7



• At the beginning of each new TCP connection.

• When an existing TCP connection is restarted after a long idle period.

• When an existing TCP connection is restarted after the retransmission timer

expIres.

As a result, the slow-start mechanism keeps TCP away from over feeding the network

with too many segments when a new TCP connection is established or a congestion

event is assumed on a running TCP connection.

Source Destination

ACK •• _~
------------------

2 Segments

::::::::::::::::: __ :::~
4 Segments

Time

cwud

- - --::
- - - -

___ C!'"_
- - - -

1 Segment

-----

C\\11d = .:I

cwud = 1

C\\11d = 2

Figure 2.1 Slow-start in Tep

Figure 2.1 illustrates the operation of TCP slow-start mechanism. In the slow-start

mechanism the sender maintains a congestion window (cwnd) which represents its

estimation of the traffic that the network can absorb without getting congested. When

a TCP connection is first established, cwnd is initialized to the size of a single

segment (called MSS - Maximum Segment Size) advertised by the host at the other

end of the connection. A TCP source always transmits the data equal to the minimum

of its cwnd (representing the congestion control administered by the sender) and the

destination's advertised window (representing the flow control governed by the

receiver).
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TCP source initiates the slow-start by transmitting one segment and waiting for its

ACK. When the ACK is received, the source increases CWlld from one to two, and two

segments are sent (provided that the size of the receiver window is more than or equal

to two segments). When these two segments are acknowledged, the source increases

CWlld from two to four, and four segments are sent (again provided that the size of the

receiver window is more than or equal to four segments). It continues to transmit

according to the congestion window and doubles the congestion window until a

threshold value (64 KB at the beginning) is reached. This threshold is called slow-

start threshold (ssthresh). Whenever CWlld reaches this threshold value TCP exits from

the slow-start phase and enters into the congestion avoidance phase.

2.4.2 Congestion Avoidance

As we said before, the exponential growth of CWlld continues until cwml reach the

ssthresh. From this point, the sender increases cWlld linearly (by at most one segment

per round-trip time), allowing it to slowly increase its transmission rate. This region

of cWlld's evolution is called congestion avoidance.

When a TCP source discovers that a segment has been dropped by the network, it sets

the ssthresh equal to one-half of its current value of cWlld. The source reduces its

transmission rate by restarting the slow-start mode and exponentially increases the

cWlld value until the new ssthresh is reached. At this point, TCP source enters into the

congestion avoidance Illode again.

Slow-start with congestion avoidance forces TCP sender to reduce the value of its

current cWlld each time it experiences a segment loss. If the segment loss continues

for a period of time, the volume of traffic injected into the network by the TCP source

decreases dramatically which allows routers to drain out their congested queues.

The TCP source can determine that a segment has been dropped by the network or got

damaged in two ways:

• Through the reception of duplicate acknowledgements.

• Through the expiration of the retransmission timer.

9



The absence of a single segment in the middle of a transmission window causes the

destination to immediately generate a duplicate acknowledgement. For example,

when a destination receives all of the data in the stream up to byte 1000, it responds

with an ACK of 1001 indicating that the next segmcnt the destination expects to

receive begins with byte 1001. If a segment is dropped by an intermediate router, the

destination TCP continues to buffer the subsequent segments as they arrive, however,

it continues to ACK 100 I since it has not received the expected segment. Generally,

the receipt of duplicate ACKs means that the segment has been delivered out of order, .

however, the TCP source uses the receipt of three duplicate ACKs as an indication of

segment loss.

The loss of the last segment in a transmission window does not generate a duplicate

ACK. It rather causes the retransmission timer of the TCP source to time out due to

the absence of subsequent out of order segment delivery. TCP retransmission timer

supports adaptive retransmission by changing the timeout value as the sample round-

trip times (RTTs) of the connection constantly changes with the network load. If the

retransmission timer expires before the segment has been acknowledged, the source

assumes that the segment was either lost or corrupted and retransmits the segment.

2.4.3 Fast Retransmission

As discussed earlier, TCP assumes that a segment has been dropped when it receives

duplicate ACKs although the reception of duplicate ACKs can also mean that the

segment simply got out of order. Instead of responding immediately to a duplicate

ACK by retransmitting the lost segment, the source TCP waits until it receives three

duplicate ACKs (3-dupacks) in the fast retransmission strategy. After receiving three

duplicate ACKs, the TCP source retransmits the missing scgment, without waiting for

the retransmission timer against that missing segment to expire. Fast retransmission

enhances TCP perf0ll11anCe in the following ways:

• Eliminates unnecessary segment retransmission, hence, the waste of network

bandwidth if the segment simply becomes out of order and not dropped.

• Provides higher channel utilization and connection throughput.

• Docs not force TCP to wait for the retransmission timer to expire before

resending a potentially lost segment.

10



Fast retransmission strategy, however, goes back to the slow-start phase and reduces

its ssthresh value to the half of its current cwnd value.

The flowchart in Figure 2.2 summarizes the operation of TCP congestion control

involving slow-start, congestion avoidance and fast retransmission.

~-------------------------------------------- I---------------------- ~, ,,,,,,,,

Retransmit the
presumed lost

segment

3-dupack

NewACK

cwnd = cwnd + MSS
cwnd = cwnd + MSS/cwnd

---------------------------------------------
: Slow Start (cwnd is doubled during
: every rou nd-trip),,

No
Threshold
reached?

Yes

,,,,,,,
: Congestion Avoid ance (cwnd is
: increased by 1 during every round-trip),
1 ------------------------------

Figure 2.2 TCP Congestion Control Algorithm

2.4.4 Fast Recovery

When the TCP source receives duplicate ACKs it means that the data is still flowing.

towards the destination, which allows the destination to generate duplicate ACKs. In

this case, a TCP source, while using the fast recovery strategy, does not suddenly

reduce the flow of data by returning to the slow-start phase. Instead, the TCP source

sets cwnd to the hal r of its current value plus 3 MSS after responding to the receipt of

three duplicate ACKs by retransmitting the lost segment. It artificially "inflates" the

congestion window by three, which is equal to the number of segments those have

already left the network and has been buffered by the receiver. It also sets ssthresh to

\I



the half of the previous cwnd value and enters into the congestion avoidance mode.

For each additional duplicate ACK received, cwnd is incremented by 1 MSS. When

the next ACK arrives that acknowledges the new data, cwnd is set to ssthresh. This

strategy provides better overall throughput for the TCP connection when segments

simply get reordered in the network or a single segment is lost from a flight of

segments.

Fast recovery prevents the TCP connection pipe from getting completely empty after

the fast retransmission of a single lost segment. This enhances TCP performance by

eliminating the need to return to the slow-start mode and filling the TCP connection

pipe slowly after a single segment loss. However, while the fast recovery strategy

improves TCP performance when a single segment is dropped from a window of data

stream, it cannot do the same when multiple segments are dropped.

Figure 2.3 illustrates the evolution of cwnd in a typical TCP connection using the fast

recovery strategy.

16
15

2' 14
~ 13
E 12t:I)
Q) 11
III

<: 10
~ 9
o 8'tJ.E 7
~ 6
<:
o 5.,
III 4
Q)
t:I) 3
<:8 2

1
o

---------------------------t3~duP~..-..

Congestion
Avoidance

ssthresh = 7

012345678910111213141516171819202122

Time (in RTT sequence)

Figure 2.3 Evolution of cWlld
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2.5 Major TCP Variants

Over. the years, researchers have proposed and implemented a good number of

variants of original TCP algorithm to make TCP performing well in all possible types

of networks. The following subsections described some important variants of TCP

along with their working strategy and limitations.

2.5.1 TCP Tahoe

Three key algorithms discussed earlier: slow-start, congestion avoidance and fast

retransmit, were originally proposed by Van Jacobson [2] and implemented in TCP

Tahoe under "4,3 BSD Tahoe TCP" module in 1988, TCP Tahoe shows good

performance in those networks where most of the segment losses are due to

congestion, However, it shows poor performance when segments are delivered out of

order or when segments get damaged due to non-congestion related events (e,g,

random bit errors), We have observed this poor performance of TCP Tahoe using

simulation, Performance of TCP Tahoe in wired-cum-wireless networks has been

presented in Chapter 5,

2.5.2 TCP Reno

TCP Reno first implemented in "4.3 BSD Reno TCP" in 1990, supports all of the Van

Jacobson's algorithms and extends TCP by introducing the fast recovery algorithm.

By supporting fast recovery, TCP Reno overcomes the throughput perfOlmance

limitations of TCP Tahoe that occur when a single segmenl'is lost or misordered. But

it cannot handle multiple segment losses in a single window efficiently, This poor

performance of TCP Reno has been observed by us using simulation, Perf01l11anCeof

Tep Reno in wired-cum-wireless networks have been presented in Chapter 5,

2.5.3 TCP NewReno

TCP NewReno [7] enhances TCP throughput when multiple segments are dropped

fj'om a single window using TCP Reno connections, When multiple segments are

dropped fj'Ol11a single window, the TCP source enters into the fast retransmission

phase after receiving 3-dupacks for the first lost segment. Afterretransmitting the first

lost segment TCP NewReno enters into the fast recovery phase, While the

retransmitted segment is in transit, the TCP source continues to receive duplicate
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acknowledgements. These duplicate acknowledgements report the loss of that

retransmitted segment and continue to do so until the retransmitted segment reaches

the destination. The ACK that is generated in response to the successful reception of

the retransmitted segment reports the second missing segment in the same

transmission window. This ACK is referred to as a "partial ACK". TCP Reno's

reaction to this event is to deflate the congestion window and exit from the fast

recovery phase immediately as this ACK is not a duplicate acknowledgement of a

previously received acknowledgement. This causes a TCP sender to enter into the fast

retransmission and the fast recovery phases again after receiving three duplicate

ACKs for the second lost segment and results in further reduction of CWJl(1 and

ssthresh values. TCP New Reno solves this problem by not exiting from the fast

recovery phase when it receives a partial ACK. During the fast recovery phase when a

TCP NewReno sender receives partial ACKs, the acknowledgement number present

in the TCP header of the ACK segment infoll11s the sender about the successive lost

segments. TCP NewReno immediately retransmits the presumed lost segment after

receiving the partied ACK and remains in the fast recovery phase. This strategy

prevents reduction of the cwnd by entering into the fast rctransmission phase multiple

times. Thus TCP NewReno overcomes the throughput performance penalty when

multiple segments are dropped from a single window. Although it is a superior

protocol compared to TCP Tahoe and TCP Reno it fails to eilsure a good throughput

in wired-cum-wireless networks where most of the segments get damaged due to

random bit errors.

