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Abstract

Maintaining proper balance between exploitative and explorative operations of an

evolutionary algorithm is essential for preventing premature convergence to local optima

and for sustaining sufficient convergence speed throughout the evolution. This thesis

introduces Recurring Multistage Evolutionary Algorithm (RMEA), a completely new

framework to balance the exploitative and explorative features of the conventional

evolutionary algorithm. The basis of RMEA is repeatedly alternating three different

stages of evolution, each with its oWn explorative or exploitative objective and genetic

operators. As the stages of RMEA repeat, the conflicting goals of exploitation and

exploration are distributed gracefully across the generations of the different stages. The

key concept of RMEA is to combine dissimilar information across the population for

search space exploration and to combine similar information within population

neighborhood for local exploitation. Performance of RMEA has been evaluated on a

number of benchmark numerical optimization problems and results are compared with

several existing algorithms. Experimental results show that RMEA performs better

optimization with a higher rate of convergence for most of the problems. Also, an

in-depth experimental study is carried out about the roles of the different stages and

operators of RMEA, as well as the sensitivity of its parameters. An adaptive variant of

RMEA is also proposed, which adjusts its parameters in an adaptive manner during the

evolution, and does not require any problem specific knowledge from the user.
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Chapter 1

Introduction

1.1 Introduction

During the last three decades evolutionary algorithms (EAs) have been applied

successfully in numerous and diverse application areas, such as different kinds of

optimization and search problems [1], engineering design [2], automatic programming

[3], combinatorial problems [4], data mining [5], game playing [6], evolvable hardware

[7] and robotics [8]. EAs maintain a population of structures which represent

approximate solutions to a particular problem. In each iteration, a new set of approximate

solutions is generated by the process of selecting a number of individuals based on their

fitness and applying some operators, borrowed from natural genetics, like recombination,

crossover and mutation. To mimic the Darwinian evolutionary principle of survival of

the fittest, better individuals are selectively given higher chance to reproduce and

survive. In brief, the classical evolutionary approach for solving problems can be

summarized into two major steps:

i) Change the individuals of the current population by using crossover and mutation.

ii) Create a new population by selecting individuals from the union of the changed and

the current individuals for the next generation.

1



Chapter 1: Introduction

A major problem with classical EAs is that they have a tendency to converge to the local

optima [9]. The primary reason for the premature convergence is the rapid loss of

population diversity, starting from the very early phase of evolution. Diversity means the

amount of 'variety' existing among the individuals across the population [10], where

variety is based on the structural or behavioral differences across the individuals.

Maintaining the population diversity has been cited as a key issue in a number of

research works, e.g. [10-12], in order to prevent premature convergence and stagnation in

local optima.

The loss of population diversity is closely related to the exploitation-exploration trade-

off of the search process. If an EA is completely focused on local optimizations, i.e.

exploitations, it becomes quite similar to greedy algorithms and soon the entire

population is trapped around the local optimum points after loosing its diversity severely.

On the other hand, if the EA puts emphasis only on diversity by more global

explorations, it may not be able to completely analyze and exploit the already explored

solutions. This is because every search algorithm is restrained by space and time

constraints, and putting more efforts in one mode (say, exploitation) necessarily compels

the algorithm to put less efforts in the other mode (i.e., exploration). Exploitations

immediately improve a solution quality at the cost of reducing the population diversity

and possible fitness stagnation by being trapped into local optima. In contrast,

explorations enhance the diversity at the risk of deteriorating the solution quality and

reducing the convergence rate. Thus an appropriate balancing between the explorative

and exploitative features of the EA throughout the evolutionary process is crucial for

maintaining both adequate convergence rate and sufficient population, and thus avoiding

local optima in order to ensure better solution quality.

In order to achieve proper balance between the exploitative and explorative features of

the conventional EA, this thesis work introduces a multistage framework of EA, which

repeatedly executes and alternates different objective-driven stages, with their own

operators, to fulfill the exploitative/explorative objectives of the current stage. This is the.

first time, to our best knowledge, that utilizes different stages, each with its separate

specific objective and operators, in a recurring manner for balancing the conflicting goals

of exploitation and exploration of the evolutionary approach. The proposed system will

2



Chapter 1: Introduction

also maintain the population diversity in a recurring way to avoid entrapment into local

optima. The proposed algorithm will be compared with several existing evolutionary

systems on a number of benchmark numerical optimization problems.

1.2 Literature Review

The main problem of standard EA is its tendency of premature convergence around the

local optimum points, without finding the global optimum. Several algorithmic features,

especially high selection pressure and high gene flow among individuals, are considered

responsible [12] for premature convergence. First, a high selection pressure will select an

extraordinarily better but suboptimal solution multiple times for reproduction and fill the

population with several copies of that individual. As a result, diversity drops quickly and

the population no longer represents the entire search space, which leads the algorithm to

entrapment into local optima. But lowering the selection pressure often slows down the

convergence rate severely. Secondly, the standard EA allows any individual to mate with

any other individual across the population. Therefore, better genes spread rapidly

throughout the entire population and population diversity declines.

There is a number of existing works [9], [12-22] which try to achieve the conflicting

goals of maintaining a diverse population and converging to the global optima with an

acceptable rate. Most existing works fall in one of the following three categories.

• Complex population structures to lower gene flow, e.g., cellular EA [9],

multinational EA [13], religion-based EA [14].

• Specialized operators to control and assist the selection procedure, e.g., crowding

[15], fitness sharing [16].

• Reintroduction of genetic material, e.g., random immigrations [17], mass

extinction models [18].

The cellular EA [9], also known as 'diffusion model', models the entire population as a

two-dimensional grid of cells, with the edges and comers usually wrapped around. Every

individual is located within a cell, and mating (recombination/crossover) is allowed only

between an individual and its immediate neighbors. In such a framework, it becomes

3
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Chapter I: Introduction

difficult for a solution to quickly take over the entire population, because it takes several

generations to diffuse the genes throughout the cells. Thus limiting the interaction range

lowers gene flow among the individuals. Cellular EA has been proved to be more

diversity-preserving, and has displayed better performance than the standard EA for a

number of problems.

Another scheme, multinational EA (MEA) [13] divides the population into a number of

nations. Each nation searches for a potential peak in the fitness landscape. A nation

consists of a population, a 'government', and a 'policy'. The government is a subset of

the nation's individuals representing the peak in the fitness landscape to which the nation

is approaching. The policy is a single point representing the peak and calculated from the

individuals of the government. During the evolution, nations may merge together or split

apart, and migration may occur from one nation to another. All these processes are

controlled by a hill-valley detection procedure, which determines whether there exists a

valley in the fitness landscape between two given individuals. During each generation,

standard genetic operations alter the nations, and then the hill-valley detection procedure

compares every member of every nation with the nation's policy. If a valley is detected

between an individual, I and the policy of its nation, then I is assumed to no longer

belong to its current nation. If another nation is found which is approaching the same

peak as I does, then I migrates to that nation. Otherwise, I forms a completely new

nation approaching the newly discovered peak. Besides, if two nations are found to

approach the same peak, they are merged to constitute a single nation. MEA has been

applied to a number of static problems and it has demonstrated to successfully locate a

number of peaks for each problem. Besides, it has also exhibited satisfactory results for

artificial dynamic problems.

The religion-based EA (RBEA) [14] is another model involving the concepts of

religions, believers, and conversion to religions. RBEA uses a grid of cells, each cell

being empty or occupied by a single individual. Individuals can move from its cell to the

neighboring empty cells. During the evolution, each individual tries to occupy an empty

cell, and tries to convert its surrounding individuals to its own religion. Such conversion

is probabilistically based on the fitness of the individual. Besides, mating (i.e.,

recombination or crossover) is allowed within the same religion. RBEA is compared

4



Chapter 1: Introduction

with standard EA and the diffusion model on six benchmark problems. It performed

better than the standard EA in all the problems, and outperformed the diffusion model on

five (out of six) problems.

Crowding (15] was one of the earliest attempts to deal with diversity. Crowding inserts

newly created offspring into the population in such a way that it avoids crowding. When

inserting an individual I, a number of individuals are selected at random and searched to

find I', which is most similar to I. Then, I replaces the I' if! has better fitness than I'.

Crowding has been tested for a number of simple functions and displayed to maintain

good diversity. A problem with crowding is the risk of replacement errors, i.e., a new

individual may mistakenly replace a good individual from another peak.

The loss of diversity can also be prevented by changing the raw fitness values of the

individuals in such a way that diverse individuals are favored by the selection and mating

process. Goldberg and Richardson employed this idea by 'fitness sharing' [16] among the

similar individuals. The individuals which are quite similar (i.e., close in the search

space) are penalized by reducing their fitness values, while diverse individuals receive

their raw fitness values unaltered. This algorithm was tested with two multi modal

-functions, each with five peaks. It was successful in locating all the five peaks

simultaneously.

The random immigrations model [17] uses a very simple, but effective scheme to deal

with dynamic problems. In each generation, a proportion of the population is replaced by

randomly created individuals. The replacement rate is usually set from 5% to 10% of the

population size. This model was proposed for handling time varying problems. The

algorithm was tested on three dynamic benchmark problems and a static problem. It

outperformed the standard EA on the dynamic problems, but not on the static one.

In mass extinction model [18], the diversity is ensured by forcefully exterminating a

portion of the population. Two types of extinction events are employed: mass extinction

event and background extinction event. During each generation, a stress factor (i.e., a

random number within some range) is generated according to some distribution. After

some necessary scaling of fitness values, all the individuals with fitness lower than the

stress factor are eliminated. Then the vacant slots of the population are filled by new

5 ".t" :.j)":-
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Chapter 2: Evolutionary Algorithm

1. Initialization. Generate a random population of n chromosomes (individuals). Each

chromosome is a potential solution for the problem.

) 2. Fitness Evaluation. Evaluate the fitnessf{x) of each chromosome, x of the

population.

3. Generate new population. Create a new population by repeating following steps

until the new population is complete

3.1 Selection. Select two parent chromosomes from a population according to

their fitness values (the better the fitness, the bigger chance to be selected)

3.2 Recombination. Combine the attributes of the two parents to form new

offspring.

3.3 Mutation. With a mutation probability, mutate new offspring at each locus

(position in chromosome).

3.4 Reinsertion. Either accept or reject the new offspring in a new population.

4. Test for termination. If the end condition is satisfied, stop, and return the best

solution in current population. Otherwise, continue.

6. Loop back. Go to step 2 to continue the evolution with the population of potential

solutions.

Algorithm 2. I: Standard evolutionary algorithm

2.3 Biological Basis

In this section some biological terms, related with EA, are defined. This will be helpful

to have some appreciation of the biological processes upon which EAs are based on.

Every living organism consists of one or more cells. Inside each cell, there is a nucleus,

which is known as the central part of the cell. The nucleus of every cell of an organism

contains the same set of chromosomes. Chromosomes are strings of DNA and serve as a

model or 'blue print' of the whole organism. Blocks of DNA within a chromosome are

known as genes. Each gene encodes a particular trait, for example color of eyes or hair.

Each gene is located at a particular position in the chromosome. This location is the

identity of the gene, and determines the trait to which it is related. The collection of all

10



Chapter 2: Evolutionary Algorithm

the genetic materials within all the chromosomes is called genome. A specific set of

genes in genome is called genotype. The genotype is directly related with the organism's

phenotype, i.e., its physical and mental characteristics, such as hair color, personality,

complexion etc. When two organisms mate, their reproduction makes some shuffling of

genetic materials of chromosomes from both the parents. A pair of chromosomes

exchange genetic information and produce offspring that contain a combination of

information from each parent. This is the recombination operation, which is often

referred to as crossover. Random effects are usually involved in the selection of parents

and in the process of shuffling of genes among the chromosomes. Usually organisms

with higher fitness get better chance of mating and surviving. EAs usually use some

function of the fitness measure to select individuals probabilistically to undergo genetic

operations such as crossover or mutation.

Evolution requires some amount of diversity to work appropriately. In nature, an

important source of diversity is mutation, which changes a randomly selected gene in the

chromosome. In an EA, a large amount of diversity is usually introduced at the start of

the algorithm, by randomizing the genes across the population. However, this diversity

may fall rapidly during the next generations because both recombination and selection

are diversity decreasing operations. So, the importance of mutation, which introduces

further diversity while the algorithm is running, cannot be overemphasized. However,

some researchers like mutation as a background operator, to reintroduce some of the

original diversity that may have been lost, while others view it as playing the dominant

role in the evolutionary process.

2.4 Components of Evolutionary Algorithm

EAs have a number of component procedures and operators that must be described to

have a proper appreciation of the algorithm. Each of these components needs to be

specified in order to define a particular EA. The most important components of an EA

are as follows .

•:. Representation (Encoding)

.:. Evaluation Function

.:. Selection

11



Chapter 2: Evolutionary Algorithm

.:. Recombination

.:. Mutation

.:. Reinsertion

2.4.1 Representation (Encoding):

Representation means to represent possible solutions of the actual problem as data

objects inside a computer program, suitable to be manipulated by the simulated

evolutionary computation. A data object, representing a potential solution of the actual

problem, is called a 'chromosome', 'genotype', or 'individual' interchangeably while the

actual physical solution in the problem domain is referred as 'phenotype'. The phenotype

is encoded as a collection of attributes within a chromosome. Each attribute inside a

chromosome is called a gene.

A chromosome, with its genes, may be encoded in several ways. Among them, binary

encoding is the most common. In binary encoding every chromosome is a string of bits,

o or 1. For example, a chromosome A may be represented as: 110101010010010111.

However, in many problems, value encoding is used, which directly encodes the

chromosome as a sequence of its attribute values. For example, if each attribute is a real

number, the chromosome is represented as a string of real values. Values can be anything

connected to the problem, from numbers or characters to some complicated structures or

objects. Some examples of value encoding are provided here.

Chromosome A white, gray, gray, black, brown

Chromosome B bacdccabgacadbddccaab

Chromosome C 0.5498 1.5329 2.1092 9.2143 0.2241

Another form of representation is permutation encoding, which is mostly used in

ordering problems, such as traveling salesman problem or task ordering problem. In

permutation encoding, every chromosome is a string of numbers, which represents

positions in a sequence. For example, a chromosome A may have the permutation

encoding: 7 2 4 I 6 5 9 3 8, where the original sequence has 9 different members.

Another special kind of representation, which is used with genetic programming, is the

tree encoding. In tree encoding, each chromosome represents a computer program or

12



Chapter 2: Evolutionary Algorithm

expressIOn that is evolved through the evolutionary process. In this scheme, every

chromosome is a tree of some objects, such as instructions, or procedures of a

programming language.

