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ABSTRACT

This paper presents a new invariant character recognition (ICR) algorithm called as

Symmetry Axis based Feature Extraction and Recognition (SAFER) for recognizing

translation, rotation and scale invariant optical characters. Unlike most previous ICR

algorithms, SAFER puts emphasis on both simplicity and generalization ability for

recognizing invariant characters. SAFER uses the axis of symmetry of character and a

simple radial coding to extract invariant features from character. The use of ANN as a

classifier in SAFER increases its generalization ability. SAFER has been tested on two well-

known fonts Arial and Tahoma that are widely used for representing English characters.

These fonts have been subject of many studies in ICR. The experimental results show that

SAFER can produce high recognition rate with good generalization ability.
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Chapter 1

Introduction

1.1 Introduction

Automatic recognition of optical character from text image has been an ongoing

research problem for several years. Since the mid 1950's, Optical Character Recognition

(OCR) has been a very active field for research and development. Now OCR began as a

field of research in artificial intelligence and machine vision. It has been gaining more

interest lately due to the increasing popularity of computers and electronic typewriter.

This seems to be a more natural way of entering data to the computers.

Today, OCR is the most cost-effective and speedy method available. However,

Invariant Character Recognition (lCR) is still problematic. The aim of ICR is to identify a

character independently of its position (translated or rotated) and size (larger or smaller),

has been the object of an intense and thorough study. An increasing number of research

groups have proposed a great variety ofiCR methods in the last several years.

Most of the good ICR software have a self-learning kind of system rcfcrrcd to as a

neural network, which automatically updates the recognition database for new patterns.

ICR basically extends the usefullness of keyboard for the purpose of document

.processing to scanning devices. Although the processes involved in recognising ICR are

not so developed, accuracy levels in most cases are not less than 90%. Often to achieve

these high recognition rates several read engines are used within the software and each is

given elective voting rights to determine the true reading of characters.

Today's ICR engines add the multiple algorithms of neural network technology to

analyze the stroke edge [1], the line of discontinuity [2] between the text characters, and

the background. Allowing for irregularities of printed ink on paper, each algorithm

averages the light and dark along the side of a stroke, matches it to known characters and

makes a best guess as to which character it is.



Advances are trying to make ICR more reliable; expect a mInimum of 90%

accuracy for average-quality documents and greater accuracy for clean copy. However,

analysis and ICR of 'difficult' heritage documents are not straightforward [3] and new

techniques are required for such material. Some issues that need to be dealt with in

character recognition of heritage documents are:

i) Characters are different sized, translated and rotated.

ii) Characters are needed to extract from poor papers, which often results in high

occurrence of noise in the digitized images, or fragmented (broken)

characters.

The basic processes involved in character recognition [4] can be divided in three

stages. First the document that needs to be digitized is scanned. Scanned documents are

generally stored as image file either as Tagged Image File Format (TIFF) or as Bitmap

file (BMP). In second stage, the scanned documents are processed since scanned images

are not accurate and they have noises and rough edges. If the document is not scanned

properly, then the scanned image will be skewed. These are to be corrected, before

continuing the process.

In third stage, features are extracted from the candidate image. Finally the features

are compared with the stored result of a complete alphabetical set. If there is a match of a

reasonable level or more of the features with any ofthe stored alphabet features, then it is

assumed that the character is recognized.

Quality of any ICR algorithm is important. There are three criteria to determine

the quality of an algorithm. These are accuracy, processing capability, and complexity.

• The algorithm should achieve an improved recognition rate and high efficiency

when processing the documents and it prevents unnecessary losses.

• The algorithm should achieve a fully automatic information flow. Which means,

with a minimum of manual interaction, the ICR algorithm can automatically finds

and extract information from any documents, interprets the data and transports it

into any computer system.

• Computationally less complex so that it takes lower time and less disk space.

In this thesis a new ICR algorithm is proposed which satisfies the criteria of any good

ICR algorithm.
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1.2 Historical Survey

OCR is one of the most successful applications of automatic pattern recognition. In

the last several years, an increasing number of research groups have proposed a great

variety of ICR methods. These methods are classified in four groups:

• Invariant Moment Based method

• Projection Based Method

• Boundary Based Method

• Neural Network Based Method

As the vast number of papers is published on ICR every year, it is impossible to include

all the available feature extraction methods in this survey. Instead, here some

representative sectio~s are represented to illustrate the different principles.

1.2.1 Invariant Moment Based Method

Moment based ICR is a popular invariant-recognition scheme for its invariant

functions. In the moments, all the pixels of a pattern are used in the computation. Using

moment it is reasonable to suspect where the discrimination information lies and how

they can be extracted. It is found that the higher order complex moments are powerful

predictors of discrimination performance.

In 1962, Hu [5J, introducing nonlinear combinations of regular moments, derived

a set of seven composed moments with translation, scaling, and rotation-invariant

properties. However, the moments proposed by Hu do not possess orthogonal properties,

making reconstruction of the input image computationally difficult.

The kernel function of geometric moments is not orthogonal, which makes it

computationally expensive to reconstruct an image from the moments. Therefore,

geometric moments suffer from a high degree of information redundancy, and they are

sensitive to noise for higher-order moments [6-8]. Moreover, the kernel function of

geometric moments of order (n+m ), often involves power of nand m.

Orthogonal moments have been proven to be more robust in the presence of noise.

They are able to achieve a near-zero value of redundancy measure in a set of moment

3



functions where the moments correspond to independent characteristics of the image

[6,8]. For example, Orthogonal Zemike moment functions are defined using a polar

coordinate representation of the image space and they are commonly used in recognition

tasks requiring rotation invariance images.

Teague [9] suggests orthogonal moments based on the general properties of

orthogonal polynomials. In general, it has been shown by Teague [9] that in terms of

information redundancy, orthogonal moments (Legendre, Zemike, and pseudo-Zemike)

perform better than any other type of moments. In terms of overall performance, Zcmikc

and pseudo-Zemike moments outperform the others [I OJ.
e. Kan and M. D. Srinath [11] show a comparative study of the use of orthogonal

moments for invariant classification of alphanumeric characters of different size. In

addition to the Zemike and pseudo-Zemike moments (ZMs and PZMs), a new method of

combining Orthogonal Fourier-Mellin moments (OFMMs) with centroid bounding circle

scaling is introduced, which is shown to be useful in characterizing images with large

variability. It is shown that OFMMs give the best overall performance in terms of both

image reconstruction and classification accuracy.

C. Chong, et al. [12] derive a translation invariant model of Zemike moments. By

applying this framework, translation invariant functions of Zemike moments are derived

algebraically from the corresponding central moments. The functions are developed for

non-symmetrical as well as symmetrical invariant character images. They mitigate the

zero-value obtained for odd-order moments of the symmetrical images. The proposed

method eliminates the requirement of transform invariance by providing a translation

invariance property in a Zemike feature set.

D. Shen and Horace H.S. Ip [13] present a set of wavelet moment invariants,

together with a discriminative feature selection method, for the classification of

seemingly similar objects with subtle differences. These invariant features are selected

automatically based on the discrimination measures defined for the invariant features.

Using a minimum-distance classifier, the wavelet moment invariants achieved better

classification rate compared with Zemike's moment invariants and Li's moment

invariants.

4



1.2.2 Projection Based Method

Many algorithms for image analysis have been proposed by both neural

computing and statistics communities, most of which are based on a projection of the

data onto a two or three dimensional visualization space. The classical linear projection

method is used for mapping the data to a lower dimensional space and preserves as much

data variance as possible. However, circular projection is essential to extract rotation

invariant feature from character.

A. FARES, et al. [14] had recognized rotated patterns by using a ring detector. In

this paper an approach similar to the wedge-ring detector is proposed, but instead of

using the amplitude of the Fourier transform of a function in the diffraction sampling plan

they exploit its phase. Thus, the rotation invariance problem can be solved and the

discrimination between similar targets is very much improved. It is shown that the phase

only of the Fourier transform of input pattern is more effective and efficient for

evaluation and discrimination of rotated target.

E. Kavallieratou et al. [IS] published the slant estimation algorithm for OCR. The

slant estimation is based on a combination of the projection profile technique and the

Wigner-Ville distribution. Moreover, it uses a simple and first sharing transformation

technique. The proposed approach is character independent and can easily be adapted in

order to satisfy the requirement of most of the OCR system.

M. Choi and W. Kim [16] proposed an algorithm for a rotation invariant template

matching method based on the combination of the projection method and Zernike

moment. The algorithm consists of two stages. At first, candidate pixels are selected by a

coarse searching method. For the coarse search, the vector sum of circular projections of

sub-image was taken. To accelerate the candidate selection process, frequency domain

implementation of convolution was adopted. Finally, Zernike moments are calculated for

the candidate to verify the exact location of the matched templates.

1.2.3 Boundary Based Method

Many image processing and computer vision tasks need to locate objects included

in complex scenes where the presence of other objects, noise or the deformable nature of

5



the object hinders the process. In that case, the only available information is its two-

dimensional (2D) shape and few physical features.

M. Gonzalez- Linares et al. [17] proposed an algorithm for the automatic

detection and location of a two dimensional objects. This method is based on shape

information that is extracted from the edges gradient and only needs a template of object

to be located. A new Generalized Haugh Transform is proposed to automatically locate

rigid objects in the presence of noise, occlusion and clustering. A Bayesian scheme uses

this rigid objects location algorithm to obtain the information of the object

T. Bernier and J. Landry [18] demonstrate a method of shape representation for

planar closed curves, which is invariant to translation, rotation and scale. The curvature

information was transformed to frequency domain by using the concept of Zahn and

Roskies [19]. The points of high curvature (vertices) were found by performing a first

order derivative of their polar representation. This process provides sensitivity to contour

segments lying between vertices without inordinate sensitivity to noise. In addition, this

method can iteratively adjust until an equal number of vertices are found, thus

significantly broadening its comparative ability.

F. Ullah and S. Kaneko [20] present a new method for rotation invariant template

matching in gray scale images. It is the basis on the utilization of gradient information in

the form of orientation codes as the feature for approximating the rotation angle as well

as for matching. Orientation codes-based matching is robust for searching objects in

cluttered environments even in the cases of illumination fluctuation resulting from

shadowing or highlighting, etc. The method consists of two stages. In first stage,

histograms of orientation codes are employed for approximation the rotation angle of the

object and in second stage; the template object is rotated by the estimated angle for

matching.

Boundary-based analysis using discrete Fourier transforms has been proposed as

an alternative to ICR [21], [22]. Algorithms based on this kind of analysis are called

Fourier descriptors and basically, invariance is obtained by normalizing the frequency

representation of the image shape.

6



1.2.4 Neural Network Based Method

Multilayer feed forward neural networks have been used extensively in OCR.

Each node sees a window in the previous layer and combines the low level features in

this window into a higher-level feature. Then the neural network can be viewed as a pure

classifier, constructing some completed decision boundaries, or it can be view as

extracting "super features" in the combined process of feature extraction and

classification.

Many papers using neural networks are reported on studies of invariant pattern

recognition. Madaline structures for. translation-invariant recognition [23], the self-

organized recognition [24], and high-order neural networks [25-27] are examples of ICR

neural-based methods. Also Yuceer and Oflazer [28], Fukushim [29], Hussain and

Kabuka [30], Khotan-zad and Lu [31] focused on invariant recognition of characters.

The self-organized recognition is a further extension of the recognition originally

proposed by Fukushima in 1975 [32]. It is an unsupervised learning algorithm. Although

the work of Fukushima is a major advance in the understanding of visual processing in

our brain, from an engineering point of view, its major drawback is that it is unable to

cope with large translations and rotations in the image. Furthermore, the number of cells

in this model increases almost linearly with the number of objects to be recognized,

making the training process very slow.

Kwan and Cai [33] propose four layer feed forward fuzzy neural network (FNN)

with unsupervised learning algorithm. Patrick Simpson [34] proposed supervised learning

neural network classifier named as fuzzy min-max neural network (FMN) that utilizes

fuzzy sets as pattern classes. Chiu and Tseng [35] used supervised FMN for invariant

recognition of characters and shown that the FMN is superior to other traditional

statistical classifiers. Kulkarni Uday and others [36] have proposed fuzzy hyperline

segment neural network (FHLSNN) and the performance of FHLSNN is found superior

than FMN algorithm.

Y. Avrithis et al. [37] present a scheme for translation, rotation and scale invariant

OCR using triple-correlation. In this method, the image is represented in a triple-

correlation domain. This representation is a one-to-one relation to the class of all shifted-

rotated-scaled versions of the original image, as well as robust to a wide variety of

7



additive noises. They implement this technique to binary images and simulation results

illustrate the performance is pretty good.

1. A. Torres-Mendez et a1.[38] address a method for character recognition, which

IS invariant under translation, rotation, and scaling. The first step of the method

(preprocessing) takes into account the invariant properties of the normalized moment of

inertia and a novel coding that extracts topological object characteristics. The second step

(recognition) is achieved by using a holographic nearest-neighbor algorithm (HNN), in

which vectors obtained in the pre-processing step are used as inputs to it.

U. Y. Kulkarni and T R Sontakke [39] propose a fuzzy hypersphere neural

network (FHSNN) based classifier with its learning algorithm, which is used for rotation

invariant character recognition. The FHSNN utilizes fuzzy sets as pattern classes in

which each fuzzy set is a union of fuzzy set hyperspheres. After moment normalization,

rotation invariant ring-data and Zernike moment features are extracted from characters.

FHSNN algorithm is used to classify these features by its strong ability of discriminating

ill-defined character classes.

N. Rishikesh and Y.Y. Yenkatesh [40] present a two-step algorithm for invariant

pattern recognition. The proposed pattern encoder utilizes the properties of complex

logarithmic mapping (CLM), which maps rotation and scaling in its domain to shift in its

range. The encoder, then, invokes a pulse-coding scheme similar to that proposed by

Dodwell [41] in order to handle these shifts, which is invariant to scaling, rotation and

translation in the input shape. These pulse are then fed to a novel multilayered neural for

final recognition.

The fuzzy-neuron classification method, defined by Charroux et a!. [42], provides

the definition of a degree of belonging of an unknown object without having any prior

knowledge on the distribution of observations. This method is based on the Grenier's

algorithm [41], whose principle is to calculate a potential vector where each component

gives a degree of belonging to one of the classes.

C. Choisy [43] uses the rotation absorption property in neural networks for multi-

oriented character recognition. Classical approaches are based on several rotation

invariant features. Here, they propose to use a dynamic neural network topology to

absorb the rotation phenomenon. The basic idea is to preserve as most as possible the

8



graphical information that contains all the information. The proposal is to dynamically

modify the neural network architecture, in order to take into account the rotation variation

of the analyzed pattern. They also use a specific topology that carries out a polar

transformation inside the network.

