
M.Sc. Engg. Thesis

A Distributed Optimized Resource Reservation Scheme
for Grid Computing

by
Rifat Shahriyar

Submitted to

Department of Computer Science and Engineering
in partial fulfilment of the requirments for the degree of
Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)

Dhaka 1000

December, 2009

-- - ~- -~'---

y

The thesis titled 'A Distributed Optimized Resource Reservation Scheme for Grid Computing',
submitted by Rifat Shahriyar, Roll No. 100705037P, Session October 2007, to the Department of Computer
Science and Engineering, Bangladesh University of Engineering and Technology, has been accepted as sat-
isfactory in partial fulfillment of the requirements for the degree of Master of Science in Computer Science
and Engineering and approved as to its style and contents. Examination held on December 27, 2009.

Board of Examiners

I.
Dr. Md. Mostofa Akbar
Associate Professor
Department of Computer Science & Engineering
BUET. Dhaka 1000

Chairman
(Supervisor)

2.
Dr. Md. Monirullslam
Professor & Head
Department of Computer Science & Engineering

~:.~c,,==--_
Dr. M. Kaykobad
Professor
Department of Computer Science & Engineering
BUET, Dhaka 1000

4.~~,~:
Dr. Mahmuda Naznin
Assistant Professor
Department of Computer Science & Engineering
BUET. Dhaka 1000

Dr. Hasan Sarwar
Associate Professor
Department of Computer Science & Engineering
United International University, Dhaka

Member
(Ex-oflicio)

Member

Member

Member
(External)

••••••

Candidate's Declaration

This is to certify that the work entitled 'A Distributed Optimized Resource Reservation Scheme
for Grid Computing' is the outcome of the research carried out by me under the supervision of
Dr. Md. Mostofa Akbar in the Department of Computer Science and Engineering, Bangladesh
University of Engineering and Technoiogy, Dhaka-} 000. It is also declared that this thesis or any
part of it has not been submitted elsewhere for the award of any degree or diploma.

Rifat Shahriyar
Candidate

11

Contents

Board of Examiners

Candidate's Declaration

Acknowledgements

Abstract

1 Introduction

1.1 What is Grid Computing?
1.2 Use of Grids in Research and Education

1.3 What is the Potential for Grids? .

1.4 Motivation for the Work

1.5 Scope of the Work. . .

1.6 Overview of the Thesis

2 Preliminaries

2.1 Grid Computing and its Goal

2.2 Types of Grids .

2.3 Terminologies Related to Grid Computing

2.4 TYpesof Resources .

2.4.1 Computation

2.4.2 Storage...

2.4.3 Communications

2.4.4 Software and Licenses

2.4.5 Special Equipment, Capacities, Architectures, and Policies .

2.4.6 Applications and Jobs .

iii

i

ii

ix

x

1

1

2

3

4

5

6

7

7

8

9

9

9

10

11

12

12

12

CONTENTS iv

2.4.7 Scheduling, Reservation, and Scavenging 14
2.5 Grid by Examples 15

2.5.1 Scientific Simulation 15
2.5.2 Medical Images . . . 15
2.5.3 Computer-Aided Drug Discovery 16
2.5.4 Big Science . 16
2.5.5 E-Leaming 16
2.5.6 Visualization 17
2.5.7 Microprocessor Design . 17

2.6 Resource Management in Grid . .17
2.7 Related Works on Resource Management in Grid Computing 18

2.7.1 General Review of Related Works 20

3 A New Reservation Based Resource Management Scheme 21

3.1 Optimization Problem for the Resource Management Scheme. 21
3.2 Resource Management Scheme . 22

3.2.1 Start Phase 22
3.2.2 Initialization Phase 23
3.2.3 Request Phase 24
3.2.4 Search Phase 24
3.2.5 Reply Phase. 24
3.2.6 Reservation Phase 25

3.3 Fractional Knapsack Problem. 25
3.3.1 Greedy Solution for Fractional Knapsack Problem 26

3.4 Data Structure to Manage Resources 27
3.4.1 Segments of the Session .. 28
3.4.2 Segment Tree to Incorporate Grid Job Sessions 28

3.5 An Illustrative Example 30
3.6 Major Algorithms and Their Descriptions 33

3.6.1 Algorithms Related to Data Structure 33
3.6.2 Algorithms Related to Resource Management Scheme 34
3.6.3 Message Complexity Analysis 37

CONTENTS v

4 Simulation Results 38
4.1 Modules of the Simulator . 38

4.1.1 Utility Classes 38

4.1.2 Data Structure 39

4.1.3 Event Simulator 39

4.2 Simulation on Randomly Generated Data 39

4.2.1 Node Selection Rules . 40

4.2.2 Measurement Metrics. 40

4.2.3 Analysis of the Result 40

4.2.4 Comparison with Sulistio's Resource Management Scheme. 41

4.3 Simulation on Real Workloads 43

4.3.1 Chosen Workloads . . 44

4.3.2 Standard Workload Format . 45

4.3.3 Evaluation with Respect to TotalCost and TotalConnection . 46

4.3.4 Analysis of the Result 50

4.3.5 Running Time Comparison . 51

5 Conclusion 52
5.1 Major Contributions. 52

5.2 Future Directions of Further Research 53

A Randomly Generated Data for Simulation 58

B Results of Simulation on Randoruly Generated Data 63

C Data Fields of the Workload Traces 65

D Details of the Algorithms Related to the Data Structure 67

E Main Scheme ofthe Simulator 73

List of Figures

1.1 Grid: a setup with heterogeneous and independent computing resources 2

........ 13

23

28

29

30

30

31

31

32

33

41

41

3.1 Architecture of our proposed system . . .

3.2 Time space segmentation of segment tree

3.3 Modification of segments . . .

3.4 Construction of a segment tree

3.5 Inserting a session into the segment tree

3.6 Updating a segment tree

3.7 Overall system scenario .

3.8 Node and its data structure

3.9 Updated system after serving a request .

2.1 An application is one or more jobs that are scheduled to run on grid

4.1 Comparison of three rules with respect to TotalConnection

4.2 Comparison of three rules with respect to TotalCost

4.3 Comparison of Sulistio's system with our proposed system with respect to Total-

Connection .. 42

4.4 Comparison of Sulistio's system with our proposed system with respect to TotalCost 42

43

43

4.5 Memory consumption of Sulistio's system . . .

4.6 Memory consumption of our proposed system .

4.7 TotalConnection required for workload DAS2fsO using Sulistio's system and our

proposed system. .. 47

4.8 TotalConnection required for workload LPC-EGEE using Sulistio's system and

our proposed system 47

4.9 TotalConnection required for workload SDSC-BLUE using Sulistio's system and

our proposed system 48

vi

LIST OFFIGURES vii

4.10 TotalCost required for workload DAS2fsO using Sulistio's system and our pro-

posed system 48

4.11 TotalCost required for workload LPC-EGEE using Sulistio's system and our pro-

posed system 49

4.12 TotalCost required for workload SDSC-BLUE using Sulistio's system and our pro-

posed system .. 49

List of Tables

3.1 Store items .. 26

3.2 List of items - I 26

3.3 Data structure contents of a node . 27

3.4 Candidate nodes and available amount 32

3.5 Selected nodes from the candidate list 32

4.1 Memory Consumption 43

4.2 Chosen workloads and their configurations. 45

4.3 Important data fields of workload . 46

4.4 Runtime comparison " 51

A.I DeviceList. . 58

A.2 ResourceList 58

A.3 DeviceResourceList . 59

A.4 ApplicationJobList 60

A.5 JobResourceList. . 61

B.I Evaluation of Max-Res on randomly generated data . 63

B.2 Evaluation of Min-Res on randomly generated data 63

B.3 Evaluation of Min-Cost on randomly generated data . 64

B.4 Evaluation of the Sulistio's system on randomly generated data . 64

B.5 Evaluation of our proposed system on randomly generated data . 64

C.I Data fields of the workload 65

viii

Acknowledgments

All praises due to Allah, the most benevolent and merciful.

I express my heart-felt gratitude to my supervisor, Dr. Md. Mostofa Akbar for his constant supervision of

this work. He helped me a lot in every aspect of this work and guided me with proper directions whenever

I sought one. His patient hearing of my ideas, critical analysis of my observations and detecting flaws (and

amending thereby) in my thinking and writing have made this thesis a success.

I also want to show my gratitude to Dr. M. Sohel Rahman for his patience and valuable suggestions. It

has been a great opportunity to work with him.

I also want to thank the other members of my'thesis committee: Dr. Md. Monirul Islam, Dr. M.

Kaykobad, and Dr. Hasan Sarwar for their valuable suggestions.

I would like to express my ever gratefulness to my mother, sister, grand mother and wife for their

continuous support. Finally, I cannot forget some of my friends (Md. Faizul Bari, Atif Hasan Rahman and

Enamul Hoque) for their supports. May Allah reward them all in here and hereafter.

ix

Abstract

The idea of grid computing originated in the scientific community and was initially motivated

by processing power and storage intensive applications. The basic objective of grid computing is

to support resource sharing among individuals and institutions within a networked infrastructure.

Managing various resources in highly dynamic grid environments is a complex and challenging

problem. There are works for resource management in different areas of computer science. Some

approach uses algorithms for resource management to apply in grid but fails to provide any gen-

eralized solutions for grid environment. Most of the approaches are based on a simple architec-

ture considering computer as the main resource in their system. But the real architecture of grid

computing is a complex one by considering various resources of any computer during resource

management. In grids sometimes assurance is needed for successful completion of jobs on shared

resources. Such guarantees can only be provided by reserving resources in advance. So resource

reservation is an integral part of resource management system for grid. Moreover the cost for

providing resource as services will play a significant role in near future when resource sharing

will be popular and inevitable but so far there is no work regarding cost optimization model for

grid computing. In this thesis we provide a future reservation supported and cost optimized novel

resource management system for grid environment considering its real complex architecture. We

demonstrate our claims by conducting a detailed performance evaluation and comparing with the

existing system on real workload traces for grid computing.

x

Chapter 1

Introduction

1.1 What is Grid Computing?

Grid systems have emerged as promising next-generation computing platforms that enable the

building of a wide range of collaborative problem-solving environments in industry, science and

engineering. Grid environments enable flexible, secure and coordinated resource sharing among

dynamic conections of institutions distributed across the world called virtual organizations {BJ.

The term grid, coined in the mid 90s in the academic world, was originally proposed to denote

a distributed computing system that would provide computing services on demand just like con-

ventional power and water grids do. During the last few years, as the technology evolved and the

grid concept started being explored on commercial endeavors, some slight but meaningful changes

have been made in its original definition. Nowadays, an accepted definition, world-wide, states

that a grid is a system that:

• coordinates resources that are not subject to centralized control

• uses standard, open, general-purpose interfaces and protocols

• delivers non-trivial quality of service

Nowadays, most of the interest driven toward the grid concept derives from the fact that, stated

as it is, a grid can be regarded as a technology with no boundaries.In fact, if one can integrate all

its computing resources, no matter what they are, in a single virtual computing environment, such

asy.stem would mak.epossible:

I

CHAPTER 1. INTRODUCTION 2

~""."':. .

~i./
Network 3

Network 1

Mainfmmc

Network 2

Supcr-compuu:r

Figure 1.1: Grid: a setup with heterogeneous and independent computing resources

• The effective use of computing resources that otherwise would remain idle for most of the

time

• To perform complex and computing-demanding tasks that would normally require large-

scale computing resources.

As Web technologies have changed the way that information in shared allover the world, grid

computing aims at being the next technological revolution, integrating and making available not

only information, but also computing resources such as computing power and data-storage capacity

[18]. Figure 1.1 illustrates the way that a grid can be built by means of computing resources that

are somehow interconnected by the Internet but that there is no relation among them.

1.2 Use of Grids in Research and Education

This section presents a brief discussion on which types of research and educational activities could

benefit from grid computing technologies. So far we have presented what a grid is, but haven't

CHAPTER 1. lNTRODUCTION 3

gone into details on what it can do. Actually, it is not difficult to figure out how useful a high-

performance computing infrastructure can be, but this is not all of the truth. The fact is that such

an infrastructure can be built up from computing resources that are already available, which the

reason why grids are so appealing. Brieftystated,a computational-grid piuvideslrigh-petfmmance

computing; a data grid provides large storage capacity; and a network grid provides high through-

put communication that may be useful for a variety of applications, such as virtual conferences.

