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Abstract

Transmission Control Protocol (TCP) congestion control algorithm deals with
reducing the network load during congestion for achieving better throughput. It
reduces the transmission window size afier a retransmission timeout or reception of‘
consecutive three duplicate acknowledgements (3-dupacks). It works well for the
wired networks where most of the timeouts and 3-dupacks are the result of
congestion. But we like to argue that in the wireless networks, where random segment
loss due (o bit errors is a dominant concern, the arrival of duplicate
acl\'nowiedgeménté or even the retransmission timeouts do not necessarily denote
congestion. In those cases, throttling transmission rate is not necessary. As the basic
TCP congestion control algorithm cannot distinguish between congestion event and
billcn'or event, 1t fails to perform well in wireless networks. In this thesis, we propose
some modifications to the basic TCP congestion control algorithm so that its
performance is enhanced in wireless networks. In particular, our algorithm refines the
multiplicative decrease algorithm of TCP NewReno. We are using some statistical
counters to track the frequencies of the occurrences of timeouts and 3-dupacks.
Different ratios of these counter values are then used to differentiate a congestion
event from a non-congestion evenl. We are also tracking the time difference between
two consecutive timeouts to figure out whether timeouts are caused by network
congestion or random bit errors. We tested our proposed algorithm using the Network
Simulator version 2 (ns-2) and found that it shows better performance than any other
TCP variants in wired-cum-wireless networks. Moreover, our algorithm is end-to-end

in nature and modifies only TCP sender’s algorithm.
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1 Introduction

Advancements in wircless technology and ever-increasing need for all-time
connectivity have made wircless networks a significant part of modern world.
Wireless communication technology is playing an important role in access networks
as evidenced by the wileSpread adoption of wireless local arca networks {(WLANs),
wireless metropolitan area networks (WiMAX — the Worldwide Interoperability for
Microwave Access), and cellular networks. Although wireless networks are quite
different when compared to their wired counterpart, popular protocols and
applications designed for and implemented in wired networks have found their way in
wireless networks loo. Most of the heavily used applications in both wired and

wireless networks rely on the TCP/IP protocol suite.

Transmission Control Protocol (TCP) [1] is the principal transport protocol used in.

the Internet. TCP ensures a reliable, ordered, connection oriented, byte streamed full
duplex communication over an unreliable medium. It was originally designed to
provide reliable data delivery over conventional (wired) networks for a limited range
ol transmission rates and propagation delays. It performs both (low control and
- congestion control. The purpose of {low control 1s not to overwhelm the receiver of a
TCP connection. During TCP communication, the TCP receiver constantly informs
the TCP sender about its current buffer capacity and the TCP sender tunes its
transmission rate accordingly. On the other hand, congestion control i1s a network
wide issue. Its purpose is to control the transmission rate so that the sender does not
transmit in excess of the capacity of the network. One of the strengths of TCP lies in
its congestion control mechanism proposed in the cornerstone work by Van Jacobson
[2]. Gencrally, the congestion information is not advertised by the congested nodes.

The sending entity adjusts a congestion window based on successful transmissions

P ™ o
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and timeouts and uses the congestion window as the maximum fHimit for transmission.
Setting the congestion window too small might result in under utilization of network
resources. On the other hand, a large congestion window may over feed the network

that might result in dropping of segments at the congested nodes.

The congestion control algorithm used in the TCP/IP protocol suite [2], [3] is a sliding
window mechanism that uses segment loss to detect congestion. The TCP sender
probes the network state by gradually increasing the window of segments that are
“outstanding in the network until the network becomes congested und drops segments.
Initially, the increase is exponential and this phase 1s called “Slow-start”. This phase
is intended to quickly grab the available bandwidth. When the window size reaches a
slow-start threshold (called ssthresh), TCP enters into the second phase called
“Congestion Avoidance”, where the increase becomes hinear. This i1s done to make the
TCP sender less aggressive in probing for the available bandwidth. Clearly, it is
desirable to set the threshold to a value that approximates the connection’s “‘fair
share”. The optimal value for the slow-start threshold is the one that corresponds to
the number of segments in flight in a pipe when TCP (ransmission rate 1s equal o the
available bandwidth [4], i.e. when its transmission window Is equal to the availabie

bandwidth-delay product.

The current strategy taken by TCP in controlling network congestion is not adequate
o perform well in wireless networks. When a loss is detected either through duplicate
acknowledgements, or through the expiration of the retransmission timer, the
connection backs off by shrinking its congestion window. If the loss is indicated by
the three duplicate acknowledgement event, TCP Reno, one of the variants of the
original TCP algorithm, attempts to perform a “fast recovery™ by retransmitting the
lost segment and halving the congestion window. If the loss detected through a
retransmission timeout, the congestion window is reset to 1. In either case, when the
congestion window is reset, TCP's window-based probing needs several round-trip
times to restore its value to the near-capacity. This problem is exacerbated whe_n
random or sporadic losses occur. Random losses are losses 110t caused by congestion
at the bottleneck link. They are common i the wireless channels, In this case, a burst
of lost segments is erroneously interpreted by a TCP source as an indication of

congestion, and dealt with by shrinking the sender’s window. Such action, clearly,



does not alleviate the random loss condition and it merely results in reduced
throughput. The larger the bandwidth-delay product, the larger the performance

degradation caused by such action.

For this reason, the congestion control strategy employed by TCP works fine in wired
networks, where most of the timeouts and delivery of.misordered segments are caused
by network congestion. However, in wireless networks, a good percentage of timeouts
and reception of out of order segments happen due to the bit error rather than
| congestion. In those cases, throttling transmission rate does not help as this action
results in under utilization of network bandwidth without any improvement in
nctwork activities. As the basic TCP congestion control algorithm cannot distinguish
between congestion and bit error timeouts, it fails to give good performance in
wireless networks. This thesis proposes a new TCP congestion control algorithm n
order to get better performance in wireless networks, We have also designed our
algorithm to perform well in wired and wired-cum-wireless networks. We have

designed our algorithm with the following objectives in our mind:

order to get better performance in both wired and wireless networks.

*  Modify only the sending host software keeping the internal network devices

and protocols unchanged.

* Develop an algorithim that will be able to differentiate between congestion and

non-congestion losses and react accordingly.
* Keep TCP less aggressive during network overload.
*  Utilize most of the available bandwidth in the network.

Ensure a good throughput for connections that incorporate at least one

wireless link (characterized by much longer round-trip time).

s Perform all the complex functionalities at the end hosts so that the network

(i.e. routers) can be kept simple and is not filled with extra responsibilities to

avoid affecting its packet forwarding speed and efficiency.

The rest of the thesis 1s organized as follows. Chapter 2 explains the basic TCP

operations and its congestion control strategy in detail. Related research works done

Devclop a new TCP congestion control algorithm (we call-it TCP K-Reno) in

3



by other researchers are discussed in Chapter 3. Our proposed new TCP congestion
control algorithm is presented in Chapter 4. Detailed performance analysis of the
proposed algorithm with the help of Network Simulator version 2 (ns-2) [5] is

presented in Chapter 5. Chapter 6 concludes the thesis with some pointers for future

study.



2 TCP Basics

TCP 1s a predominant transport protocol used in public and private 1P (Internet
Protocol) networks. IP, being a connectionless protocol, have no provision for
detecting damaged, lost, duplicated or misordered data. That 1s why applications that
require a reliable data transfer service use TCP or similar transport layer protocols
(such as SCTP [6]) to establish virtual connections across an unpredictable and
unrchable network. Without TCP, application developers would have to build

reliability into each application.
The fundamental characteristics of TCP include the following:

» TCP i1s a connection-oriented service. A connection 1s established before data
is being transmitted. Parameters that control the data transmission are

exchanged between the sender and the receiver when the handshaking for the

connection is done.

= TCP provides a reliable delivery service. While the data stream is transmitted,
_ the receiving host sends back acknowledgements (ACKs) confirming that the
data has been received in correct order and without errors. TCP source
maintains a record - of the segment that it has sent and waits for the ACK
before sending the next set of segments. TCP source also starts a timer when it

sends a segment and retransmits the segment 1f the timer expires before the

ACK is received from the receiver.

» TCP source always attempts to fill the “pipe” between the sending and
receiving hosts while adapting its transmission rate to avoid potential

congestion in the network. TCP source continually monitors and modifies its



transmission rate so that the rate at which it injects segments into the network

1s Just below the point at which segment loss starts to occur.

All TCP connections are full duplex. This means that a TCP connection

supports simultancous transfer of data in both directions.

2.1 TCP Segments

The basic unit of transfer between two hosts in a TCP connection is called a segment.
A segment consists of a TCP header and its associated data. Since each TCP segment
is transmitted in an IP datagram and because IP datagrams can be reordered as they
cross the network, TCP segments can arrive at TCP destination in a different order
than that was originally followed by the TCP source to transmit them. TCP segments

can also be corrupted, dropped, or duplicated along the way.

A TCP source assigns a sequenée mumber to each byte in the stream that it transmits
to the destination. A TCP header carries a 32-bit sequence number that is used to
identify the TCP segment. The sequence number field in the TCP header is set to the
sequence number that the source has assigned to the first byle of the transmitted
stream. TCP destination keeps track of received segments and identifies the out of

order segments using the sequence number present in the segment header.

2.2 TCP Acknowledgments

TCP uses acknowledgements (ACKs) to support the reliable transmission of data.
When TCP source transmits segments, it expects TCP destination to acknowledge the
segments when they are received. The ACK number used by a TCP destination is the
number of the next byle in the stream that the destination expects to receive from the
source. For example, if a TCP destination ACKs 1001, it informs a TCP source that it
has successfully received all bytes up to and including byte 1000 and expecting the

next segment with the first byte sequence number 1001,

2.3 TCP Receiver and Congestion Windows

As mentioned earlier, TCP uses a shding window mechanism to control its rate of
transmission. It is both receiver and network friendly. The actual transmission rate of

TCP depends on two windows — the current receiver window that is advertised by the



receiver (called rwnd) and the current congestion window (called cwnd) that depends
on sender’s perceived bandwidth of the network. A TCP sender sets its transmission
rate according fo the mmimum of the two windows 1o avoid both the receiver and the
network overflow. The receiver always advertises the receiver window using the
window size field in the TCP header. However, TCP has 1o estimate the available

network bandwidth with the help of acknowledgements received from the receiver.

TCP maintains a retransmission timer for every segment it transmits. If the timer

times out before the arrival of the acknowledgement against a particular segment,
TCP considers the segment has been lost and retransmits the lost segment. Moreover,
TCP assumes that the segment has been lost due to buffer overflow in an intermediate
router, 1.e. congestion in the network, and throttles its transmission rate by reducing

its congestion window with a hope that the reduced transmission rate will case the

congestion from the network.

2.4 'TCP Congestion Control

TCP congestion control prevents a source from exceeding network capacity by

adapting its transmission rate to avoid congestion in the network. This section sheds

more light on the basic congestion control mechanisms used in TCP by discussing the

followings in detail.

= Slow-start
* Congestion avoldance
=  Fast retransmission

* Fast recovery

2.4.1 Slow-Start

When a TCP connection is first established, the TCP source remains a bit
conservative and starts transmitling only a few segments, waits for the ACKs against
(hose segments, and then gradually increases its transmission rate upon successive
reception of acknowledgements. This atlows the TCP source (o probe the network
gently to determine the amount of bandwidth that is available for the connection. This

slow-start mechanism 1s used in the following cases.