2.5.4 TCP Vegas

TCP Vegas [8] dynamically increases and decreases the transmission window size

according to the observed RTT of previously sent segments. If the observed RTT

becomes large, TCP Vegas assumes that the network is experiencing congestion, and

it reduces the window size. Likewise, if the observed RTT becomes small, TCP Vegas

concludes that the network is not experiencing congestion and it increases its window

size for better utilization of the available bandwidth. Another modification introduced

by TCP Vegas is that during the slow-start, the rate of cwnd increase is different than

that ofTCP Tahoe and TCP Reno. [n TCP Vegas, cwnd is doubled with the receipt of

every other ACK instead of every ACK.
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2.5.5 TCP Westwood

TCP Westwood (TCPW) [9], [10] IS a modiJied version of TCP Reno. TCPW

enhances the window control and back off process. Here, a TCP sender performs an

end-to-end estimatc of the bandwidth available along the conncction by measuring the

rate of returning acknowledgements and the amount of bytes delivered to the receiver

during a celiain interval. Whenever a sender perceives a segment loss (i.e. a timeout

occurs or 3-dupacks are received), the sender uses the bandwidth estimate to properly

set the congestion window (cwl1d) and the slow-start threshold (ssthresh). By backing

off the cWlld and the ssthresh to the values those are based on the estimated

bandwidth rather than simply halving the current values as Reno does, TCP

Westwood avoids overly conservative reductions of CWlld and ssthresh; and thus it

cnsures a I~lster recovery. The benefits of TCPW include better throughput, goodput,

and delay performance, as well as fairness even when competing connections differ in

their end-to-end propagation times. TCPW is also effective in handling wireless loss.

This is because TCPW uses the current estimated rate as the reference for resetting the

congestion window. The current rate is only marginally affected by loss (as long as

the loss is relatively small compared to the data rate). Although TCPW shows better

performance than other TCP variants in contention free wireless networks (e.g. a

dedicated channel between a VSAT and a satellite), it fails miserably when deployed

in multi-access wireless networks where multiple wireless nodes share the same radio

frequency using collision avoidance type of scheme. TCPW relies on a consistent

now of acknowledgements from the receiver in order to calculate a near-to-actual

estimate of the available network bandwidth. Whenever the acknowledgement stream

is disrupted, TCPW's estimation process gives wrong results and degrades the overall

performance of a TCP connection. We have presented detail analysis of TCPW's

performance in multi-access wireless networks in Chapter S.

2.5.6 TCP SACK

TCP selective acknowledgement (SACK) [II] enhances the throughput perfomlance

of TCP Reno when multiple segments are dropped from a single window. When a

TCP receiver observes that the arriving segments are not continuous (the segments are

out of order), it responds to the TCP sender with ACKs that contain the SACK option.

This option specifically tells the rcp sender which segments have been received by
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the destination and the sende/\etransmits only the missing segments. TCP SACK

needs modification in both the sender and the receiver side protocol stack to

incorporate the SACK option.

2.5.7 TCP D-SACK

The duplicate-SACK (D-SACK) extension [12] allows a TCP receiver to use a SACK

to report the receipt of duplicate segments. This extension allows the TCP sender to

identify the segment received by the TCP receiver, including duplicate segments. If

the TCP sender determines that the destination TCP received two copies of a segment

and that the retransmission of the duplicate segment was unnecessary, the TCP sender

can undo the halving of cwnd. The D.SACK extension overcomes the throughput

perfonnance penalty that results from halving the congestion window. However, this

strategy requires modifications in both TCP sender and receiver protocol stack.

2.6 Tep in Wired Network

As mentioned earlier, TCP was originally designed for networks where loss is only

due to congestion. Wired networks show this characteristic. In wired network any

indication of segment loss can be considered as network congestion. For this reason,

TCP's reaction to congestion, i.e., throttling transmission rate after timeout or

reception of consecutive three duplicate acknowledgements works fine for wired

networks. We have studied the evolution of congestion window (cwlld) of a typical.

TCP connection in a wired network using ns-2 simulator. The result obtained from an

ns-2 simulation run by establishing a TCP connection between two nodes in a wired

network is shown in Figure 2.4. Figure 2.5 shows the network configuration that was

used to run the simulation. Here, the link between band r acts as the bottleneck link.

A TCP connection between So and r is used. A CBR (Constant Bit Rate) traffic

connection using UDP (User Datagram Protocol) between s, and r with 1000 bytes

packet size and 0.75 mbps data rate is used to induce congestion in the network. The

simulation was run for 15 seconds.
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Figure 2.4 Evolution of cWlld in a wired network
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Figure 2.5 TCP in wired network (simulation setup)
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From Figure 2.4, it is evident that after throttling the transmission rate due to

expiration of retransmission timer or reception of 3.dupack, TCP can regain a good

throughput in a short time. From this simulation result we can conclude that TCP's

performance in wired network is excellent.

2.7 Characteristics of Wireless Networks Affecting

TCP's Perfonnance
There are several characteristics that are unique to wireless environment that make it

challenging to adapt TCP to work effectively. The characteristics of wireless medium
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differ significantly than that of wired medium. The major factors affecting TCP's

performance in wireless environment are described below [13].

2.7.1 Limited Bandwidth

Bit rates of 100 Mbps are common on wired LANs. Optical links provide data rate of

the order of gigabits to terabits per second. However, the current wireless standard,

for example the IEEE 802.11 g standard for Wireless LAN, offers maximum raw bit

rates of 54 Mbps. Thus available bandwidth is one of the major bottlenecks that

degrade the throughput ofTCr on wireless medium.

2.7.2 Long Round-Trip Times

In general, wireless media exhibits longer latency delays than wired media. The rate

at which the TCP sender increases its congestion window is directly proportional to

the rate at which it receives ACKs from the receiver. Due to longer round-trip times,

the congestion window increases at a much lower rate with wireless links. This is

imposing a limit on the throughput ofTCP on wireless links.

2.7.3 Random Losses

The transmission losses on wireless medium, bit error rate (BER) of the order of 10,3

to 10,1, are significantly higher than that on wired medium, BER of the order of 10'~

to 10'('. These losses result in segment drops and hencc the sender does not receive

acknowledgements before the retransmission timer times out. This causes the sender

to retransmit the segment, exponentially back off its retransmission timer and lowers

its congestion window to one segment. Repeated errors result in low throughput. The

loss of segments on wireless link, which in general is the last hop, results in end-to-

end retransmission. This also causes traffic overload on the wired links.

2.7.4 User Mobility

In case of cellular networks when a user moves from one cell to another, all the

necessary information has to be transferred from the previous base station to the new

base station. This process is called HandojJ, and depending on the technology used,

there might be short duration of disconnection. TCP attributes delays and losses

caused by these short periods of disconnection to congestion and triggers congestion

control and avoidance mechanism. This again results in reduced throughput. In case

18



of ad hoc networks, mobilc nodcs can movc randomly causing frequcnt topology

changes. This causes scgmcnt losscs and forces mobile hosts to initiate routc

discovery algorithms frcquently. The overall result is significant throughput

rcduction.

2.7.5 Power Consumption

The retransmission caused by frequcnt segment losses rcsult in longer connection

duration, hence, higher power consumption. Power consumption is a very important

factor in case of battery operated devices like laptops, personal digital assistants

(I'DAs) and wircless phones. For this reason, it is bcttcr to keep the number of

rctransmissions and connection duration low in wireless networks.

2.7.6 Medium Access Control (MAC) Layer Activities

In a typical wireless network (e.g. IEEE 802.11) all the nodes share the same radio

frequcncy. In order to ensure collision avoidance, the MAC layer of a transmitting

wireless node reserves the wireless channel for some time during which the

neighboring nodes are strictly prohibited to transmit. This introduces waiting time and

increases the communication delay among all other wireless nodes and eventually

affccts the overall TCP throughput in the wireless networks.

2.8 Performance of TCP Congestion Control

Algorithm in Wireless Network

In wireless networks, it is evident that the packet losses may occur not only for the

congestion in the network but also for:

•

•

•

Transmission errors in wireless links due to fading, shadowing, jamming etc .

Handoffbetween cells due to user mobility .

Temporary disconnection between transceivers .

In wired connections, whcre the bit error rate (BER) is negligible and handoff or

tcmporary disconnection is almost non-existent, TCP's congestion control strategy is

sufficient as most of the segment losses are due to congestion at the bottleneck nodes.
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If a packet is lost due to somc non-congestion rclated cvcnts but TCP's congestion

control policy is activated that will certainly reduce the throughput of the connection.

When a packet is lost due to bit error, handoff or temporary disconnection there is no

bcncfit to reducc the transmission rate. In casc of transicnt nctwork errors the future

packets may not suffer the loss. So categorization of packet losses is very important

for efficient performance of TCP over wireless networks. Packet losses due to bit

errors, mobility and hard handoff need to be handled differently than that of due to

nctwork congestion. In networks with large bandwidth-delay product, reducing the

congestion window inappropriately will lower the performance of thc connection

sevcrcly as it will take much longer for the acknowledgements to arrive and the

congestion window to increase.

