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Abstract

Data warehousing is a key technology in everyday activity, which usually contains

historical data derived from transaction data, but it can include data from other sources. The

objective of a data warehouse is to provide analysts and managers with strategic information

underlying the business to consolidate data from several sources. Unfortunately, the

emergence of e-application has been creating extremely high volume of data that reaches to

.terabyte threshold. The conventional data warehouse management system is costlier in

terms of storage space and processing speed, and sometimes it is unable to handle such huge

amount of data. As a result, queries and analyses are becoming more complex and time

consuming. Therefore, there is a crucial need for the new algorithms and techniques to store

and manipulate these data.

Parallel and distributed data warehouse architectures have been evolved to support

online queries on massive data in a short time. The database compression can be used for

scalable storage and faster data access. In this thesis, we have presented a compression-

based distributed data warehouse architecture for storage of warehouse data, and support

online queries efficiently. We have achieved a factor of 25-30 compression compared to

conventional SQL server data warehouse.

The main computational component of data warehouse is the generation and

querying on the data cube. Our algorithm generates data cube directl/from the compressed

form of data in parallel. The reduction in the size of data cube is a factor of 30-45 compared

to existing methods. The response time has also been significantly improved. These

improvements are achieved by eliminating the suffix and prefix redundancy, virtual nature

of the data cube, direct addressability of compressed form of data and parallel computation.

Experimental evaluation shows the improved performance over the existing systems.

c
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Chapter 1
Introduction

Data Warehouse is a subject oriented, integrated, non-volatile and time-variant

collection of massive data in support of management's decisions. A data warehouse

environment includes an extraction, transportation, transformation, and loading (ETL)

solution, an online analytical processing (OLAP) engine, client analysis tools, and other

applications that manage the process of gathering data and delivering it to business users.

Parallel and distributed architectures of this data warehouse have been evolved to support

online queries on massive data in a short time. Data cube construction is a frequently used

operation in data warehouse. This operation requires computation of aggregations on all

possible combinations of each dimension attribute.

1.1 Problem Definition
As warehouse data grows exponentially, storage and querying on this data still

remain a problem. Today's warehouses are approaching several terabytes of data with a

broader mix of query types, which is not supported by the conventional archiving of data.

As a result, this increased data put a number of strains on physical resources, IT respects

and management spectrum. To overcome this problem, research is done on data warehouse

to meet the local autonomy and expandability in a distributed environment. Parallel

execution dramatically reduces response time for data-intensive operations on large

databases typically associated with decision support systems (DSS) and data warehouses.

Simply expressed, parallelism is the idea of breaking down a task so that, instead of one

process doing all of the work in a query, many processes do part of the work at the same

time.

1.2 Aim and Objective of the Thesis
Performance of the large scale data warehouse can be improved using compression

based distributed warehouse. A number of compression techniques on centralized large

database have recently been proposed [I, 2, 3, 4]. In contrast, a number of distributed C

f<
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warehouse architectures [5, 6, 7, 8, 9, IOJhave been put forward without the application of

compression methods. Integrating these two technologies, this work exhibits a complete

solution to a compression based distributed data warehouse management in a parallel

environment, which belongs to the first part of our contribution, and we named it as

'Distributed Multi -Block Vector Architecture (DMBVA)' .

Next, Pre-computation of the data cube is very critical to improve the response

time ofOLAP queries in data warehouse. However, as the size of the warehouse grows, this

pre-computation becomes a significant performance bottleneck, because the required

computation cost grows exponentially with the increase of dimensions. So it is natural to

consider parallel architecture for this process. Therefore, this thesis demonstrates virtual

.data cube construction directly from the compressed and distributed data warehouse in

parallel on a shared nothing multiprocessor system. We named it as 'Parallel Construction

of Virtual Data Cube (PCVDC)'. Here the data cube is virtual in the sense that there is no

direct storage of dimensional values in the data cube, instead only the block number and

corresponding measure value are stored.

Additionally optimization techniques are applied onto the data cube for better

performance, where suffix redundancy is eliminated, and therefore the resultant cube

drastically reduced to a highly condensed cube. Therefore, the specific aims and possible

outcome of this work are:

• Reducing storage cost using compressed representation of data with direct

addressability.

• Spread the processing load across multiple servers using shared nothing multiprocessor

system.

• Virtual data cube construction directly from the compressed and distributed data

warehouse in parallel.

• Supporting an upper bound of construction and query response time from the

constructed data cube.

• Concurrent online access by multiple users and improved performance III decision

queries.

• Incorporating optimization techniques onto the data cube for better performance.
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1.3 System Overview
The complete system can be divided into four parts. Therefore the overall system is

adjusted into a four tier architecture which is shown in Fig. 1.1. In the tier one, data is

collected from the external source of operational data, which are then extracted,

transformed, loaded, refreshed and stored into the data warehouse server. Next with the

intension of compressing the warehouse data, we apply our Distributed Multi-Block Vector

Architecture (DMBVA) in tier two to store the relational schema in a compressed and

distributed format. DMVBA is an extended modification of CMBVS [4]. Here for

successful storage management, the relational warehouse is compressed and distributed over

multiple column servers. Each column server is associated with a domain dictionary, a large

compressed vector and an index structure. Application server synchronizes among those

column servers. The domain dictionary consists of set of lexemes with corresponding token

values. It is updated dynamically whenever facing a new lexeme. A compressed vector

represents a single column of relational database. Here only the tokens of the corresponding

lexemes are stored and hence compressed.

Information Extract,
Data Warehouse DMBVA

transform, Server ~
sources and load (Tier-! ) Distributed and

Compressed
Data Warehouse

Client Virtual Data
(Tier-2)

Query I
Operation Cube PCVDC

(Tier-4) (Tier-3)

Fig.1.I: Overall system architecture

Next in tier three we have generated the data cube directly from the compressed

vector in parallel. This procedure is named as 'Parallel Construction of Virtual Data Cube

(PCVDC)' and it belongs to the main focus ofthe work. A schedule tree which is generated

from a cuboid lattice by solving a minimum spanning tree problem, guide all through the

data cube construction procedure. For the sake of optimality issue, prefix and suffix

redundancy in the data cube are identified in our approach and eliminated as well. Finally

the clients do their query operation from the virtual data cube with the help of the query

manager, which is synchronized by the application server.

\,
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1.4 Thesis Outlines
In chapter 2, a review of the literature is presented. There, detailed discussion

about different data warehouse architectures, warehouse compression and distribution

techniques, shared nothing multiprocessor system, data cube generation procedures and

different query operations are depicted. We have considered the CMBVS [4] as the basis of

our compression method with some modifications.

Chapter 3 describes our compressed relational architecture - DMBVA, with

detailed analysis of its components - domain dictionary, compressed vector and index

structure. Then the most highlighted part - 'Parallel Construction of Virtual Data Cube

(PCVDC)' algorithm with the data cube file format is exposed. The optimization technique

is presented in the subsequent section. Then the detailed architecture of the query operation

..' . is depicted. The details analytical description of the components of the entire system is also

gIVen.

Chapter 4 contains details of the experimental work that has been carried out and

the discussions on the experiment: Here, various comparisons are made on the basis of.
storage space, construction and query response time against other related work. The

experimental evaluation shows the improved performance over the existing systems.

Chapter 5 presents the comments on the overall system. It also renders the

suggestions for the future research.
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Chapter 2
Literature Review

A data warehouse is a relational database that is designed for query and analysis

rather than for transaction processing. It is a collection of diverse data having the properties

_ subject oriented, integrated, time-varying, and non-volatile. Data warehouse is necessary

to support the management's decision-making process. It has a collection of tools for

cleansing, integrating, querying, reporting, analysis, data mining, monitoring, and

administering data.

• Subject-oriented: Warehouse data is organized around major subjects, such as

customer, product, sales. It focuses on the modeling and analysis of data for decision

makers, not on daily operations or transaction processing. It also provides a simple and

concise view around particular subject issues by excluding data that are not useful in the

decision support process.
• Integrated: Data warehouse is constructed by integrating multiple, heterogeneous data

sources such as relational databases, flat files, on-line transaction records etc. Here data

cleaning and data integration techniques are applied. Consistency in naming

conventions, encoding structures, attribute measures etc. is also ensured among different

data sources.
• Time-variant: The time horizon for the data warehouse is significantly longer than that

of operational systems. Operational database store current value data, whereas

warehouse data provide information from a historical perspective (e.g., past 5-10 years).

Every key structure in the data warehouse contains an element of time, explicitly or

implicitly, but the key of operational data mayor may not contain "time element".

• Nonvolatile: A physically separate store of data is transformed from the operational

environment to the data warehouse. Operational update of data does not occur in the

data warehouse environment, because it does not require transaction processing,

recovery, and concurrency control mechanisms. Rather it requires only initial loading of

data and access of data.
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2.1 Related Work
Research on database compression put a great role on performance improvement

and storage reduction. A dictionary based compression technique HIBASE model [I], is

further extended by the three-layer architecture [2] for sparsely populated and XML data.

Migrating a multi terabyte archive from Object to relational database is depicted in [3]. A

CMBVS architecture which is a disk based compression technique to handle terabyte level

database is introduced in [4].
Alternatively, research on data warehouse distribution and parallelization IS a

modem issue in this time. Some of the distributed and parallel aspects of creating,

maintaining, and querying a data warehouse are outlined in [5]. Teradata's parallel

processing architecture [11] possesses distinct advantages for highly complex, large scale

data warehouse. Cost optimization for distributed data warehouse is addressed in [7] which

is based on a weighted sum of query and maintenance costs. WHIP architecture [12]

performs identification, transformation and incremental integration of distributed

heterogeneous data. SAND Technology [8] proposed new architecture of data warehouse

that reduces storage requirements and therefore costs. Agent-Based Warehouse [10]

architecture put forward a great contribution for seamless integration of new data sources.

Data cube computation algorithm mostly based on sorting and hashing

techniques. PipeSort, Overlap and MemoryCube [14] are sort based where as Pipehash [11]

is hashing based algorithm. Since sorting a terabyte sized data warehouse takes a huge

computation time, our approach is based on hashing technique. Dwarf [15] and PrefixCube

[16] separately present compact data cube structures and addresses the issues of prefix and

suffix redundancy, but their structures store the lexemes of the dimension attributes which

occupy massive space. On the contrary, in our approach, prefix and suffix redundancy is

automatically abolished for the absence of lexemes. Recently, different fast parallel methods

are developed for constructing data cubes [17, 18] based on partitioning and efficient

parallel merge procedure with a cost of lexeme storage. This merge cost is much higher in

case of very large scale data warehouse. In contrast, our approach is based on the vertical

partitioning which completely avoid the redundancy of merging.
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2.2 Scalability of Data Warehouse
In an environment where very large amounts of historical data need to be managed,

Scalability is obviously a major concern. Today's warehouses are approaching several

terabytes of data with a broader mix of query types, which is extreme as no-one has yet got

close to requiring a petabyte (thousands of terabytes) sized data warehouse. Wal-Mart, for

example, already has a data warehouse that contains hundreds of terabytes, yet it estimates

that its implementation of RFID (radio frequency identification), once fully rolled out, will

generate an additional 7Tb of data per day. While some of this additional data may be

discarded, much of it will not, since it will be needed to analyze customer purchasing habits.

The impact of active data warehousing is not so much on the amount of data that

needs to be stored but on the fact that it requires real-time updating of the warehouse. It

. means that the warehouse has to be able to support a broader mix of query types and, most

pertinently, it means that there are far more users that need to access the warehouse. In other

words, there is a major scalability issue, even if it is with respect to user numbers as

opposed to data stored. The truth is that there are only a limited number of traditional

approaches to the scalability/performance issues we have highlighted and we can categorize

these as follows:

1. Split the problem up: One approach can best be categorized as breaking the problem

into its constituent elements. Thus we might have a separate multi-dimensional database for

aggregated queries, a separate analytic engine to cater for complex analytic queries, a

separate operational data store, a separate store to support 'single customer view' type

queries, a separate metadata repository, a separate master data system and so on. This

approach will undoubtedly improve the performance of those queries for which there are

specialized storage engines, which has the subsidiary advantage that it relieves strain from

the main data warehouse. However, it does not really resolve the data storage issue and

introduces new complexities that make the environment more difficult to manage,

especially as it may mean storing data in more than one place.

2. Use federated data warehouses: the idea here is that we have several smaller data

warehouses that talk to one another rather than one large one. The problem is that this is

rarely appropriate because, for many organizations the whole purpose of a data warehouse

is to gather information together so that it can be queried-it only makes sense if we can
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easily sub-divide the organization. Thus, it might make sense for a conglomerate that could

sensibly treat its mining operations as wholly distinct from its cosmetics division, for

. example, but in most cases this will not apply.

3. Throw more hardware at it: This is the true traditional response to performance

and scalability issues. The difference today is that vendors are talking about utility

computing and grid computing. However, both of these approaches treat the symptoms

rather than the disease. The disease is that data warehouses are too BIG and we need to find

a way of reducing their size.

