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In this thesis, we give a parallel algorithm to find the c-vertex-ranking of a permutation

graph. A c-vertex-ranking of a graphG = (V,E), for a positive integer c, is a labeling of

the vertices of G such that, for any label k, deletion of all vertices with labels greater than

k leaves connected components, each having at most c vertices with label k. A c-vertex-

ranking is optimal if the number of labels used is as small as possible. The c-vertex-

ranking problem is to find an optimal c-vertex-ranking of a given graph. A graph

G = (V, E) is a permutation graph if V = {I, 2, ... , n} and E = {(i,j) I (i - j)*( Ir-1 (i) -

1r-
1(;» < A}, where Ir= (n(I), n(2), ... , n(n)] is a permutation of the numbers 1,2, ... , n

and Ir -1 (i) is the position of i in the permutation. Deogun et al. gave a sequential

algorithm to solve the optimal I-vertex-ranking problem on permutation graphs using

time O(n6), where n is the number of vertices in the graph. Later, we have solved the

same problem in O(n3) sequential time. But, there is no known patallel algorithm to solve

the c-vertex-ranking problem for permutation graphs. In this thesis, we have devised a

parallel algorithm for the same problem with any value of c that runs in O(log2n) parallel

time using O(n310gn) operations on the CREW PRAM model.

~I..,



Chapter 1 Introduction

This chapter introduces the vertex-ranking problem aud their applications. It also

highlights on the complexities of the vertex-ranking problem on several types of graphs.

1.1 Graph

A graph G = (V, E) is an ordered pair consisting of a set of vertices V = {VI, vz, ... , vn}

and a set of edges E = {eI, ez, ... , em}. Here, IV1= n and lEI = m. An edge e = (u, v) with

u, V E V is au unordered pair and is said to be incident on the vertices u aud v. Figure 1.1

depicts a graph with four vertices and five edges. The circles represent the vertices aud

the lines represent the edges.

VI Vz

Figure 1.1 A graph with 4 vertices and 5 edges.

1.2 Vertex-Ranking

A c-vertex-ranking of a graph G = (V, E), for any positive integer c, is a labeling of the

vertices of G with integers such that, for any label k, deletion of all vertices with label

greater thau k leaves connected components, each having at most c vertices with label k

[ZNN95]. The integer label of a vertex is called its rank. The ordinary vertex-ranking of a

graph G is a c-vertex-ranking if c = I, aud is defined alternatively as a labeling of the

vertices of G with positive integers such that, every path between any two vertices with

same label contains a vertex with a larger label [IRV88]. The l-vertex-rauking shown inr~~
!\".ll.



Figure 1.2 a) is invalid because deletion of the vertices with label greater than 3 leaves

one connected component having 2 vertices with label 3. On the other hand, The 1-

vertex-ranking shown in Figure 1.2 b) is valid because deletion of all vertices with label

greater than any k leaves connected components having at most one vertex with rank k.

I

2

3

4

I 2

5

3

I

2

Figure 1.2 a) An invalid I-vertex-ranking

I
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I 5

4

3
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2

Figure 1.2 b) A valid I-vertex-ranking

1.3 Vertex-Ranking Problem

Given a graph G and an integer c, a c-vertex-ranking of G that uses the minimum number

of ranks is called an optimal c-vertex-ranking of G. The number of ranks used in an

optimal c-vertex-ranking of G is called the c-vertex-ranking number of G and is denoted

by rc(G). The c-vertex-ranking problem is to find an optimal c-vertex-ranking of G

[ZNN95]. Figure 1.3 a) depicts a non-optimal I-vertex-ranking using 6 ranks and Figure

1.3 b) shows an optimal I-vertex-ranking of a graph using 5 ranks which is minimum.

There is no valid I-vertex-ranking for the graph in Figure 1.3 b) that uses less than 5

ranks.

I

2 4

5 6

4

3

I

2

Figure 1.3 a) A non-optimal I-vertex-ranking
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Figure 1.3 b) An optimall-vertex-ranking

1.4 Applications of Vertex-Ranking Problem

The vertex-ranking problem has received much attention because of the growing number

of applications. For example, it plays important roles in VLSI (Very Large Scale

Integration) layout design [L80, SDG92] and in scheduling the parallel assembly of a

complex multi-part product from its component [IRV88]. The vertex-ranking problem has

also an important application in Cholesky factorization of matrices. Let Ax = b be a large

system of linear equations, where A is an n-by-n sparse symmetric matrix. Solving such a

system via Cholesky factorization involves computing a lower triangular matrix L such

that A = LLT, and then solving the systems LTx = y and Ly = b. Let AI be a matrix

obtained from A by replacing each non-zero element with 1. Let G be a graph with

adjacency matrix AI. One may split AI into smaller matrices (which can be handled in

parallel) by removing some elements on the main diagonal of AI together with their rows

and columns. Clearly, these rows and columns correspond to a separator S of G, where a

separator is defined as a set of vertices whose removal from the graph separates some two

vertices in different connected components. The same procedure is applied recursively to

the connected components of G - S. Thus, the optimal vertex -ranking of G corresponds to

a Cholesky factorization of A having the minimum recursive depth [DR83, L90].

1.5 Known Results on Vertex-Ranking Problem

The vertex-ranking problem is NP-hard in general [P88], that is, it is very unlikely to

have a polynomial-time algorithm to solve the vertex-ranking problem for general graphs.

Hence, graphs are classified using some characteristic properties and sometimes these

4
(
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properties are found to be very helpful in vertex-ranking of that class of graphs. Using

this strategy, vertex-ranking problem has been solved in polynomial-time for several

classes of graph. For example, Iyer et al. presented an O(nlogn) time sequential algorithtn

to solve the vertex-ranking problem for trees [IRV88], where n is the number of vertices

of the given tree. Then Schaffer obtained a linear time sequential algorithtn by refining

their algorithtn and its analysis [S89]. Later, Rahtnan et at. presented an O(logn) time

parallel algorithtn using O(n/logn) processors on the EREW PRAM model [RKOl]. There

is a polynomial-time sequential algorithtn and an O(logn) time polynomial processor

parallel algorithtn presented by Kashem et al. which solves the vertex-ranking problem

for partial k-trees, that is, graphs of treewidth bounded by a fixed integer k [KZNOO].

Recently Deogun et al. gave sequential algorithtns to solve the vertex-ranking problem

for interval graphs in O(n3) time and for permutation graphs in O(n6) time [DKKM94].

Later, we have solved the ordinary vertex-ranking problem for permutation graphs in

O(n3) sequential time [NK99].

There is no known parallel algorithtn to solve the c-vertex-ranking problem for

permutation graphs. In this thesis, we devised a parallel algorithtn for the same problem

based on our sequential algorithtn and it runs in O(log2n) time using O(n310gn) operations

on the CREW PRAM (Concurrent Read Exclusive Write Parallel Random Access

Machine) model.

Graph classes Algorithm Complexity Reference

Trees Sequential O(n) time [S89]

Parallel O(logn) time using O(n/logn) processor on [RKOl]

the EREW PRAM

Partial k-trees Sequential Polynomial time [KZNOO]

Parallel O(logn) time polynomial processor on the [KZNOO]

PRAM

Interval graphs Sequential O(n3) time [DKKM94]

Permutation Sequential O(n") time [DKKM94]
graphs Sequential O(n') time [NK99]

Parallel O(log"n) time usmg O(n310gn) operations Ours

on the CREW PRAM

Table 1.1 Known results on vertex-ranking problem
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Chapter 2 Preliminaries

This chapter defines some basic terminology of graphs, subgraphs, connected components

and separators, permutations and permutation graphs, parallel random access machine etc.

2.1 Graphs

A graph G = (V, E) is an ordered pair consisting of a set of vertices V = {VI, V2, ... , vn}

and a set of edges E = {el, e2, ... , em}. Here, 1f1= n and lEI = m. An edge e = (u, v) with

u, v E V is an unordered pair and is said to be incident on the vertices u and v. The

vertices u and v are said to be adjacent to each other. We also say u and v are neighbor of

each other. The degree of a vertex v in a graph G is the number of edges incident to the

vertex v. A vertex with degree 0 is called an isolated verte;. A path P = (WI' W" ... , wk)

from WI to wkin G is a sequence of vertices such that every edge (wi, wi+l) E E where I

,,;i < k. Figure 2.1 depicts a graph with four vertices and five edges. The circles represent

the vertices and the lines represent the edges. Here, el = (Vi> v,) is an edge joining the

vertices VI and V2 and hence VI and V2 are adjacent and also, neighbor to each other.

Moreover, the vertex VI has degree 3.

V2

Figure 2.1 A graph with 4 vertices and 5 edges.