Having this in tnind, we can list the main reasons for using grid computing as follows:

• Improve efficiency/reduce costs

• Exploit under-utilized resources

• Enable collaborations

• Virtual resources and virtual organizations

• Increase capacity and productivity

• Parallel processing capacity

• Support heterogeneous systems

• Provide reliability/availability

• Access to additional resources

• Resource balancing

• Reduce time to results

When these reasons are regarded under the light of scientific research, it is easy to understand why

scientists are so keen on grids: they believe that the use of grids will transform the practice of their

science.

1.3 What is the Potential for Grids?

Because of World Wide WoorevoiuOOft, networked desktop computers can be f-oo everywllere

today. Government, industry, universities, and other research and educational institutions rely

on every sort of computer to perform their daily activities, and this computer-based society is

CHAPTER 1. INTRODUCTION 4

growing bigger every day. The computational grid has reached a much higher level of maturity

than the other types of grid. This may derive from the fact that computing science has always

been concerned with computing activities, for obvious reasons, and that distributed computing

research and development has been on "theroad for more than 30 years now. In addition to this,

we know that as time goes by and technology evolves, the computers and network connections get

faster and more reliable. As a result, the global computing pool becomes more powerful and more

strongly coupled, leading to systems that can handle large amounts of data in shorter periods of

time. These factors can be summarized in a few words under the grid perspective: A global grid

infrastructure is evolving to be readily available in the near future. Knowing that this infrastructure

will be somehow available, we should analyze the potential applicability of grid technologies.

There are a great number of research and educational areas that could benefit from grid technology;

having them in mind, we can say that the potential for grid technology applications depends on the

following facts:

• After the World Wide Web, the grid has been regarded as the next natural step towards the

evolution of information technology.

• The forthcoming scientific breakthroughs are likely to be brought by the power unleashed

by grid computing.

• Such a powerful computing infrastructure can embrace existing and brand new paradigms of

application execution.

• Researchers and educators do believe that the grid will come to reality and are looking for-

ward to using it.

For all these reasons, we believe that grid computing will form part of an inexorable future, chang-

ing the way that research, education, and even ordinary or everyday tasks are performed. These are

some of the possibilities that might arise from the grid world, and there is no doubt that they will

definitely change the way that we deal with information in our personal and professional activities.

1.4 Motivation for the Work

The idea of above menUoned grid romputing was initially motivated by processing power and

storage intensive applications. The basic objective of grid computing is to support resource sharing

CHAPTER 1. INTRODUCTION 5

amongindividuals and institutions within a networked infrastructure. Managing, various resources

in highly dynamic grid environments is a complex and challenging problem. There are works for

resource management in different areas of computer science. Some approach uses data structures

[6I [5I (24) and algorithms [l4)fur== management toapplyingridbut-fuits-to provide

any generalized solutions for grid environment. Most of the approaches are based on a simple

architecture considering computer as the main resource in their system. But the real architecture of

grid computing is a complex one by considering various resources of any computer during resource

management. In grids sometimes assurance is needed for successful completion of jobs on shared

resources. Such guarantees can only be provided by reserving resources in advance [21] [27]. So

resource reservation is an integral part of resource management system for grid.

Moreover grids are used as a volunteer service nowadays. But with the recent improvements

in architecture and usage situation will not be the same. Cost for providing resource as services

will playa significant role in near future when resource sharing will be popular and inevitable but

so far there is no work regarding cost optimization model for grid computing. A complete resource

management system for grid computing is required to support all the above mentioned features.

So the main motivation of this thesis work is to provide a future reservation supported and' cost

optimized novel resource management system for grid environment considering its real complex

architecture.

1.S Scope of theWork

The main focus,m this thesis wack is to design. 1I resource management systemfm" grid cQmputillg

with the following characteristics:

• It works in a distributed manner for grid architecture which is complex and depicts the real

scenario.

• It uses appropriate and efficient data structures to represent the grid architecture.

• It provides support for both instant request acceptation/rejection and future resource reser-

vation for any job.

• It optimizes the overall performance by reclaiming unused resources after a threshold time.

CHAPTER 1. INTRODUCTION 6

• It optimizes the cost by choosing~the appropriate set from a list of possible resource providers

by mapping the problem to fractional knapsack, a well known cost optimization problem.

The main outcome of this thesis work is a distributed, future reservation supported and cost opti-

mized resource management system for grid environment. We performed the detailed performance

evaluation of our prototype and compared with an existing system using real workload traces. Our

proposed claims arejustified by the comparative analysis presented on the experimental results on

the workload traces.

1.6 Overview of the Thesis

The rest of the chapters are organized as follows. Chapter 2 gives a preliminary description of

some terminologies and concepts related to grid computing that may be helpful to understand

the context of this thesis. The detailed description of grid resources is presented in this chapter.

The related works on resource management for grid computing is also presented in this chapter.

Chapter 3, the main chapter of this dissertation, illustrates our proposed resource management

scheme and the data structures used by this scheme. The algorithms related to proposed resource

management scheme with their message complexity are also given in this chapter. Chapter 4

contains the simulation results of our scheme and a comparative study against existing system

in several performance issues. The details of the simulator and simulation results on randomly

generated data and real workload are presented here. Chapter 5 draws the conclusion describing

the key contributions of this thesis followed by some future research directions related to this topic.

Chapter 2

Preliminaries

2.1 Grid Computing and its Goal

Grid c.omPl!ting can mean different things ro different ilIdividna!S The. grand visiDn. is. often pre-

sented as an analogy to power grids where users (or electrical appliances) get access to electricity

through wall sockets with no care or consideration for where or how the electricity is actually

generated. In this view of grid computing, computing becomes pervasive and individual users (or

client applications) gain access to computing resources (processors, storage, data, applications,

and so on) as needed with little or no knowledge of where those resources are located or what the

underlying technologies, hardware, operating system, and so on are [12]. Though this vision of

grid computing can capture one's imagination and may indeed someday become a reality, there are

many technical, business, political, and social issues that need to be addressed. If we consider this

vision as an ultimate goal, there are many smaller steps that need to be taken to achieve it. These

smaller steps each have benefits of their own.

IRtegration o/Wlrious.eRtities Grid oomputing can be seen as a journey along apatbofintegrat-

ing various technologies and solutions that move us closer to the final goal. Its key values are in the

underlying distributed computing infrastructure technologies that are evolving in support of cross-

organizational application and resource sharing across technologies, platforms, and organizations.

This kind of virtualization is only achievable through the use of open standards. Open standards

help ensure that applications can transparently take advantage of whatever appropriate resources

can be made available to them. An environment that provides the ability to share and transparently

access resources across a distributed and heterogeneous environment not only requires the technol-

7

CHAPTER 2. PRELIMINARIES 8

ogy to virtualize certain resources, but also technologies and standards in the areas of scheduling.

security, accounting, systems management, and so on.

Intra and inter organizational grids Early implementations of grid computing have tended to

be internal to a particular company or organization. However, cross-organizational grids are also

being implemented and will be an important part of computing and business optimization in the

future. The distinctions between intra-mgwlizational grids and inter-mganizational grids are not

based in technological differences. Instead, they are based on configuration choices given: Security

domains, degrees of isolation desired, type of policies and their scope, and contractual obligations

between users and providers of the infrastructures. These issues are not fundamentally architectural

in nature. It is in the industry's best interest to ensure that there is not an artificial split of distributed

computing paradigms and models across organizational boundaries and internal IT infrastructures.

Goal as a part of distributed computing Grid computing involves an evolving set of open stan-

dards for Web services and interfaces that make services, or computing resources, available over

the Internet. Very often grid technologies are used on homogeneous clusters, and they can add

value on those clusters by assisting, for example, with scheduling or provisioning of the resources

in the cluster. The term grid, and its related technologies, applies across this entire spectrum. If we

focus our attention on distributed computing solutions [15], then we could consider one definition

of grid computing to be distributed computing across virtualized resources. The goal is to create

the illusion of a simple yet large and powerful virtual computer out ofa collection of connected

(and possibly heterogeneous) systems sharing various combinations of resources.

2.2 Typesof Grids

Ideally,.a grW.sbould provide full-scale integration of heterogeneous computing resources. of any

type: processing units, storage units, communication units, and so on. However, as the technology

hasn't yet reached its maturity, real-world grid implementations are more specialized and generally

focus on the integration of certain types of resources. As a result, nowadays we have different types

of grids, which we describe as follows:

• Computational grid: A computational grid is a grid that has the processing power as the

main computing resource shared among its nodes. This is the most common type of grid and

CHAPTER 2. PRELIMINARIES 9

it has been used to perform high-performance computing to tackle processing~demanding.

tasks.

• Data grid: Just as a computational grid has the processing power as the main computing

resource shared among their nodes; a data grid has the data storage capacity as its main

shared resource. Such a grid can be regarded as a massive data storage system built up from

portions of a large number of storage devices [17] .

• Network grid: This is known as either a network grid or a delivery grid. Such a grid has

as its main purpose to provide fault-tolerant and high-performance communication services.

In this sense, each grid node works as a data router between two communication points,

providing data-caching and other facilities to speed up the communications between such

points.

2.3 Terminologies Related to Grid Computing

In this chaprer we introduce the tenninoklgies and concepts that are used frequently used Hlgrid

computing. A grid is a collection of machines (sometimes referred to as nodes), resources, mem-

bers, donors, clients, hosts, engines, and many other such terms. They all contribute any combina-

film of resources to the grid as a whole. Some resources may be used by an users of the grid, whIle
others may have specific restrictions. As we mainly focus on grid resources, they are described in

more details in the next section.

2.4 Types of Resources

2.4.1 Computation

The most common resource is computing cycles provided by the processors of the machines on

the grid. The processors can vary in speed, architecture, software platform, and other associated

factors, such as memory, storage, and counectivity. There are three primary ways to exploit the

computation resources of a grid.

• The first and simplest is to use it to run an existing application on an available machine on

the grid rather than locally.

CHAPTER 2. PRELIMINARIES 10

• The second is to use an application designed to split its work in such a way that the separate

parts can execute in parallel on different processors.

• The third is to run an application that needs to be executed many times, on many different

machines in the grid.

Scalability is a measure of how efficiently the multiple processors on a grid are used. If twice as

many processors makes an application complete in one half the time, then it is said to be perfectly

scalable. However, there may be limits to scalability when applications can only be split into a lim-

o ited number of separately running parts or if those parts experience some other interdependencies

such as contention for resources of some kind.

2.4.2 Storage

The second most common resource used in a grid is data storage. A grid providing an integrated

view of data storage is sometimes called a data grid. Each machine on the grid usually provides

some quantity of storage for grid use, even if temporary.

Primory Storage Storage can be memory attached to the processor or it can be secondary storage,

using hard disk drives or other permanent storage media. Memory attached to a processor usually

has very fast ~but is-vOOitile, It wooId best be used ro cache data or ro secve as temporary.
storage for running applications.

SealtuJlJry Storage Secondary storage in a grid can be used in interesting ways ro increase ca-

pacity, performance, sharing, and reliability of data. Many grid systems use mountable networked

file systems, such as Andrew File System (APS), Network File System (NFS), Distributed File

System (DFS), or General' Parallel File System COPPS).These offer varying degrees of perf or-

mance, security features, and reliability features. Capacity can be increased by using the storage

on multiple machines with a unifying file system. Any individual file or database can span sev-

eral storage devices and machines, eliminating maximum size restrictions often imposed by file

systems shipped with operating systems. A unifying file system can also provide a single uniform

name space for grid storage. This makes it easier for users to reference data residing in the grid,

without regard for its exact location. In a similar way, special database software can federate an

CHAPTER 2. PRELIMINARIES 11

assortment of individual databases and files to form a larger, more comprehensive database, ac-

cessible using database query functions. More advanced file systems on a grid can automatically

duplicate sets of data, to provide redundancy for increased reliability and increased performance.

An intelligent grid scheduler-can help select the appropriate storage devices to hold data, based on

usage patterns. Then jobs can be scheduled closer to the data, preferably on the machines directly

connected to the storage devices holding the required data.

Data Striping Data striping can also be implemented by grid file systems. When there are se-

quential or predictable access patterns to data, this technique can create the virtual effect of having

storage devices that can transfer data at a faster rate than any individual disk drive. This can be

important for multimedia data streams or when collecting large quantities of data at extremely high

rates from CAT scans or particle physics experiments, for example.

