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Abstract

Covering and Partitioning problems are very important problems in computer
science. Both of them deal with combinatorial structure of the instances. In covering

problem the question is whether a certain combinatorial structure covers another.
On the other hand the partition problem asks for partitioning a certain combinatorial

structure to smaller structures maintaining some constraints. A prominent example

of covering problem is Set Cover problem while an important partitioning problem

is Integer Partition problem. In these thesis, we are interested in two string

related covering and partitioning problem, namely, Minimum String Cover (MSC)
problem and Minimum Common String Partition (MSCP) problem. The first

one is a covering problem and the second one is the partitioning problem. MSC

problems has its application in formal language theory, protein folding and in text
compression while MCSP has .its direct application in genome comparison.

In this thesis, we are interested in designing efficient and practical algorithms for
solving MSC and MCSP problems. As both of them share the NP-hard complexity
status and are combinatorial optimization problem, we have applied variants of

Ant Colony Optimization (ACO) techniques to solve them. For MCSP we also
developed the Mixed Integer Linear Programming formulation. An extensive

experiment is carried that compares our result with the state of the art algorithms

for these two problems.
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Chapter 1

Introd uction

•

String problems, a set of combinatorial problems, are seminal topics in computer

science. Various string problems with different complexity status existed in the

literature. In this thesis, we have explored two string problems, namely Minimum

String Cover (MSC) and Minimum Common String Partition (MCSP) problems.

The first problem is a cover problem on a set of strings. In MSC problem we

are given a set of strings called target string. For each of the substring of the

target string set, we define a cost function. In MSC, we have to find the minimum
cost string set that is a subset of the substring set of the target strings and the

target strings can be regenerated by any combination of the chosen string set. On
the other hand, the second problem is a partition problem defined on a couple
of strings. MCSP problem is the more restricted version of MSC problem, where

the partition set must be common between the two strings. In the MCSP, we are
given two strings on input with equal frequency on alphabet set, and we wish to

partition them into the same collection of substrings, minimizing the number of the
substrings in the partition. Both of these problems share the NP-hard complexity
staus and are related in their mapping in the underlying graph. Although some

theoretical work on these two problems exist in the literature, there are very few
practical analysis of these problems exist in the domain. In this research work,

we have developed some practical and efficient algorithms to solve these problems.

Our algorithms have been tested extensively on different benchmark test.

This chapter will serve as an introduction of the topics and thesis. we will discuss

about Minimum String Cover (MSC) and Minimum Common String Partition
(MCSP) problems and motivation of these two problems. Also we will discuss

1

••
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about our scope of this work and outcome of this thesis. Finally this chapter

concludes with a overview of the rest of the chapters.

1.1 Practical applications of MSCP

A string cover C of a set of strings S is a set of substrings from S such that every

string in S can be written as a concatenation of the strings in C. Given costs

assigned to each substring from S, the Minimum String Cover (MSC) problem
asks for a cover of minimum total cost. The complexity of the problem is NP-hard.

Although the problem is very hard to solve it has several applications in different

domain.

1.1.1 Protein Folding

In [16]' Bodlaender et al. described an application for this problem in the context

of protein folding. (They referred to the problem as the Dictionary Generation
problem, and considered its unweighted variant under the parameterized complexity

framework.) Protein folding is the problem of determining the folding structure of

proteins using their amino-acid sequential description. This problem is extremely

important, since most of the functionality of a protein is determined by its folding
structure, and because current biological methods for extracting the sequential
description of a given protein exceed by far the methods for extracting the folding
structure of the protein. In [16], it is argued that since all known approaches for

protein folding are NP-hard, a possible heuristic for this problem is to break the
protein sequence into small segments, small enough for allowing efficient folding
computation. This heuristic is justified by the fact that many proteins seem to
be composed of relatively small regions which fold independently of other regions.

The theory of exon shuffling proposes that all proteins are concatenations of such

regions, where the regions are drawn from a common ancestral dictionary [32].

1.1.2 Formal Language Theory

MSC can also model interesting computational issues which arise in formal language
theory, and in particular, in the area of combinatorics of words. Our notion of cover
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actually corresponds to the notion of combinatorial rank, an important parameter
of a set of words. Neraud [65]studied the problem of determining whether a given

set of words is elementary, where a set of strings is said to be elementary if it does

not have a cover of size strictly less than its own.

1.1.3 Text Compression

Another important application of the problem can be found in data compression.
In data compression, the task is encoding information in fewer bits. If the bits

get lost in the compression process it is termed as lossy compression. On the

other hand if the original information can be fully decoded from the encoded

compressed information, the compression technique is called lossless compression.
It can easily be verified that, MSC can be used to generate a simple loss less

compression algorithm. Suppose we have a text with n lines of strings. If we can
find the cover of the n strings, the cover set can be used to index the text file. By

this the original file can be compressed. An example is illustrated as follows:

Example 1.1. Suppose we have text, T = {"abcad", "adabcdb", "dbadabbc", "abcabbcdb",

"abcdb" "abbcad" "dbaddbabbc" "abcadabb"} One 01the cover C = {"abc" "db" "ad", , , . , '"
"abbe"}. After establishing the cover, we can rewrite the original text by the index

of the cover string. The text, T can be encoded as: {02,201,123,031}, where the

numbers are the index of the cover set C starting from o. It can be easily verified

that the decoding is lossless.

1.2 Practical application of MCSP

In the Minimum Common String Partition (MCSP) problem, two strings X, Y of
length n, that contain the same symbols equally many times, shall be partitioned

each into k segments called blocks, so that the blocks in X and Y constitute the

same multiset of substrings. This problem is also proved to be NP-hard.

1.2.1 Measure of Evolutionary Distance

Evolutionary distance between two DNA strings of different species is a measure

of their similarities. Computing evolutionary distance is an important topic in
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Comparative Genomics [36]. Like Sorting by reversals [7]and Sorting by transpositions

[6JMCSP is a measure of evolutionary distance. Given two DNA strings, MCSP

answers the possibilities of re-arrangement of one DNA string to another [22]. In

MCSP, the transformation criteria is the Common String Partition(CSP).

Example 1.2. Suppose we have two species. The DNA string of the first species

is, "gtacggtcaagc". And the DNA string of the second species is, "aagcgtcagtac".

One of the minimum CSP set is {"gtac", "ggtc" and "aagc"} and CSP size is 3.

1.2.2 OrthologAssignment of Genes

MCSP is also important in ortholog assignment. In [19],the authors present a new

approach to ortholog assignment that takes into account both sequence similarity
and evolutionary events at a genomic level. In that approach, first, the problem

is formulated as that of computing the signed reversal distance with duplicates

between the two genomes of interest. Then, the problem is decomposed into two

optimization problems, namely minimum common string partition and maximum
cycle decomposition problem. Thus MCSP plays an integral part in computing

ortholog assignment of genes.

1.3 Scope of the thesis

In this thesis, we are interested in developing practical and efficient algorithms for
solving MSC and MCSP problems. We are interested in Metaheuristic approaches

to solve the problems. To the best of our knowledge, there exists no attempt
to solve these problems with Meta-heuristic approaches. Particularly we are
interested in nature inspired algorithms. As the two problems are discrete combinatorial

optimization problems, the natural choice is Ant Colony Optimization (ACO).

1.4 Contribution of the thesis

The objective of this research is to develop efficient and practical algorithms

for solving these two problems. We have contributed in mapping the problems

into graphs. Upon these graphs ACO is implemented with various static and

••
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dynamic heuristics. For MCSP problem, we have also developed a mixed integer

programming formulation. It was solved by branch and cut method. In this section

we will briefly outline the contribution of the thesis.

1.4.1 Graph mapping

MSC and MCSP are NP-hard problems. So, no exact polynomial algorithms exist

(unless it is proved that P=NP). We have to rely on approximation algorithm or

metaheuristic approaches. As we have chosen ACO to solve these two problems,

we first need to map the problems into graphs. In our work for MCSP we have
developed common substring graph on two strings. The mapping of the graph

from the input string can be done in polynomial time. For MSC problem, we have

borrowed and modified substring graph from [18].

1.4.2 Mixed Integer Programming formulation of MCSP

There are two Mixed Integer Programming (MIP) formulation of MSC problem

in the literature [18, 48J. But no MIP formulation is found for MCSP problem. In
our work, we have developed an efficient MIP formulation of MCSP problem.

1.4.3 Developing dynamic heuristic

Heuristics play important roles in the performance in ACO algorithms. For MCSP
problem, we have developed some heuristics that effect solution quality positively.

1.4.4 Developing ACO algorithms

Using the mapping graphs and heuristics developed, we have implemented different

ACO algorithms, namely MAX-MIN Ant System (MMAS), Ant Colony System
(ACS) and Hybrid Ant System (HAS) on these two problems. The parameters of

the specific algorithms needed to be set to ensure the best results.
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1.4.5 Extensive experiment

6

We conducted experiments for a detailed performance evaluation of our algorithms

and compared our algorithms with the best known algorithms available in the

literature. The supremacy of our algorithms are justified by the comparative

analysis performed based on this experiments.

1.5 Overview of the thesis

The rest of the chapters are organized as follows. Chapter 2 presents the preliminary

concepts necessary to comprehend the rest of the thesis. In particular, this

chapter briefly introduces MSC and MCSP problems and discusses definitions
and notations related to this thesis work, and finally presents a brief description

of the Metaheuristic techniques namely ant colony optimization (ACO). Chapter

3 presents related works and the existing algorithms to solve MSC and MCSP
problems. Chapter 4 and Chapter 5 contain the algorithms those were developed

for solving the two problems. Chapter 6 contains the experimental results of our
schemes and a comparative study with the existing state of the art algorithms on

several performance issues. Chapter 7 draws the conclusion describing the key

contributions of this thesis followed by some future research directions related to

this topic.



Chapter 2

Preliminaries

In this chapter we define MSC and MCSP problems formally and elaborately. We
will also mention some notations and definitions that will be used throughout the

thesis. Lastly we will discuss the basics of Ant Colony Optimization and Integer

Linear Programming.

2.1 Strings

Traditionally string is an umbrella term for sequences of symbols or characters.

To formally approach strings, we need an alphabet typically denoted by ~ and the

grammar of the language or the set of strings that we accept.

Definition 2.1. String: A string (or word) over ~ is any finite sequence of symbols

from ~ [69].

Example 2.1. If ~ = {O, 1}, then 01011 is a string over ~.

In this thesis, we only consider finite languages, that is, sets of strings with a finite
number of elements, which can be modeled with regular expressions as defined in

[53]A regular expression over an alphabet ~ is either one of the following constant

symbols:

• the empty set </J

• the empty string E

7

t~, ,', I'-'0,' i'~'.
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• a single symbol of 1::

or a combination of regular expressions s and t using the following operators:

• the concatenation st

• the alteration s + t

• the kleene star s*

8

The regular expression corresponding to all possible strings over an alphabet

1:: = {A, B, C, ... ,} is often written as 1::*. Concatenation is an important binary

operation on 1::*. For any two strings s and t in 1::*, their concatenation is defined
as the sequence of symbols in s followed by the sequence of characters in t, and is
denoted st. The alteration of two regular expressions merges the languages, that

is, all strings represented by s and all strings represented by t. The Kleene star

represents all strings that can be constructed by concatenating strings represented

by s an arbitrary number of times.

Definition 2.2. Substring: A string s is said to be a substring or factor of t if

there exist (possibly empty) strings u and v such that t = usv. We define C (t) to

be the set of all substrings of t.

Example 2.2. 1ft = "stringcovemndpartiion" then Sl = "cover" and S2 = "partition"

are both substrings of t.

Definition 2.3. Prefix and Suffix: A string s is said to be a prefix of t if there
exists a string u such that t = SU. If U is nonempty, s is said to be a proper prefix

of t. Symmetrically, a string s is said to be a suffix of t if there exists a string U

such that t = us. If u is nonempty, s is said to be a proper suffix of t. Suffixes
and prefixes are substrings of t.

Example 2.3. If, t = "stringcovemndpartiion", then Sl = "stringcover" and

S2= "partition" are two of the prefixes and suffixes respectively.

2*2 Graphs

The definitions in this section is based on [55J.
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A directed graph G(V, E) contains a non-empty set V of nodes and a setEi:;; VZ

of edges. An edge e = (u, v) E E starts at node u and ends at node v. Then, we
say that u E V and v E V are interconnected or adjacent. Further, both nodes are

incident with edge e. E is not necessarily symmetrical, that is, (u, v) E E does not

mean that (v, u) E E as well. A weighted directed graph G is a triple of (V, E, f)

with G(V, E) representing a directed graph and a weight function f : E -t R.

A path b from node v E V to node u E V in a weighted directed graph G(V, E, f)
is a sequence of edges el> ez, ... en for some positive integer n such that edge ei
ends at the same node at which edge ei+ 1 starts. Furthermore, edge el starts at
node v and edge en ends at node u. The weighted length of path b is the sum of

its edge weights, that is

n

f(b) =L f(ei)
i=l

(2.1)

If there exists a path in G(V, E, f) from node v E V to node u E V , we say that
u is reachable from v. A path starting and ending with the same node is called a

cycle. A graph without any cycles is called acyclic.

2.3 Notations and Definitions

In this section, we present some definitions and notations that are used throughout

the thesis.

Definition 2.4. Related string: Two strings (X, Y), each of length n, over an

alphabet I: are called related if every letter appears the same number of times in

each of them.

Example 2.4. X = "abacbd" and Y = "acbbad", then they are related. But if

Xl = "aeacbd" and Y = "acbbad", they are not related

Definition 2.5. Block: A block B = ([id, i,j]), 0 ~ i ~ j < n, of a string S
is a data structure having three fields: id is an identifier of S and the starting
and ending positions of the block in S are represented by i and j, respectively.

Naturally, the length of a block (id, i, jJ is (j -i+ 1). We use substring([id, i, j]) to
denote the substring of S induced by the block lid, i, jJ. Throughout the report we
will use 0 and 1 as the identifiers of X(i.e., id(X)) and Y(i.e., id(Y)) respectively.

We use 0 to denote an empty block.

-.'
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Example 2.5. If we have two strings (X, Y) = {"abcdab", "bcdaba"}, then [0,0,1]

and [0, 4, 5] both represent the substring "ab" of X. In other words, substring([O, 0, 1]) =
substring([O, 4,5]) = "ab".

Two blocks can be intersected or unioned. The intersection of two blocks (with

same ids) is a block that contains the common portion of the two.

Definition 2.6. Intersection of blocks: Formally, the intersection operation of

B1=[id,i,j] and B2=[id,i',j'] is defined as follows:

B1 nB2 = { ~d,i',j]
lid, i,j']

if i'> j or i > j'
if i' ~ j

else

(2.2)

Example 2.6. If, B1 = [0, 1,5] and B2 = [0,3,6], then B1 nB2 = [0,3, 5J. On the

other hand, if B1 = [0,1,5] and B2 = [0,6,8], then B1 n B2 = 0
Definition 2.7. Union of blocks: Union of two blocks (with same ids) is either
another block or an ordered (based on the starting position) set of blocks. Without

the loss of generality we suppose that, i ~ i' for B1=[id,i,j] and B2=[id,i',j'].

Then, formally the union operation of B1 and B2 is defined as follows:

if j' <= j

if j' > j or i' == j + 1

else

(2.3)

Example 2.7. If, B1 = [0, 1,5] and B2 = [0,3,6], then B1 UB2 = [0, 1,6]. On the

other hand, if B1 = [0,1,5] and B2 = [0,6,8], then B1 U B2 = {[O,1, 5]' [0,6, 8]}

The union rule with an ordered set of blocks, Bls' and a block, B' can be defined
as follows. We have to find the position where B' can be placed in Blst>Le., we

have to find Bk E Bls' after which B' can be placed. Then, we have to replace the

ordered subset {Bk, Bk+l} with Bk U B' U Bk+l'

Example 2.8. As an example, suppose we have three blocks, namely, B1 =

[0,5,7]'B2 = [0, 11, 12] and Ba = [0,8, 10]. Then B1 uB2 = Bfs' = {[O,5, 7], [0, 11, 12]}.
On the other hand, Bfs,uBa = [0,5,12], which is basically identical to B1 UB2uB3•

Two blocks B1 and B2 (in the same string or in two different strings) matches if

substring(B1) = substring(B2). If the two matched blocks are in two different

r;
'\-;'
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strings then the matched sJbstring is called a common substring of the two strings

denoted by cstring(B1, B2).