High-order networks (HON's) have been utilized recently for invariant

recognition [25], [26]. In this type of model, one has to encode the properties of

invariance in the values of the synaptic weights. In other words, the known relations

between pixels of the images are used, and the invariance is directly constructed in the
network.

A third-order network has been proposed by L. Spirkovska [27], in which

combinations of triplets of image pixels are used as invariant relations. The triplets form

triangles representing similar angles (a, p, y) in any transformation of the same image.

The weights are restricted in such a way that all the combinations of three pixels defining

similar triangles are connected to the output with the same weight. The main

disadvantage of this approach is that the number of combinations of possible triplets

increases in a nonlinear proportion to the number of input data.

Along with the previous techniques, it is important to mention recent ICR

research based on optical techniques such as composite-harmonic filters [44] and scale,

translation, and in-plane rotation (STIR)-invariant transformations [45]. The former

filters involve the Mellin radial harmonics for scale invariance [46], the logarithmic

harmonics for projection invariance [47], and the circular harmonics for rotation
invariance [48].

Fang and Hausler [45] introduce a new class of transforms that achieve STIR

invariance simultaneously. In their approach, an intensity function S(x,y) is mapped into

a one-dimensional (I-D) frequency-spectrum function. Later, Ghahra-mani, and Patterson

[49] propose a higher dimensional version of the STIR-invariant transforms in

conjunction with an orthonormalization technique in an optical neural-network resonator.

Computer simulations show that these types of techniques perform well and have

excellent noise tolerance. However, the major disadvantage is their heavy computational

requirements.
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1.3 Objectives

The perfonnance of pattern recognition systems depends on the specific feature

extraction technique used to represent a pattern and the perfonnance of a classifier.

Generally, the dimension of a feature vector is reduced by removing the redundancy from

the data and it is represented by a set of numerical values. The selected feature sets must

possess small intraclass inconsistency and large interclass severance. It is therefore

necessary to extract appropriate features from pattern automatically. The objectives of the
present work are:

(i) To develop a new algorithm consisted of two stages to recognize

translation, rotation and scale-invariant character.

(ii) To construct a feature extractor that can be used in the first stage of new

algorithm.

(iii) To construct an efficient classifier that can be used in the second stage of

the new algorithm.

(v) To detennine the perfonnance of new algorithm by applying it to real
world data sets.

(vi) To compare the perfonnance of the new algorithm with some existing
algorithms.

1.4 Thesis Overview

The remaining chapters of this thesis are organized as follows:

• Chapter 2 provides background material for the rest of the thesis. Theoretical basis of

the pattern recognition are first elaborated. Template matching, unitary image

trans fonner, morphological operations and different types of projection methods are

discussed next. Vector sum and its application on shape description and different

types of moments are also presented. Finally, a brief discussion on ANN architectures

and Backpropagation learning methods are given.

• Chapter 3 presents the proposed algorithm SAFER: Symmetry Axis based Feature

Extraction and Recognition, which is the main contribution of this thesis. Advantages

10



of SAFER are enlisted first. Algorithm of SAFER is then elaborated; detailed

descriptions of different processes and methods used in SAFER are then described.

• Chapter 4 presents a detailed experimental evaluation of the SAFER. In the reported

experiments, the algorithm is applied to 26 uppercase English alphabetic characters to .

solve classification problems. This chapter also evaluates the performance of the

SAFER on several well-known algorithms. Experimental details, results, analysis,

and discussions are described.

• Finally, in chapter 5, the contributions and limitations of the research are presented in

this concluding chapter, and propose future research tasks aimed at addressing the
limitations.

II



Chapter 2

Background

2.1 Introduction

There is much architecture defined for the process of OCR. Similar to most of the

pattern reorganization architecture "Feature Extraction and Comparison" is the basis for

recognition of characters. There are many processes for extracting the features of a
bitmap pattern.

There are basically two types of knowledge in the recognition of OCR. They are

morphological and pragmatic. Morphological knowledge refers to the shape of an ideal

representation of a character like number of vertical and horizontal lines, closed and open

loops, curves and contours that define the character and the segments that join these.

Pragmatic knowledge represents spatial arrangement of a character within a word

boundary. This is more language dependent. There are many such language dependent

pragmatic rules that can be applied to augment the recognition process.

"Feature extraction" will fall under Morphological Knowledge, which is done by

applying a set of rules. This is derived from Hidden Markov Model (HMM). Each pattern

is idcntified with number of closed loops, lines, curves, ascenders and descenders. The

model uses the space between the ascenders or descenders to isolate the connected pixels

between the characters. It also defines the segmentation points between these units. The

extracted data is compared with stored (hidden) sets of data (hence the Hidden Markov
Model) to recognize the character.

Feature Extraction is carried out by applying rules to a character bitmap and

storing the extracted result of the rules in a table or in the form of pattern. This is then

compared with the font data, retrieved from an installed font in the system. For accuracy,

the user must select the font that closely matches the scanned document. Using Font data
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rather than the pre-scanned data provides the ability to use any font of any language, for
recognition.

2.2 Thresholding

The thresholding transformation sets each gray level that is less than or equal to

some prescribed value T (the threshold value) to 0, and each gray level greater than Tis

changed to K -1. Thresholding is useful when one wants to separate bright objects of

interest from a darker background or vice versa. The thresholding transformation is
defined by

{
O,if ..g,(x,Y)$T

g,(x,y) = .
k -l,if ..g, (x,y) >T (2.1)

The thresholded desk image with T = 100 is shown in Fig. 2.1 (b). Thresholding

does not necessarily produce edges that correspond to the edges of the objects in the

scene. Gray levels less than or equal to T are assigned the new gray level 0 and are

considered to be background pixels. Gray levels greater than T are assigned the new
value of K -1.

(a) (b) (c)
Fig. 2.1 Effect of Thresholding

(a) The gray scale Image. (b) Thresholded at T= 100 (c) Thresholded at T= 200

2.3 Range Normalization

It is sometimes desirable to apply a linear transformation to the gray levels in an

image to change the range of gray levels that are present. If the original image had gray
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(2.2)

levels ranging from a the lowest, to b the highest, and to make the range c to d, the
change could be accomplished in three steps:

• Subtract a from each gray level to make the range become 0 to b-a.

• Multiply the result by (d - c)/ (b - a) to make the range become 0 to d _ c.

• Add c to the result from step 2 to obtain the range c to d.
These three steps are summarized in the formula

d-c
g,(x,y) = --[g,(x,y)-aJ+c

b-a
which converts the range [a,b} to the range [c,d}.

2.4 Edge Detection

Experiments with characters show that edges are one of the most important visual

clues for interpreting character. If an image consists of objects of interest displayed on a

contrasting background, an edge is a transition from background to object or vice versa.

The total change in intensity from background to foreground is called the strength of the
edge.

The rate of change in gray level with respect to horizontal distance In a
continuous image is equal to the partial derivative

(2.3)

(2.4)

(2.5)

og(x,y) = lim g(x+ 6.x,y) - g(x,y).
aX ",~O 6.x

,
If t.x is replaced by I, equation (2.3) becomes

g~(x,y) = g(x+ I,y) - g(x,y)

Where g/ represents the first difference in g with respect to x. Similarly og(x,y)/ Oycan
be approximate by

g;(x,y) = g(x,y + I) - g(x,y)

These finite differences represent the change in gray level from one pixel to the

next and can be used to emphasize or detect abrupt changes in gray level in the image.

These operators are often called edge detectors, as the edges of objects in a scene often
produce such changes.
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The one-dimensional edge detectors in (2.4) and (2.5) can be represented by the operators

olTJ
OJ

(2.6)

The edge detectors gx(x. y) and gy(x. y) indicate how fast the gray level is

increasing or decreasing with distance in the x and y directions. A positive value of

gx(.y,y) indicates a transition from low gray level to high gray level when moving to the

right. A negative value shows a transition from high to low. The edges detected using the

operators (2.6) are shown in Fig. 2.2.

(a) (b) (c)

Fig. 2.2 Effect of Edge Detector

(a)Thc original image (lena.gil) (b) Vertical Edges (c) Horizontal Edges

2.5 Segmentation

A region can be loosely defined as a collection of adjacent pixels that are similar

in some way, such as brightness, color, or local visual texture. The gray levels in the

image being segmented may not represent the brightness values in the original scene

since the current image could have resulted from applying various image transformations

to the original image. Nonbackground regions are sometimes called objects.
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Fig. 2.3 The segmentation of an Image

2.6 Template Matching

Nowadays OCR systems uSing template matching on gray scale character

images are not very used. However, since template matching is a fairly standard image

processing technique [50, 51], here this section is included for completeness. In template

matching the feature extraction step is left out altogether and the character image it self is

used as a "feature vector". In the recognition stage, a similarity (or dissimilarity) measure

between each template Tj and the character image Z is computed. The template Tk which

has the highest similarity measure is identified, and if this similarity is above a specified

threshold, then the character is assigned the class label k. Else, the character remains

unclassified. In the case of a dissimilarity measure, the template Tk having the lowest

dissimilarity measure is identified, and if the dissimilarity is below a specified threshold,

the character is given the class label k.

A common dissimilarity measure is the mean square distance D (Eq. 20.1-1 In

Pratt [51]):
AI

Dj = I(Z(x;,y;)-Tj(x;,y;»'
j:cl

(2.7)

where it is assumed that the template and the input character image are of the same size,

and the sum is taken over the M pixels in the image. Eq. (2.7) can be rewri tten as

Dj = E, - 2Ezrj + ETj (2.8)

where,
AI

Ez = I(Z'(xpy;)
;=1
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(2.10)

M

RZT, = L(Z(x"y,)Tj(xpy,))
;=1

M

ET = "(T.'(x.,y.»i LJ ) I J
jc)

Ez and ETj are the total character Image energy and the total template energy,

respectively. RZ7] is the cross-correlation between the character and the template, and

could have been used as a similarity measure, but Pratt [51] points out that RZTj may

detect a false match if, say, Z contains mostly high values. In that case, Ez also has a high

value, and it could be used to normalize RZTj by the expression RZTj = RZTj / E z.

However, in Pratt's formulation of template matching, one wants to decide

whether the template is present in the image (and get the locations of each occurrence).

Our problem is the opposite: find the template that matches the character image best.

Therefore, it is more relevant to normalize the cross-correlation by dividing it with the

total template energy:

• RZT
R =--'.ITj E .

Tj

Although simple, template matching suffers from some obvious limitations. One

template is only capable of recognizing characters of the same size and rotation, is not

illumination-invariant (in- variant to contrast and to mean gray 1evel), and is very

vulnerable to noise and small variations that occur among characters from the same class.

However, many templates may be used for each character class, but at the cost of higher

computational time since every input character has to be compared with every template.

The character candidates in the input image can be scaled to suit the template sizes, thus

making the recognizer scale- independent.

2.7 Unitary Image Transforms

In template matching, all the pixels in the gray scale character image are used as

features. Andrews [52] applies a unitary transform to character images, obtaining a

reduction in the number of features while preserving most of the information about the
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character shape. In the transformed space, the pixels are ordered by their variance, and

the pixels with the highest variance are used as features.

The unitary transform has to be applied to a training set to obtain estimates of the

variances of the pixels in the transformed space. Andrews investigated the Karhunen-

Loeve (KL), Fourier, Hadamard (or Walsh), and Haar transforms in 1971 [52]. He

concluded that the KL transform was too computationally demanding, so he

recommended to use the Fourier or Hadamard transforms. However, the KL transform is

the only (mean-squared error) optimal unitary transform in tcrms of information

compression [53]. When the KL transform is used, the same amount of information about

the input character image is contained in fewer features compared to. any other unitary

transform.

Other unitary transforms include the Cosine, Sine, and Slant transforms [53]. It

has been shown that the Cosine transform is better in terms of information compression

(e.g., see pp. 375-379 in [53]) than the other non-optimal unitary transforms. Its

computational cost is comparable to that of the fast Fourier transform, so the Cosine

transform has been coined "the method of choice for image data compression" [53].

The features extracted from unitary transforms are not rotation-invariant, so the

input character images have to be rotated to a standard orientation if rotated characters

may occur. Further, the input images have to be of exactly the same size, so a scaling or

rc-sampling is necessary if the size can vary. The unitary transforms arc not illumination

invariant. but for the Fourier transformed image the value at thc origin is proportional to

the averagc pixel value of the input image, so this feature can be deleted to obtain

brightness invariance. For all unitary transforms, an inverse transform exists, so the

original characterimage can be reconstructed.

2.8 Morphological Operations.

When measuring the shapes of objects in images, it is sometimes desirable to

simplify the objects by filling in small holes or by eliminating small protrusions from

their boundaries. The elimination of boundary pixels from objects in binary image is

called erosion. The boundary pixels of an object are defined as the object pixels that have

background neighbors. Erosion consists of relabeling object boundary pixels as
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background pixels, which has the effect of making object smaller. The opposite

operation, dilation, enlarges objects. Each background pixel that has a neighbor in the

object is relabeled as an object pixel. Fig. 2.4 shows symmetric erosion/dilation operator .

• •

(a) (b) (c) (d)
Fig. 2.4 Some Erosion/dilation operator. Their origins are marked by asterisks.

1112'1 1121

2 2222 22222
21111 1 1 1 1 1 1 1 1 111 1 1 1 1122 1 .. .. ". . . .. .. .. . . .. .. .. .. .. .. .. .. 1 2
21 "1' •.•..•.••. 12
2111111111111111111112222 22 22222 22 2

Fig. 2.5 The effect of erosion and dilation (a) The original region and the result of two 8-

neighbor erosions. The pixels removed with the first and second erosion are marked with

"I "and "2," respectively. Unchanged pixels are marked with dots. (b) The eroded region

(marked with dots) and the result of the two dilations. The pixels added by the first and

dilation are marked with" I" and "2," respectively.
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2.9 Thinning

A modification of erosion known as thinning converts any elongated parts or

stripes in the image, regardless of their widths, into narrow stripes that are only about one

pixel wide, but are still about as long as the original stripes. The narrow stripes lie near

the centers of the original wide stripes. Thinning could be useful, for example, in

analyzing images that contain fingerprints or handwriting. Also, if the output of an edge

detector has been thresholded to find the edges in an image, the edges may be more than

one pixel wide in some places. The positions of these edges could be refined by thinning

the edge-detected image. The main problem with using simple erosion is that eroding a

stripe enough to cause the widest part of it to be only one pixel wide produces gaps in the

narrow parts of it.

(<:)

(b\..

