Indexmg of Extensible Markup Language Data Using a

Two Dlmensmnal Bitmap

Submitted by

B.M. Monjurul Alom
Student ID: 100105019 P

A thesis submitted to the Department of Computer Science and Engineering in partial
fulfillment of the requirements for the degree of

Master of Science in Engineering in

Computer Science and Engineering

Supervised by
Dr. A.S.M. Latiful Hoque
Associate Professor, Department of CSE, BUET.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA
NOVEMBER 2005

-

i 'uﬂm{l“uiiunimnl|||||m

)

- T




The thesis “Indexing of Extensible Markup Language Data Using a Two
Dimensional Bitmap”, submitted by B.M. Monjurul Alom, Roll No. 100105019P,
Session October 2001, to the Department of Computer Science and Engineering,
Bangladesh University of Engincering and Technology, has been accepted as satisfactory
for the partial fulfillment of the requirements for the degree of Master of Science in
Engineering (Computer Science and Engineering) and approved as to its style and

contents. Examination held on November 20, 2005.

Board of Examiners

. v .M\\[o{

Dr. Abu Sayed Md. Latiful Hoque Chairman
Associate Professor (Supervisor)
Department of CSE

BUET, Dhaka—1000

- ﬂ/wrsvao//ﬁz -

2
Dr. Muhammad Masroor Ali Member
Professor and Head (Ex—officio}
Department of CSE

. BUET, Dhaka-1000

MW
3.

Dr. Md. Mostofa Akbar Member
Assistant Professor

Department of CSE

BUET, Dhaka-1000

4, M. O Lolon

Dr. Md. Monirul Islam Member
Associate Professor
Department of CSE
BUET, Dhaka—1000

Dr. Md. Mahbubur Rahman Member
Associate Professor and Head 1
CSE Discipline (EXtema )
Khulna University

Khulna,



Declaration

1, hereby, declare that the work presented in this thesis is thé outcome of the investigation
performed by me under the supervisor of Dr. A.S.M. Latiful Hoque, Associate Professor,
Department of Computer Science and Engineering, Bangladesh University of
Engineering and Technology, Dhaka. I also declare that no part of this thesis and thereof

has been or is being submitted elsewhere for the award of any degree or diploma

Countersigned Signature

2a-U-0%5
(Dr. A.S.M. Latiful Hoque) ' B.M. Monjurul Alom

Supervisor



Abstract

Extensible Markup Language (XML} is a standard for representing and exchanging
information on the Internet. Storing and querying of XML data has created new challenges
for conventional relational database management system. This is because XML has no fixed
schema, rapidly evolving, self-describing and their types are different. For these reasons,
conventional indexing methods such as sparse and dense indexing, hashing and B+ trees are

not satisfactory for XML data. Bitmap indexing is suitable for XML data. But the existing

three-dimensional bitmap indexing method for which the space requirement is high and time

consuming for searching the database.

To overcome these limitations, we have developed a Two Dimensional Bitmap Indexing
scheme for XML data that improves the storage performance of XML data, reduce the search
time to query any XML data from XML document, and improve the query performance. Our
system stores XML data in a compressed form and query can be. performed in this
compressed representation. Storage improvement is on the average of a factor of 400:1
compared to the similar three dimensjonal approach. We have significant performance

improvement in query processing as well.

-t



Acknowledgment

First and foremost, I would like to thank my supervisor Dr. A.S.M. Latiful Hoque, Associate
Professor, Department of Computer Science and Engineering,, for his invaluable support and
advice. His patience and insight to point out my mistakes forced me to become more TIgOrous
in my reasoning. His guidance was always invaluable in all stages of my thesis work. I

consider myself lucky for having the chance to work with him.

I would also like to thank Dr. Md. Masroor Ali, Professor and Head, Department of
Computer Science and Engineering, BUET Dhaka, for his wiHingness to encourage me. I am
grateful to Dr. Mahbubur Rahman, Associate Professor and Head, Computer Science and
Engincering Discipline, Khulna University for his generous consent to become the external
examiner with his very busy schedule. I also thank Dr. Md. Monirul Islam for his comments
that have made the thesis a valuable one. I would like to thank Dr. Md. Mostafa Akbar for
helping me in all aspects of my research. I am also grateful to the Alberto Mendelzon for

valuable research paper.

I am also in debt with my parents, for helping me to become who I am. I dedicate this thesis

to them.

II



Contents

Abstract
Acknowledgement
List of tables

List of figures

CHAPTER 1: INTRODUCTION

1.1 Introduction .
1.2 Overall structure of the method
1.3 XML Representation
1.3.1 Characteristics of XML Documents
1.3.2 Structure of XML Documents
1.3.3 Application of XML Documents
1.4 Objectives

1.5 Thesis Organization

CHAPTER 2: LITERTURE SURVEY

2.1 Introduction

2.2 Related works

2.3 Three Dimensional Bitmap Indexing Method
2.3.1 Organization
2.3.2 Bitcube

2.4 Toronto XML Indexing Method (Toxin)

2.5 Inverted Index

2.6 XML Indexing And Storage System (XISS)

2.7 Conclusion

CHAPTER 3: PROPOSED 2D BITMAP INDEXING METHOD

3.1 Introduction
3.2 Creation of Two Dimensional Matrix from XML Document

3.3 Construction of Bitmap

III

Page no

I

VI

L U N U VS TS VS

[

(Vo TN o S ) S« T =)

13
20
23

24

24
24
28




3.3.1 System Structure of Bitmap Indexi}lg
3.4 Searching the XML Document
3.4.1 Querying the XML Document Database
3.4.2 Searching in Multiple Attributes
3.4.3 Example of Query with Multiple Attributes
3.5 Analysis of Bitmap Construction
3.6 Analysis of Time Complexity of the Algorithm
3.7 Analysis of Time Requirements for Query Operations

3.8 Analysis of Memory Requirements of the Algorithm

CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1 Introduction

4.2 Experimental Setup

4.3 Memory Requirements for Various Indexing Methods
4.4 Time Requirements for Various Indexing Methods

4.5 Word searching time

4.6 Word Searching Time and their Selectivity in Documents
4.7 Searching Time for Multiple Attributes

4.8 Path Construction Time

4.9 Discussions

CHAPTER 5: CONCLUSIONS
5.1 Introduction

5.2 Contributions

5.3 Future work

REFERENCES

v

31
32
33
35
35
36
37
38
40

41

41
41
41
43
44
45

48

49

50

51

51

51
52

54

Nt



List of tables

3.1 Word Dictionary

3.2 Path Dictionary

3.3 Word Searching Result

4.1 Dataset from XML Repository

4.2 Memory Needed for Various Indexing Methods

4.3 Time Unit Needed for Various Indexing Methods for Various Dataset
4.4 Word searching time

4.5 Word Searching Time and their Selectivity in Documents

4.6 Word Searching Time and their Selectivity in large Documents
4.7 Query in Multiple Attributes with AND Operation -

4.8 Query in Multiple Attributes with OR Operation

4.9 Path Construction Time

Page no

25
25
34
42
42
44
45
45
47
48
49
49

. v



List of figures

1.1 Overall Structure of Qur Indexing Method

1.2 Example of XML Documents

2.1 XML Document

2.2 Example of XML Documents

2.3 Presence of Path in the Corresponding Documents
2.4 Bitcube

2.5 Example of BUET Database

2.6 XML Tree of BUET Database

2.7 Toxin Tree

2.8 Toxin Tables

2.9 XML Document with Numbering Process
2.10 Element Index

2.11 Text Index

2.12 Element Table

2.13 Text Table

2.14 Preorder Numbering Schema

2.15 Tables of XISS/R System

2.16 Indexing Structure Overview

3.1 Example of XML Document

3.2 Matrix to Get First Path

3.3 Matrix to Get the First Word within First Path
3.4 Matrix to Get the Second Word within First Path
3.5 Matrix to Finish the First Document

3.6 Two Dimensional Token-Path-Word Matrix
3.7 Path-Token Matrix

3.8 Bitmap Showing the Existence of Word

3.9 Division of Matrix into Block

3.10 Decimal Form (Bitmap)

3.11 System Structure of Bitmap Indexing Method
3.12 Flowchart of Searching Single Word

3.13 System Structure of Specific Query with Multiple Attributes

Vi

Page no

—_— D O o0 00 W N

13
13
16
17
17
18
18
21
22
23
24
26
27
27
27
28
29
29
30
30
31
32
35



3.14 Bitmap Indexing

3.15 Path-Token Dictionary

3.16 Two Dimensional-Doc-Token-Path Matrix

3.17 Bitmap Matrix

4.1 Comparison of Memory Requirements for 3D, 2D, and Bitmap Index
4.2 Graph of Time Comparison for 3D, 2D and Bitmap Indexing

4.3 Searching Time vs Word Selectivity Relationship

4 4: Searching time vs words selectivity Relationship in large documents

VI

36
37
37
37
43
44
46
47



Chapter 1

Introduction

1.1 Introduction

Semistructured databases unlike traditional databases do not have a fixed schema, largely
evolving, self-describing and can model heterogeneity more naturally than either relational or
object-oriented databases. Example of such self-describing data is extensible markup
language called XML. XML is a standard for representing and exchanging information on the
Internet. Querying XML data requires an efficient indexing method. Conventional indexing
methods such as Sparse and Dense indexing, Hashing, B+ trees are not satisfactory as the size
of XML documents are very large and their types are different. So Bitmap indexing plays an
important role for XML data. We have considered document database, each document of
XML contain element path and each path contain zero, 6ne or more words. In three-
dimensional Bitmap indexing, three-dimensional matrix is required to store element-path,
word and document number. In two-dimensional Bitmap indexing we require only a two-

dimensional matrix, which can store element-path, existence of word and document number.

Indexing schemes for semistructured data have been developed in recent years to optimize
path-query processing by summarizing path information. Existing three-dimensional bitmap
indexing of XML data requires large space. At the same time, querying of large XML
documents database is difficult. To overcome these limitations, we have developed an
indexing scheme of XML data using a two-dimensional Bitmap, providing the facility to
store element-path, token and documents in a two dimensional matrix. This systcm contains
two dictionaries; one is element-path dictionary having all the distinct element paths for all
XML documents and another token dictionary containing token values for the distinct
words. This indexing scheme creates a token-path-document matrix; showing the existence
of XML data in specific document and in appropriate path. In this thesis we present how
XML data, its path and document can be stored in a two dimensional bitmap and describe its

performance over three dimension,



1.2 Overall Structure of the Method
Query

XMI. Data, Response

Compressi
on Engine

Word Dictionary Path Dictionary Bitmap

Figure 1.1: Overall structure of our Indexing Method

Figure 1.1 represents the overall structure of our indexing method. In this indexing method
XML data are taken as input from XML documents. Compression engine in which XML data
are passed to create word dictionary and path dictionary. In word dictionary all the distinct
words and their token numbers are stored. Path dictionary contains all the distinct element path
numbers and their path contents. Compression engine which takes XML data as input and
create a bitmap using path dictionary and, token dictionary. In bitmap all the decimal values of
the words are stored. Query processor process query as like word searching, searching with
multiple attributes using word dictionary, path dictionary and bitmap. A response is achieved
by query processor to get the result of query. This system creates a new column to get a new
path from XML document. To get each distinct word within that path, a new column within
that path boundary is created. There is a negative sign before path number to distinguish from
token value. This system will set a 1 to the corresponding document number, when any word is
present in that document number. If there is path repetition among documents no new column
will be created. Only the token value of the word within that path will be stored. This process
continues for all XML documents and a two dimensional matrix is created. In the first row of
the two-dimensional matrix contains only token value and path number. The remaining rows of
the matrix represent document no and the existence of word. If any word is absent in the

document, there will be a zero to the column to the corresponding document number. Two



dimensiona! matrix is divided into two matrixes. One is the only first row of the matrix and -

second matrix containing the remaining rows of the matrix. The second matrix is divided into

blocks, in each block there are 16-memory cell that means 32 bytes. This system creates a

decimal form that is bitmap, from the second matrix.