2.4.2 Evaluation Function

The evaluation function performs the role to define how 'well' each individual

chromosome is carrying out as a possible solution of the actual problem. It is also called

'fitness function' because it assigns a level of fitness to each individual. The selection

and reinsertion phases depend significantly on the fitness values of the individuals

assigned by the evaluation function. As an example, suppose, we want to find the value

of x within the domain of 8-bit integers so that x2 is maximized. Here, the phenotype

space contains all possible integers within the range. The evolution will start with a

limited number of chromosomes, sampled over the range of 8-bit integers. If we use a

binary encoding, then a chromosome 00010100 will represent the phenotype integer, 20.

To measure the fitness of the chromosome, the evaluation function may simply compute

the square of the corresponding phenotype: 202 = 400. The more the value of the square,

the better the chromosome is. Thus, the evaluation function builds a bridge from the

genotype space of the simulated evolution towards the phenotype space of the actual

problem domain. The direction of the evolution depends entirely on how the fitness

function interprets the fitness and evaluates the chromosomes.

2.4.3 Selection

Inspired by the role of natural selection in evolution, EA selects a number of individuals

(parents) from the population to constitute a mating pool, where they recombine with

each other to reproduce a number of offspring individuals. Selection is usually based on

fitness to provide the fitter individuals with better chance of mating, reproduction, and

survival in order to simulate the Darwinian evolutionary principle of survival of the

fittest.

There is a number of ways to make the selection of individuals. For example, roulette

wheel selection, rank based selection, tournament selection, and steady state selection. In

,Roulette Wheel Selection, parents are selected in proportion to their fitness. The better an

13 J',' ••



Chapter 2: Evolutionary Algorithm

individual, the more likely it is to be selected. Consider a roulette wheel where all the

individuals are placed. The slice of each individual is as large as (or proportional to) the

fitness of the individual, assigned by the fitness function. The wheel is rotated at a

random pace and a marble is thrown into it to select a chromosome. So, chromosomes

with higher fitness aod occupying more area on the roulette wheel will have better

chaoce to be selected. If we need N individuals, the marble is thrown N times; each time

it returns ao individual.

When the best individual of the population is extremely better thao the others, the

roulette wheel selection will cause problems by selecting the best individual several

times, aod filling the populations with its multiple copies. For example, if the best

chromosome's fitness covers 80% of the area of the roulette wheel, then the other

chromosomes will have few chaoces to be selected. Rank based selection eliminates such

problem. Rank based selection first ranks the population based on its fitness. Then every

chromosome receives fitness from its ranking, not from their actual fitness values.

Selection is made from these rank based fitness values.

In tournament selection a number, say T, of individuals is chosen uniformly at raodom

from the population aod the individual with the best fitness of this group is selected as a

parent. This process is repeated as maoy times as individuals are needed as parents. The

parameter, T takes values raoging from 2 to N, where N is the number of individuals in

the population.

Another selection scheme, Steady State Selection ensures that most of the chromosomes

of the current generation survive to the next generation. Such a selection scheme usually

exhibits steady improvement of fitness values, aod avoids wild oscillations in the average

fitness values. In each generation, some good (or best) chromosomes are selected for

mating. The offspring replace some bad (or worst) chromosomes from the population.

The rest of the population survives to the new generation.

A term closely connected with selection is Elitism. Elitism is a method which safeguards

the best part of the population. During each generation, the best chromosome or a few

best chromosomes are copied to the new population. Then aoy selection scheme

completes the rest of the selection. Elitism has shown good performaoce with a number

of problems, because it protects the best solutions.

14



Chapter 2: Evolutionary Algorithm

2.4.4 Recombination

Recombination is the process of generating new individuals (offspring) by combining the

information of two or more existing individuals (parents). Each individual contains a

number of attributes. Recombination is done by combining the attribute values of the

parents. There are several ways of recombination. The representation (encoding) of the

parents play an important role in determining the method of recombination to be applied

on the parents.

For individuals with real valued encoding of the attributes, several variants of

recombination is defined. For example, line recombination, extended line recombination,

intermediate recombination. In intermediate recombination, the attribute variables of the

offspring are randomly chosen somewhere around and between the parents' attribute

variables. Offspring are produced according to the following rule:

0_ PI P2 .' )Var. - Var .. uj+Var . (l-Uj), IE(I,2, ... ,n, , ,

Uj E [-d, l+d] uniform at random, d = 0.25,

<Xi is generated anew for each i.

Here, n is the number of variables in each individual (which is same as the

dimensionality of the problem), Uj is a scaling factor chosen uniformly at random from

the interval [-d, 1+d]. If d is set to 0, offspring are always generated at the intermediate

region of the parents. So, over the generations, the area spanned by the offspring

gradually reduces than the area of the parents. From statistical studies, an appropriate

value of d = 0.25 has been chosen, which ensures that the area spanned by the offspring

does not shrink by recombination over generations.

When parents have binary encoding, their recombination constitutes a special case,

known as crossover. During crossover, a random bit position, k is selected from the

range [1 ... n]. Then, the pair of mating parent exchanges all their bits starting from the k-

th position. The random bit position k is called the crossover point and selected anew for

each crossover operation. Depending on the number of crossover points, there exists

single point, two point and multi-point crossover. An example of single point crossover

is shown here. The bits interchanged during crossover are shown by dotted outlining.

15
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Parent I:

Parent 2: I 0 I ff(J"i'oO:!

Crossover point: 4

Offspring I: 0 0 I ITQT9::o.)
............................

Offspring2: 1 0 1:9.9.9.).9.);

For two point crossover, two crossover points are selected at random, and binary string

from the beginning of chromosome to the first crossover point is copied from one parent,

the part from the first to the second crossover point is copied from the second parent and

the rest is copied from the first parent. This is illustrated with an example in Figure 2.2.

1101010111 +

Parent A-+
1011111101

Parent B
11011111

Offspring=-
Figure 2.2: Two-point crossover

Another form of crossover is uniform crossover in which bits are randomly copied from

the first or from the second parent. Figure 2.3 illustrates this kind of crossover.

11101010111

Parent A

+

+

11101111101

Parent B

= 11011111

OffsprinQ=--
2.4.5 Mutation

Figure 2.3: Uniform crossover

Mutation means randomly altering the chromosomes. Two parameters are associated

with mutation: mutation step and mutation rate. Mutation step controls the amount of

variation incurred by the mutation. Mutation rate controls the probability of a

chromosome being mutated. Usually mutations are applied with small mutation step and

low mutation rate. Offspring are probabilistically mutated after being created by the

."
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recombination step. Like recombination, there exist several methods of mutation. The .

encoding of the chromosome determines the possible means of mutation that may be

applied on it. If the chromosome has value encoding, with real values for the attributes,

then mutation means adding randomly created values with the attributes. For binary

encoding, mutation means the flipping of the bits, since every bit has to be either 0 or I.

The mutation rate is usually inversely proportional to the number of variables. The more

attributes (dimensions) one individual has, the smaller is the mutation probability.

Several papers [28-30] researched for the optimal mutation rate. A mutation rate of l/n

(n: number of variables of an individual) has been reported to exhibit satisfactory results

for a wide range of problems. With this mutation rate, only one variable per individual is

altered. Thus, the mutation rate is independent of the size of the population. Higher

mutation rates at the beginning, and declining this rate with increasing generations has

shown an acceleration of the search for many problems.

The optimal size for the mutation step is usually difficult to realize. It always depends on

the problem at hand and may even vary during the search process. Small mutation steps

are often successful, while larger steps, when successful, produce good results much

quicker. So, a good mutation operator should produce both small and large step-sizes in

suitable proportions. Such a mutation operator, first proposed and employed in [28], [31]

is specified below.

Mut

Vari = Var, + Si - r, _ai

i E {l, 2, ... , n}uniform at random,

Si E {-I, +I} uniform at random

r. = r. domain, r: mutation range (standard: 10%), ,
ai = 2- u_k, U E [0, I] uniform at random, k: mutation precision.

This mutation is able to generate most points in the hyper-cube defined by the domain of

the variables of the individuals. Most mutated individuals tend to be near the parent

individual. Only some mutated individuals will be far away from the parent. Thus, the

probability of small step-sizes is greater than that of larger steps, which is appropriate for

most problems.

17
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For binary valued individuals mutation means the flipping of variable values, because

every variable has only two states. Thus, the size of the mutation step is always I. For

every individual the variable value to mutate is chosen mostly uniform at random.

Following example shows how a binary mutation alters a chromosome with 10 bits.

Here, mutation flips the bit at position 6 from 0 to 1.

Chromosome (before mutation):

Chromosome (after mutation):

00 1 001011 0 1 1
j ~

o 0 1 0 OjlIi 0 1 1
~...;

In order to mutate real variables, it is possible to adapt the direction and step-size to

conduct a more effective search process. These methods are from evolutionary strategies,

[32, 33] and evolutionary programming [34]. The extensions of these methods and new

developments include several new schemes, which includes

• Adaptation of n (number of variables) step-sizes [35, 36]
• Adaptation of n step-sizes and one direction [36]
• Adaptation of n step-sizes and n directions [37]

2.4.6 Reinsertion

Reinsertion is the process of constructing the next generation population from the union

of parents and offspring. There exist several schemes, each with its own merits and

demerits. In pure reinsertion, the number of offspring reproduced is equal to the number

of parents and offspring replace the parents entirely. So each individual, even the best

one, lives for only a single generation. In uniform reinsertion, fewer offspring are

produced than parents and offspring replace parents uniformly at random. So, better

individuals may be replaced by weaker offspring. In elitist reinsertion, the worst

individuals of the current population are replaced by the new offspring. Another scheme,

fitness based reinsertion produces more offspring than needed, and they are inserted into

the population based on their fitness. A number of reinsertion schemes may be combined

to construct a new scheme. For example, the elitist combined with fitness-based

reinsertion prevents the best individuals from being lost, and it is the recommended for

many problems. In this scheme, a given number of the least fit parents are replaced by

the same number of the fittest offspring.

18
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As well as these global reinsertion schemes, reinsertion may also be based on local

policies. In local reinsertion, individuals are considered within its bounded

neighborhood. The reinsertion of offspring takes place in exactly the same neighborhood

from where it is selected. This preserves the locality of the genetic information.

Examples of some local reinsertion policies are as follows.

• Insert every offspring and replace weakest individuals in neighborhood.

• Insert offspring fitter than weakest individual in neighborhood and replace

weakest individuals in neighborhood.

• Insert offspring fitter than parent and replace parent.

• Insert every offspring and replace individuals in neighborhood randomly.

• Insert offspring fitter than weakest individual in neighborhood and replace parent.

• Insert offspring fitter than weakest individual in neighborhood and replace

individuals in neighborhood uniformly at random.

During the reinsertion step, a number of better parents may be replaced by worse

offspring. However, this does not cause trouble for most problems, since if the inserted

offspring are extremely bad, they are likely to be replaced with new offspring in the next

generation.

2.5 Applications of Evolutionary Algorithm

EAs have been widely used for complex optimization problems during the last three

decades. The main advantage of EA is its ability to escape local minima and reach the

global optima with relative ease. The basis of this strength lies in the parallelism of EA.

EAs search throughout the search space with a population of individuals in parallel, so

they are less likely to get stuck in local optima. Besides, they are quite easy to implement

and to extend for other problems. Once an EA is designed, it only requires encoding new

chromosome and designing new fitness function to solve another problem. EAs are

robust. They perform surprisingly well with wide range of parameter values.

The main disadvantage of EAs is their high computational complexity. Besides,

evaluation of fitness of the chromosomes may be quite difficult, and may incur

additional computational cost, particularly for real world problems. However, EAs have
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been widely applied in diverse application areas for their general extensibility and

robustness. Some applications of EA are mentioned here:

.:. Bioinformatics

.:. Cellular programming

.:. Game playing

.:. Automatic programming

.:. Non linear filtering

.:. Evolvable hardware

.:. Combinatorial problems

.:. Strategy planning

.:. Robot trajectory

.:. Time tabling

.:. Designing neural networks

.:. Evolving images and music
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Recurring Multistage Evolutionary Algorithm

3.1 Introduction

The standard evolutionary algorithm makes no explicit attempts to maintain balance

between the exploitative and explorative operations. Exploitation is conducted by fitness

based selection pressure and exploration is carried out by mutation, both in an implicit

manner, without any explicit control of the algorithm. Such an imprecise management of

exploitation and exploration often leads to quick loss of population diversity and stagnation

around the local optima of the search space. In contrast, the proposed system, RMEA

makes explicit attempts to ensure a proper balance between the exploitation and

exploration. RMEA repeatedly applies three objective-driven evolutionary stages, each

with its own operators to fulfill the specific exploitative/explorative objective of the stage.

It has been tested against a number of benchmark numerical optimization problems, where

the objective is to locate the global minima across the high dimensional multimodal search

space. The experimental results establish that RMEA performs significantly better that

several existing evolutionary systems, in terms of both convergence rate and solution

quality. The following sections describe the framework of RMEA in details.
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3.2 The Proposed System: RMEA

In order to ensure a proper balance between the exploitation and exploration, RMEA

repeatedly alternates its conventional, exploration and exploitation stages during the

course of evolution. In the conventional stage, fitness based tournament selection and

gaussian mutation are employed for exploitation and exploration respectively. The

exploration stage employs a number of explorative operators that always use dissimilar

set of individuals from the population to reach the unexplored regions of the search

space. Application of any explorative operator is followed by a number of uphill moves

to evaluate the newly explored regions. The exploitation stage employs exploitative

operators that always use sets of individuals belonging to some predefined vicinity

(neighborhood) in the search space. In fact, all these operations are motivated by

observing some important facts, such as:

• Exploration is a non-local operation. Therefore, genetic operations involving

distant i.e., dissimilar individuals may lead the search process to unexplored

regions ofthe search space.

• After exploring to a new region, some hill-climbing operations are necessary to

realize the potentials of the newly explored regions and to avoid early rejection of

better solutions.

• Exploitation is a local operation. Therefore, genetic operations among the

neighbors and allowing only uphill moves are relevant to reach the local optimum

points of the search space.

Like every evolutionary process, RMEA starts with some initial population of

individuals, which represent approximate solutions to a particular problem. The solutions

may be values of variables that optimize a function, process, plans, design, strategies, or

any entity that need to be optimized. During each generation, RMEA employs the

genetic operators of that stage on the individuals to produce offspring. The offspring are

inserted into the population depending on the reinsertion scheme of the current stage.

