
,

I

- -- 1

,,

J

A STUDY OF LOGIC SYNTHESIS AND
OPTIMIZATION

.'

BY
A.S.M.MOINUL AHSAN

A THESIS SUBMITTED TO THE DEPARTMENT
OF COMPUTER SCIENCE AND ENGINEERING, BUET, DHAKA,

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF SCIENCE IN ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DECEMBER, 1994

•

,
'''; , A STUDY OF LOGIC SYNTHESIS AND OPTIMIZATION

A.S.M. MOINUL ABSAN
Roll no. 901818P, Registration no. 84167,
for the partial fulfillment of the degree of

MSc. Engg. in Computer Science and Engineering.
Examination held on December 26, 1994.

\
1
l
\.

~'~

,.
1

,
" ,
, I'

!

I' i'.,
I.• "-"r~<"

-.i .•

A thesis submitted by

Approved as to style and contents by:

~~ 2tjlV)9'1
DR. MOHAMMAD KA YKOBAD
Associate Professor
Department of Computer Science & Engineering
BUET, Dhaka-IOOO, Bangladesh

~.d. ~. 1-1,-/2--If,!
DR. MD. SHAMSUL ALAM
Professor and Head
Department of Computer Science & Engineering
BUET, Dhaka-IOOO, Bangladesh

~
MD. ABDUS SATIAR
Assistant Professor
Department of Computer Science & Engineering
BUET, Dhaka-IOOO, Bangladesh

iZ. 12..1 Y
DR. MD. ABDUL MOTIALm
Associate Professor
Department of Computer Science
Dhaka University
Dhaka-lOoo, Bangladesh

Chairman
(Supervisor)

Member
(Ex officio)

Member

Member
(External)

CERTIFICATE

This is to certify that the work presented in this thesis is done by me under the

supervision of Dr. Mohammad Kaykobad, Associate Professor, Department of

Computer Science and Engineering, Bangladesh University of Engineering and

Technology, Dhaka It is also certified that neither this thesis nor any part thereof has

been submitted elsewhere for the award of any degree or diploma.

Countersigned by the supervisor

~
Dr. Mohammad Kaykobad

Signature of the candidate

A.S.M. Moinul Ahsan

[1 ,,

<,

ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude and profound indebtedness to his

supervisor Dr. Mohammad Kaykobad, Associate Professor, Department of Computer

Science and Engineering, Bangladesh University of Engineering and Technology (BUET),

Dhaka, for his constant guidance, helpful advice, invaluable assistance and endless

patience throughout the progress of this work, without which the work could not have

been completed.

The author gratefully acknowledge the kind support and encouragement extended to him

by Dr. Md. Shamsul Alam, Professor and Head, Department of Computer Science and

Engineering, BUET, Dhaka, during the course of this work.

The author conveys his sincere thanks to Md. Abdus Sattar, Assistant Professor,

Department of Computer Science and Engineering, BUET, Dhaka, for his kind

.cooperation during the progress of this study. The author also expresses his sincere

gratitude to Dr. Md. Abdul Mottalib, Associate Professor, Department of Computer

Science, Dhaka University, Dhaka, for his kind cooperation during the progress of this

study and acting as external examiner.

Finally, the author acknowledges with hearty thanks, the all out cooperation of Latifur

Rahman Khan, Mohammad Ohiuddin Mahboob, Md. Sanaul Hoque, all the faculty

members and his friends of the Computer Science and Engineering Department, BUET,

Dhaka.

,

ABSTRACT

With larger and larger scale of integration the problem being faced by the technology is

that logic circuitry are becoming more and more complicated. It is important to be able
to optimize logic circuitry, so that circuitry becomes as simple as possible. In this thesis

a set of important logic synthesis and optimization methods have been thoroughly studied
theoretically, and relative performances of the three of them have been evaluated by
carefully designed experiments. In these experiments we apply different types of functions
and observe the time elapsed, number ofliterals, and number of products. For the same

set of data we have applied different orientation of data. This study shows that for Quine-
McCluskey and M1ynarovicmethods both the number of products and the literals are the

same but for EXMIN2 the number of products and the number of literals differs in a

smaIl extent. When the number of variables increases all the methods need more time, but

in the case of M1ynarovic method the time elapsed is fixed for a particular number of

variables whatever the number of inputs may be. Time required for Quine-McCluskey
and EXMIN2 varies with number of inputs for the same number of variables. For the

same set of data EXMIN2 gives the minimal number of product terms for the Arithmetic
and Symmetric function. For randomly generated function QIlino-McCluskeymethod gives
fewer number of products. than M1ynarovicmethod but number of literals is less in most
of the cases in the later inethod. When. number of inputs is less comparable than the
maximum possible inputs then Quine-McCluskey method gives fewer number of products
than M1ynarovic method. It is seen that from the point of view of product terms and
literals EXMlN2 is better than the others. The thesis also gives an elaborate guideline for
future research work to proceed in this direction.

,
C

CONTENTS

INTRODUCTION

General .

Importance of the Study of Digital Logic

Historical Perspective

Thesis Organization and Objective

CHAPTER 1. LITERATURE REVIEW

l.l Introduction

1.2 Basic Definitions

1.3 Axiomatic Definition of Boolean Algebra

1.4 Basic Theorems and Properties of Boolean Algebra

1.4.1 Duality

I.4.2 Basic Theorems

1.5 Some Definition of Boolean Algebra

1.5.1 Propositional Operation

1.5.2 Boolean Functions

1.6 Minimization Techniques

1.6.1 Minimization by Boolean Algebra

1.6.2 Minimization by Map Method

1.6.3 Minimization by Tabulation Method

1.6.4 Minimization in ESOP Domain

CHAPTER 2. QUINE-McCLUSKEY METHOD

2.1 Introduction

2.2 Tabulation Method for the Minimization of Boolean Functions

Page

1

1

3

5

6

8

8

10

12

14

14

14

17

17

18

21

21

23
26
26
27
27
28

\)'.

,

2.2.1 The Binary Representation

2.2.2 The Decimal Representation

2.3 Algorithm

CHAPTER 3. CLASSIFICATION OF AND-EXOR EXPRESSIONS

3.1 Introduction

3.2 Several Classes of AND-EXOR Expressions

3.3 Algebraic Identities for the EXOR-Connective

3.4 Expansion Theorem

3.4.1 Positive Polarity Reed-Muller Expression(pPRME)

3.42 Fixed Polarity Reed-Muller Expression(FPRME)

3.4.3 Kronecker Expression(KRO)

3.4.4 Pseudo Reed-Muller Expression(PSDRME)

3.4.5 Pseudo Kronecker Expression(PSDKRO)

3.4.6 Generalized Reed-Muller Expression(GRME)

3.4. 7 Exclusive-or Sum-of-Products Expression(ESOP)

3.5 Relations Among the Classes

CHAPTER 4. LOGIC SYNTHESIS WITH EXOR OATES

4.1 Introduction

4.2 Design Method of AND-EXOR Circuits

.. 4.3 Simplification of AND-EXOR Expressions

4.4 Algorithm

CHAPTER So MINIMIZATION USING REED-MULLER CANONIC

EXPANSION

5.1 Introduction

5.2 Historical Perspective for Minimization of Reed-Muller Canonic

Expansions

5.3 Reed-Muller Expansion

5.4 Techniques for Minimization of RMC Expansions

Page

30

33

34

36

36

37

37

38

39

40

41

42

44

45

46

46

47
47
47
48
57

68
68

69
70

72

Page

5.4.1 Map Simplificationof PositivePolarityExpansion 72

5.4.2 Tri-stateMapMethod 75

5.4.3 MapFoldingTechniques n
5.4.4 Transformationfrom SOPDomainto ESOPDomain 79

5.5 Mlynarovic'sMethodforMinimization 85

5.6 ModifiedAlgorithm 91

5.6.1 Algorithm 110

CHAPTER 6. EXPERIMENTSANDRESULTS 112

6.1 Designof Experiments 112
6.2 Quine-McCluskeyMethod 113

6.3 EXMlN2 114
6.4 Mlynarovic'sMethodforMinimi7J!tion 116
6.5 Results 117

6.6 ComparisonAmongthe MinimizationTechniques 128
CHAPTER 7. CONCLUSIONSANDRECOMMENDATIONS 129

7.1 Conclusions 129

7.2 Suggestionsfor FurtherStudy 133
APPENDIXA. DATAANDSOPIESOPIFPRMEEXPRESSIONS 134
BIBUOGRAPHY 148

INTRODUCTION

General:

Digital simply means that information is represented by signals that take on a limited

nwnber of discrete values and is processed by devices that normally function omy in a

limited nwnber of discrete states. The lack of practical devices capable of functioning

reliably in more than two discrete states has resulted in the vast majority of digital

devices being binary [7], i.e. having signals and states limited to two discrete values.

Any structure of physical devices assembled to process or transmit digital information

may be termed a digital system.

Logic circuits for digital system may be combinational or sequential. A combinational

circuit consists of logic gates whose outputs at any time are determined directly from

the present combination of inputs without regard to previous inputs. A combinational

circuit performs a specific information-processing operation fully specified logically by

a set of Boolean functions.

Sequential circuits employ memory elements (binary cells) in addition to logic gates.

Their outputs are a function of the inputs and the state of the memory elements. The state

of memory elements, in tum, is a function of previous inputs. As a consequence, the

outputs of a sequential circuit depend not omy on present inputs, but also on past inputs.

The characteristics of digital systems vary and the approach to their design sometimes

varies as well. The information that enters and leaves a digital system are of two

categories: 1) Information to be processed or transmitted and 2) Control information.

Information in the first category usually occ~ in the form of a time-sequence of

1

.";,-

i

infonnation vectors. A vector might be a byte, 8 binary bits: it might be a word of 16 to

64 bits; or it might be several words. The second category, control information, usually

occurs in smaller quantities. It is infonnation that guides the digital system in performing

its functions. Sometimes, the control infonnation is received only. In other cases, control

pulses are sent out to control the information of some other equipments.

Certain digital systems handle only control infonnation. The controller for an elevator is

a good example. System of this type may be designed as sequential circuits.

Every digital system is likely to have combinational circuits, so the synthesis optimization

of combinational logic design plays an important role in digital logic synthesis and

optimization. The procedure of combinational logic design involves following steps: The

problem is stated; The number of available input variables and required output variables

is detennined; The input and output variables are assigned letter symbols; The truth table

that defines the required relationships between inputs and outputs are derived; The

simplified Boolean function for each output is obtained; The logic diagram is drawn.

The output Boolean functions from the truth table are simplified by any available method,

such as algebraic manipulation, the map method or the tabulation procedure. In any

particular application, certain restrictions, limitations and criteria will serve as guideline

in the process of choosing a particular algebraic expression. Practical design method

would have to consider such constraints as (1) minimum number of gates, (2) minimum

number of inputs to a gate, (3) minimum propagation time of the signal through the

circuit, (4) minimum number of interconnections, (5) limitations of the driving capabilities

of each gate. All these criteria cannot be satisfied Simultaneously,. and since the

importance of each constraint is dictated by the particular application, it is difficult to

make a general statement as to what constitutes an acceptable simplification. In most cases

the simplification begins by satisfying an elementary objective, such as producing a

simplified Boolean function in a standard fonn and from that proceeds to meet any other

2

performance criteria.

Importance of the Study of Digital Logic:

In the application of control, communication and computer, analog electronic circuits were

being used in the earlier half of this century. But for reasons like speed, reliability etc,

digital circui1Iy is being preferred nowadays.

Digital circuits are being used in such diverse fields as information storage, medical

instrumentation, process control, calculators and computers, air traffic and digital

communications, and in voice and tone synthesis. Digital techniques are also penetrating

into areas that were traditionally solved with analog techniques. An example will clarity

the point. If it is desired to send analog information from point A to point B, where the

value of an electric potential is made proportional to a measured analog quantity. The

transmission medium may be a cable or a modulated radio-frequency carrier. In either

case, electrical interference signals are present that add to the information signal

moditying its content. Suppose that an accuracy of I part in 104 is required in the

information signal. The interference must be kept below that value, or special techniques

must be used to remove at the receiving end the unwanted signal component. On the other

hand, if a signal is being transmitted as a pulse train which, via its sequence of present

or absent pulses in the train, represents information in binary form. It is evident that this

communication link can be more noise immune since no admixture of noise will change

the information content unless its energy becomes comparable to the energy contained in

the information pulse.

Higher power efficiencies of digital systems provide lin additional reason for their

applications in areas formerly dominated by analog techniques. Consider a transistor used

as a switch in a digital circuit, the power dissipated in it is PD = I amperes X V volts.

When the transistor switch is in the OFF state, I and hence PD approaches zero. Similarly,

3

when the transistor switch is in the ON state, V and hence PD also approaches zero. Power

is thus dissipated only during transitions between the ON and OFF states and in the load

when the transistor is in the ON state. In contrast, in analog applications both I and V

have non-zero values and the transistor dissipates power continuously.

Concurrent with the reduction in size and power consumption there has been a

considerable increase in the operating speed of the new semiconductor devices. It is

sometimes difficult to fully appreciate the revolutionary changes that were made possible

through the invention of the transistor and the subsequent development of integrated

circuits.

For example, the largest early computers occupied a volume of hundreds of cubic meters

and required many tens of kilowatts of electrical power and a sizeable air-conditioning

installation to allow this amount of energy to be dissipated without raising the room

temperature to unbearable values. The comparable computational capacity is obtained

today in a desk-size computer dissipating one hundredth of the former's power [2].

Digital computer is the best-known example of a digital system. Other examples involve

telephone switching exchanges, digital voltmeters, frequency counters and teletype

machines. Digital computers have made possible many scientific, industrial and

commercial advances that would have been unattainable otherwise. Space program would

have been impossible without real time, continuous computer monitoring and many

business enterprises function efficiently only with the aid of automatic data processing.

The most striking property of a digital computer is its generality [9]. It can follow a

sequence of instructions, called a program, that operates on given data. The user can

specify and change programs and/or data according to the specific need As a result of this

flexibility, general-purpose digital computers can perform a wide variety of information

processing tasks. It is possible to introduce error-detecting and/or error-correcting

capabilities in digital system by the inclusion of so redundant information in terms of

4

binary digits(bits). It is then possible to detect if there is any error in the information. It

is even possible to know in which position the error has occurred and it can be easily

corrected.

Because of these inherent advantages, various studies were made on different aspects of

digital hardware. Beginning from fifties, one finds the emergence of various techniques

of minimization of digital logic circuits with the objective of reducing the cost of

realization of a digital system. Recently automatic logic synthesis tools are extensively

used in VLSI design. Increasing complexity ofLSIs has made human design of bug-free

logic circuits very difficult Thus, various automatic logic synthesis tools have become

indispensable in LSI design. Most of the logic synthesis tools use the design theory for

the circuits consisting of AND, OR and NOT gates. As for control circuits, these tools

produce good circuits comparable to the human design. However, they are not so good

at the design for arithmetic circuits, error correcting circuits and circuits for tele-

communication. Such circuits can be simplified when EXOR gates are effectively used.

Therefore, in order to develop a logic synthesis tools for such circuits, a design theory

utilizing EXOR gates is very important [29].

Historical Perspective:

Modem digital computers are designed and maintained, and their operation is analyzed,

by using techniques and symbology from a field of mathematics called modern algebra.

Algebraists have studied for over a hundred years mathematical systems called Boolean

algebra The name Boolean algebra honors a fascinating English mathematician, George

Boole, who in 1854 published a classic book "An Investigation of the Laws of Thought,

on Which Are Founded the Mathematical Theories of Logic and Probabilities". This

theory based on the Aristotelian logic concepts of "true" (represented by a binary 1) and

"false" (represented by a binary 0) found a practical application 84 years later when

Shannon introduced a two-valued Boolean algebra called switching algebra, in which he

5

demonstrated that the properties of bistable electrical switching circuits can be represented

by this algebra (see in [21)). Boolean algebras can be interpreted in teons of sets and

logical propositions is discussed in details by Whitesitt (see in [30)).

In the late 1930's switching devices consisted mainly of relays since the vacuum tube was

not deemed sufficiently reliable to serve as a component in large switching networks, such

as telephone systems. The successful application of Boolean algebra to the analysis of

switching networks may be viewed as one of the information breakthroughs in processing

digital information. Much emphasis was placed then on minimizing the number of

components utilized in a switching network.

Thesis Organization and Objective:

This thesis comprises seven chapters. Chapter one is the literature review. In this chapter

Boolean Algebra and its relation with the switching algebra is briefly discussed and some

definitions related to Boolean function minimization technique are mentioned. Besides,

different techniques for minimization of a Boolean function are also briefly discussed,

which is a fundamental step towards detailed study of the optimization tools used.

Chapter two discusses Quine-McCluskey method. It has been found that the Quine-

McCluskey method is the most popular method for any number of variables and suitable

for programming on a digital computer for systematic minimization of large Boolean

functions. In this thesis work, Quine-McCluskey method is implemented in a different

approach for the ease of software implementation but the basic theme is the same. This

method is included in this thesis for the comparison of number of products, literals and

time with that ofEXOR expression for the same function. This would reveal the relative

advantages and disadvantages of SOP and ESOP expressions for the same function.

6

-,,

Chapter three discusses different types of EXOR expressions as classified by T. Sasao.

Relations between these classes are also discussed. This classification is a strong tool for

the study of EXOR minimization techniques.

Chapter four discusses the EXMIN2 Algorithm, which gives the EXOR expression in

ESOP fonn. ESOP gives the minimal number of products among the different EXOR

expressIOns.

Chapter five discusses fixed polarity Reed-Muller expression, which is a subset of ESOP.

Algorithm used is known as Mlynarovic's method which is a mathematical model for the

minimization of Boolean functions into EXOR expressions. This algorithm is included in

this thesis for a comparative study with the ESOP expression for the same function. In

this chapter different techniques for the minimization of Reed-Muller expression is also

briefly discussed for further studies.

Chapter six presents the experimental results based on the algorithms discussed so far in

the previous chapters. This chapter compares different minimization techniques based on

experimental results. In chapter seven we make conclusion of our fmdings and recommend

some issues for further research in this direction.

This thesis is an attempt to analyze the perfonnance of different logic minimization

techniques. Mainly we have concentrated our study on time, number of literals, number

of products, the pennutation of the inputs and the effect of different kinds of functions.

We have designed simulation programs to foresee the response of all these minimization

techniques and it is hoped that these programs would be useful for any number of

variables. All the simulation experiments have been carried out on an IBM PC compatible

machine having 80386-SX processor of 33 Mhz speed.

7

!

CHAPTER 1

LITERATURE REVIEW

1.1 Introduction:

Logic networks may be analyzed and designed to a large extent with little or no

knowledge of electronics, hydraulics or other technologies. However, if design is to

lead to optimized operational hardware, then the logic designer should must respect the

technology to be used to realize a paper design. Limitations and imperfections of

technology must be overcome by logic design. A Jot of investigation has been done on

design and minimization of digital circuits in the last two deCJldes[13]. The normal

form of a Boolean function can be considered to be a measure of the complexity of the

corresponding logic circuit, the minimal form ensuring in general, minimal complexity

of the corresponding logic circuit [31].

MiniD!Jzationof SOP's has been studied for more than 30 years. Various algorithms

have been developed to obtain minimum and near minimum PLA's [23]. In the

evaluation of Boolean minimization algorithms, one of the important criteria is the

degree of minimality obtained. The degree of minimality, however, can be determined

only by minimizing examples for which a minimal solution is known. As the number

of input variables increases, it becomes increasingly difficult to find examples for

which this minimum is known. So, many attempts have been made to increase the size

of problems that can be minimized by sacrificing absolute minimality or modifying the
cost function.

According to Dietmeyer [4] minimization is the process of obtaining that expression of

a switching function which is optimum under some criterion. Usually a cost criterion is

8

"I

established and the optimum expression is the one which dictates a minimum cost

realization of a function. There are various criteria to determine minimal cost; the most

common are: minimum number of appearances of literals; minimum number of literals

in a sum of products expression; minimum number of terms in a sum of products

expression, provided there is no other such expression with the same number of terms and

with fewer litera1s.These in turn are total gate count, number of interconnections, gate

type and so on. Interconnections have capacitances that result in added propagation delays

and they contribute undesirable coupling between signals, necessitating "noise margins",

and can be a source of signal loss.

The type of circuits used when actually constructing a network influences the cost

criterion and the equation to circuit transformation must be clearly established. Cost

criteria can be simple or very complex. At one time diodes were expensive and reducing

the number of diodes required in AND and OR gates was very worthwhile. Then

transistors in NAND and NOR gates became the expensive items, it was important to

minimize transistor count, ignoring diode, resistor and fabrication cost For the designer

who interconnects available integrated circuits, Ie count is a meaningful criterion for

purpose of comparing alternative realizations of a switching function. Integrated circuit

cost making a connection to a gate or mounting the gate on supporting material can equal

or exceed the cost of gate itself. An ordinary programmable logic array (PLA) has an

AND-OR structure. Because PLA's can be designed automatically, easily tested and easily

modified, they are extensively used in modem LSI's [23]. By replacing the OR array with

the EXOR array, we can have AND-EXOR PLA which have several advantages over

AND-OR PLA's. But EXOR's are more expensive and slower than OR's and design of

AND-EXOR PLA's is more difficult than that of AND-QR PLA's.

So it is evident that the process of minimization and optimization of Boolean functions

help a designer to realize an elegant logic network.

9

,J". f":,,
\,' l/"'1'"

-',

The axioms and theorems of Boolean algebra can be used to minimize a Boolean function.

There should be an orderly procedure in applying these axioms and theorems. Several

orderly procedures (Algorithms) have been developed which will give a minimal sum of

productslEXOR sum of products of Boolean functions. In this chapter we will describe

briefly some definitions and techniques related to Boolean function minimization

techniques.

1.2 Basic Defmitions:

Boolean algebra, like any other deductive mathematical system, may be defined with a

set of elements, a set of operators and a number of unproved axioms or postulates. A set

of elements is any collection of objects having a common property. A set with x,y

elements is specified as A={x,y}. If S is a set and x and yare certain objects, then x E

S denotes that x is a member of the set S lllld y ~ S denotes that y is not an element of

S. A binary operator defined on a set S of elements is a rule that assigns to each pair of

elements from S a unique element from S. As an example, consider the relation a*b=c.

We say that * is a binary operation if it specifies a rule for fmding c from the pair (a,b)

and also if a,b,c E S. However, * is not a binary operator if a,b E S, while the rule finds

c ~ S.

The postulates of a mathematical system form the basic assumptions from which it is

possible to deduce the rules, theorems and properties of the system. The most common

postulates used to formulate' various algebraic structures are:

1) Closure: A set S is closed with respect to a binary operator if, for every pair of

elements of S, the binary operator specifies a rule for obtaining a unique element of S.

For example, the set of natural numbers N={!,2,3,4, } is closed w.r.t the binary

operator plus(+) by the rules of arithmetic addition, since for any a,b E N we obtain a

unique c E N by the operation a+b=c.

10

2) Associative law: A binary operator * on a set S is said to be associative whenever:

(x*y)*z=x*(y*z) for all x.,y,z E S.

3) Commutative law: A binary operator * on a set S is said. to be commutative

whenever:

x*y=y*x for all x.,y E S.

4) Identity element: A set S is said to have an identity element with respect to a binary

operation * on S if there exists an element e E S with the property:

e*x=x*e=x for every XES.

5) Invene: A set S having the identity element e with respect to a binary operator * is

said to have an inverse whenever, for every XES, there exists an element yES such that

x*y=e

6) distributive law: if * and . are two binary operators on a set S, * is said to be

distributive over . whenever:

x*(y.z)=(x*y).(x*z)

A field is a set of elements, together with two binary operators, each having properties

I to 5 and both operators combined to give property 6. The set of real numbers together

with the binary operators + and . form the field of real numbers. The field of real

numbers is the basis for arithmetic and ordinary algebra The operators and postulates

have the following meanings.