1.3 XML Representation
1.3.1 Characteristics of XML Data

I. XML Representing information on the Internet.

Il. XML exchanging information on the Internet

11, The size of the XML document is very large

IV. Their types are different

V. No fixed schema or rigid schema

V1. Rapidly evolving

1.3.2 Structure of XML Documents

Using markup, structural information is defined in terms of elements, the basic components of

an XML document. Each element name together with its markup delimiters is called a tag. The

first one, which has the format <element_name> is called start tag, whereas the second has the

format </element_name> and is called end tag. The string between a start tag and an end tag is

called an element content or value. For instance, Title in Figure 1.2 is an clement delimited by

the start tag <Title> and the end tag </Title>, and its value is the string “Database Mgt

System”. Attributes allow us to include any additional information within an element start tag.

Document-1

<Contacts>
<Canlact>
<Nune>
<Fiist> John Robert </First>
<Last> Peftit </Last>
<{Namc>
<Address>
<Street> Green Road </Strect>
<City> Dhaka </City>
<Stue> Dhaka </State>
<Zipr 0200 </Zip>
</Addiess>
<Tel> 880-2-9256591-156</Tel>
<Fax> 880-2-802768 </Fax>
<Mohile> 0176879879 </Mobile>
<fComtact=

Document-2
<Contacls>
<Contact>
<Name>
<First>Kelly Paul </First>
<last> Robert  </last>
</Name>
<Address>
<City> Dhaka </City>
<State> Bangladesh </State>
</Address>
<Publication>" Indexing
of XML data Using Two
dimensional Bitmap
</Publication>
</Contacl>
</Contacis>

Document-3
<Cantacts>
<Contact>
<Name>
<First> Balagurusamy</First>
<last> Kelly </last>
<Name>
<Address>
<City> Khulna </City>
<State> Dhaka </State>
<Address>
</Coutact>
</Contacts>

Figure 1. 2: Example of XML document.

Document-4
<Db. Main>
<Db>
<Books Info>
<Title> Database Mgt Systomn
</Title>
<Author>
<j"> Konth </1*>
<2™> 1.8, Martin </2™>
<3™> Elmasri </3">
<fAuthor>
<Keyword> SQL, Funt
Dependency, Transaction, Ds System
</Keyword>
</Bock lnfo>
<Book Info> 7
<Title> nfonnation Mgt System
<Title>
<Author>
<|®> ] §. Martin </1*>
<2*> Kouth </2™>
<fAuthor>
</Book Info>




1.3.3 Application of XML Data:

I

Using the Internct for the exchange of financial transaction information (credit card

transaction, banking transaction and so on)

Il. The exchange over the Internet of medical transaction data between patients,
hospitals, physicians and insurance agencies. To see a XML document that contains
the full information of doctors, patienfs can get directions to go to doctors easily.

I1I. The distribution of software via web.
IV. Using the Internet to join the parts of distributed companies

V. XML are reasonably clear to the user. Although it is becoming increasingly rare, and
even difficult, for HIML documents to be typed manually and XML documents
weren’t intended t6 be created by human beings. XML’s markup is reasonably seli-
¢xplanatory '

VI. XML can be used with existing web protocols (such as HTTP and MIME) and
mechanisms (such as URLs) and it does not impose any additional requirements.
VIL. XML is compatible with SGML(Standard General Mark up language) and HTML
1.4 Objectives

Bitmap indexing is suitable for XML data, but in a three dimensional bitmap indexing space

requirement is high and time consuming for data searching. In three-dimensional Bitmap

indexing, three dimensional matrix is required to store clement-path, word and document

number. In our proposed two-dimensional mdexing requires only a two-dimensional matrix,

which can store element-path, existence of word and document number.

Our objective 1s to:

(i) Design a new two dimensional Bitmap index.
(i1) Improve the storage performance of XML indexing

(iii) Querying the XML data in compressed format

(iv) Reduce the search time to query any XML data from XML document due to

dimensionality reduction.



1.5 Thesis Organization

The related work is given in chapter 2 that includes Three Dimensional Bitmap Indexing
Method, Toronto XML Indexing Method (Toxin), Inverted Index, XML Indexing and
Storage System (XISS). ‘ 7

Our proposed Two dimensional bitmap indexing method is given in chapter 3. This chapter
includes creation of two dimensional matrix from XML document, construction of bitmép,
flowchart of searching word, querying the bitmap, flowchart of query with multiple
attributes, example of query with multiple attributes, analysis of bitmap construction, analysis
of time complexity of the algorithm, analysis of AND OR query operations.

Experimental results and discussions are given in chapter 4. This chapter elaborates
memory requirements for various indexing methods and their graphical representation,
time requirements for various indexing methods and their graphical representation
word searchi.ng time and their relationship with words selectivity. Path construction
time is also given in this chapter.

Conclusion and discussion is given in chapter 5.



Chapter 2

Literature Survey

2.1 Introduction

In this chapter we have described various types of existing indexing methods. A Three-
dimensional bitmap indexing, Toronto XML indexing (ToXin), XML indexing and slorage
system (XISS), Inverted indexing are elaborated in this chapter. Three dimensional indexing
method requires large memory space, this method is time consuming for searching due to
more dimensionality. ToXin can be used for both forward and backward navigation starting
from any node. In this method XML database can be modeled as an edge-labeled graph. This
data model carries both data (in the nodes) and schema information (in the edge). Tree
traversal is not satisfactory because of forward and backward traversal of the tree. Inverted
indexing supports Boolean, proximity, and ranking queries efficiently. XISS/R system
includes a web based user interface, which enables stored documents to be queried via XPath.
An Xpath Query engine, which automatically translates XPath queries into efficient SQL

statements, multiple relational schemes for comparison, reporting of performance statistics.

2.2 Related Work

Michel et, al. describe indexing XML data with Universal B-trees (UB-trees) [4] based on n-
dimensional space. This indexing method works at the lowest level of the XML data. Another
XML indexing and Querying data for regular path expressions is given in [5]. This method
poses a new challenge concerning indexing and searching XML data, because conventional |
approaches based on tree traversal may not meet the processing requirements under heavy
request. This system is based on a numbering scheme for elements. Raghav Kaushik et, al.
describe updates of structure indexes of XML data in [6]. This method is based on the notion
of graph bisimilarity. Updating XML data is presented in [7]. This method is based on a set
of basic operation for both ordered and unordered XML data. S. Abiteboul et, al. describe
lnverted indexes of XML data in [9]. This method is based on the numbering of each word

and element path individually. From relation to semistructured data and XML are described



in [10]. Novel query facilities from structured documents are given in [14]. Dan Suciu et, al.
claborates Index structure for path expressions, an efficient compressor for XML data and '
adding structure to unstructured data in [11-13]. These methods work based on path indexing
of XML data. Rizzlo et. al. describe Restructuring documents, databases and webs given in
[15], that fully exploits the overall path structure of the database. Peter Buneman et, al.
describes quéry language for unrestricted data given in [17] and elaborates query ]aﬂguage
and algebra for semistructured data given in [19]. In [18-23] it is described for query

optimization of ordered and unordered semistructured data.

2.3 Three Dimensional Bitmap Indexing Method

A Three-dimensional bitmap indexing, for XML is presented in [1]. This method is based on
clement path calculation from root to each element, of each document. This system considers
a document database D. Each document D is represented in XML. So, D contains XML-
elements p, where p has zero or more terms w bound to it. Typical indexing requires a
frequency table that is a two-dimensional matrix indicating the number of occurrence of the
terms used in documents. By generalizing this idea, this system uses a three-dimensional

matrix that consists of (d, p, w).

2.3.1 Organization
'Element Path: Element Path, called “ePath,” is a sequence of nested elements where the
most nested element is simple content element. For example, in Figure 2.1, Section.
subsection. Figure is an ePath, but section itself is not an ¢Path due to the top element
<Section> does not have simple content.

Element Content: An XML-element contains (1) simple content, (2) element content, (3)
empty content, or (4) reference content. As an example, consider an XML document as
shown in Figure 2.1. The element <presection> in line (9) has a simple content. The element
<Section> in line (1) has element content, meaning that it contains section, subsections,
presection as shown in lines (2) , (4) and (9) respectively. The clement <verticalskip>
contains empty content. In line (3) there 1s a attribute source and an entity that representing

another file “foot.gif”.



(1) <Section>

(2) <section> XML, is originated from </section>

(3) <footer sources="foot.gif />
(4) <subsection>

(5) <figure> http://www.a.b.c/syntax.xml </figure>

(6) <caption> XML Syntax </caption>

(7) <verticalskip />
(8) </subsection>

(9) <presection> SGML was invented </presection>

(10) </Section>

Figure 2.1: XML Document

DQ:
D <e;>V; <fe;>
<eg> <gp>
<e;> Vy <fe> <e> Vi V; <ey>
<2~ <@~
<e> Vo Vi Vs <leg> 4
<eg™> V3 Vq <leg>
<eq> Vo V3 Vs </ey> 6 37 6
<er> V3 Vq <lep>
<es /> 7 3 Y7 7
<l
<82/'> / 4
<fe >
<gg /> 2

<gg> Vg Vi <‘."(333‘

<,l" eo~>

Figure 2.2: Example of XML Documents

D3:
<gp>
<e¢;> V) <fe>
<g>
<gs> Vo V; <les>

<ess Vi Vo <leg>
<fes>

</ey>

<eg> Vi <leg>

<feg>

In Figure 2.2 is a set of simple XML documents. First, it is needed to define ePaths as

follows:p0=c0.c1, pl=e0.e2.e3, p2=e0.c2.e4, p3=el.e5, p4=e0.c2.ed.e6, p5=el.cl.ed.e7,

p6=c0.¢8, p7=c0.e9, Vi is a(key) word that is chosen from simple content to be used for

search. Now, this system constructs a bitmap index. If a document has ePath, then set the

corresponding bit to 1. Otherwise, all bits are set to 0. For each ePath, documents can be

represented as shown in Figure 2.3.



