
I

Indexing of Extensible Markup Language Data Using a

Two Dimensional Bitmap

Submitted by

B.M. Monjurul Alom
Student 10: 100105019 P

I,J A thesis submitted to the Department of Computer Science and Engineering in partial
fulfillment of the requirements for the degree of

Master of Science in Engineering in
Computer Science and Engineering

Supervised by
Dr. A.S.M. Latiful Hoque

Associate Professor, Department of eSE, BUET,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

NOVEMBER 2005 '

,j

The thesis "Indexing. of Extensible Markup Language Data Using a Two

Dimensional Bitmap", submitted by B.M. Monjurul Alom, Roll No. 100105019P,

Session October 200 I, to the Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, has been accepted as satisfactory

for the partial fulfillment of the requirements for the degree of Master of Science in

Engineering (Computer Science and Engineering) and approved as to its style and

contents. Examination held on November 20,2005.

Board of Examiners

1.

2.

3.

4.

5.

~l\lo~
Dr. Abu Sayed Md. Latiful Hoque
Associate Professor
Department of CSE
SUET, Dhaka-lOOO

Dr. Muhammad Masroor Ali
Professor and Head
Department of CSE
BUET, Dhaka-lOOO

~~

Dr. Md. Mostofa Akbar
Assistant Professor
Department of CSE
SUET, Dhaka-lOOO

em.~. 1:&\tM..-
Dr. Md. Monirul Islam
Associate Professor
Department of CSE
SUET, Dhaka-lOOO

~/\#
Dr~Md. Ma~bubur Rahman
Associate Professor and Head
CSE Discipline
Khulna University
Khulna

Chairman
(Supervisor)

Member
(Ex-officio)

Member

Member

Member
(External)

Declaration

!, hereby, declare that the work presented in this thesis is the outcome of the investigation

performed by me under the supervisor of Dr. A.S.M. Latiful Hoque, Associate Professor,

Department of Computer Science and Engineering, Bangladesh University of

Engineering and Technology, Dhaka. !also declare that no part of this thesis and thereof

has been or is being submitted elsewhere for the award of any degree or diploma

Countersigned

(Dr. A.S.M. Latiful Hoque)

Supervisor

Signature

~-II-OS
B.M. Monjurul Alom

(

Abstract
Extensible Markup Language (XML) is a standard for representing and exchanging

information on the Internet. Storing and querying of XML data has created new challenges

for conventional relational database management system. This is because XML has no fixed

schema, rapidly evolving, self-describing and their types are different. For these reasons,

conventional indexing methods such as sparse and dense indexing, hashing and B+ trees are

not satisfactory for XML data. Bitmap indcxing is suitable for XML data. But the existing

three-dimensional bitmap indexing method for which the space requirement is high and time.

consuming for searching the database.

To overcome these limitations, we have developed a Two Dimensional Bitmap Indexing

scheme for XML data that improves the storage performance of XML data, reduce the search

time to query any XML data from XML document, and improve the query perfonnance. Our

system stores XML data in a compressed form and query can be performed in this

compressed representation. Storage improvement is on the average of a factor of 400: I

compared to the similar three dimensional approach. We have significant performance

improvement in query processing as well.

I

(

Acknowledgment
First and foremost, I would like to thank my supervisor Dr. A.S.M. Latiful Hoque, Associate

Professor, Department of Computer Science and Engineering" for his invaluable support and

advice. His patience and insight to point out my mistakes forced me to become more rigorous

in my reasoning. His guidance was always invaluable in all stages of my thesis work. I

consider myself lucky for having the chance to work with him.

I would also like to thank Dr. Md. Masroor Ali, Professor and Head, Department of

Computer Science and Engineering, BUET Dhaka, for his willingness to encourage me. I am

grateful to Dr. Mahbubur Rahman, Associate Professor and I-lead, Computer Science and

Engineering Discipline, Khulna University for his generous consent to become the external

examiner with his very busy schedule. I also thank Dr. Md. Monirul Islam for his comments

that have made the thesis a valuable one. I would like to thank Dr. Md. Mostafa Akbar for

helping me in all aspects of my research. I am also grateful to the Alberto Mendelzon for

valuable research paper.

I am also in debt with my parents, for helping me to become who I am. I dedicate this thesis

to them.

II

Contents

Abstract

Acknowledgement

List of tables

List of figures

CHAPTER 1: INTRODUCTION

1.1 Introduction

1.2 Overall structure of the method

1.3 XML Representation

1.3.1 Characteristics of XML Documents

1.3.2 Structure ofXML Documents

1.3.3 Application of XML Documents

1.4 Objectives

1.5 Thesis Organization

CHAPTER 2: LITERTURE SURVEY

2.1 Introduction

2.2 Related works

2.3 Three Dimensional Bitmap Indexing Method

2.3.1 Organization

2.3.2 Bitcube

2.4 Toronto XML Indexing Method (Toxin)

2.5 Inverted Index

2.6 XML Indexing And Storage System (XISS)

2.7 Conclusion

CHAPTER 3: PROPOSED 2D BITMAP INDEXING METHOD

3.1 Introduction

3.2 Creation of Two Dimensional Matrix from XML Document

3.3 Construction of Bitmap

III

Page no

I

II

V

VI

1

1

2

3

3

3

4

4

5

6

6

6

6

6

9

10

15

20
23

24

24

24

28

3.3.1 System Structure of Bitmap Indexing

3.4 Searching the XML Document

3.4.1 Querying the XML Document Database

3.4.2 Searching in Multiple Attributes

3.4.3 Example of QuelY with Multiple Attributes

3.5 Analysis of Bitmap Construction

3.6 Analysis of Time Complexity of the Algorithm

3.7 Analysis of Time Requirements for Query Operations

3.8 Analysis of Memory Requirements of the Algorithm

CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSIONS

4. I Introduction

4.2 Experimental Setup

4.3 Memory Requirements for Various Indexing Methods

4.4 Time Requirements for Various Indexing Methods

4.5 Word searching time

4.6 Word Searching Time and their Selectivity in Documents

4.7 Searching Time for Multiple Attributes

4.8 Path Construction Time

4.9 Discussions

CHAPTER 5: CONCLUSIONS

5.1 Introduction

5.2 Contributions

5.3 Future work

REFERENCES

IV

••..•....•.

31
'Q

,

32
33
35
35
36
37
38
40

41

41

41

41

43

44
45

48
49

50

51

51

51

52

54

List of tables

3.1 Word Dictionary

3.2 Path Dictionary

3.3 Word Searching Result

4.1 Dataset from XML Repository

4.2 Memory Needed for Various Indexing Methods

4.3 Time Unit Needed for Various Indexing Methods for Various Dataset

4.4 Word searching time

4.5 Word Searching Time and their Selectivity in Documents

4.6 Word Searching Time and their Selectivity in large Documents

4.7 QuelY in Multiple Attributes with AND Operation

4.8 Query in Multiple Attributes with OR Operation

4.9 Path Construction Time

V

Page no
25
25

34

42
42

44
45

45

47
48
49
49

List of figures
1.1 Overall Structure of Our Indexing Method

1.2 Example of XML Documents

2.1 XML Document

2.2 Example ofXML Documents

2.3 Presence of Path in the Corresponding Documents

2.4 Bitcube

2.5 Example ofBUET Database

2.6 XML Tree of BUET Database

2.7 Toxin Tree

2.8 Toxin Tables

2.9 XML Document with Numbering Process

2.10 Element Index

2.11 Text Index

2.12 Element Table

2.13 Text Table

2.14 Preorder Numbering Schema

2.15 Tables of XISS/R System

2.16 Indexing Structure Overview

3.1 Example ofXML Document

3.2 Matrix to Get First Path

3.3 Matrix to Get the First Word within First Path

3.4 Matrix to Get the Second Word within First Path

3.5 Matrix to Finish the First Document

3.6 Two Dimensional Token-Path-Word Matrix

3.7 Path-Token Matrix

3.8 Bitmap Showing the Existence of Word

3.9 Division of Matrix into Block

3.10 Decimal Fonn (Bitmap)

3.11 System Structure of Bitmap Indexing Method

3.12 Flowchart of Searching Single Word

3.13 System Structure of Specific Query with Multiple Attributes

VI

Page no
2

3

8

8

9

9

11

12

13

13

16

17

17

18

18

21

22
23

24
26
27

27

27

28
29
29
30
30

31

32

35

3.14 Bitmap Indexing

3.15 Path-Token Dictionary

3.16 Two Dimensional-Doc- Token-Path Matrix

3.17 Bitmap Matrix

4.1 Comparison of Memory Requirements for 3D, 2D, and Bitmap Index

4.2 Graph of Time Comparison for 3D, 2D and Bitmap Indexing

4.3 Searching Time vs Word Selectivity Relationship

4.4: Searching time vs words selectivity Relationship in large documents

VII

36
37

37
37
43

44
46
47

1.1 Introduction

Chapter 1

Introduction

Semistructured databases unlike traditional databases do not have a fixed schema, largely

evolving, self-describing and can model heterogeneity more naturally than either relational or

object-oriented databases. Example of such self-describing data is extensible markup

language called XML. XML is a standard for representing and exchanging information on the

Intemet. Querying XML data requires an efficient indexing method. Conventional indexing

methods such as Sparse and Dense indexing, Hashing, B+ trees are not satisfactory as the size

of XML documents are very large and their types are different. So Bitmap indexing plays an

important role for XML data. We have considered document database, each document of

XML contain element path and each path contain zero, one or more words. In three-

dimensional Bitmap indexing, three-dimensional matrix is required to store element-path,

word and document number. In two-dimensional Bitmap indexing we require only a two-

dimensional matrix, which can store element-path, existence of word and document number.

Indexing schemes for semistructured data have been developed in recent years to optimize

pathqnery processing by summarizing path information. Existing three-dimensional bitmap

indexing of XML data requires large space. At the same time, querying of large XML

documents database is difficult. To overcome these limitations, we have developed an

indexing scheme of XML data using a two-dimensional Bitmap, providing the facility to

store element-path, token and documents in a two dimensional matrix. Ths system contains

two dictionaries; one is element-path dictionary having all the distinct element paths for all

XML documents and another token dictionary containing token values for the distinct

words. This indexing scheme creates a token-path-document matrix; showing the existence

of XML data in specific document and in appropriate path. In this thesis we present how

XML data, its path and document can be stored in a two dimensional bitmap and describe its

performance over thrce dimension.