Definition 2.8. span: Given a list of blocks with same id, the span of a block,

B = lid, i,j] in the list denoted by, span(B) is the length of the block (also in

the list) that contains B and whose length is maximum over all such blocks in the

list. Note that a block is assumed to contain itself. More formally, given a list of

blocks, listb, span(B E listb) = max{£ I £ = length(B'), B ~ B', VB' E listb}.

Example 2.9. Iflistb = {[O, 0, 0]' [0,0,1], [0,0,2], [0,4, 5]} then span([O, 0, 0]) =
span([O, 0, 1]) = span([O, 0, 2]) = 3 where as, span([O, 4, 5]) = 2. In other words,
span of a block is the maximum length of the super string than contains the

substring induced by the block.

Definition 2.9. Partition: A partition of a string X is a list of blocks all with

id(X) having the following two properties:

(a) Non Overlapping: The blocks must be be disjoint, i.e., no block should overlap

with another block. So the intersection of any two blocks must be empty.

(b) Cover: The blocks must cover the whole string.

In other words, a partition of a string X is a sequence P = (Bt, B2, ••• , Bm) of

strings whose concatenation is equal to X, that is B1B2 ••• Bm = X. where B;'s

are blocks.

Definition 2.10. Cover: Given a set of strings S, We say, C C C(S) is a Cover
of S if each string in S can be written as a concatenation of some strings in C.

Example 2.10. Let, S = {abc, cab, be}. So, C = {ab, b, c} C C(S) is a cover of

S.

Definition 2.11. Substring graph: Substring graph models the factorization of a

string. Formally, for a string s of length n can be mapped into a substring graph,

G.(v;" E.), where,
v;, = {(s,O),(s,I), ... ,(s,n)}

Es = {(s,p), (s, q) :p < q, (s,p) E v;" (s, q) E v;,}

(2.4)

(2.5)

The directed edge ((s,p), (s, q)) represents the sub- string interval (s,p, q - 1),

spelling a substring of length q - p.
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2.4 Ant Colony Optimization
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Ant colony optimization (ACO) [25, 27, 28, 311was introduced by M. Dorigo

and colleagues as a novel nature- inspired metaheuristic for the solution of hard
combinatorial optimization (CO) problems. The inspiring source of ACO is the

pheromone trail laying and following behavior of real ants which use pheromones

as a communication medium. In analogy to the biological example, ACO is based

on the indirect communication of a colony of simple agents, called (artificial) ants,

mediated by (artificial) pheromone trails. The pheromone trails in ACO serve
as a distributed, numerical information which the ants use to probabilistically

construct solutions to the problem being solved and which the ants adapt during

the algorithm's execution to reflect their search experience.

In the real world, ants (initially) wander randomly, and upon finding food return
to their colony while laying down pheromone trails. If other ants find such a

path, they are likely not to keep traveling at random, but to instead follow the

trail, returning and reinforcing it if they eventually find food. Over time, however,

the pheromone trails start to evaporate, thus reducing its attractive strength.

The more time it takes for an ant to travel down the path and back again, the

more time the pheromones have to evaporate. A short path, by comparison, gets
marched over faster, and thus the pheromone density remains high as it is laid on

the path possibly faster than it can evaporate. Pheromone evaporation has also
the advantage of avoiding the convergence to a locally optimal solution. If there

were no evaporation at all, the paths chosen by the first ants would tend to be
excessively attractive to the following ones. In that case, the exploration of the
solution space would be constrained. Thus, when one ant finds a good (i.e., short)

path from the colony to a food source, other ants are more likely to follow that
path, and positive feedback eventually leads all the ants following a single path.
The idea of the ant colony algorithm is to mimic this behavior with "simulated

ants" walking around the graph representing the problem to solve.

The original idea comes from observing the exploitation of food resources among

ants, in which ants with individually limited cognitive abilities have collectively

been able to find the shortest path between a food source and the nest. An

illustrative example is presented at Figure 2.1

.,,~r
",,'.

"
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FIGURE 2.1: Ant Colony Optimization

1. The first ant finds the food source (F), via any way (a), then returns to the

nest (N), leaving behind a trail pheromone (b).

2. Ants indiscriminately follow four possible ways, but the strengthening of the

runway makes it more attractive as the shortest route.

3. Ants take the shortest route, long portions of other ways lose their trail

pheromones.

In a series of experiments on a colony of ants with a choice between two unequal

length paths leading to a source of food, biologists have observed that ants tended

to use the shortest route. A model explaining this behavior is as follows:

1. An ant (called "blitz") runs more or less at random around the colony.

2. If it discovers a food source, it returns more or less directly to the nest,

leaving in its path a trail of pheromone.

3. These pheromones are attractive, nearby ants will be inclined to follow, more

or less directly, the track.

'"
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4. Returning to the colony, these ants will strengthen the route.
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5. If two routes are possible to reach the same food source, the shorter one will

be, in the same time, traveled by more ants than the long route will.

6. The short route will be increasingly enhanced, and therefore become more

attractive.

7. The long route will eventually disappear since pheromones are volatile.

8. Eventually, all the ants have determined and therefore "chose" the shortest

route.

2.4.1 Basics of ACO

In general, the ACO approach attempts to solve a combinatorial optimization (CO)

problem by iterating the following two steps. At first, solutions are constructed

using a pheromone model, i.e., a parameterized probability distribution over the
solution space. Then, the solutions that were constructed in earlier iterations are

used to modify the pheromone values in a way that is deemed to bias the search

towards the high quality solutions.

2.4.1.1 Ant Based Solutions Construction

As mentioned above, the basic ingredient of an ACO algorithm is a constructive

heuristic to probabilistically construct solutions. A constructive heuristic assembles

solutions as sequences of solution components taken from a finite set of solution

components C = {Cl,C2, ... en}. A solution construction starts with an empty
partial solution sP = 0. Then at each construction step the current partial solution
sP is extended by adding a feasible solution component from the solution space
C. The process of constructing solutions can be regarded as a walk (or a path)

on the so-called construction graph Gc = (C, E) whose vertices are the solution

components C and the set E are the connections (i.e., edges).
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2.4.1.2 Heuristic Information
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In most ACO algorithms the transition probabilities, i.e., the probabilities for

choosing the next solution component, are defined as follows:

To''' . 1/(e;)/3
p(e;Is") = 2:'" ()/3' 'Ie; E N(s")

cjEN(sP) TJ 1/ cJ
(2.6)

Here, 1/ is a weight function that contains heuristic information and a, f3 are
positive parameters whose values determine the relation between the pheromone
information and the heuristic information. The pheromones deployed by the ants

are denoted by T.

2.4.1.3 Pheromone Update

pheromone update consists of two parts. First, a pheromone evaporation, which
uniformly decreases all the pheromone values, is performed. From a practical

point of view, pheromone evaporation is needed to avoid a too rapid convergence

of the algorithm toward a sub-optimal region. It helps to forget the local optimal

solutions and thus favors the exploration of new areas in the search space. Then,
one or more solutions from the current or from 'earlier iterations are used to increase

the values of pheromone trail parameters on solution components that are part

of these solutions. As a prominent example, we describe the following pheromone
update rule that was used in Ant System (AS) [27]' which was the first ACO
algorithm proposed.

Ti +- (1 - c) X Ti + Ti X L F(s)xc,i=I,2,oo.,n
SEGiterlCiES

(2.7)

Let W(.) is the cost function. Here, Giter is the set of solutions found in the current

iteration, c E (0,1] is a parameter called the evaporation rate, and F :G -+ ]R+ is

a function such that W(s) < W(s) =} F(s) ~ F(s), s =f s, 'Is E G. The function
F(.) is commonly called the Fitness Function.
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2.4.2 Variants of ACO
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Different ACO algorithms have been proposed in the literature. The original

algorithm is known as the Ant System(AS) [24, 26, 29J. The other variants are,
Elitist AS [24, 29], ANT-Q [39], Ant Colony System (ACS) [28]' MAX-MIN AS
[82-84J etc. Below we will discuss some important variants of ACO.

2.4.2.1 Ant System

Ant System is the first ACO algorithm proposed in the literature [24, 26, 29]. Its
main characteristic is that, at each iteration, the pheromone values are updated

by all the m ants that have built a solution in the iteration itself.

2.4.2.2 MAX-MIN Ant System (MMAS)

The MMAS algorithm is characterized as follows. Firstly, the pheromone values

are limited to an interval [TMIN,TMAX] with 0 < TMIN < TMAX. Pheromone trails
are initialized to Tmax to favor the diversification during the early iterations so
that premature convergence is prevented. Explicit limits on the pheromone values

ensure that the chance of finding a global optimum never becomes zero. Secondly,
in case the algorithm detects that the search is too much confined to a certain

area in the search space, a restart is performed. This is done by initializing all the
pheromone values again. Thirdly, the pheromone update is always performed with

either the iteration-best solution, the restart-best solution (i.e., the best solution
found since the last restart was performed), or the best-so-far solution.

2.4.2.3 Ant Colony System (ACS)

The ACS algorithm was introduced to improve over the performance of Ant System
(AS). ACS is based on AS with some important differences. Firstly, after each

iteration, a pheromone update is done using only the best solution found so far.

The pheromone evaporation is only applied to the solution components that are in

the best-so-far solution. Secondly, the transition probabilities are defined by a rule
that is called pseudo-random-proporlional rule. With this rule, some construction

steps are performed in a deterministic manner, whereas in others the transition
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probabilities are defined. Let q is a random number and qo is a threshold value,

then the high level description of pseudo-mndom-proportional is,

{
best available camponent

Next component =
draw according 2.6

ifq:Sqo

otherwise

I

Thirdly, during the solution construction the pheromone value of each added

solution component is slightly decreased.

2.4.3 Application of ACO

Recently, growing interest has been noticed towards ACO in the scientific community.
There are now available several successful implementations of the ACO metaheuristic

applied to a number of different discrete combinatorial optimization problems. In

[27],the authors distinguished between two classes of applications of ACO: those to

static combinatorial optimization problems, and those to the dynamic ones. When

the problem is defined and does not change while the problem is being solved is
termed as static combinatorial optimization problems. The authors in [27], listed

some static combinatorial optimization problems those are successfully solved

by different variants of ACO. Some of the problems are, traveling salesperson,
Quadratic Assignment, job-shop scheduling, vehicle routing, sequential ordering,

graph coloring etc. Dynamic problem is defined as a function of some quantities
whose values are set by the dynamics of an underlying system. The problem
changes therefore at run time and the optimization algorithm must be capable

of adapting online to the changing environment. The authors in [27]' listed
connection-oriented network routing and connectionless network routing as the

examples of dynamic problems those are successfully solved by ACO.

In 2010 a non-exhaustive list of applications of ACO algorithms grouped by

problem types are presented in [30]. The authors categorized the problems into
different types namely routing, assignment, scheduling, subset machine learning

and bioinformatics. In each type they listed the problems those are successfully
solved by some variants of ACO. Some current applications of ACO algorithms

are listed in Table 2.1.
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TABLE2.1: Some current applications of ACO algorithms (adapted from [30]).
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Problem type Problem name Authors Year References
Traveling salesman Dorigo et a1. 1991, 1996 [26,29]

Dorigo and Gambardella 1997 [28J
Stutzle and Hoos 1997, 2000 [83J

TSP with time windows LOpez Thanez et al. 2009 [58]
Routing Sequential ordering Gambardella and Dorigo 2000 [40]

Vehicle routing Gambardella et al. 1999 [41J
Reimann et a1. 2004 [72J
Fuellerer et al. 2009 [38]

Multicasting Hernandez and Blum 2009 [49J
Quadratic assignment Maniezzo 1999 [59]

Assignment
Stiitzle and Hoos 2000 [84]

Frequency assignment Maniezzo and Carbonaro 2000 [60]
Course timetabling Socha et al. 2002, 2003 [77,78]
Graph coloring Costa and Hertz 1997 [21]
Project scheduling Merkle et al. 2002 [64J
Weighted tardiness den Besten et a1. 2000 IllJ

Merkle and Middendorf 2000 [63J
Scheduling Flow shop Stiitzle 1997 [85J

Rajendran, Ziegler 2004 [n]
Open shop Blum 2005 [12]
Car sequencing Solnon 2008 [79]
Set covering Lessing et a1. 2004 [57]

Subset I-cardinality trees Blum and Blesa 2005 [14]
Maximum clique Soinon and Fenet 2006 [80]
Classification rules Parpinelli et al. 2002 [68]

Martens et al. 2006 [62J
Machine Learning Otero et al. 2008 [66]

Bayesian networks Campos, Fernandez-Luna 2002 [23]
Neural networks Socha, Blum 2007 [76]

2.4.3.1 String algorithms and ACO

There are not too many string related problems solved by ACO in the literature.

In [15]' the authors addressed the reconstruction of DNA sequences from DNA
fragments by ACO. Several ACO algorithms have been proposed for the longest
common subsequence (LCS) problem in [13, 75]. Closest string problem(CSP)
is an important problem is sequence analysis. Ant Colony algorithms have been

proposed for CSP in [8, 35]

2.5 Mixed Integer Linear Problem (MILP)

A common approach to modeling optimization problems with discrete decisions

is to formulate them as mixed integer optimization problems. In this section
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we will briefly overview the structure of MILP and their applications in discrete

optimization problems. This section is based on [51].

Definition 2.12. Mixed Integer Linear Problem (MILP): The problems in which

the functions required to represent the objective and constraints are additive,
i.e., linear functions. Such is called a mixed integer linear optimization problem

(MILP). The general form is

subject to,

max L CjXj +L CjXj +L CjXj

JEB JEI JEG

lj :'0 Xj :'0 Uj 'elj E N = B u I U C

Xj EO, 1 'elj E B

Xj E Z 'elj E I

Xj ER 'elj E C

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

A solution to Eqs. (2.8)-(2.13) is a set of values assigned to the variables Xj, j E N.
This solution set is sometimes referred as feasible region, feasible set, search space,
or solution space. The objective is to find a solution that maximizes the weighted

sum Eq. (2.8), where the coefficients Cj , j E N are given. B is the set of indices
of binary variables (those that can take on only values zero or one), I is the set

of indices of integer variables (those that can take on any integer value), and C
is the set of indices of continuous variables. As indicated above, each of the first

set of constraints Eq. (2.9) can be either an inequality constraint (":'0" or ":;::") or

an equality constraint ("="). The data lj and Uj are the lower and upper bound

values, respectively, for variable Xj , j E N.
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Feasible sets may be bounded or unbounded. For example, the feasible set defined

by the constraint set (x ~ 0, y ~ 0) is unbounded because in some directions there
is no limit on how far one can go and still be in the feasible region. In contrast,

the feasible set formed by the constraint set (x ~ 0, y ~ 0, x + 2y ~ 4) is bounded
because the extent of movement in any direction is limited by the constraints.

This generalelass of problems has many important special cases. When B = I =
<P;, we have what is known as a linear optimization problem (LP) . If C = I = <P;,
then the problem is referred to as a (pure) binary integer linear optimization
problem (BILP). Finally, if C = <P;, the problem is called a (pure) integer linear

optimization problem (ILP). Otherwise, the problem is simply an MILP. Throughout

this discussion, we refer to the set of points satisfying Eqs. (2.8)-(2.13) as S, and

the set of points satisfying all but the integrality restrictions Eqs. (2.11)-(2.12)
as P. The problem of optimizing over P with the same objective function as the

original MILP is called the LP relaxation and arises frequently in algorithms for

solving MILPs.

Solution of an MILP involves finding one or more best (optimal) solutions from

the set S. Such problems occur in almost all fields of management (e.g., finance,
marketing, production, scheduling, inventory control, facility location and layout,
supply chain management), as well as in many engineering disciplines (e.g., optimal

design of transportation networks, integrated circuit design, design and analysis
of data networks, production and distribution of electrical power, collection and
management of solid waste, determination of minimum energy states for alloy
construction, planning for energy resource problems, scheduling of lines in flexible

manufacturing facilities, and design of experiments in crystallography).