Journaling A grid file system can also implement joumaling so that data can be recovered more

reliably after certain kinds of failures. In addition, some file systems implement advanced syn-

chronization mechanisms to reduce contention when data is shared and updated by many users.

2.4.3 Communications

The rapid growth in communication capacity among machines today makes grid computing prac-

tical, compared to the limited bandwidth available when distributed computing was first emerging.

Therefore, it should not be a surprise that another important resource of a grid is data communica-

tion capacity. This includes communications within the grid and external. to the grid. Communi-

cations within the grid are important for sending jobs and their required data to points within the

grid. Some jobs require a large amount of data to be processed, and it may not always reside on the

macmne runnIng the job. The bandwidth avat1able for such communications can often be a critical

resource that can limit utilization of the grid. External communication access to the Internet, for

example, can be valuable when building search engines. Machines on the grid may have connec-

tions to the external Internet in addition to the connectivity among the grid machines. When these

connections do not share the same communication path, then they add to the total available band-

width for accessing the Internet. Redundant communication paths are sometimes needed to better

handle potential network failures and excessive data traffic. In some cases, higher speed networks

must be provided to meet the demands of jobs transferring larger amounts of data.

CHAPTER 2. PRELIMINARIES

2.4.4 Software and Licenses

12

The grid may have software installed that may be too expensive to install on every grid machine.

Using a grid, the jobs requiring this software are sent to the particular machines on which this

software happens to be installed. When the licensing fees are significant, this approach can save

significant expenses for an organization. Some software licensing arrangements permit the soft-

ware to be installed on all of the machines of a grid but may limit the number of installations that

can be simultaneously used at any given instant. License management software keeps track of how

many concurrent copies of the software are being used and prevents more than that number from

executing at any given time. The grid job schedulers can be configured to take software licenses

into account, optionally balancing them against other priorities or policies.

2.4.5 Special Equipment, Capacities,Architectures, aild Policies

Platforms on the grid will often have different architectures, operating systems, devices, capacities,

and equipment. Each of these items represents a different kind of resource that the grid can use as

criteria for assigning jobs to machines. While some software may be available on several architec-

tures, for example, PowerPC and x86, such software is often designed to run only on a particular

type of hardware and operating system. Such attributes must be considered when assigning jobs to

resources in the grid. In some cases, the administrator of a grid may create a new artificial resource

type that is used by schedulers to assign work according to policy rules or other constraints. For

example, some machines may be designated to only be used for medical research. These would

be identified as having a medical research attribute and the scheduler could be configured to only

assign jobs that require machines of the medical research resource. Others may participate in the

grid only if they are not used for military purposes. In this situation, jobs requiring a military

resource would not be assigned to such machines. Of course, the administrators would need to

impose a classification on each kind of job through some certification procedure to use this kind of

approach.

2.4.6 Applications and Jobs

Although various kinds of resources on the grid may be shared and used, they are usually accessed

via an executing application or job. Usually we use the term application as the highest level of a

piece of work on the grid. However, sometimes the term job and application are used equivalently.

CHAPTER 2. PRELIMINARIES

Collecting results

Figure 2.1: An application is one or more jobs that are scheduled to run on grid

13

Applications may be broken down into any number of individual jobs. Those, in turn, can be

further broken down into sub jobs. The grid industry uses other terms, such as transaction, work

unit; or submission, to mean the same thing as a job.

Jobs are programs that are executed at an appropriate point on the grid. They may compute

something, execute one or more system commands, move or collect data, or operate machinery.

A grid application that is organized as a collection of jobs is usually designed to have these jobs

execute in parallel on different machines in the grid. The jobs may have specific dependencies that

may prevent them from executing in parallel in all cases. For example, they may require some

specific input data that must be copied to the machine on which the job is to run. Some jobs may

require the output produced by certain other jobs and cannot be executed until those prerequisite

jobs have completed executing. Jobs may spawn additional sub jobs, depending on the data they

process. This work flow can create a hierarchy of jobs and sub jobs. Finally, the results of all of

the jobs must be collected and appropriately assembled to produce the ultimate output/result for

the application.

CHAPTER 2. PRELIMINARIES

2.4.7 Schedulin~Reservation. and Scavenging

14

The grid system is responsible for sending a job to a given machine to be executed. In the simplest

of grid systems, the user may select a machine suitable for running his job and then execute a grid
,

command that sends the job to the selected machine.

Scheduling More advanced grid systems would include a job scheduler of some kind that auto-

matically finds the most appropriate machine on which to run any given job that is waiting to be

executed. Schedulers react to current availability of resources on the grid. The term scheduling

is not to be confused with reservation of resources in advance to improve the quality of service.

Sometimes the term resource broker is used in place of scheduler, but this term implies that some

sort of bartering capability is factored into scheduling.

Scavenging In a scavenging grid system, any machine that becomes idle would typically report

its idle status to the grid management node. This management node would assign to this idle

machine the next job whose requirements are satisfied by the machine's resources. Scavenging

is usually implemented in a way that is unobtrusive to the normal machine user. If the machine

becomes busy with local non-grid work, the grid job is usually suspended or delayed. This situation

creates somewhat unpredictable completion times for grid jobs, although it is not disruptive to

those machines donating resources to the grid. Grid applications that run in scavenging mode

often mark themselves at the operating system's lowest priority level. In this way, they only run

when no other work is pending. Due to the performance of modem day processors and operating

system scheduling algorithm, the grid application can run for as short as a few milliseconds, even

between a user's keystrokes.

Resef1lation To create more predictable behavior, grid machines are often dedicated to the grid

and are not preempted by outside work. This enables schedulers to compute the approximate

completion time for a set of jobs, when their running characteristics are known. As a further

step, grid resources can be reserved in advance for a designated set of jobs. Such reservations

operate much like a calendaring system used to reserve conference rooms for meetings. This is

done to meet deadlines and guarantee quality of service. When policies permit, resources reserved

in advance could also be scavenged to run lower priority jobs when they are not busy during a

reservation period, yielding to jobs for which they are reserved.

CHAPTER 2. PRELIMINARIES 15

Thus, various combinations of scheduling, reservation, and scavenging can be used to more

completely utilize the grid. Scheduling and reservation is fairly straightforward when only one

resource type, usually CPU, is involved. However, additional grid optimizations can be achieved

by considering more resources in the scheduling and reservation process. For example, it would

be desirable to assign executing jobs to machines nearest to the data that these jobs require. This

would reduce network traffic and possibly reduce scalability limits. Optimal scheduling, consid-

ering multiple resources, is a difficult mathematics problem. Therefore, such schedulers may use

heuristics. These heuristics are rules that are designed to improve the probability of finding the

best combination of job schedules and reservations to optimize throughput or any other metric.

2.5 Grid by Examples

In the Wlklwing SlilisecOOnswe provide real life examples of grid computing implementations. in

the areas of research and education.

2.5.1 Scientific Simulation

It is a grid implementation to provide the execution of complex system simulations in the areas

of physics, chemistry, and biology. The implementation tackles the problem of intensive calcu-

lations, which demands high performance computing and typically requires large computational

infrastructures such as clusters. This type of solution has already been set in place in a number

of research institutions in Japan including National Institute of Advanced Industrial Science and

Technology, AIST [19].

2.5.2 Medical Images

It is a data and computational grid in medical image storage and processing framework. This

grid tackles the problem of storing and processing large images, which typically requires large

computational infrastructures such as distributed databases and clusters. This type of solution has

already been set in plJlce in the eDiaMoND project. This is a collabo<ative project funded by

grants from the Engineering and Physical Sciences Research Council (EPSRC), which is the UK

Govermnent's leading funding agency for research and training in engineering and the physical

sciences, Department of Trade and Industry (DTI), and ffiM. It is strictly a research project which

CHAPTER 2. PRELIMINARIES 16

has the ambitious aim of proving the benefits of grid technology to eHealth, in this case for Breast

Imaging in the UK. More information about the eDiaMoND project can be found at [10].

2.5.3 Computer-AidedDrug Disco-rery

It is a grid implementation that tackles the problem of Computer-Aided Drug Discovery (CADD),

which demands high performance computing and typically requires large computational infras-

tructures such as clusters, mainframes, or super-computers. This type of solution has been set in

place at the Molecular Modeling Laboratory (MML) at the University of North Carolina (UNC) at

Chapel Hill, School of Pharmacy.

2.5.4 Big Science

It is an implementation of a data and computational grid to support government sponsored labo-

ratory types of projects (also known as Big Science). The system accomplishes the problem of

storing huge quantities of data, which demands high storage capacity and typically requires large

and parallel computational infrastructures. The data grid implementation is based 00 the IBMGen-

eral Parallel File System (GPFS). This type of solution has already been set in place in DEISA, a

consortium of leading national supercomputing centers in Europe aiming to jointly build and op-

erate a distributed terascale super computing facility. More information about the DEISA project

can be found at [11].

2.5.5 E-Learning

It is a grid environment to support many of the educational and research requirements for ex-

changing information. Knowing the main ways that education can benefit from grid technology,

we can deduce the basic technological needs associated with the development of e-learning. The

e-Iearning infrastructure is based on the Access Grid. Access Grid is an ensemble of resources

including multimedia large-format displays, presentation and interactive environments, and inter-

faces to grid middleware and to visualization environments. The AG technology was developed .

by the Futures Laboratory at Argonne National Laboratory and is deployed by the NCSA PACI

Alliance. For more information about the Access Grid, refer to [2].

CHAPTER 2. PRELIMINARIES

2.5.6 Visualization

17

It is a grid implementation to support the field of advanced scientific visualization. The area of

visualization is evolving as it addresses emerging and continuing issues, such as interactive and

batch rendering of terascale data sets, through remote visualization. At the same time, universities

in general have a lot of heterogeneity, using many low-cost resources from different suppliers.

This includes running different systems through advanced computing resources, such as super

computers, advanced visualization systems, etc. Most of these resources are segregated in specific

departments for local access only. This example of grid implementation is inspired by the scientific

visualization requirements from the America's largest campus grid, University of Texas at Austin.

More information about this campus grid can be found at [8].

2.5.7 MicroprocessorDesign

It is a computational grid solution that helps to reduce the microprocessors' development cycle

and also allows the design centers to share their resources more efficiently. Microprocessor design

and microprocessor verification simulation requires massive computational power. This type of

solution has been in place in the Microprocessor Design Group at ffiM Austin,.TX..They design

chips for the IBM Eserver high-performance systems, running thousands of simulations to verify

timing closure.

2.6 Resource Management in Grid

Resource tnallllgemeat is a complex task i1w.olviRgsecmity, faWt tolerancealoog with scheduling.

It is the manner in which resources are allocation, assigned, authenticated, authorized, assured,

accounted, and audited. Resources include traditional resources like compute cycles, network

bandwidth, space or a storage system and also services like data transfer, simulation etc.

Grid systems are inter connected collections of heterogeneous and geographically distributed

resource harnessed together to satisfy various needs of the users. Resource management is the

central component of a grid system. Resource management in grid systems is complex due to

various factors like site autonomy, resource heterogeneity etc. Traditional resource management

systems work under the assumption that they have complete control on the resource and thus

can implement the mechanisms and policies needed for effective use of that resource. But in

CHAPTER 2. PRELIMINARIES 18

Grid systems resources are distributed across separate administrative domains resulting resource

heterogeneity, differences in usage, scheduling policies, security mechanisms.

2.7 Related Works on Resource Management in Grid Comput-

ing

Thissecttoo provK1esaa overview of the related works in this topic.

Liang [9] addresses the problem of resource allocation in the GATES (Grid-based Adaptive

Execution on Streams) system. They present a resource allocation algorithm that is based on min-

imal spanning trees. They also evaluate the algorithm experimentally and demonstrate that the

results are very close to optimal, and significantly better than most of the other possible configura-

tions. The problem of this system is that it fails to provide any real and generalized architecture for

conventional grid computing. It mainly works on multimedia grid based streaming applications.

But the conventional grid is much more complex one.

Kun [25] addresses the challenge of providing efficient resource on demand for grid computing

from the perspective of network, the living platform of Grid, by providing effective Quality of

Service (QoS) mechanisms (both IntServ and DiffServ) inside the Grid networking environment.

Specifically, the efficiency of this QoS mechanism is maximized by taking care of the flexible

control of QoS parameters/components using policy-based management. It provides solution for

on demand resource request but there is no provision for resource reservation for future use.