I

c

1.2 Overall Structure of the Method

Compressi
on Engine

Word Dictionary

Figure 1.1: Overall structure of our Indexing Method

Query

Response

Figure 1.1 represents the overall structure of our indexing method. In this indexing method

XML data are taken as input from XML documents. Compression engine in which XML data

are passed to create word dictionary and path dictionary. In word dictionary all the distinct

words and their token numbers are stored. Path dictionary contains all the distinct element path

numbers and their path contents. Compression engine which takes XML data as input and

create a bitmap using path dictionary and, token dictionary. In bitmap all the decimal values of

the words are stored. Query processor process query as like word searching, searching with

multiple attributes using word dictionary, path dictionary and bitmap. A response is achieved

by query processor to get the result of query. This system creates a new column to get a new

path from XML document. To get each distinct word within that path, a new column within

that path boundary is created. There is a negative sign before path number to distinguish from

token value. This system will set a I to the corresponding document number, when any word is

present in that document number. If there is path repetition among documents no new column

will be created. Only the token value of the word within that path will be stored. This process

continues for all XML documents and a two dimensional matrix is created. In the first row of

the two-dimensional matrix contains only token value and path number. The remaining rows of

the matrix represent document no and the existence of word. If any word is absent in the

document, there will be a zero to the column to the corresponding document number. Two

2

dimensional matrix is divided into two matrixes. One is the only first row of the matrix and.

second matrix containing the remaining rows of the matrix. The second matrix is divided into

blocks, in each block there are 16-memory cell that means 32 bytes. This system creates a

decimal form that is bitmap, from the second matrix.

1.3 XML Representation

1.3.1 Characteristics of XML Data

I. XML Representing information on the Internet.

II. XML exchanging information on the Internet

Ill. The size of the XML document is very large

IV. Their types are different

V. No t,xed schema or rigid schema

VI. Rapidly evolving

1.3.2 Structure of XML Documents

Using markup, structural information is defined in terms of elements, the basic components of

an XML document. Each element name together with its markup delimiters is called a tag. The

first one, which has the format <elementyame> is called start tag, whereas the second has the

format </elemenUlame> and is called end tag. The string between a start tag and an end tag is

called an element content or value. For instance, Title in Figure 1.2 is an element delimited by

the start tag <Title> and the end tag </Title>, and its value is the string "Database Mgt

System". Attributes allow us to include any additional information within an element start tag.

Figure 1. 2: Example ofXML document.

Document.1

<Contacts>
<Contact>
<Name>

<['"jist> John Robclt <{First>
<Last> Pettit </Last>

</Name>
<Address>
<Street> Green Road </Street>
<City> Dhaka <ICily>
..o;St;\lC> Dhaka <lSl;I\C>
<ZIp> 6200 <fZip>

</AdulI:ss>
<-Tel> SSO-2-9256591-156<rr cl>
<1':1:\>880_2_802768 </Fax>
<1vl11bilc> 0176879879 </Mobilc>

</CC1ntacl>

DocullIcnt-2
<Contacts>

<Contact>
<Name>

<l'irst>Kcl1y P,lul <lFirsl>
<last> Robclt </last>

<JNnme>
<Address>

<City> Dhaka <ICily>
<State> Bangladesh </StnlC>

<JAddrcss>
<l'ubliciltion>" Indcxing
of XM L dnta Using Two
dimensional Bitmap
</I'ublicntion>

<fContact>
</ContnetS>

Document-3
<Contacts>

<Conlact>
<Name>

<first> Balagurusamy<lFirst>
<last> Kelly </last>

<Name>
<Address>

<City> Khulnu <ICily>
<State> Dhaka <iState>

<Addrcss>
<lConlact>

<lContacts>

Document-4
<Db.Main>

<Db>
<Books Info>
<ritle> Databasc Mgt System

<!Title>
<Author>
<1"> Korth <II">
<2nd> 3.5. Mattin <l2nd>
<3"'> Elmasri <f3,d>

<lAuthor>
<Keyword> SQL, funt

Dependency, TrnllSuction, Ds Syslem
</Keyword>
</Book Info>
<Book Info>
<Title> Infonnation Mgt Systcm
</Title>
<Author>
<I"> 3.S. Mmtin <II">
<2'''> Kolth <12M>

<fAuthor;..
<!Book Info>

3

1.3.3 Application of XML Data:

I. Using the Internet for the exchange of financial transaction infornlation (credit card

transaction, banking transaction and so on)

II. The exchange over the Internet of medical transaction data between patients,

hospitals, physicians and insurance agencies. To see a XML document that contains

the full information of doctors, patienis can get directions to go to doctors easily.

Ill. The distribution of software via web.

IV. Using the Internet to join the parts of distributed companies

V. XML are reasonably clear to the user. Although it is becoming increasingly rare, and

even difficult, for HTML documents to be typed manually and XML documents

weren't intended to be created by human beings. XML's markup is reasonably self-

explanatory

VI. XML can be used with existing web protocols (such as HTTP and MIME) and

mechanisms (such as URLs) and it does not impose any additional requirements.

VII. XML is compatible with SGML(Standard General Mark up language) and HTML

1.4 Objectives
Bitmap indexing is suitable for XML data, but in a three dimensional bitmap indexing space

requirement is high and time consuming for data searching. In three-dimensional Bitmap

indexing, three dimensional mah'ix is required to store element-path, word and document

number. In our proposed two-dimensional indexing requires only a two-dimensional matrix,

which can store element-path, existence of word and document number.

Our objective is to:
(i) Design a new two dimensional Bitmap index.

(ii) Improve the storage performance of XML indexing

(iii) Querying the XML data in compressed format

(iv) Reduce the search time to query any XML data from XML document due to

dimensionality reduction.

4
o

1.5 Thesis Organization
The related work is given in chapter 2 that includes Three Dimensional Bitmap Indexing

Method, Toronto XML Indexing Method (Toxin), Inverted Index, XML Indexing and

Storage System (XISS).

Our proposed Two dimensional bitmap indexing method is given in chapter 3. This chapter

includes creation of two dimensional matrix from XML document, construction of bitmap,

flowchart of searching word, querying the bitmap, flowchart of query with multiple

attributes, example of query with multiple attributes, analysis of bitmap construction, analysis

of time complexity of the algorithm, analysis of AND OR query operations.

Experimental results and discussions are given in chapter 4. This chapter elaborates

memory requirements for various indexing methods and their graphical representation,

time requirements for various indexing methods and their graphical representation

word searching time and their relationship with words selectivity. Path construction

time is also given in this chapter.

Conclusion and discussion is given in chapter 5.

5

Chapter 2

Literature Survey

2.1 Introduction
[n this chapter we havc described various types of existing indexing methods. A Three-

dimensional bitmap indexing, Toronto XML indexing (ToXin), XML indexing and storage

system (X1SS), Inverted indexing are elaborated in this chapter. Three dimensional indexing

method requires large memOlY space, this method is time consuming for searching due to

more dimensionality. ToXin can be used for both forward and backward navigation starting

from any node. In this method XML database can be modeled as an edge-labeled graph. This

data model carries both data (in the nodes) and schema information (in the edge). Tree

traversal is not satisfactory because of forward and backward traversal of the tree. Inverted

indexing supports Boolean, proximity, and ranking queries efficiently. XISS/R system

includes a web based user interface, which enables stored docm!,ents to be queried via XPath.

An Xpath Query engine, which automatically translates XPath queries into efficient SQL

statements, multiple relational schemes for comparison, reporting of performance statistics.

2.2 Related Work
Michel et, a!. describe indexing XML data with Universal B-trees (UB-trees) [4] based on n-

dimensional space. This indexing method works at the lowest level of the XML data. Another

XML indexing and Querying data for regular path expressions is given in [5]. This method

poses a new challenge concerning indexing and searching XML data, because conventional

approaches based on tree traversal may not meet the processing requirements under heavy

request. This system is based on a numbering scheme for elements. Raghav Kaushik et, a!.

describe updates of structure indexes of XML data in [6]. This method is based on the notion

of graph bisimilarity. Updating XML data is presented in [7]. This method is based on a set

of basic operation for both ordered and unordered XML data. S. Abiteboul et, a!. describe

Inverted indexes of XML data in [9]. This method is based on the numbering of each word

and element path individually. From relation to semistructured data and XML are described

6

in [10]. Novel query facilities from structured documents are given in [14]. Dan Suciu et, al.

elaborates Index structure for path expressions, an efficient compressor for XML data and

adding structure to unstructured data in [11-13]. These methods work based on path indexing

of XML data. Rizzlo et. al. describe Restructuring documents, databases and webs given in

[15], that fully exploits the overall path structure of the database. Peter Buneman et, al.

describes query language for unrestricted data given in [17] and elaborates query language

and algebra for semistructured data given in [19]. In [18-23] it is described for quelY

optimization of ordered and unordered semistructured data.

2.3 Three Dimensional Bitmap Indexing Method
A Three-dimensional bitmap indexing, for XML is presented in [I]. This method is based on

element path calculation from root to each element, of each document. This system considers

a document database D. Each document D is represented in XML. So, D contains XML-

elements p, where p has zero or more terms w bound to it. Typical indexing requires a

frequency table that is a two-dimensional matrix indicating the number of occurrence of the

tenns used in documents. By generalizing this idea, this system uses a three-dimensional

matrix that consists of (d,p, w).

2.3.1 Organization
Element Path: Element Path, called "ePath," is a sequence of nested elements where the

most nested element is simple content element. For example, in Figure 2.1, Section.

subsection. Figure is an ePath, but section itself is not an ePath due to the top element

<Section> does not have simple content.

Element Content: An XML-element contains (I) simple content, (2) element content, (3)

empty content, or (4) reference content As an example, consider an XML document as

shown in Figure 2.1. The element <presection> in line (9) has a simple content. The element

<Section> in line (I) has element content, meaning that it contains section, subsections,

presection as shown in lines (2) , (4) and (9) respectively. The element <verticalskip>

contains empty content. In line (3) there is a attribute source and an entity that representing

another file "foot.gif'.

7

(I) <Section>
(2) <section> XML is originated from </section>
(3) <footer sourccs="foot.gif "1>
(4) <subsection>

(5) <figure> http://www.a.b.c/syntax.xml </figure>
(6) <caption> XML Syntax </caption>
(7) <verticalskip I>

(8) </subsection>
(9) <presection> SGML was invented </presection>

(10) </Section>

Figure 2.1: XML Documcnt

D,:
<eo>

<e,> V, <Ie,>
<e2>
<e3> V2 V3 Vs </e3>

<e4> V2V3 Vs <le4>

<es I>

<e2/>

<col>

D2:

<eo>
<e,> VI <Ie,>
<e2>

<e3> V3 V7 </e3>

<e4>

<e6> V3 V7 <le6>

<e7> V3 V7 </e7>

</e4>

<le2>

<eg> V6 V'2 <leg>

<leo>

03:
<eo>

<e,> VlI <Ie,>
<e2>

<e3> V2 V7 <le3>

<e4> V3 Vg <le4>

</es>

<le2>

<eg> Vs <leg>

<leo>

Fignre 2.2: Example of XML Docnments

In Figure 2.2 is a set of simple XML documents. First, it is needed to define ePaths as

follows:pO=eO.e I, pI =eO.e2.e3, p2=eO.e2.e4, p3=eO.e5, p4=eO.e2.e4.e6, p5=eO.e2.e4.e7,

p6=eO.e8, p7=eO.e9, Vi is a(key) word that is chosen from simple content to be used for

search. Now, this system constructs a bitmap index. If a document has ePath, then set the

corresponding bit to I. Otherwise, all bits are set to O. For each ePath, documents can be

represented as shown in Figure 2.3.