2.5.1 Solution Method

Solving integer optimization problems (finding an optimal solution), can be a
difficult task. The difficulty arises from the fact that unlike (continuous) linear
optimization problems, for which the feasible region is convex, the feasible regions

of integer optimization problems consists of either a discrete set of points or,
in the case of general MILP, a set of disjoint polyhedra. In solving a linear

optimization problem, one can exploit the fact that, due to the convexity of the

feasible region, any locally optimal solution is a global optimum. In finding global
optima for integer optimization problems, on the other hand, one is required to
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prove that a particular solution dominates all others by arguments other than

the calculus-based approaches of convex optimization. The situation is further

complicated by the fact that the description of the feasible region is "implicit" In

other words, the formulation,Eqs. (2.8)-(2.13) does not provide a computationally. . . '. .
useful geometric l:lescriptionoft,he set S. The general outline of a general solution
method is as follows.

1. Identify a (tract~ble) convex relaxation of the problem and solve it to either

(a) obtain a valid upper bound on the optimal solution value; or

(b) prove that the relaxation is infeasible or unbounded (and thus, the

original MILP is also infeasible or unbounded).

2. If solving the relaxation produces a solution x E RN that is feasible to the

~lILP, then this solution must also be optimal to the MILP.

3:. Otherwise, either
(a) identify a logical disjunction satisfied by all members of S, but not by

x and add it to the description of P (more on how this is done below);

or

(b) identify an implied linear constraint (called a valid inequality or a

cutting plane) satisfied by all members of S, but not by x and add

it to the description of P.

In Step 1, the LP relaxation obtained by dropping the integrality conditions on

the variables and optimizing over P is commonly used. Other possible relaxations

include Lagrangian relaxations [37, 42]' semi-definite programming relaxations
[73J, and combinatorial relaxations, e.g., the one-tree relaxation for the traveling
salesman problem [47J. Some of the successful MILP solving methods are discussed

below.

2.5.1.1 Branch-and-Bound Algorithms

The branch-and-bound method was first proposed in [56]and consists of generating

disjunctions satisfied by points in S and using them to partition the feasible

region into smaller subsets. Some variant of the technique is used by practically
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all state-of-the-art solvers. An LP-based branch-and-bound method consists of

solving the LP relaxation as in Step 1 above to either obtain a solution and an

associated upper bound or to prove infeasibility or unboundedness.

2.5.1.2 Cutting Plane Algorithms

Cutting plane algorithms was first derived in [46]. A general cutting plane approach

relaxes the integrality restrictions on the variables and solves the resulting LP
relaxation over the set P. If the LP is unbounded or infeasible, so is the MILP. If

the solution to the LP is integer, Le., satisfies constraints Eqs. (2.11)-(2.12),

then one has solved the MILP. If not, then one solves a separation problem

whose objective is to find a valid inequality that "cuts off" the fractional solution
to the LP relaxation while assuring that all feasible integer points satisfy the

inequality, that is, an inequality that "separates" the fractional point from the

polyhedron conv( S). Such an inequality is called a "cut" for short. The algorithm
continues until termination in one of two ways: either an integer solution is found
(the problem has been solved successfully) or the LP relaxation is infeasible and

therefore the integer problem is infeasible.

2.5.1.3 Branch and Cut Algorithms

Branch and cut [67](sometimes written as branch-and-cut) is a method of combinatorial
optimization for solving integer linear programs (ILPs), that is, linear programming
(LP) problems where some or all the unknowns are restricted to integer values. The

method solves the linear program without the integer constraint using the regular
simplex algorithm. When an optimal solution is obtained, and this solution has
a non-integer value for a variable that is supposed to be integer, a cutting plane
algorithm may be used to find further linear constraints which are satisfied by

all feasible integer points but violated by the current fractional solution. These
inequalities may be added to the linear program, such that resolving it will yield

a different solution which is hopefully "less fractional" .

At this point, the branch and bound part of the algorithm is started. The problem

is split into multiple (usually two) versions. The new linear programs are then

solved using the simplex method and the process repeats. During the branch and
bound process, non-integral solutions to LP relaxations serve as upper bounds and
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integral solutions serve as lower bounds. A node can be pruned if an upper bound
is lower than an existing lower bound. Further, when solving the LP relaxations,

additional cutting planes may be generated, which may be either global cuts, i.e.,

valid for all feasible integer solutions, or local cuts, meaning that they are satisfied

by all solutions fulfilling the side constraints from the currently considered branch

and bound subtree.

2.5.2 Applications

Many discrete combinatorial problems have been formulated as MILP. Now we

will discuss some of the applications of MILP.

2.5.2.1 Knapsack problems

Suppose one wants to fill a knapsack that has a weight capacity limit of W with

some combination of items from a list of n candidates, each with weight Wi and
value Vi, in such a way that the value of the items packed into the knapsack is

maximized. This problem has a single linear constraint (that the weight of the

items selected not exceed W), a linear objective function (to maximize the sum of
the values of the items in the knapsack), and the added restriction that each item
either be in the knapsack or not. It is not possible to select a fractional portion

of an item. For solution approaches specific to the knapsack problem, see [61].

2.5.2.2 Network and graph problems

Many optimization problems can be represented by a network, formally defined as
a set of nodes and a set of arcs (uni-directional connections specified as ordered

pairs of nodes) or edges (bi-directional connections specified as unordered pairs

of nodes) connecting those nodes, along with auxiliary data such as costs and

capacities on the arcs (the nodes and arcs together without the auxiliary data form
a graph). Solving such network problems involves determining an optimal strategy

for routing certain "commodities" through the network. This class of problems

is thus known as network flow problems. Many practical problems arising from

physical networks, such as city streets, highways, rail systems, communication

networks, and integrated circuits, can be modeled as network flow problems. In
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addition, there are many problems that can be modeled as network flow problems

even when there is no underlying physical network. For example, in the assignment

problem, one wishes to assign people to jobs in a way that minimizes the cost of the

assignment. This can be modeled as a network flow problem by creating a network
in which one set of nodes represents the people to be assigned, and another set

of nodes represents the possible jobs, with an arc connecting a person to a job if
that person is capable of performing that job. A general survey of applications

and solution procedures for network flow problems is given in [3].

Space-time networks are often used in scheduling applications. Here, one wishes to
meet specific demands at different points in time. To model this problem, different

nodes represent the same entity at different points in time. An example of the

many scheduling problems that can be represented as a space-time network is the

airline fleet assignment problem, which requires that one assign specific planes to

pre-scheduled flights at minimum cost ([2]). Each flight must have one and only one
plane assigned to it, and a plane can be assigned to a flight only if it is large enough

to service that flight and only if it is on the ground at the appropriate Location,

Routing, and Scheduling Problems Many network-based combinatorial problems
involve finding a route through a given graph satisfying specific requirements.

In the Chinese postman problem, one wishes to find a shortest walk (a connected

sequence of arcs) through a network such that the walk starts and ends at the same

node and traverses every arc at least once ([34]). This models the problem faced by
a postal delivery worker attempting to minimize the number traversals of each road
segment on a given postal route. If one instead requires that each node be visited
exactly once, the problem becomes the notoriously difficult traveling salesman
problem ([5]). The traveling salesman problem has numerous applications within

the routing and scheduling realm, as well as in other areas, such as the routing
of sonet rings ([74]), and the manufacturing of large-scale circuits ([10]). The
well-known vehicle routing problem is a generalization in which multiple vehicles
must each follow optimal routes subject to capacity constraints in order to jointly

service a set of customers ([44]).

A typical scheduling problem involves determining the optimal sequence in which
to execute a set of jobs subject to certain constraints, such as a limited set of
machines on which the jobs must be executed or a set of precedence constraints

restricting the job order (see ([4])). The literature on scheduling problems is

extremely rich and many variants of the basic problem have been suggested ([70]).
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Location problems involve choosing the optimal set of locations from a set of
candidates, perhaps represented as the nodes of a graph, subject to certain requirements,

such as the satisfaction of given customer demands or the provision of emergency

services to dispersed populations ([33]). Location, routing, and scheduling problems

all arise in the design of logistics systems, i.e., systems linking production facilities
to end-user demand points through the use of warehouses, transportation facilities,

and retail outlets. Thus, it is easy to envision combinations of these classes of

problems into even more complex combinatorial problems and much work has

been in this direction.

2.5.2.3 Packing, Partitioning, and Covering Problems

Many practical optimization problems involve choosing a set of activities that must

either "cover" certain requirements or must be "packed" together so as not exceed

certain limits on the number of activities selected. The airline crew scheduling

problem, for example, is a covering problem in which one must choose a set of
pairings (a set of flight legs that can be flown consecutively by a single crew)

that cover all required routes ([50, 86]). Surveys on set partitioning, covering and

packing, are given in [9, 17, 52].

2.6 Definition of the main problems

In this section we will define the two problems we are solving in this thesis namely
Minimum String Cover (MSC) and Minimum Common String Partition (MCSP)

problem.

2.6.1 MSC problem

The input of MSC problem consists of a finite set 8 (also called Target set )
of strings over a symbolic alphabet, and the task is to find a set of substrings

generating 8 and having a smaller cardinality than the alphabet.

Definition 2.13. M8C: Given a weight or cost function, W : 0(8) --+ 1"1', a
Minimum String Cover (MSC) is a cover of 8with minimum possible total weight.

The total weight ofthe cover 0 is W = I:cECw(e). Let m be the maximum length
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of any string of 8 and lsi be the length of any string s. If weight or cost, w(c),
is a unitary function, i.e., w(c) = 1 for every c E C(8), then it minimizes the

cardinality of the cover.

Example 2.11. For example, {AB, G} is the only minimum string cover of {ABC, CAB, CG}

while {A,B,G}, {AB,C,ACB}, or {ABC,CAB,ACB} are each minimum string

covers for the set of strings {ABC,CAB,ACB}. For non-unit weight functions,

the optimal solutions may be different. Given the weight function w(t) = Itl,
{A,B,G} and {AB,G} are the minimum string covers for the first set of strings

while {A,B,G} is the minimum string cover for the second set of strings.

2.6.2 MCSP problem

In the MCSP problem, we are given two related strings (X, Y). Clearly, two

strings have a common partition if and only if they are related. So, the length

of the two strings are also the same (say, n). Our goal is to partition each string

into c segments called blocks, so that the blocks in the partition of X and that
of Y constitute the same multiset of substrings. Cardinality of the partition set,

i.e., c is to be minimized. As it is defined earlier, a partition of a string X is a

sequence P = (B1>B2, ••• , Bm) of strings whose concatenation is equal to X, that

is B1B2 ... Bm = X.

Definition 2.14. MCSP Given a partition P of a string X and a partition Q of

a string Y, we say that the pair 11" =< P,Q > is a common partition of X and Y
if Q is a permutation of P. The minimum common string partition problem is to

find a common partition of X, Y with the minimum number of blocks.

Example 2.12. For example, if (X, Y) = {"ababeab", "abcabab"}, then one of

the minimum common partition sets is 11" ={ "ab", "abc", "ab"} and the minimum

common partition size is 3.

By k-MCSP we denote the version of MCSP where each letter occurs at most k

times in each input string.

Example 2.13. If, (X, Y) = {"ababcab", "abcabab"}, then the problem is at least

3-MCSP as each letter occurs in the input strings at most 3 times.
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Related Works

In this chapter we summarizes the previous works on MSC and MCSP problems.

The first section is dedicated for describing the available algorithms for MSC
problem. The second section detajled the earlier algorithms of the MCSP problem.

3.1 Previous works on MSC Problem

MSCP is perhaps the first problem in Stringology that incorporates the idea of

covering. It is surprising that the topic did not come to the surface until 1990 when

Neraud [65] studied the problem of determining whether a given set of words is
elementary, A set of strings is said to be elementary if it does not have a cover of

size strictly less than its own size.

MSCP was formally defined and studied in [48], where it was proved to be NP-hard.
It was further shown that in general, the problem is hard to be approximated

within a factor of c .In n for some c > 0, and within Lm/2 j ~ 1 - E where E > o. It
was also proved that the problem remajns APX-hard even when m is a constant,

and the given weight function is either unitary or a length-weighted function. We

will now briefly describe some algorithms to solve MSC problem that is found in

the literature.

27
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3.1.1 Linear programming formulation

28

In [48)authors provided an initial linear programming formulation of MSC problem.
Given a string s, an I-factorization of s is an ordered multiset of substrings

f = (tt, ... , tp) such that s = tl, ... , tp and p :s: l. Denote by Fl(s) the set of
possible I-factorizations of s, and let Fl(8) denote the set of all factorizations of

strings in 8. Now, for every substring c E C(8), we designate a variable Xt which
associated with t, and for every factorization f E FI(8), we designate a variable

y/ which is associated with f. In these terms, MSC can be formulated using the

following integer linear program:

min 2:: w(t)Xt
tEG(S)

s.t., 2:: y/ ~ 1 "Is E 8
/EF,(s)

2:: y/:S: Xt "Is E 8,"It suubstring of 8
tE/EF,(s)

x"y/ E {D, I} Vt E C(8), "If E Fl(8)

3.1.2 Local-Ratio Algorithms

(3.1)

(3.2)

(3.3)

(3.4)

The author in [48] gave a local ratio algorithm for solving MSC problem. The
algorithm is polynomial with the approximation ratio (n~l) - 1. The algorithm is

shown in Algorithm 1

The general outline of algorithm LR is as follows: First, the algorithm adds all

substrings c E C(8) with zero weight to an initial partial-solution C, since these
do not have effect on the total weight of the optimal solution. Then, if C is not

already a cover of S, LR selects a string s E 8 not covered by C, and examines

all substrings Cs of s not already in C. It then subtracts £ = min{w(t) : t E Cs}
from the weight of all substrings in Cs> and recurses on the new weight function.

The last line of the algorithm ensures that at least one substring of s will not be

included in C.
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Algorithm 1 LR(S, w, I)
C +- {t E C(S) : wet) = a}
if I-cover of S then return C
end if
Let s E S be a string not I-covered by C of maximum length.
C. +- {t E C(S) / C : tis a substring of s}.
Set E = min{ wet) : t E C.}
if c E C. then

Wi +- E
else

Wi +- a
end if
W2=W-Wi

C +- LR(S, W2,I)
if C/ s is an I-cover of S then

C+-C/s
end ifreturn C

3.1.3 A polynomial-size ILP formulation

29

Recently, an alternative flow-based ILP formulation of polynomial size is proposed

in [18]. The lLP formulation assumes substring gmph, G.(v., E.) is constructed
for every string s E S. It uses a binary decision variable Z.,i,j for every edge,

i.e. interval (s,i,j) E reS), and models a path from the source (s,O) to the sink

(s, lsI) as a unit flow. Let J-(v) and J+(v) for the sets of incoming and outgoing
edges of v E V., respectively. Let v.* = 11./ {(s,O), (s, lsi)}. Using these, the ILP

formulation is as follows,

subject to,

min L w(t)Xt
tEe(S)

Z.,i,j ::; X.li...j] V(s, i,j) E reS)

L Z.,i,j = 1 "Is E S
(.,i,j)EO+(s,O)

(3.5)

(3.6)

(3.7)
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L Zs,i,j = L Z.,i,j "Is E B, "Iv E v;,"
(s,i,j)E'-(v) (s,i,j)E'+(v)

XI> Zs,i,j EO, 1 "It E C(B), V(s, i,j) E f(B)

3.1.4 Lagrange based relaxation
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(3.8)

(3.9)

The ILP formulation derived exhibits a structure that is favorable for a Lagrangian
relaxation approach. The general idea of Lagrangian relaxation is to relax the

"complicating" constraints and penalize their violation in the objective function,

such that an "easy-to-solv<)"subproblem remains. In the ILP formulation, solutions
satisfying Eqs. (3.7)-(3.8) encode a unit flow and thus a path from node (s, 0) to

node (s, lsI) in the substring gmph of every string s E B. The link between these
paths and the chosen substrings is established through Eq. (3.6). Therefore,

by relaxing these "linking constraints" and by penalizing their violation with

non-negative multipliers A in the objective function, an optimal solution to the

resulting problem is obtained in [18]by computing shortest paths in the substring
graphs independently for each string. The new objective function relaxing constraint

is now,

min L w(t)Xt + L As,i,j(Zs,i,j - xsli ...jl)
tEG(S) (8,i,j)EI(S)

3.2 Previous works on MCSP

(3.10)

MCSP is essentially the breakpoint distance problem (88)between two permutations
which is to count the number of ordered pairs of symbols that are adjacent in the

first string but not in the other; this problem is obviously solvable in polynomial
time [45]. The 2-MCSP is proved to be NP-hard and moreover APX-hard in [45].
The authors in [45] also presented several approximation algorithms. Chen et

al. [19]studied the problem, Signed Reversal Distance with Duplicates (SRDD),

which is a generalization of MCSP. They gave a 1.5-approximation algorithm for

2-MCSP. In [22]' the author analyzed the fixed-parameter tractability of MCSP

considering different parametrs. In [54]' the authors investigated k-MCSP along
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with two other variants: MCSpc, where the alphabet size is at most c; and

x-balanced MCSP, which requires that the length of the blocks must be witnin

the range (n/d-x, n/d+x), where d is the number of blocks in the optimal common

partition and x is a constant integer. They showed that MCSpc is NP-hard when
c ~ 2. As for k-MCSP, they presented an FPT algorithm which runs in O*((d!)2k)

time.

