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Abstract

Network lifetime is one of the important metrics in performance evaluation of sensor
network. It depends on both the rate of energy consumption and the relative distribution
of the energy consumption among the sensor nodes. Among various clustering solutions
to elongate the network lifetime, LEACH (Low—Energy Adaptive Clustering Hierarchy)
is one of the most widely cited solutions due to its simplicity and effectiveness. However,
LEACH considers only homogeneous sensor network. Moreover, there is no known
complete mathematical model derived for LEACH that can be used to tune various
LEACH parameters in order to achieve better performance. In this thesis, we first
formulate a complete mathematical model for LEACH and verify its correctness through
simulation. Next, we present three heuristics to enhance the energy efﬁciency of LEACH
and propose an energy efficient modification of LEACH, CHSN (Cluster Heterogeneous
Sensor Networks), considering the heterogeneity of sensor nodes in terms of residual
energy. Our simulation results show that CHSN improves the network lifetime
significantly. The increase in network lifetime has been shown in terms of the First Node

Dics (FND), the Half of the Nodes Die (HND) and the Last Node Dies (LND).
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1 Introduction

With the advent of new technology and low production costs, wireless sensor networks
(WSN) have been proved to be useful in myriad of diversified applications although its
original development was motivated by military applications, such as battlefield
surveillance, enemy tracking and monitoring. Most of the WSN applications involve
monitoring, tracking, or controlling, e.g., habitat monitoring, object tracking, nuclear

reactor control, fire detection, and traffic monitoring etc.

In a typical WSN application, sensor nodes are scattered in a region from where they
collect data to achieve certain goals, Data collection may be continuous, periodic or event
based. Irrespective of data collection type, different kinds of management, such as power
management, dynamic topology (due to node failure) management, sclf-configuration
management, resource management, and security management are necessary for WSN.
Power management deals with the optimurn energy usage in order to increase the network
lifetilﬁe. Dynamic topology management dynamically adjusts the topology in case of the
death of an existing node or the arrival of a new node. Self configuration management
enables the nodes to tune its parameters on the fly. Resource management takes the role
to ensure cffective resource (CPU and memory) sharing among multiple tasks. Security

management guarantces protection against any theft or intrusion in the network.

Among all of these, power management is very important since the sensor nodes come
with pre-installed limited powered battery. Moreover, the batteries cannot be replaced in
the sensor nodes once they are in operation. For these réasons, the algorithms and
protocols used in WSN have to be energy efficient in order to have better power
management. Different techniques are used to achieve energy efficiency like clustering,

dala compression, dynamic power management etc.

Clustering is a technique in which some nodes act as the cluster heads and the others act

as the followers. The followers collect data and send it to their corresponding cluster




heads. The cluster heads aggregate its own data with the data received from its followers.
Aggrepgated data is then sent to a sink to accomplish a specific goal. Cluster heads remain
closer to their follower sensor nodes compared to the sink. It takes less energy to transmit
data 1o the cluster head instead of the sink, which allows the sensor nodes to conserve

more energy and live longer in WSN,

1.1 Motivation

There are different clustering techniques already established for ad-hoc networks.
However, those techniques eannot be direetly used in WSN beecause of the fact that WSN
imposes strict requirements on the energy efficiency than that ad-hoc networks do. As a
result, many techniques have been proposed for clustering in WSN. LEACH [1] is one of
the simple ‘and popular clustering techniques used for WSN. However, LEACH does not
consider the heterogeneity of the sensor nodes in terms of residual energy when 1t selects
the eluster i:zads. LEACH has some (unable parameters that can be tuned to achieve
optimal energy consumption. Due to the absence of a mathematical ﬁlodel, it is also hard

to tune these parameters.

In this thesis, we have proposed a mathematical model for LEACH and proved its
correetness by simulation results. We have also tuned LEACH parameters using our
proposed mathematical model in order to achieve optimal energy consumption goal.
Finally, we have proposcd a new clustering approach namely Ciuster Heterogeneous
Sensor Network (CHSN) and we give the mathematical model for CHSN. Simulation
results prove that CHSN performs better than LEACH [1] and its variations [16], [17].

1.2 Disposition

This thesis consists of seven chapters. In the second chapter, the general concepts of
sensor node, wireless sensor network and clustering are briefly discussed. The third
chapter describes some existing popular clustering techniques in sensor networks. In the
fourth chapter, the formulation of a proposed mathematical model for LEACH is
claborated. In the fifth chapter, a novel approach to Cluster Helerogeneous Sensor
Network (CHSN) is proposed. The sixth chapler presents the simulation Ircsults to verify

the correctness of the proposed LEACH mathematical model and the performance of our

.



CHSN. Finally, we conclude the thesis in Chapter seven with shedding some light on the

future works.



2 General Concepts

A wireless sensor network (WSN) is a wireless network consisting of spatially distributed
autonomous devices. Using sensors these devices cooperatively monitor physical or
environmental conditions, such as temperature, sound,' vibration, pressure, motion or
pollutants at different locations. These autonomous devices are called sensor nodes. The
main challenge for WSN is the power management due to the one-time low power
batteries installed in the sensor nodes. To mect power management challenge, different
techniques are used. Clustering is one of thc most prominent one among them. In this

chapter, we briefly describe sensor node, WSN, and clustering concept.

2.1 Sensor Node

A sensor node is an electronic device which is capable of gathering sensory information,
processing the information, and communicating the information with similar type of other
devices. Figure 2-1 shows a widely known sensor node Berkeley Mote. There are

different commercial sensor nodes like Mica, IMote, Kmote, Dot etc.

R

Figure 2-1 Berkeley Mote

2.1.1 Architecture

The main components of a sensor node are microcontroller, transceiver, external memory,
power source and one or more sensors are shown in Figure 2-2. Microcontroller processes

data and controls the functionality of the other components in the sensor node.



Transceiver transmits and receives data. Memory contains programs and all sort of data.
Data can be application related or used to identify the device if necessary. Power sources
supplies power required for data processing and communication. Sensors are hardware
components that produce measurable response to a change in a physical condition like
temperaturc and pressure. Sensors sense or measurc physical data of the area to be

monitored.

