M.Sc. Engineering Thesis

Minimum Segment Drawings of Outerplanar Graphs

Department of Computer Science and Engineering. Bangladesh University of Engineering and Technology (BUET) Dhaka-1000

December 31, 2008

The thesis titled "Minimum Segment Drawings of Outerplanar Graphs", submitted by Muhammad Abdullah Adnan, Roll No. 100605037P, Session October 2006, to the Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, has been accepted as satisfactory in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering and approved as to its style and contents. Examination held on December 31, 2008.

Board of Examiners

1. \qquad
Dr. Md. Saidur Rahman
Chairman
Professor \& Head
(Supervisor \& Ex-officio)
Department of CSE
BUET, Dhaka 1000.
2.

Member
Professor
Department of CSE
BUET, Dhaka 1000.

Dr. Mahmuda Naznin
Assistant Professor
Department of CSE
BUET, Dhaka 1000.
4.

Dr. M. Sohel Rahman
Member
Assistant Professor
Department of CSE
BUET, Dhaka 1000.

$\begin{array}{lr}\text { Dr. Md. Lutfar Rahman } & \text { Member } \\ \text { Professor } & \text { (External) } \\ \text { Department of CSE } & \\ \text { Dhaka University, Dhaka 1000. } & \end{array}$

Candidate's Declaration

This is to certify that the work presented in this thesis entitled "Minimum Segment Drawings of Outerplanar Graphs" is the outcome of the investigation carried out by me under the supervision of Professor Dr. Md. Saidur Rahman in the Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka. It is also declared that neither this thesis nor any part thereof has been submitted or is being currently submitted anywhere else for the award of any degree or diploma.

Abdullah Adman
Muhammad Abdullah Adnan
Candidate

Contents

Board of Examiners i
Candidate's Declaration ii
Acknowledgements ix
Abstract x
1 Introduction 1
1.1 Minimum Segment Drawings 2
1.2 Applications of Minimum Segment Drawings 3
1.3 Challenges 4
1.4 Previous Results 4
1.5 Scope of this Thesis 5
1.6 Summary 7
2 Preliminaries 9
2.1 Basic Terminology 9
2.1.1 Graphs 9
2.1.2 Subgraphs 10
2.1.3 Connectivity 11
2.1.4 Paths and Cycles 12
2.1.5 Trees 12
2.2 Planar Graphs and Plane Graphs 13
2.2.1 Dual Graphs 14
2.2.2 Outerplane Graphs 15
2.3 Subdivision of a Graph 16
2.4 Algorithms and Complexity 16
2.4.1 The Notation $O(n)$ 17
2.4.2 Polynomial Algorithms 17
2.4.3 NP-complete 17
2.5 Drawing Graphs with Few Segments 18
2.5.1 Trees 19
2.5.2 2-Connected Graphs 20
2.5.3 3-Connected Graphs 20
2.5.4 3-Connected Cubic Plane Graph 21
2.5.5 Series-Parallel Graph with the maxinum Degree Three 22
3 Dual-Path Maximal Outerplane Graph 23
3.1 Minimum Segment Drawing of a Fan Graph 23
3.2 Properties of Minimum Segment Drawings of Fan Graphs 28
3.3 Dual-path Maximal Outerplane Graph 32
3.3.1 Decomposition into Fan Components 33
3.3.2 Feasible Drawings 35
3.3.3 Patching of Minimum Segment Drawings 36
3.4 Upper bound on the Number of Segments 42
3.5 Conclusion 43
4 Dual-path Outerplane Graphs 44
4.1 Decomposition into Maximal Components 44
4.2 Minimum Segment Drawings of Maximal Components 45
4.3 Patching of the Minimum Segment Drawings of Maximal Components 47
4.4 Time Complexity 50
4.5 Conclusion 51
CONTENTS v
5 Subdivision of Dual-path Outerplane Graphs 52
6 Conclusion 56
References 58
Index 61

List of Figures

1.1 A minimum segment drawing of a planar graph. 3
1.2 (a) A straight line drawing of a graph G, (b) a minimum segment drawing of G. 4
2.1 Illustration of a graph. 10
2.2 A vertex-induced subgraph. 11
2.3 (a) A connected graph (b) a disconnected graph with two connected components. 11
2.4 Illustration of a tree. 13
2.5 Four planar embeddings of the same planar graph. 13
2.6 A plane graph G and its dual graph G^{*}. 14
2.7 An outerplane graph G and its weak dual. 15
2.8 An outerplane graph G and its weak dual. 16
2.9 A minimum segment drawing of a tree. 19
2.10 Drawings of 2 -connected graphs on few segments. 20
2.11 A 3-connected graph G that requires at least $2 n-6$ segments in any drawing 21
2.12 Drawing of a 3-connected cubic graph G using $n+2$ segments. 21
2.13 A minimum segment drawing of a series-parallel graph with the maximum degree three. 22
3.1 (a) A dual-path maximal outerplane graph G, (b) fan graphs of G, (c) minimum segment drawings of the fan graphs, and (d) a minimum segment drawing of G. 24
3.2 Illustration of fan graphs and their minimum segment drawings. 25
3.3 Two drawings of the fan graph of $d(v)=4$ with five maximal segments. 26
3.4 Straight line drawing of G with $d(v)>4$ where v forms a convex corner. 29
3.5 Illustration of a non-triangulated face where (a) v is not an ear vertex and (b) u is a vertex with $d(u)>4$ 33
3.6 (a) A dual-path outerplane graph G_{i} and (b) a feasible drawing D of G_{i}. 35
3.7 Illustration of patching the minimum segment drawing D^{\prime} of M_{i} with D_{i-1} where M_{i-1} and M_{i} have exactly one face in common. 37
3.8 Illustration of patching D^{\prime} with D_{i-1} where $d\left(u_{1}\right)$ and $d\left(u_{2}\right)$ is odd and M_{i-1} and M_{i} have two faces in common. 39
3.9 Illustration of patching the minimum segment drawing D^{\prime} of M_{i} with D_{i-1} where M_{i-1} and M_{i} have two faces in common with $d\left(u_{1}\right)=d\left(u_{2}\right)=4$. 40
3.10 Illustration of patching the minimum segment drawing D^{\prime} of M_{i} with D_{i-1} where M_{i-1} and M_{i} have two faces in common with $d\left(u_{1}\right)>4$ and $d\left(u_{2}\right)=4$. 41
3.11 Illustration of patching the minimum segment drawing D^{\prime} of M_{i} with D_{i-1} where M_{i-1} and M_{i} have two faces in common and $d\left(u_{1}\right)$ is even. 42
4.1 Illustration of the method for dividing G^{\prime} into maximal components. 45
4.2 Patching an edge with the minimum segment drawing D. 47
4.3 Illustration of the method for patching the maximal components to get the min- imum segment drawing for G. 49
5.1 The number of segments in a drawing remains same by subdividing an edge in the drawing 53
5.2 A minimum segment drawing of a subdivision of a dual-path outerplanar graph. 54

List of Tables

1.1 Known results for the minimum segment drawing problem 6
1.2 Algorithms for the minimum segment drawing problem. 7

Acknowledgments

First of all, I would like to thank my supervisor Professor Dr. Md. Saidur Rahman for introducing me to this beautiful and fascinating field of graph drawing, and for teaching me how to carry on a research work. I thank him for his patience in reviewing my so many inferior drafts, for correcting my proofs and language, suggesting new ways of thinking and encouraging me to continue my research work. I again express my heart-felt and most sincere gratitude to him for his constant supervision, valuable advice and continual encouragenent, without which this thesis would have not been possible.

I would like to thank Professor Dr. M. Kaykobad for his inspirations throughout my career, and as an examiner of this thesis. My heartfelt acknowledgement goes to all other respected members of the board of examiners: Professor Dr. Md. Lutfar Rahman, Dr. Mahmuda Naznin and Dr. M. Sohel Rahman, for their valuable suggestions, advice and corrections.

I would like to acknowledge with sincere thanks the all-out cooperation and services rendered by the members of our Graph Drawing Research Group. They gave me valuable suggestions and listened to all of my presentations. I also would like to express my ever gratefulness to my parents for their best support to me throughout my work.

Finally, every honor and every victory on earth is due to Allah, descended from Him and must be ascribed to Him. He has endowed me with good health and with the capability to complete this work. I convey my utmost praise to Him for letting me the opportunity to submit this thesis.

Abstract

In a straight line drawing of a planar graph each vertex is drawn as a point and each edge is drawn as a straight line segment. One of the important aesthetic criteria for a straight line drawing is to minimize the number of maximal straight line segments required for the straight line drawing. Finding a minimum segment drawing of a planar graph is analogous to aligning maximum number of objects according to their relations. Hence the problem of obtaining a minimum segment drawing of a given graph has important practical applications in the fields like Optical Fiber Communication, bend minimization in VLSI Layout Planning, aesthetics in Architectural Floorplanning, antenna placement in Sensor Networks, etc. The problem of finding minimum segment drawings has been studied for different classes of planar graphs which include trees, outerplanar graphs, 2-trees and planar 3-trees. Researchers were able to give bounds on the number of segments required for straight line drawing of the classes of graphs mentioned above. Recently, Samee et al. gave an algorithm to find minimum segment drawings of a restricted class of series-parallel graphs with the maximum degree three. Other than that no algorithm has been devised so far for finding minimum segment drawings of non trivial classes of planar graphs.

Outerplanar graphs are an important subclass of planar graphs where every vertex of the graph appears on the outerface. Dujmović et al. posed an open problem of finding a polynomial time algorithm to compute an outerplanar drawing of a given outerplanar graph with the minimum number of segments. Motivated by this open problem, in this thesis we give a lineartime algorithm for finding a minimum segment drawing of a dual-path outerplane graph. We also give an algorithm for finding a minimum segment drawing of a subdivision of a dual-path outerplane graph.

Chapter 1

Introduction

A graph consists of a set of vertices and a set of edges, each joining two vertices. Graphs are abstract structures that are used to model structural information arising from many fields, such as economics, engineering, social sciences, genetics, mathematics and computer science. Graphs, as models of information, are often required to be visualized or drawn in ways that are easy to read and understand, or they are required to be laid out while satisfying some physical constraint. Graph drawing addresses the problems of developing algorithmic techniques for their automatic generation. Although graph drawing problems are attractive from a purely mathematical standpoint, they also arise in many application areas, including VLSI design, visualization, and DNA mapping.

There are infinitely many drawings of a graph. Producing a good drawing of a graph typically involves the optimization of several application-specific criteria. More often the idea of a good drawing, regardless of its purpose, coincides with aesthetics and edge straightness. Many bends or equivalently many line segments in the drawing increase the difficulty for the eye to follow the course of the edges incident on a vertex. For this reason, the total number of line segments should be kept small when the readability of a drawing is of concern.

In this thesis, we deal with the problem of drawing graphs with the minimum number of segments. As this problem is relatively a new problem in the area of graph drawing, it has not been studied well so far. As a result, neither the counting of number of segments required for a
minimum segment drawing nor any algorithm to construct such a drawing for a given graph is known. However while the recent research works have failed to develop significant algorithms for minimum segment drawings, they were able to give bounds on the number of segments required for a straight line drawing of a graph. Hence it remains open to develop algorithmic techniques both for the counting and the drawing problems.

In this chapter, we discuss the applications of drawing graphs with the minimum number of segments. We also review the previous results regarding the bounds on the number of segments and present the objectives of the thesis. We start with Scction 1.1 by giving a precise definition of the minimum segment drawing problen. Section 1.2 describes some practical applications of the problem. Section 1.3 reviews the previous works in this field. Section 1.4 addresses the scope of this thesis. In Section 1.5, we present the summary of the thesis.

1.1 Minimum Segment Drawings

A common requirement for an aesthetically pleasing drawing of a planar graph is that all edges are drawn as straight line segments without edge-crossings [DESW07a, DETT99, Far48, NR04, RNN99]. A straight line drawing is such a drawing in which each vertex is drawn as a point and each edge is drawn on a straight line segment. A maximal segment is a drawing of a maximal set of edges that form a straight line segment. One of the important criteria for the straight line drawing is to minimize the number of maximal segments. A minimum segment drawing of a planar graph G is a straight line drawing of G with the minimum number of maximal segments. Figure 1.1(a) depicts a straight line drawing of a planar graph with 34 maximal segments, while Figure 1.1(b) depicts a minimum segment drawing of the same graph with 15 maximal segments.

Figure 1.1: (a) A planar graph G, (b) a minimum segment drawing of G.

1.2 Applications of Minimum Segment Drawings

Although planar straight line drawings are considered as the best means for visualizing planar graphs [PCJ96, Pur97], minimization of the number of segments in these drawings can greatly enhance the overall readability [DESW07a]. On the other hand, fewer number of segments in the drawing often implies fewer number of slopes in the drawing [DESW07a]. Both these characteristics have important effects on scan conversion algorithms for lines in raster devices. In raster devices, the grid location of each pixel has to be computed separately. Moreover, this computation is largely dependent on the slope of the segment [FDFH03]. If both the number of segments and the number of slopes in the drawing are few, then these computations can be performed faster yielding a faster rendering of the drawing.