3.2.1 Natural Greedy Approach

Chrobak et al. [20] analyzed a natural greedy heuristic for MCSP: iteratively, at

each step, it extracts a longest common substring from the input strings. They
showed that for 2-MCSP, the approximation ratio (for the greedy heuristic) is

exactly 3. They also proved that for 4-MCSP the ratio would be at least l1(logn)
and for the general MCSP, between l1(nO.43) and O(nO.67). The algorithm is listed

in Algorithm 2

Algorithm 2 Greedy for MCSP
Let A and B be two related input strings
while there are symbols in A or B outside marked blocks do

S +-- longest common substring of A, B that does not overlap previously
marked blocks

mark one occurrence of S in each of A and B as blocks
end while
(P,Q) +--sequence of consecutive marked blocks in A and B, respectively

Example 3.1. For example, if A = "cdabcdabceab", B = "abceabcdabcd", then

Greedy first marks substring "abcdabc", then "ab", and then three single-letter
substrings "e" "d" "e" so the resulting partition is (Ue" "d" "abcdabe" "e"J J , ", ,

"ab"), ("ab", "e", "e", "abcdabe", "d") while the optimal partition is ("cdabcd",

"abceab"), ("abceab", "cdabcd"). In this example the problem is 4-MCSP. The

approximation mtio for the instance is, 5/2 = 2.5. The approximation mtio for

4-MCSP with n = 12 is at least, log(12) "" 1.08.
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ACO Algorithm for MSC problem

In this chapter we will develop a Hybrid Ant System (HAS) for solving MSC

problem. The details of the algorithm with the pseudocode is described.

4.1 Hybrid Ant System for MSC problem

We have implemented a Hybrid Ant System (HAS) which combines the idea of
ACS and MMAS. Here, the construction of a solution is formed according to ACS

and the pheromone update is done according to MMAS. The following sections

describe the steps of our approach to solve MSCP.

4.1.1 FormulationofForward and Backward Substring Graph

For every string s E S, we define two types of Substring Graphs, namely, the

Forward Substring Graph GFs = (V., EFB) and the Backward Substring Graph,
GBs = (V., E Bs). Here the vertices are the positions of a position of a string. For
the Forward Substring Graph, two vertices connect if the first vertex is less than

the second vertex numerically and vice versa for the Backward Substring Graph.

The formal definitions of V., EFs and EBB are given below. We assume, n = lsi.

V. = {(s, 0), (s, 1), ..., (s, n)} (4.1)

EFs = {((s,p), (s, q)) :p < q, (s,p) E V., (s, q) E V.} (4.2)

32
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EBs = (((s,p),(s,q)) :p> q,(s,p) E V.,(s,q) E Vs}

33

(4.3)

Here an edge ((s,p), (s, q)),p < q (p > q) represents the substring interval (s,p, q-
1) ((s, q - l,p)) denoting a substring of length q ~ p (p - q). Therefore, a

factorization of s can be represented by a path in Gps (GBs) starting from (s, 0) ((s, n))
and ending at (s, n) ((s,O)). Notably, the idea of Forward Substring Gmph has

been borrowed from [18J.

The intuition behind using two types of graphs during the construction of a

solution is to favor exploration

4.1.2 Initialization and Configuration

The problem specific heuristic information is contained in 1]. It is a linear combination

of 3 different heuristics for this problem, namely, 1]1, 1/2 and 1]3' Let y be the
substring defined by the interval (Si,P, q). The following equations describe these

heuristics for (Si,P,q):

(
. _ LSEs frequency of y in s

1]1 s"p, q) - T: t I b f D' t" S b t . . So a num er 0 IS mct u s nngs III
(4.4)

G(y,s) = { 1,
0,

if y is a substring of s E 8
otherwise

(4.5)

. ( ) _ LSES G(y, s)
1/2Si,P, q - 181

Length of This Substring
1]3(Si'P, q) = M' All d L h f S b .axImum owe engt 0 u strmgs

(4.6)

(4.7)

Here frequency denotes the number of occurrences of a substring in a string. It
is expected that, the substrings with higher frequency and greater length would

be present in the solution for MSCP. This motivates us to use 1]1 and 1]3. On the

other hand, 1/2 is motivated by the assumption that a substring present in higher
number of target strings is also expected to be present in the solution of MSCP.

Notably, in our experiments a combination of the three (i.e., 1]1, 1]2 and 1]3) has

been found to be better than the individual heuristics. We have used the following

linear combinations of these heuristics:
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7)(Si'P, q) = (a. 7)l(Si,P, q) + b. 7)2(Si,P, q) + C. 7)3(Si,P, q))/cost(Si,P, q)/cost(s"p, q)

We use the following notation. Local best solution (L LB) is the best solution found

in each iteration. Global best solution (LGB) is the best solution found so far among

all iterations. The pheromone of the component is bounded between Tmax and Tmin'

Like [84], we use the following values for Tmax and Tmin: Tmax = e.cost(LGB)' and
Tmin = 7('.«10 ~). Here, avg is the average number of choices an ant has in the

avg- Pbe~t

construction phase. Initially, the pheromone values of all components (substring)
are initialized to initPheromone which is a large value to favor the exploration at

the first iteration [84].

4.1.3 Constructionof a Solution

Let, nAnts denotes the total number of ants in the colony. An ant starts from

the ith (i E [0,181- 1] is chosen randomly) target string (Si) to complete a path

starting from (Si, 0) ((s" ISil» and ending at (Si, Is,l) ((Si,O» in GFs (GBs)' Let
d(Vk) denotes the set of vertices directly reachable from a vertex Vk in the substring
graphs. 80, at any vertex Vk an ant has Id(Vk)1 choices. From Vk, the probability

of selecting the vertex Vj E d(Vk) is,

p(Vj) = T(Vj)'" 7)(Vj )~
L:l T(Vi)" . 7)(Vi)

(4.8)

Let Vknext be the next vertex to be chosen, i.e., interval (Si, k, knext) is selected as

a component of the factorization of Si' Then,

Vknext = {
argmaxV;Ed(Vk) p(Vj),

drawprob

if q ~ qo
otherwise

(4.9)

Here, q is a random number taken from a uniform distribution, qo is the threshold
value and drawProb represents a vertex selected randomly from the probability

distribution function in Eq. (4.8). Thus a factorization of target string Si is

completed. An ant chooses whether to factor according to forward substring graph

or backward substring graph with equal probability. This process continues until
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an ant finishes the factorization of all target strings. In each iteration, nAnts

solutions are constructed by the ants.

The intuition behind using two types of graphs during the construction of a

solution is to favor exploration. An ant starting from the initial position may

not fully explored the solution space. Again starting from each vertex randomly

can be effective but very inefficient and impractical due to high time complexity.

So, we have chosen only two types of starting either from the first vertex or the last

vertex. The starting positions are chosen randomly. If the first vertex is chosen as
starting position, then the factorization of the string is done on forward substring

graph otherwise the factorization is done upon backward substring graph.

4.1.4 PheromoneUpdate

We have defined the fitness F(L) of a solution L as the reciprocal of the sum of
the costs of the interval in L. The pheromone of each interval of each target string

is computed according to Eq. (2.7) after each iteration. Now, like MMAS, the

pheromones are bounded within the range TMIN and TMAX. We have updated the

pheromone values according to LLB or LaB. The algorithm is listed in 3

4.1.5 Pseudocode

The pseudocode of our approach for solving MSCP is given in Algorithm 4.
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Algorithm 3 Update pheromone for MSC problem
if run :$ 50 then

Update by LCB
else if run :$ 100 then

if run%5 == 0 then
Update by LLB

else
Update by LCB

end if
else if run :$ 200 then

if run%4 == 0 then
Update by LLB

else
Update by LCB .

end if
else if run :$ 400 then

if run%3 == 0 then
Update by LLB

else
Update by LCB

end if
else if run :$ 800 then
if run%2 == 0 then
Update by LLB

else
Update by LCB

end if
else

Update by LLB
end if

36
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Algorithm 4 HAS for MSCP
Calculate heuristic informationO
for run = 1-+ MAXRUN do

Initialize pheromone
Initialize global best
repeat

Initialize local best
for ant = 1-+ MAXPOPULATION do

Construction for anti
update local best

end for
update global best
update pheromone either by local best or global best

until time reaches maxAliowedTime or No update found for
maxAliowedI teration
end for
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Algorithms for solving MCSP

In this Chapter we will present 2 (two) algorithms for solving the MCSP. The

first part of this chapter will focus in designing a Mixed Integer Programming

formulation of MCSP. The second one will present a MAX-MIN Ant System.

5.1 MILP formulationof MCSP

Given two related strings X and Y each of length n, we create two graphs namely,

Gcs(Vb Eb id(X)) and Gcs(V2, E2, id(Y)) of (X, V), where VI and V2 are the vertex
sets and EI and E2 denote two edge block sets from the two graphs respectively.
For each t E EI and t E E2, we define two sets of binary variables, namely, X,

and Yi. We also write "k(vt and "k(V)+ for the sets of incoming and outgoing
edge blocks from Ek where v E Vk• With the above settings, we develop the MIP
formulation for the MCSP as follows:

subject to,

min I: (X, + Yi)/2
'EID,n-I]

I: X, = I: Yi
'EID,n-I] 'EID,n-I]

38

(5.1)

(5.2)
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L X, = L X, VVEID,n-i)
'E.,(v)- 'E., (v+l)+

L Yi = L Yi VvEID,n-i)
'E.,(v)- 'E.,(v+l)+

X, :::;LbE matchList(l, t)Yi V'EE,

Yi :::;L bE matchList(l, t)X, V'EE,

5.1.1 Explanation of the Formulation

39

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

Objective function: Eq. (5.1) is the objective function that is to be minimized.

The function simply calculate the size of the partition.

Equality constraint: Eq. (5.2) states that two partition on the two substring
graphs must be equal in size. That is the number of blocks in the factorization
of the first string X is equal with the number of blocks in the factorization of the

second string Y.

Factorization constraint: Eqs. (5.3)-(5.4) together imply that a unit flowenters
at the source (the vertex labeled with 0) and arrives at the sink (the vertex labeled
with n -1) for string x. So, the string is factorized. For string y the factorization

is achieved in a similar fashion by Eqs.(5.5)-(5.6). These constraints ensure that

the srtings get factorized by non-overlapping blocks.

One to one match constraint: Now that we have factorized the strings, we

need to achieve one to one matching between the selected blocks. We have two

sets of blocks after the factorization. We must ensure that there is a one to one
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matching between the two sets of blocks. By matching we mean that, for each

selected blocks (those with X, = 1) of the first edge block set E1, there must be one
and only one corresponding selected block (with Yi = 1) with the same substring

in the second edge block set E2 and vice versa. The constraint is achieved by Eqs.

(5.7)-(5.8).

5.2 MAX-MIN Ant System for MCSP

In this section we will develop a MAX-MIN Ant System for solving MCSP problem.

At first we will define the Common Substring Graph. Upon this graph, the

MAX-MIN Ant System will be developed.

5.2.1 Formulation of the Common Substring Graph

We define a common substring graph, Gcs(V, E, id(X)) of a string X with respect
to Y as follows. Here V is the vertex set of the graph and E is the edge set.

Vertices are the positions of string X, i.e., for each v E V, v E [0, IXI - IJ. Two

vertices Vi ::; Vj are connected with an edge, i.e, (Vi, Vj) E E, if the substring
induced by the block [id(X), Vi, Vj] matches some substrings of Y. More formally,

we have:

. (Vi, Vj) E E {? cstring((id(X), Vi, Vj], B') is not empty 3B' E Y

In other words, each edge in the edge set corresponds to a block satisfying the

above condition. For convenience, we will denote the edges as edge blocks and use

the list of edge blocks (instead of edges) to define the edgeset E. Notably, each edge
block on the edge set of Gcs(V, E, id(X)) of string (X, Y) may match with more
than one blocks of Y. For each edge block B a list is maintained containing all the

matched blocks of string Y to that edge block. This list is called the matehList(B).

Example 5.1. For example, suppose (X, Y) = {"abcdba", "abcdab"}. Now consider
the corresponding common substring graph. Then, we have V = {O,1,2,3,4, 5}
and E = {l0, 0, OJ,[0,0,1], [0, 1, 1]' [0,0,2], [0,0,3], [0, 1, 2], [0, 1, 3]' [0,2, 2J, [0,2,3],
[0,3,3](0,4,4], [0,5, 5]}. The matehList of the second edge block, i.e., matehList([O, 0,1]) =
{[I, 0,1], [1,4, 5]}.
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To find a common partition of two strings (X, Y) we first construct the common
substring graph of (X, Y). Then from a vertex Vi on the graph we take an edge

block (id(X), Vi, VjJ. Suppose Mi is the matchList of this block. We take a block

B; from Mi. Then we advance to the next vertex that is (Vj + 1) MOD IXI and
choose another corresponding edge block as before. We continue this until we come

back to the starting vertex. Let partitionList and mappedList are two lists, each
of length c, containing the traversed edge blocks and the corresponding matched

blocks. Now we have the following lemma.

Lemma 1. partitionList is a common partition of length c iff,

Bi nBj = 0 VBi, Bj E mappedList, i =I- j

and
B1 UB2U ... UBc = [id(Y),0,1Y1-1]

(5.9)

(5.10)

Proof. By construction, partitionList is a partition of X. We need to prove
that mappedList is a partition of Y and with the one to one correspondence

between partitionList and mappedList it is obvious that partitionList would be
the common partition of (X, Y). Eq. (5.9) asserts the non overlapping property

of mappedList and Eq. (5.10) assures the cover property. So, mappedList will be
a partition of Y if Eqs. (5.9)-(5.10) are satisfied.

On the other hand let partitionList along with mappedList is a common partition
of (X, Y). According to construction, partitionList satisfies the two properties of

a partition. Let, mappedList is a partition of Y. We assume mappedList does not
follow the Eqs. (5.9)-(5.10). So, there might be overlapping between the blocks or
the blocks do not cover the string Y, a contradiction. This completes the proof.

o

5.2.2 Heuristics

Heuristics (1]) contain the problem specific information. We propose two different
(types of) heuristics for MCSP. Firstly, we propose a static heuristic that does

not change during the iterations of algorithm. The other heuristic we propose is

dynamic in the sense that it changes between the iterations.
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5.2.2.1 The Static Heuristic for MCSP
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We employ an intuitive idea. It is obvious that the larger is the size of the blocks
the smaller is the partition set. To capture this phenomenon, we assign on each

edge of the common substring graph a numerical value that is proportional to

the length of the substring corresponding to the edge block. Formally, the static

heuristic (I).) of an edge block rid, i,j] is defined as follows:

I).([id, i, j]) ex: length([id, i, j])

5.2.2.2 The Dynamic Heuristic for MCSP

(5.11)

We observe that the static heuristic can sometimes lead us to very bad solutions.

Example 5.2. For example if (X, Y) = { "bceabcd","abedbec"} then according to

the static heuristic much higher value will be assigned to edge block [0,0,1] than

to [0,0,0]. But if we take [0,0,1], we must match it to the block [1,1, 2J and we
further miss the opportunity to take [0,3,6] later. The resultant partition will be

{ "be", "e", "a", "b", "c", "d"} but if we would take [0,0,0] at the first step, then one

of the resultant partitions would be {"b", "c", "e", "abed"}.