6
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2.2 Sub graphs

A graph G] = (~,E,) is a subgraph of a graph G = (V,E) if VI C;;; V and E] C;;; E; we

denote this by G] C;;; G. If E] = E n (V]x V]) then G] is said to be a subgraph ofG induced

by VI and is denoted by G[vil. Here, G[Vil is obtained by deleting the vertices not in VI

along with all the edges incident on them. Ifwe eliminate vertex V3 along with every edge

incident on it from the graph shown in Figure 2.1, we get a subgraph induced by the set

{VI, V2, V4} which is shown in Figure 2.2.

Figure 2.2 A subgraph of the graph in Figure 2.1 induced by {v], V2, V3}'

2.3 Connected Graphs and Separators

A graph G is connected if there is a path between any pair of distinct vertices of the

graph; otherwise it is disconnected. A connected component of a graph is a maximal

connected subgraph. A separator of a connected graph is a set of vertices whose deletion

makes G disconnected.

I
Figure 2.3 a) A connected graph Figure 2.3 b) A disconnected graph

Figure 2.3 a) and b) shows a connected graph and a disconnected graph respectively. The

hollow vertices in Figure 2.3 a) are in a separator because deleting the vertices we get a

disconnected graph but the shaded vertex is not in a separator since its deletion does not

disconnect the graph.

7
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2.4 Permutation Graphs

2.4.1 Permutation

A permutation is a rearrangement of the positions of a sequence of numbers. We think a

permutation of the numbers I, 2, , n as the sequence :r ~ [n(I), n(2), ... , n(n)].

Moreover, :r-l
~ [:r-I(1), :r-1(2), , :r-l(n)] is also a sequence called Inverse

Permutation where :r-l (k) denotes the position of kin Jr.

k~1 2 3 4
:r~2 6 4 3

:r-l
~ 6 I 4 3

5 6
8 I

7 2

7 8
5 7

8 5

Figure 2.4 A sequence of numbers, one of its permutation and the inverse permutation

2.4.2 Permutation Diagram

Let :r be a permutation of I, 2,. . ., n. Write the numbers I, 2,. . ., n horizontally

from left to right. This is the top row. Underneath the top row, write the numbers n(1),

n(2), ... , n(n), also, horizontally from left to right. And, this is the bottom row. Draw

straight-line segments, joining the two Is, the two 2s, etc. The diagram obtained is called

the permutation diagram of the given permutation.

Top Row => I 2 3 4 5 6 7 8

Bottom Row => 2 6 4 3 8 5 7

Figure 2.5 The permutation diagram of the permutation shown in Figure 2.4

2.4.3 Permutation Graph

Let :r be a permutation of the numbers I, 2, ... , n. We can construct a graph Gn ~

(V,E) , where v~{I, 2, ... , n} and E ~ {(i, j) I (i - j)*(:r-l (i) - :r-l (j)) < OJ. A graph G

is apermutation graph ifthere is a permutation :rsuch that, G = Gn.Figure 2.5 shows the

permutation graph of the permutation shown in Figure 2.4. Notice that, any two vertices i,

j of Gn are adjacent if and only if the line joining the two i intersects the line joining two j

8



in the permutation diagram. Hence, the permutation diagram can illustrate a permutation

graph. The mapping from permutation diagrams to permutation graphs is a bijection.

7 3

Figure 2.6 The permutation graph of the permutation shown in Figure 2.4

2.5 Parallel Random Access Machine (PRAM)

There are several parallel computation models. Considering the relevance with this thesis,

we discuss only the Synchronous Shared Memory Model, also called the Parallel Random

Access Machine (PRAM) model.

Local Memory Mn

Shared Memory / Global Memory M

Figure 2.7 Parallel Random Access Machine (PRAM)

Parallel Random Access Machine consists of a number of processors, each of which has

its own local memory and can execute its own local program with its own data. All the

processors operate synchronously under the control of a common clock and all of them

communicate with each other by exchanging data through a shared memory unit referred

to as the global memory. Each processor is uniquely identified by an index, called the

processor number orprocessor id,which is available locally and hence, can be referred to

in the processor's program.

9
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There are several variations of the PRAM model based on simultaneous access of several

processors to the same location of the global memory. The Exclusive Read Exclusive

Write (EREW) PRAM does not allow any simultaneous access to a single memory

location. The Concurrent Read Exclusive Write (CREW) PRAM allows simultaneous

access for read instructions only. Access to a location for both read and write instructions

is allowed in the Concurrent Read Concurrent Write (CRCW) PRAM. The three

principal varieties of CRCW PRAMs are differentiated by how concurrent writes are

handled. The common CRCW PRAM allows concurrent writes only when all processors

are attempting to write the same value. The arbitrary CRCW PRAM allows an arbitrary

processor to succeed. The priority CRCW PRAM assumes that the indices of the

processors are linearly ordered and allows the one with minimum index to succeed.

10
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Chapter 3 I Vertex-Ranking of General Graphs I

This chapter dicusses on vertex-ranking of general graphs. Section 3.1 presents some

definitions and easy lemmas on vertex-ranking of general graphs. The vertex-separator

tree and its association with the vertex-ranking problems are illustrated in Section 3.2.

The minimal separator concept and a generalized vertex -ranking procedure based on

minimal separators along with its proof of correctness are devised in Section 3.3.

3.1 Vertex-Ranking of Graphs

Though in Chapter 1, we have discussed vertex-ranking and vertex-ranking problem but

for the sake of completeness of this chapter they are more formally defined as follows.

Definition 3.1.1 Given a graph G = (V, E), a c-vertex-ranking of G, for any positive

integer c, is a labeling rp of the vertices of G with integers such that, for any label k,

deletion of all vertices with labels greater than k leaves connected components, each

having at most c vertices with label k [ZNN95]. The integer label of a vertex v is called its

rank and is denoted by q(v). The ordinary vertex-ranking of a graph G is a c-vertex-

ranking if c = 1, and is defined alternatively as a labeling of the vertices of G with

positive integers, such that, every path between any two vertices with the same label

contains a vertex with a larger label [IRV88]. A c-vertex-ranking of G that uses the

minimum number of ranks is called an optimal c-vertex-ranking of G. The number of

ranks used in an optimal c-vertex-ranking of G is called the c-vertex-ranking number of G

and is denoted by re(G). The c-vertex-ranking problem is to find an optimal c-vertex-

ranking ofG.

Remark 3.1.2 For a complete graph Kn with n vertices, the c-vertex-ranking number

re(Kn) = In leland the c-vertex-ranking number of a disconnected graph is equal to the ~

m"imoIDN,rt~-_"g "omb" ofilliWmpO","". 11~ \..



3.2 Vertex-Elimination Tree

The concept of vertex-elimination tree is very important for the vertex-ranking problem.

Definition 3.2.1 Let G = (V, E) be 'a connected graph. A vertex-elimination tree for Gis

a rooted tree T with vertex set V defined recursively as follows. If V = {v} then T is the

rooted tree containing only one vertex v. Otherwise, choose a vertex rT E Vas the root of

T. Let C1, C2, ... , Cq be the connected components of G[V \ {rT}]. For each component

C;, let T; be a vertex-elimination tree. T is defined by making each root rr' of T; adjacent,

b)

Vg

a)
Vg

to rT. The height of the rooted tree T is the maximal length of a path from the root to a

leaf.

Figure 3.1 a) A graph, and b) one of its vertex-elimination tree

Definition 3.2.2 A path P = (WI, w2, ... , Wk) in a given tree T is a linear descending path

from WI to Wk if each WI (1 :<;; / < k) has only one child WI + [. A path containg a single

vertex is vacuously linear descending. P is a maxima/linear descending path if no linear

descending path Q * P contains P.

The following procedure describes a method to assign ranks to the vertices of a graph

using a vertex-elimination tree of the graph.

Procedure 3.2.3 Let T be a vertex-elimination tree of a given graph G and Tj (1 :<;; i :<;; q)

be one of the q subtrees found by deleting the vertex v from the subtree of T rooted at v. If

Ck, j denotes the frequency of rank k in the subtree Tj and kj denotes the maximum rank

i-1
\

12 ",
, ".



used in the tree Tj and maxl<j<i, is denoted by k then a c-vertex-ranking rp can be

obtained by the following bottom-up scheme-

{

I, if v is a leaf vertex of Tor n =1

,,,{v) ~ k, if v is an internal vertex of T and ""'. Ck j < C
"r\ L."l~/:::;;q ,

k + I, if v is an internal vertex of T and "" . c k j;? CL..J1SJ5.q ,

. Remark 3.2.4: Since the rank assignment is a monotonically increasing bottom-up

function, the root of any subtree gets the maximum rank used in that subtree. Besides

frequency of no rank less than the maximum rank is less than c. \)

It needs to prove that Procedure 3.2.3 assigns valid ranks to the vertices of the graph and

Lemma 3.2.5 does this.

Lemma 3.2.5 For any c EN, Procedure 3.2.3 leads to a valid c-vertex-ranking of a given

graph G. ..