(d)

Fig 2.6 Effect ofThinning (a), (c) S and (b), (d) 8

2.10 Projections

In 1956, Glauberman [54] introduced Projection histograms in a hardware OCR

system. Today, this technique is mostly used for segmenting characters, words, and text

lines, or to detect ifan input image ofa scanned text page is rotated [55]. For a horizontal

projection, y(xJ is the number of pixels with x = Xi • Fig. 2.7(a) shows a simple binary
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Image. Its horizontal projection is shown to the right of the image. It is found by

summing the gray levels along horizontal rows of the image. The vertical projection is

shown below the image. In Fig. 2.7(b) the horizontal and vertical projections are shown

by histogram. Two-dimensional images can also be projected onto other one-dimensional

lines or curves to aid in their analysis. A projection of an nxn image contains only about

n data elements (possibly as many as 2n- 1 for diagonal projections), so working with

projections can save a large amount of computer time and space compared to working on

the original image.

The features can be made scale independent by using a fixed number of bins on

each axis (by merging neighboring bins) and dividing by the total number of print pixels

in the image. However, the projection histograms are very sensitive to rotation, and to

some degree, variability in writing style. Also, important information about the character

shape seems to be lost.

I 0 0 0

0 0 1 1

1 0 0 0

1 0 0 0

(a)

1

2

1

1

(b)

Fig.2.7 Effect of projection (a) A binary image with projections (b) Horizontal and

vertical projection histograms

When measuring the dissimilarity between two histograms, it is tempting to use
n

d = Ily,(x;)- Yk;)1
1=1
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where 11 is the number of bins, and y, and Y2 are the two histograms to be compared.

However, it is more meaningful to compare the cumulative histograms y(x,J, the sum of

the k first bins,

•
Y(x.) = LY(x,)

j.1

using the dissimilarity measure

•
D= IIr;(x,j-Y2(x,)1,.,

(2.12)

(2.13)

where Y, and Y2 denotes the cumulative histograms. The new dissimilarity measure D is

not as sensitive as d to a slight misalignment of dominant peaks in the original histogram.

2.11 Circular Projection

Let us define a template to be g(x,y) and an image f(x,y) respectively. A rotated

image. is then defined as fR(X,y). Circular projection data, cg(r), for a template g(x.y) can

be obtained by the circular projection method [56,57]. cg(x,y) defined as the summation

of pixel intensities along the circle whose radius to the center of the template r is as

shown in Fig. 2.8, where R is the largest radius, and r = (int([~x2 + y2])

In order to get circular projections along concentric circles, it needs to find an

efficient way of defining a circle in a digital domain. One of the simplest approaches for

defining concentric circles while achieving computational efficiency is to use a lookup

table whose diameter is set to the size of the template. Then a circular projection is

obtained by summing up the pixel values along a concentric circle within the template

result in the rotation invariant.

Circular Projection
data cg(r)

Circular Projection
data cg(R)

Fig. 2.8 Concept of the circular projection for a template
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2.12 Vector Sum

Although a circular projection reduces a two-dimensional image into a one-

dimensional vector, the computation required is still too high to process over whole

image in a raster scan order. A new feature much less computation is proposed. The

feature is called a vector sum of circular projections. Let the circular projection be cg(r)

The vector sum is then defined as
R

F = Lcg(r)e-j'=/(R+I)
,.0 (2.14)

The vector sum is quite an effective descriptor for the template and the sub-image

for the following reasons. First, F is invariant to the overall changes of the image

intensities because the vector sum eliminates the component of the circular projection

data. Second, the effects of the random and Gaussian noises are reduced due to the

integration operation of the projection. [58J. Using the vector sum alone, candidates for

the matching are selected from the whole image.

• Meaning of Vector sum as a shape descriptor

Discrete Fourier series of the projection profile, Cg(k), is defined as follows:
R

Cg (k) = LCg (r)e-j(2'/(R+I))"
,.0

Coefficient of the first harmonics, where k=l, is then
R

C. (I) = LCg (r)e-j("/(R+I»'
r=O

(2.15)

(2.16)

Here, notice that Eq.(2.16) is the same as Eq.(2.14) which is the equation for the

vector sum. That is the physical meaning of the vector sum is equivalent sum to the

coefficient of the first harmonic of the ld-signal of the projection. Since a large portion of

the energy of a signal is concentrated in lower frequencies, a set of harmonics at low

frequencies might be adequate to be used for a selection of candidate signals.

To describe the signal more accurately, it needs to introduce a higher order vector

sum such as the second order and the third order vector sum. Fig.2.10 shows the concept

of the second and third order vector sum.

23



• • I•

••
••
\0'

.'
•

.. 1 r.

(b)

•••

:mi
(e)

c

270

(d)

90

m
(e)

Fig. 2.9 Effect ofhannonics on vector sum ofa signal. (a) l-d Signal (b) Vector

representation of the l-d signal in (a) (c) Their vector sum (d) Second order vector sum

(e) Third order vector sum.

• Frequency Domain computation

Computing the vector sum over the whole image is equivalent to convolving a

mask over the image. Since convolution is generally a time consuming process, a

frequency domain process can be utilized to reduce the time complexity.
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f * m =r' (T(f) x T(m))
Here,jis the image, m is the mask and Tis the Fourier transform.

Eq. (2.14) can be rewritten as
R 2.

F = I If(r,B)e-j2""(R+l)

r",O 0.,,0

(2.17)

(2.18)

Conceptually, Eq(2.18) is the same as the masking operation over the image where as

Eq(2.17) is for the mask,

m(r,B) = e-j2".'(R+') (2.19)

Using the frequency domain computation, candidate points for the matching will

be selected with lesser computational complexity when the size of the mask is relatively

large compared to the image size.

2.13 Features Extracted From the Binary Contour

The closed outer contour curve of a character is a closed piecewise linear curve

that passes through the centers of all the pixels which are 4-connected to the outside

background, and no other pixels. Following the curve, the pixels are visited in, say,

counter-clockwise order, and the curve may visit an edge pixel twice at locations where

the object is one-pixel wide. Each line segment is a straight line between the pixel centers

of two 8-connected neighbors.

By approximating the contour curve by a parametric expression, the coefficients

of the approximation can be used as features. By following the closed contour

successively, a periodic function results. Periodic functions are well-suited for Fourier

series expansion, and this is the foundation for the Fourier-based methods discussed

below.

• Contour Profiles

The motivation for using contour profiles is that each half of the contour

(Fig.2.10) can be approximated by a discrete function of one of the spatial variables, x or

y. Then, features can be extracted from discrete functions. One can use vertical or

horizontal profiles, and they can be either outer profiles or inner profiles.
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Fig. 2.1 iJ Contour profile of Digit '5'. With left profile xdY) and right profile XR(Y).

For each y value, the left (right) profile value is the left most (rightmost) x value on the

character contour.

To construct vertical profiles, first locate the uppermost and lowermost pixels on

the contour. The contour is split at these two points. To get the outer profile, for each Y

value, select the outermost x value on each contour half (Fig. 2.11). To get the inner

profiles, for each Y value, the innermost x values are selected. Horizontal profiles can be

extracted in a similar fashion, starting by dividing the contour in upper and lower halves.

The profiles are themselves dependent on rotation (e.g., try to rotate the '5' in Fig. 2.11,

say, 45° before computing the profiles). Therefore, all features derived from the profiles

will also be dependent on rotation.

2.14 Moments

Moments are applicable to many different aspects of image processing, ranging

from invariant pattern recognition and image encoding to pose estimation. When applied

to images, they describe the image content (or distribution) with respect to its axes. They

are designed to capture both global and detailed geometric information about the image.

Moments are classified in two types

i) Non-Orthogonal Moment

ii) Orthogonal Moment

2.14.1 Non-Orthogonal Moment

Non-orthogonal moments are generally calculated around the axis and the sum

approximately represents the image. The main problem with non-orthogonal moments is

that redundant data exists and when the order of moment increases more precision is
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required to separate them. So, for non-orthogonal moments, the image reconstruction is

not straightforward and requires a moment-matching technique.

• Cartesian Moment

Hu [59, 60], stated that the continuous two-dimensional (p + q)'h order Cartesian

moment is defined in terms of Riemann integrals as:

mpq = ((xPY'f(x,y)dxdy (2.20)

It is assumed that f(x, y) is a piecewise continuous, bounded function and that it can

have non-zero values only in the finite region of the x - y plane (i.e. all values outside the

image plane are zero)

The discrete version of the Cartesian moment for an image consisting of pixels Pxy,

replacing the integrals with summations, is:
M N

mpq = LLxPy'P",
r=l }'=l

(2.21)

mpq two dimensional Cartesian moment Where M and N are the image dimensions and

the monomial product x!'yq is the basis function. Fig. 2.11 illustrates the non-orthogonal

(highly correlated) nature of these monomials plotted for the positive x axis only.

m10-

m20-
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~:>~
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~
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Fig. 2.11 The first five Cartesian Moment
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The zero order moment moo is defined as the total mass (or power) of the image. If

this is applied to a binary (i.e. a silhouette) M x N image of an object, then this is literally

a pixel count of the number of pixels comprising the object.

M AI
moo = IIpxy

.1 •• 1 y ••\

(2.22)

The two first order moments are used to find the Centre Of Mass (COM) of an

image. If this is applied to a binary image and the results are then normalized with respect

to the total mass (moo), then the result is the centre co-ordinates of the object.

Accordingly, the centre co-ordinatesx,y, where x,x axis centre of mass and y,y axis

centre of mass are given by:

_ mlO _ mOl
x =--,y=--

moo moo

(2.23)

The COM describes a unique position within the field of view which can then be used to

compute the centralised moments of an image.

• Centralised moments

The definition of a discrete centralised moment as described by Hu[60] IS:

Jl pq Two dimensional centralised moment

M N
Ppq = II(x-x)P(y-y)qpxy

.r"1 ), •• \

(2.24)

This is. essentially a translated Cartesian moment, which means that the

centralised moments are invariant under translation. To enable invariance to scale,

normalised moments 1)pqare used in [61], given by:

P pq
1)pq= -r-

Poo

where, r = p + q + I ,
2

• Hu invariant set

V(p+q)?2
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The first used a method called principal axes, however this method can break

down when images do not have unique principal axes. Such images are described as

being rotationally symmetric. The second method Hu described is the method of absolute

moment invariants and is discussed here. Hu derived these expressions from algebraic

invariants applied to the moment generating function under a rotation transformation.

They consist of groups of nonlinear centralised moment expressions. The result is a set of

absolute orthogonal (i.e. rotation) moment invariants, which can be used for scale,

position, and rotation invariant pattern identification. These were used in a simple pattern

recognition experiment to successfully identify various typed characters. They are

computed from normalised centralised moments up to order three and are shown below

In'h Hu invariant moment:

The non-orthogonal centralised moments are translation invariant and can be

normalised with respect to changes in scale. However, to enable invariance to rotation

they require reformulation. Hu [60] described two different methods for producing

rotation invariant moments.

II = 7]'0+ 7]02
I, = (7]'0 -7]0')' + 47]:1

I, = (7]'0 -37],,)' +(37]'1 -7]0')'

I, = (7]'0+7],,)' +(7]'1 +7]0')'
and so on.

(2.26)

(2.27)

(2.28)

(2.29)

These moments are of finite order; therefore, unlike the centralised moments they do not

comprise a complete set of image descriptors, [62]. However, higher order invariants can

be derived

2.14.2 Orthogonal moments

Cartesian moments are formed using a monomial basis set :iY. This basis set is

non-orthogonal and this property is passed onto the Cartesian moment. These monomials

increase rapidly in range as the order increases, producing highly correlated descriptions.

This can result in important descriptive information being contained within small

differences between moments, which lead to the need for high computational precision

(Fig. 2.11).
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The first used a method called principal axes, however this method can break

down when images do not have unique principal axes. Such images are described as

being rotationally symmetric. The second method Hu described is the method of absolute

moment invariants and is discussed here. Hu derived these expressions from algebraic

invariants applied to the moment generating function under a rotation transformation.

They consist of groups of nonlinear centralised moment expressions. The result is a set of

absolute orthogonal (i.e. rotation) moment invariants, which can be used for scale,

position, and rotation invariant pattern identification. These were used in a simple pattern

recognition experiment to successfully identify various typed characters. They are

computed from normalised centralised moments up to order three and are shown below

I ,h H' .n U mvanant moment:

The non-orthogonal centralised moments are translation invariant and can be

normalised with respect to changes in scale. However, to enable invariance to rotation

they require reformulation. Hu [60] described two different methods for producing

rotation invariant moments.

II = 17'0+ 170'
I, = (7]'0 - 1702)' + 417,'1

I, = (17'0 -317,,)' +(3172\ -170')'

I, = (17'0+1),,)' +(172\ +1703)'
and so on.

(2.26)

(2.27)

(2.28)

(2.29)

These moments are of finite order; therefore, unlike the centralised moments they do not

comprise a complete set of image descriptors, [62]. However, higher order invariants can

be derived

2.14.2 Orthogonal moments

Cartesian moments are formed using a monomial basis set X'yq. This basis set is

non-orthogonal and this property is passed onto the Cartesian moment. These monomials

increase rapidly in range as the order increases, producing highly correlated descriptions.

This can result in important descriptive information being contained within small

differences between moments, which lead to the need for high computational precision

(Fig. 2.11).
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However, moments produced using orthogonal basis sets exist. These orthogonal

moments have the advantage of needing lower precision to represent differences to the

same accuracy as the monomials. The orthogonality condition simplifies the

reconstruction of the original function from the generated moments. Orthogonality means

mutually perpendicular, expressed mathematically - two functions Ym and Yn are

orthogonal over an interval a $X ::; b if and only if:

r Ym(x)y.(x)dx = O;m '# n
(2.30)

For discrete images, the integrals within the moment descriptors can be replaced by

summations. It is noted that a sequence of polynomials, which are orthogonal with

respect to integration, are also orthogonal with respect to summation, [63]. One such

(well established) orthogonal moment is Zemike moment.

• Complex Zernike moments

The Zemike polynomials were first proposed in 1934 by Zernike [64]. His

moment formulation appears to be one of the most popular, outperforming the

alternatives [65] (in terms of noise resilience, information redundancy and reconstruction

capability). The pseudo-Zernike formulation proposed by Bhatia and Wolf [66] further

improved these characteristics. However, here the original formulation of these

orthogonal invariant moments is studied.