To overcome this shortcoming of the static heuristic we define a dynamic heuristic I

as follows. The dynamic heuristic (I)d) of an edge block (B = lid, i,j]) is inversely
proportional to the difference between the length of the block and the minimum
span of its corresponding blocks in its matchList. More formally, I)d(B) is defined

as follows:

where

1
I)d(B) ex: (' ,Ilength B) - mznSpan(B)I + 1

minSpan(B) = min{span(B') I B' E matchList(B)}

(5.12)

(5.13)

In the example 5.2, minSpan([O, 0, 0]) is 1 as follows: matchList([O, 0, 0]) =
{[I, 1, 1]' [1,4, 4]}. span([l, 1, 1]) = 4 and span([I, 4, 4] = 1). On the other
hand, minSpan([O, 0, 1]) is 4. So, according to the dynamic heuristic much higher

numeral will be assigned to block [0,0,0] rather than to block [0,0,1 J.
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.We define the total heuristic (7}) to the linear combination of the static heuristic

(7},) and the dynamic heuristic (7}d). Formally, the total heuristic of an edge block

B is,

7}(B) = a . 7},(B) + b . 7}d(B)

where a, b are any real valued constants.

5.2.3 Initialization and Configuration

(5.14)

Given two strings (X, Y), we first construct the common substring graph Gcs =
(V, E, id(X)). We use the following notations. Local best solution (L LB) is the best
solution found in each iteration. Global best solution (LGB) is the best solution

found so far among all iterations. The pheromone of the edge block is bounded

between Tmax and Tmin' Like [84]' we use the following values for Tmax and Tmin:

1 d Tma.(l-~) H . th b f
Tmax = £.cost(LGB)' an Tmin = (avg-l) ~Pbel!lt. ere, avg IS e average nUIll er 0
choices an ant has in the construction phase; n is the length of the string; Pbe,t

is the probability of finding the best solution when the system converges and c:is

the evaporation rate. Initially, the pheromone values of all edge blocks (substring)
are initialized to initPheromone which is a large value to favor the exploration at

the earlier iterations [84].

5.2.4 Construction of a Solution

Let, nAnts denotes the total number of ants in the colony. Each ant is deployed

randomly to a vertex v, of Gcs• A solution for an ant starting at a vertex v, is

constructed by the following steps:

step 1: Let Vi = VS' Choose an available edge block starting from Vi by the
discrete probability distribution defined below. An edge block is available if its

M atchList is not empty and inclusion of it to the partitionList and mappedList

obeys Eq. (5.15). The probability for choosing edge block [0,Vi, Vj] is:
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([ ])
T([O, Vi, Vj])" . 7)([0, Vi, Vj]),8 " h h [ ] . '1 bl bl k

p 0, Vi, Vj = '" ([ ]) ([ ]),8 , "1< suc t at 0, Vi, VI 2S an aval a e oc.
L;eT O,Vi,Ve a. TJ O,Vi,V£

(5.15)

step 2: Suppose, [0,Vi, Vk] is chosen according to Eq. (5.15) above. We choose a

match block Bm from the matchList of [0,Vi, Vk] and delete Bm from the matchList.
We also delete every block from every matchList of every edge block that overlaps

with Bm. Formally we delete a block B if

Bm n B"# 0 VBi E E, BE matchList(Bi).

We add [0,Vi, Vk] to the partitionList and Bm to the mappedList.

step 3: If (Vk + 1) MOD IXI = v. and the mappedList obeys Eq. (5.10), then

we have found a common partition of X and Y. The size of the partition is the

length of the partitionList. Otherwise, we jump to the step 1.

5.2.5 Intelligent Positioning

For every edge block of Ccs in X, we have a matchList that contains the matched

block of string Y. In the construction step (step 1), when an edge block is chosen

by the probability distribution, we take a block from the matchList of the chosen
edge block. We can choose the matched block randomly. But we observe that

random choosing may lead to a very bad partition.

Example 5.3. For example, if (X, Y) = {"ababc", "abcab"} then the matchList([O, 0, 1]) =
{[I, 0,1], [1,3, 4]}. If we choose the first match block then eventually we will get the
partition as {"ab", "ab", "c"} but a smaller partition exists and that is { "ab", "abc"}.

To overcome this problem, we have imposed a rule for choosing the matched

block. We will select a block from the matchList having the lowest possible span.

Formally, for the edge block, Bi, a block B' E matchList(Bi) will be selected such

that span(B') is the minimum.

In the example 5.3, span([I, 0,1]) = 3 where as span([l, 3, 4]) = 2. So it is better

to select the second block so that we do not miss the opportunity to match a larger

block.
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5.2.6 Pheromone Update
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When each of the ants in the colony has constructed a solution (i.e., a common

partition), an iteration completes. We set the local best solution as the best
partition that is the minimum length partition in an iteration. The global best

solution for n iterations is defined as the minimum length common partition over

all the n iterations.

We define the fitness F(L) of a solution L as the reciprocal of the length of L. The

pheromone of each interval of each target string is computed according to Eq. 2.7

after each iteration. The pheromone values are bounded within the range TMIN

and TMAX. We update the pheromone values according to LLB or LaB. Initially

for the first 50 iterations we update pheromone by only LLB to favor the search
exploration. After that we develop a scheduling where the frequency of updating

with LLB decreases and LaB increases to facilitate exploitation. The pseudocode

for pheromone update is given in Algorithm 5

5.2.7 The Pseudocode

The pseudocode of our approach for solving MCSP is given in Algorithm 6.
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Algorithm 5 update pheromone for MCSP

if run::; 50 then
Update by LGB

else if run::; 100 then
if run%5 == 0 then

Update by LLB

else
Update by LGB

end if
else if run::; 200 then

if run%4 == 0 then
Update by LLB

else
Update by LGB

end if
else if run::; 400 then

if run%3 == 0 then
Update by LLB

else
Update by LGB

end if
else if run::; 800 then

if run%2 == 0 then
Update by LLB

else
Update by LGB

end if
else

Update by LLB

end if

46



[> either by local best or global best
maxAllowedTime or No update found for

Chapter 5. Algorithms for solving MCSP

Algorithm 6 MMAS for MCSP
Calculate heuristic informationO
for run = 1-+ MAX RUN do

Initialize pheromone
Initialize global best
repeat

Initialize local best
for i = 1 -+ nAnts do

Construction for anti
update local best

end for
update global best
update pheromone

until time reaches
maxAllowedI teration
end for

47



Chapter 6

Experimentation and Results

In this chapter, we will discuss the implementation of our algorithms. The results

and analyses are also reported in this chapter. First we will discuss about the
simulation evnivomment and the dataset used in the experimentations and then

the result will be analyzed.

6.1 Resource Description

The experiments have been conducted using four computers all of which have the

same configuration. The compute configuration is listed below,

• Processor: Intet(R) core(TM) i5-2450 CPU @2.50GHz 2.50Ghz

• Main Memory: 4 GB

• L2-Cache: 3 MB

• Operating System: Windows 7 64 bit

The HAS algorithm for MSC problem is implemented in C++ using visual studio
2008 while the MMAS for MCSP problem is implemented using java. The jdk

version is "1.7.0_15". The programming environment is "jcreator". The MIP
solution for MCSP is implemented in Matlab 2009.

48



Chapter 6. Experimentation and Results

6.2 Dataset
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As there are very few practical work on the two problems we are dealing with, we

have faced a scarcity of the dataset. For both the problem we have to create our
own benchmark to test our algorithm. In this section, we will discuss the dataset

we have used.

6.2.1 MSCP

As MSCP has not got enough attention in the literature, there is no standard

library of data sets for which the exact solutions are known. Here, we rely on the

dataset introduced in [18]. These datasets are described below.

6.2.1.1 Large Random Data

Large Random Datasets -has been used in [18]. Here random instances have

been generated with alphabet sizes 4, 20 and 50. The number of target strings

was 10 and 100. The length of a target string was 50 - 100 and 250 - 300

respectively. The target strings are constructed by randomly concatenating strings

from the solution set. The size of solution set was 2 - 10 and 20 - 30 each
string having length 3 - 10 and 20 - 30 respectively. A total of 48 different kinds

of data for all possible combinations of these parameters were generated. Each
kind of data has 50 instances of the same type. The authors in [18] follow a
specific naming scheme to describe a particular data-set instance. For example,

instances_100_a4_s20-30J20-30..L250-300 denotes an instance having 100 target
strings, alphabet size (a) 4, solution set size (s) between 20-30, length of solution

set (1) between 20-30 and length of target string (L) between 250-300.

6.2.2 MCSP

We have conducted our experiments for MCSP problem on two types of data,

namely, randomly generated DNA sequences and real gene sequences.
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6.2.2.1 Random DNA sequences

50

We have generated 30 random DNA sequences each of length at most 600 using

[81]. The fraction of bases A, T, G and C is assumed to be 0.25 each. For each
DNA sequence we shuffle it to create a new DNA sequence. The shuffling is done

using the online toolbox [87J. The original random DNA sequence and its shuffled

pair constitute a single input (X, Y) in our experiment. This dataset is divided

into 3 classes. The first 10 have lengths less than or equal to 200 bps (base-pairs),

the next 10 have lengths within [201,400J and the rest 10 have lengths within

[401,600] bps.

6.2.2.2 Real Gene Sequences

We have collected the real gene sequence data from the NCB! GenBankl. For

simulation, we have chosen Bacterial Sequencing (part 14). We have taken the

first 15 gene sequences whose lengths are within [200,600].

6.3 Options and Parameters

During the experiments a lot parameters are to be set for both ACO based
algorithms and for the MIP solution. Now we will report the options and parameters

used in the experiments.

6.3.1 ACO based Algorithms

There are several parameters which have to be carefully set to tune our ACO

based algorithms, i.e., HAS and MMAS. The settings of parameters for which we
achieved the results are described in Tables 6.1 and 6.2. These parameters were

found based. on some preliminary experiments.

lhttp://www.ncbi.nlm.nih.gov

http://lhttp://www.ncbi.nlm.nih.gov


Chapter 6. Experimentation and Results

TABLE6.1: Parameters for MSC

Parameters Value
a 5.0
fJ 20.0

Evaporation rate, E: 0.02
nAnts 10

qo 0.25
Pbest 0.09

initPheramone 10.0
avg m/2

Maximum Allowed Time 100 min
Maximum Allowed Length of Substrings m/2 ar 50
Minimum Allowed Length of Substrings 3 or 6

Coeff. of 'TIl,a 0.01
Coeff. of 1)2,b 0.99
Coeff. of 'TII,C 1.00

TABLE6.2: Parameters for MCSP

Parameters Value
a 2.0
fJ 5.0

Evaporation rate, E: 0.02
nAnts IXI
Pbest 0.09

initP heramone 10.0
Maximum Allowed Time 120 min

Coeff. of 'TIs> a 0.5
Coeff. of 'TId, b 0.5

6.3.2 MIP
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We have used GLPK (GNU Linear Programming Kit) [1] for solving MIP. GLPK
is a set of routines written in the ANSI C programming language and organized
in the form of a callable library. It is intended for solving linear programming

(LP), mixed integer programming (MIP) , and other related problems. The raw
glpk library is written in C. We have used a third party tool "glpkmex" [43J. It

is a Matlab Mex interface for the GLPK library. The options those were used in

our experiment is listed in Table 6.3.

A number of parameters are to be set. We have left most of the parameters

with default value provided in the package( as it is advised in the document of the

package). Some of the important parameters are as follows:
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TABLE6.3: Options for MCSP-MIP
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Options Value
Scaling option Equilibration scaling

Dual simplex option Do not use
Pricing option Steepest edge pricing

Ratio test Technique Harris's two-pass ratio test
Solution rounding option Report all primal and dual values" as is"
Simplex iterations limit No limit
Maximum Allowed Time 120 min

LP solver Revised Simplex Method
Branching heuristic option Branch on the most fractional variable.
Backtracking heuristic option best local bound
Pre-processing technique. option perform preprocessing for root only

usecuts .. Gomoy's mixed integer cuts
Binarizeation option do not use

1. relax: 0.07. Relaxation parameter used in the ratio test.

2. tolbnd: 1Oe-7. Relative tolerance used to check if the current basic solution
is primal feasible.

3. toldj: 1Oe-7. Absolute tolerance used to check if the current basic solution
is dual feasible.

4. tolpiv: lOe-9. Relative tolerance used to choose eligible pivotal elements of
the simplex table.

5. tmlim: 10800 sec. searching time limit, in seconds.

6. tolint: 1Oe-5. Relative tolerance used to check if the current basic solution
is integer feasible.

7. tolobj: 1Oe-7. Relative tolerance used to check if the value of the objective
function is not better than in the best known integer feasible solution.

8. mipgap: 0.0. The relative mip gap tolerance. If the relative mip gap

for currently known best integer feasible solution falls below this tolerance,
the solver terminates the search. This allows obtaining suboptimal interger
feasible solutions if solving the problem to optimality takes too long.
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6.4 Results and Analysis
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In this section we will analyzed the experimentation results. First we will discuss

the results of MCSP and then we will discuss the results and analysis of MCSP

implementation.

6.4.1 MSC

There are 2 approaches described in [18]. They are Lagrangian relaxation approach
and CPLEX based optimization. Between them, the Lagrangian relaxation was

reported to have achieved better results [18]. Therefore, we provide the comparison

with only the latter. Please recall that we assume a unitary cost function, i.e., the

cost of every substring is considered to be 1.

6.4.1.1 Large Random Data

The data set introduced in [18] contains 48 types of data set each having 50
instances. We chose 10 instances from each type of data set for our experiments.

We believe that as the 50 instances are of same characteristics, choosing 10 among

them is enough to get an indicative performance. We have run 3 times for every

instances we mentioned in the Tables 6.7 and 6.8 and report the best results.

6.4.1.2 Choice of coefficients of the heuristics

We have conducted a preliminary experiment with different choices of a, band c.
The value of a, band c is taken from the set {.01,0.8}, {0.99,0.1} and {1,0.1}.
The combination with a = .01, b = 0.99 and c = 1 represents the best among

the 8 combinations. The preliminary experiment was conducted on the instance

"instances_100_a20..s2-10..l20-30..L50-100". The result is presented in Table 6.4

6.4.1.3 Effects of different heuristics

We have defined 3 types of heuristics namely 1)1, 1)2 and 1)3. We have used a linear

combination of these 3 heuristics. In this section we will include some preliminary



TABLE 6.4: Average cover size found using different combination of a, band c of the instance "instances_lOO_a20--,,2-lOJ20-30.L50-100"

Instance No {O.l,O.99,l} {O.l,O.99,O.l} {O.l,O.l,l} {O.l,O.l,O.l} {O.8,O.99,l} {O.8,O.99,O.l} {O.8,O.l,l} {O.8,O.l,O.l}
1 4 5 111.5 4 4 5 110.3 4
6 6 6 193.9 8 6 6 193.1 6
11 5 5 147 5 7 5 146.8 5
16 7 7 193.9 7 7 9 197.9 7
21 9 14.5 233.4 14.5 14.28571 9 235 13.85714
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experiment with different combination of these 3 heuristics. For experiment we

have used the instance "instances_l00_a50..s2-10J20-30-L50-100". Table 6.5 shows

the average minimum cover found using different linear combination of the three

heuristics. The constant a, band c are listed in Table 6.1. The linear combination

of the three heuristics (a . "'11 + b . 1]2 + c . "'13) has given much better results than

the other combinations.

6.4.1.4 Observations

Lagrangian relaxation approach aborts after running for 1 hour for 49 instances

among the 50 instances of the type with alphabet size 4, solution size 20 - 30,

solution string length 20-30 and 100 target strings each oflength 250-300. HAS

has successfully completed all these cases. We have allowed different maximum

lengths of substrings to be used to cover the target strings. For all these cases, we

have been able to produce the solutions within at most 15 minutes. This is true

even for the cases when HAS needs to work with about 1.5 million substrings when
we allowed maximum lengths of substrings to be 100 and the minimum length to

be 6. Among the above 50 cases, solutions having size equal to the actual solution

size was found in 31 cases and the maximum deviation of cost of our solution from
solution size is 5 and that too happened for only 1 case. The average deviation of

cost from solution size is only 0.92 for this type.