Microconfrolle ' Sensm 1
'y
L4 A 4
I'ower n .
. P Microcontrolle |y ADC
Sewrce 'y r Y
¥ i
Microcontrolle Sensor 2

Figure 2-2 Basic Architecture of a typical sensor node

Most of the sensor nodes are designed to be low cost and small so that their deployment
can be arbitrary and in a big number in a WSN. For this reason, they come with following
limitations:

. Limited power

2. Limited memory and processing capabilities

2.2 Wireless Sensor Network (WSN)

WSN consists of a set of scnsor nodes capable of sensing their surroundings, i.e.
gathering, processing, transmitting, and relaying data in order to monitor a specific
phenomenon. The sensors in a WSN may be of the same or different capabilities or
characteristics. The first one is called homogenecous WSN and the later one is called
heterogeneous WSN. The heterogeneity may arise from different ways, e.g., different
energy levels, different transmission ranges, different application logics etc. In a
heterogeneous WSN, there may be a small set of costly, but more powerful sensor nodes,
called relay nodes. The main purpose to deploy relay nodes is to prolong network lifetime
while preserving network connectivity. The relay nodes are capable of rec_civing and
aggregating data packets from neighboring sensor nodes and transmitting them to the sink
node directly or via multi-hop wireless paths. Figure 2-3 shows typical homogeneous and

heterogencous WSN.
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Sensors are deployed in a region using any of the following three approaches —

1. Random deployment

2. Regular deployment

° °
© - ,@ @.,,@“ & | @ @"'...@
& g A & gy
© _ ./t e ® ® _ i 0 @ 9
f ©.@ @l'@@,"'@ --© f @‘: @@@"_‘f@
.../ @ig © S e e ©
©e® ©° %@, ©
@ Ry @ '\_\ & Relay Hode
®© N P
(a) {b)

Figure 2-3 (1) Homogencous Wircless Sensor Network (b) Heterogencous Wireless Sensor Network

In the random deployment sensor nodes can be dropped from an aircraft. Regular
deployments are well planned and the sensor nodes are deployed in the fixed locations. If
the deployed sensor nodes are allowed to move then it becomes dynamic. Deployed

scnsors can cominunicate to the rcal world via Internet gateways. Figure 2-4 shows this
type of operation.

(ﬂ Sonser -‘%

( network

i Storage Grloway Storage

Clien

Figurc 2-4 Communication of WSN into the real world
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2.2.1 Chalienges

After deploying the sensor nodes in a WSN it is necessary to ensure that the network is
functioning effectively. There are many issues to consider in order to ensuring effective
operation of a WSN. W are briefly discussing those issues in this section.

Energy efficiency is a major issuc for WSN operation and management. In most of the
cases, the size of the sensor nodes is very small. Hence, the batteries installed in the
sensor nodes to supply the power are also very small and have limited power supply
capability from the very beginning. Moreover, sensors are usually deployed in the areas
which are not very easy to access. ie., energy replenishment of sensor nodes is not
possible. Network may contain a huge number of sensor nodes. Also, the deployment of
the sensor nodes may be dense or sparse or combination of both, Variation in the network
size and density imposes several difficulties to devise common algorithms for WSN.
Transmission range and the sensing range impose another kind of challenge in the
deployment and management of WSN. Connectivity and coverage are two other issues
need to be considered in conjunction with transmission and sensing ranges. Different
types of communication techniques such as broadcast and multicast may also be needed
to incorporate. Due to the small size of the sensor nodes, the hardware installed in it may
not have high capability. Specially, the processing power and the memory are limited for
the nodes. This hardware limitation imposes lot of difficulty to develop good operational

algorithm for WSN.

There arc many types of varying conditions or network dynamics that may arise in the
environment or in the network respectively. This can impose following challenges:
» Sensor nodes are prone to failure. Connectivity and coverage must be maintained
in the similar fashion after the death of a sensor node. .
» The environment in which the sensor nodes are deployed may be changed due to
different natural phenomenon like storm, rainfall etc. The nodes must be
dynamically adapted to these changes in the environment.
» The topology of sensor networks may be changed very frequently due to the
displacement or death of existing sensor. Also, new sensor nodes may be

deployed. These changes in the topology must be dynamically maintained.

12



It ts not feasible to manually configure thousands of sensors. Hence, the nodes must be
capable to be configured themselves on the fly. Also, the sensors may need to change
location and move to a foreign network. These changes are also required to be

dynamically configured.

2.2.2 Applications

Now-a-days, WSNs have many applications although the original purpose of developing
WSN was military sensing. In a military sensing application, different security issues are
monitored By the sensor nodes. Sensor nodes arc very useful in the movement tracking in
the battle field. Multiple targets can be tracked using sensor nodes. Perimeter protection
can also be achieved using boarder tracking with the help of these sensor nodes. There are
many WSN deployments for different types of environmental monitoring. These include
but not limited to habitat, temperature, pressure, and humidity monitoring. WSN is also

used for wildlife conservation.

WSN has a number of applications in the industrial sensing and diagnostics. In the
hazardous and risky environment in an industry WSN play a significant role. Different
typcs of applications in the industry include: |

o Manufacturing automation

o Chemical products tracking

o Disaster prevention and recovery

WSN has an important role in infrastructure protection. There are many applications to
protect the infrastructure using WSN. Some of them are:

o Traffic management and control

o Roads/vehicle safety

o Electricity distribution in power grids

o Water distribution
WSN is now frequently used for different context-aware computing such as remote

monitoring of a building to ensure its security. It is also used for intelligent home

applications. Baby-sitting and children monitoring are some other applications of WSN.

13



Healthcare is another field of application for WSN. Different types of biosensors arc
being used for life signs monitoring, remote tracking of patients, and in-home elderly
care. WSN has also important commercial applications like inventory control, product

quality control, smart office spaces, environmental control in office buildings etc.

2.3 Clustering

Clustering technique subdivides a WSN into multiple parts. In each part there will be only
one cluster head and the other nodes will become the followers of the head. A follower

can only communicate to its head in the chuster. However, a head can communicate to any

of its follower or to any other cluster head or to the base station. A cluster head can -

aggregate data before transmitting it to the base station directly or through other cluster

heads. Figure 2-5 shows a typical example of forwarding data in a clustered WSN.

