
Design of a Non-ambiguous Predictive Parser for BangIa Natural Language
Sentence with Error Rec!,very Capability

by

Fazle Elahi Faisal
Roll No: 040505037P

A thesis submitted for the partial fulfillment of the requirement for the degree of
Master of Science in Computer Science and Engineering (M. Sc. Engg.)

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

•

-,

. Department of Computer Science and Engineering (CSE)
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

(BUET)
Dhaka - 1000, Bangladesh

December, 2008

"1
<

G

The thesis titled "Design of a Non-ambiguous Predictive Parser for BangIa Natural
Language Sentence with Error Recovery Capability", submitted by Fazle Elahi
Faisal, Roll No: 040505037P, Session: April 2005, has been accepted as satisfactory
in partial fulfillment of the requirement for the degree of Master of Science in
Computer Science and Engineering (M. Sc. Engg.) on December 31, 2008.

BOARD OF EXAMINERS

1.

2.

3.

4.

5.

Dr. Muhammad Masroor Ali
Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology
Dhaka - 1000, Bangladesh

9xw-~
Dr'MClSaidur Rahman
Professor and Head
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology.
Dhaka - 1000, Bangladesh

I~_'
Dr. M. Kaykobad
Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology
Dhaka ~ 1000, Bangladesh

D . Md. Humayun Kabir
Associate Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology
Dhaka - 1000, Bangladesh

~

Dr. Mohammad Zahidur Rahman
Associate Professor
Jahangirnagar University
Savar, Dhaka, Bangladesh

Chairman
(Supervisor)

Member
(Ex-officio)

Member

Member

Member
(External) D

CANDIDATE'S DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted
elsewhere for the award if any degree or diploma.

Signt:t~::te
Fazle Elahi Faisal
Roll No: 040505037P

TO MY PARENTS

1

2

Table of Contents

Introduction
1.1 Machine Translation
1.2 MT Process
1.3 MT Techniques

1.3.1 Rule-based Machine Translation
1.3.1.1 Transfer-based Machine Translation
1.3 .1.2 Inerlingual Machine Translation
1.3.1.3 Dictionary-based Machine Translation

1.3.2 Statistical Machine Translation
1.3.2.1 Word-based Machine Translation
1.3.2.2 Phrase-based Machine Translation
1.3.2.3 Syntax-based Machine Translation

1.3.3 Example-based Machine Translation
1.4 Word Sense Disambiguation
1.5 Applications of Machine Translation
1.6 Parsing
1.7 Machine Translation in Bangia

1.7.1 Prospective Applications of BangIa Translation
1.7.1.1 Social or Political Application
I.T 1.2 Commercial Application
I. 7.1.3 Scientific Application
1.7.1.4 Philosophical Application

I. 7.2 Bangia Parsing
1.7.3 Limitations of Bangia Parsing
1.7.4 Present State of Bangia Parsing and Contributions of the

Thesis
1.8 Organization of the Thesis

Syntax-based Machine Translation
2.1 Syntax-based Machine Translation

2.1.1 Lexical Analysis
2.1.1.1 Scanner
2.1.1.2 Tokenizer

2.1.2 Syntax Analysis
2.1.3 Translation

2.2 Parser
2.2.1 Role of a Parser in a Machine Translator

2.3 Error Recovery in a Parser
2.3.1 Panic-mode Recovery
2.3.2 Phrase Level Recovery
2.3.3 Error Productions
2.3.4 Global Correction

2.4 Context-free Grammar
2.4.1 Terminal
2.4.2 Non-terminal

v

I
I
2
2
3
3
4
5
5
6
6
7
8
9
9
10
12
13
14
14
15
15
17
18
19

21

24
24
26
26
27
27
27
27
29
30
30
31
31
31
32
33
33

/

3

2.4.3 Start Symbol
2.4.4 Productions
2.4.5 Normal Forms
2.4.6 Undecidable Problems
2.4.7 Extensions
2.4.8 Linguistic Applications
2.4.9 Parse Tree
2.4.1 0 Derivations
2.4.11 Ambiguous Grammar

2.4.11.1 Elimination of Ambiguity
2.4.12 Left Recursion

2.4.12.1 Elimination of Left Recursion
2.4.13 Left Factoring

2.5 Context-sensitive Grammar
2.6 Top-down Parsing

2.6.1 LL Parser
2.6.2 Recursive Descent Parser

2.7 Bottom-up Parsing
2.7.1 LR Parser
2.7.2 LALR Parser
2.7.3 Shift-reduce Parser

2.8 Architecture of Non-recursive Predictive Parser
2.8.1 First
2.8.2 Follow
2.8.3 Construction of Predictive Parsing Tables
2.8.4 Error Recovery in Predictive Parsing
2.8.5 Remarks

BangIa Grammar
3.1 BangIa Grammar
3.2 Phrases in BangIa Grammar

3.2.1 Noun Phrase
3.2.2 Verb Phrase
3.2.3 Adjective Phrase

3.3 Context-free Grammar for Noun Phrase
3.4 Context-free Grammar for Verb Phrase
3.5 Context-free Grammar for Adjective Phrase
3.6 Context-free Grammar for Simple Sentence
3.7 Context-free Grammar for Complex Sentence
3.8 Context-free Grammar for Compound Sentence
3.9. Context-free Grammar for BangIa Sentence
3.10 Limitations of Present Context-free Grammar for BangIa

Language
3.10.1 Ambiguity
3.10.2 Non-predictive
3.10.3 Lacking Error Recoverability
3.10.4 Unable to Handler Non-dictionary Word
3.10.5 Limited Use of Conjunctives

VI

34
34
34
34
35
36
36
37
38
39
40
42
43
44
46
48
49
50
51
52
52
53
55
56
57
58
59

61
61
61
61
62
62
62
67
68
69
70
75
78
79

79
80
81
81
82

3.10.6 Unable to Handle Numeric Words 82

4 Non-ambiguous Grammar for Simple Sentence 83

4.1 Non-ambiguous Grammar for Noun Phrase 83
4.1.1 Ambiguity Elimination 84
4.1.2 Addition of Conjunctives 88
4.1.3 Unknown Word Handling 93
4.1.4 Left Factoring 97

4.2 Non-ambiguous Grammar for Adjective Phrase 101
4.2.1 Numeric Word Handling 103

4.3 Non-ambiguous Grammar for Verb Phrase 104
4.4 Non-ambiguous Grammar for Simple Sentence 107
4.5 Remarks 113

5 Non-ambiguous Grammar for Complex Sentence 114

5.1 Existing Grammar for Complex Sentence 114
5.2 Identifying Complex Sentence Patterns 115
5.3 Non-ambiguous Grammar for Complex Sentence 117
5.4 Remarks 133

6 Non-ambiguous Grammar for Compound Sentence 134

6.1 Existing Grammar for Compound Sentence 134
6.2 Enhancement of Grammar for Compound Sentence 135
6.3 Non-ambiguous Predictive Grammar for Compound Sentence 138
6.4 Remarks 138

7 Non-ambiguous Comprehensive Grammar 140

7.1 Existing Grammar for Bangia Sentence 140
7.2 Non-ambiguous Grammar for Bangia Sentence 140
7.3 Comprehensive Bangia Grammar 143
7.4 Significance of Each Non-terminal of Proposed Bangia 150
Grammar

7.4.1 Significance of Non-terminals of Sentence Level 150
7.4.2 Significance of Non-terminals of Complex Sentence Level 152
7.4.3 Significance of Non-terminals of Simple Sentence Level 156
7.4.4 Significance of Non-terminals of Verb Phrase Level 157
7.4.5 Significance of Non-terminals of Noun Phrase Level 158
7.4.6 Significance of Non-terminals of Adjective Phrase Level 161

7.5 Remarks 162

8 Parsing Technique 163

8.1 Predictive Parser Architecture 163
8.2 Lexicon 164
8.3 Parsing Table 165

8.3.1 Calculation of First 166
8.3.2 Calculation of Follow 167
8.3.3 Building of Parsing Table 169

Vll

\i..,C~
8.4 Lexical Analyzer 176
8.5 Syntax Analyzer 180
8.6 Parsing of Correct Sentence 180
8.7 Error Recovery Policy 182
8.8 Parsing of Erroneous Sentence 185
8.9 Remarks 189

9 Simulation 190

9.1 Overview 190
9.2 The Lexicon 190
9.3 Simulation Program 191

9.3.1 Initialization 192
9.3.2 Lexical Analyzer 192
9.3.3 Syntax Analyzer 192

9.4 Input of the Program 193
9.5 Output of the Program 194
9.6 Error Recovery 195
9.7 Remarks 198

10 Conclusion 199

10.1 Achievements of This Thesis 199
10.2 Future Works 202

A Bangia Unicode 203

Bibliography 205

V1l1

l.l
1.2

1.3

2.1

2.2
2.3
2.4

2.5

2.6

2.7
3.1
3.2

3.3
3.4
3.5

3.6

3.7
3.8
3.9

3.10
3.11
3.12
3.13
3.14
4.1
4.2
4.3
4.4
4.5
4.6

List of Figures

Work flow of a standard translator.
Demonstration of the languages which are used in the process of
translating using a bridge language.
Parse tree of the sentence "I eat rice", which IS generated during
syntax-based machine translation.
Parse tree of the sentence "I eat rice", which IS generated during
syntax-based machine translation.
Interaction of lexical analyzer with parser.
Parse tree of the sentence "John hit the ball".
Two ways of parse tree (a), (b) of the sentence segment "extremely
very good".
Parse tree of the sentence segment "extremely very good" using left
associative rule of new grammar.
Parse tree of the sentence segment "extremely very good" using right
associative rule of new grammar.
A model of non-recursive predictive parser.
Tree structure for the rules NP ~ N (a), NP ~ N DET (b).
Tree structure for the rules NP ~ NP Biv (a) (b), NP ~ NP Biv NP
(c).
Tree structure for the rules NP ~ N PM (a) (b) (c) (d).
Tree structure for the rules SPR ~ QFR PP (a), SPR ~ QFR (b).
Tree structure for the rule NP ~ (DEMO) (SPR) (AP) NP, which
cover the variations NP ~ DEMO NP (a), NP ~ SPR NP (b), NP
~ AP NP (c), NP ~ DEMO SPR NP (d) ,NP ~ DEMO AP NP (e),
NP ~ SPR AP NP (t),NP ~ DEMO SPR AP NP (g).
Tree structure for the rule VP ~ (NP) (AP) VF, which cover the
variations VP ~ VF (a), VP ~ NP VF (b), VP ~ AP VF (c), VP
~ NP AP VF (d).
Tree structure for the rule AP ~ AD / ADs.
Tree structure for the rule SS ~ NP VP.
Tree structure for the rules of complex sentences In different
variations.
Tree structure for the rule CaMS ~ SS Conj SS.
Tree structure for the rule CaMS ~ SS Conj CS.
Tree structure for the rule CaMS ~ CS Conj SS.
Tree structure for the rule CaMS ~ CS Conj CS.
Ambiguity in the rule NP ~ NP Biv NP.
Ambiguity in the rule NP ~ NP Biv (NP).
Ambiguity in the rule NP ~ NP Biv (NP) (another example).
Tree derivation using the rules for PRE and NW.
Tree derivation using non-ambiguous rule for NP.
Tree derivation using the rule NP ~ NP Conj NP.
Tree derivation using the rule NP ~ NP Conj NP, where three smaller
noun phrases are connected by conjunctives.

IX

2
4

8

25

26
37
38

40

40

54
63
64

64
65
66

68

69
70
72

76
76
77
78
80
84
84
86
86
89
90

4.7

4.8

4.9

4.10

4.11

4.12
4.13

4.14
4.15

4.16
4.17

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

Ambiguity using the rule NP ~ NP Conj NP, where one is left
associative (a), and another is right associative (b).
Elimination of ambiguity of the rule NP ~ NP Conj NP using new
rule NP ~ NPU I NPU Conj NP.
Tree derivation with grammar for noun phrase with unknown word
(non-dictionary) handling.
Tree derivation with grammar for noun phrase with both single and
multi-word unknown word (non-dictionary) handling.
Tree derivation with non-ambiguous grammar for noun phrase with
predictive parsing.
Tree derivation with non-ambiguous grammar for adjective phrase.
Tree derivation with non-ambiguous grammar for adjective phrase
with predictive parsing.
Tree derivation for a numeric word.
Tree derivation with non-ambiguous grammar for verb phrase with
predictive parsing.
Ambiguity in the rule SS ~ NP VP.
Tree derivation with non-ambiguous grammar for simple sentence
with predictive parsing.
Tree derivation for the sentence '~ VfC'1~ "it'll" (ami gele tumi
esO) using non-ambiguous grammar with predictive parsing.
Tree derivation for the sentence '~ VfC'1~ '"'" "it'll" (ami gele tumi
tobe esO) using non-ambiguous grammar with predictive parsing.
Tree derivation for the sentence '~ t'W1 '"'" ~ "it'll" (ami gele
tobe tumi esO) using non-ambiguous grammar with predictive parsing.
Tree derivation for the sentence '~ 'Ifit ~ ~ "it'll" (ami zodi zai
tumi esO) using non-ambiguous grammar with predictive parsing.
Tree derivation for the sentence '~ 'Ifit ~ ~ '"'" "it'll" (ami zodi
zai tumi tobe esO) using non-ambiguous grammar predictive parsing.
Tree derivation for the sentence '~ 'Ifit ~ '"'" ~ "it'll" (ami zodi
zai tobe tumi esO) using non-ambiguous grammar predictive parsing.
Tree derivation for the sentence ''<l1'f "'I1fi! ~ ~ "it'll" (zodi ami zai
tumi esO) using non-ambiguous grammar predictive parsing.
Tree derivation for the sentence ''<l1'f "'I1fi! ~ ~ '"'" "it'll" (zodi ami
zai tumi tobe esO) using non-ambiguous grammar predictive parsing.
Tree derivation for the sentence ''<l1'f "'I1fi! ~ '"'" ~ "it'll" (zodi ami
zai tobe tumi esO) using non-ambiguous grammar predictive parsing.
Tree derivation for the sentence '~ "it'll "'I1fi! 'Ifit ~" (tumi esO ami
zodi zai) using non-ambiguous grammar predictive parsing.
Tree derivation for the sentence '~ "it'll 'Ifit "'I1fi! ~" (tumi esO zodi
ami zai) using non-ambiguous grammar predictive parsing.
Tree derivation for the sentence '~ '"'" "it'll "'I1fi! 'Ifit ~" (tumi tobe
esO ami zodi zai) using non-ambiguous grammar predictive parsing.
Tree derivation for the sentence '~ '"'" "it'll 'Ifit "'I1fi! ~" (tumi tobe
esO zodi ami zai) using non-ambiguous grammar predictive parsing.
Tree derivation for the sentence '''WI ~ "it'll "'I1fi! 'Ifit ~" (tobe tumi
esO ami zodi zai) using non-ambiguous grammar predictive parsing.

x

91

92

95

96

100

102
103

103
105

107
III

125

126

126

127

127

128

128

129

129

130

130

131

131

132

(

5.15 Tree derivation for the sentence '''wi' ~ <lIJ:>l1'llf'f 15Ilf'r~" (tobe tumi 132
esO zodi ami zai) using non-ambiguous grammar predictive parsing.

6.1 Tree derivation for the compound sentence '~ U1'l'l 'l1<l <lI'R ~ 1'rC"li> 135
'lAA" (ami Dhaka zabo ebong tumi sileT zabe) using existing grammar
for compound sentence.

6.2 Tree derivation for the compound sentence '~ U1'l'l 'l1<l, ~ 1'rC"li> 'lAA 136
"ffil l:'f ~ 'lAA" (ami Dhaka zabo, tumi sileT zabe ar se rajoshahl
zabe) using new grammar for compound sentence.

6.3 Ambiguity in the new rule COMS --7 S Conj S. 137
6.4 Tree derivation using non-ambiguous grammar for compound 138

sentence.
7.1 Tree derivation for the simple sentence '~ Rlfr ~ "!1'ii:" (ami beshI 145

vat khai).
7.2 Tree derivation for the simple sentence '~ 'S I5Ilf'r ~ 'S ~9fo@r "!1'ii:" 146

(robin 0 ami vat 0 peposi khai).
7.3 Tree derivation for the simple sentence ".JI ~ NC"!" (01 chheleTi 147

khele).
7.4 Tree derivation for the complex sentence ''Wi I5Ilf'r ~ IW! ~ <!IJ:>l1" 147

(zodi ami zai tobe tumi esO).
7.5 Tree derivation for the complex sentence '''wi' 1lf.R '5l1"rC'l 'llf'f ~ "lltll" 148

(tobe robin ashobe zodi jakir zay).
7.6 Tree derivation for the compound sentence '~ U1'l'l 'l1<l 'OI"!'l1 ~ U1'l'l 148

'lAA" (ami Dhaka zabo othoba tumi Dhaka zabe).
7.7 Tree derivation for the compound sentence'~ 'l1<l 'OI"!'l1 ~ 'lAA 'OI"!'l1 149

l:'f 'lAA" (ami zabo othoba tumi zabe othoba se zabe).
8.1 Architecture of a machine translator using predictive parser. 163
8.2 Work flow oflexical analyzer of predictive parser. 179
8.3 Tree derivation of erroneous sentence'~ U1'l'l"'l1" (ami Dhaka za). 186
8.4 Tree derivation of erroneous sentence ".JI11> WC"f ~ otT!l" (01 Ti chhele 188

vat khay).
9.1 Lexicon used for simulation program. 190
9.2 Grammar used for simulation program. 191
9.3 Input file used for simulation program. 193
9.4 Output file showing parsed text by simulation program. 194
9.5 Output of display program using Java showing tree representation of 195

parsed text.
9.6 Output productions for the sentence'~ U1'l'l"'l1" (ami Dhaka za). 196
9.7 Tree representation for the sentence'~ U1'l'l"'l1" (ami Dhaka za). 196
9.8 Output productions for the sentence ".JI11> WC"f ~ otT!l" (01 Ti chhele 197

vat kh,ay).
9.9 Tree representation for the sentence ".JI11> WC"f ~ otT!l" (01 Ti chhele 198

vat khay).

Xl

I' -

List of Tables

2.1 Parsing table of a predictive parser. 58
2.2 Parsing table of a predictive parser with error recovery information. 59
8.1 Lexicon of BangIa language for a predictive parser. 164
8.2 Predictive parsing table for sentence portion. 170
8.3 Predictive parsing table for complex sentence portion. 171
8.4 Predictive parsing table for simple sentence portion. 173
8.5 Predictive parsing table for verb phrase portion. 174
8.6 Predictive parsing table for noun phrase portion. 174
8.7 Predictive parsing table for adjective phrase portion. 176
8.8 A sample lexicon. 178
A.I Code in UNICODE for BangIa characters. 203

Xli

Word

AD

AP
AUX
Biv

BivE

BS
CFG

COMS

Conj

CSG

CS

DC
DD
DEMO

DO
EBMT

IC

MT

N

NP

NPU

NW

P

PCFG

PM

PP
PRE
QFR

S

List of Abbreviations

Abbreviation

Adjective

Adjective Phrase

Auxiliary

Bivokti, Non-extensive Bivokti

Extensive Bivokti

Basic Sentence

Context-Free Grammar

Compound Sentence

Conjunctive

Context-sensitive Grammar

Complex Sentence

Dependent Clause

Demonstrative Deictic

Demonstrator

Demonstrative Ordial

Example-based Machine Translation

Independent Clause

Machine Translation

Noun

Noun Phrase

Noun Phrase Unit

Noun Word

Pronoun

Probabilistic Context-free Grammar

PIural Marker

Post Preposition

Previous Portion of Noun Phrase

Quantifier

Sentence

XIll

SMT

SPR

SS
SUBORD

SUBCOM

VF
VP
VR
UN
UNG

Symbol

AD

AP
AUX
Biv

BivE

BS
COMS

Conj

CS

DC
DD
DEMO

DO
IC

N

NP

NPU

NW

P

Statistical Machine Translation

Specifier

Simple Sentence

Subordinator

Subordinator Complement

Verb Form

Verb Phrase

Verb Root

Unknown Word

Unknown Word Group

List of Symbols

Elaboration

Adjective

Adjective Phrase

Auxiliary

Bivokti, Non-extensive Bivokti

Extensive Bivokti

Basic Sentence

Compound Sentence

Conjunctive

Complex Sentence

Dependent Clause

Demonstrative Deictic

Demonstrator

Demonstrative Ordial

Independent Clause

Noun

Noun Phrase

Noun Phrase Unit

Noun Word

Pronoun

XIV

r, 10

PM

PP
PRE

QFR

S

SPR

SS
SUBORD

SUB COM

VF
VP
VR
UN
UNG

+
=>

E

Plural Marker

Post Preposition

Previous Portion of Noun Phrase

Quantifier

Sentence

Specifier

Simple Sentence

Subordinator

Subordinator Complement

Verb Form

Verb Phrase

Verb Root

Unknown Word

Unknown Word Group

The expression A => B indicates that B can be immediately derived

from A

+
The expression A => B indicates that B can be derived from A after

one or more steps of derivation

Empty string

Several occurrences of A together, including E

Several occurrences of A together, excluding E

xv

Acknowledgements

I am grateful to number of people, who supported me a lot towards successful
completion of my thesis work and consequently acquiring a great achievement for
me. I like to express unbounded gratitude to my thesis supervisor, Dr. Muhammad
Masroor Ali, Professor and former Head of Department of Computer Science and
Engineering (CSE), BUET. He supported me a lot with his depth of knowledge, lots
of inspiration and encouragement. His knowledge and experience in the field of
parsing and machine translation helped me to overcome many hindrances during my
work. It was impossible for me to finish my work without his crucial ideas.

I like to express special gratitude to Dr. Md. Saidur Rahman, Head, Department of
Computer Science and Engineering (CSE), BUET, for his inspiration and
encouragement towards completion of my work. I am very grateful to Institute of
Information and Communication Technology (IICT), my own institute, providing
me enough technical support with software and internet facility. I am also grateful to
Directorate of Advisory, Extension and Research Services (DAERS) for providing
me necessary financial support.

And, of course my special gratitude goes to my wife, Farzana Sharmin. It was really
impossible for me to complete my work without her mental support, inspiration and
encouragemeni. She really sacrificed a lot for my work and always supported me
weakening family burden from my mind.

XVI

Abstract

Machine translation from Bangia to other languages is a promising field, but there
are limited works in this area. Syntax-based machine translation is a suitable
technique for machine translation system from Bangia to other languages, as Bangia
grammar is nicely structured. This translation technique has two stages - parsing and
generation. Parsing is the main challenge of a syntax-based machine translator. This
thesis includes design of non-ambiguous predictive Bangia grammar, which is used
to develop predictive parser with error recovery capability.

Analyzing previous works on Bangia grammar, it can be summarized that,
previously designed grammars were non-comprehensive and ambiguous. Because of
ambiguity, it does not fall into the category of LL(l) grammar. Predictive parser can
not be developed without LL(I) grammar. Non-predictive parser uses backtracking
technique, which takes exponential runtime. This is quite impractical for machine
translation system, which generally deals with a large amount of data. Error
recovery technique was never introduced in Bangia parsing technique. Unlike
compiler, grammar of a natural language reflects only common patterns of
sentences. To design a grammar to reflect all patterns of sentences, cause to grow
the complexity of the grammar exponentially, because a single sentence can be
written in different ways correctly. Without error recovery feature, parsing process
stops when an' error is detected in input sentence. Lack of error recoverability is a
big hindrance to develop successful Bangia parser. Moreover, handling of non-
dictionary words is a big challenge, which was not solved previously.

In this thesis, ambiguity is eliminated from previous grammar. Therefore, non-
ambiguous predictive grammar is designed. Additionally, this grammar includes a
nice mechanism to handle non-dictionary words. The grammar has been enhanced
including some common patterns of sentences, specially including additional uses of
conjunctive, number handling etc. A top-down predictive parser is designed using
non-ambiguous predictive grammar. Predictive nature of the grammar ensures linear
runtime of parsing process. Therefore, difficulty of parsing due to exponential
runtime is over and parsing a massive volume of data is not a problem. Error
recovery feature in Bangia parsing process has added a new dimension. This feature
allows the parser to continue parsing after detection of error. Therefore, previously
found problem of halting of parsing process is solved. Error recovery routine of the
parser skips the error and parsing process again synchronizes with the rest of correct
portion of input sentence, if error exists in that sentence. To make the error recovery
process efficient, heuristic is applied. So, error may not be recovered correctly in all
cases. But most of the cases error recovery is correct and most importantly parsing
never stops due to error.

This thesis also includes some supporting modules of Bangia predictive parser, like
structure of lexicon and strategy of lexical analysis for input Bangia sentences,
which includes dynamic tagging of multiple meaning words. A simulation program
justifies the correctness of grammar, parsing and error recovery mechanism.

XVll

Chapter 1

1.1 Machine Translation

Machine Translation (MT) is a sub-field of computational linguistics that

investigates the use of computer software to translate text or speech from one natural

language to another. At its basic level, MT performs simple substitution of words in

one natural language for words in another. Using corpus techniques [I], more

complex translations may be attempted, allowing for better handling of differences

in linguistic technology, phrase recognition and translation of idioms, as well as

isolation of anomalies.

Current machine translation software often allows for customization by domain or

profession (such as weather reports) - improving output by limiting the scope of

allowable substitutions. This technique is particularly effective in domains where

formal or formulaic language is used. It follows then that machine translation of

government and legal documents more readily produces usable output than

conversations or less standardized text.

Improved output quality can also be achieved by human intervention, for example,

some systems are able to translate more accurately if the user has unambiguously

identified which words in the text are names. With the assistance of these
,

techniques, MT has been proven useful as a toolto assist human translators, and in

some cases can even produce output that can be used "as is", However, current

systems are unable to produce output of the same quality as a human translator,

particularly where the text to be translated uses casual language.

\

Chapter I: Introduction

1.2 MT Process

2

MT process is stated as (I) Decoding the meanmg of the source text, and (2) .

Encoding this meaning in the target language. Behind this ostensibly simple

procedure lies a complex cognitive operation.

Source Encoding Encoded Translation Encoded Decoding Target
Text Source Target Text

Text Text

Figure 1.1: Work flow of a standard translator.

To decode the meaning of the source text in its entirely, the translator must interpret

and analyze all the features of the text, a process that requires in-depth knowledge of,
the grammar, semantics, syntax, idioms, etc., of the source language, as well as the

culture of its speaker. The translator needs the same in-depth knowledge to re-

encode the meaning in the target language. Work flow of a standard translator is

shown in figure 1.1. to
1.3 MT Techniques

Machine translation can use a method based on linguistic rules, which means that

words will be translated in a linguistic way - the most suitable words of the target

language will replace the ones in the source language. It is often argued that the

success of machine translation requires the problem of natural language

understanding to be solved first.

Generally there are three popular techniques used for machine translation -

• Rule-based machine translation

• Statistical machine translation

• Example-based machine translation

Chapter I: Introduction

1.3.1 Rule-based Machine Translation

3

Generally, rule-based methods parse a text, usually creating an intermediary

symbolic representation, from which the text in the target language is generated.

This method requires extensive lexicons with morphological, syntactic, and semantic

information and, large sets of rules.

In a rule-based machine translation system the original text is first analyzed

morphologically and syntactically in order to obtain a syntactic representation. This

representation can then be refined to a more abstract level putting emphasis on the

parts relevant for translation and ignoring other types of information. The transfer

process then converts this final representation (still in the original language) to a

representation of the same level of abstraction in the target language. These two

representations are referred to as "intermediate" representations. From the target

language repres'entation, the stages are then applied in reverse.

Rule-based machine translation paradigm includes transfer-based machine

translation, interlingual machine translation and dictionary based machine

translation paradigm.

1.3.1.1 Transfer-based Machine Translation

Transfer-based machine translation is a type of machine translation, which is based

on the idea of interlingua. It has the idea to make a translation it is necessary to have

an intermediate representation that captures the "meaning" of the original sentence

in order to generate the correct translation.

The way 'in which transfer-based machine translation systems work vanes

substantially, but in general they follow the same pattern: they apply sets of

linguistic rules which are defined as correspondences between the structure of the

source language and that of the target representation. The translation is generated

from this representation using both bilingual dictionaries and grammatical rules.

,.

Chapter I: Introduction 4

It is possible with this translation strategy to obtain fairly high quality translations,

with accuracy in the region of 90%, although this is highly dependent on the

language pair in question - for example the distance between the two.

1.3.1.2 Interlingual Machine Translation

Interlingual machine translation is one of the classic approaches to machine

translation. In this approach, the source language, i.e. the text to be translated is

transformed into an interlingua, Le. an abstract language-independent representation.

The target language is then generated from the interlingua. Within the rule-based

machine translation paradigm, the interlingual approach is an alternative to the direct

approach and the transfer approach.

In the direct approach, words are translated directly without passing through an

additional representation. In the transfer approach, the source language is

transformed into an abstract, less language specific representation. Linguistic rules

which are specific to the language pair then transform the source language

representation into an abstract target language representation and from this the target

sentence is generated.

Analysis
Language I

Analysis
Language 2

Generated
Language I

Generated
Language 2.

Figure 1.2: Demonstration of the languages which are used in the process of translating
using a bridge language.

The interlingual approach to machine translation has advantages and disadvantages.

The advantage in multilingual machine translation is that no transfer component has

to be created for each language pair. The obvious disadvantage is that the definition

Chapter I: Introduction 5

of an interlingual is difficult and may be even impossible fora wider domain. The

ideal context for interlingual machine translation is thus multilingual machine

translation in a very specific domain.

1.3.1.3 Dictionary-based Machine Translation

Machine translation can use a method based on dictionary entries, which means that

the words will be translated as a dictionary does - word by word, usually without

much correlation of meaning between them. Dictionary lookups may be done with

or without morphological analysis or lemmatization. While this approach to machine

translation is probably the least sophisticated, dictionary-based machine translation

is ideally suitable for the translation oflong lists of phrases on the subsentential (i.e.

not a full sentence) level, e.g. inventories or simple catalogs of products and services

[2]. It can also be used to expedite manual translation if the person carrying it out is

fluent in both lilllguages and therefore capable of correcting syntax and grammar.

1.3.2 Statistical Machine Translation

Statistical machine translation (SMT) is a machine translation paradigm where

translations are generated on the basis of statistical models whose parameters are

derived from the analysis of bilingual text corpora, such as the Canadian Hansard

corpus, the English-French record of the Canadian Parliament and EUROPARL, the

record of the European Parliament. Where such corpora are available, impressive

results can be achieved translating texts of a similar kind, but such corpora are still

very rare. The statistical approach contrasts with the rule-based approaches to

machine translation as well as with example-based machine translation.

The first statistical machine translation software was CANDIDE from IBM. Google

used SYSTRAN for several years, but has switched to a statistical translation

method in October 2007. Recently, they improved their translation capabilities by

inputting approximately 200 billion words from United Nations materials to train

their system. Accuracy of the translation has improved [3].

Chapter I: Introduction 6

As the translation systems are not able to store all native strings and their

translations, a document is typically translated sentence by sentence, but even this is

not enough. Language models are typically approximated by smoothed II-gram

models, and similar approaches have been applied to translation models, but there is

additional complexity due to different sentence lengths and word orders in the

languages.

The statistical translation models were initially word based (Models 1-5 from IBM),

but significant advances were made with the introduction of phrase based models

[4]. Recent work has incorporated syntax or quasi-syntactic structures [5].

1.3.2.1 Word-based Machine Translation

In word-based machine translation, translated elements are words. Typically, the

number of words in translated sentences are different due to compound words,

morphology and idioms. The ratio of the lengths of sequences of translated words is

called fertility, which tells how many foreign words each native word produces.

Simple word-based translation is not able to translate language pairs with fertility

rates different from one. To make word-based translation systems manage, for

instance, with high fertility rates the system could be able to map a single word to

multiple words, but not vice versa. For instance, if we are translating from French to

English could produce zero or more French words. But there's no way to group two

English words producing a single French word.

An example of word-based translation system IS the freely available GIZA++

package (GPLed), which includes IBM models.

1.3.2.2 Phrase-based Machine Translation

. In phrase-based machine translation, the restrictions produced by word-based

translation have been tried to reduce by translating sequences of words to sequences

of words, where the lengths can differ. The sequences of words are called, for

I'

Chapter 1: Introduction. ,. 7

instance, blocks or phrases, but typically are not linguistic phrases but phrases found

using statistical methods from the corpus. Restricting the phrases to linguistic

phrases has been shown to decrease translation quality.

1.3.2.3 Syntax-based Machine Translation

In Syntax-based Machine Translation, the source language input is first parsed into a

parse tree, which is then recursively converted into a string in the target language.

The concept of Syntax-based Machine Translation was originally proposed in

compiling (Irons, 1961; Lewis and Stearns, 1968; Aho and Ullman, 1972), where the

source program is parsed into a tree representation that guides the generation of the

object code. In other words, the translation is directed by a syntactic tree. In this

context, a syntax-based translator consists of two components, a source language

parser and a recursive converter which is usually modeled as a top-down tree-to-

string transducer.

For example, a sentence "I eat rice" can be parsed according to following rules:

S-NPVP

NP-P

P-I
VP-VBN

VB-eat

N - rice

Here,

S " Sentence

NP" Noun' Phrase

VP " Verb Phrase

p" Pronoun

VB" Verb

N"Noun

Chapter I: Introduction

Equivalent parse tree is demonstrated as Figure 1.3.

s

~ ---
NP VP

I /~
P VB N

I I I

8

eat rice

Figure 1.3: Parse tree of the sentence "I eat rice", which is generated during syntax-based
machine translation.

1.3.3 Example-based Machine Translation

The Example-based Machine Translation (EBMT) approach to machine translation

is often characterized by its use of a bilingual corpus with parallel texts as its main

knowledge base, at run-time. It is essentially a translation by analogy and can be

viewed as an implementation of case-based reasoning approach of machine learning.

The foundation of example-based machine translation is the idea of translation by

analogy. When applied to the process of human translation, the idea that translation

takes place by analogy is a rejection of the idea that people translate sentences by

doing deep linguistic analysis .. Instead it is founded on the belief that people

translate firstly by decomposing a sentence into certain phrases, then by translating

these phrases, and finally by properly composing these fragments into one long

sentence. Phrasal translations are translated by analogy to previous translations. The

principle of translation by analogy is encoded to example-based machine translation

through the example translations that are used to train such a system.

Example-based machine translation systems are trained from bilingual parallel

corpora, which contain sentence pairs. These sentence pairs contain sentences in one

language with their translations into another. There exist some sentence pairs known

Chapter I: Introduction 9

as minimal pair, meaning that the sentences vary by just one element. These

sentences make it simple to learn translations of subsentential units.

Example-based machine translation was first suggested by Nagao Makoto in 1984

[6]. It soon attracted the attention of scientists in the field of natural language

processmg.

1.4 Word Sense Disambiguation

Word sense disambiguation concerns finding a suitable translation when a word can

have more than one meaning. The problem was first raised in the 1950s by

Yehoshua Bar-Hillel [7]. He pointed out that without a "universal encyclopedia", a

machine would never be able to distinguish between the two meanings of a word [8].

Today there are numerous approaches designed to overcome this problem. They can

be approximately divided into "shallow" approaches and "deep" approaches.

Shallow approaches assume no knowledge of the text. They simply apply statistical

methods to the words surrounding the ambiguous word. Deep approaches presume a

comprehensive knowledge of the word. So far, shallow approaches have been more

successful.

1.5 Applications of Machine Translation

There are now many software programs for translating natural language, several of

them online, such as the SYSTRAN system which powers both Google translate and

AltaVista's Babel Fish as well as Promt that powers online translation services at

Voila.fr and Orange.fr. Although no system provides the holy grail of "fully

automatic' high quality machine translation" (FAHQMT), many systems produce

reasonable output.

Despite their inherent limitations, MT programs are used around the world. Probably

the largest institutional user is the European Commission.

Chapter 1: Introduction 10

Toggletext uses a transfer-based system (known as Kataku) to translate between

English and Indonesian.

Google has claimed that promlSlng results were obtained usmg a proprietary

statistical machine translation engine [9]. The statistical translation engine used in

the Google language tools for Arabic <-+ English and Chinese <-+ English has an

overall score of 0.4281 over the runner-up IBM's BLEU-4 score of 0.3954 (Summer

2006) in tests conducted by the National Institute for Standards and Technology

[10][11][12]. Uwe Muegge has implemented a demo website [13] that uses a

controlled language in combination with the Google tool to produce fully automatic,

high-quality machine translations of his English, German, and French wcb sites.

With the recent focus on terrorism, the military sources in the United States have

been investing significant amounts of money in natural language engineering. In-Q-

Tel [14] (a venture capital fund, largely funded by the US Intelligence Community,

to stimulate new technologies through private sector entrepreneurs) brought up

companies like Language Weaver. Currently the military community is interested in

translation and processing of languages like Arabic, Pashto, and Dari. Information

Processing Technology Office in DARPA hosts programs like TIDES and Babylon

Translator. US Air Force has awarded a $1 million contract to develop a language
translation technology [IS].

1.6 Parsing

In computer science and linguistics, parsing, or, more formally, syntactic analysis, is

the process of analyzing a sequence of tokens to determine grammatical structure

with respect to a given (more or less) formal grammar. A parser is thus one of the

components in an interpreter or compiler, where it captures the implied hierarchy of

the input text and transforms it into a form suitable for further processing (often kind

of parse tree, abstract syntax tree or other hierarchical structure) and normally

checks for syntax errors at the same time. The parser [16] often uses a separate

lexical analyzer to create tokens from the sequence of input characters. Parsers may

Chapter I: Introduction II

be programmed by hand or may be semi-automatically generated (in some

programming language) by a tool (such as Yacc) from a grammar written in Backus-

Naur form [17].

In some machine translation and natural language processing (NLP) systems, human

languages are parsed by computer programs. For example, in syntax-based machine

translation, parsing is very important as input sentence of source language is first

parsed into hierarchical structure in this technique. Human sentences are not easily

parsed by programs, as there is substantial ambiguity in the structure of human

language. In order to parse natural language data, researchers must first agree on the

grammar to be used. The choice of syntax is affected by both linguistic and

computational concerns; for instance some parsing systems used lexical functional

grammar, but in general, parsing for grammars of this type is known to be NP-

complete. Head-driven phrase structure grammar is another linguistic formalism

which has been popular in the parsing community, but other research efforts have

focused on less complex formalisms such as the one used in the Penn Treebank [18].

Shallow parsing aims to find only the boundaries of major constituents such as noun

phrases. Another popular strategy for avoiding linguistic controversy is dependency

grammar parsmg.

Most modem parsers are at least partly statistical; that is, they rely on a corpus of

training data which has already been annotated (parsed by hand). This approach

allows the system to gather information about the frequency with which various

constructions occur in specific contexts. Approaches which have been used include

straightforward PCGCs (probabilistic context free grammars) [19], maximum

entropy, and neural nets. Most of the more successful systems use lexical statistics

(that is, they consider the identities of the words involved, as well as their part of

speech). However, such systems are vulnerable to over-fitting and require some kind

of smoothing to be effective.

Parsing algorithms [16] for natural language can not rely on the grammar having

'nice' properties as with manually-designed grammars for programming languages.

Chapter 1; Introduction 12

As mentioned earlier some grammar formalisms are very computationally difficult

to parse; in general, even if the desired structure is not context-free, some kind of

context-free approximation to the grammar is used to perform a first pass.

Algorithms which used context-free grammars often rely on some variant of the

CKY algorithm [20], usually with some heuristic to prune away unlikely analyses to

save time. However some systems trade speed for accuracy using, e.g. linear-time

versions of the shift-reduce algorithm. A somewhat recent development has been

parse re-ranking in which the parser proposes some large number of analyses, and a

more complex system selects the best option. It is normally branching of on part and

its subparts.

1. 7 Machine Translation in BangIa

Machine translation in Bangia is a very promising field. A string machine translation

system from Bangia to any other language will help to translate literary works,

research works, articles, historical documents etc from Bangia to other languages.

This will enrich Bangia as a language.

There are already some research and professional works done in this area. For

example, ANUBADOK [21] is a machine translation software, which is capable of

translating sentences from English language to Bangia language. First version of the

software was released in 2006. Then second and latest version of the software

released in 2008. The quality of translation of the software is moderately high.

ANUBADOK is developed using freely available GIZA++ package (GPLed), which

is a word-based machine translation system.

There are also some other works, but most of them are related to translating from

English to Bangia. There are very few research works in the area of translating from

Bangia to English or any other language.

Chapter I: Introduction

1.7.1 Prospective Applications of Bangia Translation

13

Bangia is one of the most spoken languages (ranking 5th or 6th) of the world.

Around 230 million people speak in this language. It comprises mainly in

Bangladesh and Indian state of West Bengal. Bangia is the only language in the

world for which native people sacrificed their lives. It happened in 21st February,

1952. For this reason, the 21st February is now observed all over the world as

"International Day of Mother Language". Besides, Bangia language is enriched with

many famous literary works in its depth of history. Such works and .documents are

not property of native people now. This is property of people over the world. But

widest possible distribution of Bangia around the world is impossible without

machine translation. For human translator, this job is not feasible for a lot of reasons.

Machines or automatic translator can do the job of translation efficiently.

A standard MT system divided into two subsystems: analysis or parsmg and

synthesis or generation. Parsing of BangIa natural language sentences can be used as

a subsystem for Bangia to other language machine aided translation. In the parsing

subsystem an input sentence is analyzed and converted into an SR. Once the SR is

created for a particular sentence it is shown to the user as an intuitive attribute-value

structure. The user can view the structure and make any necessary changes.