The binary operator + define addition.

The additive identity is O.

The additive inverse defmes substraction.

The binary operator . defines multiplication.

The multiplicative identity is 1.

The multiplicative inverse of a=1/a defines division, i.e., a 1/a=1.

The only distributive law applicable is that of . over +:

a(b+c)=(a.b)+(a.c)

11

1.3 AJ:iomatic Definition of Boolean Algebra:

Boolean algebra is an algebraic structure defined on a set of elements B together with two

binary operator + and . provided the following Huntington postulates are satisfied:

La) Closure w.r.t the operator +

b) Closure w.r.t the operator.

2.a) An identity element w.r.t +, designated by 0:

x+O = O+x = x

b) An identity element w.r.t ., designated by I:

x.l = Lx = x

3.a) Commutative W.r.t +:

x+y = y+x

b) Commutative w.r.t .:

X.y = y.x

4.a) . is distributive over +:

x.(y+z) = (x.y)+(x.z)

b) + is distributive over .:

x+(y.z) = (x+y).(x+z)

5. For every element x E B, there exist an element x E B such that:

a) x + x = 1

b) x. x = 0

6. There exist at least two elements x,y E B such that

x"y

Comparison of Boolean algebra with arithmetic and ordinary algebra:

I) Huntington postulates do not include the associative law. However, this law holds

for Boolean algebra. .

2) the distributive law of + over. is valid for Boolean algebra, but not for ordinary

12

}

algebra.

3) Boolean algebra does not have additive or multiplicative inverses; therefore, there

are no subtraction or division operations.

4) Postulate 5 defmes an operator called complement which is not available in

ordinary algebra.

5) Ordinary algebra deals with the real numbers, which constitute an infinite set of

elements. Boolean algebra deals with the as yet undefined set of elements B, but in the

two-valued Boolean algebra B is defined as a set with only two elements, 0 and 1.

In order to have a Boolean algebra, one mnst show:

I. The elements of the set B.

2. The rules of operation for the two binary operators.

3. That the set of elements B, together with the two operators, satisfies the six

Huntington postulates.

'IWG-VALUED Boolean algebra:

Two-valued Boolean algebra has applications in set theory and in propositional logic. A

two-valued Boolean algebra is defmed on a set of two elements, B={O,I}, with rules for

the two binary operators + and . as shown in the following operator tables.

x y X.y
.

0 0 0

0 1 0

1 0 0

1 I 1

x y x+y

0 0 0

0 1 I

1 0 1

1 1 1

x -
)(

0 1

I 0

It can be easily verified that Huntington postulates are valid for the set B= {O,I} and the

two binary operators defined above.

13

Thus a two-valued Boolean algebra having a set of two elements, 1 and 0, two binary

operators with operation rules equivalent to the AND and OR operations and a

complement operator equivalent to the NOT operator has been established and defined in

a formal mathematical manner. The two-valued Boolean algebra defined in this section

is also called "switching algebra" by engineers. From here on, we shall drop adjective

"two-valued" from Boolean algebra in the subsequent discussion.

1.4 Basic Theorems and Properties of Boolean Algebra:

1.4.1 Duality:

The Huntington postulates have been listed in pairs and designated by part(a) and part(b).

One part may be obtained from the other if the binary operator and the identity elements

are interchanged. This important property of Boolean algebra is called the .duality

principle. It states that every algebraic expression deducible from the postulates of

Boolean algebra remains valid if the operators and identity elements are interchanged.

1.4.2 Basic Theorems:

Boolean algebra is a closed system consisting of a finite set S of two or more elements,

subject to an equivalence relation(";) and the three binary operators OR, AND, and NOT,

such that for every element x and y in the set, the operations x+y, x.y, x ,and y- are

also uniquely defined in the set, and the Huntington's postulates are satisfied. These

postulates and their duals are listed as follows:

Postulate 1: For each operation there exists unique elements, 1 and 0, in set S such that

for x in S,

a) x + 0 = x and x.1 = x

and

b) x.0 = 0 and x+I=1

14

.'

Postulate 2 : The operations are commutative for every x and y in set S such that

a) x + y = y + x and b) X.y= y.x

Postulate 3 : The operations are distributive. For all X, y, and z in set S,

a) x.(y + z) = (x.y) + (x.z)

and

b) x + (y.z) = (x + y).(x + z)

Postulate 4 : The operations are associative. For every x, y, and z in set S,

a) x + (y + z) = (x + y) + z

and

b) x.(y.z) = (x.y).z

Postulate 5 : For every element x in the set S there exists an element x such that

a)x+x=l andb)x.x=O

Boolean theorems, whose primary application is in the minimization oflogic circuits, can

now be derived using the stated postulates. The theorems are as follows:

Theorem I : The Law ofIdempotency. For all x in set S,

a) x + x = x and b) x.x = x

Theorem 2 : The Law of Absorption. For all x and y in set S,

a) x + (x.y) = x and b) x.(x + y)=x

Theorem 3 : The Law ofIdentity. For all x and y in set S, if

a) x + y = y and b) x.y = y then x = y

Theorem 4 : The Law of Complements. For all x and y in set S, if .

a) x + y = I and b) x.y = 0 then x = i
Theorem 5 : The Law ofInvolution. For all x in set S,

x=x

Theorem 6 : DeMorgan's Law. For all x,y,..., and z in set S

a) x. y z = X +i + . .. + z

15

'.~

and

b) x + y + . .. + Z = x . y z

This theorem implies that any function can be complemented by changing the ORs to

ANDs, ANDs to ORs, and complementing each of the variables.

Theorem 7 : The Law of Elimination. For all x and y in set S,

a) x + x. y = x + y and b) x. (x + y) = x. y

Theorem 8 : The Law of Consensus. For all x,y, and z in set S,

a) x. y + x. z + y. z = x. y + x. z

and
.

b) (x +y).(x+z).(y +z) =(x +y).(x+z)

Theorem 9: The Law of Interchange. For all X, y, and z in set S,

a) (x.y) + (x.z) = (x + z). (x + y)

and

b) (x + y). (x + z) = (x. z) + (x. y)

Theorem 10 : The Generalized Functional Laws. The AND/OR operation of a variable X

and a multi-variable composite function that is also a function of X is equivalent to

similar AND/OR operation of X with the composite function whose X is replaced by 0:

a) X+/(X,Y, ,Z) =X+/(O,Y, ... ,Z)

b) X/(X,Y, ,Z) =X/(O,Y, ... ,Z)

For all X, Y,..., and Z in set S,

a) f(X,Y, ,Z) =X/(l,Y, ... ,Z) +Xf(O,Y, ... ,Z)

b) f(X, Y, , Z) ,,; [X + /(0, Y, ... , Z)]. [X + f(1, Y, ... , Z)]

Operator Precedence:

The operator precedence for evaluating Boolean expressions is

(1) Parentheses (2) NOT (3) AND and (4) OR.

16

1.5 Some Dermitionof Boolean Algebra:

1.5.1 Propositional Operation: (AND, OR. NOT ••••••)

Another interpretation of a Boolean algebra with two elements in the set B is in terms of

propositional logic. A proposition in this context is the content or meaning of a

declarative sentence for which it is possible to determine the truth or falsity. Thus, a

sentence must be free of ambiguity and must not be self-contradictory in order to qualifY

as a proposition. The following statements are alI propositions:

a) The moon is made of green cheese.

b) 4 is a prime number.

c) It snowed on the island that is now called Manhattan on the day the king of
England signed the Magna Carta.

of the above propositions, a) and b) are false and c) mayor may not be true. The

statement" All men are tall" is not a proposition, since it is ambiguous.

Proposition can be combined or manipulated by operations AND, OR, NOT, etc. The

AND combination oltwo propositions is true ifboth propositions are true and is denoted

by (.) or (A). If either or both of them are false, the combination is false. This new
proposition is called conjunction of the two propositions.

The OR combination of two propositions is true when either or both of them are true and

is false if both of them are false. This is called the logical sum or disjunction, and is
denoted by plus(+) or (V) sign between the two symbols.

Corresponding to any given proposition P, it is possible to form another proposition which

asserts that P is false. This new proposition is called the denial or complement of P and

is written as P' or -Po If P is the statement "It is raining" then 'P' is the statement "It is

false that it is raining" or "It is not raining".

17

.~

J

"
-I

1.5.2 Boolean Functions:

A Boolean function is an expression formed with binaJ:y variables, the two binaJ:y

operators OR and AND, the unary operator NOT, parentheses, and equal sign. For a given

value of the variables, the function can be either 0 or 1. For example, consider the

Boolean function F1 ; X. y. z
The function F1 is equal to I if x=l and y=1 and z; I ; otherwise F1=O. The above

expression is an algebraic expression of a Boolean function.

Truth tahle:

A Boolean function may also be represented in a truth table. For a n binary variable input

function, there are 2" input combinations. A table can be prepared representing the value

of function for all 2" possible combinations. This table is known as truth table of the

Boolean function; The algebraic expression of a Boolean function is not unique, whereas

the truth table of a Boolean function is unique.

Literals:

A literal is a primed or unprimed variable. When a Boolean function is implemented with

logic gates, each literal in the function designates an input to a gate, and each term is

implemented with a gate. The miillmization of the number of literals and the number of

terms results in a circuit with fewer gates and interconnections.

Minterms and Maxterms:

A binary variable may appear either in its normal form (x) or in its complement form

(i).If two binary variables x and y combined with an AND operation, there are four

possible combinations: x. f, x. y, x. f and x. y .Each of the four terms is called

minterms or a standard product In a similar manner, n variables can be combined to form

2" minterms. In a similar fashion, n variables forming an OR term, with each variable

being primed or unprimed, provide 2" possible combinations, called maxterms or standard

18

....•

sums.

Canonical form:

A Boolean function may be expressed algebraically from a given lruth table by forming

a minterm for each combination of the variables which produces a "I" in the function and

then taking the OR of all those terms. Similarly any Boolean function can be expressed

as a product of maxterms by forming a maxterm for each combination of the variables

which produces a "0" in the function and then form the AND of all those maxterms.

Boolean function expressed asa sum of minterms or product of maxterms are said to be
in canonical form.

Standard form:

In this configuration, the terms that form the function may contain one,two or any number

of literals. There are two types of standard forms: SOP(sum of products) and POS(product
of sum).

An example of a function expressed in SOP forms is:

An example of a function expressed in pas forms is:

Prime Implicant:

A prime implicant P, is said to cover a set of standard product terms.

Essential prime implicant:

The term essential prime implicant denotes a prime implicant that covers at least one

standard product term that cannot be covered by any other prime implicant The essential

prime implicants, therefore, must be included to get a minimum cover of the function.

19

PartiaUy symmetric function:

A function f(x••x,•...• x,.) is partially symmetric in X;•• X;z••......• X;. iff it is unchanged

by any permutation of the variables X;I' X;z••......• xim.

Symmetric function:

A function f(x., x,•.......• x,.)is totally symmetric iff it is unchanged by any permutation
of its variables.

Positive function:

A function f(x" x,•....... ,x,.) is positive in X; iff it is possible to write a sum-of-products
expression for f in which £i does not appear.

Vacuous function:

A function f(x•• x,•....... ,x,,) is vacuous in X; iff it is possible to write a sum-of-products

expression for f in which neither X; nor £i appear.

Unate function:

A function f(x••x"•x,.) is onate function iff it is positive or negative in each of its
variables.

Parity function:

A function is called parity(odd) function if its value is I when odd nilmber of inputs are

lor a function is called parity(even) function if its value is I when even number of inputs
are 1.

Majority function:

A function is called majority function if its value is I when more than half of its input
variables are 1.

20

1.6 Minimization Technique:

The complexity of digital logic gates that implement a Boolean function is directly related

to the complexity of the algebraic expression from which the function is implemented.

Although the truth table representation of a function is unique, expressed algebraically,

it can appear in many different forms. There are different methods to minimize a Boolean

function, some of these are described briefly as follows:

1.6.1 Minimization by Boolean Algebra:

In this techniques canonical form of a Boolean function is converted to minimal form by

applying the different postulates and theorems of Boolean algebra.

Example:Simpliry (x +y)(x +x.YJ.z +x.y +x.y.z +x(f+z)

Solution: (x +y)(x +x.YJ.z +x.y +x.y.z +x(f+i)

= (x +y)(x +YJ.z +x.y +X.y.Z +x(y +Z) [Th.7(a))

= (x +X.y +x.y +O).z +x.y +X.y.Z +x(y +i) [Th.l(b)]

=x(1 +j+y).z +x.y +x.y.z +x(f+z)

= x. z + x. y + x. y. z + x(f + i)

21

(p.5(a)]

.....,
II '1. ,

= x.z(l+y) +x.y +x(y+i)

=x.z +x.y +x(y+i)

- ~
= x.z + x.y +x +y + z

- -= x.z + x.y +x + y. Z

-= x.z + x.y +x

= x.z + x(y + I)

-= x.z +x

-= z +x

(Th.6(a»)

(Th.6(b)]

(Th.8(a»)

[p.I(b»)

(Th.7(a)]

However this procedure of minimization is awkward because it lacks specific rules to

predict each succeeding step in the manipulative process and is ineffective for expressions

of even a small number (e.g. four or five) of variables. Consider the minimization of the

function f(x,y,z) below

The combination of the first and second, second and third, fourth and fifth, fifth and sixth

terms yield a reduced expression

F(x, y, z) = x. z + y. Z + y. Z + x. z

This expression is said to be in an irredundant form, since any attempt to reduce it, either

by deleting any of the four terms or by removing a literal, will yield an expression which

is not equivalent to f.

22

J

The above reduction procedure is not unique and a different combination of terms may

yield different reduced expressions. In fact, if we combine the first and second, the third

and sixth, the fourth and fifth terms of f, we obtain the expression

F(X; y, z) = x. z + x. y + y. Z

In a similar manner, by combining the first and fourth terms, the second and third, the

fifth and sixth, we obtain a third irredundant expression,

F(X, y, z) = i.y + y. Z + x. z

while all three expressions are irredundant, only the latter two are minimal. Consequently,

an irredundant expression is not necessarily minimal, nor is the minimal expression always

uruque.

1.6.2 Minimization by Map Method:

The map method provides a simple straight forward procedure for minimizing Boolean

functions. This method may be regarded either as a pictorial form of a truth table or as

an extension of the Venn diagram. The map method, first proposed by Veitch and slightly

modified by karnaugh, is also known as the "Veitch diagram" or the "karnaugh map". The

map is a diagram made up of squares. Each square represents one minterm. Each minterm

of the standard product Canonical form is arranged in such a fashion so as to provide

adjacent places for terms that differ in only one variable. In fact, the map represents a

visual diagram of all possible ways a function may be expressed in a standard form.

Formation of k-Map:

The k-Map is a set of 2" squares arranged in an ordered two dimensional array. Each of

the squares on the map corresponds to one of the 2" possible minterms. The possible k-

23

Maps for functions up to four variable are shown below

(;U
00 01 11 10

00
0 1 3 2

01
4 5 7 6

11
12 13 15 14

10
8 9 11 10

Aill BC
A 00 01 11 10o 1

B fig. a 0A 0 0 1 3 2
0 10 1.,,

4 5 7 6
2 J fig. c

flg.b
fig. d

.~

Each of the squares on the map, called a cell, has an entry equal to decimal value of the

corresponding minterms. Along the top of the map, the variable values are listed in such

a way that as one scans the values from left to right or from right to left, from cell to cell,

only one variable changes. Each cell is thus adjacent to the next. The cells on the right

end are only one tmit distance from the cells on the left. Similarly cells on the top are one

tmit distance from the cells on the bottom. Entries of I are made in the cells

corresponding to the minterms that make the function a 1 in SOP form. A 0 is entered

in each of the remaining cells.

Minimization process:

Simplification of a Boolean function plotted on a k-map is a process of correctly grouping

the adjacent Is. The rules for forming groups are as follows:

Rule 1: If all the entries in an n-variable k-map are Is, the group size is 2" and the

corresponding minimized function is given by {(A,B,....) = 1

Rule 2: For n variables, the largest nontrivial group size is 2••.1• All group sizes are power

of 2. For n variables, group sizes of 2", 2"'\ 2".2,... , 2° are allowed.

Rule 3: In any group it must be possible to start at a cell and travel from cell to cell, with

moves of one tmit length, through each cell in the group without passing through any cell

twice and return to the starting cell.

24

Using the rules for forming groups, we now apply the rules to arrive at a minimum SOP

function as follows:

I. In the process of grouping, each I on the map must be included in at least one

group.

2. For n variables, first look for Is that cannot be grouped with any other I and circle

these. These isolated Is will appear as n literal minterms in the final function.

3. Look for Is that can be grouped with only one other I and circle these groups as

pairs.

4. Next look for Is that can be grouped only in groups offour and circle these groups.

S. Continue the grouping process until group sizes of 20-1 have been considered.

6. This grouping process should be stopped at any time that each I has been included

in at least one group. Next, eliminate the smaller groups, if any, that are enclosed

completely within a larger group.

7. For each group, determine which literals remain constant in each cell in the group.

These literals when ANDed together form the product terms of SOP function. For x

groups, there will be x product terms. For an n-variable function, a group size of2' would

contribute a product term of n - k literals.

The map method of simplification is convenient as long as the number of variables does

not exceed five or six. As the number of variables increases the excessive number of

square prevents a reasonable selection of adjacent squares. The obvious disadvantage of

the map is that it is essentially a trial-and-error procedure which relies on the ability of

the human user to recognize certain patterns. For functions of six or more variables, it is

difficult to be sure that the best selection has been made. Further it is not easily

programmable for solution by digital computer.

25

" ,

I

1.6.3 Minimization by Tabulation Method:

It is a specific step-by step procedure that is guaranteed to produce a simplified standard

form expression for a function. It can be applied to problems with many variables and has

the advantage of being suitable for machine computation. However, it is quite tedious for

human use and is prone to mistakes because of its routine, monotonous process. The

tabulation method was first formulated by Quine and later improved by McCluskey. The

tabular method of simplification consists of the following parts:

I) The first is to find by an exhaustive search all the terms that are candidates for

inclusion in the simplified function.These terms are called prime-implicants.

2) From the set of all prime implicants, a set of essential prime implicants is

determined by making a prime implicant chart.

3) From the remaining prime implicants a minimum cover is obtained for the

remaining minterms.

This method is studied elaborately in the chapter 2.

1.6.4 Minimization in ESOP Domain:

Logic design using exclusive-OR gates offers two advantages when compared to

conventional Boolean realizations using AND/ORJNAND/NOR gates. Firstly in certain

cases more economic realizations in terms of the number of gates and/or interconnections

may be obtained. Secondly, the testability of circuits is significantly improved. There are

different techniques to minimize a function into Exclusive sum of products (ESOP)

domain. Most of them are of heuristic nature and have their relative advantages and

disadvantages. Again, as there are different kinds of EXOR expression, so different

techniques have evolved for each classification and there are still to come. Such

minimization techniques are illustrated from chapter 3 to 5.

26

..,

CBAPTER2

QUINE-McCLUSKEY METHOD

2.1 Introduction:

The manipulation of Boolean functions is one of the most important operations in

various applications of computer-aided design of digital systems, such as test

generation, synthesis and verification. The efficiency of the Boolean manipulation

depends on the form of representation of the Boolean functions [12]. Recently

automatic logic synthesis tools are extensively used in VLSI design. Most logic

synthesis tools use AND and OR gates as basic logic elements, and they derive multi-

level logic circuits from AND-OR two-level circuits. Thus the minimization of sum-of-

products expressions (SOPs), which corresponds to the minimization of AND-OR two-

level circuits, is vitally important in such tools. The minimization methods should

handle Boolean functions containing any number of input variables and have the

advantages of being suitable for machine computation. For the minimization of a

Boolean function in SOP domain there are map method, tabulation method, N-cube

method etc. Among them map and tabulation methods are widely used. The map

method of simplification is a trial-and-error procedure which relies on the ability of the

human user to recognize certain patterns. For functions of six or more variables, it is

difficult to be sure that the best selection has been made. Further it is difficult to

implement for machine computation. In this chapter the time complexity of tabulation
method would be studied.

27

2.2 Tabulation Method for the Minimization of Boolean Functions:

It is a specific step-by-step procedure that is guaranteed to produce a simplified standard-

form expression for a function. It can be applied to problems with many variables and has

the advantage of being suitable for machine computation. However, it is quite tedious for

human use and is prone to mistakes because of its routine, monotonous process. The

tabulation method was first formulated by Quine and later improved by McCluskey. It is

also known as the Quine-McCluskey method. The Quine-McCluskey's (Q-M) tabular

reduction technique for single-output function is summarized by the following list of

steps.

Step 1:

Convert the minterms to binary form and then group the minterms in accordance with the

total number of Is in their binary representations. The minterms will be referred to as

zero-cubes.

Step 2:

Make all possible groupings of two zero-cubes. These groups are known as one-cubes

(they have one don't-care in their Boolean cell representation). This step must be followed

by possible groupings of pairs that will be referred to as two-cubes (two don't-cares in

their Boolean cell representation). This process is continued to produce higher-order cubes

until no higher cubes can be formed.

Step 3:

Identify those cubes that couldn' t be used in the formation of higher-order cubes. These

cubes are called prime-implicants (PIs). The PIs represent all possible groups with no

smaller group being part of a larger group.

28

i
:I

Step 4:

Identify those PIs that are necessary to provide a minimum covering of all the minterms,

that is, each minterm of the original function must be in at least one group. This

identification is accomplished by constructing an implication table that, in turn, is used

for fmding the desired minimum cover. The rules for constructing the implication table

are summarized as follows.

1. Use all minterms of the original function as the column headings.

2. Use the Pis as the row labels. It is better to separate the PIs by order. If there are two

PIs that cover a minterm, the higher-order PI is preferred.

3. A check mark, X, is entered in each matrix position that corresponds to a minterm

covered by a particular PI.

4. Examine the table entries and locate the essential PIs. An essential PI is one that is the

only cover for one or more minterms. All minterms that are covered by an essential PI

are then removed from active consideration.

5. The secondary essential PIs are determined from the remaining PIs by making judicious

choices. A PI is preferred over another if(a) it covers more of the remaining minterms,

or (b) it is higher in order than the other. This process is continued until all. of the

minterms have been considered.

Step 4 can be resolved in the following ways:

I) There is a flag, corresponding to each minterm.

2) Sort the PIs in the decreasing order of cubes.

3) If a minterm is covered by a single PI then the corresponding flag is set to 'P'

otherwise it is 'F'.

4) Examine the flags of minterms and locate the essential PIs. An essential PI is one that

is the only cover for one or more minterms, i.e., minterms have flag value 'P'. All

minterms that are covered by an essential PI are then removed from active consideration.

29

".

"

5) Choose the prime implicants which are disjoint with essential prime implicants and

then choose the prime implicants sequentially until all the minterms are covered.

2.2.1 Tbe Binary Representation:

Example: Using the Q-M tabular procedure, find a minimum SOP expression for the

Boolean function given by

f(WX Y, Z) = Ln(O, 2, 3, 5, 7, 8,10,13,15)

Solution:

Step 1: The minterms are classified as shown below:

Minterms Binary Number Check

Representation of Is

0 0000 0 x

2
.

0010 1 x

8 1000 1 x

3 0011 2 x

5 0101 2 x

10 1010 2 x

7 0111 3 x

13 1101 3 x

15 1111 4 x

Step 2: Next we locate the one-cubes. Two minterms may be considered for combination

only if the number of Is present in their binary representation differs by one. Moreover,

the minterms must differ by a power of 2 to form valid group, i.e., two minterms would

be combined if the binary representations of the two differ in one position. Starting with

the top section, we can match 0 and 2 because they differ in the second position from the

30

'b

"

"

right Similarly 0 and 8 can be combined because they differ in the fourth position from

the right Comparing in this way we get the one-cube chart shown below.