As can be seen from the results, we have achieved very good results for almost all
the cases. Table 6.6 reports the results of 5 instances where HAS has surpassed
the Lagrangian relaxation. These results are found for cases with 10 target

strings where the solution mentioned in [18] contains 20 - 30 strings. We have
allowed substrings with length [3,m/2J which is a larger search space compared
to Lagrangian relaxation approach in [18]. It can be recalled that m denotes the

maximum length of a target string.

Tables 6.7 and 6.8 contain the results of 410 instances of 41 types out of the 48

types. We have found solutions which are as good as the solutions reported in

[18] for 300 instances and found better solutions for 45 instances. The rest of the

instances, which are only about 15% of them, were solved with an average deviation
. of cost 2 to 3 from the solutions reported in [18]. The boldfaced numbers in Table

6.7 show where HAS has surpassed the solution found by Lagrangian relaxation

approach [18].



TABLE 6.5: Average cover size found using different combination of heuristics of the instance "instances_lOO_a50-s2-10J2D-30-.L50-100"

Instance No Lagrange a1) 1 + b1]2 + CT/3 1)1 1)2 1)3 a1)l + b1)2 b1]2 + C1)3 a1)l + C1)3

3 10 10 153.4 135.8 135.8 148.4 44.9 254.7778
8 10 10 128 125.8 125.8 125.1 44 240
13 3 3 63.9 70.5 70.5 58.4 3 52
18 3 3 76.1 78.1 78.1 76.8 3 112.5
23 6 6 100.9 96.3 96.3 102 6 164.3
28 10 10 120.1 124.1 124.1 117.9 22.8 249.4
33 5 5 75.6 79 79 80.1 5 166
38 8 8 118.3 112 112 108.2 8.6 166
43 8 8 81.6 80.2 80.2 78.8 8 166
48 2 2 48.5 65.25 65.25 62.1 2 166
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TABLE 6.6: Analysisof the quality of HASfor 5 instances. Here, No. of Better
Res. means the number of times HAShas surpassedLagrangian relaxation [18],
Max. Diff. stands for maximumdifferencefrom Lagrangian relaxation among
10 cases and Avg. Diff. means average differencefrom Lagrangian relaxation

for those No. of Better Res. cases.

Instance Description No. of Better Res. Max. Diff. Avg. Dilf.
instances_IO_a4-'l2o.30J3-10-L5o.I00 10 9 6.0
instances_IO_a4-'l2o.30J2o.30-L5o.I00 10 13 8.0
instances_IO_a20-'l2o.30J3-10-L5o.IOO 3 5 3.667
instances_IO--,,20-'l20-30J2o.30-L5o.IOO 10 13 6.4
instances_IO--,,50-'l20-30J2o.30-L50-100 10 11 6.3

6.4.2 MCSP

57

Throughout the thesis we have developed two approaches for solving MCSP problem.
Firstly, we have developed a MILP formulation. From now on the MILP formulation

will be referred as MIP. The other is a MAX-MIN Ant System (MMAS). we
have compared our approaches with the greedy algorithm of [20] because none

of the other algorithms in the literature are for general MeSp: each of the other

approximation algorithms put some restrictions on the parameters.

6.4.2.1 Random DNA sequence

Table 6.9, 6.10 and 6.11 present the comparison between our approaches and

the greedy approach [20] for the random DNA sequences. For a particular DNA
sequence, the experiment was run 15 times and the average result is reported. The
first column under any group reports the partition size computed by the greedy

approach, the second column is the average partition size found by MMAS, the
third and fourth column report the worst and best results among 15 runs, the
fifth column represents the difference between the two approaches. A positive

(negative) difference indicates that the greedy result is better (worse) than the
MMAS result by that amount. The sixth column reports the standard deviation

of 15 runs of MMAS, the seventh column is the average time in second by which
the reported partition size is achieved. The eighth column is the partition size
by MIP approach. The ninth column is the difference between the greedy and

MIP and the tenth column is the difference between MIP and MMAS. A negative

(positive) difference indicates that the MIP result is better (worse) than the MMAS

or Greedy result by that amount.
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TABLE 6.7: Comparison Between Lagrange [18] and HAS approach for 10
target strings. "instance no" represents the instance indices we have run,
"Lagrange" means results of that instance by Lagrangian relaxation approach
[18], "HAS" represents same instance run by our approach. "Diff" represents
the difference between Lagrangian relaxation approach and HAS approach.
where (+n) means SolutionHAs = SolutionLagrange + n and (-n) means

SolutionHAs = SolutionLagrange - n.

Instances_1O-a4..s2-1OJ2o-30..L5Q.l00 illlltances_lO..a4...sz..10.J2o-ao.L250-300 iWltances_lO..a4..s2o-ao.J3-1O.LW-lOO

5 5 5 0 1 3 4 1 5 28 20 -8

10 10 11 1 6 3 3 0 10 29 20 -0

15 4 4 0 11 , , 0 15 28 20 -,
20 4 4 0 16 10 10 0 20 29 '" -,
25 2 3 1 21 10 10 0 25 26 '" .6

30 5 5 0 26 5 7 2 30 21 20 -1

35 , 0 0 31 4 4 0 35 24 20 -4

40 6 6 0 30 4 4 0 40 26 '" -8

45 3 3 0 41 10 10 0 45 22 20 -2

30 8 8 0 46 6 6 0 50 27 20 -7

instaDces.1O...a4...s20-30.J2o-S0.L50-100 lost.ancell_lO-.a4..&2G-ao..l2Q-30.£2So-S00 iustancell tR..a20.Jl2-lO.l3-1O..L5O-100

3 30 19 -11 1 25 28 3 2 3 3 0

8 23 17 -8 6 25
,. 1 7 9 9 0

13 30 17 -l3 11 22 23 1 12 2 2 0

18 26 ,. -8 16 20 20 0 17 4 4 0

23 28 17 -11 21 22 22 0 22 9 9 0

" 20 19 -I 26 29 31 2 27 7 7 0

33 3Q 17 -13 31 24 30 6 32 2 2 0

38 21 20 _I 30 30 32 2 37 3 3 0

43 26 16 -10 41 30 35 5 42 6 6 0

48 23 11 .6 46 20 24 4 47 6 6 0

jJlljtancedO..a20..s2.10..l3-10..L2So-300 instnncell.1O..a2Q..s2-10..l2o-30..L50-100 lll$tanCC:!l lO-A20..ll2-lO.l2o-ao..L25Q.300

1 10 10 0 3 2 2 0 2 7 7 0

6 7 7 0 8 10 10 0 7 6 6 0

11 6 6 0 l3 2 3 1 12 6 6 0

lfi 9 9 0 18 6 6 0 17 5 5 0

21 4 4 0 23 9 0 0 22 2 5 3

26 9 9 0 " 10 10 0 27 , , 0

31 3 3 0 33 7 7 0 32 3 10 7

36 3 3 0 38 4 4 0 37 10 10 0

41 7 7 0 43 5 5 0 42 7 7 0

46 10 10 0 48 9 0 0 47 7 7 0

instance!l 1O--'l20..a20-30.J3-10..L5O-100 ilUltances.lOJl20..ll2()..30..l3-10.L2SG-SOO iImtancell lO-a20..s;ZO.30J2o.30..L6o-100

2 24 24 0 I 21 21 0 5 30 19 -11

7 26 26 0 6 30 30 0 10 23 " .4

12 30 2. -2 11 24 24 0 15 " 20 -8

17 27 23 -4 16 29 29 0 20 22 ,. -4

22 25 25 0 21 24 24 0 25 27 17 -10

27 23 25 2 25 " " 0 30 21 17 -4

32 29 2. -5 31 25 25 0 35 20 17 -3

37 25 30 4 36 30 30 0 40 23 " -4

.2 21 " I 41 23 23 0 45 29 16 .l3

47 23 23 0 46 27 27 0 50 21 18 -3

Instalice8.10...a20..s20-30..l20-30.L250-300 instllDcell.lO...a50..s2-10..l3-10..LSI).lOO instances.lO..a50..s2-10..l3-10..L25O-aoo
5 28 " 0 2 5 8 3 1 6 6 0

10 30 30 0 4 9 0 0 2 9 9 0

15 22 22 0 6 4 11 7 4 3 3 0

20 '" 20 0 8 7 8 I 7 2 2 0

25 25 25 0 10 5 9 4 10 0 9 0

30 28 29 1 12 6 6 0 14 7 7 0

35 27 2. .1 14 0 9 0 18 2 3 I

40 29 30 I 16 4 7 3 25 7 7 0

45 23 24 I 18 3 9 6 30 10 10 0

50 20 " -1 20 2 8 6 34 8 8 0

instance'l-1O-a50.JI2-10J2o-JO.L50-100 lnstnnccs_1O-a50.JI2-10J2o-30.L250-300 il1!lt~_lO-.a50....s20-30.J3-10.L50-100

I 4 • 0 5 9 0 0 7 23 23 0

6 8 8 0 10 5 6 1 II 27 27 0

11 7 7 0 15 8 8 0 15 20 20 0

16 4 5 1 20 8 8 0 19 23 23 0

21 , 0 0 25 3 5 2 23 23 24 1

26 5 5 0 30 7 7 0 27 28 30 2

31 5 5 0 35 7 7 0 31 27 27 0

36 , 4 0 40 6 6 0 35 23 24 1

41 2 2 0 45 7 7 0 38 26 28 2

46 10 10 0 50 6 , 0 43 24 28 -I

Instanccs_1O..a50~o-3O-la-1O..L25O-300 iDlltances_1O..a50.JI2o-30-l2o-30.L5D-lOO instnnce!l lO..a50....s2o-aoJ2o-aO..L25O-300

2 21 21 0 4 25 11 -0 4 30 32 2

7 21 21 0 9 21 20 -I 9 23 23 0

12 26 26 0 14 21 ,. .3 14 20 20 0

17 28 28 0 19 27 I. -II 10 22 23 1

23 29 29 0 24 22 17 .5 24 24 24 0

27 27 27 0 29 30 21 -, 29 27 2. .1

32 28 " 0 34 24 ,. -6 34 " 22 0

37 30 30 0 38 22 19 -3 38 20 20 0

.2 26 26 0 44 23 18 -5 44 22 22 0

47 25 25 0 49 30 19 -II 49 29 29 0

I illlltance no I Lagran~ I HAS I Diff I 1ll8tance no I Lagrange I HAS I Dill' I instance no I Lagrange I HAS I Diff I
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TABLE 6.8: Comparison Between Lagrange [18J and HAS approach for 100
target strings. "instance no" represents the instance indices we have run,
"Lagrange" means results of that instance by Lagrangian relaxation approach
[18]' "HAS" represents same instance run by our approach. "Diff" represents
the difference between Lagrangian relaxation approach and HAS approach.
where (+n) means SolutionHAs = SolutionLagrange + nand (-n) means

SolutionH AS = SolutionLagrange - n.

Diff IDiff I instance no I Lagrange I HAS I
instancell_lOO..a4..s2-10J2o.30-L50-100 itllltanCeB_lOO..a4..s2-10...l2Q-30.L25D-300 instances_lOO..a4..s2Q.30.l2()..30.L50-100

2 8 8 0 1 5 5 0 2 23 25 2

7 4 4 0 6 8 8 0 7 26 26 0
12 5 5 0 11 7 7 0 12 29 36 7

17 8 8 0 16 7 7 0 17 21 23 2

22 2 2 0 21 8 8 0 22 23 26 3

27 7 7 0 26 4 4 0 27 24 27 3

32 5 5 0 30 3 28 25 32 20 20 0

37 7 7 0 36 5 5 0 37 27 23 1

42 8 8 0 41 9 9 0 42 24 25 1

47 5 5 0 46 5 5 0 47 24 24 0

I iDlltanee no I Lagrange I HAS I Difi' I iMtauce no I Lagrange I HAS I

instam:e3_100...a20..s2-10.J3--10.L50-100 [ inetaneea_l00...a20..s2-10.J3-tO.L250-300 I
1 23 23 0 3 2 2 0 1 3 4 1

6 25 27 2 8 7 7 0 6 3 3 0
11 23 30 2 13 6 6 0 11 9 9 0
16 22 22 0 18 3 7 4 16 10 10 0
21 21 21 0 23 10 10 0 21 10 10 0
26 29 32 3 28 6 6 0 26 6 7 2

31 21 21 0 33 7 7 0 31 4 4 0
36 20 20 0 38 8 8 0 36 4 4 0
41 27 27 0 43 10 11 1 41 10 10 0
46 23 23 0 48 5 5 0 46 6 6 0

I instan<:es_lOO..a4..320-30..l2G-aO.L250-300 I

I 1I1lltance8_100..a20.Jl2-10J2o-30.L5(J..lOO I ill$tancefLlOO..a20...B2-10..l2o.3Il..L25()..300 I instancel'l-lOO...a20..s20-30.J3..1O..L50-100 I
1 4 4 0 1 9 9 0 10 24 24 0
6 6 6 0 6 10 10 0 14 29 29 0

11 5 5 0 11 9 9 0 18 23 25 ,
16 7 7 0 16 4 4 0 22 27 27 0

21 9 9 0 21 6 6 0 26 21 21 0
26 6 6 0 26 10 10 0 30 20 20 0
31 3 3 0 31 2 2 0 34 24 24 0
36 2 3 1 36 10 10 0 38 20 20 0
41 8 8 0 41 6 5 0 42 28 28 0
46 7 7 0 46 7 7 0 46 29 29 0

-
5 23 23 0 2 25 25 0 2 25 25 0
10 21 21 0 7 22 22 0 7 22 22 0
15 28 28 0 12 30 30 0 12 30 30 0
20 30 30 0 17 29 29 0 17 22 22 0

25 29 29 0 22 27 27 0 22 26 26 0

30 20 22 2 27 26 26 0 27 25 25 0
23 25 25 0 32 20 20 0 32 29 29 0

40 29 31 2 37 23 23 0 37 22 22 0

46 20 38 18 42 25 25 0 42 27 27 0

50 21 21 0 47 30 30 0 47 22 22 0

I IDstances U)(La.20~().30.J.3-10.L25O-300 I Instances lOO..a20..E.Zo.-30.l2o-30-LSo.lOO I mstaDces..lOO...a20..s2()..30.J20-30.L250-300 I

IlllItanCeB_lOO..a50..B2-lO..l3-10..L5O-100 I IDstanCCB_1()(La50..s2-10.J3..10.L25o-aOO I IlIstanCCll-.100-850..s2-10.J20-30..L50-100 I
1 3 6 3 1 23 23 0 3 10 10 0
2 9 9 0 6 25 27 2 8 10 10 0
4 5 6 1 11 28 30 2 13 3 3 0

7 6 6 0 16 22 22 0 18 8 3 0
11 2 2 0 21 21 21 0 23 6 6 0
14 8 9 1 26 29 32 3 28 10 10 0
16 9 9 0 31 21 21 0 33 5 5 0
J9 6 6 0 36 20 20 0 38 8 8 0
21 9 9 0 41 27 27 0 43 8 8 0

23 8 8 0 46 23 23 0 48 2 2 0

1 7 7 0 7 23 23 0 2 21 21 0
6 9 9 0 11 26 26 0 7 20 20 0

10 8 8 0 15 26 26 0 J2 28 28 0

16 7 7 0 J9 21 21 0 17 22 24 2

21 , 6 0 23 26 26 0 22 24 24 0

26 4 4 0 27 24 24 0 27 27 27 0
31 10 10 0 31 22 22 0 32 27 27 0
36 10 10 0 35 21 21 0 37 27 27 0
41 10 10 0 39 21 21 0 42 20 20 0

46 3 10 7 43 25 25 0 47 29 29 0

\ Instancel_lOO..ll.50..s2-10J.2()'30..L25()'300 I Instance8_100..ll.50Jl20-30J3-1O..L50-100 I jnstances_lOO..a50..s20-30J3-10..L26Q..300 I

- -
1 22 22 0 2 23 23 0

6 29 29 0 7 26 26 0
11 20 20 0 J2 26 29 0

16 26 26 0 17 21 21 0
21 21 21 0 22 20 20 0
26 26 26 0 27 26 26 0

31 24 " 0 32 25 25 0

36 29 29 0 37 27 27 0
41 28 29 1 42 27 27 0
46 30 30 0 47 21 21 0

I instances lOO..a50..&2Q.30J2().30..L5()'lOO I Instancel! lOO..a50..&2Q.30J.2().30..L250-300 1
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Comparison between Greedy, MMAS and MIP (Group 1)
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FIGURE 6.1: Comparison between greedy, MMAS and MIP(Group 1)

Table 6.12, 6.13 and 6.14 present the results of student t-test. The first 3 columns
summarize the t-statistic result for greedy vs. MMAS. The first column reports the

t-value of two sample t-test. A positive t-value indicate significant improvement.
The second column presents the p-value. A lower p-value represent higher significant
improvement and the third column reports whether the null hypothesis is rejected

or accepted. Here the null hypothesis is that the two random population (partition

sizes from greedy and MMAS) have equal means. We have used +, -, "" to denote
improvement, deteriotion and almost equal respectively. From the table, we can
see that out of 30 instances our approach gets better partition size for 28 cases.
According to t-statistic value with 5% significance value we have found better

solution in '26 cases for MMAS. The other 3 cases shows no improvement and for

one case we got worse result in 5% significance level. The fourth, fifth and sixth
column present the t-statistic result for MMAS vs. MIP. the t-value, p-value and

the significance represent the same meaning as before but now they are calculated

for the MIP approach.