A parser module used the phrase structure (PS) rules and also find out how words in

sentence related to each other. Therefore, parsing as sentence by using a set of PS

rules produces underlying structure for sentence. The result of a BangIa natural

language parser that produces a list of tokens from a Bangia sentence is then used as

the input for an MT engine to produce other equivalent sentence of the given Bangia

sentence. MT is an emerging paradigm for processing natural languages. Now a

days, MT. and NLP are being used by language industries for translation one

language to another and allow people to interact with computers in a natural human

language. An automatic translation will save a lot of time and cost of money.

Chapter I: Introduction 14

Machine translation in Bangia can play an important role in social or political,

commercial, scientific, philosophical etc, area.

1.7.1.1 Social or Political Application

The social or political importance of MT arises from the socio-political importance

of translation in communities where more than one language in generally spoken.

Here the only viable alternative to rather widespread use of translation is the

adoption of a single common 'lingua franca', which is not a particularly attractive

alternative, because it involves the dominance of the chosen language, to the

disadvantages of speakers of the other languages, and raises the prospect of the other

language often involves the disappearance of a distinctive culture, and a way of

thinking, this is a loss that should matter to every one. So translation is necessary for

communication for ordinary human interaction, and for gathering the information

one needs to playa full part in society. Being allowed io express yourself in your

own language, and to receive information that directly affects you in the same

medium, seem to be an important, if often violated, right and it is one that depends

on the availability of translation. The problem is that the demand for translation in

the modem world far outstrips any possible supply. Part of the problem is that there

are too few human expert translators, and that there' is a limit on how for their

productivity can be increased without automation. In short, it seems as though

automation of translation is a social and political necessity for modem societies that

do not wish to impose a common language on their member's. Machine translation

from BangIa to other languages will play an important role to disclose social

activity, culture, customs, political views of Bengali nation.

1.7.1.2 Commercial Application

The commercial importance of MT is a result of related factors. First, translation

itself is commercially important: faced with a choice between a product with an

instruction manual in English, and one whose manual is written in Bangia, most

English speakers will bag the former and in the case of a repair manual for a piece' of

Chapter I: Introduction 15

manufacturing machinery or the manual for a safety critical system, this is not just a

matter of taste. Secondly, translation is expensive. Translation is a highly skilled job,

requiring much more than more knowledge of a number of languages, and in some

countries at least; "translator's salaries are comparable to other highly trained

professionals. Moreover, delays in translation are costly. Estimates very, but

producing high quality translations of difficult material, a professional translator

may average no more than about 4-6 pages of translation (perhaps 2000 words) per

day, and it is quite easy for delays in translating product documentation to erode the

market lead time of a new product. In brief, machine translation from BangIa to

other languages will expedite translation of product tags, documentations, leaflets

specially for export quality products, helping rapid shipment of products, and will

contribute on national economy.

1.7.1.3 Scientific Application

Scientifically, MT is interesting because it is an obvious application and testing

ground for many ideas in computer science, Artificial Intelligence, and linguistics,

and some of the most important developments in these fields have begun in MT. To

illustrate this: The origins of prolog, the first widely available logic programming

language, which formed a key part of the Japanese 'fifth Generation' programmer of

research in the late 1980s, can be found in the 'Q,Systems' language, originally

developed for MT. In Bangia, there are many scientific works, specially in

linguistics, history, economics, law, sociology, public administration, etc. Most of

the works"written in BangIa are not exposed to the world because of language

translation problem. Machine translation from BangIa to other languages will enable

exploration of Bangia works to world, will enable more interaction, will create more

interest to researchers.

1.7.1.4 Philosophical Application

Philosophically, MT is interesting, because it represents an attempt to automatic and

activity that can require the full range of human knowledge, that is, for any piece of

Chapter I: Introduction 16

human knowledge, it is possible to think of a content where the knowledge is

required. For example, getting the correct translation of "negatively charged

electrons and protons" into Bangia depends on knowing that protons are positively

charged, so the interpretation can not be something like "negatively charged

electrons and positively charged protons". In this sense, the extent to which one can

automatic translation in an indication of the extent to which one can automatic

'thinking' .

Despite this, very few people, even those who are involved in producing or

commissioning translations, have much idea of what is involved in MT today, either

at the practical level of whatit means to have and use an MT system, or at the level

of what is technically feasible, and what is science fiction. In the whole of the UK

there are perhaps five companies who use MT for making commercial translations

on a day-to-day basis. In continental Europe, where the need for commercial

translation is for historical reasons greater, the number is larger, but it still represents

an extremely small proportion of the overall translation effort that is actually

undertaken. In Japan, where there is an enormous need for translation of Japanese

into English, MT is just beginning to become established on a commercial scale, and

some familiarity with MT is becoming a standard part of the training of a

professional translator.

With the Advent oflnternet ,technology and electronic commerce have increased the

demand for automatic machine translation of sufficient quality for determining the

content of a web page. Demand of machine translation has grown and will continue

of a web page. Demand of machine translation has grown and will continue to grow

steadily. A variety of authoring tools and document production techniques have also

made linguistic information available on a variety of formats. The information

placed on the web is needed to be translated to the language of the user for hislher

understanding. If he/she tries to translate the whole contents word-by-word or

sentence-by-sentence it will lose a lot of time. An automatic translator can do the

job. Translation by machine will save a lot of time in this regard. A significant

number of MT systems are found on browser over the Internet that can translate a

Chapter I: Introduction 17

page into one or more languages. Moreover many language industries all over the

world are engaged in multilingual translation of a language. Multilingual translation

means the translation a language into several languages. The aim of machine

translation of a particular language is to introduce the"language to others who do not

know the language. They will just use a machine for the job of translation. The

explosion in electronic communication and the use of computers has explored the

way of taking of technology to record, disseminate and may be even preserve the

language and to exploit approaches and technique that are already tried and tested on

more common languages.

In our country, every day many people go to abroad. For this purpose many

documents are needed. Not all the documents are in English or in preferred

language. Many documents are needed to be translated into English or any other

languages. As manual translation is costly, laborious and time consuming, machine

translation will be effective in this perspective. Moreover, machine translation in

BangIa will be able to play vital role in our society and economy as described

earlier.

1.7.2 BangIa Parsing

BangIa is one of the most enriched, organized and structured languages of the world.

BangIa grammar is reasonably strict and organized. That is why a machine

translation system involving BangIa language should follow syntax-based machine

translation technique. Because, in this technique, input sentence of source language

is first parsed according to the grammar of source language. Then translation

technique is applied on parsed text.

To parse a BangIa text, a BangIa grammar is required. Parsing methodology of

BangIa language sentences is already developed, which includes BangIa grammar

and, parsing technique [22][23]. Current parsing methodology has many limitations

which are discussed in the next section (1.7.3).

Chapter I: Introduction

1.7.3 Limitations of BangIa Parsing

18

Existing parsing methodology of Bangia is capable of handling most type of Bangia

sentences. But following features are missing in the methodology.

• Non-ambiguity: Existing Bangia grammar is ambiguous. A sentence can be

parsed in different ways. For a single sentence, different parse trees may

exist.

• Predictive: Existing Bangia parsing methodology is non-predictive. While

parsing a Bangia sentence, all possible rules have to be examined to find

appropriate sequence of rules to fit the input sentence. As a result,

backtracking algorithm is required for parsing, which requires exponential

runtime to parse a sentence. Using the methodology, a sentence can not be

parsed in 'linear time.

• Error recovery: Existing Bangia parsmg methodology lacks error

recoverability. When any error is found in a Bangia sentence, parser can not

continue parsing. Not only this, if any sentence can not be fit in

corresponding grammar, parsing halts. In machine translation, it is not

possible to write grammar to handle all types of sentences, as a correct

sentence can be written in different ways. Writing such grammar is an NP-

complete problem.

• Unknown word: There is always a certain probability of occurring some

unknown words in a number of sentences of any natural language. Unknown

words are basically words which are not found in dictionary. Existing BangIa

parsing methodology is not capable of handling unknown words. If any

unknown word is found, it is regarded as error and parsing stops.

• Words with different meaning: In most of the languages, there exist some

words having different meaning. For example, in the sentence "'(3 ~ '(3 ~

.,', ' I
,J._-'; "I'. .

Chapter \; Introduction 19

15l1'I", first "'S" represents a pronoun and second "'S" represents a conjuncture.

Existing Bangia parsing methodology is not capable of handing such words

with different meaning and different parts of speech. It assumes each word of

a dictionary has single parts of speech.

1.7.4 Present State of BangIa Parsing and Contributions of the

Thesis

Machine translation in Bangia is an emerging field. There are some research and

professional works in this area. As mentioned earlier, ANUBADOK is an English to

Bangia machine translation software. There are also some other research works in

English to Bangia machine translation. But there are very few works in Bangia to

English machine translation. There is no complete Bangia to English machine

translation software.

There are many machine translation techniques as discussed earlier in this chapter.

No technique can be chosen to be the best. There are many languages in this world.

The languages are different in grammar, style, flexibility, etc. Different machine

translation techniques are suitable for different languages. As being a discipline

language, syntax-based machine translation system is most appropriate for Bangia

language. In this technique, source language text is first parsed, then language

translation technique is applied on the parsed text. So, parsing is the base method for

syntax-based machine translation.

Bangia parsmg methodology [22][23] is already developed. This methodology

includes Bangia grammar and Bangia text parsing technique. There exist context- .

free and context-sensitive phrase structure rules, which can be used to.parse almost

all kinds of Bangia sentences. The methodology is capable of parsing complex and

compound sentences, which was not possible before.

First complete Bangia parsing methodology [24] was developed in 1998. But the

methodology was capable of parse only simple sentences. It was not capable of

~_.
,--- ..,.

Chapter I: Introduction 20

parsmg complex or compound sentences. Then phrasal category and

Transformational Generative Grammars (TGG's) for simple sentences of BangIa

language [25] was developed in 1999. Machine translation dictionaries for Bangia

language [26] was developed in 2002. Syntax analysis using comprehensive

approach [27] was presented in 2003. Then a knowledge based approach to Bangla-

English machine translation for simple assertive sentences [28] was done in the

same year. Parsing methodology for BangIa natural language sentences' [22][23] was

developed in the same year. The latest work is capable of parsing almost all types of

sentences, which ineludes complex and compound sentences.

Later, there are also some other works in BangIa parsing. Structure based BangIa to

English machine translation technique [29] was developed in 2005. Structure based

machine translation is not so appropriate for BangIa language. Then a bottom-up

parsing algorithm for BangIa parser applying context-sensitive transformation rules

. to maintain the freeness of word order [30] was developed in the same year. Latest

contribution in BangIa parsing is parsing algorithm for Bangia, parser to handle

affirmative and negative sentences [31] developed in 2006.

There are many problems and limitations in existing BangIa parsing methodology.

Existing BangIa Grammar is ambiguous. Because of ambiguous nature, existing

BangIa parsing methodology IS non-predictive. Existing Bangia parsmg

methodology can not continue parsing if any error occurs in input BangIa text.

While translating using machine translation system, it can never be assumed that all

input sentences are correct and can be fit in rules of grammar. Existing Bangia

parsing methodology can not handle unknown words. Parsing halts if any unknown

word is found in input sentence. Exist BangIa parsing methodology also can not

handle words having different parts-of-speeeh.

This thesis OVercomeSall the above problems and limitations. This thesis presents a

non-ambiguous grammar thereby predictive nature of BangIa parsing with eiTor

recovery capability. The parser uses a structured BangIa dictionary as lexicons. The
. I .

Chapter I: Introduction 21

syntax analysis part is capable of handling complex words and pieces them into

simple words.

As the grammar is non-ambiguous, just one parse tree can be generated for an input

sentence. Because of predictive parsing nature, parsing can be done in linear

runtime. Previous parsing methods used non-predictive parsing techniques, as a

result exponential runtime is required to generate parse tree. Most important

achievement is capability to continue parsing if any error occurs. Previous methods

halt parsing, if any error is found in input sentence. In case of language translation,

assumption of error-freeness is quite impractical. Parsing methodology in this thesis

detects errors in sentences and continues parsing overlooking the error. This parsing

methodology can handle unknown words. In case of language translation, some

words are certainly found, which are not available in dictionary. Existing parsing

methodologies halt parsing if any unknown word is found. Another important

achievement of this thesis is to handle words having different meaning or different

parts-of-speech. This parsing technique uses runtime parts-of-speech tagging for

such kinds of words.

1.8 Organization of the Thesis

In this chapter, we have discussed basics of machine translation and parsing. We

also have discussed prospects of machine translation in BangIa and also current state

of Bangia parsing methodology. The rest parts of this thesis is organized as follows,

In chapter 2, we have discussed syntax-based machine translation and theories

behind this category of machine translation like parsing, error recovery, context-free

grammar, different parsing techniques and theories of non-recursive predictive

parser.

In chapter 3, we have discussed existing BangIa grammar, which is ambiguous and

non-predictive. Existing Bangia grammar is discussed in different levels like noun

phrase, verb phrase, adjective phrase, simple sentence, complex sentence, compound

Chapter I: Introduction 22

sentence and sentence level. We also have discussed limitations of existing BangIa

grammar.

In chapter 4, we have eliminated ambiguity and non-predictive problem from BangIa

grammar for simple sentences and designed a new non-ambiguous predictive

grammar. We have incorporated the idea of handling unknown or non-dictionary

words. We also have brought out some more new ideas in the grammar.

In chapter 5, we have analyzed all possible combinations of BangIa complex

sentences. Then, we have designed non-ambiguous predictive grammar for complex

sentence, which abolishes ambiguity and non-predictive problem of existing BangIa

grammar for complex sentence.

In chapter 6, we have eliminated ambiguity and non-predictive problem from BangIa

grammar for compound sentences, thereby have designed a new non-ambiguous

predictive grammar. We also have facilitated more than two basic sentences in a

compound sentence.

In chapter 7, we have eliminated ambiguity and non-predictive problem from BangIa

grammar for all types of sentences. Therefore, non-ambiguous predictive

comprehensive BangIa grammar is designed. We also have elaborated significance

of each non-terminal in new proposed BangIa grammar.

In chapter 8, we have designed architecture of predictive parser, strategy and work

flow of lexical analyzer and syntax analyzer and error recovery mechanism using

new proposed non-ambiguous predictive BangIa grammar. We also have simulated

the functionality of predictive parser for both correct and incorrect sentences.

In chapter 9, we have discussed the architecture and functionality of simulation

program, which we have developed to simulate the correctness and usefulness of our

proposed BangIa grammar and error recovery policy.

Chapter1: Introduction 23

Finally, in chapter 10, we have discussed overall achievements of this thesis. We

also have discussed further enhancement and future related research scopes in this

area.

Chapter 2

Syntax-based Machine Translation

2.1 Syntax-based Machine Translation

Syntax-based Machine Translation is one of the statistical machine translation

paradigms. In this machine translation technique, the source language text input is

first parsed into a parse tree. This parsed text will be recursively converted into a

string in the target language.

The idea of syntax-based machine translation comes from the idea of a compiler

design. E. T. Irons first worked on syntax-directed compiler design in 1961 [32].

Then P. M. Lewis and R. E. Stearns contributed more in this area in 1968 [33].

Finally, Afred V. Aho and Jeffrey D. Ullman brought complete idea of parsing,

translation and compiling using syntax-directed approach in 1972 [34].

In syntax-based translation, the source text is parsed into a tree representation that

guides the generation of the object code. In other words, the translation is directed

by a syntactic tree. In this context, a syntax-based translator consists of two

components, a source language parser and a recursive converter which is usually

modeled as a top-down tree-to-string transducer.

Syntax-based translation technique uses a context-free grammar to specify the

syntactic structure of the input. With each grammar symbol, it associates a set of

attributes, and with each production, a set of semantic rules for computing values of

the attributes associated with the symbols appearing in that production.

For example, a sentence "I eat rice" can be parsed according to following rules:

S --+ NPVP

NP --+ P

Chapter 2: Syntax-based Machine Translation 2S

P-d
VP-> VB N

VB -> eat

N -> rice

Here,

S '" Sentence

NP '" Noun Phrase

VP '" Verb Phrase

P '" Pronoun

VB'" Verb

N "'Noun

Equivalent parse tree is demonstrated as Figure 2.1.

S

~~
VP/~

VB N

I I

Np.

I
P

I
eat rice

Figure 2.1: Parse tree of the sentence "I eat rice", which is generated during syntax-based
machine translation.

Translation process using this technique can be modeled in three phases:

• Lexical analysis

• Syntax analysis

• Translation

\

Chapter2: Syntax-basedMachineTranslation

2.1.1 Lexical Analysis

26

Lexical analysis is the process of converting a sequence of characters into a

sequence of tokens. Programs performing lexical analysis are called lexical

analyzers or lexers. A lexer is often organized as separate scanner and tokenizer

functions, though the boundaries may not be clearly defined.

Lexical analyzer is the first phase of a syntax-based machine translator. Its main task

is to read the input characters and produce as output a sequence of tokens that the

parser uses for syntax analysis. This interaction, summarized schematically in figure

2.2, is commonly implemented by making the lexical analyzer be a subroutine or a

co-routine of the parser. Upon receiving a "get next token" command from the

parser, as mentioned in figure 2.2, the lexical analyzer reads input characters until it

can identitY the next token.

Source
Text

Lexical
Analyzer

Token
(tagged
text)

get
next
token

Dictionary

Parser
______-. Parsed

Text

Figure 2.2: Interactionof lexicalanalyzerwith parser. .

2.1.1.1 Scanner

The first stage, the scanner, is usually based on a finite state machine. It has encoded

within it information on the possible sequences of characters that can. be contained

within any of the tokens it handles (individual instances of these character sequences

are known as lexemes). For instance, an integer token may contain any sequence of

numeric digit characters. In many cases, the first non-whitespace character can be

used to deduce the kind of token that follows and subsequent input characters are

then processed one at a time until reaching a character that is not in the set of

,
i

Chapter2: Syntax-basedMachineTranslation 27

characters acceptable for that token (this is known as the maximal munch rule). In

some systems the lexeme creation rules are more complicated and may involve

backtracking over previously read characters.

2.1.1.2 Tokenizer

Tokenization is the process of demarcating and possibly classifYing sections of a

string of input characters. The resulting tokens are then passed on to some other

form of processing. The process can be considered a sub-task of parsing input. A

process of tokenization could be used to split the sentence into word tokens.

2.1.2 Syntax Analysis

Hierarchical analysis is called syntax analysis or parsing. It involves grouping the

tokens of the source sentence into grammatical phrases that are used by the

translator to synthesize output. Usually, the grammatical phrases of the source text

are represented by a parse tree.

2.1.3 Translation

This is the last phase in syntax-based machine translation. In phase takes parsed text

as input. Then words in source language text are translated into destination

language. Then some re-ordering of words is done using the grammar of target

language. Then destination language text is found from parse tree by recursive

converSIOn.

2.2 Parser

A parser is one of the components in an interpreter or compiler or machine

translator, where it captures the implied hierarchy of the input text and transforms it

into a form suitable for further processing (often some kind of parse tree, abstract

Chapter2: Syntax-basedMachineTranslation 28

syntax tree or other hierarchical structure) and normally checks for syntax errors at

the same time. The parser often uses a separate lexical analyzer to create tokens

from the sequence of input characters. Parsers may be programmed by hand or may

be semi-automatically generated (in some programming language) by a tool (such as

Yacc) from a grammar written in Backus-Naur form.

A parser obtains a string of tokens from the lexical analyzer, and verifies that the

string can be generated by the grammar for the source language. The parser reports

any syntax errors in an intelligible fashion. It should also recover from commonly

occurring errors so that it can continue processing the remainder of its input.

There are three general types of parsers for grammars. Universal parsing methods

such as the Cocke-Younger-Kasami algorithm [20] and Earley's algorithm [19] can

parse any grammar. These methods, however, are too inefficient to use in production

compilers. The methods commonly used in compilers are classified as being either

top-down or bottom-up. As indicated by their names, top-down parsers build parse

trees from the top (root) to the bottom (leaves), while bottom-up parsers start from

the leaves and work up to the root. In both cases, the input to the parser is scanned

from left to right, one symbol at a time.

The most efficient top-down and bottom-up methods work only on subclasses of

grammars, but several of these subclasses, such as the LL and LR grammars, are

expressive enough to describe most syntactic constructs in programming languages.

Parsers implemented by hand often work with LL grammars. Parsers for the larger

class of LR grammars are usually constructed by automated tools.

The output of the parser is some representation of the parse tree for the stream of

tokens produces by the lexical analyzer. In practice, there are a number of tasks that

might be conducted during parsing, such as collecting information about various

tokens into the symbol table, performing type checking and other kinds of semantic

analysis.

Chapter2: Syntax-basedMachineTranslation 29

A parser should report the nature of syntactic errors and adopt general strategies for

error recovery. Two of these strategies, called panic-mode and phrase-level

recovery, are used in most of the parsing methods.

2.2.1 Role of a Parser in a Machine Translator

In some machine translation (such as syntax-based machine translation) and natural

language processing systems, human languages are parsed by computer programs.

Human sentences are not easily parsed by programs, as there is substantial

ambiguity in the structure of human language. In order to parse natural language

data, researchers must first agree on the grammar to be used. The choice of syntax is

affected by both linguistic and computational concerns; for instance some parsing

systems use lexical functional grammar, but in general, parsing for grammars of this

type is known to be NP-complete. Head-driven phrase structure grammar is another

linguistic formalism which has been popular in the parsing community, but other

research efforts have focused on less complex formalisms such as the one used in

the Penn Treebank. Shallow parsing aims to find only boundaries of major

constituents such as noun phrases. Another popular strategy for avoiding linguistic

controversy is dependency grammar parsing.

Most modem parsers are least partly statistical; that is, they rely on a corpus of

training data which has already been annotated (parsed by hand). This approach

allows the system to gather information about the frequency with which various

constructions occur in specific contexts. Approaches which have been used include

straightforward PCFGs (probabilistic context free grammars), maximum entropy,

and neural nets. However such systems are vulnerable to over-fitting and require

some kind of smoothing to be effective.

Parsing algorithms for natural language cannot rely on the grammar having 'nice'

properties as. with manually-designed grammar for programming languages. As

mentioned earlier some grammar formalisms are computationally very difficult to

parse; in general, even if the desired structure is not context-free, some kind of

Chapter2: Syntax-basedMachineTranslation 30

context-free approximation to the grammar IS used to perform a first pass.

Algorithms which use context-free grammars often rely on some variant of the CYK

algorithm, usually with some heuristic to prune away unlikely analyses to save time.

However some systems trade speed for accuracy using, e.g., linear-time versions of

the shift-reduce algorithm. A somewhat recent development has been parse re-

ranking in which the parser proposes some large number of analyzes, and a more

complex system selects the best option. It is normally branching of one part and its

subparts.

2.3 Error Recovery in a Parser

There are many different general strategies that a parser can employ to recover from

a syntactic error. Although no one strategy has proven itself to be universally

acceptable, a few methods have broad applicability. Here we introduce the following

strategies:

• Panic-mode

• Phrase level

• Error productions

• Global correction

2.3.1 Panic-mode Recovery

This is the simplest method to implement and can be used by most parsing methods.

On discovering an error, the parser discards input symbols one at a time until one of

a designated set of synchronizing tokens is found. The synchronizing tokens are

usually delimiters. The compiler designer must select the synchronizing tokens

appropriate for the source language. While panic-mode correction often skips a

considerable amount of input without checking it for additional errors, it has the

advantage of simplicity and, unlike some other methods to be considered later, it is

guaranteed not to go into an infinite loop. In situations where multiple errors in the

same statement are rare, this method may be quite adequate.

Chapter2: Syntax-basedMachineTranslation

2.3.2 Phrase Level Recovery

31

On discovering an error, a parser may perform local correction on the remaining

input; i.e., it may replace a prefix of the remaining input by some string that allows

the parser to continue. A typical local correction would be to replace a comma by a

semicolon, delete an extraneous semicolon, or insert a missing semicolon. The

choice of the local correction is left to the compiler designer. Of course, we must be

careful to choose replacements that do not lead to infinite loops, as would be the

case, for example, if we always inserted something on the input ahead of the current

input symbol.

This type of replacement can correct any input string and has been used in several

error-repairing compilers. The method was first used with top-down parsing. Its

major drawback is the difficulty it has in coping with situations in which the actual

error has occurred before the point of detection.

2.3.3 Error Productions

If we have a good idea of the common errors that might be encountered, we can

augment the grammar for the language at hand with productions that generate the

erroneous constructs. We then use the grammar augmented by these error

productions to construct a parser. If an error production is used by the parser, we can

generate appropriate error diagnostics to indicate the erroneous construct that has

been recognized in the input.

2.3.4 Global Correction

Ideally, we would like a compiler to make as few changes as possible in processing

an incorrect input string. There are algorithms for choosing a minimal sequence of

changes to obtain a globally least-cost correction. Given an incorrect input string x

and grammar G, these algorithms will find a parse tree for a related string y, such

that the number of insertions, deletions, and changes of tokens required to string

.----.
1

J

Chapter2: Syntax-basedMachineTranslation 32

form x into y is as small as possible. Unfortunately, these methods are in general too

costly to implement in terms of time and space, so these techniques are currently

only of theoretical interest. This problem can be considered as NP-complete

problem.

2.4 Context-free Grammar

In formal language theory, a context-free grammar (CFG) is a grammar in which

every production rule is of the from

v ---> w

where V is a single non-terminal symbol, and w is a string of terminals and/or non-

terminals (possibly empty). The term "context-free" expresses the fact that non-

terminals can be rewritten without regard to the context in which they occur. A

formal language is context-free if some context-free grammar generates it. Context-

free grammars playa central role in the description and design of programming

languages and compilers. They are also used for analyzing the syntax of natural

languages.

The context-free grammar (or "phrase-structure grammar" as Chomsky called it)

formalism developed by Noam Chomsky, in the mid 1950s [17], took the manner in

which linguistics had described this grammatical structure, and then turned into

rigorous mathematics. A context-free grammar provides a simple and precise

mechanism for describing the methods by which phrases in some natural language

are built from smaller blocks, capturing the "block structure" of sentences in a

natural way. Its simplicity makes the formalism amendable to rigorous mathematical

study, but it comes at a price: important features of natural languages syntax such as

agreement and reference cannot be expressed in a natural way, or not at all.

Block structure was introduced into computer programming languages by the Algol

project [35], which, as a consequence, also featured a context-free grammar to

describe the resulting Algol syntax.. This became a standard feature of computer

languages, and the notation for grammars used in concrete descriptions of computer

Chapter2: Syntax-basedMachineTranslation 33

languages came to be known as Backus-Naur Form, after two members of the Algol

language design committee. The "block structure" aspect that context-free grammars

capture is so fundamental to grammar that the terms syntax and grammar are often

identified with context-free grammar rules, especially in computer science. Formal

constraints not captured by the grammar are then considered to be part of the

"semantics" of the language.

A context-free grammar G is a 4-tuple:

G ~ (V,~, R, S)where

1. V is a set of non-terminal characters or variables. They represent different

types or clause in the sentence.

2. ~ is a finite set of terminals, disjoint with V, which make up the actual

content of the sentence.

3. R is a relation from Vto (Vu~)' such that 3WE (Vu ~). : (S, w)ER.

4. S is a start symbol, used to represent the whole sentence (or program). It

mush be an element of V.

In addition, R is a finite set. The members of R are called the rules of productions of

the grammar.

2.4.1 Terminal

Terminals are the basic symbols from which strings are formed. The word "token" is

a synonym for "terminal" when we are talking about grammars from linguistics or

programming languages.

2.4.2 Non-terminal

Non-terminals are syntactic variables that denote sets of strings. The non-terminals

define sets of strings that help define the language generated by the grammar. They

also impose a hierarchical structure on the language that is useful for both syntax

analysis and translation.

r

Chapter2: Syntax-basedMachineTranslation

2.4.3 Start Symbol I -

34

In a grammar, one non-terminal is distinguished as the start symbol, and the set of

strings it denotes is the language defined by the grammar.

2.4.4 Productions

The productions of a grammar specify the manner in which .the terminals and non-

terminals can be combined to form strings. Each production consists of a non-

terminal, followed by an arrow, followed by a string of non-terminals and terminals.

2.4.5 Normal Forms

Every context-free grammar that does not generate the empty string can be
"

transformed into one in which no rule has the empty sting as a product (a rule with €

as a product is called €-production). If it does generate the empty string, it will be

necessary to include the rule S --7 €, but there need. be no other €-rule. Every

context-free grammar with no €-production has an equivalent grammar in Chomsky

normal form [36] or Greibach normal form [36]. "Equivalent" here means that the

two grammas generate the same language.

Because of the especially simple form of production rules in Chomsky Normal Form

grammars, this normal form has both theoretical and practical implications. For

instance, given a context-free grammar, one can use the Chomsky Normal Form to

construct a polynomial-time algorithm which decides whether a given string is in the

language represented by that grammar or not (the CYK algorithm).

2.4.6 Undecidable Problems

Although some operations on context-free grammars are decidable due to their

limited power, CFGs do have interesting undecidable problems. One of the simplest

~
(

Chapter2: Syntax-basedMachineTranslation 35

and most cited is the problem of deciding whether a CFG accepts the language of all

strings. A reduction can be demonstrated to this problem from the well-known

undecidable problem of determining whether a Turing machine [37] accepts a

particular input. The reduction uses the concept of a computation history, a string

describing an entire computation of a Turing machine. We can construct a CFG that

generates all strings that are not accepting computation histories for a particular

Turing machine on a particular input, and thus it will accept all strings only if the

machine does not accept that input.

As a consequence of this, it is also undecidable whether two CFGs describe the same

language, since we can't even decide whether a CFG is equivalent to the trivial CFG

deciding the language of all strings. Another point worth mentioning is that the

problem of determining if a context-sensitive grammar describes a context-free

language is undecidable.

2.4.7 Extensions

An obvious way to extend the context-free grammar formalism is to allow non-

terminals to have arguments, the values of which are passed along within the rules.

This allows natural language features such as agreement and reference, and

programming language analogs such as the correct use and definition of identifiers,

to be expressed in a natural way. E.g. we can now easily express that in English

sentences, the subject and verb must agree in number.

In computer SCIence, examples of this approach include affix grammars [38],

attribute grammars [39], indexed grammars [40], and Van Wijngaarden two-level

grammars [39]. Similar extensions exist in linguistics. Another extension is to allow

additional sy'mbols to appear at the left hand side of rules, constraining their

application. This produces the formalism of context-sensitive grammars.

Chapter 2: Syntax-based Machine Translation

2.4.8 Linguistic Applications

36

Chomsky initially hoped to overcome the limitations of context-free grammars by

adding transformation' rules [17]. Such rules are another standard device in

traditional linguistics; e.g. passivization m English. However, arbitrary

transformations must be disallowed, since they are much too powerful (Turing

complete). Much of generative grammar has been devoted to finding ways of

refining the descriptive mechanisms of phrase-structure grammar and transformation

rules such that exactly the kinds of things can be expressed that natural language

actually allows.

His general position regarding the non-context-freeness of natural language has held

up since then [41], although his specific examples regarding the inadequacy of

context free grammars (CFGs) in terms of their weak generative capacity were later

disproved [42]. Gerald Gazdar and Geoffrey Pullum have argued that despite a few

non-context-free constructions in natural language (such as cross-serial

dependencies in Swiss German [41] and reduplication in Bambara [43]), the vast

majority offorms in natural language are indeed context-free [42].

2.4.9 Parse Tree

A parse tree or concrete syntax tree is an ordered and rooted tree represents the

syntactic structure of a string according to some formal grammar. In a parse tree, the

interior nodes are labeled by non-terminals of the grammar, while the leaf nodes are

labeled by terminals of the grammar. Parse trees may be generated for sentences in

natural languages, as well as during processing of computer languages, such as

programming languages.

A parse tree is made up of nodes and branches. Corresponding parse tree of an

English sentence called "John hit the ball" is demonstrated in figure 2.3. The parse

tree is the entire structure, starting from S and ending in each of the leaf nodes (John,

hit, the, ball).

Chapter2: Syntax-basedMachineTranslation

S

/~
NP VP

I /~
John V NP

I /~
hit Det N

I I

37

the ball

Figure 2.3: Parsetreeof the sentence"Johnhit the ball".

2.4.10 Derivations

The terms "parse tree" and "derivations" are closely related. To see the relationship

between derivations and parse trees, we can consider any derivation a I => a 2 =>

... => a no where a I is a single non-terminal A. For each sentential form a i in the

derivation, we construct a parse tree whose yield is a i. The process is an induction

on i. For the basis, the tree for a I ~ A is a single node labeled A. To do the

induction, suppose we have already constructed a parse tree whose yield is a i-I = XI
X2 ••• Xk• Suppose, a i is derived from a i-I by replacing Xj, a non-terminal, by f3 =

YI Y2 ... Y,. That is, at the ith step of the derivation, production Xj -. f3 is applied to

a i-I to derive a i =XI X2 .•. Xj-I f3 Xj+1 ... Xk.

To model this step of the derivation, we find the jth leaf from the left in the current

parse tree. This leafis labeled Xj. We give this leaf r children, labeled YI, Yz. ... , Y" .

from the left. As a special case, if r = 0, i.e., f3 = E:, then we give the jth leaf one

child labeled.E:.

For example, the sentence "John hit the ball" (for which parse tree shown in figure

2.3), derivation can be done as follows:

Chapter 2: Syntax-based Machine Translation

S => NPVP
=> NPVNP
=> NPV DetN

2.4.11 Ambiguous Grammar

38

A grammar is said to be an ambiguous grammar if there is some string that it can

generate in more than one way (i.e., the string has more than one parse tree). A

language is inherently ambiguous if it can only be generated by ambiguous

grammars.

For example, the context free grammar

AP --+ AP AP IAD
is ambiguous (here, AP denotes Adjective Phrase and AD denotes Adjective), since

the sentence segment "extremely very good" can be derived in at least ways.

AP
.......--- .•....•.....

AP AP
.......--- .•....•..... I
AP AP AD
I I I
AD AD good
I I

extremely very

(a)

AP
.......--- .•....•.....

AP AP
I--- .
AD AP AP
I I I

extremely AD AD
I I

very good

(b)

Figure 2.4: Two ways of parse tree (a), (b) of the sentence segment "extremely very good".

First way:

AP => APAP

=> AP AP AD
=> AD AD AD

Second way:

AP => APAP

Chapter 2: Syntax-based Machine Translation

~ ADAPAP

~ AD AD AD

Corresponding parse trees of the two ways are demonstrated in figure 2.4.

39

There is an obvious difficulty in parsing an ambiguous grammar by a deterministic

parser but nondeterministic parsing imposes a great efficiency penalty. Most

constructs of interest to parsing can be recognized by unambiguous grammars. Some

ambiguous grammars can be converted into unambiguous grammars, but no general

procedure for doing this is possible just as no algorithm exists for detecting

ambiguous grammars.

2.4.11.1 Elimination of Ambiguity

In most of the cases, an ambiguous grammar can be rewritten to eliminate the

ambiguity. There is no hard and fast rule to eliminate ambiguity of a grammar.

Elimination technique of a grammar resides in the reason of ambiguity.

For example, the context free grammar

AP -> AP AP I AD
which is discussed in section 2.4.11, is ambiguous, because precedence of

adjective(s) is not mentioned in the grammar. Ambiguity of the grammar can be

eliminated by making the grammar left associative or right associative.

We can make the grammar left associative and can re-write the grammar as follows:

AP -> AP AD I AD

Using the grammar, the sentence segment "extremely very good" can be parsed in

only one way, as demonstrated in figure 2.5. Thus ambiguity of grammar is

eliminated.

Chapter 2: Syntax-based Machine Translation

AP
/" "---
AP AD

/" "--- I
AP AD good
I I
AD very

I
extremely

40

Figure 2.5: Parse tree of the sentence segment "extremely very good" using left associative
rule of new grammar.

Same ambiguous grammar mentioned in section 2.4.11, can also be made non-

ambiguous by making the grammar right associative. We can re-write the grammar

as follows:

AP-.ADAPIAD

Using the grammar, the sentence segment "extremely very good" can be parsed in

only one way, as demonstrated in figure 2.6. Thus ambiguity of grammar is

eliminated.

AP
/" "---

AD AP
I/""---

extremely AD AP
I I

very AD
I

good

Figure 2.6: Parse tree of the sentence segment "extremely very good" using right
associative rule of new grammar.

2.4.12 Left Recursion

A grammar is said to be left recursive if it has a non-terminal A such that there is a

+derivation A ~ Aa for some string a. In terms of context-free grammar, a non-

terminal r is left-recursive if the left-most symbol in any of r's 'alternatives' either

immediately (direct left-recursive) or through some other non-terminal definitions

Chapter2: Syntax-basedMachineTranslation 41

(indirect/hidden 1eft-rec,ursive) rewrites to r agam. Top-down parsmg methods

cannot handle left-recursive grammars.

Immediate left recursion occurs in rules of the form

A-dalp

Where a and P are sequences of non-terminals and terminals, and P does not start

withA.

Indirect left recursion in its simplest form can be defined as:

A-7BaIC

B -7 API D

Possibly giving the derivation A ~ Ba ~ Apa ~ ...

More generally, for the non-terminals Ao, A], ... , An indirect left recursion can be

defined as being of the form:

AO-7Ala II .
A 1-7 A2 a 2 I .

An-7AOa (n+l) i ...
Where a I, a 2, ... , a n are sequences of non-terminals and terminals.

A formal grammar that contains left recursion cannot be parsed by a naive recursive

descent parser unless they are converted to a weakly equivalent right-recursive form.

In contrast, left recursion is preferred for LALR parsers because it results in lower

stack usage that right recursion. However, recent research demonstrates that it is

possible to accommodate left-recursive grammars (along with all other forms of

general CFGs) in a more sophisticated top-down parser by use of curtailment. A

recognition algorithm which accommodates ambiguous grammars with direct left-

recursive production rules is described by Frost and Hafiz in 2006 [44]. That

algorithm was extended to a complete parsing algorithm to accommodate indirect as

well as direct left-recursion in polynomial time, and to generate compact

polynomial-size representations of the potentially-exponential number of parse trees

for highly-ambiguous grammars by Frost, Hafiz and Callaghan in 2007 [45]. The

:-.-

Chapter2: Syntax-basedMachineTranslation 42

algorithm has since been implemented as a set of parser combinators written in the

Haskell programming language. The implementation details of these new set of

combinators can be found in a paper [46] by the above-mentioned authors, which

was presented in PADL'08.

2.4.12.1 Elimination of Left Recursion

As discussed inthe previous section (2.4.12), simplest form of left recursion can be

defined as:

A~Aal,B

This production can be replaces by the non-recursive productions:

A~,BA'

A'~aA'11i

without changin& the set of strings derivable from A. This rule by itself suffices in

many grammars.

The general algorithm to remove immediate left recursion follows. Several

improvements to this method have been made, including the ones described in

"Removing Left Recursion from Context-Free Grammars", written by Robert C.

Moore.

For each rule of the form

where A is a left-recursive non-terminal, a is a sequence of non-terminals and

terminals that is not null (a '" Ii), ,B is a sequence of non-terminals and terminals

that does not start with A.

Left recursive A-production can be replaces by the following productions:

Chapter 2: Syntax-based Machine Translation 43

If the grammar has no [; -productions (no productions of the form A ---> ... 1 [; I ...) and

is not cyclic (no derivations of the form A:::::> ... :::::> A for any non-terminal A), this

general algorithm may be applied to remove indirect left recursion:

Algorithm 2.1:

Arrange the non-terminals in some fixed order AI, ... An.
for i = I to n do

for j = I to (i-I) do
let the current Aj productions be Ai ---> 0, 1 ... 1 Ok
replace each production A, ---> Ajy by A, ---> o,y 1 ... 1 0kY
remove direct left recursion for A;

end
end

The above transformations remove left-recursion by creating a right-recursive

grammar i.e., this changes the associativity of our rules.

2.4.13 Left Factoring

Left factoring is a grammar transformation that is useful for producing a grammar

suitable for predictive parsing. The basic idea is that when it is not clear which of

two alternative productions to use to expand a non-terminal A, we may be able to

rewrite the A-productions to defer the decision until we have seen enough of the

input to make the right choice.

If A ---> a/3, I a/3, are two A -production, and the input begins with a non-empty string

derived from a, we do not know whether to expand A to a/3, or to a/3,. However,

we may defer the decision by expanding A to aA'. Then after seeing the input

derived from a, we expand A' to /3, or to /3,. That is, left-factored, the original

productions become:

A ---> aA'

A' ---> /3, I /3,

Chapter2: Syntax-basedMachineTranslation 44

In general, left factorization of a grammar can be done usmg the following

algorithm:

Algorithm 2.2:

For each non-terminal A, find the longest prefix a common to two or more of its
alternatives. If a '"Ii, i.e., there is a nontrivial common prefix, replace all the A
productions A --+ afJi 1 afJ, 1 ... 1 afJ, I r, where r represents all alternatives that do
not begin with a by

A --+aA'1 r

A' --+ fJi 1 fJ, 1 ... 1 fJ,
Here, A' is a new non-terminal. Repeatedly apply this transformation until no two
alternatives for a non-terminal have a common prefix.

2.5 Context-sensitive Grammar

A context-sensitive grammar (CSG) is a formal grammar in which the left-hand,
sides and right-hand sides of any production rules may be surrounded by a context

of terminal and non-terminal symbols. Context-sensitive grammars are more general

that context-free grammar but still orderly enough to be parsed by a linear bounded

automation.