Complex Zernike moments [67] are constructed usmg a set of complex

polynomials, which form a complete orthogonal basis set defined on the unit

disc (x' + y' :51). They are expressed as Apq. Two-dimensional Zernike moment:

m + 1 11 .Am" = ----;;- f(x,y)[Vm.(x,y)] dxdy
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where m=O, 1, 2 .... ex and defines the order,j(x, y) is the function being described and *
denotes the complex conjugate. While n is an integer (that can be positive or negative)

depicting the angular dependence, or rotation, subject to the conditions:

m - \n\= even,\n\ ::::m (2.32)

and A *m.n= Am.-n is true. The Zemike polynomials Vmn(x,y) Zemike polynomial expressed

in polar coordinates are:
(2.33)

(2.34)

where (r, B)are defined over the unit disc, Rmn(r)is the orthogonal radial polynomial,

defined as Rmn(r) Orthogonal radial polynomial:

m-Inl

Rmn(r) = :t(-I)' F(m,n,s,r)
where:

F )
(m-n)! m-2,

(m,lI,s,r = II II rm+n m-n
s!(-~ - s)!(-- - s)!2 2

(2.35)

Where, Rmn(r) = Rm._n(r) and it must be noted that if the conditions in Eq. 2.32 are not

met, then Rmn(r)=O.

Fig. 2.12 shows five such radial responses, where it can be seen that the

polynomials become more grouped, as they approach the edge of the unit disc (r

approaches unity). (Care must be taken with regard to the accuracy of these polynomial

calculations as the factorial operations can quickly produce large integer values, even at

relatively low order m). The difference between these orthogonal polynomials and the

non-orthogonal monomials can be seen by comparing Fig. 2.12 with Fig. 2.11.

To calculate the Zemike moments, the image (or region of interest) is first

mapped to the unit disc using polar coordinates, where the centre of the image is the
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origin of the unit disc. Those pixels falling outside the unit disc are not used in the

calculation. The coordinates are then described by the length of the vector from the origin

to the coordinate point, r, and the angle from the x axis to the vector r polar co-ordinate

radius, e polar co-ordinate angle, by convention measured from the positive x axis in a

counter clockwise direction.

05

••"01:>
01
.~

0

!-
0

Po<
01 Roo-
~ .05 RlI-~ Roo-

R,,-
R:1,-

.1
0 015 0.5

radius

Fig. 2.12 Five orthogonal radial polynomial plotted for increasing radius

2.15 Artificial Neural Network

An artificial neural network (ANN) can be defined as

A data processing system consisting of a large number of simple highly

interconnected processing elements (artificial neurons) in an architecture inspired by the

structure of the cerebral cortex of the brain.

A neuron is an information-processing element that is fundamental to the

operation of an ANN. The block diagram of Fig. 2.13 shows the model of a neuron,

which forms the basis for designing artificial ANNs. The three basic elements of the

neural model are discussed below:
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Input
Signals •

•
•
Xm

Bias, bk

Synaptic
Weights

Fig. 2.13 Model of a neuron

Output
Yk

A. A set of synapse or connecting links. each of which is characterized by a weight.

Specifically, a signal Xj at the input of synapse j connected to neuron k is

multiplied by the synaptic weight Wkj. Unlike a synapse in the brain, the synaptic

weight of artificial neuron may lie in the range that includes negative as well as

positive values.
B. An adder for summing the input signals, weighted by the respective synapse of

the neuron; the operations described here constitutes a linear combiner.

C. An activation jimction for limiting thc amplitude of thc output of a ncuron. Thc

activation function is also referred to as a squashing function in that it squashes

(limits) the permissible amplitude range of output signal to some finite value.

Typically, the normalized amplitude range of the output of a neuron is written as

the closed node interval [0, I] or alternatively [-I, I].

The neural model of Fig. 2.13 also includes an externally applied bias denoted by bk. The

bias bk has the effect of increasing or lowering the net input of the activation function,

depending on whenever it is positive or negative, respectively.

In mathematical terms, a neuron k may describe by writing the following pairs of

equations:
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and

m

Uk = L WkjXj
j=1

2.36)

(2.37)

where XI. Xl, ....• X
m
are the input signals; Wkl. Wkl •...• Wkm are the synaptic weights of

neuron k; lIk is the linear combiner due to the input signals; hk is the bias; cp ( . ) is the

activation function; and Yk is the output signal of the neuron. The use of bias hk has the

effect of applying an affine transformation to the output Uk of the linear combiner in the

model of Fig. 2.3, as shown by

(2.38)

The bias hk is can be considered as an internal parameter of artificial neuron k.

Considering this, Eqs. (2.1 - 2.3) cali.be formulated as follows:

m

vk =L wkjXj
(2.39)

j=O

and
Y, = cp(v,) (2.40)

These processing elements are usually organized into a sequence of layers or slabs

with full or random connections between the layers. This arrangement is shown in

Fig.2.14, where the input layer is a buffer that presents data to the network. This input

layer is not a neural computing layer because the nodes have no input weights and no

activation functions. The top layer is the output layer, which presents the output response

to a given input. The other layer (or layers) is called the intermediate or hidden layer

because it usually has no connections to the outside world.

Two general kinds of neural networks' are in use: the heteroassociative neural

network in which the output vector is different than the input vector and the

autoassociative neural network in which the output is identical to the input.
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A typical neural- network is "fully connected," which means that there is a

connection between each of the neurons in any given layer with each of the neurons in

the next layer as shown in Fig. 2.15. When there are no lateral connections between

neurons in a given layer and none back to previous layers, the network is said to be a

feedforward network.

Zl Z2
Output Layer

Hidden Layer

Input Layer

Xl X2 X3 X4 X5

Fig. 2.14 Tree Layer Feedforward Neural Network

2.16 The Backpropagation Algorithm

There are some algorithms for training multilayered ANNs. Among them the

backpropagation (BP) algorithm is the most prolific one. In the proposed algorithm

(MeA), BP algorithm is used in a modified manner. So, this algorithm is described in

detail in this section.

The BP learning algorithm involves two phases. During the first phase the input is

presented and propagated forwarder through the ANN to compute the output value for

each node. This output is then compared with the targets, resulting an error signal for

each output node. The second phase involves a backward pass through the ANN during

which the error signal I) is passed to each node in the ANN and the appropriate weight

changes are made. This second backward pass allows the recursive computation of 0 as

indicated above. The first step is to compute 0 for each of the output nodes. This simply
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the difference between the actual and desired output values times the derivative of the:

squashing function. Then the weight changes for all connections that feed into the final

layer can be computed. After this is done, then compute Ii's for all nodes in the

penultimate layer. This propagates error back one layer and same process can be repeated

for every layer.

Let us consider an input vector Xp = (x" X2 ••. xn), is applied to the input layer of

the ANN. The "p" subscript refers to the pth training vector. The input nodes distribute

the values to the hidden layer nodes. The net input to the jlh hidden node is,

(2.41 )

Where, w;, is the weight of the connection from i1h input node to j'h hidden node and e;
is the bias term. The "h" subscript refers to the quantity on the hidden layer. Assuming

that activation of the node is equal to the net input; then the output of the node is,

The equations of the output nodes are,

L
o "n . eo/lei pi = L" wl,l pi + I

)",1

• Update of Output-Layer Weights
,

(2.42)

(2.43)

(2.44)

The error at a single output node is defined as 0 pi = Y pi - 0pi ' where the subscript "p"

refers to the p'" training vector, and "I(' refers to the /(" output node.

In this case Ypk is the desired output and Opk is the actual output of the k'lo node. The error

to be minimized is the sum of the squares of the errors for all output nodes:
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(2.45)

To detennine the direction in which the change of weights, the negative of the gradient of

E
p
• aE

p
• with respect to weights, Wkj is calculated. Then the values of the weights can be

adjusted such that the total error can be reduced. It is often usual to think of Ep as a

surface in the weight space.

From Eq. (2.45) and the definition of Opk

(2.46)

(2.47)

Where, Equation (2.46) is used for the output value, Opk. and the chain rule for partial

derivatives. The last factor of Equation (2.47) is,

(2.48)

Combining Equations (2.47) and (2.48), the negative gradient,

(2.49)

As far the magnitude of the weight change is concerned, it has been taken to be

proportional to the negative gradient. Thus the weights on the output layer are updated

according to

Where,

w~(t + I) = w~(t) + D.p w~(t)
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(2.51 )

The factor IJ is called the learning rate parameter. If the sigmoid function is used then the

weight update equation for output node is,

(2.52)

By defining output layer error term,

(2.53)

By combining equations (2.52) and (2.53) the weight update equation becomes,

(2.54)

• Update of Hidden-Layer Weights

The error of the hidden layer is given by,

I~ 'Ep =Z..;)YP' -op')-

= ~ ~ (Y p' - It (nel;, ))'

(2.55)

The gradient of Ep with respect to hidden layer weights,

(2.56)
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Each of the factors of Equation (2.56) can be calculated explicitly from prevIous

equations. The result is,

The hidden layer weights update in proportion to negative of the Equation (2.57):
, '

""pw;; = if}' (net:)xp; I(yp, -op,)f: (net:,)w~,
By using Equation (2.53),

,
""pw;; = if/ (net:)xp; I":,w~,

(2.57)

(2.58)

(2.59)

Every weight update on the hidden layer depends on all error terms, ,,;, ' on the output

layer. The known errors on the output layers are propagated back to the hidden layer to

determine the appropriate weight changes on that layer. By defining hidden layer error

term,

,
,,' = f' ( t')" ~o 0pj j nepjLJupkWkj,

So the weight update equation becomes analogous to those for the output layer:

(2.60)

(2.61)

The value of I] is commonly chosen between 0.25 and 0.75 by the ANN user, and usually

reflects the rate of learning to ensure that the ANN will settle to a solution.
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Chapter 3

Symmetry Axis based Feature Extraction and

Recognition

3.1 Introduction

Invariant features of certain transformations are necessary to recognize many

variations of the same character. They have approximately the same values for a

particular character that is, for example, translated, scaled or rotated. However, not all

variations among characters from the same character class can be modeled by using

invariants. Translation and scaling invariance can be achieved easily. The segmentation

of individual characters can itself provide estimates of size and location.

Rotation invariance is important if characters to be recognized appear 10 any

orientation. If all characters are expected to have 3600 rotation, rotation-variant features

may cause problem to distinguish between similar characters such as 'M' and 'W' and 'n'

and 'll'. An approach to solve this problem is to use rotation-invariant features with the

detected rotation angle. If the rotation angle is restricted, say, to lie between _45° and 45°,

characters that are, say 180° rotations of each other can be differentiated.

The aim of this chapter is to introduce a new character recognition algorithm for

recognizing character independent of translation, rotation and scaling. Details about each

component of the proposed algorithm are elaborately described in this chapter.

3.2 The SAFER Algorithm

In this thesis, a new algorithm SAFER is proposed for recognizing characters,

which achieve invariance under translation, rotation, and scaling. The algorithm consisted

of two steps: preprocessing and recognition. In first stage, the SAFER takes into account

the axis of symmetry of a character and a novel coding that extracts topological
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characteristics of the character. In the second stage, an efficient classifier is used to

recognize the character that utilizes topological characteristics obtained in the first stage.

In comparison with other existing algorithms, the major advantages of SAFER

include i) it determine the axis of symmetry of a character automatically by using a radial

coding technique; ii) it extracts topological characteristics in such a way that they are

invariant to rotation iii) it is very simple since it does not use complex calculation and

redundant matching technique iv) it uses an ANN classifier that can automatically

determine its architecture.

The major steps of SAFER can be described as follows. Fig. 3.1 is a flow chart of

these steps.

Step 1: Select a gray scale input character image and binaries it by thresholding

operation. Calculate the center of mass (COM) of the image by using Eqs. 2.22 and 2.23.

The COM is invariant of translation and scaling.

Step 2: Generate k equidistant concentric circles Ci around the centroid. The spacing is

equal to the distance between the centroid and the furthest pixel of the object divided by k

as shown in Fig. 3.2.

Step 3: Count the number of intensity changes for each circular boundary. An intensity

change occurs when a line enter from background to character area or from character area

to background as secn in the red points of Fig. 3.3. Locatc their angular positions by

taking the right horizontal axis as the reference axis.

Step 4: Find the midpoints of each two successive positions as marked white points in

Fig. 3.3 and calculate their angular positions. Create a vector Rj using these angles

expressed radian.

Step 5: Determine the axis of symmetries for each circle, if exist, by using Rj•

Step 6: Detect the reference axis side i.e. 0 degree line for each circle by using Rj•

Step 7: Generate a pattern vector by using the reference axis side and axis of symmetry

(if exists). Vector sum process, as described in section 2.12, is used to generate the

pattern. The final pattern vector consists of total 24 arguments.

41



Start

Binaries the character image and determine its'
Center of Mass (COM)

Generate equidistant concentric circles around the
centroid

Count the number of intensity changes over each
circle and get their angular position

Find the midpoints of each two successive positions

Determine the axis of symmetries for each circle
using the three conditions

Yes

No
Is character has axis of

svmmetry?

Get Reference Axis side
using Rule I

Get Reference Axis using
Rule 2

Generate Pattern using Vector Sum Principle

Pass the Pattern to an ANN

Recognize the Character

End

Fig. 3.1 Flow chart of the SAFER Algorithm
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Fig. 3.2 K equidistance concentric circle on character' A'

Fig. 3.3 Intensity changes on a concentric circle

Step 8: Train a three layer feedforward artificial neural network (ANN) by using the

pattern vector until a minimum error criterion is met. The ANN is trained using random

weight based cascade correlation (RWCC) algorithm.

The SAFER uses a very simple method to extract invariant features of the

character. This is based on the fact that the circle is the only geometrical shape that is

naturally and perfectly invariant to rotation. Higher order vector sum is used to generate

pattern that efficiently describe both local and global features of the character. Detailed

about axis of symmetry determination, reference axis selection, some correction factors

and RWCC algorithm is described in the following sections.
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3.2.1 Axis of Symmetry

SAFER uses a simple approach to determine the axis of symmetry, which is based

on the radial vector Ri. Each two points ofRi might be on axis of symmetry if they satisfy

the following three conditions.

• They are about 180 degree or 3.141 radian apart.

• There are equal numbers of points on each side of the axis.

• Each point on one side of the axis creates a pair with another point that

resides in the opposite side and their angular distances relative to the axis

are equal. (Fig. 3.4).

Since the radial vector Ri was determined by SAFER for each concentric circle, therefore,

the possible axis of symmetries needs to find out for each circle. The final axis of

symmetry is the line that exists in all concentric circles (Fig. 3.5). If a character has more

than one axis of symmetry, SAFER selects the axis that has the highest neighbor pixels

inside the character area. In Fig. 3.6 character 'H' has two axis of symmetry but

horizontal axis has more neighbor pixel than vertical axis. So, horizontal axis is selected

as the final axis of symmetry.

Although the determination of axis of symmetry using SAFER is quite simple, the

algorithm is, however, failed to detect the axis in some cases. It is due to round up error,

boundary noise and random noise problems. Some correction factors are, therefore, used

in SAFER to overcome these problems.

(a)

Left= 2, ight=4

(b)

Left = 3, lRighl =3
I

!