Proof: The proof is very simple and straightforward. A vertex on a path from any other

vertex to the root gets larger rank if it is closer to the root. So, deletion of a set of vertices

with ranks greater than k always deletes all the nodes on the path from every v with rAv) =

k + 1 to the root. Lastly, the assignment process ensures that no subtree gets a rank more

than c times. 0

We found a way to aSSIgn valid ranks. Now, how this can be done optimally. The

following lemma shows that applying Procedure 3.2.3 on a minimum-height vertex-

elimination tree of G results into an optimal c-vertex-ranking.

Lemma 3.2.6 Let T be a vertex-elimination tree with minimum height of a connected

graph G. Then, for any c EN, applying Procedure 3.2.3 on T leads to the optimal c-

vertex-ranking of G and rc( G) = rAr) where r is the root of T

Proof: The proof is by induction on the height of the tree h. For h = 0, the assertion is

trivially true. By induction hypothesis, assume that the assertion is true for any graph G

13



having a vertex-elimination tree with minimum height less than h. In induction step,

delete the root rT from T resulting into q subtrees TI, T2, ••• , Tq. Also delete rT from G

resulting into q connected components GI, G2, ••. , Gq• By definition Ti (1 ::; i ::;q) is the

vertex-elimination tree of Gi with height less than h. By optimality principle, any subtree

of a tree with minimum height is also of minimum height. So, each Gi can be ranked

optimally by Procedure 3.2.3. Let ki be the maximum rank used in Ti and the frequency of

kin Ti is Ck. i. Clearly, re( Gi) = ki = qi,rTi ), where rT, is the root of Ti. Vertex rT can not get

a rank k < km = max1<i<q k,. This is because rT is adjacent to some vertices of each Ti and

so to those vertices in Gi, and deletion of the vertices with rank greater than k in G would

leave more than C vertices with rank k (see Remark 3.2.4). Therefore, assign a rank km to

rT if Ll<"< ck ,i < c; otherwise assign km + I because the vertices in T are in a single_Lq m

component of G. Hence, rT is ranked with the minimum rank possible. D

3.3 Vertex-Separator and Vertex-Separator Tree

Let us first see the definition of vertex-separator, which is also discussed in chapter 2.

Then, we find a close relation between the vertex -elimination tree and the vertex-

separator. tree.

Definition 3.3.1 A subset S ~ Vis a (u, v) separator (or in general vertex-separator) for

two nonadjacent vertices u and v ofa connected graph G, if the removal of S separates u

and v into two distinct connected components. If S is a (u, v) separator and no proper

subset of S is a (u, v) separator then S is a minimal (u, v) separator (or in general minimal

vertex-separator). A minimal vertex-separator that is not properly contained in any other

minimal vertex-separator is called an inclusion minimal vertex-separator.

Definition 3.3.2 Let G be a connected graph. A vertex-separator tree for G is a rooted

tree T with the vertex set V defined recursively as follows. Choose a separator S as the

root of T. If S '" V then assume GI, G2, •.. , Gq be the connected components of G[ V \ S].

For each such connected component Gi (1 ::; i ::;q), let Ti be a vertex-separator tree.

Construct Tby making each root Si of Ti adjacent to S.

14



b)

Figure 3.2 a) A graph, and b) one of its vertex-separator tree

The foilowing observation shows the correspondence between vertex -elimination tree and

. vertex-separator-tree.

Observation 3.3.3 Vertices of any maximal linear descending path in a vertex-

elimination tree of a graph G is a vertex-separator of G. So by merging the vertices of the

maximal linear descending path into a single node converts a vertex -elimination tree into

a vertex -separator tree. On the contrary, expanding a vertex -separator into a linear

descending path converts a vertex -separator tree into a vertex -elimination tree.

V2
b)

VI

Figure 3.3 a) A vertex-elimination tree, and b) its corresponding vertex-separator tree

The foilowing observation is very important for ranking the vertices of a graph using a

vertex -separator tree.

Observation 3.3.4 In order to obtain an optimal c-vertex-ranking of a graph G by

Procedure 3.2.3, we need a vertex-elimination tree with minimum height. The height of a

15 (



vertex -elimination tree can be reduced if the lengths of the linear descending paths are

shorten. This is possible if we use minimal vertex-separators to construct a vertex-

separator tree. Hence, we conclude that a vertex -elimination tree with minimum height

can be obtained from the vertex-separator trees constructed dynamically and only with

minimal separators.

Procedure 3.3.5 A straightforward conversion of Procedure 3.2.3 leads to a vertex-

ranking scheme based on vertex -separator tree.

i) If S is a leaf node in the vertex-separator tree, then rank the first c vertices of S with I,

then, next c vertices with 2 and so on.

ii) If S is a nonleaf node then let k be the maximum rank used in the descendent subtrees

of Sand q is the sum of the frequencies of rank k in those subtrees. Rank c - Ck

vertices with k if c > q, then rank c vertices with k + I, next c vertices with k + 2 and

soon.

The following theorem is the main tool of our algorithm. It is a variation of a similar

theorem found in [DKKM94].

Theorem 3.3.6 Let G = (V,E) be a graph both connected and not complete. Assume that

k = maXIS;iS;qrc(Gd, Ck = Ll,;;<qCk,i and II = IISI/cl ifq > c, II = IcISI-c+ck)/cl if

lSI + Ck > c, otherwise II = 0, where S is a minimal separator in G, each Gi (l S; i S; q) is a

subgraph ofG[V\ S] and Ck. i isfrequency of rank k in Gi. Then, rc(G) =mins (k + k').

Proof: This theorem directly follows from Procedure 3.2.3, 3.3.5, Lemma 3.2.6 and

Observation 3.3.3. D

('
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CChapter 4~I Permutation Graphs II

This chapter thoroughly discusses permutation graphs. Section 4.1 defines the

permutation graphs and the permutation diagrams. Section 4.2 illustrates the properties of

the line segments and the scanlines and introduces the candidate scanlines. Section 4.3

discusses the pieces and lastly introduces the candidate pieces.

4.1 Permutation Graphs and Permutation Diagrams

Permutations and permutation graphs are already defined in Chapter 2. Still, for the sake

of completeness of this chapter they are discussed here.

Definition 4.1.1 A permutation is a rearrangement of the positions of a sequence of

numbers. We think a permutation of the numbers 1,2, ... , n as the sequence Jr= [n(I),

n(2), ... , n(n)]. Moreover, Jr-I = [Jr-I (I), Jr-' (2), ... , Jr-I (n)] is also a sequence called

InversePermutation where Jr-' (k) denotes the position of k in Jr.

k =1 2
Jr=2 6

tr-I = 6 I

345678
438157

437285

Figure 4.1 A sequence of numbers, one of its permutation and the inverse permutation

Definition 4.1.2 Given a permutation Jr= [n(I), n(2), ... , n(n)], we can construct a graph

G,,= (V,E) where V= { 1,2, ... , n} and theE= {(i,j)1 (i - j)*(Jr-' (i) -Jr-'(j» < O}.

An undirected graph G is a permutation graph if there is a permutation Jr such that G :=
G", The graph G" is sometimes called the inversion graph of Jr.
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7
3

Figure 4.2 The permutation graph of the permutation shown in Figure 4.1

Corollary 4.1.3 Given a permutation tr, a permutation graph G"can be computed in O(n2)

time. Conversely, given a permutation graph G, a permutation ll"with G" = G can also be

. computed in O(n2) time.

In this thesis, we assume that the permutation ll" is given and we identify the permutation

graph with the inversion graph G".

Definition 4.1.4 Let ll"be a permutation of 1,2, ... , n. Write the numbers 1,2, ... , n

horizontally from left to right. This is the top row. Underneath the top row, write the

numbers n(1), n(2),. . ., n(n) also horizontally from left to right. And this is the bottom

row. Draw straight-line segments, joining the two Is, the two 2s, etc. The diagram

obtained is called the permutation diagram ofthe given permutation.

Top Row=> I 2 3 4 5 6 7 8

Bottom Row => 2 6 4 3 8 I 5 7

Figure 4.3 Permutation diagram of the permutation shown in Figure 4.1

Remark 4.1.5 Any two vertices i, j of G" are adjacent if and only if the line joining the

two i intersects the line joining two j in the permutation diagram. Hence, a permutation

graph is an intersection graph, which is illustrated by the permutation diagram. The

mapping from permutation diagrams to permutation graphs is a bijection.
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From this point, we concentrate on permutation diagrams. It is the permutation diagrams

not the permutation graphs, which characterize the features of a permutation. We need to

explore the permutation diagram thoroughly to find any kind of useful properties that may

be help in the vertex-ranking of permutation graphs.

4.2 Line Segments and Scanlines

Besides the visible straight lines joining some two ks, we can imagine some invisible

lines in the permutation diagram. These invisible lines join points from the top row with

some point in the bottom row.