Therefore, our target should be: (i) to store data in a highly compressed form,

typically taking up around IIlOth the space that would otherwise be required. (ii) to

continue the query that data while it is still in the archive and without de-compressing it.

(iii) to rapidly reconstitute the compressed data (or a subset thereof) back into the data

warehouse (or into a new data mart) at any time to perform more complex queries on that

data. To summarize, we would prefer to have data readily available in some fashion but, at

the same time, we would also like to be able to dramatically reduce the size and cost of the

storage needed for the warehouse.

2.3 Data Warehouse Architecture

Data Mining

•

~~~I~SiS
.~ ,... ',~ .'" cO

. ,_w., , ..•

:"~~::.:':.,.--::--':' .
C' __ ,.", ~"'" ,"'

,.,.~.~"'-'-'-

Clients
(Tier 3)

Query/Reporting

•••••••••••••

•.
•

OLAP
Servers

e.g., MOLAP

/ ••

Data Marts

••••••

~."I'. ~ :~~ ,~ .
~ " ~..:-~M~:

••••

•••

Semi
structured

Sources

Information

Fig. 2.I: General data warehouse architecture
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The general data warehouse architecture is depicted in Fig. 2.1. Data is collected

from external sources like semi structured and operational data, which are then extracted,

transformed, loaded, refreshed and stored into the warehouse. The metadata is incorporated

into the data warehouse through the monitoring and integration process. Data marts are

generated by partitioning the warehouse data based on the date, business type, geography,

etc. They are the subset of corporate-wide data that is of value to a specific group of users ..

Its scope is confined to specific, selected groups, such as marketing data mart. Later on,

different OLAP (Online Analytical Processing) tools are generated, from which clients do

their analysis, query processing and different data mining operations.

2.3.1 Noaman's Distributed Data Warehouse
Here the architecture provides a geographically distributed organization with a

Distributed Detailed Data Warehouse (DDDW) and a Centralized Summarized Data

Warehouse (CSDW) [6]. This is because in a geographically distributed organization, there

are two types of decision makers: i) Those who make decisions for the entire organization,

ii) Those who make decisions for one of the organization's branch.

u:wr...o:$2 Ill'" ••
1.1oO:Lo>oll NoiI_
<7Wtt'2_ fIIo&M.

DSS

,,

Fig. 2.2: Noaman's distributed data warehouse architecture [6].

In DDDW, organizations are connected by peer to peer approach. It supports two

types of decision makers by providing single view of data (also called distribution

transparency). In CSDW, summarized data (select/project/aggregated views) from the

",.
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organization's branches are moved to headquarter where the CSDW is located. Hence, it

provides quick response time, efficient analysis, and high security over the most sensitive

data. Summarized data may throwaway potentially useful information. Solution to this

paradox is to link with DDDW that permits drill through.

2.3.2 Teradata's Massively Parallel Processing Architecture

Teradata [11] is an integrated solution which consists of

distributed hardware platform and database software under either

MP-RAS or Microsoft Windows server operating system.

Teradata engineering team has spent the past 20 years extending

and enhancing the scalability and performance of the Teradata

system. The hardware platform uses Intel 32-bit processors

configured in dual processor SMP (Symmetric Multiprocessing)

nodes. Each node contains its own private memory, up to 4GB,

and a private storage pool. Teradata systems scale from I to 512

nodes. The largest production Teradata system currently contains

296 nodes. The nodes communicate via a scalable high-speed

communication interconnect called the BYNET.

2.3.3 Whips Warehouse Architecture

Fig. 2.3: Teradata
system architecture [11]

In Whips [12] warehouse architecture, the sources and warehouse views can be

added and removed dynamically. It is scalable by adding more internal modules. The

changes at the sources are detected automatically. Warehouse is always kept consistent with

the source data by the integration algorithms. Therefore, the warehouse may be updated

continuously. Each source is encapsulated by a source-specific monitor and wrapper. The

monitor is used for detecting changes on the source data and notifying the integrator. The

wrappers translate queries from the internal relational representation to the native language

of its source. Views are defined through a view specifier. There is one view manager for

maintaining each view. The integrator receives sources updates and forwards them to the

relevant view managers. The query processor receives global queries from the view

managers and answers back to the view managers by interacting with the source data
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through the wrapper. Therefore, it poses the appropriate single-source queries to the source

wrappers, which are eventually answered back to the view managers.

AdminisunlOl"
WH AppIlc.allons -

• Wa..nmousc

( View Specifier )
.rWH Wrappu 1

\ ( ViewMgr )
~ " (ViewMgr 1--- ..

" :7"
( IntogrntOl'2£tz Processor )

/~--\ --
( MonitorIWrApper ) ( MoDitorlWrapper ) ( MonitorIWrappel" )

r:ou~t' r:ou~~1 ...... .~

Fig. 2.4: Whips warehouse system architecture [12].

2.3.4 Object-Relational Data Warehouse
The differences of these architectures are "the object-orientation" approach and the

new metadata layer. Objects of Application Intcrface layer receive user's queries,

preprocess th~se queries and then send final request to the Data Warehouse Management

component. Afterward, they obtain the queries results from the deeper layer.

O~ea.Re~onmlnmrlace

Object.Relati<ml Engine

Relati",al Dillabese

Object.Relalionol Database

Fig. 2.5: Object-Relational data warehouse [3].
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.The Data Acquisition objects will extract, transform and load data from different

legacy operational data stores (ODS) to the data warehouse O-R database. In Data

Warehouse Management layer, the object directly accesses data from the O-R database. It

provides services, which bridge the application interface layer and the O-R database.

Metadata shows a mapping between object environment and relational environment. It is

used by the query manager to generate an appropriate query. Various metadata classes are

defined and discussed here. Technical metadata primarily supports technical staff that must

implement and deploy the data warehouse. The business metadata primarily supports

business end users who do not have a technical background, and cannot use the technical

metadata to determine what information is stored inside the data warehouse. The

information navigator metadata is a facility that allows users to browse through both the

business metadata and the data inside the data warehouse. The data stored in O-R DW

differs primarily from DW in relational environment and object-oriented data warehouse.

Depending on the requirements and data types, O-R DW designers can decide to model it as

a "cube", like MOLAP (Multidimensional OLAP), or as object hierarchy, like 03LAP

(Object-Oriented OLAP).

2.3.5 Agent-Based Warehousing System

Retneval Agent

..~." .."."

Translation Agent

Fig. 2.6: Agent based data warehouse [10]
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This system demonstrates how flexible agent architecture can be used for solving a

number of problems associated with collecting data from a number of disparate,

independently managed information sources, where the quality, format, and sources of the

data may change over time. It allows for dynamically adding agents corresponding to new

sources and data formats without altering any other system components. It. allows sharing

of data in different formats to a wide variety of applications. Retrieval agents provide data

extraction, parsing and standardizing services. Repository agents maintain a large repository

of data that they subscribe to in QLI Format. Translation agents provide data structure

conversion services from QLI Format to other formats. Application agents are wrapper style

representatives of various applications in the system.

2.4 Shared Nothing Architecture
There are three dominent themes in building high transaction rate multiprocessor

systems, namely shared memory - multiple processors shared a common central memory

(e.g. Synapse, IBM/AP configurations), shared disk - multiple processors each with private

memory share a common collection of disks (e.g. VAX/cluster, any multi-ported disk

system), and shared nothing - neither memory nor peripheral storage is shared among

processors (e.g. Fault tolerant computer system). Hierarchical model is a hybrid of the

preceding three architectures.

(e) sh"I." nolhlng

C!D-P 8C!D-0-
DD-0- 8
CKl----@- eC!D-0-

•
(b) shared disk

0- 0 0- 00- 0-
0- e 0- 8
0- 8 0- e0- P

()(d) hlHDl'chlcal

Fig. 2.7: Parallel database architectures
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A shared nothing architecture (SN) is a distributed computing architecture where

each node is independent and self-sufficient, and there is no single point of contention

across the system. SN is popular for web development because of its scalability. As Google

has demonstrated, a PWe SN system can scale almost indefinitely simply by adding nodes in

the form of inexpensive computers, since there's no single bottleneck to slow the system

down. Two popular web development technologies, PHP and Ruby on Rails, both

emphasize an SN approach, in contrast to technologies like J2EE that manage a lot of

central state. An SN system may partition its data among many nodes (assigning different

computers to deal with different users or queries), or may require every node to maintain its

own copy of the application's data, using some kind of coordination protocol. In scalable,

tunable, nearly delightful data bases, SN systems will have no apparent disadvantages

compared to the other alternatives mentioned above. Hence the SN architecture adequately

addresses the common case for the distributed data base system.

2.5 Data Warehouse Dimensions
A dimension is a structure that categorizes data in order to enable users to answer

business questions. Commonly used dimensions are customers, products, and time. For

example, each sales charmel of a clothing retailer might gather and store data regarding

sales and reclamations of their Cloth assortment. The retail chain management can build a

data warehouse to analyze the sales of its products across all stores over time and help

answer questions such as:

• What is the effect of promoting one product on the sale of a related product

that is not promoted?
• What are the sales of a product before and after a promotion? •

• How does a promotion affect the various distribution charmels?

Generally the dimensional information itself is stored in a dimension table. In

addition, the database object dimension helps to organize and group dimensional

information into hierarchies. This represents natural 1:n relationships between columns or

column groups (the levels of a hierarchy) that carmot be represented with constraint

conditions. Going up a level in the hierarchy is called rolling up the data and going down a

level in the hierarchy is called drilling down the data. For example, Within the time

dimension, months roll up to quarters, quarters roll up to years, and years roll up to all

••
C I-f .



years. Within the product dimension, products roll up to

subcategories, subcategories roll up to categories, and categories roll

up to all products. Within the customer dimension, customers roll

up to city, cities roll up to state, states roll up to country,

countries roll up to subregion. Finally, subregions roll up to

region, as shown in Fig. 2.8. Data analysis typically starts at higher

levels in the dimensional hierarchy and gradually drills down if the

situation warrants such analysis. Dimensions do not have to be

defined. However, if our application uses dimensional modeling, it is

worth spending time creating them as it can yield significant

benefits, because they help query rewrite perform more complex

types of rewrite.

2.6 Data Warehouse Schemas

15

~

~

~

~

~I customer I
Fig. 2.8: Customer

dimension

A schema is a collection of database objects, including tables, views, indexes, and

synonyms. There is a variety of ways of arranging schema objects in the schema models

designed for data warehousing which are stated below:

2.6.1 Third Normal Form Schema
Third normal form modeling is a classical relational-database modeling technique

that minimizes data redundancy through normalization. When compared to a star schema, a

3NF schema typically has a larger number of tables due to this normalization process. For

example, in Fig. 2.9, orders and order items tables contain similar information as sales

table in the star schema in Fig. 2.1O.

3NF schemas are typically chosen for large data warehouses, especially

environments with significant data-loading requirements that are used to feed data marts

and execute long-running queries. The main advantages of 3NF schemas are that they:

• Provide a neutral schema design, independent of any application or data-usage

considerations
• May require less data-transformation than more normalized schemas such as

star schemas
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customers
,

orders:

II..

order " pl<lducts
items V

Fig. 2.9: Third Normal Form Schema

Queries on 3NF schemas are often very complex and involve a large number of

tables. The performance of joins between large tables is thus a primary consideration when

using 3NF schemas. One particularly important feature for 3NF schemas is partition-wise

joins. The largest tables in a 3NF schema should be partitioned to enable partition-wise

joins. The most common partitioning technique in these environments is composite range-

hash partitioning for the largest tables, with the most-common join key chosen as the hash-

partitioning key. Parallelism is often heavily utilized in 3NF environments, and parallelism

should typically be enabled in these environments.

2.6.2 Star Schema
The star schema is perhaps the simplest data warehouse schema. It is called a star

schema because the entity-relationship diagram of this schema resembles a star, with points

radiating from a central table. The center of the star consists of a large fact table and the

points of the star are the dimension tables. Star schemas are used for both simple data marts

and very large data warehouses.

A star query is a join between a fact table and a number of dimension tables. Each

dimension table is joined to the fact table using a primary key to foreign key join, but the

dimension tables are not joined to each other. The optimizer recognizes star queries and

generates efficient execution plans for them.

A typical fact table contains keys and measures. For example, in the sample

schema in Fig. la, the fact table, sales, contain the measures quantity_sold, amount, and

cost, and the keys cust_id, time_id, prod_id, channel_id, and promo_id. The

dimension tables are customers, times, products, channels, and promotions. The
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products dimension table, for example, contains information about each product number

that appears in the fact table.

Dimension Tobie Dimension Table

times

channels
F,etT,bI9

sales
(arrounu;old,
quantitLsok:l)

customers

products

Fig. 2.1 0: Star Schema

A star join is a primary key to foreign key join of the dimension tables to a fact

table. The main advantages of star schemas are that they:

• Provide a direct and intuitive mapping between the business entities being

analyzed by end users and the schema design.

• Provide highly optimized performance for typical star queries.

• Easy to understand, easy to define hierarchies, reduces number of physical

joins, low maintenance, very simple metadata.

• Are widely supported by a large number of business intelligence tools, which

may anticipate or even require that the data warehouse schema contain

