
MoSco Enggo Thesis

SPANNING PATHS, CYCLES AND TREES:

PROBLEMS AND RESULTS

By

Submitted to

Department of Computer Science & Engineering

In partial fulfillment of the requirements for the degree of

MoScoEnggo (Computer Science & Engineering)

Department of Computer Science & Engineering

Bangladesh University of Engineering & Technology

Dhaka-IOOO, Bangladesh

, .

January 24, 2004
.(- --
I

1111111" 111111111/11111//1111/ "'
#99110#

The thesis, SPANNING PATIlS, CYCLES ANq TREES: PROBLEMS AND RESULTS,

submitted by MOHAMMAD SOHEL RAHMAN, ROLL No. 040205030P, Session April,

2002, Registration No. 95389 to the Department of Computer Science and Engineering of

Bangladesh University of Engineering and Technology has been accepted as satisfactory for

partial fulfillment of the requirements for the degreeofM.Sc. Engg. in Computer Science and

Engineering and approved as to its style and contents. Examination held on January 24, 2004.

BOARD OF EXAMINERS

1. ~t£1~ Chairman
(Dr. M. Kaykobad) (Supervisor)
Professor
Department of CSE
BUET, Dhaka-toOO

2. ~ Member
(Dr. Md. Shamsul Alam)
Professor and Head
Department of CSE
BUET, Dhaka-IOOO

3. ~. Member
(Dr. Md. Mostofa Akbar)
Assistant Professor
Department of CSE
BUET,Dhaka-IOOO

4. ()n .~. r..ICI..~ Member
(Dr. Md. Monirul Islam)
Assistant Professor
Department of CSE
BUET,Dhaka-IOOO

5. Member
(Dr. Md. Mozammel Huq Azad Khau) (External)
Professor
Department of CSE
East West University, Dhaka

11

DECLARA nON

I, hereby, declare that the work presented in this thesis is done by me under the

supervision of Dr. M. Kaykobad, Professor, Department of Computer Science and

Engineering, Bangladesh University of Engineering and Technology, Dhaka-lOOO. I

also declare that neither this thesis nor any part thereof has been submitted elsewhere

for the award of any degree or diploma.

Countersigned

Dr. M. Kaylwbad

(Supervisor)

III

(Mobammad Sohel Rahman)

ACKNOWLEDGEMENTS

All praises are for the Almighty ALLAH who is the most beneficent and the most merciful.

First of al], I would like to thank my supervisor Dr. M. Kaykobad, Professor, Department of

CSE, SUET for teaching me how to carryon a research work in the highest level. I really

appreciate his extraordinary patience in each and every of the numerous research sessions we

had and his constant encouragements in the face of extreme difficulty to find results. I again

express my heart-felt and most sincere gratitude to him for his constant supervision, valuable

advice and continual encouragement, without which this thesis would have not been possible.

I would like to thank Dr. Md. Abul Kashem Mia, Associate Professor, Department of CSE,

SUET for introducing me to Graph Theory, a fascinating and ever-growing field of Computer

Science, when he supervised my B.Se. Engg. thesis.

I would like to express my utmost gratitude to Dr. Md. Mostofa Akbar, Assistant Professor,

Department ofCSE, SUET for his constant support and valuable discussions frequently made

with him.

I would like to thank the other members of my examination board, Prof. Dr. Shamsu] Alam,

Dr. Monirul Islam and Prof. Dr. M. H. A. Khan for their valuable suggestions and of course

for their unconditional encouragements.

J would also like to thank my brother Md. Saifur Rahman, a final year CSE student in SUET

for his fruitful discussions. He is a co-author of a submitted paper corresponding to the work

described in Section 3.2. I would also have to thank anonymous referees of our published

papers for their invaluable comments and suggestions.

I must have to acknowledge with sincere thanks the constant support and patience of my

family members- my parents and my wife. The arduous task of having completed the thesis

could not have been accomplished without there patience and understanding.

Finally I would like to acknowledge the all-out cooperation and services rendered by the

members of the Department ofCSE, SUET.

iv

Contents

List of Figures vi
Abstract 1
Chapter I: INTRODU CTI ON 2

I .0 Introduction 2
I .I Literature Review 3

1.1.1 Hamiltonian (Spanning) Paths and Cycles , 4
1.1.2 Spanning Trees 5

1.3 Objective of This Thesis 8
1.4 Thesis Organization 9

Chapter 2: PRELIMINARIES II
2.0 Introduction I I
2.1 Basic Terminology 11

2.1.1 Graphs and Multigraphs II
2.1.2 Subgraphs 12
2.1.3 Connectivity 13
2.1.4 Paths and Cycles 14
2.1.5 Trees 14

2.2 Algorithms and Complexity 16
2.2.1 The notation O(n) 16
2.2.2 Polynomial algorithms 16
2.2.3 NP-Com pleteness I 6

Chapter 3: HAMILTONIAN PATHS AND HAMILTONIAN CYCLES 18
3.0 Introduction 18
3. I Degree Sum and Distance of Vertices 19

3.1.1 Significance of Theorem 3.1.3 & Theorem 3.1.5 22
3.2 Vertex Triples 25
3.3 Independence Number and Hamiltonicity 28

3.3.1 Prelim inaries .; 28
3.3.2. Independence Number and Hamiltonian Path 30
3.3.3. Ham iltonian Cycle 33

3.4 Studies and Appl ications 35
Chapter 4: SPANN ING TREES 37
4.0 Introduction 37
4.1 Independence Number and Degree-Bounded-Spanning Tree 37

4.1.1 An Efficient Algorithm 40
4.2 New Problems and Complexities 42
4.3. The Set Version 49
4.4 Appl ications 56

Chapter 5: CONCLUSION AND FUTURE RESEARCH 58
5. I Future Research 61

References 62
Publ ications of Mohammad Sohel Rahman 66

v

List of Figu res

Figure 2.1: A Graph with seven vertices and ten edges 11
Figure 2.2: A vertex-induced subgraph 12
Figure 2.3: (a) A connected graph, and (b) a disconnected graph with two connected
components 13
Figure 2.4: Walk, Trail, Cycle and Path 14
Figure 2.5: A tree 15
Figure 2.6: A spann ing tree 15
Figure 3.1: A graph satisfying the condition of Theorem 3.1.5 22
Figure 3.2: A graph satisfying the condition of Theorem 3.2.1 26
Figure 3.3: A Graph G with 8 vertices 27
Figure 3.4: (a) A graph G with 6 vertices and 9 edges (b) Enumerations of some
maximal paths of G 29
Figure 3.5: A graph satisfying the condition of Theorem 3.3.1.6 33
Figure 3.6: A graph satisfying the condition in Theorem 3.3.1.6, but having no
Ham iltonian cycle 33
Figure 3.7: A Graph satisfying the condition of Theorem 3.3.1.7 35
Figure 4.1: Degree Bounded Spanning Tree 38
Figure 4.2: Degree-d-bounded Spann ing Tree 39
Figure 4.3: Illustration of how Algorithm 4.1.1.1 works 42
Figure 4.4: Minimum Leaf Spanning Tree .43
Figure 4.5: Restricted Leaf in Sub-graph Spanning Tree .44
Figure 4.6: Variant of Maximum Leaf Spanning Tree for Bipartite Graphs .45
Figure 4.7: Exact Leaf Spann ing Tree for Bipartite Graphs : 49
Figure 4.8: Maximum Leaf Spanning Tree and its Set Version 50
Figure 4.9: An exam pie of how Algorithm 4.1 works 55

vi

List of Tables

Table 5.1: Sufficient Conditions for Hamiltonian Paths and Cycles 59
Table 5.2: Spanning Tree Problems 60
Table 5.3: Spanning Tree Conditions 61

VII

Abstract

This thesis deals with the classical graph theoretic structures- spanning paths, cycles

and trees. We here present new sufficient conditions for a graph to possess

Hamiltonian (spanning) paths. New sufficient conditions for a graph to be

Hamiltonian are also presented. We here basically deal with degree related conditions.

Also, a new parameter, namely shortest path distance, is introduced in a sufficient

condition we present. The infamous Ore's theorem is shown to follow from our

results, which prove the significance of our conditions. Furthermore the relation

between independence number of a graph and hamiltonicity is also explored in this

thesis.

Spanning trees have numerous applications in both practical and theoretical problems.

We here present some new spanning tree problems and consider the issues of their

complexity. The relation between independence number and a special spanning tree,

namely degree bounded spanning tree is also explored. Finally, we introduce a new

notion of "set version" of some decision problems having integer K < IVI as a

parameter in the input instance, where we replace K by a set X ,;;; IVI. For example,
the set version of maximum leaf spanning tree problem asks whether there exists a

spanning tree in G that contains X as a subset of the leaf set. We raise the issue of

whether the set versions of NP-Complete problems are as hard as the original

problems and prove that although in some cases the set versions are easier to solve,

this is not necessarily true in general.

r, "

Chapter 1

INTRODUCTION

1.0 Introduction

A graph is an abstract structure that is used to model information. Precisely, graphs

can represent' any information that can be modeled as objects and connections

between those objects. For example, graphs are used to describe hierarchies and

interconnections of components in computer networks; each component is represented

as a vertex in a graph and the connection between components x and y is represented

by an edge from x to y.

There are various interesting structures of graphs that has been introduced and

exploited for various theoretical and practical problems. Paths, cycles and trees are

very basic graph structures and have always been extensive focus of research.

Basically many new research areas of computer science have been evolved based on

significant works done on these basic structures, and in almost every area these

findings based on paths, cycles and trees have found to provide significant

contributions.

A very interesting area based on paths cycles and trees are the 'spanning' versions of

these structures i.e. 'spanning paths', 'spanning cycles' and 'spanning trees'.

Historically spanning paths and cycles are popularly known as Hamiltonian paths and

Hamiltonian cycles, respectively. Research on this particular area is motivated by

numerous practical applications based on these structures [4, 9, 38, 39, 42, 43]. We

discuss a few of the interesting practical applications below.

Electronic Circuitry Design-The classical and popular example of a spanning tree

application contributes to the design of electronic circuitry [8]. It is often necessary to

make the pins of several components electrically equivalent by wiring them together.

To interconnect a set of n pins, we can use an arrangement of n-1 wires, each

2

connecting two pins. Of all such arrangements, the one that uses the least amount of

wire is usually the most desirable. This is in fact the famous minimum-weight

spanning tree problem.

Minimum Connector Problem- Suppose we wish to build a railway network

connecting n given cities so that a passenger can travel from any city to any other with

the constraint that the total amount of track must be a minimum (in fact this should be

the aim of the government building the network since minimum track would ensure

minimum cost of construction). So in effect the problem is to find an efficient

algorithm for deciding which of the nn-2 possible spanning trees uses the least

amount of track.

Enumeration of Chemical Molecule- If a molecule has only carbon atoms and

hydrogen atoms, then it can be represented as a graph where each C is a vertex of

degree 4 and each H is a vertex of degree 1. Now consider a general class of

molecules known as the alkanes w'ith chemical formula CnH2n+2. Now a question is

how many different molecules are there with this formula. We can use the tree

structure to solve this problem since the graph of any molecule with formula

CnH2n+ 2 is a tree.

There are various other practical applications of spanning paths, cycles and trees.

Problems involving spanning trees and Hamiltonian cycles (and paths) arise naturally

into many network situations. Research on fault tolerance, for example, extensively

exploits the theory of Hamiltonicity. Many of these problems arise in Internet context

too.

Finally, in many other situations graphs and these structures are not directly suggested

by the problem itself, but nevertheless they can be invaluable tool. Such indirect uses

of minimum spanning tree, for instance, include optimal broadcast in an unreliable

medium, optimal data storage in two-dimensional arrays, min-max path problems, and

cluster analysis.

1.1 Literature Review

In this section we present a brief literature review of the topics of our thesis. As the

title indicates, our thesis may be classified into two major sections; one dealing with

3

the spanning paths and cycles i.e. Hamiltonian paths and Hamiltonian cycles and the

other dealing with the spanning trees. First, in the following section, we consider

Hamiltonian paths and cycles followed by a section devoted to spanning trees.

1.1.1 Hamiltonian (Spanning) Paths and Cycles

In this section we define Hamiltonian cycle and path and present a brief literature

review of topics related to our thesis. A Hamiltonian cycle is a spanning cycle in a

graph i.e. a cycle through every vertex and a Hamiltonian path is a spanning path. A

graph containing a Hamiltonian cycle is said to be Hamiltonian. It is clear that every

graph with a Hamiltonian cycle has a Hamiltonian path but the converse is not

necessarily true. The study of Hamiltonian cycles and Hamiltonian paths in general

and special graphs has been fueled by practical applications and by the issues of

complexity. The problem of finding whether a graph G is Hamiltonian is proved to be

NP-Complete for general graphs [13]. The problem remains NP-Complete [13] (i) if

G is planar, cubic, 3-connected, and has no face with fewer than 5 edges, (ii) if G is

bipartite, (iii) if G is the square of a graph, (iv) if a Hamiltonian path for G is given as

part of the instance. On the other hand the problem of finding whether a graph G

contains a Hamiltonian path is also proved to be NP-Complete for general graphs

[13]. Again it remains NP-Complete (i) if G is planar, cubic, 3-connected, and has no

face with fewer than 5 edges, (ii) if G is bipartite. Even the variant in which either the

starting point or the end point or both are specified in the input instance is also NP-

Complete. No easily testable characterization is known for Hamiltonian graphs. Nor

there exists any such condition to test whether a graph contains a Hamiltonian path or

not. This is why tremendous amount of research has been done in finding sufficient

conditions for the existence of Hamiltonian cycles or Hamiltonian paths in graphs [1,

10,32].