One-cubes Binary Number Check

Representation of Is

0,2 00-0 0 x

0,8 -000 0 x

2,3 001- 1 x

2,10 -010 1 x

8,10 10-0 1 x

3,7 0-11 2 x

5,7 01-1 2 x

5,13 -101 2 x

7,15 -111 3 x

13,15 11-1 3 x

In all these cases the difference between the minterm is always a positive power of 2. Any

time a group is formed, a check mark, x, is placed in the check column. This is continued

until no more one-cubes can be formed.

Next we proceed to determine the two-cubes from the already obtained one-cubes. A

proper two-cube may be located by combining two one-cubes if the two differ in one

position. The two-cube chart shown below

Two-cubes Binary Number Check

Representation of Is

0,2,8,10 -0-0 0

0,2,8,10 -0-0 0

5,7,13,15 -1-1 1

5,7,13,15 -1-1 1

31

,.~.

I.

:;.

It is seen that for evel)' two-cube, there will always be two pairs of one-cubes that will

produce the same two-cube. Both of these pairs, therefore, are checked off. So discarding

the duplicate cubes we have the two-cube chart

Two-cubes Binary Number Check

Representation of Is

0,2,8,10 -0-0 0

5,7,13,15 -1.1 1

The two-cubes are compared in similar fashion. In this example no comparison can be

made since the comparisons must be made between adjacent two-cube groups.

Step 3: All cubes without x's are called PIs. The PI list for this function is obtained as

follows

a) 0,2,8,10

b) 5,7,13,15

c) 2,3

d) 3,7

Step 4: sorting the PIs in the decreasing order of cubes we have the following PI chart

along with minterms.

PI 0 2 3 5 7 8 10 13 15 Check

0,2,8,10 x x x x *
5,7,13,15 x x x x *
2,3 x x

3,7 x x

From the chart it is seen that (0,2,8,10) & (5,7,13,15) cubes are essential prime implicant,

so they are discarded from the active consideration and the resultant K-Map would be

32

yz
00 01 11 10

00 1 1 1

01 1 1

11 1 1

10 1) 1
I

wx

The remaining (2,3) and (3,7) cubes are not disjoint with the essential prinle implicant

So we choose sequentially from the remaining cubes until all the minterms are covered,

i.e., if we select (2,3) cube, there is no uncovered minterm. The resultant K-Map would

be

yz
00 01 11 10

00 1 (i ,)

01 1 1

11 1 1

10 1 1

wx

2.2.2 Tbe Decimal Representation:

The tabulation procedure can be further simplified by adopting the decimal code for the

minterms, rather than their binary representation. Two minterms can be combined only

if they differ by a power of 2, i.e. only if the difference between their decimal codes is

2;. The combined term consists of the same literals as the minterms with the exception of

the variable whose weight is 2;,which is deleted. For example, if we consider the function

fl(Iv, x, y, z) = L (0, I, 8,9), the minterms I and 9 differ by 23=8, and

33

1.

"

)

\
\

consequently, the variable w whose weight is 8 is deleted. This process, which is recorded

by placing the weight of the redundant variable in parentheses, e.g., 1,9(8), is nothing but

a numerical way of describing the algebraic manipulation

W.X.y.Z + W.X.y.Z =x.y.z .

Similarly, the combination of minterms 0 and 8 is written as 0,8(8).

The condition that the decimal codes of two combinable terms must differ by a power of

2 is necessary but not sufficient Two terms whose codes differ by a power of 2 but

which have the same index cannot be combined, since they differ by more than one

variable. Similarly, if a term with a smaller index has a higher decimal value than another

term whose index is higher, then the two terms cannot be combined, although they may

differ by a power of 2. For example, the terms 9 and 7, whose indices are 2 and 3,

respectively, cannot be combined, since they differ in the values of three variables. Except

for the above phenomenon, the tabulation procedure using the decimal representation is

completely analogous to that using the binary representation.

2.3 Algorithm:

I. Read the input and check whether it is the first value or not In the case of the first

value create 'head' and initiate a linked list, otherwise add the value to the linked list

2. Continue step I until the end of the input

3. Create the minterms from the values.

4. again = TRUE

S. If Again != TRUE goto step 13

6. again = FALSE, current = head

7. If current-next = NULL

i. current has not been combined, create a new cube and add to the new list,

new term++.

34

-:/ ii. head = new_head, term_no = new_term, goto step 5.

8. link next = current-next

9. If link_next = NULL

i. current has been combined, current = current-next, goto step 7.

ii. Create a new cube and add to the new list, new_term++, current = current-next,

goto step 7.

10. Compare the two cubes, change = TRUE if the two cubes differ in one position.

11. If change = TRUE.

i. again = TRUE.

ii. combine these two cubes and create a new cube.

iii. new_term++.

12. link_next = link_next-next, goto step 9.

13. Check duplicity of the cubes and delete the duplicate cube.

14. Sort the prime-implicant in decreasing order of cubes.

15. Determine the essential prime implicants and output the corresponding product terms,

if all the minterms are covered then stop the process.

16. Determine the disjoint prime implicant with the essential prime implicant and output

the corresponding product terms. Again if all the minterms are covered then stop the

process.

17. Traverse the remaining prime-implicant, sequentially and output the corresponding

product term until all the minterms are covered and then stop the process.

35

,

-,,

CHAPTER 3

CLASSIFICATION OF AND-EXOR EXPRESSIONS

3.1 Introduction:

It has been conjectured that exclusive sum-of-products expressions(ESOPs) require

fewer products than sum-of-products expressions(SOPs)[22). The EXOR gate is

usually more expensive to realize physically than either the AND gate or the OR gate.

However, the EXOR connective is very useful since it arises naturally in the design of

arithmetic circuitry. Error-detecting and error correcting circuitry also often uses

EXOR gates. The parity function, the sum modulo 2 of a number of bits, is the most

common type of function used in error control circuitry. An ESOP requires only n

products to represent a parity function of n variables while the SOP requires 2"" [22).

If a constant 1 signal is available to use as a gate input, it is possible to form an

inverter from an EXOR gate. The EXOR gate is sometimes used as a " Controlled

Inverter". When the controlled signal C is 0, the network output F appears at the final

output Y unchanged(fig. 3.1).

x
n

N F Y=cF .•

E EXOR
T

Iw. 0 C
R
K

Cf

Here c is the complemented form of C
Ifig. 3.1)

36

When the control signal is 'I', the final output Y is the complement of the network output

F. This connection is often provided at the outputs of a standard Ie in order to increase
its usefulness. Experiments using randomly generated functions show that ESOPs require,

on the average, fewer products than SOPs. However, this is not always the case. There

is a 2n variable function which requires 2"-1 products in an ESOP while only n products
in an SOP[22].

3.2 Several Classes o(AND-EXOR Expressions:

Many researchers defined various classes of AND-EXOR expressions but the terminology
is not unified[22]. In this section 7 classes of AND-EXOR expressions are introduced and
the relations among them are shown. There are:

I. Positive Polarity Reed-Muller Expressions(pPRME)
2. Fixed Polarity Reed-Muller Expressions(FPRME)
3. Kronecker Expressions(KRO)

4. Pseudo Reed-Muller Expressions(pSDRME)

5. Pseudo Kronecker Expressions(PSDKRO)

6. Generalized Reed-Muller Expressions(GRME)

7. Exclusivl>-orsum-of-products Expressions(ESOPs)

3.3 Algebraic Identities (or the EXOR-Connective:

I. x (J1 y = xy + xy = (x + y) (x + j)

2. (x $ y) = x $ y = x $ y = xy + x y = (x + y) (x + j)

3 B. X $ x = 0

4B. X $ 1 = x

b. x $ x = 1

b. x E9 0 = x

37

5. x(y Ee z) = x. y Ee x. z

7. x+y=xEey jf x. y = 0

8. x 0 Y = z =Z Ee y = x. z Ee x = y. x Ee y Ee z = 0

9. x (i) (x + y) = xy

10. x Ee x. y = x. y

3.4 Expansion Theorem:

An arbitmy logic functions f (x I' X 2•..... , x n) can be represented as either

f = 1. fo $ x I' f2 .••••••••••• (3.)
f = XI' f2 $1. f. . (3.2)
f = Xl' fo $ Xl' fl •••••••.••.• (3. 3)

where fo = f(O, x2, x3 ••.•.• xn)

f. = f(). x2• x3 •••.•• xn)
f2 = fo $ f.

Proof: f can be represented as f = xJ 0 + x J I . Since xJ 0 and x J 1 are

mutually disjoint so f = xJ 0 + x J I becomes

f =XJOf:f7XJI (3.3)

replacing) Eex1 we have

38 .

-I
f = (I ED Xl) fO ED xlfl

= I. fO ED XI(fO ED f.)
= I. fo EDX •• f2 .••••••• (3. I)

in equation (3.3) we have

f = x1fo ED (I ED x,) f.
= XI fo ED I. f. ED XI f)
= x). f2 ED1. fl• (3. 2)

In the case of SOPs we can use only the type (3.3) expansion, often called a Shannon

Expansion(22]. In the case of AND-EXOR expressions, we may use any of the three

expansions. Thus the 7 classes of AND-EXOR expressions evolved.

3.4.1 Positive Polarity Reed-Muller Expressions(PPRME):

When we apply the type (3.1) expansions to all variables, we have an expression
consisting of positive literals only;

80 $ 81X) $ $ 8DXD $ 812X1X2 $ 813XIX3 $..... $8DQ-IX~D_l $

..... ED 812 ... ~.X2' .. XD ••••••••• (A)

This is called a positive polarity Reed-Muller expression. Because PPRME is unique for

a given function, no minimization problem exists. For example, the truth table of a
function is given in the next page.

39

,;

1.I.',

Table 3.1 Truth Table of Function M

x y z M

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 I 1 1

M= x.y. z ffi';. y. z ffi x. y. z ffi x. y. z ffi x. y. z
1110 = yz ffi yz
1111 = y. z ffi yz ffi yz
:. 1I1z = ~ ffi A{J _

= y. z ffi y. z ffi y. z
:.M= iz ffi yi W xLYz ffi i- i ffi yz)
~yz ~ y~ ffi xyz ffi xy ~ ffi xyz

1qaJn: MV = z W xz EEl xz
1'01'! = z EEl xz
:. Af2 = Jt1tf2ffi_M! _ '

= z ffi xi (B z
:. M= z ffi xz ffi xz ffi yz ffi xyz ffi yz
MO = xffixy ffiy
At! = 1 ffi x ffi y
:. M2 = 1 ffi xy

So the PPRME for the above function is

M = x ffi xy ffi y ffi z ffi xyz

The average number of product terms in the PPRMEs for the n-variable functions is 20-1•

3.4.2 Filed Polarity Reed-Muller Expression(FPRME):

When we apply either the type (3.1) or the type (3.2) expansion to each variable, we

obtain FPRME.

40

, There are at most 2" different FPRMEs for an n variable function. The minimization

problem is to find an expression with the minimum number of products among the 2"

different FPRMEs.

For example, the exclusive-or sum of products for the given function is

Applying type (3.1) w\(get

M= J..z EI?)'._zED x. j. z ED x.y. z ED x. y. z
Agam. ~ - z ED x. z ED x. Z
111 = zED x. z .
112 = Afo. ED A{I _

= z ED x. z ED z

Applying type (3.2) we get

M= J. zED x. j. z_EDJ._z ED z ED x. z
Agam: l10 = x..y ~ y ED 1
10fJ =jEDx
lI12 = x. j ED 1 ED x

Applying type (3.1) we get the FPRME

~IEDjEDLjEDLjzEDZ$LZ

3.4.3 Kronecker EIpression(KRO):

When we apply either the type (3.1),(3.2) or (3.3) expansion to each variable, we obtain

an expression which is more general than FPRME. This is called a Kronecker

expression(KRO). There are at most 3"different KROs for an n-variable function. To find

a KRO with the minimum number of products, an extended truth table of 3" entries and

41

-I the extended weight vector is used (See in[S]).

For example, the exclusive-or sum of products for the given function is

~~Jzffi~JzffiLjzffiLyzffiLYZ
1110 = y. z ffi y. z
111, = y. z ffi y. z ffi y. z
~ = y. z ffi j z ffiy. z

Applying type (3.1) for x variable we get

M= j ..•6?)'.f ffi x. y. z ffi x...J, z ffi x. y. z
Agam. 1110- z ffi x. z ffi x. z'1, = z ffi x. Z
'12 = ~ ffi Af, _

=zffix.zffiz

Applying type (3.2) for y variable we get

M= j. z ffi x. y. z _ffiJ._z ffi z ffi x. z
AgmD: Ivfo = x. y W Y ffi 1
1\1, = y ffi x

Applying type (3.3) we get the Kronecker expression for the given function

M= Z. Ivfo ffi z. A1J
= z. x. y ffi y. z ffi z ffi y. z ffi x. z

3.4.4 Pseudo Reed-Muller Ellpressioo(PSDRME):

Wheo we apply either the type (3.1) or the type (3.2) expansion to M we have two

suhfunctions. For each sub-function we can apply either type (3.1) or type (3.2)

expansion. Assume that we can use different expansions for each sub-function. In this

case, we have a more general expansion than a FPRME. This is called a Pseudo Reed-

42

Muller expression(pSDRME). In PSDRME, both true and complemented literals can

appear for the same variable. There are at most 22'-1 differentPSDRMEs. A minimum

PSDRME can be obtained from the extended truth table. This class of expressions has not
been studied[22].

For example, the exclusive-or sum of products for the given function is

Applying type (3.1) for x variable we get

M= (j. z ffi y. Z) ffi x(j. z ffi y. z ffi y. z)

-, No", g)O = Z, gy/ = Z, -:.gy2 = Z + Z

Applying type (3.2) in g for y variable, we have

g=j(z+z:Lffiz
Let gl_=j(z+Z) •. g2=z
:.gl z(}= y, gl z/ = y, gl z2 = 0
Again; g2z(} = I, g2z/ = 0, g2z2 = I

Applying type (3.2) in gl & g2 for z variable we have

gl = ,f,. 0 if;) y = y, g2 = Z
:.g = y + z _
No", h)O= x. z ED x. z, hy/ = x. z,

Applying type (3.2) in function h for y variable, we have

43

h ; y. x. Z ~ x. ~
Let hI; Y,,-x.z,
:. hI z() ; X. y, hI zl

Again: h2z() ; 0,

h2 ; X. Z
; 0, hlz2; x.y
h2 zl ; x, h2 z2 ; X

Applying type (3.1) in hI & type (3.2) in h2 for Z variable we have

hI ; x. i Ee z. x. i. _ h2; Z. x Ee x
:.h ; x. y Ee z. x. y Ee z. x Ee x

PSDRME for the given function is

3.4.5 Pseudo Kronecker Expression(pSDKRO):

When we apply either the type (3.1), (3.2) & (3.3) expansion to M, we have two sub-

function. For each subfunction, we can apply either the type (3.1), (3.2) or (3.3)

expansion. Assume that we can use different expansions for each sub-function. In this

case, we have a more general expansion than a KRO. This is called a Pseudo Kronecker

Expression(pSDKRO). In PSDKRO, both true and complemented literals can appear for

the same variable. There are at most 32"-1 different PSDKROs. An optimization

method for Pseudo Kronecker expressions of p-valued input two-valued output functions

by using multiple-place decision diagrams for p=2 and p=4 is shown in[24].

For example, the exclusive-or sum of products for the given function is

~~JzID~fiID~~iEe~yzEe~yz
fxo ; y. z Ee y. Z

fxl ; y. i Ee y. i ID y. z

44

•

"""',

Applying (3.1) we have

~izffiyiffi~izffi~iffijiffiyiffiy~
-yz~yzffi~yzffiy~ffiX~_

Let 9 = y._zffi y. z, _ !l.=.x(y. : ij) 1'.g ffi y. z)
Now, gya - Z, gyl - Z, .. ~2 - Z ~ z
Applying _ f..2) we_hs.Ye 9 =_(1'. z ffi y. i) ffi i
Let k - y. z ffi y. z, I - z

Applying (3.2) for z variable in both k & I we have

k = y, I = i, :.9 = Y ffi i
Again: h,rt!. = x. z ffi i. X, hYI = x. Z, ~2 = i. x
Applying L3) wehave h = j(x. z ffi i. x) \;j;I x. y. z
Eet j = j(x. z ffi i. x) . j = x. y. z

Applying (3.1) in i & applying (3.2) in J we have

j = x. i. i = i.x. y ffi x. Y
h = x. y ffi z. x. y ffi x. y

Hence the PSDKRO expression for the M function is

M= Y ffi i ffi x. Y ffi i. x. y ffi x. y (PSDKRq

3.4.6 Generalized Reed-Muller Expression(GRME):

In the"expression of the type (A), if we can freely choose the polarities of the literals,

then we have a more general expression than a FPRME. This is called a Generalized

Reed-Muller expression(GRME). It is also called inconsistent canonical form [5] or a

canonical restricted mixed polarity form. There are at most 2n2'-' different GRMEs.

45

.............. (From Art. I & Art. 2)

............. (From Art. 2 & Art. 4)

............. (From Art. 4 & Art. 6)

............. (From Art. 2 & Art. 3)

............. (From Art. 3 & Art. 5)

............. (From Art. 4 & Art. 5)

!

,
l
•"

,

3.4.7 Exclusive-or Sum-of-Products Expressions (ESOP):

ArbitraIy product terms combined by EXORs are called an Exclusive-or Sum-of-Products

Expression(ESOP). The ESOP is the most general AND-EXOR expression. There are at

most 31D different ESOPs, where t is the number of the products. No efficient

minimization method is known and iterative improvement methods are used to obtain near

minimal solution[5]. EXMIN2, a heuristic simplification Algorithm[5], would be used to

minimize such expression in a later chapter.

3.5 Relations among the classes:

Suppose that PPRME, FPRME, PSDRME, KRO, PSDKRO, GRME and ESOP denote the

set of expressions. Then the following relations hold:

i. PPRME c FPRME

ii. FPRME c PSDRME

iii. PSDRME c GRME

iv. FPRME c KRO

v. KRO c PSDKRO

vi. PSDRME c PSDKRO

46

J"
\

CHAPTER 4

LOGIC SYNTHESIS WITH EXOR GATES

4.1 Introduction:

Increasing complexity of LSIs has made human design of bug-free logic circuits very

difficult Thus various automatic logic synthesis tools have become indispensable in

LSI design. Most of the logic synthesis tools use the design theory for the circuits

consisting of AND, OR and NOT gates. As for control circuits these tools produce

good circuits comparable to the human design. However, they are not so good at the

design of arithmetic circuits, error correcting circuits and circuits for tele-

communication: such circuits can be simplified when EXOR gates are effectively used.

These circuits can be realized with many fewer gates if EXOR gates are available as

well as AND and OR gates and can be derived from AND-EXOR two level circuits

(AND-EXORs). Logic design using exclusive-GR gates offers two advantages when

compared to conventional Boolean realizations using AND/ORINANDINOR gates.

Firstly, in certain cases more economic realizations in terms of the number of gates

and/or interconnections may be obtained. Secondly, the testability of circuits is

significantly improved[17]. Therefore, in order to develop a logic synthesis tool for

such circuits, a design theory utilizing EXOR gates is very important

4.2 Design Method of AND-EXOR Circuits:

In this section, we will review the design method for AND-ORs and AND-EXORs.

The symbol V denotes the inclusive-OR operation, while EB denotes the exclusive-OR

operation.

47

Definition-I:

Products combined by OR is a sum-of-products expression(SOP). Products combined by

EXOR is an exclusive-or sum-of-products expression(ESOP). An SOP(ESOP) for a

function f with the minimum number of products is called a minimum SOP(minimum

ESOP) and denoted by MSOP(MESOP).

Fig. 4.1 and fig. 4.2 show an MSOP and an MESOP for a 4-variable function,
respectively. In the minimization of SOPs, each .

11 1010
1

> 01 1 1
.c_ 1 1

11 0
1 10 1 1

1

fig. 4.1 fig. 4.2
minterm of the function must be covered by loop(s) at least once(fig. 4,1). However, in

the minimization ofESOPs, each minterm of the function must be covered by loop(s) by

odd times(fig. 4.2). This is due to the fact that I V I = I in SOPs, but I E9 I = 0 in

ESOPs. Fig. 4.2 requires fewer loops than fig. 4.1 and the loops in fig. 4.2 are larger

than ones in fig. 4.1. This shows the two-level realization based on the ESOP requires

fewer gates and connections than one based on the SOP.

4.3 SimplifieatioD of AND-EXORExpressions:

In the minimization of SOPs, we must cover each minterm of the function by Ioop(s) at

least once. However, in the minimization of ESOPs, we must cover each minterm of the

function by the loops in odd times. We can include the terms of zeros in the truth table

48

by loops in even times. So the minimization of ESOPs is much more difficult than that

of SOPs. In the minimization of SOPs, concepts such as prime implicants and essential

prime implicants are very useful. However, in the minimization ofESOPs, we cannot use

such concepts. This is the reason why exact minimization programs can treat the functions

with less than 5 or 6 inputs(See in [16],(10)).

In order to treat functions with more variables, we have to abandon the absolute

minimalities and must resort to near minimal solutions. Various heuristic tools have been
developed[5].

A heuristic simplification algorithm EXMIN2 for ESOPs with multi-valued inputs,

reduces the number of products in ESOPs as the fIrst objective, and then reduces the

number of literals as the second objectives[23]. In this section the outline of EXMIN2

for two valued input function would be elaborately described and the software would be
developed.

DefInition 2:

An SOP is called a Disjoint SOP(DSOP) if all the products are mutually disjoint
For example:

The truth table of an arbitrary function is shown below

A B C y

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

49

. K-Map of the above truth table

BC
A UU U1 11 1U

o 1 1

1 1 1

if we circle each minterm individually then the K-Map would be

BC
A UU U1 11 1U

0 0) 0
"- 1 0 0

So the minterms of the truth table are mutually disjoint.

,
./
.\ . BC BC,

A UO U1 11 1U A 00 01 11 1U
0 0) 1 0 0) 1
1 (9 1 1

fig@) f1g@

fig.(a) is mutually disjoint but fig. (b) is not mutually disjoint.

Lemma-I: .

In a DSOP, the OR operators can be replaced by the EXOR operators without changing
function.

50

-f,

Proof:

EXOR operation is defmed as

and the inclusive OR is represented by EXOR as

In general if X;~ = 0 for (I ,; i ,; j ,; k), then

Again if X;~ = 0 for (l ,; i ,; j ,; k+ I), then Y.Xt.+1 = 0

Hence we have

The minterms of the given function are mutually disjoint. So the initial solutions of the

algorithm are DSOPs derived from the truth table which are the minterms of the function.

Then according to Lemma-I, we can replace the ORs with the EXORs without changing

the function.

5]

/

xS=1 if XES

o ifXiES

IfP={O,I}, then the literals are xIO"I,xIOI,xl'land x0 which may be denoted by I,

x and " respectively.

-x ,

j~
'.

Volume of Cubes:

Definition: Let IS I denote the number of elements in S. The volume of a product X,SI,

x,S2, ,x"•• is ISI/IS21 IS.I. The volume of an ESOP is the sum of volumes of

products in the ESOP.

In the case of two-valued input single-output functions, the greater the volume, the fewer

are the literals in the ESOP's. So the increase of the volume is desirable for the reduction

of the circuit cost.