Yang [28] introduces new admission control strategies by fixing a threshold on resource reser-

vation. Threshold does not allow all requests to have same QoS and to share the entire resources

without concerning service priority. Through comprehensive theoretical analysis and extensive

simulations, they demonstrate that the strategy with layered threshold is more efficient and flexible

than the existing strategies for Grid-based multimedia serviCes systems. This new strategy works

using Markov model. It mainly focuses on multimedia systems.

Jianbing [23] introduces a flexible advance reservation for grid applications. Its parameters can

be modified according to resource status in order to fill the gaps of resource. Admission control

algorithm for this new type of reservation is provided too. Simulation shows that it can improve

performance of resource reservation in terms of both call acceptance rate and resource utilization.

It mainly focuses on grid of network resource only by using time slots like TDMA.

CHAPTER 2. PRELIMINARIES 19

lie {26} presents a predictive admission control algorithm to decide whether new advance

reservation requests can be accepted according to their QoS requirements and prediction of fu-

ture resource utilization. It is assumed that once an advance reservation request is accepted, it will

definitely be fulfilled. But in practice, it is not always the case. In equipment grid certain special

reasons may prevent a confirmed advance reservation from being fulfilled. Examples include re-

source malfunctions and preemption by more urgent tasks from local schedulers, which are often

associated with economic benefits. When confirmed contracts cannot be fulfilled, the reputation

of the providers of reserved resources will be ruined and the claimed benefits will be affected. The

unfulfillment of accepted advance reservations will cause damages both to the clients and to the

equipment grid. They propose a predictive admission control algorithm to avoid such situation by

refusing some advance reservation requests which may not be fulfilled according to QoS require-

ments and historical information. This research mainly focuses on equipment grids which is quite

simple in architecture than the conventional grid computing. One major drawback is that their

algorithm doesn't work for multiple resources.

Rafael [20] introduces the concept of 0-1 knapsack problem for resource allocation in grid

computing. They introduce a utility model for resource allocation on computational grids and

formulate the allocation problem as a variant of the 0-1 multichoice multidimensional knapsack

problem. They propose a variety of allocation policies for resource in grid. But they do not

consider the various hardware or software of a computing node as the resource. They consider

computer as the only resource and that is why they used the concept of 0-1 knapsack problem. But

we need to consider various hardware or software of a computing node as the resource to represent

the actual grid architecture.

Sulistio [22] presents new approaches to advance reservation in order to deal with the limita-

tions of the existing data structures, such as Calendar Queue in similar problems. They propose

a Grld advanced'reservation Queue (GarQ), which is a new data structure that improves some

weaknesses of the aforementioned data structures but highly depends on parameters such as size

of interval. Moreover they consider computer as the only resource thus making the system very

simple one with no provision for resource utilization.

CHAPTER 2. PRELIMINARIES

2.7.1 General Review of RelatedWorks

20

A general review of the mentioned related works on resource management for grid computing is

given below:

• Computer is considered as the only resource. But we need to consider various hardware and

software of a computer as the resources.

• Most of the assumed grid architecture is very simple but the actual architecture is quite

complex .

• There is no complete system for resource management and no complete cost model for

resource sharing so far. But in the near future resource sharing will be popular and inevitable.

Chapter 3

A New Reservation Based Resource

Management Scheme

We proposed a new resource management scheme for grid computing environment considering the

complex real life grid. In this chapter a detailed description of the system architecture of our re-

source management scheme is presented with an illustrative example. The proposed data structure

is also described with example. But at the beginning we will describe the problem statement in the

next section.

3.1 Optimization Problem for the Resource Management Scheme

Grid applications can be broken down into number of jobs. It is the responsibility of the jofrbl:oker

to break down the jobs of the applications. Each job of an application requires some grid resources

to perform their operations. The participating computing nodes of grid usually provide the required

resources of any job. The computing nodes will provide their resource with the exchange of cost.

So each of the resources of any computing nodes will have unit cost associated with it.

Let there be n applications in the grid termed as AI, A2 ••• Ai ... An. Each application consists

of a number of jobs. The number of jobs for each application are by CAl' CA, ... CA, ... CAn.

Consider jobs of application A; are JI,h...Jj ••. JCA'. The participating computing nodes of•
the grids are NI, N2 ••• Nk ••• Nl and the resource provided by them are R1, R2 ••• R,. ... Hm. We

assume that all the partieipati'ng nodes will provide all' the grid'resources. To make the problem

description simple, let us consider that the job Jj of the application Ai requires W amount of the

resource R,.. The available amount of the resource R,. in the nodes N1, N2 ..• Nl are Wl, W2 ••• WI

21

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 22

and the corresponding unit cost are Cl,C2' .. CJ. It is not always possible for a single computing

node to completely serve a resource request. Most of the cases a number of computing nodes

jointly serve a resource request. The serving amount from the nodes are assumed as S1, S2 ••• SI'

If a particular node N" does not serve the job then the serving amount s" = O. Now the total

cost to serve a resource request is the sum of all individual computing nodes' service cost for their

resource. So the total cost of the request will be I:~=1CkSk' The constraints need to be satisfied

are as follows:

1. I:~=1Si = W, i.e., a particular job gets exactly W amount of resource from the grid.

2. ELI Wk >W, i.e., there is available resource in the grid for a job.

Now the objective is to minimize the total cost I:~=1CkSk to serve a resource request for ajob of an

application. Besides the objective of minimizing the cost it is also expected to reduce the number

of participating nodes to deliver resource for a particular job. This will reduce the bottleneck for

remote communication to the participating nodes. This additional objective can be formulated as

follows:

{
I if Sk > 0

f(Sk) = .
o if Sk = 0

Here f(Sk) is a boolean function indicating the presence of a node in serving a job.

3.2 ResourceManagementScheme

The overall system architecture of our proposed resource management scheme is shown in Figure

3.1. The components of the system, messages and their sequences to run the system have already

been described by the caption of the blocks of Figure 3.1. Our proposed resource management

scheme consists of the following phases:

3.2.1 Start Phase

The resource management will be controlled and coordinated by a set of computing nodes (com-

puter) termed as Principal Resource Manager (PRM). The PRM s will be selected according to

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 23

Rosourco-Z

Resource-2

Rosoun:o-3

Rosourco--3

Node-2

6-Node will send
ropIy to PRM using Its

<into structuro

DD'DStructu~

I' •l

Nodo-3

8 Nodo roservos f09Ourcc,
update dalo structure and 9800

RNfJ_«InIkm-lo PRM

7 PRM will se!GCI the fln(1I SOlution
bAsed on the reply from nllihe

nodes and send mSII_updllto to the
selected nodes

Job Broker

4 Job broker break down
ollch apptiC3lion to II number
01 jobs ar'ld ir'\itilltl&$,rc$Ol.l1'CC
request to PRM for the jobs

2 .PRM will QOOQPt-nodes and
mnintnln II synchronl1.:cd lisl

3 Applications send
""f1_tJpp 10 the job broker

Figure 3..1:Architecture of our proposed system

the grid administrators decision. The P RM will be given a list of resources by the administrators

that can be provided by the participating nodes of the grid environment. Each resource will be

given a unique id named ResourceI d for grid environment. This is known as the Start phase.

3.2.2 Initialization Phase

When a node wants to participate in the grid it will send a message named mS9_init to anyone

of the P RM s. Each P RM has a list of participating computing nodes that will be synchronized

amongst all the PRM. The PRM will accept the node and add it to the list. The node will be given

a unique idnamed Nodeld that wiUhelp toidentify it.inthe grid environment .Each.participating

node will have a list of resources to provide service to the grid environment. This list will be a

subset of the list maintained by the PRM. This is known as the Initialization phase. The given

N orIel rIfor any node is the same as the index of the node in the list maintained by P RM. Thus we

can find the reference of any node through any of the PRM s in constant time. Each resource of a

node will be given a ResourceI d which is also the same as the index of the resource in the node's

resource list. Thus we can find the reference of any resource of a given node in constant time.

Each node can be considered as its own resource manager (RM). Any participating computing

node can be selected as PRM.

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 24

3.2.3 Request Phase

Any application on the grid can be broken down into a number of jobs. An application sends a

message named msg_app to job broker so that job broker can break it down into a number of differ-

ent jobs. The jobs usually request resources from the grid. The request will be initiated by the job

broker. Job broker will forward the request to anyone of the P RM s so that the request processing

is distributed among the PRM s. The request mainly contains resource identifier, starting time,

and ending time. The P RM will propagate the request to the all the participating nodes. This is

known as Request phase. Any single job can issue request for multiple resources. Then the job

broker can forward request for each resource to different PRM. So multiple PRM s can process

request for a single job.

3.2.4 Search Phase

P RM will forward the request to each participating nodes by sending messages to the nodes. The

messages sent to the nodes from PRM are generally named as msg--'luery. This is a parameterized

message and based on the parameter a node replies with specific resource information, unit cost

associated with a specific resource and available amount of specific resource ia a given time tl'<ime.

Some of the participating nodes may not provide the searched resource and they will be out of the

search immediately. They will ignore the message. The nodes that provide the searched resource

will receive the message. For each resource of each computing node, there willbe an appropriate

data structure to hold the information of used and available amount of resources in specific time

frames. Then queries and corresponding updates will be carried out by the node in its own data

structures. The data structure maintained by each participating node will not be replicated or

copied to the PRM. The PRM will have only the reference of the nodes in the list and through

that reference it can virtually have knowledge of the nodes' data structure. In this way multiple

PRM s can have access to the most recent state of all of the resources without any space overhead.

This is known as Search phase. This is the main computation phase of our proposed resource

management scheme.

3.2.5 Reply Phase

After searching, the results will be returned to the P RM by the nodes. Each request will contain a

request-time associated with it. P RM will wait for the result for a specified threshold amount of

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 25

time from the requesLtime. Job broker will also wait for the replies from P RM s for a specified

threshold amount of time from the request-time for the job that requires multiple resources. The

result contains the notification whether the specific request can be served by this node or not. After

getting the search result from all the nodes PRM will havelrlist of candidate nodes to serve the

resource request. Each candidate node will have a unit cost associated with the resource it will

provide. So P RM needs to identity the set of nodes that needs to be selected as the provider to

minimize the total cost to serve the request. This problem can be mapped to well known fractional

knapsack problem. The application of fractional knapsack problem in resource management is

a new and novel idea for grid which we introduce here to guarantee cost minimization. This is

described in details in the following section. The set of selected nodes will ultimately serve the

request. This is known as Reply phase.

3.2.6 ReservationPhase

Once P RM have the list of selected nodes, then it sends a message named msg_update to each

of the selected node to reserve required resource and update the data structure of the node. This

phase is known as Reservation phase. Upon receiving the message the node tries to update its data

structure. If the update is successful then it will send a confirmation message named msg_crmfirm

to the P RM in reply. But sometimes updating may fail due to unavailability of resource. The

PRMs work iiI distributed manner. So it is possible that a node's resource is not available during

the Reservation phase though resource is found available during the Search phase. In the Search

phase only available resource is searched but no update is made. So it may happen that another job

acquires this specific resource of the node through any other P RM: That is why a confirmation

ensures successful resource reservation.

3.3 Fractional Knapsack Problem

In this section we review the fractional knapsack problem and present a greedy algorithm f{lf the

fractional knapsack problem.

Consider the following scenario. A thief enters a store and sees the following items:

His Knapsack holds 4 Kgs. What should he steal to maximize profit?

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 26

Table 3.I: Store items

Item Costin Tk Weight in Kg

A 100 2

B 10 2

C 120 3

According to the Fractional Knapsack Problem, Thief can take a fraction of an item. So the

solution = 2 Kgs of item A + 2 Kgs of item C = 100 Tk + 80 Tk = 180 Tk.

3.3.1 Greedy Solution for Fractional Knapsack Problem

Given a set of item I

Table 3.2: List of items - I

weight WI W2 ... Wn

cost CI C2 ... en

Let P be the problem of selecting items from I, with weight limit K , such that the resulting

cost (value) is maximum.

I. Calculate value Vi = ~ for i= 1,2 ... n

2. Sort the items by decreasing Vi. Let the sorted item sequence be 1,2,3 .. n and the corre-

sponding value and weight be Vi and Wi respectively.

3. Let k be the current weight limit (Initially, k = K). In each iteration, we choose Item i from

the head of the unselected list.

• Irk ~ Wi>we take item iand' k = k - Wi and then consider the next unselected-item .