Moreover, finding a minimum segment drawing of a planar graph is analogous to aligning maximum number of objects according to their relations. Hence the problem of obtaining a minimum segment drawing of a given graph has important practical applications in the fields like Optical Fiber Communication, bend minimization in VLSI Layout Planning [KL84, RNN99], aesthetics in Architectural floorplanning [DETT94, DETT99], antenna placement in Sensor Networks [KD05], etc.

1.3 Challenges

In this section, we illustrate the challenges that we face to solve the problem of finding a minimum segment drawing of a graph.

Given a graph first the question arises -"How do we minimize number of segments in a drawing?". One may think of minimizing the number of segments by drawing the faces triangular in the drawing. But this does not lead to a minimum segment drawing because making faces triangular does not always minimizes segments. Figure 1.2(a) shows a straight line drawing of a graph where every face is triangulated. But this drawing is not a minimum segment drawing because this graph has another drawing (see Fig. 1.2(b)) which requires less number of segments.

Figure 1.2: (a) A straight line drawing of a graph G, (b) a minimum segment drawing of G.

Another approach to finding minimum segment drawing may be by making edges incident to a vertex pairwise collinear. Then the problem turns into choosing the vertices to which the incident edges will be pairwise collinear. Greedy choice on the vertices with higher degree does not always give optimal solution. Hence the challenge here is to find an optimum choice of vertices. In this thesis we follow this approach of making edges incident to a vertex pairwise collinear and give an algorithm for choosing that set of vertex.

1.4 Previous Results

In this section, we review the previous works regarding drawing planar graphs with few slopes and few segments.

The problem of computing straight line drawings of planar graphs has been studied for long with various application specific objectives in the focus [Far48, FPP90, Pur97, Sch90, Wag36]. Recently, Dujmović et al. have studied this problem with the new objective of minimizing the number of segments in a drawing [DESW07a], and the insightful results presented in their work have established a new line of research henceforth. However, as their results suggest, this problem is quite difficult for most of the non-trivial graph classes. For most of the cases, bounds have been given on the number of segments in a drawing, but no algorithm is known for computing a minimum segment drawing. For example, although Dujmović et al. have provided an algorithm for computing minimum segment drawings of trees, no such algorithm is known for biconnected and triconnected plane graphs.

Recently, Samee et. al. [SAAR08] studied the problem of finding minimum segment drawing for planar graphs by restricting the maximum degree of that graph. They first gave a lower bound on the number of segments required for straight line drawings of series-parallel graphs with the maximum degree three. Then they presented an algorithm for finding a minimum segment drawing of such a graph. Other than the degree restricted case for series-parallel graphs, to the best of our knowledge no algorithm has yet been devised for computing minimum segment drawings of a general class of graph.

The known results on the minimum segment drawing problem are listed in Table 1.1. Meanings of the notations used in this table are as follows. The symbol η denotes the number of odd degree vertices in a tree. The symbol n denotes the number of vertices in a graph. For a seriesparallel graph G with $\Delta(G)=3$, the symbols P and N denote the number of P-nodes and the number of primitive P-nodes in an $S P Q$-tree of G, and $k \in\{1,2\}$ based on a characterization of the $S P Q$-tree [DETT99] of G.

1.5 Scope of this Thesis

In this thesis, we consider the problem of finding a minimum segment drawing for a subclass of "outerplane graphs." Outerplane graphs comprise an important subclass of plane graphs

Graph class	Bound on segments		Minimum Segment	Reference
	Lower	Upper		
Tree	$\frac{\eta}{2}$	$\frac{\eta}{2}$	Yes	
Plane 2-connected	$\frac{5}{2} n$	-	No	
Planar 2-connected	$2 n$	-	No	[DESW07a]
Plane 3-connected	$2 n$	$\frac{5}{2} n$	No	
Planar 3-connected	$2 n$	$\frac{5}{2} n$	No	
Plane 3-connected cubic	-	$n+2$	No	
Series-parallel $(\Delta=3)$	$P+N+k$	$P+N+k$	Yes	[SAAR08]

Table 1.1: Known results for the minimum segment drawing problem.
where every vertex appear on the outerface. Dujmović et al. [DESW07a] posed an open problem of obtaining a polynomial-time algorithm to find a minimum segment drawing of a given outerplane graph. Motivated by this open problem in this thesis, we study the minimum segment drawing problem for subclass of outerplane graphs.

We first study the minimum segment drawing problem for maximal dual-path outerplane graph. To compute a minimum segment drawing, at first the graph is divided into smaller graphs called fan graphs. Then the minimum segment drawings of the fan graphs are computed. Then the drawings of the fan graphs are patched in such a way that after patching the combined drawing becomes a minimum segment drawing of the original graph.

By using the algorithm for finding a minimum segment drawing of a dual-path maximal outerplane graph, we extend our result for dual-path outerplane graphs. To compute a minimum segment drawing of a dual-path outerplane graph, at first the vertices of degree two are removed from the graph. Then the graph is divided into maximal components where each maximal component is a maximal outerplanar graph. Then the minimum segment drawings of the maximal components are computed. After computing the minimum segment drawings of the maximal components, the drawings are patched in such a way that after patching the combined drawing becomes a minimum segment drawing of the original graph. Then the vertices of degree
two are added to the drawing.
We then extend our algorithm for subdivision of outerplanar graphs. To compute a minimum segment drawing of a subdivision of an outerplanar graph, the inner vertices of degree two are removed from the graph. Thus the graph transforms into an outerplanar graph and a minimum segment drawing for that graph is computed. Then the vertices of degree two are added to the drawing. Table 1.2 shows the known algorithnis for the minimum segment drawing problem for different classes of graphs.

Graph class	Time complexity	Reference
Tree	$O(n)$	[DESW07a]
Series-parallel $(\Delta=3)$	$O(n)$	[SAAR08]
Dual-path outerplanar	$O(n)$	[Ours]
Subdivision of Dual-path outerplanar	$O(n)$	

Table 1.2: Algorithms for the minimum segment drawing problem.

1.6 Summary

In this thesis we develop efficient algorithms for finding minimum segment drawings of subclasses of outerplanar graphs. The main results of this thesis are as follows.

1. We give a linear-time algorithm for computing a minimum segment drawing of a given dual-path maximal outerplanar graph.
2. We present a linear-time algorithm for computing a minimum segment drawing of a given dual-path outerplanar graph.
3. We develop a linear-time algorithm for computing a minimum segment drawing of a subdivision of a dual-path outerplanar graph.

The rest of the thesis is organized as follows. Chapter 2 defines basic terminologies relevant to graphs, graph algorithms and graph drawing problems to understand our research work. Chapter 3 describes the algorithm that computes a minimunı segment drawing for a dual-path maximal outerplane graph in linear time. Chapter 4 deals with computing minimum segment drawings of dual-path outerplane graphs. In Chapter 5, we give an algorithm for a subdivision of a dual-path outerplane graph. Finally, Chapter 6 is the conclusion.

Chapter 2

Preliminaries

In this chapter, we define some basic terminology of graph theory and algorithms. Definitions which are not included in this chapter will be introduced as they are needed. We start, in Section 2.1, by giving some definitions of standard graph-theoretical terms used throughout the remainder of this thesis. We devote Section 2.2 to define terms related to plane graphs. The notion of time complexity is introduced in Section 2.3. Finally we give a review of the literature on the minimum segment drawing problem in Section 2.4.

2.1 Basic Terminology

In this section we give definitions of some theoretical terms used throughout the remainder of this thesis.

2.1.1 Graphs

A graph G is a structure (V, E) which consists of a finitc set of vertices V and a finite set of edges E; each edge is an unordered pair of distinct vertices. We denote the set of vertices of G by $V(G)$ and the set of edges by $E(G)$. Fig. 2.1 depicts a graph G where each vertex in $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$ is drawn as a small dark circle and each edge in $\left(E(G)=\left\{e_{1}, e_{2}, \ldots, e_{9}\right\}\right.$
is drawn by a line segment.
If a graph G has no "multiple edges" or "loops", then G is said to be a simple graph. Multiple edges join the same pair of vertices, while a loop joins a vertex with itself. A graph in which loops and multiple edges are allowed is called a multigraph. Often it is clear from the context that the graph is simple. In such cases, a simple graph is called a graph. In the remainder of thesis we assume that G has no loop.

We denote an edge between two vertices u and v of G by (u, v) or simply by $u v$. If $u v \in E$ then two vertices u and v of graph G are said to be adjacent; edge $u v$ is then said to be incident to vertices u and $v ; u$ is a neighbor of v. The degree of a vertex v in G, denoted by $d(v)$, is the number of edges incident to v. In the graph shown in Fig. 2.1 vertices v_{1} and v_{2} are adjacent, and $d\left(v_{1}\right)=3$, since four of the edges, namely e_{1}, e_{5} and e_{6} are incident to v_{1}. By $\Delta(G)$, we mean the maximum degree of the vertex in a graph.

Figure 2.1: Illustration of a graph.

2.1.2 Subgraphs

A subgraph of a graph $G=(V, E)$ is a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$; we then write $G^{\prime} \subseteq G$. If G^{\prime} contains all the edges of G that join two vertices in V^{\prime}, then G^{\prime} is said to be the subgraph induced by V^{\prime}, and is denoted by $G\left[V^{\prime}\right]$. Fig. 2.2 depicts a subgraph of G in Fig. 2.1 induced by $\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$.

We often construct new graphs from old ones by deleting some vertices or edges. If v is a vertex of a given graph $G=(V, E)$, then $G-v$ is the subgraph of G obtained by deleting the vertex v and all the edges incident to v. More generally, if V^{\prime} is a subset of V, then $G-V^{\prime}$ is

Figure 2.2: A vertex-induced subgraph.
the subgraph of G obtained by deleting the vertices in V^{\prime} and all the edges incident to them. Then $G-V^{\prime}$ is a subgraph of G induced by $V-V^{\prime}$. Similarly, if e is an edge of a G, then $G-e$ is the subgraph of G obtained by deleting the edge e. More generally, if $E^{\prime} \subseteq E$, then $G-E^{\prime}$ is the subgraph of G obtained by deleting the edges in E^{\prime}.

2.1.3 Connectivity

A graph G is a connected graph if for every pair $\{u, v\}$ of distinct vertices there is a path between u and v. A graph which is not connected is called a disconnected graph. A connected component of a graph is a maximal connected subgraph. The graph in Fig. 2.3(a) is a connected graph since there is a path for every pair of distinct vertices of the graph. On the other hand the graph in Fig. 2.3(b) is a disconnected graph since there is no path between v_{1} and v_{5}. The graph in Fig. 2.3(b) has two connected components G_{1} and G_{2} indicated by dotted lines.

(a)

(b)

Figure 2.3: (a) A connected graph (b) a disconnected graph with two connected components.

The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph or a single-vertex graph K_{1}. We say that G is k-connected if $\kappa(G) \geq k$. We call a set of vertices in a connected graph G a separator or a vertex cut if the removal of the vertices in the set results in a disconnected or single-vertex graph. If a vertex-cut contains exactly one vertex then we call the vertex a cut verlex. A block is a maximal biconnected subgraph of G.

2.1.4 Paths and Cycles

A $v_{0}-v_{l}$ walk, $v_{0}, e_{1}, v_{1}, \ldots, v_{l-1}, e_{l}, v_{l}$, in G is an alternating sequence of vertices and edges of G, beginning and ending with a vertex, in which each edge is incident to two vertices immediately preceding and following it. If the vertices $v_{0}, v_{1}, \ldots, v_{l}$ are distinct (except possibly v_{0}, v_{l}), then the walk is called a path and usually denoted either by the sequence of vertices $v_{0}, v_{1}, \ldots, v_{l}$ or by the sequence of edges $e_{1}, e_{2}, \ldots, e_{l}$. The length of the path is l, one less than the number of vertices on the path. A path or walk is closed if $v_{0}=v_{l}$. A closed path containing at least one edge is called a cycle.

2.1.5 Trees

A tree is a connected graph containing no cycle. Figure 2.4 is an example of a tree. The vertices in a tree are usually called nodes. A rooted tree is a tree in which one of the nodes is distinguished from the others. The distinguished node is called the root of the tree. The root of a tree is generally drawn at the top. In Figure 2.4, the root is v_{1}. Every node u other than the root is connected by an edge to some other node p called the parent of u. We also call u a child of p. We draw the parent of a node above that node. For example, in Figure 2.4, v_{1} is the parent of v_{2}, v_{3} and v_{4}, while v_{2} is the parent of v_{5} and $v_{6} ; v_{2}, v_{3}$ and v_{4} are children of v_{1}, while v_{5} and v_{6} are children of v_{2}. A leaf is a node of a tree that has no children. An internal node is a node that has one or more children. Thus every node of a tree is either a leaf or an internal node. In Figure 2.4, the leaves are $v_{4}, v_{5}, v_{6}, v_{7}$ and v_{8}, and the nodes v_{1}, v_{2} and v_{3}
are internal nodes.

Figure 2.4: Illustration of a tree.

2.2 Planar Graphs and Plane Graphs

In this section we give some definitions related to planar graphs used in the remainder of the thesis. For readers interested in planar graphs we refer to [NC 88].