We have analyzed the evolution of congestion window (cwnd) of a typical TCP

connection in a mixed environment using ns-2 simulator. The result obtained from an

ns-2 simulation run by establishing a TCP connection bctween two nodes in a mixed

network is presented in Figure 2.6. Figure 2.7 shows the network configuration that

was used to run the simulation. [n Figure 2.7 su, s, and b belongs to the wired domain

and r belongs to the wireless domain. BS is the base station that acts as the gateway

between thc wircd and the wirelcss domain. The link between band BS acts as the

bottleneck link. A TCP connection between So and r is used. A CBR (Constant Bit

Rate) traffic connection using UDP (User Datagram Protocol) between s, and r with

1000 bytes packet size and 0.75 mbps data rate is used to induce congestion in the

network. The simulation was run for 15 scconds.
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Figure 2.6 Evolution of cwnd in a wired-cum-wireless network
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Figure 2.7 TCP in wired-cum-wireless network (simulation setup)

From Figure 2.6, it is quite evident that in the wireless networks whenever TCP

throttles its transmission rate after an indication of packet loss, it takes a significant

amount of time to regain the previous throughput. If the packet was lost due to bit

error then this reduction in transmission rate does not bring any good. This situation
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gels worse when we have a network with large bandwidth-delay product. In this type

of networks, higher delay results in high round-trip time. Hcnce acknowledgements of

a TCP connection arrive at the TCP source at a much slower rate. If TCP throttles its

transmission rate due to a non-congestion related event, it will not only take

significant amount oftimc to regain a good throughput but also will keep a significant

amount of bandwidth unutilized. For this reason, differentiating between congestion

and non-congestion related losses are very important if we want TCP to show better

performance in a heterogeneous network environment.

The next chapter discusses some state of the ati research works focused on improving

performance ofTCP in heterogeneous networks.
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3 State of the Art
Effective error and congestion control for heterogeneous (wired and wireless)

networks has been an active area of research recently. Research works in [14], [15],

[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26] and [27] have studied and

analyzed congestion control for wireless networks. The major focus of the most of the

aforementioned works is to nullify the adverse effects of TCP's basic congestion

control mechanism in wireless networks. In the following subsections different

strategies proposed for improving TCP's performance in heterogeneous networks are

discussed.

3.1 Link Layer Solutions

The link layer (LL) protocol runs on top of the physical layer and has immediate

knowledge of the transmission medium and dropped frames. At the same time, the LL

protocol has more control over the physical layer protocol. Hence, alleviating the

wireless medium inefficiencies at the LL provides the transport layer protocol with a

dependable communication channel, similar to a wired one. This way, the

transmission media heterogeneity introduced in the network remains transparent to the

existing software and hardware infrastructure, and does not necessitate any changes to

current TCP implementations.

Asymmetric Reliable Mobile Access in Link Layer (AIRMAIL) [14] is a popular link

layer protocol designed for indoor and outdoor wireless networks. It provides a

reliable link layer by using local retransmissions and forward enor conection (FEC)

at the physical layer. The protocol is asymmetric to reduce the processing load at the

mobile host. The asymmetry is needed in the design because the mobile terminals

have limited power and smaller processing capability than the base station. The
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asymmetric design places the bulk of the intelligence in the base station, allows the

mobile terminal to combine several ACKs into a single ACK to conscrve power,

requires the base station to send periodic status messages, and forces the

acknowledgement Ii'om the mobile terminal to be event driven. The side-effect of the'

asymmetric design is that no error correction can be done until thc ACKs alTive which

can cause TCP to time out if the error rate is high.

There are many adverse interactions between TCP and link layer for which the end-

to-end performance of TCP does not improve when this type of link layer solutions

are used.

I. Timer interactions - Independent timers at both layers could trigger at the

same time, leading to redundant retransmissions at both layers and degraded

performance. As a result the transport sender is not shielded from the

problems of the wireless link.

2. Fast retransmission interactions - This arises when a link layer protocol

achieves reliability by local retransmissions, but does not preserve the in-order

sequential delivery of the TCP segments to the receiver. In this case, although

the local recovery occurs the receipts of later segments causes duplicate ACKs

ii'om the receiver, which leads to redundant retransmissions, sender window

reductions, and throughput reduction.

3. Large RTT variations - The retransmission at the link layer results in long

latencies and variable RTTs at the TCP sender.

3.2 Base Station Dependent Approach

In [16] Balakrishnan el al. proposed the design and implementation of a simple

protocol called "Snoop" for the scenario where a fixed host is communicating with a

mobile host with the help of a baEe station. Here, the TCP implementation at the fixed

host does not need any modification. The network layer code at the base station is

changed to implement the Snoop protocol. No transport layer code runs at the base

station. The packets sent from the fixed host are buffered at the base station before

delivering them to the mobile host. When the Snoop agent residing at the base station

receives a duplicate acknowledgement against a lost packet at the mobile host, it

retransmits the missing packet locally to the mobile host and conceals the packet loss
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cvents from the sender and hence prevents it from reducing its congestion window to

maintain a good throughput.

The Snoop protocol is not scalable, When a large numbcr of concurrent rcp
connections are active through a base station, the base station has to buffer all the

segments from all TCP connections to retransmit, whenever necessary, The base

station will exhaust the buffer space very quickly and will not be able to store new

segments, Eventually, the base station will fail to conceal the losses, Moreover, packet

loss handling will put extra load on the base station which will adversely affect its

other perf011l1anCe,

As discussed earlier, one problem with TCP on wireless networks is that it cannot

distinguish the exact reason of the segment loss, The delay characteristics shown

when a wireless host moves to a differeni network is different from those that are

shown when it moves from one cell to another cell in the same network, The data loss

due to these two types of mobility is also different from the data loss due to

congestion in the wired network, TCP is not able to distinguish these losses and

interprets them as congestion and invokes the undesirable congestion control

mechanisms, Mobile TCP [17] distinguishes the segment losses due to handoff and

those due to interface switching, It lets the base station tell the sender whether the loss

is due to handoff in the same network or it is due to interface switching, The sender

then marks the segments and retransmits them once the mobile host has completed

handoff. In case of interface switching, the wireless host lllay enter into a new

network which may not have the same network characteristics as the previous one,

For this reason, when the TCP sender knows about the interface switching it resets

window size (cwnd), ssthresh, the estimation of round-trip time (RTT) and

retransmission timeout (RTO) values, and begins slow-start. However, if the wireless

host has moved to a cell in the same network then the values of cwnd and ssthresh arc

halved and the RTT value is kept the same, This algorithm performs well knowing the

cause of the segment loss, Though it handles the handoffs well it does not consider t1!e

bit crror characteristics of the wireless link,
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3.3 Using Redundant ErrorCorrecting Segments

In [18] Subramanian et of. proposed an enhancement to TCP called LT-TCP (Loss

Tolerant TCP) that performs well in extreme wireless environments. They showed

that after certain bit error rate, where the original TCP fails miserably, LT-TCP shows

good performance. Their work relies on ECN (Explicit Congestion Notification) from

the network routers. LT-TCP uses FEC (Forward Error Correction) mechanism to

recover segment errors and losses. Based on the current network condition, a certain

amount of error correcting segments are pre-generated and kept in the transmission

queue. Some of these are called PFEC (Proactive Forward Error Correction) segments

and are sent along with the new data segments. The rest are called RFEC (Reactive

Forward Error Correction) segments and are sent during retransmission of previously

scnt segments. LT-TCP also adaptively manages the maximum segment size to ensure

a ccrtain minimum number of FEC segments in the transmission window.

Using slots from the transmission window for additional error correcting segments

results in reduced number of slots for the actual data. This reduces the throughput of a

TCP connection. Moreover, generation of error correcting segments at the sender

consumes processor time. Similarly, the use of error correcting segments at the

receiving end in order to recover damaged segments also needs some extra processing

activities.

3.4 Router Assisted Approach

In [19] Lien et of. proposed a router-assisted approach to solve the congestion control

problems in TCP. This approach asks some help from the network. Basically, when

congestion builds up in certain part of a network, the congested router infoll11s the

source about the congestion setting ECN (Explicit Congestion Notification) bit of the

packets destined back to the source. Upon reception of packets with ECN bit set, the

scnder can reduce its transmission rate. This techniquc cffectively distinguishes the

scgment loss due to congestion from the segment loss due to an error. It assumes tlUlt

thc routcrs present in the path are ECN enabled. However this approach gives some

extra loads on thc intermediate routers that deteriorates their packet switching

performancc. It is also hard to cnsure that all the routers in the network will be ECN

enabled.
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3.5 Split Connection Approaches

The advocates of these schemes claim that since two completely different classes of

sub networks (wired and wireless) are involved in wired-cum-wireless networks, the

TCP connection could be split into two connections at the point where the two sub

networks meet, i.e. at the base station. These approaches completely hide the wireless

link from the sender by terminating the TCP connection at the base station. The base

station keeps one TCP connection with the fixed host, while it uses another

connection with a protocol specially designed for better performance over wireless

links for the mobile host. The base station acknowledges the segments as soon as it

receives them. An acknowledgement can arrive at the sender even before the

corresponding segment has been received by the receiver. The base station forwards

the segments and buffers a segment until it receives the acknowledgement from the

mobile host. A base station transparently transfers state information to another base

station during handoffs.

Indirect- TCP (1-TCP) [20], uses above TCP splitting approach with different flow

control and congestion control mechanism on the wireless link and on the fixed

network, allowing faster reaction to mobility and wireless link breaks. However, 1-

TCP has following drawbacks.

1.. As there are two separate connections for every TCP seSSion, every packet

needs separate processing for each connection. So every packet suffers a

certain amount of processing overhead while switching from one connection

to another.

2. End-to-end semantic ofTCP ACKs is violated in split connection.

3. Complex hardware and software are required at the base station.

4. The base station needs large buffers in case of heavy traffic. Moreover, extra

loads are given on the base station that may affect its usual activities. This is

not a scalable solution.

5. If there are frequent handofTs then the overhead related to the connection state

transfer between the base stations may be large and may add delays.
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3.6 End-to-End Mechanisms

End-to-end (E2E) mechanisms solve the wireless loss problem at the transport layers

of the sender and receiver. All the TCP variants discussed in Chapter 2 fall into this

category. Among them TCP Westwood has been specially developed for wireless

networks and large bandwidth-delay networks. Some other end-to-end proposals for

improving TCP performance in wireless networks are described in this section.

In [21] Tsaoussidis el af. proposed an end-to-end proposal called TCP Probing. In this

scheme when a data segment is delayed or lost, the sender enters into a probe cycle

instead of retransmitting and reducing the congestion window size. In a probe cycle

only the probe segments are exchanged between the sender and receiver to monitor

the network and the regular transmission is suspended. The probes are TCP segments

with header option extensions and no payload. A probe cycle terminates when the

sender can make two successive RTT measurements with the aid of receiver probes.