• If k < Wi, we take a fraction f of Item i, i.e., we only take f = :, « 1) of item i,

which weights exactly k and the algorithm is terminated.

Knapsack problem and most of its variants are NP-Hard problem and tlIe greedy solution to

these problem leads to a suboptimal or approximate solution. But the greedy solution provides the

optimal solution ro the fractional knapsackpcob1em [16].

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 27

We map the optimization problem for the resource management scheme to fractional knapsack

problem. A resource of a node can be considered as an item and its associated unit cost can be

considered as value. We need to sort the resources of the nodes by increasing unit cost as we need

to minimize the rotal cost.

3.4 Data Structure to Manage Resources

For each resource of each computing node, there must be an appropriate data structure to hold the

information of used and available amount of resources in specific time frames. Each element of

the data structure will represent the (starting time, ending time, available amount) information for

any resource. For example, we assume a node having Node! d Nt contains the resource having

Resourceld Rt with total amount of 100 units. Table 3.3 shows the available unit of resource Rt

of node Nt in different time periods that need to be maintained by node's data structure.

Table 3.3: Data structure contents of a node

Starting Time Ending Time Available amount of resources

0 25 tOO
25 50 96

50 150 50

150 00 100

,5(}we can observe that for the resource management scheme we need to design data ~s

to perform the following tasks:

• To specify the request (Le. starting time and ending time of the request) and the amount of

specific resource required to complete the request.

• To keep track of available amount of a specific resource at a particular time interval (pre-

sented in Table 3.3)

• To store the list of requests with different states (accepted/rejected)

We know that the tree data structures are very much efficient for searching, inserting and delet-

ingof elements, Segment tree is a balanced binary tree data structure that is used for tracking

intervals.

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 28

-.~--~.~---------.--------. oc (Time space)
Currenttime 51

Duration of Session (Ii)

Figure J.2: Time space segmentation ofsegmem tree

3.4.1 Segments ofthe Session

Available resource amount at a particular duration specified by a starting and ending point depends

on the accepted requests on that particular duration. We can think of a total time duration starting

from the current time to 00. The starting and ending points of a request may divide the total time

durations into several parts. Each of these parts is called a segment. A request may consist of one

or more segments.

The available amount of a resource is different at different time as the admitted requests are

scheduled to"stllrt or finish at different times. TIre available amount of a resource changes with

the introduction of a new request at any time. When new requests are accepted the length of the

segment are updated and some new segments may be created. Accordingly the available amount

of resources will also be updated.

Let there be a session 8 with starting time S;, ending time E; (S;<E;) and resource consumed

b;. Total Bandwidth of the system is B(B 2: ~b;). The sessions may be described as 81 (Sh Eh

b1); 82 (S2, E2, li2) ••• 8n (Sm En, lin) etc.

If only one session 81 (Sh Eh b1) is admitted in the server then the time segments will be

(Current time. S1. B), (Sh E1• B-b1) and (Eh 00, B).

Now. let us consider a new session request ~ is submitted to the server"shOwn iIi Figure 3.3 .

The starting time. ending time, and resource consumed of the new session 8i are described by (S;,

E;. bi) respectively where S1 < S; < E1 and E1 < E; < 00.

Then the segment wffi'1ieupdated as (Currenttime. Si, B), (Si, S;; B-b1). (S;;Ei. B-1i1-bD,

(Eh E;. B-bi) and (E;, 00, B).

3.4.2 Segment Tree to Incorporate Grid Job Sessions

The segment tree structure, introduced by Bentley [4], is a balanced binary tree data structure that

is used to store segments or intervals. We can map reservation supported resource management

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 29

•

B

•

B

• oc (Time space)

(Resource m'nifnble)

Figure 3.3: Modification of segments

problem of our system to the segment tree with a little modification. The s and t, with s < t, of

the segment tree yes, t) can be mapped into the starting time and ending time of a session where
starting time < ending time. We modify the traditional segment tree. We add a field (available

resource amount of a segment) to each leaf node. Thus the contents of each leaf node in the

segment tree with this modification are as follows:

• Starting time

• Ending time

• Amount of specific resource available (between the starting time and ending time)

Leaves of the segment tree contain all the segments and the available resource amount. The internal

node of the tree contains only the interval of its child node.

Let us consider a scenario of a segment tree where we assume current time is zero 0 and tota!

available amount of resource is B. A session of starting time 50, ending time 150 and resource

request 50 is admitted. Root contains the segment (0, oo)~Root's left node contains (0; 50, B) and

root's right node contains (50, (0) segment. Root's right left leaf node contains (50,150, B - 50)

segment and root's right leaf node contains (150,00, B).

Now let us consider another case t1Iata second session of starting time 25, ending time SO"and

resource request 4 is admitted. In this case the starting time and ending time of the session lie on

one node, Hence the updated segment tree will be as follows-

Now"consider a third session of starting time 30, ending time 180 and resource request 5 is

admitted. Here the starting time and ending time of the session lie on different node. Now the

updated segment tree will be as follows.

If a session arrived with starting point and ending point coincided with the existing segment's

starting point and ending point (that means starting point is coincided with the segment's starting

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 30

Figure 3.4: Construction of a segment tree

Figure 3.5: Inserting a session into the segment tree

point and ending point is coincided with the segment's ending point) then the height of the tree

will not be increased. The corresponding leaf nodes' available amount will be updated only in this

3.5 An IllustrativeExample

Consider a grid environment where two Principal Resource Managers (P RM) are working named

PRMt and PRM2• The provided resource list is R = {R[, R2• Ra ... R,.}. The participating

node listis N = {Nt, N2, Na ... Nn}. Figure 3.7 depicts the overall scenario of the system:

Here we can see the resource provided hy a specific node Nt. For each resource of Nt 1hereil,

a segment tree to maintain the available amount of resources in a specific time frame.

Now consider that Application At contains three jobs termed JIo J2 and la. Jt requires 25

units of resource Rt in time frame of (25. 45). Ji willsendtherequestto the PRM. PRMhave a

synchronized list of participating nodes. P RM will forward the query to the participating nodes.

Figure 3.8 depicts the scenario of the nodes and corresponding resource Rt. Here separate time

intervals and corresponding available amount of resource is shown with the leaf nodes.

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 31

Figure 3.6: Updating a segment tree

Figure 3.7: Overall system scenario

Here we can see Node N" N2• Naand N4 are providing resource RI• The corresponding data

structure is also shown in the figure. Here the query will be (RI, 25, 45). If this query is passed to

each node data structure, the reply is listed in Table 3.4.

After the search is completed. P RM will receive the above candidate list to serve the request

for RI. If the above candidate list with unit costs are supplied to the fractional knapsack problem

then the solution can be presented in Table 3.5

So an add request will be sent to Na and N4 and their corresponding segment tree will be

updated as shown in Figure 3.9. The updated resource usages are shown in black shades. This

concludes the resource reservation to the job. The application will then stlirtrunning according to

its starting time using these reserved resources.

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 32

0>15 15.20 211-4040.- 0.20 20.5050>70 70>- 0>5 5-15
5. 10 15 10 20 5 15 25 10 15

Figure 3.8: Node and its data structure

Table 3.4: Candidate nodes and available amount

Node Available Amount Description Unit Cost

Nt 10 minimum amount of time frame 4.0

(20,40) and (40, 00))

N2 5 amount of time frame (20, 50) 4.25

N3 15 amount of time frame (15, 00) 3.75

N4 20 amount of time frame (25, 60) 3.5

Table 3.5: Selected nodes from the candidate list

Node Amount Cost

N4 20 20 x 3.5 =70

N3 5 5 x 3.75 = 18.75

Minimum Total Cost 88.75

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 33

0-15 15-20 211-4040-m 0-20 20-5050-70 70-m
5 10 15 10 2/1 5 15 25

11-25
8

25-4
o

Figure3.9:Updatedsystem aftersel"Ving a request

3.6 Major Algorithms and Their Descriptions

3.6.1 Algorithms Related to Data Stmdure

The list of algorithms related to our data structure are given below with the operations they perform.

For details please refer to appendix D.

1. CreateNode(int start, int entl) - Create a single node of segment tree.

2. CreateSegment(Node n, intpt) - Create a segment into segment tree to add a resource request.

3. DeleteSegment(Node n, int start, int entl) - Delete a segment from the segment tree to delete

an accepted resource request after its successful completion.

4. UpdateAmount(Node n) - Update the available amount of specific resource in the segment

tree after adding or deleting of a resource request.

5. FindAvailable(int start, int end) - Find the available amount of specific resource in a time

frame specified by (start, end) from the segment tree.

6. AddRequest(Node n, int start, int end, double amount) - Add a request to the request list of

the segment tree.

7. DeleteRequest(Node n, int start, int end, double amount) - Delete a request from the request

list of the segment tree.

CHAPTER 3. ANEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 34

3.6.2 Algorithms Related to Resource Management Scheme

Algorithm 1: GetSelectedNodesFromCandidates(List<Node> candidates, Request request)
Output: Retrieve the selected list of node from the candidate list and send them update

request to optimize the overall cost for a resource request.

1 selededList <- empty

2 m <- request.amount

3 threshold <- 00 seconds

4 while current-time :s; request.requesUime + threshold do

II Start of Search Phase
i <- GetNextNodeForMi'niinumCiJst(candidates, request) II Findl'ng node
with minimum cost

5 Node n <- candidates[i]

6 available <- send...message(msg_query, AVAILABLE, n.nodeld, request)

II Finding the amount of available resource

7

8

II End of Search Phase
if available < m AND available> 0 then

Reply reply(request, n.nodeld, available)

II Begin of Reply Phase
II Resource available

10

11

if confirm> 0 then

I m <- m - confirm II Resource reserved

13 endif

14 else if available ~ m then

15 Reply lastreply(request, n.nodeld, m) II Resource available
16 lastconfirm <- send...message(msg_update, lastreply)

17 if lastconfirm > 0 then

18

19

m <- m - lastconfirm

ifm = o then
jretum

II Resource reserved

II Reservation Phase completed
21 endif

n endif

:13 endif

24 endw

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 35

Algorithm 2: GetNextNodeForMinimumCost(List<Node> candidates, Request request)
Output: Find out the next node to achieve cost optimization while replying a resource

request.

1 min +- 1

2 size +- candidates. size

3 for i +- 1 to size do

of N<Jde \'l;,<-e<mdiootes{iJ

5 Node nm +- candidates[min]

6 r,cost +- send..message(msg_query, COST, n,.nodeId, request)

7 rmcost +- send..message(msg_query, COST, nm.nodeId, request)

8 if r,cost < rmcost then

9 I min +- i

10 endif

11 endfor

12 retummin

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 36

Algorithm 3: receive..message(ms1l-type.msg_parameters)
Output: Receive the messages sent to nodes and performs the required operation.

1 node! d <- id of the receiver node

2 if msg.Jype = msg...query then

3 msg_query_id <- retrieve the id from msg_parameters

4 request <- retrieve the request from msg_parameters

5 if msgcquery_id = AVAILABLE then

resource
II Query for available

6

7

8

9

10

11

12

13

14

resource! d <- request.resource! d

startTime <- request.startTime. endTime <- request.endTime

return node.resourceList[resource! dj .segmentTree.

findAvailable(startTime, endTime)

endif

else if msg_query_id = COST then II Query for cost of resource

I resource! d <- request. resource! dreturn node.resourceList(resource! dj.cost

endif

15 endif

16 else if msg.Jype = msg_update then II Update request
17 reply <- retrieve the reply from msg_parameters

18 resourceJd <- reply.resourceld

19 startTime <- reply.startTime. endTime <- reply.endTime

20 amount <- reply. amount

21 actual <- node.resourceList(resource!dj.segmentTree.addRequest

22 (startTime, endTime, amount)

23

24

25

if actual > 0 then

I return actual

endif

II Update successful

~ else.

27 return 0 II Update not successful as there is no available
resource

28 enan
29 endif

CHAPTER 3. A NEW RESERVATION BASED RESOURCE MANAGEMENT SCHEME 37

3.6.3 Message ComplexityAnalysis

The procedure GetNextNodeForMinimumCost requires 2n messages where n is the total

number of candidate nodes in the grid. For the simplicity of the complexity analysis let us as-

sume that totaIh nodes among the n candidate nodes of the grid will serve the resource re-

quest where h ~ ~. So the average message complexity to reserve a particular resource using

Get8electedNodesFromCandidatesprocedurewillbeh(2n+2) = 2h(n+l) ~ 2x~x(n+l) ~

n(n + r) ~ O(n2J We assume that a job generally requires k distinct resources. So the average

message complexity to reserve all the resource requests of ajob is O(kn2).