Some useful algebraic identities for E&-connectives are:

a)x E9y =xy+xy =(x +y)(x+YJ

b)x \By =x E&y=xE&y =x.y +x.y=(x+y)(x +YJ

c)

d)

i) x E& x = 0

i) x 01 = x

ii) x Ee x = 1

ii) x E& 0 = x

e) x(y E&z) = xy E&xz

f) x + Y = x Ee Y Ee xy = x Ee xY

g)x+y=xE&y ifxy = 0

:::-1

52

/

_I

i) x E9 (x + y) = xy

j) x E9xy =xi

The algorithm used in this section uses the following properties:

Associative Law :

Definition: A billlU)'operator * on a Set S is said to be associative whenever:

(x * y)* z = x *(y * z) for all x, y, z E S

For EXOR operation this would be

(x E9y)E9 z = x E9(y E9z)

Commutative Law :

Definition: A binary operator * on a set S is said to be commutative whenever :

x * y = y * x for all x, yES

For EXOR operation this would be

xE9y=yE9x

Distributive Law :

Definition: If * and & are two billlU)'operators on a set S, * is said to be distributive over
& whenever

x *(y & z) = (x * y)&(x * z)

For EXOR operation if '.', i.e., AND is said to be distributive over EDwhenever

(x EDy).z = x.Z EDy.z

In addition to these rules, Algorithm used in this chapter uses the following rules to

replace a pair of products with another one.

53

j
,
\

':

1) X-MERGE:

a) x Ell x = 0 b) x Ellx = I c) x Ell I = x d) x Ell 1 = x

These rules do not increase the volume but reduce the number of the products

Proof: x Ellx = x . X V x. x = 0

x Ellx=x.x Vx.x=x Vx=l

x Ell I = x. 0 V X. I = x

x Ell I = X. 0 V x. I = x

2) RESHAPE:

This rule does not change the volume.

Proof: From (h) we get

A EllB = C EllD if A EllBElle EllD = 0

So let A= (x.y Elly) Ell(x,fEllx)

= (x.y Ellx.YJ Ell (x EllYJ

= (x Elly) Ell (x Elly)

= (x Ellx) Ell (i Elly)

=0

..... (Using X-EXPANDl]

54

/,
-i.e. X.y $ y - -x .y $x

3) DUAL-COMPLEMENT:

x$y= £ $ f

DUAL-COMPLEMENT does not change the volume for two-valued input functions but

may decrease the volume for multi-valued-input functions (See in [23]).

Proof: Let A =(x $ y) $ (£ $ f)

=(x $ £) $ (y $ f)

=1 $1

=0

i.e. x $ y = £ $ f

4) X-EXPAND!:

x. y $ £ .y = x$ y

X-EXPANDI increases the volume i.e reduces the number of the literals in the ESOPs

and hence number of connections are reduced.

Proof: Let A=(x. y-. $ x- .y) $ (x $ y)

=(x $ x. f)$ (y $ £ .y)

55

=X.y EDy.x

=0

i.e., x. i ED x .y = x EDy

[Using X-MERGE]

5) X-EXPAND2:

x.y ED i = I ED x .y

X-EXPAND2 also increases the volume i.e. reduces the number of the literals in the
ESOPs.

Proof: Let A=(x.y ED y-) ED(1 ED x .y)

=(i EDI) ED(x.y ED x .y)

=y EDy(x ED x) [Using X-MERGE]

=yEDy

=0

i.e., X.y ED i = I ED

6) X-REDUCE!:

-x .y

c X-REDUCE I is the reverse operation of X-EXPAND!. So X-REDUCE I decreases the

volume of the cubes, i.e., increases the number of literals.

56

\

7) X-REDUCE2:

1 ~ X .y = x.y ~ f

X-REDUCE2 is also the reverse operation ofX-EXPAND2 and decreases the volume of
the cubes i.e. increases the number of literals.

8) SPUT:

l=x~ x

SPLIT increases the number of products as well as number of literals in the product.

Among the above rules, X-MERGE & X-EXPANDs will simplify the ESOPs. However

these rules are not sufficient to produce the minimum solutions [23]. Other rules will

prevent the algorithm from falling into local minima[5].

4.4 Algorithm:

a) Formation of exclusive-or-sum of products of minterm from the truth table.
b) For each pair of products, do X-MERGE.

c) For each pair of products, do RESHAPE, DUAL-COMPLEMENT, X-

EXPAND2 and X-EXPAND!. For the products modified by these rules, do X-MERGE.

d) IfX-EXPANDl or X-EXPAND2 is applied in (c), then do (c) again.
e) For each pair of products, do X-MERGE, again.

£) Apply X-REDUCEl and X-REDUCE2.

g) Do (b)-(e) again.

h) If the number of products is reduced in (g), then go to (c).

i) Increase the number of products by SPLIT: for each variable X;, expand the

ESOP F into Xi' Fi Ee Xi' Fi '. Find a variable X; that increases the minimum number

of products in Xi . Fi Ee Xi' Fi . Simplify each subfunction independently by (b)-(h).

57

Then, simplify the total function again. Apply this algorithm as long as the reduction of

the number of products is possible.

Example-I: Consider the function Y in the following truth table.

A B C D y

0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0] 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
]] 0 1 1
1] 1 0 0
1 1 1 1 0

-f,,
I
\

1

Step (a):

y= A. B.C DE£) A. B.C DE£) A. B.C DE£) A. Be DE£) A. Be DE£)
AB.CDE£)AB.CDE£)AB.CD

K-Map:
CD

B 00 01 11 10
00 6) (0 <0
01 (0 0
11 0
10 (i) 0)

A

58

.. ',-,

Step b:

y~ A Ii qDffi ~ ffi A C L{Bffi BLffi ABC Dffi A Ii ~ Cffi q
ffiABCD

~ A Ii Cffi A C Dffi ABC Dffi A Ii Dffi ABC D

K-Map:

CD
A 00 01 11 10

00 1 1 (l)
01 @

11 0
10 I 1

Step c:

Applying RESHAPE in (1) and (2) we have

y= A Ii Cffi A qDffi B ~ ffi A Ii Dffi ABC £

= A. ii. C ffi A. q ii.D ffi B) ffiA. ii. .i5 ffi A. B. C. D

K-Map:

10

1

59

we can not apply DUAL-COMPLEMENT but applying X-EXPAND2 in (3) and (4)

y= A lJ. e$ A a.lJ. D$1J) $ A lJ.b$ ABC. E

K-Map:

00 1 1

01,..,
(011

10 1

10

a ~

1

\
'.

we cannot apply X-EXPANDI and we cannot apply X-MERGE also.

Step d:

X-EXPAND2 is applied in step c, So do step c again.

Applying RESHAPE in (5) and (6)

Y= A. ii(c $ c. fJ) Ef)A. C Ef)A. B. D Ef)A. B. C. D

= A. ii(D Ef) C. D) Ef)A. C Ef)A. B. D Ef)A. B. C. D

60

K-Map:

11 10

0
1 1

@
1

we cannot apply DUAL-COMPLEMENT but applying X-EXPAND2 in (7) and (8)

y= A a:D$ c. ~ EDA eED A B DED A B. c. £

K-Map:

CD ~
--'Ii A 00 01 11 10
"I' 00 1

01 1 .
0

011 /

10 1 1

we cannot apply X-EXPAND1, X-MERGE. Now we can apply RESHAPE between (9)

and (10) and we have

Y= A B. C DED B DED A eED A B DED A B. c. £

61

K-Map:

01

11 0
1 1

10 1 1

We cannot apply DUAL-COMPLEMENT, X-EXPAND2, X-EXPAND\. Now applying

X-MERGE between (II) and (12) we get

y= A iJ. C D$ iJ. D$ A C$ A B. C L

K-Map:

\
j

In

-

In 1

Step e:

We cannot apply X-MERGE

Step f:

We cannot apply X-REDUCE 1 and X-REDUCE2

Step g:

Do (b}-(e),again.

We cannot apply X-MERGE, RESHAPE, DUAL-COMPLEMENT, X-EXPAND2 but we

62

can apply X-EXPANDI in (13) and (14) and we have

y= A C. DEB B. DEB A eEB B C. L

K-Map:

10 1

10 --@

t

1

We cannot apply X-MERGE but we can apply RESHAPE in (15) and (16) and we have

y= A C DEB B. DEB A DEB B C. L

K-Map:

CD
00

00 1

01

11

10 1 1

We cannot apply DUAL-COMPLEMENT but we can apply X-EXPAND2 in (17) and

(18) and we have

Y= A EBB. DEB A C. DEB B C. L

63

"
K-Map:

CD
A 00 01 11 10
00 1 1

01

11

10 1 1

We cannot apply X-MERGE, RESHAPE, DUAL-COMPLEMENT, X-EXPAND2, X.

EXPANDl and X-MERGE

Step h:

We cannot reduce the number of products which is 4 as before.

Step i:

Now we have to increase the number of products by SPLIT. We can increase the above
expression in the following ways

ii) Y= E. Yj 63 B. 1';

iii) Y= C. Yj 63 C. 1';

iv) Y= D Yj 63 D 1';

Among them we have to choose one which increases the minimum number of products.
•
Now,

64

i) Y= A ill ii. i~Aill A) ill A. C. Dill B. C. ~A ill A)

= (A ill A. ii. jj ill A. C. jj ill A. B. C. D) ill (A. ii. jj ill A. B. C. D)

So number of products are 6.

ii) Y= A(B ill ii) ill ii. jj ill A. C. Ex.B ill ii) ill B. C. D

= (A. ii ill ii. jj ill A. C. i5. ii) ill (A. BillA. C. i5. B ill B. C. D)

So number of products are 6.

iii)Y= I(CEI) q EI) lJ. a.. CEI) q EI) A C. DEI) B C. £

= (A. C ill ii. D. C ill A. C. D ill B. C. D) ill (A. C ill ii. D. C)

So number of products are 6.

iv) Y= A(D ill 15) ill ii.D ill A. C. D ill B. C. D

= (A. D ill ii.D ill A. C. D) EI)(A. D ill B. C. D)

So the number of products is 5, i.e., variable D increases the number of products by the

smallest amount As a result SPLIT would use variable D.

K-Map:

CD
A 00 01 11 10
00 1 1 1

01 /"", ~
1 1

11 1

'--'
10 1 "I 1

65

Now we would apply Step (b)-Step (h) to two subfunetion independently

Applying X-MERGE between (19) and (20), we get

V,= fi..A. C EDIi)

K-Map:

CD
A 00 01 11 10

00

01

11

1 1

10 I 1

",

We cannot apply RESHAPE, DUAL-COMPLEMENT, X-EXP AND2, X-EXPAND I. We

cannot also apply X-MERGE, X-REDUCEI, X-REDUCE2. So after step (b)-step(h) we

have

Now let Yz= A. D ED B. D. C

We cannot apply any rules of step(b)-step(h), so tile simplified second subfunction is

The total function is Y=Y, ED Yz

i.e. Y= fi..A. C ED Ii) ED A. D ED B. D. C

66

Now we would apply step(b)-step(h) in the total function

We cannot apply step(b) of the algorithm. Applying RESHAPE between (21) and (22) of

step(c) we get

y= A C Dm ii .bm A em B C £

K-Map:

@CD
00 01/11 10

00 1 1'1' 1

01 "....,
1 1

11 1
'-'

10 1 '\ 1

A

Applying X-EXPAND2 of step(c) between volume(23) and volume(24) we get

Y= Am i1 .bm A C .bm B C £
~.

K-Map:

CD
A 00 01 11 10
00 1

01

11

1

which is the same as before applying the step(i) i.e. SPLIT rules.

So this is the minimal ESOP for the given function.

67

-,.

,

CHAPTERS

MINIMIZATION USING REED~MULLER

CANONIC EXPANSION

5.1 Introduction:

The Reed-Muller canonical expansion is the basis for a family of error-correcting

codes called Reed-Muller codes[6]. Switching function realized by exclusive-OR gates

posses the feature of being easily tested[I]. Using exclusive-OR gates in logic design has

some advantages over the conventional realizations using AND/ORJNAND/NOR gates,

because many useful functions have a high content of exclusive-OR. The conjecture that

switching functions represented by modulo 2 sums of products on the average require

fewer products is studied [25]. The EXOR circuit is easier to test and may require fewer

gates and interconnections and also have a wide application for error detection and

correction in digital communication systems. For the case ofEXOR, sum of products of

the Reed-Muller expansion may be put to an efficient use. The Reed-Muller

canonic(RMC) forms are based on Boolean EXOR and AND logic. However, the

flXedipositive(true)'polarity' of the variables in the Reed-Muller expansion proves to be

a major confinement Actually the minimum form may require different polarities of the

variables in its various terms. It is generally accepted that functions which do not produce

efficient solutions using other minimization techniques tend to have efficient solutions

using Reed-Muller techniques. Thus minimization of Reed.Muller polynomials has been
an area of recent research interest(l).

68

~-.

5.2 Historical Perspective for Minimization of Reed-Muller Canonic Expansions:

Before studying the minimization of Boolean functions using Reed-Muller canonic

expansions, it may be helpful to put things in historical perspective. A method for

realizing arbitrary combinational switching functions resulting in easily testable network

was proposed by Reedy(see in [19]) in 1972. In the same year Sowmitri Swamy published

a paper in which he first proposed the idea that all canonical forms are sequentially

produced in the natural order, by step by step shifting upwards (See in [18)). But in 1979

Kewal K. Saluja and E.H. Gng published a paper in which it is shown that Swamy's

previous approach to generate generalized Reed-Muller canonic expansion is in error. A

different algorithm is presented which uses a single Boolean matrix and successive

modifications in function vector to generate all the solutions sequentially (See in [20)).

In 1982Wu Chen and Hurst have suggested a map method for a generalized Reed-Muller

(GRM) expansion in which the variables may be true or complemented (See in [32)).

Mapping of the RM coefficients and performing the map operations (foldings) in order

to get the various sets of GRM coefficient becomes troublesome if the number n of

variables exceeds four. To overcome these difficulties Ph.W. Besslich proposed a fast in-

place transform method for the generation of all possible sets of GRM coefficients from

which the optimum may then be selected(See in [17)). In 1983, Marian Mlynarovic

published (See in[3]) a method whose main idea is the same as that of Mukhopadhyay,

A. and Schmitz, G. (See in [15]). This yields an algorithm that is easy for software
implementation.

A graphical method for minimizing RM polynomials in mixed polarity has been

introduced by A. Tran in 1987. In 1989 he implemented the above method using tristate

maps (See in [26)). However, the method depends on the somewhat intuitive human

ability to recognize the map pattern. In addition, it can be applied only to functions of six

or fewer variables. To alleviate these limitations, A. Tran and E. Lee generalized the

concept of tri-state map to functions of more than six variables and a tabular method of

minimization is developed based on this algorithm. The method adopts the bottom-up

69

approach and will be called the 'Composition' method (See in [I]). At the same time,

A.Tran and J. Wang published (See in [28]) a new method known as 'Decomposition'

method which uses the top down approach. Both methods can be implemented on
computers.

S.3 Reed-MuHer Expansion:

The positive canonic RM expansion from the truth table can be written

f(XD~I' xD~2' , x2, XI' xo) ; bo E9 b.xo E9 b2x, E9 b3xOx
i

E9 b
4

x
2

E9
..... E9 b2'~.XOX•... XD~I

where PPRM coefficients b, are allocated in the order of the decimal equivalent of the X;

product terms, Xo being the least significant bit and
bj=Oorl

i~,1,2, 2°_1

Hence they indicate which products of the variables are present in the expansion.

If each of the n variables can appear in its true or complemented form, but not both, then

fixed polarity Reed-Muller expansion results. The fixed polarity Reed-Muller expression
can be written as

* * *ED b.,I1_1 XoX. 0 •••• X ••_1

* -where x represents x or x

70

The different RM expansions are identified by a polarity number (See in [II]). To

calculate the polarity of any function, each variables is used in true or complemented form

respectively. The polarity is the decimal equivalent of the resulting binary number.

Accordingly, the positive polarity expansion has zero polarity. For example

'~04 ...
"

has polarity 0

has polarity I

has polarity 2

has polarity 7

Any fIxed polarity can be obtained by substituting variable x by (I $X) and

simpli/)'ing it or directly from the truth table using the three expansion theorems described

in the previous chapter. For Pseudo Reed-Muller expression (PSDRME) and GRME more

expansion becomes possible and the designer is left to wonder which of the many possible

expansions is the most economical. The problem becomes more intractable if multi-

outputs are considered. The criterion for minimization is the reduction of the number of

products in the expansion and also the reduction of number of literals in the expansion.

Since exhaustive search is not practicable except for very small number of variables the

quest for an easy technique for minimization or conversion between Boolean and Reed-

Muller expansion will continue to keep researchers busy for sometime to come.

71

..,-
5.4 Techniques for Minimization of RMC Expansions:

These are different fundamental techniques for minimization of a RM expression. In this

section some of these techniques are illustrated.

5.4.1 Map Simplification of Positive Polarity Expansion:

The positive polarity Reed-Muller expansion for n variables can be written as follows

Now subscripts of the lK:oefficients correspond to the decimal equivalent of the

superscripts of the variables. For a four-variable function, we have

f(x), x2, XI' xo) = bOX)OX20XIOXOo EEl bIX)OX20XjOXolEEl b2X)oX20XllxoO EEl

....... EEl bISX)IX2'X,IXOI

A map can be drawn for the b-coefficients as follows:

x x1 0
2 00 01 11 10
00 bO b1 bJ b2
01 b4 b5 b7 b6
11 b12 b13 b15 b14
10 bO bg bll b10

,....
which is similar to the K-Map except that entries are b-coefficient rather than truth table

values. The use of map for the minimization is illustrated with the help of a four variable

72

function

The map for the b coefficient would be

Rules for minimization :-

I) If the loop is within the true domain of any variable, that variable appears in the

product in true form.

2) If the loop is within the false (complemented) domain of a variable, that variable

does not appear in the product term.

3) If the loop spans both the true and false domains of a variable, that variable appears
in the complemented form.
From the Map

It is evident that for EXOR operation, the IF'1 boxes on this map can only be included
an odd number of times. On the other hand the b=Oboxes must not be included in loops,
but may be included an even number of times.

When a positive polarity expression is entered on the map, a mixed/fixed polarity answer

73

is obtained. It is obvious that the map can be used to convert mixed polarity expansions

into positive polarity. As an example for logic function

the RMC map would be

x1xO

2 00 01 11 10

00 1 1 1 1

01 1 1"1 1

11

10 1 1 1 1

since bl,b5,b8 have even number of '1' so they are ignored and the resultant PPRME

would be

Now for the reverse operation, i.e., PPRME to mixed polarity expression, we have RMC-

MAP (i.e., b map)

x x1 0
2 00 01 11 10

00 1 1 1

01 1 I" 1

11

10 , 1 1 1

74

"';-',

From the above map we have

5.4.2 Tri-state Map Method:

Tri-state map is a tool developed to convert minterms into RM coefficient in fixed

pOlarity and to minimize RM polynomials in mixed polarity [27). Polarization is the

process of converting a variable to a particular form, either true or complemented.

Polarization of an n-variable function starts with its Kamaugh map. A folding technique

is then used to remove the unwanted form of, or to polarize each folding. This process

continues until all variables have been polarized. A transition or partially polarized map

is obtained every time a variable is polarized. The transition map obtained from the

polarization of the last variable is the RM-coefficient map. Every canonical product of an

RM polynomial is represented by I-entry in a cell in this map. The procedure of

conversion from minterms to fixed polarity is summarized as follows:

a) Draw the k-map for the Boolean expression.

b) Decide 011 the required polarity of RM expansion.

c) To polarize a variable X; in positive (negative) polarity, fold the transition or

karnaugh map along the boundary of Xi / Xi so that the portion for Xi (x i) is placed

on top of the portion for Xi (Xi) . Exclusive-OR the two portions and the resultant

remains unchanged.

d) Replace the label of X; which is 0(I) across the top or along the side of the map

with '-'e -' signifies the absence of X; in the canonical products). The label of X; which is

75

.,,

1(0) remains intact

e) Repeat step c to step d for variables X;, where 0 s:i<n

t) The Is on the new map represent the product term of RM expression and the label

of X; signifies its complemented form or uncomplemented form.

In a transition map, a variable which has not yet been polarized is bipolar. It inherits from

the karnaugh map the labels of 0 and 1. Its respective forms in a product are

complemented or true. For a positively (negatively) polarized variable, it can occur only

in true (complemented) form in a product or does not exist at all. Therefore there will be
three different forms or states for the variables in a transition map: true, complemented
and nonexistent However, each variable can occur in only two of the three states.

.I,'
-. ':

Example:-

A four variable logic function is given in sum of productsBoolean form as follows:
f(A,B,C,D) = I:(0,2,3,5,6,9,10,12,15)

convert f into fixed polarity Reed-Muller expansion, m which A, C & D are m
uncomplem.entedform and B is in complemented form.

Solution:

CD
A 00 01 11 10
-0 1 1 1

-- I 1

I_
I 1 1 1

10 1

CD
A 00 01 11 10
-0 1 1 1

-1 I 1

11 1 1 1 1

10 1 1 1

CD
00 01 11 10

00 1 I 1
01 I 1

11 1 1

10 1 1

A

'oj Ibl (et

76

-- -I 11 1-

-0 1 1 1

-- I 1

I- I

10 1 1

CO
A-0 -1 11 10

-0 1 1 1

-- 1 1 1

I- I 1

10 1

CO
A

(dJ 101

Sequence of operation a ~ b ~ c ~ d ~ e
a. Kamaugh map

b. Transition map with A in +ve polarity

c. Transition map with A in +ve and B in -ve polarity
d Transition map with A. C in +ve and B in -ve polarity
e. RM-Coefficient map with A,C,D in +ve and B in -ve polarity.

Hence from the last map,

f = OED ii. C DED ii. cED DED CED A EDA ii. C DED A ii. c

5.4.3 Map Folding TecbDiques:

This technique is similar to tristate map, the difference is the sequence of operation. The
procedure is summarized as follows:

a) Draw the k-map for the Boolean expression.

b) Decide on the required polarity of RM expression.

c) To eliminate the complemented form of any variable A, fold A over A and EXOR

the two portions to find the new content of the A section.

d) Repeat for other variables starting from the last map generated in (c).

77

e) The Is on the new map represent the product terms and if the labels of variables are

Is the corresponding variables are IDlcomplemented if true form is used. The variables

would be complemented if complemented form is used.
The tristate-map example is illustrated below:

co co
DO 01 11 10 DO 01 11 10

00 1 1 .00 1 1

01 01 1

11 1 1 11

10 1 1 1 10 1 1 1

(bl (-)'-I

oC
DO 01 11 10

00 1 1 1

01 1 1

11 1 1

10 1 1

A

co co co
DO 01 11 10

00 1 1

01 1 1 1

11 1 1

10 1

A00 01 11 10

00 1 1 1

01 1 1 1

11 1 1

10 1 1 1

A00 01 11 10

00 1 I

01 1 1 1

11 1

10 1 1 1

A

Idl lei (f)

a. Karnaugb map

b. K-map with eliminated A
:l.'

c. " " " A,B

d. " " " A,B,C

e. "for positive polarity RM expansion

f. K-map with eliminated A, B, C, jj

78

-...•

From the last map we can write

f = R$ Be D$ B C$ D$ C$ A$ ABC D$ ABC

The criterion for minimization of any combinational logic circuit is the reduction of the

number of products and also the number of literals. It is clear that the above mentioned

minimization process for RM canonic expansion are impractical when functions of more

than six-variables are dealt with. However, the concept of a tristate map can be extended

to functions of any number of variables (see in [19]). Additionally we have to convert the

function in the NOT/ORINORINAND domain to AND-EXOR domain. It is preferable to

devise an algorithm so that minimized AND-EXOR expression can be obtained directly

from the truth table. In the next section such an algorithm is described step by step and

its modification is implemented and studied.