In case of persistent error, TCP decreases its congestion window (cwnd) and ssthresh.

For transient random error, the sender resumes transmission at the same window size

that it was using before entering into the probe cycle. Although the probe segments

are small, they increase the network load even when the network is highly congested ..

The Eifel detection algorithm [22], [23] allows a TCP sender to detect a posteriori

whether it has entered into the loss recovery phase unnecessarily. This algorithm tries

to nullify the effects of spurious timeouts i.e. timeouts that would not have occurred

had the sender waited "long enough", and spurious fast retransmits that occur when

segments simply get re-ordered in the network before reaching the receiver. It

requires the TCP timestamp option, defined in RFC 1323 [28], be enabled for a

connection. When the timestamp option is used, the TCP source writes the current

value of a "timestamp clock" into the header of each outgoing segment. The TCP

destination then echoes those timestamps in the corresponding ACKs according to the

rules defined in [28]. The TCP source always stores the timestamp of the first

retransmission irrespective of its reasons; whether it was triggered by an expiration .01'

its retransmission timer or by the receipt of 3-dupack. Based on the timestamp on the

first accepted ACK that arrives during the loss recovery phase it decides whether the

loss recovery phase was entered into unnecessarily. It is a reactive solution. During a

timeout or 3-dupack event, the transmission rate is throttled first. Based on the
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timestamp. value, it may restore the previous transmission rate, however, it reduces the

connection throughput for a while. Moreover, adding TCP timestamp 1Il every

segment imposes certain amount of overhead in the communication.

From the above discussions we can see that the strategies proposed 111 the recent

research works in order to improve TCP's performance in mixed networks are not'

completely flawless. There are occasions when some of those strategies fail to provide

suflicient support to increase throughput of a TCP connection. So there exists some

scope to look into this matter from a new perspective. In the following chapter, our

proposed TCP congestion control algorithm is presented that explores a new

dimension in solving the problem of TCP's degraded performance in wireless

networks.
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4 Proposed New TCP Congestion

Control Algorithm
In order to control congestion TCP throttles its transmission rate so that the

overloaded routers do not get flooded with the new packets and get some time to drain

out their queues without dropping the packets. This action taken by TCP helps the

network to ease the congestion if there is real congestion in the network. However, if

packets are lost due to bit error then there is no gain in reducing the transmission rate.

In this case, the sender should continue transmitting at the original rate and try to

deliver as many packets as possible in the midst of random bit errors. Throttling

transmission rate will not do any good in this scenario. The probability of bit errors in

wireless channels is higher than the probability of bit error in wired media. The

original TCP cannot distinguish between the packet loss due to congestion and the

samc due to random bit errors and activates congestion control in both cases. This is

causing performance penalty to TCP connections in the presence of wireless link in a

network. Hence, some new strategies should be introduced in TCP such that it can

detect packet loss due to bit elTor and act accordingly.

In this thesis, we have developed some new strategies that can be easily integrated

with current TCP variants so that the TCP sen dcI' can distinguish between segment

loss events due to congestion and those due to random bit errors. QUI' strategies need

to modify only the sender side ofTCP entity.
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4.1 Reason for Using an End-to-End Scheme

We have opted for an end-lo-end (E2E) proposal for a good number of reasons.

Firstly, E2E proposal always keeps the end-to-end semantic ofTCP intact. There is no

proxy or relay agent necessary in E2E schemes. Secondly, E2E schemes do not place

any extra burden on the internal network routers. If routers are required to help TCP

entities in determining the current network condition, then it will slow down the

routers' routing functionalities and create the bottleneck in the network. It is more

critical for the core routers in the network since they have to route a huge volume of

packcts every moment. Finally, E2E schemes do not need to take help from the link

layer that keeps the layered architecture layered and transparent.

4.2 Findings and Observations

In order to help the sending entity to distinguish between segment loss event due to

congestion and the same due to bit error, there must be some extra checking through

which the sending TCP entity will be able to detect false congestion alarm.

Unfortunately, the information that is typically available to the sending Tep stack is

not enough to accurately detem1ine false congestion alarm. We have examined the

characteristics of TCP operations in both wired and wireless networks and found two

possible ways through which the TCP sender will be able to detect false congestion

alarm with good precision.

4.2.1 General Observation - I

When there is little or no congestion in the network, or no bit errors in the packets, the

TCP sender will experience less timeouts. Due to reordering of segments in the

network, there might be few 3-dupacks. There will be a continuous flow of

acknowledgements when the network is in non-congestion state and the transmission

rate of the sender will not be throttled that much due to TCP's fast retransmit and fast

recovery strategy. The TCP sender wi 11 only experience the retransmission timer

timeout event whenever the congestion window size reaches the bandwidth limit bf

that instant. However, these events will be less frequent during non-congestion state

due to slow-start and congestion avoidance strategy used by TCP.
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Let us examinc what will happen whcn there is less congcstion in the network but the

probability of random bit error is high. If the packets /lowing through thc nctwork

experience bit error then some packets will be corrupted or completely damaged. The

receiver will detect this while vcrifying the checksum present in thc received

packct/segmcnt and will rcject it. So the order of segment reception will be changed

in the receiver. Since there is no congestion in the network at this time, the traffic'

/low in the network will not be changed. There will be a steady stream of segments in

transit from the source to the destination. If the next segments in sequence do not

sulTcr from bit error then they will be received successfully by the receiver but will be

regarded as out of order segments. This will result in gcneration of duplicate

acknowledgcments by the rceeiver. If there wcre many segments in transit, a

significant amount of duplicate acknowledgemcnts will bc gcncratcd by the receivcr

and receivcd by thc scnder.

The continuous /low of acknowledgements from the receiver will prevent timcouts

from being occurred at the sender. So the numbcr of 3-dupacks experienced by the

sendcr will be much higher than the numbcr of timeouts. This phcnomenon can be

used during a timeout or a 3-dupaek event to decide whether there is rcal congestion

in the nctwork, or the segment loss occurred due to random bit error.

So, we can keep a running count of the number of timeouts and the number of 3-

dupacks experienced during an interval. Whenever the scnder expericnces a timeout

or 3-dupack event, it will compute the ratio of the number of timeouts to the number

of 3-dupacks. If the ratio is very small (in between 0.0 I to 0.2), our observation shows

that this event has been caused by a bit enor event, not by the congestion. If the ratio

is high (e.g. greater than 0.5) then the event is more likely the result of segment drops

in intermediate routers due to congestion.

Tables 4.1 and 4.2 show some observed data obtaincd through our simulation. Dctails

of thc simulation setup have been explained later.

. Ratio (x/y)

0.05
0.1
0.3

127
476
651

Table 4.1 Effect of bit errors 011 timeouts alld 3-du acks with 110 COil estioll
Error Rate (%) Timcout COUllt . 3-dupackCoullt

with 110 COil estioll x
I 6
5 49
10 195
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Table 4.2 Effect of cOII!!estioll 011 timeouts alld 3-dunacks (Error Rate = 0.0"1..)
Background UDP Timeout Count 3-dupack CountTraffic Bit-rate . Ratio (x/y)

(Mbos) (x)
.

(y)

0.75 61 19 3.21
I 12 4 3

125 1 1 3 3.67

When the possibility of congestion is less but the possibility of bit error is high, we

can make TCP less conservative, i.e. no or little reduction in transmission rate. In 3-

dupack-event case, the amount of throttling is not that high due to TCP's fast

rctransmission and fast recovcry strategy. However, ifwc do not reduce the cWl1d and

ssthresh that much during a possible bit error event, then TCP can continue with a

transmission rate close to the previous rate.

4.2.2 General Observation - II

Network congestion typically occurs whenever internal routers are unable to forward

incoming packets and their queues become full. In this case, due to unavailability of

the space in the queue, routers have to drop subsequent packets. Multiple segments

{i'omthe same congestion window of a TCP sender are typically dropped. The smooth

flow of fOlward traffic towards the destination is lost which has an adverse effect on

the reverse traffic that is carrying the acknowledgements. Due to insufficient supply

of acknowledgement segments back to the sender, the retransmission timer at the TCP

sender times out.

After a timeout, TCP enters into thc slow-start phase to throttle its transmission rate in

order to give the network some relief. Moreover, it doubles its retransmission timcout

value. If the network congestion prevails then the timeout will happen successively. In

this case, the time difference between two consecutive timeout events will be roughly

equal to the timeout interval of the retransmission timer at that instant.

On the other hand, when the network is not congested, the TCP sender will only

cncounter timeout events whenever the cWl1d crosses the current network capacity.

That will be quickly resolved by the TCP sender by entering into the slow-start phase. "

Again, if there are random bit errors, then some segments will be damaged and will bc

rejected by the receiver. However, duplicate acknowledgements will be returned from
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the receiver to the source for subsequent segments which are not lost. This will

prevent the source from having timeout cvents and will also enable the source to solve

potential loss of scgments using fast retransmit and fast recovery. So, in non-

congestion scenario the timeouts will be sparse and the time difference between two

successive timeouts will be much greater than the retransmission timer's estimated

timeout interval at that moment.

This observation can also be used during a timeout or 3-dupack event to decide

whcther the event is a result of real network congestion or due to random packet

losses due to bit error. Let, two consecutive timeout occurs at time f,. and 1,,+/. and the

time difference between these two events is I" (i.e. I" = 1,+/ -Ix). Also let I, denotes the

current estimate of retransmission timer's timeout interval. During a timeout or 3-

dupack event, the ratio of I, to I" will be computed. If the ratio is very small (in

between 0.0 I to 0.1), our observation shows that this event has been caused by a bit

error event, not by the congestion. If the ratio is high (e.g. greater than 0.25) then the

event is more likely the result of segment drops in intermediate routers due to

congestion.