PRM will maintain a synchronized list of all participating nodes. It is possible to store the unit

cost associated with each resource of each node in the PRM~'the space complexity willbe O(lmJ.
In that case 2n messages will not be needed for GetN extN odeForM inimumCost. Then the av-

erage message complexity to reserve a particular resource using Get8electedN odesFromCandidates

procedure will be 2h ~ 2 x ~ ~ O(n). So with O(lm) space complexity the average message

complexity to reserve all the resource requests of a job is O(kn).

Chapter 4

Simulation Results

In this chapter we present the simulation results of our proposed system. Through simulation

we study the behavior of our approach and evaluate its performance based on some performance

metrics. We also compare the performance of our approach to an existing system.

4.1 Modules of the Simulator

A simulator of the system is implemented using Java. The main motivations behind using Java are

object oriented support and platform independency.

The simulation is run using a computer having Intel Pentium-IV Dual Core 1.6OGHzprocessor,

2 GB of memory and Windows.XPopernling.system;

The major modules of the simulator are described below in the following subsections.

4.1.1 UtilityClasses

Utility classes created for the implementation of the simulator are listed as follows:

• Application: The Application class represents any application for grid computing environ-

ment.

• Job: Each application consists of a number of jobs. The Job class represents any job of an

application .

• Device: The Device class represents the computers that participate in the grid. It can also be

termed as Node.

38

CHAPTER 4. SIMULATION RESULTS 39

• Resource: The Resource class represents the resource for any device. The resource can be

processor, memory, disk etc.

• RequiredResource: The RequiredResource class represents the required resource of any job

for successful completion .

• RequiredResourceReply: For each RequiredResource for a job, there will be a set of devices

that wilt provide the resource. The RequiredResourceRepty class represents that information.

• Request: The Request class is used to store the request in the corresponding data structure .

• ApplicationJobResponse: The ApplicationJobResponse class is used to store the responses

of any resource request.

4.1.2 Data Structure

Data structures developed for simulation are listed as follows:

• Segment Tree: As described before, segment tree is used for the proposed system. Segment

tree is developed and modified to support reservation for multiple resources.

• Calendar Queue: Calendar Queue is developed to build the system with which we compare

our proposed system.

4.1.3 Event Simnlator

A discrete time event simulator is implemented. The simulator will simulate according to the entry

and exit time of a job of an application. For the main scheme of the simulator please refer to

appendixE.

4.2 Simulation on Randomly Generated Data

To evaluate the performance of the proposed scheme for different policy rules we run the simulation

on randomly generated data. The randomly generated data are given below.

• DeviceList: The list of all the participating computing nodes or devices .

• ResourceList: The list of all the resources provided by the computing nodes in the grid.

CHAPTER 4. SIMULATION RESULTS 40

• DeviceResourcelist : The list of all the participating computing nodes or devices with in-

formation of their provided resources .

• ApplicationJoblist: The list of all the applications with their corresponding jobs in the grid .

• JobResourcelist: The list of resource requirements of all the jobs in the grid.

Please refer to appendix A for the content of the randomly generated data.

4.2.1 Node Selection Rules

The following rules are considered for assigning priority in selecting the next node to serve the

request.

• Max-Res: This rule prioritizes the nodes that have maximum available resource. In this way

number of connection establishment can be reduced .

• Min-Res: This rule prioritizes the nodes that have minimum available resource. In this way

number of connection establishment can be increased .

• Min-Cost: This rule prioritizes the nodes that have the cost to minimize total cost.

4.2.2 MeasurementMetrics

The memcs considered for evaluation are Tota/Connection and Tota/Cost. We have also considered

total memory consumption and running time.

TotaLConnection:The term TotaLConnection means the number of nodes required to completely

serve a request. The requesting node needs to connect to these nodes. That is why we termed it as

Tota/Connection.

TotaLCost:The term 'TotaLCostmeansthe total cost required to completely serve a request. This is

the summation of all the individual cost of different nodes that serves the request.

4.2.3 Analysis of the Result

From the result shown in Figure 4.1 and 4.2 we observe that our proposed rule Min-Cost for

resource allocation always provides optimized cost. But while doing so it also guarantees that

the total number of connection will be closely similar to the minimum possible provided by rule

Max-Res. We use Min-Cost rule for our proposed resource management scheme.

CHAPTER 4. SIMULATION RESULTS 41

18
16

:;'4
.~ 12

2 108 a-
! 6
{! 4

2_

°

a Application-1
a Application-2
• Application-3

Max-Res
Rule

Min-Res Min-Cost
Rule Rule

Figure 4.1: Comparison of three rules with respect to TotalConnection

5°0
450
400

tl 350
~ 3-00
ii 25°
0- 200
••. '50

100
50
o

Max-Res Min-Res Min-Cost
Rule Rule Rule

a Application-l
a Application-z
a Application-3

Figure 4.2: Compmisonofthreerulel; with respect to TotalCost

4.2.4 Comparison with Sulistio's Resource Management Scheme

We compare our system with an existing system for resource management in grid computing. The

work done by Sulistio et al. [22] is the most appropriate to compare. This work provides a new data

structure for reservation using the Calendar Queue. In Sulistio's system there is no consideration

of cost so a default cost model needs to be assumed. We have implemented Sulistio's System in

our simulator and simulation is run on the randomly generated data. The result is presented in

Figure 4.3 and 4.4.

Aswe cansee-fromFigure-4.3 and4.4; oorproposed system outperforms the system developed

by Sulistio with a large margin for Tota/Cost. If we have a look at the Tota/Connection then we

see that they differ with a very small margin. We developed Sulistio's system to minimize the

TotdlConneetion -by giving priority to the next device to be selected according to the rule Max-

Res described before. It is guaranteed that SuIistio's system's Tota/Connection will be minimized.

CHAPTER 4. SIMULATION RESULTS

c ~4.2tr ~2••c ~oc..9 8
! 6
{!.

4
2

o

a Application-~

a Application-2

• Application-3

42

Sulistio's
System

Proposed
System

Figure 4.3: Comparison of Sulistio's system with our proposed system with respect to TotaiCon-

nection

450

400

100

50
o

Sulistio's
System

Proposed
System

a Application-l

a Application-2

• Application-3

Figure 4.4: Comparison of Sulistio's system with our proposed system with respect to TotalCost

But our system's success is that it can achieve minimum cost solution to serve a grid request thus

TotalConnection differs from the minimum one by very small values for all the applications. In

some cases they are equal. These we observed for all three sample applications:

The memory consumption of our proposed system is also less than Sulistio's system. The main

reason of this is to use of an efficient data structure to represent available amount of grid resources

over different time intervals. oUr proposed system's data structure dbes not depend on the size

interval. But the data structure proposed by Sulistio highly depends on the size of the interval. To

make the reservation effective it is required to use small sized interval. Although the initial memory

requirement of the Sulistio's system may be slightly better than the newly proposed system but with

the increasing number of intervals the memory requirement will increase with the advancement of

CHAPTER 4. SIMULATION RESULTS

Figure 4.5: Memory consumption of Sulistio's system

5M ..

43

Figure 4.6: Memory consumption of our proposed system

time. Figure 4.5 and Figure 4.6 present the total memory consumption of Sulistio's system and

our newly proposed system. The figures are obtained from the memory profiler of NetBeans IDE.

In these figures Heap Size leptesellts total avaitable memO!y and Used Heap represents total used

memory. Table 4.1 shows the actual memory consumption with respect to time.

Table 4.1: Memory Consumption

Initial After 5 seconds After 10 seconds After 15 seconds

Sulistios System 1.8MB 2.8MB 3.5 MB 4.2MB

Proposed System 2MB 2.3 MB 2.5MB 3MB

4.3 Simulation on Real Workloads

In this section we present simulation results using real workload data for grid. Parallel Workloads

Archive contains an archive of information regarding the workloads on parallel machines and grids

CHAPTER 4. SIMULATION RESULTS 44

. It contains raw workload logs from various machines around the world. The goal is to make this

information freely available to the researchers interested in the evaluation of parallel and grid

systems, and specifically schedulers for such systems. In addition, there is a bibliographical listing

of papers related to-workload issues, and a list of people working intlie field (3-},

4.3.1 ChosenWorkloads

We choose three workloads. They are :

• DAS2-fsO : DAS-2 (Distributed ASCI Supercomputer) is a wide-area distributed cluster

designed by the Advanced School for Computing and Imaging (ASCI). The DAS-2 machine

is used for research on parallel and distributed computingbyfiveDuteb universities. nAS"2

consists of five clusters, located at the five universities. The DAS-2 system is funded by

NWO (the Netherlands organization for scientific research) and the participating universities

[1):

• LPC-EGEE :LPC stands for 'Laboratoire de Physique Corpusculaire' (Laboratory of Cor-

puscular Physics) of University Blaise-Pascal, Clermont-Ferrand, France. LPC is a cluster

that is part of the EGEE project (Enabling Grids for ECscience in Europe)~ It is used mostly

for biomedical and high-energy physics research.

• SDSC-BLUE: The San Diego Supercomputer Center (SDSC) is a strategic resource to sci-

ence, industry and academia, offering leadership in the areas of data management, grid com-

puting, bioinformatics, geoinformatics, high-end computing as well as other science and

engineering disciplines. The mission of SDSC is to extend the reach of scientific accom-

plishments by providing tools such as high-performance hardware technologies, integrative

software technologies and deep inter-disciplinary expertise, to the community. SDSC is a pi-

oneer in grid computing and a leader in the national effort to bnilda comprehensive modern

cyber infrastructure [7].

The configurations of these workloads are given in Table 4.1. The main reason behind choosing

these three is that these workloads have been considered by Sulistio in their simulation. The major

configuration properties of the workloads are given in Table 4.1.

CHAPTER 4. SIMULATION RESULTS

Table4.2: Chosen worldoads-andtheir-COIlfigurations

45

Workload Total Node Processor RAM per node OS

DAS2-fsO 72 DuallGHz Pentium-Ill 1GB RedHat Linux

LPC-EGEE 70 Dual3GHz Pentium-IV Xeons 1GB Scientific Linux

SDSC-BLUE 144 Eight core 375MHz Power3 4GB RedHat Linux

4.3.2 Standard Workload Format

The standard workload format (swt) of Parallel Workloads Archive was defined in order to ease

the use of workload logs. With it, programs that analyze workloads or simulate system scheduling

need only be able to parse a single format, and can be applied to multiple workloads. The standard

workload format abides by the following principles:

• The files are portable and easy to parse.

- Each workload is stored in a single ASCII file.

- Each job (or roll) is represented by a single line in the file.

- Lines contain a predefined number of fields, which are mostly integers, separated by

whitespace.Fieldstharareirrelevantfou- specific-log-onnodel appear with -avalUe-of.

-1.

- Comments are allowed, as identified by lines that start with a';'. In particular, files are

expected to start with a set of header comments that define the environment or model.

• The format is completely defined, with no scope for user extendability. Thus it is guaranteed

to be able to parse any file that adheres to the standard, and multiple competing and incom-

patible extensions are avoided: If experience shows that important attributes have been left

out, they will be included in the future by creating an updated version of the standard.

The details of the data fields of the log are presented in appendix C. Among the data fields the

the important fields for our system are shown in Table 4.2.

The main input for our simulation is ApplicationJobList and JobResourceList that are described

before. We need to write parsers for the workload to migrate the data for our system.

For each entry in the workload we insert the following entries:

CHAPTER 4. SIMULATION RESULTS

Table4,:l: Important data fields of workload

46

Field Description Unit

Job Number This is the job number starting from 1. integer

Submit Time The submittal time of the job. seconds

Run Time The clock time the job was running. seconds

. Requested Number of Processors . This is the requested number ofprocessors. inte~er

Requested Memory This is the total requested memory. kilobytes

Application Number This is the application number. integer

1. An entry to the ApplicationJobList will be by replacing (ApplicationId, JobId, Time, Type)

with (ApplicationNumber, JobNumber, SubmitTime, 'S') of the workload for starting of any

job;

2. An entry to the ApplicationJobList will be by replacing (ApplicationId, JobId, Time, Type)

with (ApplicationNumber, JobNumber, SubmitTime + RunTime, 'E') of the workload for

ending of any job.