8

Po PI P2 P3 P4 P, P6 P7

01 I I 1 1 0 0 0 0

O2 I 1 1 0 1 1 1 0

03 I 1 1 1 0 0 0 I

Figure 2.3: Presence of path in the corresponding documents

2.3.2 BitCube

XML document is defined as a set of (I', v) pairs, where I' denotes an element path (or ePath)

described from the root element and v denotes a word or a content for an ePath. Typical

methods of handling text-based documents use a frequency table or a inverted (or signature)

file that represents words for documents. However, since XML documents are represented by

XML elements (or XML tags), the typical methods are not sufficient. A BitCube for XML

documents is defined as BitCube = (d, p, v, b), where d denotes XML document, p denotes

ePath, v denotes word or content for ePath, and b denotes 0 or 1, the value for a bit in

BitCube (ifePath contains a word, the bit is set to 1, and 0 otherwise).

A BitCube for a set of documents: {dl, d2, d3, d4, d5}. Each documents d1={(pO, vI), (1'1,

v2), (1'1, v3), (1'1, v5), (1'2, v3), (1'2, v8) }, .., d3={(pO,v11), (1'1, v2), (1'1, v7), (p2, v3), (1'2,

v9) ... , (pi,vi2), (pi,vi3), (pi,vi4), ... , (pi,vij)), and so on. An example of Bitcube is given in

Figure 2.4. Thc approximate size of the BitCube is (docs*words*paths)/8 bytes, where docs

being the number of documents that are indexed, and paths in the chosen documents.

Fignre 2.4: Bitcube [1)
9

2.3.3 Critical Issues of Three Dimensional Bitmap Indexing

• In three dimensional indexing documents are stored in row wise

• Element paths are stored in column wise

• In another dimension that means in Z dimension, word information are stored

• As this indexing method is three dimensional, large memory space is required

• Also this indexing method is time consuming for searching due to more

dimensionality.

2.4 Toronto XML Indexing (ToXin)
Rizzlo et. al. describe indexing XML data with Toronto XML indexing (ToXin) in [2], that

fully exploits the overall path structure of the database in all query-processing stages based

on tree traversal. Most of the indexing schemes can only be applied to some query processing

stages whereas others only support a limited class of queries. ToXin fully exploits the overall

path structure of the database in all query-processing stages. It can be used for both forward

and backward navigation starting from any node. Support navigation of the XML graph to

answer any regular pat query.

2.4.1 System Description:
ToXin consists of two different types of index structure Value index and Path index.

Value index consists of a set of value relations that store the XML nodes and values

corresponding to an index edge. A value relation is created for each edge in the index scheme

that cOlTespondsto a set of XML nodes containing values. Path index has two components;

index tree and a set of instance functions.

Index Tree:
o For each edge, check whether the corresponding index edge has already

been added and adds it if it was not.

o It performs a depth-first traversal of the XML tree.

o Update the instance function for the current index edge by adding the pair

(parent node, child node).

10

A set of instance functions:

•
•
•

One for each edge in the index tree .

Keep track of parent-child relationship .

Each instance function is stored into two redundant hash tables: forward

and backward instance tables.

Construction of XML tree: An XML document is represented in Figure 2.5 that is

represented as a XML tree in Figure 2.6. XML database can be modeled as an edge labeled

graph called XML tree. This data model carries both data (in the nodes) and schema

information (in the edge). Each element path is considered as a edge. Each edge has two

nodes .. In Figure 2.5, BUET is the root element. In XML tree given in 2.6, BUET is

considered as an edge. The value of the node of this edge is started from 1. So the value of

the nodes of this edge is I and 2. Similarly CSE is an element path that is two times in XML

document given in Figure 2.5, within root element path BUET. Two edges are created for

CSE path, but their root is BUET, so nodes 2 and 3 form an edge also nodes 2 and 4 form

another edge. Similarly edges have been created for sub elements of course title, courseno

and year. In the leaf node of the tree all the values of the element paths are considered ..

Construction of ToXin tree and tables:

From the XML tree given in Figure 2.6 , ToXin tree is created given in Figure 2.7. In the

XML tree those edges have element path and their leaf nodes containing element value are

considered in ToXin tree as a Value table edge (VT edge). For example session element path

in Figure 2.6 have values 2003-2004 and 2002-2003, in ToXin tree this edgc is considered as

VTl. For each VT edge one value table will be created in ToXin table given in Figure 2.8. So

for session, a VT table is created that is VTl. This value table will store the value of element

path and their root node. For this in VTl node 3 and 4 is stored as it is the root node of the

session 2003-2004 and' session 2002-2003. Similarly for all other edges those have element

Values , value table will be created. Those edges in XML tree in Figure 2.6 have only

Element path will be considered in ToXin tree as a Instance Table edge (IT edge). For

example BUET element path is considered in ToXin tree as ITI edge. For each IT edge a IT

table will be created that will store thc parent child node for that edge. As for example for

BUET element path ITI table is crated and stores the parent node and child node 1 and 2.

11

Similarly for all IT edges a IT table will be created and similar types of information will be

stored.
<BUET>
<CSE>

<Session> 2003M2004 </Scssion>
<Course>

<Coursetitle> DSP </Coursetitlc>
<Courscno> CSE 423 </Courseno>
<Coursctitle> DSD </Coursetitle>
<Courseno> CSE 467 </Courseno>

<Courscno> CSE 461 </Courseno>
<Course>
<Year> 4th </Year>

<ICSE>
<CSE>

<Session> 2002-2003 <Session>
<Course>

<Coursetitle> Neural </Coursctitle>
<Courscno> CSE 433 </Courseno>
<Coursetitle> AI </Coursetitle>
<Courseno> CSE 477 </Courscno>

<Courseno/>
<Course>
<V ear> 4th <IV car>

<ICSE>
</BUET>

Figure 2.5: Examplc of BUET Databasc

BUET

2

f)SP CSE
423

f)Sf)

CSF

CSE
467

CSE
461

CSF

CSE
433

AI

Figure 2.6: Tree of XML database given in figure 2.5

12

BUFf
ITI

, CSE
"In

Course
o

V

~.' COURSE

~ IT3

VT4
VTl

Node Value
6 "CSE-423"
7 "CSE-467"
7 "CSE-461 "
10 "CSE-433"
11 "CSE-477"
I 1 "CSE-471 "

VT2
Node Value
3 "41J-1

4 "4TH"

Node Value
3 "2003-2004"
4 "2002-2003"

vn

Node Value
6 "DSP"
7 "DSD"
10 "NEURAL"
I 1 "AI"

ITI
In In

Parent Child
2

Parent Child
2 3
2 4

Parent Child
3 6
3 7
4 10
4 11

Figure 2.8: ToXin Tables

13

,

2.4.2 Query on ToXin Method
Considering the document given in Figure 2.5. Suppose it is required to find the word AI. In

this system for each element path, which has element value, a value table is crated. The

value table is numbered serially. The values of element paths are stored in this value table.

The root node of this element path is also stored in value table. AI is a value of element path

course name. VT3 is created for coursename. Then this system checks the Value Table

"VT3" to find out the node for "AI". We see the root node for "AI" is "II". Instance table

(IT table) keeps the parent child relationship of element path. To find out the Parent of the

node "[[" this system check the Instance Table. This node is stored in "IT3". It is clear that

the Parent node for the node "11" is the node "4". In this way the parent node for the node

"4" is "2" and the parent of the node "2" is the node" I" from Instance Tables IT2 and IT!

respectively. So the path for the word "AI" is Buet.CSE.course.courseno

2.4.3 Critical issues of the Toxin Method:
• Most of the indexing schemes can only be applied to a limited class of queries.

• ToXin fully exploits the overall path structure of the database in all query

processing stages.

• ToXin can be used for both forward and backward navigation starting from any

node.

• XML database can be modeled as an edge-Iebeled graph

• This data model carries both data (in the nodes) and schema information (in the

edge)

• Tree traversal is not satisfactory because of forward and backward traversal of the

tree
• For each word, this system search from root to each leaf node that IS time

consummg.

14

2.5 Inverted Index
Abiteboul S, Buneman P, Suciu D describe inverted indexing in [9]. Inverted index consists

of (wo kinds of index structure. These are constructed in the following way:

T-index: Text words are indexed in aT-index similar to that used in a traditional IR system.

T-index consists of following element:

1. Document Number (doc-no).

2. Word Number (word-no).

3. Level Number (level).

E-index: Elements are indexed in an E-index, which maps elements to inverted lists. E-index

consists of following element:

I. Document Number (doc-no)

2. Begin

3. End

4. Level Number (level)

2.5.1 Numbering Process
This system gives a number for each element or word sequentially. Consider the example

given in 2.8, the numbering is started from 1 and finished with 37. From the given Figure in

2.8 this system prepares the following two Element index and Text index given in Figure 2.9

and 2.10.

15

•

-. :~...

<DUET>

2
<student>

<Nam3e>

<First!,. Mahiud~in Maruf </First}

S .9 10
<Last> Sabblr </Last>

11
<!Name>

12
<Address>

<Stre~t~ Jubil~~Road%Stre~t

C.17 G . IS Ic.19< Ity> aZlpur < I y>

<Oivr~on> Ohaf<1 10
.22 .< IVlslon>

Z
.23

< IP>
26

<IAddress>
27 2S 29

<Tel> 880-2-9256591-1 56</Tel>

30 31 32
<Fax> 880-2-802768 <IFax>

33 34 35
<Mobile> 0176879879 </Mobile>

36
</student> <!DUET>

37

Figure 2.9: An XML docnment with numbering process

16

Element index:

<DUET> ---. (1,1:37,0)

< student> ---. (1,2:36,1)

<Name> ---. (1,3: 11,2)

<First> ---. (1,4:7,3)

<Last> ---. (1,8: 10,3)

<Address> ---. (1, 12:26,2)

<Street> ---. (1, 13: 16, 3)

<City> ---. (1,17:19,3)

<Division>---' (1, 20:22, 3)

<Zip> ---. (1, 23:25, 3)

<Tel> ---. (1, 27:29, 2)

<Fax> ---. (1, 30:32, 2)

<Mobile> ---. (1,33: 35, 2)

Figure 2.10: Element Index

Text Index:

Mahiuddin ---. (1,5,4)

Maruf ---. (1,6,4)

Sabbir ---. (1,9,4)

Green ---. (1,14,4)

Road ---. (1,15,4)

Gazipur ---. (1,18,4)

Dhaka ---. (1,21,4)

1700 ---. (1,24,4)

880-2-9256291---. (1, 28, 3)

880-2c802768 ---. (1, 31, 3)

0176879879 ---. (1, 34, 3)

Figure 2.11: Text Index

From Figure 2.9, DUET (1, 1:37,0) represents that 1 is the document number next 1 is value

of that word 37 is ending value of this document, 0 means level of that word in the document.

Similarly for Mahiuddin ---. (1,5,4) in case of text index, 1 is the document number next 5 is

value ofthat word, 4 is the level of that word.