Po |Py | P2 [Py [Py |Ps |Ps | P

Dy |1 ] 1 1 0 0 0 0

D, |1 |1 |1 Jo |1 |1 |1 |0

D; |1 I 1 1 0 0 0 |1

Figure 2.3: Presence of path in the corresponding documents

2.3.2 BitCube

XML document is defined as a set of (p, v) pairs, where p denotes an element path (or ePath)
described from the root element and v denotes a word or a content for an ePath. Typical
methods of handling text-based documents use a frequency table or a inverted (or signature)
file that represents words for documents. However, since XML documents are represented.by
XML elements (or XML tags), the typical methods are not sufficient. A BitCube for XML
documents is defined as BitCube = (d, p, v, b), where d denotes XML document, p denotes
ePath, v denotes word or content for ePath, and & denotes 0 or 1, the value for a bit in
BitCube (if ePath contains a word, the bit is set to 1, and 0 otherwise).

A BitCube for a set of documents: {d1, d2, d3, d4, d5}. Each dqcuments d1={(p0, v1), (pl,
v2), (pl, v3), (pl, v5), (p2, v3), (p2, v8) }, .., d3={( pO,v11), (p1, v2), (pl, v7), (p2, v3), (p2,
v9) ..., {pi,vi2), (pi,vi3), (pi,vid), ..., (pi,vii)}, and so on. An example of Bitcube is given in
Figure 2.4. The approximate size of the BitCube is (‘docs*words*'paths)/S bytes, where docs

being the number of documents that are indexed, and paths in the chosen documents.

DCCURENT
STETE

1 1 xi j
PATH

i

X

Figure 2.4: Bitcube [1]



2.3.3 Critical Issues of Three Dimensional Bitmap Indexing

o In three dimensional indexing documents are stored in row wise

e Element paths are stored in column wise

e In another dimension that means in Z dimension, word information are stored

» As this indexing method is three dimensional, large memory space 1s required

e Also this indexing method is time consuming for searching due to more

dimensionality.

2.4 Toronto XML Indexing (ToXin)
Rizzlo et. al. describe indexing XML data with Toronto XML indexing (ToXin) in [2], that

fully exploits the overall path structure of the database in all query-processing stages based
on iree traversal. Most of the indexing schemes can only be applied to some query processing
stages whereas others only support a limited class of queries. ToXin fully exploits the overall
path structure of the database in all query-processing stages. It can be used for both forward
and backward navigation starting from any node. Support navigation of the XML graph to '

answer any regular pat query.

2.4.1 System Description:
ToXin consists of two different types of index structure Value index and Path index.
Value index consists of a set of value relations that store the XML nodes and values
corresponding to an index edge. A value relation is created for each edge in the index scheme
that corresponds to a set of XML nodes containing values. Path index has two components;
index tree and a set of instance functions.
Index Tree:

» For each edge, check whether the corresponding index edge has already

been added and adds it if it was not.
= It performs a depth-first traversal of the XML tree.
= Update the instance function for the current index edge by adding the pair

(parent node, child node).

10



A set of instance functions:
» One for each edge in the index tree.
= Keep track of parent-child relationship.
» Fach instance function is stored into two redundant hash tables: forward

and backward instance tables.

Construction of XML tree: An XML document is represented in Figure 2.5 that is
represented as a XML tree in Figure 2.6. XML database can be modeled as an edge labeled
praph called XML tree. This data model carries both data (in the nodes) and schema
information (in the edge). Each element path is considered as a edge. Each edge has two
nodes.. In Figure 2.5, BUET is the toot element. In XML tree given in 2.6, BUET is
considered as an edge. The value of the node of this edge is started from 1. So the value of
the nodes of this edge is 1 and 2. Similarly CSE is an element path that is two times in XML
document given in Figure 2.5, within root e¢lement path BUET. Two edges are created for
CSE path, but their root is BUET, so nédes 2 and 3 form an edge also nodes 2 and 4 form
another edge. Similarly edges have been created for sub elements of course title, courseno

and year. In the leaf node of the tree all the values of the element paths are considered. '

Construction of ToXin tree and tables:

From the XML tree given in Figure 2.6 , ToXin tree is created given in Figure 2.7. In the
XML tree those edges have element path and their leaf nodes containing element value are
considered in ToXin tree as a Value table edge (VT edge). For example session element path
in Figure 2.6 have values 2003-2004 and 2002-2003, in ToXin tree this edge 1s considered as
VT1. For each VT edge one value table will be created in ToXin table given in Figure 2.8. So
for session, a VT table is created that is VTI‘. This value table will store the value of element
path and their root node. Fér this in VT1 node 3 and 4 is stored as it is the root node of the
session 2003-2004 and session 2002-2003. Similarly for all other edges those have element
Values , value table will be created. Those edges in XML tree in Figure 2.6 have only
Element path will be considered in ToXin tree as a Instance Table edge (IT edge). For
example BUET element path is considered in ToXin tree as IT1 edge. For each [T edge a IT
table will be created that will store the parent child node for that edge. As for example for

BUET element path IT1 table is crated and stores the parent node and child node 1 and 2.

11



Similarly for all IT edges a IT table will be created and similar types of information will be

stored.
<BUET>

<CSE>»
<Session> 2003-2004 </Scssion>
<Course>
<Coursetitle> DSP </Coursetitle>
<Courseno> CSE 423 </Courseno>
<Coursetitle> DSD </Coursetitle>
<Courseno> CSE 467 </Courseno>
<Courseno> CSE 461 </Courseno>
<Course>
<Year> 4th </Year>
</CSE>
<CSE>
<8ession> 2002-2003 <Session>
<Course>
<Coursetitle> Neural </Coursctitle>
<Courseno> CSE 433 </Courseno>
<Coursetitle> Al </Coursetitle>
<Courseno> CSE 477 </Courseno>
<Courseno/>
<Course>
<Yecar> 4th </Ycar>
</CSE>
</BUET>

Figure 2.5: Example of BUET Databasc

session

9
4th  2002-2003

Courge Cqurse Courgse
rsc g n title] ©
no
| 17 I 18 | 19 | rzo ]
CSE NEURAL CSE Al
461 433 477

Figure 2.6: Tree of XML database given in figure 2.5

12



Session
VT1

Course
Title

VT

VT4
VTI1

Node Value Node Value

6 “CSE-423” 3 “2003-2004”
7 CSE—467 4 “2002_2003,3
7 “CSE-4617

10 “CSE-433”

i “CSE-477” VT3

i1 “CSE-471"

Node Value
VT2 6 “DSP”
7 “DSD::

Node Value 10 “NEURAL”
3 “412'1' ] ] “AI”

4 {(4TH”

IT2 IT3
IT1
- o Parent | Child Parent | Child
Parent | Child 5 3 3 6
’ 2 2 4 3 7
4 10
4 11

Figure 2.8: ToXin Tables

13




2.4.2 Query on ToXin Method

Considering the document given in Figure 2.5. Suppose it is required to find the word Al In
this system for each element path, which has element value, a value table is crated. The
value table is numbered serially. The values of element paths are stored in this value table.
The root node of this element path is also stored in value table. Al is a value of element path
course name. VT3 is created for coursename. Then this system checks the Value Table
“VT3" to find out the node for “AI”. We see the root node for “AI” is “11”. Instance table
(IT table) keeps the parent child relationship of element path. To find out the Parent of the
node “117 this system check the Instance Table. This node is stored in “IT3". It is clear that
the Parent node for the node “11” is the node “4”. In this way the parent node for the node
“4” is “2” and the parent of the node “2” is the node “1” from Instance Tables IT2 and IT1

respectively . So the path for the word “AI” is Buet.CSE.course.courseno

2.4.3 Critical issues of the Toxin Method:
o Most of the indexing schemes can only be applied to a limited class of queries.
e ToXin fully exploits the overall path structure of the database in all query

processing stages.

e ToXin can be used for both forward and backward navigation starting from any

node.
s XML database can be modeled as an edge-lebeled graph
e This data model carries both data (in the nodes) and schema information (in the
edge)
e Tree traversal is not satisfactory because of forward and backward traversal of the

tree

e For each word, this system scarch from root to each leaf node that is time

consuming.

14



2.5 Inverted Index

Abiteboul S, Buneman P, Suciu D describe inverted indexing in [9]. Inverted index consisis
of two kinds of index structure. These are constructed in the following way:
T-index: Text words are indexed in a T-index similar to that used in a traditional IR system.
T-index consists of following element:
1. Document Number (doc-no).
2. Word Number (word-no).
3. Level Number (level).
E-index: Elements are indexed in an E-index, which maps elements to inverted lists. E-index
consists of following element:
1. Document Number (doc-no})
2. Begin '
3. End
4. Level Number (level)

2.5.1 Numbering Process
This system gives a number for each element or word sequentially. Consider the example
given in 2.8, the numbering is started from 1 and finished with 37. From the given Figure in

2.8 this system prepares the following two Element index and Text index given in Figure 2.9

and 2.10.

15




<DUET>

2
<student>
<Nam?é>
<Firsf4> Mahiudgin Maru’r;</First>7
<Last>8 Sabbi? </’Last]>n
11
</Name>
12
<Address>
13 14 15 16
<Street> Jubilee Road </Street>
<cit? Gaziplh <icily>
<Div:|z9?;on> Dhaﬂl </Di%f“|)‘sion>
4 A
<Zi%§' 170%) </Zipgi
26
</Address>

27 28 29
<Tel™ 880-2-9256391-156</Tel>
31

<Fa32 §80-2-802768 </Fax3
33 34 35
<Mobile> 0176879879 </Mobile>

6
<fStU36)nt> <DUET>
37

Figure 2.9: An XML document with numbering procch

16



Element index: Texti Index :

<DUET> — (1,1:37,0) Mahiuddin — (1',5,4)

< student> — (1,2:36,1) Maruf — (1,6,4)
<Name> — (1,3:11,2) Sabbir — (1,9,4)
<First> —(1,4:7,3) . Green — (1,14,4)
<Last>  — (1,8:10,3) Road C S (1,15,4)
<Address> — (1, 12:26,2) Gazipur — (1,18,4)
<Street> —> (1, 13:16,3) Dhaka —(1,21,4)
<City> —(1,17:19,3) 1700 — (1,24,4)
<Division>— (1, 20:22, 3 ) 880-2-9256291— (1, 28, 3)
<Zip> — (1, 23:25, 3) 880-2-802768 — (1, 31, 3)
<Tel> — (1, 27:29, 2) 0176879879 —(1,34,3)

<Fax> —(1,30:32, 2)
<Mobile> — ( 1,33:35,2)
Figure 2.11: Text Index

Figure 2.10: Element Index

From Figure 2.9, DUET (1; 1:37,0) represents that 1 is the document number next 1 is value -
of that word 37 is ending value of this document, 0 means level of that word in the document.
Similarly for Mahiuddin — (1,5,4) in case of text index, 1 is the document number next 5 is

value of that word, 4 is the level of that word.

2.5.2 Relational Schema to Store Inverted Index
o  E-index and T-index can be mapped into the following two relations.
o ELEMENTS (docno, begin, end, level)
o TEXTS (term, docno, wordno, level)
ELEMENT table stores occurrences of text words. Each occurrence is stored as a table

row. Two tables given in Figure 2.12 and 2.13 are created from Figure 2.10 and 2.11

respectively.