A graph is a planar graph if it can be embedded in the plane so that no two edges intersect geometrically except at a vertex to which they are both incident. Note that a planar graph may have an exponential number of embeddings. Fig. 2.5 shows four planar embeddings of the same planar graph.

Figure 2.5: Four planar embeddings of the same planar graph.

A plane graph is a planar graph with a fixed embedding. A plane graph divides the plane into connected regions called faces. We regard the contour of a lace as a clockwise cycle formed by the edges on the boundary of the face. We denote the contour of the outer face of graph G by $C_{o}(G)$. A cycle of a plane graph is called a facial cycle if it is the boundary of a face f and denoted by C_{f}.

2.2.1 Dual Graphs

For a plane graph G, we often construct another graph G^{*} called the geometric dual of G as follows. A vertex v_{i}^{*} is placed in each face F_{i} of G; these are the vertices of G^{*}. Corresponding to each edge e of G we draw an edge e^{*} which crosses e (but no other edge of G and joins the vertices v_{i}^{*} which lie in the faces F_{i} adjoining e; these are the edges of G^{*}. The construction is illustrated in Fig. 2.6; the vertices v_{i}^{*} are represented by small white circles, and the edges e^{*} of G^{*} by dotted lines. G^{*} is not necessarily a simple graph even if G is simple. Clearly the dual G^{*} of a plane graph G is also plane. One can easily observe the following lemma.

Figure 2.6: A plane graph G and its dual graph G^{*}.

Lemma 2.2.1 Let G be a connected plane graph with n vertices, m edges and f faces, and let the dual G^{*} have n^{*} vertices, m^{*} edges and f^{*} faces; then $n^{*}=f, m^{*}=m$, and $f^{*}=n$.

Clearly the dual of the dual of the plane graph G is the original graph G. The weak dual of a plane graph is the dual of that plane graph disregarding the outerface. Figure 2.6(b) shows the weak dual of the graph.

2.2.2 Outerplane Graphs

Outerplane graphs are an important subclass of plane graph. A plane graph is outcrplane if all the vertices are on the boundary of the outerface. An outerplane graph G is maximal if no edge can be added to G without loosing outerplanarity. Every inner face of a maximal outerplane graph is a triangle. Every outerplane graph has at least two vertices of degree two. In a maximal outerplane graph, the inner face containing a vertex of degree two is called an ear. We call the vertex of degree two of an ear an ear vertex and the edges of the ear as ear edges. The weak dual of an outerplane graph is a tree or a forest. Figure 2.7 represents an outerplane graph G and its weak dual is shown by dotted lines.

Figure 2.7: An outerplane graph G and its weak dual.

A dual-path outerplane graph is defined to be an outerplane graph with one or more inner faces whose weak dual is a path. Thus a dual-path outerplane graph has three or more vertices, is 2-connected, and has at most two ears. The two ears divide the boundary of the outerface into two paths called outer paths.

A dual-path maximal outerplane graph is called a fan graph if a vertex is adjacent to every other vertex; the vertex is called a center of the fan graph. The fan of a vertex v in an outerplane graph G is the plane subgraph of G induced by $\{v\} \cup N(v)$.

2.3 Subdivision of a Graph

Subdividing an edge (u, v) of a graph G is the operation of deleting the edge (u, v) and adding a path $u\left(=w_{0}\right), w_{1}, w_{2}, \cdots, w_{k}, v\left(=w_{k+1}\right)$ through new vertices $w_{1}, w_{2}, \cdots, w_{k}, k \geq 1$, of degree two. A graph G^{\prime} is said to be a subdivision of a graph G if G^{\prime} is obtained from G by subdividing some of the edges of G. Figure 2.8(b) shows a subdivision of the graph in Figure 2.8(a).

Figure 2.8: An outerplane graph G and its weak dual.

2.4 Algorithms and Complexity

In this section we briefly introduce some terminologies related to complexity of algorithms. For interested readers, we refer the book of Garey and Johnson [GJ79].

- The most widely accepted complexity measure for an algorithm is the running time which is expressed by the number of operations it performs before producing the final answer. The number of operations required by an algorithm is not the same for all problem instances. Thus, we consider all inputs of a given size together, and we dcfine the complexity of the algorithm for that input size to be the worst case behavior of the algorithm on any of these inputs. Then the running time is a function of size n of the input.

2.4.1 The Notation $O(n)$

In analyzing the complexity of an algorithm, we are often interested only in the "asymptotic behavior", that is, the behavior of the algorithm when applied to very large inputs. To deal with such a property of functions we shall use the following notations for asymptotic running time. Let $f(n)$ and $g(n)$ are the functions from the positive integers to the positive reals, then we write $f(n)=O(g(n))$ if there exists positive constants c_{1} and c_{2} such that $f(n) \leq c_{1} g(n)+c_{2}$ for all n. Thus the running time of an algorithm may be bounded from above by phrasing like "takes time $O\left(n^{2}\right)$ ".

2.4.2 Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its complexity is bounded by a polynomial of the size of a problem instance. Examples of such complexities are $O(n), O(n \log n), O\left(n^{100}\right)$, etc. The remaining algorithms are usually referred as exponential or nonpolynomial. Examples of such complexity are $O\left(2^{n}\right), O(n!)$, etc. When the running time of an algorithm is bounded by $O(n)$, we call it a linear-time algorithm or simply a linear algorithm.

2.4.3 NP-complete

There are a number of interesting computational problems for which it has not been proved whether there is a polynomial time algorithm or not. Most of them are "NP-complete", which we will briefly explain in this section.

The state of algorithms consists of the current values of all the variables and the location of the current instruction to be executed. A deterministic algorithm is one for which each state, upon execution of the instruction, uniquely determines at most one of the following state (next state). All computers, which exist now, run deterministically. A problem Q is in the class P if there exists a deterministic polynomial-time algorithm which solves Q. In contrast, a nondeterministic algorithm is one for which a state may determine many next states simultaneously. We
may regard a nondeterministic algorithm as having the capability of branching off into many copies of itself, one for the each next state. Thus, while a deterministic algorithm must explore a set of alternatives one at a time, a nondeterministic algorithm examines all alternatives at the same time. A problem Q is in the class $N P$ if there exists a nondeterministic polynomial-time algorithm which solves Q. Clearly $P \subseteq N P$.

Among the problems in $N P$ are those that are hardest in the sense that if one can be solved in polynomial-time then so can every problem in $N P$. These are called $N P$-complete problems. The class of $N P$-complete problems has the following interesting properties.
(a) No $N P$-complete problem can be solved by any known polynomial algorithm.
(b) If there is a polynomial algorithm for any $N P$-complete problem, then there are polynomial algorithms for all $N P$-complete problems.

Sometimes we may be able to show that, if problem Q is solvable in polynomial time, all problems in $N P$ are so, but we are unable to argue that $Q \in N P$. So Q does not qualify to be called $N P$-complete. Yet, undoubtedly Q is as hard as any problem in $N P$. Such a problem Q is called $N P$-hard.

2.5 Drawing Graphs with Few Segments

A straight line drawing of a plane graph is a drawing in which each vertex is drawn as a point and each edge is drawn on a straight line segment. A maximal segment is a drawing of a maximal set of edges that form a straight line segment. We call the number of maximal segments in a straight line drawing D of a plane graph the segment count of D, and denote it by $s c(D)$. We call the number of maximal segments in a minimum segment drawing of a plane graph G the segment count of G, and denote it by $s c(G)$.

The problem of computing minimum segment drawings of planar graphs is a relatively new one, and was originated from the seminal work of Dujmović et al. [DESW07a]. In this section we give an overview of some of the most important results presented in [DESW07a]. It is worth
mentioning that, although Dujmović et al. have given both lower bounds and upper bounds on the number of segments in drawings of several important graph classes, algorithm for computing minimum segment drawings was given only for trees. More interestingly, for some non-trivial graph classes, like plane biconnected and planar biconnected graphs, even no upper bound was given. Similarly, for plane triconnected cubic graphs, no lower bound was given. Nevertheless, each of these results is quite insightful and is necessary for subsequent research on this problem.

2.5.1 Trees

Let T be a tree. Let η denote the number of odd degree vertices of T. It was shown in [DESW07a] that any planar straight-line drawing Γ of T requires at least $\frac{\eta}{2}$ number of segments. The claim holds since each odd degree vertex u of T is an endpoint of some segment in Γ. It is notable that, the number of odd degree vertices in a graph is even and hence, $\frac{7}{2}$ is an integer.

(a)

(b)

Figure 2.9: (a) A tree T, and (b) a minimum segment drawing of T

It has also been proved in [DESW07a] that T admits a planar straight-line drawing on exactly $\frac{\eta}{2}$ number of segments. The proof of this claim is constructive. To prove this claim, a drawing Γ of T has been computed in [DESW07a] such that every odd degree vertex of T is an endpoint of exactly one segment in Γ and no even degree vertex is an endpoint of a segment in Γ. Such a drawing of a tree T in Fig. 2.9(a) is illustrated in Fig. 2.9(b).

2.5.2 2-Connected Graphs

It was shown in [DESW07a] that there is an n-vertex 2 -connected plane graph G with $\frac{5}{2} n-4$ edges such that any straight line drawing of G requires $\frac{5}{2} n-4$ number of segments. Such a graph G is shown in Fig. 2.10(a). However, it was also shown in [DESW07a] that the same graph requires at least $2 n-1$ segments in every planar drawing as shown in Fig. 2.10(b). In summary, the known result on minimum segment drawing problem states that there is an n vertex plane 2-connected graph that can be drawn using at most $\frac{5}{2} n$ number of segments, and an n-vertex planar 2-connected graph that requires at least $2 n+O(1)$ number of segments in any planar drawing.

Figure 2.10: (a) A 2-connected plane graph G that requires $\frac{5}{2} n-4$ segments in any drawing, and (b) a drawing of G on $2 n-1$ segments.

2.5.3 3-Connected Graphs

Let G be a 3-connected graph. Based on a canonical decomposition [Kan96] of G, it was shown in [DESW07a] that every 3-connected graph G has a plane drawing with at most $\frac{5}{2} n$ line segments. Although it was not shown whether $\frac{5}{2} n$ line segments are necessary for every drawing of G, it was shown that there is a 3 -connected plane graph G with $n=3 k(k \in \mathbb{N})$ vertices that requires at least $2 n$ number of segments in any planar straight-line drawing. Such a graph G with 12 vertices is shown in Fig. 2.11.

Figure 2.11: A 3 -connected graph G that requires at least $2 n-6$ segments in any drawing.

2.5.4 3-Connected Cubic Plane Graph

Let G be a 3 -connected cubic plane graph. Based on a canonical decomposition of G, it was shown in [DESW07a] that G can always be drawn using at most $n+2$ number of segments. Although this establishes an upper bound of the number of segments required for any drawing of G, no lower bound of the number of segments required for any drawing of G is known as yet. An example of a drawing of a 3 -connected cubic plane graph G using exactly $n+2$ segments is shown in Fig. 2.12.

Figure 2.12: Drawing of a 3 -connected cubic graph G using $n+2$ segments.

2.5.5 Series-Parallel Graph with the maximum Degree Three

Recently, Samee et. al. [SAAR08] studied the problem of finding minimum segment drawing for planar graphs by restricting the maximum degree of that graph. They first gave a lower bound on the number of segments required for straight line drawings of series-parallel graphs with the maximum degree three. Then they presented a linear-time algorithm for finding a minimum segment drawing of such a graph. Other than the degree restricted case for seriesparallel graphs, no algorithm has yet been devised for computing minimum segment drawings of a general class of graph. An example of a minimum segment drawing of a series-parallel graph G with the maximum degree three is shown in Fig. 2.13.

(a)

(b)

Figure 2.13: (a) A series-parallel graph G and (b) a minimum segment drawing of a seriesparallel graph with the maximum degree three.

Chapter 3

Dual-Path Maximal Outerplane Graph

In this chapter we present an algorithm for computing a minimum segment drawing of a dualpath maximal outerplane graph G. Our algorithm is outlined as follows: we first divide G into fan graphs; we then find the minimum segment drawings of the fan graphs; and we finally obtain a minimum segment drawing of G by patching the drawings of the fan graphs. For example, Figure 3.1(b) depicts a decomposition of the graph in Figure 3.1(a) into fan graphs, Figure 3.1(c) illustrates the minimum segment drawings of the fan graphs, and Figure 3.1 (d) depicts a minimum segment drawing of the dual-path maximal outerplane graph in Figure 3.1(a).

3.1 Minimum Segment Drawing of a Fan Graph

In this section, we give an algorithm to compute a minimum segment drawing of a fan graph G. We first have the following lemma on the minimum segment drawings of fan graphs.

Lemma 3.1.1 Let G be a fan graph, and let v be the center of G. Then:
(a) $s c(G)=3$ if $d(v)=2$; and
(b) $s c(G)=\lfloor d(v) / 2\rfloor+3$ if $d(v) \geq 3$.

Figure 3.1: (a) A dual-path maximal outerplane graph G, (b) fan graphs of G, (c) minimum segment drawings of the fan graphs, and (d) a minimum segment drawing of G.