2.5.2 Relational Schema to Store Inverted Index
DE-index and T -index can be mapped into the following two relations.

o ELEMENTS (docno, begin, end, level)

o TEXTS (term, docno, wordno, level)

ELEMENT table stores occurrences of text words. Each occurrence is stored as a table

row. Two tables given in Figure 2.12 and 2.13 are created from Figure 2.10 and 2.11

respectively.

17

/

Inverted
List

,
>v

Term DoeNa Begin End Level

Students 1 1 37 0

student 1 2 36 1

Name 1 3 11 2

First 1 4 7 3

Last 1 8 10 3

Address 1 12 26 2

Street 1 13 16 3

City 1 17 19 3

Division 1 20 22 3

Zip 1 23 25 3

Tel 1 27 29 2

Fax 1 30 32 2

Mobile 1 33 35 2

Figure 2.12: Element table

Term Doc no Word No Level

Sabbir 1 5 4

Inverted
~

Ahmed 1 6 4

List Sabbir 1 9 4

Jubilee 1 14 4

Road 1 15 4

Khu[na 1 18 4

Dhaka 1 21 4

6200 1 24 4

880-2-9256291 1 28 3

880-2-802768 1 31 3

0176879879 1 34 3

Figure 2.13: Text table

18

2.5.3 Query Process in Inverted Index Method

Suppose it is required to find the word Dhaka. We have considered the Figure given in 2.9.

This system finds the word "Dhaka" from the Text-table.

For the word "Dhaka"

Doc-no = I

Word-no = 21

Level = 4

Since the level of word is always define by the (level of element + I).
Now level 3 of element is checked to find out the Begin and End number of the element and

corresponding document number. The value 21 is between 20 and 22.

Doc-no = I

Begin = 20

End= 22

Level = 3

2.5.4 Critical Issues of Inverted Index Method

• Inverted list is well suited 10 containment queries. It supports Boolean, proximity,

and ranking queries efficiently.

• Classic inverted index data structure that maps a text word list, which numerates

documents containing the word and its position within each document.

• Text words are indexed in a T-index similar to that used in a traditional IR system

• Element are indexed in an E-index, which maps elements to inverted lists.

• Elements table stores occunences of XML elements

• Text tables stores occunences of text words

• Each occunence is stored as a table row.

19

2.6 XISS/R: XML Indexing and Storage System Using RDBMS
Philip J Harding, Li Q, Moon B., describe "XISS/R: XML indexing and storage System

Using RDBMS." is presented in [3]. XISS/R system based on the XISS extended preorder

numbering scheme, which captures the nesting structure of XML data and provides the

opportunity for storage and query processing independent of the particular structure of the

data. The system includes a web base user interface, which enables stored documents to be

queried via Xpath. The user interface utilizes the xpath query engine, which automatically

translates Xpath queries into efficient SQL statements. So the features of the XISS/R system

include:
o A web based user interface, which enables stored documents to be queried via

XPath.

o An Xpath Query engine, which automatically translates XPath queries into efficient

SQL statements.

o Multiple relational schemes for comparison.

o Reporting of perfonnance statistics.

2.6.1 System Description
The XISS/R system consists of three components:

I. A mapping of XML data to relational schema, which is accomplished by using the

extended preorder numbering scheme.

2. An Xpath query engine, allows Xpath quenes to be issued on the relational

implementation of the mapping of XML data.

3. A web-based user interface.

2.6.2 The Extended Preorder Numbering Scheme
The extended preorder numbering scheme associates each node in an XML document with a

pair of numbers, the extended preorder and the range of descendents «order, size >, which

should satisfy the following condition:

• For a tree node y and its parent x, order (x)< order (y) and order (y) + size (y)";

order (x) + size (x).
• For two sibling nodes x and y, if x is the predecessor ofy in preorder traversal,

order (x) + size (x) < order (y).

20

I
~

• Both elements and attributes use the order of the<order, size> pair as their

unique identifier in the document tree.

For a tree node x, size (x) can be an arbitrary integer larger than the total number of the

current descendents of x. This allows future insertions to be accommodating gracefully. The

ancestor- descendent relationship can be determined in constant time by examining three

pairs of numbers. That is, for two given nodes x and y of a tree T, x is an ancestor of y if and

only if order (x) < order (y) ,,; order (x) + size (x).

1. The Document Table consists of the Name of a document and a unique numerical

Document ID .

2. The Element Table stores all element nodes.

3. The Attribute Table stores attribute nodes. The

Value stores the attribute value.

4. The Text Table stores text nodes (not text values)

Within the system, Value stores the actual text. In this schema, a Document Table is a simple

way to separate the document name from the element, attribute, and text relations. The

element, attribute and text relations store a reference to the numerical ID of the document for

each node. In the Element, Attribute, and Text tables, Order and Document ID uniquely

identify any node within the system. Since all attribute nodes have a corresponding text value

(or empty) string, this value is stored with the attribute node, further reducing query time.

(Order, size)

(11,5) (17,5) (25,5) (45,5)

Fi!!ure 2.14: Preorder uumbcriu!! scheme

21

(

Element table-I

Doc id
Order
Size
Tag_Name.
Depth
Child id
Next id
Attid

Attribute table-l

Doc_id
Order
Tag_Name
Depth
Parent id
Next id
Att id

TextTable

Doc id
Order
Tag_Name
Depth
Parent id
Next id
Attid

Document Table

Doc id
Name

Figure 2.15: Tables ofXISS/R system (Primary keys in bold)

2.6.3 Relational Schema
The numbering scheme provides a unified way to store the structural relationship ox XML

data. However, there are a number of options for storing other necessary data from XML

documents alongside such structure data. We investigate several key issues that can affect the

storage and query performance:

• How to store element and attribute nodes.

• How to store tag name values.

* How to store value string information for text and attribute nodes.

* for different scheme, what kind of indexes are needed.

XISS/R requires five pieces of information for each node stored in the system, they are

doc_[0, order and size of a node in the numbering scheme, depth of a node in document tree,

tag-name ant text value of as node

X[SS/R divides nodes into three categories, element, attribute and text.

I. The Document Table consists of the Name of a document and a unique numerical

Doc 10.

2. The Element Table stores all element nodes.

3. The attribute table stores attribute nodes. The Value stores the attribute value.

4. The Text Table stores text nodes within the system. Value stores the actual text.

22

{

2.6.4 The Index Structure and Data Organization
There are three major components in the Index Structure and Data Organization. These are:

1. Element index

2. Attribute index

3. Structure index.

Two other components are name index and value table.

Name index: all distinct name strings are collected in the name index (identified by nid).

Value table: all string values (i.e. attribute value and text value) are collected in value table.

Document Identifier: Each XML document is also assigned a unique document identifier

(did).

XML
DATA

Document
Loader

QUERY Query
Processor

XISS
Structure
Index

Paged Files

RESULT

2.7 Conclusion

Figure 2.16: Indexing Structure Overview

In this chapter, various methods of existing indexing schemes are described. For each method

query system, the system structure and the critical issues are described. In three indexing

dimensional bitmap indexing large memory space is required. Also this three dimensional

indexing method is time consuming for searching due to more dimensionality. In ToXin

method, tree traversal is not satisfactory because of forward and backward traversal of the

tree. In ToXin it is required to search from root to each leaf node that is time consuming. In

inverted indexing, inverted list is well suited to containment queries. It supports Boolean,

proximity, and ranking queries efficiently.

23

(

Chapter 3

Proposed Two Dimensional Bitmap Indexing Method

3.1 Introduction
In three-dimensional Bitmap indexing, three-dimensional matrix is required to store element-path,

word and document number. In two-dimensional indexing we require only a two-dimensional

matrix, which can store element-path, existence of word and document number. This system creates

a new column to get a new path from XML document. To get each distinct word within that path, a

new column within that path boundary is created. There is a negative sign before path number to

distinguish from token value. This system will set a I to the corresponding document number, when

any word is present in that document number. If there is path repetition among documents no new

column will be created. Only the token value of the word within that path will be stored. This

proccss continues for all XML documents and a two dimensional matrix is created

3.2 Creation of Two-Dimensional Matrix from XML Document
To describe the creation of two-dimensional matrix from XML document we have considered

XML documents given in Figure 3.1.

DOCIlIlll'llt-1

<Contacts>
<Conine!>
<Name>

<First> John Robert <!First>
<L,lSt> Pettit </Last>

</Name>
<Address>
<Street:> Green Road </Strcet>
<City> Dhaka </City>
<State> Dhaka <!SlatC>
<Zip> 6200 </Zip>

</Address>
<Tel> 880-2-9256591-156<ffcl>
<Fa.,,> 880-2-802768 </fax>
<,vlohllc> 0176879879 </Mobilc>

<JC,1!1wct>
</Contncts>

Document-2
<Contacts>

<Conine!>
<Name>

<First>Kelly Paul <lFirSI>
<last> Robert <llasl>

<1Namc>
<AddresS>

<City> Dhaka </City>
<State> Bangladesh </Slalc>

</Address>
<Publication>" Indexing
ofXML datu Using Two
dimensional Bihllap
</Publicntion>

<lContnct>
</Contacts>

l)ocumcnt-3
<Contacts>
<Contact>
<Name>
<First> Balagurusruny<lFirst>
<last> Kelly <IIast>

<Name>
<Address>
<City> Khulna <lCity>
<State> Dhaka <lState>

<AddresS>
<lContact>

<lContactS>

DOClIIllcnt.4
<Db.Main>
<Db>
<Books Info>
<ritle> Database Mgt System

<{fitle>
<Author>
<I''> K0l1h <II">
<2od> J,5. Martin <12"">
<3'"> Elmasn <13'">
<IAuthor>
<Keyword> 5QL, Funt

Dependency, Transaction, Os System
<lKeyword>
<lBook Info>
<Book Info>
<ritle> !nfonnation Mgt System
<{fillc>
<Author>
<[">J$, Marlin <II">
<2nd> K0I1h <12,"1>
</Author>
</Book Info>
<lOb>

</Db.Main>

Figure 3.1: Example ofXML documents.

24

For each distinct word from XML documents given in Figure 3.1, this system creates a

token-number that is stored in token dictionary and the corresponding distinct word is

also stored in token dictionary. Path-number are also created in this system serially for all

distinct paths from XML documents. This path-number and its contents is stored IS

element-path dictionary. Token dictionary and element-path dictionary are given in

Table 3.1 and in Table 3.2.