Before presenting some of the conditions in the literature we need to introduce and'

define some of the notations we use. Given a graph G = (V, E) and a vertex U E V, we

mean by d(u) the degree of u in G. In other words d(u) = ING(u)l, where NG(u) denotes

the neighbor set of u in a graph G. If H ~ G then diAu) ~ INH(u)1 and

dii(u) = INri \ H(u)1. By i5(u, v) we denote the length of a shortest path between u and v

4

in G. On the other hand, by 5(G) we indicate the degree of a minimum degree vertex

in G. V[G] and E[G] are used to denote, respectively, the vertex set and edge set of G.

Now we are ready to list some of the conditions in the literature for the existence of

Hamiltonian cycles or paths in graphs.

Theorem 1.1.1 (Dirac [10]).IfG is a simple graph with n vertices where n 23 and (j

(G) 2 n12,then G is Hamiltonian. 0

Theorem 1.1.2 (Ore [32]). Let G be a simple graph with n vertices and u, v be

distinct nonadjacent vertices ofG with d(u) + d(v) 2 n. Then G is Hamiltonian if and

only ifG + (u, v) is Hamiltonian. 0

Theorem 1.1.3 (Bondy-Chvatal [1]). If G is a simple graph with n vertices, then

G is Hamiltonian if and only if its closure is Hamiltonian.. 0

Remark: The (Hamiltonian) closure of a graph G, denoted C(G), is the supergraph

of G on V(G) obtained by iteratively adding edges between pairs of nonacijacent

vertices whose degree sum is at least n, until no such pair remains. Fortunately, the

closure does not depend on the order in which we choose to add edges when more

than one is available i.e. the closure ofG is well defined (For a proof of this statement

see (44]).

Theorem 1.1.4 (Ore [32]). Ifd(u) + d(v) 2nfor every pair of distinct nonacijacent

vertices u and v of G, then G is Hamiltonian. 0

In this thesis, we particularly focus on degree related conditions of Hamiltonian paths

and cycles. Also we consider the independence number of a graph, and establish a

connection between the existence of a Hamiltonian path or cycle and the

independence number of a graph.

1.1.2 Spanning Trees

In this section we discuss spanning trees and related problems and results relevant to

our thesis. A spanning subgraph ofa graph G = (V, E) is a subgraph with vertex set V.

A spanning tree is a spanning subgraph that is a tree. Spanning trees have been found

to be structures of paramount importance also in practical applications. As a result

5

spanning trees of a connected graph have been the focus for extensive attention in

graph theoretic research. In the following subsection we first present some

background information and literature review of various research on spanning trees.

Spanning trees with various constraints and restricted conditions seem to pose various

interesting problems [2, 19, 23, 25, 33, 37, 46]. This is why extensive amount of

research focus has been on this particular structure and variants thereof. However, the

most popular and may be, the first important problem on spanning tree was the

famous Minimum Spanning Tree Problem as defined below.

Problem 1.1.2.1 Minimum Spanning Tree

Given a weighted connected graph G ~ (V, E) we wish tofind out a spanning tree T of

G such that weT) = I w(u, v) is minimized i.e. the summation of the weights of the
(lI,v)eT

edges of the spanning tree is minimized among allpossible spanning trees ofG.

Note carefully that the phrase "Minimum Spanning Tree" is a shortened form of the

phrase "Minimum-weight Spanning Tree". We are not, for example, minimizing the

number of edges in T, since it is easy to see that all spanning trees have exactly If1 - I

edges. Tremendous amount of research has been done on this particular problem. The

most important, popular and cited two polynomial time algorithms for finding a

Minimum Spanning Tree have to be the Prim's and Kruskal's Algorithm [8]. The

most important, popular and cited two polynomial time algorithms for finding a

Minimum Spanning Tree have to be the Prim's and Kruskal's Algorithm. Tarjan [41]

surveys the minimum spanning tree problem and provides excellent advanced

materia!. A history of the minimum spanning tree problem has been written by

Graham and Hell [14]. Tarjan attributes the first minimum spanning tree algorithm to

a 1926 paper by O. Borlivka. Kruskal's algorithm was reported by Kruskal [27] in

1956. The algorithm commonly known as the Prim's algorithm was indeed invented

by Prim [36], but it was also invented earlier by V. Jarnik in 1930.

Research has also been done on devising parallel [7] and randomized [24] algorithms

for Minimum Spanning Tree. The complexity of Minimum Spanning Tree problem,

although proved to be polynomial long before, still is considered by many researchers

6

from various point of view [5, 7]. Although it might seem that all the issues regarding

Minimum Spanning Tree problem has been settled (Complexity issue, number of

polynomial time algorithms, number of parallel algorithms etc.) every now and then a

new issue seems to evolve and consequently researchers start digging resulting in

more newer unexplored research issues. A very recent advance on this particular

problem and also on various related spanning tree problems in general is to apply the

idea of generalization. Generalized Minimum Spanning Tree Problem, first

introduced by Myung, Lee and Tcha [30] was considered, studied and explored

comprehensively by Pop [35].For better understanding with a brief discussion, we

first start with defining a combinatorial problem as follows.

Given a graph G = (V, E) and a cost function c: E ---> 91, following the definition of

Nemhauser and Wolsey [31], a combinatorial optimization problem consists of

determining among a finite set of feasible solutions those that minimize the cost

function. If we let F be a family of subsets of the edge set E and denote by

c(F) = Ic, F s;;;E, a combinatorial optimization problem in its minimization form
I!EF

is: min { c(F): F s;;;E }. Classical combinatorial optimization problems can often be

generalized in a natural way by considering a related problem relative to a given

partition V = V,UV, U",UVm of the nodes into clusters Vk s;;;V, k E {1, 2, ... , m}

such that the classical problem corresponds to the trivial partition Vk = {k} into

singletons. Consider the formal definition of the Generalized Minimum Spanning

Tree Problem below as an example.

Problem 1.1.2.2. Generalized Minimum Spanning Tree Problem

Given a graph G = (V, E) and a cost function c: E ---> 91, we are asked for a cost-

minimal tree Tin G which spans exactly one node ik E Vk in each cluster.

In this thesis, however, we look into a different set of combinatorial problems and

basically deal with the decision problems instead of the optimization problems. In

particular we are interested in spanning trees with various restrictions and constraints

applied on various graph parameters. For example, consider the following problems

and the known results.

7

Problem 1.1.2.3. Degree Constrained Spanning Tree Problem.

Given a connected graph G = (V, E) and a positive integer K < I VI, we are asked the

question whether there is a spanning tree T of G such that no vertex in T has degree

larger than K.

Theorem 1.1.2.4. (See [13]) Degree Constrained Spanning Tree Problem is NP-

Complete.0

Remark (See [13]). Problem 1.1.2.3. remains NP-Complete for any fixed K 22.

Problem 1.1.2.5. Maximum Leaf Spanning Tree Problem.

Given a connected graph G ~ (V, E) and a positive integer K < IVI, we are asked the
question whether there is a spanning tree T of G such that K or more vertices in T

have degree 1.

Theorem 1.1.2.6. (See [13]) Maximum Leaf Spanning Tree Problem is NP-

Complete. 0

Remark (See [13]). Problem 1.1.2.5. remains NP-Complete if G is regular of degree

4 or if G is planar with no degree exceeding 4.

In this thesis we first introduce some new problems (with relevant new results) where

we impose various constraints and restrictions on parameters of spanning trees. We

investigate the relationship of the independence number and a special spanning tree

namely degree bounded spanning tree. Finally, we introduce a new notion "set

version". The complexities of the set versions of various problems are discussed and

we show that surprisingly and remarkably "set versions" of some NP-Complete

problems are solvable in polynomial time although this may not necessarily be the

case all the time.

1.3 Objective of This Thesis

In this thesis we present and investigate various problems, conditions and results of

spanning paths, cycles and trees. Our main results can be divided into 2 parts.

The first part of our results is on Hamiltonian (spanning) paths and Hamiltonian

(spanning) cycles. We present new sufficient conditions for a graph to possess

8

.'.

Hamiltonian paths and Hamiltonian cycles and discuss the significance of our new

conditions. We start with our main focus i.e. degree related conditions and present

new degree related sufficient conditions for Hamiltonicity. We also introduce new

parameters namely shortest path distance between nonadjacent vertices in a presented

sufficient condition. Also, we investigate the relationship between independence

number, another important graph parameter, and Hamiltonicity of graphs.

The second part of our results is on spanning trees. We first pose some new spanning

tree problems, and investigate the corresponding issues of complexity. We also

investigate the relation between the independence number and degree bounded

spanning tree (to be defined shortly). Finally we present a new notion of "set version"

and apply this new idea on various spanning tree problems. Remarkably and

somewhat surprisingly it is shown that set version of a spanning tree problem

(maximum leaf spanning tree problem, to be specific) is polynomially solvable in

spite of the NP-Completeness of the original problem. Intuitively, this fact indicated

that set versions of some "hard" problems may be found to be easily solvable.

However, it is further shown that, this particular trend is not necessarily true in

general. In particular it is shown that both the original and the set version of minimum

leaf spanning tree problem are NP-Complete.

1.4 Thesis Organization

Our thesis, as is mentioned before, can be organized into two main parts; one

dedicated to spanning paths and cycles and the other to spanning trees. We start with

some preliminary definitions in Chapter 2. Here we define some graph theoretic terms

and present a brief idea about the notion of complexity.

Chapter 3 and 4 constitutes the heart of our thesis; Chapter 3 dealing with

Hamiltonian paths and cycles and Chapter 4 with spanning trees. In Chapter 3 we

present all our results on Hamiltonian paths and cycles. We start with a brief literature

review, present our sufficient conditions and discuss the significance of our results.

In Chapter 4, after a brief literature review about spanning trees, we begin with

investigating the relationship between independence number and a special spanning

tree, namely degree bounded spanning tree. The corresponding algorithm with

9

\

complexity analysis is also presented. Then we pose new problems to settle their

complexity issues. Finally, we introduce a new notion of "set version" of some

decision problems. We raise the issue of whether the set versions of NP-Complete
•

problems are as hard as the original problems and prove that although in some cases

the set versions are easier to solve, this is not necessarily true in general. We end our

thesis with Chapter 5 with a brief summary of our results and by shading some light to

the future research areas.

10

Chapter 2

PRELIMINARIES

2.0 Introduction

In this chapter we define some basic terms of graph theory and algorithm theory.

Definitions, which are not included in this chapter, will be introduced as they are

needed. We start, in Section 2.1, by giving some definitions of standard graph-

theoretical terms used throughout this thesis. In Section 2.2, we introduce the notion

of time complexity.

2.1 Basic Terminology

In this section we give some definitions of standard graph-theoretical terms used

throughout this thesis. For a better understanding of various graph theoretic terms and

for interested readers on graph theory we refer to [44].

Figure 2.1: A Graph with seven vertices and ten edges

2.1.1 Graphs and Multigraphs

A graph G is a structure (V, E), which consists ofa finite set of vertices V and a finite

set of edges E; each edge is an unordered pair of distinct vertices. We denote the set

of vertices of G by V(G) and the set of edges by E(G). Figure 2.1 depicts a graph G,
I I

where each vertex in V(G) = {v" v" .'" V7} is drawn by a small black circle and each

edge in E(G) = lei, e" "., eiO} is drawn by a line segment. Throughout this thesis the

number of vertices ofG is denoted by n, that is, n = lVI, and the number of edges ofG

is denoted by m, that is, m = lEI. Thus for the graph in Figure 2.1 n = 7 and m = 1a.ln

a graph, multiple edges join the same pair of vertices, while a loop joins a vertex to

itself. The graph in which loops and multiple edges are allowed is called a multigraph.

If a graph G has no "multiple edges" or "loops", then G is said to be a simple graph.

Sometimes a simple graph is simply called a graph if there is no danger of confusion.

In the remainder of the thesis it is assumed that G has no multiple edges or loops.

We denote an edge between two vertices u and v of G by (u, v) or simply by uv. If (u,

v) E E, then two vertices u and v of graph G are said to be adjacent; edge (u, v) is then

said to be incident to vertices u and v; u is a neighbor of v. The degree of a vertex v in

G is the number of edges incident to v and is denoted by dG(v) or simply dey). ln the

graph in Figure 2.1 vertices Vi and v, are adjacent, and d(vi) = 3, since three edges e"

e, and e4 are incident to Vi.

v ,

Figure 2.2: A vertex-induced subgraph

2.1.2 Subgraphs

A subgraph of a graph G = (V, E) is a graph G' = (V', E') such that V' <;;:V and E' <;;:

E; we then write G' <;;:G. IfG' contains all the edges ofG that join two vertices in V',

then G' is said to be the subgraph induced by V'. Figure 2.2 depicts a subgraph ofG in

Figure 2.1 induced by {v" V3,V4,VS,V7}' A spanning subgraph of a graph G = (V, E)

is a subgraph ofG such that V' ~ V and E'<;;:E.

12

We often construct new graphs from old ones by deleting some vertices or edges. Ifv

is a vel1ex of a given graph G = (V, E), then G - v is the subgraph of G obtained by

deleting the vertex v and all the edges incident to v. More generally, if V' is a subset

of V, then G - V' is the subgraph of G obtained by deleting the vertices in V' and all

the edges incident to them. Then G - V' is a subgraph of G induced by V - V'.

Similarly, if e is an edge of G, then G - e is the subgraph of G obtained by deleting

the edge e. More generally, if E' c::: E, then G - E' is the subgraph of G obtained by

deleting the edges in E'.

2.1.3 Connectivity

A graph G is connected if for every pair {u, v} of distinct vertices, there is a path

between u and v. A graph, which is not connected, is called a disconnected graph. A

(connected) component of a graph is a maximal connected subgraph. The graph in

Figure 2.3 (a) is a connected graph since there is a path for every pair of distinct

vertices of the graph. On the contrary, since there is no path between VI and Vs, the'

graph in Figure 2.3 (b) is a disconnected graph with two connected components

indicated by dotted lines.

