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Abstract

In a straight line drawing of a planar graph each vertex is drawn as a point and each edge

is drawn as a straight line segment. One of the important aesthetic criteria for a straight

line drawing is to minimize the number of maximal straight line segments required for the

straight line drawing. Finding a minimum segment drawing of a planar graph is analogous

to aligning maximum number of objects according to their relations. Hence the problem of

obtaining a minimum segment drawing of a given graph has important practical applications

in the fields like Optical Fiber Communication, bend minimization in VLSI Layout Planning,

aesthetics in Architectural Floorplanning, antenna placement in Sensor Networks, etc. The

problem of finding minimum segment drawings has been studied for different classes of planar

graphs which include trees, outerplanar graphs, 2-trees and planar 3-trees. Researchers were

able to give bounds on the number of segments required for straight line drawing of the classes

of graphs mentioned above. Recently, Samee et al. gave an algorithm to find minimum segment

drawings of a restricted class of series-parallel graphs with the maximum degree three. Other

than that no algorithm has been devised so far for finding minimum segment drawings of non

trivial classes of planar graphs.

Outerplanar graphs are an important subclass of planar graphs where every vertex of the

graph appears on the outerface. Dujmovic et al. posed an open problem of finding a polynomial

time algorithm to compute an outerplanar drawing of a given outerplanar graph with the

minimum number of segments. Motivated by this open problem, in this thesis we give a linear-

time algorithm for finding a minimum segment drawing of a dual-path outerplane graph. We

also give an algorithm for finding a minimum segment drawing of a subdivision of a dual-path

outerplanc graph.

x
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Chapter 1

Introduction

A graph consists of a set of vertices and a set of edges, each joining two vertices. Graphs

are abstract structures that are used to model structural information arising from many ficlds,

such as economics, engineering, social sciences, genetics, mathematics and computer science.

Graphs, as models of information, are often required to be visualized or drawn in ways that are

easy to read and understand, or they are required to be laid out while satisfying some physical

constraint. Graph drawing addresses the problems of developing algorithmic techniques for

their automatic generation. Although graph drawing problems are attractive from a purely

mathematical standpoint, they also arise in many application areas, including VLSI design,

visualization, and DNA mapping.

There are infinitely many drawings of a graph. Producing a good drawing of a graph

tYVically involves the optimization of several application-specific criteria. More often the idea

of a good drawing, regardless of its purpose, coincides with aesthetics and edge straightness.

Many bends or equivalently many line segments in the drawing increase the di(ficulty for the

eye to follow the course of the edges incident on a vertex. For this reason, the total number of

line segments should be kept small when the readability of a drawing is of concern.

In .this thesis, we deal with the problem of drawing graphs with the minimum number of

segments. As this problem is relatively a new problem in the area of graph drawing, it has not

been studied well so far. As a result, neither the counting of number of segments required for a

1



Chapter 1. Introduction 2

minimum segment drawing nor any algorithm to construct such a drawing for a given graph is

known. However while the recent research works have failed to develop significant algorithms

for minimum segment drawings, they were able to give bounds on the number of segments

required for a straight line drawing of a graph. Hence it remains open to develop algorithmic

techniques both for the counting and the drawing problems.

In this chapter, we discuss the applications of drawing graphs with the minimum number of

segments. \Ve also review the previous results regarding the bounds on the number of segments

and present the objectives of the thesis. We start with Section 1.1 by giving a precise definition

of the minimum segment drawing problem. Section 1.2 describes some practical applications

of the problem. Section 1.3 reviews the previous works in this field. Section 1.4 addresses the

scope of this thesis. In Section 1.5, we present the summary of the thesis.

1.1 Minimum Segment Drawings

A common requirement for an aesthetically pleasing drawing of a planar graph is that all edges

are drawn as straight line segments without edge-crossings [DESW07a, DETT99, Far48, NR04,

RNN99]. A straight line drawing is such a drawing in which each vertex is drawn as a point and

each edge is drawn on a straight line segment. A maximal segment is a drawing of a maximal

set of edges that form a straight line segment. One of the important criteria for the straight

line drawing is to minimize the number of maximal segments. A minimum segment drawing

of a planar graph G is a straight line drawing of G with the minimum number of maximal

segments. Figure 1.1(a) depicts a straight line drawing of a planar graph with 34 maximal

segments, while Figure 1.1 (b) depicts a minimum segment drawing of the same graph with 15

maximal segments.



1.2. Applications of Minimum Segment Drawings

(a) (b)

3

Figure 1.1: (a) A planar graph G, (b) a minimum segment drawing of G.

1.2 Applications of Minimum Segment Drawings

Although planar straight line drawings are considered as the best means for visualizing planar

graphs [PCJ96, Pur97J, minimization of the number of segments in these drawings can greatly

enhance the overall readability [DESW07a]. On the other hand, fewer number of segments

in the drawing often implies fewer number of slopes in the drawing [DESW07a]. Both these

characteristics have important effects on scan conversion algorithms for lines in raster devices.

In raster devices, the grid location of each pixel has to be computed separately. Moreover, this

computation is largely dependent on the slope of the segment [FDFH03]. If both the number

of segments and the number of slopes in the drawing are few, then these computations can be

performed faster yielding a faster rendering of the drawing.

Moreover, finding a minimum segment drawing of a planar graph is analogous to aligning

maximum number of objects according to their relations. Hence the problem of obtaining a

minimum segment drawing of a given graph has important practical applications in the fields like

Optical Fiber Communication, bend minimization in VLSI Layout Planning [KL84, RNN99J,

aesthetics in Architectural floorplanning [DETT94, DETT99], antenna placement in Sensor

Networks [KD05J, etc.

to.
I



Chapter 1. Introduction

1.3 Challenges

4

In this section, we illustrate the challenges that we face to solve the problem of finding a

minimum segment drawing of a graph.

Given a graph first the question arises - "How do we minimize number of segments in a

drawing?". One may think of minimizing the number of segments by drawing the faces trian-

gular in the drawing. But this does not lead to a minimum segment drawing because making

faces triangular does not always minimizes segments. Figure 1.2(a) shows a straight line draw-

ing of a graph where every face is triangulated. But this drawing is not a minimum segment

drawing because this graph has another drawing (see Fig. 1.2(b)) which requires less number

of segments.

(a) (b)

Figure 1.2: (a) A straight line drawing of a graph G, (b) a minimum segment drawing of G.

Another approach to finding minimum segment drawing may be by making edges incident

to a vertex pairwise collinear. Then the problem turns into choosing the vertices to which the

incident edges will be pairwise collinear. Greedy choice on the vertices with higher degree does

not always give optimal solution. Hence the challenge here is to find an optimum choice of

vertices. In this thesis we follow this approach of making edges incident to a vertex pairwise

collinear and give an algorithm for choosing that set of vertex.

1.4 Previous Results

In this section, we review the previous works regarding drawing planar graphs with few slopes

and few segments.
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The problem of computing straight line drawings of planar graphs has been studied for long

with various application specific objectives in the focus [Far48, FPP90, Pur97, Sch90, Wag36].

Recently, DujmoviC et al. have studied this problem with the new objective of minimizing

the number of segments in a drawing [DESW07aJ, and the insightful results presented in their

work have established a new line of research henceforth. However, as their results suggest,

this problem is quite difficult for most of the non-trivial graph classes. For most of the cases,

bounds have been given on the number of segments in a drawing, but no algorithm is known for

computing a minimum segment drawing. For example, although Dujmovic el al. have provided

an algorithm for computing minimum segment drawings of trees, no such algorithm is known

for biconnected and triconnected plane graphs.

Recently, Samee et. al. [SAAR08] studied the problem of finding minimum segment drawing

for planar graphs by restricting the maximum degree of that graph. They first gave a lower

bound on the number of segments required for straight line drawings of series-parallel graphs

with the maximum degree three. Then they presented an algorithm for findillg a minimum

segment drawing of such a graph. Other than the degree restricted case for series-parallel

graphs, to the best of our knowledge no algorithm has yet been devised for computing minimum

segment drawings of a general class of graph.

The known results on the minimum segment drawing problem are listed in Table 1.1. Mean-

ings of the notations used in this table are as follows. The symbol 7] denotes the number of odd

degree vertices in a tree. The symbol n denotes the number of vertices in a graph. For a series-

parallel graph G with .6.(G) = 3, the symbols P and N denote the number of P-nodes and the

number of primitive P-nodes in an SPQ-tree of G, and k E {1,2} based on a characterization

of the SPQ-tree [DETT99] of G.

1.5 Scope of this Thesis

In this thesis, we consider the problem of iindillg a minimum segment drawing for a subclass

of "outerplane graphs." Outerplane graphs comprise an important subclass of plane graphs

.v



Chapter 1. Introduction

Graph class Bound on segments Minimum Segment Reference

Lower Upper Drawing Algorithm

Tree ~ ~ Yes
2 2 .

Plane 2-connected "-n - No
2

Planar 2-connected 2n - No [DESW07a]

Plane 3-connected 2n 5 No"n
Planar 3-connected 2n 5 No"2n

Plane 3-connected cubic - n+2 No

Series-parallel (6 = 3) P+N+k P+N+k Yes [SAAR08]

Table 1.1: Known results for the minimum segment drawing problem.

6

where every vertex appear on the outerface. Dujmovic et al. [DESW07a] posed an open

problem of obtaining a polynomial-time algorithm to find a minimum segment drawing of a

given outerplane graph. Motivated by this open problem in this thesis, we study the minimum

segment drawing problem for subclass of outerplane graphs.

We first study the minimum segment drawing problem for maximal dual-path outerplane

graph. To compute a minimum segment drawing, at first the graph is divided into smaller

graphs called fan graphs. Then the minimum segment drawings of the fan graphs are computed.

Then the drawings of the fan graphs are patched in such a way that after patching the combined

drawing becomes a minimum segment drawing of the original graph.

By using the algorithm for finding a minimum segment drawing of a dual-path maximal

outerplane graph, we extend our result for dual-path outerplane graphs. To compute a minimum

segment drawing of a dual-path outerplane graph, at first the vertices of degree two are removed

from the graph. Then the graph is divided into maximal components where each maximal

component is a maximal outerplanar graph. Then the minimum segment drawings of the

maximal components are computed. After computing the minimum segment drawings of the

maximal components, the drawings are patched in such a way that after patching the combined

drawing becomes a minimum segment drawing of the original graph. Then the vertices of degree



1.6. Summary

two are added to the drawing.