Table 3.1: Word dictionary Table 3.2: Element-path dictionary

Token-number Words

I Contacts. contact. Name. First
2 Contacts ,contact. N nine. Last

3 Con lacts. contact.Address. Street

4 Contucts ,cont.uct.Addrcss. City

5 Contacts. contact.Add ress. State

6 Contacts .contact.Addres s .zip

7 Contacts.contact.Tel

8 Contacts.contact.Fax

9 Contacts.contact. Mo bile

10 Contacts. con tact Publ ication

II Db.Bookinfo.Title

12 Db.Bookinfo.Author.l st

13 Db. Booki nfo.Author. 2nd

14 Db. Book in fo. Aulhor.3 rd

15 Db.Bookinfo.Kcyword

I John
2 Robert
3 Pettit
4 Green
5 Road
6 Dhaka
7 6200
R 880-2-9256591-156
9 880-2-802768
10 0176879879
II Ke~
12 Paul
13 Banpladesh
14 lndcxin!!
15 Of
16 XML
17 data
18 Usi~
19 Two
20 dimensional
21 Bilman
22 Baln"urusam
23 Khulna

" Databnsc
25 Mgt
26 System
27 Korth
28 J.5.
29 Martin
30 Elmasri
31 SQL
32 Funt
J3 Dependency
34 Transaction
35 Ds
36 Information

Path-number Contents

Considering Document-I, Document-2, Document-3 and Document-4 glven III Figure-3.1,

Conlacts.contact.Name.First path is created and its path number is assigned land it is stored

in Table 3.2. Similarly all the paths are created and their path numbers are assigned and

stored in path dictionary in Table-3.2. For word John, 1 is assigned its token value and all the

25

(

tokens are created for all the distinct words serially and stored in token dictionary given in

table 3.1. Using Table-3.1 and Table-3.2, this system creates the following two dimensional

matrix given in Figure 3.2 step by step. This method can be implemented for any XML

documents. The first column is created only for document-number. It has two rows. In second

row there is a 1 represents the document number 1. To get each distinct path-number from

documents a new column is created for that path. This system set a negative sign in the first

row of the column, before the path-number and set a 1 in the second row of that column. The

I in the second row represents the path is present to the corresponding document number. To

get each distinct word from XML documents this system creates a new column for that word

within the path boundary. Similarly a I is set in the second row of the column, token number

is assigned to the first row ofthe column within that path boundary.

Stcp 1:
After getting the first path from Document, a matrix is created which has two rows and two

columns. In the first row of the second column a 1 is assigned for the path number. Also a

negative sign is assigned before the path number to distinguish from token number of the

word. In the second row of the first column a I is assigned that represents the document

number, in the second column of the second row another 1 will be assigned to represent the

presence of the path number. When any new word is found within that path number a new

column will be created and similarly I will be assigned as in before it is assigned. We have

considered the Figure 3.1.

Document-
number

Path-boundary

.1
1

Path number

Presence of the path in the corresponding document-numbcr

Figurc 3.2: Matrix to gct first path

26

r

Step-2:
Aller insertion of John, Token-number=lgiven in Table-I, from Document-I given in Figure-

3.1, the following matrix will be created. Here the second column is created from the

Figure given in 3.2. The first row of the second column is the token number ofthe word

John. In the second row of the second column a I is assigned to represent that the word

is present in the document number I.

Document-
number

Token-
number

1
1

Path-
bounda

-1
1

Path numher

Presenee of the word to the corresponding Document-number-l

Figure 3.3: Matrix to get the first word within first path

Step- 3:
Similarly aller insertion of Robert, Token-number=2 given in Table-I, from Document-number-I
given in Figure3.!

Path number

Presence of path in document

Document number Presence of word in document number

Figure 3.4: Matrix to get the second word within first path

Step- 4: Similarly this process continues until to get all words and paths from Document-I in
Figure-3.1 and the two dimensional matrix is as follows:

-

I 2 -1 3 -2 4 5 -3 6 -4 6 -5 7 -6 8 -7 9 -8 10 -9

I 1 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1

Figure 3.5: Matrix to finish the first document

27

•

Step 5: Similarly this process continues until to get all distinct words and paths from

Document-I, Document-2, Document-3 and Document-4 given in Figure-3.1 and the following

two dimensional matrixes is created.
1 2 II 12 22 -I 3 2 II -2 4 5 -3 6 23 _4 6 13 -5 7 -6 8 -7

1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 17

2 0 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0

3 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0

4 0

, ,

" 9 -8 10 -9 14 15 16 17 18 19 20 21 -10 24 25 26 .11)

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 o <..
0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o "-
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1/

27 28 29 -12 28 29 27 -13 30 -14 31 32 33 34 35 26 -15

) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0< 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3.6: Two dimensional Token-Path-Word Matrix

3.3 Construction of Bitmap

The two dimensional Token-Path-Word matrix given III Figure 3.5 has got two

components; path-token matrix and word existence matrix.

Path-Token matrix:

The first row of the matrix in Figure 3.5 is the path-token matrix; the remaining rows

are the word existence matrix. In the path token matrix given in Figure 3.6 represents

the token number of the word and the path number. As for example 1,2, 11, 12,22 are

within path number -I, represents that path number 1 contains the above token number

of the word. From Table 3.1 it is seen that the words Jolm, Robert, Kelly, Paul,

Balagurusamy have the token number 1,2, II, 12,22 and from Figure 3.1 they are

within path number 1 in all documents.

Bitmap showing the word existence matrix:

In word existence matrix I represents the word IS present to the corresponding

document number, 0 represents the word is absent to the corresponding document

number. From Figure 3.7 this system transforms the matrix into blocks given in Figure

3.8.

28

39< 27

Figure 3. 7: Path_Token Matrix

47 48 49 50 51 52 53 54 55

1 1 1 0 0 0 I I 0 0 1 1 I I 1 0 I I 0 1 I 1 1 1 1 I 1 I o 0

~2 0 0 1 1 0 1 0 I 0 I 0 0 0 I 0 1 0 1 I 0 0 0 0 0 0 0 0 1 I

3 0 0 0 0 I 1 0 0 1 1 0 0 0 0 1 1 I 0 1 0 0 0 0 0 0 0 0 0 :)
4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0

0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 1 I 1 1 I 1 I 1 1 I I 1 1 I I

Figure 3.8: Bitmap showing the existence of word in documents.

Figure 3.3 is the first row of the matrix given in Figure 3.2. In this method we have

considered document number as page number and in each block there are 16 memory

cells. If there are less than 16 memOlY cells in a block of the matrix, this system takes

the rest of the cell in a block containing all zero. So in each block there are 16 offset

addresses starting from 0 to 15. This system converts the value of each block into

decimal form. During searching a word or path number this system calculate the

followings:

29

Block no = the index of token value of searching word /16. The offset address = the
index of token value token value of searching word %16. The path number = ABS

(negative value of path boundary).

For each block, this system converts the decimal value into binary form. If there is a 1

in the corresponding offset position of that word then the corresponding document

number is the document number for that word.

I 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 ~t>2 0 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1

3 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ~[>
4 0

"-------- ------_/ '-- -----_/V ------..y
Block-number 0 Block-number 1

0 0

1 1 1 1 1 1 0

0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1

'----------v--------------'''------ ----~/
Block-number 2 Block':;;"umber3

Figure 3.9: Divisiou of matrix into blocks.

The matrix given in Figure 3.8 is decimal form that is Bitmap converted from Figure-

3.9.

Document-number BIock-O Block-1 Block-2 Block-3
Document-I 50813 49120 0 0
Document-2 13693 24607 32256 0
Document-3 3267 40960 0 0
Document-4 0 0 511 65520

Figure 3.10: Decimal form (Bitmap)

Consider the value 50813.given in Block-O,this value is converted from the binary

representation of 110001100111101 from Figure 3.8. In such way all the values are

converted in Figure 3.9.

30

3.3.1 System Structure of Bitmap Indexing Method

The overall system structure is given in Figure 3.10. From different XML documents, this

method prepares two dictionaries, one is word dictionary and other is path dictionary. Word

dictionary stores all the distinct words and their token number, path dictionary stores all the

path number and path contents. From these two dictionaries and different XML documents

two-dimensional token-path-word matrix is created. This matrix is then splited into two

matrix. One is for word existence and other is for path boundary and token value. Word

existence matrix is divided into blocks; from this matrix bitmap is created.

Different number of XML
documents

Word dictionary Path Dictionary

Token
number

Distinct words

Two Dimensional
Doc_Tokeo_ Word_P~th
matrix Path

number

Token and Path Structure

Bitmap

Figure 3.11: System Structure Of Bitmap Indexing Method

31

3. 4 Searching XML Documents

From all the XML documents or out of the XML documents, any word is selected to search.

In this method the token number of the word from token dictionary is searched. If the token

number is found, path number is searched from path_token matrix .. Then the index of that

token number is calculated from path_token matrix. Block number is created from that index

value divided by 16. Offset position is calculated from the index value % 16. This system

then takes all the decimal values of bitmap matrix of the corresponding block number. Each

decimal value is converted into binary form and checked for a I in the calculated offset

position. If it is ok, the corresponding word is present in the document, otherwise it is absent.

AU the XML documents

Select any word

Search the token number of the word
from word dictionary

Token found?

No
t

Word not

No

Yes

Find the path number of that word from Path boundary and Token_number matrix

Find the Index of that Token number from Path_boundary and Token_number
matrix

Calculate Block_no= Index of that token I No_oCmemorycell_per_block
OffseCno= Index of that word %

Take all the values of that Block_no from Bitmap matrix

Convert that values into binary form

Check for 1 in that offset

The word is absent to the corresponding
document

Figure 3.12: Flow char! of searching word
32

The word is present to the corresponding
document

3.4.1Querying the XML Document Database with Example

To search anything with specification is represented as query. In our method we have the

following types of query are possible. To search any single word from XML documents

Searching with multiple attributes in the documents.

Example of searching any word is as follows:

Suppose we want to Query Dhaka as a City from the given documents in Figure 3.1.

Select City

From Documents

Where City="Dhaka"

The token number of Dhaka = 6 from token dictionary.

Index of that Token number = 13 from Figure-3 .

Block no = 13/16 = 0 , Offset address= 13 % 16 = 13 ,

The Token number 13 in Figure-3.2 is within path boundary 4.

In this path Dhaka is as a city. Path address = ABS (- 4}) = 4

Decimal value of block 0, Row-I = 50813 its binary is {llOOOllOOlllllOl}

Started from 0 15 .Binary value of offset address (13) = I, this is present in the Document

-1. So, we can decide that the word "DHAKA" as a City is now in DOCUMENT-I, PATH

4. Decimal value of block 0, Row-2(document-2) = 13693

Binary value=

o o o o o o o o o

Offset address (13) = I

So, we now decide that the word "DHAKA" is in now DOCUMENT 2 , PATH 4 TOKEN

N06.

Decimal value of block 0, Row- 3(document-3)= 3267

Binary value=

o 0 0 o o o o o o
1
o

Offset address(l3) = 0

So, we now decide that the word "DHAKA" is not in now DOCUMENT 3.
Decimal value of block 0,

Page 4(document-4)= 3267

Binary value=

o Il o o o o o o o

33

o o o o u o o

\

Offset address(13) ~ 0

So, we now decide that the word "DHAKA" is not in now DOCUMENT 4.
Suppose we want to Query Dhaka as a State from the given documents in Figure-I.

This system works as follows:

Select State

From Documents

Where State="Dhaka"

The token number of Dhaka = 6 from token dictionary.

Index of that Token number = 16 from Figure-3 As a state.