5,4.4 Transformation from SOP Domain to ESOP Domain:

To describe this kind of Reed-Muller transform (RMT), consider the topological model

of a 3-variable SOP as shown in (fig. a) and compare it with the corresponding

representation of a 3-variable ESOP (fig.b) below

,- 10D
100 10* 101 l~ 1'0 1'1

••••• 001110
=-1 "111 0.,,. 'I' 81"0* 11"11

'10 01"
DOl ..,

~o 00*
0'1

0** "00"111
010 011 .," 1 wlu_DOI

volume -

Dglal Ilg(b)

79

j,

In the case of SOP representation, the 2"vertices of n-dimensional hypercube corresponds

to the 2" minterms, whereas edges, surfaces and the volwne represent product terms with

n-I, n-2 and n-3 literals respectively. In contrast, in a positive polarity ESOP, vertices

represent all the 2" possible products of variables (including the constant I). Combinations

of edges, surfaces andvolwne are performed by mod-2 addition. Comparison of the 3"

combinations of the conventional symbols I, 0 and • (standing for true, false and

nonpresent literals of a product, respectively) of SOPs and ESOPs reveals a simple

relationship;

i. Negated variables of SOPs are not present in the corresponding ESOP

representation.

ii. Nonpresent variables in SOPs appear as negated variables in the associated

ESOP.

iii. Uncomplemented variables remain same in both domains.

In other words the exchange of zeros and asterisks of the true cubes (i.e., minterms or

products) transforms them into the RM domain.

Example: Transform the following function to the PPRME

~ XI Xo f

0 0 0 0

0 0 I I

0 I 0 I

0 I I 0

I 0 0 0

I 0 I 0

I I 0 I

I I I I

80

,

J

" .

\

Solution:

Replacing zeros by asterisks we have the ON terms

w2 WI Wo f

• • I I

• I • 1

1 1 • 1

I 1 I 1
w2' WI' Wo denote the variables m the RM domam.

• • 1 this cube cover 001, Oil, 101, III

• 1 • this cube cover 010, Oil, 110, III

I 1 • this cube cover 110, III

1 1 1 this cube cover III

So in the RM domain output would be zero if the above cubes do not cover the minterm

or cover the minterm in even number of times. Output would be one if the above cubes

cover a minterm in odd number of times.

So the function in the RM domain would be

w2 WI Wo f

0 0 0 0

0 0 1 1

0 1 0 I

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

I I 1 0

81

",

Hence, f : Xo + XI + xro

Method of simplification;

I. To simplify the following function in ESOP domain we make cover(s) disjoint.

~ XI. "0 f

0 0 0 0

0 0 1 0

0 I 0 1

0 I I 0
.

I 0 0 1

1 0 1 1

I I 0 0

1 1 1 1

Accordingly the ON terms and the corresponding K-Map would be

~ XI "0
0 1 0

)(1)(0

I 0 0 x, •• ., 11 10

0

I * 1
1 I

2. To obtain a criterion for the choice of a near optimum RM polarity for each variable

X;, a value k; is generated in the following way:

Let ~ denote the number of asterisks in the i th cube. Further, let for the j th cube and

the i th variable

I ifX;=1

a. - 0 if Y .•= *""ij- •••

-I if X; = 0

82

X; ~ w;
)_.
• ~ 0
o ~ 1

\

I

1
;1'.

Then we derme

Depending on the sign of. the Ie;the fixed polarity RMf of a disjoint cover is performed

by the assignments

) ~ 1

• ~ 0
O~. forle;~O

and

SOP Polarized ESOP

(i.e.) ~ 0 ~.)

(. • • ~ 0)I.e. ..•

(i.e. 0 ~ 1 ~ I)

for Ie;< 0

Application of the above rules leads to the following values of Ie;:~=O, k,=O, ~=2. So

the variables would be in uncomplemented form and the polarized ON terms would be

~ XI Xo

0) 0

~7) 0 0

I •)

3. The transformation into the RM domain is carried out by exchanging '.' and '0'. We

have the ON terms and the corresponding K-Map

83

'.

w2 W, Wo .'.0
\ w, III 11 11 10, • I • • D • 1

I • • D •
I 0 I

4. Forming the disjoint RM domain cubes we have minimum product RMC

W1Wow2 w, Wo w, •• ., 11 1•

•0 I •
I 0 0 '0

5~A polarized minimum product representation is obtained by inverse RMT, i.e., by

exchanging '.' and '0' again. The resultant ON terms and K-Map would be

W1"'0, II D1 11 1.

• 1

1 1 1 1

w

I • •

6. Converting to positive polarity results in a (near) minimum EXOR cover as illustrated
below

.'.0, •• D1 11 1.

D 1

1 1 1 1

w

1 • •

84

-I,

"
5.5 Mlynarovie'. Method for MiDimization:

It is a technique for minimization of many-variable problems. Algorithmic complexity of
a minimizing method increases p,,!>portionallywith the number of input combinations, i.e.,
2", where n is the number of variables. With the increase number of variables, the

memory requirement also increases and varies with different techniques. Mlynarovic

method is a matrix formulated algorithm for fmding minimal RMC forms. But such an

algorithm is not efficient since the growth of n results in rapid growth of the size of

matrix.

Reed-Muller Canonic (RMC) expansion of n variables function f is given by

* * *$ b,"_,x,x,..... x.

* -where x represents x or x

Defmition-I:

is a coefficient polarity, then vector polarity X can be defined as follows:

where Pi is 0 or I.

If we have 2" different types of vector polarity, we will get 2" different types of Reed-

85

-~

Muller Canonic expansions. The RMC forms with different values of p are described as
follows:
when p=O:

f(xQ• xQ_I, .•• , XI) = 80 ... 00 $ 80 ... 0IXI $ 80 ... lOx2 $ 80 ... IIXIX2 $....
$81. .. IIXIX2' .• XD

when p=1:

f(xD' xQ_I' ... , XI) = 80 ... 00 $ 80 ... 01XI $ 80 ... IOX2 $ 80 ... II X)X2 $....
$81. .. IIX)X2, .. XD

when p=2:

when p=2"-1:

l\ is coefficient with binary expansion

i=i". i".IiI

which indicates which product terms are presented in the expansion.

Definition-2:

If ~ is a vector of coefficients of Reed-Muller Canonic expansion and p is a coefficient

polarity of Boolean function ilX.,JC".I,JC".2""'XI) then

86

-\

Definition-3:

Reed-Muller Canonic expansion of Boolean function f(x",x.." ...,x,) is minimal if its ~
(vector. of coefficients) js obtained by least nmnber of Is.

So firstly, all A, are calculated ,for pqlarity coefficient p(O~p<2")and then A, with least
nmnber of Is is selecte4.

Lemma-I:

If A, is a vector of coefficients of Boolean function f(x",x"." ,x,) and vector of polarity
p=O, then

A =S.Vo 0

where Vo is a canonical vector of Boolean function f(x",x.." ...,x,)
yo=(f(O),f(I), f(2. -1».
S. is a Boolean matrix of size 2. x 2. which is recursively defined as:

S. = S••/. o SO = I

where n= total number of input variables

Lemma-2:

If A, is a vector of coefficients of Boolean function f(x".x.." ,x.) and p is a coefficient
polarity. then

~=S •.Vp

87

/ where p is polarity coefficient (0 s:ps:2.-I)

n = Total number of input-variables

Yp = Permutation of Canonical Vector Y with respect to coefficient p.

Yp = (f(OEDp),f(1EDp),...,f(2"-I)EBP»

where f(iEDp)= f(i"EBp.,i".•EDp••.I' ... , i.EDp.)and 0 <= p <= 2"-1

Symbol "." represents Boolean multiplication, i.e., multiplication which is combined by
logic operations AND and EXOR

The following example explains the Mlynarovic's method for minimization.

~ ~ f

0 0 1

0 1 0
. 1 0 1
1 1 1

Total number of inputs n=2 and Os:ps::z2-I, i.e., 0s:ps:3. According to Lemma-2, we can
calculate

For p=O, Yo=(f(OEBO),f(HOO),f(2EBO),f(3EBO»

=(f(0),f(1),f(2),f(3»
=(1,0,1,1)

For p=1 Yj=(f(OEBI),f(IEBI),f(2EBI),f(3EBI»

=(f(I),f(0),f(3),f(2»
=(0,1,1,1)

For p=2 V2=(f(OEB2),f(1EB2),f(2EB2),f(3EB2»

=(f(2),f(3),f(0),f(1 »
=(1,1,1,0)

88

89

J
"

According to defmition-3, our RMC form must be formed from A2 because ~ obtains

least number of 1s. To calculate the polarity of input variables of the minimal canonical

forms, we need to convert the value of p, i.e., 2 into a binary number which also

represents the values of the input variables, i.e.,

~ Xl

p=2= 1 0

where 'I' indicates that ~ must be in complemented form and '0' indicates that Xl must

be in true form in the minimal RMC canonical expression. So the minimal canonical form

of the given function is

f= [1 0 0 1]

o 0
o 1

1 0

1 1

To verify this expression, we can put the above function in the Karnaugh Map and

looping the Is and Osaccording to the above expression we get

K-Map:

1

Is in the K-Map is covered by odd number of loops and Osare covered by even number

90

/

of loops. So the above expression iscorrect, i.e., f(Xz.x.)= 1 ID xzX • for the given

function.

~.6 Modified Algorithm:

Polarity Function:

X=(x,,'x..I'.....•X.) polarity vector and P=(po'P•.•,...,P.) polarity coefficients

DefInition-I:

If Ap is a vector of coefficients of RMC for defInite Boolean function with polarity P,
then

Defmition-2:

An RMC form of aBoolean function is minimal if its ~ (vector of coefficients) obtains
least number of "1".

So fIrstly. we must calculate all ~ for polarity coefficient p (0 s; p s; 2°-1) and then we
can select ~ with least number of "1".

Defmition-3:

M' is a vector of components for all 1 s;k s;n which obtains 2°'2k segments. Each of this

segment starts with zero(s) and then is followed by one(s). The total number of zero(s)
or one(s) in each segment is 2'-•.
For example: For n=3

M'=(O.I.O.I,O.I,O,I)

~O,O, I, 1,0,0,1,1)

91

,.,

M3=(O,O,O,O,I,I,I,I)

Lemma-I:

If f(x",x".., ,x.) is an n-variable Boolean function and p (0 s:p s: 2"-1) is polarity
coefficient, then vector of coefficients is defmed as ~ =B"p

where B"pis a vector. which obtains i components (Os:is:2"-I)

. The three main mathematical notations for this algorithm are as follows:

B"p(i)=B'"p(i) E&(M"(i).B.'p(iE&2•.•» (5.1)

BOp(i)=Vp(i)=f(i E&p)..; (5.2)

BOp(iE&2k")=Vp(iE&2k•1 E&p) (5.3)

forls:ks:n
As for example: If n=3 and p=O, then

B'o(i)=B°O<i)E&(M'(i).Boo(i E&2~)

B2o(i)=B'o(i) E&(~(i).B'O<i E&2'»

Example-I: Let us consider a function f(~,XVt.),the truth table of this fimction is given
below:

~ ~ XI f

0 0 0 I
0 0 I I
0 I 0 0
0 I I 0
I 0 0 I
I 0 I 0
I I 0 I
I I I I

~ vector of components.

where I s: k s: nand n=3 (n=totaI number of input-variables)

92

lflr-l, then total number of segments=2"/2~23/21 =4

MI=(Q.l,Q.l,Q.l,Q.1)

If k=2, then total number of segments=2"/2k::23/22 =2

~O,O.l 1.0 0 1 I)

If k=3, then total number of segments=2"/2~23/23 =1

~O,O,O,O,1.1.1.1)

Now, If p=O, then

B°O<i)=VO<i)=f(iED0), 0 ,:; i ,:;2"-1

Vo(i)=(f(0),f(1),f(2),£(3),f(4),f(5),f(6),f(7»

=(1,1,0,0, 1,0, 1,1)

If p=O and n= 1, then

B'o(i)=Boo(i) ED(M1(i).Bo
o(iED1»

B'o(O)= 1 ED(0.1) = 1

Blo(1)= 1 ED(1.1) = 0

a'0<2)= 0 ED(0,0) = 0

BIO(3)= 0 ED(1.0) = 0

B1
0(4)= 1 ED(0.0) = 1

a10<5)= 0 ED(1.1) = 1

a'o(6)= 1 ED(0,1) ~ 1

B10<7)= 1 ED(1.1) = 0

So, B'o = (1,0,0,0,1,1,1,0)

93

/

If p=O and n=2, then

B20(i)=B1ii) ED~(i).BIO(iED2»

B2iO)= 1 ED(0.0) = 1

B2
0(1)= 0 ED(0.0) = 0

B2
0(2)= 0 ED(1.1) = 1

B2
0(3)= 0 ED(1.0) = 0

B20(4)= 1 ED(0.1)= 1

. B2i5)= 1 ED(0.0) = 1

B20(6)= 1 ED(1.1) = 0

B20<7)=0 ED(1.1) = 1

So, B2
0 = (1,0,1,0,1,1,0,1)

If p=0 and n=3, then

B3ii)=B20(i) ED(M3(i).B20(iED4»

B3
0(0)= 1 ED(0.1) = 1

B3
0(1)= 0 ED(0.1) = 0

B3
0(2)= 1 ED(0.0) = 1

B3
0(3)= 0 ED(0.1) = 0

B3
0(4)= 1 ED(l.l) = 0

94

~i,
I

B30(S)= 1 ~ (1.0) = 1

B3o(6)= 0 ~ (1.1) = 1

B30<7)= I ED(1.0) = I

So, B3
0 = (1,0,1,0,1,1,0,1) = Ao

Now, If p=1, then

BOli)=V.(i)=tl:i ~ 1),0 :!> i :!> 2"-1

v l(i)=(f(1),f(0),f(3),f(2),f(5),f(4),f(7),f(6»)

=(1,1,0,0,0,1,1,1)

If p=1 and n=l, then

B\(i)=Bo,(i) ~ (M'(i).Bo,(i~I»

B\(O)= 1 ~ (0.1) = 1

B\(I)= 1 ~ (1.1) = 0

B\(2)= 0 ~ (0.0) = 0

B\(3)= 0 ~ (1.0) = 0 .

B\(4)= 0 ~ (0.1) = 0

B\(5)= 1 ED(1.0) = 1

B\(6)= 1 ED(0.1) = 1

B\(7)= 1 ~ (1.1) = 0

95

So, B', = (1,0,0,0,0,1,1,0)

If p=1 and 0=2, then

B2
1(i)=B'.(i) ED(~(i).B'.(iED2»

B\(4)= 0 E&(1.1) = 1

B\(5)= 1 E&(1.0) = 1

B\(6)= I E&(1.1) = 0

B\(7)= 1 E&(1.0) = 1

So, B\ = (1,0,1,0,1,1,0,1) =A,

Now, If p=2, then

BOii)=V2(i)=f(i E&2), 0 ~ i ~ 2"-1

V l(i)=(f(2),f(3),f(0),f(1),f(6),f(7),f(4),f(5»

=(0,0,1,1,1,1,1,0)

If p=2 and n=l, then

B'ii)=Boii) E&(M'(i).Bo2(iE&1»

BI2(0)= 0 E&(0.0) = 0

B',(I)= o Ell(1.0) = 0

B',(2)= I E&(0.1) = I

B',(3)= 1 Ell(1.1) = 0

B',(4)= 1 E&(0.1) = I

BI2(5)= 1 E&(1.1) =0

BI2(6)= 1 Ell(0.0) = 1

B'i7)= 0 E&(1.1) = 1

97

-~

So, BiZ = (0,0,1,0,1,0,1,1)

If p=2 and 0=2, then.

BZz(i)=B'Z<i) ED~(i).B'Z<iED2»

B\(I)= 0 ED(0.0) = 0

B\(2)= 1 ED(1.0) = 1

BZZ(3)= 0 ED(1.0) = 0

BZZ(4)= 1 ED(0.1) = 1

BZ
z(5)= 0 ED(0.1) = 0

BZZ(6)= 1 ED(l.l) = 0

BZz(7)= 1 ED(1.0) = 1

So, BZ
2 = (0,0,1,0,1,0,0,1)

If p=2 and n=3, then

B3z{i)=B22(i) ED(M3(i).B22(iED4»

Blz<O)= 0 ED(0.1) = 0

B3z(1)= 0 ED(0.0) = 0

B3z(2)= 1 ED(0.0) = 1

B3z(3)= 0 ED(0.1) = 0

98

B3
2(4)= 1 EB(1.0) = 1

B32(S)= 0 EB(1.0) = 0

B3i6)= 0 EB(Ll) = 1

B3P)= 1 EB(1.0) = 1

So, B32 = (0,0,1,0,1,0,1,1) =A2

Now, If p=3, then

BOii)=Vii)=t{i EB3), 0 s: i s: 2.-1

Vii)=(f(3),f(2),fi: 1),f(0),f(7),f(6),f(S),f(4»

=(0,0,1,1,1,1,0,1)

If p=3 and n=l, then

B'3(i)=Boii) EB(M'(i).Bo3(iEBl»

B\(O)= 0 EB(0.0) = °
B'i1)= ° EB(1.0) = °
B'p)= 1 EB(0.1) = 1

-.t B\(3)= 1 EB(Ll) = 0

B\(4)= 1 Ell(0.1) = 1

B'iS)= 1 Ell (Ll) = 0

B'i6)= 0 Ell (0.1) = 0

B\(7)= 1 EB(1.0)= 1

99

I

.-

0,

So, B\ = (0,0,1,0,1,0,0,1)

If p=3 and n=2, then

B\(i)=B1ii) ED~(i).BliiED2»

B2iO)= 0 ED(0.1) = 0

B2il)= 0 ED(0.0) = 0

B23(2)= 1 ED(1.0) = 1

B2i3)= 0 ED(1.0) = 0

B\(4)= 1 ED(0.0) = 1

B23(5)= 0 ED(0.1) = 0

B2i6)= 0 ED(1.1) = 1

B2p)= 1 ED(1.0) = 1

. So, B23 = (0,0,1,0,1,0,1,1)

If p=3 and n=3, then

B\(i)=B2ii) ED(M3(i).B2iiED4»

B\(O)= 0 ED(0.1) = 0

B\(I)= 0 ED(0.0) = 0

B\(2)=1 ED(0.1) = 1

B\(3)= 0 ED(0.1) = 0

100

I~'-...,o,', 'I ,._.,t.\.-;.~__-'

B3l4)= 1 E&(1.0) = 1

B3l5)= 0 E&(1.0) = 0

B\(6)= 1 E&(I.l) = 0

B\(7)= 1 E&(1.0) = 1

So, B\ = (0,0,1,0,1,0,0,1) =A3

Now, If p=4, then

BOii)=Vii)=t{i E&4),0 sis 2"-1

Vi i)=(f(4),f(5),f(6),f(7),f(0),f(1),f(2),f(J»

=(1,0, I, 1,1,1,0,0)

If p=4 and n=l, then

BI4(i)=Bo4(i) E&(lVII(i).B04(iE&I»

B1i0)= 1 E&(0.0) = 1

B\(I)= 0 E&(I.l) = 1

B1i2)= 1 E&(0.1) = 1

atiJ)= 1 E&(I.l) = 0

B1i4)= 1 E&(0.1) = 1

B1.(5)= 1 E&(I.l) = 0

B1i6)= 0 E&(0.0) = 0

B1p)= 0 E&(1.0) = 0

101

•

.,

So, Bl~= (1,1,1,0,1,0,0,0)

If p=4 and n=2, then

B2~(i)=B'.(i) $ (M2(i).B'.(i$2»

B2.(0)= I $ (0.1) = I

B2.(1)= I $ (0.0) = I

B2.(2)= I $ (Ll) = 0

B\(3)= 0 $ (Ll) = I

B1.(4)= I $ (0.0) = I

B2.(5)= 0 $ (0.0) = 0

B1.(6)= 0 $ (Ll) = I

B2p)= 0 $ (1.0) = 0

So, B24= (1,1,0,1,1,0,1,0)

If p=4 and n=3, then

B3~(i)=B2~(i)EEl(M3(i).B1~(i$4»

B3.(0)= I EEl(0.1) = I

B\(I)= I EEl (0.0) = I

B3.(2)= 0 EEl(0.1) = 0

B3.(3)= 1 EEl(0.0) = 1

102

.'

"

\ B3.(4)= 1 ED(1.1) = 0

B\(5)= 0 6) (1.1) = 1

B\(6)= 1 ED(1.0) = 1

B3.(7)= 0 ED(1.1) = 1

So, B3• = (1,1,0,1,0,1,1,1) =A,

Now, If p=5, then

BOli)=Vli)=f{i ED5), 0 s; i s; 2.-1

V5(i)=(f{5),f{4),f{7),f(6),f(1),f(0),f{3),f{2»

=(0,1,1,1,1,1,0,0)

If p=5 and n=I, then

B'5(i)=Bo5(i) ED(M'(i).BoliED1»

B\(O)= 0 ED(0.1) = 0

B'5(1)= 1 ED(1.0) = 1

B\(2)= 1 ED(0.1) = 1

B'S<3)= 1 ED(1.1) = 0

B\(4)= 1 ED(0.1) = 1

B\(5)= 1 ED(1.1) = 0

BI5(6)= 0 ED(0.0) = 0

B\(7)= 0 ED(1.0) = 0

103

-,

\
-\

-'

So, Bt, = (0,1,1,0,1,0,0,0)

If p=5 and n=2, then

B2,(i)=B',(i) ED(~(i).B',(iED2»)

B"(O)= 0 ED(0.1) = 0

B2,(I)= 1 ED(0.0) = 1

B"(2)= 1 ED(1.0) = 1

B2,(3)= 0 ED(1.1) = 1

B2,(4)= 1 ED(0.0) = 1

B2,(5)= 0 ED(0.0) = 0

B2,(6)= 0 ED(1.1) = 1

B"(7)= 0 ED(1.0) = 0

So, B" = (0,1,1,1,1,0,1,0)

If p=5 and 0=3, then

B\(i)=B2,(i) ED(M3(i).B"(i$4))

B3,(0)= 0 ED(0.1) = 0

B3,(l)= 1 ED(0.0) = 1

B3,(2)= 1 ED(0.1) = 1

B\(3)= 1 ED(0.0) = 1

104

'I
\

-\

B\(4)= 1 E&(1.0) = 1

B\(5)= ° E&(1.1) = 1

B\(6)= 1 E&(1.1) = °
B\(7)= ° E&(1.1) = 1

So, B" = (0,1,1,1,1,1,0,1) =A,

Now, If p=6, then

BOii)=V6(i)=f{i E&6), ° ;;i ;; 2"-1
Vii)=(tt 6),tt7),tt 4),f(5),tt2),tt3),ttO),ttl»

=(1,1,1,0,0,0,1,1)

If p=6 and n= 1, then

B\(i)=Boii) E&(M1(i).B°.<iE&l»

B1i0)= 1 E&(0.1) = 1

BI
6(1)= 1 E&(1.1) = 0

BI6(2)= 1 E&(0.0) = 1

B1i3)= ° E&(1.1) = 1

BI6(4)= ° E&(0.0) = 0

BI6(5)= 0 E&(1.0) = 0

B1i6)= 1 Ell(0.1) = 1

B1i7)= 1 E&(1.1) = 0

105

/)

-,~,

-\

So, BI6 = (1,0,1,1,0,0,1,0)

If p=6 and n=2, then

B26(i)=B1ii) ED(M2(i).B'6(iED2»

B26(0)= 1 ED(0.1) = 1

B2il)= 0 ED(0.1) = 0

B26(2)= 1 ED(1.1) = 0

B2
6(3)= 1 ED(l.0) = 1

B2i4)= 0 ED(0.1) = 0

B26(5)= 0 ED(0.0) = 0

B2
6(6)= 1 ED(l.0) = 1

B2p)= 0 ED(1.0) = 0

So, B26 = (1,0,0,1,0,0,1,0)

If p=6 and n=3, then

B36(i)=B2ii) ED(M3(i).B2iiED4»

B3iO)= 1 ED(0.0) = 1

B3i1)= 0 ED(0.0) = 0

106

c.,

\

\

B3i4)= 0 ED(1.1) = 1

B3i5)= 0 ED(1.0) = 0

B3i6)= 1 ED(1.0) = 1

B3
6(7)= 0 ED(1.1) = 1

So, B3
6 = (1,0,0,1,1,0,1,1) =A.,

Now, If p=7, then

B°,(i)=V,(i)=f(i ED7), 0 " i " 2"-1

V,(i)=(f(7),f(6),f(5),f(4),f(3),f(2),f(1),f(0»

=(1,1,0, 1,0,0, 1,1)

If p=7 and n=1, then

B\(i)=Bo,(i) ED(M'(i).Bo,(iED1»

B',(O)= 1 ED(0.1) = 1

8',(1)= 1 ED(1.1) = 0

B\(2)= 0 ED(0.1) = 0

B ',(3)= 1 ED(1.0) = 1

B',(4)= 0 ED(0.0) = 0

B',(5)= 0 ED(1.0) = 0

B',(6)= 1 ED(0.1)= 1

B',(7)= 1 ED(1.1) = 0

107

So, BI7 = (1,0,0,1,0,0,1,0)

If p=7 and 1F2, then

B2,(i)=B1,(i) E9(M2(i).BI,(iE92»

B2,(0)= 1 E9 (0.0) = 1

B27(1)= ° E9 (0.1) = °
B\(2)= ° E9(1.1) = 1

B2,(3)= 1 E9 (1.0) = 1

B2,(4)= ° E9(0.1) = °
B27(5)= ° E9(0.0) = °
B27(6)= 1 E9 (1.0) = 1

B\(7)= ° E9(1.0) = °
So, B\ = (1,0,1,1,0,0,1,0)

If p=7 and n=3, then

B"(i)=B\(i) E9 (M3(i).B2,(iE94»

B"(O)= 1 E9 (0.0) = 1

B"(l)= ° E9(0.0) = °
B',(2)= 1 E9 (0.1) = 1

B' ,(3)= 1 E9(0.0) = 1

108

0:)

B\(4)= 0 El) (1.1) = 1

B\(5)=0 El) (1.0) = 0

B3i6)= 1 El) (1.1) = 0

B\(7)= 0 El) (1.1) = I

So, B\ = (1,0,1,1,1,0,0,1) =A7

Therefore,

B3
0 = (1,0,1,0,1,1,0,1) = Ao

B\ = (l,O,I,O,I,I,O,I) = Al

BJ2 = (0,0,1,0,1,0,1,1) = A2

B\ = (0,0,1,0,1,0,0,1) = A3

B\ = (1,1,0,1,0,1,1,1) = A.