4.3 Basic Structure of the Proposed Algorithm

We propose our modification on top of the cxisting TCP NewReno algorithm. We call

this new modified algorithm TCP K-Rcno. However, our algorithm can be used with

any TCP variants without affecting their usual activities. We have modified only TCP

sender and left the receiver as it is. Our proposed algorithm adds some counters and

decision blocks to the original TCP NewReno algorithm at the sender. One counter is

added to count the number of timeout events and another counter is added to count 3-

dupack events. A new variable is used that tracks the time difference between two

consecutive timeouts. Thcse values are analyzed when a timeout or 3-dupack event

occurs and the sender tries to throttle its transmission rate. The activities of our•
algorithm can be summarized as follow~:

• Based on the values of the newly introduced variables, if our algorithm detects

a possible non-congestion event, it will prevent the sender from being too

much conservative. For example, in this case the reduction of cwnd or ssthresh

will be less compared to that of original TCP NewReno algorithm.
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• However, if the new variables show a high prohability or congestion in the

network, then our algorithm lets the original TCP New Reno congestion

control algorithm to take control and react in the usual way to throttle the

transmission rate.

4.4 Variables Used in the Algorithm

Table 4.3 lists the variables and parameters used in our proposed algorithm to work

along with existing TCP congestion control algorithm.

Table 4.3 Variables and parameters used in the modified ah:?orithm
Variable/Parameter Name .. 8hol.t Description

TC Count of timeouts
DC Count of 3-dupacks
TDR TC: DC

TDR T Threshold ofTDR
TDR A Aging factor ofTDR

Tl Holds the current value of the
retransmission timer's timeout interval

TO Time difference between two successive
timeouts

ITR TI: TD
. ITR T Threshold oflTR

ITR A Aging factor of ITR

Latest Timeout Holds the time of occurrence of the last.
timeout event

cwnd Latest cwnd
ssthresh Latest ssthresh

NR cwnd cwnd set by TCP New Reno
NR ssthresh ssthresh set by TCP New Reno

K cwnd cWlld set by our algorithm
K ssthresh ssthresh set by our algorithm

Used to reset TC and DC after a
Counter_ Refresh_Cycle predetemlined number of slowdown

actions

Table 4.4 shows the typical values of some parameters.
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Table 4.4 Values of some imoortant oarameters
Parameter Value
TOR T 0.05 - 0.2
TOR A 0.125
ITR T 0.025 - 0.4
lTR A 0.125

Counter Refresh Cycle 30 - 50

Dctailed descriptions of thc ncwly introduccd and old variables and parameters that

arc used in our algorithm are given in the following subsections.

4.4.1 TC

This variable counts the number of timcs the retransmission timer has expired, i.e. it

kecps track of the number of timeouts. Initially the value of this variable is set to zero.

Every time the sender experiences a timeout event, we increase this variable by one.

After a certain period this variable is reset to zero.

4.4.2 DC

This variable IS similar to the previous variable (TC) but counts the number of 3-

dupack events experienced by the sending TCP entity. Initially the value of this

variable is set to one. Every time the sending TCP entity receives the third duplicate

acknowledgement, we increase this variable by one. After a certain pcriod this

variable is also reset to one. We initialize/reinitialize this variable by one so that our

calculation of the ratio between timeout count and 3-dupack count docs not suffer

from divide-by-zcro crror.

4.4.3 TDR

This variable holds the ratio betwcen TC and DC. The value of this variable let us

decidc whethcr an indication of segment loss is due to congestion or any other non-

congestion related issues.

This is a pre-specified threshold value against which our calculated TDR is compared.

The range of values used by TDR_Tis given in Table 4.4. Typically TDR_Tis set to a

value below 0.2. If TDR is below this threshold we can conclude that there is no

congestion in the network as the number of time outs' is very low. But if TDR is above
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TDR_Twe will assume it as an indication of possible network congestion. Relying on

this information we can modify the TCP congestion control strategy by being less

conservative when segments are lost due to non-congestion related events such as

random bit errors.

In order to keep a moving average of TDR values i.e. to incorporate past information

with current ratio between TC and DC, we use an aging factor TDR_A. The value we

have used for TDR_A is given in Table 4.4. During a timeout or 3-dupack event we

update the value of TDR using the following formula.

TDR = (TDR A x TDR) + (I - TDR A) x (TC I DC) (4.1)- -

4.4.6 TI

This variable holds the current value of the retransmission timer's timeout interval.

The value of this variable varies according to the round-trip time (RTT) measurement

performed by TCP. Also the value of this variable is changed according to TCP

specification after every timeout event experienced by the TCP sender.

4.4.7 TD

TD represents the time difference between two latest timeout events. Initially TD is

set to Tl. We always keep track of the time when the last timeout event occurred.

Whenever the retransmission timer expires at the TCP sender, we set TD with the

time difference between the current time and the last timeout event time.

4.4.8 ITR

Every time the TCP sender experiences a timeout or a 3-dupack event, we calculate

the ratio of TI and TD and keep the value in ITR. If TD is much larger than TI the ratio

will have a low value denoting less number of timeouts i.e. timeouts are sparse in

nature and are occurring after largc dclay. This will help us to dctcct a possible non-

congestion related cvent.

It is a pre-specified threshold value against which the value of ITR is checked. The

range of values used by ITR_T is shown in Table 4.4. If ITR is below ITR_T we can
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conclude that a timcout or 3-dupack cvcnt has occurred due to segment losses from

non-congestion related issues. But if fTiI is higher than fTiI _T we can use it as an

indication of possiblc congestion in the network since the high values of fTiI denotes

rrequcnt timeouts.

In order to kcep a moving average of ITiI values i.e. to incorporate past information

with current ratio between TI and TD wc usc an aging factor ITiI_A. The value we

have used for fTiI_A is given in Table 4.4. During a timeout or 3-dupack event we

update the value or ITiI using the rollowing rormula.

fTiI = (fTiI_A x fTiI) + (1 - fTiI_A) x (TI / TD) (4.2)

4.4.11 Latest_Timeout

This variable records the time of occun'encc or the last timeout event. This variable is

updated with current time during every timeout event.

4.4.12 cwnd

It is the variable used by the TCP sendcr to hold thc sizc of its congestion window.

The TCP sender transmits according to the minimum or cWlld and rWlld (the receiver

window advertised by the receiving TCP entity). By increasing and decreasing the

value of cWlld TCP sender controls its rate of transmission,

4.4.13 ssthresh

This variable holds the threshold value that acts as the demarcation point between

slow-start and congestion avoidance phases present in TCP congestion control

'algorithm. Whenever cwnd is below ssthresh, CWlld increases exponentially during

every round-trip time. But after crossing ssthresh, cWlld reduces its rate of increment

by incrementing linearly every round-trip time. In fact ssthresh denotes TCP's current

estimate of available network bandwidth after reaching which TCP should become

polite and continuc increasing its transmission rate at a slow pace,

This variable holds the new CWlld value calculated by TCP NewReno algorithm. In

the original algorithm this value is used to set the current cWlld after a timeout or 3-
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dupack event. But in our modified algorithm, we do not immediately set cwnd to

NII_cwnd. The details of our modified approach are explained later.

4.4.15 NR_ssthresh

This variable holds the new sslhresh value calculated by TCP NewReno algorithm. In

the original algorithm this value is used to set the current ssthresh after a timeout or 3-

dupack event. But in our modified algorithm, we do not immediately set sSlhresh to

NII_sstresh. The details of our modified approach are explained later.

This variable holds the new cwnd value calculated by our modified algorithm, I.e.

TCP K-Reno. Based on the current network conditions as indicated by our decision

variables (TDII and/TII) we set the value of K_cwnd to NIIJwnd or to a larger value.

4.4.17 K_ssthresh

This variable holds the new ssthresh value calculated by our modified algorithm, i.e.

TCP K-Reno. Based on the cunent network conditions as indicated by our decision

variables (TDR and/TII) we set the value of K_sslhresh to NR_ssthresh or to a larger

value.

After experiencing certain number of timeout and 3-dupack events we reset our

counters (TC and DC) to their initial values (0 and I respectively). This is done to

ensure that the data from the distant past cannot affect the CUITent or the future

decision making. If there is no congestion for a long time then the count of timeouts

will be very low. However, due to reordering of segments and bit enor in wireless

networks, the count of 3-dupacks will have a moderately high value compared to

timeout count. In this situation, if the network suddenly experiences heavy congestion

then there will be some timeouts. However, the timeout count value will still be low,

and will take a significant amount of time to reach close to 3-dupack count value. As

a result the decision variable will continue to report that there is no congestion and the

sender will remain aggressive. This will surely congest the network more. To remove

this problem, we have opted the strategy to reset the counter values after certain
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number of slowdown requests. Typical values of COlll1ter_Refi'esh _ Cycle are given in

Table 4.4.

4.5 Actions Performed by K-Reno

Here we present the TCP K-Reno algorithm using pseudo code. We have divided the

entire algorithm into four procedures. Each procedure is called to take appropriate

action when a particular event occurs. These procedures are also part of the original

TCP NewReno [7] specification and have been modified by us. They are:

I. RECEIVE - called whcn the TCP sender receives an acknowledgement

segment.

2. DUPACK_ACTION - called whenever the TCP sender experiences the third

consecutive duplicate acknowledgement.

3. TIMEOUT ACTION - called whenever the retransmission timer at the TCP

sender times out.

4. SLOWDOWN_ACTION called by "DUPACK ACTION" and

"TIMEOUT ACTION" to throttle the transmission rate by reducing the

values of cWl1d and ssthresh.

Details of these procedures are given below. The following enumeration is used in

these procedures to denote the type of event experienced by the TCP sender.