(c)

Fig. 3.4 Possible Axis of symmetry.
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Fig. 3.5 The final Axis of Symmetry (Vertical Line)

Fig. 3.6 Axis of Symmetry of character 'R'

3.2.2 Reference axis side

SAFER uses some simple criteria to detect the reference axis side i.e. 0° line,

which is based on the angular distance of each two successive points of Ri. Depending on

the existence of symmetry axis of a character, SAFER uses two different approaches to

determine the reference side.

• Case I

SAFER uses this process for symmetrical character. Only one symmetry side of

the character is used for calculation. For example, in Fig. 3.7, only left side of character

'A' is used. Calculate angular distances of the nearest cut point from both sides of the

symmetry axis. The side, which has higher angular distance to the nearest cut point, is

the reference side. In Fig. 3.7 the two angular distances are 1.047 and 0.349 radian. So,

the lower side is selected as reference side.
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Fig. 3.7 Reference Axis side for symmetry character' A'

• Case II

This process is used for asymmetrical character. At first, two adjacent cut points

are selected from the radial vector Riowhich have maximum angular distance. In Fig. 3.8

line I and line 2 are at the highest angular distance. Then, from each line, the angular

distance of the nearest cut point is calculated. The side, which has higher angular distance

to the nearest cut point, is the reference axis. In Fig. 3.8, line I is selected as the reference

axis.

Fig. 3.8 Reference axis for asymmetry character' F'

3.2.3 Pattern Vector

SAFER uses radial vector Rj and reference axis side to generate pattern vector.
/

For symmetry character, SAFER calculates the relative angular positions in radian of all

points on anyone symmetry side (Fig. 3.9(a)) by using the reference axis side. If

character has no axis of symmetry, SAFER calculates relative angular position of all

points expressed in radian (Fig. 3.9(b)).
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(a) (b)

(3. I)

Fig. 3.9 Relative angular positions for character' A' and 'F'

The arguments of the Pattern vector are generated from each concentric circle. The vector

for r'h circle can be calculated by using Eq. (3.1) and (3.2).

V,(r)=_l feioang.
N a::>l

(3.2)

Where, N is the total number of relative angular positions and an&. is the a'h relative

angular position. To normalize the values of Eq. (3. I) and (3.2) in the interval {O, I},

they are rewritten as

VN,(r)=«I+i)+_1 feionnK')/2
N a-I

For example, in Fig. 3.9(b), for r=3 'F' has N= 2. Now using Eq.(3.3) and (3.4)

VN, (3) = ((1+ i) + ..!..(eM57 + eio30'»/2 = 0.2524 + 0.7828i
2

VN, (3) = ((I + i) + ..!..(eio2oU7+eioM.OI»/2 = 0.4914 + 0.4354i. 2

Finally, the pattern consists of total 12 vectors for 6 circles

. VN, (I), VN, (2), ...VN, (6), VN, (1),VN,\(2) ...VN, (6)
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Since each vector consist both real and imaginary part so pattern is formed by 24

arguments.

3.2.4 Correction

SAFER uses a simple approach to detect axis of symmetry of a character, which is

very effective in low noisy environment. However, some correction is required if one

wishes to detect character in more noisy environment. The required corrections divide in

three categories. These are round up error, boundary noise and random noise. In the

following subsections they are described elaborately.

3.2.4.1 Round up Error Correction

Round up error occurs at the time of calculating Center of Mass (COM) by using

Eq.2.22 and 2.23. The equations can result a fraction COM, but the image coordinate is

always integer. SAFER, therefore, rounds up the value of COM to make it integer. Again,

due to some noise the COM may vary for same character in different environment. In

both cases, SAFER fails to detect the actual COM.

The first condition for two points to be on the axis of symmetry was that they

must be 1800 apart from each other. This condition may fail due to defective COM. For

cxamplc, in Fig. 3. IO(a) the calculated COM is one pixel below the original COM.

Consider the circle with radius of five pixels Fig. 3.10(b). The midpoint of the arc in

character area is one pixel up with respect to the horizontal axis passing through the

calculated COM. As a result, the two pixels are 1800 i: 22.60 (2x tan,I(I/5)) apart. So they

failed to fulfill the first condition. Although they ate on axis of symmetry, the program

fails to recognize it.
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(a)

Actual COM

CalculBtad
COM

(b)

Fig. 3.10 Round up Error

To correct the round up error a round up error factor emd is introduced. Round up

error factor is the measure of given flexibility in terms of angle with respect to radius.

Round up error factor is defined as.

(3.6)

Where, r is the radius of circle in pixels and p is the number of flexible pixel. For

example, to give one pixel flexibility at a radius of five pixels, the emd(5) is 22. rf. The

factor varies proportionally with radius. For example, at a distance n. ernd become

( )
_ ernd(5)x 5

ernd r, - ----
r,

(3.7)

Therefore, at a radial distance rl. if the angular difference between two points is 180 ,j,

emd(rJ degree then they may consider on the axis of symmetry.

3.2.4.2 Boundary Noise Correction

Boundary noise can generate a serious problem in SAFER. This type of noise can

be produced by two ways. Firstly, it can be generated by the rough surface. The rough

surface may intrinsically produce during the different rotations of character (Fig. 3.11

(b». This type of noise can also produce when concentric circle touches the boundary of

character (Fig. 3.1I(c». This noise produces wrong cut points and generates incorrect

radial code.
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(a) (b)

Fig. 3.11 Boundary Noise

(c)

The error can be corrected by checking the stability of c circle. A circle is stable if

the number of cut points over a circle equal to the number of cut points on previous or

next circle. If a circle is unstable then the nearest circle is selected which is stable. In Fig.

3.12 (a), the circle's radius is IS pixels and number of cut points is 3 in (b) the radius is

16 pixels and number of cut points is 3. However, in (c) the radius is 17 pixels and

numbcr of cut points is 5. So circles of Fig. 3.12(a) and (b) are stable but (c) is unstable.

(a) (b) (c) (d)

Fig. 3.12 Stability of circle

3.2.4.3 Random Noise Correction

The random noise is generated by changing the value of pixels inside the

character in a random manner. Fig. 3.13 shows different amount of random noise inside

character 'E'
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(a) (b)

:I:. ..... •

.~
(c)

Fig. 3.13 Random Noise (a) 10% random noise (b) 20% random noise (c) 30%

random noise

The random noise divides the contiguous character area and generates multiple cut

points. For example, in Fig. 3.14 (a), due to random error, two extra cut points are

generated in 'E'. A random noise factor em. similar to Eq. (3.6) and (3.7), is introduced

to overcome the problem. If angular difference between two adjacent non-character

boundary reasons is less than em. then they are considered as contiguous character area.

In Fig 3.14 (b) each of the two non-character boundaries has angular difference less than

em, so each of them are considered on contiguous character area.

(a) (b) (c)

Fig. 3.14 Random error and its correction

3.2.5 Random Weight based Cascade Correlation (RWCC) algorithm

In this thesis, an efficient classifier was designed for invariant character

recognition. The classifier was a three layer feedforward ANN whose architecture was

created by using RWCC algorithm. RWCC combines two key ideas: The first is the
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(3.8)

cascade architecture, in which hidden units are added to the network one or two at a time

and their weights were initiated randomly. The second is the learning algorithm, which

creates and installs the new hidden units. For each new hidden unit, the magnitude of the

correlation between the new unit's output and the residual error signal were calculated.

The flowchart of RWCC is shown in Fig. 3.15. The algorithm is described in the

following steps.

Step 1: Create an initial ANN architecture as shown in Fig. 3.16. The initial architecture

has three layers, i.e. an input layer, an output layer, and a hidden layer. The number of

nodes in the input and output layers is the same the number of inputs and outputs of the

problem. Initially, the hidden layer contains only four nodes. Randomly initialize

connection weights between input layer to hidden layer and hidden layer to output layer

within a certain range. There is also a bias input, which is permanently set to + I.

Step 2: Train the network with the training set for a certain number of epochs by using

Backpropagation learning algorithm. The error value of the network is checked at each

epoch. If error has not been significantly reduced i.e. error change is less than a

predefined parameter EI, then the assumption is that the network is saturated. If the

network's performance is satisfactory, stop the training process. Otherwise, go to the next

step.

Step 3: Compute the average error change Eav• If Eav is less than a predefined value E2,

two new hidden neurons need to add. Otherwise, one new neuron needs to add. In

SAFER, Eav is defined by

ep

Where, Est is the error change just after adding new the hidden nodes and EI is the error

change when the training is stopped. ep is the total epochs needed to train the network

after adding the new hidden neuron.
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Fig. 3.15 Flow chart of RWCC algorithm
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Fig. 3.16 A Three Layer Feedforward ANN

Step 4: To add a new hidden unit, four candidate units need to create. The new nodes

receive random trainable input connections from all of the network's external inputs. The

outputs of these candidate units are not yet connected to the active network. Calculate the

correlation S [23] of each candidate units to output. Select the candidate, which has

maximum S. The correlation S is defined as

S = I Icvp - V)(Ep,o - Eo)
o p

(3.9)

Where 0 is the network output at which the error is measured and p is the training pattern.

The quantities V and Eo are the values of V and Eo averaged over all patterns.

To .add two new hidden units, eight candidate units need to create. Two candidate units

are selected by using the described process.

Connect the selected units to all of the output units that receive random trainable

connection weights. Go to Step 2.

The RWCC is a modified version of the cascade correlation based architecture

determination algorithm [23]. It performs very well in the ICR algorithm, which can

determine and train the ANN architecture in a very sort training time.
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Chapter 4

Experimental Evaluation

4.1 Introduction

This chapter evaluates the performance of SAFER on two well-known fonts Arial

and Tahoma widely used for representing English characters. These fonts have been

subject of many studies in ICR. Initially, two dimensional (2-D) binary character images

were considered and tested the algorithm for invariant-character recognition. Although

the algorithm was applied only for 2-D character image, it could be extended easily for

multilevel images. Experimental details, results, analysis and comparisons with other

works are described in this chapter. The reasons for the improved performance SAFER in

comparisons with existing works are also described in this chapter.

4.2 Data Set Description

The data sets used here were generated from Arial and Tahoma fonts with

different orientations and scaling. In this study, all data sets representing the problems

were divided into two sets. One was the training set and the other was the test set. No

validation set was used in this study. To compare this work with other work, the number

of examples in the training set and testing set were selected based on numbers in similar

works.

Microsoft Visio Professional 2002 (10.0.525) software was used to create

different orientations and scaling of characters. The orientation and scaling of character

was changed using the Text Block tool. The text can be rotated by using three steps: (i)

first, select the Text Block tool from the Standard toolbar; (ii) second, click the text in a

shape or independent text that wants to rotate; (iii) finally, drag a rotation handle until the
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text was rotated the wanted way. A character can be rotated at any desired angle by this

way. The detailed descriptions of training and test sets are given in the following

subsections.

4.2.1 Training Data Set

There were two different training sets, one for Arial font and one for Tahoma font, are

used for training ANN classifiers. The font size of both training sets was 40 x 40 pixels.

In order to achieve increased noise tolerance, four different orientations of each English

character was considered in the training set. Thus, the training set of each font was

consisted of 104 (26 x 4) input patterns for 26 different English characters. Each training

pattern was consisted of 24 positive numbers, which was generated by the radial coding

of six circles described in section 3.2.3.

4.2.2 Testing Data Set

Testing data set was used to evaluate the performance of SAFER. After training

the ANN, the testing dataset was propagated through ANNs to determine the recognition

rate. The testing dataset was consisted of total 7920 patterns, which were created from

two different fonts with different orientations and scaling.

Nine different sized fonts were used for each character in the testing set. The largest

font size was 70 x70 pixels and the smallest was 20x20 pixels. Seventy two different

rotations (5° apart) were used for the font size 40 x 40 pixels. Thirty six different

rotations (10° apart) were used for the other 8 different font sizes.

4.3 Experimental Setup

The initial ANN was constructed with 24 input, 4 hidden and 26 output units. In all

experiments, one bias node with a fixed input + I is connected to the hidden layer. The

learning rate 77 is set between [0.01, 0.04] and the weights were initialized to random

values between [-0.5, +0.5]. The average error change Eav and minimum error change EI

were set to 0.00075 and 0.0001, respectively. A hyperbolic tangent function is taken as
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the activation function-j = a tanh(bv), where, v is the output of the summing junetion,

a = I. 7159, b = 2/3. The output neurons act in "winner takes all" manner.

4.3.1 Experimental Results

Tables 4.1-4.9 show the results of SAFER over two fonts of nine different sized

characters. The title 'pattern' in the table refers to the total number of patterns used for

testing. Success and fail represent the number of successfully recognized patterns and

unrecognized patterns out of the total patterns, respectively. The success rate in the tables

refers to the percentage of correct classification produced by the trained ANN on the

testing set. The total rate represents the overall performance, which is the average of 26

individual success rates.

Table 4.1 shows the effect of translation on the performance of SAFER for

di fferent characters. The ANN was trained by using 26 Arial patterns (40x40) located in

the center. Nine different transformation of 40x40 pixels Arial font were used for testing.

It is seen that there is no effect of translation on the performance of SAFER. This means

SAFER achieved 100% recognition rate for all translated characters.

The effect of rotation on the performance of SAFER is shown in Table 4.2. It is

clear from the table that the performance of SAFER is dependent on rotational variations

for some characters. For example, SAFER achieves a recognition rate of 95.83% and

97.22% for character 'C' and 'G'. The recognition rate achieved by SAFER for character

'0' and '0' were 98.61 % and 94.44% respectively. The reason for the low performanee

of SAFER for some eharacters might be due to the similarity between charaeters. For

example, there are some similarities between characters '0' and '0' and 'W' and 'M'.

Table 4.3 shows the effect of scaling on the performance of SAFER for different

characters. It is found from the table that there is almost no effect of scaling on the

performance of SAFER for large sized characters. However, the performance of SAFER

decreases for small sized characters. For example, SAFER achieve an overall recognition

rate of 88.46%, 96.15% and 100% for font size 20x20, 30x30 and 50x50 pixels,

respectively. The reason of the bad performance of SAFER for small sized characters

might be due to that they affect much by noise. For example, when SAFER generates
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patterns for 40 x 40 and 20 x 20 pixels 'C' character, due to the effect of noise, 20 x 20

pixels pattern may produce high deviation with 40 x 40 pixels patterns. As a result, when

ANN trained with 40 x 40 pixels 'C' pattern and tested with 20 x 20 pixels pattern, the

ANN failed to recognize it.

Tables 4.4 and 4.5 show the effect of both scaling and rotation of SAFER for

different characters of Arial fonts. It is clear from the tables that the performance of

SAFER is dependent on both the size and rotational variations for some characters. For

example, SAFER achieves a recognition rate of 94.44% and 88.89% for character 'C' of

size 60x60 and 20x20 pixels, respectively. The tables also show that as the characters

size increases their overall recognition rate increase from 95.51% to 99.57%. Fig 4.1

summarizes the overall performances of 9 different sized and rotated characters in a bar

chart. The overall performance of SAFER is almost 99.6% for the largest characters.