Definition 4.2.1 A straight-line joining i from the top row and n(j) from the.bottom row is

a line segment if i = n(j) and is denoted by ith line segment. If i "" n(j) then it is a scanline

denoted by scanline (i, j). In the permutation diagram, the lines segments are visible and

the scanlines are invisible. In Figure 4.4, the solid straight line joining 2 from the top row

and 2 = n(1) from the bottom row is the 2nd line segment and the dashed straight line

joining 3 from the top row and 6 = n(2) from the bottom row is the (3,2) scanline.

i=::, I 2 3 4 5 6 7 8

Line Segment

Scanline

n(j)=::, 2 6 4 3 8 I 5 7

Figure 4.4 Line segments and scanlines in the permutation diagram

Corollary 4.2.2 Number of line segment in a permutation diagram is n and number of

scan line is exactly n2 - n, where n is the number of vertices in the permutation graph.

Observation 4.2.3 Let s(i, j) be a scanline such that n(j) = k. If the ith and kth line

segment do not intersect each other then the set ofline segments intersecting s is the (i, k)

separator and is denoted by S. Notice that, (i, k) and (k, i) separators as we found from the

scanlines (i, Jr-
1 (k)) and (k, Jrc1 (i)) respectively may not be identical. If the ith and kth



line segment intersect each other then, s does not correspond to any separator since i and

k are adj acent vertices and hence can not be separated.

Definition 4.2.4 A line segment or a scanline is to the left (or right) of another line

segment or another scanline if both the top and the bottom of the former is to the left (or

right) of those of the later respectively. A line segment or a scanline is in between two

line segments or two scanlines if both the top and the bottom of the former is in between

those of the later two respectively.

Definition 4.2.5 Two scanlines s] and S2 are equivalent and denoted by S] == S2, if S] and S2

are equal and the set of line segments those are to the left (or right) of the scanline S] is

equal to the set ofline segments those are also to the left (or right) of the scanline S2.

i=> I 2 3 4 5 6 7 8

Eqiuvalent Scanlines

Separating Scanline

Nonseparating t~.'
n(j)=> ' >.,

2 6 4 3 8 I 5 7

Figure 4.5 Different types of scanlines

Definition 4.2.6 A scanline sCi, Jr-
1 (j» is a separating scanline if the ith and jth line

segments do not intersect each other; otherwise it is a nonseparating scanline. For each

separating scanline s, there is a separator S. A separating scanline is an (i, j) separating

scanline if S is an (i,j) separator.

Observation 4.2 ..7 If we delete the vertices of S found from a separating scanline sci, j)
with n(j) = k, the permutation diagram and hence, the permutation graph splits into two

separate sub graphs- left subgraph and right subgraph. The vertices whose corresponding

line segments are to the left (or right) of the scanline s are in the left (or right) subgraph.

We do not need all the scanlines, we need only the separating scan lines.

Lemma 4.2.8 Let ith line segment is to the left of jth line segment. All separating

scanlines lying in between these line segments are (i,j) separating scanlines. Moreover,

all (i,j) separating scan lines are in between the ith and jth line segment.



Proof. Let s(x,y) be a separating scanlines lying in between the ith and jth line segments

and n(y) = z. Clearly, ith and jth line segments are to the left and right of the scanline s

respectively. On the other hand, deletion of the vertices in S separates x and z. From

Observation 4.2.7, we see that x is in the left subgraph along with i and z is in the right

subgraph along withj. Since the left and the right subgraphs are separate, i andj are also

separated.

Say, a scanline s is not in between ith and jth line segment. If s intersects one or both of

the two given line segments, then i or j or both are also in separator S and clearly S is not

an (i,j) separator. If both ith andjth line segments are to the left (or right) of the scanline

s, then both the vertices are in left (or right) subgraph. And, if i and j are in the same

connected component, then after deletion all the vertices in S, i and j will be in the same

component. Hence S is not an (i,j) separator. D

Our ultimate goal is to identify minimal separators using the scanlines. The following

lemma ensures that there is always a scanline for each minimal separator.

Lemma 4.2.9 [K93] Let G be a permutation graph, and let x and y be nonadjacent

vertices in G. For every minimal (x, y) separator Sxy, there is a scanline s, which lies in

between the line segments corresponding to x and y, such that S = Sxy.

Proof: Let Sxy be a minimal (x, y) separator and Gx, Gy be the sub graphs of G[V \ Sxy]

containing x and y respectively. Without loss of generality, we may assume that Gx is

completely to the left of Gy• Every vertex of S is adjacent to some vertex in Gx and to

some vertex of Gy• Notice that, we can choose a scanline s lying in between xth and yth

line segment and crossing no line segments of G[V \ Sxy]. We know, all line segments

crossing the scanline s must be in S. But, for each element of S, the corresponding line

segments must cross s, since it is intersecting a line segment of G" which is to the left of s

and with a line segment of Gy, which is to the right of s. D

Definition 4.2.10 A separating scanlines s IS a candidate scanline if S is a minimal

separator.
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We now devise some procedures to find the candidate scanlines associated with a vertex

that is, for a given vertex x, we will find all possible (x, y) or (y, x) separating candidate

scanlines, where y is any vertex other than x.

Definition 4.2.11 For any line segment i, we define four types of scanlines though all of

them may not exist. Assume that ,,-I (i) =j.

1

I
2 4 8

6

1

8

7

Figure 4.6 Scanlines associated with 4th line segment

Down Left Scanset of the ith line segment, denoted by DLS(i), consists of all scanlines

(kdl, l) where kdl is the maximum k satisfying i? k> I and ,,-I(k_l) <j; and 1 satisfiesj

-1 ?l? ,,-I (kdl- 1) and n(l) < i and n(l + I)? i.

Up Left Scanset of the ith line segment, denoted by ULS(i), consists of all scanlines (k, lui)

where lui is the maximum 1satisfyingj ? 1> 1 and n(l- I) < i; and k satisfies i-I? k ?lul

-1 and ,,-I (k) <j and ,,-I (k + I)?j.

Down Right Scanset of the ith line segment, denoted by DRS(i), consists of all scanlines

(kdr, l) where kdr is the minimum k satisfying i":;k < n and ,,-I (k + I) >j; and 1 satisfiesj

+ I ,.:;l,.:;,,-I (kdr+ l)andn(l»iand n(l-l)":;i.

Up Right Scanset of the ith line segment, denoted by URS(i), consists of all scanlines (k,

lur)where luris the minimum 1 satisfyingj":; 1< nand n(l + 1) > i; and k satisfies i + 1 ,.:;k
,.:;lui+ 1 and ,,-I (k) >j and ,,-I (k-l)":;j.

The following lemma proves that the four scanlines associated with a vertex as defined in

Definition 4.2.11 are indeed candidate scanlines.

~
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Lemma 4.2.12 All the four types of scan lines associated with a line segment as defined in

Definition 4.2.11 are candidate scanlines, i.e., they correspond' to some minimal

separators.

Proof: Assume, a scanline (kdl, f) is in the down left scanset of ith line segment. Also,

assume ;r-l (i) =j. We show that, scanline (kdl, f) is a candidate scanline. Let Ski denotes

the separator associated with the scanline (k, f). In Deifinition 4.2.11, I satisfies j - I ~ I

and n(f) < i implying that, n(f)th line segment is to the left of ith line segment and do not

intersect each other; hence there is some separating scanline keeping i and n(f) in the right

and left subgraph respectively. Again, kdl is the maximum k satisfying i ~ k ~ I and ;r-l (k

- I) <j. Therefore, for all k ~ kdl, scanline (k, f) is a (i, f) separating scanline and for all k

> kdl, Ski~ Skdll because Ski \ Skdll = { x: kdl5, x < k}. Scanline (kdl, f) also satisfies n(l +

I) ~ i because if a scanline (kdl, l') where l' > I (if there is any) is also in the down left

scanset of ith line segment then Skdll\ Skd/ ~ {t'} and Skd/\ Skdll~ {(l + I)};

moreover, if n(l + I) < i then Skdll ~ Skdl(!+I) and Skdll \ Skdl(!+I) = {(l + I)}; and

Skdll is a minimal (i, f) separator and (kd/, f) is a candidate scanline. Similarly, we can

show that any scanline which is in the up left or the down right or the up right scanset is

also a candidate scanline. 0

Lemma 4.2.13 If there exists down left scanset for a given line segment then its up left

scanset also exists. The converse of this statement is also true. And similar assertions also

hold for the down right and up right scansets.

Proof: Since there exists down left scanset of a given line segment, there is at least one

vertex which can be separated from the given vertex so that it will be in the left subgraph.

And this is the condition for the up left scanset to exist. The converse statement and the

similar assertions can be easily proved in this way. 0

r, ,~/
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Lemma 4.2.14 If ith line segment intersects (i + I)th line segment then the down right

scanset of ith line segment is a subset of the down right scanset of (i + I)th line segment.