Figure 3.2: Illustration of fan graphs and their minimum segment drawings.

Proof. (a) Since G is a triangle, G has essentially exactly one straight line drawing, which has three maximal segments, as illustrated in Fig. 3.2(a). Thus $s c(G)=3$.
(b) (i) We first show that $s c(G) \leq\lfloor d(v) / 2\rfloor+3$. We have the following two cases to consider. Case 1: $d(v)$ is even and $d(v) \geq 4$.

We take the center v as the intersection point of $d(v) / 2$ distinct straight line segments passing through v. The $d(v)$ neighbors of v are placed on the $d(v)$ endpoints of the straight line segments so that each of the two sets of $d(v) / 2$ endpoints are collinear, as illustrated in the right drawing of Fig. 3.2(c). Thus one can draw G with $d(v) / 2+3$ maximal segments, and hence $s c(G) \leq\lfloor d(v) / 2\rfloor+3$.

Case 2: $d(v)$ is odd and $d(v) \geq 3$.

Assume that $d(v)=3$. Then G has essentially exactly one straight line drawing with four maximal segments as illustrated in the right drawing of Fig. 3.2(b), and G has no straight line drawing with three or fewer maximal segments. Hence $s c(G) \leq\lfloor d(v) / 2\rfloor+3$ for G with $d(v)=3$. We now assume that $d(v) \geq 5$. We take the center v as the intersection point of $\lfloor d(v) / 2\rfloor$ distinct straight line segments passing through v. We draw another straight line segment whose one end is v and the other end is the middle neighbor z of v. Now the $d(v)$ neighbors of v are placed on the $d(v)$ endpoints of all these $\lfloor d(v) / 2\rfloor+1$ line segments so that each of the two sets of $\lfloor d(v) / 2\rfloor$ endpoints and z are collinear, as illustrated in Fig. 3.2(d). Thus one can draw G with $\lfloor d(v) / 2\rfloor+3$ maximal segments, and hence $s c(G) \leq\lfloor d(v) / 2\rfloor+3$.
(ii) We then show that $s c(G) \geq\lfloor d(v) / 2\rfloor+3$ if $d(v) \geq 3$. We only give a proof for the claim that $s c(G) \geq\lfloor d(v) / 2\rfloor+3$ if $d(v) \geq 3$ and $d(v)$ is even; the proof for the case where $d(v)$ is odd is similar. We prove the claim by induction on $d(v)$. For the basis of the induction we consider the fan graph G with $d(v)=4$. G has essentially two distinct drawings with exactly 5 maximal segments as illustrated in Fig. 3.3(a), and G has no drawing with fewer than 5 maximal segments. Thus $s c(G)=5 \geq\lfloor d(v) / 2\rfloor+3$, and hence the basis is true.

Figure 3.3: Two drawings of the fan graph of $d(v)=4$ with five maximal segments.
Assume that $s c\left(G^{\prime}\right) \geq\left\lfloor d\left(v, G^{\prime}\right) / 2\right\rfloor+3$ for the fan graph G^{\prime} with $d\left(v, G^{\prime}\right)=2 k$ for some integer $k \geq 2$. Let G be the fan graph with $d(v, G)=2 k+2(\geq 6)$, and let D be a minimum segment drawing of G. Since $s c(D)=s c(G)$, it suffices to prove that $s c(D) \geq\lfloor d(v, G) / 2\rfloor+3$.

We first consider the case where D has a maximal segment xvy such that each of vertices x and y has degree three in G. Since every inner face is a triangle, x cannot be a neighbor of y in G. Let p and q be the neighbors of x other than v, and let s and t be the neighbors of y other than v. Let G^{\prime} be a graph obtained from G by deleting x and y and by adding new edges (p, q) and (s, t). Then G^{\prime} is a dual-path maximal outerplane graph and $d\left(v, G^{\prime}\right)=2 k$.

We can obtain a straight line drawing D^{\prime} of G^{\prime} by deleting from D the drawings of vertices x and y and their incident edges and by drawing each of the edges (p, q) and (s, t) with a straight line segment. One can observe that the deletion of edges $(p, x),(x, q),(s, y)$ and (y, t) and the addition of the edges (p, q) and (s, t) neither increase the number of maximal segments nor produce any edge crossing. Furthermore, the maximal segment avy in D disappears in D^{\prime}. Therefore $s c(D)-1 \geq s c\left(D^{\prime}\right)$. Since $s c\left(D^{\prime}\right) \geq s c\left(G^{\prime}\right) \geq k+3$ by the induction hypothesis, we have $s c(D) \geq s c\left(D^{\prime}\right)+1 \geq s c\left(G^{\prime}\right)+1 \geq(k+3)+1=(k+1)+3=\lfloor d(v, G) / 2\rfloor+3$. Hence the claim holds.

We then consider the case where D has no maximal segment $x v y$ such that each of x and y has degree 3 . Since G has exactly two vertices of degree $2, D$ has at most two maximal segments passing through v. Each such maximal segment contains exactly two vertices other than v. Since $d(v, G) \geq 6, v$ has two neighbors i and j of degree three such that each of the edges (i, v) and (j, v) is a maximal segment in D. We assume that i is not adjacent to j in G. (The proof for the case where i is adjacent to j is similar.) Let p and q be the neighbors of i other than v, and let s and t be the neighbors of j other than v. Let G^{\prime} be a graph obtained from G by deleting i and j and by adding new edges (p, q) and (s, t). Then G^{\prime} is a dual-path maximal outerplane graph and $d\left(v, G^{\prime}\right)=2 k$. We can obtain a drawing D^{\prime} of G^{\prime} by deleting from D the drawings of vertices i and j and their incident edges and by drawing each of the edges (p, q) and (s, t) with a straight line segment. One can observe that the deletion of edges $(p, i),(i, q),(s, j)$ and (j, l) and the addition of the edges (p, q) and (s, t) neither increase the number of maximal segments nor produce any edge-crossing. Furthermore, the two maximal segments $i v$ and $j v$ in D disappear in D^{\prime}. Therefore $s c(D)-2 \geq s c\left(D^{\prime}\right)$. Since $s c\left(D^{\prime}\right) \geq s c\left(G^{\prime}\right) \geq k+3$ by the inductive hypothesis, we have $s c(G)=s c(D) \geq s c\left(D^{\prime}\right)+2 \geq s c\left(G^{\prime}\right)+2 \geq(k+3)+2=$ $(k+1)+4>(k+1)+3=\lfloor d(v, G) / 2\rfloor+3$. Hence the claim holds. $\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

3.2 Properties of Minimum Segment Drawings of Fan

Graphs

In this section we illustrate some properties of the minimum segment drawings of a fan graph. This properties will be used during the patching of minimum segment drawings of the fan graphs.

Let $G=(V, E)$ be a fan graph and v be the center of G. Let D be a straight line drawing of G. We call the edges incident to a vertex $u \in V(G)$ as pairwise collinear in D if the edges incident to u are drawn using exactly $\lceil d(u) / 2\rceil$ maximal line segments. If the edges incident to u are not pairwise collinear in D then we call u an apex of D. Let n_{D} be the number of apices in D. The outerface of G is always drawn as a polygon in D which requires at least three convex corners, and hence D has at least three apices, i.e. $n_{D} \geq 3$. Since G is a fan graph, G contains two ears, each of which always forms an apex in D. Thus among the apices in D two apices are ear vertices. We have the following lemma on the number of apices of D.

Lemma 3.2.1 Let D be a minimum segment drawing of a fan graph G with center v, and let n_{D} be the number of apices in D. Then the following (a)-(d) hold:
(a) $n_{D}=3$ if $d(v) \leq 3$;
(b) $3 \leq n_{D} \leq 4$ if $d(v)=4$;
(c) $n_{D}=4$ if $d(v)>4$ and $d(v)$ is even; and
(d) $n_{D}=3$ if $d(v)>4$ and $d(v)$ is odd.

Proof. (a) We need at least three convex corners to draw the outerface of G as a polygon. These three convex corners form three apices. Hence $n_{D} \geq 3$. It is now sufficient to show that $n_{D} \leq 3$. If $d(v)=2$ then there are three vertices in G and $n_{D}=3$. If $d(v)=3$ then v has three neighbors. Let v_{1}, v_{2} and w be the neighbors of v with $d\left(v_{1}\right)=d\left(v_{2}\right)=2$ and $d(w)=3$. Suppose v, w are both apices. Then the three edges incident to each of v and w are drawn

Figure 3.4: Straight line drawing of G with $d(v)>4$ where v forms a convex corner.
on three different straight line segments. Since (v, w) is an edge, the total number of distinct straight line segment is five. But in this case $s c(G)=4$ by Lemma 3.1.1(b), a contradiction to the assumption that D is a minimum segment drawing. Hence one of v and w are not apices, and thus $n_{D} \leq 3$.
(b) We need at least three convex corners to draw the outerface of G as a polygon. These three convex corners form three apices. Hence $n_{D} \geq 3$. It is now sufficient to show that $n_{D} \leq 4$. Suppose for a contradiction that $n_{D}>4$. Then the edges incident to v and to the neighbors of v are not pairwise collinear, and clearly the number of segments incident to v in D is at least $\lfloor d(v) / 2\rfloor+1$. Since the three edges on the outerface which are not incident to v are not collinear, $s c(D) \geq(\lfloor d(v) / 2\rfloor+1)+3$. By Lemma 3.1.1 $(\mathrm{b}), s c(G)=\lfloor d(v) / 2\rfloor+3$. Hence $s c(D)>s c(G)$, a contradiction to the assumption that D is a minimum segment drawing.
(c) (i) We first consider the case where v is an apex in D. In this case we claim that v is not a convex corner in D. Assume for a contradiction that v is a convex corner in D. Then $s c(D) \geq d(v)+1$, since no two edges incident to v are drawn on the same straight line segment and at least one additional segment is required to complete the drawing of the outerface, as illustrated in Fig. 3.4. By Lemma 3.1.1(b), $s c(G)=\lfloor d(v) / 2\rfloor+3$. Then $s c(D)>s c(G)$, a contradiction to the assumption that D is a minimum segment drawing. Therefore v cannot be a convex corner in D. We now show that $n_{D} \geq 4$. Since we need at least three convex corners to draw the outerface as a polygon and v is not a convex corner in D, there are at least three vertices other than v on the outerface of G each of which are convex corners in D. These three vertices along with v form the four apices and hence $n_{D} \geq 4$.

We now prove that $n_{D} \leq 4$. Suppose for a contradiction that $n_{D}>4$. Then the edges incident to v and at least four neighbors of v are not pairwise collinear. Then the number of segments incident to v is at least $\lfloor d(v) / 2\rfloor+1$. Also there are three edges on the outerface, other
than the edges incident to v, which are not collinear. Hence $s c(D) \geq(\lfloor d(v) / 2\rfloor+1)+3$. By Lemma 3.1.1 $(\mathrm{b}), s c(G)=\lfloor d(v) / 2\rfloor+3$. Then $s c(D)>s c(G)$, a contradiction to the assumption that D is a minimum segment drawing.
(ii) We now consider the case where v is not an apex in D. Then the edges incident to v are pairwise collinear. Suppose for a contradiction that $n_{D}=3$. Let w be the vertex which forms an apex other than the ear vertices v_{1}, v_{2}. Since G is a fan graph, $d(w)=3$. Let u be a neighbor of v in the embedding from v_{1} to w. Since u is not an apex, w, u and v_{1} are collinear. Similarly any neighbor of v from w to v_{2} is collinear with w and v_{2}. Hence $s c(D) \leq\lfloor d(v) / 2\rfloor+2$ where $d(v)$ is even. According to Lemma 3.1.1(b), $s c(G)=\lfloor d(v) / 2\rfloor+3$. Hence D is not a minimum segment drawing, a contradiction. Thus $n_{D} \geq 4$.