» At the beginning of each new TCP connection.
When an existing TCP connection is restarted after a long idle period.
When an existing TCP connection is restarted after the retransmission timer

expires.

As a result, the slow-start mechanism keeps TCP away from over feeding the network

with too many segments when a new TCP connection is established or a congestion

event is assumed on a running TCP connection.

Source Destination

N C X

1 Segment

ewnd =1 \

cwnd
cwnd =2

ownd=4

Time

Figure 2.1 Slow-start in TCP

Figure 2.1 illustrates the operation of TCP slow-start mechanism. In the slow-start
mechanism the sender maintains a congestion window (cwnd) which represents its
estimation of the traffic that the network can absorb without getting congested. When
a TCP connection is first established, cwnd is initialized to the size of a single
segment (called MSS - Maximum Segment Size) advertised by the host at the other
end of the connection. A TCP source always transmits the data equal to the minimum
of its cwnd (representing the congestion control administered by the sender) and th.e

destination’s advertised window (representing the flow control governed by the

receiver),



TCP source initiates the slow-slart by transmitting onc segment and waiting for its
ACK. When the ACK is received, the source increases cwnd from one to two, and two
segments are sent (provided that the size of the receiver window is more than or equal
to two segments). When these two segments are acknowledged, the source increases
cwnd from two to four, and four segments are sent (again provided that the size of the
receiver window is more than or equal to four segments). It continues to transmit
according lo the congestion window and doubles the congestion window until a
threshold value (04 KB at the beginni.ng) is reached. This threshold is called slow-
start threshold (ssthresh). Whenever ewnd reaches this threshold value TCP exits (rom

the slow-start phase and enters into the congestion avoidance phase.

2.4.2 Congestion Avoidance

As we said before, the exponential growth of cwnd continues until cwnd reach the
ssthresh. From this point, the sender increases cwnd linearly (by at most one segment

per round-trip time), allowing it to slowly increase its transmission rate. This region

of ewnel’s evolution is called congestion avoidance.

When a TCP source discovers that a segment has been dropped by the network, it sets
the ssthiresh equal to one-half of its current value of cwnd. The source reduces its
transmission rate by restarting the slow-start mode and exponentially increases the

cwid value until the new ssthiresh is reached. At this point, TCP source enters into the

congestion avoidance mode again.

Slow-start with congestion avoidance forces TCP sender to reduce the value of its
current cwnd each time it experiences a segment loss. If the segment loss continues
for a period of time, the volume of traffic injected into the network by the TCP source

decreases dramatically which allows routers to drain out their congested queues.

The TCP source can determine that a segment has been dropped by the network or got

damaged in two ways:

* Through the reception of duplicate acknowledgements.

*  Through the expiration of the retransmission timer.



The absence of a single segment in the middle of a transmission window causes the
destination to immediately generate a duplicate acknowledgement. For example,
when a destination receives all of the data in the stream up o byte 1000, it responds
with an ACK of 1001 indicating that the next segment the destination expects to
receive begins with byte 1001. If a segment 1s dropped by an intermediate router, the
destination TCP continues to buffer the subsequent segments as they arrive, however,

it continues to ACK 1001 since it has not received the expected segment. Generally,

the receipt of duplicate ACKs means that the segment has been delivered out of order, -

however, the TCP source uses the receipt of three duplicate ACKs as an indication of

segment loss.

The loss of the last segment in a transmission window does not generate a duplicate
ACK. It rather causes the retransmission timer of the TCP source to time out due to
the absence of subsequent out of order segment delivery. TCP retransmission timer
supports adaptive retransmission by changing the timeout value as the sample round-
trip times (RTTs) of the connection constantly changes with the network load. If the
rctransmission timer expires before the segment has been acknowledged, the source

assumes that the segment was either lost or corrupted and retransmits the segment.

2.4.3 Fast Retransmission

As discussed earlier, TCP assumes that a segment has been dropped when it receives
duplicate ACKs although the reception of duplicate ACKs can also mean that the
segment simply got out of order. Instead of responding immediately to a duplicate
ACK by retransmitting the lost segment, the source TCP waits until it receives three
duplicate ACKs (3-dupacks) in the fast retransmission strategy. Afler receiving three
duphcate ACKs, the TCP source retransmits the missing segment, without waiting for
the retransniission timer against that missing segment to expire. Fast retransmission

enhances TCP performance in the following ways:

* Eliminates unnecessary segment retransmission, hence, the waste of network
bandwidth if the segment simply becomes out of order and not dropped.
Provides higher channel utilization and connection throughput.

Does not force TCP to wait [or the retransmission timer to expire before

resending a potentially lost segment.

10



Fast retransmission strategy, however, goes back to the slow-start phase and reduces

its ssthresh value to the half of its current cwnd value.

The flowchart in Figure 2.2 summarizes the operation of TCP congestion control

involving slow-start, congestion avoidance and fast retransmission.

---------------------------------------------

1

cwnd =1 MSS ssthresh = cwnd § 2
ssthresh = 64 KB cwnd =1 MSS

— 1

Retransmit the
presurned lost
segment

]

Retransmit the
presumed lost
segment

Timeout 3-dupack Timeout

New ACK

cwnd = ownd + MSS

cwnd = cwnd + MSS/EwWwnd e

Threshold Yes

reached?

Slow Start {(cwnd s doubled during

Congestion Avoidance (cwnd is
gvery round-trip}

increased by 1 during every round-trip)

Figure 2.2 TCP Congestion Control Algorithm

2.4.4 FastRecovery

When the TCP source receives duplicate ACKs it means that the data is still flowing -

towards the destination, which allows the destination to generate duplicate ACKs. In
this case, a TCP source, while using the fast recovery strategy, does not suddenly
reduce the flow of duta by retuming to the slow-start phase. Instead, the TCP source
sets cwnd to the half of its current value plus 3 MSS after responding to the receipt of
three duplicate ACKs by retransmitting the lost segment. It artificially “inflates” the
congestion window by three, which is equal to the number of segments those have

already left the network and has been buffered by the receiver. It also sets ssthresh to

11
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the half of the previous ewnd value and enters into the congestion aveidance mode.
For each additional duplicate ACK received, cwnd is incremented by 1 MSS. When
the next ACK arrives that acknowledges the new data, cwnd is set to ssthresh. This
strategy provides better overall throughput for the TCP connection when segments |

simply get reordered in the network or a single segment is lost from a flight of

segments.

Fast recovery prevents the TCP connection pipe from getting completely empty after
the fast retransmission of a single lost segment. This enhances TCP performance by
climinating the need to return to the slow-start mode and filling the TCP connection
pipe slowly after a single segment loss. However, while the fast recovery strategy
iﬁproves TCP performance when a single segment is dropped from a window of data

stream, it cannot do the same when multiple segments are dropped.

Figure 2.3 illustrates the evolution of cwnd in a typical TCP connection using the fast

recovery strategy.
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2.5 Major TCP Variants

Over the years, rescarchers have proposed and implemented a good number of
variants of original TCP algorithm to make TCP performing well in all possible types
of networks. The following subsections described some important variants of TCP

along with their working strategy and limitations.

2.51 TCP Tahoe

Three key algorithms discussed earlier: slow-start, congestion avoidance and fast
retransmit, were originally proposed by Van Jacobson {2] and implemented in TCP
Tahoe under 4.3 BSD Tahoe TCP” module in 1988. TCP Tahoe shows good
performance in those networks where most of the segment losses are due to
congestion. However, it shows poor performance when segments are delivered out of
order or when segments get damaged due to non-congestion related events (e.g.
random Dit errors). We have observed this poor performance of TCP Tahoe using
simulation. Performance of TCP Tahoe in wired-cum-wireless networks has been

presented 1in Chapter 5.

2.5.2 TCP Reno

TCP Reno first implemented in “4.3 BSD Reno TCP” in 1990, supports all of the Van
Jacobson’s algorithms and extends TCP by introducing the fast recovery algorithm.
By supporting fast recovery, TCP Rcho overcomes the throughput performance
timitations of TCP Tahoe that occur when a single segment is lost or misordered. But
it cannot handle multiple segment losses in a single window efficiently. This poor
performance of TCP Reno has been observed by us using simulation. Performance of

TCP Reno in wired-cum-wireless networks have been presented in Chapter 5.

2.5.3 TCP NewReno

TCP NewReno {7] enhances TCP throughput when multiple segments are dropped
from a single window using TCP Reno connections, When multiple segments are
dropped from a single window, the TCP source enters into the Fast retransmission
phase after receiving 3-dupacks for the first lost segment. After retransmitting the first
lost segment TCP NewReno enters into the fast recovery phase. While the

retransmitted segment is in transit, the TCP source continues to receive duplicate
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acknowledgements. These duplicaic acknowledgements report the loss of that
retransmitled segment and continue to do so until the retransmitted segment reaches
the destination. The ACK that is generaied in response to the successful reception of
the retransmitted segment reports the second missing segment in the same
transmission window. This ACK is referred to as a “partial ACK”. TCP Reno’s
reaction to this event is to deflate the congestion window and exit from the fast
recovery phase immediately as this ACK is not a duplicate acknowledgement of a
previously received acknowledgement. This causes a TCP sender to enter into the fast
retransmission and the fast recovery phases again afler receiving three duplicate
ACKs for the second lost scgment and results in further reduction of cwnd and
ssthresh values. TCP NewReno solves this problem by not exiting from the fast
recovery phase when it recelves a partial ACK. During the fast recovery phase when a
TCP NewReno sender receives partial ACKs, the acknowledgement number present
in the TCP header of the ACK segment informs the sender about the successive lost
segments. TCP NewReno immediately retransmits the presumed lost segment after
receiving the partial ACK and remains in the fast recovery phase. This strategy
prevents reduction of the ewnd by entering into the fast retransnuission phase multiple
times. Thus TCP NewReno overcomes the throughput performance penalty when
multiple segments are dropped from a single window. Although 1t 1s a superior
protocol compared to TCP Tahoe and TCP Reno it fails to ensure a good throughput

in wired-cum-wireless networks where most of the segments get damaged due to

random bit errors.

2.5.4 TCP Vegas

TCP Vegas [8] dynamically increases and decreases the transmission window size
according Lo the observed RTT of previously sent segments. 1T the observed RTT
becomes large, TCP Vegas assumes that the network 1s experiencing congestion, and
it reduces the window size. Likewise, if the observed RTT becomes small, TCP Vegas
concludes that the network i§ not experiencing congestion and it increases its window
size for better utilization of the available bandwidth. Another modification introduced
by TCP Vegas is that during the slow-start, the rate of cwnd increase is different than
that of TCP Tahoe and TCP Reno. In TCP Vegas, cwnd 1s doubled with the receipt of
every other ACK instead of every ACK.
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2.5.5 TCP Westwood

TCP Westwood (TCPW) [9], {10] ts a modified version of TCP Reno. TCPW
enhances the window control and back off process. Here, a TCP sender performs an
end-to-end estimate of the bandwidth available along the connection by measuring the
rate of returning acknowledgements and the amount of bytes delivered to the receiver
during a certain interval. Whenever a sender perceives a segment loss {i.c. a timeout
occurs or 3-dupacks are received), the sender uses the bandwidth estimate to properly
set the congestion window (cwnd) and the slow-start threshold (ssthresh). By backing
off the cwnd and the ssthresh to the values those are based on the estimated
bandwidth rather than simply halving the current values as Reno does, TCP
Westwood avoids overly conservative reductions of ewnd and ssthresh; and thus it
ensures a faster recovery. The benefits of TCPW include better throughput, goodput,
and delay performance, as well as fairness even when compeling connections differ in
their end-to-end propagation times. TCPW is also effective in handling wireless loss.
This is because TCPW uses the current estimated rate as the reference for resetting the
congestion window. The current rate is only marginally affected by loss (as long as
the loss is relatively small compared to the data rate). Although TCPW shows better
performance than other TCP vartants in contention [ree wireless networks {e.g. a
dedicated channel between a VSAT and a satellite), it fails miserably when deployed
in multi-access wirgless networks where multiple wireless nodes share the same radio
frequency using collision avoidance type of scheme. TCPW relies on a consistent
flow of acknowledgements from the receiver in order to calcﬁlate a near-to-actual
estimate of the available network bandwidth. Whenever the acknowledgement stream
is disrupted, TCPW’s estimation process gives wrong results and degrades the overall
perfohnuncc of a TCP connection. We have presented detail analysis of TCPW’s

performance in multi-access wireless networks in Chapter 5.