17



Term Doc Ne | Begin | End Level
Students | 1 1 37 0
student 1 2 36 1
Name 1 3 11 2
First 1 4 7 3
Il’lVéI"[C d Last 1 8 10 3
. :r\l/ Address 1 i2 26 2
List
Strest i i3 |16 3
City 1 i7 19 3
Division ; 1 20 22 3
Zip 1 23 25 3
Tel 1 27 29 2
Fax 1 30 32 2
Mobile ] 33 35 2
Figure 2.12: Element table
Term Docno | WordNo | Level
Sabbir 1 5 4
Inverted Ahmed 1 G 4
List :> Sabbir 1 9 4
Jubiiee 1 14 4
Road 1 15 4
Khulna 1 18 4
Dhaka 1 21 4
6200 1 24 4
880-2-9256291 | 1 28 3
880-2-802768 1 31 3
0176879879 1 34 3

Figure 2.13: Text table

18




2.5.3 Query Process in Inverted Index Method

Suppose it is required to find the word Dhaka. We have considered the Figure given in 2.9.

This system finds the word “Dhaka” from the Text-table.

For the word “Dhaka”

Doc-no=1
Word-no =21
Level =4

Since the level of word is always define by the (level of element + 1).

. Now level 3 of element is checked to find out the Begin and End number of the element and

corresponding document number. The value 21 is between 20 and 22.

Doc-no =1
Begin= 20
End= 22
Level =3

2.5.4 Critical Issues of Inverted Index Method

Inverted list is well suited to containment queries. It supports Boolean, proximity,
and ranking queries efficiently.

Classic inverted index data structure that maps a text word list, which numerates
documents containing the word and its position within each document.

Text words are indexed in a T-index similar to that used in a traditional IR system
Element are indexed in an E-index, which maps elements to inverted lists.
Elements table stores occurrences of XML elements

Text tables stores occurrences of text words

Each occurrence is stored as a table row.

19



2.6 XISS/R: XML Indexing and Storage System Using RDBMS

Philip J Harding, Li Q, Moon B., describe “XISS/R: XML indexing and storage System
Using RDBMS.” is presented in [3]. XISS/R system based on the XISS extended preorder
numbering scheme, which captures the nesting structure of XML data and provides the
opportunity for storage and query processing independent of the particular structure of the
data. The system includes a web base user interface, which enables stored documents to be
queried via Xpath. The user interface utilizes the xpath query engine, which automatically
translates Xpath queries into efficient SQL statements. So the features of the XISS/R system

include:

o A web based user interface, which enables stored documents to be queried via

XPath.

o An Xpath Query engine, which automatically translates XPath queries into efficient
SQL statements.

o Multiple relational schemes for comparison.

o Reporting of performance statistics.

2.6.1 System Description

The XISS/R system consists of three components:
1. A mapping of XML data to relational schema, which is accomplished by using the
extended preorder numbering scheme. '
2. An Xpath query engine, allows Xpath queries to be issued on the relational
implementation of the mapping of XML data.

3. A web-based user interface.

2.6.2 The Extended Preorder Numbering Scheme
The extended preorder numbering scheme associates each node in an XML document with a
pair of numbers, the extended preorder and the range of descendents (<order, size >, which
should satisfy the following condition:
¢ Fora tree node y and its parent x, order (x)< order (y) and order (y) '+ size (v)<
order (x) + size (x).
e For two sibling nodes x and y, if x is the predecessor of y in preorder traversal,

order (x) + size (x) < order (y)-

20



» Both elements and attributes use the order of the<order, _s,:ize> pair as their
unique identifier in the document tree.

For a tree node x, size {(x) can be an arbitrary integer larger than the total number of the
current descendents of x. This allows future insertions to be accommodating gracefully. The
ancestor- descendent relationship can be determined in constant time by examining three
pairs of numbers. That is, for two given nodes x and y of a tree T, X is an ancestor of y if and
only if order (x) < order (y) < order (x) + size (x).
1. The Document Table consists of the Name of a document and a unique numerical
Document 1D .
2. The Element Table stores all element nodes.
3. The Attribute Table stores attribute nodes. The
Value stores the attribute value.
4. The Text Table stores text nodes (not text values)
Within the system, Value stores the actual text. In this schema, a Document Table is a simple
way to separate the document name from the clement, attribute, and text relations. The
element, attribute and text relations store a reference to the numerical ID of the document for
each node. In the Element, Attribute, and Text tables, Order and Document ID uniquely
identify any node within the system. Since alf attribute nodes have a corresponding text value

¥

(or empty) string, this value is stored with the attribute node, further reducing query time.

(Order, size)

(1,100)

(1,100)

(11,5) (17,5) (25,5) (45,5)

Ficure 2.14: Preorder numbering scheme

21



Element table-1 Attribute table-1 TextTable Document Table
Doc_id Doc_id Doc_id Doc_id

Order Order Order Name

Size Tag_Name Tag_Name

Tag Name’ Depth Depth

Depth Parent_id Parent_id

Child_id Next_id Next_id

Next_id Att_id Att_id

Att id

Figure 2.15: Tables of XISS/R system (Primary keys in bold)

2.6.3 Relational Schema
The numbering scheme provides a unified way to store the structural relationship ox XML
data. However, there are a number of options for storing other necessary data from XML
documents alongside such structure data. We investigate several key issues that can affect the
storage and query performance:
* How to store element and attribute nodes.
* How to store tag name values.
* How to store value string information for text and attribute nodes.
* for different scheme, what kind of indexes are needed.
XISS/R requires five pieces of information for each node stored in the system, they are
doc_ID, order and size of a node in the numbering scheme , depth of a node in document tree,
tag-name ant text value of as-node
XISS/R divides nodes into three categories, element, attribute and text.
1. The Document Table consists of the Name of a document and a unique numerical
Doc_ID.
2. The Element Table stores all element nodes.
3. The atiribute table stores atiribute nodes. The Value stores the attribute value.

4. The Text Table stores text nodes within the system. Value stores the actual text.

22



2.6.4 The Index Structure and Data Organization
There are three major components in the Index Structure and Data Organization. These are:

1. Element index

2. Attribute index

3. Structure index.
Two other components are name index and value table.
Name index: all distinct name strings are collected in the name index (identified by nid).
Value table: all string vallucs (i.e. attribute value and text value) are collected in value table.
Doeument Identifier: Each XML document is also assigned a unique document identifier

(did).

>
QUERY :> Query [ rEsuLT

Processor

1l

XISS

Attribute Structure Name Value
Index Index Index Tndex

Element
[ndex

Document
Loadcr

Paged Files

Figure 2.16: Indexing Structure Overview

2.7 Conclusion

In this chapter, various methods of existing indexing schemes are described. For each method
query system, the system structure and the critical issues are described. In three indexing
dimensional bitmap indexing large memory space is required. Also this three dimensional
indexing method is time consuming for searching due to more dimensionality. In ToXin
method, tree traversal is not satisfactory because of forward and backward traversal of the
tree. In ToXin it is required to search from root to each leaf node that is time consuming. In
inverted indexing, inverted list is well suited to containment queries. It supports Boolean,

roximity, and ranking queries efficiently.
Y g

23



Chapter 3

Proposed Two Dimensional Bitmap Indexing Method

3.1 Introduction

In three-dimensional Bitmap indexing, three-dimensional matrix is required to store element-path,
rwordv and document number. In two-dimensional indexing we require only a two-dimensional
matrix, which can store element-path, existence of word and document number. This system creates
a new column to get a new path from XML document. To get each distinct word within that path, a
new column within that path boundary is created. There is a negative sign before path number to
distinguish from token value. This system will sct a 1 to the corresponding document number, when
any word is present in that document number. If there is path repetition among documents no new

column will be created. Only the token value of the word within that path will be stored. This

process continues for all XML documents and a two dimensional matrix is created

3.2 Creation of Two-Dimensional Matrix from XML Document

To describe the creation of two-dimensional matrix from XML document we have considered

XML documents given in Figure 3.1.

Document-1

<Contacis>
<Conlact>
<Name>
<First> John Rebert </First>
<Last> Pettit </Last>
</MName>
<Address>
<Strect> Green Road </Street>
<City> Dhaka </City>
<State> Dhaka </State>
<Zip> 6200 </Zip>
</Address>
<Tel> §80-2-9256591-156</Tel>
<Fax> §80-2-802768 </Fax>
<pobile> 0176879879 </Mebile>
</Contact>
<{Contacts>

Document-2
<Contacts>
<Conlact>
<Name>
<First>Kelly Paul </First>
<last> Robert  </last>
<MName>
<Address>
<Clity> Dhaka </City>
<State> Bangladesh </Staic>
</Address>
<Publication>" Indexing
of XML data Using Two
dimensional Binnap
</Publication>
</Contact>
</Contacts>

Document-3
<Conlacts™
<Cantact>
<Name¢>
<First> Balagurusamy</First>
<last> Kelly <Rase>
<Name>
<Address>
<City> Khulna </City>
<State> Dhaka </State>
<Address>
</Contact>
</Contacts>

Figure 3.1: Example of XML documents.

24

Documcnt-4
<Db.Main>
<Db>
<Books Info>
<Title> Database Mgt System
</Title>
<Aulhor>
<1™> Korth </1%>
<2™> 1.5, Martin </2%>
<3™> Elmasri </3™>
<{Author>
<Keyword> SQL, Funt
Dependency, Trangaction, Ds System
<Keyword>
</Book Info>
<Book info>
<Title> Infortnation Mgt System
<fTitle>
<Author>
<> 1,5. Martin </1%>
<™= Korth </2">
<{Author>
<{Book Info>
<{Db>
<{D.Main>



For each distinet word from XML documents given in Figure 3.1, this system creates a
token-number that is stored in token dictionary and the corresponding distinct word is
also stored in token dictionary. Path-number are also created in this system serially for all
distinct paths from XML documents. This path-number and its contents is stored is
element-path dictionary. Token dictionary and element-path dictionary are given in

Table 3.1 and in Table 3.2.

Table 3.1: Word dictiona :
¢ ré diehonary Table 3.2: Element-path dictionary

Token-number Words

T Jom Path-number Contents
2 Robert

3 Pettit

4 Green 1 Conlacts.contact. Name. First
5 Road 2 Contacts .contact Name.Last
g E)zlgtga 3 Contacts.contact. Address.Street
8 350-2-9256591-156 4 1 Contacts.contact. Address. City
9 880-2-802768

10 0176879879 5 Contacts.contact. Address.State
L Kelly [ Contacts.contact. Address.Zip
i2 Paul

13 Bangladesh 7 Contacts.contact. Tel

14 Indexing .

15 or g Contacts.contact. Fax

16 XML 9 Contacts.contact. Mobile

17 data

18 | Using 10 | Contacts.contact. Publication
19 Two _ _

20 dimensional 11 Db.BGOklllfO.Tltle

2l | Bumap 12| Db.Bookinfo.Author 1st
22 Balagurusamy

23 Khulna 13 Db.Bookinfo. Author.2nd

=

5‘; E{;‘fhase T4 | Db Bookinfo. Author 3rd
26 | System i5 Db.Bookinfo.Keyword

27 Korth

28 1.5,

29 Martin

30 Elmasri

31 SQL

32 Funt

33 Dependency

34 Transaction

35 Ds

36 Information

Considering Document-1, Document-2, Document-3 and Document-4 given in Figure-3.1,
Contacts.contact. Name.First path is created and its path number is assigned land it is stored
in Table 3.2. Similarly all the paths are created and their path numbers are assigned and

stored in path dictionary in Table-3.2. For word John, 1 is assigned its token value and all the

. 25



tokens are created for all the distinct words serially and stored in token dictionary given in
table 3.1. Using Table-3.1 and Table-3.2, this system creates the following two dimensional
matrix given in Figure 3.2 step by step. This methdd can be implemented for any XML
documents. The first column is created only for document-number. It has two rows. In second
row there is a 1 represents the document number 1. To get each distinct path-number from
documents a new column is created for that path. This system set a negative sign in the first
row of the column, before the path-number and set a 1 in the second row of that column. The
] in the second row represents the path is present to the corresponding document number. To
get cach distinct word from XML documents this system creates a new column for that word
within the path boundary. Similarly a 1 is set in the second row of the column, token number

is assigned to the first row of the column within that path boundary.