Similar assertions hold for down left, up left and up right scansets.

Proof: From Definition 4.2.11, notice that finding the down fight scanset of ith line

segment, we need a minimum k satisfYing i::; k < nand tr-I (k + I).> j where tr-1 (i) =j. If

ith line segment intersects (i + I)th line segment i.e. tr-I (i + I) < tr-I (i) then the same k

will be found for both ith and (i + I)th line segment. Again, for any I, if 7l(l) > i + I then

7l(l) > i and if 7l(1- I) ::; i then 7l(1- I) ::; i + 1. Hence, all scanlines in the down right

scanset of ith line segment are also in the down right scanset of (i + I )th line segment.

Similarly the other assertions can be proved. 0

Lemma 4.2.15 There are O(n) unique scan lines in the collection of down right scansets

of all line segment. Similar assertions hold for down left, up left and up right scanlines.

Proof: We shall prove the first assertion. According to Lemma 4.2.14, if we take the

union of the down right scansets of all ith line segment that does not intersect (i + I)th

line segment, then we have the collection mentioned in the assertion.

The proof is by induction on n, the number of line segments in the permutation diagram.

The assertion is true for n = I because there is no scanline. Let it holds for n - 1. We

know that, starting from the permutations of n - I numbers and placing n to the left or

right of all numbers or in between each pair of numbers in consecutive positions would

generate the permutations of n numbers. In any of these cases, at most one new scanline

will be added in the down right scanset of kth line segment where k is the maximum j

such that jth line segment does not intersect the newly added nth line segement. Clearly,

such k may not be found. Therefore, the number of scalines in the collection is increased

at most by one. Hence, the assertion also holds for n. The similar assertions can also be

proved in the same technique. 0

Lemma 4.2.16 If (kd, Id) is in the down left scanset of ith line segment then scan line (kd-

1, Id + 1) is in the up left scanset of the same line segment and these two are equivalent.

Converse of this assertion also holds. Similarly, if (kd, Id) is in the down right scanset of

f
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ith line segment then scanline (kd + 1, Id - 1) is -in the up right scanset of the same line

segment. Converse of this assertion also holds.

Proof: We shall prove the first assertion. From Definition 4.2.11, we can easily verifY

that scanline (kd - I, Id + I) Id satisfies the conditions of up left scanset. Let. lu = Id + I

and kd = ku + 1. Furthermore ku* n.(lu)and kd * n.(ld) since (ku, lu) and (kd, Id) are scanlines,

not line segments. We want to show that scanlines (ku, lu) and (kd, Id) are equivalent. For

any j, ifj ~ kd and Jr-l (j) ~ Id thenj ~ ku and Jr-l (j) ~ lu. Similarly, for any j, if kd ~j and

Id ~ Jr-l (j) then ku ~j and lu ~ Jr-l (j). So, the set ofline segments that are to the left (or

right) of (kd, Id) is equal to the set of line segments that are to the left (or right) of (ku, lu).

Hence, we can say that the remaining line segments that intersect the scanline (kd, Id) also

intersect the scanline (ku, lu) and so the separators found from them are equal. Therefore,

from Definition 4.2.5 we can conclude that (kd, Id) and (ku, lu) are equivalent scanlines.

Similarly, we can prove other assertions. 0

Lemma 4.2.17 If we take all four types of scan lines associated with all the line segments

then there will be D(n) candidate scanlines. There is no candidate scan lines other than

these.

Proof: The first portion of this lemma is a straightforward implication of Lemma 4.2.15.

Lemma 4.2.12 along with its proof shows that we have considered all possible scanlines

implicitly and explicitly and only those four types of scanlines are found to be candidate

scanlines. 0

Corollary 4.2.18 The number of minimal separators of a permutation graph with n

vertices is D(n).

4.3 Pieces and Candidate Pieces

Now, we are going to define the main concept of designing the vertex-ranking algorithm

for permutation graphs using the. permutation diagram via minimal separators and

candidate scanlines. Since we need optimal ranking, we must satisfY the optimality
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principle, which says that for a optimal solution each part of the solution itself will be

optimal. In case of optimal vertex-ranking of a permutation graph, we need to ensure that

each subgraph leading to the optimal ranking of the whole graph is also optimally ranked.

At this point, we need some mechanism to represent a subgraph in the permutation

diagram. Pieces obviously support this necessity.

Definition 4.3.1 The piece P = P(s{, sr) where s{ is to the left of Sr in the permutation

diagram is defined by the scanlines s{ and Sr and all the line segments in between the two

scanlines. We denote by V(P) the set of vertices in P and by IP(s{,sr)1the number of line

segments in the piece. P[U] denotes the subpiece of P induced by U c V(P). Each piece

represents some subgraph ofthe permutation graph.

Corollary 4.3.2 The number of pieces in a permutation graph is bounded by n4 where n is

the number of vertices in the graph.

For computing the vertex-ranking number of a given graph G, we want to use Procedure

3.3.5 and Theorem 3.3.6. We shall compute the vertex-ranking number of all the pieces

using dynamic programming technique.

Definition 4.3.3 A scanline s is a cutting scanline for P(s{, sr) if s is in between S] and S2.

Lemma 4.3.4 [DKKM94] Let S be a minimal separator of P(s{, sr). Then, there is a

cutting scan line s for P such that S is exactly the set of those line segments of P crossing s.

Proof: Consider the permutation diagram of P(s{, sr). Let G{ and Gr be subgraphs of

P[ V(P) \ S] such that, every vertex v E S has a neighbor in G{and a neighbor in Gr. Then

there is a scanline s such that, it does not cross any line segment corresponding to a vertex

of V(P) \ S and s is in between G{and Gr i.e., s is in between any two line segment i and},

where i is in G{and} is in Gr. Thus s is a cutting scanline and S is exactly the set of line

segments crossing s. 0
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Corollary 4.3.5 Let s be a cutting scanline of a piece peSt, sr). Then IP(s/, sr)l- IP(s/, s)1 -

IP(s, sr)1= IS \ (S/u Sr)l, because both the expressions find the number of line segments in

P which cross s.

Theorem 4.3.6 [DKKM94] Let peSt, sr) be a piece of a permutation graph G = (V,E)

and let P have at least one cutting scan line. Further more, k =

maxh(P(SI'S )),rAp(s,sr ))}, Ck= Ck,P(SI ,s) + Ck,P(s,sr)' S/ = S \ (St u Sr), k

=1(ISI-c+ck)/cl if IS/I +Ck>C, k= ~Sl/cl ifck>c,othersisek=O,whereSisa

minimal separator in P and Ck.pis frequency of rank k in P. Then, rc(G) = minS(k + k'),

where the minimum is taken over all the candidate and cutting scanlines s for P.

Proof: This theorem directly follows from Theorem 3.3.6, Definition 4.3.1, Definition

4.3.2 and Lemma 4.3.4. D

Definition 4.3.7 A piece peSt, sr) is a candidate piece if St and Sr are either candidate

scanlines or boundary scan lines. The scanline (I, I) and (n, n) are the two boundary

scanlines in a permutation diagram.

Corollary 4.3.8 Number of candidate pieces of a permutation graph is O(n2), where n is

the number of vertices of the graph.

Since we are considering only minimal separators, it is sufficient to consider only the

candidate scanlines and candidate pieces.

Observation 4.3.9 The candidate scanline (i, j)s will be sorted from left to right if sorted

in ascending order of i +j and i,

Definition 4.3.10 A piece peSt, sr) is a fundamental candidate piece if it has no cutting

candidate scanline.

Lemma 4.3.11 The subgraph induced by the set of vertices in a fundamental candidate

piece is always completely connected,

27
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Proof: Say, the assertion is not true. So, there is at least a pair of vertices, which are not

adjacent. Clearly, there is a separator for this pair and hence, a minimal separator, too,

exists. Lemma 4.2.9 says that, for this minimal separator there must be a candidate

scanline, which will also be a cutting scanline for the given piece. Notice that, this

candidate scanline is not only excluded according to Lemma 4.2.17 but also indicates that

the given candidate piece will not be fundamental if it is further included. Clearly, these

are contradictions. 0

Q.
28



Chapter 5 Vertex-Ranking of Permutation Graphs

Section 5.1 describes a sequential algorithm that solves the c-vertex-ranking problem for

permutation graphs having time complexity O(nJ
). Section 5.2 presents the parallel

algorithm for the same problem based on the sequential algorithm described in Section

5.1.