7

We then extend our algorithm for subdivision of outerplanar graphs. To compute a minimum

segment drawing of a subdivision of an outerplanar graph, the inner vertices of degree two are

removed from the graph. Thus the graph transforms into an outerplanar graph and a minimum

segment drawing for that graph is computed. Then the vertices of degree two are added to the

drawing. Table 1.2 shows the known algorithr:ils for the minimum segment drawing problem for

different classes of graphs.

Graph class Time complexity Reference

Tree O(n) [DESW07a]

Series-parallel (6 = 3) O(n) [SAAR08]

Dual-path outerplanar O(n) [Ours]

Subdivision of Dual-path outerplanar O(n)

Table 1.2: Algorithms for the minimum segment drawing problem.

1.6 Summary

In this thesis we develop efficient algorithms for finding minimum segment drawings of sub-

classes of outerplanar graphs. The main results of this thesis are as follows.

1. We give a linear-time algorithm for computing a minimum segment drawing of a given

dual-path maximal outerplanar graph.

2. We present a linear-time algorithm for computing a minimum segment drawing of a given

dual-path outerplanar graph.

3. We develop a linear-time algorithm for computing a minimum segment drawing of a

subdivision of a dual-path outerplanar graph.

•I



Chapter 1. Introduction 8

The rest of the thesis is organized as follows. Chapter 2 defines basic terminologies relevant

to graphs, graph algorithms and graph drawing problems to understand our research work.

Chapter 2,describes the algorithm that computes a minimum segment drawing for a dual-path

maximal outerplane graph in linear time. Chapter 4 deals with computing minimum segment

drawings of dual-path outerplane graphs. In Chapter 5, we give an algorithm for a subdivision

of a dual-path outerplane graph. Finally, Chapter 6 is the conclusion.



Chapter 2

Preliminaries

In this chapter, we define some basic terminology of graph theory and algorithms. Definitions

which are not included in this chapter will be introduced as they are needed. We start, in

Section 2.1, by giving some definitions of standard graph-theoretical terms used throughout

the remainder of this thesis. We devote Section 2.2 to define terms related to plane graphs.

The notion of time complexity is introduced in Section 2.3. Finally we give a review of the

literature on the minimum segment drawing problem in Section 2.4.

2.1 Basic Terminology

In this section we give definitions of some theoretical terms used throughout the remainder of

this thesis.

2.1.1 Graphs

A graph G is a structure (V, E) which consists of a finite set of vertices V and a finite set of

edges E; each edge is an unordered pair of distinct vertices. We denote the set of vertices of

G by V(G) and the set of edges by E(G). Fig. 2.1 depicts a graph G where each vertex in

V(G) = {v), V2, ... , V6} is drawn as a small dark circle and each edge in (E(G) = {e), e2, ... ,eg}

9



Chapter 2. Preliminaries 10

is drawn by a line segment.

If a graph G has no "multiple edges" or "loops" , then G is said to be a simple graph. Multiple

edges join the same pair of vertices, while a loop joins a vertex with itself. A graph in which

loops and multiple edges are allowed is called a multigraph. Often it is clear from the context

that the graph is simple. In such cases, a simple graph is called a graph. In the remainder of

thesis we assume that G has no loop.

We denote an edge between two vertices u and v of G by (u, v) or simply by uv. If uv E E

then two vertices u and v of graph G are said to be adjacent; edge uv is then said to be incident

to vertices u and v; u is a neighbor of v. The degree of a vertex v in G, denoted by d(v), is the

number of edges incident to v. In the graph shown in Fig. 2.1 vertices v, and V2 are adjacent,

and d(v,) = 3, since four of the edges, namely e" es and e6 are incident to v,. By l>(G), we

mean the maximum degree of the vertex in a graph.

v, e,
e, e,

e, V6
v,

C, c,
c,

V, c,

v,

e,

v,

Figure 2.1: Illustration of a graph.

2.1.2 Subgraphs

A subgraph of a graph G = (V, E) is a graph G' = (V'. E') such that V' <;; V and E' <;; E; we

then write G' <;; G. If G' contains all the edges of G that join two vertices in V', then G' is

said to be the subgraph induced by V', and is denoted by G[V'J. Fig. 2.2 depicts a subgraph of

G in Fig. 2.1 induced by {V,.V2,VS,V6}'

We often construct new graphs from old ones by deleting some vertices or edges. If v is a

vertex of a given graph G = (V, E), then G - v is the subgraph of G obtained by deleting the

vertex v and all the edges incident to v. More generally, if V' is a subset of V, then G - V' is
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",
e,/

'<)7e,

~' 5

Figure 2.2: A vertex-induced subgraph.

11

the subgraph of G obtained by deleting the vertices in V' and all the edges incident to them.

Then G - V' is a subgraph of G induced by V - V'. Similarly, if e is an edge of a G, then G - e

is the subwaph of G obtained by deleting the edge e. More generally, if E' <;; E, then G - E'

is the subgraph of G obtained by deleting the edges in E'.

2.1.3 Connectivity

A graph G is a connected graph if for every pair {u, v} of distinct vertices there is a path

between u and v. A graph which is not connected is called a disconnected graph. A connected

component of a graph is a maximal connected subgraph. The graph in Fig. 2.3( a) is a connected

graph since there is a path for every pair of distinct vertices of the graph. On the other hand

t.he graph in Fig. 2.3(b) is a disconnected graph since there is no path between VI and V5. The

graph in Fig. 2.3(b) haB t.wo connect.ed components Gland Gz indicat.ed by dotted lines.

(a)

v,

..'------- ..
V4 Vs

(b)

Figure 2.3: (a) A connected graph (b) a. disconnected graph with two connected component.s.
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The connedivity ,,( G) of a graph G is the minimum number of vertices whose rcmoval results

in a disconnected graph or a single-vertex graph /{j. We say that G is k-connected if ,,(G) 2: k.

We call a set of vertices in a connected graph G a separator or a vertex cut if the removal of

the vertices in the set results in a disconnected or single-vertex graph. If a vertex-cut contains

exactly one vertex then we call the vertex a cut vertex. A block is a maximal biconnected

subgraph of G.

2.1.4 Paths and Cycles

A Va - VI walk, Va, ej, Vj, ... , V'_j, e" VI, in G is an alternating sequence of vertices and edges of G,

beginning and ending with a vertex, in which each edge is incident to two vertices immediately

preceding and following it. If the vertices Va, Vj, ... ,VI are distinct (except possibly Va, VI), then

the walk is called a path and usually denoted either by the sequence of vertices Va, Vj, ... ,VI or

by the sequence of edges ej, e2, ... , el. The length of the path is I, one less than the number of

vertices on the path. A path or walk is closed if Va = VI. A closed path containing at least one

edge is called a cycle.

2.1.5 Trees

A .tree is a connected graph containing no cycle. Figure 2.4 is an example of a tree. The

vertices in a tree are usually called nodes. A TOoted tree is a tree in which one of the nodes is

distinguished from the others. The distinguished node is called the TOotof the tree. The root

of a tree is generally drawn at the top. In Figure 2.4, the root is Vj. Every node u other than

the root is connected by an edge to some other node p called the parent of u. We also call u

a child of p. We draw the parent of a node abovc that node. For example, in Figure 2.4, Vj is

the parent of V2, V3 and V4, while V2 is the parent of Vs and V6; V2, V3 and V4 are children of Vj,

while Vs and V6 are children of V2. A leaf is a node of a tree that has no children. An internal

node is a node .that has one or more children. Thus every node of a tree is either a leaf or an

internal node. In Figure 2.4, the leaves are V4, Vs, VG, V7 and VB, and the nodes Vj, V2 and V3
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are internal nodes.

Figure 2.4: Illustration of a tree.

2.2 Planar Graphs and Plane Graphs

13

In this section we give some definitions related to planar graphs used in the remainder of the

thesis. For readers interested in planar graphs we refer to [NeSS].

A graph is a planar graph if it can be embedded in the plane so that no two edges intersect

geometrically except at a vertex to which they are both incident. Note that a planar graph

may have an exponential number of embeddings. Fig. 2.5 shows four planar embeddings of the

same planar graph.

3

4 4

7

3
3

Figure 2.5: Four planar embed dings of the same planar graph.
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A plane graph is a planar graph with a fixcd embedding. A plane graph divides the plane

into connected regions called faces. We regard the contour of a face as a clockwise cycle formed

by the edges on the boundary of the face. We denote thc contour of the outer face of graph C

by Co(C). A cycle of a plane graph is called a facial cycle if it is the boundary of a face f and

denoted by C f'

2.2.1 Dual Graphs

For a plane graph C, we often construct another graph C' called the geometric dual of C as

follows. A vertex v; is placed in each face Fi of C; these are the vertices of C'. Corresponding

to each edge e of C we draw an edgc c' which crosses e (but no other edge of C and joins the

vertices v; which lie in thc faces Fi adjoining e; these are the edges of C'. The construction

is illustrated in Fig. 2.6; the vertices v; are represented by small white circles, and the edges

e' oLC' by dotted lines. C' is not necessarily a simple graph even if C is simple. Clearly the

dual C' of a plane graph C is also plane. One can easily observe the following lemma.

, ,, ,
'- " '

" I :: fr ...... <> ,::" .- : . ..,
I ", '

I , , ", "

" "

(a) (b)
. ,

Figure 2.6: A plane graph C and its dual graph C'.

Lemma 2,2.1 Let C be a connected plane graph with n vertices, m edges and f faces, and let

the dual C' have n' vertices, m' edges and r faces; then n' = f, m' = m, and r = n.
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Clearly the dual of the dual of the plane graph G is the original graph G. The weak dual of

a plane graph is the dual of that plane graph disregarding the outerface. Figure 2.6(b) shows

the weak dual of the graph.

2.2.2 Outerplane Graphs

Outerplane graphs are an important subclass of plane graph. A plane graph is oulerplane if

all the vertices are on the boundary of the outerface. An outerplane graph G is maximal if

no edge can be added to G without loosing outerplanarity. Every inner face of a maximal

outerplane graph is a triangle. Every outerplane graph has at least two vertices of degree two.

In a maximal outerplane graph, the inner face containing a vertex of degree two is called an

ear. We call the vertex of degree two of an ear an ear verlex and the edges of the ear as ear

edges. The weak dual of an outerplanc graph is a tree or a forest. Figure 2.7 represents an

outerplane graph G and its weak dual is shown by dotted lines.