“tusterhead:
A i

("—‘v
@) Clusterhead

N
;

Hase
Station

Figure 2-5 Data forwarding in a clustered WSN

2.3.1 Objectives

Clustering is done in a sensor network with following objectives:
» To improve network lifetime through reducing the energy consumption rate by
decreasing the distances to which data are to be transmitted.
To limit the required number of bits in data to be transmitted.
To reduce network traffic and the contention for the channel.

To aggregate and update data in cluster heads.

Y ¥V V V

To facilitate the proportionate usability of the resources by choosing cluster heads

from the sensor nodes with higher capability.

14



» To design efficient upper layer functionalities like broadcast.
» To enable inter cluster routing by forming a virtual backbone with cluster heads
and gateway nodes.

» To make the network more stable.

Since clustering promises many benefits towards WSN, many researchers have devoted
their effort to build good clustering algorithm. We discuss some of prominent clustering

algorithms in the next chapter.

15




3 Related works

Clustering a WSN yields many benefits, which have been discussed in the previous
chapter. Several clustering techniques have also been proposed for partitioning nodes in
wireless ad-hoc networks, mobile ad-hoc networks and sensor networks. Some of the
early but not widely accepted clustering techniques are - Hierarchical - Clustering [2],
Distributed Clustering Algorithm (DCA) [3], Spanning Tree (or BFS Tree) based
Clustering [4], Clustering With On-Demand Routing [5], Clustering based on Degree or
Lowest Identifier Heuristics [6], and Distributed and Energy-Efficient Clustering [7],
Adaptive Power-Aware Clustering [8]. Some of the recently developed clustering
techniques are PEGASIS (Power-Efficicnt Gathering in Sensor Information Systems) [9],
Energy Efficient Clustering Routing [10], PEACH (Power Efficient And Adaptive
Clustering Hierarchy) [11], Optimal Energy Aware Clustering [12], ACE (Algorithm For
Cluster Establishment) [13), HEED (Hybrid Energy-Efficient Distributed Clustering)
[14], PADCP (Power Aware Dynamic Clustering Protocol) [15], LEACH (Low-Energy
Adaptive Clustering Hierarchy) [1], SEP (Stable Election Protocol) [16], and LEACH
with Deterministic Cluster Head Selection [17]. We are briefly introducing the recently

developed clustering techniques in this chapter.

In [9] PEGASIS introduces a near optimal chain-based protocol. Here, cach node
communicates only with a close neighbor and takes turns transmitting to the base station,
thus reducing the amount of energy spent per round. It assumes that all nodes have global
knowlcdge of the network and employ the greedy algorithm. It maps the problem of
having close neighbors for all nodes to the traveling salesman problem. The greedy
approach to constructing the chain of nodes for communication is done before the starting
of the first round. The construction of the chain starts from the furthest node from the BS.
This node is chosen in order to make sure that nodes farther from the BS have close
neighbors, as in the greedy algorithm the neighbor distances will increase gradually since
nodes alrcady on the chain cannot be revisited. When a node dies, the chain is

reconstructed in the same manner to bypass the dead node. PEGASIS is a greedy chain
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protocol that is ncar optimal for a data-gathering problem in sensor networks. It limits the
number of transmissions and receptions within the chain, and uses only one transmission
to the BS per round. Greedy approach considers the physical distance only, ignoring the
capability of a prospective node on the chain. Hence, a node with a shorter distance but

less residual encrgy may be chosen in the chain and may die quickly.

In [10] a routing algorithm is proposed which combines hierarchical routing and
geographical routing. The process of packet forwarding from the source nodes in the
target region to the base station consists of two phases—inter-cluster routing and intra-
cluster routing. [For inter-cluster routing, a greedy algorithm is adopted to forward packets
from the cluster heads of the target regions to the base station. While picking a next hop,
a cluster head compares the costs of its neighbor cluster heads to reach the destination.
The cluster head with the lowest cost to the destination is chosen as the next-hop node.
For intra-cluster routing, a simple flooding is used to flood the packet in;;ide the cluster
when the number of intra-cluster nodes is less than a predetermined threshold. Otherwise,
the recursive geographic forwarding approach is used to disseminate the packet inside
target cluster, that is, the cluster head divides the target cluster into some sub-regions,
creates the same number of new copies of the query packet, and then disseminates these
copies to a central node in each sub region. It repeats this recursive splitting and
forwarding procedure until the number of nodes in a sub-region reach the threshold. This
approach let the scnsor node to conserve energy by not transmitting data directly to the
base station. Like [9], it uses greedy algorithm based on the distance only but not on the
capability or the residual cnergy. Although it deals with the optimal forwarding approach

the criteria to choose the cluster heads optimally is not clearly explained.

PEACH [11] is a cluster formation technique based on overheard information from the
sensor nodes. In PEACH, a nodc sct namely NodeSet(N;, N;) and a cluster set namely
ClusterSet(N; N;) have been defined when a node N; transmits packet to a node N,
NodeSet(N,, N)) is the set of all nodes in a circle (or sphere in a 3-dimensional space),
where the center of the circle is the sender node N;. The radius of the circle is the distance
between the node N; and the node N;. Similarly another node set NodeSet(Sink, N;) has
been define keeping the sink node at the center of a circle having a radius equal to the
distance between the sink and node N; ClusterSet(N; N;) is sct of all nodes that are
included in NodeSet(N;, N;) but not in NodeSet(Sink, N;). ClusterSet(N;, N)) is the cluster
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set of the overheard nodes where node N; is the cluster head. Figure 3-1 shows how
PEACH forms clusters on wireless scnsor nctworks; In this examb]e, the NodeSei{A, B)
and the ClusterSet(4 ,B) are {4, B, C, D, E, F, G} and {4, C, D, E}, respectively. The
node B becomes a cluster head of the ClusterSet(4, B).

|
¥ .
. 1, :
\ : /
) l]JOF : Sink
-
~.. {
S =T Ot
. . A\
w—— :DataTransmit \ Ol
oo JOverhear .

Figurc 3-1 Overhearing and cluster formation in PEACH

A cluster head node N, first sets the sink node as its next hop. Then it sets a timer to
receive and aggregate multiple packets from the nodes in the cluster set for a pre-
specified time Ty If node N, overhears a packet destined to a node N, it checks
whether the distance between N; and Ny is shorter than that of between N; and already
selected next hop node. If the distance is shorter, the N; joins to the cluster of Ny and the
next hop of the N, is changed to node Ngs. PEACH is an adaptive clustering approach for
multi-hop inter-cluster communication. However, it suffers from almost the same

limitations of PEGASIS.