B3, = (0,1,1,1,1,1,0,1) = A,
B3

6 = (1,0,0,1,1,0,1,1) = A.

B\ = (1,0,1,1,1,0,0,1) = A,

According to definition-2, our RMC form must be formed by AJ due to its least number

of "1". Now we must find out the actual polarity of input-variables of our minimal

canonical forms. In this example, minimal vector of coefficients is AJ• Therefore, p=3.

The polarity of three input variables x3,x"x, are found by converting this decimal number

"3" into a binary number "011", i.e.,

o 1

where" I" corresponding to a variable indicates the complemented form of that variable

and "0" indicates the uncomplemented form of the variable. Finally, the minimal canonical

109

form of our Boolean function is:

f = [0,0,1,0,1,0,0,1] x, ~ XI l
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

~ 0.1 $ O,xI $l.x2 $ 0,X2,XI $ I.x3 $ O.x"xl
EB 0.X3,X2 EB l.x"X2,XI

Proof:

5.6.1 Algorithm:

Step 1: Set p=0.

o 1

1

step 2: Calculate BOp = Vi i) = f (i EB p) for

Step 3: Set 1=\'

I 10

•

-1
Step 4: Calculate the M' vector.

step 5: Calculate

Step 6: 1=1+I; ifI:s;n goto Step 4.

Step 7: Set Ap; B" p; P ; P + 1 ; if p<2" goto Step 2.

Step 8: Determine the Aivector of coefficients) for polarity coefficient p(0 :s;p :s;2")

which contains least number of' I '.

Step 9: Find the polarity of input-variables from the value of p for which ~ contains least

number of 'I'.

Step 10: Determine the minimal canonical form of the Boolean function.

111

-/

~-

CHAPTER 6

EXPERIMENTS AND RESULTS

6.1 Design of Experiments:

This thesis is an endeavor to analyze the performance of different logic synthesis and

optimization techniques. Here our main purpose is to examine the time complexity,

number of product terms and number of literals produced by these techniques. Due to

the probabilistic nature of the computational time required for logic synthesis and

optimization techniques, we have taken an elaborate process banked upon statistical

experiments with different types of functions, instances of which are generated

I1lIldomly.We consider random functions, partially symmetric functions, symmetric

functions, positive functions, vacuous functions, unate functions, parity functions and

Majority functions. Again we have taken different permutation of the same set of data.

we have also calculate the number of product terms and number of literals produced

by all of the above types of data. we have increased the number of variables to find

the effect of time complexity of these techniques. Again for the same number of

variables we have varied the number of minterms to find the time complexity.

To compare performances of various algorithms data set for I1lIldom functions,

partially symmetric functions, symmetric functions, positive functions, vacuous

functions, unate functions, parity functions, majority functions were generated and

number of products, number of literals and elapsed time have been taken as

performance criteria. Random functions are generated by randomO function of C

language.

112

6.2 Quine-McCluskey Method:

To find the performance of Quine-McCluskey techniques, software has been developed

in C. We have taken different types of functions and observed that for all the cases

elapsed time increases if the adjacent minterms increases in the functions for the same

number of variables.

When the number of minterms are around the same whereas the number of variables

increases the elapsed time remains same as can be seen in output of (OSl, DS6-DS8,

OSI6; OS3-0S4, OSlO-OSI I, OSI4, DS27, OS33, OS36, 0S48-0S53).

When the minterms are not adjacent, then elapsed time increases with the increase of

minterms as can be seen in output of(DS40-0S45).

For the partially symmetric and symmetric functions (OS22-0S30) time complexity is the

same as in the case of randomly generated functions.

For positive, vacuous and onate functions (DS31-0S39) there are always adjacent

minterms so in the SOP expression a minimized product terms results and the elapsed

time depends on the degree of adjacency of the minterms.

For parity functions there are no adjacent minterms so final SOP expressions invariably

contain minterms and here it is observed that time increases with the increasing number

of minterms (OS40-0S45).

113

6.3 EXMIN2:

EXMIN2 Algorithm has been developed in C. At the start of the experiment several

randomly generated functions up to 12 variables are applied and a number of samples are

listed here. An attempt has been made to change the sequence of the operations in the

algorithm. As a result we have to run the algorithm in slightly different fashion for the

same set of data. These test are knownoas EXMIN2(Testl) and EXMIN2(Test2). In Testl

X-MERGE is applied after RESHAPE, OUAL-COMPLEMENT, X-EXPAND2 and X-

EXPANDI and in Test2 X-MERGE is applied after each of the above operations. In both

cases X-MERGE is done repeatedly until there is no more reduction in number of

products. It is observed that EXMIN2 and EXMIN2(Test2) give the same number of

products and literals for almost all the data For OS18 EXMIN2.gives fewer number of

products and higher number ofliterals than EXMIN2(Test2) and for 0S47 EXMIN2 gives

equal number of products and fewer number of literals than EXMIN2(Test2). For most

of the data EXMIN2 required less time than EXMIN2(Test2).

It is seen for the data (OSI-OS3, OS6, OS12-0S14, OS16, OS19-0S46) that EXMIN2

and EXMIN2(Testl) produce the same number of products and literals. For data (OS8-

OS 10, OS 15) EXMIN2 produces equal number of products but higher number of literals.

For data (OSll, OS17-0S18) EXMlN2 produces fewer number of products and literals

than EXMIN2(Testl). For data (0S4) EXMIN2 produces fewer number of products and

equal number of literals and for data (OS5) EXMIN2 produces equal number of products

and fewer number of literals than EXMIN2(Testl). For data (OS47) EXMIN2(Testl)

produces fewer number of products and higher number of literals. Table 6.1 shows that

for data (OS54) EXMIN2(Testl) produce fewer number of products and literals than

EXMIN2. In all these cases EXMlN2(Testl) required less time than EXMIN2.

For data (OS 56), it is observed that before the step i ofEXMIN2 algorithm the ESOP

expression is as follows

114

.,.

",

/

BD ED bDEC ED Ae ED aBDE ED AbC ED I ED ACde

(Here capital letter means uncomplemented form and small letter means complemented
form.)

i.e., nwnber of products is 7 and the nwnber of literals is 19. But in the final output
nwnber of products is 8 and nwnber of literals is 24.

From the data (082,0819,0821,0822,0824) it is apparent that time is less when the

degree of adjacency ofminterms is high. For the same nwnber of variables time required

is increases with the increase ofminterms (0812, 0815). It is apparent from the data that

there is no specific rules for time elapsed with the increase of minterms and variables. The
elapsed time depends on the nature of data .

In most of the cases, it is apparent from the data that for the same number of variables

time elapsed would be less if the resultant nwnber of product is less as can be seen in

outputs of (082-087). Again it is affected by the nwnber of minterms.

For the same nwnber of minterms, time increases with the increase of variables as can be

seen in outputs ottD848-0853).For the different permutation of the same function it is

seen that in some cases nwnber of products is same but nwnber of literals differs as can
be seen in outputs of(D854-D858).

Table 6.10 showsnwnber of products and literals produced by EXMIN2, EXMIN2(Testl),

EXMIN2(Test2) for different permutation of the function of data (0854). It is apparent

from this table that in this case EXMIN2(Testl) gives better result

115

f",.
\';

-.

6.4 M1ynarovic's Method for Minimization:

For the purpose of study the performance of M1ynarovic'smethod for minimi7JItionwith

different types of functions, software has been developed in C, similar to that of Quine-

McCluskey method. To develop this software special care has been taken so that memol}'

requirement would be less. This is achieved by bit wise operation of the variables. Here

we applied the same set of data that were used in QuineMcCluskey method. This method

. gives the fIxed polarity EXOR expression. At the beginning by several randomly

generated function, we have found that time required for 3 variables is 0.109890 seconds

whatever the number of minterms (one to maximum). For 4 variables time required is

almost 5 times of the time required for 3 variables. This relation is true for successive

number of variables as can be seen in outputs of(OSI-OS5, OSI2-0S18, OS21, 0S47).

It is observed that for a number of variables time elapsed is independent of the number

of inputs for all kinds of function. For different permutation of the same function the

output remains same as well as time required. For both odd and even parity function this

method gives the minimal expression (OS40-0S45).

An attempt has been made to tailor M1ynarovictechnique so that it produces minimum

number of literals along with minimum number of products. To this end we examined the

A" vectors with minimum number of Is. For a function there may be a number of A"

vectors with minimum number of Is. It is observed that in such a case, number of

products are the same but the number ofliterals may differ. For example, if we apply the
following function

f = 1:(1,2,4,5,7,8,9,10,13,14,15)

in M1ynarovic'smethod then we have two solutions with different number of literals.
These are

I $dC $db $ Cb$dCb $dA $dCbA

116

and

I dCdb Cbd$da $dCba

i.e., Aj and Al3 vectors contains the minimum number of Is. It is seen that the first

expression contains 15 literals and the second expression contains 13 literals.

6.S Results:

In this section, number of products term, number of literals and the elapsed time for

Q~McCluskey, EXMIN2 and Mlynarovic methods are listed in tabular form for the

different functions. The functions and the expressions obtained by applying different

algorithms are listed in APPENDIX A. In the table

OS stands for Data Set.

OSn stands for Data Set number n, i.e., function number n.

The first, second, third and fourth columns contain respectively serial of data set,

number of product terms, number of literals and the elapsed time. The second, third and

fourth columns are split into three parts, first for results of Quine-McCluskey(QM),

second for results ofEXMIN2 algorithm(EX) and the third for results ofMlynarovic(ML).

Table 6.1 contains results of applying random functions on various algorithms. Similarly

Tables 6.2-6.8 corresponds to partially symmetric, symmetric, positive, vacuous, unate,

parity and majority functions. Table 6.9 contains random functions with higher number

of variables (OS47, OS59), functions with the same number of minterms but different

number of variables (OS48-0S53) and different permutations of the same function.

117

'.,.j ."
.clJ

Table 6.1 Results of Statistical Experiments with Random Functions:

DSn = Data Set number n. QM = Qwne-McCluskey

EX = EXMlN2. ML =M1ynarovic

DS No of Product No of Literals Elapsed Time (in seconds)
QM EX ML QM EX ML QM EX ML

I 3 3 3 5 4 4 .054945 .494505 .109890
2 2 2 2 4 2 2 .054945 .494505 .549451
3 5 4 7 12 II 15 .109890 .549451 .549451
4 6 5 6 16 12 12 .109890 .659341 .549451
5 8 6 8 27 17 25 .164835 .769231 1.692308
6 4 4 10 17 17 33 .054945 .494505 2.747253
7 3 3 5 12 12 19 .054945 .549451 2.747253
8 4 4 8 16 16 24 .054945 .769231 2.747253
9 6 6 13 28 26 39 .109890 .714286 2.692308
10 9 7 12 40 28 31 .. .109890 .824176 2.692308
II 5 5 9 20 20 27 .109890 .549451 2.692308
12 6 6 14 35 33 55 .109890 .769231 13.351648
13 8 8 20 39 34 78 .164835 1.043956 13.296703
14 9 8 20 52 38 73 .109890 1.098901 13.296703
15 18 13 26 88 53 82 .384615 2.637363 13.l86813
16 4 4 16 26 26 77 .054945 .439560 63.571429
17 24 18 49 139 90 178 .604396 7.307692 62.527473
18 28 21 55 149 95 203 1.318681 10.494505 62.307692
19 I 1 I I I I .769231 .109890 13.351648

. 20 2 2 2 4 2 2 .494505 .549451 13.296703
21 I I I I I I 35.9890II .6549341 296.04396

•.:

.,

118

..

"

-,

Table 6.2 Results of Statistical Experiments with Partially Symmetric Functions:

OS No of Product No of Literals Elapsed Time (in seconds)

QM EX ML QM EX ML QM EX ML

22 2 2 2 4 2 2 .054945 .439560 .549451

23 2 3 3 4 8 8 .054945 .439560 .549451

24 2 2 2 4 2 2 .054945 .439560 .549451

Table 6.3 Results of Statistical Experiments with Symmetric Functions:

OS No of Product No of Literals Elapsed Time (in seconds)

QM EX ML QM EX ML QM EX ML

25 5 5 6 25 20 25 .054945 .439560 2.747253

26 6 6 6 36 30 30 .054945 .439560 13.351648

27 10 9 10 50 31 30 .109890 1.483516 2.692308

28 II 8 14 44 25 30 .164835 1.043956 2.692308

29 10 8 10 40 20 20 .274725 1.098901 2.692308

30 II 8 14 44 25 30 .219780 .934066 2.692308

Table 6.4 Results of Statistical Experiments with Positive Functions:

OS No of Product No of Literals Elapsed Time (in seconds)

QM EX ML QM EX ML QM EX ML

31 2 2 2 4 4 4 .054945 .439560 .549451

32 2 2 2 6 4 4 .054945 .439560 .549451

33 3 3 3 9 8 8 .109890 .549451 2.747253

119

Table 6.5 Results of Statistical Experiments with Vacuous Functions:

OS No of Product No of Literals Elapsed Time (in seconds)

QM EX ML QM EX ML QM EX ML

34 I I 1 2 2 2 .054945 .054945 2.747253

35 4 4 4 16 .8 8 .109890 .604396 2.747253
-,--
36 3 3 3 8 7 7 .109890 .549451 2.747253

Table 6.6 Results of Statistical Experiments with Unate Functions :

OS No of Product No of Literals Elapsed Time (in seconds)

QM EX ML QM EX ML QM EX ML

37 2 2 . 3 5 6 9 .054945 .439560 .549451

38 2 2 3 6 7 11 .054945 .384615 2.747253

39 3 3 5 6 9 13 .274725 .494505 2.747253

Table 6.7 Results of Statistical Experiments with Parity Functions:

DS No of Product No of Literals Elapsed Time (in seconds)

QM EX ML QM EX ML QM EX ML

40 16 5 5 80 5 5 .164835 .769231 2.692308

41 32 6 6 192 6 6 .494505 1.318681 13.241758

42 64 7 7 448 7 7 1.153846 4.065934 62.857143

43 16 5 5 80 5 5 .219780 .714286 2.692308

44 32 6 6 192 6 6 .494505 1.318681 13 :!41758

45 64 7 7 448 7 7 1.153846 4.010Q~'; i 62.802198

120

•

'~'

. Table 6.8 Results of Statistical Experiments with Majority Function:

DS No of Product No of Literals Elapsed Time (in seconds)

OM EX ML OM EX ML OM EX ML.

46 10 8 15 30 27 50 .164835 1.043956 2,692308

Table 6.9 Results of Statistical Experiments with Random Functions (Miscellaneous):

DS No of Product No of Literals Elapsed Time (in seconds)

OM EX ML OM EX ML OM EX ML

47 56 50 125 417 313 645 5.604396 88.076923 1338.4615

48 4 4 II 12 ,054945 .494505
.

49 5 5 20 19 .054945 .714286

50 5 5 26 25 .054945 .659341

51 8 7 56 43 .109890 1.098901

52 8 7 64 52 .109890 ,934066

53 7 7 62 58 .109890 1.373626

54 8 25 1.153846

55 8 24 1.208791

56 8 24 1.098901

57 8 21 .824176. !.

58 8 24 1.318681

59 137 1782 18.681319

121

!

"

Table 6.10 Comparison Among EXMIN2, EXMIN2(Testl), EXMIN2(Test2) for Different

Permutation of a Function:

EXMIN2 EXMIN2(Testl) EXMIN2(Test2)

DS No. of No. of No. of No. of No. of No. of

Products Literals Products Literals Products Literals

54 8 25 7 22 8 25

55 8 24 7 20 8 24

56 8 24 8 24 7 24

57 8 21 7 20 7 22

58 8 24 7 20 8 25

122

OE+OOO I I I I I I I I I

o
I I

2 3 4 5
Number of Variables

OM

!MLY

---------,
I
I

EX

OM: Ouine- McCluskey
EX: EXMIN2 .
MLY: Mlynarovic

6E-001

4E-001
------u
([)
Ul

C.-'--./
([)

E
1-=

2E-001

Graph 6.1 Comparison of Worst Case Elapsed Time

123

"

EX
I I I I I I I I I I I

468
of Variables

2
Number

OE+OOO II I I

o

2E+OO1

QM: Quine-McCluskey MLY
EX: EXMIN2
MLY: Mlynarovic

,~
1E+OO1

~
u
(j)
[f)

c.-'-./
(j)

E
i-=

5E+OOO QM

",

-<

Graph 6.2 Comparison of Worst Case Elapsed Time

124

"

•.-.- 4E+002
OM

QM: Quine-McCluskey
EX: EXMIN2
MLY: Mlynarovic

. ,.,

3E+002

U
Q)
OJ

c 2E+002
'-../

Q)

E
i-=

1E+002

OE+OOO I I I I

o 246 8
Number of Variables

MLY

EX

10

-':":

Graph 6.3 Comparison of Worst Case Elapsed Time.

125

"..'.

8E+003

QM: Quine-McCluskey
EX: EXMIN2
MLY: Mlynarovic

6E+003
MLY

...---..
u
Q)
(f)

c 4E+003
'--"Q)

E
i-=

2E+003

OE+OOO I J

o 4 8
Number of Variables

EX

12

Graph 6.4 Comparison of Worst Case Elapsed Time

126

,

8E+002
EX

EX1: EXMIN2(Test1)
EX: EXMIN2

6E+002
EX1

U
<l.J
Cfl

c 4E+002

2E+002

12o
OE+OOO

4 8
Number of Variables

Graph 6.5 Comparison of Worst Case Elap-sed Time
between EXMIN2 and EXMIN2\Test1)

127

{

6.6 Comparison Among the Minimization Techniques:

All the data except a few show that time required for Mlynarovic is the highest and for

the Quine-McCluskey it is lowest. It is apparent from the data (DS 19, DS21) that when

the decimal representation of minterms are consecutive even or odd numbers then Quine-

McCluskey required more time than the EXMIN2. It is true for functions which have non-

overlapping loops. However in all these cases time elapsed in Mlynarovic is the highest

as can be seen in outputs of(DSI9-DS21).

EXMIN2 gives the fewer number of products and literals than Mlynarovic techniques for

all kinds of inputs except for parity function, vacuous function, positive function. For

these functions both give the same number of products and literals as can be seen in

outputs of(DS31-DS36, DS40-DS45).

Most of the cases EXMIN2 gives the fewer products than Quine-McCluskey. In some

.cases number of products are same but literals are greater than Quine-McCluskey as can

be seen in outputs of(DSl, DS9, DSI2, DS13, DS20). For these cases nature of the data

cannot be determined. From data (DS25-DS30) it is seen that for symmetric function

number of products are equal or fewer than Quine-McCluskey and literals are always

fewer. For parity function EXMIN2 gives the fewer products and literals than Quine-

McCluskey as can be seen in outputs of(DS40-DS45).

For Mlynarovic and Quine-McCluskey method there is not any specific relationships

between them in the number of products and number of literals produced. For a specific

data it is observed that Mlynarovic technique is better than Quine-McCluskey and vice

versa. For unate function(DS37-DS39) Mlynarovic technique gives higher number of

products and literals than Quine-McCluskey method. On the other hand for parity

function(DS40-DS45) Mlynarovic technique gives smaller number of products and literals

than Quine-McCluskey method.

128

...,-

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions:

From the results given in chapter six, it is obvious that performances of various

minimization techniques are sensitive to the nature of the data and adjacency of the

minterms. For Quine-McCluskey data (DSI-DS21) show that the response time increases

with the increase of the adjacent minterms, because in this case higher cubes are generated

for the higher degree of adjacency. For non-adjacent minterms or for the function with

a lower degree of adjacency the time elapsed is the same for the same number of

minterms independent of number of variables as can be seen in outputs of (DS48-DS53),

because higher cubes need not be generated. When the minterms are not adjacent, as in

the case of data (DS40-DS45), the elapsed time increases willi the increase of minterms

because overhead required for searching and sorting increases with the increase of input

data.

For Quine-McCluskey, graph 6.4 and data (DS59) show that worst case response time for

9 variables is much higher than 14 variable randomly generated function. It is apparent

that Quine-McCluskey may be applied to any number of variables but its response time

increases with the increase of minterms and it is maximum in the worst case. Actually,

with the increase of minterms, overhead required for the additional formations of Iinked-

list and searching increases arid becomes maximum in the worst case for a given number

of variables.

It is seen that for parity function Quine-McCluskey produces the minterms, i.e., there is

129

,.

no minimization. So to minimize the hardware complexity for this function we have to

go in the Exclusive-0R domain. It is apparent from the Quine-McCluskey method that

different permutations of the same function do not affect the number of products and

number of literals, because all possible cubes are generated here.

EXMIN2 gives the products in mixed polarity and its elapsed time decreases with the

increase of the degree of adjacency. In EXMIN2 degree of adjacency is not similar to that

of Quine-McCluskey because here 'zero' entry may be an adjacent cell if it is in even

number of loops. So a number of solutions may be possible in EXMIN2 if we permute

the input function even if the number of products and number of literals are the same.