Figure 6.1, 6.2 and 6.3 show the bar plots of partition sizes achieved by greedy

[20]' MMAS and MIP approach.



TABLE 6.9: Comparison between Greedy approach [20]' MMAS and MIP on random DNA sequences (Group 1, 200 bps). Here,
Difference = MMAS(Avg.) - Greedy, Differencel = MIP - Greedy and Difference2 = MIP - MMAS(Avg.). Best and Worst report the

maximum and minimum partition size among 15 runs using MMAS.

greedy MMAS(Avg.) Worst Best Difference Std.Dev.(MMAS Time in sec(MMAS) MIP Difference! Difference2
46 42.8667 43 42 -3.1333 0.3519 114.6243 40 -6 -2.8667

56 51.S667 52 51 -4.1333 0.5164 100.823 46 -10 -5.8667

62 57 58 55 -5 0.6547 207.5253 52 -10 -5

46 43.3333 43 43 -2.6667 0.488 168.3098 40 -6 -3.3333

44 42.9333 43 43 -1.0667 0.2582 42.7058 39 -5 -3.9333

48 42.8 43 42 -5.2 0.414 75.2033 39 -9 -3.8

65 60.6 60 60 -4.4 0.5071 131.9478 55 .10 -5.6

51 46.9333 47 47 -4.0667 0.4577 201.2292 42 -9 -4.9333

46 45.5333 46 45 -0.4667 0.5164 172.6809 41 -5 -4.5333

63 59.7333 60 59 -3.2667 0.7037 288.4226 55 -8 -4.7333
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TABLE 6.10: Comparison between Greedy approoch [20]' MMAS and MIP on random DNA sequences (Group 2, 400 bps). Here,
Difference = MMAS(Avg.) - Greedy, Differencel = MIP - Greedy and Difference2 = MIP - MMAS(Avg.). Best and Worst report the

maximum and minimum partition size among 15 runs using MMAS

greedy MMAS(Avg.) Worst Best Difference Std.Dev.(MMAS Time in sec(MMAS) MIP Difference! Difference2
119 113.9333 116 111 -5.0667 1.3345 1534.1015 101 -18 -12.9333
122 118.9333 121 117 -3.0667 0.9612 1683.1146 108 -14 -10.9333
114 112.5333 114 111 -1.4667 0.8338 1398.5315 101 -13 -11.5333
116 116.4 117 115 0.4 0.7368 1739.3478 104 -12 -12.4
135 132.2 135 130 -2.8 1.3202 1814.7264 117 -18 -15.2
108 106.0667 107 105 -1.9333 08837 1480.2378 99 -9 -7.0667
108 98.4 101 96 -9.6 1.2421 1295.2485 95 -13 -3.4
123 118.4 120 117 -4.6 0.7368 1125.2353 109 -14 -9.4
124 119.4667 121 117 -4.5333 1.0601 1044.4141 107 -17 -12.4667
105 101.8667 103 101 -3.1333 0.7432 1360.1529 91 -14 -10.8667
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TABLE 6.11: Comparison between greedy approach [20]' MMAS and MIP on random DNA sequences (Group 3, 600 bps). Here,
Difference = MMAS(Avg.) - greedy, Differencel = MIP - greedy and Difference2 = MIP - MMAS(Avg.). Best and Worst report the

maximum and minimum partition size among 15 runs using MMAS

greedy MMAS(Avg.) Worst Best Difference Std.Dev.(MMAS Time in sec(MMAS) MIP Differencel Difference2
182 180 181 177 -2 2 1773.0398 159 -23 -21
175 176.25 177 175 1.25 0.9574 3966.8293 162 -13 -14.25
196 188 189 187 -8 0.8165 1589.2953 172 -24 -16
192 184.25 185 184 -7.75 0.5 2431.158 -1 - -
176 171.75 173 171 -4.25 0.9574 1224.8943 154 -22 -17.75
170 163.25 165 160 -6.75 2.2174 1826.1438 153 -17 -10.25
173 168.5 170 167 -4.5 1.291 1802.1655 151 -22 -17.5
185 176.25 177 175 -8.75 0.9574 1838.5603 157 -28 -19.25
174 172.75 175 172 -1.25 1.5 4897.4688 157 -17 -15.75
171 167.25 168 167 -3.75 0.5 1886.2098 155 -16 -12.25
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Chapter 6. Experimentation and Results

TABLE 6.12: t-statistic summary result for greedy VS. MMMAS and MMAS
vs. MIP (Group 1)

tstat p-value significance tstat p-value significance
34.4886 0.0000 + 31.5534 0.0000 +
31 0.0000 + 44 0.0000 +
29.5804 0.0000 + 29.5804 0.0000 +
21.166 0.0000 + 26.4575 0.0000 +
16 0.0000 + 59 0.0000 +
48.6415 0.0000 + 35.5457 0.0000 +
33.6056 0.0000 + 42.7707 0.0000 +
34.4086 0.0000 + 41.7416 0.0000 +
3.5 0.0016 + 34 0.0000 +
17.9781 0.0000 + 26.0499 0.0000 +

TABLE 6.13: t-statistic summary result for greedy VS. MMMAS and MMAS
VS. MIP (Group 2)

tstat p-value significance tstat p-value significance
14.7042 0.0000 + 37.5344 0.0000 +
12.3572 0.0000 + 44.0562 0.0000 +
6.8126 0.0000 + 53.5715 0.0000 +
-2.1026 0.0446 - 65.1815 0.0000 +
8.2143 0.0000 + 44.5921 0.0000 +
8.4731 0.0000 + 30.9705 0.0000 +
29.9333 0.0000 + 10.6014 0.0000 +
24.1802 0.0000 + 49.4118 0.0000 +
16.5622 0.0000 + 45.5459 0.0000 +
16.328 0.0000 + 56.6269 0.0000 +

TABLE 6.14: t-statistic summary result for greedy VS. MMMAS and MMAS
VS. MIP (Group 3)

tstat p-value significance tstat p-value significance
2 0.0924 ~ 21 0 +
-2.6112 0.0401 ~ 29.7673 0 +
19.5959 0 + 39.1918 0 +
31 0 + - - -

8.878 0.0001 + 37.0785 0 +
6.0883 0.0009 + 9.2452 0.0001 +
6.9714 0.0004 + 27.1109 0 +
18.2782 0 + 40.2119 0 +
1.6667 0.1466 ~ 21 0 +
15 0 + 49 0 +
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Comparison between Greedy, MMAS and MIP (Group 2)
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FIGURE 6.2: Comparison between greedy, MMAS and MIP (Group 2)

Comparison between Greedy, MMAS and MIP (Group 3)
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FIGURE 6.3: Comparison between greedy, MMAS and MIP (Group 3)
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FIGURE6.4: ComparisonbetweenMMASwith and without dynamic heuristic
(Group 1)

6.4.2.2 Effects of Dynamic Heuristics

In Chapter 5 (Section 5.2.2.2), we discussed the dynamic heuristic we employ in
our algorithm. We conducted experiments to check and verify the effect of this
dynamic heuristic. We conducted experiments with two versions of our algorithm-

with and without applying the dynamic heuristic. The effect is presented in
Table 6.15, where for each group the average partition size with dynamic heuristic
and without dynamic heuristic is reported. The positive difference depicts the
improvement using dynamic heuristic. Out of 30 cases we found positive differences
on 27 cases. This clearly shows the significant improvement using dynamic heuristics.

It can also be observed that with the increase in length, the positive differences

are increased. Figures 6.4, 6.5, and 6.6 show the case by case results.



TABLE6.15: Comparison between MMAS with and without dynamic heuristic on random dna sequence

Group 1 (200 bps) Group 2 (400 bps) Group 3 (600 bps)
MMAS MMAS(w/o heuristic) Difference MMAS MMAS(w /0 heuristic) Difference MMAS MMAS(w/o heuristiC\ Difference
42.7500 43.2500 0.5000 114.2500 115.5000 1.2500 180.1)000 183.2500 3.2500
51.5000 50.7500 -0.7500 119.0000 121.0000 2.0000 176.2500 183.2500 7.0000
56.7500 56.5000 -0.2500 112.2500 113.5000 1.2500 188.0000 193.7500 5.7500
43.0000 44.0000 1.0000 116.2500 120.5000 4.2500 184.2500 189.2500 5.0000
43.0000 42.7500 -0.2500 132.2500 134.0000 1.7500 171.7500 173.5000 1.7500
42.2500 42.5000 0.2500 105.5000 107.7500 2.2500 163.2500 168.0000 4.7500
60,0000 6O.5ODO 0.5000 99.0000 99.7500 0.7500 168.5000 170.5000 2.0000
47.0000 47.5000 0.5000 118.0000 121.7500 3.7500 176.2500 178.7500 2.5000
45.7500 46,0000 0.2500 119.5000 120.7500 1.2500 172.7500 179.2500 6.5000
59.2500 61.5000 2.2500 101.7500 103.7500 2.0000 167.2500 172.2500 5.0000
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FIGURE6.5: ComparisonbetweenMMASwith and without dynamic heuristic
(Group 2)

6.4.2.3 Real Gene Sequence

Table 6.16 shows the minimum common partition size found by our approach and
the greedy approach for the real gene sequences. Out of the 15 instances we get
better results on 11 instances. The t-statistic result shows almost equal result on

5 cases and improvement in the other 10 cases in 5% significance level.

Figure 6.7 shows the bar plots of partition sizes achieved by Greedy [20], MMAS

and MIP approach for real gene sequence.

6.4.2.4 Runtime Analysis

The greedy solution runs very fast. In our experiment we found that the greedy

gives output within 2 minutes. As the problem is an offline problem, we consider
the running time is not significant here. The metaheuristic approaches like ACO

requires greater time than greedy approaches. We omitted the runtime analysis

of MMAS vs. greedy. But we are interested in running time analysis of MIP vs.



TABLE 6.16: Comparison between greedy approach [20]' MMAS and MIP on real gene sequence. Here, Difference = MMAS(Avg.)
- greedy, Differencel = MIP - greedy and Difference2 = MIP - MMAS(Avg.). Best and Worst report the maximum and minimum

partition size among 15 runs using MMAS

greedy MMAS Worst Best Difference Std.Dev(MMAS) Time in sec(MMAS) MIP Differencel Difference2
95 87.66666667 88 87 -7.333333333 0.487950036 863.8083333 79 -16 -8.666666667
161 156.3333333 162 154 -4.666666667 2.350278606 1748.34 140 -21 -16.33333333
121 117.0666667 118 116 -3.933333333 0.883715102 1823.4922 110 -11 -7.066666667
173 164.8666667 167 163 -8.133333333 1.187233679 1823.012533 145 -28 -19.86666667
172 173.2 175 171 1.2 1.207121724 2210.153533 157 -15 -16.2
153 146 148 143 -7 1.309307341 1953.838267 134 -19 -12
140 141 142 140 1 0.755928946 2439.0346 128 -12 -13
134 133.1333333 136 130 -0.866666667 1.807392228 1406.804533 122 -12 -11.13333333
149 147.5333333 150 145 -1.466666667 1.505545305 2547.519267 134 -15 -13.53333333
151 150.5333333 152 148 -0.466666667 1.597617273 1619.6364 132 -19 -18.53333333
126 125 127 123 -1 1 1873.3868 116 -10 -9
143 139.1333333 141 137 -3.866666667 1.245945806 2473.249067 130 -13 -9.133333333
180 181.5333333 184 179 1.533333333 1.35576371 2931.665333 165 -15 -16.53333333
152 149.3333333 151 147 -2.666666667 1.290994449 2224.403733 136 -16 -13.33333333
157 161.6 164 160 4.6 1.242118007 1739.612133 145 -12 -16.6
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FIGURE 6.6: Comparison between MMAS with and without dynamic heuristic
(Group 3)

TABLE 6.17: t-statistic summary result for Greedy Vs. MMMAS and MMAS
Vs. MIP (Real Gene Seqn.)

tstat p-value significance tstat p-value significance
58.2065 0.0000 + 68.7895 0.0000 +
7.6901 0.0000 + 26.9154 0.0000 +
17.2383 0.0000 + 30.9705 0.0000 +
26.5325 0.0000 + 64.8089 0.0000 +
-3.8501 0.0006 + 51.9768 0.0000 +
20.7063 0.0000 + 35.4965 0.0000 +
-5.1235 0.0000 - 66.6052 0.0000 +
1.8571 0.0738 "" 23.8571 0.0000 +
3.7730 0.0008 + 34.8142 0.0000 +
1.1313 0.2675 "" 44.9290 0.0000 +
3.8730 0.0006 + 34.8569 0.0000 +
12.0194 0.0000 + 28.3907 0.0000 +
-4.3802 0.0002 - 47.2304 0.0000 +
8.0000 0.0000 + 40.0000 0.0000 +
-14.3430 0.0000 - 51.7596 0.0000 +
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Comparison between Greedy, MMAS and MIP for real gene seqn.
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FIGURE 6.7: Comparison between greedy, MMAS and MIP(Reai Gene Seqn.)

greedy. We experimented with the group 1 random dna sequences. The MIP is

run given 30s, 60s, 120s and 300s as time limit. The common partition sizes are
compared with the greedy solution in Figure 6.8.
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Time (in sec.) comparison between greedy and MIP
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Chapter 7

Conclusion

In this chapter, we draw the conclusion by highlighting the major contributions

made by the research works associated with this thesis. We also provide some

directions for future research on the problems handled here.

7.1 Major Contributions

The contributions that have been made in this thesis can be enumerated as follows:

• We have devised an efficient graph mapping from the problem instances.

The graphs are substring graph and common substring graph.

• For MCSP problem, we have developed an efficient MILP formulation using

the common substring graph.

• Some dynamic heuristics have also been developed for MCSP problem .

• Using the graphs and the heuristic, we have also implemented Hybrid Ant

System (HAS) and MAX-MIN Ant System (MMAS) for MSC and MCSP

problems respectively.

• We have done extensive experiment and compared our results with the state

of the art algorithms in literature.
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7.2 Future Directions of Further Research

74

A number of future directions can be given. Below we will list the future directions

and further research in these two problems .

• We have applied two variants of ACO namely HAS for MSC problem and

MMAS for MCSP problem. A good future research could be to apply other

variants like ACS to solve these two problems .

• As there are not many string problems solved by ACO in the literature, a
good future research could be to apply our developed model to solve other

hard string problems .

• In this thesis we have applied ACO metaheuristics to solve MSC and MCSP
problems. In future it might be interesting to develop other metaheuristics

such as Genetic Programming, Artificial Immune system, Simulated Annealing

etc. to solve these two problems.



Bibliography

[1] Gnu linear programming kit, version 4.48.

[2] J. Abara. Applying integer linear programming to the fleet assignment

problem. Interfaces, 19(4):pp. 20-28, 1989.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,

Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1993.

[4] D. Applegate and W. J. Cook. A computational study of the job-shop

scheduling problem. INFORMS Journal on Computing, 3(2):149-156, 1991.