5.1 c-Vertex-Ranking of Permutation Graphs: Sequential Algorithm

In this section, we describe an efficient sequential algorithm having time complexity

O(nJ
) to compute the optimal c-vertex-ranking number of a permutation graph and to rank

its vertices accordingly. Here, almost the same approach is used as in [DKKM94] and

[NK99]. The algorithm in [DKKM94] solves the ordinary vertex-ranking problem (i.e. c

= 1) for permutation graphs in O(n6) time using all the scanlines regardless of it being

separating, nonseparating or candidate scanlines and the algorithm in [NK99] solves in

O(nJ
) time using just the candidate scanlines since only they correspond to the minimal

separators.

Algorithm 5.1.1 This algorithm has two procedures- PERM_RANK is the mam

procedure that computes the optimal c-vertex-ranking number and procedure RANK

assigns ranks to each vertex of the graph.

procedure PERM_RANK(c, n, Perm, Ranks, MaxR, MaxC)

II n, c - number of vertices in the permutation graph and value of c respectively.

II Perm[l: n] - given permutation.

II Ranks[l: n] ~output ranks of the vertices.

II MaxR - output vertex-ranking number.

II MaxC - output count of the maximum rank used.

II InvPerm[l: n] - the inverse of the given permutation.
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•
II CScanLine[I :4n] - the sorted list of candidate scanlines.

II NCScanLine - number of candidate scanlines.

IISeparator[ 1:4n, I:n] - the separator associated with the candidate scanlines.

II CPiece[I:4n, I:4n] - size ofthe candidate pieces.

II MaxRank[I: n, 1: n] - maximum ranks of the pieces.

II MaxCount[ 1: n, 1: n] - frequencies of max ranks of the pieces.

II Splitter[ 1: n, 1: n] - the cutting scanline which led to the optimal ranking ofthe piece.

II MR, MC, S, i,}, k, 1- temporary integer variables.

1. II Compute the Inverse Permutation InvPerm of the given permutation.

for I 5, i 5, n do

InvPerm[Perm[i]] = i

2. II Find all the four types of scanlines associated with all line segment.

II From equivalent pairs take those having less top index.

II Take also scanlines (1, 1) and (n, n).

for 1 5, i 5, n do

begin

} = InvPerm[i]

I I Down Left Scanset

Find maximum k such thati:2: k> 1 and InvPerm[k- 1] <j.

for} -1:2: 1:2:InvPerm[k-l]

if Perm [I] < i and Perm[1 + 1] :2:i then

(k, /) is in the down left scanset of ith line segment

endif.

I I Up Left Scanset

Find maximum 1such that}:2: I> 1 and Perm[l- 1] < i.

for i-I :2:k :2:1- 1

iflnvPerm[k] <} and InvPerm[k+ I]:2:} then

(k, /) is in the up left scanset of ith line segment

endif.

Take the up left scanset only, because any scanline in the down left scan

set is equivalent to some scanline in the up left scan set.
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II Down Right Scanset

Find minimum k such that i::; k < nand InvPerm[k + 1] >j.

for} + 1 ::;I::;InvPerm[ k + 1)

ifPerm[!] > i andPerm[I-I]::; i then

(k, l) is in the down right scanset of ith line segment

endif.

I I Up Right Scanset

Find minimum I such that}::; 1< nand Perm[l + 1] > i.

for i+ 1 ::;k ::;I + 1

iflnvPerm[k] >} andlnvPerm[k-l]::;} then

(k, l) is in the up right scanset of ith line segment

endif.

Take the down right scanset only, because any scanline in the up right scan

set is equivalent to some scanline in the down right scan set.

end

Take also scanlines - (1,1) and (n, n).

3. Sort all the scanlines found from Step 2 in ascending order of (top + bottom) index. In

case of equality, use ascending order of the top index. In the sorted list, the duplicate

scanlines are in consecutive position. Eliminate them. The remaining are all unique

scanlines.

NCScanLine = number of the unique candidate scanlines.

CScanLine(k) is the kth candidate scanline where 1 ::;k::;NCScanLine.

4. II Find the separators associated with each of the scanlines.

for 1 ::;k::;NCScanLine do

for 1 ::;}::; n do

if CScanLine[ k] intersects }th line segment then

Separator[k,}] = 1

else

Separator[ k,}] = 0

endif

S. II Find the size of the pieces

for 1 ::;i ::;NCScanLine - 1 do
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for i + 1 ~j ~ NCScanLine do

begin

CPiece[i,j] = 0

for 1 ~k~ n do

if kth line segment is in between CScanLine[i] and CScanLineU] then.

CPiece[i,j] = CPiece[i,j] + 1

endif

end.

6. II Initialize the first diagonal of the table used in dynamic programming.

for 1 ~ k ~ NCScanLine - 1 do

begin

MaxRank[k, k + 1] = ceil(CPiece[k, k + 1] I c)

MaxCount[ k, k + 1] = CPiece[ k, k + 1] mod c

Splitter[ k, k + I] =NULL;

end.

7. II Compute vertex-ranking numbers using dynamic programming

for 2 ~ [ ~ NScanLine - 1 do

for 1 ~ i ~ NCScanLine -[ do

begin

k=i+[

MaxRank[i, k] = ceil(CPiece[i, k] I c)

MaxCount[i, k] = CPiece[i, k] mod c

Splitter[i, k] =NULL

fori+l~j~k-l

begin

MR =max(MaxRank[i,j], MaxRankU, k])

MC=O

if MR =MaxRank[i,j] then

MC =MC +MaxCount[i,j]

endif

if MR =MaxRankU, k] then

MC =MC +MaxCountU, k]

endif
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S= CPiece[i, k] - CPiece[i,j] - CPiece[j, k]

ifMC> c then

MR =MR + ceil(S I c)

MC=Smodc

elseif S + MC > c then

MR =MR + ceil«S +MC- c)/ c)

MC = (S+ MC-c) mode

else

MC=MC+S

endif

if MaxRank[i, k] > MR or

(MaxRank[i, k] =MR and MaxCount[i, k] >MC) then

MaxRank[i, k] =MR

MaxCount[i, k] =MC

Splitter[i, k] =j;

endif

end

end

8. call RANK(Ranks, I,Splitter[l, NCScanLine], NCScanLine)

MaxR =MaxRank[ 1,NCScanLine]

MaxC =MaxCount[l, NCScanLine]

end PERM RANK

procedure RANK(Ranks, i,j, k)

ifi = k+ 1 then

Rank first c vertices whose line segments lie in between scanlines

CScanLine[i] and CScanLine[k] with rank 1, then next such c vertices with

rank 2, and so on;

return

endif

ifj is NULL then .

Rank first MaxCount[i, k] vertices whose line segments lie in between scanlines

CScanLine[i] and CScanLine[k] with rank MaxRank[i, k], then next such c

vertices with MaxRank[i, k] -1, and so on.
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return

endif;

call RANK(Ranks, i, Splitter(i,j]'j);

call RANK(Ranks,j, Splitter[j, k], k);

Rank first MaxCount[i, k] vertices of Separtor[j] whose line segments lie in between

scanlines CScanLine[i] and CScanLine[k] with ranks MaxRank[i, k], next such c

vertices with MaxRank[i, kJ-l, and so on.

return;

end RANK

The complexity analysis of Algorithm 5.1.1 is shown in the followingtheorem.

Theorem 5.1.2 Optimal c-vertex-ranking of a permutation graph can be found in O(n3)

sequential time.

Proof: Let us analyze step wise. Step 1 needs O(n) time. Step 2 needs O(n2) time since

finding DLS(i), ULS(i), DRS(i), URS(i) each need O(n) time. Step 3 needs O(n2) time

since number of scanlines found in Step 2 is O(n). Step 4 needs O(n2) time. Step 5 has a

dominating time complexity of O(n3) while Step 6 takes just O(n) time. Step 7 is clearly

another most time consuming part of the algorithm and it runs in O(n3) time. At last Step

8 assigns the ranks to the vertices recursively in O(n2
) time because determining the line

segments in between two given scanlines requires O(n) time. So, it is obvious that the

sequential time complexity of Algorithm 5.1.1 is O(n\

5.2 c-Vertex-Ranking of Permutation Graphs: Parallel Algorithm

In this section, we describe a parallel algorithm based on the sequential algorithm

presented in Section 5.1 that computes the optimal c-vertex-ranking number of a

permutation graph and to rank its vertices accordingly. This algorithm runs in O(log2n)

parallel time using O(n310gn) operations on the CREW PRAM.
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Step 7 of Algorithm 5.1.1 is the most critical part from the point of view of parallel

implementation. Straightforward implementation of this step would result into non-

polylogrithmic complexity. In this step a two-dimensional table as shown in Figure 5.1 is

used. If S;, Sj are the ith and jth scanline in the sorted list of nonequivalent candidate

scanlines found in Step 3 of Algorithm 5.U, then cell(i,j) contains the maximum rank

used, count of the maximum rank and the splitter of this ranking of the piece pes;, Sj).

Cells in each diagonal can be computed in parallel whereas cells in different diagonals

can not be.