The process of RMEA is described in the following steps:

Step 1) Generate an initial population of M individuals. Each individual, I is

represented as a pair of real valued vectors, (Xi, 'Ii), for i=I, ... ,M; xis are objective
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variables and 'I;'s are standard deviations for Gaussian mutations. Each Xi (and 'Ii) has n

components, where n is the dimensionality of the problem. Each component of Xi, for

i= I, ... ,M, is generated uniformly at random within its domain. All the components of 'I i,

for i=I, ...,M, are initialized to some moderate value (e.g. 3), as is done in [22].

Step 2) Initialize parameters kj, k2 and k3, which control the behavior of RMEA by

defining the lengths, i.e., number of generations constituting the conventional,

exploration and exploitation stages.

Step 3) Conventional stage. Repeat the following step 4 for kj times. This

constitutes a single pass of the conventional stage.

Step 4) A single iteration of the classical evolutionary programming (CEP)

throughout the population, Details of CEP are specified in subsection 3.2.1. In brief, an

iteration of CEP consists of mutating every individual of the current generation to form

M offspring, calculating the fitness of all the parents and offspring and a tournament

among all the parents and offspring to select M individuals for the next generation,

Step 5) Repeat the following steps 6-7 for k2 times. This constitutes a single pass

of the exploration stage, Usually, population diversity increases in this stage due to the

explorative nature of the operators,

Step 6) Calculate the distance of each individual I from every other individual in

the population to find a set of N 'Strangers' (farthest individuals) for I. Strangers are

utilized by the explorative operators.

Step 7) A single generation within the exploration stage. For every individual, I

choose one of the six explorative operators (subsection 3.2.2) at random with equal

probability. Apply the selected operator on I to obtain a new individual I'. Try to make a

number (= k4) of hill climbing moves from I' to obtain a new individual I". These hill-

climbing steps (subsection 3.23) are to estimate the potentials of the search space around

1'. If I" has better fitness than the original individual I, then replace I by I' (not I").

Otherwise discard I' and I". Repeat this entire process with all the individuals of the

population.

Step 9) Repeat the following steps 10-11 for k3 times. This constitutes a single pass

of the exploitation stage. Population diversity decreases in this stage due to the

exploitative nature of the operators.
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Step 10) Calculate the distance of each individual I from every other individual in

the population to find a set of N 'neighbours' (nearest individuals) for I. Neighbors are

utilized by the exploitative operators.

Initialize Population,
Setup Parameters

Conventional Stage
(k, Generations)

Exploration Stage
(k2 Generations)

Exploitation Stage
(k3 Generations)

No

Yes
Result

Figure 3.1: Recurring multistage evolutionary algorithm (RMEA)

Step 11) A single generation within the exploitation stage. For every individual I,

choose one of the six exploitative operators (subsection 3.2.4) at random with equal

probability. Apply the selected operator on I to obtain a new individual I'. IfI' has better

fitness than I, then replace I by I'. Otherwise discard I'. Repeat this process with all

other remaining individuals.

Step 12) Check for termination. If the best solution found is acceptable or the

maximum number of generations has been elapsed, stop the evolutionary process and go
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to Step 13. Otherwise, go back to Step 3 to start another execution of conventional,

exploration and exploitation stages.

Step 13) The evolutionary process is over. Obtain the best individual of the last

generation which is the result of the entire evolutionary process.

1. Initialize Parameters. Generate Initial Population.

2.for k, generations [Conventional Stage]

Mutate each individual

Execute tournament among parents and offspring to get the next generation

3. for k2 generations [Exploration Stage]

for each individual, I

Update the set of strangers of I

Randomly choose one of the six explorative operators

Apply the operator on I to obtain a new individual I'

Perform some uphill steps from I' to decide whether to accept or reject it.

4.for k3 generations [Exploitation Stage 1
for each individual, I

Update the set of neighbors of!

Randomly choose one of the six exploitative operators

Apply the operator on I to obtain a new individual I'

Accept I' ifit has better fitness than I. Otherwise Reject.

5. If the best solution found is acceptable or the maximum number of generations has
been elapsed, conclude RMEA and go to step 6. Otherwise, return to step 3 and start
another cycle of conventional, exploration and exploitation stages.

6. Obtain the best individual of the last generation, which is the output from the
evolutionary process.

Algorithm 3.1: Recurring multistage evolutionary algorithm

Algorithm 3.1 presents the pseudo-code of RMEA, which is apparently parallel to the

Figure 3.1. The necessary details of the different stages and operators are provided in the

following subsections.
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3.2.1 Conventional Stage

The classical evolutionary programming (CEP) is among the most basic evolutionary

systems and has been in use for many years for various optimization tasks. CEP does not

explicitly consider the issues of exploration and exploitation. It mutates individuals of

the current population for producing offspring, and selects the better individuals from the

union of the parents and offspring. Thus, explorations are conducted by mutations, while

exploitations are carried out by fitness based selection pressure. The following operations

are performed in every generation of CEP.

•:. Evaluate the fitness score for each individual of the population .

•:. Mutate each individual (Xi, 'Ii), for i = 1.. .M, to create an offspring (xi', 'Ii'). That

is, for j = 1, ... ,n,

xi'G) =Xi(j) + lli(j)Aj(O,l)

Ili'(j) = Ili(j) exp(,'Aj(O,I)+ ,Aj(O, I »

Xi(j),Xi'(j), Ili(j), and Ili'(j) denote the j-th component of the vectors Xi,xi', 'Ii and

'Ii, respectively. Aj(O,l) denotes a normally distributed one-dimensional random

number with mean = ° and standard deviation = I. The subscript, j in Nj(O,l)

indicates that the random number is generated anew for each value of j. The

factor, and " are set to C.J(2..Jn»"1 and (..J(2n)"I .
•:. Calculate the fitness of each offspring generated by the mutation .

•:. Conduct a pair wise tournament based competition over the union of the parents

and offspring. For each individual, q opponents are chosen uniformly at random

from all the parents and offspring. If the individual's fitness is not less than an

opponent, then it receives a 'win' .

•:. Select the M individuals from the parents and offspring which have received the

most number of 'win's. They become the parents of the next generation.

3.2.2 Exploration Stage

The objective of this stage is to explore new regions of the search space. To achieve this

goal, genetic operators are applied on distant sets of individuals. The farthest (in terms of

edit distance) N individuals from a particular individual are referred as its set of

'strangers'. Recombination and crossover are applied by using strangers and mutation is
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applied with a sufficiently large step size to facilitate exploration. As the attributes of

distant individuals are combined and the large step size is used in the genetic operations,

the population diversity tends to rise in this stage. The following scenario describes how

operations involving distant individuals, in combination with limited hill climbing, will

lead to an unexplored and better region of the search space.

fitness i:) Parent

-3t~Offspring

) attributes

Figure 3. 2: Exploration through the fitness landscape

Figure 3.2 shows two groups of parent individuals, which are marked by oval

boundaries. When explorative genetic operators combine or mutate them, some

intermediate offspring may be produced, which are marked by underlining in the figure.

Initially, they seem to be quite similar in terms of fitness, but a small number of hill

climbing steps prove one of them (i.e., the one marked by an arrow) to be much better.

So it is allowed to enter the population and contribute to the optimization process. The

fitness landscape shows that this new individual will guide the evolutionary process to

better fitness values in comparison to its parents. Thus combination of information of

distant individuals facilitates explorations and when it is combined with limited hill

climbing, it may lead the search process to diverse, yet better regions of the fitness

landscape.

Two variants, named partial and complete, of recombination, crossover and mutation are

used as explorative operators. This means a total of six operators are used for

exploration. The complete specification of all the six explorative operators and their

pseudo-code is presented here. Suppose, I is an individual of the current population and

{Is} is its set of 'strangers' .

•:. Explorative Partial Crossover - Crossover -is performed between I and a

randomly selected stranger from {Is} on a random number of attributes.

27



Chapter 3: Recurring Multistage Evolutionary Algorithm

.:. Explorative Partial Recombination - Recombination is performed between I and

a randomly selected stranger from {Is} on a random number of attributes .

•:. Explorative Partial Mutation - Mutation is performed on a random number of

attributes of I. During mutation of a particular attribute, say Xi, the standard

deviation of the Gaussian mutation is set to the average distance of I from all of

its strangers along the attribute, Xi .

•:. Explorative Complete Crossover - For every attribute Xi of I, a stranger is

selected uniformly at random from {Is} to perform crossover between I and the

stranger on Xi .

•:. Explorative Complete Recombination - For every attribute Xi of I, a stranger is

selected uniformly at random from {Is} to perform recombination between I and

the stranger on Xi •

•:. Explorative Complete Mutation - Mutate every attribute Xi of I. The standard

deviation of the Gaussian mutation is set uniformly at random from 0% to as

large as 50% of the attribute value being mutated in order to ensure large jumps.

3.2.3 Hill Climbing Steps during Exploration

Every time an explorative operator is employed, RMEA makes a number (say, k4) of

uphill moves in the fitness landscape from the newly explored solution to decide whether

to accept or reject the new solution. Suppose, an individual I is altered by an explorative

operator to form a new individual 1'. To make an uphill move from 1', one of its

attributes is selected at random and is mutated by using the Gaussian distribution with a

small standard deviation (e.g., 5% of the value being mutated). If the mutation improves

the fitness of I, the mutation is accepted. Otherwise, the individual is rolled back to the

state prior to this mutation. This process is repeated for k4 times. If the final resultant

individual, I" has a better fitness than the individual I, then I' (not the final individual

I") is accepted and it will replace I. Otherwise, I' and I" are rejected. It is necessary to

determine an appropriate value of Iw" which will be generic enough to prove effective for

a wide range of problems. It is intuitive that the value of Iw, is related to the properties of

the fitness landscape. Since the size of the search space is exponentially related to the

dimensionality of the problem, k4 should be dependant on the dimensionality of the

problem. In addition, the value of Iw, should also be dependant on the degree of

exploration provoked by the explorative operator which alters I to 1'. RMEA picks the
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Explorative Partial Crossover
Input: 1= { (XI, 111),(X2,112), , (Xo, 110)}
Result: I'

begin
I' ~ I [start with an I' identical to I, then alter random no. of attributes ofI']
Is ~ A Stranger of I, selected uniformly at random from the set of strangers {Is}
r ~ a random integer from the range I ... (n-I)
for i ~ 1 to r do begin

Xi ~ an attribute chosen at random from I'
I'.Xi ~ Is. Xi [crossover between I' and Is on Xi]

end do
return I'

end

Explorative Partial Recombination
Input: 1= { (XI, 111),(X2,112), , (x", 110)}
Result: I'

begin
I' ~ I [start with an I' identical to I, then alter random no. of attributes ofI']
Is ~ A Stranger of I, selected uniformly at random from the set of strangers {Is}
r ~ a random integer from the range 1. .. (n-I)
for i ~ 1 to r do begin

Xi ~ an attribute chosen at random from I'
u ~ uniformRandom(O, I)
I'.Xi ~ Is. Xi* U+ I'.Xi *(1-u) [recombination between I' and Is on Xi]

end do
return I'

end

Explorative Partial Mutation
Input: 1= { (XI, 111),(X2,112), , (x", 110)}
Output: I'

begin
I' ~ I [start with an I' identical to I, then alter a single attribute ofI']
r ~ a random integer from the range I .. : (n-I)
for i ~ 1 to r do

Xi ~ an attribute chosen at random from I'
sd ~ average distance ofxj from the same attributes of all the strangers ofl
g ~ GaussianRandom(O, sd)
I' .Xi ~ I' ,Xi+ I' .Xi* g [The actual mutation step]

end do
return I'

end

Algorithm 3.2: Explorative partial operators
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Explorative Complete Crossover

Input:
Result:

begin
for i ~ 1 to n do begin [n = number of attributes in an individual]

Ir ~ A Stranger of I chosen at random from its set of Strangers {Is}
I'.Xi ~ Ir' Xi [crossover for attribute Xi]

end do
retnrn I'

end

Explorative Complete Recombination

Input:
Result:

1= {(X" T]I), (Xl, T]2), , (X", T]n)}
I'

begin
for i ~ 1 to n do begin [n = number of attributes in an individual]

Ir ~ A Stranger of I chosen at random from its set of Strangers {Is}
u ~ uniformRandom(O, I)
1'.Xi ~ Ir. Xi* U + 1'.Xi * (l-u) [recombination of attribute Xi]

end do
return I'

end

Explorative Complete Mutation

Input: 1= {(Xl, T]I), (Xl, T]2), , (X", T]n)}
Result: I'

begin
for i ~ 1 to n do begin [n = number of attributes in an individual]

r ~ uniformRandom[O, 0.50J [r is random, uniformly distributed in 0 ... 0.50]
sd ~ r * I,Xi [the s.d. of gaussian mutation is set to as large as 50% of the

attribute value being mutated, i.e. Xi]
g ~ GaUssianRandom(O, sd)
I'.x, ~ I',Xi + I'.x, * g [mutation of the attribute Xi]

end do
return I'

end

Algorithm 3.3: Explorative complete operators

value of k4 uniformly at random from the range [I ... mI2], where m is the number of

attributes altered by the immediate explorative operator. If the immediate operator is a

complete explorative operator, i.e. it alters all the n attributes of I, k4 is selected from

[I ... nI2], where n is the dimensionality of the problem.
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3.2.4 Exploitation Stage

The objective of the exploitation stage is to reach the optimum points represented by the

local neighbourhoods of the population. Unlike exploration, genetic operators are applied

on the sets of nearest 'neighbours' to achieve this goal. Individuals that are close to each

other in the search space are referred as 'neighbours'. For each individual I, RMEA

keeps track of the nearest N neighbours across the population. As exploitation is focused

to reach the local optima within the neighbourhood, a small step size is appropriate for

mutation. Six genetic operators, similar to the exploration stage, are used for

exploitations. The only difference between the explorative and exploitative operators is

that, recombination and crossover are performed by using neighbours in stead of

strangers and mutations are performed with small step size. In this stage, only

improvements are accepted, i.e., fitter offspring are allowed to replace the weaker parents

to enter the neighbourhood. As a result, population diversity tends to drop in this stage.

fitness i) Parent

?r~Offspring

) attribute s

Figure 3.3: Exploitation through the fitness landscape

Figure 3.3 exemplifies how local operations help to reach the local optima. Two groups

(neighbourhoods) of individuals are marked by oval boundaries. Recombination and

crossover involving individuals within the same neighbourhood and mutation with small

step size produce offspring at the same neighbourhood (marked by underlining). Since

only better individuals are accepted, the two offspring, closer to the local peaks (pointed

by arrows) are allowed to enter the population. This moves the two neighbourhoods

closer to their local optimum points, which is the aim of the exploitation stage.
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The six explorative operators are the 'partial' and 'complete' variants of crossover,

recombination and mutation. Exploitative crossover and recombination differ from the

explorative ones in the way that they involve the neighbours, in stead of the strangers.