The concept of context-sensitive grammar was introduced by Noam Chomsky in the

1950s as a way to describe the syntax of natural language where it is indeed often

the case that a word mayor may not be appropriate in a certain place depending

upon the context. A formal language that can be described by a context-sensitive

grammar is called a context-sensitive language.

A formal grammar G = (N,'L"P,S) is context-sensitive if all rules in P are of the

form

aAfJ --+ arfJ

where A EN (i.e., A is a single non-terminal), a,fJ E (Nu 'L,)' (i.e., a and fJ are

strings of non-terminals and terminals) and rE(Nu'L,r (i.e., r is a nonempty

string of non-terminals and terminals).

Chapter 2: Syntax-based Machine Translation 45

In addition, a rule of the form,

S ~ A provided S does not appear on the right side of any rule

where A represents the empty string is permitted. The addition of the empty string

allows the statement that the context sensitive languages are a proper superset of the

context free languages, rather than having to make the weaker statement that all

context free grammars with no ~ A productions are also context sensitive

grammars.

The name "context-sensitive" is explained by the a and f3 that form the context of

A and determine whether A can be replaced with r or not. This is different from a

context-free grammar where the context of a non-terminal is not taken into

consideration.

If the possibility of adding the empty string to a language is added to the string s

recognized by the non-contracting grammars (which can never include the empty

string) then the languages in these two definitions are identical.

Every context-sensitive grammar which does not generate the empty string can be

transformed into an equivalent one in Kuroda normal form. "Equivalent" here means

that the two grammars generate the same language. The normal form will not in

general be context-sensitive, but will be a non-contracting grammar.

The decision problem that asks whether a certain string s belongs to the language of

a certain context-sensitive grammar G, is PSPACE-complete. There are even some

context-sensitive grammars whose fixed grammar recognition problem is PSPACE-

complete. The emptiness problem for context-sensitive grammars (given a context-

sensitive grammar G, is L(G) = E:) is undecidable.

It has been shown that nearly all natural languages may in general be characterized

by context-sensitive grammars, but the whole class of CSG' s seems to be much

bigger than natural languages. Worse yet, since the aforementioned decision

problem for CSG's is PSPACE-complete [47], that makes them totally unworkable

Chapter2: Syntax-basedMachineTranslation 46

for practical use, as a polynomial-time algorithm for a PSPACE-complete problem

would imply P=NP. Ongoing research on computational linguistics has focused on

formulating other classes of languages that are "mildly context-sensitive" whose

decision problems are feasible, such as tree-adjoining grammars, combinatory

categorical grammars, coupled context-free languages, and linear contex-free

rewriting systems. The languages generated by these formalisms properly lie.

between the context-free and context-sensitive languages.

2.6 Top-down Parsing

Top-down parsmg IS a strategy of analyzing unknown data relationships by

hypothesizing general parse tree structures and then considering whether the known

fundamental structures are compatible with the hypothesis. It occurs in the analysis

of both natural languages and computer languages.

Top-down parsing can be viewed as an attempt to find left-most derivations of an

input-steam by searching for parse-trees using a top-down expansion of the given

formal grammar rules. Tokens are consumed from left to right. Inclusive choice is

used to accommodate ambiguity by expanding all alternative right-hand-sides of

grammar rules [16].

Simple implementations of top-down parsing do not terminate for left-recursive

grammars, and top-down parsing with backtracking may have exponential time

complexity with respect to the length of the input for ambiguous CFGs [34].

However, more sophisticated top-down parsers have been created by Frost, hafiz,

and Callaghan [45][46], which do accommodate ambiguity and left recursion in

polynomial time and which generate polynomial-sized representations of the

potentially-eXponential number of parse trees.

An LL parser, also called a top-bottom parser or top-down parser, applied each

production rule to the incoming symbols by working from the left-most symbol

yielded on a production rule and then proceeding to the next production rule for each

Chapter 2: Syntax-based Machine Translation 47

non-terminal symbol encountered. In this way the parsing starts on the left of the

result side of the production rule and evaluates non-terminals from the left first and,

thus, preceeds down the parse tree for each new non-terminal before continuing to

the next symbol for a production rule.

For example:

A -+aBC

B-+clcd

C -+dfleg

would match A -+ aBC and attempt to match B -+ c I cd next. Then C -+ df I eg
would be tried. As one may expect, some languages are more ambiguous than

others. For a non-ambiguous language in which all productions for a non-terminal

produce distinct strings: the string produced by one production will not start with the

same symbol as the string produced by another production. A non-ambiguous

language may be parsed by and LL(I) grammar where the (I) signified the parser

read ahead One token at a time. For an ambiguous language to be parsed by an LL

parser, the parser must lookahead more than I symbol, e.g. LL(3). The common

solution is to used an LR parser (also known as bottom-up or shift-reduce parser).

When top-down parser tried to parse an ambiguous input w.r.t. an ambiguous CFG,

it may need exponential number of steps (w.r.t. the length of the input) to try all

alternatives of the CFG in order to produce all possible parser trees, which

eventually would require exponential memory space. The problem of exponential

time complexity in top-down parsers constructed as sets of mutually-recursive

functions has been solved by Norvig in 1991 [48]. His technique is similar to the use

of dynamic programming and state-sets I nEarleys's algorithm, and tables in the

CYK algorithm of Cocke, Younger and Kasami. The key idea is to store results of

applying a .parser p at position j in a memotable and to reuse result whenever the

same situation arises. Frost, Hafiz and Callaghan [45][46] also use memorization for

refraining redundant computations to accommodate any form of CFG in polynomial

time (El(n4) for left-recursive grammars and El(n') for non left-recursive

grammars). Their top-down parsing algorithm also requires polynomial space for

Chapter2: Syntax-basedMachineTranslation 48

potentially exponential ambiguous parse trees by "compact representation" and

"local ambiguities grouping". Their compact representation is comparable with

Tomita's compact representation of bottom-up parsing [49].

The most common parsers using top-down parsing methodology are LL parser and

recursive descent parser.

2.6.1 LL Parser

An LL parser is a top-down parser for a subset of the context-free grammars. It

parses the input from left to right, and constructs a leftmost derivation of the

sentence. The class of grammar which are parsable in this way is known as the LL

grammars.

An LL parser is 2alled an LL(k) parser if it uses k tokens oflook-ahead when parsing

a sentence. If such a parser exists for a certain grammar and it can parse sentences of

this grammar without backtracking then it is called and LL(k) grammar. Of these

grammars, LL(I) grammars, although fairly restrictive, are very popular because the

corresponding LL parsers only need to look at the next token to make their parsing

decisions. Languages based on grammars with a high value of k require considerable

effort to parse.

A grammar whose parting table has no multiply-defined entries is said to be LL(l).

This uses one input symbol of lookahead at each step to make parsing action

decisions. LL(I) grammar G produces only one entry in parsing table of a non-

recursive predictive parser.

LL(I) graminar have several distinctive properties. No ambiguous or left-recursive

grammar can be LL(l). It can also be shown that a grammar G is LL(I) if and only if

whenever A --+ a I f3 are two distinct productions of G the following conditions

hold:

...•.."if
. ,
'-.. \'

Chapter2: Syntax-basedMachineTranslation

1. For no terminal a do both a and j3 derive strings beginning with a.

2. At most one of a and j3 can derive the empty string.

49

•3. If j3=:>£, then a does not derive any string beginning with a terminal in

Follow(A).

There remaInS the question of what should be done when a parsIng table has

multiply-defined entries. One recourse is to transform the grammar by eliminating

all left recursion and then left factoring whenever possible, hoping to produce a

grammar for which the parsing table has no multiply-defined entries. The main

difficulty in using predictive parsing is in writing a grammar for the source language.

such that a predictive parser Can be constructed from the grammar. Although left-

recursion elimination and left factoring are easy to do, they make the resulting

grammar hard to read and difficult to use for translation purposes.

We have used LL parser using LL(l) grammar in this thesis. Because we have

designed BangIa grammar in such way that BangIa sentences Canbe parsed using LL

parser efficiently. Not only this, error recovery of BangIa parsing will be effective

using this method.

2.6.2 Recursive Descent Parser

A recurSIve descent parser is a top-down parser build from a set of mutually-

recursive procedures (or a non-recursive equivalent) whcre each such procedure

usually implements one of the production rules of the grammar. Thus the structure

of the resulting program closely mirrors that of the grammar it recognizes.

A predictive parser is a recursive descent parser that does not require backtracking.

Predictive parsing is possible only for the class of LL(k) grammars, which are the

context-free grammars for which there exists some positive integer k that allows a

recursive descent parser to decide which production to use by examining only the

next k tokens of input. The LL(k) grammars therefore exclude all ambiguous

.0

Chapter2: Syntax-basedMachineTranslation 50

grammars, as well as all grammars that contain left recursion. Any context-free

grammar can be transformed into an equivalent grammar that has no left recursion,

but removal of left recursion does not always yield an LL(k) grammar. A predictive

parser ruris in linear time.

Recursive descent with backup is a technique that determine which production to

use by trying each production in tum. Recursive descent with backup is not limited

to LL(k) grammars, but is not guaranteed to terminate unless the grammar is LL(k).

Even when they terminate parsers that use recursive descent with backup may

require exponential time.

Although predictive parsers are widely used, programmer often prefer to create LR

or LALR parsers via parser generators without transforming the grammar into LL(k)

form.

Some authors define recursive descent parsers as the predictive parsers. Other

authors use the term more broadly, to include backed-up recursive descent.

2.7 Bottom-up Parsing

Bottom-up parsing is a strategy for analyzing unknown data relationships that

attempts to identify the most fundamental units first, and then to infer higher-order

structures from them. It attempts to build trees upward toward the start symbol. It

occurs in the analysis of both natural languages and computer languages.

In linguistics, an example of bottom-up parsing would be analyzing a sentence by .

identifying words first, and then using properties of the words to infer grammatical

relations and phrase structures to build a parse tree of the complete sentence. This

means that rather than beginning with the starting symbol and generating an input

string, we shall examine the string and attempts to work our way back to the starting .

symbol. We can gain some power by starting at the bottom and working our way up.

Chapter2: Syntax-basedMachineTranslation 51

The common parsers using bottom-up parsing are LR parser, LALR parser, shift-.

reduce parser.

2.7.1 LR Parser

An LR parser is a parser for context-free grammars that reads input from left to right

and produces a rightmost derivation. The term LR(k) parser is also used; here the k

refers to the number of unconsumed "look ahead" input symbols that are used in

making parsing decisions. Usually k is 1 and is often omitted. A context-free

grammar is called LR(k) if there exists an LR(k) parser for it. An LR parser is said to

perform bottom-up parsing because it attempts to deduce the top level grammar

productions by building up from the leaves.

In typical usage an "LR parser" means a particular parser capable of recognizing a

particular language specified by a context free grammar. It is common, however, to

use the term to mean a driver program that can be supplied with a suitable table to

produce a wide number of different particular LR parsers. However, these programs

are more accurately called parser generators.

LR parsers can be implemented very efficiently. Of all parsers that scan their input

left to right, LR parsers detect syntactic errors (that is, when the input does not

conform to the grammar) as soon as possible.

LR parsers are difficult to produce by hand; they are usually constructed by a parser

generator. Depending on how the parsing table is generated these parser are called

simple LR parser (SLR), look-ahead LR parser (LALR), and canonical LR parser.

These types of parsers can deal with increasingly large sets of grammars; LALR

parsers can deal with more grammars than SLR. Canonical LR parsers work on

more grammars than LALR parsers.

Conceptually, an LR parser is a recursive program that can be proven correct by

direct computation, and can be implemented efficiently as a recursive ascent parser,

Chapter2: Syntax-basedMachineTranslation 52

a set of mutually-recursive functions for every grammar, much like a recurSIve

descent parser. Conventionally, however, LR parsers are presented and implemented

as table-based stack machines in which the call stack of the underlying recursive

program is explicitly manipulated.

2.7.2 LALR Parser

A lookahead LR parser or LALR parser is a specialized form of LR parser that can

deal with more context-free grammars than simple LR (SLR) parsers. It is a very

popular type of parser because it gives a good trade-off between the number of

grammars it can deal with and the size of the parsing tables it requires.

Like SLR, LALR is a refinement to the technique for constructing LR(O) parse

tables. While SLR uses Follow sets to construct reduce actions, LALR uses

lookahead sets are specific to an LR(O)item and a parser state.

Specially, the Follow set for a given LR(O) item I in a given parser state S contains

all symbols that are allowed by the grammar to appear after Fs left-hand-side non-

terminal. In constrast, the lookahead set for item I in state S. Follow(l) is effectively

the union of the lookahead sets for all LR(O) items with the same left-hand-side as I,

regardless of parser states or right-hand-sides, therefore losing all context

information. Because the lookahead set is specific to a particular parsing context, it

can be more selective, therefore allowing finer distinctions than the Follow set.

2.7.3 Shift-reduce Parser

The most common bottom-up parsers are the shift-reduce parsers [50]. These parsers

examine the input tokens and either shift (push) them onto a stack or reduce

elements at the top of the stack, replacing a right-hand side by a left-hand side.

A shift-reduce parser uses a stack to hold the grammar symbols while awaiting

reduction. During the operation of the parser, symbols from the input are shifted

"

Chapter2: Syntax-basedMachineTranslation 53

onto stack. If a prefix of the symbols on top of the stack matches the RHS of a

grammar rule which is the correct rule to use within the current context, then the

parser reduces the RHS of the rule to its LHS, replacing the RHS symbols on top of

the stack with the non-terminal occurring on the LHS of the rule. This shift-reduce

process continues until the parser terminates, reporting either success or failure. It

terminates with success when the input is legal and is accepted by the parser. It

terminates with failure if an error is detected in the input.

The parser is a stack automaton which is in one of several discrete states. In reality,

the parse stack contains states, rather than grammar symbols. However, since each

state corresponds to a unique grammar symbol, the state stack can be mapped onto

the grammar symbol stack mentioned earlier.

2.8 Architecture of Non-recursive Predictive Parser

Non-recursive parsing can be done by maintaining a stack. A model of a non-

recursive predictive parser is demonstrated in figure 2.7. The-basic idea is looking

up the production to be applied in a parsing table. Such table can be constructed

directly from grammar oflanguage.

A table-driven predictive parser has an input buffer, a stack, a parsing table, and an

output stream. The input buffer contains the string to be parsed, followed by $, a

symbol used as a right end-marker to indicate the end of the input string. The stack

contains a sequence of grammar symbols with $ on the bottom, indicating the

bottom of the stack. Initially, the stack contains the start symbol of the grammar on

the top of $. The parsing table is a two-dimensional array M(A, a], where A is a non-

terminal, and a is a terminal or the symbol $.

The parser is controlled by a program that behaves that behaves as follows. The

program considers X, the symbol on top of the stack, and a, the current input

symbol'. These two symbols determine the action of the parser. There are three

possibilities.

\
['

Chapter 2: Syntax-based Machine Translation 54

STACK

INPUT

x
y

z

$

Predictive Parsing
Program

Parsing Table
M

OUTPUT

Figure 2.7: A model of non-recursive predictive parser.

I. If X = a = $, the parser halts and announces successful completion of parsing.

2. If X= a of $, the parser pops X off the stack and advances the input pointer to

the next input symbol.
00

3. If X is a non-terminal, the program consults entry M[X, a] of the parsing

table M. This entry will be either an X-production of the grammar or an error

entry. If, for example, M[X, a] = {X ~ UVW}, the parser replaces X on top

of the stack by WVU (with U on top). As output, we shall assume that the

parser just prints the production used; any other code could be executed here.

If M[X, a] = error, the parser calls an error recovery routine.

Parsing algorithm for non-recursive predictive parser is described as follows:

Algorithm 2.3: Non-recursive predictive parsing.

Input. A string wand a parsing table M for Grammar G.

Output. Ifw is in L(G), a leftmost derivation ofw; otherwise, an error indication.

Method. Initially, the parser is in a configuration in which it has $S on the stack with
S, the start symbol of G on top, and w$ in the input buffer. The program that utilizes
the predictive parsing table M to produce a parse for given input.

set ip to point to the first symbol of w$
repeat

letXbe the top stack symbol and a the symbol pointed to by ip

Chapter2: Syntax-basedMachineTranslation

if X is a terminal or $ then
ifX= a then

pop X from the stack and advance ip
else

errore)
end if

else II X is a non-terminal
if M[X, aJ = X ~ 1';Y""Yk then

pop X from the stack
push Yk, Yk.l, ... , Y1onto the stack (Y1 on top)
output the production X ~ 1';Y,...Y,

else
errore)

end if
end if

untilX= $ II stack is empty

55

Parsing algorithm for non-recursive predictive parser used two important terms

called First and Follow to build parsing table, which will be discussed in the next

two sections (2.8'.1 and 2.8.2).

2.8.1 First

First(X) is defined as the set of terminals that begin the strings derived from X,

where X denotes any string of grammar symbols. To compute First(X) for all

grammar symbols X, the following rules are applied until no more terminals or E:

can be added to the First(X) set.

I. If X is terminal, then First(X) = {X}.
2. If X ~ 8 is a production, then 8 is added to First(X).

3. If X is non-terminal and X ~ 1';Y,...Y, is a production, then a is added to

First(X) if for some I, a is in First(Y;), and 8 is in all of First(Y1), ••• ,

•
First(Y;.I); that is, 1';...Y,-1=>8 . If 8 is in First(Yj) for all) = 1,2, ... , k, then

8 is added to First(X).

Now, we can compute First for any string X1X2 ... Xn as follows. All the non- 8

symbols of First(X!) is added to First(X1X2 ... Xn). All non- 8 symbols of First(X2)

iJ

Chapter 2: Syntax-based Machine Translation 56

is added to First(XIX2 Xn), if [; is in First(X1). All non- [; symbols of First(X)) is

added to First(XIX2 Xn), if [; is in both First(X1) and First(X2). In general, all

non- [; symbols of First(X;) is added to First(X1X2 ... Xn), if [; is in each of

First(X1), First(X2), ... , First(X;.I). Finally, [; is added to First(X1X2 ... Xn), if for

all i, First(X;) contains [;.

For example, there is a context-free grammar as follows:

S ~ NPVP

NP ~ NIP

VP ~ VBCl

CI ~ NI [;
where, S indicates sentence, NP indicates noun phrase, VP indicates verb phrase, N

indicates noun, P indicates pronoun, VB indicates verb and CI indicates a common

factor. By the definition of First, we can calculate the First of the non-terminals as

follows:

First(S) = { N, P }

First(NP) = {N, P }
First(VP) = { VB }

First(Cl) = { N, [; }

2.8.2 Follow

Follow(A), for non-terminal A, is defined as the set of terminals a that can appear

immediately to the right of A in some sentential form, that is, the set of terminals a

•
such that there exists a derivation of the form S =>aAafJ for some a and fJ. If A

can be the rightmost symbol in some sentential form, then $ is in Follow(A). To

compute Follow(A) for all non-terminals A, the following rules are applied until

nothing can be added to any Follow set.

1. $ is placed in Follow(S), where S is the start symbol and $ is the input right

endmarker.

Chapter 2: Syntax-based Machine Translation 57

2. Ifthere is a production A --+ aBfJ , then everything in First(fJ) except for s

is placed in Follow(B).

3. If there is a production A --+ aB, or a production A --+ aBfJ where First(fJ)

*contains s (i.e., fJ=>s), then everything in Follow(A) is in Follow(B). In

this case, we can say Follow(A) ~ Follow(B).

For example, according the grammar mentioned in previous section (2.8.1), using

the definition of Follow we can calculate Follow of the non-terminals as follows:

Follow(S) = { $ }

Follow(NP) = { VB }

Follow(VP) = { $ }
Follow(CI) = { $ }

2.8.3 Construction of Predictive Parsing Tables

The following algorithm can be used to construct a predictive parsing table for a

grammar G. The idea behind the algorithm is the following. Suppose A --+ a is a

production with a in First(a). Then, the parser will expand A by a when the

*current input symbol is a. The only complication occurs when a = s or a=> s . In

this case, we should again expand A by a if the current input symbol IS III

Follow(A), or if the $ on the input has been reached and $ is in Follow(A).

Algorithm 2.4: Construction of a predictive parsing table.

Input. Grammar G.

Output. Parsing table M.

Method.
I. For each production A --+ a of the grammar, do steps 2 and 3.
2. For each terminal a in First(a), add A --+ a to M[A, a]'
3. If s is in First(a), add A --+ a to M[A, a] for each terminal b in Follow(A).

If s is in First(a) and $ is in Follow(A), add A --+ a to M[A, a]'
4. Make each undefined entry of M to be error.

Chapter2: Syntax-basedMachineTranslation 58

For example, according to the grammar mentioned in section 2.8.1, we can construct

parsing table of a predictive parser using algorithm 2.4, which is shown in table 2.1.

Table 2.1: Parsing table of a predictive parser.

N P VB $
S S -t NPVP S-tNPVP
NP NP -t N NP-tP
VP VP -t VBCI
CI CI -t N CI -t £

2.8.4 Error Recovery in Predictive Parsing

The stack of a non-recursive predictive parser makes explicit the terminals and non-

terminals that the parser hopes to match with the remainder of the input. We shall

therefore refer to symbols on the parser stack in the following discussion. Ali error is

detected during predictive parsing when the terminal on top of the stack does not

match the next input symbol or when non-terminal A is on top of the stack, a is the

next input symbol, and the parsing table entry M[A, a] is empty.

Panic mode error recovery in based on the idea of skipping symbols on the input

until a token is a selected set of synchronizing tokens appears. Its effectiveness

depends on the choice of synchronizing set. The sets should be chosen so that the

parser recovers quickly from errors that are likely to occur in practice. Some

heuristics are as follows:

1. As a starting point, we can place all symbols in Follow(A) into the

synchronizing set for non-terminal A. If we skip tokens until an element of

Follow(A) is seen and pop A from the stack, it is likely that parsing can

continue.

2. It is not enough to use Follow(A) as the synchronizing set for A. For

example, if full-stop(.) terminate sentences in English language, then

terminals that begin sentences may not appear in the Follow set of the non-

terminal generating expressions. A missing full-stop after a sentence may

<

Chapter2: Syntax-basedMachineTranslation 59

therefore result in the terminal beginning the next statement being skipped.

Often, there is a hierarchical structure on constructs in a language; e.g.,

expressions appear within statements, which appear within blocks, and so on.

We can add to the synchronizing set of a lower construct the symbols that

begin higher constructs. For example, we might add terminals that begin

sentences to the synchronizing sets for the non-terminal generating

expressions.

3. If we add symbols in First(A) to the synchronizing set for non-terminal A,

then it may be possible to resume parsing according to A if a symbol in

First(A) appears in the input.

4. If a non-terminal can generate the empty string, then the production deriving

Ii can be used as a default. Doing so may postpone some error detection, but

cannot cause an error to be missed. This approach reduces the number of

non-terminals that have to be considered during error recovery.

5. If a terminal on top of the stack cannot be matched, a simple idea is to pop

the terminal, issue a message saying that the terminal was inserted, and

continue parsing. In effect, this approach takes the synchronizing set of a

token to consist of all other tokens.

With the idea of error recovery, we can reconstruct the parsing table (table 2.1) as

table 2.2.

Table 2.2: Parsing table of a predictive parser with error recovery information.

N P VB $
S S --+ NP VP S --+ NP VP sync
NP NP --+ N NP --+ P sync
VP VP --+ VB CI sync
Cl CI --+ N CI --+ Ii

2.9 Remarks

In this thesis, top-down parsing algorithm will be used to design predictive parser

for BangIa natural language. To design such a parser, ambiguity elimination is

Chapter2: Syntax-basedMachineTranslation 60

important, as discussed in section 2.4.11.1. Then, left factoring technique, discussed

in section 2.4.13, is important to achieve predictive parsing. This thesis will apply

the architecture of predictive parser, as discussed in section 2.8. Parsing table

construction will adopt the theory discussed in section 2.8.3. And, finally, error

recovery mechanism will be applied to the parser according to the theory discussed

in section 2.8.4.

Chapter 3

BangIa Grammar

3.1 BangIa Grammar

In syntax-based machine translation, parsing of source text is the task of first step.

For parsing of an input text, a grammar is required. Therefore, grammar of source

language is very important. A context-free grammar is capable of parsing all correct

sentences of source language, if structure of all types of sentences is reflected in

grammar of source language.

Context-free grammar of Bangia language is already developed [22][23]. In this

chapter, we will discuss present context-free grammar of Bangia natural language.

3.2 Phrases in BangIa Grammar

In any language, any sentence can be sub-divided into smaller parts. These smaller

parts are referred to as phrases. Like most of the languages of the world, Bangia

natural language sentences contain three types of phrases. They are:

1. Noun phrase,

2. Verb phrase,

3. Adjective phrase.

Some other types of phrases may be present in other languages. But these three

phrases are most important phrases in most of the languages.

3.2.1 Noun Phrase

Noun phrase is a kind of phrase whose head is a noun or pronoun, and optionally

accompanied by a set of modifiers. In Bangia language, possible modifiers include

Chapter3: BangIaGrammar 62

determiners, demonstrators, adjectives, quantifiers, bivoktis etc. Noun phrase is

normally denoted by NP.

For example, '~" (ami), '~ ~" (amar vail, '~ ~ ~" (amar chhOTo

vail, '~ ~ m~ WC"!" (amar boRo chachar chhOTo chhele) etc, are noun

phrases.

3.2.2 Verb phrase

A verb phrase is headed by a verb. It may be constructed from a single verb. In other

cases, it consists of the main verb and any auxiliary verbs, plus optional specifiers,

complements, adjuncts etc. Verb phrase is normally denoted by VP.

For example, '~ ~" (ami khai), '~~ ~" (ami vat khai), '~ ~ '<3 151'1 ~"

(ami vat 0 Dal khai) etc, are verb phrases.

3.2.3 Adjective phrase

An adjective phrase is a phrase with an adjective as its head. Adjectival phrases may

occur as pre or post-modifiers to a noun, or as predicatives (predicate adjectives) of

a verb. Adjective phrase is normally denoted by AP.

For example, ''iIf.\oI 'WIWC"!" (robin valo chhele), ''iIf.\oI "B 'WI WC"!" (robin khub valo

chhele), ''Q! ~ 'l'I'Si ~ 9ft@" (se khub druto kaj koroTe pare) etc, are adjective

phrases.

3.3 Context-free Grammar for Noun Phrase

Context-free grammar for noun phrase in BangIa natural language is as follows:

NP ~ N(DET)

NP ~ (DEMO) (SPR) (AP) NP

Chapter 3: Bangia Grammar 63

NP -> NP Biv (NP)

NP -> N PM

SPR -> QFR (PP)

DEMO -> (DO) (DO)

In the rule NP -> N (DET), a noun phrase (NP) consists of a noun (N), which is

optionally followed by a determiner (DET). Determiner is placed to the right of

noun. A determiner is a noun modifier that expresses the reference of a noun or noun

phrase. In BangIa, "~" (Ti) etc, are determiner. We can give example of sentence

segment using this rule as, '~" (chhele), '~" (chheleTi) etc. Tree structure of

the derivations is presented as figure 3. I.

Figure 3.1: Tree structure for the rules NP -> N (a), NP -> N DET (b).

(b)

"CWf

(chhele)

NP
/"'"
N DET

I I
~
(Ti)

NP
I
N

I
"CWf

(chhele)

(a)

In the rule NP -> (DEMO) (SPR) (AP) NP, a noun phrase (NP) consists of a

demonstrator (DEMO), a specifier (SPR), an adjective phrase (AP) and a noun

phrase (NP). Here, placement of demonstrator, specifier and adjective phrase IS

optional. Example using this rule will be given later after stating some other rules.

In the rule NP -> NP Biv (NP), bivokti (Biv) may appear after a noun phrase (NP)

and optionally followed by another noun phrase (NP). Bivokti is a Bangia word,

which is another type of modifier used after noun or noun phrase. In Bangia, '~"

(ke), "<.!l." (er) etc, are bovokti. We can give example of sentence segment using this

rule as, '~" (amake), "C!W1ITJc'!''' (chheleTike), '~ ~" (chheleTir boil etc.

Tree structure of the derivations is presented as figure 3.2.

)~
- .••... -'

Chapter 3: Bangia Grammar 64

NP
/""

NP Biv

I I
N "«l'
I (ke)

"'l@r
(ami)

(a)

NP

/""
NP Biv

/ \ I
N DET "«l'
I I (ke)

~ ~
(chhele) (Ti)

(b)

NP

/I~
NP Biv NP

/ \ I I
N DET~. N
I I (er) I

~ ~ 'l$:
(chhele) (Ti) (boi)

(c)

Figure 3.2: Tree structure for the rules NP -t NP Biv (a) (b), NP -t NP Biv NP (c).

In the rule NP -t N PM, a noun phrase (NP) consists of a noun (N) and a plural

marker (PM). Plural marker is used as suffix to a word, which modify meaning of

the word as plural. In Bangia, "ill" (ra), "~ill" (era), "'ll"C'1i" (guIO), "V'f<!" (der) etc, are

plural marker. We can give example of sentence segment using this rule as, "~"

(chhelera), '~' (bOnera), '~"C'1i" (amguIO), "'5II~iC"1" (amader) etc. Tree

structure of the derivations is presented as figure 3.3.

NP NP NP NP

/"" /"" /"" /""
N PM N PM N PM N PM

I I I I I I I I
~ ill "('lJil ~ill "'It1f 'll"C'1i "'l@r V'f<!

(chhele) (ra) (bOn) (era) (am) (guIO) (ami) (der)

(a) (b) (c) (d)

Figure 3.3: Tree structure for the rules NP -t N PM (a)(b)(c)(d).

In the rule SPR -t QFR (PP), a specifier (SPR) consists of a quantifier (QFR) and is

optionally followed by a post preposition (PP). Numerical words, like "~'I'''(ek),

'~" (dui), ''fi5ol'' (tin) etc, are quatifier. There are also some collective quantifiers,

like '~" (onek), '''r<!'' (sob), '''I'm'I''' (koyek) etc. We can give example of sentence

segment using this rule as, "~~" (ekoTi), '~" (onek) etc. Tree structure of the

derivations is presented as figure 3.4.

Chapter3: BangIaGrammar

SPR

/""-
QFR PP

I I
"1~ fi;
(ek) (Ti)

(a)

SPR

I
QFR

I
I5lW'fi

(onek)

(b)

65

Figure 3.4: Tree structurefor the rulesSPR --+ QFRPP (a), SPR --+ QFR(b).

In the rule DEMO --+ (DO) (DO), a demonstrator (DEMO) consists of a

pemonstrative deictic (DO) and a demonstrative ordinal (DO). Here, placement of

both demonstrative deictic and demonstrative ordinal is optional. In Bangia, ""1~"

(ei), ".!t" (01) etc, are demonstrative deictic. And, "~<1f'l" (prothom), '~" (dwitlyo)

etc, are demonstrative ordinal.

Now, we can give example of sentence segment using the rule NP --+ (DEMO)

(SPR) (AP) NP as, ".!t ~<1f'l ~" (01 prothom chheleTi), ""1~ -cwr" (ekoTi
chhele), '~ ~" (sundor chheleTi), ".!t "1~ -cwr" (01 ekoTi chhele), ".!t "J."fi1

~' (01 sundor chheleTi), ""1~ "J."fi1 -cwr" (ekoTi sundor chhele), ".!t ~<1f'l "1~
"J."fi1 -cwr" (01 prothom ekoTi sundor chhele) etc. Tree structure of the derivations is

presented as figure 3.5.

Main difficulty of using this grammar is its ambiguous nature. The rule NP --+ NP

Biv (NP) is ambiguous, as using this rule same sentence segment can be parsed in

different ways I.e., different parsing tree can be generated. Again these rules do not

support predictive parsing, as when a word of a sentence is to be parsed, it is not

possible to decide which rule is applicable instantly. For example, when a noun

word is found, there are several eligible rules for parsing like, NP --+ N (DET), NP

--+ NP Biv (NP), NP --+ N PM.

Chapter 3: Bangia Grammar

NP
/~

DEMO NP

/ \ / \
DD . DO N DET

I I I I
.!r ~O!'l ~ ~
(OI)(prothom) (chhele) (Ti)

(a)

NP/~
AP NP

I / \
AD N DET

I I I
~ ~ ~

(sundor) (chhele) (Ti)

(c)

NP

/I~
DEMO AP NP

I I /\
DD AD N. DET

I I I I
.!r ~ ~ ~
(OJ) (sundorXchhele) (Ti)

(e)

NP/~
SPR NP

/ \ I
QFR PP N

I I I
"I'l' ~ ~
(ek) (Ti) (chhele)

(b)

NP
/I~

DEMO SPR NP

I / \ I
DD QFR PP N

I I I I
.!r "I'l' ~ ~
(01) (ek) (Ti) (chhele)

(d)

NP

/I~
SPR AP NP

/ \ I I
QFR PP AD N

I I I I
"I'l' ~ ~ ~
(ek) (Ti) (sundor) (chhele)

(f)

66

Figure 3.5: Tree structure for the rule NP ~ (DEMO) (SPR) (AP) NP, which cover the
variations NP ~ DEMO NP (a), NP ~ SPR NP (b), NP ~ AP NP (c),

NP ~ DEMO SPR NP (d), NP ~ DEMO AP NP (e), NP ~ SPR AP NP (I) (continued).

,

"
-('

Chapter 3: Bangia Grammar

NP
~~

DEMO SPR AP NP

/ \ / \ I I
DO DO QFR PP AD N

I I I I I I
.!t ~or>l <!l'l' ~ ~ VW!

(OI)(prothomX ek) (Ti) (sundar) (chhele)

(g)

Continued Figure 3.5: Tree structure for the rule NP --7 (DEMO) (SPR) (AP) NP.
which cover the variations NP --7 DEMO SPR AP NP (g).

3.4 Context-free Grammar for Verb Phrase

Context-free grammar for verb phrase in BangIa natural language is as follows:

VP --7 (NP) (AP) VF

VF --7 VRAUX

67

In the rule VP --7 (AP) (NP) VF, a verb phrase (VP) consists of a noun phrase (NP),

an adjective phrase (AP) and a verb form (VF). Here, placement of noun phrase and

adjective phrase is optional.

In the rule VF --7 VR AUX, a verb form (VF) consists of a verb root (VR) and an

auxiliary (AUX).

We can give example of sentence segment using the rule VP --7 (NP) (AP) VF as,

''Q! "1m" (se khay), "~~ "1m" (se vat khay), ''Q! W'f "1m" (se beshi khay), '''''ffi'il15Ti:'l'

'51"f15tC<I lWl" (ami take valovabe chini) etc. Tree structure of the derivations is

presented as figure 3.6.

.";,. ,.,
~"~

Chapter 3: Bangia Grammar

VP
I

VF

/""
VR AUX

I I

VP
/~

NP VF

I / ""
N VR AUX

I I I

68

"It '>1m
(kha) (ay)

(a)

15l'5 "It
(vat) (kha)

(b)

'>1m
(ay)

VP
/~

AP VF

I / ""
AD VR AUX

I I I
Vlfir "It '>1m
(beshi) (kha) (ay)

(c)

VP
~I~
NP AP VF

/ \ I / \
N Biv AD VR AUX

I I II I
t'! 1;'> <>1'4<>1'''1 w., '$:
(se) (ke) (valovabe)(chin) (i)

(d)

Figure 3.6: Tree structure for the rule VP ~ (NP) (AP) VF, which cover the variations
VP~VF~W~NPVF~VP~MW~VP~NPMVFOO.

This context-free grammar for verb phrase is ambiguous because of the rule VP --+

(NP) (AP) VF. In a sentence noun phrase is followed by verb phrase. Therefore,

actual noun phrase and noun phrase inside of verb phrase may allow a sentence to be

parsed in different ways, making the rule ambiguous.

3.5 Context-free Grammar for Adjective Phrase

Context-free grammar for adjective phrase in Bangia natural language is presented

as:

AP --+ AD / ADs

According to this rule, adjective phrase (AD) consists of one or more adjectives.

Chapter 3: Bangia Grammar 69

We can give example of sentence segment using the rule as, "1:'\ ':s1"f ~" (se valo

chhele), "1:'\ 'f! ':s1"f ~" (se khub valo chhele) etc. Tree structure of the derivations

is presented as figure 3.7.

AP
I
AD

I

AP
/"'"

AD AD

I I
':s1"f
(valo)

(a)

'f!
(khub)

(b)

':s1"f
(valo)

Figure 3.7: Tree structure for the rule AP ~ AD I ADs.

This context-free grammar for adjective phrase is certainly ambiguous. When more

than two adjectives appear together in a sentence, adjective phrase can be parsed in

several ways.

3.6 Context-free Grammar for Simple Sentence

Context-free grammar for simple sentence in Bangia natural language is presented

as:

SS ~ NPVP

According to this rule, a simple sentence (SS) consists of a noun phrase (NP),

followed by a verb phrase (VP).

We can give example of simple sentence as, '~ 'lI\' otDBl~ ~ ~ l:'lfir \51\3

"!m" (amar boRo chachar chhoTo chheleTi onek beshi vat khay), "-'1"!orn ~ =Iii

'f! ':s1"f '!R '!tll" (01 prothom sundor meyeTi khub valo gan gay) etc. These sentences

can be parsed using the rule SS ~ NP VP. Tree structure of the derivations for the

example sentences is presented in figure 3.8.

(

Chapter 3: Bangia Grammar . 70

Grammar for simple sentence is certainly ambiguous, as simple sentence is

composed of noun phrase (NP), and verb phrase (VP) and grammar for both phrases

are ambiguous.

SS
NP VP....--- I ---- I _

NP Biv NP AP NP VFI I 1______. /"- I /"-
N <!Iii NP Biv NP AD AD N VR AUX
I (er) / "- I/"............. I I I I I

"I1f1l AP NP <!Iii AP NP ~ r<fif ~ "It "l1"!!

(ami) I I (er) I / "- (onekXbeshiXvat) (kha) (ay)
AD N AD N DET
I I I I I
~ om ~ ~ ~

(boRo)(chacha)(chhoTo)(chhele) (Ti)

(a)

SS

NP___ I _

DEMO AP NP
/"- I /"-
DD DO AD N DET
II I I I

<ll 2I0f'l "'r'fil = ~
(0 I)(prothom Xsundor Xmeye XTi)

(b)

VP....--- I _

AP NP VF
/"- I /"-
AD AD N VR AUX
I I I I I

'fl '5M 'W! 'il "l1"!!

(khub)(valo)(gan) (ga) (ay)

Figure 3.8: Tree structure for the rule 55 --+ NP YP.

3.7 Context-free Grammar for Complex Sentence

Context-free grammar for complex sentence in Bangia natural language is as

follows:

CS --+ DC IC

CS --+ IC DC

DC --+ NP (SUBORD) VP

DC --+ (SUBORD) SS

(

Chapter3: BangiaGrammar

IC --7 NP (SUBCOM) VP

IC --7 (SUBCOM) SS

71

If we analyze a complex sentence, we find a complex sentence is composed of a

dependent clause or principle clause and an independent clause or subordinate

clause. The meaning of dependent clause is dependent to the meaning of

independent clause. These two clauses are optionally connected through a

subordinate and a subordinate complement, where subordinate is a part of dependent

clause and subordinate complement is a part of independent clause.

We can give example of complex sentence as, '''If'f I5I1f'r~ ~ ~ "IDlt" (zodi ami

zai tobe tumi esO). In the example, '''If'f I5I1f'r~" (zodi ami zai) is dependent clause

and '~ ~ "IDlt" (tobe tumi esO) is independent clause. Because, the meaning of

sentence segment '~ "IDlt" (tumi esO) is independent. But the meaning of sentence

segment ''''ITfi!~''(ami zai) is dependent to the meaning of'~ "IDlt" (tumi esO). In

this example, '''If'f'' (zodi) is subordinate, which is part of dependent clause and

'~" (tobe) is subordinate complement, which is part of independent clause. Some

other examples of subordinate are, ''[lj'OftCi!'' (zekhane), ''[lj'' (ze), ''ljWo'' (zate),

'~" (zehetu), "'l"!'!" (zokhon) etc. Some other examples of subordinate

complement are, '~" (tahole), ''Iq'8'' (tobuO), '~" (sekhane), '~"

(temon), '~" (sehetu), "\o"!'!" (tokhon) etc.

In the rule CS --7 DC IC, a complex sentence (CS) consists of a dependent clause

(DC) followed by an independent clause (IC).

In the rule CS --7 IC DC, a complex sentence (CS) consists of an independent clause

(IC) followed by a dependent clause (DC).

In the rule DC --7 NP (SUBORD) VP, a dependent clause (DC) consists of a noun

phrase (NP), a subordinator (SUBORD) and a verb phrase (VP). Here, placement of

subordinator is optional.

(

Chapter 3: BangIa Grammar 72

In the rule DC ~ (SUBORD) SS, a dependent clause (DC) consists of a

subordinator (SUBORD) and a simple sentence (SS). Here, placement of

subordinator is optional.

In the rule IC ~ NP (SUB COM) VP, an independent clause (IC) consists of a noun

phrase (NP), subordinator complement (SUB COM) and a verb phrase (VP). Here,

placement of subordinator complement is optional.

In the rule IC ~ (SUB COM) SS, an independent clause (IC) consists of a

subordinator complement (SUB COM) and a simple sentence (SS). Here, placement

of subordinator complement is optional.