3. An entry to the ApplicationJobList will be by replacing (ApplicationId, JobId, ResourceId,

Amount) with (ApplicationNumber, JobNumber, 1, RequestedNumberofProcessors) of the

worklbad'for processor requirement of any job.

4. An entry to the ApplicationJobList will be by replacing (ApplicationId, JobId, ResourceId,

Amount) with (ApplicationNumber, JobNumber, 2, RequestedMemory) of the workload for

memory requirement of any job.

4.3.3 Evaluation with Respect to TotaiCost and TotaiConnection

We simulate our proposed system and Sulistio's system using the above mentioned three work-

loads. We consider 50 sample applications. The results are shown below:

In Figure 4.7 to Figure 4.9 we observe that the Tota/Connection of Sulistio's system and our

proposed system are equal for most of the applications. There are .differences.in1otaLConnection

for a few applications [3 applications in Figure 4.7 and 4 applications in Figure 4.9]. Here differ-

ence occurs for those applications whose jobs require huge amount of resources compared to the

CHAPTER 4. SIMULATION RESULTS

,

•

47

• Existing System
• Our System

o

Application Id

Figure 4.7: TotalConnection required for workload DAS2fsO using Sulistio's system and our pro-

posed system

,.,

• bIslinll System

• Our System

Application Id

Figure 4.8: TotalConnection required for workload LPC-EGEE using Sulistio's system and our

proposed system

CHAPTER 4. SIMULATION RESULTS 48

'00

'"
m

S 100'B~~
S SO

j 00

"
"

• £xIsti"ll Syswm

• Our System

o

Application Id

Figure 4.9: TotalConnection required for workload SDSC-BLUE using Sulistio's system and our

proposed system

>0000

"COO

moo

,-
~

~
.000

• iJlJ5ting System

'000 • Our System

.coo

'coo

0

1 2. " -4 5 6 7 8 9 10111213141516-171819202122232425262728293031323334353&37383940414243444541>474849-50

Application Id

Figure 4.10: TotalCost required for workload DAS2fsO using Sulistio's system and our proposed

system

CHAPTER 4. SIMULATION RESULTS 49

'00000

."'"
''''''
""'"

! ''''''
u

j
50000

""""
''''''
,.."
''''''

• , 2

Application Id

• &fstIngSystem
• Our System

Figure 4.11: TotalCost required for workload LPC-EGEE using Sulistio's system and our proposed

system

,,,...

.&fstIng System

• Our System

"'''''''

•
1 2 3 4 5 6 7 8 9 ro 11 12 13 « 15 16 U 18 ~ ro n n 23 ~ n U v 26 29 ~

Application Id

Figure 4.12: TotalCost required for workload SDSC-BLUE using Sulistio's system and our pro-

posed system

CHAPTER 4. SIMULATION RESULTS

4.3.4 Analysis of the Result

50

Tota/Cost of our system will be guaranteed minimum as we use fractional knapsack to minimize

the total cost. But the interesting point is the margin it varies from Sulistio's system. The Tota/Cost

of our proposed system is much less than Sulistio's system for all the workloads. Tota/Connection

of our system will not be minimum because we consider minimizing the Tota/Cost. But we tried

to maintain Tota/Connection as small as possible so that the increasing TotalConnection will not

be a bottleneck. It is observed from the presented charts that we achieve the goal to maintain the

difference as minimwn as possible. For almost all the workloads Tota/Connection for Sulistio's

system and our proposed system are same. This is because the nodes that provide the resources

in a grid environment are mostly of same configurations and the jobs of the applications in a

grid nonnaHy requues similar amount of resources. Grid applications are nmmaHy broken down

into similar type of jobs by the job broker so that the application gets fair share of the resources.

The details of how the job broker works is out of our research scope. In the grid environments

most of theapptications are similar in nature; So the job broker usually breaks down all the

applications to same types of jobs where each job requires similar amount of resources. In that

cases Tota/Connection for Sulistio's system and our proposed system are the same. Sometimes

there are exceptions in the worldoads where a big sized application that requires huge amount of

resource is broken down into a single job. This might happen due to the constraint the application

cannot to broken down into small jobs. Now consider a scenario where a particular node with

thecompmatively higher unit cost has the highest available resource, ACCOldillgto our proposed

algorithm this particular node will not be chosen for consuming all the resources. But the Sulistio's

CHAPTER 4. SIMULATION RESULTS 51

algorithm will consume this resource to maintain Tota/Connection minimum. That is why we

observe substantial difference in Tota/Connection in several exceptional cases. But generally it is

observed that this difference is negligible.

4.3.5 Running Time Comparison

The running time of Sulistio's system and our proposed system are given in Table 4.3. Here the

running time is the total time to incorporate all the sample applications. We can observe that the

running time of our proposed system is also better than Sulistio's system. The main reason behind

this is the use of appropriate data structures and efficient algorithms in our proposed system.

Table 4.4: Runtime comparison

Workload Running Time in Sulistio's System Running Time in Our System

DAS2-fsO 56 seconds 52 seconds

LPC-EGEE 40 seconds 37 seconds

SDSC-BLUE 61 seconds 60 seconds

Chapter 5

Conclusion

In this last chapter, we draw the conclusion of our thesis by describing the major contributions

made by the research works associated with the thesis followed by some directions for future

research over the issue.

5.1 Major Contributions

The contributions that have been made in this thesis can be enumerated as follows:

• The main contribution of this thesis work is to design a resource management system for

grid computing that is able to work in real world complex grid architecture. It works in a

.distributed manner and uses appIOpriate and efficient data structures to represent the grid

architecture. It has support for both instant request acceptation/rejection and future resource

reservation for any job of grid systems. It can optimize the overall performance by reclaim-

ing unused resources after a threshold time. In brief it is a complete resource management

Bystem with reservation support for grid computing.

• The resource management system also optimizes the cost by choosing the appropriate set

from a list of possible resource providers by mapping the problem to a well known cost

optimization problem. Grids are used as a volunteer service now days. But with the recent

improvements in grid architecture and usage, situation will not be the same. Cost for provid-

ing resource as services will playa significant role in near future when resource sharing will

be popular and inevitable. But so far there is no work regarding cost optimization model for

grid computing. We here introduce a novel rost optimized model for grid resources.

52

CHAPTER 5. CONCLUSION 53

• We achieve cost optimization by mapping our resource allocation problem to well known

fractional knapsack problem. The application of fractional knapsack problem to grid com-

puting is a new idea. We believe that many optimization algorithms can be mapped to grid

systemS- There is no need to find complex algorithms for grid rather it. would. be better to

work to fit existing algorithms to grid environments .

• We performed the detailed performance evaluation of our resource management system and

compared with an existing system using real workload traces like DAS2-fsO, LPC-EGEE

and SDSC-BLUE provided by Parallel Workload Archives. The performance of our system

in terms of total number of connection established, total cost, memory usage and running

time are analyzed and then compared with the existing one .

• After a rigorous simulation based study of various performance issues, we found that our

system outperforms the existing system in most of the cases including total cost, memory

usage and running time.

5.2 Future Directions of Further Research

Any research on any topic always makes a way to further research. Ours is not an exception.

Resource management is one of the core parts of grid computing. It is not a new research area for

grid computing but still there are lot of challenges and unsolved problems. Some of future research

areas of resource management in grid are given below

• Managing resources with negotiation is one of the open issues in grid resource. manage-

ment. Sometimes effective negotiation for flexible quality of service (QoS) can ensure more

acceptedjobsin grid system with full resource utilization .

• We introduce a cost optimization model for resource management in grid computing. Future

works can be done here to incorporate negotiation for cost between resource provider and

resource requester (applications or jobs).

• The computing nodes that provide resource for grid also run local applications in their own

operating environment. Works can be done how to optimally balance the distribution of

resources for local and grid applications 50 that the local applications can not be affected by

its services provided to the grid.

CHAPTER 5. CONCLUSION 54

• Future works can be done on resource management by considering the topology of the grid.

In that case communication bandwidth requirement and latency will affect the resource man-

agement techniques.

Bibliography

[I] The Distributed ASCI Supercomputer 2(DAS-2). http://www.cs.vu.nl/das2/.

[2] AccessGrid. http://www .accessgrid. org/.

[3] Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/

workload.

[4] Jon Bentley. Solution to klee's rectangle problems. Techical Report, Carnegie-Mellon Uni-

versity, Pittsburgh, 1975.

[5] Andrej Brodnik and Andreas Nilsson. Static data structure for discrete advance bandwidth

reservations on the internet. Computer Research Repository(CoRRJ, cs.DS/030804I, 2003.

[6] Lars-OlofBurchard. Analysis of data structures for admission control of advance reservation

requests. IEEE Transactions on Knowledge and Data Engineering, 17(3):413-424,2005.

[7] San Diego Supercomputer Center. http://www . sdsc. edu/.

[8] Texas Advanced Computing Center. http://www . tacc. utexas .edu/.

[9] Liang Chen and Gagan Agrawal. A static resource allocation framework for grid-based

streaming applications: Research articles. Concurrency and Computation: Practice & Expe-

rience, 18(6):653-666,2006.

[IO] eDiaMoND Grid Computing Project. http://www.ediamond.ox.ac .uk/.

[II] Distributed European Infrastructure for Supercomputing Applications. http://http : / /

www.deisa.org/.

[12] Ian Foster. The grid: A new infrastructure for 21st century science. Physics Today, 55(2):42-

47,2002.

55

http://www.cs.vu.nl/das2/.
http://www.cs.huji.ac.il/labs/parallel/
http://www.ediamond.ox.ac
http://www.deisa.org/.

BmLIOGRAPHY 56

[13] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infrastructure.

Morgan Kaufmann Publishers, San Francisco, CA, 1998.

[14] Ian Foster, Carl Kesselman, Craig Lee, Bob Lindell, Klara Nahrstedt, and Alain Roy. A

distributed resource management architecture that supports advance reservations and co-

allocation. In In Proceedings of the International Workshop on Quality of Service, pages

27-36, 1999.

[15] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. Grid services for distributed

system integration. IEEE Computer, 35(6):37-46, 2002.

[16] Ellis Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms. Computer Science

Press, 1978.

[17] Wolfgang Hoschek, Francisco Javier Jilen-Martlnez, Asad Samar, Heinz Stockinger, and Kurt

Stockinger. Data management in an international data grid project. In GRID '00: Proceedings

of the First IEEElACM International Workshop on Grid Computing, pages 77-90, London,

UK, 2000. Springer-Verlag.

[18] 1. Joseph, M. Ernest, and C. Fellenstein. Evolution of grid computing architecture and grid

adoption models. IBM Systems Journal, 43(4):624-645, 2004.

[19] National Institute of Advanced Industrial Science and Technology(AIST). http://www .

aist .go. jp/ index_en. html.

[20] R.Parra-Hernandez, D. Vanderster, and N. J. Dimopoulos. Resource management and !map-

sack formulations on the grid. In GRID '04: Proceedings of the 5th IEEElACM International

Workshop on Grid Computing, pages 94-101, Washington, DC, USA, 2004. IEEE Computer

Society;

[21] Warren Smith, Ian Foster, and Valerie Taylor. Scheduling with advanced reservations.

In In Proceedings of IEEE International Parallel and Distributed Processing Sympo-

sium(IPDPS)OO;pages 127-B2, 2000.

[22] Anthony Sulistio, Uros Cibej, Sushi! K. Prasad, and Rajkurnar Buyya. Garq: An efficient

scheduling data structure for advance reservations of grid resources. International Journal of

Parallel, Emergent and Distributed Systems, 24(I): 1-19, 2009.

BIBLIOGRAPHY 57

[23] lianbing Xing, Chanle Wu, Muliu Tao, Libing Wu, and Huyin Zhang. Flexible advance

reservation for grid computing. In Grid and Cooperative Computing(GCC), pages 241-248,

2004.

[24] Qing Xiong, Chanle Wu, lianbing Xing, Libing Wu, and Huyin Zhang. A linked-list data

structure for advance reservation admission control. In In Proceedings of 3rd International

Conference on Networking and Mobile Computing(ICCNMC), pages 901-910, 2005.

[25] Kun Yang, Xin Guo, Alex Galis, Bo Yang, and Dayou Liu. Towards efficient resource on-

demand in grid computing. ACM SIGOPS Operating Systems Review, 37(2):37-43, 2003.