1'.,

I' I

(a)

v,

(b)

Figure 2.3: (a) A connected graph, and (b) a disconnected graph with two connected

components

The connectivity K(G) of a graph G is the minimum number of vertices whose

removal results in a disconnected graph or a single-vertex graph KI. We say that G is
13

k-connected if K(G) :2: k. We call a set of vertices in a connected graph G a separator

or a vertex-cut if the removal of the vertices in the set results in a disconnected or

single-vertex graph. If a vertex-cut contains exactly one vertex then we call the vertex

a cut vertex.

2.1.4 Paths and Cycles

A Vo- VIwalk, Vo,el, VI, ... , VI_I, el, VI,in G is an alternating sequence of vertices and

edges of G, beginning and ending with a vertex, in which each edge is incident to two

vertices immediately preceding and succeeding it. If the vertices Vo, VI, ... , VI are

distinct (except possibly Vo, vil, then the walk is called a path and usually denoted

either by the sequence of vertices Vo,VI, "., VI or by the sequence of edges eo, ej, .'"

el. The length of the path is 1, one less than the number of vertices on the path. A path

or walk is closed if Vo= VI: A closed path containing at least one edge is called a

cycle. For example consider the figure below. (a, x, a, x, u, y, C, d, y, v, x, b, a) is a

closed walk of length 12. Now omitting first two steps yields a closed trail (no edge

repetition). The edge set of this trail is the union of the edge sets of 3 pairwise edge-

disjoint cycle: (a, x, b, a), (x, u, y, v, x) and (y, c, d, y). Finally, the u, v-trail (u, y, c, d,

y, v) contains the edges of the u, v-path: (u, y, v).

Figure 2.4: Walk, Trail, Cycle and Path

2.1.5 Trees

A tree is a connected graph without any cycle. Figure 2.5 is an example of a tree. The

vertices in a tree are usually called nodes. A rooted tree is a tree in which one of the

14

nodes is distinguished from the others. The distinguished node is called the root of the

tree. The root of a tree is generally drawn at the top. In Figure 2.5, the root is V,.

Every node u other than the root is connected by an edge to some other node v called

the parent ofu. We also call u a child ofv. For example, in Figure 2.5, v] is the parent"

of V2, V3 and V4, while V2 is the parent of Vs and V6; V2, V3 and V4 are children of v],

while Vs and V6 are children of V2. A leaf is a node of a tree that has no children. An

internal node is a node that has one or more children. Thus every node of a tree is

either a leaf or an internal node. In Figure 2.5, the leaves are V4, Vs, V7 and Va, and the

nodes v" V2, V3 and V6 are internal nodes. A spanning tree of G = (Y, E) is a spanning

subgraph ofG which is a tree. Figure 2.6 depicts a spanning tree of G in Figure 2.1.

Figure 2.5: A tree

Figure 2.6: A spanning tree

15

2.2 Algorithms and Complexity

In this section we briefly introduce some terminologies related to complexity of

algorithms. For interested readers, we refer the books of Garey and Johnson [13]. The

most widely accepted complexity measure for an algorithm is the running time, which

is expressed by the number of operations it performs before producing the final

answer. The number of operations required by an algorithm is not the same for all

problem instances. Thus, we consider all inputs of a given size together, and we

define the complexity of the algorithm for that input size to be the worst case behavior

of the algorithm on any of these inputs. Then the running time is a function of size n

of the input.

2.2.1 The notation O(n)

In analyzing the complexity of an algorithm, we are often interested only in the

asymptotic behavior, that is, the behavior of the algorithm when applied to very large

inputs. To deal with such a property of functions, we shall use the following notations

for asymptotic running time. Let fen) and g(n) be the functions from the positive

integers to the positive reals, then we write fen) = O(g(n)) if there exists positive

constants CI and c, such that fen) <; clg(n)+c, for all n. Thus the running time of an

algorithm may be bounded from above by phrasing like "takes time O(n')."

2.2.2 Polynomial algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its

complexity is bounded by a polynomial of the size of a problem instance. Examples

of such complexities are O(n), O(n log n) O(nIOO
), etc. The remaining algorithms are

usually referred to as exponential or nonpolynomial. Examples of such complexity are

0(2"), O(n!), etc. When the running time of an algorithm is bounded by O(n), we call

it a Iinear-time algorithm or simply a linear algorithm.

2.2.3 NP-Completeness

The class of problems solvable by nondeterministic polynomial time algorithms is

called "NP" problems. In other words, nondeterministically polynomial time

16

problems are those whose solutions can be verified in polynomial time. A problem is

NP-Hard if a polynomial-time algorithm for it could be used to construct a

polynomial time algorithm for each problem in NP. It is NP-Complete if it belongs to

NP and is NP-Hard. If some NP,Complete problems belong to P (set of polynomially

solvable problems), then P = NP. However, researchers have found no polynomial

time algorithm for any of the many NP-Complete problems. The implication of these

facts is that if we know that a problem is NP-Complete, we should probably not waste

our time looking for a polynomial time exact algorithm. This is why, for Hamiltonian

cycle or path (both of which are NP-Complete problems [13]), we should be looking

for sufficient conditions instead of necessary and sufficient conditions.

17

Chapter 3

HAMILTONIAN PATHS AND HAMILTONIAN CYCLES

3.0 Introduction

In this section we present our results on Hamiltonian (spanning) paths and cycles.

Given a graph G = (V, E) a Hamiltonian cycle C is a spanning cycle of G i.e. a simple

cycle of G such that V(C) = V(G), where V(H) denotes the set of vertices of a graph

H. Similarly, a Hamiltonian (spanning) path of G is a simple path spanning all the

vertices of G. A graph containing a Hamiltonian cycle is said to be Hamiltonian. It is

clear that every graph with a Hamiltonian cycle has a Hamiltonian path but the

converse is not necessarily true.

The study of Hamiltonian cycles and Hamiltonian paths in general and special graphs

has been fueled by practical applications and by the issues of complexity. The

problem of finding whether a graph G is Hamiltonian is proved to be NP-Complete

for general graphs [13]. The problem remains NP-Complete [13] (i) if G is planar,

cubic, 3-connected, and has no face with fewer than 5 edges, (ii) if G is bipartite, (iii)

if G is the square of a graph, (iv) if a Hamiltonian path for G is given as part of the

instance. On the other hand the problem of finding whether a graph G contains a

Hamiltonian path is also proved to be NP-Complete for general graphs [13]. Again it

remains NP-Complete (i) if G is planar, cubic, 3-connected, and has no face with

fewer than 5 edges, (ii) if G is bipartite. Even the variant in which either the starting

point or the end point or both are specified in the input instance is also NP-Complete.

No easily testable characterization is known for Hamiltonian graphs. Nor there exists

any such condition to test whether a graph contains a Hamiltonian path or not. This is

why tremendous amount of research has been done in finding the sufficient conditions

for the existence of Hamiltonian cycles or Hamiltonian paths in graphs [1, 10,32].

18

3.1 Degree Sum and Distance of Vertices

In this section we present some sufficient conditions of Hamiltonian cycles and paths.

Sufficient conditions in the literature are based on various graph parameters. In this

section we are particularly interested in degree related conditions. In addition to the

"degree" parameter of graphs, we introduce a new parameter namely the "distance"

between two vertices, which is essentially the shortest path distance between any two

given vertices.

Lemma 3.1.1. Let G = (V, E) be a connected graph with n vertices and P be a

longest path in G. If P is contained in a cycle then P is a Hamiltonian path.

Proof. Suppose P '= (u = Uo, U" U2, ... , Uk = v) of length k and P is contained in a cycle

C '= (u = Uo, U" U2, .•. , Uk = V, Uo = u). Note that V(C) = V(P), since otherwise P would

be a part of a longer path, a contradiction. Assume for the sake of contradiction that k

< n - I, i.e. P is not Hamiltonian path. Since G is connected, there must be an edge of

the form (x, y) such that x E V(P) = V(C) and y E V(G) - V(C). Let x = Uj. Then there

is a path P' '= (y, x = Uj, Uj+" ... , Uk, UO, U" U2, ... , Uj_l) with length k +I, which is a

contradiction, since P is a longest path in G. D

Corollary 3.1.2. Let G = (V, E) be a connected graph with n vertices and P be a

longest path in G. If P is contained in a cycle then G is Hamiltonian 0

Now we present and prove our first sufficient condition in the form of Theorem

3.1.3.

Theorem 3.1.3. Let G = (V, E) be a connected graph with n vertices and P be a

longest path in G having length k and with end vertices U and v. Then the followings

must hold true:

a. Either o(u, v) > 1 or P is a Hamiltonian path contained in a Hamiltonian

cycle.

b. lfo(u, v) '?3then dp(u) + dp(v) :;k- o(u, v) + 2

19

c. If 5(u, v) ~ 2, then either dp(u) + dp(v) s k or P is a Hamiltonian path

contained in a Hamiltonian cycle.

Proof.

Part a:

Assume 5(u, v) :': 1..Since the graph is connected 5(u, v) = 1. Let P '" (u = Uo, UJ, U2,

... , Uk = v). Since 5(u, v) = I, we in effect have a cycle C", (u = UO, UI, U2, ... , Uk = v,

Uo = u) and the result readily follows from Lemma 3: 1.1. D

Part b:

Assume 5(u, v) :0: 3. In this case surely dp(u) + dp(v) :': k - 5(u, v) + 2 :': k - 3 + 2 = k-

1, since otherwise we would get a path from u to v with length less than 5(u, v), a

contradiction. D

Part c:

Assume that 5(u, v) = 2. Now note that we can not claim that dp(u) + dp(v) :': k - 5(u,

v) + 2 = k by arguing contradiction on 5(u, v) as we did in part b because now there is

a common vertex adjacent to both U and v. However, we argue in a different way as

follows. Assume that dp(u) + dp(v):O: k + 1 = IV(P)I. We rewrite the path P as follows.

P '" (v = WI, 11'2, ... , wWCP)1 -I, wWCP)1 = u). Now we will try to find out two cross over

edges (v, Wi+Jl and (Wi, u) such that we get the cycle C = (WI, Wi+l, Wi+2, ... , wWCP)I-I,

wWCP)I, 11'" Wi_I, ... ,11'2, WI). To see that this is possible, consider 8 ~ {j I (v, Wj+l) E E)

and T~ {i I (Wi, U) E E). Since 8u Tr;;;p, 2, ... , IV(P)I ~ I}, we have 18u 71:': IV(P)I

- I. Again because, 181= dp(v), 171~ dp(u), and dp(u) + dp(v) :o:1V(P)I, we must have,

18n 71= 181+ 171-18 u 71

= dp(u) + dp(v) -18 u 71

:0: dp(u) + dp(v) - (IV(P)I- 1)

:O:IV(P)I-IV(P)I + I

=1.

20

Hence Sand Tmust have a common subscript so that the two crossover edges (v, Wi+l)

and (Wi, U) exist and we get the cycle C. Hence by Lemma 3.1.1 the result follows.

D

Corollary 3.1.4. Let G ~ (v, E) be a connected graph with n vertices and P be a

longest path in G having length k < n - 1 and with end vertices U and v. Then we must

have dp(u) + dp(v) sk - 5(u, v) + 2.

Proof. Since k < n - 1, P is not a Hamiltonian path. Hence by Theorem 3.1.3(a) we

have 5{u, v) > 1. Noting that if 5{u, v) = 2, then k = k - 5{u, v) + 2, by Theorem

3.1.3(b) and (c) we thus havedp(u) + dp(v) sk~ 5(u, v) + 2. D

Now we will present another sufficient condition that will ensure the existence of a

Hamiltonian path in a graph. The introduction of the new parameter: "(shortest path)

distance" should be noted here.

Theorem 3.1.5. Let G = (V, E) be a connected graph with n vertices such that for

all pair of distinct nonadjacent pair of vertices u, v E V we have d(u) + dry) + 5(u, v)

2 n + 1. Then G has a Hamiltonian path.

Proof. We prove it by contradiction as follows. Assume that the condition holds but

there is no Hamiltonian path in G. Then let p" (u = un, Ul, ... , Uk = v) be the longest

path in G having length k. Surely, k ,,;n -2 and 5{u, v) ,,; k. Then by Corollary 3.1.4

we must have dp(u) + dp(v) ,,;k - 5{u, v) + 2. Now we have,

d(u) + dey) + 5(u, v)
= d,,(u) + dji(u) + dp(v) + clf,(v)+ 5(u, v)
= {dp(u) + dp(v)} + dji(u) + clf,(v)+ 5(u, v)
,,;{k - 5(u, v) + 2) + clf,(u)+ clf,(v)+ 5(u, v)
= k + 2 + dji(u) + clf,(v)
,,;n - 2 + 2 + dji(u) + d;,(v)
= n + clf,(u)+ clf,(v)

Since P is not a Hamiltonian path by Theorem 3.1.3(a) 5{u, v) > I i.e. u, v are

nonadjacent and hence we have d(u) + d(v) + 5{u, v) <: n + 1 according to our

assumption. We thus have,

21

\

n + d,,(u) + d,,(v);' n + 1

=> dp(u) + dp(v);, n - n + 1

=> dp(u) + dp(v);' 1

The above implies that there is at least one edge of the form (x, y) such that x E {u, v}

and y E V(G) - V(P) which means that we get a longer path in G by adding the edge

(x, y) to P which is a contradiction and the result follows. 0

We end this section with an illustrative example for the Theorem 3.1.5.

Figure 3.1: A graph satisfying the condition of Theorem 3.1.5

Example 1. Consider the graph G in Figure 3.1. There are 5 nonadjacent vertex-pairs

namely (a, b), (a, e), (b, d), (c, d), and (e, d). It is easy to see that for each pair of

nonadjacent vertices the hypothesis of Theorem 3.1.5 holds true (calculation for the

first pair is shown in Figure 3.1). So according to our theorem, G must have a

Hamiltonian path and indeed a Hamiltonian path of G is as follows: (d, a, c, b, el.