An example of complex sentence is, ''<rfi\ "l1f1r ~ 'W'l ~ "1c>Tt" (zodi ami zai tobe

tumi esO). Same sentence can be written in some other variations like, '''W'l ~ "1c>Tt

'll'f "l1f1r ~" (tobe tumi esO zodi ami zai), '~ 1:'tt"! ~ "1c>Tt" (ami gele tumi esO),

'~ 'll'f ~ ~ 'W'l "1c>Tt" (ami zodi zai tumi tobe esO), '~ 'W'l "1c>Tt'll'f "l1f1r ~"

(tumi tobe esO zodi ami zai), '~ 'll'f ~ ~ "1c>Tt" (ami zodi zai tumi esO) etc.

Tree structure of the derivations for the examples is presented in figure 3.9.

(0)
"PI
(es)

CS.--
IC---- "-..

SUBCOM SS
I ..-/ "-..
'W'l NP VP
(tobe) I I

N VF
1/"-

~ VR AUX
(tu'mi) I I

DC---- "-..
SUBORD SS

I ..-/ "-..
'll'f NP VP
(zodi) I I

N VF
1/"-

"l1f1r VR A UX
(ami) I I

'l1 ~
(za) (ai)

(a)

Figure 3.9: Tree structure for the rules of complex sentences in different variations
(continued).

Chapter 3: BangIa Grammar 73

CS ------------
DC--- ~SUBORD SS

I .,/ ~
Wi NP VP
(zodi) I I

N VF
1/"-

~ VR AUX
(ami) I I

'It ~
(za) (ai)(0)

(b)

"I'f

(es)

IC--- ~SUBCOM SS
I .,/ ~
'WI NP VP
(lobe) I I

N VF
1/"-
~ VR AUX
(IU~i) I I

DC
I

SS
.,/ ~
NP VP
I I
N VF
1/"-
~ VR AUX
(ami) I I

'It ~
(za) (Ie)