2.5.6 TCP SACK

TCP selective acknowledgement (SACK) [11] enhances the throughput performance
of TCP Reno when multiple segments are dropped from a single window. When a
TCP receiver observes that the arriving segments are not continuous {the segments arc
out of order), it responds to the TCP sender with ACKs that contain the SACK option.

This option specifically tells the TCP sender which segments have been received by
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the destination and the sender retransmits only the missing segments. TCP SACK
needs modification in both the sender and the receiver side protocol stack to

incorporate the SACK option.

2.5.7 TCP D-SACK

The duplicate-SACIC (D-SACK) extension [12] allows a TCP receiver to use a SACK
to report the receipt of duplicate segments. This extension allows the TCP sender to
identify the segment received by the TCP receiver, including duplicate segments. [
the TCP sender determines that the destination TCP received two copies of a segment
and that the retransmission of the duplicate segment was unnecessary, the TCP sender
can undo the halving of ewnd. The D-SACK extension overcomes the throughput
performance penalty that results from halving the congestion window. However, this

strategy requires modifications in both TCP sender and receiver protocol stack.

2.6 TCP in Wired Network

As mentioned earlier, TCP was originally designed for networks where loss is only
due to congestion, Wired networks show this characteristic. In wired network any
indication of segment loss can be considered as network congestion. For this reason,
TCP’s reaction to congestion, i.c., throttling transmission rate after timeout or
reception of consecutive three duplicate acknowledgements works fine for wired
nelworks. We have studied the evolution of congestion window (cwnd) of a typical
TCP connection in a wired network using ns-2 simulator. The result obtained from an
ns-2 simulation run by establishing a TCP connection between two nodes in a wired
network is shown in Figure 2.4. Figure 2.5 shows the network configuration that was
used to run the simulation. Here, the link between b and r acts as the bottleneck link.
A TCP connection between sy and r is used. A CBR (Constant Bit Rate) traffic
connection using UDP (User Datagram Protocol) between s, and » with 1000 bytes
packet size and 0.75 mbps data rate is used to induce congestion-in the network. The

simulation was run for 15 seconds.
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Figure 2.5 TCP in wired network (sininlation setup)

From Figure 2.4, it is evident that after throttling the transmission rate due to
expiration of retransmission timer or reception of 3-dupack, TCP can regain a good

throughput in a short time. From this simulation result we can conclude that TCP’s

performance in wired network is excellent.

2.7 Characteristics of Wireless Networks Affecting
TCP’s Performance

There are several characteristics that are unique to wireless environment that make it

challenging to adapt TCP to work effectively. The characteristics of wireless medium
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differ significantly than that of wired medium. The major factors affecting TCP’s

performance m wireless environment are described below [13].

2.7.1 Limited Bandwidth

Bit rates of 100 Mbps are common on wired LANs. Optical links provide data rate of

the order of gigabits to terabits per second. However, the current wireless standard,
for example the 1EEE 802.11g standard for Wireless LAN, offers maximum raw bit
rates of 54 Mbps. Thus available bandwidth is one of the major bottlenecks that

degrade the throughput of TCP on wiretess medium.

2.7.2 Long Round-Trip Times

in gencral, wireless media exhibits longer latency delays than wired media, The rate
at which the TCP sender increases its congestion window is directly proportional to
the rate at which it receives ACKs [rom the receiver. Due to longer round-trip times,
the cbngestion window increases al a much lower rate with wireless links. This is

imposing a limit on the throughput of TCP on wireless links.

2.7.3 Random Losses

The transmission losses on wireless medium, bit error rate (BER) of the order of 107
to 107, are significantly higher than that on wired medium, BER of the order of 10™
to 10, These losses result in segment drops and hence the sender does not receive
acknowledgements before the retransmission timer times out. This causes the sender
to retransmit the segment, exponentially back off its retransmission timer and lowers
its congestion window 1o one segment. Repeated errors result in low throughput. The
loss of segments on wireless link, which in general is the last hop, results in end-to-

end retransmission. This also causes traffic overload on the wired links.

2.7.4 User Mobility

In case of cellular networks when a user moves from one cell to another, all the
necessary information has to be transferred from the previous base station to the new
base station. This process is called Handoff; and depending on the technology used,
there might be short duration of disconnection. TCP attributes delays and losses
caused by these short periods of disconnection lo congestion and triggers congestion

control and avoidance mechanism. This again results in reduced throughput. In case
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of ad hoc networks, mobile nodes can move randomly causing frequent topology
changes. This causes segment losses and f{orces mobile hosts 1o initiate route
hscovery algorithms [requently. The overall result is significant throughput

reduction.

2.1.5 Power Consumption

The retransmission caused by frequent segment losses result in longer connection
duration, hence, higher power consumption. Power consumption 1s a very important
factor in case of battery operated devices like laplops, personal digital assistants
(PDAs) and wircless phones. For this reason, it is betler to keep the number of

retransmissions and connection duration low in wireless networks.

2.7.6 Medium Access Control (MAC) Layer Activities

In a typical wireless network (e.g. IEEE 802.11) all the nodes share the same radio
[requency. In order to ensure collision avoidance, the MAC layer of a transmitting
wireless node reserves the wireless channel for some time during which the
neighboring nodes are strictly prohibited to transmit. This introduces waiting time and
increases the communication delay among all other wireless nodes and eventually

affects the overall TCP throughput in the wireless networks.

2.8 Performance of TCP Congestion Contrdl
Algorithm in Wireless Network

In wireless networks, it is evident that the packet losses may occur not only for the

congestion in the network but also for:
*  Transmission errors in wireless links due to fading, shadowing, jamming ete.

* Handoff between cells due to user mobility.

*  Temporary disconnection between transceivers.

In wired connections, where the bit error rate (BER) is negligible and handoff or
temporary disconnection is almost non-existent, TCP’s congestion control strategy 1s

sulficient as most of the segment losses are due to congestion at the bottleneck nodes. ‘
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If a packetl 1s lost due to some non-congestion related events but TCP’s congestion
control policy is activated that will certainly reduce the throughput of the connection.
When a packet is lost due to bit error, handoff or temporary disconnection there is no
benefit to reduce the transmission rate. In case of transient networlk errors the future
packets may not suffer the loss. So categorization of packet losses is very important
for cfficient performance of TCP over wireless networks. Packet losses due to bit
errors, mobihity and hard handoff need to be handled differently than that of due to
network congestion. In networks with large bandwidth-delay product, reducing the
congestion window inappropriately will lower the performance of the connection
severely as it will take much longer for the acknowledgements to arrive and the

congestion window to increase.

We have analyzed the evolution of congestion window (cwnd) of a typical TCP
connection in a nixed environment using ns-2 simulator. The result obtained from an
ns-2 simulation run by establishing a TCP connection between two nodes in a mixed
network is presented in Figure 2.6. Figure 2.7 shows the network configuration that
was used to run the simulation. In Figure 2.7 s¢, 57 and & belongs to the wired domain
and » belongs to the wireless domain. BS is the base station that acts as the gateway
between the wired and the wireless domain. The link between b and BS acts as the
bottleneck link. A TCP connection between sy and # is used. A CBR (Constant Bit
Rate) traffic connection using UDP (User Datagram Protocol) between s; and » with
1000 byles packet size and 0.75 mbps data rate is used to induce congestion in the

network. The simulation was run for 15 seconds.
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Figure 2.7 TCP in wired-cum-wireless network (simulation setup)

From Figure 2.6, it is quite evident that in the wireless networks whenever TCP
throttles its transmission rate after an indication of packet loss, it takes a significant
amount of time to regain the previous throughput. If the packet was lost due to bit

error then this reduction in transmission rate does not bring any good. This situation
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gets worse when we have a network with large bandwidth-delay product. In this type
of networks, higher delay results in high round-trip time. Hence acknowledgements of
a TCP connection arrive at the TCP source at a much slower rate. If TCP throttles its
transmission rate due to a non-congestion related event, it will not only take
significant amount of time 1o regain a good throughput but also will keep a significant
amount of bandwidth unutilized. For this reason, differentiating between congestion
and non-congestion related losses are very important if we want TCP to show better

performance in a helerogeneous network environment.

The next chapter discusses some state of the art research works focused on improving

performance of TCP in heterogeneous networks.

22



3 State of the Art

Effective error and congestion control for heterogeneous (wired and wireless)
networks has been an active area of research recently. Research works in [14], [15],
[16], [17], [18], [19], [20], [21], {22}, [23], §24], [25), [26] and [27] have studied and
analyzed congestion control for wireless networks. The major focus of the most of the
aforementioned works i1s to nullify the adverse eftects of TCP’s basic congestion
control mechanism in wireless networks. In the following subsections different
strategies proposed for improving TCP’s performance in heterogeneous networks are

discussed.

3.1 Link Layer Solutions

The link layer (LL) protocol runs on top of the physical layer and has immediate
knowledge of the transmission medium and dropped frames. At the same time, the LL
protocol has more control over the physical layer protocol. Hence, alleviating the
wireless medium inefficiencies at the LL provides the transport layer protocol with a
dependable communication channel, similar to a wired one. This way, the
transmission media heterogeneity introduced in the network remains transparent to the

existing software and hardware infrastructure, and does not necessitate any changes to

current TCP implementations.

Asymmetric Reliable Mobile Access in Link Layer (AIRMAIL) [14] is a popular link
layer protocol designed for indoor and outdoor wircless networks. It provides.a
reliable link layer by using local retransmissions and forward error correction (FEC)
at the physical layer. The protocol is asymmetric to reduce the processing load at the
mobile host. The asymmetry i1s needed in the design because the mobile terminals

- have hmited power and smaller processing capability than the base station. The
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asymmetric design places the bulk of the intelligence in the base station, allows the
mobile terminal to combine several ACKs into a single ACK to conserve power,
requires the base station to send periodic status messages, and forces the
acknowledgement {rom the mobile terminal to be event driven. The side-effect of the’
asymmetric design is that no error correction can be done until the ACKs arrive which

can cause TCP to time out if the error rate is high.

There are many adverse interactions between TCP and link layer for which the end-

to-end performance of TCP does not improve when this type of link layer solutions

are used.

. Timer interactions — Independent timers at both layers could trigger at the
same time, leading to redundant retransmissions at both layers and degraded
performance. As a result the transport sender is not shiclded from the

problems of the wireless link.