Block no = 16/16 = I , Offset address= 16 % 16 = 0,

The Token number 16 in Figure-3.2 is within path boundary 5

In this path Dhaka is as a State. Path address = ABS (- 5}) = 5

Decimal value of block I, page 0 (means document-I) = 49120 its binary is

o o o o o o

Started from 0 15 .Binary value of offset address (16) = 0, this is not present in the

Document -1. Searching result for word dhaka in Example-I. 1, using our method

Similarly this system can search any word from given xml documents.

Table 3.3: Word searching result

Word Name Doc no Path no Path address

0 4 Contacts .contact.Address. City

Dhaka 1 4 Contacts .contact.Address. City

0 5 Contacts .contact.Add ress.State

2 5 Contacts.contact.Address. State

34

-, •••••

3.4.2 Searching in Multiple Attributes

In this method, any portion of path name is selected and the specific value of the path is

selected. This method finds the path number from path dictionary and token from token

dictionary. If they are found, path-no and token-no are matched into path-token matrix. In

the path-token matrix, if the path-no and token-no are matched then the searching system

as like word searching system given in 3.4.

Select Path_Name and Searching value

No

Identify the Path-no from path dictionary

Match this Path-no and Token-no into Path Token matrix

Search in the Bitmap structure as in word searching system

Figure 3.13: System structure of Specific Query with multiple attributes

3.4.3 Example of Query with Multiple Attributes:

Select Title
From documents
where I ST author ="Korth" and 2ND author ="J.S.Martin"
This system finds the path number from path dictionary given in table-2. Path number of

1ST author and 2ND author is 12 and 13. If the path number of 1ST author is not found in

path dictionary then this system will back for new query. This system also finds the token

value of Korth from word dictionary. If it is found, then this system finds the token value of

Martin also from word dictionary. If the word is found then this system will check either

Korth is for 1ST author and Martin is for 2ND author from Path_Token matrix. The

35

token value of Korth is 27 and Martin is 29 from word dictionary for examplc givcn in

Figure-3.1. From Figurc-3.2 that is Tokcn]ath Matrix, we see that token 27 and 29 is under

path boundary 12 and 13. Path 12 and 13 are first author and second author from path

dictionary. Now this system will find in which documents these words exist. This searching

system is as like the word searching system that is explained in 3.6.

3.5 Analysis of Bitmap Construction
We have developed an algorithm to implement the method that is given in Figure-3.14 .

Path_Token _Dictionary is used to create word and path dictionary. Each distinct word and

distinct path has a separate token number and path number. The function

Two_Dimension_Doc_Token_Pathflatrix is used to create the matrix that represents

the word existence in documents. Bitmap matrix is the function used to create the

matrix that is in compressed format. All the queries are performed in bitmap matrix.

Algorithm BitmapJndexingO{
Path_Token_DictionaryO;
Two_Dimension _Doc_Taken_Path _MatrixO;
Bitmap matrixO; }

Figure 3.14: Bitmap Indexing

Path_ Token_Dictionary(){
While(!EOF(xmlJile)) do{
If (XML word) consist a startyath push this word onto a temporary path
table;
If (XML word) be a word without start & endyath then {
Push the word into token_dictionary _table with checking either exist or not;
If (/exist(token_ dic[XML_word)) then {

Store the word in the token_dictionary _table;
Return the token_no for the word and store it into temp_token_table; }

Else return the token_no for the word and store it into temp_taken_table; }
If (XML word) consists a endyath then {

CompareO; II this tempyath to the original path in the originalyath _table
If (XML word does not exist) then { Create a new path_no for this path;

Store this path to originalyath _table and return the path_no; }
Else return the only path_no for the existing path; }

If (two or more consecutive XML word;) consist endyath then
pop the top elementfrom tempyath_table; II no update is necessary

} II While }/Iend path_taken_dictionary

Figure 3.15: Path-to ken-dictionary

36

Two_DimensioJl_Doc_ TokeJl_Path_MatrixO{
IIfirst row of the matrix contain token &path_no IIfirst column contain document no
for each new path_Jlo do {
create a new column in doc_token yath _matrix;
store the negative value of path_no; II negative value to distinguish from token_value;

for each new tokell_ 110 within this path_no do {
create a new column in doc_tokenyath_matrix within this path_boundary;

insert the token_no within this path_no;
insert 1 to the corresponding document; } }}

Bitmap_MatrixO{

X=the no_oLbitsyer_blockfrom user
1ndex=Find_index_tokenO; II return the index of searching token_no from doc_token yath

matrix
Block_no=index I X;
Offset=index % X;
jor each Block of doc_tokenJJath matrix do {Convert binary to decimal;

store the decimal value into Bitmap_table; }
for each row of the Bitmap_table do { II row represent block nocolumn represent document.

If (the decimal value) of the block_no consist '1 ' in the offset positioll then
searching word i;found to the corresponding document; }

liTo get path _no search from the index of searching token, in thefirst row of the
doc_tokenyath_matrix untilfound a negative value, ABS(negative value) is path_no.}

Figure 3.17: Bitmap_matrix

3.6 Analysis of Time Complexity of the Algorithm
Let us consider, W be the total no of distinct words, P be the total no of distinct path, and D

be the number of documents.

Minimum time complexity of each method 0(1)

In three dimensional indexing, document is stored in one dimension, element path is stored

in another dimension and word information is stored in another dimension. So, time

complexity of three dimensional bitmap indexing is: O(W * P * D).
Average time complexity of three dimensional indexing is O(((W'P' D)+l) /2)

In our two dimensional indexing, the word information and path information is stored

together in row wise and document information in column wise. So, time complexity of two

dimensional bitmap indexing is: 0((W + P) • D).

37

/

Average time complexity of two dimensional indexing is O((((W+P)*D)+l) 12)

In our bitmap indexing word infOlmation and path information is stored together in row

wise and document information in column wise and there is a division by no_bits--per_block.

Here we have considered 256 bits per block that means 32 bytes. So, time complexity of

bitmap indexing is: O(((W+P) Ino_bits--per_block)*D).

Average time complexity of bitmap indexing is O((((W+P) Ino_ bits--per_block)*D)+ 1) 12)

3.7 Analysis of Time Requirements for Query Operations
We have considered 'AND' and 'OR' operation within the predicate of the query for the

analysis oftime requirement.

3.7.1 Analysis of Time Requirements for AND Operations

Let us consider, the total time requirements for word dictionary searching is Tdi" the time

requirement for path dictionary searching is Tpo1hand the time requirements for bitmap

searching is Tbitmap'

So total time requirements for single attribute ofa single word is Tq/wocd=Tdi,+ Tpoth+ Tbitmap

Tq(min)= Tdic, the time to search only the dictionary.

In case of multiple attributes where all conditions are true, time requirements is Tq (max)=

n*Tq/wocd, where n is the total number of attributes.

In case of multiple attributes of AND operation where any condition is false. This may

happen in three ways. If all the conditions are true except the last condition, if all the

conditions are true except first condition, if first condition and last condition are true but any

condition between first and last is false.

Time requirements (if all the conditions are true except the last condition) is

Tmlq= (n-I)*Tq/wocd+ Tdi" where n is the total number of attributes, here first (n-I) attributes

are present but last attribute is absent. So for last attribute the time is only dictionary

searching that is Tdi"

Time requirements (if all the conditions are true except the first condition) in case of multiple

attributes is T m2q= Tdi,,+ (n-l)*Tq/wo'd where n is the total number of attributes, here last (n-

I) attributes are present but first attribute is absent. So this time is only dictionary searching

that Tdie

38

Time requirements (if first condition and last condition are true but any condition between

first and last is false) is Tm3q=2* Tq/wonl + (n-2)*Tdle

In case of multiple attributes oLAND operation where any attribute is absent, the total time

requirements is Tandq=Tmlq + T m2q+ Tm3q

= (n-I)*Tq/wo'd + Tdie+ Tdie,+ (n-I)*Tq/wmd + 2* Tq/wmd + (n-2)*Tdie

= 2*(n-I)* Tq/wmd+ 2* Tdlc + 2* Tq/wmd+ (n-2)*Tdie

= 2* n*Tq/word - 2*Tq/word + 2* Tdic + 2* Tq/word + n*Tdic - 2*Tdic

= 2* n*T q/word + n*T die

Average time requirements for AND operations is: ((n+ I)/2)* Tq/wo'd

3.7.2 Analysis of Time Requirements for OR Operations

Let us consider, the total time requirements for word dictionary searching is Tdie, the time

requirement for path dictionary searching is Tpath and the time requirements for bitmap

searching is Tbitmap.

So total time requirements for single attribute of single word is Tq/wmd=Tdle+ Tpath+ Tbitmap

Tq (min)= Tdle, the time to search only the dictionary.

In case of multiple attributes where all the attributes are present, time requirements for OR

operation is Tq (m.,)= n*Tq/wmd, where n is the total number of attributes.

In case of multiple attributes of OR operation where any attribute is absent, this may happen

in three ways. If all the attributes are present except first attribute, if all the attributes' are

present except last attribute, if first and last attributes are present any attribute but any

attribute is absent between first and last attribute.

Time requirements (if all attributes are present except the last attribute) is

Tlo,q =max {(n-I)*Tq/wmd , Tdic} where n is the total number of attributes, here first (n-I)

attributes are present but last attribute is absent. So for the last attribute the time requirement

is only dictionary searching that is Tdle , max determines the maximum time between these

times.

Time requirements (if all attributes are present except the first attribute) in case of multiple

attributes is T',nq = max {Tdi', (n-I)*Tq/wm-d} where n is the total number of attributes, here

last (n-l) attributes are present but first attribute is absent. So for the first attribute the time

requirement is only dictionary searching that is Tdie_

39

Time requirements (if first and last attributes are present but any attribute between first and

last is absent) is T30cq= 2* Tq/wocd + (n-2)*Td/'

In case of multiple attributes of AND operation where any attribute is absent, the total time

requirements is

Tocq= max {(n-I)*Tq/wonl, Td/,}+ max {Td/" (n-I)*Tq/wo'd }+2* Tqiwo,d + (n-2)*Tdio

=2* max {(n-I)*Tq/wo'd, Td/,} + 2* Tq/wo,d + (n-2)*Td/'; where (n-I)*Tq/wocd> Td/,

= 2* (n-I)*Tq/wo'd + 2* Tq/wo,d + (n-2)*Td/,

= = 2* n*Tq/wo,'d + (n-2)*Td/'

The average case time requirements for OR operations is (Tq(mox)+Tq(m/n»)/2

From 3.72 and 3.71 we see that the time requirements of AND operation is greater that that of
OR operation.

3.8 Analysis of Memory Requirements for Various Methods

Let us consider, P be the total number of distinct element_Paths in whole document, W be

the total number of distinct words in whole document, D be the total number of documents .

For storing integer data needs 2 byte.

Memory needed for Word dictionary & Path dictionary is at lea~t 2*(W +P) bytes.

Memory needed for Token]ath_word_Matrix is (2*D*(P+W» bytes

So, For Existing three dimensional indexing needs total memory: 2* P* W* D bytes.

For Two dimensional indexing needs total memory:(2*D*(P+W) + W +P) bytes

For Bitmap Indexing needs total memory:((2*D*(P+W)116) +(W+P)) bytes.