Optimal energy aware clustering [12] solves the balanced k-clustering problem optimally,
where k signifies the number of master nodes that can be in the network. The balanced 4-
clustering problem tries to group the sensor nodes into some clusters such that each
cluster is balanced by the number of member sensor nodes and has exactly one master.
The algorithm is bascd on the minimum weight matching. It optimizes the sum of spatial
distances between the member sensor nodes and the master nodes in the whole network.

This helps in balancing the load on each master. It also reduces the energy dissipation by
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the sensor nodces to communicate with the respective master node. Each sensor node and
each master node is represented by a vertex in a graph G. A sensor node and a master
node pair, such as (x, @), is represented by a directed edge from x to @; in G. Each edge
has a weight cqual to the energy dissipation required to transmit a message from one
vertex to the other vertices of the edge. For example, an edge connecting x and a; has
weight fx, @;). A source node S and a sink node T are also added to G as the starting point
and the ending point for a message transmission respectively. There are » directed edges
from the source node S to n vertices correspond to » sensor nodes. Similarly, there are &
directed edges from k vertices assumed to be the master nodes to the sink node T. All
edges incident from S or to T are assumed to have weight 0. Finally, the vertices
correspond to the sensor nodes are assumed to have the capacity 1, while the vertices
correspond to the master nodes are assumed to have the capacity n/k, where wk>>1. $
and T both are assumed to have infinitc capacity. Each flow solution in the above graph
corresponds 1o a k-clustering solution. The cost of each flow solution is also equal to the
cost of corresponding k-clustering solution, since all the edges adjacent to S or T have
zero cost and the other edges have cost equal to energy dissipation between the
corresponding sensor and master nodes. Figure 3-2 shows an example graph built on a

sample sensor network.
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Figure 3-2 Transforming a balanced k-clustering instance to a minimum cost flow

instance. Each sensor node has unit capacity, while each master node has capacity n/k.

‘This approach illustrates an optimal algorithm for clustering the sensor network such that
each cluster is balanced and the overall distance between the sensor and the master nodes
is minimized. It effectively distributes the network load on all the masters and reduces the

communication overhead and the energy dissipation. However, this research work does



not consider of residual energy level while choosing a node as the master. Hence, the
choice of the master or clusicr head is far away from the optimal energy efficient

distribution of the cluster heads.

ACE [13] is a distributed clustering algorithm which establishes clusters into two phases-
spawning and migration. There are several iterations in each phase and the gap between
two successive iterations follows uniform distribution. During the spawnfng phase, new
clusters are formed in a self-elective manner. Every node discovers its neighbors first. A
node will elect itself as a temporary cluster head if the number of its neighbors 1s greater
than a pre-specified threshold. When a node decides to bccome a cluster head, it will
broadcast a message to its neighbors to become its followers. A node can receive
broadcast messages from more than one cluster head. It randomly chooses a single
cluster head from them and broadcasts this information periodically. During migration
phase, existing clusters are maintained and rearranged, if réquired. Migration of an
existing cluster is controlled by the cluster head. Each cluster head will periodically poll
all of its followers to determine which could be the best candidate to elect as a new leader
for the cluster. The best candidate is one which has the largest sum of the same cluster
neighboré and cluster free neighbors. The neighbors who are the member of a different
cluster will not be included in the sum. This selection of a new cluster head will help to
minimize the level of overlapping among the existing clusters. Current cluster head will
promole the best candidate as the new cluster head and abdicate itself from its position.
ACE results in uniform cluster formation with a packing efficiency close to hexagonal
close-packing. ACE clusters are aﬁ efficient cover of the network with significantly less
overlapping. However, ACE does not consider the residual energy of the nodes while
selecting cluster heads. Hence, the clustering is far away from the optimal energy

efficient.

HEED [14] introduces a distributed algorithm considering the fesidual energy of sensor
nodes. It results in some clusters by uniformly distributing the cluster heads across the
network. Tt periodically selects cluster heads according to a hybrid parameter which
consists of a primary parameter, the residual energy of a node, and a secondary
parameter, such as propinquity of a node to its neighbors or node degree. Here, an initial

percentage, Coop 15 set randomly such that only Cps percentage of nodes from n nodes
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can become cluster heads. Individual node sets its probability of becoming a cluster head,

CHpop, as follows:

C E residual

CH prob | E

prob -
max

where, Fresiduat ié the estimated current residual energy in the node and E,,,,, is a reference
maximum energy corresponds to the energy level of a fully charged battery. The CHprob
value of a node, however, is not allowed to fall below a certain threshold p,,;,. During any
iteration i, every “uncovered” node elects itself as the cluster head with the probability
CH,0p- If 2 node elects itself as a cluster head, it sends an announcement message. At the
end of iteration i, the set of tentative cluster heads S¢yy contains the new heads elected in
this iteration and the cluster heads from iteration i - 1. A non-cluster-head node v; selects
its cluster head from Scy to which it needs minimum energy to transmit a packet. Every
node then doubles its CHyop and goes to the next iteration. A cluster head can relegate
itself to a regular node in a later iteration if it finds itself covered by another cluster head
using average minimum energy in transmission. HEED converges in O(1) iterations using
low messaging overhead and achicves fairly uniform cluster head distribution across the
network. With the appropriate bounds on node density and intra-cluster and inter-cluster
transmission ranges, HEED can asymptotically guarantce connectivity of clustered
networks. However, the random choice of the initial percentage of cluster heads, Cpiop,

remains as a severe Jimitation of this algorithm.