dimension tables.

2.6.3 Snowflake Schema
The snowflake schema is a more complex data warehouse model than a star

schema, and is a type of star schema. It is called a snowflake schema because the diagram of

the schema resembles a snowflake. Snowflake schemas normalize dimensions to eliminate

redundancy. That is, the dimension data has been grouped into multiple tables instead of

one large table. For example, a product dimension table in a star schema might be

normalized into a products table, a product_category table, and a product_manufacturer

table in a snowflake schema. While this saves space, it increases the number of dimension

tables and requires more foreign key joins. The result is more complex queries and reduced

query performance. Fig. 2.11 presents a graphical representation of a snowflake schema.
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supplielS

sales
(amount sok:l,
quantitD,,,ld)

times

channels

Fig. 2.11: Snowflake Schema

2.6.4 Fact Constellation Schema
Multiple fact tables share dimension tables, viewed as a collection of stars,

therefore called galaxy schema or fact constellation. In the Fact Constellations, aggregate

tables are created separately from the detail, therefore it is impossible to pick up, for

example, Store detail when querying the District Fact Table according to Fig. 2.12. The

major disadvantage is that dimension tables are very large in some cases, which can slow

performance; front-end must be able to detect existence of aggregate facts, which requires

more extensive metadata.

Store Dimension

Dist rict Fact Table
f;~:'C".':"'T":"::~"""!
,eDlslrlct!ID
~i:iRODucf
;"~ERioli~~

Fig. 2.12: Fact Constellation Schema

Region Fact Table
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2.7 Multidimensional Data Cube
A data warehouse is based on a multidimensional data model which views data in

the form of a data cube. A data cube allows data to be modeled and viewed in multiple

dimensions. The CUBE BY is a multidimensional extension of the relational operator

GROUP BY, which computes GROUP BY on all possible combinations of grouping

attributes in the CUBE BY clause. Each group-by is called a cuboid. In data warehousing

literature, an n-D base cube is called a base cuboid. The top most O-Dcuboid, which holds

the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a

data cube.

all

product, date

Ii'
product, ate, country

O-D(apex)

I-D

2-D

3-D(base)

Fig. 2.13: Cuboids corresponding to the data cube

The CUBE BY is a very expensive operator, and the size of its result is extremely large

especially when the number of CUBE BY attributes and the number of tuples in the source

relation is large. Therefore, we need to materialize the data cube at least partially. But

selection of which cuboids to materialize is based on size, sharing, access frequency, etc. In

data warehousing literature, an n-D base cube is called a base cuboid.

2.8 Online Analytical Processing (OLAP)
OLAP provides advanced data analysis environment. It supports decision making,

business modeling, and operations research activities. The characteristics of OLAP are:

• Use multidimensional data analysis techniques

• Provide advanced database support

c
"
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• Provide easy-to-use end-user interfaces

• Support complex, ad hoc queries.

• Access large amounts of data (5 years of sales data).

• Analyze relation between many types of business elements (sales,

products, region, and channels).

• Compute and compare aggregated data over hierarchical time

periods (monthly, quarterly, yearly)

• Present data in various perspectives (sales by region vs. sales by

channels within each region).

The typical OLAP operations are:
• Roll up (drill-up): Summarize data. by climbing up hierarchy or by dimension

reduction.
• Drill down (roll down): Reverse of roll-up. Here from higher level summary to

lower level summary or detailed data are achieved.

• Slice and dice: Here project and select operations are performed.

• Pivot (rotate): Reorient the cube, visualization, 3D to series of2D planes.

• drill across: involving (across) more than one fact table

• drill through: through the bottom level of the cube to its back-end relational

tables (using SQL)

Fig. 2.14: OLAP Server arrangement.

.p' .

i
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2.8.1 Multidimensional OLAP (MOLAP)
Since data cubes are such a useful interpretation tool, most OLAP products are

built around a structure in which the cube is modeled as a multidimensional array. These

multidimensional OLAP, or MOLAP, products typically run faster than other approaches,

primarily because it's possible to index directly into the data cube's structure to collect

subsets of data.

However, for very large data sets with many dimensions, MOLAP solutions aren't

always so effective. As the number of dimensions increases, the cube becomes sparser-

that is, many cells representing specific attribute combinations are empty, containing no

aggregated data. As with other types of sparse databases, this tends to increase storage

requirements, sometimes to unacceptable levels. Compression techniques can help, but

using them tends to destroy MOLAP's natural indexing

2.8.2 Relational OLAP (ROLAP)
Data cubes can be built in other ways. Relational OLAP uses the relational

database model. The ROLAP data cube is implemented as a collection of relational tables

(up to twice as many as the number of dimensions) instead of as a multidimensional array.

Each of these tables, called a cuboid, represents a particular view.

Because the cuboids are conventional database tables, we can process and query

them using traditional RDBMS techniques, such as indexes and joins. This format is likely

to be efficient for large data collections, since the tables must include only data cube cells

that actually contain data.

However, ROLAP cubes lack the built-in indexing of a MOLAP implementation.

Instead, each record in a given table must contain all attribute values in addition to any

aggregated or summary values. This extra overhead may offset some of the space savings,

and the absence of an implicit index means that we must provide one explicitly.

2.9 Data Warehouse Compression
The Tera-scale Scientific Data Management [19] uses the compression to archive

the data files in web servers, the query cannot be processed directly in the compressed files.

The decompression is required to make any searching on the data.
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Oracle uses block level dictionary based compression technique. The compression

model incurs some redundancy but a block itself contains all information that is required to

decompress. The compression of Oracle database is to manage large data sets. The details

of the compression model are discussed in section 2.9.5.

The Kx Database Technology uses columnar format [20] to store large database

but does not apply any compression mechanism. Though the columnar format really

exhibits high performance in data access, it is not as fast as the compressed columnar format

shows.

The architecture for multi terabyte, hierarchical data warehouse for continuous,

high-rate object stream archiving relational data in a hierarchical storage system composed

of serialized objects that have been binned and indexed is described in [21]. The

architecture does not apply any compression technique, so obviously the I/O access rate is

high and thus reduces the query performance.

A column oriented compression method C-Store [22] improves the performance of

the DBMS. It is designed mainly to support high performance query processing but has no

guideline about terabyte data management.

2.9.1 Row Store vs Column Store Compression
Database can be compressed in two ways: row or column wise. The benefits of

row store compression are:

• It is Write Optimized.

• We can Insert/delete a record in one physical write.

• Good for OLTP

But it is not good for read most applications like: Data warehouses, CRM (Customer

Relationship Management). However it can be improved by Bitmap indices, better

sequential read, integration of "data cube" products, materialized views etc. DB2, Oracle,

Sybase, SQLServer etc. use the Row Store compression technique. Nevertheless, there may

be a better idea and that is Column Store compression technique. Since, Column Stores are

Read Optimized. Ad-hoc queries read about 10% of the total number of columns. So,

Column store reads 10% of what a row store reads.
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2.9.2 The Implication of Compression on Database Processing

Compression has become now an essential part of many large information systems

where large amount of data need to be processed stored or transferred. The data may be of

any type e.g. voice, video, text, XML, table, etc. No single compression technique is

suitable for all types of data. Lossy compression is use for voice or video data whereas loss-

less compression is for most other data types.

According to Shannon [23], it has been known that the amount of information is

not synonymous with the volume of data. Reducing the volume of data without losing any

information is known as loss-less data compression. Loss-less data compression can be

attractive for two reasons: data storage reduction and performance improvements. Storage

reduction is a direct and obvious benefit but performance improvement arise as follows:

• Main memory access time is in the range of nanoseconds while disk access is

in the range milliseconds. Only a smaller amount of compressed data needs to

be transferred and/or processed to effect any particular operation. Thus, it is

improving I/O processing and hence improving the overall performance.

• A further significant factor is now arising in distributed application using

mobile and wireless communication. Low bandwidth is a performance

bottleneck and data transfers may be costly. Both of these factors make data

compression well worthwhile.

Combining compression with data processing improves performance. Database

systems require providing efficient addressability for data, and generally must provide

dynamic update. It has proved difficult to combine these with good compression

technologies. Much research work has been done in database systems to exploit the benefit

of compression in storage reduction and performance improvement [2].

2.9.3 Compression of Relational Structure

Relational structure can be benefited using compression as follows:

Significant improvement occurs in index structures such as B-tree and R-tree by

reducing the number of leaf pages. Reduction in transaction turnaround time and user

response time as a result of faster transfer between disk and main memory in I/O bound
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system. In addition, since this will reduce I/O channel loading, the CPU can process many

more 1/0 systems and thus channel utilization is increased [24].

Improvement in the efficiency of backup since copies of the database could be kept

in compressed form. This reduces the number of tapes required to store the data and reduces

the time of reading from, and writing to, these tapes [25].

Processing data in compressed form makes it possible for the whole, or the major

part of a database to be memory resident. Main memory access time several orders of

magnitudes faster than the secondary storage access time. Thus improves performance.

The horizontal organization has the advantage that a single disk access fetches all

attribute values in a tuple. Even for non-compressed memory resident databases, where

memory access speeds are much faster, the implementation simplicity is appreciable. A

relation can also be represented as a sequence of column vectors in which corresponding

attribute values in successive tuples is stored adjacently [1].

In a main memory database system (MMDB) the data resides permanently in main

physical memory and memory resident data may have a back up copy on the disk. In

conventional disk based database systems the primary copy of the data resides in the disk

and a small portion of data is memory resident. The distinguishing features of MMDB

described in [26] are the access time of main memory is several orders of magnitude less

than for disk storage. Disk has a high fixed cost per access that does not depend on the

amount of data that is retrieved during the access.

2.9.4 Table Data Compression
Effective exploratory analysis of massive, high-dimensional tables of alpha-

numeric data is a ubiquitous requirement for a variety of application enviromnents for

example of massive data tables is Call Detail Records of large telecommunication systems.

A typical CDR is a fixed length record structure comprising several hundred bytes of data

that capture information on various attributes of each call. These include network level

information (e.g., end point exchanges), time-stamp information and billing information.

These CDRs are stored in tables that can grow to truly massive sizes, in the order of several

terabytes per year. Database compression differs from table compression in many ways.
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Database compression stresses the preservation of indexing-the ability to retrieve

an arbitrary record under compression. Table compression does not require indexing to be

preserved. Database records are often dynamic but the table data are write-once discipline.

Databases consist of heterogeneous data whereas table data are more homogeneous, with

fixed field lengths. Unlike table data, databases are not routinely terabytes in size. The

approach to database compression requires either lightweight techniques such as

compressing each tuple by simple encoding or compression of the entire table. These

approaches are not appropriate for table compression: the former is too wasteful and the

latter is too expensive.

Table compression was introduced by Buchsbaum et.al. [27], as a umque

application of compression based on several distinguishing characteristics. They have

introduced a system called pzip. The basis of the method is to construct a compression plan

studying a very small training set off-line. The plan is based on data dependency. They have

defined two types of data dependency: combinational and differential. If two data intervals

have the compressed size in separate intervals larger than the compressed size in a

combined single interval, the intervals are combinational dependent. Differential

dependency is an explicit dependency between columns. Though pzip outperforms gzip by a

factor of two, partitioning the data determining the dependency is a problem. Optimum

partitioning is not possible using the training data set. The primary focus is to optimize the

compression ratio within a user defined error bound. However none of these methods can be

applied to databases where no loss of information is permissible.

Sparsely-populated table data arises when sometimes data is represented using a

single horizontal table. An example is the sparse bit-map for a digital library, the electronic

marketplace in and the news-portal system in IBM-Almaden [28]. Sparsely populated data

can be compressed using run-length encoding method given in [1].

2.9.5 Compression in Oracle Database
The Oracle RDBMS recently introduced an innovative compression technique for

reducing the size of relational tables [29]. By using a compression algorithm specifically

designed for relational data, Oracle is able to compress data much more effectively than

standard compression techniques. More significantly, unlike other compression techniques,

Oracle incurs virtually no performance penalty for SQL queries accessing compressed
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tables. In fact, Oracle's compression may provide performance gains for queries accessing

large amounts of data, as well as for certain data management operations like backup and

recovery.

In past commercial database systems have not heavily utilized compression

techniques on data stored in relational tables. A standard compression technique may offer