Step 1:

After getting the first path from Document, a matrix is created which has two rows and two
columns.-In the first row of the second column a 1 is assigned for the path number. Also a
negative sign is assigned before the path number to distinguish from token number of the
word. In the second row of the first column a 1 is assighcd that represents the document
number, in the second column of the second row another 1 will be assigned to represent the
presence of the path number. When any new word is found within that path number a new

column will be created and similarly 1 will be assigned as in before it is assigned. We have

considered the Figure 3.1,

Document- Path-boundary

number / Path number
-1
1

3

Presence of the path in the corresponding document-number

Figure 3.2: Matrix to get first path

26



Step-2:
After insertion of John, Token-number=1given in Table-1, from Document-1 given in Figure-

3.1, the following matrix will be created. Here the second column is created from the
Figure given in 3.2. The first row of the second column is the token number of the word

John. In the second row of the second column a 1 is assigned to represent that the word

is present in the document number 1.

Documeni- | Token- Path-
number number | boundary
R
] 1 11 +* Path number

Prescnce of the word to the corresponding Document-number-1

Figure 3.3: Matrix to get the first word within first path

Step- 3:
Similarly after insertion of Robert, Token-number=2 given in Table-1, from Document-number-1
given in Figure3.1

Path number

Presence of path in document

Document number Presence of word in document number

Figure 3.4: Matrix to get the sccond word within first path

Step- 4: Similarly this process continues until to get all words and paths from Document-] in
Figure-3.1 and the two dimensional matrix is as follows:

11211 32 453 [6]-4]6]5 7|6 8|-719|-8 |10]-9
T vt (110 gl [l oo oprfr ot g bl

Figure 3.5: Matrix to finish the first document

27



Step 5: Similarly this process continues until to get all distinct words and paths from
Document-1, Document-2, Document-3 and Document-4 given in Figure-3.1 and the following

two dimensional matrixes is created.

112 11 12 22 -1 3 2 11 -2 4 51 -3 6 23 -4 6 13 -5 7] -6 8 -7\,
i1 o [o Jo i1 1 [o Jo [ 1 1] 1 i 1o {1 1T 1o |1 t] 11 <
21001 T o |t Jo [t Jo |1 jo [ofo Lo |1 o 11 o] e a0 7
3lololo o [1 o Jo [ 1 [0 [o]o 0 1 1 L 10 |1 Jol|e IS
tjololo o |o o Jo Jo o Jo Je Jojo 6 [0 |o |6 [0 fo [o]gG 0] 0

o[B8 W[ o[ 1s[te]17]18[15]2 21} -0 24 25 26 T
<| f L i ool jofo] o lo; 6 0 0 0 0 0 >
sl o oo [ 1| ] 1 1 1 1 ] 1 [ 0 0 0
<0 o lo|lo|oJoloel{olo]l]olola 0 0 0 g 0 >
aglo|[o o |of{olalotof[o]o]o 0 ] 1 1 1
77 [ 28 [ 20 | -12 28 ] 29 | 27 | <13 | 30 ] -14 [ 31 [ 32 [33 [34 [35 [26 [-Is
0 6 o [o 0 (o |0 |0 0 [0 0 fo 0 [ [} 0 0
0O [ 0 0 0 0 0 4] 0 9 0 0 0 0 0 0 0
0 ¢ [0 [0 0 |0 {0 |0 0 4 0 ¢ 0 ¢ [ 0 0
1 1 1 | t 1 | 1 1 i ] 1 1 1 1 1 1

Figure 3.6: Two dimensional Token-Path-Word Matrix

3.3 Construction of Bitmap

The two dimensional Token-Path-Word matrix given in Figure 3.5 has got two
components; path-token matrix and word existence matrix. -

Path-Token matrix: .

The first row of the matrix in Figure 3.5 is the path-token matrix; the remaining rows
are the word existence matrix. In the path token matrix given in Figure 3.6 represents
the token number of the word and the path number. As for example 1,2, 11, 12,22 are
within path number -1, represents that path number 1 contains the above token number
of the word. From Table 3.1 it is seen that the words John, Robert, Kelly, Poul,
Balagurusamy have the token numbér 1,2, 11, 12,22 and from Figure 3.1 they are
within path number 1 in all documents. , )

Bitmap showing the word existence matrix: |

In word existence matrix 1 represents the word is present to the corresponding
document number, 0 represents the word is absent to the corresponding document
number. From Figure 3.7 this system transforms the matrix into blocks given in Figure

3.8.

28



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I6 17 18 15; i
|1|2‘n lrz |22|-113|2‘n |-2 !4 ]5|-3|6 '23|-4|6 f13|-5|7|—6_|8§

S o] s ]'10|-9]14|15|m|17113|19|20|21|-1oiz4[25|26|-”§
39 40 41 42 43 44 45 46 - 47 48 49 50 "5t 52 53 54 55
§27|23 20 [12] 28 [ 29|27 [-13] 30 | -14 31 [ 32 ]33 [ 34|35 | 26 15|

Figure 3. 7: Path_Token Matrix

Figure 3.8: Bitmap showing the existence of word in documents.

Figure 3.3 is the first row of the matrix given in Figure 3.2. In this method we have
considered document number as page number and in each block there are 16 memory
cells. If there are less than 16 memory cells in a block of the matrix, this system takes
the rest of the cell in a block containing all zero. So in each block there are 16 offset
addresses starting from 0 to 15. This system converts the value of each block into

decimal form. During searching a word or path number this system calculate ‘the

followings:

29



Block no = the index of token value of searching word /16. The offset address = the
‘index of token value token value of searching word %16. The path number = ABS
(negative value of path boundary).

For each block, this system converts the decimal value into binary form. If there is a 1
in the corresponding offset position of that word then the corresponding document

number is the document number for that word.

||1000110011111011011111:111000000>
3iolol i lojrlolilol1]olojof1|el1{ol1i1]ololelaloleio[oltit[Il1i1]1
slojololol1t1]ololiii|ololofoli|1[1 ol1]o[ole[c[0[ofe[olojo[0feioala
alojolololoiololc|o a|o|ojofojo|oioiolololajeiololo]lelo[ololajelola
AN ~ NG ~ _/
Block-number 0 Block-number 1
aloloTolojolololo]oJolo]oJolololoJolofololo]o|0]o]o]0
T T T (1{olojolojolelolololo|oloioiojajolofaolelelo
olololololo0lolo o]o]jojla|o]lo,o0]o 06|ojojojlololclo[6]o]o
ololololoto v bl riirjurgn
AN ~ A
Block-number 3

Block-number 2

Figure 3.9: Division of matrix into blocks.

The matrix given in Figure 3.8 is decimal form that is Bitmap converted from Iigure-

3.9.

Document-number Block-0 Block-1 Block-2 Block-3
Document-1 50813 49120 0 0 '
Document-2 13693 24607 32256 0
Document-3 3267 40960 0 0
Document-4 0 0 511 65520

Figure 3.10: Decimal form (Bitmap)

Consider the value 50813 given in Biock-0, this value is converted from the binary
representation of 110001100111101 from Figure 3.8. In such way all the values are

converted in Figure 3.9.

30



3.3.1 System Structure of Bitmap Indexing Method

The overall system structure is given in Figure 3.10. From different XML documents, this

method prepares two dictionaries, one is word dictionary and other is path dictionary. Word

dictionary stores all the distinct words and their token number, path dictionary stores all the

path number and path contents. From these two dictionaries and different XML documents

two-dimensional token-path-word matrix is created. This matrix is then splited into two

matrix. One is for word existence and other is for path boundary and token value. Word

existence matrix is divided into blocks; from this matrix bitmap is created.-

Different number of XML

documents
Word dictionary < Path Dictionary
|
k 4
Two Dimensional v
Token Distinct words Doc_Token_Word_Path .
number matrix Path l Path Cnntents [

number

Y

Words existence Structure in documents

Token and Path Structure

h 4

Division of Words Structure into Bloecks

v

Bitmap

Figure 3.11: System Structure Of Bitmap Indexing Method




3. 4 Searching XML Documents

From all the XML documents or out of the XML documents, any word is selected to scarch.

In this method the token number of the word from token dictionary is searched. If the token
number is found, path number is searched from path_token matrix.. Then the index of that
token number is calculated from path_token matrix. Block number is created from that index |
value divided by 16. Offset position is calculated from the index value % 16. This system
then takes all the decimal values of bitmap matrix of the corresponding block number. Each
decimal value is converted into binary form and checked for a 1 in the calculated offset

position. I it is ok, the corresponding word is present in the document, otherwise it is absent.

All the XML documents

v

i Select any word
T

Search the token number of the word
from word dictionary
Token found ?

No

¢ Yes
Word not Find the path number of that word from Path boundary and Token_number matrix

v

Find the Index of that Token number from Path_boundary and Token_number

matrix
v

Calculate Block_no= Index of that token / No_of_memorycell_per_block
Offset_no= Index of that word %

v

Take all the values of that Block_no from Bitmap matrix

I

Convert that values into binary form

. Check for 1 in that offset
No

\ 4

The word is absent to the corresponding Ye _
document The word is present to the corresponding
: document _

Figure 3.12: Flow chart of searching word

32

.



3.4.1Querying the XML Document Database with Example

To search anything with specification is represented as query. In our method we have the
following types of query are possible. To search any single word from XML documents
Searching with multiple attributes in the documents.

Example of searching any word is as follows:

Suppose we want to Query Dhaka as a City from the given documents in Figure 3.1.

Select City
From Documents

Where City="Dhaka”

The token number of Dhaka = 6 from token dictionary.
Index of that Token number = 13 from Figure-3 .

Block no = 13/16 = 0, Offset address= 13 % 16 =13,

The Token number 13 in Figure-3.2 is within path boundary 4.
1n this path Dhaka is as a city. Path address = ABS (-4})=4

Decimal value of block 0, Row-1 = 50813 its binary is {1100011001111 101}

Started from 0....15 .Binary value of offset address (13) = 1, this is present in the Document
—1. So, we can decide that the word “DHAKA™ as a City is now in DOCUMENT-1, PATH
4. Decimal value of block 0, Row-2(document-2) = 13693 -

Binary value= l

¢ 0 1 i 0 | 0 ! 0 1 0 4] 0 1 0 1

Offset address (13) =1

So, we now decide that the word "DHAKA” is in now DOCUMENT 2, PATH 4 TOKEN
NO 6.