PADCP [15] uses scveral adaptive schemes like dynamic cluster range, dynamic
transmission power and cluster head re-election to form clusters. In this approach, the
sensor nodes are assumed 1o have the same transmission capability and the ability to
adjust transmission power in five levels. Each cluster head can choose the minimum
transmission power from level 1 to 5 to connect to different cluster heads of different
distances. Level 5 is used to guarantee the connectivity between cluster heads. PADCP
has four major phases. In the first phase, each node collects the neighbor information and
creates a look-up table by broadcasting messages with first four transmission power
levels. In the second phase, cluster heads are elected based on a cost function. The cost

function is as follows:

C,=w, A +w, E +w, M,
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where, A, is the average minimum power that indicates the intra-cluster communication
cost, E, is the ratio between the maximum energy and the remaining energy that indicates
the impact of residual energy and M, indicates the probability of becoming cluster head
due to mobility. wy,, wg, and wyy are their respective weights. In the third phase, clusters
are formed using the same method that has been used in HEED and discussed earlier. In
the final phase, cluster head is re-elected if its residual energy falls below a pre defined
threshold value. PADCP improves the load balance when the sensor nodes are non-
uniformly dispersed. The mobility of the sensor nodes is also considered in cluster
formation. However, it suffers from the same randomly chosen initial probability
limitations of HEED as it completely follows HEED algorithm for cluster formation in its
phase 3. It is also hard to know which weight values in the cost function and which

threshold value in the re-election phase will give optimum results.

LEACH (1] introduced a simple mechanism for localized coordination and control for
cluster sct-up and operation. It also introduces the randomized rotation of the cluster
heads and the corresponding clusters. However, it does not consider the variation of the
initial energy nor the residual encrgy of sensors during cluster head selection. Other
limitations of LEACH have been discussed later in this chapter. SEP [16], a LEACH
variant, modifies the equation of the threshold. However, it considers two types of nodes
only, normal and advanced, instead of many types that can be encountered in the wireless
sensor network after a significant amount of time of operation. Deterministic Cluster
Head Seclection [17], another variant of LEACH also modifies the threshold to
accommodate the heterogeneily of residual encrgy based on some heuristics. It has
several limitations discussed later in this chapter. LEACH-C, proposed by the same

authors of LEACH in [18], is a centralized technique which selects the cluster heads

based on their positions. It considers uniform distribution of the cluster heads based on

their positions and the average residual energy in the network. They did not consider the
relative residual energy in each sensor node. Adaptive Cluster Head Selection [19], a
distributed clustering technique based on LEACH, considers the positions but not the
relative residual cnergies of the sensor nodes. We explored LEACH and its variants in
this research work. For this reason, we describe LEACH and those variants in detail in the

following sections.
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3.1 LEACH: Low Energy Adaptive Clustering Hierarchy

LEACH is a self-organizing, and adaptive clustering protocol [1]. It dynamically creates
clusters in order to distribute the energy load evenly among all of the sensor nodes. This
algorithm needs time synchronization. Cluster heads are randomly rotated during each

time interval. The resultant cluster heads directly communicate with the base station.

3.1.1 Mechanism

In LEACH, the lifetime of the network is divided into some discrete, disjoint time
intervals. Each interval is again divided into some subintervals as shown in Figure 3-3.
Each subinterval begins with an advertiscment phase followed by a cluster set up phase.

In the advertisement phase, each node independently decides whether to become a cluster

head or not. In the cluster set-up phase, the clusters are organized based on the decisions -

made in the advertisement phase. Then a steady-state phase follows. In this phase, the
followers, i.c., the sensor nodes except cluster heads, will send data to the corresponding
cluster head. The cluster heads accumulate and compress the received data with its own
data. Cluster heads send the compressed data to the base station. In order to minimize
cluster establishment overhead, the duration of steady-state phase must be longer than

that of clustcr set-up phase.

| I i % i jooewE s EmMEEEE N NN NEE
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Figure 3-3 discrete and disjoint intervals in the whole network lifetime; discrete and
disjoint subintervals in an interval.

At the very beginning of advertisement phase, each node decides whether it wants to
become a cluster head for the current round. This decision is based on the suggested
percentage of cluster heads for the network, which is set a priori. This decision also
depends on the number of times the node has already been a cluster head. This decision is
made by a node # choosing a random number between 0 and 1. If the number is less than
a threshold 7(#), the node decides to become a cluster head. The threshold 1s calculated as

follows:
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P
T(m=491-Px [rmodl)
P

0 otherwise

ifneG

where,

P = the percentage of nodes that can become cluster heads (e.g. P = 0.05);
1/P = the number of subintervals in an interval;

r = the current subinterval;

G = the set of nodes that have not been cluster heads yet in the current interval.

Using this threshold, a node can be a cluster head in any one of /P subintervals in an
interval. At the first subinterval of an interval (r = 0), each node has a probability P to
become a cluster head. The nodes that are cluster heads in the first subinterval cannot be
cluster heads in the next (1/”7 — 1) subintervals of the same interval. Thus the probability
that the remaining nodes are becoming cluster heads is increasing. After the completion
of 1/P subintervals, a new interval will start and all the nodes are again eligible to become

cluster head.

Each node that has chosen itself as a cluster head in the current subinterval, broadcasts an
advertisement message to the rest of the nodes. The non-cluster-head nodes will choose
the cluster to which it will belong in this subinterval. This decision is based on the
received signal strength of the advertised message. Assuming symmetric propagation
channels, the cluster head whose advertisements have been heard with the largest signal
strength will be selected by a non-cluster-head scnsor node as its cluster head. In case of a

tic, a cluster head is chosen randomly.

This algorithm introduced a fairly simple strategy which is more efficient than the direct
transmission and the minimum-transmission-energy (MTE) protocol. However, it has

several limitations Lriefly described in the next subsection.

3.1.2 Limitations of LEACH

1. LEACH algorithm uses the desired percentage of cluster heads as a parameter.
However, there is no suggestion for which value of this parameter LEACH will

ensure optimum energy consumption.
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2. LEACH always wants to achicve an even distribution of energy consumption
which might not be rational. Residual energy in different nddcs is not even or
same after a significant amount of time of operation. Nodes with higher residual
energy should get preference to be elected as cluster head. Otherwise, longer
network stability as well as longer network life cannot be ensured.

3. When the number of live nodes becomes small, the number of prospective cluster
heads which is equal to the number of live nodes multiplied by desired percentage
of heads will also become very small and in some cases it may become less than
one. For example, if the initial number of sensor nodes is 100 and the desired
percentage of heads P is 0.05 then the initial number of prospective heads 1s
100*0.05=5. However, with the same P when the number of live nodes becomes
less than 20 the number of prospective heads will become less than one. Under
this condition in most of the subintervals, none of the live sensor nodes can
become a cluster head by choosing a random number which is less than the
current threshold. In other words, there will be no cluster head available to the
sensor nodes to which they can become followers. Rather, all the live sensors will
force themselves to become a one member cluster head. Thus, there will be very

little encrgy efficiency due to this sort of clustering.