The standard deviation of the exploitative partial mutation is picked from the average

distance of the neighbors, rather than strangers, along that attribute being mutated. The

s.d. of exploitative complete mutation is picked uniformly at random from [0% ... 5%] of

the attribute value being mutated, which ensures much smaller jumps than the

explorative mutation that uses as large as 50% of the attribute value as s.d. The pseudo-

code of each ofthe exploitative operators is presented in algorithm 3.4, 3.5.

3.3 Differences with Existing Works

RMEA differs from most existing approaches on a number of aspects. First,

it realizes the possibility of automatically distributing the conflicting goals of

exploitation and exploration across its recurring stages. Unlike some algorithms [12] that

have to manually make decisions whether to switch from one stage to another, RMEA

recurrently switches its stages at regular intervals. Since different stages repeat again and

again, there is no need to make a 'perfect switching' and the conflicting goals of

evolution are automatically distributed across the generations of the recurring stages.

Second, a number of control parameters are introduced in RMEA to provide a precise

control over its degree of conventional, explorative and exploitative nature. Since

optimization problems vary widely from each other, and no simple algorithm can

perform well for all problems [21], an EA should be properly parameterized to enable the

user to control several features of the algorithm. However, unlike some algorithms that

require adequate problem specific knowledge from the user (e.g., threshold values of

diversity [12], or relative weights between fitness and diversity [19, 20]), RMEA

requires no deep knowledge from the user. Besides, an adaptive variant of RMEA,

entitled as Ada-RMEA, is also proposed that requires no parameter from the user.

Third, RMEA defines a number of different exploitative and explorative operations,

which select the participating individuals from a population based on their distance.

Different operators are applied in different stages depending on the explorative or

exploitative objective of that stage. This is quite different from most algorithms [12-22]

that use the same set of operators throughout the evolution.
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Exploitative Partial Crossover
Input: 1= { (x), Tit), (X2, 112), , (x" 11n)}
Result: I'

begin
I' ~ I [start with an I' identical to I, then alter random no. of attributes ofI']
IN~ A neighbor ofI, selected uniformly at random from the set of neighbors {IN}
r ~ a random integer from the range I...(n-I)
for i ~ I to r do begin

Xi ~ an attri bute chosen at random from I'
I'.Xi ~ IN' Xi [crossover between I' and IN on Xi]

end do
return I'

end

Exploitative Partial Recombination
Input: 1= {(Xl. 111), (X2, 112), , (xn, 11n)}
Result: I'

begin
I' ~ I [start with an I' identical to I, then alter random no. of attributes ofI']
IN~ A neighbor ofI, selected uniformly at random from the set of neighbors {IN}
r ~ a random integer from the range I ... (n-I)
for i ~ I to r do begin

Xi ~ an attribute chosen at random from I'
u ~ uniformRandom(O,I)
I'.Xi ~ IN' Xi* U + I'.Xi * (I-u) [recombination between I' and INon Xi]

end do
return I'

end

Exploitative Partial Mutation
Input: 1= { (Xl. 111), (X2, 112), , (x" 11n)}
Result: I'

begin
I' ~ I [start with an I' identical to I, then alter random no. of attributes ofI']
r ~ a random integer from the range 1... (n-I)
for i ~ I to r do begin

Xi ~ an attribute chosen at raildom from I'
sd ~ average distance of Xifrom the same attributes of all the neighbors of I
g ~ GaussianRandom(O, sd)
I'.Xi ~ I',Xi + I'.x; * g [The actual mutation step]

end do
return I'

end

Algorithm 3.4: Exploitative partial operators
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Exploitative Complete Crossover

Input:
Result:

begin
for i ~ 1 to n do begin [n = number of attributes in an individual]

Ir ~ A Neighbor ofI chosen at random from its set of Neighbors {IN}
I' .Xi ~ Ir• Xi [crossover of attribute Xi]

end do
return I'

end

Exploitative Complete Recombination

Input:
Result:

1= {(XI, 1]1), (X2, 1]2), , (xn, 1]n)}
I'

begin
for i ~ 1 to n do begin [n = number of attributes in an individual]

Ir ~ A Neighbor ofI chosen at random from its set of Neighbors {IN}
u ~ uniformRandom(O,I)
I'.Xi ~ Ir• Xi* U+ I'.Xi * (l-u) [recombination of attribute xiJ

end do
return I'

end

Exploitative Complete Mutation

Input: 1= { (XI, 1][), (X2, 1]2), , (xn, 1]n) }
Result: I'

begin
for i ~ 1 to n do begin [n = number of attributes in an individual]

r ~ uniformRandom[O, 0.05) [r is random, uniformly distributed in 0 ... 0.05]
sd ~ r * I'.Xi [the s.d. of gaussian mutation is set to only:::: 5% of the

attribute value being mutated, i.e. Xi]
g ~ GaussianRandom(O, sd)
I'.Xi ~ I.Xi+ I.Xi * g [mutation of the attribute Xi]

end do
return I'

end

Algorithm 3.5: Exploitative complete operators

Fourth, extensive empirical studies have been carried out to analyze and evaluate the

performance of RMEA. A suite of 23 benchmark numerical optimization problems is

used for empirical studies. Few evolutionary systems have been tested on a similar range
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of problems. The experimental results show that RMEA performs better than other

algorithms for most of the problems.

3.5 Review of RMEA

A little reflection about the mechanism of RMEA makes it readily apparent that RMEA

automatically and gracefully distributes the local and global search objectives through its

recurring stages across the generations. The diversity of the population will usually

increase and decrease as a result of the use of strangers and neighbors, respectively, by

the genetic operators. The exploitative stage usually leads to the discovery of local

optimum points and ends with quick decrease in population diversity, while the

explorative stage, in combination with limited hill-climbing, enhances population

diversity, and helps discover new optimum points of the fitness landscape which have

better possibility of being the global optima. No existing evolutionary algorithm exhibit

such an automatic dispense of exploitative, explorative and diversity preserving

objectives.

Although it seems that RMEA is a bit more complex than CEP, its essence is the use of

three different stages with specific object-oriented genetic operators for proper balancing

between exploitations and explorations in the evolution. A drawback of RMEA is the

increased computational cost. For each individual, the algorithm has to keep track of

neighbors and strangers. Besides, hill-climbing steps in the fitness landscape during

exploration require 14extra fitness evaluations.

RMEA represents a new framework for evolutionary processes to balance the

exploitation and exploration. The applicability and usefulness of this framework can

further be determined through extensive research and experiments. In an effort to

discover the potentials of RMEA, this thesis work is oriented towards solving a number

of benchmark numerical optimization problems by employing RMEA, which is

presented in the following chapter.
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Experimental Studies

4.1 Introduction

This chapter presents an in-depth experimental study with RMEA. The performance of

RMEA is evaluated with a suite of 23 benchmark functions and compared with standard

evolutionary algorithm, cellular evolutionary algorithm, diversity guided evolutionary

algorithm, self-organized criticality evolutionary algorithm, classical evolutionary

programming, fast evolutionary programming and improved fast evolutionary

programming. In addition, experiments have been carried out to analyze the sensitivity of

the parameters with results, significance and effectiveness of the exploitative and

explorative operators, roles and effects of the different stages, gradual variation of the

population diversity by the evolutionary process and so on. An adaptive variant of

RMEA, named as Ada-RMEA, is also proposed which adjusts the lengths of the

conventional, exploitative and explorative stages depending on their relative

effectiveness in fitness improvement. Ada-RMEA is also evaluated with the benchmark

functions and compared with RMEA. The effect of adaptation on solutions and stage

lengths is also examined.
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4.2 Benchmark Functions:

RMEA is evaluated by using a suite of 23 benchmark numerical optimization problems.

The objective of each problem is to find the global minimum of a multi-dimensional

function. This becomes particularly difficult when the functions are high dimensional

and multimodal, because the volume of the search space and the number of local minima

increases exponentially with the number of dimensions. The suite of functions include

both unimodal and multimodal, low and high dimensional functions. A brief summary of

the functions is presented in Table 4.1. Among them, functions fi to 17 are unimodal

functions. Function 16 is a step function, which is discontinuous, discreet valued and has

a single global minima. Function h is noisy quartic function, where random(O, 1]

simulates random noise. Functions.18 to fi3 are high dimensional (with dimensionality =

30) multimodal functions, for which the number of local minima increases exponentially

with the number of dimensions. Functions fi4 to 123 are low dimensional multimodal

functions with a smaller number of local minima.

Table 4.1
The 23 benchmarkfunctions used in the experimental study. Here n is the dimensionality 01
the function, S is the domain ollhe variables and Iminis the minimum value 01the function.

A detailed description 01each lunction is provided in Appendix A.
Testlunction n S Imin

L
n

2 30 [-100,100]" 011 (x)= '~IX,

12(x)=L~ollx,1 +ITollx,1 30 [-10,10]" 0

( yn ,
[-100,100]"I (x)= x 30 0

3 Li=! Lj==l J

I,(x)= max, {lx,1, I $i$n} 30 [-100,100]" 0

I, (x) =L~:/ [100(Xi+ 1 -x,'/ +(Xi - 1/] 30 [-30,30]" 0

,
16 (x) =L~o l(lx, + 0.5J) 30 [-100, 100]" 0

I, (x) =L~Ol ix,' + random [0, 1) 30 [-1.28, 1.28]" 0

18(x)=L~ol -Xi sin( V1xil) 30 [-500,500]" -12569

19(X)=L~~1[X;~ lOcos (21lX,)+ 10] 30 [-5.12,5.12]" 0
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Table 4.1 (continued).' The 23 benchmark jUnctions used in the experimental study

Test function n S [min

flO(X)=-20exp( -0.2 J~L:",xl )-exp(~L;", COS21tXi) 30 [-32,32]" 0

+20+e

fll (x) = 40
1
00L;", (xl) - II",cos ()7)+ 1 30

[-600,
0

600]"

'f".'('Y') +-1)' 1f12 (x) =r; n-l , ,

+Li", (Yi -1) [1 + 100in (1tYi+I)] 30 [-50,50]" 0

+ L;" I U (Xi' 10, 100,4)_r(3XX,) +.- I)'[I +",' (2",)1)
f13(x)-O.1 n-' '[ , ] [-50,50]"+Li"1 (Xi -1) 1+ sin (31tXi+l) 30 0

+ L;",u(x"S, 100,4)

[1 25 1 ]' [-65.536,
f14(x)= SOO+Lj",. L' ( _ )6 2 I

) + Xi aij 65.536]"
i == 1

X - II [a _ XI(b; + bi x,) r 4 [-5,5]" 0.000307f15( )-LH ' b' b
- i + jX3+X4

f16 (x)= 4x,' - 2.lx,4 + ~X16+XIx, - 4x~ + 4xi 2 [-5,5]" -1.03162

,
f17(X)=(X' - :~t,x~+ ~ XI- 6) + 10 (1 - 8~ ) cos (xl)+ 10 2

[-5, 10]
0.398

x [0, 15]

f18 (x) =[1 +(x, +X, + I)' (19 -14x, + 3x,' -14x, + 6x1x, + 3X;)] .

2 [-2, 2]" 3
>

x [30+(2x, - 3x,) , (18 - 32x, + 12x~+48x, - 36x, x, +27X~)]

f'9.,O(X)=- L:", ci exp[- L~", aij(xj - Pij)'] m=4,6 4,6 [0, I]"
-3.86,
-3.32

m [ T ] If2l,22,23(X)=- Li", (x-a,)(x-ai) +ci m=S,7,1O 4 [0, 10]" -10
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Minimizing high dimensional multimodal functions is always considered challenging for

any search algorithm. In the experiments with the multimodal functions fs-fi3, escaping

local optima is the focus of our interest, while for unimodal functions !i-h, convergence
rate is also important. Details of each function are available in the Appendix A. Few

algorithms have been tested on a similar range of problems, as RMEA. Results,

presented in the following sections, demonstrate that RMEA performs extremely well on

most of these functions.

4.3 Experimental Setup

During the conventional stage, the same set of parameters, as in [22), is used: population

size, M= 100, tournament size q = 10, initial standard deviations = 3.0 and self-adaptive

standard deviations are used for all the test functions. The iteration counters k" k2 and k3

for the conventional, exploration and exploitation stages are set to 30 for the unimodal

and multimodal functions fj - fj 3, and fj 5. However, for the rest of the functions, which

require smaller number of generations (i.e., 100 or 200), k" k2, and k3 are equally set to

10% of their execution length (i.e., 10 or 20). For the high dimensional multimodal

functionsfj - fj3, the value of 14, i.e., the number of hill climbing steps after exploration, is

picked uniformly at random from [1 ...mI2], where m is the number of attributes affected

by the preceding explorative operator. In each generation, the neighbourhood size is set

randomly to 1% to 5% of the population size. Random values are chosen, because they

always provide better immunity than fixed values against local minima. All these values

are selected after some preliminary experiments and are not meant to be optimal. The

encoding of a chromosome (individual) is pretty straightforward. Each chromosome

possess n pairs of (x, 1/) values, where the i-th pair (Xi, I/i) represents the value of i-th

objective variable, Xi and the corresponding standard deviation, I/i which is used as

standard deviation to mutate Xi by CEP. RMEA is executed 50 times on each function. The

mean and standard deviation of the best solutions found by RMEA are summarized in

tables of the following sections.
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4.4 Experimental Results

4.4.1 Unimodal Functions

The first set of experiments was aimed to compare the convergence rate of CEP and

RMEA for the unimodal functionsfi-h. The average results and the progress of the mean

best solutions with generations found by CEP and RMEA over 50 independent runs are

summarized in Table 4.2 and Figure 4.1, respectively. It is apparent that RMEA performs

much better both in terms of the convergence rate and final solution quality than CEP for

all these functions, except Is- For example, for function fi, RMEA displays a faster

convergence rate than CEP from the very beginning. It quickly minimizes the function

down to 0.00 I within only 700 generations, while CEP requires the entire evolutionary

run of 1500 generations to reach the value of 0.001. RMEA continues to approach the

global optima with the nearly same constant rate, and after 1500 generations, it reaches in

the neighborhood of 10-12, which proves the outstanding convergence rate and fine-tuning

ability of RMEA.