3.1.1 Signilicance of Theorem 3.1.3 & Theorem 3.1.5

Our result is interesting and a number of existing well known and very powerful

theorems directly follow from our results as discussed below. Consider the Theorem

1.1.1 i.e. Dirac's condition. The proof of Dirac's Theorem very cleverly exploits the

idea of extremality. The idea was if there is a non-Hamiltonian graph satisfying the

hypotheses, then adding edges cannot reduce the minimum degree, so we may restrict

our attention to maximal non-Hamiltonian graphs with minimum degree at least n/2.
22

By "maximal", we mean that no proper supergraph is also non-Hamiltonian, so G +

(u, v) is Hamiltonian whenever u, v are nonadjacent. Note that the maximality of G

implies that G has a spanning path from u = VI to v =Vn, i.e. a Hamiltonian path. The

rest of the proof tries to establish a spanning cycle through the existence of a spanning

cycle [see 44 for a complete proof].

The result provided by Ore (Theorem 1.1.2) is in fact inspired from Dirac's

condition. Ore observed that this argument uses 5(G) :2: nl2 only to show that d(u) +

d(v):2: n. Therefore, we can weaken the requirement of minimum degree nl2 to require

only that d(u) + dey) :2: n whenever u, V are nonadjacent. We also did not need that G

was a maximal non-Hamiltonian graph, only that G + (u, v) was Hamiltonian and

thereby provided a spanning u, v-path. We here show that Ore's conditions in fact

follow from our results. First we present the following lemma.

Lemma 3.1.1.1. Let G be a simple graph with n vertices and u, v are distinct

nonadjacent vertices olG with d(u) + dry) ;: n. Then 5(u, v) ~ 2.

Proof. Let us arrange the vertices ofG in a sequence such that V(G) = {v = WI, W2, , .. ,

wlV(P)I.1, wIVU')1 = u} .Let S = U I (v, Wj) E E) and T = {i I (w;, u) E E). Since S u T c;;,

{2, ... , W(P)I ~ I}, we have ISu II s W(P) I- 2. Again because, lSI= dp(v), III = dp(u),

and dp(u) + dp(v):2: W(P)I, we must have,

ISn II = lSI+ Ill- ISu II

= dp(u) + dp(v) -ISu II

:2: dp(u) + dp(v) - (W(P)I- 2)

:2: IV(P) I~ IV(P) I+ 2

=2.

Hence Sand T must have common subscripts so that we have edges of the form (u, x),

(x, v) which implies a u, v-path of length 2. Since u, v are nonadjacent the result

follows. 0

Now we are ready to prove that Ore's Theorem (Theorem 1.1.2) follows from our

result.

23

Proof of Ore's Theorem (Theorem 1.1.2):

One direction is trivia!' So we prove the other direction as follows. By Lemma

3.1.1.1 since G satisfies the sufficiency conditions, we must have 5(u, v) ~ 2. Now

since G + (u, v) is Hamiltonian we must have a Hamiltonian path say P in G. So P is a

longest path in G. Since P is a Hamiltonian path, we have dp(u) + dp(v) ~ d(u) + d(v)

2 n. Hence by Theorem 3.1.3(c) P is contained in a Hamiltonian cycle and hence G

is Hamiltonian. D

Now we will consider Theorem 1.1.4, which was also due to Ore. Here again we

first need to present the following lemma.

Lemma 3.1.1.2. Let G be a simple graph and d(u) + d(v) 2 n for every pair of

distinct nonadjacent vertices u and v ofG. Then 5(u, v) :0; 2 for every pair of distinct

vertices u and v of G.

Proof. The proof is simple. First note that for every pair. of distinct adjacent vertices

5(u, v) ~ I < 2. Now we just need to consider every pair of distinct nonadjacent

vertices. Then the result follows readily from Lemma 3.1.1.1. D

Now we are ready to show that Theorem 1.1.4 also follows from our result.

Proof of Ore's Theorem (Theorem 1.1.4):

Since we have d(u) + d(v) 2 n for every pair of distinct nonadjacent vertices u and v,

by Lemma 3.1.1.2 5(u, v) :0; 2 for every pair of distinct vertices u and v. And it is

clear that for every pair of distinct nonadjacent vertices u and v we must have 5(u, v)

= 2. Now for every pair of distinct nonadjacent vertices u and v we have,

d(u) + d(v) 2 n> n + I - 2 = n + I - 5(u, v).
=> d(u) + d(v) > n + 1-5(u, v)

=> d(u) + d(v) + 5(u, v) > n + 1

Thus by Theorem 3.1.5 there is a Hamiltonian path P (let) in G. Now P is a longest

path in G. Let the end vertices of P be x and y. If we have 5(x, y) = I then by

Theorem 3.1.3(a), P is contained in a Hamiltonian cycle and hence G is

Hamiltonian. Otherwise we must have 5(x, y) = 2. And since we have d(u) + d(v) 2 n

24

> n - I, by Theorem 3.1.3(b) again P is contained in a Hamiltonian cycle and hence

G is Hamiltonian. 0

3.2 Vertex Triples

Most of the degree related sufficient conditions in the literature consider the degree

sum of vertex couples. In this section we extend this idea and present a sufficient

condition based on the degree sum of vertex triplets. We also show that the theorem is

the best possible.

In this section we first state and prove the following useful Lemma.

Theorem 3.2.1. Let G = (V, E) be a connected graph with n vertices. If for all

pairwise non-adjacent vertex-triples u, v, and w: d(u) + d(v) + dew) 2 -'-(3n - 5) then
2

G has a Hamiltonian path.

Proof: Let P = (uo, UI, ... , Up.l) be a longest path in G. And assume for the sake of

contradiction that P is not a Hamiltonian path. Now since P is a longest path but not a

Hamiltonian path, by the contrapositive of Lemma 3.1.1, P cannot be contained in a

cycle. And since P cannot be contained in a cycle, there cannot be any crossover edge

involving Uo and Up-I. This essentially means that d(uo) + d(up-I) <;p - I. S'o we must

have:

I
d(uo) + d(u ,) + dew) 2 -(3n - 5)

p- 2

=>

=>

=>

dew)

dew)

dew)

I
2 '2(3n - 5) - (d(uo) + d(up_,»

12 -(3n- 5) - (p -1)
2
3 3

2-h-p--2 2
Now we consider dp(w). We calculate the upper limit of dp(w) as follows. It is clear

that (w, uo), (w, Up-I) 11: E since otherwise P would not be a longest path in G. Again,

Note that w cannot be connected to Uj and Uj+l, since in that case we can easily get a

25

path P'= (uo, UI, •.. ,U" W, U'+l, ... , up _ I> which is longer than P, leading to a

contradiction. So we can write that dj• (w) ,,; p - 2 + 1= P .2 2

Now we have,

dew)
3 3

'2~n- p--2 2
3 3

'2-n- p-~
2 2
3 3

'2"2n- P-"2-dp(W)

3 3 p
=-n- p-~--
222
3

=-(n- p-l).
2

This leads to a contradiction since IV(G)\(V(P) u {w})1 = n - p - 1 < len - p -1),
2

which completes the proof. 0

Now that we have proved our theorem, let us consider an example, which illustrates

how the condition of our theorem works.

Figure 3.2: A graph satisfying the condition of Theorem 3.2.1

Example 2. Consider the graph in Figure 3.2. There are in total 3 nonadjacent vertex

triples namely (a, g, b), (c, d, f), and (c, d, e). For each of these vertex triples it can be

26

easily verified that the condition of Theorem 3.2.1 holds (calculation for the first

triple is shown in the figure). So according to our theorem there exists a Hamiltonian

path in G which is indeed the case since (a, e, f, g, d, b, c) is Hamiltonian path in G.

In the rest of this section we establish that the condition given in Theorem 3.2.1 is

tight. To establish that we first disprove the following statement.

Statement 3.2.2 (To Be Disproved). Let G = (V, E) be a connected graph with n

vertices. If for all pairwise non-adjacent vertex-triples u, v, and w it holds that d(u) +

d(v) + d(w) ~ ~(n - 2) then G has a Hamiltonian path. 0
2

Figure 3.3: A Graph G with 8 vertices

We disprove Statement 3.2.2 by presenting a counter example as follows. Consider

the graph G in Figure 3.3. It can be easily verified that for any nonadjacent vertex-

triple u, v, w the condition stated in Statement 3.2.2 holds i.e. for all vertex triples u,

v, and w it holds that d(u) + d(v) + d(w) ~ ~(n - 2) = 9 in graph G in Figure 3.3.
2

However it can also be verified easily that there exists no Hamiltonian path in G,

which disproves the Statement 3.2.2. Now we state the following claim.

Claim 3.2.3. The condition in Theorem 3.2.1 is tight.

Proof. The invariant in the condition in Theorem 3.2.1 is as follows: d(u) + d(v) +

d(w) ~ ~(3n - 5). Since the degree sums cannot be fractional numbers, so the next
2

best invariant for the condition would necessarily have to be as follows:

d(u) + d(v) + d(w)
1-(3n - 5)-I.
2

27

1-(3n ~5-2)
2

1-(3n ~ 7)
2

We here pwve that this condition can never be achieved. Recall that the invariant in

the condition in Statement 3.2.2 is as follows. d(u) + dey) + dew) 2: l(n-2)
2

l(3n - 6) (> l(3n ~ 7». Now since we have dispwved Statement 3.2.2 our claim
2 2
follows directly. 0

3.3 Independence Number and Hamiltonicity

In this section we set aside the idea of degree sum and distances between vertices of a

graph and consider a completely different graph parameter, namely independence

number (to be defined shortly), and investigate the relation between hamiltonicity and

independence number of a graph.

3.3.1 Preliminaries

In this section we introduce some notations and relevant definitions. We denote by

NG(x), the set of vertices, which is adjacent to x in graph G, and its cardinality by

degG(x). Given a graph G = (V, E) and a set S <;;: V, by G[S] we mean the induced

subgraph of the set S. V(G) and E(G) are used respectively to denote the vertex set

and edge set of G and O(G) denotes the minimum degree ofthe graph G.

Definition 3.3.1.1. Depth-First-Maximal Path. We use maximal path m its usual

meaning i.e. the path that is not a part of a longer path. Consider the construction of a

maximal path given a vertex v, which is said to be the pivot vertex. To get depth-first-

maximal-path for a given pivot vertex v. we start expanding v in a direction and

continue to explore in that direction in depth first manner as far as possible. Then if

possible we expand v in another direction to get the maximal path. Consider the graph

G in Figure 3.4 (a). Let the pivot vertex be given to be a. Then both Pi and P2 in

28

Figure 3.4 (b) are depth-first-maximal-paths but P3 is not. However, if b is considered

to be pivot vertex then P3 is a depth-first-maximal-path as is P4.

a b

(a)

c P,=(f,a, b, e. d, c)

P,=(a, b,e,Jj

P3=(b, a,f, e, d, c)

P,=(b, e,j,a)

(b)

Figure 3.4: (a) A graph G with 6 vertices and 9 edges (b) Enumerations of some maximal

paths ofG

Definition 3.3.1.2. Expandable nodes. Again consider a maximal path Pm in a

connected graph G = (V, E). Any node v E V(Pm) is said to be an expandable node if

there exists a IV E V(G) - V(Pm) such that (v, w) E E(G). Clearly if V(Pm) is a proper

subset of V(G) i.e. V(Pm) c V(G), then there must be at least one expandable node in

V(Pm) since G is connected. Also note that since Pm is a maximal path so the two end

vertices of Pm are not expandable because if one of them (or both) were expandable

then Pm would be part of a longer path, a contradiction. If V'is a vertex set such that

V' c V(G) of a connected graph G = (V, E) then we can generalize the notion of an

expandable node by defining them as a vertex v E V'in an arbitrary subgraph G' =

(V; E) of G = (V, E) such that E' c E and there is at least one edge (v, w) E E(G)

such that v E V' and IV E V - V~ To specify more clearly we sometimes refer to v as

G '-expandable node.

Definition 3.3.1.3. Lone-Degree-Expandable. Consider a graph G and let G' ~ G.

Now a G '-expandable node v is said to be lone-degree-expandable if for every

possible depth-first-maximal path Pm constructed from the graph G - G', considering

v to be the pivot vertex we have deg 1'''(V) = 1 i.e. degc'{v) = degc{v) + 1 where G "=

29

G' + Pm. To specify more clearly we sometimes refer to v as Lone-Degree-G '-

expandable node.

Definition 3.3.1.4. Independence Set and Independence Number. A set S,;:: V(G) of a

graph G is said to an independent set if for every pair of vertices u, v E S, (u, v) '1C

E(G). Independence number of G, denoted by a(G), is the cardinality of a maximum

Independent set of G.

Definition 3.3.1.5. Cut Vertex. A vertex v E Vof a graph G = (V, E) is a cut vertex of

G if the deletion of v increases the number of connected components.

Now that we have got the definitions in our hand, we are going to present the

following two theorems in the next couple of sections.

Theorem 3.3.1.6. Let G = (Y, E) be a connected graph such that a(G) = 2. Then G

has a Ham iItonian path.

Theorem 3.3.1.7. Let G = (Y, E) be a 2-connected graph such that a(G) = 2. Then G

is Hamiltonian.

3.3.2. Independence Number and Hamiltonian Path

In this section we prove Theorem 3.3.1.6. However, we first present and prove

following very interesting Lemma.

Lemma 3.3.2.1. Let G be a connected graph such that a(G) ~ 2 and P ~ (Uf, U2,

Uk) be a maximal path ofG. Then thefollowings must hold true:

a. If P is not a Hamiltonian path then P is contained in a cycle.

b. If P is contained in a cycle then either P is Hamiltonian or every expandable

vertex v in V(P) is Lone-Degree-P-Expandable.

Proof.

Part a.