Figure 2.7: An outerplane graph G and its weak dual.

A dual-palh oulerplane graph is defined to be an outerplane graph with one or more. inner

faces whose weak dual is a path. Thus a dual-path outerplane graph has three or more vertices,

is 2-connected, and has at most two ears. The two ears divide the boundary of the outerface

into two paths called outer palhs.

A dual-path ma.,imal outerplane graph is called a fan graph if a vertex is adjacent to every

other vertex; the vertex is called a cenler of the fan graph. The fan of a vertex v in an outerplane

graph G is the plane subgraph of G induced by {v} U N( v).
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2.3 Subdivision of a Graph

16

Subdividing an edge (u, v) of a graph G is the operation of deleting the edge (u, v) and adding a

path 'l),(= 'WO),1Vl,W21'" ,Wk,V(= Wk+l) through new vertices Wl,W2,'" ,wk,k 2: 1, of degree

two. A graph G' is said to be a subdivision of a graph G if G' is obtained from G by subdividing

some of the edges of G. Figure 2.8(b) shows a subdivision of the graph in Figure 2.8(a).

(a) (b)

Figure 2.8: An outerplane graph G and its weak dual.

2.4 Algorithms and Complexity

In this section we briefly introduce some terminologies related to complexity of algorithms. For

interested readers, we refer the book of Garey and Johnson [GJ79] .

. The most widely accepted complexity measure for an algorithm is the running time which

is expressed by the number of operations it performs before producing the fiual answer. The

number of operations required by an algorithm is not the same for all problem instances. Thus,

we consider all inputs of a given size together, and we defiuc the complexity of the algorithm

for that input size to be the worst case behavior of the algorithm on any of these inputs. Then

the running time is a function of size n of the input.
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2.4.1 The Notation O(n)
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In analyzing the complexity of an algorithm, we are often interested only in the "asymptotic

behavior", that is, the behavior of the algorithm when applied to very large inputs. To deal

with such a property of functions we shall use the following notations for asymptotic running

time. Let /(n) and g(n) are the functions from the positive integers to the positive reals, then

we write /(n) = O(g(n)) if there exists positive constants C1 and C2 such that /(n) ~ c1g(n)+c2

for all n. Thus the running time of an algorithm may be bounded from above by phrasing like

"Lakes time O(n2t .

2.4.2 Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its complexity is

bounded by a polynomial of the size of a problem instance. Examples of such complexities are

O(n), O(nlogn), 0(n100), etc. The remaining algorithms are usually referred as exponential

or nonpolynomial. Examples of such complexity are 0(2"), O(n!), etc. When the running

time of an algorithm is bounded by O(n), we call it a linear-time algorithm or simply a linear

algorithm.

2.4.3 NP-complete

There are a number of interesting computational problems for which it has not been proved

whether there is a polynomial time algorithm or not. Most of them are "NP-complete", which

we will briefly explain in this section.

The state of algorithms consists of the current values of all the variables and the location of

the current instruction to be execnted. A deterministic algorithm is one for which each state,

upon execution of the instruction, uniquely determines at most one of the following state (next

state). All computers, which exist now, run deterministically. A problem Q is in the class P if

there exists a deterministic polynomial-time algorithm which solves Q. In contrast, a nondeter-

ministic algorithm is one for which a state may determine many next states simultaneously. We
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may regard a nondeterministic algorithm as having the capability of branching off into many

copies of itself, one for the each next state. Thus, while a deterministic algorithm must explore

a set of alternatives one at a time, a nondeterministic algorithm examines all alternatives at the

same time. A problem Q is in the class NP if there exists a nondeterministic polynomial-time

algorithm which solves Q. Clearly P <;; N P.

Among the problems in NP are those that are hardest in the sense that if one can be solved

in polynomial-time then so can every problem in NP. These are called NP-complete problems.

The class of NP-complete problems has the following interesting properties.

(a) No NP-complete problem can be solved by any known polynomial algorithm.

(b) If there is a polynomial algorithm for any NP-complete problem, then there are polynomial

algorithms for all NP-complete problems.

Sometimes we may be able to show that, if problem Q is solvable in polynomial time, all

problems in NP are so, but we arc unable to argue that Q E N P. So Q does not qualify to be

called NP-complete. Yet, undoubtedly Q is as hard as any problem in NP. Such a problem Q

is called NP-hard.

2.5 Drawing Graphs with Few Segments

A straight line drawing of a plane graph is a drawing in which each vertex is drawn as a point and

each edge is drawn on a straight line segment. A maximal segment is a drawing of a maximal

set of edges that form a straight line segment. We call the number of maximal segments in a

straight line drawing D of a plane graph the segment count of D, and denote it by sc(D). We

call the number of maximal segments in a minimum segment drawing of a plane graph G the

segment count of G, and denote it by sc(G).

The problem of computing minimum segment drawings of planar graphs is a relatively new

one, and was originated from the seminal work of Dujmovic et al. [DESW07a]. In this section

we give an overview of some of the most important results presented in [DESW07a]. It is worth
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mentioning that, although Dujmovic et al. have given both lower bounds and upper bounds on

the number of segments in drawings of several important graph classes, algorithm for computing

minimum segment drawings was given only for trees. More interestingly, for some non-trivial

graph classes, like plane biconnected and planar biconnected graphs, even no upper bound was

given. Similarly, for plane trieonnected cubic graphs, no lower bound was given. Nevertheless,

each of these results is quite insightful and is necessary for subsequent research on this problem.

2.5.1 Trees

Let T be a tree. Let.ry denote the number of odd degree vertices of T. It Willi shown in

[DESW07aJ that any planar straight-line drawing r of T requires at least ~ number of segments.

The claim holds since each odd degree vertex u of T is an endpoint of some segment in r. It is
notable that, the number of odd degree vertices in a graph is even and hence, ~ is an integer.

(a) (b)

Figure 2.9: (a) A tree T, and (b) a minimum segment drawing of T

It has also been proved in [DESW07aJ that T admits a planar straight-line drawing on

exactly ~ number of segments. The proof of this claim is constructive. To prove this claim, a

drawing r of T has been computed in [DESW07aJ such that every odd degree vertex of T is an

endpoint of exactly one segment in r and no even degree vertex is an endpoint of a segment in

r. Such a drawing of a tree T in Fig. 2.9(a) is illustrated in Fig. 2.9(b).
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2.5.2 2-Connected Graphs
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It was shown in [DBSW07aJ that there is an n-vertex 2-cannected plane graph G with ~n- 4

edges such that any straight line drawing of G requires ~n- 4 number of segments. Such a

graph G is shown in Fig. 2.10(a). However, it was also shown in [DBSW07aJ that the same

graph requires at least 2n - 1 segments in every planar drawing as shown in Fig. 2.1O(b). In

summary, the known result on minimum segment drawing problem states that there is an n-

vertex plane 2-cannected graph that can be drawn using at most ~nnumber of segments, and

an n-vertex planar 2-cannected graph that requires at least 2n + 0(1) number of segments in

any planar drawing.

(a) (b)

Figure 2.10: (a) A 2-cannected planc graph G that requires ~n- 4 segments in any drawing,

and (b) a drawing of G on 2n - 1 segments.

2.5.3 3-Connected Graphs

Let G be a 3-cannected graph. Based on a canonical decomposition [Kan96] of G, it was

shown in [DBSW07a] that every 3-connected graph G has a plane drawing with at most ~n

line segments. Although it was not shown whether ~n line segments are necessary for every

drawing of G, it was shown that there is a 3-cannected plane graph G with n = 3k (k E N)

vertices that requires at least 2n number of segments in any planar straight-line drawing. Sueh

a graph G with 12 vertices is shown in Fig. 2.11.
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Figure 2.11: A 3-connected graph G that requires at least 2n - 6 segments in any drawing.

2.5.4 3-Connected Cubic Plane Graph

Let G be a 3-connected cubic plane graph. Based on a canonical decomposition of G, it was

shown in [DESW07aJ that G can always be drawn using at most n + 2 number of segments.

Although this establishes an upper bound of the number of segments required for any drawing

of G, no lower bound of the number of segments required for any drawing of G is known as yet.

An example of a drawing of a 3-connected cubic plane graph G using exactly n + 2 segments is

shown in Fig. 2.12.

Figure 2.12: Drawing of a 3-connected cubic graph G using n + 2 segments.

\ '
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2.5.5 Series-Parallel Graph with the maximum Degree Three
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Recently, Samee et. al. [SAAR08] studied the problem of finding minimum segment drawing

for planar graphs by restricting the maximum degree of that graph. They first gave a lower

bound on the number of segments required for straight line drawings of series-parallel graphs

with the maximum degree three. Then they presented a linear-time algorithm for finding a

minimum segment drawing of such a graph. Other than the degree restricted cose for series-

parallel graphs, no algorithm has yet been devised for computing minimum segment drawings

of a general closs of graph. An example of a minimum segment drawing of a series-parallel

graph G with the maximum degree three is shown in Fig. 2.13.

d

(a)

f

a

d
c

f

e

(b)

Figure 2.13: (a) A series-parallel graph G and (b) a minimum segment drawing of a series-

parallel graph with the maximum degree three.
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Dual-Path Maximal Outerplane Graph

In this chapter we present an algorithm for computing a minimum segment drawing of a dual-

path maximal outerplane graph G. Our algorithm is outlined as follows: we first divide G

into fan graphs; we then find the minimum segment drawings of the fan graphs; and we fi-

nally obtain a minimum segment drawing of G by patching the drawings of the fan graphs.

For example, Figure 3.1(b) depicts a decomposition of the graph in Figure 3.1(a) into fan

graphs, Figure 3.1(c) illustrates the minimum segment drawings of the fan graphs, and Fig-

ure 3.1(d) depicts a minimum segment drawing of the dual-path maximal outerplane graph in

Figure 3.1(a).

3.1 Minimum Segment Drawing of a Fan Graph

In this section, we give an algorithm to compute a minimum segment drawing of a fan graph

G. We first have the following lemma on the minimum segment drawings of fan graphs.

Lemma 3.1.1 Let G be a fan graph, and let v be the center of G. Then:

(aJ sc(G) = 3 if d(v) = 2; and

(bJ sc(G) = ld(v)/2J + 3 if d(v) 2: 3.