EXMlN2 is formed with a number of rules. The first objective of this algorithm is to

minimize the number of products and the second objective is to minimize the number of

literals. As a consequence, rules responsible for minimizing the product term commence

first in the algorithm. Since minimization of product terms and minimization of literals

are done by different rules, so minimiZation of product terms and literals are not achieved

simultaneously for permutation of a given function as can be seen in outputs of (DS54-

DS58).

Graphs 6.1-6.5 and data (44,78) show the variation of response time with the increase of

adjacent minterms for EXMIN2. It is apparent that a function with adjacent minterms

required less time than a function with a higher number of nonadjacent minterms. Thus

it can be concluded that when EXMlN2 deals with a function with a greater number of

nonadjacent minterms, response time would be higher due to the inclusion of zero terms

in K-Map.

It is seen that for parity function EXMIN2 gives a fewer number of products and literals

than Quine-McCluskey. So to minimize such functions, ESOP domain is appropriate.

130

.'c'

In step(c) of EXMIN2 algorithm, the sequence of operations has been modified. As a

result EXMIN2(Testl) and EXMIN2(Test2) do not produce any significant results. From

Table 6.10 it is observed that for function DS54 and its different permutations,

EXMIN2(Testl) gives fewer number of products and literals. So it is not clear whether

best sequence of operations in EXMIN2 is unique or not Such variations of EXMIN2

have been done in different ways without fruitful results.

From the data (DS54-DS58), it is apparent that the output ofEXMIN2 is not unique. With

different permutations of inputs it is seen that number of products is the same but number

of literals differs. So we conclude that we can get a minimal expression among the

different solutions of EXMIN2 for a given function. It can also be seen from graph 6.5

that response time ofEXMIN2 is higher than the EXMIN2(Testl) in the worst case and

it is true for any kind of input data.

It is observed from data DS56 and Art 6.3 that the process of minimization in EXMIN2

is not always convergent. To avoid this difficulty we have to include a step between step

h and step i of EXMIN2. In this step we have to store the minimum expression before

further process, i.e., SPLIT operation. The final output would be compared with this

expression and the minimum expression would be the final output.

Graphs 6.1-6.4 and all the data show that response time of Mlynarovic's method is

insensitive to the number of minterms and the adjacency of minterms for a given number

of variables. It is observed from all the data that response time for a 5 variable function

is a constant times the time required for a 4 variable function and this constant relation

is true for any consecutive number of variables. It is observed that even if the number of

minterms is one, then time elapsed for that function is the same as the worst case for a

given number of variables. This is due to the fact that whatever the number of minterms

be, the algorithm generates all the vectors. As a result overhead is the same.

131

Data(DS40-DS45) show that Mlynarovic's method gives the minimum solution for the

parity function. It is interesting. to note that only for this kind of functions both EXMIN2

and Mlynarovic's method give the same number of products and literals though the

exclusive-OR sum of products expressions are different.

In Mlynarovic method it is seen that there may be a number of minimum ~ vectors for

some functions but number of literals in the expressions may differ. In this case we have

to choose the Ap vector which produces minimum number of literals. As a result

Mlynarovic technique should be modified to overcome this problem. One solution of this

problem is by software implementation, where we have to generate all the expressions for

Ap vectors with minimum number of Is, then choose the expression with minimum

number of literals.

Graphs 6.1-6.4 shows the comparison of Quine-McCluskey, EXMlN2 and Mlynarovic's

techniques for different number of variables in the worst case(i.e., all possible minterms

are present for a given number of variable). For small number of variables response time

in the Mlynarovic's technique is always higher than Quine-McCluskey, but when number

of variables is higher than 7, response time for the Quine-McCluskey technique is higher

than Mlynarovic's technique. In all these cases response time for EXMlN2 is the lowest.

For the average number of minterms response time for the EXMlN2 and Quine-

McCluskey depends on the nature of the data. If the minterms in a function are adjacent

in nature in the SOP domain then the response time for the Quine-McCluskey algorithm

is greater than EXMIN2. However, in all these cases the response time for Mlynarovic's

method is the maximum.

EXMlN2 gives the fewer number of products and literals than Mlynarovic's method for

all kinds of data. Most of the cases EXMlN2 gives fewer products than Quine-McCluskey

method but in the case of symmetric functions and parity functions (DS25-DS30, DS40-

DS45) it gives fewer number of products and literals. This is true for positive functions

132

(OS31-0S33) and vacuous functions (OS34-0S36). Oata (OS37-0S39) show that in the

case of unate function Quine-McCluskey gives the fewer number of products and literals

than EXMIN2.

7.2 Suggestions for Further Study:

The M1ynarovicmethod, time elapsed is independent of number of minterms. We can also

get Fixed Polarity Reed-Muller Expression by applying equations 3.1 and 3.2. In this case,

we have 2" FPRMEs and among them we have to choose the FPRME with minimum

number of products. The time complexity of this technique would be the same as

M1ynarovicbut in this case elapsed time would be dependent on the number of minterms.

In M1Yn8rovicmethod, there may be multiple solutions but in these solutions number of

literals may not be same. So one can attempt to solve this problem.

To get a mixed polarity exclusive-OR sum of products expression, we have simulated

EXMIN2 algorithm. It is seen that in this algorithm, the process of minimizing the

products is not always convergent Step i of EXMIN2 algorithm applies the variable X;

in SPLIT operation which is responsible for increasing the minimum number of the

products in .ti. Fj $ Xi' Fi. Therefore, one can attempt to examine this step for

different variables and study their number of products and literals.

Transformation from SOP domain to ESOP domain (Art. 5.4.4), i.e., HEALEX

procedure may be applied to get a mixed polarity expression. In this procedure,

determination of disjoint cube in RM domain is a vital one. Oue to unavailability of

literature this technique has not been tested in this study. Research can be carried out in

this direction.

133

.,

APPENDIX A

DATA AND SOPIESOPIFPRME EXPRESSIONS

This appendix contains a sample of the data and the corresponding expressions
produced by the different algorithms. Here,

symbol # stands for EXOR operator.
CAPITAL LEITER stands for IJIlC()mplementedvariable.
SMALL LEITER stands for complemented variable.
NEOATIVE NUMBER stands for termination of inputs.
DSn stands for data set number n.
FPRME stands for fIXedpolarity RME produced by M1ynarovicmethod.

DSI. Minterms are : 0, I, 3, 5, 6, 7, -I
SOP Expression is: C + ab + AB
ESOP Expression is: I # cA # cB
FPRME is: I # cB # cA

DS2. Minterms are: 0, 2, 5, 7, 8, 10, 13, IS, -I
SOP Expression is: bd + BD

. ESOP Expression is: b # D
FPRME is: d # B

DSJ. Minterms are: 0, 2, 3, 4, 6, 8; II, 12, 13, 14, -1
SOP Expression is: cd + Bd + beD + ABc + ad
ESOP Expression is: be # bead # d # ABOe
FPRME is: 1 # D # Deb # DA # DCA # DbA # CbA

DS4. MiDtermsare: I, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, .1
SOP Expression is: aC + Bd + abD + beD + Acd + ABc
ESOP Expression is: 1 # acBD # bed # DAC # bA
. FPRME is: 1 # Oe# cb # DA # bA # OebA

134

r

DS5. Minterms are: 0,2,4,5,6,8, 10, 12, 14, 15, 16, 18,21,23,25,26,28,29,31, -1
SOP Expression is: ae + bee + cDe + ACE + ABdE + abed + BCde + aBCD
ESOP Expression is: eCa # E # BAd # CEdB # ECDba # c
FPRME is: 1 # E # EdC # ECB # CA # EdCA # dBA # ECBA # EdCBA

DS6. Mintenns are: 20, 21, 2, 13,3, 19, -1
SOP Expression is: Abed + abeD + bcDE + aBCdE
ESOP Expression is: beD # aBCdE # bcDeA # Abed
FPRME is: EDb # Cb # DCb # EDCb # ECa # EDCa # Dba # EDba # Cba # ECba

DS7. Mintenns are: 27, 11,31,3,29, -1
SOP Expression is: acDE + ABCE + BcDE
ESOP Expression is: cDEAb # EDc # EBAC
FPRME is: EDc # EDcA # EBA # EcBA # EDcBA

DS8. Mintenns are: 5,9,21,20,29, 1, 8, -1
SOP Expression is: aBed + Abed + ACdE + abdE
ESOP Expression is: CdA # adBc # adbE # CdAcB
FPRME is: Ed # EdB # deB # dA # EdA # dcA # dBA # EdcBA

DS9. Mintenns are: 23, 13, 17,28,27,30, 11,2, -1
SOP Expression is: ABCe + BcDE + AbCDE + aBCdE +AbcdE + abeDe
ESOP Expression is: EAbD # abeDe # ACeB # cBED # EdBaC # AcbE
FPRME is: ED # EC # Db # ECb # DCb # EDCb # CA # EDCA # EbA # DbA # CbA
ECbA # DCbA

DSI0. Minterms are: 12, 19, 18,25, 5, 2, 29, 30, 0, 24, 9, 15, -I,
SOP Expression is: AbeD + ABdE +ABed +BcdE + abce + aBCde + abCdE +ABCDe
+ aBCDE
ESOP Expression is: cbDA # aEbdC # aebe # aCB# DBeC # dEB # BceAd
FPRME is: D # DC # B # eCB # DCB # ea # Da # Ca # eDCa # DBa # eDBa # eCBa

DSll. Mintenns are: 13, 0, 19, 16, 1, 10, 4, 7, 15, 5, -I,
SOP Expression is: aCE + abd + bcde + AbeDE + aBeDc
ESOP Expression is: CaE # Cabde # AbeE # bdc # aBcDc
FPRME is: Ecb # deb # Ea # ca # dca # Edca # dba # Edba # cba

135

DS12. Minterms are: 40, 38, 1, 16, 51, 57, 9, -1
SOP Expression is: abdeF + AbCdef + AbcDEf + aBcdef + ABcdEF + ABCdeF
ESOP Expression is: aBcdef # deFba # AdCeB # AdCef # AdBFcE # AbcDEf
FPRME is: ed # fed # edB # fedB # fedeB # edA # fcA # fccA # fdcA # fedBA # feBA
feeBA # deBA # fedcBA

DS13. Minterms are: 45, 19, 57,40, 55, 63, 30, 47, 62,43, 58, 26, 52, 61, 54, 35, -I,
SOP Expression is: ACDF + ABDE + BCEf + ABCeF + AbdEF + ABeDf + aBcdEF
+ AbCdef
ESOP Expression is: BEC # BEF # BEcFaD # ACF # ACdb # ACdbfE # AEFd #
ABeDf

FPRME is: FEdB # ECB # FECB # FEdCB # FEdA # FCA # dCA # EdCA # FEdCA
BA # FBA # FEBA # dBA # FdBA # FEdBA # CBA #FCBA # FECBA # FdCBA
EdCBA

DS14. MiDtermsare: 36,51, 16,2,44,26,39, 52, 1,63, -1
SOP Expression is: AbDef +AeDef +ABcdEF + aBcdef + abcdEf + aBCdEf + AbcDEF
+ abcdeF + ABCDEF
ESOP is: AEFBC # EdBA # acdf # adceb # ADef # ADeffiC # EdBf # AEFcbD
FPRME is: fEd # fde # fEdb # deb # Edeb # EA # tEA # EdA # feA # EcA # fEdcA
fbA # EbA # fdbA # EdbA # fEdbA # febA # tEcbA # debA # fdcbA

DS1S. MiDtermsare: 35, 60, 55, 5, 24, 23, 29, 58, 53, 34, 18, 57, 48, 26, I, 47, 54, 2,
19,6, 12, 50, 7, 15, 10,41, 17,33,44, 8, -1
SOP Expression is: aCdf + BdEf + ACDef + ABcDF + ACdeF + ABcdf + bCDEF +
aBCDeF + AbcdE + abceF + aBcEF + abcEf + cdEf + AbcdF + ABcDE + abcDF +
acdeF + bCDef
ESOP Expression is: DcfbaE # bDAcF # bCAd # Fb # dbE # eC # dbEFA # dfB #
BcEAD # dfaceB # caFB # FeDB # eCaB
FPRME is: f# ED' # e # Ec # IDe # DB # fEDB # EcB # tEcB # fEDeB # A # EA #
tEA # DA # EDA # fEDA # cA # fEBA # DBA # EDBA # fEDBA # eBA # EcBA #
fEcBA # IDeBA # EDcBA

DSI6. MiDtermsare: 23, 37, 46, 33, 55, 94, -1
SOP Expression is: aCdEFG + aBcdfG + aBeDEFg + AbCDEFg
ESOP Expression is: aCdEFG # AbCDEFg # aBcdfG # aBeDEFg

136

FPRME is: FEDC # GFEDC # FEDCB # GFEDCB # GFECa # FEDCa # GBa # GFBa
GDBa # GFDBa # FEDBa # GFEDBa # GCBa # GFCBa # GDCBa # GFDCBa

DS17. Minterms are: 41, 66, 49, 72, 7, 97, 86, 75, 4, 12, 77, 92, 105, 121, 30, 99, 26,
101,46, 36, 104, 13, 60, II, 42, 10, 126, 8,93, 79, 114, 58, 39, 30, 81, 68, 29, 64, 113,
62, 40, 54, 24, -I
SOP Expression is: BcDef + ABefG + bDEfG + aCDFg + abDeg + aBDFg + Abcdeg
+ BCdefG + acdEFG + ABedeG + ABcdfG + acdEfg + AbCDEf + aBCDEg + BCDEFg
+ ACdefG + aBCEFg + AbCdEFg +ABCdeFg + bcDeFG + eDefg +AbcDFG + abcEfg
+ bcdEfg
ESOP Expression is: DcabE # Dfe # GcDb # ged # egaF # acfgde # DcabEfG # FbAEd
BAed # dEFcG # FbAEdGC # DgaC # CeGma # ACgFB # CeGfAd # DCfb
eADCgB # EFgdCB
FPRME is: ge # fe # gO # gfD # fe # gfe # ec # gfec # gDc # fOe # eDc # geDc # gfeDc
gb # gfb # /Db # geDb # gcb # feb # gfcb # ecb # fecb # Deb # gDcb # eDcb # geDcb
feDcb # ga # gfa # gOa # geDa# feDa # gfeDa # ca # gfeca # Dca # gDca # geDca
feDca # geba # feba # gOba # gfDba # gfeDba # feba # ecba # gecba # Deba # gDcba

DSI8.Minterms are: 0, 2, 4, 5, 7, 8, 10, 13, 16, 17, 19,21,23,25,27,28,29,31,34,
36, 37, 39, 42, 47, 48, 54, 55, 57, 58, 59, 63, 67, 69, 71, 72, 74, 75, 78, 81, 83, 85, 86,
88,90,92,95,96,97, 100, 101, 104, 106, 109, 1I2, 1I3, 1I5, 117, 1I8, 120, 125, 127,
-I
SOP Expression is: aceFg + abEfG + aCDeG + CDEFG + aBEFG + AbDeg + ACdeG
+ ABEfG + AbcDFg + ACdEFg + ABefg + abcdfg + abCdef + bCDEfg + AbcdFG +
abCG + abceg + acdEf + abdEG + bcdEG + bdEfG + cDeF g +BcdEf + ABcdf + aCdefg
+ aBDeFg + aBCdEF + AbceFG
ESOP Expression is: mDE # ace # me # aGcF # beFGe # GdEbc # DgAe # adbf #
DgAEB # DgAcfE # aGcb # meAD # &DC # mcCg # AdCG # adbfec # abCdeFG #
abCgE # aFGECD # DCbg # ECF
FPRME is: GF # Fe # d # Fd # ed # Fed # Gee # dC # GFdC # GFedC # Gb # eb #
Feb # GFeb # Gdb # Gedb # Cb # GCb # FCb # FeCb # dCb # edCb # GedCb # FedCb
GFedCb # GA # eA # FeA # GFeA # GdA # GFdA # FedA # GFedA # GFCA
GeCA # FeCA # GdCA # edCA # GedCA # FedCA # FbA # ebA # GebA # dbA #
GdbA # GedbA # FedbA # FCbA # eCbA # GeCbA # dCbA # FdCbA # edCbA #
FedCbA # GFedCbA

137

,~

DS19. MiDtermsare: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,20,22,24,26,28, 30, 32, 34, 36,
38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, -I
SOP Expression is: f
ESOP Expression is: f
FPRME is: f

DS20. MiDtermsare: 0,2,5,7,8, 10, 13, 15, 16, 18,21,23,24,26,29,31,32,34,37,
39,40,42,45,47,48,50,53,55,56,58,61,63, -I
SOP Expression is: df + DF
ESOP Expression is: d # F
FPRME is: f # D

DS21. MiDtermsare: 0,2,4,6, 8, 10, 12, 14, 16, 18,20,22,24,26,28,30,32,34,36,
38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70, 72, 74, 76, 78,80,82,
84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120,
122, 124, 126, 128,130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156,
158,160,162,164,166,168,170,172,174,176,178,180, 182, 184, 186, 188, 190, 192,
194, 196, 198,200,202,204,206,208,210,212,214,216,218,220;222,224,226,228,
230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, -I
SOP Expression is: h
ESOP Expression is: h
FPRMEis: h

Partially Symmetric Function(22-24):

DS22. Minterms are: 4, 5, 6, 7, 8, 9, 10, II, -I
SOP Expression is: aB + Ab
ESOP Expression is: a # b
FPRME is: B # A

DS23. MiDtermsare: 3, 7, II, 12,13, 14, 15, -I
SOP Expression is: CD + AB
ESOP Expression is: AB # ABCD # CD
FPRME is: DC # BA # DCBA

138

.:..:.
"

OS24. Minterms are: 2, 3, 6, 7, 8, 9, 12, 13, -1
SOP Expression is: aC + Ae
ESOP Expression is: a # e
FPRME is: C # A

Symmetrie Funetion(25-30):

OS25. Minterms are: 15, 23, 27, 29, 30, -1
SOP Expression is: aBCDE + AbCDE + ABeDE + ABCdE + ABCDe
ESOP Expression is:EBDC # CABde # ABDE # BCA # CAED
FPRME is: EDCB # EDCA # EDBA # ECBA # DCBA # EDCBA

OS26. Minterms are: 31,47,55,59,61,62, -1
SOP Expression is: aBCDEF +AbCDEF + ABeDEF +ABCdEF + ABCDeF +ABCDEf
ESOP Expression is: ADECf # ADECb # AFCBe # AFCBd # AEFBD # FBDEC
FPRME is: FEDCB # FEDCA # FEDBA # FECBA # FDCBA # EDCBA

OS27. Minterms are: 3, 5, 6, 9, 10, 12, 17, 18,20,24, -I
SOP Expression is: abcDE + abCdE + abCDe + aBedE + aBeDe + aBCde + AbcdE +
AbeDe + AbCde + ABede
ESOP Expression is: de # CaB # bDE # bDEAC # be # eBCdA # a # adeeb # eDBaE
FPRME is: ede # edb # ecb # deb # eda # eca # dea# eba # dba # eba

OS28. Minterms are: 1,2,3,4,5,6,8,9, 10, 12, 16, 17, 18,20,24, -1
SOP Expression is: abeE + abDe + abCd + aBed + Abed + abdE + aeDe + beDe + aCde
+ bCde + Bede
ESOP Expression is: bde # AcE # bda # eCa # eBDa # eB # AeEBD # cD
FPRME is: 1 # e # eO # eC # DC # eB # DB # CB # eA # DA # CA # BA # DCBA
eDCBA

DS29. Minterms are: 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19,20, 21,22,24, 25, 26,
28, -1

SOP Expression is: abDE + aCdE + aCDe + aBeE + BeDe + BCde + AbcE + AbDe +
AbCd + ABed
ESOP Expression is: Ab # Ae # eCB # aEd # beE # Db # DeA # Dc
FPRME is: ED # EC # DC # EB # DB # CB # EA # DA # CA # BA

139

DS30. Minterms are: 7, II, 13, 14, 15, 19,21,22,23,25,26,27,28,29,30, _I
SOP Expression is: aCDE +BeDE+ BCdE +BCDe +AbDE + bCDE + AbCE + AbCD
+ ABeE + ABeD + ABCd
ESOP Expression is: Ca # aEBd # EBe # Cbe # Cbeda # ADb # ADe # Cd
FPRME is: I # ed # ec # de # eb # db # eb # edeb # A # eA # dA # eA # bA # edebA

Positive Funetion(31-33):

DS31. Minterms are: 4,6,7, 12, 14, 15, -I
SOP Expression is: Bd + BC
ESOP Expression is: B # BDc
FPRME is: B # DeB

DS32. Minterms are: 4, 7, 12, 15, -I
SOP Expression is: Bcd + BCD
ESOP Expression is: Be # BD
FPRME is: dB # CB

DS33. Minterms are: 4,6,7, 13, 15,20,22,23,29,31, _I
SOP Expression is: bCe + BCE + bCD
ESOP Expression is: CbED # CB # Ce
FPRME is: EC # Cb # EDCb

Vacuous Function(DS34-DS36):

DS34. Minterms are: 24, 25, 26, 27, 28,29,30,31, -1
SOP Expression is: AB
ESOP Expression is: AB
FPRME is: BA

DS35. Minterms are: 2, 7, 8, 13, 18,23,24,29, -I
SOP Expression is: beDe + bCDE + Bcde + BCdE
ESOP Expression is: dC # de # bC # be
FPRME is: eD # DC # eB # CB

140

=1) DS36. Minterms are: 1,3,5,7,9, 11, 13, 15, 17, 19,29,31, -1
SOP Expression is: aE + beE + BCE
ESOP Expression is: EAC # E # EAB
FPRME is: E # ECA # EBA

Unate Funetion(DS37-DS39):

DS37. Minterms are: 6, 12, 13, 14, 15, -I
SOP Expression is: AB + BCd
ESOP Expression is: Baed # BA
FPRME is: dCB # BA # dCBA

DS38. Minterms are: 12, 13, 14, 15,22,28,29,30,31, -1
SOP Expression is: BC + ACDe
ESOP Expression is: BC # bCeDA
FPRME is: CB # eDCA # eDCBA

DS39. Minterms are: 1,3,4,5,6,7, 12, 13, 14, IS, 17, 18, 19,20,21,22,23,28,29,
30,31, -1
SOP Expression is: C + bE + AbD
ESOP Expression is: C # bEe # AbDec
FPRME is: 1 # e # Eeb # DcbA # EDcbA

Odd Parity Funetion(DS40-DS42):

DS40. Minterms are: 1,2, 4, 7, 8, II, 13, 14, 16, 19,21,22,25,26,28, 31, -1
SOP Expression is: abcdE + abeDe + abCde + abCDE + aBede + aBeDE + aBCdE +
aBCDe + Abcde +AbeDE + AbCdE + AbCDe + ABcdE + ABeDe + ABCde + ABCDE
ESOP Expression is: a # b # e # D # e
FPRME is: E # D # C # B # A

DS41.Minterms are: 1,2,4, 7, 8, 11, 13, 14, 16, 19,21,22,25,26,28,31,32,35,37,
38,41,42,44,47,49,50,52,55,56,59,61,62, -1
SOP Expression is: abcdeF + abcdEf + abcDef + abeDEF + abCdef + abCdEF + abCDeF
+ abCDEf + aBcdef + aBcdEF + aBeDeF + aBeDEf + aBCdeF + aBCdEf + aBCDef +
aBCDEF + Abcdef + AbedEF + AbeDeF + AbcDEf + AbCdeF + AbCdEf + AbCDef +

141

AbCDEF + ABcdeF + ABcdEf +ABeDef + ABeDEF + ABCdef + ABCdEF + ABCDeF
+ ABCDEf
ESOP Expression is: a # B # e # f # D # e
FPRME is: F # E # D # C # B # A