2. Fast retransmission interactions — This arises when a link layer protocol
achieves reliability by local retransmissions, but does not preserve the in-order
sequential delivery of the TCP segments to the receiver. In this case, although
the local recovery occurs the receipts of later segments causes duplicate ACKs
from the receiver, which leads to redundant retransmissions, sender window

reductions, and throughput reduction.

3. Large RTT vanations — The retransmission at the link layer results in long

latencies and variable RTTs at the TCP sender.

3.2 Base Station Dependent Approach

In [16] Balakrishnan et al. proposed the design and implementation of a simple
protocol called “Snoop” for the scenario where a fixed host is commumnicating with a
mobile host with the'help of a base station. Here, the TCP implementation at the fixed
host does not need any modification. The network layer code at the base station is
changed to implement the Snoop protocol. No transport layer code runs at the base
station. The packets sent from the fixed host are buffered at the base station before
delivering them to the mobile host. When the Snoop agent residing at the base station
receives a duplicate acknowledgement against a lost packet at the mobile host, it

retransmits the muissing packet locally to the mobile host and conceals the packet loss
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cvents from the sender and hence prevents it from reducing ils congestion window to

maintain a good throughput.

The Snoop protocol is not scalable, When a large number of concurrent TCP
connections are active through a base station, the base station has to buffer all the
segments from all TCP connections to retransmit, whenever necessary. The base
station will exhaust the buffer space very quickly and will not be able to store new
segments. Eventually, the base station will fail to conceal the losses. Moreover, packel

loss handling will put extra load on the base station which will adversely affect its

other performance.

As discussed earlier,l one problem with TCP on wireless networks is that it cannot
distinguish the exact reason of the segment loss. The delay characteristics shown
- when a wireless host moves to a different network is different from those that are
shown when it moves from one cell to another cell in the same network. The data loss
due to these two types of mobility is also different from the data loss due to |
congestion 1n the wired network. TCP is not able to distinguish these losses and-
fl]iel‘pl‘ets them as congestion and invokes the undesirable congestion control
mechanisms. Mobile TCP [17] distinguishes the segment losses due to handoff and
those due to interface switching. It lets the base station tell the sender whether the loss
is due to handoff in the same network or it is due to interfaée switching. The sender
then marks the segments and retransmits them once the mobile host has completed
handoff. In case of interface switching, the wireless host may enter into a new
-network which may not have the same network characteristics as the previous one.
For this reason, when the TCP sender knows about the interface switching it resets
window size (cwnd), ssthresh, the estimation of round-trip time (RTT) and
retransmission timeout (RTO) values, and begins slow-start. However, if the wircless
host has moved 1o a cell in the same network then the values of cwnd and ssthresh are
halved and the RTT value is kept the same. This algorithm performs well knowing the
cause ol the segment loss. Though it handles the handoffs well it does not consider the

bit error characteristics of the wireless link.
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3.3 Using Redundant Error Correcting Segments

In [18] Subramanian et «f. proposed an enhancement to TCP called LT-TCP (Loss
Tolerant TCP) that performs well in-extreme wireless environments. They showed
that aller certain bit error rate, where the original TCP fails miserably, LT-TCP shows
vood performance. Their work relies on ECN (Explicit Congestion Notification) [rom
the network routers. LT-TCP uses FEC (Forward Error Correction) mechanism to
recover segment errors and losses. Based on the current network condition, a certain
amount of error correcting segments are pfe-generated and kept in the transmission
queue. Some of these are called PFEC (Proactive Forward Error Correction) segments
and are sent along with the new data segments. The rest are called RFEC (Reactive
Forward Error Correction) segments and are sent during retransmission of previously
scnt segments. LT-TCP also adaptively manages the maximum segment size to ensure

a certain minimum number of FEC segments in the transmission window.

Using slots [rom the transmission window for additional error correcting segments
results in reduced number of slots for the actual data. This reduces the throughput of a
TCP connection. Moreover, generation of error correcting segments at the sender
consumes processor time. Similarly, the use of error correcting segments at the

receiving end in order to recover damaged segments also needs some extra processing

activities.

3.4 Router Assisted Approach

In {19] Lien et «l. proposed a router-assisted approach to solve the congestion control
problems in TCP. This approach asks some help from the network. Basically, when
congestion builds up in certain part of a network, the congested router informs the
source about the congestion setting ECN (Explicit Congestion Notification) bit of the
packets destined back to the source. Upon reception of packets with ECN bit set, the
sender can reduce its transmission rate. This technique effectively distinguishes the
segment loss due to congestion from the segment loss due to an error. It assumes that
the routers present in the path are ECN enabled. However this approach gives some
cxtra loads on the intermediate routers that deteriorates their packet switching

performance. It is also hard to ensure that all the routers in the network will be ECN

enabled.
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3.5 Split Connection Approaches

The advocates of these schemes claim that since two completely different classes of
sub networks (wired and wireless) are involved in wired-cum-wireless networks, the
TCP connection could be spht into two connections at the point where the two sub
networks meet, i.e. at the base station. These approaches completely hide the wireless
link from the sender by terminating the TCP connection at the base station. The base
station keecps one TCP connection with the fixed host, while it uses another

connection with a protocol specially designed for better performance over wircless

links for the mobile host. The base station acknowledges the segments as soon as it

receives them. An acknowledgement can arrive at the sender even before the
corresponding segment has been reccived by the receiver. The base station forwards
the segments and buffers a segment until it receives the acknowledgement from the

mobile host. A basc station transparently transfers state information to another base

station during handoffs.

Indirect-TCP (I-TCP) [20], uses above TCP splitting approach with different flow
control and congestion control mechanism on the wireless link and on the fixed
network, allowing faster reaction o mobility and wireless link breaks. However, [-

TCP has following drawbacks.

I.- As thete are two separate connections for every TCP session, every packet
needs separate processing for each connection. So every packet suffers a
certain amount of processing overhead while switching from one connection

to another.

[

End-to-end semantic of TCP ACKSs is violated in split connection.
3. Complex hardware and software are required at the base station.

4. The base station needs large buffers in case of heavy traffic. Moreover, extra

loads are given on the base station that may affect its usual activities. This 1s

not a scalable solution.

5. Il there are frequent handotTs then the overhead related to the connection state

transfer between the base stations may be large and may add delays.

27



3.6 End-to-End Mechanisms

End-to-end (E2E) mechanisms solve the wireless loss problem at the transport layers
of the sender and receiver. All the TCP variants discussed in Chapter 2 fall into this
category. Among them TCP Westwood has been specially developed for wireless
networks and large bandwidth-delay networks. Some other end-to-end proposals for

improving TCP performance in wireless networks are described in this section.

In [21] Tsaoussidis ef af. proposed an end-to-end proposal called TCP Probing. In this
scheme when a data segment is delayed or lost, the sender enters into a probe cycle
instead of retransmitting and reducing the congestion window size. In a probe cycle
only the probe segments are exchanged between the sender and receiver to monitor
the network and the regular transmission is suspended. The probes are TCP segments
with header option extensions and no payload. A probe cycle terminates when the
sender can make two successive RTT measurements with the aid of receiver probes.
In case of persistent error, TCP decreases its congestion window (cwnd) and ssthresh.
For transient random error, the sender resumes transmission at the‘same window size
that it was using before entering into the probe cyc‘le. Although the probe segments

are small, they increase the network load even when the network is highly congested.

The Eifel detection algorithm [22], {23] allows a TCP sender to detect a posteriori
whether it has entered into the loss recovery phase unnecessarily. This algorithm tries
to nullify the effects of spurious timeouts i.e. timeouts that would not have occurred
had the sender waited “long cnbugh”, and spurious fast retransmits that occur when
segments simply get re-ordered in the network before reaching the receiver. It
requires the TCP timestamp option, defined in RFC 1323 [28], be enabled for a
connection. When the timestamp option 1s used, the TCP source writes the current
value ol a “timestamp clock” into the header of each outgoing segment. The TCP
destination then echoes those timestamps in the corresponding ACKs according to the
rules defined in [28]. The TCP source always stores the timestamp of the first
retransmission irrespective of its reasons; whether it was triggered by an expiration of
11s retransmission timer or by the receipt of 3-dupack. Based on the timestamp on the
first accepted ACK that arrives during the loss recovery phase it decides whether the
loss recovery phase was entered into unnecessarily. It is a reactive solution. During a

timeout or 3-dupack event, the transmission rate is throttled first, Based on the
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timestamp. value, it may restore the previous transmission rate, however, it reduces the
connection throughput for a while. Moreover, adding TCP timestamp in every

segment imposes certain amount of overhead in the communication.

From the above discussions we can see that the sirategics proposed in the recent
research works in order to improve TCP’s performance in mixed networks are not’
completely flawless. There are occasions when some of those strategies fail to provide
sulficient support to increase throughput of a TCP connection. So there exists some
scope to look into this matter from a new perspective. In the following chapter, our
proposed TCP congestion control algorithm is presented that explores a new

dimension in solving the problem of TCP’s degraded performance in wireless

networks.
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4 Proposed New TCP Congestion
Control Algorithm

In order to control congestion TCP throttles its transmission rate so that the
overloaded routers do not get flooded with the new packets and get some time to drain
out their queues without dropping the packets. This action taken by TCP helps the-
network to ease the congestion if there is real congestion in the network. However, if
packets are lost due to bit error then there 1s no géin in reducing the transmission rate.
In this case, the sender should continue transmitting at the original rate and try to
deliver as many packets as possible in the midst of random bit errors. Throttling
transmission rate will not do any good in this scenario. The probability of bit errors in
wireless channels is higher than the probability of bit error in wired media. The
original TCP cannot distinguish between the packel loss due to congestion and the
same due to random bit errors and activates congestion control in both cases. This is
causing performance penalty to TCP connections in the presence of wireless link in a
network. Hence, some new strategies should be introduced in TCP such that it can

detect packet loss due to bit error and act accordingly.

in this thesis, we have developed some new stratcgies that can be easily integrated
with current TCP variants so that the TCP sender can distinguish between segment
loss events due to congestion and those due to random bit errors. Our strategies need

to modify only the sender side of TCP entity.
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4.1 Reason for Using an End-to-End Scheme

We have opted for an end-to-end (E2E) proposal for a good number of reasons.
Firstly, E2E proposal always keeps the end-to-end semantic of TCP intact. There is 1o
proxy or relay agent necessary in E2E schemes. Seeondly, E2E schemes do not place
any extra burden on the internal network routers. If routers are required to help TCP
entities in determining the current network condition, then it will slow down the
routers’ routing functionalities and create the bottleneck in the network. It is more
critical for the core roulers in the network since they have to route a huge volume of
packets every moment. Finally, E2E schemes do not need to take help from the link

layer that keeps the layered architecture layered and transparent.

4.2 Findings and Observations

In order to help the sending entity to distinguish between segment loss event due to
congestion and the same due to bit error, there must be some extra checking through
which the sending TCP entity will be able to detect [alse congestion alarm.
Unfortunately, the information that is typically available to the sending TCP stack is
not enough to accurately determine false congestion alarm. We have examined the
characteristics of TCP operations in both wired and wireless networks and found two

possible ways through which the TCP sender will be able to detect false congestion

alarm with good precision.