Figure 5.1 Table Tused in Step 7 of Algorithm 5.U

Let us first define a graph that resembles the appearance of the above table. Then we map

the dynamic programming problems into shortest path problems.

Definition 5.2.1 D = (V,E) is a directed and weighted graph defined as follows:

The set of vertices v= {(i,j): l~ i <j ~ n} U {CO, O)}

The set of edges E = {((i,j) ~ (i,k)): I~ i <j < k ~ n} u

{((i,j)~(k,j)): I~k<i<j~n} u

{((O,O)~(i,i+I)): I~i<n}

The cost function w( ((i,j) ~ (i,k))) = (R(j,k), C(j, k),S(i,j,k)) if1~ i <j < k ~ n,

w( ((i, j) ~ (k,j))) = (R(i,k), C(i,k),S(k, i,j)) if I~k < i <j ~ n,

w( ((0,0) ~ (i,i + I))) = (R(i,i +I), C(i,i +1),0) if I~ i < n

where Sk is the kth scanline,

R(i,j) = re(P(s;, Sj)),

C(i,j) = count of the rank of R(i,j) in pes;, Sj)

S(i,j, k) = IP(s;, sk)I-IP(s;, sj)I-IP(sj, sk)1
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Figure 5.2: Graph D with n = 4.

Definition 5.2.2 Let the shortest path estimates in D from vertex (i, j) to (k, l) is

W(((i,j)-::::'?(k,l»)) = (R,C,8,P), from vertex (i,j) to (p, q) is W(((i,j)-::::'?(p,q»)) =

(Rj,C1,81,lJ.) and from vertex (p, q) to (k, l) costs W(((p,q)-::::'?(k,l»)) =

(RZ,CZ,8Z'PZ) where R is the maximum rank used, C is its count, 8 is the number of

scanlines in the separator set and P is the predecessor. Then, executing the following

program segment that updates the estimate W(((i, j) -::::'? (k,l») ) is called path relaxation.

R3 = max(R), Rz) II Compute the maximum

C3 =0

If R3 = R1 then C3 = C3 + C] endif II Compute the count of the maximum rank

If R3 = Rz then C3 = C3 + Cz endif

If C3 > e then II Compute additional ranks need for 8

R3 =R3 + eeil(8z I c)

Cz =8z mod e

elseif 8z + C3 > e then

R3 =R3 + eeil((8z + C3 - c) / c)

C3 = (8z + C3 - c) mod e

else

endif

If(R > R3 or (R =R3 and C> C3» then

R =R3, C= C3, 8=8), P =Pz
endif

IlRelax this with previous estimate



Definition 5.2.3 Length of edges ((i, i) -Hi,k»), (U,k) ~ (i, k») and ((0,0) ~ (i,i + 1»)
in D are (k - i), (j -- i) and 1 respectively. A vertex (k, I) is (I - k) unit apart from vertex

(0, 0) and I(i - k)1+ l(j -- 1)1 unit apart from vertex (i, i). A vertex (k, I) is on (I - k)th

diagonal. There are k + 1 vertices on kth diagonal. A vertex (i, i + k) on kth diagonal is Ik

- II diagonal apart from another vertex (j, i + I) on lth diagonal and there are Ik - II + I

vertices on lth diagonal that are Ik-II unit apart from (i, i + k).

Theorem 5.2.4 [B92] Finding a shortest path from (0, 0) to (I, n) in D computes Cell(l,

n) of the table T used in Step 7 of Algorithm 5.1.1 where n is the number of scanlines

found in Step 3 of the same and path relaxation is as defined in Definition 5.2.2.

Proof: The proof is by induction on diagonals of T. For 1:0:; i < n, each vertex (i, i + 1) is

on the first diagonal and the shortest path from vertex (0, 0) is w( ((0,0) ~ (i,i + 1»)). This
is the initialization of the first diagonal of the table T.We know that, a vertex (i, i) in D

corresponds to Cell(i, i) in T. Assume that, shortest paths from (0, 0) to all vertices (i, i)

which are on any of the first (k - 1)th diagonals are available. From the defintion of cost

function as in Definition 5.2.1, all edges of length up to k -- 1 are available. Relaxing all

the incoming edges, the shortest path from (0, 0) to the vertices (i, i), which are on kth

diagonal can be computed in the same fashion that is used in computation of table cells.

So, by induction the assertion holds. 0

Construction of the graph D is not straightforward. Weight of the edges of length greater

than one cannot be available because the R and C component of the weight function is

dependent on shortest path length of some other vertex from (0, 0). Hence, the edges are

constructed and relaxed whenever the weight function is available.

Theorem 5.2.5 [B92] If a shortest path from (0, 0) to (i, k) in D contains an edge

(i,i) --+ (i,k») then there is a dual shortest path containing edge (U,k) --+ (i,k»). The

converse is also true.

Proof: Let the edge ((i,i) --+ (i,k») is in a shortest path from (0, 0) to (i, k). From

Definition 5.2.2, R(i, k) = relaxation of the shortest path ((0,0) => (i,i») and the edge

{j
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(i,j) ~ (i,k)) = max(R(i,j), R(j, k)) + j{C(i,j), C(j, k), S(i,j, k)) wherefis a function

that computes additional ranks used for S. Similarly, if the edge (U, k) ~ (i, k)) is in a

shortest path from (0, 0) to (i, k) then R(i, k) = relaxation of the shortest path

(0,0)::::>U,k)) and the edge (U,k) ~ (i,k)) = max(R(i,j), R(j, k)) + j{C(i,j), C(j, k),

S(i,j, k)). So, we can compute the shortest path from (0, 0) to (i, k) in either way. 0

Lemma 5.2.6 [B92] For all vertices (i, k) in D, R(i, k) and C(i, k) can be computed by a

path having edges of length no longer than f(k - i)/ 21.

Proof: The proof is by induction on edge length. According to Theorem 5.2.5, if the

edge(i,j)--+U,k») is in a shortest path (0,0)::::> (i,k)) then the edge (U,k) ~ (i,k)) is

also in a shortest path (0,0)::::> (i,k)). The length of the edges (U,j)--+U,k») and

(U, k) ~ (i, k)) are k - j andj - i respectively. If the edge (U,j) --+ (i,k») is longer than

f(k-i)/2l i.e. (k-j) > f(k-i)/2l then(j-i)~ f(k-i)/2l because(k-j)+(j-i)=(k-

i) implying edge (U,k) ~ (i,k») is no longer than f(k-i)/2l Again, by induction, a

shortest path (0,0)::::> U, k)) cannot contain any edge oflength greater than f(k - j)/ 2l

Hence, the shortest path can be computed using the smaller edge. 0

Lemma 5.2.7: Assume all shortest paths have been computed between each pair of

vertices up to 2' - J unit apart. Then, one (min, max) matrix multiplication computes the

shortest path for all pairs of vertices up to 2' unit apart.

Proof: All shortest paths between each pair of vertices up to 2' - 1unit apart are available.

This includes the shortest paths from (0, 0) to the vertices up to the (2' - I)th diagonal

because a vertex on (2'- I)th dignonal is (2,-1) unit apart from (0, 0). Using these values

every edge of length 2' - 1 or smaller can be computed. By Lemma 5.2.6, placing and

relaxing these edges in D and then performing one (min, max) matrix multiplication

computes the shortest paths from (0, 0) to all vertices up to 2'th diagonal. o c
'\f'-' .."
. '-,
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Lemma 5.2.8 There are O(d) vertices that are d/2 distances apart from both the vertices

of a given pair of vertices afld finalizing the shortest path between this pair requires Oed)

path relaxations.

Proof: According to Lemma 5.2.7, computing the shortest path between two vertices 2'

unit apart requires the shortest path of pairs up to 2' - 1 unit apart. Form the graph D,

observe that for any pair of vertices 2' unit apart there are 0(2,-1) vertices which are 2'-1

unit apart from both of them. Path relaxation cannot be done via a vertex that is less than

2' - 1 units apart from either vertex and hence more than 2' - 1 units apart from the other

vertex. So to finalize the shortest path between a given pair the path relaxation is done

0(2' - I) times. In fact, by Lemma 5.2.6, this implication can easily be generalized for

shortest path of any pair of vertices d unit apart. 0

Lemma 5.2.9 Computing the shortest path from (0, 0) to (1, n) requires O(loin) parallel

time on the CREW PRAM.

Proof: According to Lemma 5.2.7, O(logn) iterations is needed to compute the shortest

path from (0, 0) to (I, n) and by Lemma 5.2.8, it needs O(n) path relaxations taking

O(logn) time. So, the time complexity becomes O(log2n). CREW PRAM is needed

because in any iteration, shortest paths computed in previous iterations are concurrently

read but finally only one processor writes the shortest path of a pair. 0

Lemma 5.2.10 Computing the shortest path from (0, 0) to (I, n) where n = 2' + I requires

computing shortest path of some other 0(n210gn) pair of vertices in D.