Decimal value of block 0, Row- 3(document-3)= 3267 l

Binary value=

¢ 0 0 0 1 1 0 0 1 1 0 0 ¢ 0 1 1

Offset address(13) = 0

So, we now decide that the word "DHAKA?” is not in now DOCUMENT 3.
Decimal value of block 0,

Page 4(document-4)= 3267 l

Binary value=

0 [t 1) 4] 0 0 0 0 0 0 0 0 0 Y 0 0

33



Offset add1css(13j =

So, we now decide that the word "DHAKA? is not in now DOCUMENT 4
Suppose we want to Query Dhaka as a State from the given documents in Figure-1.

This system works as follows:
Select State
From Documents
Where State="Dhaka”
The token number of Dhaka = 6 from token dictionary.
‘Index of that Token number = 16 from Figure-3 As a state.
Block no = 16/16 = 1, Offset address= 16 % 16 =0,
The Token number 16 in Figure-3.2 is within path boundary 5
In this path Dhaka is as a State. Path address = ABS (-5})=5

Decimal value of block 1, page 0 (means document-1) = 49120 its binary is

1 0 I ! 1 1 1 i 1 ! 1 0 0 0 0 0

Started from 0....15 Binary value of offset address (16) = 0, this is not present in the
Document —1. Searching result for word dhaka in Example-1.1, using our method

Similarly this system can search any word from given xml documents.

Table 3.3: Word searching result

Word_Name Doc_no | Path_no | Path_address
0 4 Contacts.contact. Address.City
Dhaka 1 4 Contacts.contact.Address.City
0 5 Contacts.contact.Address.State
2 5 Contacts.contact. Address.State
34



3.4.2 Searching in Multiple Attributes

In this method, any portion of path name is selected and the specific value of the path is
selected. This method finds the path number from path dictionary and (oken from token
dictionary. If they are found, path-no and token-no are matched into path-token matrix. In

the path-token matrix, if the path-no and token-no are matched then the searching system

as like word searching system given in 3.4,

Select Path_Name and Searching value  jq——

Path found

No

Yes

Back for new query

Identify the Path-no from path dictionary

N

Token found

No

yes
l Back for new query

Identify the Token-no from word dictionary

d

Match this Path-no and Token-no into Path_Token matrix

Search in the Bitmap structure as in word searching system

Figure 3.13: System structure of Specific Query with multiple attributes

3.4.3 Example of Query with Multiple Attributes:

Select Title
From documents

where 1ST author ="Korth” and 2ND author ="].S.Martin”

This system finds the path number from path dictionary given in table-2. Path number of
1ST author and 2ND author is 12 and 13. If the path number of 18T author is not found in
path dictionary then this system will back for new query. This system also finds the token
value of Korth from word -dictionary. If it is found, then this system finds the token value of
Martin also from word dictionary. If the word is found then this system will check either

Korth is for 1ST author and Martin is for 2ND author from Path_Token matrix. The

35

-



token value of Korth is 27 and Martin is 29 from word dictionary for example given in
Figure-3.1. From Figure-3.2 that is Token_Path Matrix, we see that token 27 and 29 is under
path boundary 12 and 13. Path 12 and 13 are first author and second author from path
dictionary. Now this system will find in which documents these words exist. This searching

system is as like the word searching system that is explained in 3.6.

3.5 Analysis of Bitmap Construction

We have developed an algorithm to implement the method that is given in Figure-3.14 .
Path Token Dictionary is used to create word and path dictionary. Each distinct word and
distinct path has a separate token number and path number. The function
Two_Dimension_Doc_Token_Path_Matrix is used to create the matrix that represents
the word existence in documents. Bitmap matrix is the function used to create the
matrix that is in compressed format. All the queries are performed in bitmap matrix.

Algorithm Bitmap_Indexing(}{
Path_Token Dictionary();
Two_Dimension_Doc_Token_Path_Matrix();
Bitmap matrix(); }

Figure 3.14: Bitmap Indexing

Path_Token_Dictionary(){
While('EOF (xml_file)) do{ _
If (XML word) consist a start_path push this word onto a temporary path
table;
If (XML word) be a word without start & end_path then {
Push the word into token_dictionary table with checking either exist or not;
If (lexist(token_dic[XML _word]) then {
Store the word in the token_dictionary_table;
Return the token_no for the word and store it into temp_token_table; }
Else return the token_no for the word and store it into temp_token_table; }
If (XML word) consists a end_path then {

Compare(); // this temp_path to the original  path in the original | path_table
If (XML word does not exist) then { Create a new path_no for this path;
Store this path to original_path_table and return the path _no; }
Else return the only path_no for the existing path; }
If (two or more consecutive XML words) consist end_path then
pop the top element from temp _path_table; // no update is necessary
3/ While  }//end path_token_dictionary

Figure 3.15: Path-token-dictionary

36

e



Two_Dimension_Doc_Token_Path Matrix(){
// first row of the matrix contain token &path_no  // first column contain document no
for each new path_no do {
create a new column in doc_token_path_matrix;
store the negative value of path_no, // negative value to distinguish from token_value;
Jfor each new token_no within this path_no do |
create a new column in doc_token_path_matrix within this path_boundary;
insert the token_no within this path_no,
insert I to the corresponding document ;| } } o}

Figure 3.16: Two_Dimension_Doc_Token_Path_Matrix()

Bitmap_Matrix(){

X=the no_of bits_per_block from user
Index=Find_index token(); // return the index of searching token_no from doc_token_path
mairix
Block_no=index /X ;
Offset=index % X ;
Jor each Block of doc_token_path mairix do {Convert binary to decrmal
store the decimal value into Bitmap table; }
Jor each row of the Bitmap_table do { // vow represent block no....column represent document.
If (the decimal value) of the block_no consist ‘1’ in the offSet position then
searching word is found to the corresponding document; }
//To get path_no search from the index of searching token, in the first row of the
doc_token_path_matrix  until found a negative value, ABS(negative value) is path_no.}

Figure 3.17: Bitmap _matrix

3.6 Analysis of Time Complexity of the Algorithm

Let us consider, W be the total no of distinct words, P be the total no of distinct path, and D
be the number of documents.

Minimum time complexity of each method O(1)

In three dimensional indexing, document is stored in one dimension, element path is stored
in another dimension and word information is stored in another dimension. So, time
complexity of three dimensional bitmap indexing is : O( W * P * D).

Average time complexity of three dimensional indexing is O(((W*P* D)+1) /2)

In our two dimensional indexing, the word information and path information is stored
together in row wise and document information in column wise. So, time complexity of two

dimensional bitmap indexing is : O(( W +P) * D). .

37



Average time complexity of two dimensional" indexing is O((({W+P)*D)+1) /2)

In our bitmap indexing word information and path information is stored together in row
wise and document information in column wise and there is a division by no_bits_per_block.
Here we have considered 256 bits per block that means 32 bytes. So, time¢ complexity of |
bitmap indexing is : O(({(W+P) /no_bits_per_block)*D). |
Average time complexity of bitmap indexing is O((((W+P) /no_bits_per_block)*D)+1) 2)

3.7 Analysis of Time Requirements for Query Operations

We have considered ‘AND’ and ‘OR’ operation within the predicate of the query for the
analysis of time requirement.

3.7.1 Analysis of Time Requirements for AND Operations

Let us consider, the total time requirements for word dictionary searching is Taic, the time
requirement for path dictionary searching is Tpan and the time requirements for bitmap
searching 15 Thiumap-

So total time requirements for single attribute of a single word is Tgwort™ Tdic + Tpath + Toitmap
T4 (min)= Taic » the time to search only the dictionary.

In caée of multiple attributes where all conditions are true, time requirements is Tq (max) =
n*Ty/word » Where n is the total number of attributes.

In case of multiple attributes of AND operation where any condition is false. This may
happen in three ways. If all the conditions arc tr‘ue-except the last condition, if all the
conditions are true except first condition, if first condition and last condition are true but any
condition between first and last is faise.

Time requirements (if all the conditions are true except the last condition) is

Tmig = (0-1)* Tgrword + Taic, where n is the total number of atiributes, here first (n-1) attribufes

are present but last attribute is absent. So for Jast attribute the time is only dictionary

searching that 1s Tgic,

Time requirements (if all the conditions are true except the first condition) in case of multiple
attributes 18 T maq = Taiest (1-1)*Tgiword  Where n is the total number of attributes, here last (n-
1) attributes are present but first attribute is absent. So this time is only dictionary searching -

that Tqic

38



Time requirements (if first condition and last conditioﬁ are true but any condition between
first and last is false) is Tnag= 2% Tgmwora + (1-2)*Tic
In case of multiple attributes of AND operation where any attribute is absent, the total time
requirements is Tondg™ Tmiq T T m2q + Trmsq

= (0-1*Tgword + Taic + Taiest M-D*Tqword + 2% Tgmwora + (0-2)*Taic

= 2*%(n-1)* Tyword +2* Tdic +  2* Topwora + (n-2)*Taic

= 2* 0T gmord - 2*Tawora T 2* Taie +2* Toword + n*Tatic - 2*Tatic

= 2* n*Tq!ward +n*Tdic

Average time requirements for AND operations is: { (n+1)/2)* Tqmword

3.7.2 Analysis of Time Requirements for OR Operations

Let us consider, the total time requirements for word dictionary searching is Tdic, the time
requirement for path dictionary searching is Tpan and the time requirements for bitmap
searching is Tpitmap- )

So total time requirements for single attribute of single word is Toiword™ Tdic + Tpath + Thitmap
Tq (miny = Taqic , the time to search only the dictionary.

In case of multiple attributes where all the attributes are present, time requirements for OR
operation is Ty (max) = N*Tg/word » Where n is the total number of attribﬁtes.

In case of multiple attributes of OR operation where any attribute is absent, this may happen
in three ways. If all the attributes are present except first atiribute, if all the attributes'are
present except last attribute, if first and last attributes are present any attribute but any
attribute is absent between first and last attribute.

Time requirements (if all attributes are present except the last attribute) is

Tiorq =max {(n-1)*Tqwora , Taic} Where n is the total number of attributes, here first (n-1)
attributes are present but last attribute is absent. So for the last attribute the time requirement
is only dictionary searching that is Ty , max determim_es the maximum time between these

times.

Time requirements (if all attributes are present except the first attribute) in case of multiple
attributes is Tzorqg = max { Taic, (n-1)*Tqavord § where n is the total number of atiributes, here
last (n-1) attributcs are present but first attribute is absent. So for the first attribute the time

requirement is only dictionary searching that is Tg;c,

39



Time requirements (if first and last attributes are present but any attribute between first and
last is absent) is Tiorg = 2* Tapword + (1-2)*Tyic .
In case of multiple attributes of AND operation where any attribute is absent, the total time
requirements is
Torq = max {(n-1)*Tymord » Taic}+ max { Taic, (0-1)*Tgword }12* Tojword  + (n-2)* Tic
=2* max {(n-1)*Toword » Tdic} + 2* Towora T (n-2)*Tgic; where {n-1)*Tgsword = Tdic
=2* (n-1)*Tgwore T 2% Tymword + (0-2)*Tic
= =2* ¥ Typword T (M-2)*Tyic
The average case time requirements for OR operations is (Tq max)+ Tq miny /2

From 3.72 and 3.71 we see that the time requirements of AND operation is greater that that of
OR operation.