4.2.1 General Observation — I

When there 1s fittle or no congestion in the network, or no bit errors in the packets, the
TCP sender will experience less timeouts. Due to reordering of segments in the
network, there might be few 3-dupacks. There will be a continuous flow of
acknowledgemems when the network is in non-congestion state and the transmission
rate of the sender will not be throttled that much due to TCP’s fast retransmit and fast
recovery strategy. The TCP sender will only experience the retransmission timer
timeout event whenever the congestion window size reaches the bandwidth limit of
that instant, However, these events will be less frequent during non-congestion state

due to slow-start and congestion avoidance strategy used by TCP.
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Let us examine what will happen when there is less congestion in the network but the
probability of random bit error 1s high. If the packets flowing through the nctwork
experience bit error then some packets will be corrupted or completely damaged. The
receiver will detect this while verifying the checksum present in the received

packet/segment and will reject it. So the order of segment reception will be changed

in the receiver. Since there is no congestion in the network at this time, the traffic

Mow in the network will not be changed. There will be a steady stream of segments in
transit from the source to the destination. If the next segments in sequence do not
suffer from bit error then they will be received successfully by the receiver but will be
regarded as out of order segments. This will result in generation of duplicate
acknowledgements by the receiver. If there were many segments in transit, a
significant amount of duplicate acknowledgements will be generated by the receiver

and received by the sender.

The continuous Mow of acknowledgements from the receiver will prevent timeouts
from being occurred at the sender. So the number of 3-dupacks experienced by the
sender will be much higher than the number of timeouts. This phenomenon can be
used during a timeout or a 3-dupack event to decide whether there is real congestion

in the network, or the segment loss occurred due to random bit error.

So, we can keep a running count of the number of timeouts and the number of 3-
dupacks experienced during an interval. Whenever the sender experiences a timeout
or 3—dupack event, it will compute the ratio of the number of timeouts to the number
of 3-dupacks. If the ratio is very small (in between 0.01 to 0.2), our observation shows
that this event has been caused by a bit error event, not by the congestion. If the ratio
is high (e.g. greater than (.5) then the event is more likely the result of segment drops

i intermediate routers due 1o congestion.

Tables 4.1 and 4.2 show some observed data obtained through our simulation. Details

of the simulation sctup have been explained later.

Table 4.1 Effect of bit errors on timeouts and 3-dupacks (with no congestion)

-

Error Rate (%) Timeout Count i3-dl'.1p.a¢lc‘C0unt Ratio (x/y) {
with no congestion X - E 4
1 0 127 0.05
5 49 476 0.1
10 195 65] 0.3
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Table 4.2 Effect of congestion on timeouts and 3-dupacks (Error Rate = 0.0%)

P ¥ » . : .
B;f_‘:}”;:‘;;?_ﬂgl " Timeout Count | .3-dupack Count ’ Ratio (x/y)
0.75 . 61 19 3.21
1 12 4 3
.25 11 3 3.67

When the possibility of congestion is less but the possibility of bit error is high, we
can make TCP less conservative, i.e. no or little reduction in transmission rate. In 3-
dupack-event case, the amount of throttling is not that high due to TCP's fast
rctransimission and fast recovery strategy. However, if we do not reduce the cwnd and
ssthreshr that much during a possible bit error event, then TCP can continue with a

transmission rate close to the previous rate.

4.2.2 General Observation — 11

Network congestion typically occurs whenever internal routers are unable to forward
incoming packets and their queues become full. In this case, due to unavailability of
the space in the queue, routers have to drop subsequent packets. Multiple segments
from the same congestion window of a TCP sender are typically dropped. The smooth
flow of forward traffic towards the destination is lost which has an adverse effect on
the reverse traffic that is carrying the acknowledgements, D‘ue to insufficient supply

ol acknowledgement segments back to the sender, the retransmission timer at the TCP

sender times out.

After a timeout, TCP enters into the slow-start phase to throttle its transmission rate in
order to give the network some relief. Moreover, it doubles its retransmission timeout
value. If the network congestion prevails then the timeout will happen successively. In
this case, the time difference between two consccutive timeout events will be roughly

equal to the timeout interval of the retransmission timer at that instant.

On the other hand, when the network is not congested, the TCP sender will only
encounter timeout events whenever the cwnd crosses the current network capacity.
That will be quickly resolved by the TCP sender by entering into the slow-start phase. *
Again, il there are random bit errors, then some segments will be damaged and will be

rejected by the receiver. However, duplicate acknowledgements will be returned from
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the receiver to the source for subscquent segmenis which are not lost. This will
prevent the source from having timeout events and will also cnable the source to solve
potential loss of segments using fast retransmit and fast recovery. So, in non-
congestion scenario the timeouts will be sparse and the time difference between two
successive timeouts will be much greater than the retransmission timer’s estimated

timeout interval at that moment.

This observation can also be used during a timeout or 3-dupack event to decide
whether the event is a result of real network congestion or due to random packet
losses due to bit error. Let, two consecutive timeout occurs at time ¢, and ¢,+; and the
time difference between these two events 1s £y (1., 1y = f,+; - 1) Also let ¢; denotes the
current estimate of retransmission timer’s timeout interval. During a timeout or 3-
dupack event, the ratio of # to t; will be computed. If the ratio is very small (in
between 0.01 to 0.1), our observation shows that this event has been caused by a bit
error event, not by the congestion. If the ratio 1s high (e.g. greater than 0.25) then the
event is more likely the result of segment drops in intermediate routers due to

congestion.

4.3 Basic Structure of the Proposed Algorithm

We propose our modification on top of the existing TCP NewReno algorithm. We call
this new modified algorithm TCP K-Reno. However, our algorithm can be used with
any TCP variants without affecting their usual activities, We have modified only TCP
sender and left the receiver as it is. Our proposed algorithm adds some counters and
-decision blocks to the original TCP NewReno algorithm at the sender. One counter is
added to count the number of timeout events and another counter is added to count 3-
dupack events. A new variable is used that track; the time difference between two
consecutive timeouts. These values are analyzed when a timeout or 3-dupack event
occurs and the sender trics to throtile i.ts transmission rate. The activities of our

algorithm can be summarized as follows:

* Based on the values of the newly introduced variables, i our algorithm detects
a possible non-congestion event, it will prevent the sender from being too
much conservative. For example, in this case the reduction of cwnd or ssthresh

will be less compared to that of original TCP NewReno algorithm.
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* However, if the new variables show a high probability ol congestion in the

network, then our algorithm lets the original TCP NewReno congestion

control algorithm to take control and react in the usual way to throttle the

transmission rate.

4.4 Variables Used in the Algorithm

Table 4.3 lists the variables and parameters used in our proposed algorithm to work

along with existing TCP congestion control algorithm.

Table 4.3 Variables and parameters used in the modified algorithm

Variable/Parameter Name

Short Deseription -

TC Count of timeouts
DC Count of 3-dupacks
TDR - TC : DC
TDR T Threshold of TDR
TDR_A Aging factor of TDR
TI Holds the current value of the
retransmission timer’s timeouil interval
D Time difference petween two successive
timeouts
ITR T1: TD
ITR T Threshold of ITR
ITR_A Aging factor of ITR

Latest_Timeout

Holds the time of occurrence of the last .
timeout event

cwnd Latest cwnd
ssthresh Latest ssthresh
NR cwnd cwnd set by TCP NewReno
NR _ssthresh ssthresh set by TCP NewReno -
K cwnd cwnd set by our algorithm

K ssthresh

ssthresh set by our algorithm

Counter Refresh Cycle

Used to reset TC and DC after a
predetermined number of stowdown-
actions

Table 4.4 shows the typical values of some parameters.
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Table 4.4 Values of some important parameters

Parameter : ‘Yalue-
TDR T 0.05-0.2
TDR A 0.125
ITR' T 0.025-04
ITR A 0.125
Counter Refresh Cycle 3050

Detailed descriptions of the newly introduced and old variables and parameters that

are used i1 our algorithm are given in the following subsections.

441 TC

This variable counts the number of times the retransmission timer has expired, i.e. it
keeps track of the number of timeouts. Initially the vatue of this variable is set to zero.
Every time the sender experiences a timeout event, we increase this variable by one.

Afler a certain period this variable is reset to zero.

4.4.2 DC

This variable is similar 1o the previous variable (7C) but counts the number of 3-
dupack events experienced by the sending TCP entity. Initially the value of this
variable is set to one. Every time the sending TCP entity receives the third duplicate
acknowledgement, we increase this variable by one. Aﬂ'ér a certain period this
variable is also reset to one. We initialize/reinitialize this variable by one so that our
calculation of the ratio between timeout count and 3-dupack count does not suffer

from divide-by-zero crror.

44.3 TDR

This variable holds the ratio between 7C and DC. The value of this variabie let us
decide whether an indication of segment loss is due to congestion or any other non-

congestion related issues.

444 TDR_T

This 1s a pre-specified threshold value against which our calculated DR is compared.
The range of values used by TDR_T is given in Table 4.4. Typically TDR_Tis setto a
value below 0.2. If TDR is below this threshold we can conclude that there is no

‘congestion in the network as the number of timeouts-is very low. But if 7DR is above -
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TDR T we will assume it as an indication of possible network congestion. Relying on
this mformation we can modify the TCP congcestion control strategy by being less
conservative when segmenis are lost due to non-congestion related events such as

random bil errors.

4.4.5 TDR_A

[n order to keep a moving average of 7DR values i.e. to incorporate past information
with current ratio between TC and DC, we use an aging factor 7DR_A. The value we
have used for TDR_A is given in Table 4.4. During a timeout or 3-dupack event we

update the value of 7DR using the following formula.
TDR =(TDR_A % TDRY+ (1 - TDR_A) X (TC/DC) ..o, (4.1)

4.4.6 TI

This variable holds the current value of the retransmission timer’s timeout interval.
The value of this variable varies according to the round-trip time (RTT) measurement
performed by TCP. Also the value of this variable is changed according to TCP

specification after every timeout event experienced by the TCP sender.

44.7 TD

TD represents the time difference between two latest timeout events. Initially 7D 1s
sct to 77, We always keep track of the time when the last timeout event occurred.
Whenever the retransmission timer expires at the TCP sender, we set 7D with the

tume difference between the current time and the last timeout event time.

4.4.8 ITR

Every time the TCP sender experiences a timeout or a 3-dupack event, we calculéte,
the ratio of 71 and TD and keep the value in /7R. If 7D is much larger than 77 the ratio
will have a low value denoting less number of timeouts i.e. timeouts are sparse in
nature and are occurring alter large delay. This will help us to detect a possible non-

congestion related event.

449 ITR_T

[t is a pre-specified threshold value against which the value of /TR is checked. The

range of values used by /TR_T is shown in Table 4.4. If /TR is below /TR_T we can
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conclude that a timeout or 3-dupack event has occurred due to segment losses from
non-congestion related issues. But if /TR is higher than /TR T we can use it as an

indication of possible congestion in the network since the high values of /7R denotes

[requent timeouts.

4410 ITR_A

In order to keep a moving average of /TR values i.c. to incorporate past information
with current ratio between 71 and TD we use an aging factor /TR _A. The value we
have used for /TR A is given in Table 4.4. During a timeout or 3-dupack event we

update the value ol /7R using the following formula.
ITR=(UTR A>XITR)+ (1 -JTR_N)*(TT/TD) .....ooooiiiiii, (4.2)

4.4.11 Latest_Timeout

This variable records the time of occurrence of the last timeout event. This variable 1s

updated with current time during every timeout event.

4.4.12 cwnd

It is the variable uscd by the TCP sender to hold the size of its congestion window.
The TCP sender transmits according to the minimum of cwnd and rwnd (the receiver
window advertised by the receiving TCP entity). By increasing and decreasing the

value of ewnd TCP sender controls its rate of transmission.