It is clear that, since P is a maximal path, Nc(u,) c V(P) and Nc(uk) c V(P). This

essentially means that both u, and Uk are not P-expandable. So P can be contained in a

cycle C if and only if (u" Uk) E E(G). Now assume for the sake of contradiction that P

30

is not contained in a cycle. Then, since P is not Hamiltonian and G is connected there

is a P-Expandable node v (let). Now we construct a depth-first-maximal-path P' in the

graph G[(V(G) - V(P)) u {v}], taking v as the pivot vertex. Let in p'the end vertices

are x and y. It is clear that P + P' is connected and acyclic. Now in P + P' we have at

least 3 end vertices. Note that if v " {x, y} then we have 4 end vertices. Let IJ= {w I
w is an end vertex in P + P' and w * v}. Now we will show that IJ is an independent

set in G such that I~> 2. So without loss of generality assume that v = x and hence IJ

= {u[, Uk, y}. now according to assumption (U1, Uk) " E(G). Also both (U[, y) and (Uk,

y) " E(G), since otherwise P would be part of a longer path resulting in a

contradiction. Then IJ must be an independent set of G implying that a(G) ~ 3 which

is a contradiction. 0

Part b.

Since P is contained in a cycle C (let) we must have (u[, Uk) E E(G) as is explained in

the beginning of the proof of part a. So we must have V(P) = V(C). Now if P is

Hamiltonian then there can be no expandable vertex. So it suffices to show that if P is

not Hamiltonian, then every expandable vertex in V(P) is Lone-Degree-P-

Expandable. We show it as follows. Define <;= {v I v is P-expandable}. Let v E <;
such that v is not Lone-Degree-P-Expandable. Then we can construct a depth-first-

maximal-path P' in the graph G[(V(G) - V(P» u {v}], taking v as the pivot vertex

such that v" {x, y} where in p'the end vertices are x and y. Let IJ= {w I w is an end

vertex in P + PI. Then IJ = { U[, Uk, x, y}. Let IJ' = {Uk, x, y}. From the construction

of P' it is clear (x, y) " E(G). Also since P is a maximal path, we must have (Uk, x) "

E(G) and (Uk,Y) "E(G). Then IJ'form an independent set in G and we have a(G) ~ 3,

which is a contradiction. 0

Now we are ready to prove Theorem 3.3.1.6.

Proof of Theorem 3.3.1.6:

With Lemma 3.3.2.1 in our hand we can give an easy constructive proof of Theorem

1. We first construct a maximal path P = (U[, Uz, ... , Uk). If P is a Hamiltonian path

then we are done. So assume that P is not Hamiltonian. Then P is contained in a cycle

31

r

C by Lemma 3.3.2.1 (a) and it is clear that C = (U\, U2, ... , Uk, Ul). Now let{= {v I v is
0,

P-expandable}. Since G is connected and according to assumption P is not

Hamiltonian we must have s* 1jJ. By Lemma 3.3.2.1 (b) every v E sis Lone-Degree-

P-Expandable. Now we construct a depth-first-maximal-path P'in the graph G[(V(G)

- V(P)) u {v}], taking v as the pivot vertex. Let in p'the end vertices are x and y.

Since v is Lone-degree-P-expandable, we must "have degp(v) = 1 i.e. v E {x, y}. Let v

= y. It is clear that P + P' is connected and acyclic and in P + P' we have 3 end

vertices namely uo, Uk and x, since deg(p + Pj(v) = 3. Now we add the edge (uo, Uk) and

delete an edge (Ui, U,+l) (or equivalently (Ui, Ui-l)) such that Ui = V. It is clear that the

resultant graph Gn is a path with end vertices Ui+l (or Ui-l) and x. Now we claim that

V(P + P) = V(Gn) = V(G). The claim is proved as follows.

Assume for the sake of contradiction that V(P + P) = V(Gn) c V(G). Then Sn * ~
where Sn= {v I v is Gn-expandable}. Suppose W E Sn' Then we again can construct a

depth-first-maximal-path Pn in the graph G[(V(G) - V(Gn)) u {w}], taking was the

pivot vertex. Now considering one end vertex of P and at least one end vertex each

from P' and P n we again can show the existence of an independent set of G with

cardinality at least 3 contradicting the assumption a(G) = 2 and this completes the

proof of our claim. Hence Gn is in effect a Hamiltonian path and the result follows.D

Example 3. Consider the graph G in Figure 3.5. As indicated in the figure, the

independence number of the graph is 2. According to our theorem G must have a

Hamiltonian path which is evident from the following Hamiltonian path: (b, a, c, d, e,

t).

32

Figure 3.5: A graph satisfying the condition of Theorem 3.3.1.6

3.3.3. Hamiltonian Cycle

In Theorem 3.3.1.6 we presented a sufficient condition for the existence of a

Hamiltonian path in a connected graph. A natural extension to our research should be

to try to show that the graphs satisfying our condition are Hamiltonian. Unfortunately,

that is not necessarily the case. We below present a simple graph G with 6 vertices

(Figure 3.6) satisfying our condition but having no Hamiltonian cycle.

:r
c

jI:
d

Figure 3.6: A graph satisfying the condition in Theorem 3.3.1.6, but having no

Hamiltonian cycle

It is clear that a(G) = 2, an example of maximum independent set being {a,f}. The

existence of Hamiltonian path is also clear (e.g. (a, b, c, d, e,j»). However, it can be

easily verified that there is no Hamiltonian cycle in G. And in fact there can't be any,

since G is not 2-connected and since 2-connectivity is necessary for the existence of a

Hamiltonian cycle. To see that G is not 2 connected just realize that both c and dare

33

cut vertices in G. Now the natural question would be whether a graph G satisfying the

conditions in Theorem 3.3.1.6 is Hamiltonian if we add the condition that G is also 2-

connected. Indeed that is the case as we have already stated in Section 1 in the form

Theorem 3.3.1.7. However, before proving Theorem 3.3.1.7 we first state the

following two theorems characterizing 2-connected graphs (see [44]).

Theorem 3.3.3.1. A graph G having at least 3 vertices is 2-connected if and only if
each pair u. v E V(G) is connected by a pair of internally-di,joint u, v-paths in G.

Theorem 3.3.3.2. If I V(G)I 2 3, then the following conditions are equivalent and

characterize 2-connected graphs.

a. G is connected and has no cut-vertex.

b. For all x, y E V(G), there are internally-disjoint x. y-paths.

c. For all x, y E V(G), there is a cycle through x and y.

d <'\G) 2 2, and every pair of edges in G lies on a common cycle.

Now we prove Theorem 3.3.1.7 as follows.

Proof of Theorem 3.3.1.7:

By Theorem 3.3.1.6, G has a Hamiltonian path let P = (UI, U2, ... , un). Now if (u], un)

E E(G) we are done. So assume otherwise i.e. (UI, un) \1' E(G). Since G is 2-

connected, for all v E V(G), degG(v) 2 2. Consider the set {UI, U3, un}. Since a(G) = 2,

we must have either (UI, U3)E E(G) or (U3, un) E E(G) (or both). Again consider the

set {UI, U4, un} and apply the same argument there. We can continue this argument

upto the set {UI, Un-2, un}. Now note carefully that, in above arguments ifat any point

we get cross over edges of the form (u], u;) and (u,_], un) then we are done since we

then get a Hamiltonian cycle (u], U" U,+], ... , Un, Ui-J, U'-2, ... , Ul). So assume

otherwise, i.e. we do not get any such cross over edges. This essentially means that if

u, E Ndul) and uj E NG(un) then i sj. Note that since we have assumed that there is

no cross over edges, NG(ul) is of the form- {U2, U3, U4, ... , ukl and NG(un) is of the

form- {UI,UI+I,... , un-Jl where 1= k or I = k + I. Now there is an edge (x, y) such that

x E NG(uJl - {Uk} and y E NG(un) - {UI} because otherwise Uk and UIwould be cut

34

vertices in G (Note that it may be the case that Uk = Ul). Assume that x = Uk_I and y =

Ul+j, i,j > O. It is clear that (UI, Uk-I+I) E E(G) and (un, Ul+j-I) E E(G). Now since (UI,

Uk_I+,) E E(G), we have a Hamiltonian path P, = (Uk-I, Uk-I-I, ... , U" Uk_I+!' Uk-I+2, ... ,

UI+)_I, Ul+), ... , Un). Note carefully that (x = Uk-[, Y= Ul+) E E(G) and (un, UI+)_I) E E(G),

which are, cross over edges for P,. Therefore we have a Hamiltonian cycle C, = (Uk_I,

Uk-i-I, •. " UI, Uk-i+l, Uk~i+2, "', U/+j_J, Un, Un-I, .• " L1/+j,Uk-i). Hence the result follows.D

Example 4. Just making the graph G in figure 3.6 2-connected ensures Hamiltonicity as is

evident from the following figure. A Hamiltonian cycle is (b, a, c, d, e, f, b).

Figure 3.7: A Graph satisfying the condition of Theorem 3.3.1.7

3.4 Studies and Applications

Theory of Hamiltonicity has always been important focus of research and hence

tremendous amount of research has been done on and related to this topic. In this

subsection we just point out some areas where our results and theory of Hamiltonicity

in general, may be applicable.

The architecture of an interconnection network is usually represented by a graph.

There are a lot of mutually conflicting requirements in designing the topology of

interconnection networks. It is almost impossible to design a network, which is

optimum for all conditions. One has to design a suitable network depending on the

35

requirements of their properties. The Hamiltonian property is one of the major

requirements in designing the topology of networks. Fault tolerance is also desirable

in massive parallel systems that have relatively high probability of failure. Hence a

major research topic is the Hamiltonicity and fault-tolerance property of graphs [6, 20,

21,22].

Another interesting idea is the idea of Hamiltonian laeeability for Hamiltonian

bipartite graphs, first introduced by Simmons [40]. Hsieh et al. [18] extended this

concept into strongly Hamiltonian laeeability. Hamiltonian laceability deals with

embedding a Hamiltonian path in a given graph and is an important topic in

interconnected networks. Recent studies have proposed several operations performing

on Hamiltonian laceable graphs to yield several attractive properties [16, 28, 29].

36

Chapter 4

SPANNING TREES

4.0 Introduction

In this section we discuss spanning trees and related problems and results. A spanning

subgraph of a graph G = (V, E) is a subgraph with vertex set V. A spanning tree is a

spanning subgraph that is a tree. Spanning trees have been found to be structures of

paramount importance also in practical problems. As a result spanning trees of a

connected graph have been the focus for extensive attention in graph theoretic

research. Spanning trees with various constraints and restricted conditions seem to

pose various interesting problems.

In this chapter we introduce some new problems (with relevant new results) where we

impose various constraints and restrictions on parameters of spanning trees. We also

investigate the relationship of the independence number and a special spanning tree

namely degree bounded spanning tree. Further, we introduce a new notion "set

version". The complexities of the set versions of various problems are discussed and

we show that surprisingly and remarkably "set versions" of some NP-Complete

problems are solvable in polynomial times although this may not necessarily be the

case all the time.

4.1 Independence Number and Degree-Bounded-Spanning Tree

In this section we investigate the relation between independence number and degree

bounded spanning tree. Degree Bounded Spanning Tree problem is formally defined

as follows.

Problem 4.1.1. Degree Bounded Spanning Tree Problem

Instance: Graph G = (V, E), positive integer K ~ 1'1.

Question: Is there a spanning tree for G in which no vertex has degree larger than K?

37

\, \ ".

Example 5. Consider the graph G in Figure 4.1. Suppose the value of K in the input

instance is given to be 3. Then the spanning tree in the figure is a Degree Bounded

Spanning Tree. However if K is given to be 2 then the spanning tree is not a desired

tree for the given input instance.

Figure 4.1: Degree Bounded Spanning Tree

Problem 4. J.I is proved to be NP-Complete [J 3] and it remains NP-Complete for any

fixed K ~ 2. NP-Completeness of Problem 4.1.1 suggests that there exists no good

characterization for a graph having a degree-bounded-spanning-tree as defined in the

problem. A characterization is said to be good if it can be tested easily; polynomially,

to be specific. We define the term degree-d-bounded-spanning-tree to be a spanning

tree in which no vertex has degree larger than d. In this paper we relate the existence

of a degree-bounded-spanning-tree in a graph G to the independence number of G. In

this section we present a theorem stating that a graph with independence number d

must have a degree-d-bounded spanning tree. In the sequel, we outline a polynomial

time algorithm to construct a degree-d-bounded spanning tree from a graph having

independence number d.

Example 6. Consider the graph in Figure 4.2(a). The spanning tree T, in Figure 4.2(b)

is a degree-4-bounded spanning tree since there are no vertices in T, having degree

larger than 4. lt should be clear that T, is not a degree-3-bounded spanning tree.

38

However, T, (Figure 4.2(c)), which is a degree-3-bounded spanning tree, can also be

called a degree-2-bounded spanning tree. Similarly, T] can also be called a degree-S-

bounded spanning tree, degree-6-bounded spanning tree and so on.

(a) An arbitrary Graph G (b) A spanning tree T I of G (c) A Spanning Tree T20fG

Figure 4.2: Degree-d-bounded Spanning Tree

Given a graph G = (V, E) and a set S <;;; V, by G[S] we mean the induced subgraph of

the set S. V(G) and E(G) are used respectively to denote the vertex set and edge set of

G. By neG) we denote the set of leaf nodes of the graph G. A set S <;;; V(G) of a graph

G is said to an independent set if for every pair of vertices u, v E S, (u, v) " E(G).

Independence number of G, denoted by a(G), is the cardinality of a maximum

Independent set of G. An x, y-path is a path having x and y as the two end vertices of

the path. A set of leaves L in a tree T is said to be initiated by a nonleaf node v if and

only iffor every pair x, y E L, v lies in the x, y-path in T.

The theorem presented below establishes a relationship between independence

number and degree bounded spanning tree.

Theorem 4.1.2. Let G ~ (V, E) be a connected graph such that a(G) = d where d :22.
Then G has a degree-d-bounded spanning tree.