CEP reaches the minimum value of 0.93 and 2.08, respectively, for functions h and 14,
while RMEA minimizes these two functions in the range of 10-45,and 10-10. In fact, the

optimization achieved by CEP for both these functions in 5000 generations is achieved by

RMEA within only 800 generations, as indicated in Figure 4.1. Similar result is found for

17, for which RMEA exhibits its excellent optimization ability by minimizing in the range

of 10-51. From the graphs in Figure 4.1, it is apparent that RMEA shows much better

convergence rate throughout the entire evolution and the rate of minimization does not

seem to stagnate during the late generations. This proves the effectiveness of RMEA with

its periodically alternating stages in fulfilling both exploitative and explorative objectives

during the evolution. The only exception in this group is function Is, for which RMEA

performs worse than CEP.

The step function.f6 is quite different from the others, which is distinguished by plateaus,

and abrupt, discontinuous edges between plateaus. CEP fails miserably for this function

because it employs N(O,I) distribution for mutation, which usually produces small steps,

but all the points around a point within a plateau have similar fitness value, except when

the points cross they plateau boundaries. Hence it is quite difficult for CEP to generate a
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large jump and move from one plateau to another one. On the other hand, RMEA exhibits

a much higher probability of generating longer jumps than CEP since its explorative

operators are focused to do so by combining distant individuals and large mutation steps.

This enables RMEA to move from one plateau to a lower one with relative ease. The rapid

convergence of RMEA within only 350 generations in most of the runs, as we have

observed, supports this claim.

However, this significantly superior performance is not absolutely 'free of cost'. In each

generation, RMEA has to perform some extra computations during the exploration and

exploitation stages. RMEA has to keep track of the neighbors and strangers for each

individual and perform some additional fitness evaluations for hill climbing during

exploration. On the other side, the application of the 'partial' genetic operations by

RMEA requires less cost than the mutation ofCEP that 'completely' alters an individual.

Since the results are considerably better, as illustrated by the following tables, it certainly

justifies the overhead of some extra computations.

Table 4.2
Comparison between CEP and RMEA on unimodal functions, fi--h.

"Mean Best" is the mean of the best jitnction values averaged over 50 Runs.
~

c: c:
0 0 Best
'';:; '';:; Mean Standard'" Algorithm Performance" ~c: Q) Best Deviation;::l c: by•••• Q)

0

CEP 1.09 x 10,3 2.8 X 10,3
fi 1500

1.06 x 10,12 1.13 X 10,12
RMEA

RMEA

CEP 5.62x 10,2 7.2 x 10,3
h 2000

2.66 X 10,11 9.37 X 10,12
RMEA

RMEA
CEP 0.93 1.15

h 5000
1.06 X 10-45 7.19 X 10-46

RMEA
RMEA
CEP 2.08 1.29

14 5000
6.81 X [0,10 3.90 X 10,10

RMEA
RMEA
CEP 12.77 6.28

Is 20000 CEP
RMEA 20.89 0.748

CEP 82.17 151.43
16 1500 RMEA

RMEA 0 0

CEP 5.4 x 10,2 1.7 X 10,2
h 3000

1.24 X 10,51 1.07 X 10,51
RMEA

RMEA
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Figure 4.1: Comparison between CEP and RMEA on unimodalfunclionsfj-/J.
Vertical axis shows the function values, while the horizontal axis shows

no. of generations. Results are averaged over 50 runs.
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4.4.2 Multimodal Functions with Many Local Minima

Multimodal functions have been proved to be quite troublesome for many optimization

algorithms. Functions /"/13 are high-dimensional multimodal functions, with

dimensionality set to 30. Their number of local minima increases exponentially with the

number of dimensions. Table 4.3 summarizes the comparison results for these functions.

It is apparent from the results that RMEA consistently performs significantly better than

CEP for all these functions. CEP appears to be trapped in some poor local optima, while

RMEA successfully gets rid of local minima and finds the global minima. RMEA

discovers the global minima and reaches very close to it for all the functions in this group,

exceptfs. By examining the graphs, some of which are presented in Figure 4.2, a number

of interesting results can be found. The minimization performed by CEP for Is and jio in

9000 and 1500 generations, respectively, is achieved very rapidly i.e. within only 500 and

100 generations by RMEA. RMEA takes less than 400, 350 and 450 generations to

minimize jil-ji3 to a level for which CEP requires 2000, 1500 and 1500 generations,

respectively. It is observed from Figure 4.2 that RMEA shows better convergence rate

from the very beginning and continues with similar convergence rate throughout the

entire evolution. The only exception is function fs, which has the global minima of -

12569.5. RMEA starts with excellent convergence rate for Is and soon minimizes close to

-10000. It then loses its convergence rate and almost stagnates at that value. This behavior

is quite similar to CEP for function Is (andfs). However, RMEA is somewhat better, since

CEP is trapped to a worse local minimum with function value close to -8000. Such

unexpected result with a few functions is nothing discouraging, since optimization

problems have wide-ranging dissimilarity, and a particular approach never works well

with every problem [21].

4.4.3 Multimodal Functions with Few Local Minima

RMEA was applied on the low dimensional multimodal functionsji4-./i3. Each function in

this family has dimensionality S 6, and has only a few local minima. So they are simpler

than the high dimensional multimodal ones. Table 4.4 summarizes the results, averaged

over 50 runs. RMEA performs similar as CEP for the functions ji 6-ji9, and outperforms

CEP for the rest of the functions, i.e., ji4-jiS and ./io-./i3. CEP is trapped in a poor local
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minimum for the functions /21-/13' Although, for the functions JJ6-jj9, both CEP and

RMEA reaches the global minima and show similar behavior, this is due to the fact that

these functions have very low dimensionality (with dimensions = 2, 2, 2 and 4

respectively) and thus quite easy to minimize. However, functions 120-123 have relatively

higher dimensionality (with dimensions = 6, 4, 4, 4) and the better performance ofRMEA

clearly speaks of the superiority ofRMEA.

Table 4.3
Comparison between CEP 'and RMEA on high dimensional multimodal functions fB-fJ3.

"Mean Best" is the mean of the bestfimction values averaged over 50 Runs.

'" Best0 Mean Standard..,
Generations Algorithm Performanceu

'" Best Deviation
'" by~

CEP -8174.8 572.2

Is 9000 RMEA
RMEA .11332.6 61.2

CEP 1.87 x 10-7 9.18 X 10-8

J9 5000 RMEA
RMEA 5.34 x 10-51 1.56 X 10-51

CEP 9.35 4.72

flO 1500 RMEA
RMEA 1.18 x 10-7 6.27 X 10-8

CEP 1.59 x 10-1 0.27
fll 2000 RMEA

RMEA 1.01 x 10-20 4.64 X 10-21

CEP 1.89 2.64
f,2 1500 RMEA

RMEA 2.77 x 10-' 1.09 X 10-4

CEP 1.95 3.79
f,3 1500 RMEA

RMEA 5.99 x 10-3 4.13 X 10-3
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Table 4.4
Comparison between CEP and RMEA on the low dimensional multimodal functions,
fir f23. "Mean Best" is the mean of the best function values averaged over 50 Runs.

Function Value (Mean Best)

Algorithm
fi, fi, fi6 fi, fiB fi9 120 hi h 123

Generatio 100 4000 100 100 100 100 200 100 100 100ns

CEP 1.41 5.9xl0-4 -1.03 0.398 3.0 -3.86 -3.31 -6.98 -8.32 -9.18

RMEA J.l9 3.25xl0-4 -1.03 0.398 3.00 -3.86 -3.38 -7.58 -9.41 -9.96

f

4.5 Comparison with Existing Works

This section compares RMEA with standard evolutionary algorithm (SEA), self-organized

criticality evolutionary algorithm (SOCEA), cellular evolutionary algorithm (CEA),

diversity guided evolutionary algorithm (DGEA), fast evolutionary programming (FEP),

and improved fast evolutionary programming (!FEP). The SEA uses Gaussian distribution

for mutation, with mean = 0 aJ;ldvariance = 1.0/[.y(t+1)]. The SOCEA shows much better

performance than SEA by adjusting the mutation variance following a scheme [38] which

ensures variable step sizes for mutation. The CEA employs a population with 400

individuals, organized as a 20 X 20 grid, with boundaries and comers wrapped around. An

individual can mate with any of its four neighbours, selected at random, and better

offspring replaces the central parent. The DGEA uses the diversity thresholds of d/aw =

5xlO-6 and dhigh = 0.25. Further clarifications on each of the algorithms are available in

[12], [38], [39].
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Four standard benchmark optimization (i.e., minimization) problems are used to compare

the algorithms. Based on the dimensionality, three variants of each problem is employed,

with dimensions = 20, 50, and 100. For each problem, the total number of generations is

set to 50 times the dimensionality of the problem, i.e., for 20,50, and 100 dimensions, the

algorithms are executed for 1000, 2500, and 5000 generations respectively. The four

problems are: Rosenbrock's function:fs, Rastrigin's function:fg, Ackley's function:)io and

Griewank function: )i I. The details and analytical forms of each of the functions are

provided in [12], and also in Appendix A. Table 4.5 compares the performance ofRMEA

with the others.

Table 4.5
Comparison among SEA, SOCEA, CEA and RMEA on a number ofbenchmarkfimctions.

Results represent the mean of the best function values, averaged over 20 runs.

Algorithm Best
Function Dimensions Performance

SEA SOCEA CEA RMEA By

20 8292.3 406.4 149.0 16.79

Rosenbrock
Is 50 41425.6 4783.2 1160.0 48.2 RMEA

100 91250.3 30427.6 6053.8 97.8

20 11.12 2.87 1.25 4.53 x 10,12

Rastrigin
50 1.18x 10,19h 44.67 22.46 14.22 RMEA

100 J 06.21 86.36 58.38 4.93 x 10,25

20 2.49 0.63 0.23 1.76 x 10-6

Ackley
50 2.87 1.52 0.65 3.26 x 10,10 RMEAiio

100 2.89 2.22 1.14 2.23 x 10,12

20 1.17 0.93 0.64 25.99 x 10,13

Griewank
50 1.61 1.14 1.03 1.26 x 10,19 RMEAiii
100 2.25 1.62 1.17 1.21 x 10,23
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The excellent performance of RMEA is apparent from the results of Table 4.5. RMEA

outperforms the others by several orders of magnitude for all the four functions. For

example, for the 100 dimensional variant of the Rastrigin, Ackley and Griewank

functions, CEA performs minimization down to 106.21, 2.89, and 2.25, while RMEA

minimizes them to a level as low as 10-8, 10-4,and 10-8 respectively. For the Rosenbrock

function, all the SEA, SOCEA, and CEA are far away from the global minima of zero,

while RMEA has rapidly converged much closer to the global minima, which is evident

from the results.

Table 4.6 compares RMEA with DGEA on the same set of functions. DGEA controls the

diversity of the population in an explicit manner [12], and shows significantly better

performance than the SEA, SOCEA and CEA. Both DGEA and RMEA are executed for

the same number of generations for each function, while DGEA * is executed until the

best solution value does not improve for 500 generations.

Table 4.6 exhibits the superiority of RMEA over DGEA and DGEA *. Results show that

RMEA outperforms both DGEA and DGEA * on almost all the functions. DGEA * shows

better performance only with the low dimensional variant of the Rosenbrock function Is,
while RMEA surpasses DGEA * by orders of magnitude for all the rest of the functions.

This performance from RMEA is quite encouraging, since DGEA * always gets the extra

favour of executing more generations than the others, until its fitness values stagnate.

SUmmarizing all these results, it becomes apparent that RMEA exhibits superior

performance to all the other approaches.

Fast evolutionary programming (FEP), first introduced In [22], employs cauchy

distribution, in stead of the widely used gaussian N(O,l) distribution, to mutate the

individuals. FEP is evaluated with the same suite of 23 benchmark functions, and it has

demonstrated good performance, especially with the high dimensional multimodal

functions, which are considered as the most difficult family of functions for optimization.

Another improvement over FEP, Improved Fast Evolutionary Programming (IFEP)

combines the features of CEP and FEP by using both gaussian N(O,I) and cauchy(l)

distributions in order to produce two offspring from each parent, and accepting only the

better one. IFEP further improves the behaviour of FEP and exhibits better performance

than FEP and CEP.
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Table 4.6
Comparison among DGEA, DGEA * and RMEA on a number a/benchmark/unctions.

Results represent the mean 0/ the best fimction values, averaged over 20 runs.

Algorithm Best
Function Dimensions Performance

DGEA DGEA* RMEA By

20 96.00 8.12 16.79 DGEA*

Rosenbrock
is 50 315.39 59.78 48.2 RMEA

.

100 1161.55 880.32 97.8 RMEA

20 2.21 x 10-5 3.37 x 10.8 4.53 x 10-12 RMEA

Rastrigin
1.97 x 10-6 1.18 X 10-19.f9 .50 0.0166 RMEA

100 0.1566 6.56 x 10-5 4.93 X 10-25 RMEA

20 8.05 x 10-4 3.36 X 10-' 1.76 X 10-6 RMEA

Ackley
50 4.61 x 10-3 2.52 X 10-4 3.26 X 10-10 RMEA

fio

100 0.01329 9.80 x 10-4 2.23 X 10-12 RMEA

20 7.02 x 10-4 7.88 x 10-8 25.99 X 10-13 RMEA

Griewank
50 4.40 x 10-3 1.19 X 10-3 1.26 X 10-19 RMEA

fil

100 0.01238 3.24 x 10-3 1.21 X 10-23 RMEA

In the following section, RMEA is compared with both FEP and IFEP. Table 4.7 shows

results on unimodal functions. Results show that RMEA outperforms the others on five

functions, shows similar result on one (/6) and worse performance with only one lfs). The
superiority of RMEA is even by order of magnitude for the functions fi-f4, and j,. For

example, RMEA minimizesh,ji andj, down to 10-11, 10-45, 10-51, while IFEP (or FEP)

minimizes them only to 10-4, 10-2, and 10-3 respectively. For the step functionJ(" RMEA

finds the global minima quite easily, within the first 350 generations in most of the runs,

as we have observed. The only exception in this family is the function is, for which FEP

performs better than RMEA.
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Table 4.8 compares RMEA on high dimensional multimodal functionsls-ji3. FEP (and

IFEP) is better effective for such difficult class of functions [22]. Out of the six

functions, RMEA outperforms both FEP and IFEP in three, even by an order of

magnitude. For 19, jio, and jil RMEA performs minimization to 10-51• 10-7, 10-20 while

IFEP or FEP exhibits minimization only to 10-2, 10-3, and 10-2 respectively. However, for

the remaining three functions: Is, li2 and ji3, FEP performs better than RMEA. An

interesting optimization pattern is observed for Schwefel's problem, Is. Here, the

exploration stage is found to operate in the reverse direction of the exploitation and

conventional stage to deteriorate solution quality. RMEA employs limited number of hill

climbing steps to prevent such situation, but hill climbing seems to fail with exploration,

only for this function. Some more sophisticated hill climbing considering the properties

of the fitness landscape may improve this situation. However, for the low dimensional

multimodal functionsji41z3, RMEA always performs better than (or at least as well as)

FEP and IFEP, as exhibited by Table 4.9. Comparison of the results for the functionsji4,

ji8,JiO,f21,Ji2 andJi3 speaks for the superiority of RMEA. Summarizing all the results, it

may be concluded that, RMEA demonstrates very promising results and some more

investigation with its workings may further improve its performance.
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Table 4.7
Comparison among FEp, IFEP and RMEA on unimodal/unclions,JJ-j7. "Mean Best"

is the mean o/the best/unction values averaged over 50 Runs.
"NA. " means result is not available in [22].