4.4.13 ssthresh

This variable holds the threshold value that acts as the demarcation point between
slow-start and congestion avoidance phases present in TCP congestion control
algorithm., Whenever cwnd is below ssthresh, cwnd increases exponentially during
every round-trip time. But after crossing ssthiresh, ewnd reduces its rate of increment
by mmcrementing linearly every round-trip time. In fact ssthresh denotes TCP’s current
estimate of available network bandwidth afler reaching which TCP should become

polite and continue increasing its transmission rate at a slow pace.

4.4.14 NR_cwnd

This variable holds the new cwnd value calculated by TCP NewReno algorithm. In

the original algorithm this value is used to set the current ewnd after a timeout or 3-
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dupack event. But in our modified algorithm, we do not immediately set cwnd to

NR _cwnd. The details of our modified approach are explained later.

4.4.15 NR_ssthresh

This variable holds the new ssthresh value calculated by TCP NewReno algorithm. In
the original algorithm this value is used to set the current ssthresh afier a imeout or 3-
dupack event. But in our modified algorithm, we do not immediately set sst/iresh to

NK_sstresh. The details of our modified approach are explained later.

4416 K_cwnd

This variable holds the new cwnd value calculated by our modified atgorithm, 1.e.
TCP K-Reno. Based on the current network conditions as indicated by our decision

variables (TDR and /TR) we set the value of K_cwnd to NR_cwnd or to a larger value.

4.4.17 K_ssthresh

This variable holds the new ssthresh value calculated by our modified algorithm, i.e.
TCP K-Reno. Based on the current network conditions as indicated by our decision

variables (7DR and /TR) we set the value of K_ssthresh to NR_ssthresh or to a larger

value.

4.4.18 Counter_Refresh_Cycle

Alter experiencing certain number of timeout and 3-dupack events we reset our
counters (TC.and DC) to their initial values (0 and 1 respectively). This is done to
cnsure that the data from the distant past cannot affect the cuirent or the future
decision making. If there is no congestion for a long time then the count oftimeo.uts
will be very low. However, due to reordering of segments and bit error in wireless
networks, the count of 3-dupacks will have a moderately high value compared to
timeout count. In this situation, if the network suddenly experiences heavy congéstion
then there will be some timcouls. However, the timeout count value will still be low,
and will take a significant amount of time 1o rcach close to 3-dupack count value. As
a result the decision variable will continue to report that there is no congestion and the
sender will remain aggressive. This will surely congest the network more. To remove

this problem, we have opted the strategy to reset thc counter values after certain
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number of slowdown requests. Typical values of Counter_Refresh Cvele are given in

Tabie 4.4.

4.5 Actions Performed by K-Reno

Here we present the TCP K-Reno algorithm using pseudo code. We have divided the
entire algorithm into four procedures. Each procedure is called to take appropriate
action when a particular event occurs. These procedures are also part of the original

TCP NewReno [7] specitfication and have been modified by us. They are:

I. RECEIVE - called when the TCP sender reccives an acknowledgement

segment.

2. DUPACK_ACTION - called whencver the TCP sender experiences the third

consecutive duplicate acknowledgement.

3. TIMEOUT_ACTION — called whenever the retransmission timer at the TCP

sender times out.

4. SLOWDOWN_ACTION - called by “DUPACK_ACTION” and
“TIMEOUT_ACTION” to throttle the {ransmission rate by reducing the

values of ewnd and ssthresh.

Detatls of these procedures are given below. The following enumeration is used in

these procedures to denote the type of event experienced by the TCP sender.

ENUMERATION EVENT_TYPE {DUPACK =0, TIMEOUT =1}

4.5.1 Operations of Procedure “RECEIVE?”

At TCP source procedure “RECEIVE” is invoked by the network layer whenever the
source receives an acknowledgement segment from the TCP receiver. In this
procedure the TCP source performs different actions based on the type of
acknowledgement reccived. In fact, we have kept the original implementation of

“"RECEIVE” specified in TCP NewReno [7] intact. The pseudo code of this procedure

15 given in Procedure 4.1.

[
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Procedure 4.1 RECEIVE
/1. BEGIN

2. IF new acknowledgment is received THEN
2.1, IF inside fust recovery phase THEN
2.1 Deflate ewnd by setting cwnd = ssthresh
2.1.2. Exit from fust recovery

2.2 ELSE

2.2.1. Increase cwnd according to current phase (slow-start or congestion
avoidunce)

2.3 END IF
3. ELSEIF partial acknowledgement is received THEN

3.1 Remain inside fast recovery and retransmit the segment expected by the
recetver

4. ELSE IF duplicate acknowledgement is received THEN
4.1. IF inside fust recovery phase THEN
4.1.1. Increase cwnd by I MSS
4.2. ELSE
4.2.1. IF 3-dupack THEN
4.2.1.1. CALL DUPACK_ACTION
4.2.2. ENDIF
4.3 END IF
3. ENDIF

0. END

4.5.2 Operations of Procedure “DUPACK_ACTION?”

The procedure “DUPACK_ACTION” is invoked whenever the TCP sender gets three
consecutive duplicate acknowledgements (3-dupacks). In this procedure we are
updating 7DR and /TR using equations (4.1) and (4.2). We are keeping all the TCP.

NewReno actions in our “DUPACK_ACTION” procedure. It invokes the procedure %}

! | (\\,



“SLOWDOWN_ACTION” and passes the DUPACK event as the parameter. The

pseudo code ol this procedure is given in Procedure 4.2.

Procedure 4.2 DUPACK_ACTION

I. BEGIN

2. SETDC=DC+ ]

3. SETTDR =(TDR A » TDR) + (I —TDR A} x(TC/DC)

4. SETTD = Current_Time — Latest_Timeout

5. SETITR = (ITR_A xITR) + (1 = ITR_A) x (T1/TD}

6. Resel the retransmission {imer

7. Retransmit the presumed lost segment using fast refransmission
8. CALL SLOWDOWN ACTION (DUPACK)

9. END

4.5.3 Operations of Procedure “I'TIMEOUT_ACTION”

This procedure is invoked whenever the retransmission timer expires at the TCP
sender. Like “DUPACK_ACTION?”, here, we are not changing the usual operations of
TCP NewReno. We are updating the values of 7DR and /TR using equations (4.1) and
(4.2) as well. Finally, it invokes the procedure “SLOWDOWN_ACTION” passing the
TIMEOUT event as the parameter. One thing in this procedure needs special mention.
Here we are not only incrementing the value of 7C by 1 but also setting the value of
DC to one-fourth of its current value. This is performed in order to make the
algorithm being capable of detecting sudden congestion in the hetwork after a long
period of non-congestion state. If the network experiences sudden congestion after a
long non-congestion period, there will be several timeouts, however, the 7C value
will still remain oo low compared to OC value and K-Reno will mistakenly consider
these timeouts due to bit errors. To solve this problem, we decrease the DC value after
every timeout so that the DC value does not remain too high compared to the 7C

value. The pseudo code of this procedure is given in Procedure 4.3,
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Procedure 4.3 TIMEOUT ACTION

. BEGIN

2. SETTC=TC+ |

3. SETTDR =(TDR A »x TDR) + (I —TDR_A) » (TC/DC}
4. SETDC =MAX(DC/4, 1}

5. SET Previous_Timeout = Latest_Timeout

6. SET Latest_Timeout = Current_Time

7. SETTD = Latest_Timeout — Previous Timeout

8 SETITR =(ITR A xITR) + (1 —ITR A) » (T1/TD)
9. Reset the retransmission timer

10. CALL SLOWDOWN ACTION (TIMEOUT)

11. Retransmit the segment

12. END

4.5.4 Operations of Procedure “SLOWDOWN_ACTION?”

The “SLOWDOWN ACTION” procedure is the place where the actual throttling
actions ol the TCP sender take place. It is invoked by both “DUPACK_ACTION” and
“TIMEOUT_ACTION" procedures. If it is called by “DUPACK_ACTION”, it
retransmits the reported missing segment, updates NR_ssthresh and NR_cwnd and
enters into the fast recovery phase. If it is called by “TIMEQUT_ACTION", it
updates NR_ssthresh and NR_cwnd only. It enters neither mto fast retransmission nor
into [ast recovery. TDR value 1s compared against a pre-specified threshold (7DR_T)
and /TR value is compared against a pre-specified threshold (/7R_T) irrespective of
the fact which procedure has called it. Based on these comparisons this procedure
predicts whether the cause of the slowdown request is real congestion in the network
or not. If non-congestion cause is predicted we do not reduce the ewnd and ssthresh

that much. The pseudo code of this procedure 1s given in Procedure 4.4.
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Procedure 4.4 SLOWDOWN_ACTION (EVENT _TYPE: Event)

/. BEGIN
20 IF Event = DUPACK THEN
2.1 Enter into fust retransmissioi
2.2. Enter into fust recovery
2.3. SET NR_ssthresh = cwnd / 2
2.4. SET NR_cwnd = NR_ssthresh + 3
3. [ELSEIF Event = TIMEOUT THEN
3.1 SETNR_ssthresh = cwnd /2
3.2. SETNR _cwnd =1
4. ENDIF
5. IFTDR < TDR TANDITR <ITR TTHEN
3.1 SET K _ssthresh = ¥ ewnd
3.2, SET K ewnd =% cwnd
6. ELSEIFTDR < TDR TORITR <ITR T THEN
6.1. SET K _ssthresh = 2/_ ; cwned
6.2. K_cwnd = NR_cwnd
7. ELSE
7.1 K _ssthresh = NR_ssthresh
7.2. K cwnd = NR_cwnd
8. ENDIF
9. SET ssthresh = MAX(K ssthresh, NR_ssthresh)
10. SET ewnd = MAX(K _cwnd, NR_cwnd)

1. END
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There are three cases to consider in the “SLOWDOWN_ACTION” procedure.

If both TDR and /TR values are below their respective thresholds, we can
conclude that the slowdown event has occurred because of a segment being
lost due to bit error or any other non-congestion related event. In order to
throttle the transmission rate less we set the variable K ssthreshi to three-
fourth of the current ewnd and the variable K cwnd to half of the current
cwnd. Seiting the K_cwnd to the half of the current cwnd will improve the
performance of TCP in case of lalse alarms. Moreover setting K_ssthresh to
three-fourth of the current cwnd value will widen the interval in which cwnd
will be able to grow exponentially. This will let the sénding TCP entity to
have a good throughput and improve performance in case of non-congestion

related timeouts or 3-dupacks.

I either TR or /TR value is below the respective threshold and the other is
not, there is a possibility of real congestion in the network. However, the
congestion is not that much severe since one of the decision variables is below
the threshold. In order to be moderate aggressive we set K_ssthresh to two-

thirds of the current cwnd and K_cwnd to NR_cwnd.

Lastly, if both T7DR and /TR values are above the respective thresholds, we
conclude that the network is experiencing real congestion and we set

K_ssthresh to NR ssthresh and K_cwnd to NR_cwnd like original TCP

NewReno.