23 / .•...
,,
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(a)

(e)

(b)

(d)

24

Figure 3.1: (a) A dual-path maximal outerplane graph G, (b) fan graphs of G, (e) minimum

segment drawings of the fan graphs, and (d) a minimum segment drawing of G.

o
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Fan Graphs

y
v

v

v
d(v) even

(a)

(b)

(c)

Minimum Segmclll Drawing

v

~

....
- -~ --v

v
d(v) odd

(d)

Proof.

Figure 3.2: Illustration of fan graphs and their minimum segment drawings.

(a) Since G is a triangle, G has essentially exactly one straight line drawing, which

has three maximal segments, as illustrated in Fig. 3.2(a). Thus se(G) = 3.

(b) (i) We first show that se(G) ::; ld(v)/2J +3. We have the following two cases to consider.

Case 1: d(v) is even and d(v) ::::4.

We take the center v as the intersection point of d( v) /2 distinct straight line segments

passing through v. The d(v) neighbors of v are placed on the d(v) endpoints of the straight

line segments so that each of the two sets of d(v)/2 endpoints are collinear, as illustrated in

the right drawing of Fig. 3.2(c). Thus one can draw G with d(v)/2 + 3 maximal segments, and

hence se(G) ::; ld(v)/2J + 3.

Case 2: d(v) is odd and d(v) ::::3.
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Assume that d( v) = 3. Then G has essentially exactly one straight line drawing with four

maximal segments as illustrated in the right drawing of Fig. 3.2(b), and G has no straight

line drawing with three or fewcr maximal segments. Hence sc(G) ::; ld(v)/2J + 3 for G with

d( v) = 3. We now assume that d(v) 2: 5. We take the center v as the intersection point

of ld( v)/2 J distinct straight line segments passing through v. We draw another straight line

segment whose one end is v and the other end is the middle neighbor z of v. Now the d(v)

neighbors of v are placed on the d(v) endpoints of all these ld(v)/2J + 1 line segments so that

each of the two sets of ld( v) /2 J endpoints and z are collinear, as illustrated in Fig. 3.2(d). Thus

one can draw G with ld(v)/2J + 3 maximal segments, and hence sc(G) ::; ld(v)/2J + 3.

(ii) We then show that se(G) 2: ld(v)/2J +3 if d(v) 2: 3. We only give a proof for the claim

t.hat se(G) 2: ld(v) /2 J + 3 if d( v) 2: 3 and d( v) is even; the proof for the case where d(v) is

odd is similar. We prove the claim by induction on d( v). For the basis of the induction we

consider the fan graph G with d( v) = 4. G has essentially two distinct drawings with exactly

5 maximal segments as illustrated in Fig. 3.3(a), and G has no drawing with fewer than 5

maximal segments. Thus se( G) = 5 2: ld( v) /2 J + 3, and hence the basis is true.

Figure 3.3: Two drawings of the fan graph of d( v) = 4 with five maximal segments.

Assume that se(G') 2: ld(v, G')/2J + 3 for the fan graph G' with d(v, G') = 2k for some

integer k 2: 2. Let G be the fan graph with d(v, G) = 2k + 2(2: 6), and let D be a minimum

segment drawing of G. Since sc(D) = sc(G), it. suffices to prove that sc(D) 2: ld(v, G)/2J + 3.

We first consider the case where D has a maximal segment IVY such that each of vertices

I and y has degree three in G. Since every inner face is a triangle, I cannot be a neighbor of

y in G. Let. p and q be the neighbors of I other than v, and let. sand t be the neighbors of

yother t.han v. Let. G' be a graph obt.ained from G by delet.ing I and y and by adding new

edges (p, q) and (s, t). Then G' is a dual-pat.h maximal outerplane graph and d(v, G') = 2k.

( .
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We can obtain a straight line drawing D' of G' by deleting from D the drawings of vertices x

and y and their incident edges and by drawing each of the edges (1', q) and (s, t) with a straight

line segment. One can observe that the deletion of edges (1', x), (x, q), (s, y) and (y, t) and the

addition of the edges (1', q) and (s, t) neither increase the number of maximal segments nor

produce any edge crossing. Furthermore, the maximal segment xvy in D disappears in D'.

Therefore sc(D) - 1 2: sc(D'). Since sc(D') 2: se(G') 2: k + 3 by the induction hypothesis, we

have se(D) 2: se(D')+l2: se(G') + 1 ~ (k+3)+1 = (k+1)+3 = ld(v,G)/2J +3. Hence the

claim holds.

We then consider the case where D has no maximal segment xvy such that each of x and

y has degree 3. Since G has exactly two vertices of degree 2, D has at most two maximal

segments passing through v. Each such maximal segment contains exactly two vertices other

than v. Since d(v, G) ~ 6, v has two neighbors i and j of degree three such that each of the

edges (i, v) and (j, v) is a maximal segment in D. We assume that i is not adjacent to j in G.

(The proof for the case where i is adjacent to j is similar.) Let l' and q be the neighbors of i

other than v, and let sand t be the neighbors of j other than v. Let G' be a graph obtained from

G by deleting i and j and by adding new edges (1', q) and (s, t). Then G' is a dual-path maximal

outerplane graph and d(v, G') = 2k. We can obtain a drawing D' of G' by deleting from D the

drawings of vertices i and j and their incident edges and by drawing each of the edges (1', q) and

(s, t) with a straight line segment. One can observe that the deletion of edges (1', i), (i, q), (s, j)

and (j, I.) and the addition of the edges (1', q) and (s, I.) neither increase the number of maximal

segments nor produce any edge-crossing. Furthermore, the two maximal segments iv and jv

in D disappear in D'. Therefore sc(D) - 2 2: se(D'). Since se(D') 2: se(G') 2: k + 3 by the

inductive hypothesis, we have se(G) = sc(D) 2: se(D') + 2 2: sc(G') + 2 > (k + 3) + 2 =

(k + 1) + 4> (k + 1) + 3 = ld(v, G)/2J + 3. Hence the claim holds. Q.e.D.

r
'.
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3.2 Properties of Minimum Segment Drawings of Fan

Graphs

In this section we illustrate some properties of the minimum segment drawings of a fan graph.

This properties will be used during the patching of minimum segment drawings of the fan

graphs.

Let G = (V, E) be a fan graph and v be the center of G. Let D be a straight line drawing

of G. We call the edges incident to a vertex u E V (G) as pairwise collinear in D if the edges

incident to u are drawn using exactly fd(u)/21 maximal line segments. If the edges incident to

u are not pairwise collinear in D then we call u an apex of D. Let nD be the number of apices in

D. The outerface of G is always drawn as a polygon in D whieh requires at least three convex

corners, and hence D has at least three apices, i.e. nD ;:::3. Since G is a fan graph, G contains

two ears, each of which always forms an apex in D. Thus among the apices in D two apices

are ear vertices. We have the following lemma on the number of apices of D.

Lemma 3.2.1 Let D be a minimum segment drawing of a fan graph G with center v, and let

nD be the number of apices in D. Then the following (a)-(d) hold:

(a) nD = 3 if d(v) :0; 3;

(b) 3:0; nD :0;4 if d(v) = 4;

(c) nD = 4 if d(v) > 4 and d(v) is even; and

(d) nD = 3 if d(v) > 4 and d(v) is odd.

Proof. (a) \Ne need at least three convex corners to draw the outerface of G as a polygon.

These three convex corners form three apices. Hence nD ;:::3. It is now sufficient to show that

nD :0; 3. If d(v) = 2 then there are three vertices in G and nD = 3. If d( v) = 3 then v has

three neighbors. Let VI, V2 and w be the neighbors of v with d( vd = d( V2) = 2 and d(w) = 3.

Suppose v, ware both apices. Then the three edges incident to each of v and ware drawn
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Figure 3.4: Straight line drawing of G with d( v) > 4 where v forms a convex corner.
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on three different straight line segments. Since (v, 11J) is an edge, the total number of distinct

straight line segment is five. But in this case sc(G) = 4 by Lemma 3.1.1(b), a contradiction to

the assumption that D is a minimum segment drawing. Hence one of v and 11J are not apices,

and thus nD $ 3.

(b) We need at least three convex corners to draw the outerface of G as a polygon. These

three convex corners form three apices. Hence nD 2: 3. It is now sufficient to show that nD $ 4.

Suppose for a contradiction that nD > 4. Then the edges incident to v and to the neighbors of

v are not pairwise collinear, and clearly the number of segments incident to v in D is at least

ld( v) /2 J + 1. Since the three edgcs on the outerface which are not incident to v are not collinear,

sc(D) 2: (ld(v)/2J + 1) + 3. By Lemma 3.1.1(b), sc(G) = ld(v)/2J + 3. Hence sc(D) > sc(G),

a contradiction to the assumption that D is a minimum scgment drawing.

(c) (i) We first consider the case where v is an apex in D. In this case we claim that v is

not a convex corner in D. Assume for a contradiction that v is a convex corner in D. Then

sc(D) 2: d(v) + 1, since no two edges incident to v are drawn on the same straight line segment

and at least one additional segment is required to complete the drawing of the outerfaee, as

illustrated in Fig. 3.4. By Lemma 3.1.1(b), sc(G) = ld(v)/2J + 3. Then sc(D) > sc(G), a

contradiction to the assumption that D is a minimum segment drawing. Therefore v cannot be

a convex corner in D. We now show that nD 2: 4. Since we need at least three convex corners

to draw the outerface as a polygon and v is not a convex corner in D, there are at least three

vertices other than v on the outerface of G each of which are convex corners in D. These three

vertices along with v form the four apices and hence nD 2: 4.

We now prove that nD $ 4. Suppose for a contradiction that nD > 4. Then the edges

incident to v and at least four neighbors of v are not pairwise collinear. Then the number of

segments incident to v is at least ld( v) /2 J +1. Also there are three edges on the outerface, other

"/ '
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than the edges incident to v, which arc not collinear. Hence sc(D) 2: (ld(v)/2J + 1) + 3. By

Lemma 3.1.1(b), se(G) = ld(v)/2J +3. Then sc(D) > se(G), a contradiction to the assumption

that D is a minimum segment drawing.

(ii) We now consider the case where v is not an apex in D. Then the edges incident to v

are pairwise collinear. Suppose for a contradiction that nD = 3. Let w be the vertex which

forms an apex other than the ear vertices VI, V2. Since G is a fan graph, d(w) = 3. Let u be a

neighbor of v in the embedding from VI to w. Since u is not an apex, w, u and VI are collinear.