space savings, but only at a cost of much increased query elapsed time. Hence, this trade-off

has made compression not always attractive for relational databases.

Meikel Poess and Dmitry Patapov et.al. [29] recently describe how to compress

Oracle table data in [29], that is an attractive solution for large relational data warehouses. It

can be used to compress tables, table partitions and materialized view.

The compression algorithm used in Oracle for large data warehouse tables

compresses data by eliminating duplicate values in database block (or page). The algorithm

is lossless dictionary-based compression technique. The compression window for which a

dictionary (symbol table) is created consists of one database block. Therefore, compressed

data stored in a database block is self contained. That is, all the information needed to

recreate the uncompressed data in a block is available within that block.

Compressed Block vs. Noncompressed Block
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Fig. 2.15: Oracle Database Compression.

Fig. 2.15 illustrates the differences between compressed versus non-compressed

block. The top part of the Fig. 2.15 shows a typical data warehouse like fact table with row
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ID, invoice Id, customer first name, customer last name and sales amount. There are entries

for five customers showing six purchases. For data warehouse fact table it is very common

to have this highly denormalized structure.

The bottom right part shows how the same data is stored in a compressed block.

Instead of storing all data, redundant information is replaced by links to a common

reference in the symbol table, indicated by the black dots. For each column value in all

columns, based on length and number of occurrences in one block, the algorithm decides

whether to create an entry into the symbol table for this column value. If column values

from different columns have the same values, they share the same symbol table entry. This

is referred to as cross-column compression. Only entire column values or sequences are

compressed. Sequences of columns are compressed as one entity if a sequence of column

values occurs multiple times in many rows. This is referred to as multi-column

compression. This optimization is particularly beneficial for OLAP type materialized views

using grouping sets and cube operators. For instance a cube of a table often repeats the same

values along dimensions creating many potential multi-column values. Multi-column

compression can significantly increase the compression factor and query performance. In

order to increase multi-column compression, columns might be reordered within one block.

For short column values and those with few occurrences no symbol table entry is created

limiting the overhead of the symbol table and ensuring that compressing a table never

increases its size. However, this is transparent to any application. This method improves I/O

performance but the query processing requires a decompression on page by page basis.

2.9.6 Dictionary based HIBASE Compression Approach

The HIBASE [1] approach is a more radical attempt to model the data

representation that is supported by information theory. The architecture represents a relation

table in storage as a set of columns, not a set of rows. Of course, the user is free to regard

the table as a set ofrows. However, the operation of the database can be made considerably

more efficient when the storage allocation is by columns.

The database is a set of relations. A relation is a set of tuples. A tuple in a relation

represents a relationship among a set of values. The corresponding values of each tuple

belong to a domain for which there is a set of permitted values. If the domains are Dj,

\
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D2, , Do respectively. A relation r is defined as a subset of the Cartesian product of the

domains. Thus r is defined as r s:;;D1 x Di x x DR.

2.9.6.1 HIBASE Compression Architecture

The architecture given in Fig. 2.16 is a compact representation that can be derived

from a conventional record structure using the following steps:

• A dictionary per domain is employed to store the string values and to

provide integer identifiers for them. This achieves a lower range of

identifier, and hence a more compact representation than could be achieved

if a single dictionary was provided for the whole database.

• Replace the original field value of the relation by identifiers. The range of

the identifiers is sufficient to distinguish string of the domain dictionary.

The example given in Fig. 2.16 shows that there are only seven distinct

first names, so only a 3-bit can represent this attribute .

First Last
....----- OriginalTable

Name Name
Village Sex District

Abdur m Rampur M angml

NaSir Uddm l'ulPur M M cn~mg

Based Mia Rampur M Tangail

Abduf Re. Full"ur M MymcnSIDg

NasIr M•• uralill M =p ••

Uurna M•• RupgllI\Z F =p" C7ed Relation
. alcha Be urn Rupganz F Nm g""
Parvin I'" Rom •• F Tanga11

\ First Last Village Sex DistrictName Name
000 000 00 0 00

001 001 01 0 01

010 010 00 0 00

000 011 01 0 01

Compression Engine
001 010 10 0 01

011 100 II 1 10

100 100 II 1 II

7
101 100 00 1 00

Id
First Last Village Sex District
Name Name Domain

0 Abdur Rahim Romp" M Tangai! Diactionary
1 Nasir Uddin FulPur F Mymensing

2 Based Mia Vuralia Gnzil'ur ••
3 Ila~ina Rouf Rupganz Narayngonj

4 Salcha Ikgmn

5 Parvin

Fig. 2.16: Compression ofa Relation Using Domain Dictionaries.
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Hence in the compressed table each tuple resume only 3 bits for First Name, 3 bits

for last Name, 2 bits for village, 2 bit for district and 1 bit for sex forming total of 11 bits.

This is notthe overall storage; however, we must take account of the space occupied by the

domain dictionaries and indexes. Typically, a proportion of domain is present in several

relations and this reduces the dictionary overhead by sharing it by different attributes.

2.9.6.2 Dictionary Structure in HIBASE

HIBASE used two alternative representation of the values stored in attribute: token

and lexemes. A token is a sub-range of integers represented in its minimal binary encoding.

Lexemes are a sequence of 0 or more 8-bit characters. The translation of string value to

token is optimized using the minimal number of stored bits. String of decimal digit can be

directly converted into binary at the database designer's discretion. Other data, which can

not be represented directly as an integer, such as character string or real, are translated using

dictionaries although in principle, real can be encoded as primitive data type.

A Dictionary must have Three Characteristics:

• It should map attribute value to their encoded representation during the

compression operation: encode (lexeme).-7token.

• It should perform the reverse mapping from codes to literal values when parts

of the relation are printed out. Decode (token).-7lexeme.

• The mapping must be cyclic such that x=encode (decode (x)).

The structure is attractive for low cardinality data. For high cardinality and

primary key data, the size of the string heap grows considerably and contributes very little

or no compression. The HIBASE compression does not support Unicode which is essential

for current database applications.

2.9.7. Terabyte Data Management System Using CMBVS

In Columnar Multi-block Vector Structure (CMBVS), the multi-block vector

structure stores the relation in column wise format. Each attribute is associated to a domain

dictionary and a dynamic vector. The vector is partitioned into multiple blocks. The vector

accommodates a certain number of blocks in memory. When the number of blocks are

increased, some blocks are swapped to disk. The high cardinality of domain dictionaries are

to "..• ~.
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also partitioned into blocks if necessary. The original tuple value is first searched in the

dictionary, if the value is found in dictionary corresponding token is returned. If the value is

not is not found in the dictionary, it will be inserted into the dictionary and corresponding

token will be returned. It will then be inserted into the vector. The detailed CMBVS

architecture is plotted in Fig. 2.17.

The query can be carried out directly on the compressed form of data. The query

may be optimized if there are multiple attributes are accessed in the query. The query in the

CMBVS only accesses the associated vector and dictionary, so that the va access is

minimized and hence increased the query throughput.
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Fig. 2.17: Terabyte Data Management System using CMBVS

The CMBVS is scalable to very large number of tuples in compressed form. Even

a microcomputer (with 120 GB hard disk) can host huge data sets in compressed form like

terabyte in size. However, the performance degrades as the database size increases.

The CMBVS provides the infrastructure that can be used in distributed system to

manage multi-terabyte database. As the relations are stored in colunmar format, the multi-

block vectors can be distributed over colunm severs. The domain dictionaries are distributed
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over multiple domain servers. The system is scalable to virtually unlimited number of

tuples, by increasing the number of disks in disk array of both column servers and domain

servers.

2.10 Parallel Computation
Parallel systems improve processing and 1/0 speeds by using multiple CPUs and

disks in parallel. Parallel machines are becoming increasingly common, making the study of

parallel database systems correspondingly more important. The driving force behind parallel

database systems is the demands of applications that have to process an extremely large

databases or that have to process an extremely large number of transactions per second (of

the order of thousands of transactions per second ). Centralized and client- server database

systems are not powerful enough to handle such applications.

Distributed databases bring the advantage of distributed computing to the database

management domain. A distributed computing system consists of a number of processing

elements, not necessarily homogeneous, that are interconnected by a computer network, and

that cooperate in performing certain assigned tasks. As a general goal, distributed

computing systems partitions a big, unmanageable problem into smaller pieces and solve it

efficiently in a coordinated manner. The economic viability of this approach stems from two

reasons: (i) more computer power is hamessed to solve a complex task, and (ii) each

autonomous processing element can be managed independently and develop its own

applications. We can define a distributed database (DDB) as a collection of multiple

logically interrelated databases distributed over a computer network, and a distributed

database while making the distribution transparent to the user

2.10.1 Network programming
The Internet Protocol (IP) is at the core of network programming. IP is the

vehicle that transports data between systems, whether within a local area network (LAN)

environment or a wide area network (WAN) environment. Though there are other network

protocols available to the Windows network programmer, IP provides the most robust

technique for sending data between network devices, especially if they are located across

the Internet. Programming using IP is often a complicated process. There are many factors

to consider concerning how data is sent on the network: the number of client and server

0-,
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devices, the type of network, network congestion, and error conditions on the network.

Because all these elements affect the transportation of data from one device to another,

understanding their impact is crucial to success in network programming.

A socket is a connection between two hosts. It can perform seven basic

operations: Connection to remote machine, Send data, Receive data, Close a connection,

Bind to a port, Listen for incoming data, Accept connections from remote machines. on the

bound port. Each socket is associated with a particular protocol either UDP or TCP.

The most important thing to remember about using TCP is that it is a connection-

oriented protocol. Once a connection exists between two devices, a reliable data stream is

established to ensure that data is accurately moved from one device to the other. Although

with TCP our applications do not need to worry about lost or out-of-order data, there is one

huge consideration when we are programming with TCP: the buffers.

Because TCP must ensure the integrity of the data, it keeps all sent data in a local

buffer until a positive acknowledgement of reception is received from the remote device.

Similarly, when receiving data from the network, TCP must keep a local buffer of received

data to ensure that all of the pieces are received in order before passing the data to the

application program.

2.10.2 Threading and Multitasking
A thread is a series of instructions executed independently of any other

instructions within an application. An application always has at least one thread of

execution, but may have many more. Multithreading allows an application to divide tasks

such that they work independently of each other to make the most efficient use of the

processor and the user's time.

Multitasking is the simultaneous execution of multiple threads. Multitasking comes

in two flavors: cooperative and preemptive. Very early versions of Microsoft Windows

supported cooperative multitasking, which meant that each thread was responsible for

relinquishing control to the processor so that it could process other threads. However,

Microsoft Windows NT and later - Windows 98, Windows 2000, and Windows XP support

the same preemptive multitasking that OS/2 does. With preemptive multitasking, the

processor is responsible for giving each thread a certain amount of time (a time slice) in
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which to execute. The processor then switches among the different threads, giving each its

time slice, and the programmer doesn't have to worry about how and when to relinquish

control so that other threads can run. JAVA only work on preemptive multitasking

operating systems, this is what we are focusing on.

st.art()

110 completed

Bl0c:konl/O

Fig. 2.18: State diagram showing the Life cycle of a thread.

Life Cycle of a Thread: At any time, a thread is said to be in one of several

thread states (illustrated in Fig. 2.18). Let us say that a thread that was just created is in the

born state. The thread remains in this state until the program caUs the thread's start method,

which causes the thread to enter the ready state (also known as the run able state). The

highest priority ready thread enters the running state (i.e., the thread begins executing),

when the system assigns a processor to the thread. A thread enters the dead state when its

run method completes or terminates for any reason-a dead thread eventuaUy will be

disposed of by the system. One common way for a running thread to enter the blocked state

is when the thread issues an input/output request. In this case, a blocked thread becomes

ready when the I/O for which it is waiting completes. A blocked thread cannot use a

processor even if one is available. When a running thread caUs wait, the thread enters a

waiting state for the particular object on which wait was caUed. One thread in the waiting

state for a particular object becomes ready on a caU to notify issued by another thread

associated with that object. Every thread in the waiting state for a given object becomes

ready on a caU to notify aU by another thread associated with that object.
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2.11 Summary
This chapter starts with the detailed discussion on data warehouse and the

necessity for its scalability. Here different warehouse architectures are represented in detail

_ some of which are centralized and some are distributed. These architectures give the

inspiration to form the basis of our work for managing the distributed data warehouse. A