CS
~~~ ------------

IC
I

SS
.,/ ~

NP VP
I I
N VF
1/"-
~ VR AUX
(lumi) I I

"I'f <l
(es) (0)

(e)

Continued Figure 3.9: Tree structure for the rules of complex sentences in different
variations (continued).

r
f
"



Chapter 3: Bangia Grammar 74

CS--- --
DC IC_____ I I _

NP SUBORD VP NP SUBORD VP
I I I I I I
N Wr VF N 'WI VF
I (zodi) / "- I (tobe) / "-

I5@r VR AUX ~ VR AUX
(ami) I I (tumi) I I

<It ~ "PI <l

(za) . (ai) (es) (0)

(d)

CS--IC DC_____ I I _

NP SUBORD VP NP SUBORD VP
I I I I I I

, N 'WI VF N Wr VF
I (tobe) / "- I (zodi) / "-
~ VR AUX I5@r VR AUX
(tumi) I I (ami) I I

"PI <l <It ~

(es) (0) (za) (ai)

(e)

(0)
"PI
(es)

CS--IC---- ------
NP VP
I I
N VF
I / "-
~ VR AUX
(tumi) I I

DC_____ I _

NP SUBORD VP
I I I
N Wr VF
I (zodi) / "-

I5@r VR AUX
(ami) I I

<It ~

(za) (ai)

(f)

Continued Figure 3.9: Tree structure for the rules of complex sentences in different
variations.

(
IC:



Chapter 3: Bangla Grammar 75

Context-free grammar for complex sentence is ambiguous. Because, complex

sentence is composed of noun phrase (NP) and verb phrase (VP). And grammar for

both the phrases is ambiguous. Not only this, this grammar does not support

predictive parsing.

3.8 Context-free Grammar for Compound Sentence

Context-free grammar for complex sentence m BangIa natural language IS as

follows:

COMS --7 SS Conj SS

COMS --7 SS Conj CS

COMS --7 CS Conj SS

COMS --7 CS Conj CS

where, COMS indicates compound sentence, SS indicates simple sentence, CS

indicates complex sentence and Conj indicates conjunctive. Conjunctive is a type of

word which is used to connect two simple or complex sentence without changing the

meaning of corresponding simple or complex sentence. Some examples of

conjunctive are, "-e" (0), "<!I'l~" (ebong), '~" (noile), 'm" (kintu), '~"

(notuba), '~~" (sutorang) etc.

According to the rule COMS --7 SS Conj SS, a compound sentence (COMS) can be

composed of a simple sentence (SS) with another simple sentence (SS) through a

conjunctive (Conj). We can give example of sentence using this rule as, '~ '5lIO ~

<!I'l~~ ~ "'!m" (ami vat khai ebong se ruTi khay). Tree structure of the derivations

for this example is presented in figure 3.10.

(



Chapter 3: Bangia Grammar 76

SS--- ----.
NP VPI "'-....

N NP VF
I I/''''-....

"I11ir N VR AUX
(ami) I I I

$O"'!1 ~
(vat) (kha) (ai)

COMS------1-----
Conj SSI ----.
"1'R NP VP

(ebong) I --- "'-....
N NP VF
I I/''''-....
C'! N VR AUX
(se) I I I

~"'!1 '$l
(ruTi) (kha) (ay)

Figure 3.10: Tree structure for the rule COMS ~ SS Conj SS.

According to the rule COMS ~ SS Conj CS, a compound sentence can be

composed of a simple sentence (SS) with a complex sentence (CS) through a

conjunctive (Conj). We can give example of sentence using this rule as, '''>l@l9fT~

"W<! 'OlBl ~ 'If'f "'l.W om 'WI ~ ~ 9frnt" (ami panjabi poRbo ar tumi jodi syuT poRo

tobe tumi Tai poRO). Tree structure of the derivations for this example is presented

in figure 3.11.

COMS~---I-----_-
Co~ CSI _--- _

'OlBl DC IC
(ar) --- I ---- --- "'-....

NP SUBORD VP SUBCOM SSI I "'- /' "'-

N 'If'f NP VF 'WI NP VP
I (odi) I / "'- (to be) I --- "'-

~ Z N VR AUX N NP VF
(tumi) I I I I I / "'-

"'l.W om IS ~ N VR AUX
(syuT)(poR) (0) (tumi)1 I 1~ om IS

(Tai)(poR) (0)

SS--- "'-....
NP VPI "'-

N NP VF
I I / "'-

"I11ir N VR AUX
(ami) I I I

9fT~ om 'l

(panjabiXpoR)(bo)

Figure 3.11: Tree structure for the rule COMS ~ SS Conj CS.

According to the rule COMS ~ CS Conj SS, a compound sentence can be

composed of a complex sentence (CS) with a simple sentence (SS) through a

(



Chapter 3: BangIa Grammar 77

conjunctive (Conj). We can give example of sentence using this rule as, ''WI "'lll'r 151'5

~ '"'" 'C'f 151'5 "!TC'! ~ "l1'lill ~ "!t<!" (zodi ami vat khai tobe se vat khabc notuba

amora ruTi khabo). Tree structure of the derivations for this example is presented in

figure 3.12.

CaMS
__ ---- I -----
CS Conj SS___ I/"" .

DC DC ~ NP VP
---- ---- (notuba) /" / "

SUBORD SS SUB COM SS N PMNP VF
I/"" I /"" I II /"
Wf NP VP '"'" NP VP "'lll'r <Ii N VR AUX
(zodi) I/""" (tobe) I/""" (ami) (ra) I I I

N NP VF N NP VF "iI$ "il 'l

I I /" I I /" (ruTi)(kha) (bo)
"'lll'r N VR AUX 'C'f N VR AUX
(ami) I I I (se) I I I

151'5 "il ~ 151'5 "il VI
(vat) (kha) (ai) (vat) (kha) (be)

Figure 3.12: Tree structure for the rule COMS ---+ CS Conj SS.

According to the rule CaMS ---+ CS Conj CS, a compound sentence can be

composed of a complex sentence (CS) with another complex sentence (CS) through

a conjunctive (Conj). We can give example of sentence using this rule as, '~ Wf

151'5 "il'<3 '"'" "'lll'r "iI$ "!t<! "l1il ~ Wf ~ "il'<3 '"'" "'lll'r 151'5 "!t<!" (tumi zodi vat khao to be

ami ruTi khabo ar tumi zodi ruTi khao tobe ami vat khabo). Tree structure of the

derivations for this example is presented in figure 3.13.

Like simple sentence and complex sentence, grammar for compound sentence is also

ambiguous and does not support predictive parsing. Because, compound sentence is

composed of several noun and verb phrases.

(
f7
(



Chapter 3: Bangia Grammar
~

78

COMS_---1--- __
CS Co~ CS_-~ I _-~ _

DC IC I5ffiI DC IC/ I \ (ar) / I ""

NP SUBORD VP SUBCOM SS NP SUBORD VP SUBCOM SS
1 1 /\ 1/1 1 I /'\.. 1/1
N ~ NP VF WI NP VP N ~ NP VF WI NP VP
I (zodi) II'\.. (to be) I A \ (zodi) I I '\..(tobe)1 A
~ N VR AUX N NP VF ~ N VR AUX N NP VF
(tum i) 1 1 I I I / '(tum i) II I I 1 / '\..

* "!1 .'5 I5I@lNVRAUX ~ "!1 ~ I5I@lNVRAUX
(vat)(kha) (O)(ami) 1 I I (ruTi)(kha) (O)(ami) 1 I I

~"!1q *"!1q
(ruTiXkhaXbo) (vatXkhaXbo)

Figure 3.13: Tree structure for the rule COMS ~ CS Conj cs.

3.9 Context-free Grammar for BangIa Sentence

Context-free grammar for complex sentence In Bangia natural language IS as

follows:

S ~ SS/CS/COMS

where, S indicates sentence, SS indicates simple sentence, CS indicates complex

sentence and COMS indicates compound sentence.

Examples of all these tree types of sentences are already given in the previous three

sections (3.6, 3.7, 3.8).

As a sentence can be simple or complex or compound and grammar for all these

types of sentences is ambiguous and non-predictive, so context-free grammar for

Bangia sentences is ambiguous and does not support predictive parsing.



Chapter3:BangiaGrammar 79

I

\-

3.10 Limitations of Present Context-free Grammar for BangIa

Language

Using present context-free grammar for BangIa language, it is possible to parse

almost all types of sentences of this language. Many limitations prevail in this

grammar. We can mention the limitations as:

• Ambiguity

• Non-predictive

• Lacking error recoverability

• Unable to handle non-dictionary word

• Limited use of conjunctives

• Unable to handle numbers

3.10.1 Ambigllity

Ambiguity is found in many rules of present context-free grammar for Bangia

language discussed in this chapter. Because of this ambiguous nature, a BangIa

sentence can be parsed in different ways i.e., different parsing tree(s) exist for a

single sentence. Main difficulty of ambiguous nature in a grammar is, this grammar

is not LL(I) grammar. As a result, predictive parsing is not possible, which makes

the task of parsing non-efficient.

For example, if we consider the sentence segment '~ ~ <'1(" (amar vaiyer

bondhu) for parsing, two possible parsing is possible i.e., there will be two parsing

trees. One parsing tree is left associative and another one is right associative. These

two parsing trees are shown in figure 3.14.

(
:;~. T'--,,\

( •• I
L



Chapter 3: Bangia Grammar 80

<rt
(bondhu)

~
(vai)

(b)

NP

/I~
NP Biv NP

1 I /I~
N "1<1 NP Biv NP

I (er) I I I
N "1<1 N
I (er) I

"I@r
(ami)

<rt
(bondhu)

~
(vai)

(a)

NP.._____1 ~
NP Biv NP

/I~ 1 I
NP Biv NP "1<1 N

I I 1 (er) I
N "1<1 N
1 (er) 1

~
(ami)

Figure 3.14: Ambiguity in the rule NP --+ NP Biv NP.

3.10.2 Non-predictive

Using present context-free grammar for Bangia language, it is not possible to find

correct rule, when a word of a sentence is considered. So the parser tries all possible

rules applicable to the word. For a correct sentence, among all possible rules, one

rule is certainly correct. The correct rule is found, considering the next words. In

brief, backtracking algorithm is required for parsing. As a result, parsing can not be

done in linear time, rather it takes exponential time.

Because of ambiguous nature of present Bangia grammar, it can not be called as an

LL(l) grammar. And predictive parsing table can not be build without LL(I)

grammar. As, a result predictive parsing is not possible. Non-predictive parsing

makes the parsing process inefficient.

For example, we can consider the sentence segment '~ ~ ~' (amar vaiyer

bondhu). After lexical analysis and parts of speech tagging the sentence segment

becomes < '~" "N" > < "\!l~""Biv" > < ,~" "N" > < "l!l~""Biv" > < ,~", , ., , >;11'(, , ., , ~ 1l, ,

"N" >. Here, first word is '~" (ami) which is a noun. Several rules can be

applicable with a noun as a first word. These rules are, NP --+ N (DET), NP --+ NP

Biv (NP), NP --+ N PM. When the word '~" (ami) is considered, it is not possible

r
l

.~, ',\,,~.(':::"



Chapter3: BangIaGrammar 81

to determine, which rule is applicable. As a result, each applicable rule has to be

applied, to find which one fit the other words of the sentence segment. Similarly,

same problem also occurs for the next words. This produces exponential run-time

and makes the parsing process inefficient.

3.10.3 Lacking Error Recoverability

Existing BangIa grammar is designed in such a way, which does not support error

recovery capability. In case of machine translation, it is not guaranteed that all

sentences of source language are correct. Even, not all correct sentences can be fitted

within a grammar. Because a sentence can be written in several possible ways.

Existing BangIa parsing methodology stops parsing, when an error is found, i.e., a

word is found which can not be fitted within the grammar. But a standard parsing

methodology should continue parsing when an error is found by skipping the error

and an error report should be produced.

Existing Bangia grammar is designed in such a way that it can not detect the type of

error. It can not determine how to continue parsing by skipping the error.

3.10.4 Unable to Handle Non-dictionary Word

Main difference between a parser of a compiler and a parser of a language translator

is that in case of compiler, all the symbols are strictly defined. But in case of a

language translator, all the words can be found in a dictionary i.e., parts of speech

for all words can not be defined. It is quite usual that sentences contain name of

people, name of places, cities, countries etc. Almost all these words are absent in a

dictionary.

Existing BangIa grammar does not support such word not found in dictionary of the

parser. Such unknown word is regarded as error and parsing halts when non-

dictionary word is found. For example, if we want to parse the sentence '~ li1'>T



Chapter 3: BangIa Granunar 82

'IT!l" (robin Dhaka zai), parsing fails, because ''ilf.t-1'' (robin) and ''1i1<>1'' (Dhaka) are

non-dictionary words.

3.10.5 Limited Use of Conjunctives

Existing BangIa grammar supports the use of conjunctive only in a compound

sentence between two simple sentences. More than two simple sentences can not be

joined to form a compound sentence. For example, ''GITR ~ 'S ~ "'l1'S 'S 1:>1'IT!l"

(ami khai 0 tumi khao 0 se khay) is not possible to be parsed, because it has two

conjunctives, but the rule COMS --7 SS Conj SS does not support the use of

multiple conjunctives.

Conjunctives are used not only in compound sentences, conjunctives may also occur

in simple or complex sentences. For example, in the sentence ''GITR 'S ~ 'l'1'Sfff; ~"
,

(ami 0 tumi kajoTi korobo), "'S" (0) conjunctive is used but the sentence is a simple

sentence.

3.10.6 Unable to Handle Numeric Words

Like all other languages, BangIa language sentences may contain numeric words

like ")0" (10), ")(f' (15), "~~" (22) etc. Existing BangIa grammar and parsing

methodology do not support these words considered for parsing.

,.
. ~



Chapter 4

Non-ambiguous Grammar for Simple Sentence

4.1 Non-ambiguous Grammar for Noun Phrase

Existing context-free grammar for noun phrase in BangIa natural language is written

as:

NP ~ N(DET)

NP ~ (DEMO) (SPR) (AP) NP

NP ~ NP Biv (NP)

NP ~NPM

SPR ~ QFR (PP)

DEMO ~ (DD) (DO)

There are two problems using this grammar. Firstly, the grammar is ambiguous.

Secondly, the grammar does not support predictive parsing. Ambiguity problem

should be solved first. Then we can transform the grammar usable for predictive

parser using the theory of left recursion elimination and left factoring (discussed in

section 2.4.12.1 and 2.4.13).

This grammar is ambiguous because of the rule NP ~ NP Biv (NP). Using this rule

same noun phrase can be parsed in several ways. An example of such problem is

demonstrated in figure 4.1 and figure 4.2, where first one is left associative parsing

and second one is right associative parsing.

If there is ambiguity in a grammar, it can not be called LL(l) grammar. As a result,

predictive parsing table is not possible to build.



Chapter 4: Non-ambiguous Grammar for Simple Sentence 84

(a)

NP

/I~
NP Biv NP

I I /I~
N <!lil NP Biv NP

I (er) I I I
"IIR N <!lil N
(ami) I (er) I

~ ~
(vai) (bondhu)

(b)

~
(bondhu)

~
(vai)

NP_____ I ~

NP Biv NP

/I~ I I
NP Biv NP <!lil N

1 1 1 (er) I

N <!lil N
I (er) 1

"IIR

(ami)

Figure 4.1: Ambiguity in the rule NP ~ NP Biv (NP).

NP
-----I ~
NP Biv NP

/I~ I I
NP Biv NP <!lil N

I I I (er) I
N <!lil N ~
I (er) I (boi)

(b)

-(nojorul)

NP

/I~
NP Biv NP

1 1/I~
N <!lil NP Biv NP

I (er) 1 I I
N <!lil N
I (er) I

~
(boi)

"IIR

(ami)-(nojorul)
(a)

"IIR

(ami)

Figure 4.2: Ambiguity in the rule NP ~ NP Biv (NP) (another example).

4.1.1 Ambiguity Elimination

To solve the ambiguity of the rule NP ~ NP Biv (NP), we have. a simple

observation'-there are two types ofbivokti's as extensive bivokti and non-extensive

bivokti.

An extensive bivokti is a type of bivokti which extends a noun phrase, i.e., another

noun phrase is expected after extensive bivokti. For example, in the sentence '~



Chapter 4: Non-ambiguous Grammar for Simple Sentence 85

"1il ~ '*' "ll "I1"ll" (ami er vai vat kha ay), ""1il" (er) is an extensive bivokti, where

""1il" (er) follows another noun phrase '~" (vai).

Again non-extensive bivokti is a type of bivoki which does not extend a noun

phrase, i.e., another noun phrase is not expected after non-extensive bivokti. For

example, in the sentence '''<@r VI' '*' 'it "I11S" (ami ke vat da ao), ''Vl''' (ke) is a non-

extensive bivokti, where ''Vl''' (ke) follows a verb phrase'~ 'it "I11S" (vat da ao).

We can denote extensive bivokti as BivE and non-extensive bivokti as Biv. Then we

can re-write the rule NP -t NP Biv (NP) as:

NP -t NP BivE NP I NP Biv

Still the rule is ambiguous, because using the rule NP -> NP BivE NP, different

parsing of a single sentence is possible. We can remove ambiguity of the rule by

posing non-extendable non-terminal to the left of BivE and Biv, and extendable non-

terminal to the right of BivE and Biv.

Recalling from the rules NP -t N (DET), NP -t (DEMO) (SPR) (AP) NP, NP -t

N PM, we can define (DEMO) (SPR) (AP) as previous portion of noun phrase,

denoted as PRE and N DET along with N PM as noun word, denoted as NW. Now,

we can write rules for PRE and NW as:

PRE -t DEMO I SPR I AP I DEMO SPR I DEMO AP I SRR AP I
DEMOSPRAP

NW -t N I N DET I N PM

Now it is quite clear that NW or PRE NW can represent any noun phrase having no

bivokti. We can give an example ofa noun phrase having no bivokti as "", "''II'! "1'fi ~

'f'lil ~ ~" (01 prothom ek Ti sundor chhele Ti). Parsing of the phrase using new

rule for PRE and NW is given in figure 4.3.



Chapter 4: Non-ambiguous Grammar for Simple Sentence 86

NP
PRE- 1 _

DEMO SPR AP
/"- /"- I
DO DO QFR PP AD
I I I I I
~ ~0J>l <!l'fi ~ 'r'fi!

(OI)(prothom) (ek) (Ti) (sundar)

NW
~~
N DET
I I

~ .~

(chhele) (Ti)

Figure 4.3: Tree derivation using the rules for PRE and NW;.

As both the non-terminals PRE and NW are non-extensive i.e., no other inner noun

phrase can be produced by PRE or NW, so we can place non-extensive non-

terminals PRE and NW to the left side of bivokti in the rule NP ~ NP BivE NP I
NP Biv. Ultimately, the rule NP ~ NP Biv (NP), previously modified as NP ~ NP

BivE NP I NP Biv, is replaced by the following rule:

NP --> NW BivE NP I PRE NW BivE NP INW Biv I PRE NW Biv

Now the noun phrase '~ <!lil~ <!lil'l'{" (ami er vai er bondhu), which was parsed

in two possible ways, as demonstrated in figure 4.1, is now parsed in only one way

using new equivalent rule, as demonstrated in figure 4.4.

~
(vai)

NP/1 _
NW BivE NP

I 1/I~
N <!lilNW BivE NP

I (er) 1 1 I

N <!lil NW
I (er) I

N

I

I5I1f'!
(ami)

'l'{
(bondhu)

Figure 4.4: Tree derivation using non-ambiguous rule for NP.



Chapter 4: Non-ambiguous Grammar for Simple Sentence 87

Again, using the definition ofNW, we can replace the rules NP --+ N (DET), NP --+

N PM by

NP --+ NW

Similarly, using the definition of PRE, we can replace the rule NP --+ (DEMO)

(SPR) (AP) NP by

NP --+ PRENW

Now, rule for NP can be written in a single line as:

NP --+ NW I PRE NW INW BivE NP I PRE NW BivE NP INW Biv I
PRENWBiv

The rule SPR --+ QFR (PP) can also be written as:

SPR --+ QFR I QFR PP

without changing meaning.

Similarly, the rule DEMO --+ (DD) (DO) can be written as:

DEMO --+ DD I DO IDD DO

without changing meaning.

Therefore, ambiguity in the grammar for noun phrase is eliminated. Existing BangIa

grammar for noun phrase

NP --+ N (DET)

NP --+ (DEMO) (SPR) (AP) NP

NP --+ NP Biv (NP)

NP --+ NPM

SPR --+ QFR (PP)

DEMO --+ (DD) (DO)

is replaced by equivalent new non-ambiguous grammar as:

NP --+ NW I PRE NW I NW BivE NP I PRE NW BivE NP I NW Biv I
PRENWBiv

• ,""I ../"'\.

\ - ,,:;,



Chapter 4: Non-ambiguous Grammar for Simple Sentence

PRE ~ DEMO I SPR IAP I DEMO SPR IDEMO AP I SRR AP I
DEMOSPRAP

NW ~ N IN DET IN PM

SPR ~ QFR I QFR PP

DEMO ~ DD I DO I DD DO

4.1.2 Addition of Conjunctives

88

Existing BangIa grammar supports the use of conjunctives only in compound

sentences to connect two simple or complex sentences. Existing BangIa grammar

does not support the use of conjunctives within a noun phrase. But, conjunctives

may also occur in a simple sentence as a part of noun phrase. For example, ''G!Tfir "3

~ ~ ~" (ami 0 tumi marrkeTe zai), ''G!Tfir "3 "'ltlml ~ ViWl ~ ~" (ami

o amar vaiyer chhele marrkeTe zai) etc, are simple sentences. But conjunctives are
\

used in the sentences.

If we observe the use of conjunctives in a noun phrase, we can find, conjunctives

connect some smaller noun phrases together to form a bigger noun phrase. In the

first example, ''G!Tfir "3 ~" (ami 0 tumi) is a noun phrase which is generated by two

smaller noun phrases ''G!Tfir'' (ami) and '~" (tumi) connected by conjunctive ""3"

(0). Similarly, in the second example, ''G!Tfir "3 "'ltlml ~ ViWl" (ami 0 amar vaiyer

chhele) is a noun phrase which is generated by tWo smaller noun phrases ''G!Tfir''

(ami) and ''I5!T'ml ~ ViWl" (amar vaiyer chhele) connected by conjunctive ""3"

(0).

Now, we are in a position to propose a new rule for noun phrase, which supports the

use of conj~nctive(s) within the noun phrase, as

NP ~ NP Conj NP

rJ '- .. '
\ -T'~-



Chapter 4: Non-ambiguous Grammar for Simple Sentence 89

~
(tum i)

This new rule supports the use of conjunctive within noun phrase. Now, it is

possible to parse the above two sentences. Tree derivations of the sentences are

demonstrated in figure 4.5.

NP~ 1 _

NP Conj NP

1 I I

NW 'tl NW

I (0) I
N N
I I

'"1If'!
(ami)

(a)

NP~ 1--------
NP Conj NPI 1 / 1 _

NW 'tl NW BivE NP

1 (0)1 I /I~
N N <lI11 NW BivE NP

I I (er) I 1 1

'"1If'! '"1If'! N "lo NW
(ami) (ami) 1 (er) I

~ N
(vai) 1

~
(bondhu)

(b)

Figure 4.5: Tree derivation using the rule NP ~ NP Conj NP.

In both the examples, main noun phrase is composed of two smaller noun phrases

connected by a conjunctive. Using the new rule, it is also possible to parse a noun

phrase which contains more than two smaller noun phrases connected. by

conjunctives. We can give such example as '~, ~ 'tl C'f" (ami, tumi 0 se). Here,



Chapter 4: Non-ambiguous Grammar for Simple Sentence 90

three noun phrases '~" (ami), '~" (tum i) and ''l:>!'' (se) are connected by

conjunctives. Tree derivation of this sentence is demonstrated in figure 4.6.

NP

~I------.
NP Conj NP

[ I~I~
NW NP Conj NP

I (,) I [ I
N NW ~ NW

I I (0) I
I5I11'f N N

(ami) I I
~ "(>I

(tum i) (se)

Figure 4.6: Tree derivation using the rule NP ~ NP Conj NP, where three smaller noun
phrases are connected by conjunctives.

Unfortunately, ambiguity problem arises using this new rule. When a noun phrase is

composed of two smaller noun phrases connected by conjunctive, ambiguity

problem does not arise. But when a noun phrase is composed of more than two

smaller noun phrases connected by conjunctives, there exists several possible

derivations. For example, the noun phrase '~, ~ ~ "(>I" (ami, tumi 0 se) can be

parsed in two possible ways, as demonstrated in figure 4.7.

The reason of ambiguity in this rule is, both left and right non-terminals NP are

extensive. We can eliminate the ambiguity in this rule by applying same technique

used in the previous section (4.1.1). We have to convert any non-terminal, either left

or right, as non-extendable. In this case, non-extendable noun phrase does not

contain two or more smaller noun phrases connected by conjunctive(s), whether an

extendable noun phrase may contain two or more smaller noun phrases connected by

conjunctive(s).



Chapter 4: Non-ambiguous Grammar for Simple Sentence 91

NP_______I~
NP Conj NP____I~ I I

NP Conj NP IS NW

I I I (0) I
NW NW N

I (,) I I
N N ~
I I (se)

I5I@l

(ami)
~
(tum i)

(a)

~
(se)

NP----1-----
NP Conj NPI I I~
NW NP Conj NP

I (,) I I. I
N NW IS NW

I I (0) I
N N
I I
~
(tum i)

(b)

I5I@l

(ami)

Figure 4.7: Ambiguity using the rule NP --+ NP Conj NP, where one is left associative (a),
and another is right associative (b).

We can define a non-extendable noun phrase, which does not contain two or more

smaller nO)Jn phrases connected by conjunctive(s), as NPU. Now, the rule for noun

phrase is re-written as:

NP --+ NPU Conj NP

where, ambiguity problem is solved because of non-extendable non-terminal NPU.



Chapter 4: Non-ambiguous Grammar for Simple Sentence 92

'5I1R
(ami)

As use of.co.njunctive in a noun phrase is optional, we can re-write the rule for noun

phrase again as:

NP -+ NPU I NPU Conj NP

In this situation, the rule for noun phrase, as proposed in the previous section (4.1.1),

is now fit within the definition ofNPU. So, rule for NPU becomes,

NPU ~ NW I PRE NW INW BivE NP I PRE NW BivE NP INW Biv I
PRENWBiv

Therefore, use of conjunctives within noun phrase is achieved, along with ambiguity

problem is also solved. Now, the noun phrase ''IsIWr, ~ <3 r>\" (ami, tumi 0 se) can

be parsed in only one possible way as demonstrated in figure 4.8.

NP~I------
NPU Conj NP

I I~I~
NW NPU Conj NP

I (,) I I I
N NW <3 NPU

I I (0) I
N NW

I I
~ N
(tumi) I

r>\
(se)

Figure 4.8: Elimination of ambiguity of the rule NP ~ NP Conj NP using new rule NP ~
NPU INPU Conj NP.

Finally, the grammar for noun phrase, as proposed in the previous section,

NP ~ NW I PRE NW INW BivE NP I PRE NW BivE NP INW Biv I
PRENWBiv



Chapter 4: Non-ambiguous Grammar for Simple Sentence

PRE ~ DEMO I SPR IAP IDEMO SPR IDEMO AP I SRR AP I

DEMOSPRAP

NW ~ N IN DET IN PM

SPR ~ QFR IQFR PP

DEMO ~ DD IDO IDD DO

is now replaced by new grammar,

NP ~ NPU INPU Conj NP

NPU ~ NW IPRE NW INW BivE NP IPRE NW BivE NP INW Biv I
PRENWBiv

PRE ~ DEMO I SPR IAP IDEMO SPR IDEMO AP I SRR AP I

DEMOSPRAP

NW ~ N IN DET IN PM

SPR ~ QFR IQFR PP

DEMO ~ DDIDOIDDDO

which also preserves the features of noun phrase achieved before.

4.1.3 Unknown Word Handling

93

In case of machine translation, in source language sentences, many words are found,

which are not available in dictionary. While lexical analysis, parts of speech tagging

of such words is not possible. These non-dictionary words are regarded as unknown

words .

. Existing Bangia grammar is unable to handle non-dictionary words. Existing Bangia

parsing methodology can not continue parsing, when any error occurs. As parts of

. speech tagging of unknown words is not possible, it is regarded as error, and parsing

halts when unknown word occurs in the sentence to be parsed.

Unknown word handling is very important, because without this, parsing is very

weak, as a result, quality, accuracy and effectiveness of machine translation is highly

reduced.



Chapter4: Non-ambiguousGrammarfor SimpleSentence 94

If we analyze unknown or non-dictionary words in BangIa language sentences, we

can see, most of the unknown words are name of man, place, company,

organization, product etc. So, we can consider an unknown word like a noun. Very

rarely, non-dictionary words are in other groups.

Though we can consider an unknown word as a noun, but in the grammar an

unknown words can not immediately substitute a noun. Because, firstly, the non-

terminal PRE may be applicable before a noun, but not applicable before an

unknown word. For example, "<!l~ ~ ~ ~ 'lB!" (01 prothom sundar

chheleTi marrkeTe zay) is a meaningful sentence. But, "<!l2f0f'l~ ~ ~ 'lB!"

(01 prothom sundor robinoTi marrkeTe zay) is not a meaningful sentence.

Again, unlike noun, PM and DET is not applicable after an unknown word. For

example, '~ ~ C"lC'1" (chheleTi fuTobol khele) is a meaningful sentence. But,

'~ ~ ~" (robinoTi fuTobol khele) is nota meaningful sentence.

Because of these differences, we can not tag an unknown word directly as the

terminal N. We have to define a new terminal as UN, referring to unknown words.

Now, we are in a position to re-write new rule for NPU to facilitate unknown word

handling as,

NPU ~ NW I PRE NW INW BivE NP I PRE NW BivE NP INW Biv I
PRE NW Biv IUN IUN BivE NP IUN Biv

which also retains other features ofNPU, achieved earlier.

Now, it is possible to parse noun phrases containing unknown words. For example,

tree derivations of the sentences '~" (robin) and'~ '/l .m "I. ~"(ami 0 robin

er bondhu) are given in figure 4.9.

Still, there is a limitation using the new rule. In many cases, two or more separate

words together make a group and the group represent a significant meaning, not the

separate unknown words. For example, name of a man can be '~ '!A" (amir



Chapter 4: Non-ambiguous Grammar for Simple Sentence 95

khan), a name of a place can be '~ 15lf!Ii>f" (buyens ayarrs), a name of a company

can be '~ ~9f '5I<f ~""IRi1iSl"(bengol grup ob inDasTrij) etc.

NP
I

NPU

I
UN

I
~
(robin)

(a)

NP~ I _
NPU Conj NPI I I ~
NW <J NPU BivE NP
I (0) I I I
N UN "1il NPU
I I (er) I

"I1f'r ~ NW
(ami) (robin) I

N

I
~

(bondhu)

(b)

Figure 4.9: Tree derivation with grammar for noun phrase with unknown word (non-
dictionary) handling.

It follows that, only use of the terminal UN is not sufficient. We can define a new

non-terminal for unknown word group, donated by UNG, which represents a group

of unknown words. Now, we can replace UN by UNG in the rule for NPU and

resultant rule becomes,

NPU -+ NW I PRE NW INW BivE NP I PRE NW BivE NP INW Biv I
PRE NW Biv I UNG I UNG BivE NP lUNG Biv

which now supports multi-word unknown word groups.

As UNG represents one or more unknown words, we can define the rule for UNG

as,

UNG -+ UN I UN UNG



Chapter 4: Non-ambiguous Grammar for Simple Sentence 96

We can give example of noun phrase using multi-word unknown word group as

.~ 'IR" (amir khan), '~ '(J I5Itff!il 'IR "i<l <r.i:" (ami 0 amir khan er bondhu) etc,

for which tree derivations are demonstrated in figure 4.10.

I5Itff!il
(amir)

I5Itff!il
(amir)

NP

~I------
NPU Conj NP

II~I~
NW '(J NPU BivE NP

I (0) I I I
N UNG "i<l NPU

I / ~ (er) I
UN UNG NW

I I I
UN N
I I

"l@r
(ami)

NP
I

NPU

I
UNG

/~
UN UNG

I I
UN

I
'IR

(khan)

'IR
(khan)

<r.i:
(bondhu)

(a) (b)

Figure 4.10: Tree derivation with grammar for noun phrase with both single (a) and multi-
word (b) unknown word (non-dictionary) handling.

Finally, the grammar of noun phrase, as proposed in the previous section,

NP --+ NPU INPU Conj NP

NPU --+ NW IPRE NW INW BivE NP IPRE NW BivE NP INW Biv I

PRENWBiv

PRE --+ DEMO I SPR IAP I DEMO SPR IDEMO AP I SRR AP I

DEMOSPRAP

NW --+ NINDETINPM

SPR --+ QFR IQFR PP

OEMO --+ DO IDO IDO DO

is now replace by new grammar as,

NP --+ NPU INPU Conj NP

NPU --+ NW I PRE NW INW BivE NP IPRE NW BivE NP INW Biv I

PRE NW Biv IUNG lUNG BivE NP lUNG Biv



Chapter 4: Non-ambiguous Grammar for Simple Sentence

PRE ~ DEMO I SPR IAP IDEMO SPR IDEMO AP I SRR AP I

DEMOSPRAP

NW ~ N IN DET IN PM

SPR ~ QFR IQFR PP

DEMO ~ DD IDO IDD DO

UNO ~ UN IUN UNO

which facilitate the use of unknown word retaining the features achieved earlier.

4.1.4 Left Factoring

97

In the previous sections (4.1.1, 4.1.2,4.1.3), ambiguity problem for the grammar of

noun phrase is eliminated and further, use. of conjunctives and unknown word

handling have been achieved. Now, we have a non-ambiguous grammar, but the

grammar is not applicable to predictive parser, as most of the alternative rules for the

non-terminals use common terminal or non-terminal as first symbol. As a result, it is

not possible to determine the applicable rule immediately. We can eliminate such

problem by applying the theory of left factoring.

Firstly, we have a non-ambiguous grammar for noun phrase as,

NP ~ NPU INPU Conj NP

NPU ~ NW IPRE NW INW BivE NP IPRE NW BivE NP INW Biv I

PRE NW Biv IUNO IUNO BivE NP IUNO Biv

PRE ~ DEMO I SPR IAP IDEMO SPR IDEMO AP I SRR AP I

DEMOSPRAP

NW ~ N IN DET IN PM

SPR ~ QFR IQFR PP

DEMO ~ DD IDO IDD DO

UNO ~ UNIUNUNO

Firstly, we can apply left factoring on the rule for NP,

NP ~ NPU INPU Conj NP

~



Chapter 4: Non-ambiguous Grammar for Simple Sentence

NP ~ NPUEI

where, EI ~ Conj NP I Ei

Then, we can apply left factoring on the rule for NPU,

NPU ~ NW I PRE NW INW BivE NP IPRE NW BivE NP INW Biv I

PRE NW Biv IUNG IUNG BivE NP IUNG Biv

=>
NPU ~ NWE2 IPRENW E2 IUNGE2

where, E2 ~ BivE NP IBiv I Ei

Then, we can apply left factoring on the rule for PRE,

PRE ~ DEMO I SPR IAP I DEMO SPR IDEMO AP ISRR AP I

DEMOSPRAP

=>
PRE ~ DEMO E3 I SPR E4 IAP

where, E3 ~ SPR IAP I SPR AP I Ei

E4~APIEi

Then, we can apply left factoring on the rule for E3,

E3 ~ SPR IAP I SPR AP I Ei

=>
E3 ~ SPR E4 IAP I Ei

Then, we can apply left factoring on the rule for NW,

NW --" NINDETINPM

=>
NW ~ NE5

where, E5 ~ DET IPM I Ei

Then, we can apply left factoring on the rule for SPR,

SPR ~ QFR IQFR PP

=>

98



Chapter 4: Non-ambiguous Grammar for Simple Sentence

SPR --7 QFR E6

where, E6 --7 PP I c

Then, we can apply left factoring on the rule for DEMO,

DEMO --7 DD IDO IDD DO

=>
DEMO --7 DD E7 IDO

where, E7 --7 DO I c

Then, we can apply left factoring on the rule for UNG,

UNG --7 UN I UN UNG

=>
UNG --7 UNE8

where, E8 --7 UNG I c

99

Ultimately, we can say, grammar for noun phrase proposed in the previous section,

NP --7 NPU INPU Conj NP

NPU --7 NW IPRE NW INW BivE NP I PRE NW BivE NP INW Biv I

PRE NW Biv IUNG IUNG BivE NP lUNG Biv

PRE --7 DEMO I SPR IAP IDEMO SPR IDEMO AP I SRR AP I

DEMOSPRAP

NW --7 N IN DET IN PM

SPR --7 QFR IQFR PP

DEMO --7 DD IDO IDD DO

UNG --7 UN IUN UNG

. is now replaced by new grammar,

NP --7 NPU El

El ~ ConjNPI c

NPU --7 NW E2 IPRE NW E2 lUNG E2

E2 --7 BivE NP IBiv I c

PRE --7 DEMO E3 I SPR E41 AP

E3 --7 SPR E4 IAP I c



Chapter 4: Non-ambiguous Grammar for Simple Sentence lOa

E4~API£

NW ~NE5

E5 ~ DET I PM I £
SPR ~ QFRE6

E6~PPI£

DEMO ~ DDE71 DO

E7 ~ 001 £

UNG ~ UNE8

E8 ~ UNGI £

which is a non-ambiguous grammar for predictive parser. This grammar can also be

called as LL(l).

EI

/~
Conj NP

/ /~
~ NPU EI

(0) /~ I
UNG E2

/ "'" / "'"
UN E8 BivE NP

I I I /~
£ "10 NPU EI

(er)/ "'" I
NW E2 £

/~I
N E5 £

I I

~
(robin)

NP------- ------
NPU

/~
NW E2

/.~ I
N E5 £

I I
~
(ami)

<'l[
(a) (bondhu)

Figure 4.11: Tree derivation with non-ambiguous grammar for noun phrase with predictive
parsing (continued).

('
. (

~~'
C--~.::-



Chapter 4: Non-ambiguous Grammar for Simple Sentence 101

~
(vai)

(b)

"!0f1f
(prothom)

NP------ ------
NPU El______ I I

PRE NW E2

/ "" /\ /~
DEMO E3 N E5 BivE NP

/\ I I I I / ""
DD E7 li rwr DET "1il NPU El

I I (chhele) I (e~)/ "" I
DO ~ NW E2

I (Ti) /\ I
N E5

I I

<£I
(01)

Continued Figure 4.11: Tree derivation with non-ambiguous grammar for noun phrase
with predictive parsing.

Now, we are in a position to give some examples of parsing using new grammar for

noun phrase. Tree derivations for some noun phrases like, ''''<@r '3 ~ <WI'l'i[" (ami

o robin er bondhu), "<£I ~0f1f ~ ~" (01 prothom chheleTir vai) are

demonstrated in figure 4.11.

4.2 Non-ambiguous Grammar for Adjective Phrase

Existing context-free grammar for adjective phrase in Bangia natural language is

written as:

AP ~ AD/ADs

which indicates that, an adjective phrase is composed of one or more adjectives.

Existing grammar is not suitable for practical implementation. Thus, we can re-write

the grammar as,

AP ~ ADIADAP



Chapter 4: Non-ambiguous Grammar for Simple Sentence

which is a non-ambiguous grammar.

102

'fl
(khub)

For example, in the sentence ''"c>!'fl '51'1 <tR ~ "frol" (se khub valo gan gaite pare),

"'fl '51'1" (khub valo) is an adjective phrase. We can parse adjective using the non-

ambiguous grammar as demonstrated in figure 4.12.

AP
/~

AD AP

I I
AD

I
'51'1
(valo)

Figure 4.12: Tree derivation with non-ambiguous grammar for adjective phrase.

Difficulty using this grammar is, both alternative rules AP --+ AD, AP --+ AD AP

has AD as first symbol. As a result, this grammar does not support predictive

parsmg.

We can transform the grammar usable for predictive parsmg by applying left

factoring as follows,

AP --+ AD I AD AP

AP --+ AD FI

where, F I --+ AP I s

Ultimately, non-ambiguous grammar for noun phrase with predictive parsing

becomes,

AP --+ AD FI

FI --+ AP I s



Chapter 4: Non-ambiguous Grammar for Simple Sentence 103

"f!
(khub)

Now, we can parse the adjective phrase ""f! '5M" (khub valo) using new grammar, as

demonstrated in figure 4. 13.

AP
/~

AD FI

I I
AP
/~

AD FI

I I
'5M
(valo)

Figure 4.13: Tree derivation with non-ambiguous grammar for adjective phrase with
predictive parsing.

4.2.1 Numeric Word Handling

Like all other languages, Bangia language sentences may contain numeric words

like ")0" (10), ")<lc" (15), "",," (22) etc. Existing Bangia grammar and parsing

methodology do not support these words considered for parsing.

AP
/~

AD FI

I I
)0

(10)

Figure 4.14: Tree derivation for a numeric word.

An important observation is that, numeric words are used as adjectives in Bangia

sentences. Therefore, when any word containing only numeric digits is detected by

the parser, it can be considered as adjective without looking up the lexicon. Then,

parsing process continues after detection of such kind of word.



Chapter4: Non-ambiguousGranunarfor SimpleSentence 104

(expanding rule for NP)

For example, we can parse the numeric word "~o" (10), as demonstrated in figure

4.14.

4.3 Non-ambiguous Grammar for Verb Phrase

Existing context-free grammar for verb phrase in BangIa natural language is written

as:

VP ~ (NP) (AP) VF

VF ~ VRAUX

We can re-write the rule for VP as,

VP ~ VF INPVFI APVF INPAPVF

This rule is not applicable in predictive parser. We can transform it to be usable for

predictive parser by following derivations,

VP ~ VFINPVFIAPVFINPAPVF

=>
VP ~ VFIAPVFINPDl

where, Dl ~ VF IAP VF

=>
VP ~ VF lAP VF INPU EI 01

=>
VP ~ VF IAP VF INW E2 EI Dl IPRE NW E2 EI 01 lUNG E2 EI 01

(expanding rule for NPU)

VP ~ VF IAPVF INWE2 EI Dli OEMO E3 NW E2 EI Dli

SPRE4 NW E2 EI Dli APNW E2 EI Dli UNG E2 EI 01

(expanding rule for PRE)

=>
VP ~ VF INW E2 E1 OIl UNG E2 EI Dli AP 021

OEMO E3 NW E2 EI 01 ISPR E4 NW E2 EI Dl

where, 02 ~ VF INW E2 EI 01

(left factoring)



Chapter 4: Non-ambiguous Grammar for Simple Sentence 105

To resolve ambiguity problem of simple sentence (discussed in the next section), we

have to separate UNO from other portions. For this purpose, we can define a rule,

D3 ~ VF I AP D2 I NW E2 E 1 0 I I DEMO E3 NW E2 E I 0 I I
SPR E4 NW E2 EI 01

Using the new rule, rule for VP can be re-written as,

VP ~ D31 UNO E2 EI 01

For simplification, we can define another rule as,

04 ~ NW E2 El Dl

Therefore, the rules D2 and 03 becomes,

D2 ~ VFI04

03 ~ VF IAP 02 ID4 IDEMO E3 04 I SPR E4 04

. "'IT ~

(kha) (ai)

Dl

I
VF

/"'"
VR AUX

I I

VP
I
D3

I
04~~---

E2 EI

I / "'"
Conj NP

I /\
<l NPU EI

(0) / \ I
NW E2 li

/"'" I
N E5 li

I I

NW

/\
N E5

I I
~
(vat)

~
(a)(machh)

Figure 4.15: Tree derivation with non-ambiguous grammar for verb phrase with predictive
parsing (continued).

."/'



Chapter 4: Non-ambiguousc,Grammar for Simple Sentence 106

UNG

/"'"
UN E8

I I
rn<l'
(kOk)

E2

I
EI

/"'"
Conj NP

I /\
'0 NPU EI

(0) / \ 1

UNG E2 &

/""'1
UN E8 &

1 I

"C'Wil'l UN G
(seven) / "'"

UN E8

I I
"ITO!

(b) (ap)

01

I
VF
/"'"

VR AUX

I I
-.rr ~

(kha) (ai)

Continued Figure 4.15: Tree derivation with non-ambiguous grammar for verb phrase with
predictive parsing.

Ultimately, non-ambiguous grammar for verb phrase with predictive parsmg

becomes,

VP ~ D3IUNGE2EI 01

01 ~ VFIAPVF

02 ~ VFI04

D3 ~ VF IAP D2 I 04 IDEMO E3 04 I SPRE4 04
04 ~ NWE2 EI D1

VF ~ VRAUX

Now, we are in a position to give some examples of verb phrase as underlined in the

sentences ''''Ilfir ~ '0 ~ ~" (ami vat 0 machh khai), ''''Ilfir rn<l' '0 "C'Wil'l "ITO! ~"

(ami kOk 0 seven up khai). Tree derivations of the examples are demonstrated in

figure 4.15.



Chapter 4: Non-ambiguous Grammar for Simple Sentence 107

4.4 Non-ambiguous Grammar for Simple Sentence

Existing context-free grammar for simple sentence in Bangia natural language is

written as:

SS ---> NP VP

Difficulty using this rule is ambiguity. In non-dictionary word does not exist in a

sentence, then the rule works fine. But ambiguity problem may occur for non-

dictionary words, as NP may end with an unknown word and VP may start with an

unknown word. In that case, problem arises, how to fit the unknown word.

I5ltll

(ay)

VP
1

D3

I
VF

/""-
VR AUX

1 I

'l1
(za)

SS
~~

NP

/\
NPU EI

/\ I
UNO E2 &

/""-1
UN E8 &

1 1
UNO

(r:n) / ""-
UN E8

I I
1it'l't

(Dhaka)
(a)

Figure 4.16: Ambiguity in the rule SS ---> NP VP (continued).



Chapter 4: Non-ambiguous Grammar for Simple Sentence 108

ss
~~,

NP VP

/\ /I~
NPU EI UNG E2 EI D1

/\ I /"'" I I I
UNG E2 Ii UN E8 Ii Ii VF

/ "'" I I I / "'"
UN E8 Ii 01<'1 Ii VR AUX

I I (Dhaka) I I
~
(robin)

Ii

(b)

<l1

(za)
'1ijf!l

(ay)

Continued Figure 4.16: Ambiguity in the rule SS ~ NP VP.

For example, the simple sentence ,~ 01<'1'lffi" (robin Dhaka zay) contains two

non-dictionary words ,~" (robin) and ''om'' (Dhaka). Here, obviously "~,,

(robin) is a part of noun phrase and '''!tlI'' (zay) is a part of verb phrase. But problem

arises for the non-dictionary word "01<'1"(Dhaka), which can be fit both in noun

phrase and verb phrase. As a result, the example sentence can be parsed in two

possible ways, as demonstrated in figure 4.16.

The main reason of ambiguity problem is, we consider unknown words as a group,

when some unknown words are found together in a sentence. But, in the real

situation unknown words may be in different groups. In the sentence, '~ 01<'1'lffi"

(robin Dhaka zay), conceptually '~" (robin) is noun phrase and ''om 'lffi" (Dhaka

zay) is verb phrase. [n another sentence, '~ fii"l"'14 'lffi" (robin milofOrrD zay),

'~ fii"lC'l'i4" (robin milofOrrD) is noun phrase and '''!tlI'' (zay) is verb phrase. It is

not possible for a parser to decide whether these unknown words ''om'' (Dhaka),

"fii"lClfI4" (milofOrrD) are belong to noun phrase or verb phrase, as these are

unknown to the parser.

".':~i:.:~;~.:.~)-
.. 'j

",
I' _.,\

(
\

,
\ i, .i •

C



Chapter4: Non-ambiguousGrammarfor SimpleSentence 109

A possible solution is to make the unknown words left associative. In a unknown

word group, if first word is identified as a part of noun phrase, then other words in

the group will also be considered as part of noun phrase, and vice versa. This

solution will certainly create some conceptual mistakes, like for the sentence '~

01'l'1 'l11l" (robin Dhaka zay), '~ 01'l'1" (robin Dhaka) will be considered as noun

phrase by the parser, though conceptually only '~" (robin) is noun phrase.

Though conceptual mistake may occur, but it will be possible to continue parsing

and ambiguity will be removed. We can apply some heuristics to minimize the

conceptual mistakes. An idea may be to apply some learning mechanism. The

learning mechanism will identify unknown word groups. If we apply such kind of

learning mechanism in paragraph level, the parser may be able to identify that '~"

(robin) is a part of noun phrase and ''1i1<l'l'' (Dhaka) is a part of verb phrase. Though it

does not ensure I00% accuracy.

To eliminate ambiguity in SS, we have to merge UNG, for the case, when it is

applicable both as last symbol of NP and first symbol of VP. To do this merging,

firstly, we have to expand the rules ofNP and VP as follows,

SS ~ NPVP

SS ~ NPUEI VP

SS ~ NPU Conj NP VP INPU VP

(expanding rule for NP)

(expanding rule for EI)

SS ~ NPU Conj NP VP INW E2 VP IPRE NW E2 VPI UNG E2 VP

(expanding.rule for NPU)

ss ~ NPU Conj NP VP INW E2 VPI PRE NW E2 VP IUNG BivENP VP