Tables 4.6 and 4.7 show the effect of both scaling and rotation on the performance

of SAFER for different characters of Tahoma font. Similar to Arial fonts the performance

of SAFER is dependent on both size and rotation variation for some characters. It is

found that some types of characters are recognized well in Tahoma compared to those in

Arial. However, SAFER failed to perform better for some other characters in Tahoma

that were recognized better in Arial. For example, in Table 4.2 and 4.6, SAFER achieves

a recognition rate of 100% and 97.22% for character 'A' of Arial and Tahoma fonts,

respectively. However, it is 98.6% and 100% for character 'Q'. The performance

variation for some characters might be due to their higher discrimination features in one

font with respect to the other font. So, the pattern vector produced for a character has

higher interpattern dissimilarity for one font where it has higher interpattern correlation

for the other font. For example, pattern vector of character' A' in Arial font may produce

high dissimilarity with pattern vectors of other characters in the same font. So, character

'A' in Arial font can be easily recognized by SAFER. However, the pattern vector of

character' A' in Tahoma font may produce low dissimilarity with other pattern vectors of

other characters. So, SAFER can't easily recognize character' A' in Tahoma font.

Table 4.8 shows the generalization ability of SAFER. To analyze the

generalization ability, the ANN classifier of SAFER was trained with 40x40 pixels Arial

fonts and tested with 40x40 pixels Tahoma fonts. Although the table shows that the
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performance is pretty good, however, it decreases for some characters. For example,

SAFER achieves poor recognition rate of 88.8%, 72.22% and 88.8 % for character 'C',

'M' and 'P' of Tahoma font, respectively. The reason of the low performance by SAFER

might be that same character produced different patterns for two fonts and when the ANN

trained with Arial fonts pattern and tested with Tahoma fonts pattern, it failed to

recognize Tahoma patterns.

In order to show the robustness of SAFER, a different amount of noise was added

in the characters of testing data set. The noise was generated by randomly changing the

value of pixels inside the character. The percentage of altered pixels was varied from

10% to 50%. Table 4.9 shows the results of the simulation. It is found that SAFER

achieves an overall recognition rate of 97.22% for characters having 20% noise. The

effect of noise is much some character like 'C', 'M' and 'P', where the recognition rate

was 93%.

Table 4.1 ANN trained with 40 x 40 Arial and tested with translated 40 x 40 Arial

(Total 26 training patterns were used, which were generated from 26 centered 40 x 40

Arial characters. 9 tested patterns of each 40 x 40 Arial character were generated from 9

different translation (left, right, up, down and so on))

Letter Pattern Success Fail Rate
A 9 9 0 100
B 9 9 a lOa
c 9 9 a 100
0 9 9 a 100
E 9 9 0 lOa
F 9 9 a 100
G 9 9 a 100
H 9 9 a 100
I 9 9 0 100
J 9 9 0 100
K 9 9 a 100
L 9 9 a 100
M 9 9 a lOa
N 9 9 a 100
0 9 9 a lOa
p 9 9 a 100
Q 9 9 a 100
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R 9 9 0 100
S 9 9 0 100
T 9 9 0 100
U 9 9 0 100 ,
V 9 9 0 100
W 9 . 9 0 100
X 9 9 0 100
Y 9 9 0 100
Z 9 9 0 100

Total 234 234 100

Table 4.2 ANN trained with 40 x 40 Arial fonts and tested with 40 x 40 Arial Font

(Total 104 (26 x 4) training patterns were used, which were generated from 4 random

orientation of each 40 x 40 Arial character. 72 tested patterns of each 40 x 40 Arial

character were generated from 72 different orientations and they were 5° apart from each

other)

Letter Pattern Success Fail Rate
A 72 72 0 100
B 72 72 0 100
C 72 69 3 95.83333
D 72 71 1 98.61111
E 72 71 I 98.61111
F 72 72 0 100
G 72 70 2 97.22222
H 72 72 0 100
I 72 72 0 100
J 72 72 0 100
K 72 72 0 100
L 72 72 0 100
M 72 72 0 100
N 72 70 2 97.22222
0 72 68 4 94.44444
P 72 67 5 93.05556
Q 72 71 I 98.61111
R 72 69 3 95.83333
S 72 72 0 100
T 72 72 0 100
U 72 72 0 100
V 72 72 0 100
W 72 72 0 100
X 72 72 0 100
y

72 72

60
o 100



Z 72 68 4 94.44444
Total 1872 1846 26 98.611

Table 4.3 ANN trained with 40 x 40 Arial and tested with different sized Arial character

(Total 26 training patterns were used, which were generated from 26 centered 40 x 40

Arial characters. 26 patterns of each scaled font were generated from 26 centered Arial

characters)

Pattern Size Pattern Success Fail Rate

20 x 20 26 23 3 88.46154
25 x 25 26 25 I 96.15385
30 x 30 26 25 1 96.15385
35 x 35 26 26 0 100
40 x 40 26 26 0 100
45 x 45 26 26 0 100
50 x 50 26 26 0 100
60 x 60 26 26 0 100
70 x 70 26 26 0 100

Table 4.4 ANN trained with 40 x 40 Arial fonts and tested with 60 x 60 Arial Font

(Total 104 (26 x 4) training patterns were used, which were generated from 4 random

orientation of each 40 x 40 Arial character. 36 tested patterns of each 60 x 60 Arial

character were generated from 36 different orientations and they were 100 apart from

each other)

Letter Pattern Success Fail Rate
A 36 36 0 100
B 36 36 0 100
C 36 34 2 94.44444
0 36 36 0 100
E 36 36 0 100
F 36 36 0 100
G 36 36 0 100
H 36 36 0 100
I 36 36 0 100
J 36 36 0 100
K 36 36 0 100
L 36 36 0 100
M 36 36 0 100
N 36 36 0 100
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0 36 35 I 97.22222
P 36 36 a lOa
Q 36 36 a lOa
R 36 36 a lOa
s 36 36 a lOa
T 36 36 a lOa
u 36 35 I 97.22222
V 36 36 a lOa
w 36 36 a 100
x 36 36 a 100
y 36 36 a 100
z 36 36 a lOa

Total 936 932 3 99.5765

Table 4.5 ANN trained with 40 x 40 Arial fonts and tested with 20 x 20 Arial Font

(Total 104 (26 x 4) training patterns were used, which were generated from 4 random

orientation of each 40 x 40 Arial character. 36 tested patterns of each 20 x 20 Arial

character were generated from 36 different orientations and they were 10° apart from

each other)

Letter Pattern Success Fail Rate
A 36 36 a lOa
B 36 36 a lOa
c 36 32 4 88.88889
D 36 34 2 94.44444
E 36 35 1 97.22222
F 36 34 2 94.44444
G 36 34 2 94.44444
H 36 36 a 100
I 36 36 a 100
J 36 36 a 100
K 36 36 a 100
L 36 36 a lOa
M 36 34 2 94.44444
N 36 35 I 97.22222
0 36 35 I 97.22222
P 36 29 7 80.55556
Q 36 34 2 94.44444
R 36 31 5 86.11111
S 36 36 a 100
T 36 36 a lOa

62



1- -- - -

U 36 34 2 94.44444
V 36 36 0 100
W 36 27 9 75
X 36 36 0 100
Y 36 36 0 100
Z 36 34 2 94.44444

Total 936 894 42 95.5128

Recognition Rate of Different Sized Arial Fonts

100

~ 99
.s 98••II:
c 97
o
~ 96
g> 95
u
fi 94

93
mxm ~X~ mxm ~x~ 40X~ 45X~ WXW WXW roxro

Font Size (Pixels)

Fig. 4.1 Bar chart for Recognition rate of different sized Arial Fonts

Table 4.6 ANN trained with 40 x 40 Tahoma fonts and tested with 40 x 40 Tahoma Font

(Total 104 (26 x 4) training patterns were used, which were generated from 4 random

oricntation of each 40 x 40 Arial character. 72 tested patterns of each 40 x 40 Tahoma

character wcrc generated from 72 different orientations and they were 5° apart from each

other)

Lcttcr Pattcrn Success Fail Rate
A 72 70 2 97.22222
B 72 72 0 100
C 72 69 3 95.83333
D 72 68 4 94.44444
E 72 68 4 94.44444
F 72 72 0 100
G 72 71 I 98.61111
H 72 72 0 100
I 72 72 0 100
J 72 72 0 100
K 72 69 3 95.83333
L 72 71 1 98.61111
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M 72 72 0 100
N 72 72 0 100
0 72 68 4 94.44444
P 72 70 2 97.22222
Q 72 72 0 100
R 72 70 2 97.22222
S 72 68 4 94.44444
T 72 72 0 100
U 72 72 0 100
V 72 72 0 100
W 72 70 2 97.22222
X 72 72 0 100
Y 72 72 0 100
Z 72 68 4 94.44444

Total 1872 1836 36 98.07692

Table 4.7 ANN trained with 40 x 40 Arial and Tahoma fonts and tested with 40 x 40

Arial Font

(Total 208 (26 x 4 x 2) training patterns were used, which were generated from 4 random

orientation of each 40 x 40 Arial character and 4 random orientation of each 40 x 40

Tahoma character. 72 tested patterns of each 40 x 40 Arial character were generated from

72 different orientations and they were 5° apart from each other)

Letter Pattern Success Fail Rate
A 72 70 2 97.22222
B 72 69 3 95.83333
C 72 69 3 95.83333
0 72 68 4 94.44444
E 72 71 I 98.61111
F 72 72 0 100
G 72 67 5 93.05556
H 72 72 0 100
I 72 72 0 100
J 72 72 0 100
K 72 71 1 98.61111
L 72 72 0 100
M 72 72 0 100
N 72 64 8 88.88889
0 72 67 5 93.05556
P 72 67 5 93.05556
Q 72 70 2 97.22222
R 72 72 0 100
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S 72 70 2 97.22222
T 72 72 0 100
U 72 66 6 91.66667
V 72 72 0 100
W 72 72 0 100
X 72 72 a 100
y 72 72 a 100
Z 72 68 4 94.44444

Total 1872 1821 97.27564

Table 4.8 ANN trained with 40 x 40 Arial fonts and tested with 40 x 40 Tahoma Font

(Total 104 (26 x 4) training patterns were used, which were generated from 4 random

orientation of each 40 x 40 Arial character. 36 tested patterns of each 40 x 40 Tahoma

character were generated from 36 different orientations and they were 100 apart from

each other)

Letter Pattern Success Fail Rate
A 36 35 I 97.22222
B 36 36 0 100
C 36 32 4 88.88889
D 36 34 2 94.44444
E 36 34 2 94.44444
F 36 36 0 100
G 36 33 3 91.66667
H 36 36 a 100
1 36 36 a 100
J 36 36 a 100
K 36 36 a 100
L 36 35 1 97.22222
M 36 26 10 72.22222
N 36 36 a 100
a 36 33 3 91.66667
P 36 32 4 88.88889
Q 36 36 a 100
R 36 34 2 94.44444
S 36 33 3 91.66667
T 36 36 0 100
U 36 36 0 100
V 36 36 a 100
w 36 36 a 100
X 36 36 a 100
y 36 36 a 100
Z 36 34 2 94.44444
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I Total I 936 899 02J 96.04701 I

Table 4.9 ANN trained with 40 x 40 Arial fonts and tested with 40 x 40 Arial Font with

20% random noise

(Total 104 (26 x 4) training patterns were used, which were generated from 4 random

orientation of each 40 x 40 ideal Arial character. 72 tested patterns of each 40 x 40 noisy

Arial character were generated from 72 different orientations and they were 5° apart from

each other)

Letter Pattern Success Fail Rate
A 72 72 0 100
B 72 70 2 97.22222
C 72 67 5 93.05556
D 72 69 3 95.83333
E 72 69 3 95.83333
F 72 72 0 100
G 72 70 2 97.22222
H 72 72 0 100
I 72 72 0 100
J 72 69 3 95.83333
K 72 70 2 97.22222
L 72 72 0 100
M 72 67 5 93.05556
N 72 70 2 97.22222
0 72 68 4 94.44444
P 72 67 5 93.05556
Q 72 71 1 98.61111
R 72 69 3 95.83333
S 72 70 2 97.22222
T 72 72 0 \00
U 72 70 2 97.22222
V 72 72 0 100
W 72 69 3 95.83333
X 72 72 0 \00
Y 72 71 I 98.61111
Z 72 68 4 94.44444

Total 1872 1820 52 97.2222

To observe the training process of the ANN classifier used in SAFER, Fig. 4.2

and 4.3 show how the mean square error of the network decreases with training epochs

for different fonts. It is seen from these figures that the error decreased gradually as the
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training process progressed. However, the error was decreasing rapidly in the first few

training cycles. At some stage in the training process, the error becomes flat. For

example, the error was flat at 40 epochs for Arial font. This indicates that the classifier

does not have sufficient capability to handle the training process. RWee therefore adds

hidden neuron to the classifier for increasing its information processing capability. In

figure 4.2, at 40 epochs the rate of changing error was 0.00066, which was lower than E2

but higher than EI.Therefore, one new hidden node was added by using RWee.

One of the significant properties of RWee is that it can automatically detect the

training point at which the network needs to add more than one hidden neuron to

accelerate the training process. If at some training point the error change become very

low i.e. less than EI, then it adds two hidden neuron. In Fig. 4.2, at 140 epochs the rate of

changing error became 0.000077, which was lower than both EI and E2. Therefore, two

new hidden nodes were added by R wee in this step. It is noted from the figure that after

adding new nodes at l40th epoch, the error was increased at first epoch. This was also

true for 2l01h
, 250th

, 290th epoch and so on. The reason of this behavior might be due to

the random initial weights of the new hidden nodes. For example, at l401h epoch the

network had 8 hidden nodes. When two new hidden nodes were added with random

initial weight they might produce large error and the overall error became high.

Table 4.10 shows a competitive study between RWee based ANN and

convcntional fixed hidden node based ANN in terms of error minimization capability,

training epoch and training time. It is clear from the table that the performance ofRWee

based ANN is better than conventional ANN in terms of training time. Although the

training epoch required to minimize error is higher in RWee based ANN, the total

training time was much smaller than that required for conventional ANN. The reason of

this perfomlance might be due to the gradually increasing hidden nodes in Rwee based

ANN. In conventional ANN the numbers of initial hidden nodes were 23 and throughout

the training process the network trained all the 23 nodes, which took much time.