3.8 Analysis of Memory Requirements for Various Methods

Let us consider, P be the total number of distinct element Paths in whole dociment, W be
the total number of distinct words in whole document, D be the total number of docuiments .
For storing integer data needs 2 byte.

Memory needed for Word dictionary & Path dictionary 1s at lea;t 2*( W +P) bytes.

Memory needed for Token Path_word_Matrix is (2*D*(P+W)) bytes

So, For Existing three dimensional indexing needs total memory: 2* P* W* D bytes.
For Two dimensional indexing needs total memory:-(Z*D*(P-}-W) + W +P) bytes
For Bitmap Indexing needs total memory:((2*D*(P+W)/16 } H(W+P)) bytes.

Here we have considered 16 memory cells per block that means 32 bytes.

40



Chapter 4

Experimental Results and Discussions

4.1Introduction

In this chapter we have explained memory requirements for three dimensional vs -our
proposed two dimensional bitmap indexing method. Time requirements of bitmap indexing
and three dimensional indexing are described also. Words selectivity and words searching .
time are explained due to the variation of number of documents. This searching time
increases due to increasing the document number. Path construction time of different types

of file is explained in this chapter.

4.2 Experimental Setup

To implement our indexing method, we have used 2.6 GHz, Pentium-III processor system.
Initially we have used 256 MB RAM in turboC compiler which supports 640K RAM
‘including virtual memory, under Windows 98 operating system. Later on we have used
BorlandC compiler which is 32 bit compiler having 4 GB RAM, under Windows XP
operating system. We have used xml data repository from Internet given in [8] to implement
and test our system. The dataset contains the three different kinds of information in three
XML files namely the supplier information, the aerospace information and personnel

information of an organization.

4.3 Memory Requirements for Various Indexing Methods

Using the dataset given in [8] we run our system and found the various numbers of words and
paths that is given in Table-4.1. In Table 4.1 the first column represents the serial nurhber of
different datasets. In 2™ column there are three different datasets. Personal.xml dataset has
total 36 distinct words and 15 distinct numbers of paths. Similarly Lineitem.xml dataset has
100000 words and 20 distinct numbers of paths, Nasa.xm] dataset has 200000 words and 50
distinct numbers of paths. Using these datasets and according to niemory requirements

method given in 3.7, we found the table-4.2 and its corresponding graph is in Figure-4.1. In

41




Table-4.2 the first column represents the memory requirements for bitmap indexing of
Personal.xml, Lineitem.xm! and Nasa.xm! respectively. The second column represents the
memory requirements for two dimensional indexing of Personal.xml, Lineitem.xml and
Nasa.xml respectively. Similarly the third column represents the mefnory requirements for
three dimensional indexing of Personal.xml, Lineitem.xml and Nasa.xml respectively. In
Table 4.2 the memory requirements for bitmap indexing is .51 MB and 195.31 for three
dimensional indexing in case of Nasa.xml dataset. So the ratio of memory requirements of
three dimensional vs bitmap indexing is about to 400:1. This is because in case of memory
requirements of three dimensional indexing, all the paths are in one diménsion, all the
documents are in another dimension and the word information are stored in the .third
dimension. But in bitmap indexing all the paths and words are in column wise and all the

documents are in row wise in a two dimensional matrix.

Table 4.1: Dataset from xml repository

Sl-no Dataset No_Of distinct_words | No_Of_distinct_Paths
1 Personal.xml 36 15
2 Lineitem.xml] 100000 20
3 Nasa.xm! 200000 50

Table 4.2: Memory needed for various indexing methods

Two-Dimension

Three-Dimension(MB)

Dataset Bit-Map Indexing
(MB) (MB)
Personal.xml 0.000124 0.000498 0.0042
Lineitem.xml 0.256 1.17 19.53
Nasa.xml 0.51 479 195.31

42



Comparison of Memory Requirements

1000

100

10

1

0.1

0.01
0.001
0.0001
0.00001
0.000001

@& Bitmap
B2D
@3D

Memory in Mega-bytes

Personal.xml Lineitemn.xmi Nasa.xml

Dataset

Figure 4.1: Comparison of Memory requirements for 3D, 2D and Bitmap indexing

4.4 Time Requirements For Various Indexing Methods

Using the dataset in Table 4.1, according to time complexity described in 3.6, we get the time
units of various indexing methods, given in table 4.3 and the correspondihg graph is given in
Figure 4.2. Here is an exalmplc to calculate thé time units. Suppose for dataset Nasa.xml, the
total numbers of distinct words are 200000, distinct element paths are 50 and the number of
documents are 10. The time units required for three dimensional Bitmap indexing are O(
200000 * 50 * 10) = 10® units time, as the time complexity of the three dimensional bitmap
indexing is O(documents* Paths *Words). Similarly time units are calculated for each
indexing methods. Last column represents the ratio of the time units of 3D, 2D and bitmap
indexing. In Nasa. xml, the ratio of time units of 3D: 2D: bitmap is 800:16:1. This is because
time complexity of three dimension mdexmg is O(documents* Paths *words) and for bltmap
“indexing is O(({W+P) /no_bits_per_block)*d). In our indexing method we have considered

256 bits per block that means 32 bytes.

43




Table 4.3: Time unit needed for various indexing methods for various datasct

Dataset | Average time Units for | Average time | Average time Ratio
three Three-Dimensional Units for Units for 3D:2D:bitmap
Indexing 2D Indexing | Bitmap Indexing
] 2160 204 12.75 170:16:1
2 10’ 500100 31256 320:16:1
3 10° 2000500 125031 800:16:1
i Comparison of Time Units for Bitmap, 2D and 3D
100000000 — R — —
] .
i
1000000 [
%) . -
= o 2 . | | |@Bitmap
o 10000 ) . .1 =20
£ — | Co o 1 103D
= N R ¢
100 ], 1| . —
i | o ]
) i’icé__. A f_‘ t
Personal.xml Lineitem.xml Nasa.xml
Dataset

Figure 4.2: Graph of Time Comparison for 3D ,2D and Bitmap indexing

4.5 Word searching time
We have evaluated our indexing methods using dataset given in Table 4.2 to find the word

searching time. The searching time is given in Table 4.4.

Table 4.4: Word searching time

Dataset Words Searching time
in seconds
1 Supplier Name 5.86
1 Supplier_ld 5.80
t Catcgory 5.66
2 Positional item 5.25
2 International _item 5.62
2 Local item 5.73
3 Photogrphic_zones 5.92
3 Astrographic_zone 5.84
3 Magnitude 5.67

44



4.6 Word Searching Time and their Selecﬁvity in Documents

We have evaluated our indexing methods using Personal.xml (From xml data repository)
given in [8], to find the word searching time, percentage of word’s selectivity in documents
given in Table 4.4. The relationship between words presence vs searching time is given in

Figure 4.3. In Table 4.4, the first column represents the different number of distinct words.
Second column represents their searching time in seconds. Third column represents there
are total number of documents 28, used to run our system. Forth column represents the
number of documents the word is present. Last column represents the selectivity of words
in percentage. In Figure 4.3 the y axis represents the searching time of different words
and the x axis represents the words selectivity in documents. The total graph
represents the searching time requirements is linear. The word ICCIT is absent in all
XML documents but searching time is .40 seconds. This searching time actually the time to

search from word dictionary.

Table 4.5: Word searching time and their selectivity in documents

Words Processors Searching | Total | “Words Percentage
Time in seconds no of selectivity in of words
docume documents selectivity
-nts '
Dhaka 4.48 28 100 %
IEEE 3.75 26 92.85 %
ACMSIGMOD 3.56 28 25 89.28%
Al 3.25 23 8§2.14 %
TOHOKU 2.66 20 ' 71.42 %
DATABASE 2.45 - 17 60.71%
WASHINGTON 1.94 10 35.71%
VLDB 1.75 7 25 %
Newyork 1.55 5 17.85%
MIT 1.01 2 7.14 %
BUET , .86 1 3.57%
ICCIT 40 0 0 %

45



Words selectivity vs Searching time

.

w

—

Searching time

o

N
7

[x%]
O =M WO & O O

10 20 30

<

Words selectivity

Figure 4.3: Searching time (sec) vs words selectivity Relationship

The word searching time, the percentage of word’s selectivity in documents given in Table
4.5, and the relationship between words presence vs scarching time is given in Figure 4.4
using dataset Personall.xml. In Table 4.5, the first column represents the different number of
distinct words. Second column represents their searching time in seconds. Third column
represents there are total number of documents 56, used to run our system. Forth column
represents the number of documents the word is present. Last column represents their
percentage. In Figure 4.4 the y axis represents the searching time of different words and the x
axis represents the words selectivity in documents. The total graph represents the scarching
time requirements is linear. The word MIST is absent in all XML documents but searching

time is .82 seconds. This searching time actually the time to search from word dictionary.

Comparing Table-4.4 and Table-4.5, the percentage of words selectivity is almost same but
the tolal number of documents is double in Table-4.5 than that of Table-4.4. So the searching
time is also almost double in Table-4.5 than that of Table-4.4. But considcring the Figure-4.3
and Figurc-4.4 it is clear that the searching time is lincar for the words given in Tablc-4.4 and
Table-4.5. The time complexity of bitmap indexing is : O(((W+P) /no_bits_per_block)*D).
Where W be the total no of distinct words, P be the total no of distinct péth, and D be the

46



number of documents. When D,W and P increases the searching time will be increased. So
comparing Table-4.5 and Tabie-4.4, the searching time of Table-4.5 is greater than that of
Table-4.4 as in Table-4.5 there are total number of 56 documents but in Table-4.4 only 28

documents.

Table 4.6: Word scarching time and their scleetivity in large documents

Words Processors Total no Words Percentage
Searching of sclectivity in of words
Time in scconds |  documents documents sclectivity
Paris 8.80 56 100 %
ICCIT 7.40 54 - 9642 %
Datawarchouse 7.10 56 53 94.64 %
Multimedia 6.32 47 ' 83.92 %
Saitama 5.30 40 71.42 %
RDMS 4.90 35 62.5%
Graphics 3.85 20 - 35.71%
IPS] 3.45 15 26.78 %
LORDS 3.10 10 17.85 %
Stamford 1.95 2 3:57 %
DUET ' 1.72 I 1.78%
MIST . 82 0 0%

| Scarching time vs words selectivity in documents

10 e I

Searching time in seconds
F-9
3
B3
Ed

2 o
1
I Ty . . E
i 0 : : : - S AL
E 0 10 20 30 40 50 60

Sclectivity of wonds

Figurc 4.4: Scarching time vs words sclectivity Relationship in largé documents

47



4.7 Searching Time for Multiple Attributes:

We have evaluated our indexing method with the personal.xml data for AND and OR

operations given in Table-4.6 and Table-4.7

4.7.1 Query with AND operation:

In Table-4.6 first row represents query on the basis of different number of attributes. In
second row, the searching time of those queries are presented. There are total number of
documents is 30 to run these query. As for example in Table-4.6 the searching time of query
with single attribute is 3.35 seconds but the searching time of query with two attributes is
4.08 seconds and the searching time of query with three attributes is 4.39 seconds. It is clear
that the searching time of query with two attributes is more than the searching time of query
with three attributes. Also the searching time of query with three attributes is more than the
searching time of query with two attributes. This is because in multiple attributes there are

more condition to satisfy the query.