3.2 SEP: A Stable Election Protocol

SEP [16] is variant of LEACH, which elects the cluster heads based on weighted
probabilities according to the residual energy of the sensor nodes. It assumes that a
percentage of the sensor nodes are coming with higher energy resources and studies the

impact of heterogeneity of nodes based on their energy levels.

3.2.1 Mechanism

This approach follows the underlying synchronization approach used in LEACH. In
addition, it considers the variation in the residual energy assuming two types of nodes —
normal and advanced. It assumes m fractions of the nodes are advanced nodes, which
have a times energy than that of the normal nodes. As a result, it assumes #{1+ a m)
number of virtual normal nodes in the network. It extends the number of subintervals

from 1/P to (1+ a m)/P in an interval. The objective of this extension is to elect a normal
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node once and an advanced node (1+ «) times as the cluster head in an interval. The
probability equation to become cluster head has been modified. In fact, two different
equations are used for the normal and the advanced nodes. The weighted election

probabilities for the normal and the advanced nodes are p,,,, and paq, Tespectively. Their

equations are as follows—

_ popt
pm‘m -
l+axm
p
Doy =——x(1+a)
l+a=xm

where, po, is the optimal probability of a node to become a cluster head.

The equation of the threshold has not only been changed, two different equations for the
threshold are used. One for the normal nodes called 7(s,,,;) and the other for the advanced

nodes called T(sqs). T(Surm) and T{sqq) are calculated as follows:

Lo UF S pem EG‘
1
T($,m)=9 1=p,. X[r mod ——]
- pnrm
0 " otherwise
and,
pad’v U— Sﬂdv e G,,
T(Seqy)= l—padvx[r mod 41_J
pndv
0 otherwise

where, G is the set of normal nodes that have not become cluster head yet within the last
1/pym subintervals and G is the set of advanced nodes that have not become cluster head
yet within the last 1/p,s subintervals in an interval. This works introduced the
heterogeneity to LEACH in terms of residual energy. However, this introduction was
limited to only two types of nodes. Limitations of SEP are briefly discussed in the next

subsection,
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3.2.2 Limitations of SEP

1. In SEP, the percentage of cluster heads is optimized based on the energy
consuniption in an interval. However, this value should be optimized on the basis
of the long run rate of enerpy consumption for achieving the higher network
stability period.

2. SEP considers two types of nodes only in terms of residual energy. However,
during the life cycle of the network the different levels of the residual energies
may exist which will not be covered by only two types. More types of nodes are
necessary 1o consider covering numerous residual energy levels in different nodes

to achieve maximum network stability.

3.3 LEACH Variant: Deterministic Cluster Head Selection

Deterministic Cluster Head Selection [17] introduces the heterogeneity to LEACH in
terms of residual energy. 1t considers the residual energies of the sensor nodes in order to

manage rational power consumption throughout the network.

3.3.1 Mechanism

Deterministic Cluster Head Selection follows the underlying mechanism of LEACH
exactly. It has changed the equation of the threshold value only to incorporate the restdual

energy in cluster head selection process as follows:

P EH curren,
T(n),,, = x =Tt

1- Px[r mod i] E"-“‘“"
P

where, £, currens 15 the current energy, Ey yax the initial energy of the node. The other

parameters have the same definitions as of LEACH. After a significant amount of time of
operation,, the residual energies of the sensors would become very low and then this
threshold value will be very low. This can result in a situation where all the live sensors
are one member cluster head. In this case the energy consumption rate will be very high.
To break this stuck condition another modified equation of the threshold value has been

proposed —
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P E E
T(n)ncw — 1 « n_current + [rs div l) w|1— n_current
1- Px(r mod _j En_max P
P

where, r, i1s the number of consecutive rounds in which a node has not been cluster head.

_max

3.3.2 Limitations of Deterministic Cluster Head Selection

1. Like LEACH Deterministic Cluster Head Selection uses a random value for the
percentage of heads parameter, hence, does not consider the optimal value of this
parameter.

2. It does not suggest any optimum value for 7, either.

3.4 LEACH-C: Centralized LEACH

LEACH-C is a centralized technique to cluster sensor nodes based on their positions. In

this approach, base station selects cluster heads to get uniformly distributed clusters.

3.4.1 Mechanism

Sensor nodes detect their current locations using GPS (Global Positioning System)
receiver or any other technique. At the beginning of each interval, each node informs the
base station its current location and residual energy level. After receiving the information
from all the sensor nodes, base station computes the average residual energy in the
network. It precludes those sensor nodes whose residual energy is below the average
residual encrgy from attaining cluster headship. Basc station selects the cluster heads
from the remaining nodes using the simulated annealing algorithm [20]. This algorithm
minimizes the total sum of squared distances between all the non-cluster-head nodes and
the corresponding closest cluster head node. Thus, it minimizes the amount of energy
necessary to use to transmit data to the cluster head nodes by the non-cluster-head nodes.
Base station also selects corresponding followers for the clusters while selecting the
clusters and cluster heads, and the base station broadcasts a message into the network

informing these selections.
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3.4.2 Limitations of LEACH-C

1. In LEACH-C, the base station selects the cluster heads based on their positions
and the average residual energy in the network. Like LEACH, the individual
residual energy in each sensor node has little impact on the cluster head selection
process in LEACH-C. This centralized algorithm also suffers from non-
scalability.

2. Incorporating GPS receiver or similar device in the sensor nodes increases sensor

node cost.

3.5 Adaptive Cluster Head Selection

Adaptive Clusier Head Selection [19] assumes that a sensor node knows its distance from

another sensor node by observing the signal strengths in the received messages.

3.5.1 Mechanism

At first, this approach randomly selects cluster heads following LEACH. Next it reselects
the cluster heads considering the distance between each cluster head and the sensor nodes
farthest from the cluster heads. The reselection is done in order to distribute the cluster
heads uniformly in the nctwork. When a sensor node is selected as a cluster head by
LEACH, it broadcasts an advertisement message to all other nodes. Other sensor nodes
respond to the broadcast. From the received responses, a cluster head calculates its
distance to its farthest follower node and its distance to the nearest cluster head of
neighbor clusters. It subtracts the first distance from the later. Three cases may arise as
follows:

Case 1: The result is positive.