ENUMERATION EVENT TYPE {DUPACK = 0, TIMEOUT = I}

4.5.1 Operations of Procedure "RECEIVE"

At TCP source procedure "RECEIVE" is invoked by the network layer whenever the

source receives an acknowledgement segment from the TCP receiver. In this

procedure the TCP source performs different actions bascd on the type of

acknowledgement received. In fact, we have kept the original implementation of

"RECEIVE" specified in TCP NewReno [7] intact. The pseudo code ofthis procedul'e

is given in Procedure 4.1.
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Procedure 4.1 RECEIVE

I. BEGIN

2. IF lIew acknowledgmelll is received THEN

2.1. IF inside/asl recover)' phase THEN

2.1.1. Deflate cwnd by selling cw",1 = sslhresh

2.1.2. Exil Fom filsl recover)'

2.2. ELSE

2.2.1. 111crease cwnd according 10 curren I phase (.510w-slarl or congeslioll
avoidance)

23. END IF

3. ELSE IF purtial acknowledgement is received THEN

3.i. Remain illside fils I recovery and retransmit the segmenl expecled by Ihe
receiver

4. ELSE IF duplicale acknowledgemenl is received THEN

4.1. iF illside filst recovelY phase THEN

4. i. i. increase cWlld by 1 MSS

4.2. ELSE

4.2.1. IF 3-dupack THEN

4.2.I.i. CALL DUPACK ACTION

4.2.2. ENDIF

4.3. END IF

5. ENDIF

6. END

4.5.2 Operations of Procedure "DUPACK_ACTION"

The procedure "DUPACK_ACTION" is invoked whenever the TCP sender gets three

consecutive duplicate acknowledgements (3-dupacks). In this procedure we are

updating TDR and ITR using equations (4.1) and (4.2). We are keeping all the TCP

NcwReno actions in our "DUPACK_ACTION" procedure. It invokes the procedure
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"SLOWDOWN_ACTION" and passes the DUPACK event as the parameter. The

pseudo codc of this procedurc is given in Procedurc 4.2.

Procedure 4.2 DUPACK ACTION

I. BEGIN

2. SET DC = DC + I

3. SET TDR = (TDR_A x. TDR) + (1- TDICA) x (TC / DC)

4. SET T1) = Currel11 Time - L({test Timeout- -

5. SET ITR = (ITR_ A x ITR) + (I -ITR_A) x (TI/ TD)

6. Reset the retrullsmissioll timer

7. Retrullsmit the presumed lost segmellt usillgfast retrullsmissioll

8. CALL SLOWDOWN_ACTION (DUPACK)

9.. END

4.5.3 Operations of Procedure "TIMEOUT_ACTION"

This proccdure is invoked whenever the retransmission timer expires at the TCP

sender. Like "DUPACK_ACTION", here, we are not changing the usual operations of

TCP NewReno. We are updating the values of TDR and ITR using equations (4.1) and

(4.2) as well. Finally, it invokes the procedure "SLOWDOWN_ACTION" passing the

TIMEOUT event as the paramcter. One thing in this procedurc needs special mention.

Here we are not only incrementing the value of TC by 1 but also setting the value of

DC to one-fourth of its cutTent value. This is performed in order to make the

algorithm being capable of detecting sudden congestion in the network after a long

pcriod of non-congestion state. If the network experiences sudden congestion after a

long non-congestion period, there will be several timeouts, however, the TC value

will still remain too low compared to DC value and K-Reno will mistakenly consider

these timeouts due to bit errors. To solve this problem, we decrease the DC value after

every timeout so that the DC value does not remain too high compared to the T.C

value. The pseudo code of this procedure is given in Procedure 4.3.
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Procedure 4.3 TIMEOUT ACTION

I. HEGIN

2. SET TC = TC + I

3. SET TDR = (TDR_A x TDR) + (1- TDR_A) x (TC / DC)

4. SET DC =MAX(DC / 4, I)

5. SET Previous Timeout = Latest Timeout

6. SET Latest Timeout = Current Time

7. SET TD = Latest Timeout - Previous Timeout- -

8 SET ITR = (ITR A x ITR) + (I -ITR A) x (TI/ TD)- -

9. Reset the retransmission timer

10. CALL SLOWDOWN ACTION (TIMEOUT)

I I. Retransmit the segment

12. END

4.5.4 Operations of Procedure "SLOWDOWN_ACTION"

The "SLOWDOWN_ACTION" procedure is the place where the actual throttling

actions of the TCP sender take place. It is invoked by both "DUPACK_ACTION" and

"TIMEOUT_ACTION" procedures. If it is called by "DUPACK_ACTION", it

retransmits the reported missing segment, updates NR_ssthresh and NR_cwnd and

enters into the fast recovery phase. If it is called by "TIMEOUT_ACTION", it

updates NR_ssthresh and NR_cwnd only. It enters neither into fast retransmission nor

into fast recovery. TDR value is compared against a pre-specified threshold (TDR~T)

and ITR value is compared against a pre-specified threshold (ITR_ T) irrespective of

the fact which procedure has called it. Based on these comparisons this procedure

predicts whether the cause of the slowdown request is real congestion in the network

or not. If non-congestion cause is predicted we do not reduce the cwnd and sstl1resh

that much. The pseudo code of this procedure is given in Procedure 4.4.
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Proccdurc 4.4 SLOWDOWN ACTION (EVENT TYPE: Evcnt)

/. BEGIN

2. /F Evenl = DUPACK THEN

2./. Enler inlo iilsl relmnsmissioll

2.2. Elller into las! rec()ve,)'

2.3. SET NR sslhresh = cwnd / 2

2.4. SET NR cwnd = NR sslhresh + 3- -

3. ELSE IF Evenl = TIMEOUT THEN

3.1. SET NR sslhresh = cwnd / 2

3.2. SET NR cwnd = /

4 END /F

5. IF TDR < TDR T AND ITR < ITR T THEN

5./. SET K sslhresh = 1,; cwnd

5.2. SET K cwnd = ;;,cW1/(1

6. ELSE IF TDR < TDR TOR ITR < ITR T THEN

6./. SET K_sslhresh = 2/1 cwnd

6.2. K cwnd = NR cwnd- -

7. ELSE

7./. K sslhresh = NR sslhresh- -

7.2. K cwnd = NR cW1/(1- -

8. END IF

9. SETsslhresh = MAX(K_sslhresh, NR_sslhresh)

/ U. SET cwnd =MAX(K cwnd, NR cwnd)- -

//. END
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There arc three cases to consider in the "SLOWDOWN_ACTION" procedure.

• If both TDR and ITR values are below their respective thresholds, we can

conclude that the slowdown event has occurred because of a segment beiilg

lost due to bit error or any other non-congestion related event. In order to

throttle the transmission rate less we set the variable K ssthresh to three-

fourth of the current CWI/({ and the variable K cwnd to half of the current

cwnd. Setting the K_cwnd to the half of the current cwnd will improve the

performance of TCP in casc of false alanns. Moreover setting K_ssthresh to

three-fourth of the currcnt cwnd value will widen the interval in which cwnd

will be able to grow exponentially. This will let the sending TCP entity to

have a good throughput and improve performance in case of non-congestion

related timeouts or 3-dupacks.

• If either TDR or ITR value is below the respective threshold and the other is

not, there is a possibility of real congestion in the network. However, the

congestion is not that much severe since one of the decision variables is below

the threshold. In order to be moderate aggressive we set K_ssthresh to two-

thirds of the current cwnd and K cwnd to NR cwnc/.- -

• Lastly, if both TDR and ITR values are above the respective thresholds, we

Finally we take the maximum of K_ssthresh and NR_ssthresh and use this value to set

the current ssthresh value. Similarly we take the maximum of K_cwnd and NR_cwnd

and use this value to set the current cwnc/ value.

4.6 Aggression and Fairness Issues

While developing our algorithm we have tried to keep it friendly with other

concurrent TCP connections. Our proposed algorithm ensures a good throughput in

case of non-congestion related losses, however, it does not become aggressive during

real congestion. In order to guarantee that this good behavior is shown in our

algorithm, we have carefully chosen the values for TDR~T and ITR_T. lf they were

not properly chosen then our algorithm might have become too much aggressive and
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caused serious performance penalty for itself and other concurrent TCP connections.

Our experiment shows that our algorithm sometime becomes aggressive if we use

higher values for TDR_T (e.g. >= 0.25) and fTR_T (e.g. >= 0.5). In this case, our

algorithm will consider some timeout and 3-dupack events as being caused by non-

congestion related matters even if there is real congestion in the network and will not

throttle its transmission rate. This action will add more burden on the already

congested network and will degrade the performance of all the TCP connections,

sharing the same bottleneck link. Tables 4.5 and 4.6 show the simulation results of a

single TCP connection with different TD/CT and ITR_T values in a wired-cum-

wireless network. Hcre, the number of unique segments transmitted is used as the

performance indicator.

Table 4.5 Effect of possible aggression of TCP K-Reno (Error Rate = 2.5'1..,
fTR_ T = 0.045)

TDR T NewReno K-Reno
J(-N

0.025 15239 32
0.05 15240 33
0.075

15207 15275 68
0.1 15223 16
0.2 15208 1
0.25 15142 -65

Tllble 4.6 Effect of possible aggression of TCP K-Reno (Error Rate = 2.5%,
TDR_T= 0.075)

ITR T NewReno K-Reno . 1(:-N
(N) (I() .

0.01 15254 47
0.Q25 15264 57
0.045 15275 68
0.075 15224 17
0.1

15207 15209 2
0.2 15243 36
0.25 15218 11
0.4 15221 14
0.5 15209 2
0.6 15207 0

From Tables 4.5 and 4.6 it is clearly evident that TCP K-Reno performs better if

TDR_T value is set in the range 0.05 - 0.2 and ITR_T value is set in the range 0.025 _
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0.4. For this reason, we have used aforementioned ranges in our algorithm to ensure

that we do not fall into the trap of false non-congestion alarm.

Above discussion concludes our congestion control algorithm, TCP K-Reno. In the

next chapter we present the performance analysis of our algorithm.
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5 Performance Evaluation of TCP

K-Reno
As mcntioned earlier, we have used ns-2 as the simulation platform to test the

performance of our proposed congestion control algorithm and to compare the same

with other major TCP variants. The following subsections will explain the changes

madc into ns-2 code, simulation setup, and the results obtained from different

simulation runs in detail.

5.1 Modifications Performed in ns-2 Code

In order to test our proposed algorithm, we have used ns-2 version 2.31 as our

simulation platform. ns-2 contains implementation of TCP New Reno and some other

variants ofTCP. The following files in ns-2 contain source codes of our concem.

• tcp.h

• tcp.cc

• tcp-newreno.cc

(:-• tcp-sink.h :-t~~!'