Similarly any neighbor of V from w to V2 i, collinear with wand V2. Hence sc(D) :S ld(v)/2J +2

where d(v) is even. According to Lemma 3.1.1(b), se(G) = ld(v)/2J + 3. Hence D is not a

minimum segment drawing, a contradiction. Thus nD 2: 4.

We now prove that nD :S 4. Suppose for a contradiction that nD > 4. Then the edges

incident to at least five neighbors of V are not pairwise collinear. Let VI, Ul, U2, U3 and V2

be tho,e apices, where VI and V2 are car vertices. Then there are at least four outer edges

incident to UI, U2, U3 on the outerface which are not collinear. Hence sc(D) 2: ld(v)/2J +4. By

Lemma 3.1.1(b), se(G) = ld(v)/2J +3. Then se(D) > se(G), a contradiction to the assumption

that D is a minimum segment drawing.

(d) (i) We first consider the case where V is an apex in D. In this case we show that V

neither is a convex corner nor forms an apex in D. Assume for a contradiction that V is a

convex corner in D. Then se(D) 2: d(v) + 1, since no two edges incident to V are drawn on

the same straight line segment and at least one additional segment is required to complete the

drawing of the outerface, as illustrated in Fig. 3.4. By Lemma 3.1.1(b), se(G) = ld(v)/2J + 3.

Then se(D) > se(G), a contradiction to the assumption that D is a minimum segment drawing.

Therefore v cannot be a convex corner in D. We now ,how that v is not an apex in D. Since

we need at least three convex corners to draw the outerfaee as a polygon and v is not a convex

corner in D, there are at least three vertices other than v on the outerface of G which are

convex corners in D. These three vertices along with v form the four apices and hence nD 2: 4.

Since v is an apex, the number of segments incident to v is at least rd(v)/21 + 1. Furthermore,

there are at least two edges on the outerface other than the edges incident to v which are not
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collinear. Hence sc(D) 2: (fd(v)/21 + 1) + 2. By Lemma 3.1.1(b), sc(C) = ld(v)/2J + 3. Then

sc(D) > sc(G), a contradiction to the assumption ~hat D is a minimum segment drawing.

Hence v cannot be an apex in D.

(ii) We now consider ~he case where v is not an apex in D. Then the edges incident to v

are pairwise collinear. Since we need at least ~hree convex corners to draw the outerface as a

polygon, nD 2: 3. We now prove that nD :s 3. Suppose for a contradiction that nD > 3. Then

the edges incident to at least four neighbors of v are not pairwise collinear. Let VI, UI, U2 and

V2 be those apices, where VI and V2 are ear vertices. Then there arc at least three outer edges

incident to UI and U2 on the outerface which are not collinear. Hence sc(D) 2: fd(v)/21 +3. By

Lemma 31.1(b), sc(G) = ld(v)/2J +3. Then sc(D) > sc(G), a contradiction to the assumption

that D is a minimum segment drawing. Q.E.D.

From the proofs of Lemma 3.2.1(c) and 3.2.1(d), we have the following corollary.

Corollary 3.2.2 Let G be a fan graph and v be the center of G with d(v) > 4. Then the

following (a) and (b) hold:

(a) v is not a convex cornel' in D.

(b) v is not an apex in D, if d(v) is odd.

Lemma 3.2.3 Let G be a fan graph and v be the center of G with d(v) > 4 and d(v) odd.

Then C has a unique minimum segment drawing.

Proof. Let d = d(v) and VI, V2,"" V,_I, Vz, V,+l,"', Vd be the neighbors of v in clockwise

order where Vz is the middle neighbor, z = fd(v)/2l By Corollary 3.2.2(b), v cannot be an apex

in any minimum segment drawing of G and by Lemma 3.2.1(c), there are three apices in the

minimum segment drawing of G. We know that the two ears always form apices in a drawing

of G. Hence it suffices to prove that the third apex is unique. Let D be the minimum segment

drawing of G where the middle neighbor v, of v is an apex in D as illustrated in Fig. 3.2. We

will show that there is no minimum segment drawing D' of G other than D. Suppose VI, Vd
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and vk(f v,) be the apices in D'. Then the vertices from Vj to Vk are collinear and the vertices

from Vk to Vd are collinear. Since v is not an apex, the vertices Vi, v and Vi+k are collinear for

1 ::: i < k. Now if k < z then 2k - 1 < d and there exists vertices Vj, with 2k - 1 < j :::d,

which is not collinear with v and another neighbor of v. Similarly if k > z then 2k - 1 > d and

there exists vertices Vj, with 1 < j :::k, which is not collinear with v and another neighbor of

v. Hence v becomes an apex which is a contradiction. Thus k = z. Therefore D is the only

minimum segment drawing of G. Q.e.D.

Lemma 3.2.4 Let v be the center of a fan graph G where d(v) > 4 and d(v) even. Let d = d(v)

and Vj, v" ... , Vd be the neighbors of v in clo.ckwise order. Let D be a minimum segment drawing

o.fG where v is not an apex. Then the number of neighbors of v between any two consecutive

a.pices vp and vq in D is a.t most rd( v) /21 - 2 where 1 ::: p < q :::d(v).

Proof. Since v is not an apex the edges incident to v are pairwise collinear. Hence in D,

Vi, V and Vi+d(v)/' are collinear where 1 ::: i :::d(v)/2. Thus vp is collinear with Vp+d(v)/' for

P::: d(v)/2. Hence to complete the outerface, q must be less than p + d(v)/2. Hence there are

at most d( v) /2 - 2 neighbors between p and q. Q.e.D.

By Lemma 3.2.3, a fan graph G has a unique minimum segment drawing if the degree of

its center v is odd. But if d( v) is even, then one can choose the two apices other than the ear

vertices according to Lemma 3.2.4, and find a minimum segment drawing of G. We call the

algorithm for finding a minimum segment drawing Algorithm Draw-Fan. Clearly Algorithm

Draw- Fan takes linear time.

3.3 Dual-path Maximal Outerplane Graph

In this section, we give an algorithm to compute a minimum segment drawing of a dual-path

maximal outerplane graph. We first decompose the graph into fan components and then we

find the minimum segment drawings of the fan component using the algorithm of the previous
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Figure 3.5: Illustration of a non-triangulated face where (a) v is not an ear vertex and (b) u is

a vertex with d(u) > 4

section. Then we patch the drawings of the fan components to compute the minimum segment

drawing of the whole graph.

3.3.1 Decomposition into Fan Components

Let G = (V, E) be a dual-path maximal outerplane graph. We call a subgraph M = (VM, EM)

of G a fan component of G if M is a fan graph. We denote by Mu the fan component with the

center vertex u. We have the following lemma.

Lemma 3.3.1 Let G = (V, E) be a dual-palh maximal outerplane graph with IVI > 4. Let P,

and P2 be the two outerpaths of G, and lei v be a vertex on P, with d(v) = 3. Then there is a

vertex u E N(v) on P, such that d(u) 2': 4. Moreover l\1u C l\1u.

Proof. Since d(v) = 3, v has a neighbor u on P2• If d(u) = 3 then an inner face of G

containing v and u would not be a triangle as illustrated in Fig. 3.5(a), a contradiction to the

assumption that G is a maximal outerplane graph. Hence d( u) must be greater than three. Let

x, y be the two other neighbors ofv. Since the faces xuv and yvu are triangles, {x,y} c N(u)

(see Fig. 3.5(b)). Hence Mu eMu.

Q.£.D.

We call a fan component M of G a maximal fan component if M is not contained in any

other fan component of G. The following lemma holds for a maximal fan component of G.
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Lemma 3.3.2 Let G = (V, E) be a dual-path maximal outer7Jlane graph with IVI > 4 and let

Mv be alan componenl wilh center v. Then Mv is a maximal fan component of G if and only

if d(v) 2: 4.

Proof. We first assume that Mv is a maximal fan component. Suppose for a contradiction

that d( v) < 4. If d( v) = 2 then clearly Mv cannot be a a maximal fan component since IVI > 4,

a contradiction. We thus assume that d( v) = 3. Then according to Lemma 3.3.1, v has a

neighbor w with d(w) 2: 4 and Mv c Aiw. Hence Mv is not a maximal fan component, a

contradiction.

We now assume that d(v) '2: 4. We will show that there is no vertex U E N(v) such that

Mv c Ai". Since G is a dual-path outerplane graph, v and U have either one or two common

neighbors. Hence, the fan components Mv and Ai" have at most two common faces. Since

d(v) 2: 4, Mv contains at least three inner faces. Thus Mv 't Mu. Q.E.D.

Vve now decompose G = (V, E) into maximal fan components. There are several ways of

decomposing G into maximal fan components. Here we present a simple algorithm. If IVI :s 4
then G itself is the fan component. Otherwise, G has one or more vertices with degree four

or more. We start from an ear vertex and traverse G from that ear to the other: Whenever

we get a vertex v with d( v) 2: 4, we take the fan of v in G as a fan component. According to

Lemma 3.3.2, the fan components obtained in this way are maximal. We order the maximal

fan components from one ear to another ear in the embedding of G. Let MI, M2, ... , Mq be

the ma.."{imalfan components of G and UI, U2, ... , uq be the centers of those fan components

respectively. Note that Ail and Aiq are the two fan components containing the ears and Ui,

Ui+1 are adjacent for 1 :s i < q. We have the following lemma.

Lem'ma 3.3.3 Let G = (V, E), IVI > 4 be a dual-path outerplane graph having two consecutive

maximal fan components lvIi, MHI with centers Ui and Ui+1 for 1 :0;i < q. Then Mi and Mi_1

have either one or two common faces. If A;f; and Aii+1 have exactly one common face, then Ui

and Ui+1 are on the same outerpath. If Aii and MHI have two common faces, then Ui and UHl
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Proof. Since G is a dual-path outerplane graph, u; and UHl have either one or two common

neighbors. Thus 1\1;and1\1i_1 have either one or two common faces. We first consider the case

where Ui and UHl have exactly one common neighbor w. Then Ui and UHl are on the same

outerpath and Mi and ]\;[;+1have exactly one common face UiWU;+I' We now consider the case

where U; and UHl have exactly two common neighbors WI and w,. In this case Ui and Ui+! are

on different outerpaths forming a quadrilateral UiWl";+IW, having the edge U;";+1 as diagonal.

Hence ll'iW1Ui+l anduHlw,U; are the two common faces of 1\1; and 1\1;+1' Q.e.D.