However, in RWee based ANN the initial hidden node was 4. After training the 4

hidden nodes, new hidden nodes were added in different steps. For example, at l40th

epoch the number of hidden nodes became" 8. So the numbers of hidden nodes were
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gradually increasing at different training epochs and until the last few epochs, the

network was never trained all the 23 nodes at a time. Therefore, the training time is much

lower than conventional training.

Error vs Epochs
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Fig. 4.2 Training process of SAFER for Arial font character
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Error vs Epochs
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Fig. 4.3 Training process of SAFER for Tahoma font character

Table 4.10 Comparison between RWCC based ANN and conventional fixed hidden node

based ANN in "terms of final error minimization time and training epoch

Network Initial Final Final Training Training

hidden node hidden node error Epoch Time (min)

RWCC based 4 23 0.1917 560 2.12

ANN

Fixed hidden 23 23 0.1917 528 6.35

node based

ANN

4.4 Analysis

This subsection analyzes SAFER's performance and limitations in order to gain a better

understanding of the SAFER algorithm. The pattern vectors of individual characters are
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used to analyze the results obtained for different characters. The recognition rate

individual characters are used to determine the performance of SAFER.

4.4.1 Extracted Patterns

The performance of SAFER depends on the property of pattern vectors that were

generated from characters of different translation, rotation and scaling. Therefore,

different pattern vectors are analyze here to gain a better understanding of the SAFER.

The effect of rotation on the pattern vector generated by SAFER is shown in Figs.

4.4 -4.6 .. It is clear from the figures that the pattern vector is almost independent on

rotational variations of characters. For example, it is found from Fig 4.6 that there are less

than 5% deviations among patterns generated by SAFER for three different orientations

of the character 'E'. The Fig. 4.4 shows that the character 'E' is, rotated at 0° and 135°

angles and Fig. 4.5 shows their pattern vectors. Fig 4.6 shows the standard deviation

between the two pattern vectors. Although the deviation is very low but at 6th and 18th

arguments of the pattern vectors the deviation are 10% and 21%, respectively. The high

deviation may be due to the unequal cut points produced by the same concentric circle

when one character rotate in different angles. For example, the 6th concentric circle cuts

at 2 points for 'E' with 0° rotation (Fig. 4.4 (a». However, the same concentric circle cuts

at 3 points when the character 'E' is rotated by 135° (Fig. 4.4(b».

The interpattern dissimilarity between patterns of two different characters is

shown in Fig 4.7. It is found that that the pattem vectors, produced by SAFER, had high

interpattern deviation, which is very important for any classification problem. For

example, in the figure the average standard deviation between 0° 'A' and 0° 'E' is greater

than 20%.

Figs. 4.8 and 4.9 show the effect of scaling on the pattern vector generated

by SAFER. It is found that although scaling has low effect on pattern vector, some

arguments of the pattern vectors affect much by scaling. For example, in Fig 4.9, the

patters of the three different scaled 'E' has an average standard deviation are less than

6%. However, the standard deviation between 6th and 18th arguments of pattern vectors

in 40x40 and 20x20 pixels 'E' character are of about 6% and 13%, respectively.
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(a)

Fig. 4.4 Rotation of Character 'E' at (a) 0° (b) 20° and (c) 13S0rotation
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Fig.4.5 Pattern amplitude vs Pattern Index of character 'E'
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Fig. 4.7 Inter-pattern standard deviation and intra-pattern standard deviation.
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(b) (c)

Fig. 4.8 Scaling of charncter 'E' (a) 50 x 50 (b) 40 x 40 and (c) 25 x 25 pixels.
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Fig. 4.9 Similarity between different scaling of charncter 'E'

One of the greatest advantages of ANNs is their genernlization ability to approximate

an arbitrnry function from observed data. However, using the trnining data it can classify

pattern, which was not so strnightforward, and can made a relatively good understanding

between deformed patterns. Fig. 4.10 and Table 4.11 show the generalization ability of
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ANN by recognizing deformed patterns. Fig 4.10 (a) and (b) shows that the 3rd inner

circle cuts the 0° and 40° rotated character 'E' at 3 and 2 points respectively. Fig. 4.l0(a)

and (c) show this type dissimilarity at the 5th inner circle. It is found from Fig 4.ll(a) that

there were about 30%, 15%, 16% and 19% standard deviation between 3'd, 9th, 15th and

18th arguments of the pattern vectors of 0° and 40° rotated 'E'. Although there were many

intrapattern deviations, ANN can recognize them correctly.

It is well known that the selection of discriminative features is a crucial step in

any pattern recognition system, since the classifier sees only these features and acts upon

them. The ability of identifying discrimination features from similar type different

characters by SAFER is shown in Figs. 4.12, 4.13 and Table 4.12. However, using the

training data it can classify pattern and can make a good discrimination between similar

patterns of different character. It is clear from the tables that SAFER can successfully

identify features from similar type characters 'A' and 'V'. For example, in Table 4.12,

'A' and 'V' generate almost similar pattern vectors. From Fig. 4.12 it is found that except

the first inner concentric circle, all circles intersect both 'A' and 'V' similarly.. The

standard deviation between pattern vectors of A' and 'V' is less than 8% in most cases

except the 1st, 7th, 13th and 19th arguments of the pattern vectors, which produce standard

deviation of25%, 33%, 65% and 19%, respectively. But the SAFER can recognize them.

The reason of this behavior by SAFER may be due to the use of ANN as a classifier.

When ANN trained with both the patterns of 'A' and 'V' repeatedly it may automatically

detect the discriminating features from' A' and 'V'.

(a) (b) (c)

Fig. 4.10 Different cut point for same character at (a) 0° (b) 50° and (c) 140°rotation
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Table 4.11 Deformed patterns generated from incorrect cut point for 'E'

Pattern Index

I 2 3 4 5 6 7 8 9 10 11 12

00 [009 [0030 0.4274 0.4737 0.4669 0.1876 0.5980 0.5552 0.6945 0.9993 0.9163 0.8904

50. O.OOHKJ.OOOO0.0017 0.463/ 0.4822 0.1891 0.5494 0.5035 0.4582 0.9986 0.9242 0.8915

140 kl.0235 0.0001 0.42U 0.4899 0.1823 0.161" 0.6515 0.489 0.6961 0.9999 0.8861 0.873('

Pattern Index

13 14 15 16 17 18 19 20 21 22 23 24

00 10.96150.9878 0.7474 0.0027 0.3045 0.3902 0.3076 0.3902 0.7144 0.4476 0.4688 0.012
5(jlf10.9934 .999c 0.993C 0.0052 0.2791' 0.3866 0.5808 0.4929 0.5832 0.4275 0.4815 0.0130

140 10.9081 .9995 0.7354 0.0004 0.403~ 0.44H 0.211 I 0.5205 0.7199 0.4798 0.0093 0.0034

(a) (b)

Fig. 4.11 Similarity between deformed pattern of character 'E'

(a) (b)

Fig. 4.12 Similar type character 'A' and 'V'
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Table 4.12 Patterns of 'A' and 'V'

Pattern Index
1 2 3 4 5 6 7 8 9 10 1I 12

0" A 0.000 0.388 0.403 0.407 0.431 0.161 0.505 0.987 0.797 0.695 0.670 0.867
~v 0.353 0.353 0.395 0.416 0.414 0.136 0.978 0.978 0.728 0.667 0.581 0.843

Pattern Index
13 14 15 16 17 18 19 20 21 22 23 24

0" A 0.999 0.049 0.588 0.698 0.762 0.458 0.488 0.282 0.564 0.741 0.752 0.001
O"V 0.085 0.085 0.661 0.715 0.756 0.529 0.220 0.220 0.687 0.786 0.710 0.000
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Fig. 4.13 Inter-pattern similarity for character' A' and 'V'

Tables 4.2 and 4.9 show the effect of noise on the performance of SAFER for

different characters. It is found from the tables that there is very low effect of noise on the

performance of SAFER. However, the performance of some similar characters decreases.

For example, SAFER achieves an overall recognition rate of 98.61 % and 97.22% for 40

x 40 pixel normal and noisy fonts respectively. The recognition rate achieved by SAFER

for noisy characters 'C' and '0' were 93% and 94.44% respectively. However, the

recognition rate for normal 'C' and '0' were 95.8% and 94.44% respectively. The reason
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of the small changes of performance by SAFER for noisy character is due to their less

affection by noise.

The effect of noise on the character and generated pattern vector of 'C' and '0'

are shown in Figs. 4.14-4.18. It is clear from the Figs. 4.14-4.15 that there are many

discrimination features in the generated pattern vector of normal 'C' and '0' characters.

For example, it is found from Fig 4.14 that the patterns of 'C' and '0' achieve less than

4% standard deviation in most cases. However, they produce about 12% deviation at 4th,

5th and 6th arguments and about 16% deviation at nnd, 23'd and 24th arguments of the

pattern vector. The 22nd, 23rd and 24th arguments of pattern vector are produced by 4th, 5th

and 6th circle respectively. Therefore, the discrimination features of 'C' and '0' are

produced from the 4th, 5th and 6th concentric circles. There are two main differences in

'C' and '0' that are described by the three outer circles. The first one is, in 'C', the center

of mass (COM) is five pixels left than that of '0' and the second one is the discontinuity

on the right side of 'C'. Fig. 4.15 and table 4.13 show them clearly.

As the discrimination features of 'C' and '0' are come from outer circles, they

affect less by noise. The effect is shown in Figs. 4.16-4.18. From Fig. 4.16 and table 4.14

it is found that the character 'C' is almost unaffected by noise. However, the 4th

concentric circle of noisy character 'C' cuts at different positions relative to normal 'C' .

. From table 4.14 it is found that the 4th circle cuts at 105° and 170° from noisy 'C' where

they are 23° and 113° for normal 'C' (table 4.13). Fig. 4.17 shows that the standard

deviation between pattern vectors of noisy 'C' and normal '0' is almost similar to that of

between normal 'C' and '0'. The effect of the 4th circle is clear in 4th and 16th arguments

of pattern vectors. However, the character '0' is almost unaffected by noise. The

standard deviation between pattern vectors of normal 'C' and noisy '0' is shown in Fig.

4.18. It is almost similar to fig. 4.14.
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Fig. 4.14 Standard deviation between pattern vectors of normal 'C' and '0'

(a) (b) (c) (d) (e)

Fig. 4.15 2nd to 6th concentric circles of 'C' and '0' characters

Table 4.13 The cut angles produced by 4th to 6lh concentric circles from normal 'C' and

'0'

Character Circle No. Angle 1 (Degree) Angle 2 (Degree)

C 4 23 113

5 72 N/A
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6 54 N/A

0 4 100 N/A

5 90 N/A

6 90 N/A

(a) (b) (c) (d)

Fig. 4.16 3'd to 6th concentric circles of20% noisy 'C' and '0' character

Table 4.14 The cut angles produced by 4th to 6th concentric circles from noisy 'C' and

'0'

Character Circle No. Angle 1 (Degree) Angle 2 (Degree)

C 4 105 170

5 78 N/A

6 49 N/A

0 4 110 N/A

5 93 N/A

6 90 N/A
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Fig. 4.17 Standard deviation between pattern vectors of noisy 'C' and normal '0'

Fig. 4.18 Standard deviation between pattern vectors of normal 'C' and noisy '0'
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4.4.2 Reason of poor recognition rate

Tables 4.4 and 4.5 show the effect of scaling on the performance of SAFER for

different characters. It is found from the tables that there is almost no effect of scaling on

the performance of SAFER for large characters. However, for smalJ sized characters the

performance decreases. For example, SAFER achieves an overalJ recognition rate of

99.57% and 95.51 % for 60 x 60 and 20 x 20 pixel fonts respectively. The recognition

rate achieved by SAFER for characters 'W' and 'M' of20 x 20 pixel font were 75% and

94.44% respectively. The reason of the low performance by SAFER for some characters

is due to the similarity between generated pattern vectors produced by them. For

example, 'W' and 'M' produce similar pattern vectors after rotated them into certain

angle.

The effect of scaling on the generated pattern vectors of 'M' and 'W' characters is

shown in Figs. 4.19 -4.24. It is clear from the Figs. 4.19-4.20 that there is very low effect

of similarity on the generated pattern vector for large sized characters. For example, it is

found from Fig 4.19 that the patterns of 'M' and 'W' achieve less than 10% standard

deviation in most cases. However, they produce about 20% deviation at 1st and 2nd

arguments and about 34% deviation at 19th and 20'h arguments of the pattern vector. The

19th and 20th arguments of pattern vector are produced by 1st and 2nd circle respectively.

Therefore, the discrimination features of 'M' and 'W' are produced from the 151 and 2nd

concentric circles. There are two main differences in 'M' and 'W' that are described by

the two inner circles. First one is, in 'M', the center of mass (COM) is four pixels upward

than that of 'W'. The second one is due to the convex angle of the inner edge of 'W',

which is slight smaller than that of 'M' (Fig. 4.20(d)). Fig. 4.20 and Table 4.15 show

them clearly. The standard deviation between two pattern vectors generated from 'W'

with 60 x 60 and 20 x 20 pixel fonts. It is found that the average standard deviation is

less than 10%.

As the discrimination features of 'M' and 'W' are come from the innermost

circles, they affect much by noise. The smalJ circle has lower number of pixels on its

periphery. Therefore, each pixel represents much angular distance than that of large

circle. The effect of noise is shown in Figs. 4.22-4.24. For example, due to some noise

the COM of'W' moves one pixel upward. Fig. 4.22 and Table 4.16 show the effect of the
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noise on two different sized 'W' characters. From Tables 4.15 and 4.16 it is clear that

there is almost no effect of noise on 60 x 60 pixel 'W' character. However, in case of 20

x 20 pixel 'W' character, the noise changes the properties of discriminating features. In

large 'W' the radiuses of 1st and 2nd concentric circles are 8 and 12 pixels respectively.

However, in case of small sized 'W', they are 5 and 7 pixels respectively. As a result,

one-pixel movement ofeOM for small sized 'W' moves its property toward 'M'. Again

the 2nd concentric circle in Fig. 4.22 (d) looks much similar to that of 'M' (Fig. 4.20(c)).

Table 4.16 shows that the noisy 'W' produces cut angles similar to 'M" as shown in

Table 4.15. If radius of the 2nd circle in Fig. 4.22(d) is one pixel larger then it will be

similar to that of 'W' (Fig. 4.20(d)). But in.that case the circle become unstable, as it

touches the boundary of 'W'. Fig. 4.24 shows that the noisy 'W' highly correlate with

'M'. Therefore, The ANN classifies it as 'M' character.
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Fig. 4.19 Standard deviation between pattern vectors of 00 'M' and 'W'

82



(a) (b) (c) (d)

Fig. 4.20 ISland 2nd concentric circles of 'M' and 'W' characters

Table 4.15 The cut angles produced by ISland 2nd concentric circles from 'M' and 'W'

characters

Character Circle No. Angle 1 (Degree) Angle 2 (Degree)

M 1 97 N/A

2 44 165

W 1 110 N/A

2 39 180

Fig. 4.21 Standard deviation between pattern vectors of 60 x 60 and 20 x 20 pixel 'W'

characters
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(a) (b) (c) (d)

Fig. 4.22 I" and 2nd concentric circle of60 x 60 and 20 x 20 pixels 'W' characters.