Finally we take the maximum of K_ssthresh and NR_ssthresh and use this value to set

the current ssthresh value. Similarly we take the maximum of K_ewnd and NR_ewnd

and use this value to set the current cwnd value,

4.6 Aggression and Fairness Issues

While developing our algorithm we have tried to keep it friendly with other

concurrent TCP connections. Qur proposed algorithm ensures a good throughput in

case of non-congestion related losses, however, it does not become aggressive during

real congestion. In order to guarantec that this good behavior 1s shown in our

algorithm, we have carefully chosen the values for 7DR T and /TR T. 1f they were

not properly chosen then our algorithm might have become too much aggressive and
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caused serious performance penalty for itself and other concurrent TCP connections.
Our experiment shows that our algorithm sometime becomes aggressive if we use
higher values for TDR_T (e.g. >= 0.25) and /TR_T (e.g. >= 0.5). In this case, our
algorithm will consider some timeout and 3-dupack events as being caused by non-
congestion refated matters even if there is real congestion in the network and will not
throttle its transmission rate. This action will add more burden on the already
congested network and will degrade the performance of all the TCP connections,
sharing the same bottleneck link. Tables 4.5 and 4.6 show the simulation results of a
single TCP connection with different TDR_7 and ITR T values in a wired-cum-

wireless network. Here, the number of unique segments transmitted is used as the

performance indicator.

Table 4.5 Effect of possible aggression of TCP K-Reno (Error Rate = 2.5%,
ITR_T=0.045)

NewReno | K-Reno- o

TDR_T ™) W) K-N
0.025 15239 32
0.05 15240 33
0.075 15275 68
0.1 15207 15223 L6
0.2 15208 1
0.25 15142 -05

‘Table 4.6 Effect of possible aggression of TCP K-Reno (Error Rate = 2,5%,
TDR T =0.075)

NewReno | K-Reno .. g

ITR_T ™ @ ,“K, N
0.01 15254 47
0.025 152064 57
0.045 15275 68
0.075 15224 17
0.1 15209 2
0.2 15207 15243 36
0.25 15218 11
0.4 15221 14
0.5 15209 2
0.6 15207 0

From Tables 4.5 and 4.6 it is clearly evident that TCP K-Reno performs better if
TDR_T vaiue is set in the range 0.05 - 0.2 and /TR T value is set in the range 0.025 -
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0.4, For this reason, we have used aforementioned ranges in our algorithm to ensure

that we do not fall into the trap of false non-congestion alarm.

Above discussion conciudes our congestion control algorithm, TCP K-Reno. In the

next chapter we present the performance analysis of our algorithm.
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5 Performance Evaluatioh of TCP

K-Reno

As mentioned earlier, we have used ns—2_ as the simulation platform to test the
performance of our proposed congestion control algorithm and to compare the same
with other major TCP variants. The following subsections will explain the changes

made into ns-2 code, simulation setup, and the results obtained from different

simulation runs in detail.

5.1 Modifications Performed in ns-2 Code

In order to lest our proposed algorithm, we have used ns-2 version 2.31 as our
simulation platform. ns-2 contains implementation of TCP NewReno and some other

variants of TCP. The following files in ns-2 contain source codes of our concern.

* tcp.h
" fcp.ce
* {Cp-newreno.ce

.

tep-sink.h e

tcp-sink.cc

Although we have not modified the receiving side TCP algorithm, we have added
some code on the implementation of class TepSink in ns-2 to simulate errors in the

reverse link.
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In the TCP NewReno code present in ns-2, three functions typically deal with the

timeout and 3-dupack events. They are —
»  void dupack_action();
=  vyoid timeout(int tno);

» void slowdown(int how);

We have added our newly introduced variables in the files tcp.k and tcp.cc as these
files contain the implementation of the class TepAgent. TcpAgent class contains code
for all the basic activities specified in TCP. It acts as the base class from which class
NewRenoTcpAgent has been derived that contains the implementation of TCP

NewReno. NewRenoTcpAgent inherits “slowdown()” function from class TepAgent

and overrides the “dupack_action()” and “timeout()” functions. We have added our-

code in the aforementioned three functions of class Tcpdgent and class

NewRenoTcpAgent present 1n files fcp.cc and tep-newreno.cc respectively.

5.2 Simulation Setup

We have used a mixed network in order to evaluate the performance of our proposed

algorithm, Figure 5.1 shows the network topology used in the simulations.

Figure 5.1 Simulation setup of wired-cum-wireless network
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In Figure 5.1, all the‘ nodes starting with ‘w’ represent nodes 1n a wired network and
all the nodes starting with ‘n’ represent wireless nodes. The node labeled “BS™ acts as
a gateway between the wired and wireless part of the network. BS is connected to wy
using a link having bandwidth of N mbps where N can be 7 or 12. This link acts as the
bottleneck link in our simulation. All other nodes in the wired domain are connected

to wy using individual link of 5 mbps bandwidth. We have generated the following

traffics in different simulations.

* A TCP connection between w, (sender) and 1, (receiver)
* A TCP connection between w; (sender) and #, (receiver)
» A UDP connection between w; (sender) and n; (receiver)

= A UDP connection between s, (sender) and #5 (receiver)

We have run the simulation to test the performance of TCP K-Reno for both single
TCP connection and two simultaneous TCP connections. UDP connections generating
constant bit rate traffics are used to create congestion in the network. In order to
evaluate the performance of different TCP implementations we have used the number
ol unique segments transmitied by the sender as the comparison parameter. This
number represents the throughput of a connection and if it is larger in one TCP
implementation than that is in another TCP implementation, the former

implementation denoles the superiority over the later implementation.

We have run the simulation for TCP Tahoe, TCP Reno, TCP NewReno, TCP
Westwood and TCP K-Reno. All the runs have been continued for 250 seconds.
When a single TCP connection is concemed, we have only used the TCP connection
between w, and n;, removing the TCP connection between w; and n,. We have used
this scenario to analyze how TCP K-Reno behaves when it does not have to compete
with other concurrent TCP connections. During this test we have set the bottleneck
link bandwidth to 7 mbps. In order to analyze the performance of TCP K-Reno in a
multi-connection scenario we have run simulations using TCP connections between
w; and n,; and between w; and n;. The focus of this scenario was to evaluate how TCP
K-Reno behaves when it has to co-exist with other similar TCP connections. In this
case, the bottleneck link bandwidth is set to 12 mbps. In both cases, we have kept the

bottleneck bandwidth slightly higher than that is required by the TCP connection(s) so
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that we can.introduce different levels of congestion by customizing the data rate of
background UDP traffics. We have run our simulations by keeping the background

UDP traffics both on and off.

5.3 Simulating Bit Error in the Wireless Channel

We have used [EEE 802.11 as the wireless medium access protocol in ns-2. IEEE
802.11 wuses virtual channel sensing to avoid collision and to detect ongoing
transmission. This is called the MACAW (Multiple Access with Collision Avoidance
for Wireless). In this strategy, every wireless node first senses the radio channel to see
whether the medium is free. If the channel is free then the sender transmits an RTS
(Request to Send) frame to the destination. If the destination is ready to receive data,
it replies with a CTS (Clear to Send) frame. These RTS and CTS frames also inform
nearby stations (within the radio range of the sender and the potential receiver) about
the imminent data transfer and hence they remain quiet during the entire data

transmission period.

Currently ns-2 does not support any error modules for the wireless links although
error models for wired networks are fully supported. In order to introduce random bit
crrdrs in the wireless channel we have incorporated (wo strategies. Firstly, we have
placed two wireless nodes s, and ns beyond the reach of the BS and the TCP sinks (#,
and n;). We have set up a UDP traffic generator {rom sy to ns. As ny and ns are
beyond the reach of the radio coverage of BS, n; and n;, they do not hear the RTS and
CTS messages exchanged by BS and n; (or n3). So, 14 an #5 continues to transmit data
even when BS and s, (or n;) are trying to exchange TCP segments. Activities of ny
and »n5 act as interference for the communication between BS and »; (or n;) and add

certain degree of error.

Moreover, to control the error rate more precisely, we have modified the code of class
TepSink in ns-2 a little bit. In the file tep-sink.cc (which contains the implementation
code of class TepSink) we have added some variables and some decision blocks. One,
of the newly introduced variables holds the error rate that we want the TCP
connection to experience. This error rate is configurable from the TCL (Toolkit
Command Language) script. TCL script is used to describe the simulation scenarto.

We have also added a uniform random number generator that generates a value
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between 0 and 1 whenever it is accessed. In the TCP sink, whenever we receive a
segment from the sender, we generate a new random number and check this value
against the error rate set at the TCP sink. If the generated value falls below the error
rate (which can be 0.01 for 1% error, 0.025 for 2.5% error etc.) we simply drop the-
segment 1o simulate a corruptled segment. Here x% error rate means x segments out of
100 segments will suffer error. This action causes the TCP sink to generate duplicate
acknowledgements on the receipl of subsequent undamaged segments. By
customizing the error rale we can control how frequently segments are dropped. This
approach deals with introducing the error only into the forward channel. In order to
incorporate error in the reverse channel we have also introduced another uniform
random number generator. But the error rate for the reverse channel is set '/5 th of the
forward channel error rate. This has been done to address the relative sizes of {forward
TCP segment and reverse TCP segment. In ns-2 TCP segments sent from the sender
to the receiver have default size of 1000 bytes. But the acknowledgement segments
sent from the receiver to the sender are only 40 bytes. Due to their small size, we have
assumed that acknowledgement segments will suffer less error compared to that of
data segments. We have modified the portion of TCP sink where 1t sends the
acknowledgement to the sender. We generate a new random value from the second
random number generator and compare the value with the error rate set for the reverse
channel. If the value falls below this error rate, we simiply drop the acknowledgement

scgment. Otherwise, we supply the acknowledgement segment to the lower layer for

sending it to the TCP sender.

5.4 Simulation Results and Analysis

Table 5.1 shows simulation results obtained after running a single TCP connection

using different TCP variants and TCP K-Reno.

Table 5.1 Performance comparison of single TCP connection

Error NewReno | Westwood | K-Reno '
Tahoe Reno- - h o K-N K-W
Rate (%) (N) (W) (£) -
i 15365 15214 15481 15449 15531 50 &2
2.5 14983 14041 15207 15002 15275 68 273
35 13799 12391 14290 13870 14418 128 548 m
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In the above simulation runs all the UDP traffics were active. From the simulation
results 1t is clearly evident that K-Reno outperforms all other TCP variants, even TCP
Westwood, which was specially designed for wireless networks. Reasons behind TCP

Westwood’s poor performance will be described in a subsequent section.

Figure 5.2 shows the information presented in Table 5.1 graphically.
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Figure 5.2 Performance comparison of single TCP connection

The performance improvement of K-Reno can be attributed to its less conservative
reaction during segment losses due to random bit errors. Whenever K-Reno detects a
possible non-congestion event it does not reduce its transmission rate too much. So it
continues transmitting at a good rate and can deliver more segments in the midst of
wircless bit errors. But as other TCP variants (Tahoe, Reno and NewReno) drastically

reduces the congestion window whenever a segment loss is detected they fail to
achieve a good throughput. In case of NewReno, fast retransmission and fast recovery
are capable of ensuring a good throughput when multiple segments are dropped from
the same window. However, if segment drops are sporadic in nature, consecutive

reception of 3-dupacks will continue the halving of the congestion window even
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though the segments are dropped due to bit error. K-Reno detects segment losses due
to bit error with high precision and keeps a steady flow of segments towards the
destination to ensure a good throughput. Again 1n real congestion, K-Reno does not
behave aggressively and hence do not worsen the congestion in the network. This

behavior is very significant where two concurrent TCP connections are used.

Table 5.2 shows the effect of UDP traffics on the performance of single TCP

connection using different TCP variants.