3.3.2 Feasible Drawings

After getting the maximal fan components, we compute their minimum segment drawings by

the algorithm Draw-Fan. Let M1, M" ... , Mq be the maximal fan components of G. For

eaeh integer i, 1 S; i S; q, we denote by Gi, the graph obtained by the union of the maximal

fan components M1, M2, ••• , Mi' Then Gq = G. Let D be a straight-line drawing of G; =

M,UM, u ... U Mi and let "i be the fan vertex of Mi' We call D a feasible drawing of G; if

the drawing D has the following properties (fl)-(f2):

(fl) D has exactly SC(Gi) number of segments; and

(f2) Ui is not an apex in D.

(a) (b)

Figure 3.6: (a) A dual-path outerplane graph Gi and (b) a feasible drawing D of Gi.

Figure 3.6(a) shows a graph G; and Figure 3.6(b) illustrates a feasible drawing D of Gi.
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\lve now patch a minimum segment drawing of a fan graph with a feasible drawing and obtain

a feasible drawing of the whole graph. We have the following lemmas.

Lemma 3.3.4 Let Gi-I = Mr U lvIzU ... U lvIi-1 and G; = G;_I U Mi for 1 < i ~q. Assume

that Mi-I and lvIi have exactly one face in common. Then G; has a feasible drawing with se(G;)

number of segments where

SC(Gi) = sc(G;-rl + sc(M;) - 3.

Proof. We first obtain a drawing Di of Gi as follows. Let UI and Uz be the centers of

111;-1and 111;and w be the common neighbor of UI and Uz. Then 1I1i-I and 1I1i have the

face UIU2W in commOn. (See Fig. 3.7). Let Di-I be a feasible drawing of Gi-I and let D' be

the minimum segment drawing of Mi, obtained by the Algorithm Draw-Fan, as illustrated in

Fig.3.7(a). We obtain Di by patching the drawing D' with Di-I in such a way that (i) the

line segment in Di-I containing the edge (UI, uz) and the line segment in D' containing the

edge (UI, "z) are drawn on the same straight line segment in Di, (ii) the line segment in Di-I

containing the edge (UI, w) and the line segment in D' containing the edge (UI' w) are drawn

on the same straight line segment in Di, and (iii) the line segment in Di-I containing the edge

(U2, w) and the line segment in D' containing the edge (U2, w) are drawn on the same straight

line segment in Di. Furthermore, each line segment containing none of the edges (UI' uz),

(UI, w) and (uz, w) is not affected in the patching above (see Fig. 3.7(b)). Therefore we have

sc(Di) :S sc(Gi_rl + sc(Mi) - 3.

We now show that Di is a feasible drawing of Gi. To show that Di satisfies (El) it is sufficient

to show that serGi) 2: SC(Gi-I) + sc(Mi) - 3. Since d(UI, Mi) is two, the incident edges (UI, w)

and (UI, "2) Of"1 in Mi can share at most two segments with a drawing of G'-I' Similarly,

since d(uz, Gi-rl is two, the incident edges (uz,w) and (uz,u]) ofuz in G,_], can share at most

two segments with a drawing of Mi. Moreover since d(w, Gi-rl = 3 and d(w, Mi) = 3, no edge

other than (u], uz), (UI, w) and (uz, w) can share a segment during patching of a drawing of Mi

with a drawing of Gi-I. Hence at most three segments can be minimized during the patching
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Figure 3.7: Illustration of patching the minimum segment drawing D' of Mi with Di-I where

Mi-1 and /IIi have exactly one face in common.

of a drawing of Mi with a drawing of Gi-I• Thus se(Gi) ::0: se(Gi_1) + se(Mi) - 3. It is now

remaining Lo show that Di satisfies (f2). According to Lemma 3.1.1, the edges incident to U2

are pairwise collinear in D'. Since we have not changed the alignment of the incident edges

of Uz during patching, the incident edges LoU2 remains pairwise collinear in Di, and hence Di

satisfies (f2). Q.e.D.

Lemma 3.3.5 Let Gi-1 = M1 U M2 U ... U Mi-1 and Gi = Gi-I U Mi for 1 < i :0; q. Let

Mi-I and Mi have exactly two faces in common and UI and Uz be the centers of /lli_1 and Mi

respectively. Then Gi has a feasible drawing with sc(Gi) number of segments where

(a) sc(Gi) = sc(Gi-d + sc(Mi) - 3 if d(Ul) and d(u2) is odd; and

(b) se(Gi) = se(Gi-d + se(Mi) - 4 otherwise.

Proof. (a) We firsL consider the case where d(Ul) and d(u2) are odd. Let v and w be the

two common neighbors of Ul and U2. Then Mi-1 and /IIi have the faces UIU2W and UIU2V in

common. We obtain a drawing Di of Gi as follows. LeLDi-1 be a feasible drawing of Gi-1 and

D' be the minimum segment drawing of Mi obtained by the algorithm Draw-Fan, as illustrated

in Fig. 3.8(a). We obtain Di by patching the drawing D' with Di-I in such a way that (i) the

line segment in Di-1 containing the edge (Ul, U2) and the line segment in D' containing the
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edge (V), V2) are drawn on the same straight line segment in Di, (ii) the line segment in Di-)

containing the edge (V" w) and the line segment in D' containing the edge (v), w) are drawn

on the same straight line segment in Di, and (iii) the line segment in Di-) containing the edge

(U2, v) and the line segment in D' containing the edge (V2, v) are drawn on the same straight

line segment in Di, (iv) the edge (u), v) of Mi is drawn on the line segment in Di_) containing

the edge (u), v) and it is no longer on the line segment containing (v), w) in D', and (v) the

edge (V2, w) of Gi-) is drawn on the line segment in D' containing the edge (U2, w) and it is no

longer on the line segment containing (U2, v) in D'. Furthermore each line segment containing

none of the edges (U),V2), (V),W), (V2,V), (u),v) and (U2,W) is not affected in the patching

above (sce Fig. 3.8(c)). Therefore we have se(Di) :::;se(Gi_,) + se(Mi) - 3.

\,y'enow show that Di is a feasible drawing of Gi. To show that Di satisfics (fl) it is sufficient

to show that serGi) ;:: se(Gi_,) + se(Mi) - 3. Since d(u), 1.1;) is three, thc edgcs (u), w), (v), v)

and (u), V2) incident to v) in AI, can share at most three segments with a drawing of Gi_).

Similarly, since d(U2, Gi-1) is three, the edges (U2, v), (U2, w) and (U2, Ul) incident to U2 in G'_l,

can share at most three segments with a drawing of Mi. Since d(v, Gi-1) = 3 and d(v, 1.1,) = 3,

no edge other than (u), w), (u), v), (u), U2) (U2, w) and (U2, v) can share a segment during the

patching of a drawing of Mi with a drawing of Gi-1. Hence at most five segments can be

minimized during the patching of a drawing of Mi with a drawing of Gi_).

But, since d(u,) > 5 and d(u), Gi-,) is odd, by Lemma 3.2.3, 1.1,-) has a unique minimum

segment drawing whcre U2 is not an apex. Since d(U2, Gi_,) = 3, the edges (v, U2) and (U2, w)

are collinear in the minimum segment drawing of G,_) before patching. On the otherhand, since

d(U2) > 4 and d(U2, Mi) is odd, U2 also is not an apex in the unique minimum segment drawing

of Mi. Since d(U2, Mi) > 4, by Lemma 3.2.3, the edges (v, U2) and (U2, w) cannot be collinear

in the minimum scgment drawing for Ali. We need to modify the drawing of Mi such that

(v, U2) and (V2, w) are on difrcrcnt straight line segment which increases the number of segment

of the drawing of Mi by one as illustrated in Fig. 3.8(b). Similarly since d(u), G,_,) > 4, by

Lemma 3.2.3, the edges (v, Ul) and (u), w) cannot be collinear in the minimum segment drawing

for Gi-). Hence the drawing Di-1 needs to be modified in such a way that (v, Ul) and (u), w)
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arc on different straight line segment which increru;es the number of segment of the drawing of

Gi-1 by one. The modified drawings of Di-1 and D' before patching are shown in Fig. 3.8(b).

Therefore se(Gi) 2': se(Gi_1) + 1+ se(Mi) + 1 - 5 = se(Gi-r) + se(Mi) - 3.

(a) (b)

D,

(e)

Figure 3.8: Illustration of patching D' with Di-1 where d(Ul) and d(U2) is odd and Mi-1 and

lvIi have two faces in common.

It is now remaining to show that Di satisfies ([2). According to Lemma 3.1.1, the edges

incident to U2 are pairwise collinear in D'. Since we have not changed the alignment of the

incident edges of U2 during patching, the incident edges to U2 remains pairwise collinear in Di,

and hence Di satisfies ([2).

(b) We now consider the case where d( Ul) or d( U2) is even. Let v and w be the two common

neighbors of Ul and Uz. Then Mi_1 and 1I1i have the faces UIU2W and UIU2V in common. We

obtain a drawing Di of Gi as follows. Let Di-I be a feasible drawing of Gi-I and D' be the

minimum segment drawing of 1I1i obtained by the algorithm Draw-Fan. Here four cases may

arise depending on the degree of Ul and Uz.

Case 1: d(Ul) = 4 and d(u,) = 4.

Since Di-1 is a feasible drawing of Gi-I, UI is not an apex and U2, ware apices in Di-1. But

since d(u" Mi) = 4, U2 mayor may not be an apex in D'. First we consider that U2 is an apex

in D'. According to Lemma 3.2.1(b), there are at most three other apices in D'. Since (v, ur)

and (UI, w) are collinear in D, for patching D' with Di-1, UI should not be an apex in D'.

Hence by Lemma 3.2.1(b), we can choose that minimum segment drawing of Mi where (v, ur)

and (Ul, w) arc collinear. Then one can patch the drawings by sharing at most four maximal

segments as illustrated in Fig. 3.9(a) and 3.9(b). Hence sc(Gi) 2': se(Gi_1) + se(Mi) - 4.
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We now consider that U2 is not an apex in D'. Since U2 is an apex in Di-1, we cannot patch

Di-I with D'. We modify the drawing of Di-I such that U1 becomes an apex and U2 is not an

apex in Di-I. We can do this without increasing the number of segments of Di-I, since Mi_1

has several minimum segment drawings. Now thc edges (v, U2) and (U2, w) bccome collinear.

Then one can patch the drawings by sharing at most four maximal segments as illustrated in

Fig. 3.9(c) and 3.9(d). Hence serGi) 2: SC(Gi-l) + se(Mi) - 4.