[26] lie Yin, Yuexuan Wang, Meizhi Hu, and Cheng Wu. Predictive admission control algorithm

for advance reservation in equipment grid. In SCC '08: Proceedings of the 2008 IEEE In-

ternational Conference on Services Computing, pages 49-56, Washington, DC, USA, 2008.

IEEE Computer Society.

[27] Lihua Yuan, Chen-Khong Tham, and Akkihebbal L. Ananda. A probing approach for effec-

tive distributed resource reservation. In QoS-IP 2003: Proceedings of the Second Interna-

tional Workshop on Quality of Service in Multiservice IP Networks, pages 672--688, London,

UK, 2003. Springer-Verlag.

[28] Yang Zhang, liannong Cao, Xiaolin Chen, Sanglu Lu, and Li Xie. Threshold-based admis-

sion control for a multimedia grid: analysis and performance evaluation: Research articles.

Concurrency and Computation: Practice &Experience; 18(l4):1747-1758, 2006.

Appendix A

Randomly Generated Data for Simulation

Table A.I: DeviceList

DeviceId Name Description

I D1 Device-I

2 D2 Devicec2

3 Da Device-3

4 D4 Device-4

5 D5 Device-5

6 Ds Device-6

7 D7 Device-7

8 Dg Device-8

9 Dg Device-9

10 DlO Device-1O

Deviceld: a unique identifier of a device.

Name: name of the device.

Description: description of the device.

Table A.2: ResourceList

I ResourceId I Name 1__ D_es_cn_'p_ti_'o_n__

58

APPENDIX A. RANDOMLY GENERATED DATA FOR SIMULATION

I R1 Resource-I

2 R2 Resource-2

3 R3 Resource-3

4 R4 Resource-4

5 R5 Resource-5

Jleour~eld: a unique identifier of a resource.

Name: name of the resource.

Description: description of the resource.

Table A.3: DeviceResourceList

Deviceld Resourceld Amount Cost Deviceld Resourceld Amount Cost

I I 8 5 6 I 8 4

I 2 8 4 6 2 8 3

t 3 8 3 6 3 8 5

I 4 8 3 6 4 8 3

I 5 8 4 6 5 8 5

2 I 8 5 7 I 8 3

2 2 8 3 7 2. 8 4

2 3 8 4 7 3 8 4

2 4 8 4 7 4 8 3

2 5 8 5 7 5 8 5

3 1 8 5 8 1 8 5

3 2 8 5 8 2 8 4

3 3 8 4 8 3 8 3

3 4 8 4 8 4 8 4

3 5 8 4 8 5 8 3

4 I 8 3 9 I 8 5

4 2 8 3 9 2 8 5

59

APPENDIX A, RANDOMLY GENERATED DATA FOR SIMULATION

4 3 8 4 9 3 8 3

4 4 8 4 9 4 8 5

4 5 8 3 9 5 8 4

5 1 8 5 10 1 8 5

5 2 8 4 10 2 8 5

5 3 8 3 10 3 8 4

5 4 8 4 10 4 8 3

5 5 8 5 10 5 8 4

Deviceltl: a unique identifier of a device.

Resourceld: a unique identifier of a resource.

Cost: unit cost associated with the resource.

Table A,4: ApplicationJobList

Applicationid .JobId JobName Type Time Status

I I AlJI S 30 p

I I AlJI E 60 p

1 2 AIJ2 S 61 P

1 2 AIJ2 E 100 P

I 3 AlJ3 S 101 P

1 3 AIJ3 E 150 P

2 1 A2Jl S 140 P

2 1 A2J1 E 145 P

2 2 A2J2 S 146 P

2 2 A2J2 E 195 P

2 3 A2J3 S }% P

2 3 A2J3 E 205 P

3 1 A3J1 S 30 p

3 1 A3J1 E 50 P

60

APPENDIX A. RANDOMLY GENERATED DATA FOR SIMULATION 61

3 2 A3J2 8 51 P

3 2 A3J2 E 60 P

3 3 A3J3 8 61 P

3 3 A3J3 E 150 P

Applicationld: a unique identifier of an application.

.Jobld: a uniqueldentifier on a job of an application.

JobName: name of the job.

Type: type represents the entry or exit of a job. 'E' represents entry and '8' represents exit.

Tiine: time represents the time measure of the entry or exit.

Status: status is used to keep track whether the specific row's information is processed

or not. 'P' represents Processed and 'NP' represents Not Processed.

Table A.5: JobResourceList

. ApplicationId JobId ResourceId Amount

1 1 1 10

1 1 3 20

} 2 } 15

1 2 2 15

1 2 4 20

1 3 1 10

1 3 3 10

2 1 1 5

2 1 . 2 5

2 1 3 10

2 I 5 5

2 2 2 10

2 2 4 5

2 3 1 10

APPENDIX A. RANDOMLY GENERATED DATA FOR SIMULATION

2 3 3 5

2 3 5 10

3 I 1 4

3 1 2 3

3 1 3 6

3 2 1. 5

3 2 5 10

3 3 3 5

3 3 4 6

3 3 5 10

Applicationld: a unique identifier of an application.

Jobld: a unique identifier on a job of an application.

Resourceld: a unique identifier of a resource.

Amount: total amount of specific resource needed by the job.

62

Appendix B

Results of Simulation on Randomly

Generated Data

Table B.l: Evaluation of Max-Res on randomly generated

data

Applicationld TotalConnection TotalCost

I 16 404

2 n 257

3 II 204

Table B.2: Evaluation of Min-Res on randomly generated

data

Applicationid TotalConnection TotalCost

1 17 436

2 t5 2&3

3 13 202

63

APPENDIX B. RESULTS OF SIMULATION ON RANDOMLY GENERATED DATA 64

Table B.3: Evaluation of Min-Cost on randomly generated

data

ApplicationId . TotaiConnection TotalCost

I 16 300
2 13 195
3 t2 t47

Table B.4: Evaluation of the Sulistio's system on randomly

generated data

ApplicationId TotaiConnection TotaiCost

I 15 402
2 13 255
3 10 202

Table B.5: Evaluation of our proposed system on randomly

generated data

ApplicationId TotalConnection TotalCost

I 16 300
2 13 195
3 12 147

Appendix C

Data Fields of the Workload Traces

Table C.I: Data fields of the workload

Field Description Unit

Job Number Job number starting from 1. integer

Submit Time Submittal time the of the job. seconds

WaitTnne -Difl'eJ:encebetween the -job's sub- -seconds

mit time and the time at which it ac-

tually began to run.

Run Time Clock time the job was running. seconds

Number of Allocated Processors Number of processors the job uses. integer

Average CPU Time Used Average over all processors of the seconds

CPU time used.

Used Memory Total used memory by a job. kilobytes

.RequestedNumbel; of Pr~ .Requested number of processors. ..integ«

Requested Time Runtime (measured in clock) or av- seconds

erage CPU time per processor.

Requested Memory . Total requested memory. .-lUIo1>ytes

Status Status of the job. integer

UserID Identifier of the user of the job. integer

GroupID Identifier of the group of the user. integer

Application Number Application number. integer

65

APPENDIX C. DATA FIELDS OF THE WORKLOAD TRACES

.Queue Number Queue number. integer

Partition Number Partition number. integer

Preceding Job Number Number of a previous job in the integer

workload, such that the current job

can only start after the termination

of thisprecedingjob.

Think Time from Preceding Job Number of seconds that should seconds

elapse between the termination of

the preceding job anltthe submittal

of this one.

66

AppendixD

Details of the Algorithms Related to the

Data Structure

Algorithm 4: CreateNode(int start, int end)
Output: Create a single node of segment tree

1 Create a node n

z n.startTime +- start

3 n.endTime +- end

67

APPENDIX D. DETAILS OF THE ALGORITHMS RELATED TO THE DATA STRUCTURE68

Algorithm 5: CreateSegment(Node n,int pI)
Output: Create a segment into segment tree to add a resource request

1_ if n.left = null and n.right = null then

2 if n.startT/me <pt and n.endT/me > pt then

3 n.midPoint +- pt

4- n.left-+- CreateNode{n.starlTime,pt}

5 n.right +- CreateNode(pt, n.endTime)

6 endif

7 else

8 I do nothing

9 endif

10 endif

uelse

12 -if pt <Il.midPoint~_

13 In+- Create8egment(n.left,pt)

14 endif

15 else if' pt > n.midPoint then

16 In+- Create8egment(n.right,pt)

17 endif

18 else

19 I do nothing

20 endif

21 endif

n returnn

APPENDIX D. DETAILS OF THE ALGORITHMS RELATED TO THE DATA STRUCTURE69

Algorithm 6: DeleteSegment(Node n,int start,int end)
Output: Delete a segment from the segment tree to delete an accepted resource request after

its successful completion

1 if (start < n.startTzme and end < n.endTzme) or

2 (start> n.startTzme and end> n.endTzme) then

"3 j Ietaln"

4 endif

5 if n.left = null and n.right = null then
6 if start::; n.startTrmeand7l:endTrme~ end then

7 I update available amount

8 endif

9 endif

10 else

11 DeleteSegment(n.left, start, end)

u DeleteSegment(n.right, start, end)

13 endif

APPENDIX D. DETAILS OF THE ALGORITHMS RELATED TO THE DATA STRUCTURElO

Algorithm 7: UpdateAmount(Node n)
Output: Update the available amount of specific resource in the segment tree after adding

or deleting of a resource request

1 requestList +-list of all accepted Request

2 if n = null then

3 j return

4 endif

5 if n is a external node then

6 .decrease +- .()

7 foraU the Request r in requestList do

8 if n.startTime ~ r.startTime and n.endTime :5 r.endTime then

9 1 decrease +- decrease + r.amount

10 endif

11 endfall

12 n.availableAmount +- n.availableAmount - decrease

13 endif

14. UpdateAmount(n.lejt)

15 UpdateAmount(n.right)

APPENDIX D. DETAILS OF THE ALGORITHMS RELATED TO THE DATA STRUCTUREll

Algorithm 8: FindAvailable(int start,int end)
Output: Find the available amount of specific resource in a time frame specified by (start,

end) from the segment tree

1 min <- maximum integer value

2 eList <- list of all external or leaf nodes

4 if (start < e.startTimeand end < e.endTimeand end:5 e.startTime)or (start>

e.startTimeand end > e.endTimeand start 2: e.endTime)then

5 I do nothing
6 endif

7 else

8 if e.availableAmount< min then

9 I min <- e.availableAmount

10 endif

11 endif

12 endfall

13 return min

Algorithm 9: AddRequest(Node n, int start, int end, double amount)
Output: Add a request to the request list of the segment tree

1 requestList <- list oj all accepted Request

2 Create a new Request r with startTime <- start, endTime <- end and

amount <- amount

3Create8egment(n, start)

4 CreateSegment(n, end)

5 UpdateAmount(n)

6 ietuillaetuat amount of the added request

APPENDIX D. DETAILS OF THE ALGORITHMS RELATED TO THE DATA STRUCTURE72

Algorithm 10: DeleteRequest(Node n, int start, int end, double amount)
Output: Delete a request from the request list of the segment tree

1 eList <- list of all external ar leaf nodes

z foraU the Node n in eList do

3 if n.stanTime = stan and n.endTime = end then
4 n.availableAmmmt <- n.availab/eAmmmt + ami7rmt

5 weak

6 endif

7 endfaU

•

•

AppendixE

Main Scheme of the Simulator

73

APPENDIX E. MAIN SCHEME OF THE SIMULATOR

Algorithm 11: MainSchemeO
Output: Coordinate resource management by taking new event from the event simulator

and .process their resource request

1 deviceList +- GetDeviceListWithResourcesO

1 es +- new EventSimulatorO

3 white es.lrasNext() do

4 appList +- es.nextO

5 foraU the Application a in appList do

6 fornU the Job j in a.jobList do

7 foraU the RequiredResource r in r.resourceList do

8 ifj.status = 'S'then

9 replyList +-

74

ResourceAllocatianScheme.getAllocatianC andidates(r, deviceList)

10 foraU the RequiredResourceReply rr in replyList do

11 I ResourceAllocatianScheme.allocate(deviceList, rr)

11 endfall

13 endif-

14 else ifj.status = 'E'then

15 I ResourceAllocationScheme.deallocate(deviceList, r)

16 endif

17 endfall

18 endfaU

19 endfall

10 endw

.
I

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085