• tcp-sink.cc

Although we have not modified the receiving side TCP algorithm, we have addcd

somc codc on thc implcmcntation of class TcpSink in ns-2 to simulatc crrors in thc

rcvcrsc Iink.
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In the TCP NewReno code present in ns-2, three functions typically deal with the

timeout and 3-dupack events. They are -

• void dupack_actionO;

• void timeout(int tno);

• void slowdown(int how);

We have added our newly introduced variables in the files tcp.h and tcp.cc as these

files contain the implementation of the class TcpAgent. TcpAgent class contains code

for all the basic activities specified in TCP. It acts as the base class from which class

NewRenoTcpAgent has been derived that contains the implementation of TCP

NewReno. NewRenoTcpAgent inherits "slowdownO" function from class TcpAgent

and overrides the "dupack_actionO" and "timeoutO" functions. We have added our

code in the aforementioned three functions of class TcpAgent and class

NewRenoTcpAgent present in files tcp.cc and tcp-newreno.cc respectively.

5.2 Simulation Setup

We have used a mixed network in order to evaluate the performance of our proposed

algorithm. Figure 5.1 shows the network topology used in the simulations.

Figure 5.1 Simulation setup of wired-cum-wireless network
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In Figure 5.1, all the nodes starting with ow' represent nodes in a wired network and

all the nodes starting with 'II' represent wireless nodes. The node labeled "BS" acts as

a gateway between the wired and wireless part of the network. BS is connected to Wo

using a link having bandwidth of N mbps where N can be 7 or 12. This link acts as the

bottlencck link in our simulation. All other nodes in the wired domain are connected

to \Vo using individual link of 5 mbps bandwidth. We have generated the following

traffics in different simulations.

• A TCP connection between WI (sender) and III (receiver)

• A TCP connection between W2 (sender) and 112 (receiv,"r)

• A UDP connection between W] (sender) and 113 (receiver)

• A UDP connection between 114 (sender) and "5 (receiver)

We have run the simulation to test the performance of TCP K-Reno for both single

TCP connection and two simultaneous TCP connections. UDP connections generating

constant bit rate traffics are used to create congestion in the network. In order to

evaluate the performance of different TCP implementations we have used the number

of unique segments transmitted by the sender as the comparison parameter. This

number represents the throughput of a connection and if it is larger 111one TCP

implementation than that IS 111 another TCP implementation, the fom1er

implcmentation denotes the superiority over the later implementation.

Wc have run the simulation for TCP Tahoe, TCP Reno, TCP NewReno, TCP

Westwood and TCP K-Reno. All the runs have been continued for 250 seconds.

When a single TCP connection is concemed, we have only used the TCP connection

between WI and Ill, removing the TCP connection between W2 and "2. We have used

this scenario to analyze how TCP K-Reno behaves when it does not have to compete

with other concurrent TCP connections. During this test we have set the bottleneck

link bandwidth to 7 mbps. In order to analyze the performance of TCP K-Reno in a

multi-connection scenario we have run simulations using TCP connections between

WI and "l and between W2 and "2. The focus of this scenario was to evaluate how TCP

K-Reno behaves when it has to co-exist with other similar rcp connections. In this 0
case, the bottleneck link bandwidth is set to 12 mbps. In both cases, we have kept the

bottleneck bandwidth slightly higher than that is required by the rcp connection(s) so

50 f



that we can. introduce different levels of congestion by customizing the data rate of

background UDP traffics. We have run our simulations by keeping the background

UDP traffics both on and off.

5.3 Simulating Bit Error in the Wireless Channel

We have used IEEE 802. lIas the wireless medium access protocol in ns-2. IEEE

802.11 uses viliual channel sensing to avoid collision and to detect ongoing

transmission. This is called the MACAW (Multiple Access with Collision Avoidance

for Wireless). In this strategy, every wireless node first senses the radio channel to see

whelher the medium is frec. If the channel is free then the sender transmits an RTS

(Request to Send) frame to the destination. If the destination is ready to receive data,

it replies with a CTS (Clear to Send) frame. These RTS and CTS frames also inform

nearby stations (within the radio range of the sender and the potential receiver) about

the imminent data transfer and hence they remain quiet during the entire data

transmission period.

Currently ns-2 does not support any error modules for the wireless links although

error models for wired networks are fully supported. In order to introduce random bit

errors in the wireless channel we have incorporated two strategies. Firstly, we have

placed two wireless nodes 114 and 115 beyond the reach of the BS and the TCP sinks (111

and 112). We have sct up a UDP traffic generator from "4 to "5. As "4 and "5 are

beyond the reach of the radio coverage of BS, 111and 112, they do not hear the RTS and

CTS messages exchanged by BS and 111(or 112)' So, 114 an 115 continues to transmit data

even when BS and III (or 112) are trying to exchange TCP segments. Activities of "4

and "5 act as interference for the communication between BS and III (or 112) and add

certain degree of error.

Moreover, to control the en'or rate more precisely, we have modified the code of class

TcpSillk in ns-2 a little bit. In the file Icp-sil1k.cc (which contains the implementation

code of class TcpSillk) we have added some variables and some decision blocks. One.

of thc newly introduced variables holds the error rate that we want the TCP

connection to expenence. This error rate is configurable from the TCL (Toolkit

Command Language) script. TCL script is used to describe the simulation scenario.

We have also added a unifollll random number generator that generates a value
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betwecn 0 and 1 whcnevcr it is accessed. In the TCP sink, whenever we receive a

scgment from the scndcr, we generate a new random number and check this value

against the error rate set at the TCP sink. If the generated value falls below the etTor

rate (which can be 0.01 for 1% crror, 0.025 for 2.5% error etc.) we simply drop the

segment to simulate a corrupted segment. Here x% error rate means x segments out of

100 segments wi II suffer error. This action causes the TCP sink to generate duplicate

acknowledgements on the receipt of subsequent undamaged segments. By

customizing the error rate we can control how frequently segments are dropped. This

approach deals with introducing the crror only into the forward channel. In order to

incorporate crror in the reverse channel we have also introduced another uniform

random number generator. But the error rate for the rcverse channel is sct 1/25 th of the

forward channcl error rate. This has been donc to address the relative sizes of forward

TCP segmcnt and rcverse TCP segmcnt. In ns-2 TCP scgments sent from the sender

to the receiver have default size of 1000 bytes. But thc acknowledgement segments

sent from the receiver to the sendcr arc only 40 bytes. Due to their small size, we have

assumed that acknowledgement segments will suffer less enor compared to that of .

data segments. We have modified the portion of rcp sink where it sends the

acknowledgement to the scnder. We generate a new random value from the second

random number generator and compare the value with the error rate set for the reverse

channel. If the value falls below this error rate, we simply drop the acknowledgement

segment. Otherwise, we supply the acknowle,dgement segment to the lowcr layer for

sending it to the TCP sender.

5.4 Simulation Results and Analysis

Table 5.1 shows simulatiOll results obtained after running a single TCP connection

using different TCP variants and TCP K-Reno.

Table 5.1 Performance com arison of sin IeTep connection
Error Tahoe Reno NewReno Westwood K-Reno K-N K-WRate %
I 15365 15214 15481 15449 15531 50 82
2.5 14983 14041 15207 15002 15275 68 273
5 13799 12391 14290 13870 14418 128 548"
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In the above simulation runs all the UDP traffics were active. From the simulation

results it is clearly evident that K-Reno outperforms all other TCP variants, even TCP

Westwood, which was specially designed for wireless networks. Reasons behind TCP

Westwood's poor performance will be described in a subsequent section.

Figure 5.2 shows the information presented in Table 5.1 graphically.

10T311]e IilIReno 0 NewReru OWestwood • K-Reru I

Figure 5.2 Performance comparison of single TCP connection

The performance improvement of K-Reno can be attributed to its less conservative

reaction during segment losses due to random bit errors. Whenever K-Reno detects a

possible non-congestion event it does not reduce its transmission rate too much. So it

continues transmitting at a good rate and can deliver morc segments in the midst of

wireless bit errors. But as other TCP variants (Tahoe, Reno and NewReno) drastically

reduces the congestion window whenever a segment loss is detected they fail to

achieve a good throughput. In case of NewReno, fast retransmission and fast recovery

are capable of ensuring a good throughput when multiple segments are dropped from

the same window. However, if segment drops are sporadic in nature, consecutive

reception of 3-dupacks will continue the halving of the congestion window even
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though the segments are dropped due to bit error. K-Reno detects segment losses due

to bit error with high precision and keeps a steady now of segments towards the

destination to ensure a good throughput. Again in real congestion, K-Reno does not

behave aggressively and hence do not worsen the congestion in the network. This

bchavior is very significant where two concurrent TCP connections are used.

Table 5.2 shows the effect of UDP traflics on the performance of single TCP

connection using different TCP variants.

I TCPfffUOPT bl 52 Fffa e . o ect 0 tra ICS on SlIIgl e connection
Error UOP NcwReno Westwood K-Reno

• K-N [(-w
Rate (%) Traffic (M (1M ([()

0 None 18971 18971 18971 0 0
2 15719 15719 15719 0 0

I
Nonc 18621 18503 18650 29 147

2 15481 15449 15531 50 82

2.5
None 18299 17814 18332 33 518

2 15207 15002 15275 68 273

5
None 16815 16102 17022 207 920

2 14290 13870 14418 128 548

From the data presented in Table 5.2, we can see that irrespective of the presence or

absencc of UDP traffic, K-Reno performs better than both TCP NewReno and TCP

Wcstwood. Improvement in throughput of K-Rcno comparcd to TCP Wcstwood is

bcttcr in thc absence ofUDP traffic than that is in the presence of the same. Table 5.2

also shows that in the presence of random bit error TCP Westwood performs badly

compared to TCP NewReno.

Figure 5.3 illustrates graphically the information presented in Table 5.2 (showing only

the case where UDP traflics were not present).
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Figure 5.3 Performance of single TCP connection (with no UDP traffic)

Tablc 5.3 shows thc simulation results obtaincd from running two conCUITcnt and

homogcncous TCP conncctions. Hcrc, thc avcragc numbcr of uniquc scgmcnts sent

by thc two connections has been recorded. All thc UDP traffics were present during

these simulation runs.