[5] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling
Salesman Problem: A Computational Study (Princeton Series in Applied

Mathematics). Princeton University Press, Princeton, NJ, USA, 2007.

[6] V. Bafna, Pavel, and A. Pevzner. Sorting by transpositions. SIAM Journal

on Discrete Mathematics, 1998.

[7] V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals.

SIAM J. Comput., 25(2):272~289, Feb. 1996.

[8] F. Bahredar, H. Erfani, H. Javadi, and N. Masaeli. A meta heuristic solution

for closest string problem using ant colony system. In A. Leon F. de Carvalho,
S. Rodriguez-Gonzalez, J. Paz Santana, and J. R.odriguez, editors, Distributed

Computing and Artificial Intelligence, volume 79 of Advances in Intelligent

and Soft Computing, pages 549-557. Springer Berlin Heidelberg, 2010.

[9J E. Balas and M. W. Padberg. On the set-covering problem. Operations

Research, 20(6):1152-1161, 1972.

75



Bibliography 76

[10J F. Barahona, M. Grotschel, M. Jiinger, and G. Reinelt. An application of

combinatorial optimization to statistical physics and circuit layout design.

Opel'. Res., 36(3):493-513, May 1988.

[11] M. Besten, T. Stiitzle, and M. Dorigo. Ant colony optimization for the total

weighted tardiness problem. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao,
E. Lutton, J. Merelo, and H.-P. Schwefel, editors, Parallel Problem Solving

from Nature PPSN VI, volume 1917 of Lecture Notes in Computer Science,

pages 611-620. Springer Berlin Heidelberg, 2000.

[12] C. Blum. Beam-aco: Hybridizing ant colony optimization with beam
search: An application to open shop scheduling. Comput. Opel'. Res.,

32(6):1565-1591, June 2005.

[13] C. Blum. Beam-aco for the longest common subsequence problem. In IEEE

Congress on Evolutionary Computation, pages 1-8. IEEE, 2010.

[14] C. Blum and M. J. Blesa. New metaheuristic approaches for the edge-weighted

k-cardinality tree problem. Comput. Opel'. Res., 32(6):1355-1377, June 2005.

[15] C. Blum, M. Y. Valles, and M. J. Blesa. An ant colony optimization algorithm

for dna sequencing by hybridization. Comput. Opel'. Res., 35(11):3620-3635,

Nov. 2008.

[16] H. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, and H. T.
Wareham. Parameterized complexity analysis in computational biology.

Comput. Appl. Biosci, 11:49-57, 1995.

[17J R. Borndorfer and R. Weismante1. Set packing relaxations of some integer

programs. Mathematical Programming, 88(3):425-450, 2000.

[18] S. Canzar, T. Marschall, S. Rahmann, and C. Schwiegelshohn. Solving the
minimum string cover problem. In D. A. Bader and P. Mutzel, editors,

ALENEX, pages 75-83. SIAM / Omnipress, 2012.

[19] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang.
Assignment of orthologous genes via genome rearrangement. IEEE/ACM

Trans. Comput. BioI. Bioinformatics, 2(4):302-315, Oct. 2005.

[20] M. Chrobak, P. Kolman, and J. Sgall. The greedy algorithm for the minimum

common string partition problem. ACM Trans. Algorithms, 1(2):350-366,

Oct. 2005.



Bibliography 77

[21] D. Costa and A. Hertz. Ants can colour graphs. The Journal of the

Operational Research Society, 48(3):295-305, 1997.

[22J P. Damaschke. Minimum common string partition parameterized. In
K. Crandall and J. Lagergren, editors, Algorithms in Bioinformatics, volume

5251 of Lecture Notes in Computer Science, pages 87-98. Springer Berlin

Heidelberg, 2008.

[23] L. M. de Campos, J. M. Fernandez-Luna, J. A. Gamez, and J. M. Puerta. Ant
colony optimization for learning bayesian networks. International Journal of

Approximate Reasoning, 31(3):291 - 311, 2002.

[24] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis,

Politecnico di Milano, Italy, 1992.

[25] M. Dorigo and G. D. Caro. The ant colony optimization meta-heuristic. In

in New Ideas in Optimization, pages 11-32. McGraw-Hill, 1999.

[26] M. Dorigo, A. Colorni, and V. Maniezzo. Positive feedback as a search
strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico

di Milano, Milan, Italy, 1991.

[27] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete

optimization. Artif. Life, 5(2):137-172, Apr. 1999.

[28] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning
approach to the traveling salesman problem. Trans. Evol. Comp, 1(1) :53-66,

Apr. 1997.

[29J M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization
by a colony of cooperating agents. IEEE TRANSACTIONS ON SYSTEMS,

MAN, AND CYBERNETICS-PART B, 26(1):29-41, 1996.

[30] M. Dorigo and T. Stiitzle. Ant colony optimization: Overview and
recent advances. In M. Gendreau and J.-Y. Potvin, editors, Handbook of

Metaheuristics, volume 146 of International Series in Operations Research f3
Management Science, pages 227-263. Springer US, 2010.

[31] M. Dorigo and T. Stiitzle. Ant Colony Optimization. Bradford Company,

Scituate, MA, USA, 2004.



Bibliogmphy 78

[32] R. L. Dorit and W. Gilbert. The limited universe of exons. Current Opinion

in Genetics f3 Development, 1(4):464 ~ 469, 1991.

[33] Z. Drezner and H. Hamacher. Facility location. Applications and Theory.

Springer, Berlin, 2002.

[34] J. Edmonds and E. Johnson. Matching, euler tours and the chinese postman.

Mathematical Progmmming, 5(1):88-124, 1973.

[35] S. Faro and E. Pappalardo. Ant-csp: An ant colony optimization algorithm for
the closest string problem. In J. Leeuwen, A. Muscholl, D. Peleg, J. Pokorny,

and B. Rumpe, editors, SOFSEM 2010: Theory and Pmctice of Computer

Science, volume 5901 of Lecture Notes in Computer Science, pages 370~381.

Springer Berlin Heidelberg, 2010.

[36] G. Fertin, A. Labarre, 1. Rusu, E. Tannier, and S. Vialette. Combinatorics of

Genome Rearmngements. The MIT Press, 1st edition, 2009.

[37] M. L. Fisher. The lagrangian relaxation method for solving integer
programming problems. Manage. Sci., 50(12 Supplement):1861-1871, Dec.

2004.

[38] G. Fuellerer, K. F. Doerner, R. F. Hartl, and M. Iori. Ant colony optimization

for the two-dimensional loading vehicle routing problem. Comput. Oper. Res.,

36(3):655-673, Mar. 2009.

[39] L. Gambardella and M. Dorigo. Ant-q: A reinforcement learning approach to
the traveling salesman problem. pages 252-260. Morgan Kaufmann, 1995.

[40] L. M. Gambardella and M. Dorigo. An ant colony system hybridized with
a new local search for the sequential ordering problem. INFORMS J. on

Computing, 12(3):237-255, July 2000.

[41) L. M. Gambardella, E. Taillard, and G. Agazzi. Macs-vrptw: A multiple ant
colony system for vehicle routing problems with time windows. Technical

report, 1999.

[42] A. Geoffrion. Lagrangian relaxation for integer programming. In M. Junger,
T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt,

G. Rinaldi, and L. A. Wolsey, editors, 50 Years of Integer Progmmming

1958-2008, pages 243-281. Springer Berlin Heidelberg, 2010. CJ



Bibliography

[43] N. Giorgetti. Glpkmex, a matlab mex interface for the glpk library.

79

[44] B. Golden, S. Raghavan, and E. A. Wasil. The vehicle routing problem

latest advances and new challenges. Operations research/Computer science

interfaces series, 43. Springer, 2008.

[45] A. Goldstein, P. Kolman, and J. Zheng. Minimum common string

partitioning problem: Hardness and approximations. The Electronic Journal

of Combinatorics, 12(R50), 2005.

[46J R. E. Gomory. Outline of an algorithm for integer solutions to linear program.

Bulletin of the American Mathematical Society, 64(5):275-278, September

1958.

[47] M. Held and R. M. Karp. The traveling-salesman problem and minimum

spanning trees. Operations Research, 18(6):pp. 1138-1162, 1970.

[48] D. Hermelin, D. Rawitz, R. Rizzi, and S. Vialette. The minimum substring
cover problem. In C. Kaklamanis and M. Skutella, editors, Approximation

and Online Algorithms, volume 4927 of Lecture Notes in Computer Science,

pages 170-183. Springer Berlin Heidelberg, 2008.

[49] H. Hernandez and C. Blum. Ant colony optimization for multicasting in static

wireless ad-hoc networks. Swarm Intelligence, 3(2):125-148, 2009.

[50J K. Hoffman and M. Padberg. Lp-based combinatorial problem solving. Annals
of Operations Research, 4(1):145-194, 1985.

[51] K. Hoffman and T. Ralphs. Integer and combinatorial optimization. In S. Gass
and M. Fu, editors, Encyclopedia of Operations Research and Management

Science, pages 771-783. Springer US, 2013.

[52] K. L. Hoffman and M. Padberg. Solving airline crew scheduling problems by

brancb-and-cut. Manage. Sci., 39(6):657---682, June 1993.

[53] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[54] H. Jiang, B. Zhu, D. Zhu, and H. Zhu. Minimum common string

partition revisited. In Proceedings of the 4th International Conference on



Bibliography 80

Frontiers in Algorithmics, FAW'10, pages 45-52, Berlin, Heidelberg, 2010.

Springer-Verlag.

[55] D. Jungnickel. Graphen, Netzwerke und Algorithmen. BI-Wissenschaftsverlag,

1990.

[56] A. Land and A. Doig. An automatic method for solving discrete programming

problems. In M. Jiinger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R.

Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, editors, 50 Years of

Integer Programming 1958-2008, pages 105-132. Springer Berlin Heidelberg,

2010.

[57] L. Lessing, I. Dumitrescu, and T. Stiitzle. A comparison between aco

algorithms for the set covering problem. In M. Dorigo, M. Birattari,

C. Blum, L. Gambardella, F. Mondada, and T. Stiitzle, editors, Ant Colony

Optimization and Swarm Intelligence, volume 3172 of Lecture Notes in
Computer Science, pages 1-12. Springer Berlin Heidelberg, 2004.

[58] M. Lopez-Ibanez, C. Blum, D. Thiruvady, A. Ernst, and B. Meyer. Beam-aco
based on stochastic sampling for makespan optimization concerning the tsp

with time windows. In C. Cotta and P. Cowling, editors, Evolutionary
Computation in Combinatorial Optimization, volume 5482 of Lecture Notes

in Computer Science, pages 97-108. Springer Berlin Heidelberg, 2009.

[59] V. Maniezzo. Exacfand approximate nondeterministic tree-search procedures
for the quadratic assignment problem. INFORMS J. on Computing,

11(4):358-369, Apr. 1999.

[60] V. Maniezzo and A. Carbonaro. An ant heuristic for the frequency assignment

problem. Future Generation Computer Systems, 16:927-935, 1999.

[61] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer

Implementations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

[62] D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, and
B. Baesens. Classification with ant colony optimization. Trans. Evol. Comp,

11(5):651-665, Oct. 2007.

[63] D. Merkle and M. Middendorf. Ant colony optimization with global

pheromone evaluation for scheduling a single machine. Applied Intelligence,

18(1):105-111,2003.



Bibliography 81

[64] D. Merkle, M. Mi~dendorf, and H. Schmeck. Ant colony optimization
for resource-constrained project scheduling. In IEEE Transactions on

Evolutionary Computation, pages 893-900. Morgan Kaufmann, 2000.

[65] J. Neraud. Elementariness of a finite set of words is co-np-complete. ITA,
24:459-470, 1990.

[661 F. E. Otero, A. A. Freitas, and C. G.Johnson. cant-miner: An ant

colony classification algorithm to cope with continuous attributes. In
Proceedings of the 6th International Conference on Ant Colony Optimization

and Swarm Intelligence, ANTS '08, pages 48-59, Berlin, Heidelberg, 2008.

Springer-Verlag.

[67] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of

large-scale symmetric traveling salesman problems. SIAM Rev., 33(1):60-100,

Feb. 1991.

[68] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas. Data mining with an

ant colony optimization algorithm. IEEE Transactions on Evolutionary

Computation, 6:321-332, 2002.

[69] B. H. Partee, A. ter Meulen, and R. E. Wall. Mathematical Methods in
Linguistics, volume 30 of Studies in Linguistics and Philosophy. Kluwer,

Dordrecht, 1990.

[70] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer
Publishing Company, Incorporated, 3rd edition, 2008.

[71J C. Rajendran and H. Ziegler. Ant-colony algorithms for permutation flowshop
scheduling to minimize makespanjtotal flowtime of jobs. European Journal
. of Operational Research, 155(2):426 - 438, 2004. Financial Risk in Open

Economies.

[72] M. Reimann, K. Doerner, and R. F. Hart!. D-ants: Savings based ants divide

and conquer the vehicle routing problem. Comput. Oper. Res., 31(4):563-591,

Apr. 2004.

[73] F. Rend!. Semidefinite relaxations for integer programming. In M. Jiinger,

T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt,
G. Rinaldi, and 1. A. Wolsey, editors, 50 Years of Integer Progmmming

1958-2008, pages 687-726. Springer Berlin Heidelberg, 2010.



Bibliography

[74] R. Shah. Optimization' problems in sonet/wdm ring architecture, 1998.

82

[75J S. J. Shyu and C.-Y. Tsai. Finding the longest common subsequence for

multiple biological sequences by ant colony optimization. Comput. Oper.

Res., 36(1):73-91, Jan. 2009.

[76] K. Socha and C. Blum. An ant colony optimization algorithm for continuous

optimization: application to feed-forward neural network training. Neural

Computing and Applications, 16(3):235-247, 2007.

[77] K. Socha, J. Knowles, and M. Sampels. A max-min ant system for
the university course timetabling problem. In M. Dorigo, G. Caro, and

M. Sampels, editors, Ant Algorithms, volume 2463 of Lecture Notes in
Computer Science, pages 1-13. Springer Berlin Heidelberg, 2002.

[78] K. Socha, M. Sampels, and M. Manfrin. Ant algorithms for the university

course timetabling problem with regard to the state-of-the-art. In S. Cagnoni,

C. Johnson, J. Cardalda, E. Marchiori, D. Corne, J.-A. Meyer, J. Gottlieb,

M. Middendorf, A. Guillot, G. Raidl, and E. Hart, editors, Applications of

Evolutionary Computing, volume 2611 of Lecture Notes in Computer Science,

pages 334-345. Springer Berlin Heidelberg, 2003.

[79} C. Solnon. Combining two pheromone structures for solving the car

sequencing problem with ant colony optimization.

[80J C. Solnon and S. Fenet. A study of aco capabilities for solving the maximum
clique problem. Journal of Heuristics, 12(3): 155-180, May 2006.

[81] P. Stothard. The sequence manipulation suite: Javascript programs
for analyzing and formatting protein and dna sequences. Biotechniques,

28(6):1102,2000.

[82J T. Stiitzle and H. Hoos. Improving the ant system: A detailed report on the

max-min ant system. Technical report, 1996.

[83J T. Stiitzle and H. Hoos. Max-min ant system and local search for the

traveling salesman problem. In IEEE INTERNATIONAL CONFERENCE
ON EVOLUTIONARY COMPUTATION (ICEC'97), pages 309-314. IEEE

Press, 1997.

[84] T. Stiitzle and H. H. Hoos. Max-min ant system. Future Gener. Comput.

Syst., 16(9):889-914, June 2000.



Bibliography 83

[85J T. Stiitzle, F. Intellektik, F. Informatik, and T. H. Darmstadt. An ant
approach to the flow shop problem. In In Proceedings of the 6th European

Congress on Intelligent Techniques &J Soft Computing (EUFIT'98, pages

1560-1564. Verlag, 1997.

[86] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Airline crew

scheduling: A new formulation and decomposition algorithm. Operations

Research, 45:188-200, 1995.

[87J P. Villesen. Fabox: An online fasta sequence toolbox, 2007.

[88] G. Watterson, W. Ewens, T. Hall, and A. Morgan. The chromosome inversion

problem. Journal of Theoretical Biology, 99(1):1 - 7, 1982.


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098