We now prove that $n_{D} \leq 4$. Suppose for a contradiction that $n_{D}>4$. Then the edges incident to at least five neighbors of v are not pairwise collinear. Let $v_{1}, u_{1}, u_{2}, u_{3}$ and v_{2} be those apices, where v_{1} and v_{2} are ear vertices. Then there are at least four outer edges incident to u_{1}, u_{2}, u_{3} on the outerface which are not collinear. Hence $s c(D) \geq\lfloor d(v) / 2\rfloor+4$. By Lemma 3.1.1 $(\mathrm{b}), s c(G)=\lfloor d(v) / 2\rfloor+3$. Then $s c(D)>s c(G)$, a contradiction to the assumption that D is a minimum segment drawing.
(d) (i) We first consider the case where v is an apex in D. In this case we show that v neither is a convex corner nor forms an apex in D. Assume for a contradiction that v is a convex corner in D. Then $s c(D) \geq d(v)+1$, since no two edges incident to v are drawn on the same straight line segment and at least one additional segment is required to complete the drawing of the outerface, as illustrated in Fig. 3.4. By Lemma 3.1.1(b), $s c(G)=\lfloor d(v) / 2\rfloor+3$. Then $s c(D)>s c(G)$, a contradiction to the assumption that D is a minimum segment drawing. Therefore v cannot be a convex corner in D. We now show that v is not an apex in D. Since we need at least three convex corners to draw the outerface as a polygon and v is not a convex corner in D, there are at least three vertices other than v on the outerface of G which are convex corners in D. These three vertices along with v form the four apices and hence $n_{D} \geq 4$. Since v is an apex, the number of segments incident to v is at least $\lceil d(v) / 2\rceil+1$. Furthermore, there are at least two edges on the outerface other than the edges incident to v which are not
collinear. Hence $s c(D) \geq(\lceil d(v) / 2\rceil+1)+2$. By Lemma 3.1.1 b$), s c(G)=\lfloor d(v) / 2\rfloor+3$. Then $s c(D)>s c(G)$, a contradiction to the assumption that D is a minimum segment drawing. Hence v cannot be an apex in D.
(ii) We now consider the case where v is not an apex in D. Then the edges incident to v are pairwise collinear. Since we need at least three convex corners to draw the outerface as a polygon, $n_{D} \geq 3$. We now prove that $n_{D} \leq 3$. Suppose for a contradiction that $n_{D}>3$. Then the edges incident to at least four neighbors of v are not pairwise collinear. Let v_{1}, u_{1}, u_{2} and v_{2} be those apices, where v_{1} and v_{2} are ear vertices. Then there are at least three outer edges incident to u_{1} and u_{2} on the outerface which are not collinear. Hence $s c(D) \geq\lceil d(v) / 2\rceil+3$. By Lemma 3.1.1 $(\mathrm{b}), s c(G)=\lfloor d(v) / 2\rfloor+3$. Then $s c(D)>s c(G)$, a contradiction to the assumption that D is a minimum segment drawing.
Q.E.D.

From the proofs of Lemma 3.2.1(c) and 3.2.1(d), we have the following corollary.
Corollary 3.2.2 Let G be a fan graph and v be the center of G with $d(v)>4$. Then the following (a) and (b) hold:
(a) v is not a convex corner in D.
(b) v is not an apex in D, if $d(v)$ is odd.

Lemma 3.2.3 Let G be a fan graph and v be the center of G with $d(v)>4$ and $d(v)$ odd. Then G has a unique minimum segment drawing.

Proof. Let $d=d(v)$ and $v_{1}, v_{2}, \ldots, v_{z-1}, v_{z}, v_{z+1}, \ldots, v_{d}$ be the neighbors of v in clockwise order where v_{z} is the middle neighbor, $z=\lceil d(v) / 2\rceil$. By Corollary 3.2.2(b), v cannot be an apex in any minimum segment drawing of G and by Lemma 3.2.1(c), there are three apices in the minimum segment drawing of G. We know that the two ears always form apices in a drawing of G. Hence it suffices to prove that the third apex is unique. Let D be the mininum segment drawing of G where the middle neighbor v_{z} of v is an apex in D as illustrated in Fig. 3.2. We will show that there is no minimum segment drawing D^{\prime} of G other than D. Suppose v_{1}, v_{d}
and $v_{k}\left(\neq v_{z}\right)$ be the apices in D^{\prime}. Then the vertices from v_{1} to v_{k} are collinear and the vertices from v_{k} to v_{d} are collinear. Since v is not an apex, the vertices v_{i}, v and v_{i+k} are collinear for $1 \leq i<k$. Now if $k<z$ then $2 k-1<d$ and there exists vertices v_{j}, with $2 k-1<j \leq d$, which is not collinear with v and another neighbor of v. Similarly if $k>z$ then $2 k-1>d$ and there exists vertices v_{j}, with $1<j \leq k$, which is not collinear with v and another neighbor of v. Hence v becomes an apex which is a contradiction. Thus $k=z$. Therefore D is the only minimum segment drawing of G.
$\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

Lemma 3.2.4 Let v be the center of a fan graph G where $d(v)>4$ and $d(v)$ even. Let $d=d(v)$ and $v_{1}, v_{2}, \ldots, v_{d}$ be the neighbors of v in clockwise order. Let D be a minimum segment drawing of G where v is not an apex. Then the number of neighbors of v between any two consecutive apices v_{p} and v_{q} in D is at most $\lceil d(v) / 2\rceil-2$ where $1 \leq p<q \leq d(v)$.

Proof. Since v is not an apex the edges incident to v are pairwise collinear. Hence in D, v_{i}, v and $v_{i+d(v) / 2}$ are collinear where $1 \leq i \leq d(v) / 2$. Thus v_{p} is collinear with $v_{p+d(v) / 2}$ for $p \leq d(v) / 2$. Hence to complete the outerface, q must be less than $p+d(v) / 2$. Hence there are at most $d(v) / 2-2$ neighbors between p and q.
Q.E.D.

By Lemma 3.2.3, a fan graph G has a unique minimum segment drawing if the degree of its center v is odd. But if $d(v)$ is even, then one can choose the two apices other than the ear vertices according to Lemma 3.2.4, and find a minimum segment drawing of G. We call the algorithm for finding a minimum segment drawing Algorithm Draw-Fan. Clearly Algorithm Draw-Fan takes linear time.

3.3 Dual-path Maximal Outerplane Graph

In this section, we give an algorithm to compute a minimum segment drawing of a dual-path maximal outerplane graph. We first decompose the graph into fan components and then we find the minimum segment drawings of the fan component using the algorithm of the previous

Figure 3.5: Illustration of a non-triangulated face where (a) v is not an ear vertex and (b) u is a vertex with $d(u)>4$
section. Then we patch the drawings of the fan components to compute the minimum segment drawing of the whole graph.

3.3.1 Decomposition into Fan Components

Let $G=(V, E)$ be a dual-path maximal outerplane graph. We call a subgraph $M=\left(V_{M}, E_{M}\right)$ of G a fan component of G if M is a fan graph. We denote by M_{u} the fan component with the center vertex u. We have the following lemma.

Lemma 3.3.1 Let $G=(V, E)$ be a dual-path maximal outerplane graph with $|V|>4$. Let P_{1} and P_{2} be the two outerpaths of G, and let v be a vertex on P_{1} with $d(v)=3$. Then there is a vertex $u \in N(v)$ on P_{2} such that $d(u) \geq 4$. Moreover $M_{v} \subset M_{u}$.

Proof. Since $d(v)=3, v$ has a neighbor u on P_{2}. If $d(u)=3$ then an inner face of G containing v and u would not be a triangle as illustrated in Fig. 3.5(a), a contradiction to the assumption that G is a maximal outerplane graph. Hence $d(u)$ must be greater than three. Let x, y be the two other neighbors of v. Since the faces $x u v$ and $y v u$ are triangles, $\{x, y\} \subset N(u)$ (see Fig. 3.5(b)). Hence $M_{v} \subset M_{u}$.
$\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

We call a fan component M of G a maximal fan conmponent if M is not contained in any other fan component of G. The following lemma holds for a maximal fan component of G.

Lemma 3.3.2 Let $G=(V, E)$ be a dual-path maximal outerplane graph with $|V|>4$ and let M_{ν} be a fan component with center v. Then M_{v} is a maximal fan component of G if and only if $d(v) \geq 4$.

Proof. We first assume that M_{v} is a maximal fan component. Suppose for a contradiction that $d(v)<4$. If $d(v)=2$ then clearly M_{v} cannot be a a maximal fan component since $|V|>4$, a contradiction. We thus assume that $d(v)=3$. Then according to Lemma 3.3.1, v has a neighbor w with $d(w) \geq 4$ and $M_{v} \subset M_{w}$. Hence M_{v} is not a maximal fan component, a contradiction.

We now assume that $d(v) \geq 4$. We will show that there is no vertex $u \in N(v)$ such that $M_{v} \subset M_{u}$. Since G is a dual-path outerplane graph, v and u have either one or two common neighbors. Hence, the fan components M_{v} and M_{u} have at most two common faces. Since $d(v) \geq 4, M_{v}$ contains at least three inner faces. Thus $M_{v} \nsubseteq M_{u}$.

We now decompose $G=(V, E)$ into maximal fan components. There are several ways of decomposing G into maximal fan components. Here we present a simple algorithm. If $|V| \leq 4$ then G itself is the fan component. Otherwise, G has one or more vertices with degree four or more. We start from an ear vertex and traverse G from that ear to the other: Whenever we get a vertex v with $d(v) \geq 4$, we take the fan of v in G as a fan component. According to Lemma 3.3.2, the fan components obtained in this way are maximal. We order the maximal fan components from one ear to another ear in the embedding of G. Let $M_{1}, M_{2}, \ldots, M_{q}$ be the maximal fan components of G and $u_{1}, u_{2}, \ldots, u_{q}$ be the centers of those fan components respectively. Note that M_{1} and M_{q} are the two fan components containing the ears and u_{i}, u_{i+1} are adjacent for $1 \leq i<q$. We have the following lemma.

Lemma 3.3.3 Let $G=(V, E),|V|>4$ be a dual-path outerplane graph having two consecutive maximal fan components M_{i}, M_{i+1} with centers u_{i} and u_{i+1} for $1 \leq i<q$. Then M_{i} and M_{i-1} have either one or two common faces. If M_{i} and M_{i+1} have exactly one common face, then u_{i} and u_{i+1} are on the same outerpath. If M_{i} and M_{i+1} have two common faces, then u_{i} and u_{i+1}
are on different outerpalhs.
Proof. Since G is a dual-path outerplane graph, u_{i} and u_{i+1} have either one or two common neighbors. Thus M_{i} and M_{i-1} have either one or two common faces. We first consider the case where u_{i} and u_{i+1} have exactly one common neighbor w. Then u_{i} and u_{i+1} are on the same outerpath and M_{i} and M_{i+1} have exactly one common face $u_{i} w u_{i+1}$. We now consider the case where u_{i} and u_{i+1} have exactly two common neighbors w_{1} and w_{2}. In this case u_{i} and u_{i+1} are on different outerpaths forming a quadrilateral $u_{i} w_{1} u_{i+1} w_{2}$ having the edge $u_{i} u_{i+1}$ as diagonal. Hence $u_{i} w_{1} u_{i+1}$ and $u_{i+1} w_{2} u_{i}$ are the two common faces of M_{i} and M_{i+1}.
$\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

3.3.2 Feasible Drawings

After getting the maximal fan components, we compute their minimum segment drawings by the algorithm Draw-Fan. Let $M_{1}, M_{2}, \ldots, M_{q}$ be the maximal fan components of G. For each integer $i, 1 \leq i \leq q$, we denote by G_{i}, the graph obtained by the union of the maximal fan components $M_{1}, M_{2}, \ldots, M_{i}$. Then $G_{q}=G$. Let D be a straight-line drawing of $G_{i}=$ $M_{1} \cup M_{2} \cup \ldots \cup M_{i}$ and let u_{i} be the fan vertex of M_{i}. We call D a feasible drawing of G_{i} if the drawing D has the following propertics (f1)-(f2):
(f1) D has exactly $s c\left(G_{i}\right)$ number of segments; and
(f2) u_{i} is not an apex in D.

Figure 3.6: (a) A dual-path outerplane graph G_{i} and (b) a feasible drawing D of G_{i}.
Figure 3.6(a) shows a graph G_{i} and Figure 3.6(b) illustrates a feasible drawing D of G_{i}.

3.3.3 Patching of Minimum Segment Drawings

We now patch a minimum segment drawing of a fan graph with a feasible drawing and obtain a feasible drawing of the whole graph. We have the following lemmas.

Lemma 3.3.4 Let $G_{i-1}=M_{1} \cup M_{2} \cup \ldots \cup M_{i-1}$ and $G_{i}=G_{i-1} \cup M_{i}$ for $1<i \leq q$. Assume that M_{i-1} and M_{i} have exactly one face in common. Then G_{i} has a feasible drawing with sc($\left.G_{i}\right)$ number of segments where

$$
s c\left(G_{i}\right)=s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-3 .
$$

Proof. We first obtain a drawing D_{i} of G_{i} as follows. Let u_{1} and u_{2} be the centers of M_{i-1} and M_{i} and w be the common neighbor of u_{1} and u_{2}. Then M_{i-1} and M_{i} have the face $u_{1} u_{2} w$ in common. (See Fig. 3.7). Let D_{i-1} be a feasible drawing of G_{i-1} and let D^{\prime} be the minimum segment drawing of M_{i}, obtained by the Algorithm Draw-Fan, as illustrated in Fig. 3.7(a). We obtain D_{i} by patching the drawing D^{\prime} with D_{i-1} in such a way that (i) the line segment in D_{i-1} containing the edge (u_{1}, u_{2}) and the line segment in D^{\prime} containing the edge (u_{1}, u_{2}) are drawn on the same straight line segment in D_{i}, (ii) the line segment in D_{i-1} containing the edge (u_{1}, w) and the line segment in D^{\prime} containing the edge (u_{1}, w) are drawn on the same straight line segment in D_{i}, and (iii) the line segment in D_{i-1} containing the edge $\left(u_{2}, w\right)$ and the line segment in D^{\prime} containing the edge $\left(u_{2}, w\right)$ are drawn on the same straight line segment in D_{i}. Furthermore, each line segment containing none of the edges (u_{1}, u_{2}), $\left(u_{1}, w\right)$ and $\left(u_{2}, w\right)$ is not affected in the patching above (see Fig. 3.7(b)). Therefore we have $s c\left(D_{i}\right) \leq s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-3$.