comparison among shared memory, shared disk, and shared nothing multiprocessor systems

is discussed, of which shared nothing is chosen in our work because of its scalability. Data

warehouse modeling techniques, where dimensioning and schema designing are focused

here. The main focus of our work is the' parallel construction of virtual data cube from a

distributed compressed data warehouse. Therefore, multidimensional data cube and its

utility in Online Analytical Processing are discussed in this literature. Finally different

compression techniques and parallel environment of distributed data warehouse are depicted

here in detail.
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Chapter 3
System Architecture

This chapter describes the detail analytical model with complete elaboration for

the distributed data warehouse management in a parallel environment using compressed

relational structure. According to the system overview mentioned in section 1.3, the overall

system is partitioned into four tiers. Therefore this chapter starts with the data warehouse

server where the source relation is laid in. Then it's method of compression and distribution

to multiple servers is described in detail. The data cube is constructed in parallel directly

from this compressed and distributed relational structure, which belongs to the main focus

of our work and clearly depicted here. Finally this chapter is concluded with the operational

management of the user query imposed onto the data cube.

3.1 Data Warehouse Server

After collecting data from external sources, it is extracted, transformed, loaded,

refreshed and stored into the data warehouse server (Fig. 3.1). The metadata is incorporated

into the data warehouse through the monitoring and integration process. Data marts are

generated by partitioning the warehouse data based on the date, business type, geography,

etc. They are the subset of corporate-wide data that is of value to a specific group of users.

Its scope is confined to specific, selected groups, such as marketing data mart. A data mart

can itself be a data warehouse.
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Data Warehouse

Data
Mart

Data
Mart

Fig. 3.1: Data Warehouse Server

When a data warehouse has to be built for an organization, we have to define the

business requirements and agreed upon the scope of our application, and created a

conceptual design. Then we translate our requirements into a system deliverable. To do so,

we create the logical and physical design for the data warehouse.

The logical design is more conceptual and abstract than the physical design. In the

logical design, we look at the logical relationships among the objects. In the physical

design, we look at the most effective way of storing and retrieving the objects as well as

handling them from a transportation and backup/recovery perspective. In this section, we

concentrate on the logical design for the distributed data warehouse management in a

parallel environment.

The process of logical design involves arranging data into a series of logical

relationships called entities and attributes. An entity represents a chunk of information. In

relational databases, an entity often maps to a table. An attribute is a component of an

entity that helps define the uniqueness of the entity. In relational databases, an attribute

maps to a column. Therefore our logical design results in (i) a set of entities and attributes

corresponding to fact tables and dimension tables and (ii) a model of operational data from

our source into subject-oriented information in our target data warehouse schema.

Data in the data warehouse must be structured using a schema. A schema is a

collection of database objects, including tables, views, indexes, and synonyms. We can
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arrange schema objects in the schema models designed for data warehousing in a variety of

ways. Most data warehouses use a dimensional model.
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Fig. 3.2: Snowflake schema of a retail data warehouse

The physical implementation of the logical data warehouse model may require

some changes to adapt it to the system parameters - size of machine, number of users,

storage capacity, type of network, and software. However, among all the data warehouse

schemas we have chosen the snowflake schema. The snowflake schema is a more complex

data warehouse model than a star schema. However it inherits some properties of star

schema, therefore we also get the advantages of star schema mentioned in section 2.6.2. It is

called a snowflake schema because the diagram of the schema resembles a snowflake.

Snowflake schemas normalize dimensions to eliminate redundancy. That is, the dimension

data has been grouped into multiple tables instead of one large table. For example, a product

dimension table in a star schema might be normalized into a products table, a

product_category table, and a product_manufacturer table in a snowflake schema. While

this saves space, it increases the number of dimension tables and requires more foreign key
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joins. The snowflake schema of classical retail data warehouse is portrayed in Fig [3.2].

This is collected from the oracle data warehouse corporation [30] and is used through out

our work including the experiments.

A fact table typically has two types of columns: those that contain numeric facts

(often called measurements), and those that are foreign keys to dimension tables. A fact

table contains either detail-level facts or facts that have been aggregated. Fact tables that

contain aggregated facts are often called summary tables. A fact table usually contains facts

with the same level of aggregation. Though most facts are additive, they can also be semi-

additive or non-additive. Additive facts can be aggregated by simple arithmetical addition.

A common example of this is sales. Non-additive facts cannot be added at all. An example

of this is averages. Semi-additive facts can be aggregated along some of the dimensions and

not along others. An example of this is inventory levels, where you cannot tell what a level

means simply by looking at it. From a modeling standpoint, the primary key of the fact table

is usually a composite key that is made up of all of its foreign keys.

Dimension tables, also known as lookup or reference tables; contain the relatively

static data in the warehouse. Dimension tables store the information we normally use to

contain queries. Dimension tables are usually textual and descriptive and we can use them

as the row headers of the result set. A dimension is a structure, often composed of one or

more hierarchies, that categorizes data. Dimensional attributes help to describe the

dimensional value. They are normally descriptive, textual values. Several distinct

dimensions, combined with facts, enable you to answer business questions. Commonly used

dimensions are customers, products, and time. Dimension data is typically collected at the

lowest level of detail and then aggregated into higher level totals that are more useful for

analysis. These natural rollups or aggregations within a dimension table are called

hierarchies.

Hierarchies are logical structures that use ordered levels as a means of organizing

data. A hierarchy can be used to define data aggregation. For example, in a time dimension,

a hierarchy might aggregate data from the month level to the quarter level to the year level.

A hierarchy can also be used to define a navigational drill path and to establish a family

structure. Within a hierarchy, each level is logically connected to the levels above and

below it. Data values at lower levels aggregate into the data values at higher levels. A

dimension can be composed of more than one hierarchy. For example, in the product
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dimension, there might be two hierarchies--one for product categories and one for product

suppliers. Dimension hierarchies also group levels from general to granular. A level

represents a position in a hierarchy. For example, a time dimension might have a hierarchy

that represents data at the month, quarter, and year levels. Levels range from general to

specific, with the root level as the highest or most general level. The levels in a dimension

are organized into one or more hierarchies.

Now as a matter of fact, a fact table can be grown very large which would not be

suitable for the query processing. Hence the concept of materialized view or summary

management comes, which is fairly straightforward. The idea is that we store summary data,

or pre-computed results, instead of detailed data, in our data warehouse, for typical queries

and reports. The result of the query for example, - "What were sales in the west and south

regions for the last three quarters?" can be swiftly processed from the summary table, 'sales

per month by region' than that of the 'sales' fact table, due to its much smaller size (Fig.

3.3). Materialized view has the advantages offaster and robust warehouse query processing.

The optimizer transparently redirects the queries to the summary table. It also supports

hierarchical rollup (ex. day -> month -> year). It optimizes frequent joins on complex

schemas with selective filtering and subset of joined tables.

SALES

(2 GBl

What were sales in the west
and south regions for the
last three quarters?

SALES PER
MONTH

BYREGION

(30 GBl

Fig. 3.3: Example query onto fact and sales summary table

An example query is shown in Fig. 3.4, which is imposed onto the fact table.

Therefore it is the duty of the query optimizer to transparently rewrites query on detailed.

data in some fashion to access data in the materialized view.
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SELECT p.brand, r.country, t.month, SUM(s.amt) tot_sales
FROM sales s, region r, time t, product p
WHERE s.region_ld = r.region_id

AND s.sdate = t.curdate
AND s.prod_code = p.prod_code

GROUP BYp.brand, r.country, t.month
HAVING SUM(s.amt) > 5000000;

SELECT brand, country, month, tot_sales
FROM sales_sumry
WHERE tot_sales > 5000000;

Fig. 3.4: Query rewrites by the query optimizer

3.2 Distributed Multi-Block Vector Architecture
With the intension of compressing the warehouse data, we apply our Distributed

Multi-Block Vector Architecture (DMBVA) to store the relational schema in a compressed

and distributed format. DMVBS is an extended modification of CMBVS [4]. Here for

successful storage management, the relational warehouse is compressed and distributed over

multiple column servers as shown in Fig. 3.5. Here each column server is associated with a

domain dictionary, a large compressed vector and an index structure. Later on data cube is

generated into the column servers in a distributed parallel environment. Application server

stores the measure attributes and synchronizes among those column servers.

Measure-
Attribute: M1, M2

'" MN,

Application ServerQuery Manager

Compr Compr Compr Compr

ession Comp-Vect-A ession Comp-Vect-B ession Comp-Vect-C ession Comp-Vect-D

& Dic-Tab-A & Dic-Tab-B & Dic-Tab-C & Dic-Tab-D

Decom Index-Struct-A Decom Index-$truct-B Decom lndex-Struct-C Decom Index-Struct-D
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Engine ABC
Engine AB

Engine- AC.AD Engine BC. BD. CD

-A Hash Indexing -B Hash Indexing C A -0 B.C,D
Hash Indexing Hash Indexing

Fig. 3.5: General architecture of distributed compressed data warehouse containing a fact

table of four dimensional attributes 'ABCD' and one measure attribute 'M'.
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3.2.1 Domain Dictionary

The domain dictionary consists of set of lexemes with corresponding token values.

It is updated dynamically whenever facing a new lexeme. We have created disk-based

multiple part dictionaries to accommodate huge quantities of lexemes, where some parts

resides in the memory and others are in the disk, which are fetched on demand basis. There

are two main operations in the dictionary. (i) getToken(lexeme): This operation return the

token of the given lexeme. If the lexeme is not present in dictionary, then add it there and

return the corresponding new token. (ii) getLexme(token): It returns the corresponding

lexeme of the token. The size ofthe resultant dictionary in the ith column server is:

C, xL, (3.1)

Where, C, =cardinality of domain attribute, LFaverage length of lexeme, I =index

structure storage size. If p is the number of column servers, then total dictionary size:

pL ( C, xL, )
i=1

(3.2)

Hashing technique is applied to search the dictionary in the ith column server,

Therefore the searching time:

0(1)

3.2.2 Compressed Vector

(3.3)

A compressed vector represents a single column of relational database. Here only

the tokens of the corresponding lexemes are stored and hence compressed. As the main

memory is limited, the entire vector could not be accommodated in memory. So each vector

is partitioned into blocks and a certain number of blocks reside in memory, the others are

kept in the disk. Any operation in the vector ultimately propagated to the block. Multi-block

structure reduces reorganization cost of vector and also reduces the wastage of space. Fig.

3.6 shows the structural design of compressed vector.

Here a vector consists ofkxm blocks, among which m blocks can reside in memory.

Now, a block is the container of some fixed number of compressed elements (tokens).

Actually a block is a collection of some machine words that accommodate the compressed

tokens. The bit string of the elements is mapped to the underlying word units contiguously.
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If the bit string of the last element of a word can not be accommodated then, fraction of the

bit string is stored in that particular word and the rest are shifted to the next word.

Therefore, there is no wastage of space in the block except at the block boundary.

There are some significant features of multi-block structure: Blocks can be added or

removed to accommodate addition, or restructuring of the vector. During evolution of the

database, elements of some attributes may need 'broadening'. Each block can be adjusted

dynamically and incrementally to accommodate changes in the size of element being stored

in it. This block-at-a-time reorganization is the key to enabling the DBMS designer to meet

deterministic maximum update time constraints, and hence to achieve scalable update

performance.

The blocks reside in

Vector block number

0

1 OJ
5"

2
(")

'"5'
0.Ui'
'"

m-1

Fig. 3.6: Structural design ofDMBV A compressed vector

Without this independence of update for individual blocks, the storing of a longer

identifier would require adjustments of the vector width (and hence copying) of the entire

storage of the vector, a task proportionate to the size of the vector. This is one of the most

important aspects in the use of this structure in database systems. The independence of each

block permits data compression to be applied within the block.
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The main operations of the block are, (i) isEmptyO: check whether the block is

empty. (ii) addToken(token): insert a new token to the block. The insertion always occurs

at the end of the block. The element size of the inserting element should be same as the

element size of the block. If the element size of the token is larger than the element size of

the block then widening operation is issued. (iii) getToken(index): This operation returns

the ith token from the block and i must be smaller than or equal total number of elements in

the block. (iv) widen(numBit): Widening operation is issued when the element-size of

inserting token is larger than that of existing element-size. During the widening operation,

all the elements in the block are reorganized and element-size is set to new element-size. To

perform this operation, all the existing tokens are inserted to a temporary wordlist with new

element size then the new element is added to the temporary wordlist. The old wordlist is

deleted and the properties of the block are set with new element-size. (v)