(a), (c) for 60 x 60 pixel and (b), (d) for 20 x 20 pixel

Table 4.16 The cut angles produced by 151 and 2nd concentric circles from character 'W'

of two different sizes

Size Circle No. Angle 1 (Degree) Angle 2 (Degree)

60 x 60 1 108 N/A

2 36 180

20 x 20 1 98 N/A

2 45 171

84



'~.'!'!~~.~.. '...'.. --:~~.'(;.:~:t~Il!\-.~'i•..1.:' ,'."':~ ."~. ; .•,u.~,i: ~~~-~~i1(~~~1
~.t ',. \!~,,,,,,,.g' "~ ..
~.'~~ : L L ~-':l
~ ~

~~~: ~....... 'I:~>'l
: Iii! :u,,'.;t,1 •
~.,~O.35•• ---.--- •••:••••••.. ---- -_._. __.- ••• ~••• _. _.~._--_.- •••• ~'1
'ii~..'.' :,'"~03 ..--- .,: ----.-- - ,...... . __. ~,j.-i'~"l-~' . ,..l$j~: . M.f; 1'........... .. r~
J~~: __._;_._- _- ------'"' ~~
~.Jt~jF,l : (")~. \0.15 _. ._-- ••• :............ • •••• _-~ •• _- • __••• ~. !"~:~
.... t~ : ;,~.,
t~~Ji +.__ - ,. _._._.," i1

1:~7f. : :V.t~I~;............' ~~j
~JO{{~ '~~5' .'~, :1£I~$;~..,\~.'5i.~~-t.~';j/.~.~~20:.;&1f~~.;~tJ..~!'~~

<..r#~ ~ ? •.- . ~1,tt1l.~rl!'de~~T~~~~tW~•.~~.~~!.,;.~~[~11~.}'~~--,~~~
.:') .•. ~~ .. ~~lo)'.~~•.••.'1i. :....:-••~~P...:.:tJi

Fig. 4.23 Standard deviation between pattern vectors of 60 x 60 pixel 'W' and 20 x 20

pixel noisy 'W' characters

Fig. 4.24 Standard deviation between' pattern vectors of 60 x 60 pixel 'M' and 20 x 20

pixel noisy 'W' characters

When" the ANN trained with Arial font and tested with Tahoma font, it was found

from Table 4.8 that there was very poor recognition rate for some characters. This was
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happened because there is a major dissimilarity between same characters of two fonts. In

Fig. 4.25 the upper 4 'M's are from Arial and the lowers are from Tahoma.

Middle Edge
(Touch the
lower
SUrface)

!
,.

Middle
Edge(Slop at ,.

tthe middle)
i i. i. I.

!" jo

(a) (b) (c) (d)

Fig. 4.25 Dissimilarity between 'M' of Arial and Tahoma Font.

In Fig. 4.25 (a) the Arial 'M's middle edge prolonged to the lower boundary but in

Tahoma it stops at the middle of the character. The effect of this dissimilarity is shown in

Fig. 4.25 (b) to (d). Fig. 4.25 (b) shows, the 2nd innermost circle cut 3 points for both

Arial and Tahoma fonts. But, 3'd and 4th circle cut 5 and 3 points for Arial 'M' and 4 and

2 points for Tahoma 'M' (Fig. 4.25 (c), (d)) . Similar condition also occurs for 5th and 6th

circle. So, out of six concentric circles four generate different arguments from 'M' in two
fonts. Therefore, when the network trained with Arial's 'M' character but tested with
Tahoma, the ANN failed to detect it.

4.4.3 Comparison with other work

This section compares experimental results of SAFER with those of Holographic

Nearest-Neighbor (HNN) based Algorithm [38] and the second was Complex Moment

based method [13]. The primary aim of this section is not to exhaustively compare

SAFER with all other ensemble algorithms, but to evaluate SAFER in order to gain a

deeper understanding of the performance.

The average results of SAFER and Holographic Nearest-Neighbor (HNN) based

Algorithm were obtained by training the SAFER with 104 (26 x. 4) patterns of 40x40

86



pixels Arial characters. Testing data set was constructed with 3276 experimental patterns,

which were generated from 9 different sizes and 14 different rotations of each character.

The results for Complex Moment based method was obtained by trained the ANN with

30 randomly generated versions of different sized chan/cters. Total number of training

pattern was 780 (30x26). Testing pattern was also 780 (30x26) randomly generated

experimental characters.

Table 4.17.1 to 4.17.3 compares SAFERs result with those produced by

Holographic Nearest-Neighbor (HNN) based Algorithm [38]. It is clear from the tables

that SAFER was able to achieve higher average recognition rate than HNN. For example,

the average recognition rate achieved by SAFER for large, medium and small sized

character were 99.35%, 98.13% and 95.97% respectively, while they were 99.07%,

96.17% and 91.65% for HNN. Although for small sized characters the overall

performance of SAFER is much better than HNN, SAFER performs badly for some

specific characters. For example, in Table 4.17.3 the recognition rate of 'C' and 'W' were

89.33% and 80.55% respectively for SAFER, while they were 98% and 100% for HNN.

Table 4.18 compares the processing time taken by HNN and SAFER in preprocessing and

classification stage. SAFER takes low processing time than HNN based technique.

The comparison of SAFER with Wavelet and complex moment based techniques

[13] is shown in Table 4.19. Similar to the previous cases, SAFER outperformed

significantly than moment based technique in terms of complexity, feature used and

recognition rate. For example, complexity of moment based techniques is very high as

they use complex calculation. Zernike and wavelet moment based techniques use 26 and

37 features respectively while SAFER use only 12 features. The classification rate of

SAFER was also better. So, SAFER wins from different points of view.

Based on the above comparisons, it is clear that SAFER performed better than

other algorithms in most cases. Although such comparisons may not be entirely fair due

to different experimental setups, it was tried best to make this experimental setup as close

to the previous ones as possible. Because ofthe diverse range of experimental setups used

in previous studies, it is difficult to do an exhaustive comparison with all other work

under different experimental setups. This is outside the scope of this thesis.
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Table 4.17 Comparison between HNN and SAFER algorithm in terms of recognition rate

of Arial character

Table 4.17.1 Font size: 100xl00-45 x45

Letter HNN SAFER Letter HNN SAFER
A 100 100 N 99 100
B 100 100 0 99 95.833
C 98 94.44 P 96 98.611
D 100 100 Q 100 95.833
E 98 100 R 98 100
F 100 100 S 99 100
G 100 100 T 98 100
H 100 100 U 98 98.611
1 100 100 V 100 100
J 100 100 W 96 100
K 100 100 X 100 100
L 98 100 Y 100 100
M 100 100 Z 99 100

99.07 99.35

Table 4.17.2 Font size: 40x40 - 35 x35

Letter HNN SAFER Letter HNN SAFER
A 100 100 N 98 100
B 100 100 0 100 94.444
C 98 94.444 P 95 90.277
D 96 97.222 Q 90 95.833
E 90 97.222 R 100 93.055
F 88 100 S 91 100
G 88 94.444 T 96 100
H 100 100 U 100 97.222
1 100 100 V 94 100
J 100 100 W 94 100
K 100 100 X 95 100
L 95 100 Y 100 100
M 100 100 Z 92 97.222

96.15 98.13

Table 4.17.3 Font size: 25x25 - 20 x20

Letter HNN SAFER Letter HNN SAFER
A 100 100 N 99 99
B 98 100 0 98 98.61111
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C 98 89.3333 P 96 83.33334
0 94 94.44444 0 97 97.22222
E 95 97.22222 R 100 86.11111
F 89 97.22222 S 91 . 95.8333
G 89 97.22222 T 89 100
H 100 100 U 89 91.6667
I 100 100 V 94 100
J 99 100 W 100 80.55556
K 93 100 X 100 100
L 50 100 y 98 100
M 32 91.66667 Z 95 95.83333

91.65385 95.97222

Table 4.18 Comparison between HNN and SAFER algorithm in terms of processing time

Algorithm Processor Speed Preprocessing (s) CIassification(s)
HNN 500 MHz 0.105462 0.108846

SAFER 500MHz 0.085247 0.112553

Table 4.19 Comparison between Moment based techniques and SAFER in terms of

Complexity, Feature used and Recognition rate.

Technique Process Complexity Features Used Recognition
Rate

Rotation
Zemike Moment invariant High 26 98.7%

moment
Rotation

Wavelet Moment invariant High 37 99.5%
moment
Axis of 12

SAFER Symmetry and Very Simple (6 circle x 2 99.8%
Angle harmonics)

4.5 Discussion

This section briefly explains why the performance of SAFER is better than other

algorithms, e.g., HNN [38) and Moment based technique [13). There are three major

differences that might contribute to better performance of SAFER in comparison with
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other algorithms.

The first reason is that SAFER uses the axis of symmetry of a character to extract

its basic features. As seen from Fig. 3.4 to 3.6, the pattern generated based on axis of

symmetry is rotation and scaling invariant. The reference axis side is also used in SAFER

to generate invariant patterns for different. scaled and rotated characters. These two

techniques used in SAFER give an upper edge to improve the recognition rate for rotated

and scaled patterns. However, the complex moments of a character image are integrals of

the image function over space, and the image can be uniquely determined by its complex

moments of all orders. There is no competent way to extract feature from the image

efficiently. Therefore, the complex moments are sensitive to digitization error, minor

shape deformations, camera non-linearity, and non-ideal position of camera.

The second reason is the use of vector sum process by SAFER for pattern

generation. As shown in section 3.2.3, the lower order vector sum depends on global

change but it is invariant to the local change of features. However, local features also

need to consider for some characters. For example, the basic shape of character 'A' and

'V' are same except there is a local feature difference. Since higher order vector sum can

describe local feature more accurately, therefore, a second order harmonics was

introduced in SAFER for pattern generation. However, taking the global and local

features simultaneously, SAFER was able to generate patterns that were compatible for

all alphabetic character. However, complex moments can be used to discriminate

between images of real objects only if their shapes are significantly different. Since these

moments are designed to capture global information about the image, they are not

suitable for classifying similar objects when corrupted by a significantly amount of
random noise.

The third reason is the effect of training procedure on the ANN. In beginning, the

initial ANN was trained by a training data set. When it is found that the network does not

have sufficient capability to handle the training process, new hidden nodes are added by

using RWCC. The advantages of this process are that the network never falls at local

minima and it requires very low training period. As new neurons are added on demand

basis, so the final ANN architecture contains the exact number of hidden nodes that can
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solve a particular problem. So there is no complexity to determine the initial architecture

of ANN.
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Chapter 5

CONCLUSION

5.1 Conclusive Remarks

Invariant Character Recognition (ICR), whose aIm is to identify a character

independently of its position (translated or rotated) and size (larger or smaller).

has been the object of an intense and thorough study. In the last several years, an

increasing number of research groups have proposed a great variety of ICR

methods. However, they suffer from some significant limitations. Most important

of the limitations are that the methods are either computationally very complex or

not invariant for translation, rotation and scaling at a time. To address these

limitations, a number of research groups have developed different types of ICR

algorithm. The focus of this thesis has been the development of an ICR

algorithm, called SAFER, which overcomes the significant limitations of

previous algorithms.

ICR algorithms have been introduced to the OCR community for nearly 20 years.

However, most ICR algorithms can only detect translated, rotated or scaled

characters, resulting in an insufficient feature extractor. Few algorithms exist that

are purely invariant, e.g., they can detect translated. rotated and scaled characters.

This paper proposes a new ICR algorithm to extract invariant features from

characters as well as classify them successfully. Neither the translation, rotation

or scaling of the character needs to be predefined. However, they are determined

automatically in the different steps by SAFER.

The proposed algorithm i.e. SAFER, uses preprocessing and classification stage.

In preprocessing stage. it extracts the axis of symmetry of symmetrical

characters, which is invariant under translation, scaling and rotation. It also

determines the invariant reference axis side and generates pattern by using a

novel technique. The technique uses higher order vector sum that can extract both

global and local feature of characters. In classification stage, a new method. the

random weight based cascade correlation (RWCC) is developed to determine the

exact architecture of the ANN and to train it. RWCC uses cascade architecture to



grow the neurons in hidden layer incrementally until the ANN performance

reaches a satisfactory level. It starts with a simple ANN and then tries to solve the

problem by increasing the number of hidden neurons in the hidden layer. RWCC

uses the correlation maximization process for selecting any neuron of hidden

layer.

Extensive experiments have been carried out in this paper to evaluate how well

SAFER performed on different well-known fonts. The experimental results are

compared with other HNN and complex moment based algorithms. In almost all

cases, SAFER outperformed the others. The average recognition rate was almost

100%, which indicates the great stability of this algorithm.

Although SAFER has performed very well for almost all problems, experimental

study appeared to have revealed a weakness of SAFER in dealing with the small

sized characters. The performance of the algorithm decreases slightly for smaller

characters. This may be due to the fact that smaller characters suffer much by

different noises. However, this problem was solved by adding a second group of

training vectors for letter sizes between 30 x 30 and 20 x 20 pixels.

SAFER was compared with other similar algorithms but such comparisons may

not be entirely fair due to different experimental setups. However, it was tried

best to make the experimental setup as close to the previous ones as possible.

Because of the diverse range of experimental setups used in previous studies, it is

difficult (and probably unnecessary) to do an exhaustive comparison with all

other work under different experimental setups. This is outside the scope of this
paper.

5.2 Future Scopes

SAFER has some limitations, which keeps open the field to study and improve

the design methods of ICR. Increasing the recognition rate for small sized

characters can be a good future work. In case of small sized character the three

types of errors called, round up error, boundary noise and random noise, affect

much. They can be corrected by increasing the value of relative factors. Although

they can minimize the error for small sized character, they can affect seriously for
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large sized characters. So, In future one can introduce some other factors to

overcome this limitation.

Another constraint in SAFER is that it considered only one axis of symmetry,

although some character have multiple symmetry axis. In future one can consider

multiple axis of symmetry simultaneously, which may give good classification

accuracy. Finally, here different aspect ratio of same character was not

considered. SAFER is based on the fact that the circle is the only geometrical

shape that is naturally and perfectly invariant to rotation. Therefore, if characters

aspect ratio is changed, the property of circle also needs to change. One can think

a better concept to overcome this problem.
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