In order to obtain a feasible drawing Di of Gi, we modify the drawing of Gi_1 such that the

vertices v, U2 and w become collinear. Since Di_1 is a feasible drawing, the edges (U2, v) and

(U2, w) are not collinear in Di-I (see Fig. 3.9(c)). Hence we need to modify the drawing Di_1

in such a way that after patching the edges (U2, v) and (U2, w) becomes collinear as illustrated

in Fig. 3.9(d). Note that during modification of Di-I, the number of segments in Di-I does not

increase. Hence four maximal segments is minimized in the combined drawing Di of Gi. Thus

after patching the number of segments in the drawing is se(Di) ~ SC(Gi-I! + sc(Mi) - 4.

v

~
",

U, W

W ,
lJ,-1 D D,

(a) (b)

v

\:d
U1 W

W

lJ,-J

(c)

D,

(d)

W

Figure 3.9: Illustration of patching the minimum segment drawing D' of Mi with Di-I where

Mi_1 and Mi have two faces in common with d(uI) = d(U2) = 4.
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In this case the edges (U2, v) and (U2, tv) are drawn on the same straight line segment during

patching as illustrated in Fig. 3.10. We do not nced to modify the drawing of Mi because

d( 112) = 4. By an argument similar to that of Case 1, we can prove that at most four maximal

segments can be minimized in the combined drawing of Ci. Thus sc(Gi) = sc(Gi_d+sc(1I1;)-4.

lJ,-1

(a)

w

D,

(b)

Figure 3.10: Illustration of patching the minimum segment drawing D' of Mi with Di-1 where

Mi-1 and Mi have two faces in common with d(ud > 4 and d(U2) = 4.

Case 3: d(U1) = 4 and d(U2) > 4.

The proof for this case is similar to that of Case 1.

In this case at least one of U1 and U2 have even degree. Suppose without loss of generality

that d(U1) is even. Then by Lemma 3.2.1(c) and Corollary 3.2.2, there are four apices in the

minimum segment drawing of Mi-1 and one can choose the apices according to Lemma 3.2.4.

Since by Corollary 3.2.2, U2 cannot be an apex in any minimum segment drawing of Mi, the

edges (v, U2) and (U2, tv) are not collinear in D'. Hence the minimum segment drawing of Mi-1

should be chosen such that (v, U2) and (U2, tv) are not collinear i.e. U2 is an apex in Di-1.

Then we don't need to modify the drawing Di-1 as we did in (a). But still we have to modify

the drawing of 111;. Because in that case we need to make U1 an apex in the drawing of Mi

which will become collinear with two collinear apices (shown by thick line in Fig. 3.11(b)) in

the combined drawing Di. Then by an argument similar to that in (a), we can prove that

se(Ci) = se(Ci_1) + sc(Mi) + 1 - 5.



, -,
Chapter 3. Dual-Path Maximal Out'erplalle Graph

w

(a) (b)

42

Figure 3.11: Illustration of patching the minimum segment drawing D' of Mi with Di-1 where

111'-1 and 1I1i have two faces in common and d(Ul) is even.

We now prove that Di is a feasible drawing of Gi. We have already proved that Di satisfies

(fl). It is remaining to prove that Di satisfies (f2). According to Lemma 3.1.1, the edges

incident to U2 are pairwise collinear in D'. Since during patching we have not changed the

alignment of the incident edges of U2 in all the cases, the incident edges to U2 remains pairwise

collinear in Di, and hence Di satisfies (f2). Q.£.'D.

Thus by patching the minimum segment drawings of the maximal fan components we can

construct a minimum segment drawing of G. During the patching of the maximal fan compo-

nents, we compute the co-ordinates of the vertices from the intersection of the line segments

passing through it. Note that the relative slopes of the segments are computed during the con-

struction of the minimum segment drawing of the fan components according to the algorithm

Draw-Fan. By traversing the graph from one ear to another, one vertex at a time, we can

compute the minimum segment drawing of the dual-path maximal outerplane graph. Hence

the following theorem holds.

Theorem 3.3.6 A minimum segment drawing of a dual-path maximal outerplane graph can be

found in linear time.

3.4 Upper bound on the Number of Segments

We now give an upper bound on the minimum number of segments required for a minimum

segment drawing of a dual-path maximal outerplane graph.
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Theorem 3.4.1 Let G be a dual-path outerplane graph with m edges. Then the minimum

number of segments required for a minimum segment drawing of G is at most 5m/7.

Proof. The upper bound is obtained if G contains maximum number of maximal fan

components. A maximal fan component consists of at least seven edges. Hence there can be

at most m/7 maximal fan components. By Lemma 3.1.1 the minimum number of segments

required to draw a maximal fan component is five. Therefore at most 5m/7 segments are

required for a minimum segment drawing of G. Q.E.D.

3.5 Conclusion

In this chapter, we have established a lower bound on the number of segments in any planar

straight line drawing of a dual-path maximal outerplane graph G. We also have presented a

linear-time algorithm for computing a minimum segment drawing of G. Then we have given an

upper bound on the 111inimum nUluber of segments required for a 111inimu111segrrlent drawing

of a dual-path maximal outerplane graph.



Chapter 4

Dual-path Outerplane Graphs

In this chapter we prsent onr algorithm for computing minimum segment drawings of dual-path

outerplane graphs. In this case the input graph has vertices of degree two other than the ear

vertices. To compute the fan components we first remove all the vertices of degree two except

the two ear vertices.

4.1 Decomposition into Maximal Components

Let G be the dual-path outerplane graph. We replace all the chains of vertices of degree two

VI, V" ... ,V, for I 2: 3, by an edge (Vj, v,) and mark those edges. The graph obtained in this

way is denoted by G'. We now divide the graph G' into maximal components. A maximal

component Gi is a maximal outerplane subgraph of G'. In a maximal component, every face

is triangulated. Since every vertex of G' has degree greater than 2, G' cannot contain a face

with face length greater than four. Hence to divide the graph G' into maximal components we

find out the faces of length four. Let F = UjU2U3U4 be a face of length four where (Uj, U2) and

(U3, U4) are outer edgcs of G'. We delete the outer edges of all such faces of G' and thus we

divide G' into maximal components (see Fignre 4.1). Since G' is a dual-path outerplane graph,

the ma.,imal subgraphs of G' are dual-path maximal outerplane graphs. Hence the following

lemma holds.
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Figure 4.1: Illustration of the method for dividing G' into maximal components.

Lemma 4.1.1 Each maximal subgraph of G' is a maximal dual-path outerplane graph.

45

4.2 Minimum Segment Drawings of Maximal Compo-

nents

Let Gr, Gz, ... , Gk be the k maximal outerplane subgraphs of G'. We now find mrmmum

segment drawings of each Gi for 1 :S i :S k. At first we consider the case that IV(Gi)1 = 2

i.e. Gi consists of two vertices with an edge between those two vertices. Hence the minimum

segment drawing of Gi is the straight line drawing of Gi. We call such a component as an edge

component. Thus the number of segments required for a minimum segment drawing of an edge

component Gi is

sc(Gi) = 1 (4.1)

We now consider that Gi is not an edge. By Theorem 3.3.6 and Lemma 4.1.1, Gi for

1 :S i :S k has a minimum segment drawing. We find a minimum segment drawing of Gi by

dividing Gi into maximal fan components using the method described in Section 3.1. In each

Gi some edges are marked. Let M be a fan component of Gi with fan vertex v and D be the

minimum segment drawing of M obtained from the algorithm Draw-Fan. We now add chains

of vertices of degree two corresponding to each marked edge on D. Note that the total number

of segments in D can be reduced if a vertex of degree two is drawn as the intersection point of

two distinct straight line' segments inciden't to that vertex. Thus a vertex of degree two among

r,,
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a chain of degree two vertices can be a convex corner in the drawing of 111.

Let e = (UI, "I) be a marked edge in M. We replace e by a chain of vertices of degree two

UI, "2, ... , ul for 12': 3. Eit.her t.he chain is drawn on t.he straight. line segment. of e or one of the

chain vertices Uil i E {2, ... II - I}, becomes a convex corner and the other chain vertices are

drawn on the t.wo dist.inct. st.raight. line segments incident. t.o Ui. Whet.her we choose the former

or t.he latt.er depends on t.he degree of t.he fan vert.ex v of M and t.he position of marked edge

on the embedding of M. Let. d = d(v) and N(v) = {VI,V2, ... ,Vd}. We have two cases here.

Case 1: d(v) is even and edge (Vdj2, vdjz-d is marked.

According to Lemma 3.1.1, we need sc(M) = d(v)/2 + 3 line segments in any minimum

segment drawing of M. It is easy t.o observe that one segment in the drawing can be reduced

by introducing a new convex corner instead of the two convex corners at Vdj2 and Vdj2-1. Hence

the total number of segments required for a minimum segment drawing of the fan component

Mis

sc(M) = d(v)/2 + 2

Thus the number of convex corners required for the drawing is three.

Case 2: otherwise.

(4.2)

In this case the chain of vertices is drawn on the straight line segment of e. Hence the

minimum segment drawing for t.his case is obtained by applying the cases described in Section

3.1.

We now have the minnnum segment drawings of the fan components of Gi. By Theo-

rem 3.3.6 each maximal component has a minimum segment drawing. Hence after computing

the minimum segment drawings of the fan components we patch them by the method of Chap-

ter 3, to get minimum segment drawings for the maximal components. Then we patch the

maximal components to get a minimum segment. drawing of the graph G. The detail of which

is given below.
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Figure 4.2: Patching an edge with the minimum segment drawing D.

4.3 Patching of the Minimum Segment Drawings of Max-

imal Components

Let D be the minimum segment drawing of the graph after patching the maximal components

G
1
, G

2
, •.. , G

i
-1. Let D' be the minimum segment drawing after patching the maximal compo-

nent G
i
with D. We first consider the case where Gi is an edge. Only one segment is required

for the minimum segment drawing of Gi. Note that this type of component only occurs as an

inner edge. It always increases the number of segments by one as shown in Fig. 4.2.

sc(D') = sc(D) + 1 (4.3)

We now assume that Gi is a maximal component with two ears. Since G is a dual-path

outerplane graph, Gi connects with D by the two edges incident to an ear vertex u and an

end point of an ear edge. We find the non-edge maximal component G k which is nearest to Gi

where 1 :c:; k :c:; i - 1. We omit all the edge components from Gk to Gi. The edge components

can easily be patched with the drawing by adding a segment between the two outer paths for

each edge component. Four cases arise depending on the four vertices forming the quadrilateral

F joining Gi and Gk along which the graph was divided into maximal components. Let Vk and

Vi be the fan vertices of Gk and Gi and Uk and Ui be the ear vertices of Gk and Gi respectively.