getTupleld(token): This operation returns a set of record-ids from the block that has the

same token found in parameter. This record-id represents the index of matching tuple within

the block (not the database record-id). If no matching token found in the block then it

returns -I.

3.2.2.1 Fixed Number of elements per block (Variable storage size)

Here each block contains a fixed number of elements and hence the memory

requirement for different blocks is different and depends on the size of elements in that

block. This may be fixed when the system designer fixes the number of elements per block.

In practice it does not appear to be a parameter to which the system's performance is

sensitive. To achieve the full space utilization the number of elements in each block is to be

a multiple of word size. This decision also reduces the computational complexity. The size

of element stored in the vector is uniform within any block, but may vary between blocks.

ThiSarrangement though slightly less convenient to manage in terms of memory allocation

provides direct addressability to the lh element by means of a simple some operations.

3.2.2.2 Element to Word Mapping

There are two possibilities of element to word mapping:

• Map the bit string contiguously to the underlying word units (overlapping

elements).

\\;. {.' .~
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• Map the elements of the vector to words in such a way that no vector element

ever overlaps a word boundary of underlying hardware (non-overlapping

elements).

The second option appears to first sight to have a lower level of complexity since

element will be sought only within one hardware defined word. It does, however, suffer

from wastage of space at the word boundary. Depending on the number of elements in the

block, there is another space overhead at the boundary of the block. In overlapping Element

Mapping no space will be wasted at the word boundaries. But there is still wastage of space

at the block boundaries. This wastage ranges from 0 to a maximum of (wordSize-I). We use

the overlapping technique for our thesis considering space efficiency. Therefore, the overall

size of the compressed vector is:

r"./mlimx v lwL-'
1=1 w

Here, n = total number of elements in the vector, m = total number of elements in a block, Vi

= element size in the i'h block (bits), w = word size (bits).

The overall creation time complexity is the sum of the,

(i) Overall widening operation (U= O~ n / mlx log2 m )).

(ii) Time to store the blocks in disk:

o(fn / mlx r,) (3.5)

(iii) Dictionary creation time: total dictionary search time + total block storage time =

(3.6)

Here, Ts = time to store a compressed block into the disk, T d = time to store a dictionary

block into the disk and Bd = size of the dictionary block. Here, the network delay will be

zero, because each compressed vector and its corresponding domain dictionary resides in

the same column server. The flow chart for inserting tokens into vectors is shown in Fig 3.7.

'\n-{
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Fig. 3.7: Flow chart for inserting a token into a compressed vector.

3.2.2.3 Widening Operation

It requires an additional temporary storage because the existing elements need to add

to temporary block with new element size. After the completion of widening the storage

will be released.

Temporary storage = o(W (im:v, l)) (3.7)

Here, m = total number of elements in a block, Vi = width of each element in the i
th

block (bits) and w = word size (bits).

3.2.3 Index Structure

An index file is created if the lexerne is a search key. The index structure is

associated to <lexeme, token> instance. Then we transform lexerne to token using

dictionary and then token is used as a new search key. A hashing technique is used to

extract the specific token from the multi-block vector structure.
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3.3 Parallel Construction of Virtual Data Cube

A data warehouse is based on a multidimensional data model which views data in

the form of a data cube. A data cube, such as sales, allows data to be modeled and viewed in

multiple dimensions. It resembles dimension tables, such as item (item_name, brand, type),

or time (day, week, month, quarter, year) and fact table which contains measures (such as

dollars_sold) and keys to each of the related dimension tables. An example data cube is

shown in Fig. 3.8.
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Fig. 3.8: Multidimensional data cube

Data cube is the computation of aggregation on all possible combination of

dimension attributes. For a base relation R with N dimension attributes {Dl, D2 .... , DN} and

one measure attribute M, the full data cube of R on all the dimensions is generated by

CUBE BY on Dl, D2 .... , DN' it is equivalent to the union of 2Ndistinct GROUP BY. The

CUBE BY is a multidimensional extension of the relational operator GROUP BY, which

computes GROUP BY on all possible combinations of grouping attributes in the CUBE BY

clause. Each group-by is called a cuboid. The CUBE BY is a very expensive operator, and I

the size of its result is extremely large especially when the number of CUBE BY attributes

and the number oftuples in the source relation is large. Data cube can be viewed as a lattice

of cuboids. The bottom-most cuboid is the base cuboid, the top-most cuboid (apex) contains

1
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only one cell and it is already figured out in section 2.7. The number of cuboids in an n-

dimensional cube with L levels is:

nT= n (L.+1) (3.8)
. 1 11=

Among the relational OLAP (ROLAP) and multidimensional OLAP (MOLAP) we

have chosen the ROLAP, because here the cuboids are conventional database tables, we can

process and query them using traditional RDBMS techniques, such as indexes and joins.

This format is likely to be efficient for large data collections, since the tables must include

only data cube cells that actually contain data.

3.3.1 Data Cube File Format

Data cube construction format is depicted in Fig. 3.9. Here the smallest unit is the

record_ID, which is a sequence of bit string. Every single record_ID and its corresponding

measure_Value melded into a cube_Record. Multiple cube_Record form a cube_Word,

where multiple cube_Word fused into a cube_Block. Every cube_Block is independently

addressable so the structure is suitable for large data cube. Here each cube_Block contains a

fixed number of cube_Records and hence the memory requirement for different blocks of

different cuboids may be varied. However the cube_Records of a particular cuboid are

mapped contiguously to the underlying cube_Words (overlapping phenomena). So no space

is wasted at the word boundaries. But there is still wastage of space at the block boundaries.

This wastage ranges from 0 to a maximum of (size of cube_Word-I). Then, multiple

cube_Block form a cube_Vector, alternatively which is called a cuboid. As the main

memory is limited, the entire cuboid may not be accommodated into memory. So a certain

number of cube_blocks are resided in the memory, the others are kept in the disk. Finally all

the cuboids collectively form the resultant data cube.

measure_Value
+

record_ID

Data Cube
cube_Vector
Or Cuboid

Fig. 3.9: Data Cube construction procedure.
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To generate a child cuboid, for example ABC, we store the contents like:

A1B1C1F1, AIBIC2F2 •... , AIAIB1B1ClqFn•Here, AxByCz is the record_ID, Fval is the

corresponding measure value or fact. Ax implies the bit string of the token. x from the

dimension A. This is clarified in Fig. 3.10.

• cube_Record • measure_val

• recordJD •
bit string bit string bit string Factl ~ Bl C2 F2
of~ of Bl ofCl

...

bit string bit string bit string Fmof Ai ofBj ofCk

bit string bit string bit string Fn unused
of Ap ofBq of C,

Fig. 3.10: Relation among the data cube components

We have generated the data cube directly from the compressed vector in parallel.

The cardinality of each dimension attribute domain is known in advance, and each attribute

value is one-to-one mapped to a token value. The token value •zero' is reserved for ALL

value in the GROUP BY operation. A data cube is constructed from a schedule tree,

whereas a schedule tree is generated from a cuboid lattice by solving a minimum spanning

tree problem. This is illustrated in Fig. 3.11 for a four dimensional attribute' ABCD'. Using

this schedule tree, all the cuboids are generated eventually. Here we assume that

[AI2:IBI2:Ie[ 2:IDI. Fig. 3.11 (a) portrait the cuboid lattice. There are two types of data cube

file: root cuboid and child cuboid. Fig. 3 .11 (b) depicts the flow of data cube generation.
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server-D<--RR <->
server-A seIYer-B server-C

(b)

(8)

Fig. 3.11: (a) A cuboid lattice off our dimensional attributes' ABCD' . (b) A Schedule tree

produced from the aforementioned lattice

Here the root cuboid 'ABCD' is generated from the compressed fact table by the

servers A, B, C and D in parallel. Later on, the child and interior cuboids are generated from

their parent cuboids by the individual servers in parallel. A large data cube file is partitioned

into blocks based on the memory capacity for better portability and I/O channel utilization.

The contents of root cuboid are not ordered according to the construction algorithm, a

hashing technique is used here at the times of query. But the contents of the child cuboids

are ordered based on record-IDs. Binary search on a particular cluster is applied here at the

time of query.

3.3.2 PCVDC Algorithm

Steps for Parallel Construction of Virtual Data Cube (PCVDC) are as follows:
\

Step 1: Starting from the first token, each column server extracts a chunk of tokens from

their individual compressed vector in parallel and sends it to the application server.

Step 2: Application server then generate the record_ID's from the received tokens.

Step 3: Application server then broadcast {record_ID, measure_val} to all the column

servers.
Step 4: Each column server inserts the received record _ID & measure _val into a block of

the cube_vector.. (;)

Step 5: Repeat step 1 to 4 until the last token is extracted. (Hence, the root cuboid lis'

generated
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Step 6: Each column server locally computes the child cuboids from its smallest parent

cuboid in parallel as assigned in the schedule tree.

Step 7: Repeat step 6 until the complete data cube is constructed.

The detailed algorithms are depicted below, where Algorithm 3.1 describes the

data cube construction procedure participated by the Application Server, Algorithm 3.2

describes the data cube construction procedure participated by each of the Column Server in

parallel, and finally from root-cuboid to child-cuboid construction sub-procedure by each of

the Column Server in parallel is written in Algorithm 3.3.

Algorithm 3.1: PCVDC in the Application Server

Input: tokens from column server
Output: record_IDs and measure_Values
1. create a server socket
2. create as many as child threads for each column server
3. pass socket acceptance to each thread constructor
4. for each column server thread pardo
5. while(true}do
6. wait to receive a chunk of tokens fromeach column server
7. send this token to the root thread
8. root thread generates the recordJDs using the collected tokens and extract the

corresponding measure values
9. send these record_IDs and measure_Values to the column server
10. ifthe last token had received then break
11. end while
12. end for

Algorithm 3.2: PCVDC in the Column Server
Input: schedule tree, compressed vector file
Output: complete data cube
1. create a thread for this column server
2. create a socket and connect to the server port
3. while EOF of all compressed vector file is not reached do
4. extract a chunk of tokens from the vector
5. send these tokens to the application server
6. wait to receive the recordJDs and the measure_Values from the application server
7. store them to the rootCuboid file
8. end while
9. constructChildCuboid(rootCuboid}

Algorithm 3.3: Constructing Child Cuboid
Input: schedule tree, rootCuboid
Output: child cuboids
1. r +- rootCuboid
2. generate all chiidCuboids of r
3. for each children c of r from leftto rightdo
4. ifc has no children then
5. return to parent cuboid
6. else constructChildCuboid(c}
7. end if
8. end for
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3.3.3 PCVDC Analysis & Evaluation

Let, m = average cardinality of each dimension attributes. n = Average number of tuples

(elements) in compressed vector. d = Number of dimension attributes. b = Total number of

blocks.

• For a single server system, time complexity to construct a data cube:

O(dCd_,md-l+l+dCd_2md-2+' + ... +dC1m1+1)

= O(mdn)+ O(dm d)= O(mdn)

(3.9)

In the case of root cuboid generation: Total number of tuples in the data cube is

md, For each tuple in the data cube, we have to sequentially search all the n tuples of the

first dimensional attribute (vector) to match with the first element of that data cube tuple. If

a match is found then we have to extract the same tuple of the next dimensional attribute

(vector) in order to find a match with the next element of that particular tuple in the data

cube. On an average, there are n/m replicas of each tuple of the domain dictionary in the

vector. So for each tuple in the data cube, total searching for the rest of the d-I dimension

attributes (vectors) is:

~(d -I)
m

(3.1 0)

In the case of child cuboid generation: Since there are total ded-x 'd-x'

dimensional child cuboids of a d dimensional cuboid, for each of this child cuboid, a total of

ind-X+l comparison is made.

• Now, for a multiple server system, time complexity to construct a data cube:

(3.11 )

Here to generate the root cuboid, only n number of searching is made in parallel

through the compressed vectors. Whereas, for child cuboid generation, it is same as single

server system, but the generation is distributed among d number of servers. So a maximum

of md comparison is made. The maximum size ofthe data cube is:

(3.12)

\
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Here, number of dimensions in the source relation is N, so total number of cuboids

is 2N, number of dimension in the cth cuboid is de, cardinality of the jth domain of the c
lh

cuboid is Cej, size of the block-ID is Be and measure value is M in cth cuboid.

3.4 Optimality Issue of PCVDC

Prefix and suffix redundancy are identified in our approach and eliminated as well.

Prefix redundancy is understood by the fact that there is a cube with dimensions A, B and C.

each value of dimension A appears in 4 group-bys (A, AB, AC, ABC) and possibly many

times in each group-by. This prefix redundancy can be further classified into inter-cuboid

and intra-cuboid prefix redundancy. Since there is no direct storage of dimension attribute

values, the prefix redundancy is automatically wiped out.

Suffix redundancy occurs when two or more group-bys share a common suffix

(like ABC and BC). For example, consider a value Bj of dimension B that appears in the

fact table only with a single value Ai of dimension A. Then, the group-bys <Ai, Bj, x> and

<*, Bj, x> always have the same value for any value x of dimension C. More specifically

taking an extreme case as an example, let a fact table R have only a single tuple r = <Az, B \,

C3,M>. Then, the data cube ofR will have 23= 8 tuples, <Az, B\, C3.V I>, < Az, BI, *, Vz>,

V8>. Since there is only one tuple in relation R, we have VI = V Z = ... = V8 = aggr(r).

Therefore, we only need to physically store one tuple <Az, B\, C3,V>, where V= aggr(r). So

the cube for R with 8 tuples can be condensed into one tuple. Our optimization feature

detects and purges this type of redundancy. Algorithm 3.4 depicts the optimal cuboid

construction procedure where the suffix redundancy is eliminated.
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Algorithm 3.4: Constructing Optimal Cuboid
Input: name: cuboid name = 'X1X2 Xn tokens from column server

metadata: name.dat = 'X1X2 Xn'.dat
Output: optimal cuboid
1. Load 'X1X2 ...Xn'.dat into the memory.