. lTCI'Table 5.3 Performance conllJanson Wit I two connectIOns
Error Rate NewReno Westwood K-Reno K-N K-W(%) (M (W) (J()

I 7817 7820 7823 6 3
2.5 7702 7704 7712 10 8
5 7475 7479 7497 22 18

From the above data it is clcarly cvidcnt that K-Rcno is able to inject more unique

scgments into the network than both TCP NewRcno and TCP Westwood. These

obscrvations confirm that TCP K-Rcno docs not affcct the operation of concun'cnt

TCP conncctions. If TCP K-Reno were too much aggrcssivc thcn it would have

advcrsely affccted the othcr TCP conncctions, who arc sharing thc same bottleneck

link. If a TCP conncction mistakenly rcmains aggressive during network ovcrload

lime, a large numbcr of segments will be dropped at the congcsted node. These
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dropped segments will consist of segments from the aggressive connection and also

scgments from other moderate Tep connections. So all the moderate connections will

experience more timeout events and hence will throttle their transmission rate.

Moreover, the aggressive connection will also experience more timeout events that

will drastically reduce its rate of transmission. So in the long run the average

throughput of the overall network will be low. This situation will continue each time a

Tep connection shows aggressive behavior during real network congestion. Tep K-

Reno does not reduce cwnd and/or ssthresh too much until it is ensured that the

timeout or 3-dupack event has occurred due to a congestion related event. So the

actions Tep K-Reno takes during false alarm of network congestion do not produce

any burden on the network and concurrent Tep connections. All the simulation

results presented above have also shown that the gain of our Tep K-Reno increases

with the increase in the error rate in the network. This is desired when a Tep

algorithm is designed to overcome the bit error problem.

In the following section we present a detailed comparative analysis ofTep K-Reno's

performance with that of Tep Westwood as the later has been specially designed for

wireless networks.

5.5 Extensive Performance Comparison with TCP

Westwood

In Tables 5.1 and 5.2 we saw that Tep Westwood perfonTIs badly compared to both

Tep NewReno and Tep K-Reno when we incorporate bit errors into the wireless

channel though it was designed specially for wireless networks to improve Tep's

performance in the presence of random bit errors.

Tep Westwood relies on consistent supply of acknowledgement segments from the

receiver to estimate the available bandwidth of the network. Tep Westwood's

performance depends highly on the precision of the above estimation. If Tep

Westwood fails to estimate theavailable bandwidth at any instant then it will suffe,:

seriously. In case of a lower estimated value than the actual available bandwidth, Tep

Westwood will not bc able to utilize network resource properly. In case of a higher

estimated value than the actual available bandwidth, Tep Westwood will act

aggressively. It will introduce congestion in the network and segment drops will occur
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at the bottleneck nodes. Eventually the TCP sender will experience multiple timeout

events and will progressively reduce its transmission rate to a much lower value.

So, whenever the acknowledgment stream is disrupted in a TCP Westwood

connection, it will show poor performance. In our simulated environment the

acknowledgement stream of any TCP connection is disrupted in two ways. Firstly, an

error introduced in the wireless channel drops some acknowledgement segments.

Sccondly, the acknowledgement stream from a wireless receiver towards a wired host

(i.e. the original sender) is disrupted whenevcr other nodes in the wireless network are

communicating. In our simulation we have used IEEE 802.11 as the wireless access

protocol. This protocol allows multiple nodes to use the same wireless medium by

employing MACAW (Multiple Access with Collision Avoidance for Wireless). In

this technique, only one wireless station is permitted to. transmit data while other

nearby wireless nodes must refrain from doing so. The nodes that want to

communicate uses RTS and CTS messages to ensure that they access the channel

without disrupting the other ongoing communications. The RTS and CTS messages

also inform other nodes about the possible duration of the transmission. During that

period, which is called Network Allocation Yector (NAY), other nodes are not

allowed to transmit any packet into the network. This is not the case in wired

networks. In wired nctworks, a node can transmit a packet any time if the carrier is

free, i.e., there is no NAY period. For this reason, when a TCP Westwood connection

operates in a wired network it shows good perfomlance even if we introduce some

error in the wired channel. Table 5.4 shows the perfomlance comparison of TCP

Westwood, TCP NewReno and TCP K-Reno in a simulated wired network using ns-2.

Figure 5.4 shows the network that was used to perform this comparison. In each

simulation run, two TCP connections were running concurrently. One of them is

between So and Yv and the other is between SI and YI. We have run separate simulations

using TCP NewReno, TCP Westwood and TCP K-Reno for both the connections and

the average number of unique segments transmitted by both connections is used as the

performance indicator. We have also used the built-in error module of ns-2 to

incorporate error in the wired link between hu and hi.
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Figure 5.4 Simulation setup for testing performance of TCP variants in a wired
network

As in wired networks acknowledgements from the TCP receivers are traveling the

link between b j and bo in a multiplexed fashion, TCP Westwood is able to predict

accurately the available network bandwidth and set its cwnd and ssthresh accordingly.

This ensures a better throughput than both TCP NewReno and TCP K-Reno, and

hence a higher unique segment count is achieved as shown in Table 5.4.

Now let us go back to our original simulation setup shown in Figure 5.1. In this setup

the base station (BS) is communicating with nj, n2 and n3 to forward packets received

from Wj, W2 and W3 respectively. In return BS also receives acknowledgement

segments from both n j and n2 to inject those into the wired network. No

acknowledgement is received from n3 because of a UDP connection between W3 and

n3. But whenever BS is communicating with nj or n3, n2 has to remain quite for a

certain period. Similar case occurs for nj when the wireless channel is occupied for

the communication between BS and n2 or between BS and n3. This situation is

exacerbated when random bit errors are introduced in the wireless channel. In the

presence of bit CITors, the wireless nodes will fail to successfully transmit
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acknowledgement segments to their respective peers. So the multi-access nature of a

wireless network and thc prcsence of random bit crrors refrain TCP Westwood from

having an accurate estimatc of available network bandwidth. That is why in Tables

5.1 and 5.2 TCP Westwood shows poor performance compared to both TCP

NewReno and TCP K-Reno in our simulated wired-cum-wireless environment though

TCP Westwood is proven to show better perf0ll11anCe than other TCP variants in

single access wireless channels (such as dedicated wireless link between a VSAT and

a satellite).

This brings us to the end of our performance analysis. The following chapter

summarizes our works and provides some pointers for future research works targeting

TCP congestion control in mixed networks.
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6 Conclusion
TCP is a part and parcel of current communication infrastructure. The services offered

by TCP are suitable for different types of applications. But due to the advent of

heterogcneous network systems in recent years, the performance of TCP in these new

environmcnts has been brought under question. It is not desirable to propose a

complctely new transport protocol for the new environments. So the focus of our

current studies on TCP is to modify ccrtain parts of TCP congestion control strategy

and some other aspccts so that TCP can react more appropriately based on the present

condition of the network. New and improved congestion control strategy will

certainly permit TCP to become more useful in different network situations. !n this

thesis, we have proposed a new congestion control algorithm that we call TCP K~

Reno which can bc incorporated with any existing TCP variant and is capable of

performing well in heterogeneous networks (e.g. wired-cum-wireless network). TCP

K-Reno is end-to-end in nature and modifies only the sender-side TCP

implcmentation. It keeps the TCP receiver and the network unaware of the

modifications. This feature makes TCP K-Reno suitable for deploying in real life

scenario and does not impose any burden on the intemal network.

Our proposed TCP congestion control algorithm, i.e. TCP K-Reno has the following

advantages.

•

•

•

•

It is an end-to-end proposal.

Only sender side TCP needs to be changed .

Assistance from routcrs is not rcquired .

It does not impose too much processing overload in the TCP/!P protocol stack .
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• Can be incorporated with any ICP variant.

• Proposed parameters can be tuned considering network condition of different

environments to achieve better performance.

• Performs better than all ICP variants, including NewReno and Westwood, in

multi-access wireless networks (e.g. wireless ad hoc networks).

ICP K-Reno is capable of distinguishing segment losses due to both congestion and

non-congestion related issues. With the help of some newly introduced variables and

decision blocks, it is able to determine whether segments are getting dropped in

congested routers or are being damaged due to random bit errors. In case of real

congestion, it simply behaves as original ICP New Reno algorithm. But after

detecting a probable non-congestion event, unlike ICP New Reno, it does not throttle

its transmission rate too much. It continues to transmit at a good pace so that the

network capacity does not remain unutilized at the presence of random bit errors. We

have compared our proposed algorithm with other major ICP variants (ICP Iahoe,

Reno, NewReno and Westwood) using ns-2 and have found that ICP K-Reno

performs better than any of them. In fact, the simulation results have shown that ICP

K-Reno outperfonllS ICP Westwood, though it has been specially designed for

wircless networks, by a big margin.

Currently, we are using some empirically derived values for different parameters used

in the modified algorithm. For example, the values of the thresholds TDR_T and

/TR _T have been determined using thorough analysis of numerous simulation runs.

But a single value of TDICT or ITR_T might not work well in all types of networks.

Different network condition will demand different values of those thresholds for

consistent throughput. So, some type of dynamism in the values of TDR_T and ITR_R

may need to be introduced to make our algorithm more robust in changing network

environments. Moreover, by considering more levels of TDR and ITR values we can

perform the fine adjustment of cwml and ssthresh to ensure optimum throughput of a

ICP connection.

Fairness among concurrent ICP connections sharing the same bottleneck link is

another issue of dominant concem. Ihe goal of ICP faimess is to ensure a fair share

of the available bandwidth in a shared link for all the ICP connections. CU1Tently

ICP K-Reno does not deal with ensuring fairness among multiple ICP connections.
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Further research works are needed to shape ICP K-Reno so that it ensures fair share

with all other ICP variants.

Changes in the estimated round-trip time (RII) of a ICP connection sheds some light

on the current network load. By observing the change pattem of RII, a ICP source

can deduce the optimum Icvel of throughput that will enable the source to utilize the

available bandwidth successfully without overburdening the network. So some type of

record keeping of previous RII values and decisions based on those records can be

incorporated in the congestion control algorithm to improve ICP's performance in

mixed networks. We wi 11incorporate the change pattem of RII in congestion control

in our future work.

Complexity analysis of an algorithm is important to have a clear idea of its best,

average and worst case execution time. Such analysis is not generally available for

ICP congcstion control algorithms, including our K-Reno algorithm. We have a plan

to look into the complexity analysis of ICP K-Reno and other congestion control

algorithms to compare them in our future research.
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