We now show that D_{i} is a feasible drawing of G_{i}. To show that D_{i} satisfies (f1) it is sufficient to show that $s c\left(G_{i}\right) \geq s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-3$. Since $d\left(u_{1}, M_{i}\right)$ is two, the incident edges $\left(u_{1}, w\right)$ and (u_{1}, u_{2}) of u_{1} in M_{i} can share at most two segments with a drawing of G_{i-1}. Similarly, since $d\left(u_{2}, G_{i-1}\right)$ is two, the incident edges $\left(u_{2}, w\right)$ and $\left(u_{2}, u_{1}\right)$ of u_{2} in G_{i-1}, can share at most two segments with a drawing of M_{i}. Moreover since $d\left(w, G_{i-1}\right)=3$ and $d\left(w, M_{i}\right)=3$, no edge other than $\left(u_{1}, u_{2}\right),\left(u_{1}, w\right)$ and $\left(u_{2}, w\right)$ can share a segment during patching of a drawing of M_{i} with a drawing of G_{i-1}. Hence at most three segments can be minimized during the patching

Figure 3.7: Illustration of patching the minimum segment drawing D^{\prime} of M_{i} with D_{i-1} where M_{i-1} and M_{i} have exactly one face in common.
of a drawing of M_{i} with a drawing of G_{i-1}. Thus $s c\left(G_{i}\right) \geq s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-3$. It is now remaining to show that D_{i} satisfies (f2). According to Lemma 3.1.1, the edges incident to u_{2} are pairwise collinear in D^{\prime}. Since we have not changed the alignment of the incident edges of u_{2} during patching, the incident edges to u_{2} remains pairwise collinear in D_{i}, and hence D_{i} satisfies (f2).
Q.E.D.

Lemma 3.3.5 Let $G_{i-1}=M_{1} \cup M_{2} \cup \ldots \cup M_{i-1}$ and $G_{i}=G_{i-1} \cup M_{i}$ for $1<i \leq q$. Let M_{i-1} and M_{i} have exactly two faces in common and u_{1} and u_{2} be the centers of M_{i-1} and M_{i} respectively. Then G_{i} has a feasible drawing with sc($\left.G_{i}\right)$ number of segments where
(a) $s c\left(G_{i}\right)=s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-3$ if $d\left(u_{1}\right)$ and $d\left(u_{2}\right)$ is odd; and
(b) $s c\left(G_{i}\right)=s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-4$ otherwise.

Proof. (a) We first consider the case where $d\left(u_{1}\right)$ and $d\left(u_{2}\right)$ are odd. Let v and w be the two common neighbors of u_{1} and u_{2}. Then M_{i-1} and M_{i} have the faces $u_{1} u_{2} w$ and $u_{1} u_{2} v$ in common. We obtain a drawing D_{i} of G_{i} as follows. Let D_{i-1} be a feasible drawing of G_{i-1} and D^{\prime} be the minimum segment drawing of M_{i} obtained by the algorithm Draw-Fan, as illustrated in Fig. 3.8(a). We obtain D_{i} by patching the drawing D^{\prime} with D_{i-1} in such a way that (i) the line segment in D_{i-1} containing the edge (u_{1}, u_{2}) and the line segment in D^{\prime} containing the
edge (u_{1}, u_{2}) are drawn on the same straight line segment in D_{i}, (ii) the line segment in D_{i-1} containing the edge (u_{1}, w) and the line segment in D^{\prime} containing the edge (u_{1}, w) are drawn on the same straight line segment in D_{i}, and (iii) the line segment in D_{i-1} containing the edge $\left(u_{2}, v\right)$ and the line segment in D^{\prime} containing the edge (u_{2}, v) are drawn on the same straight line segment in D_{i}, (iv) the edge (u_{1}, v) of M_{i} is drawn on the line segment in D_{i-1} containing the edge (u_{1}, v) and it is no longer on the line segment containing $\left(u_{1}, w\right)$ in D^{\prime}, and (v) the edge (u_{2}, w) of G_{i-1} is drawn on the line segment in D^{\prime} containing the edge (u_{2}, w) and it is no longer on the line segment containing (u_{2}, v) in D^{\prime}. Furthermore each line segment containing none of the edges $\left(u_{1}, u_{2}\right),\left(u_{1}, w\right),\left(u_{2}, v\right),\left(u_{1}, v\right)$ and $\left(u_{2}, w\right)$ is not affected in the patching above (see Fig. 3.8(c)). Therefore we have $s c\left(D_{i}\right) \leq s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-3$.

We now show that D_{i} is a feasible drawing of G_{i}. To show that D_{i} satisfies (f1) it is sufficient to show that $s c\left(G_{i}\right) \geq s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-3$. Since $d\left(u_{1}, M_{i}\right)$ is three, the edges $\left(u_{1}, w\right),\left(u_{1}, v\right)$ and (u_{1}, u_{2}) incident to u_{1} in M_{i} can share at most three segments with a drawing of G_{i-1}. Similarly, since $d\left(u_{2}, G_{i-1}\right)$ is three, the edges $\left(u_{2}, v\right),\left(u_{2}, w\right)$ and $\left(u_{2}, u_{1}\right)$ incident to u_{2} in G_{i-1}, can share at most three segments with a drawing of M_{i}. Since $d\left(v, G_{i-1}\right)=3$ and $d\left(v, M_{i}\right)=3$, no edge other than $\left(u_{1}, w\right),\left(u_{1}, v\right),\left(u_{1}, u_{2}\right)\left(u_{2}, w\right)$ and $\left(u_{2}, v\right)$ can share a segment during the patching of a drawing of M_{i} with a drawing of G_{i-1}. Hence at most five segments can be minimized during the patching of a drawing of M_{i} with a drawing of G_{i-1}.

But, since $d\left(u_{1}\right)>5$ and $d\left(u_{1}, G_{i-1}\right)$ is odd, by Lemma 3.2.3, M_{i-1} has a unique minimum segment drawing where u_{2} is not an apex. Since $d\left(u_{2}, G_{i-1}\right)=3$, the edges $\left(v, u_{2}\right)$ and $\left(u_{2}, w\right)$ are collinear in the minimum segment drawing of G_{i-1} before patching. On the otherhand, since $d\left(u_{2}\right)>4$ and $d\left(u_{2}, M_{i}\right)$ is odd, u_{2} also is not an apex in the unique minimum segment drawing of M_{i}. Since $d\left(u_{2}, M_{i}\right)>4$, by Lemma 3.2.3, the edges $\left(v, u_{2}\right)$ and $\left(u_{2}, w\right)$ cannot be collinear in the minimum segment drawing for M_{i}. We need to modify the drawing of M_{i} such that $\left(v, u_{2}\right)$ and $\left(u_{2}, w\right)$ are on different straight line segment which increases the number of segment of the drawing of M_{i} by one as illustrated in Fig. 3.8(b). Similarly since $d\left(u_{1}, G_{i-1}\right)>4$, by Lemma 3.2.3, the edges (v, u_{1}) and (u_{1}, w) cannot be collinear in the minimum segment drawing for G_{i-1}. Hence the drawing D_{i-1} needs to be modified in such a way that $\left(v, u_{1}\right)$ and $\left(u_{1}, w\right)$
are on different straight line segment which increases the number of segment of the drawing of G_{i-1} by one. The modified drawings of D_{i-1} and D^{\prime} before patching are shown in Fig. 3.8(b). Therefore $s c\left(G_{i}\right) \geq s c\left(G_{i-1}\right)+1+s c\left(M_{i}\right)+1-5=s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-3$.

D_{1-1}

D^{\prime}
(a)

(b)

D
(c)

Figure 3.8: Illustration of patching D^{\prime} with D_{i-1} where $d\left(u_{1}\right)$ and $d\left(u_{2}\right)$ is odd and M_{i-1} and M_{i} have two faces in common.

It is now remaining to show that D_{i} satisfies (f2). According to Lemma 3.1.1, the edges incident to u_{2} are pairwise collinear in D^{\prime}. Since we have not changed the alignment of the incident edges of u_{2} during patching, the incident edges to u_{2} remains pairwise collinear in D_{i}, and hence D_{i} satisfies (f2).
(b) We now consider the case where $d\left(u_{1}\right)$ or $d\left(u_{2}\right)$ is even. Let v and w be the two common neighbors of u_{1} and u_{2}. Then M_{i-1} and M_{i} have the faces $u_{1} u_{2} w$ and $u_{1} u_{2} v$ in common. We obtain a drawing D_{i} of G_{i} as follows. Let D_{i-1} be a feasible drawing of G_{i-1} and D^{\prime} be the minimum segment drawing of M_{i} obtained by the algorithm Draw-Fan. Here four cases may arise depending on the degree of u_{1} and u_{2}.

Case 1: $d\left(u_{1}\right)=4$ and $d\left(u_{2}\right)=4$.
Since D_{i-1} is a feasible drawing of G_{i-1}, u_{1} is not an apex and u_{2}, w are apices in D_{i-1}. But since $d\left(u_{2}, M_{i}\right)=4, u_{2}$ may or may not be an apex in D^{\prime}. First we consider that u_{2} is an apex in D^{\prime}. According to Lemma 3.2.1(b), there are at most three other apices in D^{\prime}. Since (v, u_{1}) and $\left(u_{1}, w\right)$ are collinear in D, for patching D^{\prime} with D_{i-1}, u_{1} should not be an apex in D^{\prime}. Hence by Lemma 3.2.1(b), we can choose that minimum segment drawing of M_{i} where (v, u_{1}) and $\left(u_{1}, w\right)$ are collinear. Then one can patch the drawings by sharing at most four maximal segments as illustrated in Fig. 3.9(a) and 3.9(b). Hence $s c\left(G_{i}\right) \geq s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-4$.

We now consider that u_{2} is not an apex in D^{\prime}. Since u_{2} is an apex in D_{i-1}, we cannot patch D_{i-1} with D^{\prime}. We modify the drawing of D_{i-1} such that u_{1} becomes an apex and u_{2} is not an apex in D_{i-1}. We can do this without increasing the number of segments of D_{i-1}, since M_{i-1} has several minimum segment drawings. Now the edges $\left(v, u_{2}\right)$ and $\left(u_{2}, w\right)$ become collinear. Then one can patch the drawings by sharing at most four maximal segments as illustrated in Fig. 3.9(c) and 3.9(d). Hence $s c\left(G_{i}\right) \geq s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-4$.

In orcler to obtain a feasible drawing D_{i} of G_{i}, we modify the drawing of G_{i-1} such that the vertices v, u_{2} and w become collinear. Since D_{i-1} is a feasible drawing, the edges (u_{2}, v) and $\left(u_{2}, w\right)$ are not collinear in D_{i-1} (see Fig. 3.9(c)). Hence we need to modify the drawing D_{i-1} in such a way that after patching the edges $\left(u_{2}, v\right)$ and $\left(u_{2}, w\right)$ becomes collinear as illustrated in Fig. 3.9(d). Note that during modification of D_{i-1}, the number of segments in D_{i-1} does not increase. Hence four maximal segments is minimized in the combined drawing D_{i} of G_{i}. Thus after patching the number of segments in the drawing is $s c\left(D_{i}\right) \leq s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-4$.

Figure 3.9: Illustration of patching the minimum segment drawing D^{\prime} of M_{i} with D_{i-1} where M_{i-1} and M_{i} have two faces in common with $d\left(u_{1}\right)=d\left(u_{2}\right)=4$.

Case 2: $d\left(u_{1}\right)>4$ and $d\left(u_{2}\right)=4$.
In this case the edges $\left(u_{2}, v\right)$ and $\left(u_{2}, w\right)$ are drawn on the same straight line segment during patching as illustrated in Fig. 3.10. We do not nced to modify the drawing of M_{i} because $d\left(u_{2}\right)=4$. By an argument similar to that of Case 1 , we can prove that at most four maximal segments can be minimized in the combined drawing of G_{i}. Thus $s c\left(G_{i}\right)=s c\left(G_{i-1}\right)+s c\left(M_{i}\right)-4$.

Figure 3.10: Illustration of patching the minimum segment drawing D^{\prime} of M_{i} with D_{i-1} where M_{i-1} and M_{i} have two faces in common with $d\left(u_{1}\right)>4$ and $d\left(u_{2}\right)=4$.