2. t ~ 1" tuple going to be added into the cuboid 'X1X2...Xn'
3. while any tuple remains to be added do
4. biD ~ blocklD of t
5. mVal ~ measureValue of t
6. check the existence of t into the metadata
7. if not found
8. add the biD and mVal into the cuboid
9. end if
10. if Xjvali...Xkvalkis a constant suffix of Xivali...Xj-1valj-1,where i <= j <= k, then
11. broadcast (fileName=Xj ...Xk, suffixToken=valj ...vaik, prefixName=

Xi...Xj-1, prefixToken= vali ...valj-1) targeted to the column servers
which contain any cuboid, whose name starts with Xj...Xk.

12. end if
13. t ~ next tuple going to be added into this cuboid
14. end while

Algorithm 3.5: Update Metadata
(Running under an infinite thread on each column server)

Input: broadcastlnfo
Output: updated metadata file
1. if the file addressed in the broadcastlnfo do not exist
2. then create this file.
3. else if the broadcastlnfo is aiready exist
4. then return
5. else6. add 'suffixToken, prefixName, prefixToken' into the file referred as fileName.dat

The general idea is, while generating any cuboid, if there is any possibility of

suffix redundancy then the suffix and prefix related information is broadcast to each of the

column server to update their metadata file with the broadcast information if they are

destined so. Later on, those redundant tuples would not be further generated by the destined

column server. This is because, while constructing their individual cuboid, its associated

metadata is loaded into the memory, and those redundant tuples would be excluded in the

resultant cuboid.

For updating the metadata, a thread is constantly running in each column server to

receive the broadcast information and update its metadata as well if they are destined so.

This metadata updating algorithm is reported in Algorithm 3.5.

o
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3.5 Query from the Data Cube

For centralized systems, the primary criterion for measuring the cost of a

particular strategy is the number of disk accesses. In a distributed system, other issues

must be taken into account:
• The cost of a data transmission over the network.

• The potential gain in performance from having several sites process

parts of the query in parallel.
The relative cost of the data transfer over the network and data transfer to and

from disk varies widely depending on the type of network and on the speed of the disk.

Thus, we cannot focus solely on disks cost or on the network cost. Rather, we must find a

good tradeoff between the two. A detailed query operation is shown in Fig. 3.12.

Cuboid.1.1

Cuboid-1:n

Middleware
Server-1

Query
Manager

Query-1Create a
session for
each client

Application
Server

Query result
in form of

lexemes and
facts

Tokenized
Query

Creale a thread
for each query
imposed onto it.

lexeme
Fact

Projection

Recordjd

Condition

Column Server-m

Column Server-1
Create two pipelining stages for condition and

projection

Recordid Record Cube_ Tokenl
Cube_blockjd Fact jd blockjd Lexeme

Column Server-1
Query-1

Column Server-k

Middleware
Server-j

Fig. 3.12: Query architecture ofPCVDC
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Algorithm 3.6: Ouery Operation

Input: query
Output: resultant dataset
1. Application server creates a client session for each client when client connected to application

server. The client session is created by multithreading.
2. Application server talk over the query manager for each query and the cheapest execution plan

is found out among the many possible execution plans that give the same answer.

3. Translate each query into the SOL form.
4. Select the appropriate Middleware server from its metadata, which is associated with the

column servers under which the query results reside.
5. Middleware server decomposes the tokenized query into individual projection, sort, where

condition, join operation and determine the dependency between them. Then it forwards the
request for projection and condition operation to the pertinent column servers.

6. Column servers extract the result of the condition and projection operation from the appropriate
cuboids with the help of the cube index.
6.1. For condition it creates two stages Pipeline for Domain Dictionary (DO) in the 1" stage and

Data Cube (DC) in the 2nd stage. Here C, implies condition number x.
6.2. For projection it also creates two stages pipeline for Data Cube (DC) in the 1st stage and

Domain Dictionary (DO) in the 2
nd

stage.
6.3. When different pipelining stages try to invoke the same domain dictionary or data cube

block, it is handled thread synchronization.
7. Finally, the results containing facts and lexemes are sent back to the Middleware server, which

are packed with the query 10 and eventually passed back to the Application server.

3.5.1 Time Complexity to Query from a Data Cube:

Let, t = Query tokenization time, m = Average no. of cube records per cube_block.

d = Number of dimension attributes, and netd= overall data transmission delay through the

network. Now, the overall query response time = Query tokenization time + Cube_block

search time + CubeJecord searching time + Network delay. Since a hash indexing is used

to locate the cube_block and binary search is applied to locate the cubeJecord, therefore

cube_block searching time is 0(1) and cubeJecord searching time isO(log2 m). So, the

overall query response time we achieved is:

O(t + log2 m + netd)

3.5.2 Intraquery Parallelism

(3.13)

Intraquery parallelism refers to the execution of a single query in the parallel on

multiple processors and disks. Using intraquery parallelism is important for speeding up

long running queries. Interquery parallelism does not help in this task, since each query is

run sequentially.
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To illustrate the parallel evaluation of a query, consider a query that requires a

relation to be stored. Suppose that the relation has been partitioned across multiple disks by

ranges partitioning on some attribute, and the sort is requested on the partitioning attribute.

The sort operation can be implemented by sorting each partition in parallel. Then

concatenating the sorted partitions we get the final sorted relation.

Thus, we can parallelize a query by parallelizing individual operation. There is

another source of parallelism in evaluating a query: The operator tree for a query can

contain multiple operations. We can parallelize the evaluation of the operator tree by

evaluating in parallel some of the operations that do not depend on one another. We chose

the second option which is called interoperation parallelism. To evaluate an operator tree in

a parallel system, we must make the following decisions:

• How to parallelize each operation and how many processors to use for it.

• What operations to pipeline across different processors, what operations to

execute independently in parallel, and what operations to execute

sequentially, one after another.

When the operations in a query expression depend on one another we apply the

pipelined parallelism. If there is no such dependency we apply the independent parallelism.

Query optimization is also taken into account in some cases which is performed by the

query optimizer. Here a query is taken and the cheapest execution plan is found out among

the many possible execution plans that give the same answer. Thus we speed up the

processing of a query by executing in parallel the different operations in a query expression.

3.5.3 Interquery Parallelism

In interquery parallelism, different queries or transactions execute in parallel with

one another. Transaction throughput can be increased by this form of parallelism. However,

the response times of individual transactions are no faster than they would be if the

transactions were run in isolation. Thus, the primary use of interquery parallelism is to scale

up a transaction-processing system to support a larger number of transactions per second.

Supporting interquery parallelism is more complicated in a shared-disk or shared-

nothing architecture. Processors have to perform some tasks, such as locking and logging, in

a coordinated fashion, and that requires that they pass messages to each other. A parallel
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database system must also ensure that two processors do not update the same data

independently at the same time. Further, when a processor accesses or updates data, the

database system must ensure that the processor has the latest version of the data in its buffer

pool.

In comparison with our system there is no update and delete operation in the data .

warehouse query operation. Moreover the resultant data cube is independently distributed

and the operations from the different query expressions which are imposed onto the same

cube_Record are managed by pipelining. Therefore is no necessity of locking and logging

in the query operations and cache-coherency problem is eliminated as well.

3.5.4 An Example Query Operation

An example query operation is shown in Fig. 3.13, which is constructed from the

schedule tree (Fig. 3.1I(b)) of the PCVDC architecture. The example query is made based

on customer relation entropy. Given five dimensional attributes, which are ID (X), Name

(A), Street (B), City (C), Status (D), and one measure attribute named Salary (M). Let the

query is "Select Name, Max (Salary) From Customer Relation Where Street = 'bijoy' AND

Status = 'Unmarried'." This query is imposed to the query manager which is forwarded to

application server in a different manageable format. Then it is partitioned into sub-query by

the application server and send on to the appropriate column server for tokenizing the query

attributes. After that, as the result of the query lies in the cuboid 'ABD', whereas the cuboid

'ABD' resides in the column server-B, so the query tokens are passed to column server-B.

Then the result, Name = '011..0' and Salary = '40000' is passed back to application server.

Token '011..0' is further sent to column server-C for decompression, therefore Name =

'Obayed' is returned, which is passed back to the query manager.
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Fig. 3.13: A Query example

3.6 Summary

In order to achieve the maximum performance requirement and response times,

parallel database system and also parallel algorithms are being vigorously exploited.

Parallelism is appropriate for data warehouse because parallel systems can be constructed at

a low cost without the need for any specialized technology, by using existing sequential

computers and relatively cheap interconnection networks in today's environment. Complex

queries, such as those involving joins of several tables or searches of very large tables, are

best executed in parallel. With this intension, we developed a four tier architecture. There,

the source of the data cube was compressed first. Afterwards, the compressed form of data

was distributed and the data cube was generated directly from here without any

decompression in a parallel environment. Furthermore optimality issues like prefix and

suffix redundancy in the data cube are taken into consideration and eliminated as well.

Hence, it took significantly reduced creation and storage cost for the data cube.

-f,.
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Chapter 4
Results and Discussions

Our target was to achieve maximum compression of the data warehouse, then its

distribution for better manageability and parallel issue and finally a compact data cube

construction from this compressed distributed architecture in parallel. Therefore, the

objective of the experimental work is to verify the feasibility and scalability of the design of

the distributed compressed multi-block vector, the dictionary and data model of the

architecture. It also verifies the scalability, construction efficiency, query optimization from

the virtual data cube. The experimental evaluation has been performed with large synthetic

data. The storage of distributed compressed multi-block is compared with widely used

Microsoft SQL Server. Also the storage, construction and query response time of the virtual

data cube is compared with BSF, Dwarf and Cubetrees [15]. Throughout this chapter we

call the components of our system - 'DMBVS' for Distributed Multi-Block Vector Structure

and 'PCVDC' for Parallel Construction of Virtual Data Cube.

4.1 Experimental Setup
In our experimental setup there were one application server and several column

servers (one for every compressed vector) connected via LAN. Each server having 3GHz

Pentium IV processor, 40GB hard disk and 512MB RAM. The platform was windows XP

and was implemented by java development kit 1.5.

4.1.1 Network Setup
We used TCP (Transmission Control Protocol) through the classes in java.net for

.the communication between two of our applications residing in different computers. TCP is

a connection-based protocol that provides a reliable flow of data between two computers.

Data transmitted over the network is accompanied by addressing information that identifies

the computer and the port for which it is destined. The computer is identified by its 32-bit IP

address, which IP (Internet Protocol) uses to deliver data to the right computer on the
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network. Ports are identified by a 16-bit number, which TCP use to deliver the data to the

right application.

A server application binds a socket to a specific port number. A socket is one

endpoint of a two-way communication link between two programs running on the network.

This has the effect of registering the server with the system to receive all data destined for

that port. On the client-side, the client knows the hostname of the machine on which the

server is running and the port number to which the server is connected. To make a

connection request, the client tries to rendezvous with the server on the server's machine

and port as shown in Fig. 4.1.

Fig. 4.1: Connection request from client to a server port.

If everything goes well, the server accepts the connection. Upon acceptance, the

server gets a new socket bound to the same port. It needs a new socket so that it can

continue to listen to the original socket for connection requests while tending to the needs of

the connected client (Fig. 4.2).

server

connection

I'..;;"p ,- __ -" ,
~ . client j

,.
t """"",,,,"",,,,,,... ",~i

Fig. 4.2: Established connection between client and server.

On the client side, if the connection is accepted, a socket is successfully created

and the client can use the socket to communicate with the server. The client and server can

then communicate by writing to or reading from their sockets. By using the java.net.Socket

class, our java programs can communicate over the network in a platform-independent

fashion. Additionally, java.net includes the ServerSocket class, which implements a socket

that our Application and Middleware server can use to listen for and accept connections to

clients. {',

During the root cuboid of the data cube construction process we used multicasting

which can be thought of as broadcasting data over a network connection to many connected
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agents, as opposed to unicasting packets between two agents on a normal connection.

Java.net includes a class called MulticastSocket. This kind of socket is used on the Column

Servers to listen for packets that the Application Server broadcasts to multiple Column

Servers.

4.1.2 Multithreaded Environment
To support concurrent access onto the Application server by multiple Column

servers for the root cuboid generation we used multithreading. Also multiple tokenized

query requests which are imposed onto the Column servers are handled by multithreading.

Basic support for threads in the Java platform is in the class java.lang.Thread. It provides a

thread API and all the generic behavior for threads. The behaviors include starting, sleeping,

running, yielding, and having a priority. The execution of multiple threads on a single CPU,

in some order, is called scheduling. Therefore thread scheduling is applied in our system to

support the varieties of projection and multiple predicates select queries. The Java platform