DS42. Minterms are: 1,2,4,7,8,11,13,14,16,19,21,22,25,26,28,31,32,35,37,
38,41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82,
84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121,
122, 124, 127, .1
SOP EIpression is: abcdetD + abedeFg + abcdEfg + abcdEFG + abeDefg + abcDeFG
+ abeDEtD + abeDEFg + abCdefg + abCdeFG + abCdEtD + abCdEFg + abCDetD +
abCDeFg + abCDEfg + abCDEFG + aBcdefg + aBcdeFG + aBedEtD + aBcdEFg +
aBeDetD + aBeDeFg + aBeDEfg + aBeDEFG + aBCdetD + aBCdeFg + aBCdEfg +
aBCdEFG + aBCDefg + aBCDeFG + aBCDEtD + aBCDEFg + Abcdefg + AbcdeFG +
AbcdEtD + AbcdEFg + AbcDetD + AbeDeFg + AbcDEfg + AbeDEFG + AbCdetD +
AbCdeFg + AbCdEfg + AbCdEFG + AbCDefg + AbCDeFG + AbCDEtD + AbCDEFg
+ ABcdetD + ABedeFg + ABcdEfg + ABcdEFG + ABeDefg + ABeDeFG + ABeDEtD
+ ABeDEFg + ABCdefg + ABCdeFG + ABCdEtD + ABCdEFg + ABCDetD +
ABCDeFg + ABCDEfg + ABCDEFG
ESOP Expression is: a # B # F # E # g # d # e
FPRME is: G # F # E # D # C # B # A

Even Parity Funetion(DS43-DS45):

DS43. Minterms are: 0, 3, 5,6,9, 10, 12, 15, 17, 18,20,23,24,27,29,30, -1
SOP Expression is: abcde + abcDE + abCdE + abCDe + aBedE + aBeDe + aBCde +
aBCDE + AbedE + AbeDe + AbCde + AbCDE + ABcde + ABeDE + ABCdE + ABCDe
ESOP Expression is: a # b # E # D # e
FPRME is: e # D # C # B # A

DS44. Minterms are: 0, 3, 5, 6, 9, 10, 12, 15, 17, 18,20,23, 24, 27, 29, 30,33, 34, 36,
39,40,43,45,46,48,51,53,54,57,58,60,63, -1
SOP Expression is: abcdef + abcdEF + abcDeF + abcDEf + abCdeF + abCdEf + abCDef
+ abCDEF + aBcdeF + aBedEf + aBeDef + aBeDEF + aBCdef + aBCdEF + aBCDeF +
aBCDEf + AbcdeF + AbedEf + AbeDef + AbeDEF + AbCdef + AbCdEF + AbCDeF +
AbCDEf + ABcdef + ABcdEF + ABeDeF + ABeDEf + ABCdeF + ABCdEf + ABCDef

142

+ ABCDEF
ESOP Expression is: a # B # e # F # D # e
FPRME is: f # E # D # C # B # A

DS45. Minterms are: 0,3,5,6,9, 10, 12, 15, 17, 18,20,23,24,27,29,30,33,34,36,
39,40,43,45,46,48, 51, 53, 54, 57, 58, 60, 63, 65, 66, 68, 71, 72, 75, 77, 78, 80, 83,
85, 86, 89, 90, 92, 95, 96,99, 101, 102, 105, 106, 108, Ill, 113, 114, 116, 119, 120,
123, 125, 126, -1
SOP Expression is: abcdefg + abedeFG + abcdEfG + abcdEFg + abcDefG + abcDeFg
+ abcDEfg + abeDEFG + abCdefG + abCdeFg + abCdEfg + abCdEFG + abCDefg +
abCDeFG + abCDEfG + abCDEFg + aBcdefG + aBedeFg +aBcdEfg + aBedEFG +
aBeDefg + aBeDeFG + aBeDEfG + aBeDEFg + aBCdefg + aBCdeFG + aBCdEfG +
aBCrlEFg + aBCDefG + aBCDeFg + aBCDEfg + aBCDEFG + AbcdefG + AbcdeFg +
AbcdEfg + AbcdEFG + AbeDefg + AbeDeFG + AbeDEfG + AbeDEFg + AbCdefg +
AbCdeFG + AbCdEfG + AbCdEFg + AbCDefG + AbCDeFg + AbCDEfg + AbCDEFG
+ ABcdefg + ABedeFG + ABedEfG + ABcdEFg + ABeDefG + ABeDeFg + ABeDEfg
+ ABeDEFG + ABCdefG + ABCdeFg + ABCdEfg + ABCdEFG + ABCDefg +
ABCDeFG + ABCDEfG + ABCDEFg
ESOP Expression is: a # B # F # E # G # d # e
FPRME is: g # F # E # D # C # B # A

Majority Funetion(DS46):

DS46. Minterms are: 7, 11, 13, 14, 15, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, -1
SOP Expression is: CDE + BDE + BCE + BCD + ADE + ACE + ACD + ABE + ABD
+ ABC
ESOP Expression is: ECd # BdAE # BdAC # ECab # D # Dab # eDeA # eDeB
FPRME is: EDC # EDB # ECB # DCB # EDCB # EDA # ECA # DCA # EDCA # EBA
DBA # EDBA # CBA # ECBA # DCBA

DS47. Minterms are: 0, 1,3,5,7, 10, 13, 15, 16, 19,20,22,24,27,29,31,32,35,36,
38,39,40,41,43,45,46,47,49,50,51,54,56,57,58,59,61, 64, 68, 69, 70, 74, 76,
78,79,81,84,90,92,94,95,97,99,104, 106, 107,109, 113, 116, 118, 119, 124, 125,
127, 129, 131, 136, 138, 140, 143, 149,150,153,159,162,163,164,169,173,176,177,
179,181,184,185,186,189,195,196,199,200,201,205, 206, 207, 209, 217, 219, 220,
225,226,227,229,230,234,235,236,239,240,241,243,245,247,248,249,251,252,

143

254,255,257,258,259,261, 264, 267, 270, -I
SOP Expression is: acDFW + aBDEgh + acdefgl + bcdefhl + acdFGHI + abcDeGH +
abDFGW + acDEFgi + abCdeGi + abCdFHi + aCdeFGH + aCEfgW + aCEFGhi +
aBEFgW + aBDefgH + aBCEFgI + aBCDfhI + acdEfGHi + acDefGhi + aCdefGhi +
aBcdeFhi + aBeEfGW+ aBCDetHi + aBCDFGhi + AbcdefgH + AbcdegHI +AbcdeFghi
+ AbcdeFGHi + abcEgHI + abDegHI + aCDEGHI + abcdfghi + acdeFgHi + abdEfGhi
+ abeDeghi + abeDEtHi + abCDeFgi + abCDEfGi + aBCdetHI + aBCdeFgh + abcdefl
+ abcdeGI + abcdFGI + abdFGHI + acDfgHI + abeDEgI + aCDefgl + aCDegHI +
aCDeFgH + aBDfgHI + aBCDFHI + abdefghi + abdefGW + abcdEghi + aBCdeFW +
aBCDEFGi <-

ESOP Expression is: aBeWDf# abfhigE # acdHeF # aigehdB # aDh # aeGihD # ahbfGI
acEhdgFI # acGihDeF # aBIC # ahEgBCI # dIhBa # aDhei # acDeFglhb # aBGelhDFC
adGIF # aEbdhf # aCGhF # aefiCd # aBdeFh # aefiCBgd # cedIhB # aCDFhb
GcaIBdHf# bceg # beedIhAGF # aHFeB # aHbcEi # acEIHbFG # agHDE # behgedf#
aHeB # agiCHDF # agHDI # aCHibd # beegAD # aBDGEC # cedIhA # geadh # aGfeEH
acH # aBdtH # aBDFHGe # aCHfiE # aHeBig # adtHGie # aCDEGHI # aefiCBgH
AbcdeiFH # IbcdegHa
FPRME is: hecb # ihecb # geeb # hgecb # iFeeb # hFecb # ihgFecb # heDeb # iheDeb
geDeb # hgeDeb # iFeDeb # hFeDeb # ihgFeDeb # hga # ihga # ihFa # gFa # igFa
hgFa # ea # iea # hea # hgea # iFea # hFea # igFea # Da # iDa # hgDa # iFDa # hFDa
gFDa # ihgFDa # ieDa # geDa # igeDa # FeDa # ihFeDa # gFeDa # iea # hca # igea
ihgea # Fca # igFca # eca # geca # ihFeea # gFeca # Dea # ihDca # gDea # hgDea
FDca # iFDca # hFDca # ihFDea # gFDca # ihgFDca # hgeDca # ihgeDea # FeDca #
iFeDea # igFeDea # ihgFeDea # ihba # ihgba # Fba # hFba # ihFba # hgFba # eba #
igeba # hgeba # iDba # hDba # gDba # FDba # hFDba # eDba # iheDba # geDba #
igeDba # FeDba # hFeDba # gFeDba # igFeDba # ihgFeDba # heba # iheba # geba #
igeba # ihgeba # Feba # hFeba # iecba # ihecba # geeba # igeeba # ihgeeba # Fecba #
ihFecba # gFecba # igFecba # ihgFeeba # hDeba # igDeba # hgDeba # FDeba # iFDeba
ihFDeba # gFDeba # igFDeba # hgFDeba # ihgFDeba # eDeba # geDeba # hgeDeba
ihgeDeba # iFeDeba # ihFeDeba # igFeDcba # hgFeDcba # ihgFeDcba

DS48. Minterms are: 1,2,5,6, 7, 10, 12, 14, -1
ESOP Expression is: aD # BcdA # aDbC # dC

D849. Minterms are: 2, 5, 7, 10, 13, 16, 18, 24, -1
ESOP Expression is: aCE # aCEDB # ce # ceda # ceADB

144

>-

DS50. MiDtermsare: 2, 5, 13, 16, 24, 32, 36, 45, -1
ESOP Expression is: bcdfaE # bceA # aBdef # AbcedF # bDeF

DS51. MiDtermsare: 5, 10, 17, 23, 33, 47, 67, 78, -1
ESOP Expression is: adftJce # bcDFga # adftJb # aBcDEFG # AbcdeFG # bcDFgE #
adGbCE

DS52. MiDtermsare: 10, 18,34,69,90, 110, 129, 170, -1
ESOP Expression is: abIDhd # abIDhec # aBcdeFgH # AbcdefgH # aBcDEIDh #
aBCdEFGh # bftJhdEC

DS53. Minterms are: 10, 18,36, 70, 100, 129,257,450, -1
ESOP Expression is: abcdgHie # abDeIDhi # abCdeIDHi # edefghla # edefghlb #
ABCdefgHi # abedgHif

DS54. MiDtermsare: 0, 1,2, 3, 4, 5,6, 8, 9, 11, 12, 13, 15, 17, 19,22,23,25,26,28,
29, 30, -I
ESOP Expression is: ECb # BDea # AE # ECbda # I # AedBC # AcDb # Ad

DS55. MiDtermsare: 5, 8, 19, 1, 3, 28, 30, 26, 23, 17, 12,2, 4, 9, 6, 0, 25, 11, 29, 22,
15, 13, -1
ESOP Expression is: AB # DBea # bDCa # 1 # bDCe # cBAd # Ae # ACEd

DS56. Minterms are: 0,2,4,6,8, 12, 17, 19,23,29,25,28, 1,5, 13,9,22,30,26,3,
15,11, -1
ESOP Expression is: DBae # AB # bCDE # 1 # bCDA # cBAd # Ae # AECd

DSS7. MiDtermsare: 0, 4, 12, 8,28,22, 30, 26, 2, 6, 17,29,25, 1, 5, 13, 9, 19,23,3,
15,11,-1
ESOP Expression is: Aedc # DB # bDEA # DA # DE # bCA # bDEc # 1

DS58. MiDtermsare: 2, 13, 8, 23, 29, 3, 5, 12,22,25, 1,4,30,0,26, 6, 15,9, 19,28,
11;17,-1
ESOP Expression is: AB # BDea # bCDa # 1 # AECd # bCDe # BAed # Ae

DS59. MiDtermsare: 0,2,6,9,10,15,17, 19,21,22,27,29,31,35,37,39,41,43,48,

145

51,53,57,59,61,68,69,71,79,81,86,83, 89, 91, 95, 97, 101, 106, 107, 109, 112,
118,162,164,167,169,184,186,189,197,199,201,214, 215, 219, 221, 224, 228, 231,
237,239,241,245,246,247,249,251,253,255,257,259,261,263,265,267,268,271,
273,275,277,279,281,283,287,291,293,297,299,301,312,314,317,321,325,331,
332,337,339,341,343,347,349,354,359,367,368,372,380,384,385,389,394,395,
397,399,401,409,421,425,429,460,468,471,501,507,513,517,518,520,522,529,
534,550,556,557,559,568,569,571,573,580,581,587,589,592,593,594,595,596,
600,604,609,614,617,620,628,631,651,657,660,675,678,681,682,685,693,694,
697,699,712,713,714,717,721,725,734,735,737,740, 741, 747, 749, 781, 782, 783,
981,964, 965, 968, 975, 976, 981, 982, 985, 987, 988, 990, 994, 995, 997, 999, 1012,
1013, 1017, 1021, 1024, 1028, 1069, 1127, 1158, 1159, 1169, 1200, 1249, 1250, 1254,
1259, 1300, 1347, 1349,2000,2014,2145, 2489, 2510, 2678, 2900, 3001, 5012, 5013,
5094, 5095, 5099, 5100, 5189,6000,6048, 6049, 6148, 6149,6258, 6259, 6262, 7001,
7002, 7008, 7009, 7501, 7509, 7519, 8000, 8004, 8018, 9000, 9999, -1,
SOP Expression is: abcdeFgikmN + abcdfghikLMn + abcdeghjKlmN + abcdfgHijkLm
+ abcdefHijkLN + abcdefgHillN + abcdefHJkLMn + abcdefGHIJmN + abcdeF giKlMN
+ abcdeFhiJlmN + abcdEfiJklmN + abcdEfhlJK1N + abcdEfgHiJkl + abcdEfgHiJmn +
abcdefgIJklmn + abdefgHIjklmN + abcdefgHIjKIM + abcdefGljkLmn + abcdefGhIJKln
+ abcdfGHijKlmN + abcdefGHJKLmN + abcdefGHIjkmn + abcdeGHIJKlMN +
abcdeFgijKLmn + abcdeFghIJKln + abceFgHijkLmN + abcdeFHijKLmn +
abcdeFgHiJLmN + abcdeFgHIjLMN + abcdeFgHIJLmn + abcdeFGhijklm +
abcdeFGhijKIM +abcdEfghijKln + abcdEfgljkLMn +abcdEfgljKLmn + abcdEfghIjKLN
+ abcdEfghIJKlm + abcdEfgHJkLmn + abcdEfgHIjlmN + abcdEfGhIkLMn +
abcdEfGHijKln + abcdEGHijKlmn + abcdEfGHiJKLM + abcdEFghijKLN +
abcdEFghijKLM + abcdEFGHijkLm + abcEFGHiJklmn + abcdEFGHiJLMn +
abcdEFGHiJKIN + abcdEFGHiJKLn + abcEFGHiJKLMn + abcdEFGHIjklM +
abcdEFGHIJkLm + abcDefghijkmn + abcDefGhijkLM + abcDefGHIjkMn +
abCdFGhIJKlmN + aBcdEFGhiJkLm + aBcdEFGHIjkLM + aBcDEFGhIjklm +
aBCdefghijkLm + aBCdefgHIJkIM + aBCdefgHIJkMn + aBCdEFgHIjklm +
aBCDEFgHijkmn + abcdefGhIjklMn + abcdeFgHIjklMn + abcdeFGHiJkLmn +
abcdEfgHijKlMN + abcdEfgHIJkLMN + abcdEfGhijKIMN + abcdEfGhiJkLmn +
abcdEfGhIjklMN + abcdEfGhIjKIMn + abcdEfGhIJkLmN + abcdEfGHIjKlMN +
abcdEFGHijKLMN + abcDefghIjKLmN + abcDefgHIjkLMN + abcDefGhiJklmN +
abcDefGhIJklmn + abcDefGHIjklmN + abcDefGHIjKlMN + abcDeFghiJkLmn +
abcDeFgHijklMN + abCdeFGHijKLMn + abCdEfgHIJkLMn + abCdEFgHiJkLmn +
aBcdEFGHIjKlMN + aBcdEFGHIjKLmn + aBcDefgHijkLmN + aBcDEFgHIJklmn +

146

".~

aBCdEFgHiJKlmN + aBCdEFgHiJKIMn + aBCDeFgHijKLmN + aBCDeFgHiJkLmN +
aBCDeFgHiJKLMN + aBCDEFgHiJldMn + AbcdEFghIjKlmn + AbcDEFghijKLMN +
abcdefgiKLMN + abcdefghJlMN + abcdefghJLmN + abcdeghIjlMN + abcdefDHILMN
+ abcdeFhIjLmN + abcdefghijldn + abcdefghIjkLN + abcdefgHIjLmN + abcdfDhIjKlmN

\

+ abcdeGHiJkLMN + abcdfDHIjKLmN + abcdeFGhijKLN + abcdEfghijkmN +
abcdEtHijKLmN + abcdEGHiJkLmN + abcdEfDHIjkmN + abcdEFGHIjkLN +
abcdEFGHIJKmN + abcdegiJldN + abcdeFghikN + abcdeFghiMN + abcdeFgiJkN +
abcdefghIKlN + abcdehIjKImN + abcdfghIJKmN + abcdeFhijkmN + abcdEFGHkLmN
+ abcdefghijlMn + abcdefhIjkLMN + abcdefhIJKLmN + abcdeghIJKLmN +
abcdetHiJKIMN + abcdegHIJIdmn + abcdfDHIjkLmn + abcdeGHIJkLmN +
abcdEfhIjKLmN

147

BIBLIOGRAPHY

[I] A. Tran and E. Lee, Generalisation of Tristate Map and A Composition Method

for Minimization of Reed-Muller Polynomials in Mixed Polarity., lEE

Proceedings-E. Vol. 140, No. I, Jan. 1993, pp. 59-64.

[2] Arpad Barna, and Dan I. Porat, Integrated Circuits in Digital Electronics, John

Wiley & Sons Inc., 1973.

[3] Development of an Improved Logic Minimization Algorithm with Software

Implementation of Quine-McCluskey and Algorithm-S Method, A dessertation

submitted by roll No. 4302, Department .of Applied Physics & Electronics, DU,

Dhaka, August, 1993.

[4] Dietmeyer, D.L., Logic Design of Digital Systems., Massachusetts, Allyn and

Bacon, Inc., 1979.

[5] Edited by Tsutomu Sasao, Logic Synthesis and Optimization, Kyushu Institute of
Technology, Iizuka 820, Japan.

[6] Edward J. McCluskey, Logic Design Principles., New Jersey, Prentice Hall, 1986,
pp. 51, Chap 2.

[7] Fredrick 1. Hill, Gerald R. Peterson, Digital Systems Hardware Organisation and

Design, John Wiley & Sons Inc., 1987.

148

[8J Hasan, H.M. and Mottahb, M.A., Design.of Minimin:d Logic Networks Using

EXOR and AND Gates by a Computer with a Small Memory Space., Accepted

for publication in the Bangladesh Journal of Scientific and Industrial Research,

BCSIR, Dhaka.

[9J M Morris Mano, Digital Design, PrenticelHall International, Inc., 1984.

[I OJ M. Perkowski and M. Chrzanowska-Jespe, An Exact Algorithm to Minimize

Mixed-Radix Exclusive Sums of Products for Incompletely Specified Boolean

Functions, Proc. ISCAS, pp.1652-1655, June 1990.

[l1J Marinkovic, S.B. and Tosic, Z., Algorithm for Minimal Polarized Polynomial

Form Determination., IEEE Trans. Comput Vol. C-23, pp. 1313-1315,Dec. 1974.

[12J Minato. S., Ishiura. N and Yajima. S., Paper 3.3, 27th ACMIIEEE Design

Automation Conference.

[I3J Mottalib,A., Design of Easily Testable PLAs and Their Testing Algorithm., Thesis

for the degree of Doctor of Philosophy (I.I.T Kharagpur)., March 1992.

[14] . Mottalib, MA. and Md. Hasinur Rahman, A logic Minimization Technique Using

Reed-Muller Cannonic Expansion with Software Implementation, Journal of the

Bangladesh Electronics Society, pp. 9-13, Vol. 3, No. I, 1993.

(15) Mukhopadhyay, A. and Schmitz, G., Minimization of Exclusive OR and Logical

Equivalence of Switching Circuits, IEEE Trans., 1970, C-19, pp. 132-140.

[16] N. Koda and T. Sasao, A Minimization Method for AND-EXORExpressions

Using Lower Bound Theorem, (in Japanese), Trans. IEICE(to be published).

149

[17] Ph.W. Besslich, Dr.-lng.,Efficient Computer Method for EXOR Logic Design,

lEE PrOCf"A'dings,Vo1.130,PtE, NO.6,Nov. 1983.

[18] S. Swamy, On Generalized Reed-Muller Expansions, IEEE Trans. Comput., Vol.

C-21, pp. 1008-1009, Sept. 1972.

[19] S.M. Reedy, Easily Testable Realizations for Logic Functions, IEEE Trans.

Comput., Vol. C-21, pp. 1183-1188, Nov., 1972.

[20] Saluja K. and Ong E.H., Minimization of Reed-Muller Canonic Expansion, IEEE

Trans. Comput., Vol. C-28, NO.7, July 1979.

[21] Shannon, C.E., A symbolic Analysis of Relay and Switching Circuits, Trans. Am.

1Dst.Electr. Eng., Vol. 57, pp. 713-723, 1938.

[22] T. Sasao, On the Complexity of Some Classes of AND-EXOR Expressions.,IElCE
Technical Report FTS 91-39, Oct. 1991.

[23] T. Sasao, EXMlN2: A SimplificationAlgorithm for Exclusive-or-sum of Products

Expressions for Multiple-Valued Input Two-Valued Output Functions, IEEE Trans
on CAD (to be published).

[24] T. Sasao, Optimization of Pseudo-Kronecker Expressions Using Multiple-Place

Decision Diagrams, IElCE Trans. INF. & SYST., Vol. E76-D, NO.5,May 1993.

[25] T. Sasao and P. Besslich, On the Complexity ofMOD-2 Sum PLA'S., IEEE Trans.

on Comput., Vol. 39, NO.2, pp. 262-266, Feb. 1m.

150

<,

[26] Tran, A., Tri-smte Map for the Minimization. of Exclusive-OR Switching

Functions, lEE Proc. E, 1989, 136, (1), pp.l6-21.

[27] Tran, A., Graphical Method for the Conversion of Minterms to Reed-Muller

Coefficients and the Minimization of Exclusive-OR Switching Functions, lEE

Proc. E, 1987, 134, (2), pp. 93-99.

[28] Tran, A., and Wang, 1., Decomposition Method for Minimization of Reed-Muller

Polynomials in Mixed Polarity, lEE Proc. E, 1993, 140, (I), pp. 65-68.

[29] Tsutomu Sasao, Optimization of Multiple-Valued AND-EXOR Expressions Using

Multiple-Place Decision Diagrams, Kyushu Institute of Technology, Iizuka 820,

Japan.

[30] Whitesitt, J.E., Boolean Algebra and Its Applications, Addison-Wesley Publishing

Company, Inc., Reading, Mass., 1961.

[3]] Wood, R.E., Switching Theory, New York, McGrawhilI,]968, pp. 72-73, Chap.3.

I

[32] Wu x., Chen X., and Hurst S.L., Mapping of Reed-MuJlCl"Coefficients and the

MinimiUltion of Exclusive-OR Switching Functions., IEE Proc. E, Comput. &

Digital Tech., 1982, 129, (I), pp. 15-20.

151

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154
	00000155
	00000156
	00000157
	00000158
	00000159