Table 4.7: Query in multiple attributes with AND operation

, Single attribute Twao attributes Three attributes
Query Select Name Selcct Hall_Name, Room_noe Sclect Dept, Year, Session
From ali documents IFrom all documents From all documents
Where 1d=00414 Where [d=00414 and Name= Where Name=Alom and
Mohiuddin Hall name=K.N.I and Id=00414
Time in 3.35 4.08 4.39
seconds ‘

4,7.2 Query with OR Operation:

In Table-4.7 first row represents query on the basis of different number of attributes. In
second row, the searching time of those queries are presented. As for example in Table-4.7
the searching time of query with single attribute is 3.35 seconds but the searching time of
query with two attributes is 3.75 seconds and the searching time of query with three attributes

is 4.25 seconds. Analytically we see in 3.7.2 the searching time of AND operation is more

48



than the searching time with OR operation. From Table-4.7 and Table-4.6 we see that the

experimental searching time of AND operation is more than that of OR operation.

Table 4.8: Query in multiple attributes with OR operation

Single attribute Two attributes Three attributes
Query Select Name Select Hall_name, Dept Select Dept, Year, Session
From all documents From all decuments From all documents
Where 1d=00415 Where Room_no=200% or Id = Where Name=Alom or
00415 Hall_name=K.N.I or 1d=00414
Time in 2.92 3.15 1.34
seconds

4.8 Path Construction Time

Our indexing method has been evaluated to find the path construction time using various
dataset given in Table-4.8. First column of Table-4.8 represent various dataset, in second
column there are total number of paths, in third column the file size of the dataset and the last
column represents the path construction time in seconds. From Table-4.8, it is clear that when

the file size increases path construction time also increases.

Table 4.9: Path construction time for various dataset

Dataset Total Path File size (MB) Path Construction time in seconds
Contact_info.xm] 15 1. 16 4,21
Supplier. xml 26 2.2 - 6.25
Nasa.xml 50 5.6 11.18

49



4.9 Discussions

In case of memory requirements, from Table-4.1 and Figure-4.1, we see the memory
requirement for three dimensional indexing is 195.31 MB where as two-dimensional indexing
requires 4.29 MB and the bitmap indexing requires only 0.51 MB. The ratio of memory .
requircments of three dimensional vs bitmap indexing is almost on the factor of 400:1. This
improvement of memory requirement is the result of using compressed representation in our
mcthod.

In time complexity analysis the ratio of average time unit among 3D, 2D and bitmap is
800:16:1 in case of dataset Nasa.xml. The word ICCIT and MIST given in Talile-4.4 and
Table-4.5 are absent in all XML documents but their searching times are 0.40 seconds and
.82 seconds respectively. These searching times actually the time to search from word
dictionary. In Figure-4.3 and Figure-4.4, the x axis represents the searching time of different

words and the y axis represents the words selectivity in documents.

Comparing Table-4.4 and Table-4.5, the percentage of words selectivity is almost same but
the total number of documents is double in Table-4.5 than that of Table-4.4. So the searching
time is also about double in Table-4.5 than that of Table-4.4. Considering the Figure-4.3 and
Figure-4.4, it is clear that the searching time is linear for the words given in Table-4.4 and
Table-4.5. The time complexity of bitmap indexing is: O (((W+P) /no_bits_per_block)*D).
Where W be the total no of distinct words, P be the total no of distinct path, and DD be the
number of documents. When D, W and P increase the scarching time will be increased. Sd
comparing Table-4.5 and Table-4.4, the searching time of Table-4.5 is greater than that of
Table-4.4 as in Table-4.5 there are total number of 56 documents but in Table-4.4 only 28
documents. |

Analytically we see in 3.7.2 the searching time of AND operation is more than the searcﬁing
time with OR operation. From Table-4.7 and Table-4.6 we see that the experimental
searching time of AND operation is more than that of OR operation. From Table-4.8, it is

cléar that when the file size increases path construction time also increases.

50



Chapter 5

Conclusions

5.1 Introduction

Semistructured databases unlike traditional databases do not have a fixed schema, largely
evolving, self-describing and can model heterogeneity more naturally than either relational or
object-oriented databases. Example of such self-describing data is XML. XML is a standard
for representing and exchanging information on the Internet. Querying XML data requires an
efficient indexing method. Conventional indexing methods such as Sparse and Dense
indexing, Hashing, B+ trees are not satisfactory as the size of XML documents are very large

and their types are different. So Bitmap indexing plays an important role for XML data.

Existing three-dimensional bitmap indexing of XML data requires large space. At the same
time, querying of large XML documents database is difficult. To overcome these limitations,
we have developed an indexing scheme of XML data using a two-dimensional Bitmap,
providing the facility to store element-path, token and documents in a two dimensional
matrix. This system contains two dictionaries; one is element-path dictionary having all the
distinct element paths for all XML documents and another token dictionary contziining token
values for the distinct words. This indexing scheme creates a token-path-document matrix;
showing the existence of XML data in specific document and in appropriate path. In this
thesis we present how XML data, its path and document can be stored in a two dimensional

bitmap.and describe its performance over three dimension.

5.2 Contributions:
The main contribution of this thesis work is as follows:
« Reduction of dimension in index structure: In three-dimensional Bitmap
indexing, three-dimensional matrix is required to store element-path, word and
document number. Same information we can represent using a two dimensional

structure.

51



e Improvement of storage performance: The ratio of memory requirements of

three dimensional vs bitmap indexing is almost on the factor of 400:1.

« Improvement of query performance: Reduction of search time to query any
XML data from XML document due to dimensionality reduction. In time complexity
analysis the ratio of average time unit among 3D, 2D and bitmap is 800:16:1 in case

of dataset Nasa.xml.

o Querying the XML data in compressed format: In this indexing method

we can query the XML data in compressed format

In three-dimensional Bitmap indexing, three dimensional matrix is required to store element-
path, word and document number. In two-dimensional indexing we require only a two-
dimensional matrix, which can store element-path, existence of word and document number.
This system creates a new column to get a new path from XML document. To get each
distinct word within that path, a new column within that path boundary is created. There isa
negative sign before path number to distinguish from token value. This system will seta 1 to
the corresponding document number, when any word is present in that document number. If
there is path repetition among documents no new column will be created. Only the token
value of the word within that path will be stored. This process continues for all XML

documents and a two dimensional matrix is created.
5.3 Future work

A well structured XML documents must have the following properties:

It contains one or more elements. It has just one elements (root element) that contains alll the
other elements. Its elements are properly nested inside each other (no element starts in one
element and ends in another). The names used in its element start tags and end tags match
exactly. The names of attributes do not appear more than once in the same element start tag.
The values of its attributes are enclosed in either single or double quotes. The values of its
attributes do not reference external entities, either directly or indirectly. Its entities are
declared before they are used. In our two dimensional bitmap indéxing method, to search any

word or any query it is required well structured XML documents. There is further scope to

52



develop two dimensional bitmap indexing method for XML documents not in well structured

form
During parsing of XML document we have considered that the document is syntactically
correct. This is not always true in practice. The parsing method can be improved to handle the

case where the documents are not syntactically correct.

53



REFERENCES

[1].

[4].

fol.

[7].

{8].

[10].

[11].

[12].

Yoon P.J, Raghavan V, Chakilam V. A Three-Dimensional Bitmap Indexing for
XML Documents. In Journal of Intelligent Information Systems, Vol. 17, pages 241-
254, November, 2001.

Rizzlo F, Mendelzon A. Indexing XML data with ToXin. In research report, pages
31- 49, University of Toronto, Department of Computer sciehce, CA, 2001.

Philip J, Li Q, Moon B. XISS/R: XML indexing and storage System Using RDBMS.
In proceedings of the 29" VLDB conference, pages 1073-1076, Berlin, Germany,
2003.

Kratly M, Pokorny J, Snasel V. Indexing XML Data with UB-trees. In research
report, pages 155-164, department of Computer Science, VSB-Technical University
of Ostrava, Czech Republic, 2002.

Quanzhong Li, Bongki M. Indexing and Querying XML data for Regular Path
expressions. In proceedings of the 27" VLDB conference, pages 361-370, Roma,
Italy, 2001.

‘Raghav K, Bohannon P, Jeffrey F, Shenoy P. Updates for Structure Indexes of XML

data. ‘In proceedings of the 28™ VLDB conference, pagés 239-250, Hong Koxlg,
China, 2002,

Tataarinov I, Zachary G, Alon H, Daniel S. Weld. Updating XML Data. In ACM
SIGMOD 2001, pages 413-424, May 21—24, Santa Barbara, California, USA.

http://www.cs.washington.edu/research/xmldatasets/www/ repository.htmi

Abiteboul S, Buneman P, Suciu D. Inverted index, In Proceedings of the
International Conference on Database Theory, pages 377-395, 2000.

Abiteboul S, Buneman P, Suciu D. Data on the Web: from relations to semistructured
data and XML. Morgan Kaufmann, 1999. .

Milo T, Suciu D. Index structures for path expressions. In Proceedings of the
International Conference on Database Theory, pages 277-295, 1999.

Liefke H, Suciu D. XMill: an efficient compressor for XML data. In Procecdings of
fhe ACM SIGMOD International Conference on Management of Data, pages 153-
164, 2000.

54


http://www.cs.washington.edu/research/xmldatasets/www/repository.htm

{-13}.
[14].

[151.

[18].

[19].

Buneman P, Davidson B, Hillebrand G, Suciu D. Adding structure to unstructured
data. In Proceedings of the International Conference on Database Theory, pages 336~
350, 1997. _
Christophides V, Abiteboul S, Cluet S, Scholl M. From structured documents to novel
query facilities. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 313-324, 1994.
Arocena G, Mendelzon A. WebOQL: Restructuring documents, databases and webs.
Proceedings of the IEEE International Conference on Data Engineering, pages 24-33,
1998. | |
Abiteboul S, Quass D, McHugh J, Widom J, Wiener J. The Lorel query language for
semistructured data. International Journal on Digita Libraries, 1(1): 68-88, April 1997.
Buneman P, Davidson S, Hillebrand G, Suciu D. A query language and optimization
techniques for unstructured data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 505-516, 1996.

Fernandez M, Florescu D, Levy A, Suciu D. A query language for a web-site
management system. SIGMOD Record, 26(3): 4-11, 1997.
Buneman P, Mary F, Suciu D. UnQL: a query language and algebra for
semistructured data based on structural recursion. VLDB Journal 9(1): 76-110, 2000.
Christophides V, Cluet S, Moerkotte G. Evaluating queries with generalized path
expressions. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 413-422, 1996.
McHugh J, Widom J. Query optimization for semistructured data. Technical Report,
Stanford University, 1997,
McHugh J, Widom J. Query Optimization for XML. Proceedings of the International
Conference on Very Large Databases, pages 315-326, 1999. '
Liefke H. Horizontal query optimization on ordered semistructured data. Informal
Proceedings of the International Workshop on the Web and Databases, pages 61-60,
1999.

55



	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065