lUNG Biv VP IUNG VP (expanding rule for E2)

...j,



Chapter 4: Non-ambiguous Grammar for Simple Sentence 110

SS.~ NPU Conj ss INW E2 VP I PRE NW E2 VP I UNG BivE SS I
UNG Biv VP IUNG VP

(replacing NP VP by SS, as NP VP is ambiguous, but SS will be made non-

ambiguous)

SS ~ NPU Conj SS I NW E2 VP I PRE NW E2 VP I UNG BivE SS I

UNG Biv VP IUNG 031 UNG UNG E2 EI DI (expanding rule for VP)

SS ~ NPU Conj ss INW E2 VP IPRE NW E2 VP IUNG BivE SS I

UNG Biv VP IUNG 03 lUNG E2 EI D1

(replacing UNG UNG by UNG, as we are considering consecutive unknown

words as a single group, as discussed earlier in this section)

SS ~ NW E2 Conj ss I PRE NW E2 Conj ss IUNG E2 Conj SS I

NW E2 'VP I PRE NW E2 VP I UNG BivE SS I UNG Biv VP lUNG 03 I

UNG E2 EI D1 (expanding rule for NPU)

SS ~ NW E2 CII PRE NW E2 CII UNGC2

where,

CI ~ VP IConj SS

C2 ~ E2 Conj ss IBivE SS IBiv VP I03 IE2 EI D1

(left factoring)

Now, SS becomes non-ambiguous, at tbe same time usable for predictive parser. But

C2 does not support predictive parsing. We can transform it usable for predictive

parser by the following derivations,

C2 ~ E2 Conj ss IBivE SS IBiv VP I 03 IE2 EI D1

=>
C2 ~ BivE NP Conj ss IBiv Conj ss IConj ss IBivE SS I Biv VP I03 I

E2 Conj NP D1 (expanding rule for EI and E2)



Chapter 4: Non-ambiguous Grammar for Simple Sentence I II

C2 --7 BivE NP Conj ss I Biv Conj ss I Conj ss I BivE SS I Biv VP I D3 I
BivE NP Conj NP DI I Biv Conj NP DI I Conj NP DI

(expanding rule for E2)

C2 --7 Conj ss I BivE SS I Biv Conj ss I Biv VP I D3
(we can represent "BivE NP Conj ss I BivE SS I BivE NP Conj NP Dl" by

only BivE SS, because others are derivations of BivE SS, similarly, we can

represent "Biv Conj ss I Biv Conj NP D1" by Biv Conj SS, again we can

represent "Conj ss I Conj NP D1" by Conj SS)

ss
~I~
NW

/\
N. E5

I I

E2 CI

<II

(e)
>m<riU £

(marrkeT)

/~
ss
/\

'G UNG C2

(0) I \ \
UN E8 D3

I I \
ilW! £ D4
(robin) ~ / \ ~

NW E2 EI DI

/\ I I I
N E5 Biv £ VF

I I I /~
VR AUX

I I

£ Conj

I
£~

(ami)

'IT '"l1'O:
(za) (ai)

Figure 4.17: Tree derivation with non-ambiguous grammar for simple sentence with
predictive parsing.

(



Chapter4: Non-ambiguousGrammarfor SimpleSentence

=>

112

C2 -+ Conj SS IBivE SS IBiv CI ID3
(using the rule CI -+ VP IConj SS, Biv VP I Biv Conj SS can be merged
into Biv CI)

Ultimately, non-ambiguous grammar for simple sentence with predictive parsing

becomes,

SS -+ NW E2 CII PRE NW E2 CII UNG C2

CI -+ VP IConj SS
C2 -+ Conj SS IBivE SS IBiv CI ID3

Now, we are in a position to give some examples of simple sentence like '~ 'S <!f<R

~ ~" (ami 0 robin marrkeTe zai), '~ 'S 'O!l'ml ~ 'f'l'Iiil1 ~ /Xi ~" (ami 0

amar bondhu bosundhora siTi te zai), for which tree derivations are demonstrated in

figure 4.17.

As, a simple sentence is composed of noun phrase, verb phrase and optionally

adjective phrase, we can present grammar for simple sentence all together as

follows,

SS -+ NW E2 CII PRE NW E2 CII UNG C2

CI -+ VP IConj SS

C2 -+ Conj SS IBivE SS IBiv CI ID3
VP -+ D3IUNGE2El Dl

DI -> VF IAP VF

D2-+VFID4

D3 -+ VF IAP D2 ID4 IDEMO E3 D4 ISPR E4 D4

D4 -+ NW E2 EI DI

VF -+ VRAUX

NP -+ NPUEI

EI -+ Conj NP I t:

NPU -+ NW E2 IPRE NW E2 lUNG E2

E2 -+ BivE NP IBiv I t:



Chapter 4: Non-ambiguousGrammar for Simple Ser,tence

PRE ~ DEMO E3 I SPR E4 I AP
E3 ~ SPR E4 IAP I c
E4~APlc

NW ~ NE5

E5 ~ DET I PM I c
SPR ~ QFRE6

E6 ~ PP Ie
DEMO ~ DD E7 I DO
E7 ~ DOl c

UNG ~ UNE8

E8 ~ UNGI c

AP~ADFI

FI ~ AP Ie

4.5 Remarks

113

In this chapter, we have designed non-ambiguous Bangia grammar for simple

sentences with predictive parsing. Moreover, we also added using of unknown

words in Bangia grammar. This feature certainly directs to more effective parsing.

Later this grammar will be merged as a part of comprehensive Bangia grammar.



Chapter 5

Non-ambiguous Grammar for Complex Sentence

5.1 Existing Grammar for Complex Sentence

Recalling from chapter 3 (section 3.7), context-free grammar for complex sentence

in Bangia natural language is presented as,

CS ~ DCIC

CS ~ ICDC

DC~NP(SUBORD)VP

DC ~ (SUBORD) SS

IC ~ NP (SUBCOM) VP

IC ~ (SUBCOM) SS

Main problems using the grammar for complex sentence are ambiguity and non-

predictivity. A complex sentence is composed of several noun phrases and verb

phrases. Ambiguity occurs in complex sentence, because of ambiguity in grammar

of noun phrase and verb phrase. In the previous chapter, ambiguity problem of noun

phrase and verb phrase is solved. Therefore, grammar for complex sentence is now

non-ambiguous. But the grammar still does not support predictive parsing. For.

example, if we want to parse the complex sentence, '~ "lfi1 ~ 'W! ~ "I"(>!f" (ami

zodi zai tobe tumi eso), for the first word .~" (ami), it is not possible to determine

the rule applicable, without watching next words. Here, the two rules CS ~ DC IC

and DC ~ NP (SUBORD) VP may be applicable, as these two rule allows .~"

(ami) as first word. Again, two other rules CS ~ IC DC and IC ~ NP (SUBCOM)

VP may also be applicable, as they also allows .~" (ami) as first word. Similarly,

non-predictive nature also occurs for next words.

In this chapter, we will basically discuss how to transform the grammar for complex

sentence usable for predictive parsing.



Chapter 5: Non-ambiguous Grammar for Compound Sentence

5.2 Identifying Complex Sentence Patterns

115

A complex sentence can be written is several possible ways. Following from

existing grammar for complex sentence, a sentence '~ ~ ~ "1"C>ll" (ami gele

tumi esO) can be written in following possible ways,

'~~<W'! ~ "1"C>ll" (ami gele tumi esO)

'~~<W'! ~ 'WI "1"C>ll" (ami gele tumi tobe esO)

'~ ~<W'!'WI ~ "1"C>ll"(ami gele tobe tumi esO)

'~WI lit$: ~ "1"C>ll" (ami zodi zai tumi esO) .

'~ WI lit$: ~ 'WI "1"C>ll" (ami zodi zai tumi tobe esO)

'~ WI lit$: 'WI ~ "1"C>ll" (ami zodi zai tobe tumi esO)

'"<rf'r "I1f'! lit$: ~ "1"C>ll"(zodi ami zai tumi esO)

'"<rf'r "I1f'! lit$: ~ 'WI "1"C>ll" (zodi ami zai tumi tobe esO)

'"<rf'r "I1f'! lit$: 'WI ~ "1"C>ll"(zodi ami zai tobe tumi esO)

'~ "1"C>ll"I1f'! ~<W'!"(tumi esO ami gele)

'~ "1"C>ll"I1f'! WI lIt$:" (tumi esO ami zodi zai)

'~ "1"C>llWI "I1f'! lIt$:" (tumi esO zodi ami zai)

'~'WI "1"C>ll"I1f'! ~<W'!"(tumi tobe esO ami gele)

'~ 'WI "1"C>ll"I1f'! WI lIt$:" (tumi tobe esO ami zodi zai)

'~ 'WI "1"C>llWI "I1f'! lIt$:" (tumi tobe esO zodi ami zai)

'''wi ~ "1"C>ll"'lt1il~<W'!"(tobe tumi esO ami gele)

'''WI ~ "1"C>ll"'lt1ilWI lIt$:" (tobe tumi esO ami zodi zai)

'''wi ~ "1"C>llWI "'lt1illlt$:" (tobe tumi esO zodi ami zai)

Here, we can exclude following three patterns,

'~"1"C>ll "'lt1il~" (tumi esO ami gele)

'~''WI "1"C>ll"'lt1il~<W'!"(tumi tobe esO ami gele)

'''wi ~ "1"C>ll"'lt1il~<W'!"(tobe tumi esO ami gele)

as these patterns are unusual.



Chapter 5: Non-ambiguous Grammar for Compound Sentence

So, valid patterns are identified as follows,

'~ ~'1jry;~ <£11:'11" (ami gele tumi esO)

'~ ~'1jry;~ IWl <£11:'11" (ami gele tumi tobe esO)

'~ ~'1jry; IWl ~ <£11:'11" (ami gele tobe tumi esO)

'~WI ~ ~ <£11:'11" (ami zodi zai tumi esO)

'~WI ~ ~ IWl <£11:'11" (ami zodi zai tumi tobe esO)

'~WI ~ IWl ~ <£11:'11" (ami zodi zai tobe tumi esO)

''Wf '"llf'r ~ ~ <£11:'11" (zodi ami zai tumi esO)

''Wf '"llf'r ~ ~ IWl <£11:'11" (zodi ami zai tumi tobe esO)

''Wf '"llf'r ~ IWl ~ <£11:'11" (zodi ami zai tobe tumi esO)

'~ <£11:'11'"llf'r WI ~" (tumi esO ami zodi zai)

'~ <£11:'11WI '"llf'r ~" (tumi esO zodi ami zai)

'~ IWl <£11:'11'"llf'r WI ~" (tumi tobe esO ami zodi zai)

'~ IWl ,,]1:'11 WI '"llf'r ~" (tumi tobe esO zodi ami zai)

''WI ~ <£11:'11'"llf'r WI ~" (tobe tumi esO ami zodi zai)

''WI ~ <£11:'11WI '"llf'r ~" (tobe tumi esO zodi ami zai)

116

Now, we can re-write the grammar for complex sentence using the valid sentence

patters as,

CS ~ SS SS I SS NP SUB COM VP I SS SUBCOM SS I
NP SUBORD VP SS I NP SUBORD VP NP SUBCOM VP I
NP SUBORD VP SUBCOM SS I SUBORD SS SS I
SUBORD SS NP SUB COM VP I SUBORD SS SUB COM SS I
SS NP SUBORD VP I SS SUBORD SS I
NP SUBCOM VP NP SUBORD VP I NP SUBCOM VP SUBORD SS I
SUB COM SS NP SUBORD VP I SUBCOM SS SUBORD SS

This rule is certainly non-ambiguous, though does not support predictive parsing. In

the next section, We will derive grammar for complex sentence with predictive

parsmg.



Chapter 5; Non-ambiguous p._ammar for Compound Sentence

5.3 Non-ambiguous Grammar for Complex Sentence

117

We will apply left factoring technique On the grammar for complex sentence,

proposed in the previous section (5.2). If we apply left factoring on the rule for CS,

the derivations will be as,

CS ~ SS SS 1SS NP SUB COM VP 1SSSUBCOM SS 1

NP SUBORD VP SS INP SUBORD VP NP SUBCOM VP I
NP SUBORD VP SUBCOM SS 1SUBORD SS SS I
SUBORD SS NP SUBCOM VP 1SUBORD SS SUBCOM SS 1

SS NP SUBORD VP 1SS SUBORD SS 1

NP SUBCOM VP NP SUBORD VP 1NP SUBCOM VP SUBORD SS 1

SUBCOM SS NP SUBORD VP 1SUBCOM SS SUBORD SS

=>
CS ~ SS BI 1NP B21 SUBORD SS B3 1SUB COM SS B4; left factoring

where,

BI ~ SS 1NP SUBCOM VP I SUBCOM SS 1NP SUBORD VP 1

SUBORDSS

B2 ~ SUBORD VP SS 1SUBORD VP NP SUBCOM VP 1

SUBORD VP SUB COM SS 1SUB COM VP NP SUBORD VP 1

SUBCOM VP SUBORD SS

B3 ~ SS INP SUBCOM VP 1SUBCOM SS

B4 ~ NP SUBORD VP 1SUBORD SS

=>
CS ~ NWE2Cl BIIPRENWE2Cl BIIUNGC2BlINPB21

SUBORD SS B3 1SUBCOM SS B4 (expanding rule for SS)

=>
CS ~ NWE2CI BilPRENWE2CI BIIUNGC2BIINPUEI B21

SUBORD SS B3 1SUBCOM SS B4 (expanding rule for NP)

=>
CS ~ NWE2CI BliPRENWE2Cl BliUNGC2BIINWE2EI B21

PRE NW E2 EI B21 UNG E2 El B21 SUBORD SS B3 I SUB COM SS B4

(expanding rule for NPU)

,-.~
',:'..l.
'~:



Chapter5:Non-ambiguous?rammar forCompoundSentence 118

CS ~ NW E2 B5 IPRE NW E2 B5 lUNG B6 I SUBORD SS B3 I

SUBCOM SS B4 (left factoring)

where,

B5 ~ CI BI lEI B2

B6 ~ C2BIIE2EI B2

Rule for CS is now usable for predictive parsing, but some of the derived rules do

not support predictive parsing. If we consider the rule for B I, it does not support

predictive parsing. We can transform it to be usable for predictive parsing by the

following derivations,

Bl ~ SS INP SUBCOM VP ISUBCOM SS INP SUBORD VP I

SUBORDSS

Bl ~ SS INP B71 SUBORD SS ISUBCOM SS

where,

B7 ~ SUBORD VP ISUBCOM VP

(left factoring)

Bl ~ NWE2 CII PRENWE2CIIUNGC21NPB71 SUBORD SS I

SUBCOM SS (expanding rule for SS)

BI ~ NW E2 CI IPRE NW E2 CI lUNG C21 NPU EI B7[ SUBORD SS I
SUBCOM SS (expanding rule for NP)

BI ~ NWE2 CII PRE NW E2 CII UNG C21 NW E2 EI B7[

PRE NW E2 EI B71 UNG E2 El B71 SUBORD SS ISUBCOM SS

(expanding rule for NPU)

BI ~ NW E2 B81 PRE NW E2 B8 lUNG B9 ISUBORD SS I

SUBCOM SS (left factoring)

where,

B8 ~ CII EI B7

•

.'.',-,.f",
" .

'l
•. ''''\



Chapter 5: Non-ambiguous Grammar for Compound Sentence 119

B9 ~ C2 IE2 EI B7

Rule for B2 does not support predictive parsing. We can transform it to be usable for

predictive parsing by following derivations,

B2 ~ SUBORD VP SS I SUBORD VP NP SUBCOM VP I

SUBORD VP SUB COM SS I SUBCOM VP NP SUBORD VP I

SUBCOM VP SUBORD SS

=>
B2 ~ SUBORD VP B3 I SUBCOM VP B4 (left factoring)

Rule for B3 does not support predictive parsing. We can transform it to be usable for

predictive parsing by following derivations,

B3 ~ SS INP SUB COM VP I SUBCOM SS

=>
B3 ~ NW E2 CI IPRE NW E2 CI lUNG C21 NP SUBCOM VP I

SUBCOM SS (expanding rule for SS)

=>
B3 ~ NW E2 CI IPRE NW E2 CI lUNG C21 NPU El SUBCOM VP I

SUBCOM SS (expanding rule for NP)

=>
B3 ~ NW E2 CI IPRE NW E2 Cl lUNG C2 INW E2 EI SUB COM VP I

PRE NW E2 EI SUBCOM VP IUNG E2 EI SUB COM VP I SUB COM SS

(expanding rule for NPU)

=>

B3 ~ NW E2 BlO IPRE NW E2 BIO IUNG Bill SUBCOM SS

(left factoring)

where,

BIO ~ CII EI SUB COM VP

Bll ~ C21 E2 EI SUB COM VP

Rule for B4 supports predictive parsing. But rule for B5 does not support predictive

parsing. We can transform it to be usable for predictive parsing by following

derivations,

(
•



Chapter 5: Non-ambiguous Grammar for Compound Sentence

B5 ~ CI BI lEI B2

B5 ~ VP BI IConj SS BI lEI B2

B5 ~ VP BI IConj SS BI I Conj NP B21 B2

B5 ~ VP BI IConj Bl21 B2

where,

BI2 ~ SS BI INP B2

120

(expanding rule for C I)

(expanding rule for E I)

(left factoring)

Rule for B6 does not support predictive parsing. We can transform it to be usable for

predictive parsing by following derivations,

B6 ~ C2BIIE2El B2

B6 ~ Conj SS BI IBivE SS BI IBiv CI BI ID3 BI IE2 EI B2

(expanding rule for C2)

B6 ~ Conj SS BI IBivE SS Bl IBiv CI BI I D3 BI IBivE NP EI B21

Biv EI B21 EI B2 (expanding rule for E2)

B6 ~ Conj SS BI IBivE SS BI IBiv CI BI I D3 BI I BivE NP EI B21

Biv EI B21 Conj SS B21 B2 (expanding rule for EI)

B6 ~ Conj SS BI IBivE SS BI IBiv CI BI ID3 BI IHivE NP B21

Biv EI B21 Conj SS B2 IB2

(replacing "NP EI" by "NP", as both are equivalent)

B6 -'-) Conj SS BI IBivE SS BI IBiv CI BI ID3 BI IBivE NP B21

Biv EI B21 B2

("Conj SS BI" is superset of "Conj SS B2", so we can omit "Conj SS B2")

=>
B6 ~ Conj SS BI IBivE BI21 Biv B51 D3 BI IB2 (left factoring)



Chapter5:Non-ambiguousGrammarfor CompoundSentence 121

Rule for B7 supports predictive parsing. But rule for B8 does not support predictive

parsing. We can transform it to be usable for predictive parsing by following

derivations,

B8 ~ CII EI B7

=>
B8 ~ VP IConj 55 IEl B7
=>

B8 ~ VP IConj 55 IConj NP B7 IB7

=>
B8 ~ VP IConj B13 IB7

where,

B13 ~ 55 INP B7

(expanding rule for CI)

(expanding rule for EI)

(left factoring)

Rule for B9 does not support predictive parsing. We can transform it to be usable for

predictive parsing by following derivations,

B9 ~ C2 IE2 El B7

=>

B9 ~ Conj 55 IBivE 55 IBiv CI ID3 IE2 EI B7 (expanding rule for C2l

=>
B9 ~ Conj 55 IBivE 55 IBiv CI 1031 BivE NP EI B71 Biv EI B71

El B7 (expanding rule for E2)

=>

B9 ~ Conj 55 IBivE 55 IBiv CI 103 I BivE NP EI B7 IBiv EI B7 I
Conj NP B71 B7 (expanding rule for El)

=>
B9 ~ Conj 55 IBivE 55 IBiv CI 103 IBivE NP B7 IBiv EI B7 I
Conj NP B71 B7 (replacing "NP EI" by "NP", as both are equivalent)

=>

B9 ~ Conj B131 BivE B131 Biv B81 031 B7 (left factoring)

Rule for BID does not support predictive parsing. We can transform it to be usable

for predictive parsing by following derivations,

\



Chapter 5: Non-ambiguous Grammar for Compound Sentence

BIO --+ CI 1EI SUB COM VP

=>
BIO --+ VP 1Conj SS 1EI SUB COM VP

=>

122

(expanding rule for C I)

BIO --+ VP 1Conj SS 1Conj NP SUBCOM VP I SUB COM VP

(expanding rule for E2)

BIO --+ VP 1Conj BI41 SUBCOM VP

where,

BI4 --+ SS 1NP SUB COM VP

(left factoring)

Rule for B II does not support predictive parsing. We can transform it to be usable

for predictive parsing by following derivations,

BII --+ C21 E2 EI SUBCOM VP

BII --+ Conj SS 1BivE SS 1Biv CI 1D31 E2 EI SUB COM VP

(expanding rule for C2)

BII --+ Conj SS 1BivE SS 1Biv CI 103 I BivE NP EI SUBCOM VP 1

Biv EI SUBCOM VP 1EI SUBCOM VP (expanding rule for E2)

=>
BII --+ Conj SS I BivE SS 1Biv CI 1D31 BivE NP SUB COM VP I
Biv EI SUBCOM VP 1EI SUBCOM VP

(replacing "NP EI" by "NP", as both are equivalent)

=>
BII --+ Conj SS 1BivE SS IBiv CI 1031 BivE NP SUB COM VP I
Biv EI SUB COM VP 1Conj NP SUBCOM VP 1SUBCOM VP

(expanding rule for E I)

=>
BII --+ Conj BI41 BivE BI41 Biv BIO I 03 1SUB COM VP (left factoring)



Chapter5:Non-ambiguousGrammarforCompoundSentence 123

Rule for BI2 does not support predictive parsing. We can transform it to be usable

for predictive parsing by following derivations,

BI2 --+ SS BI INP B2

BI2 ---)NW E2 CI BI IPRE NW E2 CI BI lUNG C2 BI INP B2
(expanding rule for SS)

BI2 --+ NW E2 CI BII PRE NW E2 CI BII UNG C2 BII NPU EI B2

(expanding rule for NP)

BI2 --+ NW E2 CI BI IPRE NW E2 CI BI lUNG C2 BI INW E2 EI B21

PRE NW E2 EI B21 UNG E2 EI B2 (expanding rule for NPU)

BI2 ---)NW E2 B51 PRE NW E2 B51 UNG B6 (left factoring)

Rule for B13 does not support predictive parsing. We can transform it to be usable

for predictive parsing by following derivations,

BI3 --+ SS INPB7

BI3 --+ NW E2 CII PRE NW E2 CI lUNG C21 NP B7

(expanding rule for SS)

BI3 --+ NW E2 CII PRE NW E2 CII UNG C21 NPU EI B7

(expanding rule for NP)

B13 --+ NW E2 CII PRE NW E2 CII UNG C21 NW E2 EI B71

PRE NW E2 EI B71 UNG E2 EI B7 (expanding rule for NPU)
:=) .

B13 --+ NW E2 B81 PRE NW E2 B81 UNG B9 (left factoring)

Rule for BI4 does not support predictive parsing. We can transform it to be usable

for predictive parsing by following derivations,



Chapter 5: Non-ambiguous Grammar for Compound Sentence

Bl4 ~ SS INP SUBCOM VP

124

Bl4 ~ NW E2 CII PRE NW E2 CII UNG C21 NP SUBCOM VP

(expanding rule for SS)

=>
Bl4 ~ NW E2 Cl IPRE NW E2 Cl lUNG C21 NPU El SUB COM VP

(expanding rule for NP)

Bl4 ~ NW E2 Cl IPRE NW E2 CII UNG C21 NW E2 El SUBCOM VP I

PRE NW E2 El SUB COM VP IUNG E2 El SUB COM VP

(expanding rule for NPU)

Bl4 ~ NW E2 BIO I PRE NW E2 BIO IUNG Bll (left factoring)

Now all the rule's of grammar for complex sentence supports predictive parsing. We

can present grammar for complex sentence as follows,

CS ~ NW E2 B5 IPRE NW E2 B5 lUNG B6 I SUBORD SS B3 I
SUBCOMSSB4

Bl ~ NW E2 B81 PRE NW E2 B81 UNG B91 SUBORD SS I

SUBCOM SS

B2 ~ SUBORD VP B3 I SUB COM VP B4

B3 ~ NW E2 BIO IPRE NW E2 BIO lUNG Bll I SUBCOM SS

B4 ~ NP SUBORD VP I SUBORD SS

B5 ~ VP BII Conj BI21 B2

B6 ~ Conj ss BII BivE Bl21 Biv B51 03 Bl I B2

B7 ~ SUBORD VP I SUBCOM VP

B8 ~ VPIConj Bl31 B7

B9 ~ Conj B13 IBivE B131 Biv B81 031 B7

BIO ~ VP IConj Bl41 SUBCOM VP

Bll ~ Conj Bl41 BivE BI41 Biv BIO I03 I SUBCOM VP

Bl2 ~ NW E2 B51 PRE NWE2 B51 UNG B6

Bl3 ~ NW E2 B81 PRE NW E2 B81 UNG B9



Chapter 5: Non-ambiguous Grammar for Compound Sentence 125

B14 ~ NW E2 BID I PRE NW E2 BID lUNG BII

Now, we can give example of different variations of complex sentences like, ''I511lil

~'W'f ~ <£I1:'Ii" (ami gele tumi esO), ''I511lil ~ ~ ~ <£I1:'Ii" (ami gele tumi tobe

esO), ''I511lil ~'W'f~ ~ <£I1:'Ii" (ami gele tobe tumi esO), ''I511lil "lIf'r ~ ~ <£I1:'Ii" (ami

zodi zai tumi esO), ''I511lil "lIf'r ~ ~ ~ <£I1:'Ii" (ami zodi zai tumi tobe esO), ''I511lil "lIf'r

~ ~ ~ <£I1:'Ii" (ami zodi zai tobe tumi esO), ''WI "I1fil ~ ~ <£I1:'Ii" (zodi ami zai

tumi esO), ''WI "I1fil ~ ~ ~ <£I1:'Ii" (zodi ami zai tumi tobe esO), ''WI''I1fil ~ ~

~ <£I1:'Ii" (zodi ami zai tobe tumi esO), '~ <£I1:'Ii "I1fil "lIf'r ~" (tumi esO ami zodi

zai), '~ <£I1:'Ii "lIf'r "I1fil~" (tumi esO zodi ami zai), '~ ~ <£I1:'Ii "I1fil "lIf'r ~" (tumi

tobe esO ami zodi zai), '~ ~ <£I1:'Ii "lIf'r "I1fil ~" (tumi tobe esO zodi ami zai), ''\wi

~ <£I1:'Ii "I1fil "lIf'r ~" (tobe tumi esO ami zodi zai), ''\wi ~ <£I1:'Ii "lIf'r "I1fil ~" (tobe

tumi esO zodi ami zai), as demonstrated in figure 5.1- 5.15.

CS
---===-- ---

'IT 1;<[
(za) (Ie)

B5-------\
B1---1---

NW E2 B8.......................I I
N E5 Ii VP
I I I

~ Ii D3

(tum i) ~F

/""-
VR AUX
I I

E2
I
Ii VP

I
D3
I
VF
/""-

VR AUX
I I

NW
/""-
N E5
I I

"I1fil Ii

(ami)

"'11'! '!J
(as) (0)

Figure 5.1: Tree derivation for the sentence '~ VM ~ "iro" (ami gele tumi esO)
using non-ambiguous grammar with predictive parsing.

.";~

\~~



Chapter 5: Non-ambiguous Grammar for Compound Sentence 126

CS

'It l:"f
(za) (Ie)

B5-------\
B1_____ 1 _

NW E2 B8
~ "-... 1 I

N E5 {i 87I 1 ~

~ {i SUB COM VP

( ') I Ituml D3
'W! I
(tobe) VF

/"-
VR AUX

1 I

E2
I
{i VP

I
D3
I
VF
/"-

VR AUX
I I

NW
/"-
N E5
I I

"'l1fiT {i

(ami)

I5It>! <3
(as) (0)

Figure 5.2: Tr~e derivation for the sentence '~"C'1t"f ~ ~ "iVlt"(ami gele tumi tobe
esO) using non-ambiguous grammar with predictive parsing.

CS

~
(tobe)

B5-------\
B1--- ----

SUB COM SSI 1 _

NW E2 CI
~ "-... I I
N E5 {i VP
I I I

~ {i D3

(tum i) ~F

/"-
VR AUX

1 I

'It l:"f
(za) (Ie)

E2
I
{i VP

I
D3
I
VF
/"-

VR AUX
I I

NW
/"-
N E5
1 1

"'l1fiT {i

(ami)

I5It>! <3
(as) (0)

Figure 5.3: Tree derivation for the sentence'~ 1;'tt"\ ~ ~ "iVlt"(ami gele tobe tumi
esO) using non-ambiguous grammar with predictive parsing.



Chapter 5: Non-ambiguous Grammar for Compound Sentence 127

CS
----===-- ---

VP
1

03
1

VF
/"-

VR AUX
1 1

'l1 ~
(za) (ai)

B5
1

B2
---====-- --

B3
--1--.............

NW E2 BIO
.........---- "- 1 1

N E5 Ei VP
1 1 1

~ Ei 03, I
(tumi) VF

/"-
VR AUX

1 I

SUBORO
1

WI
(zodi)

E2
I
Ei

NW
/"-
N E5
I 1

"ltf1l Ei

(ami)

~ 'S
(as) (0)

Figure 5.4: Tree derivation for the sentence ''I5!@! Wi ~ ~ "IVlT" (ami zodi zai tumi esO)
using non-ambiguous grammar with predictive parsing.

CS
----===-- ---

VP
1

03
1

VF
/"-

VR AUX
1 1

'l1 ~
(za) (ai)

B5
I
B2-----====---"-

B3--1--NW E2 BIO
.........---- "- 1 / .

N E5 Ei SUBCOM VP
I 1 I 1

~ Ei ~ 03
(tum i) (tobe) ~F

/"-
VR AUX

I 1

E2
1

NW
/"-
N E5 Ei

1 1

"ltf1l Ei SUBORO
(ami) 1

WI
(zodi)

~ 'S
(as) (0)

Figure 5.5: Tree derivation for the sentence ''I5!@!Wi ~ ~ '"'" "IVlT" (ami zodi zai tumi
tobe esO) using non-ambiguous grammar with predictive parsing.



Chapter 5: Non-ambiguous Grammar for Compound Sentence

CS----===--

128

NW E2 B5
/ '-.. 1 I
N E5 Ii B2
1 I __ ---====-- '-..

Gllfil Ii SUBORD VP B3
(ami) I 1 -- -----.

>Wi 03 SUB COM SS1 I / '-.._____.
(zodi) VF NW E2 CI

/ '-.. I"W! '-..... 1 I
VR AUX (tobe) N E5 Ii VP

1 I I I I
-.n ~ WI Ii OJ

, 1

(za) (ai) (tumi) VF

/'-..
VR AUX

I 1
'5I1'f 'S
(as) (0)

Figure 5.6: Tree derivation for the sentence ''''Ttf1r >Wi >@: 'WI ~ <!IL'!l" (ami zodi zai tobe
tumi esO) using non-ambiguous grammar with predictive parsing.

CS
-----:::===--"" ----

SUBORD SSI 1_____.

>Wi NW E2 CI
(zodi) / '-.. 1 I

N E51i VP
I I I

Gllfil Ii OJ
I

(ami) VF

/'-..
VR AUX
I 1

-.n ~
(za) (ai)

B3----1-----.
NW E2 BID________ '-..... I 1

N E5 Ii VP
1 I 1
WI Ii OJ, I
(tum i) VF

/'-..
VR AUX
I I

'5I1'f 'S
(as) (0)

Figure 5.7: Tree derivation for the sentence ''>Wi "l@r >@: ~ <!IL'!l" (zodi ami zai tumi esO)
using non-ambiguous grammar with predictive parsing.



Chapter 5: Non-ambiguous Grammar for Compound Sentence

CS

129

SUBORD SS1 1 _

'lfi1 NW E2 CI
(zodi) / "- I 1

N E51i VP
1 1 1

"'ltf'! Ii D3
(ami) 1VF

/"-
VR AUX
1 1

"'Ii ~
(za) (ai)

B3_____1 _
NW E2 BIO________ """-. 1 ~

N E5 Ii SUBCOM VP
1 1 1 1

~ Ii \WI 03
(tum i) (tobe) ~F

/"-
VR AUX

1 1

''IT>! 'S
(as) (0)

Figure 5.8: Tree derivation for the sentence '''If'f "'l1fir ~ ~ ~ "1"11" (zodi ami zai tumi
tobe esO) using non-ambiguous grammar with predictive parsing.

CS

\WI

(tobe)

SUBORD SS1 1 _

'lfi1 NW E2 CI
(zodi) / "- 1 1

N E5 Ii VP
1 1 1

"'ltf'! Ii 03
I

(ami) VF

/"-
VR AUX

1 1

"'Ii ~
(za) (ai)

B3~----
SUBCOM SS1 1 _

NW E2 CI________ """- I 1

N E5 Ii VP
I 1 I

~ Ii D3

(tum i) ~F

/"-
VR AUX

1 I

''IT>! 'S
(as) (0)

Figure 5.9: Tree derivation for the sentence '''If'f "'l1fir ~ ~ ~ "1"11" (zodi.ami zai tobe
tilmi esO) using non-ambiguous grammar with predictive parsing.

,



Chapter 5: Non-ambiguous Grammar for Compound Sentence 130

''It>! 'G
(as) (0)

c VP
1

D3
1

VF
/".

VR AUX
1 1

E2
1

NW
/".
N E5
1 1

'ffi c
(tumi)

CS---====--- --
B5_------1
BI---1---

NW E2 B8_______ "--.... 1 I

N E5 c B71 1 _

'"I1fir c SUBORD VP
(ami) 1 1

Wr D3

(zodi) ~F

/".
VR AUX
I I

"lIT ~

(za) (ai)

Figure 5.10: Tree derivation for the sentence'~ <!I!'ll15l1lir'l1if~" (tumi esO ami zodi zai)
using non-ambiguous grammar with predictive parsing.

CS

SUBORD
I

Wr
(zodi)

B5-------1
BI----

B8---.1----
NW E2 CI_______ "--.... 1 1

N E5 c VP
1 I 1

'"I1fir c 03
(ami) ~F

/".
VR AUX

I 1

"lIT ~

(za) (a i)

''It>! 'G
(as) (0)

E2
1

c VP
1

D3
1

VF
/".

VR AUX
1 1

NW
/".
N E5

1 1

'ffi
(tum i)

Figure 5.11: Tree derivation for the sentence'~ <!I!'ll'l1if 15l1lir~" (tumi esO zodi 'ami zai)
using non-ambiguous grammar with predictive parsing.

{



Chapter 5: Non-ambiguous Grammar for Compound Sentence 131

CS--==----~

~
(tobe)

B5
I
B2----,,====------......

SUBCOM VP B4I I __ 1___......
03 NP SUBORD VP
I / "- I I
VF NPU El Wi 03

/ "- / "- I (zodi) 1
VR AUX NW E2 & VF

1 I /"- I /"-
I5I1'f 'S N E5 & VR AUX
(as) (0) I I I I

I5I1f'! & "l!t '"It'O:
(ami) (za) (ai)

E2
1

NW
/"-
N E5
I I

~
(tum i)

Figure 5.12: Tree ,derivation for the sentence'~ 'Wl "It>IT"l1f'!llfi1~" (tumi tobe esO ami
zodi zai) using non-ambiguous grammar with predictive parsing.

CS
---===-- ---....:-

I5I1'f 'S
(as) (0)

B5
1

B2----,,====------......
B4------1

SUBORD SSI 1___......

Wi NW E2 Cl

(ZOdi): \5 ~ ~P
1 I I

I5I1f'! & D3
(ami) I

VF
/"-

VR AUX
I I
"l!t '"It'O:
(za) (ai)

~
(tobe)

SUBCOM VP
I I

03
I

VF
/"-

VR AUX
I I

E2
1

&

NW
/"-
N E5
I I
~ &
(tum i)

Figure 5.13: Tree derivation for the sentence '~'Wl "It>lTllfi1 "l1f'!~" (tumi tobe esO zodi
ami zai) using non-ambiguous grammar with predictive parsing.

~(



Chapter 5: Non-ambiguous Grammar for Compound Sentence

CS

132

SUB COM SS B4I .___1 __I____.
'W! NW E2 CI NP SUBORD VP
(tobe) / "- I 1 / "- 1 1

N E5 E: VP NPU E 1 Wr D3
I 1 1 / "- 1 (zodi) 1

~ E: D3 NW E2 E: VF

(tumi) 1 / "- I / "-
VF N E5 Ii VR AUX
/ "- 1 1 1 1

VR AUX "I1fir E: 'll 1511'0:
1 1 (ami) (za) (a i)

"It'I '8
(as) (0)

Figure 5.14: Tree derivation for the sentence'~ ~ "lc>l1 "!!fir Wi~' (tobe tumi esO ami
zodi zai) using non-ambiguous grammar with predictive parsing.

CS

SUBCOM SS1 .___1 _

'W! NW E2 CI
(tobe) / "- 1 1

N E5 E: VP
1 1 1

~ Ii D3

(tumi) ~F

/"-
VR AUX
1 1

"It'I '8
(as) (0)

B4_---I
SUBORD SS1 .___1____.

Wr NW E2 CI
. / "- 1 1(ZOdl) N E5 E: VP

I 1 1
"I1fir Ii D3
(ami) 1VF

/"-
VR AUX

1 1

'll 1511'0: .
(za) (ai)

Figure 5.15: Tree derivation for the sentence '~ ~ ~ Wi "!!fir ~" (tobe tumi esO zodi
ami zai) using non-ambiguous grammar with predictive parsing.



Chapter 5: Non-ambiguous Grammar for Compound Sentence

5.4 Remarks

133

In this chapter, we have designed non-ambiguous predictive BangIa grammar for

complex sentences. We have analyzed all types of complex sentences and designed

grammar accordingly. Later this grammar will be merged as a part of comprehensive

BangIa grammar.

. , (



Chapter 6

Non-ambiguous Grammar for Compound
Sentence

6.1 Existing Grammar for Compound Sentence

Recalling from chapter 3 (section 3.8), context-free grammar for compound sentence

in BangIa natural language is presented as,

COMS -7 SS Conj SS

COMS -7 SS Conj CS

COMS -7 CS Conj SS

COMS -7 CS Conj CS

Like other types of sentences (simple sentence and complex sentence), ambiguity

and non-predictivity problem is present in existing grammar for compound sentence.

A compound sentence is composed of two simple sentence or complex sentence.

Reason of ambiguity problem in compound sentence is, ambiguity problem in

grammar for simple sentence and complex sentence. In previous two chapters,

ambiguity problem of simple sentence (in chapter 4) and complex sentence (in

chapter 5) is solved. Therefore, ambiguity problem will not occur in compound

sentence, if new proposed grammar for simple sentence and complex sentence is

used.

But still non-predictivity problem resides in grammar for compound sentence. For

example, if we want to parse the compound sentence '~ lit'I'1 "lf1'l <!I<r~~ ~

"llW!" (ami Dhaka zabo ebong tumi sileT zabel, when first word '~" (ami) is

considered, it is not possible to determine definitely, which rule is applicable. All

four rules, COMS -7 SS Conj SS, COMS -7 SS Conj CS, COMS -7 CS Conj SS,

and COMS -7 CS Conj CS allows '~" (ami) as first word of a compound

sentence. Similarly, such kind of non-predictivity to choose a rule occurs for rest of

the words in the compound sentence.

c. (



Chapter 6: Non-ambiguous Grammar for Compound Sentence 135

There exists another problem in existing grammar for compound sentence. Existing

grammar supports compound sentence having only two simple or complex

sentences. It does not support compound sentence having more than two simple or

complex sentences. More elaboration of such kind of problem and solution

technique is discussed in next section (6.2).

6.2 Enhancement of Grammar for Compound Sentence

If we observe the rules of existing grammar for compound sentence, it is quite

obvious that one compound sentence is composed of two simple sentence or

complex sentence, cOnnected by a conjunctive. Therefore, existing grammar

supports only two simple or complex sentences in a compound sentence. For

example, it is possible to parse the sentence ,~ ~ Wl "1<t ~ ~ 'lW!" (ami

Dhaka zabo ebong tumi sileT zabe), because this sentence is composed of two

simple sentences '~ ~ Wl" (ami Dhaka zabo) and '~ ~ 'lW!" (tumi sileT

zabe), connected by the conjunctive ""1<t" (ebong). Tree derivation of the sentence is

demonstrated in figure 6.1.

COMS_____ 1 _

COMS Conj COMS

I
'OIlf'l~ Wl

(ami Dhaka zabo)
'.!l~~

(ebong)
~~'lW!

(tumi sileT zabel

Figure 6.1: Tree derivation for the compound sentence '~ ot'l'I '!I'l <!l<t ~ f>rt'W 'lfC'l"
(ami Dhaka zabo ebong tumi sileT zabel using existing grammar for compound sentence.

But it is not possible to parse a compound sentence having more than two simple or

complex sel)tences connected by conjunctives, using existing grammar for

compound sentence. For example, we can not parse the compound sentence '~

~ Wl, ~ ~ 'lW! "'IBl 1:'1~ 'lW!" (ami Dhaka zabo, tumi sileT zabe ar se

rajoshahl zabe).



Chapter 6: Non-ambiguous Grammar for Compound Sentence 136

1:'I~'lWl
(se rajoshahI zabel

We can facilitate use of more than two single or complex sentences connected by

conjunctives by using the following grammar,

COMS ~ S Conj S

S ~ SS I CS I COMS
where, S denotes sentence.

Using the new grammar, it is possible to use more than two single or complex

sentences connected by conjunctives. For example, we can now parse the compound

sentence ''I5l@lli1'l'1'llT'l,~ f>rc"l1; 'lWl '"1m 1:'1~ 'lWl" (ami Dhaka zabo, tumi

sileT zabe ar se rajoshahI zabel. Tree derivation for the sentence is demonstrated in

figure 6.2.

COMS_______ I _

S Conj S

I I I
COMS '"1m SS

-----I~
S Co~ S

I I I
ss ss

(,)

I5ltf'!li1'l'1'llT'l
(ami Dhaka zabo)

~ f>rc"l1; 'lWl
(tumi sileT zabel

Figure 6.2: Tree derivation for the compound sentence'~ lifilITm, ~ ~ 'lTC'I15IIil"C'f
~ 'lTC'I"(ami Dhaka zabo, tumi sileT zabe ar se rajoshahl zabel using new grammar for

compound sentence.

But the grammar is ambiguous, because of new arrival of the rule "COMS ~

COMS Conj.COMS". When more than two simple or complex sentences exist in a

compound sentence, then multiple parsing trees are possible to be drawn. For

example, there are two possible parsing trees for the compound sentence ''I5l@lli1'l'1

'llT'l,~ f>rc"l1; 'lWl '"1m 1:'1~ 'lWl" (ami Dhaka zabo, tumi sileT zabe ar se

rajoshahl zabel, as demonstrated in figure 6.3.

(



Q[~'lW!
(se rajoshahI zabel

Chapter 6: Non-ambiguous Grammar for Compound Sentence

caMS____ I _

S Conj S

I I I
caMS I5lB! ss

-----I~
S Conj S

I I I
ss ss

(,)

137

"I1f'! li1'l'l 'I1'l
(ami Dhaka zabo)

(a)

~ Prc<W'lW!
(tumi sileT zabel

"I1f'! li1'l'l 'I1'l
(ami Dhaka zabo)

caMS____ I _

S Conj S

I I I
ss

() caMS:----- I _
S Conj S

I I I
ss ss

~ Prc<W'lW!
(tumi sileT zabel

(b)

I5lB!

(ar)

,,,,,

Q[~'lW!
(se rajoshahI zabel

Figure 6.3: Ambiguity in the new rule COMS ~ S Conj S.

Ambiguity occurs in the rule "CaMS ~ caMS Conj caMS", because both side

non-terminals of "Conj" are extensive. We can make the rule non-ambiguous, by

making one non-terminal as non-extensive. We can make the left non-terminal non-

extensive, by limiting it to be a simple sentence or complex sentence, but compound

sentence is not allowed. Now we can define a non-terminal called "Basic Sentence"

(BS in short), which refers a simple or complex sentence.



Chapter 6: Non-ambiguous Grammar for Compound Sentence 138

Now we can re-write the rule in non-ambiguous form as follows,

COMS -t BS Conj COMS I BS Conj BS
BS -t SS I CS

Using the new rule, only one parsing tree can be drawn for any compound sentence,

for example'~ om 'lR, ~ Pre>!\>llWl "lR! C'l ~ llWl" (ami Dhaka zabo, tumi

sileT zabe ar se rajoshahl zabel, as demonstrated in figure 6.4.

"lR!
(ar)

COMS_______ I _

BS Conj BS

I I I
SS SS

(,)

Conj

I

COMS
______ I ----

BS
I
SS

'"I1fif om 'lR
(ami Dhaka zabo)

~ Pre>!\>llWl C'l ~ llWl
(tumi sileT zabel (se rajoshahI zabel

Figure 6.4: Tree derivation using non-ambiguous grammar for compound sentence.

6.3 Non-ambiguous Grammar for Compound Sentence

We can transform the rules of grammar for compound sentence to be usable for

predictive parsing, by using the theory of left factoring. In the next chapter (chapter

7), we will see, a simple modification in the rule for COMS will work for the rule

for a sentence, which also covers a compound sentence. So, we are not going to give

effort of left factoring of rules for compound sentence in this chapter. Grammar for

all kind of sentence with predictive parsing will be achieved in the next chapter

(chapter 7).

6.4 Remarks

In this chapter, we have designed non-ambiguous BangIa grammar for compound

sentences. Elimination of non-predictive nature is remained for the next chapter. We



Chapter 6: Non-ambiguous Grammar for Compound Sentence
1\1;:': "\, C

139

have facilitated use of more than two basic sentences III a compound sentence.

According to existing BangIa grammar, it is possible to use only two basic sentences

in a compound sentence.



Chapter 7

Non-ambiguous Comprehensive Grammar

7.1 Existing Grammar for BangIa Sentence

Recalling from chapter 3 (section 3.9), context-free grammar for BangIa sentence is

presented as,

S ~ sS/CS/COMS

where, S indicates sentence, SS indicates simple sentence, CS indicates complex

sentence and COMS indicates compound sentence.

Problem using the grammar for BangIa sentence, this grammar is ambiguous and

does not support predictive parsing. Ambiguity problem exists because of existence

of ambiguity in the grammar for simple sentence, complex sentence and compound

sentence. In the previous three chapters (chapter 4, 5, 6), ambiguity problem in

grammar for simple sentence, complex sentence and compound sentence is solved.

Though ambiguity problem is solved, still grammar for BangIa sentence does not

support predictive parsing. For example, the BangIa sentence '''o!@rli1<'1 'l1'l "I'R ~

PrcoW'l1"C'l" (ami Dhaka zabo ebong tumi sileT zabe) is certainly a compound

sentence. But when a parser looks up the first word '''o!@r''(ami), applying this

grammar, the parser can not determine whether the sentence is simple or complex or

compound. A backtracking algorithm requires for parsing the sentence using the

existing grammar, which takes exponential runtime. In the next section (section 7.2),

we will solve non-predictive nature of BangIa sentence.

7.2 Non-ambiguous Grammar for BangIa Sentence

In the previous chapter (chapter 6), we halted the task of transforming the grammar

for compound sentence to be usable for predictive parser. In this section; we will

(



Chapter 7: Non-ambiguous Comprehensive Grammar 141

transform the grammar for BangIa sentence into a grammar with predictive parsing.

Then predictive parsing of compound sentences will also be possible.

Existing BangIa grammar is written as,

S ~ SS I CS I COMS

Again proposed grammar for compound sentence in previous chapter (chapter 6) is

achieved as,

COMS ~ BS Conj COMS I BS Conj BS
BS ~ ss I cs

We can merge two grammars as follows,

S ~ BS I BS Conj S
BS ~ ss I cs

Therefore, in the rule "S ~ BS", all types of simple and complex sentence is

achieved. Again in the rule "S ~ BS Conj S", all types of compound sentence is

achieved.

Now, rule for S does not support predictive parsing. We can transform it to be usable

for predictive parsing by following derivations,

S ~ BS I BS Conj S
=>
S ~ BSAI

where, AI ~ Conj S I &
(left factoring)

Rule for BS does not support predictive parsing. We can transform it tobe usable for

predictive parsing by following derivations,

BS ~ SS jCS

~{



Chapter 7: Non-ambiguous Comprehensive Grammar 142

BS --+ NW E2 CII PRE NW E2 CI lUNG C21 NW E2 B51

PRE NW E2 B5 lUNG B6 I SUBORD SS B3 I SUBCOM SS B4

(expanding rules for SS and CS)

BS --+ NW E2 A2 I PRE NW E2 A2 I UNG A3 I SUBORD SS B3 I
SUBCOM SS B4 (left factoring)

where,

A2 --+ CI I B5
A3 --+ C21 B6

Rule for Al supports predictive parsing. But rule for A2 does not support predictive

parsing. We can transform it to be usable for predictive parsing by following

derivations,

A2 --+ CI I B5

A2 --+ VP I Conj ss I VP BI I Conj BI21 B2

(expanding rules for CI and B5)

A2 --+ VP A4 I Conj A5 I B2
where,

A4 --+ BI I G
A5 --+ ss I B12

(left factoring)

Rule for A3 does not support predictive parsing. We can transform it to be usable for

predictive parsing by following derivations,

A3 --+ C21 B6

A3 --+ Conj ss I BivE SS I Biv CI ID31 Conj SS BI I BivE BI21 Biv B51

D3 B I I B2 (expanding rules for C2 and B6)

A3 --+ Conj SS A41 BivE A5 I Biv A2 I D3 A4 I B2 (left factoring)

p
.0. ~.



Chapter7:Non-ambiguousC;0mprehensiveGrammar 143

Rule for A4 supports predictive parsing. But rule for A5 does not support predictive

parsing. We can transform it to be usable for predictive parsing by following

derivations,

A5 ~ SSIBI2

=>
A5 ~ NWE2 CII PRENWE2 CIIUNG C21 NW E2 B51

PRE NW E2 B51 UNG B6 (expanding rules for SS and B12)

=>
A5 ~ NW E2 A2 IPRE NW E2 A2 IUNG A3

Finally, non-ambiguous grammar for BangIa sentence with predictive parsing is

presented as,

S ~ BSAI

BS ~ NW E2 A2 IPRE NW E2 A2 IUNG A3 ISUBORD SS B3 I

SUBCOMSSB4

Al ~ Conj S I E:

A2 ~ VP A4 IConj A5 IB2
A3 ~ Conj SS A41 BivE A5 IBiv A2 ID3 A4 IB2

A4 ~ BII E:

A5 ~ NW E2 A2 IPRE NW E2 A2 IUNG A3

7.3 Comprehensive BangIa Grammar

In chapter 4, we have designed non-ambiguous grammar for simple sentence with

predictive parsing. Then, in chapter 5, we have designed non-ambiguous grammar

for complex sentence with predictive parsing and in chapter 6, we have designed

non-ambiguous grammar for compound sentence. Finally, in this chapter, in

previous section (section 7.2), we have designed non-ambiguous grammar for

BangIa sentence with predictive parsing, which covers all three types of Bangia

sentence.



Chapter 7: Non-ambiguous Comprehensive Grammar 144

We can merge all the rules of grammar for simple sentence, complex sentence,

compound sentence and all sentence. Therefore, comprehensive Bangia grammar is

found as,

S ~ BSAI

BS ~ NW E2 A2 IPRE NW E2 A2 IUNG A3 I SUBORD SS B3 I

SUBCOM SSB4

Al ~ Conj S [G

A2 ~ VP A4 IConj A5 IB2

A3 ~ Conj SS A4 IBivE A5 IBiv A2 I03 A4 IB2

A4 ~ BI[ G

A5 ~ NW E2 A2 IPRE NW E2 A2 IUNG A3

cs ~ NW E2 B5 IPRE NW E2 B5 lUNG B6 I SUBORD SS B3 I
SUBCOMSSB4

BI ~NW E2BSI1'illi NW E2BSI uNGB91 SUBORD ss I
SUBCOMSS

B2 ~ SUBORD VP B3 I SUBCOM VP B4

B3 ~ NW E2 BID IPRE NW E2 BID lUNG BII I SUBCOM SS

B4 ~ NP SUBORD VP I SUBORD SS

B5 ~ VP BII Conj B12IB2

B6 ~ Conj SS BI IBivE BI21 Biv B51 03 BI IB2

B7 ~ SUBORD VP I SUBCOM VP

BS ~ VP IConj B13 IB7

B9 ~ Conj BI31 BivE B131 Biv BSI 031 B7

BID ~ VP IConj BI41 SUBCOM VP

BII ~ Conj BI41 BivE BI41 Biv BID IO3[ SUBCOM VP

BI2 ~ NW E2 B51 PRE NWE2 B51UNG B6

B13 ~ NWE2 BSI PRENW E2 BSI UNGB9

BI4 ~ NW E2 BID IPRE NW E2 BID [UNG BII

SS ~ NW E2 CII PRE NW E2 Cli UNG C2

CI ~ VPIConj SS

C2 ~ Conj ss IBivE SS IBiv CI 103
VP ~ O31UNGE2EI D1



Chapter 7: Non-ambiguous Comprehensive Grammar 145

DI ~ VFIAPVF

D2 ~ VFID4

D3 ~ VF IAP D2 I D4 I DEMO E3 D4 I SPR E4 D4

D4 ~ NW E2 EI DI

VF ~ VRAUX

Al .
I

S--- --------
BS

Ii

Ii

A4
I

DI
I
VF
/ "-

VR AUX
I I
'11 ~

(kha) (ai)

A2

Ii Ii

Ii

D2
I
D4

--~-:.;:.?'~----
E2 EI
I I

NW
/ "-
N E5
I I

15t'5

(vat)

Ii

E2
I

VP
I
D3------AP

/ "-
'AD FI

I I
-wit Ii

(beshl)

NW
/ "-
N E5
I I

"I1f1l Ii

(ami)

Figure 7.1: Tree derivation for the simple sentence ''''T@r ~ '51'5 ~"(ami beshl vat khai).

NP ~ NPUEI

EI ~ ConjNP11i

NPU ~ NW E2 I PRE NW E21 UNG E2

E2 ~ BivE NP I Biv I Ii

PRE ~ DEMO E3 I SPR E4 IAP
E3 ~ SPR E4 I AP I Ii

E4 ~ AP Iii

NW ~ NE5

E5 ~ DET I PM I Ii



Chapter 7: Non-ambiguous Comprehensive Grammar 146

SPR --+ QFR E6

E6 --+ PP 1 E:

DEMO --+ DD E71 DO

E7 --+ DO 1 E:

UNG --+ UN E8

E8 --+ UNG 1 E:

AP --+ AD FI

FI --+ AP 1 E:

AI
I

S--- --------
BS

Dl
I

VF

/ "VR AUX
I I
'!1 I5@.

(kha) (ai)

NW E2

/ " I
N E5 E:
I I

'5I'<l
(vat)

A3 E:-------1 ----- __
SS A4

_----::==-- " 1

CI
1

VP
I
D3

1

D4----===- -..-:::::::::
EI--"Conj NP1 _____"

'13 NPU EI
(0) / ""--.. I
UNG E2 E:

/" I
. UN E8

I I
1:<>f9ff'r E:

(peposi)

Conj
I
'13 NW E2

(0) / " I
N E5 E:
I I

'"I11ir E:

(ami)

UNG
/ "
UN E8

1 1
ilf.R E:

(robin)

Figure 7.2: Tree derivation for the simple sentence'~ '13 "llf1l ~ 'l31:9fo@f ~"(robin 0
ami vat 0 peposi khai).

Now we can give some examples of different types of BangIa sentences and also

watch their tree derivations. Firstly, we can give some examples of simple sentences

...



Chapter 7: Non-ambiguous Comprehensive Grammar 147

like '~ N.lfr '51'5 ~" (ami beshl vat khai), '~ 'S 'OI1l'! '51'5 'S "C9f9fP! ~" (robin 0

ami vat 0 peposi khai), ".!I ~ V'i"C"!" (01 chheleTi khele). Tree derivations of

these simple sentences are demonstrated in figure 7.1, 7.2 and 7.3.

S

AI
I

A2 li--- ---
VP A4
I I
D3 li

I
VF

/ "-
VR AUX

I 1
1:"1'1 <!1
(khel) (e)

--BS_---I ---:::::::::::-----__
NW E2

/ "- I
N E5 li
1 1

"CW'f DET
(chhele) I

$
(Ti)

PRE
/ "-

DEMO E3
/ "- I
DD E7 li

1 I
.!I li

(01)

Figure 7.3: Tree derivation for the simple sentence ".!I ~ C'!l:"f" (01 chheleTi khele).

S--- -----,----
BS AI

__ ----:::::==-- ---_ I

\OC'l
(tobe)

SUBORD SS1 1____...

Wi- NW E2 CI

(zodi) ~ \5 ~ ~P
I I I

'OI1l'! li D3

(ami) ~F

/"-
VR AUX
I I

"11 ~

(za) (a i)

B3------
SUBCOM SS.I I ____...

NW £2 Cl
.............'-.... I I
N E5 li VP
I I I

~ li D3

(tum i) ~F

/"-
VR AUX
I I

I5l1'I 'S
(as) (0)

Figure 7.4: Tree derivation for the complex sentence ''<rt'f "llf'r ~ 1OC'l ~ "I"C'll" (zodi ami
zai tobe tumi esO).



Chapter 7: Non-ambiguous Comprehensive Grammar. 148

Al
I

B4-----""
SS-- ------

UNG C2
/" I

UN E8 D3
I I I

~ & VF

Qakir) / "VR AUX
I I

SUBORD
I

'lfi1
(zodi)