~

'" '" E
0 0 oJ:: Best.., .~ ."E Mean Standard Performance" ~
'" " 0 Best Deviation= '" Oll by
""' " :;;:

"
FEP 5.7x 10" 1.3 x 10"

fi 1500 IFEP 4.6 x 10-5 N.A. RMEA
RMEA 1.06 x 10-12 1.l3 X 10-12

FEP 8.1 x 10-3 7.7 X 10"

ji 2000 IFEP 2.44 x 10-4 N.A. RMEA
RMEA 2.66 x 10-11 9.37 X 10-12

FEP 1.6 x 10-2 1.4 X 10-2

fi 5000 IFEP N.A. N.A. RMEA
RMEA 1.05 x 10.•5 7.19 X 10.•6

FEP 0.3 0.5

14 5000 IFEP N.A. N.A. RMEA
RMEA 6.81 x 10-10 3.90 X 10-10

FEP 5.06 5.87

is 20000 IFEP N.A. N.A. FEP
RMEA 20.89 0.748

FEP 0 0

16 1500 IFEP N.A. N.A. RMEA,
FEP

RMEA 0 0

FEP 7.6 x 10-3 2.6 X 10-3

fi 3000 IFEP N.A. N.A. RMEA
RMEA 1.24 x 10-51 1.079 X 10-51
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Table 4.8
Comparison among FEp, IFEP and RMEA on high dimensional multimodal/unctions,
fa-/J3. "Mean Best" is the mean o/the best/unction values averaged over 50 Runs.

"NA. " means result is not available in {22}.

~
c: c: ].9 0 Best..g - Mean Standard- .t:: Performance0 ...,c:

'"
0 Best Deviation;:l c: Oil by

"" '" :;;;:
()

FEP -12554.5 52.6

is 9000 IFEP N.A. N.A. FEP

RMEA -11332.6 61.2

FEP 4.6 x 10-2 1.2 X 10-2

h 5000 IFEP N.A. N.A. RMEA

RMEA 5.34xlO-51 1.56 x 10-51

FEP 1.8 x 10-2 2.1 X 10-3

iio 1500 IFEP 4.83 x 10-3 N.A. RMEA

RMEA I.I8x 10-7 6.27 x 10"

FEP 1.6 x 10-2 2.2 X 10-2

iii 2000 IFEP 4.54 x 10-' N.A. RMEA

RMEA 1.01xlO-2O 4.64 x 10-21

FEP 9.2 x 10-6 3.6 X 10-6

ii, 1500 !FEP N.A. N.A. FEP

RMEA 2.77 x 10-4 1.09 x 10-4

FEP 1.6 x 10-' 7.3 X 10-5

ii3 1500 IFEP N.A. N.A. FEP

RMEA 5.99 x 10-3 4.13xlO-3
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Table 4.9
Comparison among FE?, IFEP and RMEA on low dimensional multimodalfunctions,
fir/i3. "Mean Best" is the mean of the bestfunction values averaged over 50 Runs.

"N.A. " means result is not available in [22].

Function Value (Mean Best)

Algorithm
/14 jj8 jj9 hI h2 h,jj; jj6 /17 ho

.

Generations 100 4000 100 100 100 100 200 100 100 100

FEP 1.22 5.0xl0-4 -1.03 0.398 3.02 -3.86 -3.27 -5.52 -5.52 -6.57

lFEP N.A N.A. N.A. N.A. N.A. N.A. N.A. -6.46 -7.10 -7.80

RMEA 1.19 3.25xlO-4 -1.03 0.398 3.00 -3.86 -3.38 -7.58 -9.41 -9.96

'"uii ..: ..: .s ~ ..: ~ ..: ..: ..: ..:.m .m1;; E ;>. eLl
~ :~ :~ eLl :~ eLl eLl

~

eLl

~~CQ ::E ::E
~

::E
~~ ~ ~ r/J r/J ~ r/J ~

'"p..

4.6 Experiments with Components of RMEA

This section presents a nwnber of experiments with results in order to closely observe and

achieve insights on different aspects of RMEA. The sensitivity of the parameters with

solution quality, significance of the different operators, and roles of the different stages in

RMEA are exainined in the following sections.

4.6.1 Parameters

kJ, k2 and k3 are used in RMEA to define the length of its conventional, explorative and

exploitative stages. The sensitivity of these parameters with the optimization performance

is examined in this section. Table 4.10 shows the results of RMEA, which are averaged

over 10 independent runs, with different values of k), k2 and k3 for 9 functions randomly

selected from the functions ii-fJ3. Functions iicfi3 are ignored because they are quite
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simple in comparison to the others due to their low dimensionality. The results show that

RMEA is not significantly sensitive to kJ, k2 and k3. When the lengths of the stages are too

short (e.g., 10) or too long (e.g., 100), the results are slightly worse. Somewhat better

results are obtained with moderate stage lengths (e.g., 30 or 60). It is observed from Table

4.10 that the best results are always found with moderate stage lengths (i.e., 30 or 60).

However, results are quite satisfactory for every choice of parameter values shown in

Table 4.10. It, therefore, indicates that RMEAis not critically sensitive to kt, k2 and k3.and

any moderate choice of values can produce nearly similar results.

Table 4.10
Effect of varying lengths of the conventional, exploration and exploitation stages.

k}, k1, k3 are the lengths of the stages respectively.

Short Stages Moderate' Moderate' Prolonged
Function Stages Stages Stages Best

k,= k,= k,= 10 k,= k,= k3= 30 k,= k2= k3= 60 k,= k,= k,=100

fi 3.53 x 10,11 1.06 X 10,12 4.72 X 10,11 1.23 x 10.7 Moderate'

h 8.52 x 10,38 1.06 X 10,45 2.49 X 10-45 7.22 X 10-40 Moderate'

14 3.86 x 10'. 6.81 X 10,'0 1.27 x 10.10 1.95 x 10,10 Moderate'

h 8.30 x 10-45 1.42 X 10,51 7.31 X 10,50 1.03 X 10-45 Moderate'

Is -9843.93 -11332.6 -10614.86 -8328.66 Moderate'

fio 1.17 x 10,6 1.18 X 10,7 5.87 X 10.5 3.64 X 10,5 Moderate'

fit 6.63 x 10". 1.01 X 10,'0 6.89 X 10.18 2.75 X 10-15 Moderate'

fiz 3.12 x 10-4 2.77 X 10-4 3.28 X 10-4 6.88 X 10" Moderate'

fi3 2.83 x 10" 5.99 X 10,3 1.42x 10'3 5.71 x 10,3 Moderate'

In fact, what is crucial in RMEA is not the length of the stages, but their recurring nature.

This is established by the results summarized in Table 4.11, where conventional,

exploration and exploitation stages are run sequentially, not in a recurring manner. These

schemes are named as sequential multi-stage evolutionary algorithm (SMEA). Depending
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on the sequencing of the stages, three different variants of SMEA are specified here. The

first variant, SMEAc. ER, ET starts with conventional stage and executes it for the first one-

third of the total generations needed for minimizing a function. Then explorative stage

continues for the next one-third and finally exploitative stage executes for the last one-

third of the total generations. For example, to minimize Ji for 1500 generations, SMEAc,

ER, ET executes the conventional stage for 500 generations, followed by explorative stage

for 500 generations, followed by exploitative stage for the last 500 generations. Another

variant, SMEAER, c, ET executes the stages in this order: exploration stage, followed by

conventional stage, followed by exploitative stage. The third variant, SMEAER, ET, C

executes the explorative stage first, then exploitative stage and finally concludes with the

conventional stage. These three non- recurring variants of SMEA are applied on seven

functions, chosen randomly fromJi:fi3. The results of the experiments are averaged over

50 independent runs and compared with RMEA in Table 4.11.

Table 4.11
Comparison between SMEA and RMEA on a number of unimodal and multimodal
functions. RMEA outperforms the non-recurring SMEA variants in every case.

Function SMEA C.ER.ET SMEA ER, C, ET SMEA ER, ET, C RMEA Best

ii 8.77 x 10,8 2.60 X 10-4 1.48 X 10,5 1.06 X 10.12 RMEA

14 4.87 x 10,9 1.14 X 10.6 1.76 X 10,6 6.81 X 10,10 RMEA

h 2.73 x 10,29 8.08 X 10,33 2.97 X 10,33 1.24 X 10,51 RMEA

iio 1.3 I X 10-4 3.02x 10,3 5.30 x 10-4 1.18 X 10,7 RMEA

iii 8.39 x 10,16 1.12 X 10,12 8.98 X 10,12 1.01 X 10,20 RMEA

in 6.26 x 10,3 1.80 X 10,1 9.86 X 10,2 5.99 X 10,3 RMEA

i23 -9.90 -8.3 7 -9.21 -9.96 RMEA

To make fair comparisons, all three variants of SMEA employ the same number of

conventional, exploration and exploitation stages in total as RMEA, but they do not mix

and interleave different stage. The results in Table 4.11 show that, RMEA performs

significantly better than the variants of non-recurring SMEA. This proves the necessity of

interleaving and mixing different stages regularly instead of trying to make a perfect
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switch from one stage to another. Generally, an evolutionary approach needs to escape

from several local minima when exploring through the fitness landscape for optimization.

Such a situation makes a recurring and randomized algorithm more appropriate than a

sequential and static approach. The results ofRMEA, when compared with that of SMEA,

make this fact apparent.

4.6.2 Operators

RMEA uses neighbors and strangers for recombination and crossover operators. It

therefore keeps track of the neighbors and strangers throughout the evolution for each

individual of the population. Besides, the standard deviation of mutation is also carefully

decided either from the deviation of other individuals along an attribute or from the

magnitude of the attribute being mutated. To examine whether all these extra

calculations have contributed to the exploitations and explorations, we now introduce

another variant of RMEA, named as naYve-RMEA, which neither use neighbors/strangers

nor controls the mutation standard deviation. To conduct recombination or crossover,

naYve-RMEA selects participants randomly across the entire population. Besides, it

always employs gaussian N(O,l) distribution for mutation. NaYve-RMEA still consists of

a conventional stage similar to CEP, and both exploitation and exploration stages. The

only difference between the exploitation and exploration stages is that, the exploitation

stage accepts better individuals only, while the exploration stage, by some hill climbing

moves, may accept immediate worse individuals, which have potentials to prove better in

the future. NaYve-RMEA is compared with RMEA on the 23 functions. Results from the

following tables 4.12, 4.13 indicate that, naYve-RMEA has performed much worse than

RMEA on all the functions, except slightly better performance only for ji2 and jiJ. This

letdown ofnaYve-RMEA is by order of magnitude forji,h,j3,.f4,h,jio andji,. All these

results exemplify the contributions of neighbors, strangers and controlling of the

standard deviation of mutation behind the effective exploitations, explorations and thus,

superior performance by RMEA.
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Table 4.12
Comparison between RMEA and nai've-RMEA on unimodal jUnctions fi-f7.

Results are averaged over 50 runs.

'"c: c:
.~ .9 Mean Better
" l'! Algorithm Performancec: " Best" c:••• ""

NAIvE-RMEA 6.95 x 10.5

fi 1500 RMEA
RMEA 1.06 x 10-12

NAIvE-RMEA 3.26 x 10"

h 2000 RMEA
RMEA 2.66 x 10-))

NAIvE-RMEA 1.64 x 10-9

jj 5000 RMEA
RMEA 1.05 x 10-45

NAlVE-RMEA 9.66 x 10-2

14 5000 RMEA
RMEA 6.81 x lO-lO

NAIVE-RMEA 78.19

jj 20000 RMEA
RMEA 20.89

NAivE-RMEA o (450 generations)

16 1500 RMEA
RMEA 0(350 generations)

NAivE-RMEA 7.51 x 10-5)

h 3000 RMEA
RMEA 1.24 x 10-51
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Table 4.13
Comparison between RMEA and nai've-RMEA on a number of
multimodal functions. Results are averaged over 50 runs.

"'
~" "0 0 Better

'.;::l .~ Mean Performanceu ~
" g 0 Best:l ~ by"- OJ -<0

NAIVE-RMEA -10259
is 9000 RMEA

RMEA .11322

NAIVE-RMEA 9.74xIO-l3

h 5000 RMEA
RMEA 5.34 x 10-51

NAiVE-RMEA 4_62 x 10-3
iio 1500 RMEA

RMEA 1.18 x 10-7

NATvE-RMEA 1.19 x 10-8

iii 2000 RMEA
RMEA 1.01 x 10-20 .

NAiVE-RMEA 1.62 x 10-5

ii2 1500 NATvE-RMEA
RMEA 2.77 x 10-4

NAlVE-RMEA 2.63 x 10-3

ii3 1500 NAlVE-RMEA
RMEA 5.99 x 10-3

NAIVE-RMEA 1.992
ii. 100 RMEA

RMEA 1.19

NATvE-RMEA -7.27
f,1 100 RMEA

RMEA -7.58

NAlVE-RMEA -8.52
f,2 100 RMEA

RMEA -9.41

NATvE-RMEA -8.03
f,3 100 RMEA

RMEA -9.96
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4.6.3 Stages

Since conventional, exploration and exploitation stages employ different operators, they

affect the population fitness in different ways. An interesting question is: what are the

roles of these stages in evolution, especially in terms of fitness improvement and diversity

preservation? This issue is introduced in this section, and further elaborated in the next

section. To examine the effect of the different stages on fitness, RMEA is parameterized in

three different ways with different sets of values for kl, k2 and kj• In the first setting, which

has been named as RMEAconv, the conventional stage has been set much lengthier than the

other two stages by using kl = 50 with k2= kJ= 10. In the second and third settings, which

have been named as RMEAe'P/o,"" and RMEAe'P/oit, more exploration and exploitation are

allowed by setting k2= 50 (with kl = kJ=lO) and kJ= 50 (with kl = k2=10) respectively.