Case 2: The result is negative.

Case 3: The result 1s zero.
In order to place the cluster head in an optimum location, the cluster head is moved to the

direction of the closest head in Case 1 and to the direction of the farthest sensor node in

Case 2. Cluster head position remains the same in Case 3.
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3.5.2 Limitations of Adaptive Cluster Head Selection

1. In this work cluster head movement, if necessary, is not clearly defined.
2. It completely ignores the relative residual energy of each sensor node in the
network while selecting the cluster heads.

3. 1t also suffers from other LEACH limitations.

Though LEACH is widely used clustering technique for WSN, it does not have a
complete mathematical model that can be used to tune LEACH performance by selecting
different values for different LEACH parameters. In this thesis, we have first proposed a

mathematical model of LEACH 1n the next chapter.
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4 Proposed Mathematical Model for LEACH

The primary reason behind the clustering technique is to reduce the rale of energy
consumption. Popular clustering techniques LEACH [1] and its variants [16], [17], have
achieved a significant amount of lower rate of energy consumption. All of these
techniques have been developed based on some heuristics rather than a complete
mathematical model. A mathematical model can serve letter than those heuristics to
achieve an optimal rate of energy consumption. Moreover, a mathematical model can
provide the ways to tune application specific parameters. For this reason, we derive a
complete mathematical model of energy consumption rate of LEACH. We describe our

mathematical model in this chapter.

4.1 Preliminaries

We use some basic assumptions about the sensor nodes and the network settings while
developing our mathematical model for LEACH. After describing the basic assumptions,
we describe some base models that have also been used in the formulation of our

mathematical model.

4.1.1 Assumptions
Original LEACH algorithm uses followin'g assumptions about the sensor nodes and
network settings:
» WNodes do not have any location information.
~ % All nodes can reach the BS.
» The propagation channel is symmetric.
We also use these assumptions while formulating the mathematical inodel in order to

keep our model fully aligned with LEACH algorithm,

4.1.2 Base Models

Heinzelman proposed an energy model namely first order radio model for energy

consumption in a wireless network in [21]. Like other research works [1], [16], [17], we
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use this first order radio model to compute the expected energy consumption rate in

sensor networks.

Energy consumption due to the reception and the transmission of data in a sensor network
is a stochastic process. We use the Renewal Reward stochastic process to capture the
nature of energy consumption due to data transmission and reception by a sensor node. In

the following subsections, we briefly describe these two base models.

4.1.2.1 Energy Modecl: Heinzelman’s First Order Radio Model
A sensor node consumes energy to run the circuitry, which is proportional to the number

of bits in the message under processing. For example, if the message contains & bit and
the energy per bit is Eg.. Joules, then the energy used to run the circuitry will be (£ *
k) Joules. A sensor node consumes this energy while receiving and processing a message.

Therefore, the energy consumed by a receiving node to receive a k-bits message is,

ERX (k)= (Ee.’ec * k) 0y

The energy needs to send k bit message over a distance d is (€anp * & * cf) Joules, where
Canp is the energy constant for the radio transmission and A is the path loss exponent.
While transmitting, a sensor node needs energy to run the circuitry as well as to send the
message. We consider Heinzelman’s first order model where 4 = 2. Therefore, the total

energy consumed by a transmitting node to send a k-bits message over distance d is,
2
E'J"x (de) = (chec * k) + (eamp * k * d ) (2)

This model is shown in Figure 4-1.
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Figure 4-1 Heinzelman’s first order radio model
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4.1.2.2 Renewal reward process

A renewal process 1s special counting process N(f) which counts the number of events up
to time ¢ and the inter-arrival times of the events are independent and identically
distributed (#ic/) random variables. The expected value of inter-arrival times is in between
zero and infimty. A renewal reward process is a renewal process such that there are some
rewards for each of the inter-arrival times. These rewards are also independent and
identically distributed (/i) random variables. If, X; is the ith inter-arrival time and &, is

reward for the inter-arrival time X;, the total reward earned up to time ¢ will be:
N(r) 7
R (r) = R, &)
i=}

According to renewal reward theorem, the rate of reward will be:

oot E(X) @

This means that the rate of reward is equal to the ratio between the expected reward in a

single inter arrival time E(R) and the expected inter-arrival time £(X) in the long run. The
theorem can be proved bascd on Strong Law of Large Numbers and is out of scope of the

this thesis. In stochastic process, the inter amrival time is also called a cycle.

4.2 Proposed Mathematical Model

As the part of our mathematical analysis, we calculate the expected energy consumption
rate following the renewal-reward process. We consider the energy consumed by the
sensor as the reward. Then, the long run rate of reward will essentially be the long run
rate of energy consumption. However, to map this problem with renewal-reward process
perfeetly, we have to define cycle in such a way that both the reward and the cycle can be

treated as ifd random variables.

According to LEACH algorithm, in the first subinterval of an interval each live sensor
node will have some non zero probability to become cluster head. However, in the other
subintervals a sensor node has zero probability to become cluster head, if it became a
cluster head in the first or any other previous subinterval. It must be a follower in all other
subsequent subintervals in the same interval. We define a cycle as the number of

subintervals between two consecutive subintervals in which a sensor node becomes

33



cluster head. Cluster establishment is probabilistically done in each subinterval. Hence,
the cycle or inter-arrival time is an integer number and iid random variable. Similarly
energy consumption by a sensor node in each cycle is an iied random variable. These
defmitions of cycle and reward map our problem to a renewal-reward process
appropriately. Thus, the long run rate of reward in Equation 4 gives the expected energy
consumption rate in a subinterval. We need to compute E£(R) and E(X) to derive the
energy consumption rate. We define following parameters for this purpose.
1. P be the desired percentage of cluster heads,
2. s be the number of subintervals in an interval (= 1/P),
3. Pj be the probability of becoming cluster head of a follower node at the start of
any subinterval, .
4. P, be the probability of becoming cluster head of a cluster head node at the start
of a subinterval in next interval,
5. @ be the probability of becoming cluster head of a sensor node at the start of any
subinterval,
0. T be the currently considered threshold value.
7. N be the total number of sensor nodes in the network.