Table 5.2 Effect of UDP traffics on single TCP connection

Error uprp NewReno | Westwood |. K-Reno |: - .,
Rate (%) | Traffic (N) (W) (K) K-N | K-W

0 None 18971 18971 18971 0 0

2 15719 15719 15719 0 0
| None 18621 18503 18650 29 147

2 15481 15449 15531 50 82
25 None 18299 17814 18332 33 518
' 2 15207 15002 15275 08 273
5 None 16815 16102 17022 207 920

2 14290 13870 14418 128 548

From the data presented in Table 5.2, we can sce that irrespective of the presence or
absence of UDP traffic, K-Reno performs better than boih TCP NewReno and TCP
Westwood. Improvement in throughput of K-Reno compared to TCP Westwood is
better in the absence of UDP traffic than that is in the presence of the same. Table 5.2
also shows that in the presence of random bit error TCP Westwood performs badly

comipared to TCP NewReno.

Figure 5.3 illustrates graphically the information presented in Table 5.2 (showing only

the case where UDP traffics were not present).
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Figure 5.3 Performance of single TCP connection (with no UDP traffic)

Table 5.3 shows the simulation results obtained from running two concurrent and
homogeneous TCP connections. Here, the average number of unique segments sent

by the two connections has been recorded. All the UDP traffics were present during

these simulation runs.

Table 5.3 Performance comparison with two TCP conncctions

Error Rate | NewReno Westwood K-Reno
(%) ™) (") &) MM i
1 7817 7820 7823 6 3
2.5 7702 7704 7712 10 8
5 7475 7479 7497 22 18

From the above data it is clearly evident (hat K-Reno is able 1o inject more unique
segments 1to the network than both TCP NewReno and TCP Westwood. These
observations confirm that TCP K-Reno does not affect the operation of concurrent
TCP connections. If TCP K-Reno were too much aggressive then it would have
adversely affected the other TCP connections, who are sharing the same bottleneck
link. If a TCP connection mistakenly remains aggressive during network overload

ime, a large number of segments will be dropped at the congested node. These v
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dropped segments will consist of segments from the aggressive connection and also
segments [rom other moderate TCP connections. So all the moderate connections will
expericnice more timeout events and hence will throttle their transmission rate.
Moreover, the aggressive connection will also experience more timeout events that
will drastically reduce its rate of transmission. So in the long run the average

throughput of the overall network will be low. This situation will continue each time a

TCP connection shows aggressive behavior during real network congestion. TCP K- .

Reno does not reduce cwnd and/or ssthresh too much until 1t is ensured that the
timeout or 3-dupack event has occurred due 1o a congestion related event. So the
actions TCP K-Reno takes during false alarm of network congestion do not produce
any burden on the network and concurrent TCP connections. All the simulation
results presented above have also shown that the gain of our TCP K-Reno increases
with the increase in the error rate in the network. This is desired when a TCP

algorithm is designed to overcome the bit error problem.

In the following section we present a detailed comparative analysis of TCP K-Reno’s
performance with that of TCP Westwood as the later has been specially designed for

wireless networks.

5.5 Extensive Performance Comparison with TCP
Westwood

In Tables 5.1 and 5.2 we saw that TCP Westwood performs badly compared to both
TCP NewReno and TCP K-Reno when we incorporate bit errors into the wireless
channel though it was designed specially for wireless networks to improve TCP’s

performance in the presence of random bit errors,

TCP Westwood relies on consistent supply of acknowledgement segments from the
receiver to estimale the available bandwidth of the network. TCP Westwood’s
performance depends highly on the precision of the above estimation. 1If TCP
Westwood fails o estimate the available bandwidth at any instant then it will suffer
scriously. In case of a lower estimated value than the actual available bandwidth, TCP

Westwood will not be able to utilize network resource properly. In case of a higher

estimated value than the actual available bandwidth, TCP Westwood will act .

aggressively. It will introduce congestion in the network and segment drops will occur
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at the bottleneck nodes. Eventually the TCP sender will experience multiple timeout

events and will progressively reduce its transmission rate to a much lower value,

So, whenever the acknowledgment stream is disrupted m a TCP Westwood
connection, it will show poor performance. In our simulated environment the
acknowledgement stream of any TCP connection is disrupted in two ways. Firstly, an
error introduced n the wireless channel drops some acknowledgement segments.
Secondly, the acknowledgement stream from a wireless receiver towards a wired host
(1.. the original sender) is disrupted whenever other nodes in the wireless network are
communicating. In our simulation we have used IEEE 802.11 as the wireless access
protocol. This protocol allows multiple nodes to use the same wircless medium by
employing MACAW (Multiple Access with Collision Avoidance for Wireless). In
this technique, only one wireless station is permitted to transmit data while other
nearby wireless nodes must refrain from doing so. The nodes that want to
communicate uses RTS and CTS messages to ensure that they access the channel
without disrupting the other ongoing communications. The RTS and CTS messages
also inform other nodes about the possible duration of the transmission. During that
period, which is called Network Allocation Vector (NAV), other nodes are not
allowed to transmit any packet into the network. This is not the case in wired
networks. In wired networks, a node can transmit a packet any time if the carrier is
free, i.e., there is no NAYV period. For this reason, when a TCP Westwood connection |
operates in a wired network it shows good performance even if we introduce some
error in the wired channel. Table 5.4 shows the performance comparison of TCP
Westwood, TCP NewReno and TCP K-Reno in a simulated wired network using ns-2.
Figure 5.4 shows the network that was used to perform this comparison. In each
simulation run, two TCP connections were running concurrently. One of them is
between sy and ry and the other is between s, and r;. We have run separate simulations
using TCP NewReno, TCP Westwood and TCP K-Reno for both the connections and
the average number of unique 53gments transmitted by both connections is used as the
performance indicator. We have also used the built-in error module of ns-2 to

incorporate error in the wired link between by and b;.
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s=TCP sender

r=TCP receiver

Figure 5.4 Simulation setup for testing performance of TCP variants in a wired
network

As in wired networks acknowledgements from the TCP receivers are traveling the
link between &; and by in a multiplexed fashion, TCP Westwood is able to predict
accurately the available network bandwidth and set its cwnd and ssthresh accordingly.
This ensures a better throughput than both TCP NewReno and TCP K-Reno, and

hence a higher unique segment count is achiecved as shown in Table 5.4.

Now let us go back to our original simulation setup shown in Figure 5.1. In this setup
the base station (BS) is communicating with n;, n; and n; to forward packets received
from wj;, w; and w; respectively. In return BS also receives acknowledgement
segments from both n; and n; to inject those into the wired network. No
acknowledgement is received from n; because of a UDP connection between w; and
n3. But whenever BS is communicating with n; or n;, n; has to remain quite for a
certain period. Similar case occurs for n; when the wireless channel is occupied for
the communication between BS and »; or between BS and n;. This situation is
exacerbated when random bit errors are introduced in the wireless channel. In the

presence of bil ecrrors, the wireless nodes will fail to successfully transmit
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acknowledgement segments to their respective peers. So the multi-access nature of a
wircless network and the presence of random bit errors refrain TCP Westwood from
having an accurate estimate of available network bandwidth. That is why in Tables
5.1 and 5.2 TCP Westwood shows poor performance compared to both TCP
NewReno and TCP K-Reno 1n our simulated wired-cum-wireless environment though
TCP Westwood is proven to show better performance than other TCP variants in

single access wireless channels (such as dedicated wireless link between a VSAT and

a satellite).

This brings us to the end of our performance analysis. The following chapter
summarizes our works and provides some pointers for future research works targeting

TCP congestion control in mixed networks.
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6 Conclusion

TCP is a part and parcel of current communication infrastructure. The services offered
by TCP are suitable for different types of applications. But due to the advent of
heterogencous network systems in recent years, the performance of TCP in these new
environments has been brought under question. [t 1s not desirable to propose a
complctely new transport protocol for the new environments. So the focus of our
current studies on TCP is to modify certain parts of TCP congestion control strategy
and some other aspects so that TCP can react more appropriately based on the present
condition of the network. New and improved congestion control strategy will
certainly permit TCP to become more useful in different network situations. In this
thesis, we have proposed a new congestion control algorithm that we call TCP K-
Rene which can be incorporated with any existing TCP variant and is capable of
performing well in heterogeneous networks (e.g. wired-cum-wireless network). TCP
K-Reno is end-to-end in nature and modifies only the sender-side TCP

implementation. It keeps the TCP receiver and the network unaware of the

modifications. This feature makes TCP K-Reno suitable for deploying in real life

scenarto and does not impose any burden on the internal network.

Our proposed TCP congestion control algorithm, i.e. TCP K-Reno has the following
advantages.

* Itisan end-to-end proposal.

= Only sender side TCP needs to be changed.

»  Assistance from routers is not required.

* [t does not impose too much processing overload in the TCP/IP protocol stack.
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* Can be incorporated with any TCP variant.

* Proposed parameters can be tuned considering network condition of different

environments to achieve better performance.

*  Performs better than all TCP variants, including NewReno and Westwood, in

multi-access wireless networks (e.g. wireless ad hoc networks).

TCP K-Reno is capable of distinguishing segment losses due to both congestion and
non-congestion related issues. With the help of some newly introduced variables and
decision blocks, it 1s able to determine whether segments are getting dropped in
congested routers or are being damaged due to random bit errors. In case of real
congestion, it simply behaves as original TCP NewReno algorithm. But after
detecting a probable non-congestion event, unlike TCP NewReno, it does not throttle -
its transmission rate too much. It continues to transmit at a good pace so that the
network capacity does not remain unutilized at the presence of random bit errors. We
have compared our proposed algorithm with other major TCP variants {TCP Tahoe,
Reno, NewReno and Westwood) using ns-2 and have found that TCP K-Reno
performs better than any of them. In fact, the simulation results have shown that TCP
K-Reno outperforms TCP Westwood, though it has been specially designed for

wircless networks, by a big margin.

Currently, we are using some empirically derived values for different parameters uscd
in the modified algorithm. For example, the values of the thresholds T7DR T and
ITR_T have been determined using thorough analysis of numerous simulation runs.
But a single value of 7TDR_T or ITR_T might not work well in all types of networks.
Different network condition will demand different values of those thresholds for
consistent throughput. So, some type of dynamism in the values of TDR T and ITR R
may need to be introduced to make our algorithm more robust in changing network
environments. Moreover, by considering more levels of TDR and /TR values we can
perform the fine adjustment of cwnd and ssthiresh 1o ensure optimum throughput of a .

TCP connection.

Fairness among concurrent TCP connections sharing the same bottieneck link is
another issue of dominant concern. The goal of TCP faimess is to ensure a fair share
of the available bandwidth in a shared link for all the TCP connections. Cuirently

TCP K-Reno does not deal with ensuring fairness among multiple TCP connections.
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Further research works are needed to shape TCP K-Reno so that it ensures fair share

with all other TCP variants.

Changes in the estimated round-trip time (RTT) of a TCP connection sheds some light
on the current network load. By observing the change pattern of RTT, a TCP source
can deduce the optimum level of throughput that will enable the source to utilize the
available bandwidth successfully without overburdening the network. So some type of
record keeping of previous RTT valucs and decisions based on those records can be -
mcorporated in the congestion control algorithm to improve TCP’s performance in
mixed networks. We will incorporate the change pattern of RTT 1n congestion control

n our future work.

Complexity analysis of an algorithm 1s important to have a clear idea of its best,
average and worst case execution time. Such analysis is not generally available for
TCP congestion control algorithms, including our K-Reno algorithm, We have a plan
to look mto the complexity analysis of TCP K-Reno and other congestion control

algorithms to compare them in our future research.
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