Table 4.14 shows that RMEAexploye performs better than RMEAeonv and RMEAexp/oil with

6 out of the 9 tested functions. Since all other parameters are kept identical in all the

experiments, the better performance of RMEAexplo.-e indicates that the effectiveness of the

exploration stage for optimization. This is because the exploration stage tries to balance

between the population diversity and solution quality first by applying explorative

operators to reach new regions of the search space and then by applying hill-climbing

steps to discover better, yet diverse individuals. This means exploration is not a basic

operation, rather is a compound operation that uses several hill-climbing steps after the

application of an explorative operator. However, exploration may not be suitable rather

harmful for simple functions where the number of/ocal minima is small. This is possibly

the reason for the worse performance of RMEAe'P/ore with respect to RMEAexploit for fir
fiJ. RMEAexp/oil performs best for these functions. The worse result of RMEAexplore on

some functions suggests that RMEA should employ moderate and equal/nearly equal

proportion of conventional, exploration and exploitation stages to achieve robustness.

Besides, this is also indicative that, a single setting of the parameters, with some extreme

choices for parameter values, usually never performs better for all the problems. Instead,

a moderate choice of parameter values, (e.g. kl = k2 = kJ = 30) usually proves to be more

robust. However, for all the experiments presented in this section, RMEA performs

sufficiently well, which proves again the extra-ordinary effectiveness of RMEA, and the

robustness of its parameters.
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Table 4.14
Effects of varying the proportion of conventional, exploration and exploitation
operations. Exploration stages exhibit exceptionally better performance for
the high dimensionalfimctions,Ji-Ji3, while exploitation stages exhibit
superior performance for the low dimensionalfunctions,Jirf23.

RMEAexploil with RMEAconv with RMEAexplore with
Function Best

kj, k" k, = 10,10,50 kj, k2, k, ~ 50,10,10 k" k2, k, = 10,50,10

fi 2.49 X 10,7 3.22 X 10-4 8.11 X 10,26 RMEAexplore

h 2.19 x 10'2 1.46 X 10,1 2.35 x 10'28 RMEAexplore

fi 3.95 x 10.24 6.95 X 10,20 5.58 X 10.73 RMEAexplore

fio 3.63 x 10-4 5.56 X 10,3 8.23 X 10,14 RMEAexplore

fil 3.13 x 10,12 5.02 X 10,9 1.85 X 10,36 RMEAexplore

fi3 5.93 x 10,1 1.86 X 10,2 4,83 X 10,3 RMEAexplore

121 -9.78 -7.21 -8.81 RMEAexploil

h.2 -10.25 -8.45 -8.77 RMEAexploil

h.J -10.41 -9.91 -9.31 RMEAexploil

4.6.4 Evolution of Diversity and Fitness

This section introduces a new measure of population diversity, named as Neighborhood

Diversity (ND), and examines how ND is evolved throughout the evolution. During each

generation, the neighborhood size, N is set uniformly at random from I% to 5% of the

population size. As mentioned previously, RMEA maintains a list of N nearest neighbors

and N farthest strangers across the population for each individual. Suppose,

M = the size of the population, which is static throughout the evolution

N - [I %...5%] = size of the neighborhood at the current generation

Sj = the set of neighbors (nearest individuals) for individual i

dij = distance (euclidean distance) between individuals i and j
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The neighborhood diversity, ND of the population at the current generation is defined as,

Since the exploitative or explorative operations involve individuals from the same or

different neighborhoods, the proposed measure of population diversity, ND is directly

affected by the exploitative and explorative operators. To examine how ND is evolved,

RMEA is executed on a random selection of 9 functions. While RMEA evolves the

population, the population ND is calculated in each generation and plotted against the

generations for the different functions, and presented in Figure 4.3(a), (b). The graphs

show that ND undergoes periodic rise and fall under the impact of the recurring

exploration and exploitation stages. The same graphs for CEP show only gradual

decrease of ND with the progress of the evolutionary process. If the population diversity

falls by a significant amount, it may lead the search process to be trapped into poor local

optima. Therefore, loss of diversity has been mentioned as the principal cause for

premature convergence [10]. However, RMEA, successfully prevents such unrestrained

fall of diversity with periodic reduction and restoration of diversity, as illustrated in the

graphs.

Consider the graph of function ft in details with logarithmic y-axis in Figure 4.3(b).

While CEP exhibits a gradual decrease of diversity to as low as 0.001, RMEA nicely

allows the diversity to rise and fall in the range of 0.1 to 10, which is high in comparison

to CEP. At the beginning of the evolutionary process, CEP starts to drop population

diversity slower than RMEA, and it maintains more diversity than RMEA up to about

800 generations. Afterwards, the diversity by CEP falls below that of RMEA and it

continues to drop more and more by CEP as its evolutionary process progresses. On the

other hand, RMEA, after an initial quick lose of diversity (due to the exploitative

operations), periodically restores nearly the same level of suft1cient diversity by its

recurring explorative operations. Each time the diversity falls during the exploitation

stage, it is nicely raised in the subsequent exploration stage, without any difficulty or

irregularity, till the end of the evolution. RMEA displays a similar periodic behavior with

diversity for the functions ii, .16, h, fio, fi}, fiz and fi3, while CEP drops the diversity

significantly and it never shows any attempt to recover the diversity.
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Figure 4.3 (a): Evolution of neighborhood diversity with generations, for functions 12,ft,
16,/7, fio,/n fi2 andfiJ. Graphs exhibit that diversity falls drastically by CEP during

the late generations, while RMEA shows periodic rise andfall of diversity.
Similar results are observed for rest of the functions.
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Figure 4.3(b): The Neighborhood diversity vs, generation graphs, reproduced with
logarithmic scale along y-axis. The small values of neighborhood diversity
during the late generations are magnified with the logarithmic scale.

Similar results are observed for rest of the functions.
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In contrast, RMEA periodically restores the lost diversity to a sufficient amount (e.g., 10

in f4 or 100 in fi I). Similar results are found for all other functions, which reveal the

sufficient diversity-preserving potential of RMEA.

Not only does RMEA show periodic characteristics with diversity, but also a regular and

periodic optimization pattern is observed in the progression of the fitness values. To

illustrate the fact, some graphs from the figures 4. I, 4.2 are redrawn in Figure 4.4, but for a

smaller number of generations. The graphs display the fitness vs. generation curves for the

first 350 generations of some functions fromfi-ff3. All of them demonstrate quite similar

optimization pattern. Different color is used to represent the optimizations carried by the

different stages. It is noticeable that both exploration and exploitation stages participate

significantly in the optimization process, while the conventional stage seems to have

relatively weaker fitness gain. The exploration stage initially shows higher fitness gain

than the exploitation stage, which is apparent for the functions./i,h,.17.fil and./iz. This is

natural, because explorations are easier than exploitations at the beginning of the search

process. Afterwards, both explorations and exploitations perform nearly equal role, except

for 17, for which exploitations prove to be more effective afterwards. It is noticeable that

the recurring nature of RMEA is nicely reflected in the progression of fitness curve for all

the functions, which indicates that the periodic nature of the algorithm properly matches

with the characteristics of the fitness landscape, consisting of re-occurring peaks and

valleys. Therefore, these functions pose no difficulty for the algorithm. It is quite appealing

when the properties of an evolutionary system are directly reflected in the progression of

the evolution.
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Figure 4.4(a): Optimization conducted at different rates by the three different stages for
unimodal functions. The horizontal and vertical axes show no. of generations and
the function values respectively. Graphs exhibit that, exploration stage contributes
maximum in optimization, while the conventional stage contributes the least.

65
(~,'" ' ..•",



Chapter 4: Experimental Studies

-6000 Function #08
1000

Function #09

-10000

-- Conventional,
-Exploration
-- Exploitation 10

0.1 .

-- Conventional
-ExplorationI Exploitation

o 100 200 300
0.001

o 100 200 300

100 100000

Function #10 Function #11

10

1

-- Conventional
-Exploration
- Exploitation

10

-- Conventional
-Exploration
-Exploitation

300200100
1
o

10000

300200100

10

0.01
o

0.1 0.001
0 100 200 300 0 100 200 300

1Et-12

10000000 Function #12 Function #13
Conventional

Conventional -Exploration-EKploration - Exploitation- Exploitation 1Et-08
10000

Figure 4.4(b): Optimization conducted at different rates by the three different stages for.
multimodal functions. The horizontal and vertical axes show no. of generations and the

function values respectively. Graphs exhibit that, exploration stage contributes
maximum in optimization, while the conventional stage contributes the least.
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4.7 Adaptation of Parameters

Three user-specific parameters kI, kz and k3, which define the lengths ofthe conventional,

exploration and exploitation stages, control the principal characteristics of RMEA. These

parameters, however, may cause some difficulty for an inexperienced user to specifY. In

addition, fixed values of these parameters throughout the entire evolution may not be

appropriate for some problems. In this section, an adaptive scheme is proposed which

automatically adjusts these parameters based on the effectiveness of the stages. This new

scheme is entitled as Ada-RMEA, reflecting its adaptive ability to adjust the parameters.

The centr!il idea behind the proposed adaptation scheme is using the relative gain (in

fitness) per generation (RGPG) of a particular stage which is an indication of its

effectiveness in the evolution. Suppose, a particular stage starts execution just after the i-

th generation and ends at (i+N)-th generation. During this span of N generations, the

fun t. . ... d fro I(i) l(i+N) Th h ... hi d b th . Ic IOn IS millimize. om to . us, t e optimizatIOn ac eve y e stage IS

(i) _ I (i+N),which may be either positive or negative to indicate improvement or

deterioration, respectively (since minimization is being considered). If the amount of

improvement is expressed as a ratio to the original starting value/til, we get the relative

. [/(i) Iti+NJ] II(i) Wh th I. .. d h N .gam as - "en e re atlve gam IS average over t e generatIOns, we

get the RGPG as:

The RGPG values are calculated for the conventional, exploration and exploitation stages,

which are expressed as RGPGconv, RGPGexpr and RGPGexpt. Their arithmetic mean,

RGPGmean is also calculated. The basic idea for adaptation is, if a stage exhibits higher

RGPG than the average RGPGmean, its length is increased. Otherwise, its length is

decreased. The stage lengths: k" kz and k3 may be adapted using the following formulae:

where, dk] (I) =RGPGconv - RGPGmean,

dkz(l) =RGPGexpr - RGPGmean

dk3(1) = RGPGexpl - RGPGmean
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Figure 4.5: Adaptive recurring multistage evolutionary algorithm (Ada-RMEA)

These formulae ensure that if a particular stage shows higher RGPG, its length IS

increased. However; to ensure continuity and stability of the evolutionary process, two

further considerations are employed, too. Firstly, the values of k" k1, and k3 are always

maintained within the range [10 ... 501, since too short or too long execution of a particular

stage may not be beneficial for the optimization process (Table 4.10). Secondly, k" k1, k3

are not allowed to be changed by more than 10% of their previous values at a single step.

This regulation ensures smoother changes of the behavior of the evolutionary process.

The flowchart of Ada-RMEA is presented in Figure 4,5, with its pseudo-code in

algorithm4.1.
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I. Initialize Parameters. Generate Initial Population.

2. for krgenerations [Conventional Stage]

Mutate each individual

Execute tournament among parents and offspring to get the next generation

3. for k2generations [Exploration Stage]

for each individual, I

Update the set of neighbors of I

Randomly choose one of the six explorative operators

Apply the operator on I to obtain a new individual I'

Perform some uphill steps from I' to decide whether to accept or reject it.

4.for k3 generations [Exploitation Stage]

for each individual, I

Update the set of neighbors ofI

Randomly choose one of the six exploitative operators

Apply the operator on I to obtain a new individual I'
Accept I' if it has better fitness than I. Otherwise Reject.

5. If the best solution found is acceptable or the maximum number of generations has
been elapsed, conclude RMEA and output the best individual of the last generation.
Otherwise continue.

6. Acijust the values of kj, k2 and k3 based on the relative gain per generation (RGPG)

of the conventional, exploration and exploitation stages.

7. Return to step 3 and start another cycle of conventional, exploration and
exploitation stages.

Algorithm 4.1: Adaptive recurring multistage evolutionary algorithm

4.7.1 Experimental Results

This section presents the results of applying Ada-RMEA on the suite of 23 functions.

Initial values of kt, k2, and k3 are set to 30. To make fair comparison with RMEA, all

other parameters are kept identical. Table 4.15 compares the results of Ada-RMEA with

RMEA on unimodal functions, fi- 17. Results show that Ada-RMEA always performs
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better than RMEA for these functions, with the only minor exception of fs. This proves

that, emphasizing the stages with better fitness gain promotes the performance of RMEA

.further. Table 4.16 compares Ada-RMEA on high dimensional multimodal functions,.k

/13. Again, it is noticeable that Ada-RMEA performs better than RMEA. Table 4.17

shows the comparison results on the low dimensional multimodal functions, fi4- In.
These results are somewhat similar to RMEA and sometimes better for Ada-RMEA,

especially for the relatively complex functions in this family:/z],/zz, and/z3•

Table 4.15
Comparison between RMEA andAda-RMEA on unimodalfimctions,fj-fi.

Results represent the mean 0/ the best/unction values, averaged over 50 runs.

Algorithm

Function Generations BETTER

RMEA ADA-RMEA

fi 1500 1.06 x 10-12 1.20 X 10-15 ADA-RMEA

j, 2000 2.66 x lO-n 1.21 X 10.12 ADA-RMEA

h 5000 1.06 X 10-45 4.56 x J 0-68 ADA-RMEA

14 5000 6.81 X 10-10 1.97 X 10-18 ADA-RMEA

Is 20000 20.89 22.88 RMEA

16 1500 0 0 SIMILAR.

h 3000 1.24 X 10-51 1.18 X 10-64 ADA-RMEA

70



Chapter 4: Experimental Studies

Table 4.16
Comparison between RMEA and Ada-RMEA on high dimensional multimodal jUnctions,
fs-fi3. Results represent the mean of the best jUnction values, averaged over 50 runs.

Algorithm
Function Generations BETTER

RMEA ADA-RMEA

Is .9000 -11332.6 -11503.5 ADA-RMEA

h 5000 5.34 X 10-51 8.66 X 10-58 ADA-RMEA

flO 1500 1.18 x 10-' 3.71 x 10-' ADA-RMEA

fll 2000 1.01 X 10-'0 1.69 X 10-21 ADA-RMEA

ii, 1500 2.77 x 10-4 1.95 X 10-4 ADA-RMEA

ii, 1500 5.99 x 10-' 4.33 X 10-' ADA-RMEA

Table 4.17
Comparison between RMEA and Ada-RMEA on low dimensional multimodal functions,
firh3 ..Results represent the mean of the best jUnction values, averaged over 50 runs.