Let We and Wi be the ot.her two vertices of the corresponding ears. There are four cases t.o

consider depending on the orientation of the six vertices.

Case 1: F consists of Uk, Ui, Wi and Wk-
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In this case Gk and Gi are patched using the outer cdges (llk,lli) and (Wk, Wi)' Since

d(Wk, Gk) = d(Wi' Gi) = 3, the edge (Wk, Wi) can share segment with the edges (Vk, wk! and

(Wi, Vi)' Again since d( 1lk, Gk) = d( "i, Gi) = 2, the edge (1lk, lli) can share segment with the

edges (Vk, 1lk! and (lli, Vi)' Note that the edges (Vk, Wk), (Wk, Wi), (Wi, Vi), (lli, Vi), (llk,lli) and

(Vk, llk) form a cycle and at least three segments are required to draw a cycle. Hence if the edge

(Wk, Wi) share segment with the edges (Vk, wk! and (Wi, Vi) then the edge (1lk, lli) cannot share

segment with both the edges (Vk, llk) and CUi, Vi) and vice versa. Thus at most one segment can

be reduced during the patching of Gk and Gi.

Figure 4.3( a) shows the minimum segmcnt drawing for this case where edge (1lk, lli) share a

common segmcnt with both the components and edge (Wk, Wi) share a common segment with

Gk. Hence after patching the total number of segments for the drawing D' decreases by one.

sc(D') = sc(D) + SC(Gi) - 1 (4.4)

Case 2: F consists of "k, Wi, "i and Wk'

In this case Gk and Gi are patched using the outer edges (1lk, Wi) and (Wk, lli)' Here also

the edges (Vk, Wk), (Wk, lli), (lli, v,), (Wi, Vi), (llk, Wi) and (Vk, 1lk! form a cycle and at most one

segment can be reduced during the patching of Gk and Gi.

Figure 4.3(b) shows the minimum segment drawing for this case where edge (llk, Wi) share

a common segment with both the components and edge (Wk, lli) share a common segment with

G
k
. Hence after patching the total numbcr of segments for the drawing D' decreases by one.

sc(D') = sc(D) + sc(Gi) - 1 (4.5)

Case 3: F consists of "k, Vk, "i and Vi.

ln this case Gk and Gi are patched using the outer edges (llk, Vi) and (Vk, u,). Here the edge

(Uk, Vi) can share segment with the edge (Wk,llk) and the edge (Vk, Ui) can share segment with

the edge (Ui, Wi)' Hence during patching neither any segmcnt can be reduced nor any extra

segment is required. But if the degree of one of the fan vertices Vk and Vi is odd then one

segmcnt can be minimized by sharing a segment with the unshared edge incident to the fan
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u,

(a)

. >: .. \\[ U

Uk \\( '1'.". i.

(b)

. \\{
, _. --
~ Vk Uj

(c)

(d)

Figure 4.3: Illustration of the method for patching the maximal components to get the minimum

segment drawing for G.
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vertex wit.h t.he odd degree.
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Figure 4.3(e) shows the minimum segment drawing for t.his case where edge (Uk, Vi) share

a common segment. with Gk and edge (Vk, Ui) is drawn as a new segment. If the degree of the

fan vert.ices is odd the number of segments decrease. Hence after patching the total number of

segments for the drawing D' may at. most decrease by one.

{
sc(D) + sc(G;)

se(D') =
seeD) + serGi) - 1

Case 4: F consists of Uk, Vk, Vi and Ui.

if d(Vi, Gi) and d(vk, Gk) is even

ot.herwise
(4.6)

In t.his case Gk and Gi are patched using the out.er edges (Uk, Ui) and (Vk, Vi). Here the edge

(Uk, Ui) can share segment wit.h t.he edges (Wk, Uk) and (Wi, Ui). Hence during patching neither

any segment can be reduced nor any ext.ra segment is required. But if the degree of one of the

fan vertices Vk and Vi is odd then one segment can be minimized by sharing a segment with the

unshared edge incident to the fan vertex with the odd degree.

Figure 4.3(d) shows t.he minimum segment. drawing for t.his case where edge (Uk, Ui) share

a common segment with both the components and edge (Vk, Vi) is drawn as a new segment.. If

devil is odd then the edge (Vk, Vi) share a common segment with Gk. Hence after patching t.he

total number of segments for the drawing D' may at most decrease by one.

, {SC(D) + sc(Gi)
sc(D) =

sc(D) + se( Gi) - 1

4.4 Time Complexity

otherwise
(4.7)

During the patching of the maximal components we compute the co-ordinates of the vertices

from the intersection of the line segments passing through it. Note that t.he relat.ive slopes of

the segments are computed during t.he construction of the minimum segment drawing of the

fan components. By traversing the graph from one ear to another one vertex at a time we can

compute t.he minimum segment drawing of the dual-path outerplane graph. Hence we have the
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following theorem.
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Theorem 4.4.1 A minimum segment drawing of a dual-path outerplane graph can be found in

linear time.

4.5 Conclusion

In this chapter, we have presented an algori thm for finding minimum segment drawing of dual-

path outerplane graphs. We first decompose the graph into maximal components and then

patch the minimum segment drawings of the maximal components to compute a minimum

segment drawing of the outcrplanar graph. In the next ehaptcr we are going to extend our

algorithm for finding a minimum segment drawing of a subdivision of an outerplanar graph.



Chapter 5

Subdivision of Dual-path Outerplane

Graphs

In this chapter we extend the algorithm presented in the previous chapter for computing min-

imum segment drawings of subdivisions dual-path outerplane graphs. In this case the input

graph has vertices of degree two that are not on the outer face. We will prove that those vertices

of degree two cannot decrease the number of segments in any minimum segment drawing of the

dual-path outer plane graph.

Theorem 5.0.1 Let G be a dual-path outerplane gmph. Assume that G' is obtained from G

by subdividing some of the inner edges of G. If G has a minimum segment drawing D with

sc(D) number of segments, then G' has a minimum segment drawing D' with sc(D) number of

segments.

Proof. Let e = (u, v) be an inner edge in G and e is subdivided in G' by replacing e with

a path u, w, v through a new vertex w. Let G" be the graph obtained by subdividing edge

e of G and D" be a minimum segment drawing of G". If the uwv path in G" is drawn as a

straight line then the number of segments in D" is sc(D). Otherwise if uw and wv edges are

drawn on different segments then the number of segments in D" may decrease. We will show
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',U,' IV ~ ' U,' IV , v,,., • ~ :. • :-

(a) (b)

Figure 5,1: (a) e does not share, (b)e shares, a segment with an adjacent edge e' in D '

that subdividing e cannot decrease the number of segments in any drawing of Gil, We have two

cases:

Case 1: e does not share any segment with the adjacent edges in D,

In this case either e is an ear edge with d(v) = 3 or e is an edge with d(u) odd and d(v) = 3,

In both the cases, one of the incident vertices has d( v) = 3, Hence one segment is always

required for the edge (u, v) and we insert the new vertex w on that segment (see Figure 5,1(a)),

Case 2: e shares a segment with an adjacent edge e' in D,

Let e' be adjacent to u, Then uw and wv can share the segment with e', Hence subdi-

viding e cannot decrease the number of segment in the minimum segment drawing of Gil (see

Figure 5,1(b)), Q,[,V,

Hence for computing the minimum segment drawing of a subdivision of a dual-path outer-

plane graph, we first remove the inner vertices of degree two, We then compute a minimum

segment drawing of the resulting graph by the method described in the previous section, We

then add the inner vertices of degree two on the line segments by subdividing the corresponding

line segments, For example Figure 5,2(b) shows a minimum segment drawing of the graph in

Figure 5,2(a) and Figure 5,2(c) shows the subdivision of the graph in Figure 5,2(a) and the

minimum segment drawing of this graph is shown in Figure 5,2(d), We have following theorem,

Theorem 5,0,2 A minimum segment drawing of a subdivision of a dual-path outerplane graph

can be found in linear time,

{'
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(a)

(e)

(b)

(d)

Figure 5.2: (a) A dual-path outerplane graph, (b) a minimum segment drawing of the dual-path

outerplanar graph in (a), (e) a subdivision of the graph in (a), (d) a minimum segment drawing

of the graph in (e).

•
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In this chapter, we have presented an algorithm for fillding a minimum segment drawing

of a subdivision of a dual-path outerplane graphs. We have shown that the inner vertices of

degree two cannot decrease the number of segments in any drawing of the original dual graph

outerplanar graph. Thus a minimum segment drawing can be obtained using the algorithm of

chapter 4 by removing the inner vertices of degree two.



Chapter 6

Conclusion

This thesis deals with minimum segment drawings of subclasses of outerplane graphs. We have

started with an introductory overview on graph drawing in Chapter 1. In this chapter we

have given a precise definit.ion of minimum segment drawing of a graph and diseussed several

pract.ical applicat.ions of this problem. Then we have depicted the challenges that we have faced

to solve this problem. We illustrated some previous results on this field and have established

our object.ive in this thesis.

In Chapter 2 we have introdueed the preliminary ideas on graph theory and on minimum

segment drawings. VVehave also discussed outerplane graphs and complexity theory in detail

in this chapter.

In Ch'apter 3 we have established a lower bound on the number of segments in any planar

straight line drawing of a dual-path maximal outerplane graph G. Finally, we have presented

a linear-time algorithm for computing a minimum segment drawing of G.

In Chapter 4 we have extended our algorithm for finding minimum segment drawing of

dual-pat.h outerplane graphs.

Finally in Chapter 5 we have presented a linear-time algorithm to compute a minimum

segment drawing of a subdivision of a dual-path outerplane graph. To the best of our knowledge

our algorit.hms have been the first such result in the minimum segment drawing problem for an

important subclass of outerplanar graphs. However, the following problems remained as future
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works.

1. To study the minimum segment drawing problem in conjunction with other aesthetic

criteria like area requirement and symmetry of the drawing.

2. To obtain minimum segment drawing algorithm for any outerplanar graph.

3. To obtain minimum segment drawing algorithm for outerplanar graphs with imposing

restriction on the degree.

4. To obtain minimum segment drawing algorithms for larger subclass of planar graphs.
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