"11'! 1:'l

(as) (be)

S--- --------BS
-------::::::=- ------

SUBCOM SSI _

WI UNG C2
(tobe) /" I

UN E8 D3
I I I
~ & VF
"'~ / "(robin)

VR AUX
I I

'!t "ltl!
(za) (ay)

Figure 7.5: Tree derivation for the complex sentence ''I5t<! oWi "'I1>fC'l Wi ...m 'l11l" (tobe
robin ashobe zodi jakir zay).

S

li1'l't
(Dhaka)

li1'l't
(Dhaka)

Conj
I

Al--- ---
S
/ -----

'OI'i<fT BS A I
(othoba) ~ --- I

NWE2 A2&
/" I / .........••.
N E5 Ii VP A4
I I --7"............I

~ & UNG E2 EI 01 &

(tu~i) /" I I I
UN E8 & & VF
I I /"

& VR AUX
I I

'!t <f

(za) (b)

BS~---
NW E2 A2

/" I / .
N E5 & VP A4
I I --7"............I

"'I1fir & UNG E2 E I D I &

(ami) /" I I I
UN E8 & & VF
I I /"

& VR AUX
I I

'!t 1:'l

(za) (be)

Figure 7.6: Tree derivation for the compound sentence '''''Ofirom 'l11l~ ~ om ~"(ami
Dhaka zabo othoba tumi Dhaka zabel.



Chapter 7: Non-ambiguous Comprehensive Grammar 149

S--------
BS Al

~I""""""'" "-

NW E2 A2 Conj S/ "- I / "- I // _

N E5 £ VP A4 ~ BS Al
I I I I (othoba) ~ I ---- ---

"l1f'r £ 01 £ NW E2 A2 Conj S
(") I /"- I /"- I /"-
amI VF N E5 £ VP A4 ~ BS Al

/ "- I I I I (othoba) ~ I I
VR AUX ~ £ 01 £ NW E2 A2 £

I I (tu"'mi) I / "- I / "-
lIT q VF N E5 £ VP A4
(za) (b) / "- I I I I

VR AUX C'! £ 01 £

I I (se) I
lIT ~ VF

/"-
(za) (be) VR AUX

I I
lIT ~
(za) (be)

Figure 7.7: Tree derivation for the compound sentence '''>ltlir 'l1'! ~ ~ 'lR< ~ VI 'lR<"
(ami zabo othoba tumi zabe othoba se zabel.

Now, we can give some examples of complex sentences like ''>ll'f "l1f'r ~ ~ ~
"1Qll" (zodi ami zai tobe tumi esO), '~ ~ "I1"'fC'! WI osrrm ll1ll" (tobe robin asobe

zodi robin zay). Tree derivations of these complex sentences are demonstrated in

figure 7.4 and 7.5.

Finally, we can give some examples of compound sentences like, '''>l@l 01'l'1 m I5l1<l

~ ~ ~" (ami Ohaka zabo ar tumi sileT zabe), '''>l@l m ~ ~ ~ ~ C'!

~" (ami zabo othoba tumi zabe othoba se zabel. Tree derivations of these

compound sentences are demonstrated in figure 7.6 and 7.7.



Chapter7:Non-ambiguousComprehensiveGrammar 150

7.4 Significance of Each Non-terminal of Proposed Bangia

Grammar

From the previous section (section 7.3), it is found, there are 48 non-terminals in

comprehensive Bangia grammar. Each non-terminal has its own significance. In

other way, we can say, each non-terminal represents a word or a group of word of

particular category. In this section, we will discuss significance of each non-terminal

in comprehensive Bangia grammar.

We can divide the non-terminals into six categories. They are, non-terminals of

sentence level (which also represents compound sentence level), complex sentence

level, simple sentence level, verb phrase level, noun phrase level, adjective phrase

level.

7.4.1 Significance of Non-terminals of Sentence Level

We have summarized the significance of non-terminals of sentence level as follows,

S: The first non-terminal "S" represents a sentence of Bangia language. The

sentence may be simple or complex or compound. For example, the

simple sentence '~ liT'I'l '!iii:" (ami Dhaka zai), the complex sentence

''Wf "l1fil '!iii: 'WI ~ <!l~" (zodi ami zai tobe tumi esO), the compound

sentence '~ liT'I'l 'l1'l ~ ~ liT'I'l l!TC'l" (ami Dhaka zabo othoba tumi

Dhaka zabe), all three types of sentences are represented by "S".

BS: The non-terminal "BS" indicates "basic sentence". It may be either

si~ple sentence or complex sentence. Therefore, "BS" indicates a simple

sentence or a complex sentence or each independent part of a compound

sentence, which may be either simple or complex sentence. For example,

the simple sentence '~ liT'I'l '!iii:" (ami Dhaka zai), the complex sentence

''Wf "l1fil '!iii: 'WI ~<!l~" (zodi ami zai tobe tumi esO), the independent



Chapter7:N.on-ambiguousComprehensiveGrammar 151

part of the compound sentence '~ l>1<l't 'lft<! ~ ~ l>1<l't 'ltt<l" (ami

Dhaka zabo othoba tumi Dhaka zabe), are represented by "BS".

AI: The non-terminal "AI" is a factor in sentence leveL In case of compound

sentence having two independent parts, it represents last independent part

along with the conjunctive. In case of compound sentence having three

independent parts, it represents last one or two independent part along

with a conjunctive as starting terminal. For example, the sentence

segments '~ 'lft<! ~ ~ 'ltt<l" (ami zabo othoba tumi zabe), '~ 'lft<!

~ ~ 'ltt<l ~ 1:'1 'ltt<l" (ami zabo othoba tumi zabe othoba se zabe),

'~ 'lft<! ~ ~ 'ltt<l ~ 1:'1'ltt<l" (ami zabo othoba tumi zabe othoba se

zabe), are represented by "AI". Use of "AI" is optionaL In case of simple

or complex sentence, "AI" represents null. In case of compound

sentence, last used "AI" represents nulL

A2: The non-terminal "A2" is a factor in sentence leveL It represents words of

a basic sentence, after noun phrase not consisting of unknown word as

end symboL The noun phrase mentioned may be actual or inner, but must

occur first of the basic sentence. For example, the sentence segments '~

'{l ~ >m m;" (ami 0 tumi Dhaka zai), '~ '{l ~ >m m;" (ami 0 tumi

Dhaka zai), '~ Wi m; 'W! ~ "1"C'1l" (ami zodi zai tobe tumi esO), '~

>m 'lft<! "lRI ~ PrcoW 'ltt<l" (ami Dhaka zabo ar tumi sileT zabe), are

represented by "A2".

A3: The non-terminal "A3" is a factor in sentence level. It represents words of

a basic sentence, after noun phrase consisting of unknown word as end

symbol. The noun phrase mentioned may be actual or inner, but must

occur first of the basic sentence. For example, the sentence segments

'~ >m 'ltt<l" (robin Dhaka zabe), '~ '{l '"l111l >m m;" (robin 0 ami

Dhaka zai), '~ "1. ""ll "'l1"'Wl" (robin er bondhu asobe), '~ Wi 'IT!l 'W!

~ "'l1"'Wl" (robin zodi zay tobe jakir asobe), are represented by "A3".

~.

\. \



Chapter7, Non-ambiguousComprehensiveGrammar 152

Therefore, "A2" and "A3" has similar functionality, but "A2" occurs after

noun phrase not ending with unknown word and "A3" occurs after noun

phrase ending with unknown word.

A4: The non-terminal "A4" is a factor in sentence level. It represents second

clause of a basic sentence. As we know, basic sentence is of two types -

simple and complex. In case of complex sentence, "A4" is second clause,

either independent or dependent, where first clause does not contain

subordinate or subordinate complement. And, in case of simple sentence,

"A4" is not applicable i.e. is null. For example, the clauses ''I5nfil J:<f(a[ 'WI

9R "11:'11"(ami ge1etobe tumi esO), '~ "11:'11'l1i1 "l1f'! ~" (tumi esO zodi

ami zai) are represented by "A4".

AS: The non-terminal "AS" is a factor in sentence level. It represents words of

a basic 'sentence, after conjunctive of noun phrase, if the noun phrase does

not consist of an unknown word. If also represents words of a basic

sentence, after extensive bivokti of noun phrase, if the noun phrase

consists of an unknown word. For example, the sentence segments ''I5nfil 'G

9R 1i1<Ot "l!t'I" (ami a tumi Dhaka zabo), ''iIW! "Iii ~ '''IT'fC'l'' (robin er

bondhu asobe) are represented by "AS".

7.4.2 Significance of Non-terminals of Complex Sentence Level

We have summarized the significance of non-terminals of complex sentence level as

follows,

cs: The non-terminal "CS" represents a complex sentence of Bangia

language. Recalling from chapter 5, we know, a complex sentence can be

written in IS ways. All the IS ways can be represented by "CS". For

example, the complex sentences ''I5nfil ~ ~ "11:'11"(ami gele tumi esO),

''I5nfil 'l1i1 ~ 'WI ~ "11:'11"(ami zodi zai tobe tumi esO), ''wi ~"l1:'I1 'l1i1



Chapter7:Non-ambiguousComprehensiveGrammar

'Ol1f'l~" (tobe tumi esO zodi ami zai) are represented by "CS".

153

Bl: The non-terminal "B I" is a factor in complex sentence level. It represents

second clause of a complex sentence, which may be dependent or

independent. First clause does not contain subordinate or subordinate

complement. For example, the clauses ''I5i@r ~<tt"I 'WI ~ "IC'l1" (ami gelc .

tobe tumi esO), '~ "IC'l1 Wt 'Ol1f'l ~" (tumi esO zodi ami zai) are

represented by "B I".

B2: The non-terminal "B2" is a factor in complex sentence level. It represents

words after noun phrase of first clause of a complex sentence, which has

subordinate or subordinate complement as starting word. For example,

the sentence segments ''I5i@r Wt ~ 'WI ~ "IC'l1" (ami zodi zai tobe tumi

esO), '~ 'WI "IC'l1 Wt 'Ol1f'l ~" (tumi tobe esO zodi ami zai) are

represented by "B2".

B3: The non-terminal "B3" is a factor in complex sentence level. It represents

second clause of a complex sentence, which is independent. First clause

must start with a subordinate. For example, the clauses ''lTf't 'Ol1f'l ~ 'WI

~ "IC'l1" (zodi ami zai tobe tumi esO), ''lTf't 'Ol1f'l ~ + 'WI "IC'l1" (zodi

ami zai tumi tobe esO) are represented by "B3".

B4: The non-terminal "B4" is a factor in complex sentence level. It represents

second clause of a complex sentence, which is dependent. First clause

must start with a subordinate complement. For example, the clauses ''Iw!

~ "IC'l1Wt 'Ol1f'l ~" (tobe tumi esO zodi ami zai), ''Iw! ~ "IC'l1 'Ol1f'lWt

~" (tobe tumi esO ami zodi zai) are represented by "B4".

B5: The non-terminal "B5" is a factor in complex sentence level. It represents

noun phrase of first clause of a complex sentence, where noun phrase

occurs first, it does not start with unknown word and it may be actual or



Chapter7:Non-ambiguousComprehensiveGrarmnar 154

inner. First clause may be independent or dependent. For example, the

sentence segments ''I5!@! "llf'f' ~ 'WI 'if'! "lC'll" (ami zodi zai tobe tumi

esO), '~ 'WI "lC'll "llf'f 'OI1f1f~" (tumi tobe esO zodi ami zai) are

represented by "B5".

B6: The non-terminal "B6" is a factor in complex sentence level. It represents

noun phrase of first clause of a complex sentence, where noun phrase

occurs first, it consists of only unknown word and it may be actual or

inner. First clause may be dependent or independent. For example, the

sentence segments '~ "llf'f 'It!I 'WI ~ "IT'!Vl" (robin zodi zay tobe jakir

asobe), '~ 'WI "IT'!Vl "llf'f ~ 'It!I'' (jakir tobe asobe zodi robin zay) are

represented by "B6".

B7: The non-terminal "B7" is a factor in complex sentence level. It represents

words Ofa complex sentence after first clause, not containing subordinate

or subordinate complement and then, after noun phrase of second clause.

"B7" starts with subordinate or subordinate complement. For example,

the sentence segments ''I5!@! t"fCO! ~ 'WI "lC'll" (ami gele tumi tobe esO),

'~ <!I~ 'OI1f1f"llf'f ~" (tumi esO ami zodi zai) are represented by "B7".

B8: The non-terminal "B8" is a factor in complex sentence level. It represents

words of a complex sentence after first clause, not containing subordinate

or subordinate complement and then, after noun phrase of second clause,

not starting with unknown word. The noun phrase may be actual or inner.

The second clause does not start with subordinate or subordinate

complement. For example, the sentence segments ''I5!@! t"fCO! ~ "lC'll"

(ami gele tumi esO), '~ t"fCO! 'OI1f1f'(l 1:'1' '5lf>f<!"(tumi gele ami 0 se asobo)

are represented by "B8".

B9: The non-terminal "B9" is a factor in complex sentence level. It represents

words of a complex sentence after first clause, not containing subordinate



Chapter7:Non-ambiguousComprehensiveGrammar 155

or subordinate complement and then, after noun phrase of second clause,

starting with unknown word. The noun phrase may be actual or inner.

The second clause does not start with subordinate or subordinate

complement. For example, the sentence segments '~ NC"f ~ ~"

(ami gele robin asobe), '~NC'1 ~ 'S ~ ~" (ami gelerobin 0

jakir asobe) are represented by "B9".

BI0: The non-terminal "BlD" is a factor in complex sentence level. It

represents words of a complex sentence after first clause, which IS

dependent and starts with subordinate, then after noun phrase of second

clause. The noun phrase may be actual or inner and does not start with an

unknown word. For example, the sentence segments '''lfi\- "'I@! ~ ~

<.!IC'!t" (zodi ami zai tumi esO), '''lfi\- "'I@! ~ ~ 'WI <.!IC'!t" (zodi ami zai

tumi tobe esO) are represented by "BIO".

B11: The non-terminal "BII" is a factor in complex sentence level. It

represents words of a complex sentence after first clause, which IS

dependent and starts with subordinate, then after noun phrase of second

clause. The noun phrase may be actual or inner and starts with an

unknown word. For example, the sentence segments '''lfi\- ~ 'lTll ~

~" (zodi robin zay jakir asobe), '''lfi\- ~ 'lTll ~ 'WI ~" (zodi

robin zay jakir tobe asobe) are represented by "B 11".

B12: The non-terminal "BI2" is a factor in complex sentence level. If a

complex sentence contains a conjunctive in the noun phrase of first clause

and the noun phrase does not start with an unknown word, then "BI2"

represents words after the conjunctive. The first clause may be dependent

or' independent. For example, the sentence segments '~ 'S ~ NC'1 "C'!

~" (ami 0 tumi gele se asobe), '~ 'S ~ 'l1<! 'lfi1 "C'! '"111:'1" (ami 0

tumi zabo zodi se ase) are represented by "BI2".



Chapter 7: Non-ambiguous Comprehensive Grammar 156

B13: The non-terminal "B 13" is a factor in complex sentence level. If noun

phrase of second clause of a complex sentence contains a conjunctive and

does not start with an unknown word and first clause does not contain

subordinate or subordinate complement, then "B 13" represents words

after the conjunctive. The second clause does not start with subordinate or

subordinate complement. For example, the sentence segment '~ "C'fC"r

"I111l '0 '" "It>f<!" (tumi gele ami 0 se asobo) is represented by "B 13".

B14: The non-terminal "BI4" is a factor in complex sentence level. If first

clause of a complex sentence is dependent and starts with subordinate and

second clause starts with a noun phrase and the noun phrase contains a

conjunctive and the noun phrase does not start with an unknown word,

then words after the conjunctive is represented by "BI4". For example,

the sentence segment ''Wf ~ "'I1'f "I111l '0 '" "It>f<!" (zodi tumi aso ami 0 se

asobo)'is represented by "BI4".

7.4.3 Significance of Non-terminals of Simple Sentence Level

We have summarized the significance of non-terminals of simple sentence level as

follows,

55: The non-terminal "88" represents a simple sentence in BangIa language.

A simple sentence may be a sentence itself, or may be a clause or part of

clause of a complex sentence, or may be a part of a compound sentence.

For example, '~ ~ "'11'1" (ami Dhaka zabo), ''Wf "I111l ~ '5l:'l ~ "I"C'I1"

(zodi ami zai tobe tumi esO), '~ ~ "'I1'I15lBl~ ~ '!Wl" (ami Dhaka

zabo ar tumi sileT zabel are represented by "88".

Cl: The non-terminal "e I" is a factor in complex sentence level. It represents

words after noun phrase of a simple sentence. The noun phrase may be

actual or inner and does not start with an unknown word. For example,



Chapter7:Non-ambiguousComprehensiveGrammar 157

the sentence segments '~ li1'l'1'l1'!" (ami Dhaka zabo), '~ '/l ~ li1'l'1

'l1'!" (ami 0 tumi Dhaka zabo) are represented by "C I".

C2: The non-terminal "C2" is a factor in complex sentence level. It represents

words after noun phrase of a simple sentence. The noun phrase must start

with an unknown word. For example, the sentence segments '~ li1'l'1

'Itll" (robin Dhaka zay), '~ '/l ~ li1'l'1'Itll" (robin 0 jakir Dhaka zay)

are represented by "C2".

7.4.4 Significance of Non-terminals of Verb Phrase Level

We have summarized the significance of non-terminals of verb phrase level as

follows,

VP: The non-terminal "VP" represents a verb phrase in Bangia language. A

verb phrase is present in all types of sentence - simple, complex and

compound. For example, the verb phrases '~ li1'l'1~" (ami Dhaka zai),

''Wi I5ltfir ~ 'WI ~ <.!I"C'll" (zodi ami zai tobe tumi esO), '~ li1'l'1'l1'! "'"'

~ ~ >Ttt<r" (ami Dhaka zabo ar tumi sileT zabel are represented by

UVP".

Dl: The non-terminal "DI" is a factor in verb phrase level. It represents

words of verb phrase which occurs after noun phrase which is belong to

the verb phrase. Therefore, "DI" may represent a verb form. It also may

represent an adjective phrase belong to the verb phrase followed by a verb

form. For example, the sentence segments '~ 151'0 ~" (ami vat khai),

'~~ ">1",,,,Ie'l lW!"(ami take valovabe chini) are represented by "DI".

D2: The non-terminal "D2" is a factor in verb phrase level. If an adjective or a

group adjectives first in a verb phrase, then "D2" represents words of

verb phrase occurring after the adjective or the group of adjectives. For



Chapter7:Non-ambiguousComprehensiveGrammar 158

example, the sentence segments '''ol@r l:'lfi'r ~" (ami beshi khai), '''ol@r ";[<!

l:'lfi'r '51'0 ~" (ami khub beshi vat khai) are represented by "D2".

D3: The non-terminal "D3" represents a class of verb phrase, which does not

start with an unknown word. For example, the verb phrases '''ol@r ~"

(ami khai), '''ol@r l:'lfi'r ~" (ami beshi khai), '''ol@r l:'lfi'r '51'0 ~" (ami beshi

vat khai) are represented by "D3".

D4: The non-terminal "D4" is a verb phrase level non-terminal. If a noun,

other than unknown word, occurs in a verb phrase and there is no

adjective before the noun then the noun along with words of verb phrase

after the noun is represented by "D4". For example, the sentence segment

'''ol@r '51'0 ~" (ami vat khai) is represented by "D4".

7.4.5 Significance of Non-terminals of Noun Phrase Level

We have summarized the significance of non-terminals of noun phrase level as

follows,

NP: The non-terminal "NP" represents a noun phrase in BangIa language.

Noun phrase occurs in all three types of sentences - simple, complex and

compound. A noun phrase may also contain some smaller noun phrases.

For example, the noun phrases '''ol@r li1<fit ~" (ami Dhaka zai), '~ "J
li1<fit 'IT!l" (amar bondhu Dhaka zay), '~ ~ "J li1<fit 'IT!l" (amar

vaiyer bondhu Dhaka zay), '''ol@r 'Il ~ li1<fit'l!'!" (ami a tumi Dhaka zabo)
are represented by "NP".

El: The non-terminal "EI".is a factor in noun phrase level. If a conjunctive

occurs in a noun phrase, it represents the conjunctive and rest of the

words of the noun phrase. If conjunctive is not present in a noun phrase, it

represents null. For example, the sentence segments '''ol@r 'Il ~ lit'l'T ~"



Chapter7:Non-ambiguousComprehensiveGrammar 159

(ami 0 tumi Dhaka zai), '~ '(j ~ ~ "'I): 1il<fit ..w" (ami 0 amar

vaiyer bondhu Dhaka zai) are represented by "E I".

NPU: The non-terminal "NPU" represents a type of noun phrase, which does

not contain any inner noun phrase, but this may be contained in another

noun phrase. For example, the noun phrases ''Gi@! 1il<fit ..w" (ami Dhaka
zai),'~ '(j ~ 1il<fit ..w" (ami 0 tumi Dhaka zai), '~ >!jil3r! 1il<fit '1M"

(robin er bondhu Dhaka zabe) are presented by "NPU".

E2: The non-terminal "E2" is a factor in noun phrase level. If a bivokti occurs

in a noun phrase, then it represents the bivokti and the rest of the words of

the noun phrase. Otherwise, it represents null. In case of .extensive

.bivokti, "E2" represents the bivokti followed by another noun phrase. But

in case of non-extensive bivokti, it represents only the bivokti. For

exampie, the sentence segments '~ ~ \Sl'O "i1ll" (ami er bondhu vat

khay), '~ >!jil ~ >!jil3r! \Sl'O "i1ll" (ami er vai er bondhu vat khay), '~

l:'l' \Sl'O 'ff'(j" (ami ke vat dao) are represented by "E2".

PRE: The non-terminal "PRE" represents words of a smaller noun phrase

occurring before the noun. In fact, "PRE" represents different

combinations of demonstrator, specifier and adjectives. For example, the

sentence segments "~ ~ 1il<fit '1M" (or chheleTi Dhaka zabe), ".!I :lj0f'l

~ 1il<fit '1M" (or prothom chheleTi Dhaka zabe), ".!I :lj0f'l >!jq$ "f'fiI

~ 1il<fit '1M" (or prothom ekoTi sundor chhele Dhaka zabe) are

represented by "PRE".

E3: The non-terminal "E3" is a factor in noun phrase level. It represents a

specifier or an adjective phrase or a spcifier followed by an adjective

phrase. If specifier or adjective phrase is not present in a noun phrase,

"E3" represents null. For example, ">!jq$ ~ 1il<fit '1M" (ekoTi chhele

Dhaka zabe), '~ ~ 1il<fit '1M" (sundar chheleTi Dhaka zabe), ">!jq$



Chapter7:Non-ambiguousComprehensiveGrammar 160

~ to.t"f Ol'l't "lftC<I" (ekoTi sundor chhele Dhaka zabel are represented by

"£3".

E4: The non-terminal "E4" is a factor in noun phrase level. If adjective phrase

is present in a noun phrase, then it represents the adjective phrase.

Otherwise, it represents null. For example, '~ ~ Ol'l't "lftC<I" (sundor

chheleTi Dhaka zabel, ""B ~ ~ Ol'l't "lftC<I" (khub sundor chheleTi

Dhaka zabel are represented by "E4".

NW: The non-terminal "NW" is represented as "noun word", which consists of

a noun, optionally followed by a determiner or a plural marker. For

example, '~ ~ C'@r" (ami fuTobol kheli), '~ ~ C"IC'1"

(chheleTi fuTobol khele), '(Wlill ~ C"IC'1" (chhelera fuTobol khele) are

represented by "NW".

E5: The non-terminal "E5" is a factor in noun phrase level. It represents a

determiner or a plural marker or null, followed by a noun of a noun

phrase. For example, ''cWf ~ ~ C"IC'1" (chhele Ti fuTobol khele), ''cWf

:ill ~ t~" (chhele ra fuTobol khele) are represented by "E5".

SPR: The non-terminal "SPR" is represented as "specifier", which consists of a

"quantifier", optionally followed by a "post preposition". For example,

""1"1$ to.t"f ~ C"IC'1" (ekoTi chhele fuTobol khele), "~ t'1'1'li ~ C"IC'1"

(ek 10k fuTobol khele) are represented by "SPR".

E6: The non-terminal "E6" is a factor in noun phrase level. It represents a

"post preposition" after a "quantifier" or null. For example, ""1'1' ~ to.t"f

~ C"IC'1" (ek Ti chhele fuTobol khele), ""1'1' iWl t'1'1'li ~ C"IC'1" (ek.iQ!!

10k fuTobol chele) are represented by "E6".

DEMO: The non-terminal "DEMO" is represented is "demonstrator". It consists



Chapter7:Non-ambiguousComprehensiveGrammar 161

of a "demonstratic deictic" or "demonstratic ordinal" or both. For

example,"~ ~ ~ Ne<1" (01 chheleTi fuTobol khele), ".21llfll ~

~ Ne<1" (Prothom chheleTi fuTobol khele), ".!1 ,2lllfll ~ ~ Ne<1"

(01 prothom chheleTi fuTobol khele) are represented by "DEMO".

E7: The non-terminal "E?" is a factor in noun phrase level. If "demonstratic

deictic" is present in a "demonstrator", then "E?" represents words of

"demonstrator" occurring after "demonstratic deictic", Therefore, HE?"

represents "demonstratic ordinal" or null. For example, ".!1 ,2lllfll ~

~ Ne<1" (01 prothom chheleTi fuTobol khele) is represented by "E?".

UNG: The non-terminal "UNG" is represented as "unknown word group". It"

consists of an unknown word or a group of unknown words together. For

example, "~ ~ Ne<1" (Qekohyam fuTobol khele), '~ ~

~ Ne<1" (Devin bekohyam fuTobol khele) are represented by "UNG".

E8: The non-terminal "E8" is a factor in noun phrase level. It represents

words of an unknown word group occurring after an unknown word.

Therefore, it represents an unknown word or an unknown word group or

null. For example, '~ ~ ~ Ne<1" (DeviD bekohyam fuTobol

khele) is represented by "E8".

7.4.6 Significance of Non-terminals of Adjective Phrase Level

We have summarized the significance of non-terminals of adjective phrase level as

follows,

AP: The non-terminal "AP" represents as "adjective phrase". It consists of an

adjective or a group of adjectives. For example, '~ m~ ~"(ami
beshi vat khai), '~ 3B "C'lfir ~. ~" (ami khub beshi vat khai) are

represented by "AP".



Chapter7:Non-ambiguousComprehensiveGrammar 162

Fl: The non-terminal "Fl" is a factor in adjective phrase level. It represents

words of an adjective phrase occurring after an adjective. Therefore, it

represents an adjective or a group of adjectives of null. For example, .~

'fI "C'lfif '"115 ~" (ami khub beshi vat khai) is represented by "FI".

7.5 Remarks

In this chapter, we have designed non-ambiguous comprehensive Bangia grammar

with predictive parsing. Application of the grammar into predictive parser is

elaborated in the next chapter. In the later part of this chapter, we have discussed the

significance of each non-terminals of new proposed Bangia grammar.



Chapter 8

Parsing Technique

8.1 Predictive Parser Architecture

In the previous four chapters (chapter - 4,5,6,7), we have designed non-ambiguous

grammar for Bangia language with predictive parsing. With ambiguous grammar, it

is not possible to build predictive parsing table. It causes multiple rules to fall in a

single grid of parsing table. Similar problem arises in grammar without predictive

parsing. When predictive parsing is not possible, backtracking algorithm requires to

parsing which takes exponential runtime. In contrast, predictive parser takes linear

runtime for parsing purpose.

In this chapter, we will design a predictive parser module for Bangia language using

non-ambiguous grammar with predictive parsing. In general, the parser module

consists of two stages - a lexical analyzer and a syntax analyzer. In fact, the syntax

analyzer is called the parser, as it generates parsed text. The parser module has two

other supporting sub-modules - a lexicon or dictionary and a parsing table. The full

architecture is demonstrated in figure 8.I.

Parsing
Table

Input
Text

Lexical
Analyzer

Tagged
Text

Syntax
Analyzer

Lexicon

Parsed
Text

Translator Output
Text

Figure 8.1: Architectureof a machinetranslatorusingpredictiveparser.



Chapter8: ParsingTechnique

8.2 Lexicon

164

A lexicon can also be referred to be a dictionary. Generally, two types of

information are stored in lexicon. First information is category of source language

words. And, second information is translated word of destination language. For

parsing stage, first information is necessary.

There are 16 terminals in our designed non-ambiguous grammar with predictive

parsing. These terminals are - Conj, SUBCOR, SUBCOM, YR, AUX, N, UN, DD,

DO, SPR, PP, BivE, Biv, DET, PM, AD. Out of these terminals, the terminal "UN"

refers to an unknown word or non-dictionary word. Therefore, words in lexicon or

dictionary are divided into 15 groups.

Table 8.1: Lexicon of BangIa language for a predictive parser.

Word Catel!orv
w.>fqJ Conj
~ QFR,AD
~ AUX
'Olt'8 AUX
"iT'KI1 ~+i11

. ~ ~ + 1:'1'
'"l1'ml ~+"Iil

~ N
"l1'! VR
"l1'! "l1'! + '8

~ AUX
"I AUX
"I~ DD
"1'1' QFR

"1'1$ "1'1' + fij
\!l~e. Conj
"Iil BivE
.!I DD
'8 AUX, Conj,N



Chapter 8: Parsing Technique 165

Here, another thing to be considered is, words may be simple or complex. Lexicon

will maintain type of word for each simple word. Sometimes, a single word may be

fit into several categories. For example, "'/3" (0) may be AUX or Conj or N. Lexicon

should maintain such information. Complex words consist of several simple words.

Therefore, complex words can not be tagged with a category. Lexicon will maintain

information how the complex words are formed. Table 8.1 shows a sample structure

of lexicon.

There are some simple words in the lexicon which belong to single category. For

example, '~" (othoba) is belong to "Conj" category, '~" (ai) is belong to

"AUX" category, etc.

There are some simple words in the lexicon which belong to multiple categories. For

example, '~" (onek) is belong to "QFR" and "AD" category.

The rest of the words of lexicon are complex words, which can not be categorized

into a particular category. This is because, they consist of several simple words.

Categories of these simple words can be found by looking up the lexicon. For

example, '~" (amora) is a complex word which consists of two simple words

'~" (ami) and "ill" (ra). Here, '~" (ami) is belong to "N" category and "ill" (ra)

is belong to "PM" category.

8.3 Parsing Table

A parsing table is a table describing what action its parser should take when a given

input comes while it is in a given state. It is a tabular representation that is generated

from the context-free grammar of the language to be parsed. A predictive parser has

a two dimensional parsing table - one dimension is non-terminal and another one is

terminal. From current non-terminal and terminal, a particular rule can be looked up.

(



Chapter8: ParsingTechnique 166

For building a predictive parsing table, First and Follow (as explained in section

2.8.1 and 2.8.2) of all non-terminals is needed to be calculated. Calculation of First

and Follow is explained in next two sections (section 8.3.1 and 8.3.2).

8.3.1 Calculation of First

Using the definition of First (as discussed in section 2.8.1), we can calculate First of

all non-terminals of BangIa grammar as follows,

First(S) = {N, DD, DO, QFR, AD, UN, SUBORD, SUBCOM }

First(BS) = {N, DD, DO, QFR, AD, UN, SUBORD, SUBCOM }

First(Al) = { Conj, {; }

First(A2) = { YR, AD, N, DD, DO, QFR, UN, Conj, SUBORD, SUBCOM }

First(A3) = { Conj, BivE, Biv, YR, AD, N, DD, DO, QFR, SUBORD,

SUBCOM}

First(A4) '" {N, DD, DO, QFR, AD, UN, SUBORD, SUBCOM, {; }

First(A5) = { N, DD, DO, QFR, AD, UN }

First(CS) = {N, DD, DO, QFR, AD, UN, SUBORD, SUBCOM }

First(Bl) = {N, DD, DO, QFR, AD, UN, SUBORD, SUBCOM }

First(B2) = { SUBORD, SUBCOM }

First(B3) = { N, DD, DO, QFR, AD, UN, SUBCOM }

First(B4) = { N, DD, DO, QFR, AD, UN, SUBORD }

First(B5) = { YR, AD, N, DD, DO, QFR, UN, Conj, SUBORD, SUBCOM }

First(B6) = { Conj, BivE, Biv, YR, AD, N, DD, DO, QFR, SUBORD,

SUBCOM}

First(B7) = { SUBORD, SUBCOM }

First(B8) = { YR, AD, N, DD, DO, QFR, UN, Conj, SUBORD, SUBCOM }

First(B9) = { Conj, BivE, Biv, YR, AD, N, DD, DO, QFR, SUBORD,

SUBCOM}

First(B10) = {YR, AD, N, DD, DO, QFR, UN, Conj, SUBCOM }

First(Bll) = {Conj, BivE, Biv, YR, AD, N, DD, DO, QFR, SUBCOM }

First(B12) = {N, DD, DO, QFR, AD, UN }

First(B13) = {N, DD, DO, QFR, AD, UN}



Chapter 8: Parsing Technique

First(B14) = {N, DD, DO, QFR, AD, UN }

First(SS) = { N, DD, DO, QFR, AD, UN }

First(CI) = {VR, AD, N, DD, DO, QFR, UN, Conj }

First(C2) = { Conj, BivE, Biv, VR, AD, N, DD, DO, QFR }

First(VP) = {VR, AD, N, DD, DO, QFR, UN }

First(Dl) = {VR, AD }

First(D2) = { VR, N }

First(D3) = {VR, AD, N, DD, DO, QFR }

First(D4) = { N }

First(VF) = {VR }

First(NP) = { N, DD, DO, QFR, AD, UN }

First(EI) = {Conj, c }

First(NPU) = {N, DD, DO, QFR, AD, UN }

First(E2) = { BivE, Biv, c }
First(PRE) = { DD, DO, QFR, AD }

First(E3) = { QFR, AD, c }
First(E4) = { AD, c }
First(NW) = {N }

First(E5) = { DET, PM, c }

First(SPR) = {QFR }

First(E6) = { PP, c }
First(DEMO) = { DD, DO }

First(E7) = {DO, c }
First(UNG) = { UN }

First(E8) = {UN, c }
First(AP) = {AD }

First(FI) = {AD, c }

8.3.2 Calculation of Follow

167

Using the definition of Follow (as discussed in section 2.8.1), we can calculate

Follow of all non-terminals of BangIa grammar as follows,

r



Chapter 8: Parsing Technique 168

Follow(S) = { $ }
Follow(BS) = { Conj, $ }

Follow(AI) = {$ }

Follow(A2) = { Conj, $ }

Follow(A3) = { Conj, $ }

Follow(A4) = { Conj, $ }

Follow(A5) = { Conj, $ }

Follow(CS) = { }

Follow(BI) = {Conj, $ }

Follow(B2) = { Conj, $ }

Follow(B3) = {Conj, $ }
Follow(B4) = {Conj, $ }
Follow(B5) = { }

Follow(B6) = { }

Follow(B7) = { Conj, $ }

Follow(B8) = { Conj, $ }

Follow(B9) = { Conj, $ }

Follow(BIO) = {Conj, $ }

Follow(BII) = {Conj, $ }
Follow(BI2) = { }

Follow(B13) = {Conj, $ }
Follow(BI4) = { Conj, $ }

Follow(SS) = {N, DD, DO, QFR, AD, UN, SUBCOM, SUBORD, Conj, $ }

Follow(CI) = {N, DD, DO, QFR, AD, UN, SUBCOM, SUBORD, Conj, $ }

Follow(C2) = {N, DD, DO, QFR, AD, UN, SUBCOM, SUBORD, Conj, $ }

Follow(VP) = { N, DD, DO, QFR, AD, UN, SUBORD, SUB COM, Conj, $ }

Follow(Dl) = {N, DD, DO, QFR, AD, UN, SUBORD, SUBCOM, Conj, $ }

Follow(D2) = {N, DD, DO, QFR, AD, UN, SUBORD, SUBCOM, Conj, $ }

Follow(D3) = {N, DD, DO, QFR, AD, UN, SUBORD, SUBCOM, Conj, $ }

Follow(D4) = { N, DD, DO, QFR, AD, UN, SUBORD, SUBCOM, Conj, $ }

Follow(VF) = { N, DD, DO, QFR, AD, UN, SUBORD, SUBCOM, Conj, $ }



Chapter 8: Parsing Technique 169

Follow(NP) = { SUBORD, YR, AD, N, DD, DO, QFR, UN, Conj,

SUB COM }

Follow(EI) = {YR, AD, SUBORD}

Follow(NPU) = { Conj, SUBORD }

Follow(E2) = { YR, AD, N, DD, DO, QFR, UN, Conj, SUBORD,

SUBCOM}

Follow(PRE) = { N }

Follow(E3) = { N }

Follow(E4) = { N }

Follow(NW) = {BivE, Biv, Conj, SUBORD }

Follow(E5) = { BivE, Biv, Conj, SUBORD }

Follow(SPR) = { AD, N }

Follow(E6) = { AD, N }

Follow(DEMO) = { QFR, AD, N }

Follow(E7) = {QFR, AD, N }

Follow(UNG) = { Conj, BivE, Biv, YR, AD, N, DD, DO, QFR, SUBORD,

SUBCOM}

Follow(E8) = { Conj, BivE, Biv, YR, AD, N, DD, DO, QFR, SUBORD,

SUBCOM}

Follow(AP) = { YR, N }

Follow(FI) = {YR, N}

8.3.3 Building of Parsing Table

Using the set of First and Follow of all non-terminals of BangIa grammar, we can

build predictive parsing table using the technique of building of predictive parsing

table as discussed in section 2.8.3. To achieve error recovery facility, we can put

error recovery information into parsing table using the theory discussed in section

2.8.4.

Non-ambiguous BangIa grammar has 48 non-terminals and 16 terminals. It is not

easy to display a 48 x 16 sized table. We can divide the parsing table into several



Chapter 8: Parsing Technique 170

segments like - sentence portion, complex sentence portion, simple sentence

portion, verb phrase portion, noun phrase portion and adjective phrase portion.

Predictive parsing table of sentence portion is shown in table 8.2, complex sentence

portion in table 8.3, simple sentence portion in table 8.4, verb phrase portion in table.

8.5, noun phrase portion in table 8.6 and adjective phrase portion in table 8.7.

Table 8.2 (a): Predictive parsing table for sentence portion.

Coni SUBORD SUBCOM VR AUX
S - S ~ BSAI S ~ BSAI - -

BS ~ BS ~
BS sync SUBOROSS SUBCOMS8 - -

B3 B4

AI AI ~ Conj - - - -
S

A2
A2 ~ Conj A2~B2 A2 ~ B2 A2 ~ VP -AS A4

A3
A3 ~ Conj A3~B2 A3 ~ B2 A3 ~ 03
S8 A4 A4 -

A4 A4 ~ Ei A4 ~ BI A4 ~BI - -
AS sync - - - -

Table 8.2 (b): Predictive parsing table for sentence portion.

N UN DD DO OFR PP

S
8 ~ BS S ~ BS 8 ~ BS 8 ~ BS S ~ BS -
Al Al AI Al Al

BS~NW BS ~ BS ~ BS ~ BS ~
B8 PRENW PRENW PRENW -

E2A2 UNGA3 E2 A2 E2 A2 E2 A2
AI - - - - - -
A2

A2~VP A2~VP A2~VP A2 ~ VP A2~VP -
A4 A4 A4 A4 A4

A3
A3 ~ D3 A3 ~ 03 A3 ~ D3 A3 ~ 03,-

A4 A4
-

A4 A4
A4 A4 ~BI A4 ~BI A4 ~ BI A4 ~ 81 A4 ~ 81 -

AS ~NW AS ~ AS ~ AS ~ AS ~
AS PRENW PRENW PRENW -

E2A2 UNGA3 E2A2 E2 A2 E2 A2



Chapter 8: Parsing Technique

Table 8.2 (c): Predictive parsing table for sentence portion.

171

BivE Biv DET PM AD $

S
S ~ BS

- - - - syncAI
BS ~

BS - - - - PRENW sync
E2 A2

Al - - - - - AI ~ E

A2
A2 ~ VP- - - - sync

A4

A3 A3 ~ A3 ~ Biv A3 ~ D3
BivE A5

- - sync
A2 A4

A4 - - - - A4 ~ BI A4 ~ E

A5 ~
AS - - - - PRENW sync

E2 A2

Table 8.3 (a): Predictive parsing table for complex sentence portion.

Coni SUBORD SUBCOM VR AUX
CS ~ CS ~

CS - SUBORDSS SUBCOMSS - -
B3 B4

BI
BI ~ Bl ~sync SUBCOM SS - -SUBORDSS
B2 ~ B2 ~ .

B2 sync SUBORDVP SUBCOM VP - -

B3 B4

B3
B3 ~

sync - - -
SUBCOMSS

B4
B4 ~sync - - -

SUBORD SS

BS
85 ~ Conj B5 ~ B2 B5 ~ B2 B5~VPBI -

BI2

B6
B6 ~ Conj B6~B2 B6~B2 B6~D3BI -
SS BI

B7 ~ B7 ~
B7 sync - -

SUBORDVP SUBCOM VP

88
B8 ~ Conj B8 ~ B7 88 ~ B7 B8 ~ VP -

B13

B9
B9 ~ Conj B9 ~ B7 B9 ~ B7 B9 ~ D3 -

B13

BIO
BI0 ~ Conj BI0 ~ Bl0 ~ VP- -

B14 SUBCOMVP
Bll ~ Conj Bll ~ BII ~ D3Bll - -

BI4 SUBCOMVP
BI2 - - - - -
813 sync - - - -
BI4 Sync - - - -



Chapter 8: Parsing Technique

Table 8.3 (b): Predictive parsing table for complex sentence portion.

172

N UN DD DO OFR PP
CS ~NW CS ~ CS ~ CS ~ CS ~

CS
E285 UNG86

PRENW PRENW PRENW -
E285 E285 E285

81 ~ NW 81 ~
81 ~ 81 ~ 31 ~

81
E288 UNG89

PRENW PRENW PRENW -
E288 E288 E288

82 - - - - - -
83 ~ NW 83 ~

83 ~ 83 ~ 83 ~
B3

E2810 UNG811
PRENW PRENW PRENW -
E2810 E2810 E2810

84 ~ NP 84 ~ NP 84 ~ NP 84 ~ NP 84 ~ NP
B4 SU80RD SU80RD SU80RD SU80RD SU80RD -

VP VP VP VP VP

B5
85~VP B5 ~ VP 85~VP 85~VP B5 ~ VP

81 B1 Bl
-

81 BI

B6
86 ~ D3 B6 ~ D3 B6 ~ D3 B6 ~ D3

Bl - Bl Bl 81 -
B7 - - - - - -
B8 88 ~ VP B8 ~ VP 88 ~ VP 88 ~ VP 88 ~ VP -
B9 89 ~ D3 - B9 ~ D3 89 ~ D3 89 ~ D3 -

BIO 810 ~ VP 810 ~ VP 810 ~ VP BI0 ~ VP 810 ~ VP -
BII 811 ~ D3 - 811 ~ D3 Bll ~ D3 811 ~ D3 -

812 ~ 812 ~
812 ~ 812 ~ 812 ~

BI2
NWE285 UNG 86

PRENW PRENW PRE NW -
E2B5 E285 E285

813 ~ 813 ~
813 ~ 813 ~ 813 ~

BI3
NWE288

PRENW PRENW PRE NW -
UNG B9

E2 B8 E288 E288

B14 ~ 814 ~
814 ~ 814 ~ 814 ~

BI4
NW E2 810

PRENW PRENW PRE NW -
UNG811

E2810 E2810 E2810

Table 8.3 (c): Predictive parsing tabie for complex sentence portion.

BivE Div DET PM AD $
CS ~

CS - - - - PRENW -
E285
81 ~

BI - - - - PRENW sync
E288

B2 - - - - - sync
B3 ~

B3 - - - - PRENW sync
E2810

84 ~ NP
B4 - - - - SU80RD sync

VP



Chapter 8: Parsing Technique 173

B5 B5 ~ VP- . - - -BI

B6 B6 ~ B6 ~ Biv B6-> 03 BIBivE B12 B5
. . .

B7 - . - - - sync
B8 - . - - B8 ~ VP sync

B9 B9 ~ B9 ~ Biv B9-> 03
BivE B13 B8

. - sync

BtO - - - - B10 ~ VP sync

Bit Bl1 ~ B11 ~ BII ~ 03BivE B14 Biv B10
. . sync

BI2 ~
B12 - . . . PRENW -

E2 B5
B13 ~

BI3 - . . . PRE NW sync
E2 B8
BI4 ~

BI4 - . . - PRENW sync
E2 BIO

Table 8.4 (a): Predictive parsing table for simple sentence portion.

Conj SUBORD SUBCOM VR AUX
SS sync SynC sync - .

CI
CI ~ Conj sync sync CI ~ VP .

S8

C2 C2 ~ Conj sync sync C2 ~ 03 .
88

Table 8.4 (b): Predictive parsing table for simple sentence portion.

N UN DD DO QFR PP

88 ~ NW 88 ~ S8 ~ 88 ~ 88 ~
SS PRENW PRENW PRE NW .

E2CI UNGC2 E2 CI E2 CI E2 CI
CI CI ~VP CI ~VP CI ~VP CI ~ VP CI ~ VP -
C2 C2 ~ 03 sync C2 ~ D3 C2 ~ 03 C2 ~ 03 -

Table 8.4 (c): Predictive parsing table for simple sentence portion.

BivE Biv DET PM AD $
88 ~

SS - . - - PRENW sync
E2 Cl

CI - - - - Cl ~ VP .sync

C2
C2 ~ C2 ~ Biv C2 ~ D3

Cl - - sync
BivE 88



Chapter 8: Parsing Technique

Table 8.5 (a): Predictive parsing table for verb phrase portion.

174

Coni SUBORD SUBCOM VR AUX
VP sync sync syr.c VP ~ 03 -
D1 sync sync sync 01 ~ VF -
D2 sync sync sync 02 ~ VF -
D3 sync sync sync 03 ~ VF -
D4 sync sync sync - -
VF VF ~ VRsync sync sync AUX -

Table 8.5 (b): Predictive parsing table for verb phrase portion.

N UN DD DO QFR PP
VP ~

VP VP ~ 03 UNO E2 El VP ~ 03 VP ~ 03 VP ~ 03 -
01

D1 sync sync Sync sync sync -
D2 02 ~ 04 sync sync sync sync -

03 ~ 03 ~ 03 ~D3 03 ~ 04 sync OEMOE3 OEMOE3 SPR E4 04 -
04 04

D4 04 ~NW sync sync sync sync -E2 EI 01
VF sync SynC SynC sync Sync -

Table 8.5 (c): Predictive parsing table for verb phrase portion.

BivE Biv DET PM AD $
VP - - - - VP ~ 03 sync

01 ~ APD1 - - - - VF sync
D2 - - - - sync SynC

03 ~ APD3 - - - - 02 sync
D4 - - - - sync sync
VF - - - - sync sync

Table 8.6 (a): Predictive parsing table for noun phrase portion.

Coni SUBORD SUBCOM VR AUX
NP sync sync sync sync -
E1 El ~ Conj El ~ E: - EI ~ E: -NP
NPU sync sync - - -
E2 E2 ~ E: E2 ~ E: E2 ~ E: E2 ~ E: -
PRE - - - - -



Chapter 8: Parsing Technique 175

E3 - - - - -
E4 - - - - -

NW sync sync - - -
ES E5 ~ E: E5 ~ E: - - -
SPR - - - - -
E6 - - - - -

DEMO - - - - -
E7 - - - - -
UNG sync sync sync sync -
E8 E8 ~ E: E8 ~ E: E8 ~ E: E8 ~ E: -

Table 8.6 (b): Predictive parsing table for noun phrase portion.

N UN DD DO QFR PP

NP
NP ~ NP ~ NP ~ NP ~ NP ~ -NPU El NPU El NPU El NPUEI NPU El

El - - - - - -

NPU ~ NPU ~ NPU ~ NPU ~ NPU ~
NPU PRENW PRENW PRENW -NWE2 UNOE2 E2 E2 E2
E2 E2 ~ E: E2 ~ E: E2 ~ E: E2 ~ E: E2 ~ E: -
PRE PRE ~ PRE ~ PRE ~sync - DEMOE3 DEMOE3 SPR E4 -

E3 E3 ~ E:
E3 ~ SPR- - - E4 -

E4 E4~E: - - - - -
NW

NW~N - - - - -E5
ES - - - - - -
SPR

SPR ~sync - - - QFR E6 -
E6 E6 ~ E: - - - - E6 ~ PP

DEMO
DEMO ~ DEMO ~sync - sync -DDE7 DO

E7 E7 ~ E: - - E7 ~ DO E7 ~ E: -

UNG
UNO~sync sync sync sync -UN E8

E8 E8 ~ E:
E8 ~ E8 ~ E: E8 ~ E: sync -UNO

Table 8.6 (c): Predictive parsing table for noun phrase portion.

RivE Div DET PM AD $

NP ~
NP - - - - NPU El -
El - - - - El ~ E: -

NPU ~
NPU - - - - PRENW -

E2



Chapter8: ParsingTechnique 176

E2 ~ ,
E2 BivE NP E2 ~ Biv - - E2 ~ Ii -

PRE PRE -~- - - - -AP
E3 - - - - E3~AP -
E4 - - - - E4 ~ AP -
NW sync Sync - - - -
E5 E5 ~ Ii E5 ~ Ii

E5 ~ E5 ~ PM
DET - -

SPR - - - - SynC -
E6 - - - - E6 ~ Ii -

DEMO - - - - sync -
E7 - - - - E7 ~ Ii -
UNG sync sync - - sync -
E8 E8 ~ Ii E8 ~ Ii - - E8 ~ Ii -

Table 8.7 (a): Predictive parsing table for adjective phrase portion.

AP
FJ

Conj

I
SUBORD SUBCOM VR

sync
FI ~ Ii

AUX

Table 8.7 (b): Predictive parsing table for adjective phrase portion.

N
AP sync
FJ Fl ~ Ii

UN DD DO QFR PP

Table 8.7 (c): Predictive parsing table for adjective phrase portion.

AP BivE __ Bi_V D_E_T P_M__ I A' ~ AO

n Fl~M--------- ----- ----~----

8.4 Lexical Analyzer

$

The mam purpose of lexical analyzer is "parts of speech tagging". There are

different policies of tagging for simple and complex words. Some simple words are

belong to single category and some others belong to multiple category. Again, there

are some non-dictionary words in an input sentence. Tagging policies are described

as follow,

~(
I



Chapter8: ParsingTechnique 177

• Simple words, which are belong to single category, are tagged immediately.
(

For example, ''<5lt11l'' (ami) is tagged immediately to "N" and <''<5lt11l'', "N"> is

generated.

• Simple words, which are belong to multiple categories, can not be tagged in

this stage. Tagging is remained for syntax analyzer. To indicate multiple

categories, "MULTI" tagging is done. For example, "-s" (0) is tagged to

"MULTI" and <"-s", "MULTI"> is generated.

• For complex words, three cases occur, as follows,

o Firstly, the complex word may be found in the lexicon. Then, its

forming simple words are retrieved and tagged. For example, the

complex word '~" (amar) is found in lexicon, then its forming