Before proving Theorem 4.1.2, we first present following important but simple

observations.

39

Observation 4.1.3. Let T be a tree. If there is a v E V(TJ such that degr(v) ~ k, where

k 22, then there is a set L of leaves in T, such that ILl ~ k and L is initiated by v. 0

From Observation 4.1.3 we easily get the following observation.

Observation 4.1.4. Let T be a tree. If there is a v E V(TJ such that degr(v) = k, then

Ifl(T)12 kO

Now we are ready to prove Theorem 4.1.2. The proof employs construction and

induction simultaneously.

Proof of Theorem 4.1.2:

We first construct an arbitrary spanning tree To. Now if for all v E V(To) = V(G),

degr (v),; d then we are done. So assume otherwise. Let D be the set of vertices in a
"

spanning tree having degree greater than d. Then, D(To) = { x I degr" (x) > d }. Now

we show that there exists a spanning tree T such that D(T) = 1jJ. Our strategy is to show

it by induction on the number of vertices belonging to D in a spanning tree. We start

with a vertex WE D(To). Let in To, deg, (w) = k, where k> d. By Observation 4.1.3,
"

there is a set L of leaves of To such that L is initiated by wand ILl = k. Since a(G) = d

< k, there is a pair z, r E L such that (z, r) E E(G), because, otherwise L would be an

independent set of G with cardinality k> d leading to a contradiction. Since z, r E L

and L is initiated by w, in To + (z, r) there is a cycle C such that w E V(C). Now we

delete an edge (w, p) to break the cycle so as to get a spanning tree TI. Note that

degr (w) = degr (w) -I. It is clear that we can apply above procedure until we get a, ,

spanning tree Tk_ d such that degr (w) = d after a finite iteration, since a(G) = d. So,~,

we get a spanning tree Tk _ d such that ID(Tk _ d)1 is one less then ID(ToJI and this

completes our proof.O

4.1.1 An Efficient Algorithm

In this section we outline a simple algorithm for constructing a degree-d-bounded

spanning tree from an input graph G such that a(G) = d. We also present a simple

worst case analysis of the algorithm.

40

Algorithm 4.I.I.I.

//Input: A connected graph G ~ (V, E) with a(G) ~ d.

//Output: A degree-d-bounded-spanning tree T

Begin

I. Construct and arbitrary spanning tree T of G.

2. iffor all v E V, deg,{v)" d, then

3. return T

4. else

5. Form the set D for T.

6. for each xED do

7. Fonn the set L

8. while deg,{x) > d do

9. Find a pair z, r E L such that (z, r) E E(G)

10. (Let C is the cycle created in T+ (z, r) and (x,p) E E(C))

II. T~T+(z,r)-(x,p)

12. end while

13. endfor

14. end if

IS. return T

End

Analysis: Let I VI = n and lEI = m. Constructing an arbitrary spanning tree takes Oem)

computational efforl. Forming the set D at most takes O(n). To find out how many

operations are actually done in the worst case in the for loop of line #6 to line # 13, we

just need to realize that there can be O(n2
) pairs of z, r to check in line #9 in the worst

case. So the overall running time is O(n\ Thus we get the following theorem.

Theorem 4.1.1.2. Given a connected graph G ~ (V, E) with a(G) = d, we can find a

degree-d-bounded spanning tree in O(n2
) computational effort. where n = IV(G) I. 0

Example 7. Figure 4.3 presents an illustrative example of how Algorithm 4.1.1.1

works on an arbitrary input graph with independence number 2.

41

\

4.2 New Problems and Complexities

In this section we introducc some new interesting spanning tree problems and relevant

results.

Problem 4.2.1. Minimum Leaf Spanning Tree.

Given a connected graph G ;; (V, E) and a positive integer K < IVj, we are asked the
question whether there is a spanning tree T of G such that K or less vertices have

degree I.

A Graph with Independence

number 2

Break the cycle by deleting (a, d).

Now degree of d is one lesser.

Still D ~ (d). L ~ (a, e. c)

An arbitrary spanning tree. 0 =

(dJ and L ~ (a. b, e, c)

Add the edge (a, ej

Add the edge (a, b) to create a

cycle involving d

Delete (d, f). The resulting

spanning tree is our desired one

Figure 4,3: Illustration of how Algorithm 4.I.I.1 works

42

Example 8. Consider the graph G in Figure 4.4(a) and the two spanning trees T] and

T2 in Figure 4.4(b) and Figure 4.4(c), respectively. Also suppose that, in the input

instance, the given value for K is 3. Since in T], number of leaves is 4, it is not a

desired Minimum Leaf Spanning Tree. The spanning tree T2, on the other hand is a

desired spanning tree for the given input instance since the number of leaves in T2 is 3

::::K. Note carefully that T] would be a desire spanning tree for the cases when K 2:4.

Theorem 4.2.2. Minimum Leaf Spanning Tree Problem is NP-Complete.

Proof. This can be easily proved by restricting the value of K to 2, since then we in

effect, have to find out a Hamiltonian path in G, which is an NP-Complete problem

for general graphs [13]. 0

(n) An arbitrary Graph G (b) A spanning tree T1 of 0 (e) A Spanning Tree TzofG

Figure 4.4: Minimum Leaf Spanning Tree

Problem 4.2.3. Restricted-Leaf-in-Subgraph Spanning Tree Problem.

Given G ;: (V, E) be a connected graph, X a vertex subset ofG and a positive integer

K < IA1. we are asked the question whether there is a .\panning tree Tc such that
number of leaves in Tc belonging to X is less than or equal to K.

43

(a) A gn.ph G. K = 3. X = {a, e, b,

d, e}

(b) A graph G. K = 3. X = (e, b, d,

e}

(c) A spllnning Iree ofG

Figure 4.5: Restricted Leafin Sub-graph Spanning Tree

Example 9. Consider the graph G in the figure 4.5(a) and 4.5(b). Both the graphs are

same but with different input parameters. Although in both cases we are assuming K

to be 3 the subset X is different for the two cases. In the former case, X = {a, e, b, d,

c} and in the latter X = ie, b, d, c}. The tree T in Figure 8(c) is a spanning tree ofG.

Now, for the former input instance, T is not a desired RLSST since number of leaves

belonging to X in T is not restricted according to the input i.e. it is not less than or

equal to K (= 3). However for the latter input instance T is a desired spanning tree.

Theorem 4.2.4. Res/ric/ed-Leafin-Subgraph Spanning Tree (RLSST) Problem is NP-

Comple/e.

Proof. We prove this theorem by restriction. It is easy to see that if we assume X = V

then RLSST problem reduces to Minimum Leaf Spanning Tree Problem (Problem

4.2.1). Hence the result follows directly from Theorem 4.2.2. 0

We now consider a variant of maximum leaf spanning tree problem (Problem

1.1.2.5.) for bipartite graphs.

44

(a) A Bipartite graph G with partite

sets X and Y

(b) A spanning Iree T. ofG (c) A Spanning Tree T20fG

Figure 4.6: Variant of Maximum Leaf Spanning Tree for Bipartite Graphs

Problem 4.2.5. Variant of Maximum Leaf Spanning Tree for Bipartite Graphs

Let G be a connected bipartite graph with partite sets X and Y. Given a positive

number K S lXi, we are asked the question whether there is a spanning tree TG in G

such that number of Ieaves in TG belonging 10 X is greater than or equal to K.

Example 10. Consider the bipartite graph G in Figure 4.6(a) with partite sets X (= {a,

b, c, d, e, f, g}) and Y. Also assume that the value of K in the input instance is given

to be 3. Now in Figure 4.6(b) and 4.6(c) there are two spanning trees T, and T2 of G.

However, since in T" the number of leaves belonging to X is only 2 (namely e and g),

it is not a desired spanning tree. On the other hand T2 is a desired spanning tree of G

for the given value of K. In the remaining of the section we investigate the necessary

and sufficient conditions for the existence of such a spanning tree in a bipartite graph

as defined in Problem 4.2.5. First we present the following theorem.

45

,

Theorem 4.2.6. Let G be a connected bipartite graph with partite sets X and Y and

suppose K is a positive number such that K s !Xl. Then there is a spanning tree Tin G

such that number of leaves in T belonging to X is greater than or equal to K if and

only ifthere isa set S <:;;; X such that fK lSI,,: K and (Sv Y) is connected.

Proof. The proof of the theorem is simple. We first consider the if part. Suppose in G

there is a set S such that fK lSI": K and (S vY) is connected. We can easily find a

spanning tree T' for the graph (S vY). Now suppose in T' number of leaves belonging

to S is K'. It is clear that 0 s K' ,; lSI.Now since G is a connected bipartite graph, for

each x E X I S we can add an edge (x, y) such that y E Y to get a spanning tree T" of

G. This would mean that for all x E XI S, degr-{x) = I. Now since fKI SI ": K so, T"

would necessarily be our desired spanning tree T.

Conversely, suppose G has a spanning tree T such that number of leaves in T

belonging to X is greater than equal to K. Now let L be the set of leaves of T

belonging to X. Since G is bipartite so in T, Nc(L) <:;;; Y. Hence if we delete the set L

from Tc we still get a tree. This means that in G, «X I L) v Y) is connected. Now

since according to the assumption ILl ": K so, in effect we have established the

existence of the set S(=X I L) in G as defined in the conditions. Hence the result

follows. 0

Now we present a more stringent condition for the existence of desired spanning tree

in a bipartite graph G (as defined in Problem 4.2.5). The conditions are presented in

the form of following theorem.

Theorem 4.2.7. Let G be a connected bipartite graph with partite sets X and Yand

suppose K is a positive number such that K,; !Xl. Then there is a spanning tree Tin G

such that number of leaves in T belonging to X is greater than or equal to K if and

only if there is a set S <:;;;X such that all of the followings hold true:

a. IXISI ,,:K

b. (S vY) is connected and

c. For any subset S' <:;;; S, INc(S')1 ": lS'I + 1.

46

Proof. We first prove the only if part. Suppose there is a spanning tree Tsuch that the

number of leaves in T belonging to X is greater than or equal to K. Let L = {x Ix E X

and degl(x) = I}. So ILI2 K. Now define S =XI 1. Now it is clear that IXI SI2 K. To

show that (S uY) is connected in G, we just need to realize that since G is bipartite so

in T, Ne(L) <;:: Y. Finally, since S = X I L, we must have for all XES, deg,,(x) 2 2,

because otherwise either x would be a leaf or x would have no edge implying that G is

not connected, both of which are contradictions. We thus have for any set S' <;:: S,

lS'I + 1

oS: Lxddeg,,(x)-I) + 1

oS: IN"(s)1
oS: INcCs) I

Now we need to show the if part. Assume that the sufficient conditions are satisfied.

Let G' '" (S uY). G' is bipartite with partite sets Sand Y. Since G is bipartite, the

assumptions about S hold in G' as well. So we must have for any subset S' <;:: S in G',

INe(S')1 IS'I+ 1

> IS'I.

Hence there is a matching M from S to Y by Hall's theorem [15]. Now F = (S u Y, M)

is a forest where for all XES, degF(x) = I.Now we show that there exists a forest F

such that deg Xx) = I for all XES as follows. We show it by an induction on the

number of vertices with degree 1 in a forest. Let F' be the forest containing F such

that I oS: degp(x) oS: 2 for all XES and let SI be the set of all vertices such that degp(x)

= 1 for all x E SI. According to assumption we must have Ne(SI) > ISJi. Hence there

must be an edge e joining SI and YI Np(SI)' So in the forest F' u e, the number of

vertices with degree 1 is fewer than ISI1.Now we can obtain a spanning tree T of G'
- -

when we add some edges to F between the connected components of F. Finally

since G is connected and bipartite, for each x E XI S, we can easily add an edge (x, y)

of G to T where y E Y, to get the desired spanning tree T. D

47

-- -<~

Remark: It is clear that with respect to the Problem 4.2.5, both the conditions stated

above (Theorem 4.2.6 and Theorem 4.2.7) are equivalent to each other, Theorem

4.2.6 being much simpler. The justification of presenting both the theorems lies

partially in the fact that unfortunately we are still unable to settle the issue of

complexity for Problem 4.2.5. However, the two theorems suggest two ways of

attacking the problem. As is evident from the proof of Theorem 4.2.7, it seems that

the bipartite maximum matching algorithm might be employed to solve the problem.

Also note carefully that Theorem 4.2.7 is more stringent and in fact the constructive

proof of the sufficient part of Theorem 4.2.7 indicates that the resulting spanning tree

would have exactly K leaves in X, where as in Problem 4.2.5, the requirement is for

the leaves belonging to X to be greater than or equal to K. So in effect Theorem 4.2.7

also gives the necessary and sufficient condition of the following problem.

Problem 4.2.8. Variant of Maximum (Exact Number of) Leaf Spanning Tree for

Bipartite Graphs

Let G be a connected bipartite graph with partite sets X and Y Given a positive

number K :; lXi, we are asked the question whether there is a spanning tree To in G
such that number of leaves in To belonging to X is exactly equal to K.

Example 11. Consider the bipartite graph G and the two spanning trees T, and T2 in

Figure 4.7(a), (b) and (c), respectively. Assume that in the input instance the value of

K is given to be 2. Then T, is a desired spanning tree as defined in above problem but

T2 is not. Note that, for the given value of K, both T, and T2 are desired spanning

trees .for Problem 4.2.5 (may see Example 10) since in both the spanning trees the

number of leaves belonging to X is greater than or equal to 2. However, in this exact

version of the problem, only T, is the desired tree.

48

\C- .

(a) A Bipartite graph G with partite

sets X and Y

(b) A spanning tree T. ofG (c) A Spanning Tree T20fG

Figure 4.7: Exact Leaf Spanning Tree for Bipartite Graphs

4.3. The Set Version

In this section we first introduce a new notion of "set version" of some well known

decision problems. Consider the input instances of Maximum Leaf Spanning Tree

Problem (Problem 1.1.2.5.) where we have an integer K $ I V1 as a part of the input

and we are asked the question whether there exists a spanning tree T in the input

graph such that T has K or more leaves. Our notion of set version would pose a similar

but different problem where the integer K in the input instance is replaced by a set X

~ V. To be specific we define the corresponding set version of Problem 1.1.2.5. as

follows.