Algorithm
Function Generations BETTER

RMEA ADA-RMEA

ii. 100 1.19 1.08 ADA-RMEA

ii, 4000 3:25xI0-4 J:25x 10-4 SIMILAR

ii, 100 -1.03 -1.03 SIMILAR

ii, 100 0.398 0.398 SIMILAR

ii. 100 3.00 3.00 SIMILAR

ii. 100 -3.86 -3.86 SIMILAR, ..

iio 200 -3.38 -3.38 SIMILAR
.. - .. . -

iiI 100 -7~58 -10:22 ADA-RMEA

ii, 100 -9.41 -9.58 ADA-RMEA

ii, 100 -9.96 -10.21 ADA-RMEA

71



Chapter 4: Experimental Studies

4.7.2 Effects of Adaptation on Stage Lengths

This section describes the effect of adaptation on the lengths of the conventional,

exploration and exploitation stages. Initially, an equal length is used for each stage.

Figure 4.5 shows the lengths of the different stages being changed with generations by

the adaptation scheme. The adaptive process lengthens more effective stages, and

shortens the weaker stages. As illustrated earlier, the exploration stage exhibits the

highest fitness gain, while the conventional stage shows the least fitness gain for most of

the functions. So k], the length of the conventional stage tends to decrease, while kz,

being the exploration stage length, starts to increase from the very beginning. For

example, for functionf2, the evolution starts with k1=kz=k3=30, while it ends with k1=19,

kz=40 and k3=29. This shows that the length of the exploration stage has eventually

become double of the conventional stage. For functionf3, evolution ends with k1= 10,

kz=44 and k3=18, which means the exploration stage completely dominates the other two

stages in the optimization process. The exploration stage also outperforms the others for

functionf4, as the evolution ends with k1= 10, kz=50and k3=30.

However, all the three stages contribute significantly for some functions ..For example,

for the function h,the evolution ends with k1= 26, kz=32 and k3=32.Similar scenario is

found for f6 and 19, where the exploration stage takes away a few generations from the

copventional stage, However, a completely opposite scenario is fOUl1din case pf fs for

which the evolution ends with k1= 49, kz=IO andk3=50. So, exploration stage suffers

miserably in this function. As we have observed, the exploration stage operates against

the ongoing optimization performed by the conventional and exploitation stages for this

function. Each time the conventional and exploitation stages minimize fsby some

amount,. the exploration stage starts execution and deteriorates the solutions to some

extent. So, the adaptive RMEA truncates its stage length to the minimum (i.e., 10).

However, in almost all the functions, the exploitation stage contributes nearly, or slightly

less than one-third of the total optimizations. For example, for liz, the exploration and

exploitation stages end with identical strength .(k1=16, kz=33, k3=33). Also for li3,
-exploitation stage contributes more than the others (k1=23,.kz=24, k3=34).
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Figure 4.6: Effects of adaptation on lengths of the conventional, exploration and
exploitation stages. Vertical axis shows the proportion of conventional, exploration

and exploitation stages. Horizontal axis shows no. of generations.
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In summary, all the stages contribute somewhat more or less in the minimization process.

This is quite natural, because searching is a complex task and each stage has its particular

strengths (and limitations, too) to overcome the barriers and continue the search in order

to reach the global optimum. The results presented in this section clearly establish the

significance and necessity of each of the conventional, exploration and exploitation

stages during the search process.
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Conclusions and Future Works

5.1 Conclusions

RMEA introduces a novel framework for evolutionary algorithms to unravel the

conflicting goals of exploitation and exploration during evolution. RMEA has

demonstrated very promising results, outperforming several other existing algorithms on

a number of benchmark problems. However, worse performance with only a few

functions is nothing unusual, because no evolutionary approach can perform better for

every problem [21]. Such an inspiring performance from RMEA is well-desired, because

RMEA employs quite a different mechanism than the others. However, RMEA needs to

perform some extra computations to keep track of a set of neighbors and strangers for

every individual, and to perform extra fitness evaluations during the hill-climbing steps

after exploration.

RMEA realizes the possibility of distributing the conflicting goals of exploitation and

exploration across its recurring stages. Since RMEA repeats its stages again and again, it

does not need to make an explicit decision of ideal switching from one stage to another.

Instead, its recurring stages ensure that the different phases of evolution are
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automatically distributed across the generations. While most algorithms seem to stagnate

during the late generations, RMEA still continues optimization at a graceful rate. This is

. because the alternating and repeating stages ensure better immunity from stagnation.

The framework presented by RMEA is generic enough to be effectively extended to

many other existing algorithms. As every EA has to maintain a population of potential

solutions, it may readily introduce the participation of neighbors and strangers in the

genetic operations. In addition, the algorithm may define its own specific exploitative

and explorative operators, tailored particularly for the problem to be solved. However,

the hill climbing steps after each explorative operation require extra evaluations of

fitness and may increase the computational complexity, especially for some real world

problems that require considerable computations for fitness evaluations.

Three parameters - k1, k1, k3 define the proportion of conventional, explorative and

exploitative operations during evolution. RMEA is not critically sensitive to these

parameters. We have tested with several sets of values from the range of[IO ... 100], and

RMEA always performed well. However, moderate and equal values are preferred for

these parameters (e.g., k1=k1=k3=30). The amount of hill climbing steps after exploration

has been made dependant on the amount of exploration caused by the immediate

explorative operator. The neighborhood size is set randomly to I%-5% of the population

size during the advent of each generation. All these choices are just 'rational' and they

are not meant to be optimal. RMEA is quite robust with all these parameter values. In

case when the user has no prior problem-specific knowledge, the default values may be

safely assumed as they have performed well with every problem we tested. However, we

have also presented an adaptive variant of RMEA, i.e., Ada-RMEA, which adjusts the

values of k], kz, and k3 based on the effectiveness of the different stages. Ada-RMEA

shows better results than RMEA because it extends more effective stages and shortens

weaker stages. More importantly, Ada-RMEA requires no problem specific knowledge

from the user.
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5.2 Future Works

i) Incorporating the fitness landscape information to guide the algorithm: The

algorithm considers all individuals across the search space in similar fashion, without

considering its position and prospects within the fitness landscape. The properties of

the fitness landscape are also ignored for defining neighbors and strangers,

exploitations, explorations, and for determining the necessary number of uphill steps

(i.e., k4) after explorative operations. Some approaches, e.g. [13], have reported

significant improvements by guiding the algorithm using the information of the

fitness landscape. So, it remains to be seen how the fitness landscape information can

be incorporated into the algorithm for exploitation, exploration, hill climbing and for

defining neighbors and strangers. We hope to explore this possibility in future.

ii) Dynamic Size for Neighborhoods and Population: The current implementation of

RMEA uses the same number of neighbors and strangers for each individual

throughout the search space. This ignores the actual distance among the individuals.

Besides, a static population size is also used throughout the entire evolution. But the

different phases of a search process usually requires varying amount of support from

the population. Maintaining a dynamic population size has been proved effective for

some previous works [40]. So, it remains to be seen whether dynamic size for the

neighborhoods and population can produce better performance for RMEA.

iii) Regarding Both Fitness and Diversity for Adaptation: The adaptive variant of

RMEA, i.e., ada-RMEA considers only fitness improvements by the different stages

to adapt the stage lengths, without considering their effects on diversity. The

reinsertion scheme is also solely based on fitness. So, a further possibility of research

with RMEA is to employ both fitness and diversity information in order to adapt the

parameters and stage lengths of RMEA, and to test how the adaptive system

performs on some benchmark problems which demand preservation of adequate

population diversity throughout the evolution.

iv) Combining RMEA with Other Algorithms: RMEA employs generic and simple

genetic operations, e.g., recombination, crossover and mutation for both exploitation

and exploration. But there exists several kinds of algorithms, e.g., greedy and

77



Chapter 5: Conclusions and Future Works

machine learning algorithms, which may better exploit the current population

information to constitute a more effective exploitation (and exploration) stage. So,

there are lots of possibilities to check how different algorithms may be employed for

exploitation and exploration to improve the performance ofRMEA further.

v) Parallel Implementation of RMEA: RMEA is particularly suitable for parallel

implementation. The conventional, exploration and exploitation stages may run in

parallel as separate independent modules, while a central control module may get

feedback from them from time to time in order to initiate some important procedure,

like exchange of individuals between modules or recombination of the best

individuals from different modules. This may significantly improve the performance

of RMEA, especially for complex optimization problems.

vi) Evaluate RMEA on Other problems: RMEA has displayed successful results on

numerical optimization problems. There exist numerous complex problems,

including many real world ones. So it remains to be seen how RMEA performs on

other problems. We hope to explore this possibility in the future.
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Appendix A

Benchmark Functions

A. Sphere Model
30

II(x)=Lx,',
i""!

B. Schwelel's Problem 2.22
30 30

12(x) =L Ix,l +IT Ix,l,
j", I ;=1

min (I,) = 12 (0,0, ... ,0) = °
C. Schweftl's Problem 1.2

-1O$x,$IO

,
13(X)=~(tXj)' -100$xj$100

min (13) =/3(°,0, ... ,0)=0

D. Schweftl's Problem 2.21

14(x) =max, {lx,l, I $i$30},

min (14) =14(0,0, ... ,0) = °
E. Generalized Rosenbrock's Function

-100 $x, $100

'9[ , ']I, (x) =B 100 (x, +1 -x;) +(x, - I) ,

min (15) =15(1,1, ... ,1)=0

F. Step Function

-30 $x. $ 30,

-100 $x $100,
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G. Quartic Function i.e. Noise
30

1,(X)=Lix;+random[O, 1),
i= I

min (I,) =1,(0,0, ... ,0)=0

-1.28 :5,Xi :5,1.28

H Generalized Schwelel 's Problem 2.26

18 (x) = - f Xi sin ( jlxil ), -500:5, xi:5, 500
1=1

min (18) = 18(420.9687,420.9687, ... ,420.9687) = 0

I Generalized Rastrigin 's Function

19 (X) = t [X; - 10 cos (21tXi)+ 10],

min (19) =19(0,0, ... ,0) = 0

-5.12:5, Xi :5,5.12

JAckley's Function

llO(x)=- 20 exp(- 0.2 3~tx,') - expUot COS21tX,)+ 20 + e

-32:5, Xi :5,32

K Generalized Griewank Function

1 JO 2 30 (Xi )
11l(X)=40008(Xi)-gCOS VT +1,

min (III) = III (0,0, ... ,0) = 0

1. Generalized Penalized Functions

-600 :5,X :5,600,

1t { 2 29 2 [ ]}112(x)=30 10sin
2
(1tYI) + (Y30-1) + 8(Yi-1) 1 + 10sin

2
(1tYi+l)

3U
+ LU(xi, 10, 100,4)

i=l
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113(x)=0.1 {Sin'(31tX,)+ ~(Xi-lnl +Sin'(31tXi+,)]+(X30-1nl +Sin'(21tX30)]}

30
+ I> (Xi' 5,100,4)

i= 1

-50:<;;xi:<;;50, min (113) =/13(1,1, ... ,1)=0

1
k(xi-at,

where, Yi={(Xi+1) and u(xi,a,k,m)= 0,
k(-xi-at,

M Shekel's Foxholes Function

11.(X)=[5~0 +t. ,1 6 ]-'

J-I } +I:(x, -a,J
i=l

-65.536:<;;Xi <65.536, min (II') = I" (-32, -32) '" 1

where, (a.)=(-32 -16 0 16 32
'J -32 -32 -32 -32 -32

N. Kowalik's Function

-32 0 16
-16 32 32

32)
32

11 [ x, (b; + bix,) ]'
Ils(x)=I: ai- 2 ' -5:<;;xi:<;;5

i~' bi +bix,+x.

min (I,,) '"I" (0.1928, 0.1908, 0.1231, 0.1358)

'" 0.0003075

0. Six-Hump Camel-Back Function

116(x) = 4x,' - 2.1x,' + ~ x,' + XIx, - 4x~ + 4xi,

xnin = (0.08983, -0.7126), (-0.08983,0.7126)

min (116) = -1.0316285
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TableA.]
Coefficients for Kowalik sfunction, fi 5

i a, b.-',
1 0.1957 0.25

2 0.1947 0.5

3 0.1735 1

4 0.1600 2

5 0.0844 4

6 0.0627 6

7 0.0456 8

8 0.0342 10

9 0.0323 12

10 0.0235 14

II 0.0246 16

P. Branin Function
2

f17 (x) =(x2 - :~\ xt + ~ x, - 6) + 10 (1 - 8~ ) cos (x,) + 10,

-5sx,slO,Osx2s15

x ••n = (- 3.142, 12.275), (3.142,2.275), (9.425,2.425)

min (117) = 0.398

Q. Goldstein-Price Function

f18 (x) =[1 +(x, +x2 + 1)' (19 - 14x, + 3x,2-14x2 + 6x, x2+ 3X~)]

x [30 +(2x, - 3x2) 2 (18 - 32x, + 12xt + 48x2 - 36x, X2 + 27X~)]

-2 s x; s 2, min (118) = min (0, -1) = 3

R. Hartman's Family

with n = 3, 6 for fi9 and /io, respectively. 0 s x j s 1. The coefficients: Ci and a'j

are defined in Tables A.2 and A.3, for functions jj9 and /io, respectively. The global

minimum is equal to -3.86 forjj9 and -3.32 for/io, which are reached at the point (0.114,

0.556,0.852) and (0.201, 0.150, 0.477, 0.275, 0.311, 0.657) respectively.
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TableA.2
Coefficients for Hartman function, fi9

ww "I' "' '10 ,j •...

i aij, j = 1,2,3 c, p'j,j=I,2,3
1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 O~7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.038150 0.5743 0.8828

TableA.3
Coefficients for Hartman function, /20

1 aij, j = 1, , .. ,6 c; pij, j = 1, .. " 6

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650

4 17 8 . 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

S. Shekel's Family
m -1

f,3(x)=-L[(x-a,)(x-a/ +c,]
i= I

with m = 5, 7,10 for/2],.h2and.h3, respectively.

o ,.:;x j ,.:;10. These three functions have 5, 7 and 10 local minima respectively.

The coefficients: Ci and aij are defined in Table A.4.

TableA.4
Coefficients for Shekel functions /20, /22, /23

i aij, j = 1, ... ,4 Ci

1 4 4 4 4 0.1

2 I 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 3 3 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5
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