Proof: According to Lemma 5.2.7, computing the shortest paths between a pair 2'

diagonal apart requires shortest paths of the vertices 2' - 1 diagonal apart. Like divide and

conquer strategy, these shortest paths can also be broken down into shortest paths of the

vertices 2' - 2 diagonal apart, and so on. But the shortest paths will be computed in a

bottom up fashion. In general, in iteration I, we compute for all 0 ~ k ~ (n / 2'), shortest "

paths from each of the (ki - 1 + I) vertices on (ki - I)th diagonal to all the (i - 1 + 1)~ v

vertices that are 21- 1 unit apart from it and on ((k + l)i - I)th diagonal. There are 10gn

, ,
J
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iterations. Hence,. shortest paths of LO";I";logn LO";k,,;(n/2/ )(k21-1 + 1)(21-1 + I) =

O(n210gn) pair of vertices need to be computed in total. D

Lemma 5.2.11 Computing the shortest path from (0, 0) to (1, n) where n = 2' + I costs

O(nJlogn) operations.

Proof: According to Lemma 5.2.10, shortest paths of O(n210gn) pair of vertices need to

be computed and for each such pair requires O(n) operations by Lemma 5.2.8. So, the

operation complexity becomes O(nJlogn). D

Remark 5.2,12 If n * 2' + I then we can add some additional vertices along with edges of

cost (0,0,0) in the graph so that for the new graph n become equal to 2' + 1.

Algorithm 5.2.13 This algorithm is actually the parallel implementation of Algorithm

5.1.1 and hence a stepwise direct correspondence is easily revealed.

procedurePERAf_RAlVlr(c,n,Perm,Ranks,AfaxR,AfaxC)

II n, c - number of vertices in the permutation graph and value of c respectively.

II Perm(l: n] - given permutation.

II Ranks(1 :n] - output ranks ofthe vertices.

II AfaxR - output vertex-ranking number.

II AfaxC - output count ofthe maximum rank used.

II InvPerm(1 :n] - the inverse of the given permutation.

II CScanLine(1 :4n] - the sorted list of candidate scanlines.

IllVCScanLine - number of candidate scanlines.

IISeparator( I :4n, I:n] - the separator associated with the candidate scanlines.

II CPiece(I:4n, l:4n] - size ofthe candidate pieces ..

II R(O:n, O:n, O:n, O:n] - maximum rank component of W.

II c[O:n, O:n, O:n, O:n] - rank count component of W.

II S(O:n, O:n, O:n, O:n] - separator component of W.

II P(O:n, O:n, O:n, O:n] - predecessor component of W.

II Piece(1 :n], AfR, Sep, AfC, i,j, k, 1- temporary variables.
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1. II Compute the Inverse Permutation InvPerm of the given permutation.

for 1~ i~n pardo

InvPerm[Perm[i]] = i

2. II Find all the four types of scanlines associated with alliinesegments.

II From equivalent pairs take those having less top index.

II Take also scanlines (1,1) and (n, n).

for I~i~n pardo

begin

) = InvPerm[i]

I I Down Left Scanset

Find maximum k such that i ~ k> 1 and InvPerm[ k - 1] <j.

for) - 1 ~ I ~ InvPerm[k-l]pardo

if Perm [l] < i and Perm[l + 1] ~ i then

(k, l) is in the down left scanset of ith line segment

endif.

I I Up Left Scanset

Find maximum I such that) ~ I> 1 and Perm[l- 1] < i.

for i-I ~k ~ I - 1pardo

iflnvPerm[k] <) and InvPerm[k + 1]~) then

(k, l) is in the up left scanset of ith line segment

endif.

Take the up left scan set only because any scanline in the down left scan set

is equivalent to some scanline in the up left scan set.

II Down Right Scanset

Find minimum k such that i ~ k < nand InvPerm[ k + 1] >j.

for) + 1 ~1~InvPerm[k+ 1]pardo

if Perm[l] > i and Perm[l- 1] ~ i then

(k, l) is in the down right scanset of ith line segment

endif.

I I Up Right Scanset

Find minimum I such that) ~ 1< nand Perm[l + 1] > i.

for i+ 1 ~ k ~ I + 1pardo

41 (



iflnvPerm[k] >j andlnvPerm[k-l] ~j then

(k, l) is in the up right scanset of ith line segment

endif.

Take the down right scanset only because any scanline in the up right scan

set is equivalent to some scanline in the down right scan set.

end

Take also scanlines - (1, 1) and (n, n).

3. Using some parallel sorting algorithm sort all the scanlines found from Step 2 in

ascending order of (top + bottom) index. In case of equality, use ascending order of

the top index. In the sorted list, the duplicate scanlines are in consecutive position.

Eliminate them. The remaining are all unique'scanlines. Using parallel list ranking

algorithm compute the indices of the scanlines.

NCSeanLine = number of the unique candidate scanlines.

CScanLine(k) is the kth candidate scanline where 1 ~ k ~ NCSeanLine.

4. II Find the separators associated with each of the scanlines.

for 1 ~ k ~ NCScanLine pardo

for 1 ~j ~ n pardo

ifCScanLine[k] intersectsjth line segment then

Separator[ k,j] = 1

else

/ (
C"
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R[O, 0, k, k+ 1] = ceil(CPieee[k, k+ 1] I c)

qo, 0, k, k+ 1] = CPieee[k, k + 1] mod e

Separator[ k,j] = 0

endif

5. II Find the size of the pieces

for 1~ i ~ NCScanLine - 1pardo

for i + 1 ~j ~ NCSeanLine pardo

CPieee[i,j] = Sum of Pieee[k]s where 1 ~ k ~ nand

Pieee[k] = 1 if kth line segment is in between CScanLine[i] and

CSeanLineU]; otherwise Pieee[k] = 0

6. II Initialize shortest paths of the vertices in the first diagonals from (0, 0).

for 1 ~ k ~ NCScanLine - 1pardo

begin



8[0,0, k, k + 1] =NULL;

prO, 0, k, k+ 1] = (0, 0);

end.

7. II Compute the shortest paths.

for I = 0 to log2n do

begin

compute the cost of the edges oflength up to 21and take the minimum of the

cost of this edge and the already computed shortest path cost between

the vertices on which the edge is incident.

for 0 s: k s: (n 121) pardo

for each vertex (i,j) on (ki-1)th diagonal pardo

for each vertex (k, l) on «k + l)i - l)th diagonal and i-I unit apart

from vertex (i,j) pardo

for each vertex (p, q) that is i-2 unit apart from both (i,j) and (k, l) do

compute the shortest path from (i,j) to (k, l) through vertex (p, q)

and relax this with the previously computed value.

end

Theorem 5.2.14 Optimal c-vertex-ranking of a permutation graph can be found in

O(loin) parallel time using 0(n310gn) operations on the CREW PRAM.

Proof: Let us analyze step wise. Step 1 of Algorithm 5.2.13 need 0(1) time O(n)

operations on EREW PRAM. Step 2 needs at most 0(1) time 0(n2) operations on CREW

PRAM since finding DLS(i), ULS(i), DRS(i), URS(i) each need O(n) operations. Step 3

needs at most O(logn) time O(nlogn) operations for sorting [J92] on CREW PRAM since

number of candidate scanlines found in Step 2 is O(n) and needs O(logn) time and O(n)

operations for list ranking [J92]. Step 4 requires 0(1) time 0(n2
) operations on CREW

PRAM. In Step 5, computing the size of the pieces needs O(logn) time 0(n3) operations

in CREW PRAM. Step 6 requires 0(1) time and O(n) operations on EREW PRAM. By

Lemma 5.2.9 and 5.2.11, Step 7 runs in O(log2n) parallel time using O(n3Iogn)

operations on CREW PRAM. Hence Algorithm 5.2.14 has a overall time complexity

O(log2n), operation complexity O(n3Iogn) on the CREW PRAM model. OJ. {
! ~
; ~



Chapter 6 Conclusion

6.1 Conclusion

Deogun et al. have given a sequential algorithm that solves the c-vertex-ranking problem

with c = I for permutation graphs in O(n6) sequential time using scanlines and pieces.

Later, we have solved the same problem in O(n3) sequential time [NK99]. But no parallel

algorithm to solve the c-vertex-ranking problem for permutation graphs has been reported

in the literature. In this thesis, we have devised a parallel algorithm for the same problem

with any value of c that runs in O(log2n) parallel time using O(n310gn) operations on the

CREW PRAM model.

6.2 Guideline For Further Research

In [NK99], we have solved the c-vertex-ranking problem for permutation graphs in O(n3)

sequential time. But the parallel algorithm presented in this thesis uses O(n310gn)

operations. Therefore, there is a scope to put further reduction on the operation

complexity of our algorithm.

(
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