Here we have considered 16 memory cells per block that means 32 bytes.

40

Chapter 4

Experimental Results and Discussions

4.1 Introduction
In this chapter we have explained memory requirements for three dimensional vs -our

proposed two dimensional bitmap indexing method. Time requirements of bitmap indexing

and three dimensional indexing are described also. Words selectivity and words searching

time are explained due to the variation of number of documents. This searching time

increases due to increasing the document number. Path construction time of different types

of file is explained in this chapter.

4.2 Experimental Setup
To implement our indexing method, we have used 2.6 GHz, Pentium-III processor system.

Initially we have used 256 MB RAM in turboC compiler which supports 640K RAM

including virtual memory, under Windows 98 operating system. Later on we have used

BorlandC compiler which is 32 bit compiler having 4 GB RAM, under Windows XP

operating system. We have used xml data repository from Internet given in [8] to implement

and test our system. The dataset contains the three different kinds of information in three

XML files namely the supplier infornlation, the aerospace information and personnel

information of an organization.

4.3 Memory Requirements for Various Indexing Methods
Using the dataset given in [8] we run our system and found the various numbers of words and

paths that is given in Table-4.1. In Table 4.1 the first column represents the serial number of

different datasets. In 2nd column there are three different datasets. Personal.xml dataset has

total 36 distinct words and 15 distinct numbers of paths. Similarly Lineitem.xml dataset has

100000 words and 20 distinct numbers of paths, Nasa.xml dataset has 200000 words and 50

distinct numbers of paths. Using these datasets and according to memory requirements

method given in 3.7, we found the table-4.2 and its corresponding graph is in Figure-4.1. In

41

Table-4.2 the first column represents the memory requirements for bitmap indexing of

Personal.xml, Lineitem.xmi and Nasa.xml respectively. The second column represents the

memory requirements for two dimensional indexing of Personal.xml, Lineitem.xml and

Nasa.xml respectively. Similarly the third column represents the memory requirements for

three dimensional indexing of Personal.xml, Lineitem.xml and Nasa.xml respectively. In

Table 4.2 the memory requirements for bitmap indexing is .51 MB and 195.31 for three

dimensional indexing in case of Nasa.xml dataset. So the ratio of memory requirements of

three dimensional vs bitmap indexing is about to 400: 1. This is because in case of memory

requirements of three dimensional indexing, all the paths are in one dimension, all the

documents are in another dimension and the word information are stored in the .third

dimension. But in bitmap indexing all the paths and words are in column wise and all the

documents are in row wise in a two dimensional matrix.

Table 4.1: Dataset from xml repository

SI-no Dataset No Of distinct words No Of distinct Paths- - - -

1 Personal.xml 36 15

2 Lineitem.xml 100000 20

3 Nasa.xml 200000 50

Table 4.2: Memory needed for various indexing methods

Dataset Bit-Map Indexing Two-Dimension Three-Dim ension(MB)
(MB) (MB)

Personal.xml 0.000124 0.000498 0.0042
Lineitem.xml 0.256 1.17 19.53

Nasa.xml 0.51 4.29 195.31

42

~:

c

VI

2
~
'"ClQl:2:
.=
~o
E
Ql:2:

1000 -

100 -

10 -
1

0.1

0.01

0.001

0.0001

0.00001

0.000001

Comparison of Memory Requirements

IliI Bitmap
1liI2D
!liJ3D

Personal.xml Lineitem.xml

Dataset

Nasa.xml

Figure 4.1: Comparison of Memory requirements for 3D, 2D and Bitmap indexing

4.4 Time Requirements For Various Indexing Methods
Using the dataset in Table 4.1, according to time complexity described in 3.6, we get the time

units of various indexing methods, given in table 4.3 and the corresponding graph is given in

Figure 4.2: Here is an example to calculate the time units. Suppose for dataset Nasa.xml, the

total numbers of distinct words are 200000, distinct element paths are 50 and the number of

documents are 10. The time units required for three dimensional Bitmap indexing are O(

200000 ' 50 ' 10) = 108 units time, as the time complexity of the three dimensional bitmap

indexing is O(documents' Paths 'Words). Similarly time units are calculated for each

indexing methods. Last column represents the ratio of the time units of 3D, 2D and bitmap

indexing. In Nasa.xml, the ratio of time units of 3D: 2D: bitmap is 800:16:1. This is because

time complexity of three dimension indexing is O(docume~ts' Paths 'words) and for bitmap

indexing is O(((W+P) /no_bits_per_block)'d). In our indexing method we have considered

256 bits per block that means 32 bytes.

43

:,r
~.

Table 4.3: Time unit needed for various indexing methods for various dataset

Dataset Average time Units for Average time Average time Ratio
three Three-Dimensional Units for Units for 3D:2D:bitmap

Indexing 2D Indexing BitmaD Indexing
1 2160 204 12.75 170:16:1
2 10' 500100 31256 320:16:1

3 lOS- 2000500 125031 800:16:1

Comparison of Time Units for Bitmap, 20 and 30

100000000

1000000
III~c
:J 10000ell
E
i=

100

1

.. -_ ..._ - - ..

~
1 -I ."..",: ,. , -
i I ,.., ,,

:, -I, -
~l:

.1
I

".,1 -Ii.- " -
~ I . I ..

I .' i
. 1

,F'fl: I .-~'',~.. '
"l]" 1.\ , i....:~-'"it, i'l

"~__r

(] Bitmap
15J2D
D3D

Personal.xml Lineitem.xml

Dataset

Nasa.xml

Figure 4.2: Graph of Time Comparison for 3D, 2D and Bitmap indexing

4.5 Word searching time
We have evaluated our indexing methods using dataset given in Table 4.2 to find the word

searching time. The searching time is given in Table 4.4.

Table 4.4: Word searching time

Dataset Words Searching time
in seconds

1 Supplier Name 5.86
1 SUDDlier Id 5.80
I Catcgorv 5.66
2 Positional item 5.25
2 International item 5.62
2 Local item 5.73
3 Photogrphic zones 5.92
3 AstrograDhic zone 5.84
3 Magnitude 5.67

44

4.6 Word Searching Time and their Selectivity in Documents
We have evaluated our indexing methods using Personal.xml (From xml data repository)

given in [8], to find the word searching time, percentage of word's selectivity in documents

given in Table 4.4. The relationship between words presence vs searching time is given in

Figure 4.3. In Table 4.4, the first column represents the different number of distinct words.

Second column represents their searching time in seconds. Third column represents there

are total number of documents 28, used to run our system. Forth column represents the

number of documents the word is present. Last column represents the selectivity of words

in percentage. In Figure 4.3 the y axis represents the searching time of different words

and the x axis represents the words selectivity in documents. The total graph

represents the searching time requirements is linear. The word ICCIT is absent in all

XML documents but searching time is .40 seconds. This searching time actually the time to

search from word dictionary.

Table 4.5: Word searching time and their selectivity in documents

Words Processors Searching Total .Words Percentage
Time in seconds no of selectivity in of words

docume documents selectivity
-nts

Dhaka 4.48 28 100 %
IEEE 3.75 26 92.85 %
ACMSIGMOD 3.56 28 25 89.28%
Al 3.25 23 82.14 %
TOHOKU 2.66 20 71.42 %
DATABASE 2.45 17 60.71%'
WASHINGTON 1.94 10 35.71%
VLDB 1.75 7 25 %
Newyork 1.55 5 17.85%

MIT 1.01 2 7.14%

BUET .86 1 3.57%
lCC1T .40 0 0%

45

Words selectivity vs Searching tim e

.

t
. ,..x .

X
~ .

~
.

~.

./ ,
11K"

5
4.5
4

Ql
E 3.5:;:;3
'"c: 2.5
.s:::
l:! 2
eu 1.5
c?J 1

0.5
o
o 10 20 30

Words selectivity

Figure 4.3: Searching time (sec) vs words selectivity Relationship

The word searching time, the percentage of word's selectivity in documents given in Table

4.5, and the relationship between words presence vs searching time is given in Figure 4.4

using dataset Personall.xml. In Table 4,5, the first column represents the different number of

distinct words. Second column represents their searching time in seconds. Third column

represents there are total number of documents 56, used to run our system. Forth column

represents the number of documents the word is present. Last column represents their

percentage. In Figure 4.4 the y axis represents the searching time of different words and the x

axis represents the words selectivity in documents. The total graph represents the searching

time requirements is linear. The word MIST is absent in all XML documents but searching

time is .82 seconds. This searching time actually the time to search from word dictionary.

Comparing Table-4.4 and Table-4.5, the percentage of words selectivity is almost same but

the total number of documents is double in Table-4,5 than that ofTable-4.4. So the searching

time is also almost double in Table-4.5 than that ofTable-4.4. But considering the Figure-4.3

and Figure-4.4 it is clear that the searching time is linear for the words given in Table-4.4 and

Table-4.5. The time complexity of bitmap indexing is : O«(W+P) /no_bits"'per_bloek)*D).

Where W be the total no of distinct words, P be the total no of distinct path, and D be the

46

number of documents. When D,Wand P increases the scarching time will be increased. So

comparing Table-4.5 and Table-4.4, the searching time of Table-4.5 is greater than that of

Table-4.4 as in Table-4.5 there are total number of 56 documents but in Table-4.4 only 28

documents.

Table 4.6: Word searching time and their sclectivity in largc documents

Words Processors Total no Words Perccntagc
Searching of selcctivity in of words

Time in seconds documents documents selectivitv
Paris 8.80 56 100%

ElT 7.40 54 96.42 %
Datawarehouse 7.10 56 53 94.64r~
Multimedia 6.32 47 83.92 %
Saitama 5.30 40 71.42 %
RDMS 4.90 35 62.5%
Graohics 3.85 20 35.71%
IPSI 3.45 15 26.78 %
LORDS 3.10 10 17.85 %
Stamford 1.95 2 3:57%
DUET 1.72 I '1.78%
MIST .82 I 0 0%

. _._.__ ._-_.--------------_._-------
Searching time vs words selectivity in documcnts

I
i 10
I 0

I 9-
I,

8-I ~
7'0

" "'0

"" 6~ .".: ,-
0

''t-o

2010 3'0 4'0 5:' - 6JO
Sclccli\'il)' of\\unb

. - - .._---_. ----- .- .. - -- -- - -------------

o
o

Figure 4.4: Searching time vs words selectivity Rclationship in large documcnts

47

4.7 Searching Time for Multiple Attributes:
We have evaluated our indexing method with the personal.xml data for AND and OR

operations given in Table-4.6 and Table-4.7

4.7.1 Query with AND operation:

In Table-4.6 first row represents query on the basis of different number of attributes. In

second row, the searching time of those queries are presented. There are total number of

documents is 30 to run these query. As for example in Table-4.6 the searching time of query

with single attribute is 3.35 seconds but the searching time of query with two attributes is

4.08 seconds and the searching time of query with three attributes is 4.39 seconds. It is clear

that the searching time of query with two attributes is more than the searching time of query

with three attributes. Also the searching time of query with three attributes is more than the

searching time of query with two attributes. This is because in multiple attributes there are

more condition to satisfy the query.