Problem 4.3.1. Set Version of Maximum Leaf Spanning Tree Problem.

Given a connected graph G '" (V, E) and X ~ V, we are asked the queslion whether

there is a spanning tree T such thai X ~ nr, where nr = {v II' is a leaf in T}.

49

For better understanding we first present suitable examples to illustrate both the

normal and set version of Maximum Leaf Spanning Tree.

(n) An arbitrary graph G

(e) A spanning tree Tz ofG

(b) A spanning tree Tl ofG

(d) A spanning tree TJ orG

Figure 4.8: Maximum Leaf Spanning Tree and ils Sel Version

Example 12. Consider the graph G in Figure 4.8(a). Assume first that the value ofK

is 3. Therefore the spanning tree T, in Figure 4.8(b) is a desired Maximum Leaf

Spanning Tree. However, if K is 5 then T) fails to satisfy the requirements and hence

is not a desired spanning tree. Note carefully that even if K is 4, T] remains the

desired spanning tree. Now in order to consider the set version of the Maximum Leaf

Spanning Tree, a subset X should be defined in the input instance instead of K.

50

Suppose X is defined to be the set {a, f, g, e}. Now in T2 (Figure 4.8(c) there are two

non-leaf nodes belonging to X. So T2 can't be our desired spanning tree. However, if

X = {e, d} then T3 (Figure 4.8(d))is a desired spanning tree because all the nodes

belonging to X in T3 are leaves. Note carefully that in this case we are not at all

concerned about the nodes outside the given X. We are only to ensure that all the

vertices belonging to X should be leaves. There may be more leaves outside X.Now

we present a necessary and sufficient condition for the existence of such a spanning

tree as described in Problem 4.3.1, in the form of Theorem 4.3.1. As we point out

later, the proof of Theorem 4.3.1 indicates the existence of a polynomial time

algorithm to find one such spanning tree as opposed to the NP-Completeness of the

original problem (Problem 1.1.2.5.).

Theorem 4.3.1. Let G = (V, E) be a connected graph and X a vertex subset of G. Also

let f be a mapping from Y ~ V \ X to natural number such for all y E 1'; fry) ~ INeM

nXI. Then there exists a spanning tree T such that X c:;; fIr, if and only if both of the

following conditions hold true

1. (1')is connected

2. If(y);;o,ISI
yEN(J(S)nY

for any S c:;;X

Proof.

First we prove the only if part:

Suppose there is a spanning tree Tin G such that X c:;; ilT. In that case it is easy to

realize that (Y) is connected since for all x E X, degr(x) = 1 and deleting X does not

affect the connectivity of the rest of the graph. On the other hand letfr be a mapping

from Y to natural number such for all y E Y,fr(y) = INr(y) nXI. Note thatfr(y) ;;0, 0 for

all y E Y. Now since each of x E X, is adjacent to only one y E Y in T so we must

have for any Sc:;;X, IfT(y)=ISI. Again, since for ally E Y,N) = INe(y) nXl;;o,
yeNI'(S)nY

INr(y) n XI = fr(x) and (N1{S) n Y) c:;;(Ne(S) n Y), we must have for any S c:;;X,

If(y);;o,lsl.
yeNr;(S)nY

Now we need to prove the if part:
51

..0

Now let W c::; Y be the set of vertices such that W = {w I W E Y andf{w) > OJ. We now

construct a graph as follows. For all w E W, we remove wand add new f{w) vertices,

Z(w) = { Zl, Z2, ..• , zj\w)} and edges {(w, v) I v E NG(w) n X and w E Z(w)}. It is easy

to verify that the resultant graph H is bipartite with partite sets Z and X, where

Z= UZ(w). Let rp be a binary relation from W to Z such that an element w
!PEW

corresponds to all the elements of the set Z(w). Now consider any set S c::; X. Then the

following must be true:

1* If(y)
)'eN(] (s)nY

= If(Y)
yeNc(S)nW

= Il
yE!p(N(] (S)"W)

=1 rp(Nr; (S) n W) I
=1 NH(S)I

Hence in the bipartite graph H, by Hall's Theorem [15], there exists a matching M

from X to Z. Let F' be the forest obtained from the matching M by identifying each

vertex set Z(w) with corresponding vertex w for all w E W. Again, since (Y) = G, (let)

is connected, there is a spanning tree let T, in G,. Now we get the graph F = T, u F'

which is connected and acyclic as follows. Each connected component in F'is either a

star with aYE Y in the center or an isolated vertex y' E Y. Now since W c::; Y, and

VeTil ~ Y, it is clear that F is connected. Now it remains to show that F is acyclic.

This follows from the fact that every star is acyclic and T, is acyclic. Thus, F = T is a

spanning tree of G since VeT) = V(F) = V(G). Now it is clear that for all x E X, degJ{x)

= I. Hence T is our desired spanning tree. 0

The constructive proof of the sufficient part indicates the existence of a polynomial

time algorithm to find one such spanning tree. We here first outline the algorithm as

indicated in the proof and then deduce its complexity.

52

Algorithm 4.1

(Returns a desired spanning tree if one exists and false otherwise)

Begin

Step I: If(Y) is connected then Find out a spanning tree T[from (Y)else return false.

Step 2: Construct the graph H as described in the proof of Theorem 3.1.

Step 3: Find out the matching M from X to Z in H. If X is not saturated then return

false.

Step 4: Obtain the forest F'

Step 5: Return Twhere T~ T[u Pas described in the proof of Theorem 3.1.

End

The analysis of the algorithm is simple. Let n = 1V1and m = lEI. Step 1 can be done in

Oem) since we need an arbitrary spanning tree. Step 2 roughly takes Oem). The

merging in Step 5 needs O(n). However the analysis of Step 3 needs some attention.

Using the algorithm devised by Hopcraft and Karp [17] we can perform step 3 in

O(nh05. mh) running time, where H ~ (Vh, Eh) and nh = IVhland mh = IEhl.Now from

the construction ofthe graph H nh = ~ + 121= ~ + L fey) <; ~ + Oem) = Oem). We
yeW

now need to consider mho For each Z E Z(w) we have at most degG(w) <; ,1(G) edges in

H where ,1(G) is the maximum degree in G. Since for all W E W, IZ(w)1 ~ J\w) =

ING(w)nXI <; ING(w)1= degG(w) <; ,1(G), we get the worst case total number of edges

in H as follows. mh <; ,1(G) . ,1(G) = ,1(0)2 = O(n2), since ,1(G) <; n - 1 ~ O(n). Thus

the running time of step 3 is O(nh05 . mh) = O(mos . n2). Finally sinc.e Step 4 can be

done in O(mh) = O(n2) computational effort, the overall running time of the algorithm

is dominated by Step 3 and hence is O(mos . n2). Finally the necessary and sufficient

condition stated and proved in Theorem 4.3.1 ensures that Algorithm 3.1 returns false

if the input graph does not have our desired spanning tree. Thus we get the following

theorem.

Example 13. Figure 4.9 below gives an illustrative example of how the Algorithm 4.1

works.

Theorem 4.3.3. Let G ~ (Y, E) be a connected graph with n vertices and m edges and

X a vertex subset of G. If there exists a spanning tree Tin G such that X I;;; IlT. then

53

r
\
'~"

Algorithm 3.1 finds out one such spanning tree in O(mo.s . n2) computational effort

and it returns false otherwise. 0

Remark: Note carefully that although the original Maximum Leaf Spanning Tree

problem is NP-Complete the corresponding set version of the problem can be solved

in polynomial time.

Now we consider the set version of the Problem 4.2.5 defined m section 2 and

consider its complexity issue.

Problem 4.3.4. Set Version of Problem 4.2.5

Let G be a connected bipartite graph with partite sets X and Y and X, {;;X We are

asked the question whether there is a spanning tree TG in G such that X, {;;fIr, where

Dr ~ {v I v is a leaf in T}.

Theorem 4.3.5. Problem 4.3.4 is polynomially solvable.

Proof. The proof is simple and makes use of the Theorem 4.2.6. From Theorem 4.2.6

it is clear that G possess a spanning tree as defined in Problem 4.3.4 if and only if «X
\ X,) u Y) is connected. Since this can be decided polynomially, the result follows.

o

Above discussions may lead us to believe that the corresponding set versions ofNP-

Complete problems are not as hard as the original ones. However, this may not

necessarily be the case as follows. We here consider the set version of Problem 4.2.1

i.e. Minimum Leaf Spanning Tree Problem.

Problem 4.3.6. Set Version of Minimum Leaf Spanning Tree Problem.

Given a connected graph G = (V, E) and X {;;V, we are asked the question whether

there is a spanning tree T such that Dr {;;X, where Dr ~ {v I v is a leaf in T}.

54

, .

An arbitrary graph G

Construction of the Bip.1nitc graph H

Construction of the Bipanite graph H

Givcn subset X. Y = G - X

Construction ofthc Bipanitc graph H

Construction ofLhe Bipanite graph H

A spanning tree of(Y)

Construction of the Bipanite graph H

Construction ofthc Bipanite graph H

//,
, .

• e.\••.....• "

, ' ..:~,.b.
e '
~

'•.'
•,

/' ,
"

6
• b

I.
G .•'••

"'-- I!l>b •
"'~, <

e

Finding II Matching from H Idcmifying to the original graph Resulting desired spnnning tree

Figure 4.9: An example orhow Algorithm 4.1 worl(s

55

By employing the same strategy used to prove Theorem 4.2.2 (NP-Completeness of

Minimum Leaf Spanning Tree Problem), Problem 4.3.6 can also be proved to be NP-

Complete by assuming any X <;;; V such that IX! = 2. So we in effect get the following

theorem.

Theorem 4.3.7. Set Version of Minimum Leaf Spanning Tree Problem is NP-

Complete.D

4.4 Applications

Research on spanning trees has always been fueled by numerous theoretical and

practical applications. In any implementation of communication algorithms, a

common approach is to embed spanning trees with special properties on those

networks. The root of the tree is the origin of the messages. The links of the

embedded tree are used for message transmission. For example, in [I I], 3 major

communication problems for the start interconnection network, namely the multi-node

broadcasting, the single node scattering and the total exchange problems, are

considered and algorithms are devised using the aforementioned idea.

Spanning tree structure is of paramount importance in network and communication

problems. New spanning tree structures are continuously evolving due to various

network and communication problems arising in practical situations. For example, a

special kind of spanning tree, namely edge-disjoint spanning tree that reduce the

communication time of the single node broadcasting problem on the star network and

offer many applications in the area of fault tolerant communication algorithms have

been constructed in [12]. Another kind of spanning tree is the optimal communication

spanning tree, first introduced by Hu in [19], which connects all given nodes and

satisfies their communication requirements for a minimum total cost. This kind of

spanning tree structures and variants thereof are extensively used in the design of

optimal communication and transportation networks satisfying a given set of

requirements [3, 26]. Relevant constrained spanning tree problems are for example

the optimal communication spanning tree problem, the degree-constrained minimum

spanning tree problem, the minimum Steiner tree problem or the capacitated

minimum spanning tree problem.

56

••f

The new problems introduced in this thesis are believed to be of importance in

relevant areas. The various spanning tree structures and problem thereof, arising from

applying various constraints and restrictions, in fact, correspond to various real world

network and transportation problems. Also, the new notion of set version introduced

here, seem to be applicable to numerous practical problems since there are many real

world situations when a particular set of nodes or links are to be subjected to

particular restrictions or constraints.

57

,. '"-"
\ ,.

• r ~_.

1.~.

Chapter 5

CONCLUSION AND FUTURE RESEARCH

This thesis deals with spanning paths, cycles and trees. We have first presented

sufficient conditions for the existence of Hamiltonian (spanning) paths and cycles in

graphs. In particular, we investigated degree related conditions. We have also

introduced new parameter in our sufficient conditions. The relation between
,

independence number and Hamilton city also is investigated. Table 5.1 lists the

conditions related to Hamiltonicity of graphs that we present in this thesis.

Then we consider spanning trees continue our investigation to find a relation between

spanning tree problem, degree bounded spanning tree problem in particular, and

independence number of graphs. Some new spanning tree problems are presented and

there issues of complexity are considered. In particular we define Minimum Leaf

Spanning Tree problem and RLSST Problem and prove both of them to be NP-

Complete. We also consider variants of maximum leaf spanning tree problem for

bipartite graphs (Problem 4.2.5 & Problem 4.2.8) and present two necessary and

sufficient conditions. However, we neither prove the problem to be NP-Complete nor

have presented any polynomial time algorithm to solve it. So the complexity of the

problem still remains an open question. Finally a completely new notion, the "Set

Version" is introduced and we raise the issue of whether the set versions of NP-

Complete problems are as hard as the original problems. We here prove the set

version of maximum leaf spanning tree problem to be polynomially solvable. It seems

that the set versions of spanning tree problems should be generally easier to solve

because in the case of set version,

-the question about a spanning tree should be answered only for one set, and

we might have a polynomial time algorithm for answering the question;

58

".

-while in the original problem we might need to answer the question for

exponential number of sets, and thus the corresponding algorithm might need

exponential time;

However, it is shown here that the idea that set version is easier than the original

problem may not necessarily be true in general. Our findings are shown in Table 5.2

and Table 5.3.

No. Sufficient Conditions Reference

l. Let G = (V, f-] be a connected graph with n vertices and P be a longest path in Theorem 3.1.3
G having length k and with end verhces u and v. Then the followings must hold
true:

a. Either a(u, v) > J or P is a Hamiltonian path contained in a
Hamiltonian cycle.

b. if o(u. v) 23 then ~lu) + ~lv) :5k - o(u. v) + 2

c. if o(u. v) ~ 2. then either ~lu) + ~lv) :5 k or P is a Hamiltonian
path contained in a Hamiltonian cycle.