Case 3: $d\left(u_{1}\right)=4$ and $d\left(u_{2}\right)>4$.
The proof for this case is similar to that of Case 1.
Case 4: $d\left(u_{1}\right)>4$ and $d\left(u_{2}\right)>4$.
In this case at least one of u_{1} and u_{2} have even degree. Suppose without loss of generality that $d\left(u_{1}\right)$ is even. Then by Lemma 3.2.1(c) and Corollary 3.2.2, there are four apices in the minimum segment drawing of M_{i-1} and one can choose the apices according to Lemma 3.2.4. Since by Corollary 3.2.2, u_{2} cannot be an apex in any minimum segment drawing of M_{i}, the edges $\left(v, u_{2}\right)$ and $\left(u_{2}, w\right)$ are not collinear in D^{\prime}. Hence the minimum segment drawing of M_{i-1} should be chosen such that $\left(v, u_{2}\right)$ and $\left(u_{2}, w\right)$ are not collinear i.e. u_{2} is an apex in D_{i-1}. Then we don't need to modify the drawing D_{i-1} as we did in (a). But still we have to modify the drawing of M_{i}. Because in that case we need to make u_{1} an apex in the drawing of M_{i} which will become collinear with two collinear apices (shown by thick line in Fig. 3.11(b)) in the combined drawing D_{i}. Then by an argument similar to that in (a), we can prove that $s c\left(G_{i}\right)=s c\left(G_{i-1}\right)+s c\left(M_{i}\right)+1-5$.

Figure 3.11: Illustration of patching the minimum segment drawing D^{\prime} of M_{i} with D_{i-1} where M_{i-1} and M_{i} have two faces in common and $d\left(u_{1}\right)$ is even.

We now prove that D_{i} is a feasible drawing of G_{i}. We have already proved that D_{i} satisfics (f1). It is remaining to prove that D_{i} satisfics (f2). According to Lemma 3.1.1, the edges incident to u_{2} are pairwise collinear in D^{\prime}. Since during patching we have not changed the alignment of the incident edges of u_{2} in all the cases, the incident edges to u_{2} remains pairwise collinear in D_{i}, and hence D_{i} satisfies (f2).
Q.E.D.

Thus by patching the minimum segment drawings of the maximal fan components we can construct a minimum segment drawing of G. During the patching of the maximal fan components, we compute the co-ordinates of the vertices from the intersection of the line segments passing through it. Note that the relative slopes of the segments are computed during the construction of the minimum segment drawing of the fan components according to the algorithm Draw-Fan. By traversing the graph from one ear to another, one vertex at a time, we can compute the minimum segment drawing of the dual-path maximal outerplane graph. Hence the following theorem holds.

Theorem 3.3.6 A minimum segment drawing of a dual-path maximal outerplane graph can be found in linear time.

3.4 Upper bound on the Number of Segments

We now give an upper bound on the minimum number of segments required for a minimum segment drawing of a dual-path maximal outerplane graph.

Theorem 3.4.1 Let G be a dual-path outerplane graph with m edges. Then the minimum number of segments required for a minimum segment drawing of G is at most $5 \mathrm{~m} / 7$.

Proof. The upper bound is obtained if G contains maximum number of maximal fan components. A maximal fan component consists of at least seven edges. Hence there can be at most $m / 7$ maximal fan components. By Lemma 3.1.1 the minimum number of segments required to draw a maximal fan component is five. Therefore at most $5 \mathrm{~m} / 7$ segments are required for a mininum segment drawing of G.
Q.E.D.

3.5 Conclusion

In this chapter, we have established a lower bound on the number of segments in any planar straight line drawing of a dual-path maximal outerplane graph G. We also have presented a linear-time algorithm for computing a minimum segment drawing of G. Then we have given an upper bound on the minimum number of segments required for a minimun segment drawing of a dual-path maximal outerplane graph.

Chapter 4

Dual-path Outerplane Graphs

In this chapter we prsent our algorithm for computing minimum segment drawings of dual-path outerplane graphs. In this case the input graph has vertices of degree two other than the ear vertices. To compute the fan components we first remove all the vertices of degree two except the two ear vertices.

4.1 Decomposition into Maximal Components

Let G be the dual-path outerplane graph. We replace all the chains of vertices of degree two $v_{1}, v_{2}, \ldots, v_{l}$ for $l \geq 3$, by an edge (v_{1}, v_{l}) and mark those edges. The graph obtained in this way is denoted by G^{\prime}. We now divide the graph G^{\prime} into maximal components. A maximal component G_{i} is a maximal outerplane subgraph of G^{\prime}. In a maximal component, every face is triangulated. Since every vertex of G^{\prime} has degree greater than $2, G^{\prime}$ cannot contain a face with face length greater than four. Hence to divide the graph G^{\prime} into maximal components we find out the faces of length four. Let $F=u_{1} u_{2} u_{3} u_{4}$ be a face of length four where (u_{1}, u_{2}) and $\left(u_{3}, u_{4}\right)$ are outer edges of G^{\prime}. We delete the outer edges of all such faces of G^{\prime} and thus we divide G^{\prime} into maximal components (see Figure 4.1). Since G^{\prime} is a dual-path outerplane graph, the maximal subgraphs of G^{\prime} are dual-path maximal outerplane graphs. Hence the following lemma holds.

Figure 4.1: Illustration of the method for dividing G^{\prime} into maximal components.
Lemma 4.1.1 Each maximal subgraph of G^{\prime} is a maximal dual-path outerplane graph.

4.2 Minimum Segment Drawings of Maximal Components

Let $G_{1}, G_{2}, \ldots, G_{k}$ be the k maximal outerplane subgraphs of G^{\prime}. We now find minimum segment drawings of each G_{i} for $1 \leq i \leq k$. At first we consider the case that $\left|V\left(G_{i}\right)\right|=2$ i.e. G_{i} consists of two vertices with an edge between those two vertices. Hence the minimum segment drawing of G_{i} is the straight line drawing of G_{i}. We call such a component as an edge component. Thus the number of segments required for a minimum segment drawing of an edge component G_{i} is

$$
\begin{equation*}
s c\left(G_{i}\right)=1 \tag{4.1}
\end{equation*}
$$

We now consider that G_{i} is not an edge. By Theorem 3.3.6 and Lemma 4.1.1, G_{i} for $1 \leq i \leq k$ has a minimum segment drawing. We find a minimum segment drawing of G_{i} by dividing G_{i} into maximal fan components using the method described in Section 3.1. In each G_{i} some edges are marked. Let M be a fan component of G_{i} with fan vertex v and D be the minimum segment drawing of M obtained from the algorithm Draw-Fan. We now add chains of vertices of degree two corresponding to each marked edge on D. Note that the total number of segments in D can be reduced if a vertex of degree two is drawn as the intersection point of two distinct straight liue segments incident to that vertex. Thus a vertex of degree two among
a chain of degree two vertices can be a convex corner in the drawing of M.
Let $e=\left\langle u_{1}, u_{l}\right)$ be a marked edge in M. We replace e by a chain of vertices of degree two $u_{1}, u_{2}, \ldots, u_{l}$ for $l \geq 3$. Either the chain is drawn on the straight line segment of e or one of the chain vertices $u_{i}, i \in\{2, \ldots, l-1\}$, becomes a convex corner and the other chain vertices are drawn on the two distinct straight line segments incident to u_{i}. Whether we choose the former or the latter depends on the degree of the fan vertex v of M and the position of marked edge on the embedding of M. Let $d=d(v)$ and $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$. We have two cases here.

Case 1: $d(v)$ is even and edge ($\left.v_{d / 2}, v_{d / 2-1}\right)$ is marked.
According to Lemma 3.1.1, we need $s c(M)=d(v) / 2+3$ line segments in any minimum segment drawing of M. It is easy to observe that one segment in the drawing can be reduced by introducing a new convex corner instead of the two convex corners at $v_{d / 2}$ and $v_{d / 2-1}$. Hence the total number of segments required for a minimum segment drawing of the fan component M is

$$
\begin{equation*}
s c(M)=d(v) / 2+2 \tag{4.2}
\end{equation*}
$$

Thus the number of convex corners required for the drawing is three.
Case 2: otherwise.
In this case the chain of vertices is drawn on the straight line segment of e. Hence the minimum segment drawing for this case is obtained by applying the cases described in Section 3.1.

We now have the minimum segment drawings of the fan components of G_{i}. By Theorem 3.3.6 each maximal component has a minimum segment drawing. Hence after computing the minimum segment drawings of the fan components we patch them by the method of Chapter 3 , to get minimum segment drawings for the maximal components. Then we patch the maximal components to get a minimum segment drawing of the graph G. The detail of which is given below.

Figure 4.2: Patching an edge with the minimum segment drawing D.

4.3 Patching of the Minimum Segment Drawings of Maximal Components

Let D be the minimum segment drawing of the graph after patching the maximal components $G_{1}, G_{2}, \ldots, G_{i-1}$. Let D^{\prime} be the minimum segment drawing after patching the maximal component G_{i} with D. We first consider the case where G_{i} is an edge. Only one segment is required for the minimum segment drawing of G_{i}. Note that this type of component only occurs as an inner edge. It always increases the number of segments by one as shown in Fig. 4.2.

$$
\begin{equation*}
s c\left(D^{\prime}\right)=s c(D)+1 \tag{4.3}
\end{equation*}
$$

We now assume that G_{i} is a maximal component with lwo ears. Since G is a dual-path outerplane graph, G_{i} connects with D by the two edges incident to an ear vertex u and an end point of an ear edge. We find the non-edge maximal component G_{k} which is nearest to G_{i} where $1 \leq k \leq i-1$. We omit all the edge components from G_{k} to G_{i}. The edge components can easily be patched with the drawing by adding a segment between the two outer paths for each edge component. Four cases arise depending on the four vertices forming the quadrilateral F joining G_{i} and G_{k} along which the graph was divided into maximal components. Let v_{k} and v_{i} be the fan vertices of G_{k} and G_{i} and u_{k} and u_{i} be the ear vertices of G_{k} and G_{i} respectively. Let w_{k} and w_{i} be the other two vertices of the corresponding ears. There are four cases to consider depending on the orientation of the six vertices.

Case 1: F consists of u_{k}, u_{i}, w_{i} and w_{k}.

In this case G_{k} and G_{i} are patched using the outer edges (u_{k}, u_{i}) and (w_{k}, w_{i}). Since $d\left(w_{k}, G_{k}\right)=d\left(w_{i}, G_{i}\right)=3$, the edge $\left(w_{k}, w_{i}\right)$ can share segment with the edges $\left(v_{k}, w_{k}\right)$ and $\left(w_{i}, v_{i}\right)$. Again since $d\left(u_{k}, G_{k}\right)=d\left(u_{i}, G_{i}\right)=2$, the edge $\left(u_{k}, u_{i}\right)$ can share segment with the edges $\left(v_{k}, u_{k}\right)$ and $\left(u_{i}, v_{i}\right)$. Note that the edges $\left(v_{k}, w_{k}\right),\left(w_{k}, w_{i}\right),\left(w_{i}, v_{i}\right),\left(u_{i}, v_{i}\right),\left(u_{k}, u_{i}\right)$ and (v_{k}, u_{k}) form a cycle and at least three segments are required to draw a cycle. Hence if the edge (w_{k}, w_{i}) share segment with the edges (v_{k}, w_{k}) and (w_{i}, v_{i}) then the edge (u_{k}, u_{i}) cannot share segment with both the edges $\left(v_{k}, u_{k}\right)$ and (u_{i}, v_{i}) and vice versa. Thus at most one segment can be reduced during the patching of G_{k} and G_{i}.

Figure 4.3(a) shows the minimum segment drawing for this case where edge $\left(u_{k}, u_{i}\right)$ share a common segment with both the components and edge (w_{k}, w_{i}) share a common segment with G_{k}. Hence after patching the total number of segments for the drawing D^{\prime} decreases by one.

$$
\begin{equation*}
s c\left(D^{\prime}\right)=s c(D)+s c\left(G_{i}\right)-1 \tag{4.4}
\end{equation*}
$$

Case 2: F consists of u_{k}, w_{i}, u_{i} and w_{k}.
In this case G_{k} and G_{i} are patched using the outer edges $\left(u_{k}, w_{i}\right)$ and (w_{k}, u_{i}). Here also the edges $\left(v_{k}, w_{k}\right),\left(w_{k}, u_{i}\right),\left(u_{i}, v_{i}\right),\left(w_{i}, v_{i}\right),\left(u_{k}, w_{i}\right)$ and $\left(v_{k}, u_{k}\right)$ form a cycle and at most one segment can be reduced during the patching of G_{k} and G_{i}.