Table 4.7: Query in multiple attributes with AND operation

Sin~leattribute Two attributes Three attributes
Query Select Name Select Hall_Name, Room_no Select Dept, Year, Session

From all documents From all documents From all documents
Where Id~00414 Where Id=00414 and Name= Where Name=Alom and

Mohiuddin Hall name~K.N.l and Id~00414

Time in 3.35 4.08 4.39

seconds

4.7.2 Query with OR Operation:

In Table-4.7 first row represents query on the basis of different number of attributes. In

second row, the searching time of those queries are presented. As for example in Table-4.7

the searching time of query with single attribute is 3.35 seconds but the searching time of

query with two attributes is 3.75 seconds and the searching time of query with three attri.butes

is 4.25 seconds. Analytically we see in 3.7.2 the searching time of AND operation is more

48

than the searching time with OR operation. From Table-4.7 and Table-4.6 we see that the

experimental searching time of AND operation is more than that of OR operation.

Table 4.8: Query in multiple attributes with OR operation

Sim!le attribute Two attributes Three attributes
Query Select Name Select Hall_name, Dept Select Dept, Year, Session

From all documents From all documents From all documents
Where Id~00415 Where R00111_ 00=2009 or Id = Where Name=Alom or

00415 Hall_name~K.N.I orld~00414

Time in 2.92 3.15 3.84.
seconds

4.8 Path Construction Time
Our indexing method has been evaluated to find the path construction time using various

dataset given in Table-4.8. First column of Table-4.8 represent various dataset, in second

column there are total number of paths, in third column the file size of the dataset and the last

column represents the path construction time in seconds. From Table-4.8, it is clear that when

the file size increases path construction time also increases.

Table 4.9: Path construction time for various dataset

Dataset Total Path File size (M B) Path Construction time in seconds

Contact_info.xml 15 I. 16 4.21

Supplier. xml 26 2.2 6.25

Nasa.xml 50 5.6 11.18

49

4.9 Discussions

In case of memory requirements, from Table-4.1 and Figure-4.1, we see the memOlY

requirement for three dimensional indexing is 195.31 ME where as two-dimensional indexing

requires 4.29 MB and the bitmap indexing requires only 0.51 MB. The ratio of memory

requircments of three dimensional vs bitmap indexing is almost on the factor of 400: 1. This

improvement of memory requirement is the result of using compressed representation in our

method.

In time complexity analysis the ratio of average time unit among 3D, 2D and bitmap is

800:16:1 in case of dataset Nasa.xml. The word ICCIT and MIST given in Tahle-4A and

Table-4.5 are absent in all XML documents but their searching times are 0040 seconds and

.82 seconds respectively. These searching times actually the time to search from word

dictionary. In Figure-4.3 and Figure-4A, the x axis represents the searching time of different

words and the y axis represents the words selectivity in documents.

Comparing Table-4A and TabIe-4.5, the percentage of words selectivity is almost same but

the total number of documents is double in Table-4.5 than that of Table-4A. So the searching

time is also about double in Table-4.5 than that of Table-4A. Considering the Figure-4.3 and

Figure-4A, it is clear that the searching time is linear for the words given in Table-4A and

Table-4.5. The time complexity of bitmap indexing is: 0 «(W+P) /no_bits-.Jler_block)*D).

Where W be the total no of distinct words, P be the total no of distinct path, and D be the

number of documents. When D, Wand P increase the searching time will be increased. So

comparing Tab1e-4.5 and Table-4A, the searching time of Table-4.5 is greater than that of

Table-4A as in Table-4.5 there are total number of 56 documents but in Table-4A only 28

documents.

Analytically we see in 3.7.2 the searching time of AND operation is more than the searching

time with OR operation. From Table-4.7 and Table-4.6 we see that the experimental

searching time of AND operation is more than that of OR operation. From Table-4.8, it is

clear that when the file size increases path construction time also increases. ,j

50

Chapter 5

Conclusions.

5.1 Introduction
Semistructured databases unlike traditional databases do not have a fixed schema, largely

evolving, self-describing and can model heterogeneity more naturally than either relational or

object-oriented databases. Example of such self-describing data is XML. XML is a standard

for representing and exchanging information on the Internet. Querying XML data requires an

efficient indexing method. Conventional indexing methods such as Sparse and Dense

indexing, Hashing, B+ trees are not satisfactory as the size of XML documents are very large

and their types are different. So Bitmap indexing plays an important role for XML data.

Existing three-dimensional bitmap indexing of XML data requires large space. At the same

time, querying oflarge XML documents database is difficult. To overcome these limitations,

we have developed an indexing scheme of XML data using a two-dimensional Bitmap,

providing the facility to store element-path, token and documents in a two dimensional

matrix. This system contains two dictionaries; one is element-path dictionary having all the

distinct element paths for all XML documents and another token dictionary containing token

values for the distinct words. This indexing scheme creates a token-path-document matrix;

showing the existence of XML data in specific document and in appropriate path. In this

thesis we present how XML data, its path and document can be stored in a two dimensional

bitmap. and describe its perfonnance over three dimension.

5.2 Contributions:
The main contribution of this thesis work is as follows:

• Reduction of dimension in index structure: In three-dimensional Bitmap

indexing, three-dimensional matrix is required to store element-path, word and

document number. Same infornlation we can represent using a two dimensional

structure.

51

• Impl"ovement of storage performance: The ratio of memory requirements of

three dimensional vs bitmap indexing is almost on the factor of 400: I.

• Improvement of query performance: Reduction of search time to query any

XML data from XML document due to dimensionality reduction. In time complexity

analysis the ratio of average time unit among 3D, 2D and bitmap is 800:16:1 in case

of dataset Nasa.xml.

• Querying the XML data in compressed format: In this indexing method

we can query the XML data in compressed fomlat

In three-dimensional Bitmap indexing, three dimensional matrix is required to store element-

path, word and document number. In two-dimensional indexing we require only a two-

dimensional matrix, which can store element-path, existence of word and document number.

This system creates a new column to get a new path from XML document. To get each

distinct word within that path, a new column within that path boundary is created. There is a

negative sign before path number to distinguish from token value. This system will set a 1 to

the corresponding document number, when any word is present in that document number. If

there is path repetition among documents no new column will be created. Only the token

value of the word within that path will be stored. This process continues for all XML

documents and a two dimensional matrix is created.

5.3 Future work

A well structured XML documents must have the following properties:

It contains one or more elements. It has just one elements (root element) that contains all the

other elements. Its elements are properly nested inside each other (no element starts in one

element and ends in another). The names used in its element start tags and end tags match

exactly. The names of attributes do not appear more than once in the same element start tag.

The values of its attributes are enclosed in either single or double quotes. The values of its

attributes do not reference external entities, either directly or indirectly. Its entities are

declared before they are used. In our two dimensional bitmap indexing method, to search any

word or any query it is required well structured XML documents. There is further scope to

52

develop two dimensional bitmap indexing method for XML documents not in well structured

form
During parsing of XML document we have considered that the document is syntactically

correct. This is not always true in practice. The parsing method can be improved to handle the

case where the documents are not syntactically correct.

53

REFERENCES
[I]. Yoon PJ, Raghavan V, Chakilam V. A Three-Dimensional Bitmap Indexing for

XML Documents. In Journal of Intelligent Information Systems, Vol. 17, pages 241-

254, November, 200J.

[2]. Rizzlo F, Mendelzon A. Indexing XML data with ToXin. In research report, pages

31- 49, University of Toronto, Department of Computer science, CA, 200J.

[3]. Philip J, Li Q, Moon B. XISS/R: XML indexing and storage System Using RDBMS.

In proceedings of the 291h VLDB conference, pages 1073-1076, Berlin, Gernlany,

2003.

[4]. Kratly M, Pokorny J, Snasel V. Indexing XML Data with UB-trees. In research

report, pages 155-164, department of Computer Science, VSB-Technical University

of Ostrava, Czech Republic, 2002.

[5]. Quanzhong Li, Bongki M. Indexing and Querying XML data for Regular Path

expressions. In proceedings of the 2ih VLDB conference, pages 361-370, Roma,

Italy, 200 J.
[6]. Raghav K, Bohannon P, Jeffrey F, Shenoy P. Updates for Structure Indexes of XML

data. In proceedings of the 281h VLDB conference, pag~s 239-250, Hong Kong,

China, 2002.
[7]. Tataarinov I, Zachary G, Alon H, Daniel S. Weld. Updating XML Data. In ACM

SIGMOD 2001, pages 413-424, May 21-24, Santa Barbara, California, USA.

[8]. http://www.cs.washington.edu/research/xmldatasets/www/repository.htm I

[9]. Abiteboul S, Buneman P, Suciu D. Inverted index, In Proceedings of the

International Conference on Database Theory, pages 377-395, 2000.

[10]. Abiteboul S, Buneman P, Suciu D. Data on the Web: from relations to semistructured

data and XML. Morgan Kaufmann, 1999.

[11]. Milo T, Suciu D. Index structures for path expressIOns. In Proceedings of the

International Conference on Database Theory, pages 277-295, 1999.

[12]. Liefke H, Suciu D. XMill: an efficient compressor for XML data. In Proceedings of

the ACM SIGMOD International Conference 011 Management of Data, pages 153-

164,2000.

54

http://www.cs.washington.edu/research/xmldatasets/www/repository.htm

[13l Buneman P, Davidson B,Hillebrand G, Suciu D. Adding structure to unstructured

data. In Proceedings of the International Conference on Database Theory, pages 336-

350,1997.

[14]. Christophides V, Abiteboul S, C1uetS, Scholl M. From structured documents to novel

query facilities. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 313-324,1994.

[15]. Arocena G, Mendelzon A. WebOQL: Restructuring documents, databases and webs.

Proceedings of the IEEE International Conference on Data Engineering, pages 24-33,

1998.
[16]. Abiteboul S, Quass D, McHugh J, Widom J, Wiener J. The Lorel query language for

semistructured data. International Journal on Digita Libraries, I(I): 68-88, April 1997.

[17]. Buneman P, Davidson S, Hillebrand G, Suciu D. A query language and optimization

techniques for unstructured data. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 505-516, 1996.

[18]. Fernandez M, Florescu D, Levy A, Suciu D. A query language for a web-site

management system. SIGMOD Record, 26(3): 4-11,1997.

[19]. Buneman P, Mary F, Suciu D. UnQL: a query language and algebra for

semistructured data based on structural recursion. VLDE Journal 9(1): 76-110,2000.

[20]. Christophides V, Cluet S, Moerkotte G. Evaluating queries with generalized path

expressions. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, 413-422,1996.

[21]. McHugh J, Widom J. Query optimization for semistructured data. Technical Report,

Stanford University, 1997.
[22]. McHugh J, Widom J. Query Optimization for XML. Proceedings of the International

Conference on Very Large Databases, pages 315-326,1999.

[23]. Liefke H. Horizontal query optimization on ordered semistructured data. Informal

Proceedings of the International Workshop on the Web and Databases, pages 61-66,

1999.

55

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065