2. Let G = (V, E) be a connected graph with n vertices such thaI for all pair of Theorem 3.1.5
distinct nonadjacent pair o/vertiees 11, v E Vwe have d(u) + d(v) + O(u,v) 2n
+ 1. Then G has a Hamiltonian path.

3. Let G = (V, E) be a connected graph with n vertices. If for all pairwise non- Theorem 3.2./
adjacent vertex-triples u, ", and w it holds that

1
d(u) + d(v) + dew) 2 -(3n - 5) then G has a Hamiltonian path.

2
4. Let G ~ (V, E) be a connected graph such that a(G) ~ 2. Then G has a n,eorem 3.3.1.6

Hamiltonian path.

5. Let G ~ (V. E) be a 2-connected graph such thaI a(G) ~ 2. Then G is Theorem 3.3.1. 7
Hamiltonian.

Table 5.1: Sufficient Conditions for Hamiltonian Paths and Cycles

No. Problem Complexity Reference

Issue

I Minimum Leaf Spanning Tree. NP-Complete Problem 4.2.1.

Given a connected graph G ;:::(V, E) and a positive integer
K< lVI, we are asked the question whether there ;s a
spanning tree T of G such that K or less vertices have
degree 1.

59

No. Problem Complexity Reference

Issue

2 Restricted-Leaf-in-Subgraph Spanning Tree Problem. NP-Complete Problem 4.2.3

Given G =: (V, 1:..] be a connected graph, X a vertex subset
of G and a positive integer K < IXl, we are asked the
quesr;on whether there is a spanning tree TG such that
number of lem1es in TG belonging 10 X is less than or equal
to K

3 Variant of Maximum Leaf Spanning Tree for Bipartite Open Problem 4.2.5
Graphs

Let G be a connected bipartite graph with partite sets X
and Y. Given a positive number K ::; IXL we are asked the
question whether fhere is a spanning tree 7(; in G such thcfj~
number of leaves in Tc belonging to X is greater than or
equal to K

4 Variant of Maximum (Exact Number of) Leaf Spanning Open Problem 4,2.8.
Tree for Bipartite Graphs

Let G be a connected bipartite graph with partite sets X
and Y. Given a positive number K S; IXl, we are asked the
question whether there is a spanning tree TG in G such that
number of leaves, in Tc; belonging to X is exactly equal to K.

5 Set Version of Maximum Leaf Spanning Tree Problem. Polynomial Problem 4,3.1,

Given a connected graph G == (V, E) and X ~ V, we are
asked the question whether there is a spanning free T such
fhat X c ill; where ilr = {v I v is a leaf in T}.

6 Set Version of Problem 4.2.5 Polynomial Problem 4.3.4.

Let G be a connected biparti/e graph with partite sets X
and Y and XI!;; X We are asked the question whether there
is a spanning tree TG in G such that XI £; fiJi where Tlr =
{v I v is a leaf in T }.

7 Set Version of Minimum Leaf Spanning Tree Problem. NP-Complete Problem 4.3.6.

Given a connected graph G == (V, E) and X £; V, we are
asked the question whether there is a spanning free T such
Ihal fIr eX, where il,. ~ {v I v is a leaf in T}.

Table 5.2: Spanning Tree Problems

No. Conditions Reference

Lei G ~ (V, E) be a connecled graph such Ihal a(G) ~ d where d ~ 2. Then G Theorem 4./.2.
has a degree-d-bounded spanning tree.

Given a connected graph G = (V, E) with a(G) = d, we can find a degree-d- Theorem 4.1.1.2.

60 o

No. Conditions Reference

bounded spanning free in O(n') computational effort, where n IV(G) I.

Let G be a connected bipartite graph with partite sets X and Y and suppose K is 77leorem 4.2.6.

a positive number such that K ~ rxl. Then there is a spanning tree Tin G such
that number of leaves in T belonging to X is greater than or equal to K if and
only if there is a set S ~ X such that IXI SI~ K and (S uY) is connected.

Let G be a connected bipartite graph with partite sets X and Y and suppose K is Theorem 4.2.7

a positive number such that K .:::;~Y1.Then there is a spanning tree Tin G such
that number of leaves in T belonging to X is greater than or equal to K if and
only if there is a set S ~ X such that all of the followings hold true:

d. IXI SI~ K

e. (S u lj is connected and

f. For any subset S' ~ S, IN,,(S')I~ 15'1+ 1.

Let G ~ (V, E) be a connected graph and X a vertex subset ofG. Also let f be a Theorem 4.3. J.

mapping from Y ~ VlX to natural number such for all y E Y, f(y) ~ INr;{y) n
XI. Then there exists a spanning tree T such that X ~ fIr. if and only if both of
the/allowing conditions hold true

I (Y) is connected

2. If(Y)2Isj

)'ENc;(S)nY

foranyS~X

Table 5.3: Spanning Tree Conditions

5.1 Future Research

Theorem 3.1.5 provides a sufficient condition for the existence of Hamiltonian path

in graphs. A natural extension to this theorem should be to look for similar condition

or to extend the theorem for Hamiltonian cycle. So this should be an area where future

research effort can be given.

Theorem 3.2.1 (vertex triple) considers vertex triples. It would be interesting to see

whether the idea can be extended for vertex quadruples and if possible to generalize

the theorem for vertex k-tuples.

The rational behind each and every degree related sufficient conditions, in fact, is to

ensure sufficient amount of edges in the graph considered, to force Hamiltonicity.

Another interesting direction for research would be to find a lower bound of the

number of edges to ensure the Hamiltonicity.

61

{,

-

Various new problems on spanning trees are considered in this thesis. These problems

are raised, in fact, by posing various restrictions and constraints on various graph

parameters. Research in this direction can also be continued. For each new problem

the corresponding complexity issue is definitely an area to be investigated. In our

thesis, we could not settle the issue of complexity for the Problem 4.2.5 (Variant of

Maximum Leaf Spanning Tree for Bipartite Graphs): surely this is another area for

future research. Finally the new notion of set version seems to pose a completely new

area for thorough research. In particular, the set version of various NP-Complete and

NP-Hard problems should be investigated to see whether they are easier to solve and

thus to see whether this new theory can be as fruitful in practical applications as it

seems to be.

References

[1] J.A. Bondy and V. Chvatal, A Method in Graph Theory, Discr. Math. 15 (1976),

pp 111-136.

[2] T. Bohme, H.J. Broersma, F. Gobel, A.V. Kostochka, M. Stiebitz, Spanning

trees with pairwise nonadjacent end vertices, Discrete Math., 170 (1997), pp 219-

222.

[3] R.S. Chan, Wide area network design, concepts and tools for optimization. San

Francisco: Morgan Kaufmann Publishers, 1998.

[4] G. Chartand, O. R. Oellermann, Applied and algorithmic graph theory,

McGraw-Hili, New York, 1993

[5] B. Chazelle, A minimum spanning tree algorithm with inverse-Ackermann type

complexity, Journal ofthe ACM, 47:6 (2000), pp. 1028-1047.

[6] Y-Chuang Chen, Chang-Hsiung Tsai, Lih-Hsing Hsu, and Jimmy J.M. Tan, On

some super fault-tolerant Hamiltonian graphs, Applied Mathematics and

Computation, 148 (2004), pp. 729-74l.

[7] K.W. Chong, Y. Han, and T.W. Lam, Concurrent threads and optimal parallel

minimum spanning trees algorithm, Journal of the ACM, 48:2 (2001), pp. 297-

323.

62

[8] T. H. 'Corm en, C. E. Leiserson, and R. 1. Rivest, Introduction to Algorithms,

MIT Press, Cambridge, MA, USA, Reprint of the 1990 original, 1998.

[9] N. Deo, Graph Theory with Applications to Engineering and Computer Science,

Prentice-Hall, Englewood Cliffs, 1974.

[10] G.A. Dirac, Some Theorems on Abstract Graphs, Proc. Lond. Math. Soc. 2

(1952), pp 69-81.

[II] P. Fragopoulou, and S.G. Akl, Optimal communication algorithms on star

graphs using spanning tree constructions, Technical Report No. 93-346,

Department of Computing & Information Science, Queen's University,

Kingston, Ontario, Canada, February 1993.

[12] P. Fragopoulou, and S.G. Akl, Edge-disjoint spanning trees on the star network

with applications to fault tolerance, Technical Report No. 93-354, Department

of Computing & Information Science, Queen's University, Kingston, Ontario,

Canada, October 1993.

[13] M.R. Garey and D.S. Jhonson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W.H. Freeman and Company, New York, Reprint

of the 1979 original, 2000.

[14] R.L. Graham, and P. Hell, On the history of the minimum spanning tree

problem, Annals of the History of Computing, 7: I (1985), pp. 43-57.

[IS] P. Hall, On representation of subsets, 1. London Math Soc., 10 (1935), pp 26-30.

[16] F. Harary, and M. Lewinter, Hypercubes and other recursively defined

Hamiltonian laceable graphs, Congressus Numerantium, 60 (1987), pp. 81-84.

[17] J. Hopcraft and R.M. Karp, An O(n2') algorithm for maximum matching in

bipartite graphs, SIAM 1. Computing, 2 (1973), pp 225-231.

[18] S.Y. Hsieh, G.H. Chen, and C.W. Ho, Hamiltonian-Iaceability of star graphs,

Networks, 36 (2000), 225-232.

[19] T. C. Hu, Optimum Communication Spanning Trees, SIAM 1. Computing, 3

(1974), pp 188-195.

[20] W.T. Huang, M.Y. Lin, 1.M. Tan, and L.H. Hsu, Fault-tolerant ring embedding

in faulty crossed cubes, Proceedings of World Mtilticonf. Syst., Cybernetics and

Inform. SCI'2000 IV, 2000, pp. 97-102.

63
I •.••..,

\

[21] W.T. Huang, lM. Tan, C.N. Hung, and L.H. Hsu, Fault-tolerant Hamiltonicity

of twisted cubes, J. Parallel Distrib. Comput., 62 (2002), pp. 591-604.

[22] W.T. Huang, Y.c. Chuang, J.M. Tan, and L.H. Hsu, Fault-free Hamiltonian

cycle in faulty Mobius cubes, J. Com put. Syst., 4 (2000), pp. 106-114.

[23] D. S. Johnson and J. K. Lenstra and A. H. G. Rinnooy Kan, The Complexity of

the. Network Design Problem, Networks, 8 (1978), pp 279-285.

[24] D.R. Karger, P.N. Klein, and R.E. Tarjan, A randomized liner-time algorithm to

find minimum spanning trees, Journal ofthe ACM, 42:2 (1995), pp. 321-328.

[25] A.Kaneko, K.Yoshimoto, On spanning trees with restricted degrees,

Information Processing Letters, 73 (2000), pp 163-165.

[26] A. Kershenbaum, Telecommunications network design algorithms. New York:

McGraw Hill, 1993

[27] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling

salesman problem, Proceedings of the American Mathematical Society, 7

(1956), pp. 48-50.

[28] M. Lewinter, and W. Wi dulski, Hyper-hamilton laceable and caterpillar-

spannable product graphs, Computers Math. App!., 34 (1997), 99-104.

[29] Jiping Liu, Construct Hamilton-type graphs, Congressus Numerantium, 122
('

(1996), pp. 90-98.

[30] V.S. Myung, C.H. Lee, and D.W. Tcha, On the Generalized Minimum Spanning

Tree Problem, Networks, 26 (1995), pp. 231-241.

[31] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization,

John Wiley & Sons, New York, Reprint of the 1988 original, 1999.

[32] O. Ore, Note on Hamiltonian Circuits, Am. Mat. Monthly 67 (1960), pp 55.

[33] C. H. Papadimitriou, M. Yannakakis, The Complexity of Restricted Spanning

Tree Problems, Journal of the ACM, 29:2 (1982), pp 285-309

[34] S. Pettie, and V. Ramachandran, An optimal minimum spanning tree algorithm,

Journal of the ACM, 49:1 (2002), pp. 16-34.

[35] P. Pop, The generalized minimum spanning tree problem, Ph.D Thesis,

University ofTwente, the Netherlands, 2002.

[36] R.C. Prim, Shortest connection networks and some generalizations, Bell System

Technical Journal, 36 (1957), pp. 1389-140 I.

64

[37] Mohammad Sohel Rahman and Md. Abul Kashem, Degree Restricted Spanning

Trees of Graphs, accepted for presentation and publication in the ACM SIGAPP

Symposium of Applied Computing (SAC), Special Track on Computational

Sciences, 2004.

[38] F. Roberts, Graph Theory and its Applications to Problems of Society, Society

for Industrial and Applied Mathematics, Philadelphia, 1978.

[39] F. Roberts, (ed.), Applications of Combinatorics and Graph Theory to the

Biological and Social Sciences, Springer-Verlag, New York, 1989.

[40] G. Simmons, Almost all n-dimensional rectangular lattices are Hamiltonian

laceable, Congressus Numerantium, 2 I (1978), pp. 649-66 I.

[41] R.E. Tarjan, Data structures and network algorithms, Society for Industrial and

Applied Mathematics, 1983.

[42] H. Temperley, Graph Theory and Its Applications, Halsead Press, New York,

198 I.

[43] K. Thulasiraman, and M. Swamy, Graphs: Theory and Applications, Wiley,

New York, 1992.

[44] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc., New Jersey,

Reprint of the 1996 original, 2000.

[45] H. Whitney, Congruent graphs and the connectivity of graphs. Amer. 1. Math.

54 (1932), pp. 150-168

[46] M. Yannakakis, Node-and edge-deletion NP-Complete problems, Proceedings

of the tenth annual ACM symposium on Theory of computing, May 01-03,

1978, San Diego, California, United States, p.253-264.

65

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072