supports a simple, deterministic scheduling algorithm called fixed-priority scheduling. At

any given time, when multiple threads are ready to be executed, the highest-priority thread

is chosen for execution. A lower-priority thread starts executing only when that highest-

priority thread stops or is suspended. When all the Runnable threads in the system have the

same priority, the scheduler arbitrarily chooses one ofthem to run.

When the multiple query threads in our system tried to access the same data cube

or dictionary block asynchronously, it was handled by Thread Synchronization. One thread

got it, and the others went back to waiting. Furthermore the query threads were also able to

notify one another when they finished their job. It was done by notify All method which

woke up all threads waiting on the object. The awakened threads again compete for the

lock.

Collection of threads is managed by java Thread Pool to improve the performance

when executing large numbers of tasks as a result of reduced per-task invocation. We

instantiated an implementation of the Java ExecutorService interface to use thread pool and

then this thread pool was handed a set of tasks.

(
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4.2 The Data Sets
We chose a classical retail data warehouse of an enterprise which is collected from

the oracle data warehouse corporation [30]. A synthetic data generator was implemented to

generate the data that resembles the real data sets for merchandising relation. We assumed

five attributes in the relation that is given in the Table 4.1. We considered approximately 4

million customers of an enterprise. Based on that, the approximate cardinality of each

dimension attribute is shown subsequently. Each record is estimated as 104 bytes in the

uncompressed base relation, whereas each compressed record occupies at most 7 bytes.

Table 4.1: The sales relation structure

Attribute Data Type Cardinality
Length Bits required

Name (bytes)

Sales Id Integer Primary key 4 22
Product Varchar 507 30 9
Name
Customer Varchar 5000 30 13
Name
Customer Varchar 2 10 I
Status
Sales City Varchar . 64 30 6

Price Charged Double Measure value
Total 1 104 bytes 5 Ibits:::: 7 bytes

4.2.1 Synthetic Data Generator
It is quite a hard task to gather the real data sets for the sales relation. We, instead

deign a data generator that generates the data that resembles the real data sets for sales

relation. The approximate cardinality of the domain values of each attribute is given in the

Table 4.1. To create synthetic data, we generate a random number within a value equal to

the domain cardinality of an attribute and write the number in a text file with a fixed width.

Each line of the text file contains a tuple of a sales relation. The input manager load the text

file to extract raw data and read each attribute value from the file and send the value to

compression manager.

r• •I
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4.3 DMBVA Storage Efficiency
The storage space occupied by DMBVA demonstrates a significant compression

factor against SQL Sever, and is shown in Table 4.2. The average compression ratio is

28.87 with respect to SQL Server. This is because SQL Server needs to store the original

source relation in an uncompressed format with some additional information.

Table 4.2: Storage requirement of DMBVA vs SQL Server

Number Storage Storage Compression
of space in space III Factor against SQL

records SQL Server DMBVA
(million) (ME) (MB)

Server

1 251.92 9.525 26.45

2 501.86 18.312 27.40

3 755.76 26.32 28.71

4 1011.65 33.56 30.14

5 1289.36 41.20 31.30

4.4 Data Cube Storage
The compressed vector act as the source relation for the generation of the data

cube, and the data cube was generated directly from this compressed format in a parallel

environment. Since the source relation was compressed, and the generated data cube was

virtual (due to the direct absence of measure attribute), so a great deal of reduction in the

ultimate storage space was achieved.

We compared PCVDC system with binary storage footprint (BSF) and Dwarf [15].

In our system, the fact table i.e. the compressed vector contained 100000 tuples with a

uniform distribution of the dimensional values over a cardinality of 1000. The BSF

representation models the storage required to store the views of the cube in non-indexed

binary relation. In the Table 4.3, for different dimensions the data cube storage occupied by

different methods is demonstrated. BSF comparatively took much more space for all the

dimensions, because all the cuboids are stored here in non-indexed binary summary table

without throwing out the redundancy. Excluding Prefix but Including Suffix redundancy

(EPIS) both Dwarf and PCVDC perform better. However, in this case, PCVDC dominates

Dwarf in the data cube storage reduction due to the absence oflexemes.
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Table 4.3: Data Cube storage cost comparison with other system (Excluding Prefix but

Including Suffix redundancy - EPIS)

Dimension BSF
Dwarf PCVDC
EPIS EPIS

10 2333 MB 1322 MB 538.33 MB
15 106 GB 42.65 GB 21.57 GB
20 4400 GB 1400 GB 838.37 GB
25 173 TB 44.8 TB 30.83 TB
30 6.55 PB 1.43 PB 1.16 PB

After eliminating the suffix redundancy (noted as ES) the storage cost reduced a

lot for both methods. We achieved a significant storage reduction for all the dimensions

with respect to Dwarf, because of the elimination of lexeme storage and data cube storage

format in PCVDC. Again, in our system this storage was reduced by a factor of lIN, where

N is the number of column server. This is because different cuboids were stored by different

servers according to the schedule tree. So it is clear that PCVDC dominate all other methods

in the case of storage reduction, and suffix redundancy is a crucial factor in the overall

performance.

Table 4.4: Data Cube storage cost comparison with other system
(Excluding Suffix redundancy - ES)

Dimension
Dwarf PCVDC Storage /column
ES(MB) ES(MB) server(MB)

10 62 25.26 . 2.53
15 153 77.38 5.16
20 300 179.65 8.98

25 516 355.09 14.20

30 812 658.69 21.95

The space required for Dwarf, PCVDC and each column server of PCVDC is

plotted in the Fig. 4.3. So it is obvious that our parallel system architecture scale well with

the number of dimensions. Here a constant running time can be maintained as the dimension

is increased by adding a proportion number of processors.
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Fig. 4.3: Space requirement for Dwarf, PCVDC and each Column Server ofPCVDC

4.5 Cube Construction and Query Response Time
The data cube was generated directly from this compressed vector in parallel and

its contents are virtual (due to the direct absence of measure attribute), hence a great deal of

reduction in the ultimate construction time was achieved. Also we speed up the processing

of a query by executing in parallel the different operations in a query expression. Therefore

we achieved a significant reduced query response time by applying the intraquery and

interquery parallelism.

4.5.1 Cube Construction Time
We compared the construction time of PCVDC with Dwarf as shown in Fig. 4.4.

The same data set was used here. Dwarf construction time was proportional to its size, and

required much less time as it avoids computing large parts of the cube by eliminating the

suffix redundancy. On the contrary, PCDVC creation time was little higher for smaller

dimensions with respect to Dwarf. This is because, during the construction of root cuboid, it

faced the data transmission overhead through the network channel. But after that all other

cuboids were constructed independently in parallel from their parent cuboids in different

column servers. Due to this parallel nature, a significant reduced creation time was achieved

for bigger dimensions.

:~0
f
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Fig. 4.4: Creation time comparison between Dwarf and PCVDC

4.5.2 Query Response Time
We first present here two types of access time performance in the query operation

with respect to SQL Server: (i) Time comparison of projection operation and (ii) Time

comparison of Multiple Predicates select queries. A comparison of query response time

among PCVDC, Dwarf and Cubetrees [IS] is also established.

4.5.2.1 Time Comparison of Projection Operation

Projection operation just accesses the specified attributes from database. To

compare the access speed, we choose 4 queries shown in Table 4.5. Query Q1, Q2, Q3 and

Q4 represents the projection operation of 1, 2, 3 and 4 attributes respectively. The set of

quires are imposed onto 1 million tuples. Because the conventional database system

accesses the entire tuple for any type of query, so the number of attributes has no significant

effect in the query time. The PCVDC accesses only the information related to the attributes

used in query. The average speedup for projection operation is 45.78 with respect to SQL

Server.
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Table 4.5: Comparison of Access Speed on Projection Queries

Average Elapsed Time (sec)

Sl. Number of Attributes
Speedup

No.
SQL Server PCVDC (T,ff,)

(T,) (T,)

Q1 Single attribute projection 220 6.29 34.98

Q2 Two attribute projection 285 6.85 41.60

Q3 Three attribute projection 342 7.13 47.97

Q4 Four attribute projection 457 7.80 58.59

4.5.2.2 Time Comparison of Multiple Predicates Select Queries

The Multiple Predicates SELECT queries include multiple attributes In the

WHERE clause. We take here four queries given in Table 4.6. Query Q5, Q6, Q7 and Q8

has one, two, three and four attributes respectively in the WHERE clause. We run the same

query in SQL Server and PCVDC. The set of quires are imposed onto 1 million tuples. The

average speedup of Multiple Predicates Select Query Operation is 38.8.

Table 4.6: Multiple Predicates SELECT Queries.

Average Elapsed Time

Sl.
(sec)

SQLCommand
No. SQL Server

(T,)
PCVDC(T,)

Q5
SELECT * FROM Sales Table WHERE 245.43 8.24
Ai='XXX' ; (2~ i ~ 5)
SELECT * FROM Sales Table WHERE

Q6 Ai='XXX' AND Aj='YYY'; 337.67 9.17

(2< i, i < 5 and i t- i)
SELECT * FROM Sales Table WHERE

Q7 Ai='XXX' AND Aj='YYY' AND Ak='ZZZ' ; 388.44 9.45
(2~ i, j, k < 5 and i t- j t- k)
SELECT * FROM Sales Table WHERE

Q8
Ai='XXX' AND Aj='YYY' AND Ak='ZZZ' 444.55 10.55
AND AI='WWW' ; (l~ i,j, k, 2 ~ 5 and i t- j t- k
t- I)



68

4.5.2.3 Query Response Time with respect to Dwarf and Cubetrees

The response time was experimented with Dwarf and Cubetrees [IS] as shown in

Fig. 4.5. Here the query was made against a complete cube of 4-10 dimensions with

300000 tuples in the fact table. So the number of column servers varied from 4-10. We

made almost 1000 queries on projection operation and multiple predicates select queries

which include multiple attributes in the where clause. Both range and point queries were

made. Query against a data cube was actually be reduced to a sub-query against only one

particular cuboid or a union of such sub-queries, and this is done by the query manager. The

full Cubetrees [IS] took a huge response time since it calculates the entire cube. Dwarf cube

performed better in case of smaller dimensions but as the dimension grows it became

difficult to manage the condense storage in the main memory. In contrast with that, PCVDC

performed much better for higher dimensions with a little sacrifice in the query tokenization

time. But it was overcome by the parallelization of the query operation. Up to 10

dimensions, the average speedup we found in the response time are 16.34 and 1.59 with

respect to Cubetree [IS] and Dwarf Cube respectively. This speedup would be further

accelerated for higher dimensions due to our parallel architecture.
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FigA.5: Response time of Dwarf, PCVDC and Cubetrees



69

4.6 Summary
In this chapter we presented the experimental evaluation of the DMBVA and

PCVDC, where PCVDC is the main focus of the work. We developed a data generator

which generates data that resembles the real data sets for sales relation. The simulated

storage space comparison for distributed compressed data is computed using the

interpolation The average compression ratio of the source relation by DMVBA is 28.87

with respect to SQL Server. Our PCVDC architecture was compared with BSF, Dwarf and

Cubetrees [15]. The cube size reduction effectiveness ofPCDVC was an average of 39.77%

better than that of the Dwarf cube and far more against BSF. Due to this parallel nature of

PCVDC, a significant reduced creation time was achieved for bigger dimensions with

respect to Dwarf. In the case of query response, we got an average speedup from the virtual

data cube for projection operation is 45.78 and for multiple predicates select query

operation is 53.8 with respect to SQL Server. Up to 10 dimensions, the average speedup we

found in the query response time are 16.34 and 1.59 with respect to Cubetree and Dwarf

respectively. This speedup would be further accelerated for higher dimensions due to our

parallel architecture.

p.v
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ChapterS
Conclusion and Further Research

There are works with distributed and parallel architecture of data warehouse

without compression. Again, there are works with data warehouse compression but no

distribution. Therefore integrating these two technologies, in this thesis, we have first

presented a distributed data warehouse architecture using compression-based multi-block

vector structure for relational database. Using this architecture, we achieved a compression

factor around 26.45 to 31.30 against the SQL Server for source relation. Afterwards, using

our PCVDC algorithm, the data cube was generated directly from this compressed form of

data in a parallel environment without any decompression. Hence, it took significantly

reduced creation and storage cost for the data cube. The PCVDC method was compared

with BSF, Dwarf and Cubetrees. The cube size reduction effectiveness of PCDVC was

around 18.88% to 59.26%, with an average of 39.77% better than that of the Dwarf cube

and far more against BSF.The average speedup in the response time was 16.34 and 1.59

with respect to Cubetree and Dwarf Cube respectively.

5.1 Fundamental Contributions of the Thesis
• We have first compressed and distributed the relational data warehouse.

• In the subsequent part, we have generated a condense data cube (multidimensional view

of data) directly from this compressed source relation in parallel to support fast query

response.

•

•

Suffix and prefix redundancy is eliminated from this cube to optimize the query

performance. Therefore the query response time has been significantly improved.

We made the data cube virtual in the sense that there is no direct storage of lexemes,

furthermore the cube elements are stored in a compressed format.
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• Experimental evaluation shows the improved performance over the existing systems.

We have achieved a compression factor of 25-30, compared to SQL server data

warehouse. Also the average data cube reduction size is a factor of 30-45, compared to

existing methods.

• Moreover, the data cube is self sufficient in the sense that no need to access the fact

table in answering any query and can directly extract the result using hash indexing.

5.2 Scope of Future Work
• The system has been tested using synthetic data set. It can also be implemented in

real life environment. We believe that the system will behave that the system will

behave as our findings.

• Data migrating tools for compression based PCVDC system in a distributed and

parallel environment can be designed. Using this tool, compressed data blocks can

be migrated to remote servers and query can be answered from there without any

decompression.

• This architecture can be used for parallel mining, where clustering and

classification techniques can be applied in parallel onto the compressed vectors

and virtual data cube.

• Back-up and recovery mechanism of the distributed data cube and compressed

vectors need to be considered.

" ".. .
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