Figure 4.3(b) shows the minimum segment drawing for this case where edge (u_{k}, w_{i}) share a common segment with both the components and edge (w_{k}, u_{i}) share a common segment with G_{k}. Hence after patching the total number of segments for the drawing D^{\prime} decreases by one.

$$
\begin{equation*}
s c\left(D^{\prime}\right)=s c(D)+s c\left(G_{i}\right)-1 \tag{4.5}
\end{equation*}
$$

Case 3: F consists of u_{k}, v_{k}, u_{i} and v_{i}.
In this case G_{k} and G_{i} are patched using the outer edges (u_{k}, v_{i}) and (v_{k}, u_{i}). Here the edge (u_{k}, v_{i}) can share segment with the edge (w_{k}, u_{k}) and the edge (v_{k}, u_{i}) can share segment with the edge (u_{i}, w_{i}). Hence during patching neither any segment can be reduced nor any extra segment is required. But if the degree of one of the fan vertices v_{k} and v_{i} is odd then one segment can be minimized by sharing a segment with the unshared edge incident to the fan

Figure 4.3: Illustration of the method for patching the maximal components to get the minimum segment drawing for G.
vertex with the odd degree.
Figure 4.3(c) shows the minimum segment drawing for this case where edge (u_{k}, v_{i}) share a common segment with G_{k} and edge (v_{k}, u_{i}) is drawn as a new segment. If the degree of the fan vertices is odd the number of segments decrease. Hence after patching the total number of segments for the drawing D^{\prime} may at most decrease by one.

$$
s c\left(D^{\prime}\right)= \begin{cases}s c(D)+s c\left(G_{i}\right) & \text { if } d\left(v_{i}, G_{i}\right) \text { and } d\left(v_{k}, G_{k}\right) \text { is even } \tag{4.6}\\ s c(D)+s c\left(G_{i}\right)-1 & \text { otherwise }\end{cases}
$$

Case 4: F consists of u_{k}, v_{k}, v_{i} and u_{i}.
In this case G_{k} and G_{i} are patched using the outer edges $\left(u_{k}, u_{i}\right)$ and $\left(v_{k}, v_{i}\right)$. Here the edge $\left(u_{k}, u_{i}\right)$ can share segment with the edges $\left(w_{k}, u_{k}\right)$ and $\left(w_{i}, u_{i}\right)$. Hence during patching neither any segment can be reduced nor any extra segment is required. But if the degree of one of the fan vertices v_{k} and v_{i} is odd then one segment can be minimized by sharing a segment with the unshared edge incident to the fan vertex with the odd degree.

Figure 4.3(d) shows the minimum segment drawing for this case where edge (u_{k}, u_{i}) share a common segment with both the components and edge $\left(v_{k}, v_{i}\right)$ is drawn as a new segment. If $d\left(v_{i}\right)$ is odd then the edge $\left(v_{k}, v_{i}\right)$ share a common segment with G_{k}. Hence after patching the total number of segments for the drawing D^{\prime} may at most decrease by one.

$$
s c\left(D^{\prime}\right)= \begin{cases}s c(D)+s c\left(G_{i}\right) & \text { if } d\left(u_{i}, G_{i}\right) \text { and } d\left(u_{k}, G_{k}\right) \text { is even } \tag{4.7}\\ s c(D)+s c\left(G_{i}\right)-1 & \text { otherwise }\end{cases}
$$

4.4 Time Complexity

During the patching of the maximal components we compute the co-ordinates of the vertices from the intersection of the line segments passing through it. Note that the relative slopes of the segments are computed during the construction of the minimum segment drawing of the fan components. By traversing the graph from one ear to another one vertex at a time we can compute the minimum segment drawing of the dual-path outerplane graph. Hence we have the
following theorem.

Theorem 4.4.1 A minimum segment drawing of a dual-path outerplane graph can be found in linear time.

4.5 Conclusion

In this chapter, we have presented an algorithm for finding minimum segment drawing of dualpath outerplane graphs. We first decompose the graph into maximal components and then patch the minimum segment drawings of the maximal components to compute a minimum segment drawing of the outerplanar graph. In the next chapter we are going to extend our algorithm for finding a minimum segment drawing of a subdivision of an outerplanar graph.

Chapter 5

Subdivision of Dual-path Outerplane

Graphs

In this chapter we extend the algorithm presented in the previous chapter for computing minimum segment drawings of subdivisions dual-path outerplane graphs. In this case the input graph has vertices of degree two that are not on the outer face. We will prove that those vertices of degree two cannot decrease the number of segments in any minimum segment drawing of the dual-path outerplane graph.

Theorem 5.0.1 Let G be a dual-path outerplane graph. Assume that G^{\prime} is obtained from G by subdividing some of the inner edges of G. If G has a minimum segment drawing D with $s c(D)$ number of segments, then G^{\prime} has a minimum segment drawing D^{\prime} with $s c(D)$ number of segments.

Proof. Let $e=(u, v)$ be an inner edge in G and e is subdivided in G^{\prime} by replacing e with a path u, w, v through a new vertex w. Let $G^{\prime \prime}$ be the graph obtained by subdividing edge e of G and $D^{\prime \prime}$ be a minimum segment drawing of $G^{\prime \prime}$. If the $u w v$ path in $G^{\prime \prime}$ is drawn as a straight line then the number of segments in $D^{\prime \prime}$ is $s c(D)$. Otherwise if $u w$ and $w v$ edges are drawn on different segments then the number of segments in $D^{\prime \prime}$ may decrease. We will show

Figure 5.1: (a) e does not share, (b)e shares, a segment with an adjacent edge e^{\prime} in D.
that subdividing e cannot decrease the number of segments in any drawing of $G^{\prime \prime}$. We have two cases:

Case 1: e does not share any segment with the adjacent edges in D.
In this case either e is an ear edge with $d(v)=3$ or e is an edge with $d(u)$ odd and $d(v)=3$. In both the cases, one of the incident vertices has $d(v)=3$. Hence one segment is always required for the edge (u, v) and we insert the new vertex w on that segment (see Figure 5.1(a)).

Case 2: e shares a segment with an adjacent edge e^{\prime} in D.
Let e^{\prime} be adjacent to u. Then $u w$ and $w v$ can share the segment with e^{\prime}. Hence subdividing e cannot decrease the number of segment in the minimum segment drawing of $G^{\prime \prime}$ (see Figure 5.1(b)). $\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

Hence for computing the minimum segment drawing of a subdivision of a dual-path outerplane graph, we first remove the inner vertices of degree two. We then compute a minimum segment drawing of the resulting graph by the method described in the previous section. We then add the inner vertices of degree two on the line segments by subdividing the corresponding line segments. For example Figure 5.2(b) shows a minimum segment drawing of the graph in Figure 5.2(a) and Figure 5.2(c) shows the subdivision of the graph in Figure 5.2(a) and the minimum segment drawing of this graph is shown in Figure 5.2(d). We have following theorem.

Theorem 5.0.2 A minimum segment drawing of a subdivision of a dual-path outerplane graph can be found in linear time.

Figure 5.2: (a) A dual-path outerplane graph, (b) a minimum segment drawing of the dual-path outerplanar graph in (a), (c) a subdivision of the graph in (a), (d) a minimum segment drawing of the graph in (c).

In this chapter, we have presented an algorithm for finding a minimum segment drawing of a subdivision of a dual-path outerplane graphs. We have shown that the inner vertices of degree two cannot decrease the number of segments in any drawing of the original dual graph outerplanar graph. Thus a minimum segment drawing can be obtained using the algorithm of chapter 4 by removing the inner vertices of degree two.

Chapter 6

Conclusion

This thesis deals with minimum segment drawings of subclasses of outerplane graphs. We have started with an introductory overview on graph drawing in Chapter 1. In this chapter we have given a precise definition of minimum segment drawing of a graph and discussed several practical applications of this problem. Then we have depicted the challenges that we have faced to solve this problem. We illustrated some previous results on this field and have established our objective in this thesis.

In Chapter 2 we have introduced the preliminary ideas on graph theory and on minimum segment drawings. We have also discussed outerplane graphs and complexity theory in detail in this chapter.

In Chapter 3 we have established a lower bound on the number of segments in any planar straight line drawing of a dual-path maximal outerplane graph G. Finally, we have presented a linear-time algorithm for computing a minimum segment drawing of G.

In Chapter 4 we have extended our algorithm for finding minimum segment drawing of dual-path outerplane graphs.

Finally in Chapter 5 we have presented a linear-time algorithm to compute a minimum segment drawing of a subdivision of a dual-path outerplane graph. To the best of our knowledge our algorithms have been the first such result in the minimum segment drawing problem for an important subclass of outerplanar graphs. However, the following problems remained as future
works.

1. To study the minimum segment drawing problem in conjunction with other aesthetic criteria like area requirement and symmetry of the drawing.
2. To obtain minimum segment drawing algorithin for any outerplanar graph.
3. To obtain minimum segment drawing algorithm for outerplanar graphs with imposing restriction on the degree.
4. To obtain minimum segnent drawing algorithms for larger subclass of planar graphs.

References

[DESW07a] V. Dujmović, D. Eppstein, M. Suderman and D. R. Wood, Drawings of planar graphs with few slopes and segments, Computational Geometry: Theory and Applications, 38(3), pp. 194-212, 2007.
[DESW07b] V. Dujmović, M. Suderman and D. R. Wood, Graph Drawings with Few Slopes, Computational Geometry: Theory and Applications, 38(3), pp. 181-193, 2007.
[DETT94] G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Algorithms for drawing graphs: an annotated bibliography, Comp. Geom. Theory and Appl., 4, pp. 235-282, 1994.
[DETT99] G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Graph Drawing: Algorithms for the Visualization of Graphs, Prentice-Hall Inc., Upper Saddle River, New Jersey, 1999.
[DF05] G. Di Battista and F. Frati, Small Area Drawings of Outerplanar Graphs, Proceedings of 13th International Symposium on Graph Drawing (GD '05), Springer-Verlag, Lecture Notes Computer Science, 3843, pp. 89-100, 2005.
[Far48] 1. Fary, On straight line representations of planar graphs, Acta Sci. Math. Szeged. 11, pp. 229-233, 1948.
[FDFH03] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics Principles and Practice, Pearson Education Pte. Ltd., 2003.
[FPP90] H. de Fraysseix, J. Pach and R. Pollack, How to draw a planar graph on a grid, Combinatorica, 10, pp. 41-51, 1990.
[GJ79] M. R. Garey and D. S. Johnson, Computers and Intractability a Guide to Theory of NP-Completeness, W. H. Freeman and Company, New York, 1979.
[GR07] A. Garg and A. Rusu, Area-efficient planar straight-line drawings of outerplanar graphs, Discrete Applied Mathematics, 155(9), pp.1116-1140,2007.
[Kan96] G. Kant, Drawing planar graphs using the canonical ordering, Algorithmica, 16, pp. 4-32, 1996.
[KD05] A. Kalis and T. Dimitriou, Fast routing in wireless sensor networks using directional transmissions, International Journal of Mobile Network Design and Innovation, 1(1), pp. 6369, 2005.
[KL84] M. R. Kramer and J. van Leeuwen, The complexity of wire routing and finding minimum area layouts for VLSI circuits, (Editors) R. P. Preparata, Advances in Computing Research, 2, VLSI Theory, JAI press, Reading, MA, pp. 129-146, 1984.
[NC88] T. Nishizeki and N. Chiba, Planar graphs: theory and algorithms, North-Holland, Amsterdam, 1988.
[NR04] T. Nishizeki and M. S. Rahman, Planar Graph Drawing, Lecture Notes Series on Computing, 12, World Scientific Publishing Company, 2004.
[PCJ96] H. C. Purchase, R. F. Cohen and M. James, Validating graph drawing aesthetics, Proc. of GD'95, Lecture Notes in Computer Science, 1027, pp. 435-446, Springer, 1996.
[Pur97] H. C. Purchase, Which aesthetic has the greatest effect on human understanding? Proc. of GD'97, Lecture notes in computer science, 1353, pp. 248-261, Springer, 1997.
[RNN99] M. S. Rahman, S. Nakano and T. Nishizeki, A linear algorithm for bend-optimal orthogonal drawings of triconnected cubic plane graphs, Journal of Graph Algorithms and Applications, 3, pp.31-62, 1999.
[SAAR08] M. A. H. Samee, M. J. Alam, M. A. Adnan and M. S. Rahman, Minimum Segment Drawings of Series-Parallel Graphs with the Maximum Degree Three, Proceedings of Graph Drawing (GD '08), 2008 (to appear).
[Sch90] W. Schnyder, Embedding planar graphs on the grid, Proc. First ACM-SIAM Symp. on Discrete Algorithms, San Francisco, pp. 138-148, 1990.
[Wag36] K. Wagner, Bemerkungen zum vierfarbenproblem, Jahresber. Deutsch. Math-Verien., 46, pp. 26-32, 1936.
[Wes01] D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, New Jersey, 2001.

Index

$\Delta, 5$
7, 19
$\kappa(G), 11$
$n_{D}, 30$
$s c(D), 19$
$s c(G), 19$
algorithm
complexity, 15
linear algorithm, 17
polynomial algorithm, 17
apex of $D, 30$
class NP, 18
convex corner, 30
dual of $G, 13$
weak dual, 15
edge component, 47
feasible drawing, 37
graph, 9
k-connected, 12
comnected component, 11
connected graph, 11
connectivity, 11
cycle, 12
disconnected graph, 11
edge, 9
incident, 10
fan component, 35
fan graph, 15
center, 15
fan of a vertex $v, 15$
multigraph, 10
outerplane graph, 15
dual-path outerplane graph, 15
ear, 15
ear edge, 15
ear vertex, 15
maximal outerplane graph, 15
path, 12
planar graph, 13
plane graph, 13
face, 13
simple graph, 10
subgraph, 10
vertex, 9
adjacent, 10
degree, 10
walk, 12
graph drawing
straight line drawing, 2,18
maximal segment, 2
minimum segment drawing, 2
segment count of $G, 19$
maximal component, 46
maximal fan component, 35
NP complete, 18
NP Hard, 18
pairwise collinear edge, 30
tree, 12
child, 12
internal node, 12
leaf, 12
nodes, 12
parent, 12
root, 12
rooted tree, 12