simple words ''<5lt11l'' (ami) and "<!I." (er) are retrieved. ''<5lt11l'' (ami) is

tagged to "N" and "<!I." (er) is tagged to "BivE" and finally <''<5lt11l'',

"N'~>,<"I.!l~","BivE"> are generated.

o Then, the complex word may not be found in the lexicon. Then, an

algorithm analyzes the word, whether its segments can form some

meaningful words found in lexicon. If the word can be broken into

some other meaningful words, then these words are tagged. For

example, the complex word '~" (bondhura) is not found in

lexicon. Algorithm tries to break the word and finds '~" (bondhu)

and 'ill" (ra) within it. Then, '~" (bondhu) is tagged to "N" and "ill"

(ra) is tagged to "PM" and finally <'~", "N">, <'ill", "PM"> are

generated.

o Finally, the complex Word may not be found in the lexicon and

forming words may not be found breaking the complex word. It that

case, we can apply some heuristics. There are some common patters

. of common words like, .~" (''lit'' + '~"), ""l1'1i:" (""!!" + '~"),

''t1I'm'' ('tm:ll" + "<!I.") etc. These words may not be found in lexicon

and forming simple words can not be retrieved simply by breaking

the word. So, using heuristic is effective here.



Chapter 8: Parsing Technique 178

• For an unknown word or non-dictionary word, the word is tagged as "UN".

For example, ''01<1'1''(Dhaka) is tagged to "UN" and <''01<1'1'',"UN"> is

generated.

Table 8.8: A sample lexicon.

Word Catel>orv .
'$lBl "'ltfi! + <!1il
"'ltfi! N
l.!l<ft, Conj
<!1il BivE
'<3 N, Conj
1:'l AUX
~ N
~ N
ill PM
-.n VR

For example, the sentence ''1ol@r,'$lBl ~, iiWl <!1'R'<3il~ ~ om '<31'lW~"

(ami, amar vai, robin ebong Or vaiyer bondhura Dhaka 0 sileT zabe) is to be parsed.

Firstly, the sentence is passed to lexical analyzer for "parts of speech tagging". We

are considering the sample lexicon shown in table 8.8 here. The simple words ''1ol@r''

(ami), "," (,), '~" (vai), "<!1'lC(ebong) are tagged immediately. The simple word

"'<3"(0) is a multi category word. Therefore, it is tagged as "MULTI". The complex

word '~" (amar) can be broken and tagged from the lexicon. The complex words

"~" (bondhura), '''lt1:'l'' (zabe) can be broken using algorithm and tagged from the

lexicon. The complex words "'<3il"(Or), '~" (vaiyer) is broken using heuristic

and tagged from the lexicon. The rest of the words are ''i!fi\il'' (robin), ''01<1'1''(Dhaka)

and '~" (sileT), which are not found in lexicon and can not be broken. These

words are tagged as "UN". Finally, the tagged text becomes <''1ol@r'',''N''>, <",",

"Conj'~>,<'~", "N">, <"I!Hf', "BivE">, <'~", "N">, <",", "Conj">, <'~",

"UN">, <"\!l<f~","Conj">, <"IS", "MULTI">, <"dl~", "BivE">, <'~", "N">, <''"m'',

"PM">, <'~", "UN">, <"-c", "Conj">, <'~", "UN">, <'~", "VR">, <'"c<I",

"AUX">. The work flow of lexical analyzer module is demonstrated in figure 8.2.



Chapter 8: Parsing Technique

Input word

179

Break
word and
tag them

Simple
word

with one
category

Tag from
lexicon

yes

Simple
word
with

multiple
cate 0

Tag
"MULTI"

Complex
word

yes

Tag
simple
words

Tag
simple
words

no

Tag
"UN"

A2

Figure 8.2: Work flow of lexical analyzer of predictive parser.



Chapter 8: Parsing Technique

8.5 Syntax Analyzer

180

Syntax analyzer can also be called as parser. Our proposed grammar is designed for

a top-down predictive parser. Therefore, top-down predictive parsing algorithm is

deployed in the syntax analyzer. Architecture of syntax analyzer or parser was

discussed in section 2.8 and top-down predictive parsing algorithm was discussed in

algorithm 2.3. In the next section (section 8.6), we will see, how a correct BangIa

sentence is parsed using the algorithm.

A modification is applied on algorithm 2.3 for dynamic resolve of "MULTI" tagged

word. When a multi-tagged word arises, parser looks up lexicon for probable

choices of tags. Then it tries to match the tag for probable applicable rule. If any

probable applicable rule matches with tag of probable choices, the tag is assigned to

the word. In the example of next section, we will watch how dynamic resolve works. .

8.6 Parsing of Correct Sentence

In this section, we will watch how top-down predictive parsing algorithm works on

an example sentence. Suppose, we want to parse the sentence ''I5!tfil, I5lt'lTil ~, 00

"Fl~ 'Sil ~ ~ 1i1'I'1 'S f'rcaW 'lTC'!" (ami, amar vai, robin ebong Or vaiyer bondhura

Dhaka 0 sileT zabe). After lexical analysis, the input sentence becomes <''I5!tfil'',

"N"> <"" "Co on> <~~" "N"> <"\!l~""BivE"> <'~" "N"> <"" "COD)'''>, " TI], , , ., , "="1"<., ') , ,

<'~", "UN">, <"\!l<l"~","Cauj">, <"\5", "MULTI">, <"\!l~", "BivE">, <''<r\'', "N">,

<''crl'' "PM"> <'~" "UN"> <"'(3" "Con'''> <'~" "UN"> <'''m'' "VR">">ll , , \11"'l'I, , , ~, , , , ,

<'''cq'',"AUX">, <"$", "$">. The last symbol "$" indicates an end-marker, which

lexical analyzer places to indicate end of an input sentence.

The parser maintains a stack. Initially, an end-marker "$" is pushed into the stack.

Then starting non-terminal "S" is pushed into the stack. Then, the parsing process

runs in following way,



Chapter 8: Parsing Technique 181

Stack Current svmbol ProductionWord Tal:
$8 '5lAA N
$ AI B8 '5lAA N 8 --* B8 AI
$ AI A2 E2 NW '5lAA N B8 --* NW E2 A2
$ AI A2 E2 E5 N '5lAA N NW --* NE5
$ AI A2 E2 E5 '5lAA N N --* '5lAA
$ Al A2 E2 , Conj E5 --* &

$ Al A2 , Conj E2 --* &

$ AI A5 Conj , Conj A2 --* Coni A5
$ AI A5 , Conj Conj --* ,
$ AI A2 E2 NW '5lAA N A5 --* NW E2 A2
$ AI A2 E2 E5 N '5lAA N NW --* N E5
$ AI A2 E2 E5 '5lAA N N --* '5lAA
$ AI A2 E2 <!I. BivE E5 --* &

$ Al A2 NP BivE <!I. BivE E2 --* BivE NP
$AI A2NP <!I. BivE BivE --* <!I.
$ AI A2 EI NPU 'Sl$: N NP --* NPU EI
$ AI A2 EI E2 NW 'Sl$: N NPU --* NWE2
$ AI A2 E! E2 E5 N 'Sl$: N NW --* N E5
$ AI A2 EI E2 E5 'Sl$: N N --* 'Sl$:
$ AI A2 EI E2 , Conj E5 --* &

$ Al A2 EI , Conj E2 --* &

$ AI A2 NP Conj , Conj EI --* Coni NP
$AI A2NP , Conj Coni --* ,
$AI A2EI NPU ~ UN NP --* NPU EI
$ AI A2 EI E2 UNG ~ UN NPU --* UNG E2
$AIA2EIE2E8UN ~ UN UNG --* UN E8
$ AI A2 EI E2 E8 ~ UN UN --*~
$AI A2EI E2 I!lCf~ Conj E8 --* &

$AIA2EI uFR Conj E2 --* &

$ AI A2 NP Conj I.!lCf~ Conj EI --* Conj NP
$AI A2NP 1!I<l~ Conj Conj --* <!I'R
$ AI A2 EI NPU 'S MULTI NP --* NPU EI
$AI A2EI NPU 'S N
$AI A2EI E2NW 'S N NPU --* NWE2
$ AI A2 EI E2 E5 N 'S N NW --* NE5
$AI A2E! E2E5 'S N N --* 'S

$ Al A2 EI E2 <!I. BivE E5 --* &

$ AI A2 EI NP BivE <!I. BivE E2 --* BivE NP
$AI A2E! NP <!I. BivE BivE --* <!I.
$ Al A2 E! EI NPU 'Sl$: N NP --* NPU EI
$AI A2EI EI E2NW 'Sl$: N NPU --* NWE2
$ AI A2 EI EI E2 E5 N 'Sl$: N NW --* NE5



Chapter8; ParsingTechnique 182

$ Al A2 E1 E1 E2 E5 ~ N N~~
$ Al A2 EI EI E2 <!Ill BivE E5 ~ c
$ Al A2 EI EI NP BivE <!Ill BivE E2 ~ BivENP
$ Al A2 EI EI NP <!Ill BivE BivE ~ "111
$ Al A2 EI EI EI NPU 'l'{ N NP ~ NPUEI
$ Al A2 E1 EI E1 E2NW 'l'{ N NPU ~ NWE2
$ Al A2 EI EI EI E2 E5 N 'fq[ N NW ~ NE5
$ Al A2 EI EI EI E2 E5 'l'{ N N~'l'{
$ Al A2 EI EI EI E2 PM m PM E5 ~ PM
$ Al A2 EI EI EI E2 m PM PM~m
$ Al A2 EI EI EI 1>l'I't UN E2 ~ c
$ Al A2 EI EI 1>l'I't UN EI ~ c
$ Al A2 EI 1>l'I't UN EI ~ c
$ Al A2 1>l'I't UN EI ~ c
$ Al A4 VP 1>l'I't UN A2 ~ VPA4
$AI A4Dl EI E2UNG 1>l'I't UN VP ~ UNGE2EI Dl
$ Al A4 Dl EI E2 E8 UN 1>l'I't UN UNG ~ UNES
$ Al A4 DI EI E2 ES 1>l'I't UN UN ~ 1>l'I't
$AI A4DI EI E2 'S MULTI ES ~ c
$ Al A4 Dl E1 E2 'S Conj
$AI A4Dl EI 'S Conj E2 ~ c
$ Al A4 Dl NP Conj 'S Conj EI ~ Conj NP
$AI A4Dl NP 'S Conj Coni ~ 'S

$ Al A4 Dl E1 NPU ~ UN NP ~ NPUEI
$ Al A4 Dl E1 E2 UNG ~ UN NPU ~ UNGE2
$ Al A4 Dl EI E2 ES UN ~ UN UNG ~ UNES .

$ Al A4 Dl EI E2 ES ~ UN UN~~
$ Al A4 DI EI E2 '11 VR ES ~ c
$ Al A4 Dl EI 'l1 VR E2 ~ c
$AI A4DI 'l1 VR EI ~ c
$ Al A4 VF 'l1 VR Dl~VF
$AI A4AUXVR 'l1 VR VF ~ VRAUX
$AI A4AUX 'l1 VR VR ~ 'l1
$ Al A4 V'I AUX AUX ~ V'I
$ Al $ $ A4 ~ c
$ $ $ Al ~ c

8.7 Error Recovery Policy

To recover from an error, firstly we have to detect when an error occurs. While

parsing, if a terminal is found from stack and it does not match with input word tag,



Chapter 8: Parsing Technique 183

then error occurs. Again, if a non-terminal is found from stack and no production is

found for the non-terminal from parsing table then error occurs.

For error recovery purpose, we have pushed synchronizing set of many non-

terminals into the parsing table. We have selected Follow set as synchronizing set.

Follow set of a non-terminal indicates terminals occurring after the derivation of the

non-terminal. Therefore, when a production is not found in the parsing table against

the non-terminal, then synchronizing set is looked up. If matches with a member of

synchronizing set, then a missing word is detected and parsing continues by popping

top non-terminal from the stack.

In our non-ambiguous predictive parser following recovery policies are adopted

when an error is detected,

I. If stack becomes empty and still some words are remained to be parsed, then

parsing stops at that point.

2. If an unknown word in found in input, the word is skipped and next word

will be considered to continue parsing.

3. If the non-terminal has a "null" production, the production is considered and

parsing continues.

4. Words are skipped until a valid production or synchronizing set is found in

the parsing table.

a. If valid production found, the production is considered and parsing

continues.

b. If synchronizing set found, missing word is detected. Therefore, a .

missing word is reported and parsing continues.

c. If neither valid production nor synchronizing set is found, "null"

'production is considered if "null" production exists, otherwise

missing word is reported and parsing continue.

Such error recovery policy allows to continue parsing when error found in input

sentence, which was absent in previous BangIa parsing methodology [22][23].



Chapter 8: Parsing Technique 184

Now, we are in a position to re-write algorithm 2.3, with error recovery policy. Such

an algorithm is written in algorithm 8.1.

Algorithm 8.1: Non-recursive predictive parsing with error recovery policy.

Input. A string wand a parsing table M for Grammar G.

Output. If w is in L( G), a leftmost derivation of lV; otherwise, an error indication.

Method.

Parse (w, M)
Push "$" into stack "ST', where "$" is end-marker
Push "S" into stack "ST', where "S" is starting symbol
Add "$" after the sentence "w"
set ip to point to the first symbol of lV$

repeat
let Xbe the top stack symbol and a the symbol pointed to by ip
it X is a terminal or $ then

if X= a then
pop X from the stack and advance ip

else II symbol not matches
Recover( ST, lV, ip)

end if
else II X is a non-terminal

if M[X, aJ = X -> I;Y,,,.Y, then
pop X from the stack
push Yk, Yk.), ••• , Y1 onto the stack (Y1 on top)
output the production X -> I;Y,,,.Y,

else II rule not found on table
Recover( ST, w, ip)

end if
end if

until X = $ II stack is empty
end function

Recover ( ST, w, ip)
. let X be the top stack symbol and a the symbol pointed by ip

if X = $ then II stack is empty
return

end if

<



Chapter 8: Parsing Technique

if a = "UN" then II unknown symbol found
error report on "unknown symbol"
advance ip II symbol skipped
return

end if

if Xhas "null" rule in M then
pop X from the stack
output the production X ~ Ei

return
end if

while M[X][ a J contains neither rule nor sync do
a is the symbol pointed by ip
if a = $ then

break
end if
error report on "skipped symbol"
advance ip I I symbol skipped

end loop

if sync found in M[X][aJ then
pop X from the stack
error report on "missing symbol"

else if rule not found inM[X][aJ then
if Xhas "null" rule in M then

pop X from the stack
output the production X ~ Ei

else
pop X from the stack
error report on "missing symbol"

end if
end if

end function

8.8 Parsing of Erroneous Sentence

185

In this section, we will watch, how error recovery routine, discussed in previous

section (section 8.7) works on an erroneous BangIa sentence.

Firstly, we try to parse the sentence ''I5!@! U1'l't '11" (ami Dhaka za), which is

erroneous. An auxiliary is expected after "'11"(za). After parsing using algorithm 8.1,

the following output is found,

t'



Chapter 8: Parsing Technique 186

S ~ BS Al

BS ~ NWE2A2

NW ~ NE5

N ~ "'l1R

E5 ~ Ii

E2 ~ Ii

A2 ~ VPA4

VP ~ UNG E2 EI D1

S

Ii

Al
I

Ii

---A4
I

'11 77
. (za) (77)

---VP
~~

UNG E2 E2 DI
/ "- I I I
UN E8 Ii Ii VF
I I / "-

Ii VR AUX
I Iom

(Dhaka)

BS/--..::::::::::::-----------
NW E2

/ "- I
N E5 Ii
I I

"'l1R Ii

(ami)

Figure 8.3: Tree derivation of erroneous sentence '~ 01'l'l'IT" (ami Dhaka za).

UNG ~ UNE8

UN~om

E8 ~ Ii

E2 ~ Ii

EI ~ Ii

DI ~ VF

VF ~ VRAUX

VR ~ '11

AUX ~??

A4 ~ Ii



Chapter 8: Parsing Technique

Al --+ li

187

From the output, the production "AUX --+ ??" indicates, algorithm detect an

auxiliary is expected. The output can be represented as tree in figure 8.3.

Then, we can consider another erroneous sentence "c!1 ~ ~ '5115 "!T!!" (Or Ti chhele

vat khay) for parsing. Following output is found using the same algorithm,

S --+ BS Al

BS --+ PRE NW E2 A2

PRE --+ DEMO E3

DEMO --+ DD E7

DD --+ c!1

E7 --+ li

E3 --+ li

< symbol skipped: ~ >

NW --+ NE5

N--+~

E5 --+ li

E2 --+ li

A2 --+ VP A4

VP --+ D3

D3 --+ D4

D4 --+ NW E2 EI Dl

NW --+ NE5

N --+ '5115

E5 --+ li

E2 --+ li,

EI --+ li

Dl --+ VF

VF --+ VRAUX

VR --+ "It



Chapter 8: Parsing Technique 188

A UX -+ 'OIfll
A4 -+ Ei

AI -+ Ei

In this example, an extra symbol "fU" (Ti) is found, which is skipped by recovery

routine. This output can be presented like a tree as in figure 8.4.

AI
I

S-------
A2-- ------VP A4

I I
D3 Ei

I
V4

---7~
NW E2 E2 DI

/ "'- I I I
N E5 Ei Ei VF
I I / "'-

Ei VR AUX
I I~

(vat)

~
(chhele)

----
BS_---I --:::::::::-----__
NW E2

/ "'- I
N E5 Ei

I I

PRE
/ "'-

DEMO E3
/ "'- I
DD E7 Ei

I I
~ Ei

(01)

"!1 'OIfll
(kha) (ay)

Figure 8.4: Tree derivation of erroneous sentence "<!lfUW"f "'1<> "!11l" (01 Ti chhele vat
khay).

Therefore, error recovery mechanism allows a BangIa sentence to be parsed after

occurring error, which was absent previous Bangia sentence parsing methodology.

In a machine translation system such error recovery system is very fruitful, because

it is very unlikely to assume all the sentences of source language are correct. Even

not all correct sentences can be possible to fit in a grammar. In a grammar of a

language, we' only define most likely and common structure of sentences. It is an

NP-complete problem to design a grammar to fit all possible types of sentences of

source language.

(



Chapter 8: Parsing Technique

8.9 Remarks

189

Error recovery mechanism proposed in algorithm 8.4, does not recover an errOr

correctly all the time. Sometimes, it may skip a correct symbol, as it considers only

one word at a time. A "global correction" mechanism could be more effective, but

also takes exponential runtime. As machine translation software runs on a large

volume of data, exponential runtime is very costly. In that perspective, our error

recovery mechanism is efficient, and recovers error correctly most of the time. Most

importantly, it allows a sentence to be parsed after the occurrence of an error.

("!~



Chapter 9

Simulation

9.1 Overview

In this chapter, we will discuss about architecture and functionality of our simulation

program used to verify functionality and correctness of our proposed non-ambiguous

predictive BangIa grammar. We will also discuss about parsing method and error

recovery strategy of the simulation program.
~_HW~W"'~"'""' _"_ ~,~ ~ ~A ~_

I). diction.IKI • Notepad -

DIe ,<It ,,,mot ~~t1.elp

1<=
:::;f!1nl Conj
~ QFR, AD
<::if>
3fr-:- AUX
::;qr:- AUX
:Jlr-r:Tr "Jf.t+m
~ "Jf.t+'l'
311'Jr:l ~rf.i+:l?"
"Jf.t N
3II'T VR
3II'T ::31'1'71+3

<':>
t" AUX
<3>
0 AUX
:it DD
:fT QFR
O"p;- ::FF+~
J'n. Conj
:ET BivE

i~'!

Figure 9.1: Lexiconused for simulationprogram.

9.2 The Lexicon

The simulation program uses a lexicon for "parts of speech tagging" purpose. The

lexicon represents set of words in BangIa language and their corresponding terminal

or tag. The lexicon may be stored as a text file or in a database. In commercial

machine translation software, the lexicon represents a large volume of data.



Chapter9: Simulation 191

Therefore, a database should be used. Though in our simulation program, we have

stored the lexicon as a text file for simplicity purpose.

We have built the lexicon using the architecture proposed in section 8.2. So, each

simple Bangia word is corresponding to one of fifteen terminals or tags. In case of

complex words no terminal or tag is applicable. In that case, lexicon stores how

complex words are built. Figure 9.1 shows the text file we have used as lexicon.

9.3 Simulation program

The functionality of our simulation program can be divided into different stages.

First stage can be called as initialization stage, which is used to build the parsing

table. After the parsing table is initialized, the input sentences are parsed one by one.

Each sentence is firstly passed through lexical analyzer and then syntax analyzer.

Then parsed text is found as output.

I SUBCOM SS

->
BS ->
Al ->
A2 ->
A3 ->
A4 ->
AS ->
CS ->
Bl ->
B2 ->
B3 ->
B4 ->
BS ->
B6 ->
B7 ->
B8 ->
B9 ->
B10 ->
Bll ->
B12 ->
B13 ->

tie!p

BS Al ~:
NW E2 A2 I PRE NW E2 A2 lUNG A3 I SUBORO 55 B3 I 5UBCOM S5 I
Conj S lei
VP A4 I Conj AS I B2'
~~nj :5 A4 I BivE AS I Biv A2 I 03 A4 I B2.,1
NW E2 A2 PRE NW E2 A2 lUNG A3 •.•
NW E2BS PRE NW E2 BS lUNG B6 5UBORO 55 B3 I 5UBCOM S5 "1
NW E2 B8 I PRE NW E2 B8 lUNG B9 SUBORO S5 I 5UBCOM S5 .'.1
SUBORO VP B3 I SUBCOM VP B4
NW E2 B10 I PRE NW E2 B10 lUNG Bll
NP SUBORO VP I SUBORO SS
VP Bl I Conj B12 I B2
Conj 5S Bl I BivE B12 I Biv BS I 03 Bl I B2
SUBORO VP I SUBCOM VP
VP I conj B13 I B7
Conj B13 I BivE B13 I Biv B8 I 03 I B7
VP I Conj B14 I SUBCOM VP
conj B14 I BivE B14 I Biv B10 I 03 I SUBCOM VP
NW E2 BS I PRE NW E2 BS I UNG B6
NW E2 B8 I PRE NW E2 BB I UNG B9

Figure 9.2: Grammarused for simulationprogram.

(



Chapter9: Simulation

9.3.1 Initialization

192

When the simulation program starts, at first it go through initialization stage. It

analyzes the grammar stored in a text file, as shown in figure 9.2 and builds parsing

table using the theory discussed in section 2.8.3. The program also puts error

recovery information into the parsing table using the theory discussed in section

2.8.4. If we use non-ambiguous Bangia grammar, then parsing table derived in

section 8.3.3 will be generated. Input sentences will be parsed using the information

of the parsing table. For erroneous sentences, error recovery will also be achieved

using the information of the parsing table.

9.3.2 Lexical Analyzer

The functionality oflexical analyzer is "parts of speech tagging". For this purpose, it,
uses the lexicon. As tagging is possible only for simple word, the complex words are

broken into simple words. Complex words are attempted to be broken firstly using

lexicon, then using algorithm, and then heuristics are applied. Then the simple words

are tagged using lexicon. If any word is found in lexicon, it is tagged as "unknown".

In brief, the lexical analyzer is implemented using the theory discussed in section

8.4.

9.3.3 Syntax Analyzer

The functionality of syntax analyzer is to generate parsed text as output. Output

parsed text is represented as tree structure. The syntax analyzer uses top-down

predictive parsing algorithm, as discussed in algorithm 8.1. The algorithm also

adopts error recovery policy. When any error is found in input sentence, syntax

analyzer does not stop parsing. Rather it reports the type of error (like extra word or

missing word) and continues parsing.



Chapter9: Simulaiion

9.4 Input of the Program

193

The simulation program takes sentences as input from a text file. BangIa input

sentences are stored in UNICODE BangIa font. As a result, each BangIa letter is

recognizable to the simulation program. Each UNICODE character takes 2 bytes of

storage, contrasts with ASCII letter which takes I byte but does not support multi-

lingual characters. First byte of UNICODE character represents character code and

second byte represents language code. Code for BangIa language is 9. ASCII code

has also equivalent representation in UNICODE format. In that case, language code

is 0 and character code is same as ASCII code. UNICODE for BangIa characters is

described in Appendix A.

Input file containing BangIa sentences to be parsed is shown in figure 9.3.

Eie &.dit F~ ~ew tlelp

3IIf.l 'f~
3Tlffr ~ ~nt
"fir .,,-'1t m
3trfir «Tit 'i3"Ri ~rrt
3i1Fr ~ F;P'I?f ~ ~

~ 'iT3

3i'f.ll?f ;sit Bl'\fo trpr
3TJ7mT o1'SJt: ><:-(il:eu <rf ~ trP.T

l' 'I"'" ~ "l"I • "'1l' ell'T rT'It """ 'ff'[
m~~~m
'fmf ~ 'ff'f 'fl'T
"r","1'."' 'S:=rr!t ~ :1':'1" 'l'fii. ~ tfPT
:Wt<r 'GFFT ::lfPT

'P'vl'.'1 Fr~ 'f?l'W'faIT 1'{ H'fT W

"fir 3 ~'"" 'W
3IIf.l, ~ '"" .w
:3JR?TT <) ~ ~ "lfr
3I1f.r / ~ j ~ BlI5 ~
3Iff.r , ~ '0&, o:'5T \SlW lfP.T

Figure 9.3: Inputfile used for simulationprogram.



Chapter 9: Simulation

9.5 Output of the Program

194

After parsing, the simulation program generates productions which represent the

parsed text for an input sentence. Corresponding productions of a parsed text is

stored in a text file, as shown in figure 9.4.

Ei oulpul.txt - Notepad ~ ~ - ~ - - ~~

File .Ot ,,,,mot ~ tlOp

m ':i.-.-,
S -> BS Al
BS -> NW E2 A2
NW -> N E5
N -> .,.If.r
E5 -> e
E2 -> e
A2 -> VP A4
VP -> D3
D3 -> VF
VF -> VR AUX
VR -> 'IT
AUX -> '!1
A4 -> e
Al -> e
end
3fIfir ~ :Wt
S -> BS Al
BS -> NW E2 A2
NW -> N E5
N -> "?IIf.r

vi

Figure 9.4: Output file showing parsed text by simulation program.

To visualize the parsed text output as text file, an another program is written in Java,

which displays tree representation of each parsed text. Reason for choosing Java for

display program is, Java is UNICODE supported language, and it is possible to

show UNICODE BangIa words in a Java program. A tree representation of a parsed

text using the Java based display program is shown in figure 9.5.



Chapter 9: Simulation

s~~--------
~ Al

_----~ I
NW E2 A2 C

~ I ~
N E5 e VP A4

I! I I~ ~ D] e
I
VF

~
VR AUX

l *

195

Figure 9.5: Output of display program using Java showing tree representation of parsed
text.

9.6 Error Recovery

The parser program recovers from error if any error occurs in the input sentence and

continues parsing. At the point of error, the parser reports the type of error.

For example, while parsing the erroneous sentence '''o!@r1it'l't "l!l" (ami Dhaka za), the

parser detects a missing auxiliary. Then the parser reports missing of auxiliary and

continues parsing. Output productions are shown in figure 9.6, where missing

auxiliary is reported using the production "AUX --7 ??". Tree representation is

shown in figure 9.7.



Chapter 9: Simulation 196

Figure 9.6: 'Output productions for the sentence '''l@rWi'! 'It" (ami Dhaka za).

s/--:----------
M AI_------c===~-___ I~ 6 ~ E

/'---... I /-------'---~
N ~ e W M

1, 1 ;:::""" I
'>III~ v UNO E2 El Dl E

/'---... I I I
UN fB E E: VF

I I /'---...
Wf;f C VR AUX

I I
'It '?

r;:::::::J 011 to 2

Figure 9.7: Tree representation for the sentence '''l@rWi'! 'It" (ami Dhaka za).



Chapter9: Simulation 197

Again, while parsing the erroneous sentence ".1l ~ toP'1 \5tI5 "!t!l" (01 Ti chhele vat

khay), the parser detects an extra word '~" (Ti). Then the parser reports the

detection of that extra word, skips it and continues parsing. Output productions are

shown in figure 9.8, where detection and skipping of extra word is reported as

"symbol skipped: ~". Tree representation is shown in figure 9.9.

ri output tx1 - Notepad ' ". ~[J~
Eie ~cil: IVIMl: ~ew tlelp

j\ fr, ,~ ~ =wr
S -> BS Al
BS -> PRE NW E2 A2
PRE ->.DEMO E3
DEMO -> DD E7
DD -> }
E7 -> e
E3 -> e
< symbol skipped: Ii' >
NW -> N E5
N ->;~
E5 -> e
E2 -:> e
A2 -> VP A4
VP -> D3
D3 -> D4
D4 -> NW E2 El Dl
NW -> N E5
N -> ~
E5 -> e
E2 -> e
El -> e
Dl -> VF
VF -> VR AUX
VR -> 'IT
AUX -> 3IPT

A4 -> e
Al -> e
end .vi

Figure 9.8: Outputproductionsfor the sentence".!I tu ~ 15J'i3"!t!l" (01 Ti chhelevat khay).



Chapter 9: Simulation 198

S

~-------------AI
------====~;;;:>~"'~------ I

PRE HW E2 A2 C

~ ~ I /---_
DEMO £3 N ES C VP A4

~ I I I I I
DD E7 C ~ e D3 f

,\ ! J,
~
NW E2 1'.:1 DI

~ I I I
N ~ C f W

I I ~
'!3tW € VR AUX

J J.

Figure 9.9: Tree representation for the sentence "J! ~ ~ ~ "!11!"(01 Ti chhele vat khay).

9.7 Remarks

In this chapter, we have discussed about the simulation program, where non-

ambiguous BangIa grammar, predictive parsing algorithm and error recovery

mechanism is simulated by several BangIa input sentences. Therefore, justification

of non-ambiguous predictive BangIa grammar and error recovery mechanism is

analyzed.



Chapter 10

Conclusion

10.1 Achievements of This Thesis

Machine translation is a very important and popular field in computer science over

the world because of its social, commercial and scientific applications. Whether

human translation is very slow, machine translation enables swift translation of

literary works, product catalogs, official documents, scientific works from one

language to another language. Machine translation can play a vital role m

international business, like swift translation of product manuals and catalogs to

language of target market and then fulfilling the market demands. Though quality of

translation may not be up to the mark, specially for the case of literary works,

quality may be inuch denigrated. But manual translators can take the output of

machine translation system as ground work, and can enhance the quality of

translation by re-ordering and using more appropriate words. Raw translation using

machine translation system makes the task of translation much easier for a manual

translator other than translating from the root.

There are not so many works in the field of machine translation in BangIa. There are

some works in translating from English to BangIa, like ANIRBAN. But in

translating from BangIa to other languages, there is no commercial machine

translation software. This is because, there are very few research works in the field

of machine translation using BangIa as source language. It has been analyzed and

justified that syntax based machine translation technique is one of the most suitable

technique for machine translation in BangIa. Syntax based machine translation is

composed of two stages - parsing and translating. Of the two stages, parsing is most

challenging, as translation is directed by the parsed text.

Parsing methodology in BangIa was developed in 2005 [22][23]. But the grammar

for parsing was ambiguous and did not support predictive parsing. Furthermore,



Chapter 10:Conclusion 200

error recovery mechanism was absent in that work. This thesis has overcome such

limitations and gained following achievements.

1. Non-ambiguous grammar: In this thesis, we have designed non-ambiguous

grammar for Bangia natural language sentences. Non-ambiguity of grammar

is very important, as it ensureS at most one entry in each grid position of

parsing table, whereas ambiguous grammar allows several entries in some

grid positions of parsing table, not making the parsing table fully decisive.

2. Predictive parser: In this thesis, we have designed non-ambiguous Bangia

grammar for predictive parser. Predictive parsing is very important, as it

allows parsing in linear time. Previous grammar was not applicable' for

predictive parsing, resulting the parser to analyze all possible combinations

of rules to match an input sentence and taking exponential run time.

Generally,' machine translation software runs on a large volume of data.

Therefore, exponential run time is very costly and impractical. In this thesis,

we have designed grammar for predictive parser. When such grammar is

applied on a parser, it runs in linear time. As a result, it meets the demand of

commercial machine translation software.

3. Non-dictionary word handling: In this thesis, we have designed an

efficient and effective mechanism to handle non-dictionary words in an input

sentence. Previous Bangia parsing methodology can not parse a sentence

containing non-dictionary words and parsing halts when a non-dictionary

word occurs in input sentence. Non-dictionary word handling is very

important, as non-dictionary word occurs frequently .in Bangia sentences,

like any other natural language. Non-dictionary word handling mechanism

designed in this thesis has been proved very effective and increased accuracy

of parsing greatly.

4. Enhancement of Bangia grammar: In this thesis, we have enhanced

previous Bangia grammar, which has increased the accuracy of parsing. We



Chapter 10:Conclusion 201

have added' rule in BangIa grammar to allow use of conjunctive in noun

phrase, use of more than two independent sentences in a compound sentence

and use of numeric word in input sentence.

5. Error recovery mechanism: In this thesis, we have designed an error

recovery mechanism in BangIa parsing. In previous works of BangIa parsing,

the idea of error recovery was absent. A parser having no error recovery'

mechanism stops parsing when an error occurs in input sentence, whereas a

parser having error recovery mechanism can continue parsing when an error

occurs skipping the error. Error recovery mechanism in this thesis has

improved the accuracy of parsing. In case of previous works, number of

unparsed sentence was high, as probability or error in natural language is

high. This is because, not all the correct sentences can be fitted in grammar.

Allowing all possible combinations of sentences grows the size of grammar

exponentially. Therefore, we allow only most frequent and common

structures in grammar. To recover from error, we have applied some

heuristics. Use of heuristic does not ensure correct recovery in all cases,

though in most of the cases recovery is correct. But most importantly, error

does not stall the task of parsing and parsing continues after occurrence of

error.

6. Lexicon structure: In this thesis, we have designed lexicon structure for

BangIa natural language. The structure is very similar to BangIa dictionary

structure. Therefore, the lexicon can easily be built from BangIa dictionary.

Moreover, the structure of lexicon is very efficient for the functionality of

lexical analysis.

7. Lexical analysis: In this thesis, we have designed a lexical analyzer for

BangIa parser. Though, the main purpose of lexical analyzer is parts-of-

speech tagging, we have brought out some new and efficient ideas. We have

showed an idea of part-of-speech tagging for complex words by breaking



Chapter 10:Conclusion 202

through lexicon or algorithm or heuristic. We also have showed idea of

handling of simple words having multiple parts-of-speech.

10.2 Future Works

Research works are not discrete, rather continuation of works. Such as, we have

enhanced previous Bangia parsing methodology and added many features. There are

also lots of research scopes in direction of Bangia parsing methodology. We have

mentioned some scopes of future works in this area as follows,

• Use of negative sentences in Bangia predictive parser with error recovery

capability. For example, predictive parsing of'~ 1i1'l'1 'l1'l on" (ami Dhaka
zabo na) is not possible.

• Use of interrogative sentences In Bangia predictive parser with error

recovery ~apability. For example, predictive parsing of'~"«A 1i1'l'1"'lWl on?"

(tumi keno Dhaka zabe na?) is not possible.

• Use of two consecutive verbs in verb phrase in Bangia predictive parser with

error recovery capability. For example, '~ Ol:"[ <!I~" (ami chole esechi) is

not possible to parse using our proposed Bangia grammar.

• Bangia grammar can be designed in paragraph level, whether our proposed

Bangia grammar is designed in sentence level.

• Learning method may be included when an unknown word or a group of

unknown word occurs in a sentence.

• Error recovery method may be enhanced using more heuristics.

• Consideration of idioms in Bangia grammar.



Appendix A

Unicode for BangIa Characters

UNICODE stands for universal character code. BangIa characters also included into

UNICODE. Table A.I shows UNICODE for most common BangIa characters.

Table A.l: Code in UNICODE for BangIa characters.

BangIa Code in UNICODE
Character 1st byte 2nd byte

'>l 133 9
"'IT 134 9
~ 135 9

" 136 . 9
~ 137 9
'\S 138 9
'lI 139 9
"I 143 9
<!l 144 9
'5 147 9
~ 148 9
~ 149 9
of 150 9
'! 151 9
'I 152 9
1i 154 9
~ 155 9
'iIlj 156 I 9
~ 157 9
"Il 158 9
~ 159 9
~ 160 9
'5 161 9
1> 162 9

" 163 9
'0 164 9
Of 165 9
'f 166 9
'I 167 9
"I 168 9



Appendix A: Unicode for Bangia Characters

Of 170 9
"ll' 171 9
'I 172 9
'" 173 9
'll 174 9
II 175 9
il 176 9
Of 178 9
"f 182 . 9
'l[ 183 9
'f 184 9
1( 185 9

''It'I'Rl 190 9
~'I'Rl 191 . 9
';f'l'Rl 192 9
~'I'Rl 193 9
~'I'Rl 194 9
<!I'I'Rl 199 9
.!t'l'Rl 200 9
'<l'l'Rl 203 9
-a'l'Rl 204 9
~ 206 9
'¥ 220 9
'i 221 9
II 223 9
0 230 9
) 231 9
'l- 232 9
'Il 233 9
8 234 9
C! 235 9
1\0 236 9
9 237 9
IT 238 9
:. 239 9

204



Bibliography

[1] T. McEney, and A. Wilson, Corpus Linguistics, 2nd Edition, Edinburgh
University Press, 200!.

[2] U. Muegge, "An Excellent Application for Crummy Machine Translation:
Automatic Translation of a Large Database", in Proceedings of the Annual
Conference of the Gennan Society of Technical Communicators, (Stuttgart,
Germany), pp. 18-21,2006.

[3] P. Lenssen, "Google Translator: The Universal Langauge", 2005.
[4] P. Koehn, F. J. Och, and D. Marcu, "Statistical phrase based translation", in

Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology,
(Edmonton, Canada), vol. I, pp. 48-54, 2003.

[5] D. Chiang, "A Hierarchical Phrase-Based Model for Statistical Machine
Translation", in Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics (ACL) 2005, (Michigan, USA), pp. 263-270, 2005.

[6] M. Nagao, "A framework of a mechanical translation between Japanese and
English by analogy principle", in Proceedings of the International NATO
Symposium on Artificial and Human Intelligence, (Lyon, France), pp. 173-
180, 1984.

[7] J. Hutchins, "Milestones in Machine Translation - NO.6: Bar-Hillel and the
Nonfeasibility of FAHQT", International Journal of Language and
Documentation, nO.I, pp. 20-21,1999.

[8] Y. Bar-Hillel, "The Present Status of Automatic Translation of Languages",
Advances in Computers, vol. I, pp. 91-163,1960.

[9] F. Och, "The Machines do the Translating", 2005.
[10] D. Geer, "Statistical Translation Gains Respect", IEEE Computer, pp. 18-21,

2005.
[II] E. Ratcliff, "Me Translate Pretty One Day", WIRED Magazine, Issue 14.12,

Dec. 2006.
[12] "NIST 2006 Machine Translation Evaluation Official Results", Nov. 2006.
[13] "Machine Translation Controlled Language Translation Standards", available

at http://muegge.cc (last access on Oct. 2008).
[14] "In-Q-Tel", available at http://www.igt.org (last access onOct. 2008).
[15] W. Jackson, "Air Force wants to build a Universal Translator", Government

Computer News (GCN), 2003.
[16] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,

Techniques, and Tools, 2nd Edition, Addison Wesley, 2007.
[17] N. Chomsky, "Three Models for the Description of Language", IRE

Transactions on Information Theory, vol. 2, no. 2, pp. 113-124, Sep. 1956.
[18] "The' Penn Treebank Project", . available at

http://www.cis.upenn.edu/-treebank (last access on Oct. 2008).
[19] P. Adriaans, H. Fernau, and M. V. Zaanen, Grammatical Inference:

Algorithms and Applications, 1st Edition, Springer, 2002.
[20] C. D. Manning, and H. Schuetze, Foundations of Statistical Natural

Language Processing, Ist Edition, MIT Press, 1999.

http://muegge.cc
http://www.igt.org
http://www.cis.upenn.edu/-treebank


Bibliography 206

[21] "Anubadok Online: The Bengali Machine Translator", available at
http://bengalinux.sourceforge.net/cgi-bin/anubadok/index.pI (last access on
Oct. 2008).

[22] M. M. Hoque, and M. M. Ali, "A Parsing Methodology for Bangia Natural
Language Sentences", in Proceedings of the International Conference on
Computer and Information Technology (ICCIT) 2005, (Dhaka, Bangladesh),
pp. 277-282, 2003.

[23] M. M. Hoque, "A Parsing Methodology for Bangia Natural Language
Sentences", Master's thesis, Department ofCSE, BUET, 2005.

[24] M. M. Murshed, "Parsing of Bangia Natural Language Sentences", in
Proceedings of the International Conference on Computer and Information
Technology (ICCIT) 1998, (Dhaka, Bangladesh), pp. 185-189, 1998.

[25] M. R. Selim, and M. Z. Ikbal, "Syntax Analysis of Phrases and Different
Types of Sentences in Bangia", in Proceedings of the International
Conference on Computer and Information Technology (ICCIT) 1999, (Sylhet,
Bangladesh), pp. 175-186, 1999.

[26] M. M. Ali, and M. M. Ali, "Development of Machine Translation
Dictionaries for Bangia Language", in Proceedings of the International
Conference on Computer and Information Technology (ICCIT) 2002, (Dhaka,
Bangladesh), pp. 267-271, 2002.

[27] L. Mehedy, S. M. Arefin, and M. Kaykobad, "Bangia Syntax Analysis: A
Comprehensive Approach", in Proceedings of the International Conference
on Computer and Information Technology (ICCIT) 2003, (Dhaka,
Bangladesh), pp. 287-293, 2003.

[28] M. M., Asaduzzaman, and M. M. Ali, "A Knowledge Based Approach to
Bangia-English Machine Translation for Simple Assertive Sentences",
International Journal of Translation, vol. IS, no. 2, pp. 77-97, 2003.

[29] K. J. Alam, and M. A. Rahman, A. K. M. M. Haque, T. Islam, and M. T.
Irfan, "Structure-based Bangia to English Machine Translation", in
Proceedings of the International Conference on Computer and Information
Technology (ICCIT) 2005, (Dhaka, Bangladesh), 2005.

[30] M. Z. H. Sarkar, S. Rahman, and M. A. Mottalib, "Bottom-up Parsing
Algorithms for Bengali Parser Applying Context-sensitive Transformation
Rules to Maintain the Freeness of Word Order", in Proceedings of the
National Conference on Computer Processing of Bangia (NCCPB) 2005,
(Dhaka, Bangladesh), 2005.

[31] M. Z. H. Sarkar, S. Rahman, and M. A. Mottalib, "Parsing Algorithms for
Bengali Parser to Handle Affirmative Sentences", Asian Journal of
Information Technology (AJIT), vol. 5, no. 5, pp. 504-511,2006.

[32] E. T. Irons, "A Syntax Directed Compiler for ALGOL 60", Communications
of the ACM, vol. 4, no. I, pp. 51-55, Jan. 1961. '

[33] P. M: Lewis, and R. E. Steams, "Syntax-directed Transduction", Journal of
the ACM (JACM), vol. IS, no. 3, pp. 465-488, Jul. 1968.

[34] A. V. Aho, and J. D. Ullman, The Theory of Parsing, Translation and
Compiling (Volume 1: Parsing), Prentice Hall, 1972.

[35] P. O. Hearn, and R. Tennent, Algol-like Languages, 1st Edition, Birkhauser
Boston, 1996.

http://bengalinux.sourceforge.net/cgi-bin/anubadok/index.pI


Bibliographi 207

[36] A. Nijholt, Context-free Grammars: Covers, Normal Forms, and Parsing, 1st
Edition, Springer, 1980.

[37] J..Levin, A Madman Dreams of Turing Machines, Anchor, 2007.
[38] M. Ganapathi, and C. N. Fischer, "Affix Grammar Driven Code Generation",

ACM Transactions on Programming Languages and Systems (TOPLAS), vol.
7, no. 4, pp. 560-599, Oct. 1985.

[39] H. Alblas, and B. Melichar, Attribute Grammar, Applications and Systems,
Ist Edition, Springer, 1991.

[40] B. Keller, and D. Weir, "A Tractable Extension of Linear Indexed
Grammars", in Proceedings of the Seventh Conference on European Chapter
of the Association for Computational Linguistics, (Dublin, Ireland), pp. 75-
82, 1995.

[41] S. Shieber, "Evidence Against the Context-freeness of Natural Langauge",
Linguistics and Philosophy: 8, pp. 333-345, 1985.

[42] G. K. Pullum, and G Gazdar, "Natural Languages and Context-free
Languages", Linguistics and Philosophy: 4, pp. 471-504,1982.

[43] C. Culy, "The Complexity of the Vocabulary of Bambara", Linguistics and
Philosophy: 8, pp. 345-351,1985.

[44] R. Frost, and R. Hafiz, "A New Top-Down Parsing Algorithm to
Accommodate Ambiguity and Left Recursion in Polynomial Time", ACM
SIGPLAN Notices, vol. 41, no. 5, pp. 46 - 54, 2006.

[45] R. Frost, R. Hafiz, and P. Callaghan "Modular and Efficient Top-down
Parsing for Ambiguous Left-recursive Grammars", in Proceedings of the 1Oth
International Workshop on Parsing Technologies (IWPT), (Prague, Czech
Republic), pp. 109-120, Jun. 2007.

[46] R. Frost, R. Hafiz, and P. Callaghan, "Parser Combinators for Ambiguous
Left-recursive Grammars", in Proceedings of the 1Oth International
Symposium on Practical Aspects of Declarative Languages (PADL), (San
Francisco, USA), pp. 167-181, Jan. 2008.

[47] M. Sipser, Introduction to the Theory of Computation, 2nd Edition, Course
Technology, 2005.

[48] P. Norvig, "Techniques for Automatic Memoization with Applications to
Context-free Parsing", Journal of Computational Linguistics, vol. 17, no. 1,
pp. 91-98, Mar. 1991.

[49] M. Tomita, Efficient Parsing for Natural Language, 1st Edition, Springer,
1985.

[50] D. Grune, and C. J. H. Jacobs, Parsing Techniques: A practical Guide, 2nd
Edition, Springer, 2007.


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154
	00000155
	00000156
	00000157
	00000158
	00000159
	00000160
	00000161
	00000162
	00000163
	00000164
	00000165
	00000166
	00000167
	00000168
	00000169
	00000170
	00000171
	00000172
	00000173
	00000174
	00000175
	00000176
	00000177
	00000178
	00000179
	00000180
	00000181
	00000182
	00000183
	00000184
	00000185
	00000186
	00000187
	00000188
	00000189
	00000190
	00000191
	00000192
	00000193
	00000194
	00000195
	00000196
	00000197
	00000198
	00000199
	00000200
	00000201
	00000202
	00000203
	00000204
	00000205
	00000206
	00000207
	00000208
	00000209
	00000210
	00000211
	00000212
	00000213
	00000214
	00000215
	00000216
	00000217
	00000218
	00000219
	00000220
	00000221
	00000222
	00000223
	00000224