8. a * b be the sensor area in two dimensions.

4.2.1 Calculation of E(X)

We compute expected cyele length, £(X), of Equation 4 in this section. At the beginning
of ecach subinterval new cluster heads are selected and new clusters are generated. Each
sensor will generate a random number between 0 and 1 and compares it to a predefined
threshold value 7. If the random number is less than the threshold, the sensor node
becomes cluster head. Otherwise, the sensor node acts as a follower. We can show that
the transitions between two states (héads: i and follower: f) of a sensor node while

changing the subinterval in an interval by following matrix:

h f/
h (0 1
S \f 1-5

If the interval is changed then the probability of becoming head while changing the

subinterval will be the same irrespective of the previous state. Therefore, we can show the
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transitions between two states of a sensor node while changing the subinterval as well as

the interval by following matrix:

R f
h P 1-P
f \p 1-p

Above behaviors of sensor nodes in LEACH can be shown by the transition diagrams in
Figure 4-2.

gl'Ph

Figure 4-2 State Transition of a Node while (a) Changing Subinterval without
changing Interval, (b} Changing Subinterval as well as the Interval

A sensor node can become cluster head at the start of the first subinterval of a new
interval based on the picked random number and the threshold. This decision does not
depend on whether it was cluster head or follower in the last subinterval of previous
interval. In this case, the probability of a follower to become a cluster head and the

probability of a cluster head to remain cluster head are same, i.e., Py’ = Py.

The number of subintervals in an interval is s. Therefore, a sensor node remains in the
same interval up to (s-1) subinterval transitions and moves to the next interval only at the
last subinterval transition. From this observation, we can say that the probability of
remaining in the same interval is equal to (s-1)/ s and the probability of changing the

interval is equal to 1/s.

We combine these probabilities with their corresponding transition matrices in order to

capture the whole scenario.

s—1 0 1 +_1_ PJ‘: 1_]).‘1 _H"})_h ﬂ (5)
s \B 1-F) s\ 1-5 p 1_5}3

h
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Hence, the combined transition matrix becomes as follows:

1. The probability of a cluster head to remain cluster head, Py, at the start of any
subinterval is P,/s.

2. The probability of a follower to become a cluster head, Py at the start of any
subinterval is P;.

3. The probability of a cluster head to become a follower, Py, at the start of any
subinterval is (s-P)/s.

4. The probability of a follower to remain follower, Py at the start of any subinterval
is 1-Py.

Now, we can compute the probability of becoming a cluster head, @y, at the start of any

subinterval by summing up the first two values Py, and Pjras follows:

o, = [ﬁ}“ P=(s+1)x [ij ©)
S S

We can say that the expected value of the cycle is reciprocal of the probability of

becoming cluster head, Oy, at the start of any subinterval, i. e. -

b s
(DO _(S+1)*‘Ph (7)

E(X)=

In order to compute Py, we need to consider following two conditions -

I. A node can be a cluster head if the picked random number is lower than the
threshold. In LEACH, the threshold is maintained in a way such that the mean
value of the threshold becomes the percentage of sensor nodes to be elected as the
cluster heads in the network. Hence, the probability of becoming cluster head in
this way is equal to the said percentage, i.e., Py, = P.

2. If none of the nodes pick the random numbecr less than that of the threshold, all
nodes act as one-member cluster head. The probability of becoming one-member
cluster head in this way is, P;; = (1 - P)N.

Therefore, the ultimate probability of becoming a cluster head, P; while changing
subinterval in an interval will be P + (1 - P)".

Hence, expected cycle length E(X) can be calculated by substituting P, from Equation 7.
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4.2.2 Calculation of E(R)
We compute expecied reward (energy consumption), Z(R), of Equation 4 in this section.
Energy consumption by a sensor node as a cluster head differs from that of a sensor node
as a follower. Let - o

1. H be the amount of energy consumed by a cluster head in a single subinterval and

2. F be the amount of energy consumed by a follower in a single subinterval.
In a cycle, the expected number of subintervals in which a sensor node remains a follower
is £(X) - 1 and the expected number of subintervals in which a sensor node remains a
cluster head is 1. Thereforc, the amount of energy consumed by a sensor node in a single
cycle is -

E(R)= (E(x) - 1) » £(F) + E(H) @

Here, E(F) and E(H) are the expected values of energy consumed by a follower and a
cluster head, respectively, in a single subinterval. E(X) has already been calculated in

Section 4.2.1. We need to calculate £(F) and L(H) in order to find £(R) of Equation 8.

4.2.2.1 Calculation of E(F)
We can compute the expceted value of energy, E(F), consumed by a follower in a single

subinterval using Heinzelman’s first order radio model [21]. Being a follower, a sensor
node consumes energy only for transmitting, According to Heinzelman’s first order radio
model, the total energy to transmit a k-bit message over distance X 15

E(F|X = x) = (B, k) +e

elec * k*xz) L))
If f{x) is the distribution function of the distance X of a follower to its nearest cluster head,

amp

the energy consumption by a follower will be:

E(F) = JE(F
= J( E.. *k)+ (Gmp sfoxx® ) (x )
= (Edec *k) +(€amp *k) J.xzf(x)dx }

Now, we calculate the distribution function of the distance, f(x).

Distance to nearest cluster head :x) £ (x)dx e

YO diP(X <x) an

There might be several cluster heads at the nearest distance. Therefore,

P(x <x) = Plat least | cluster head is at distance of x or less than x)
=1 - P(no cluster head is inside the area with radius x)

=1 - Plall cluster heads are outside the area with radius x) (12)
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Now, if the number of cluster heads is N, then,

Plall cluster heads are outside the area with radius x)

N
Z (all cluster heads are outside n*x [N —n) P(N, =n)

S22 5

Therefore, we can calculate the distribution function of the distance, f{x) as follows:

f(x)= j—xP(XSx)

N N N-n 2
:Z (S_.ﬂp) (1_S_+1ph) 2nmx 1-2_
el 7} K3 s ab ab

Al 22\
:Z g(n)* X * 1——b

a

(N s+1 ! s+1 N onr
si= (M) (2228 ) (2217
7 5 s ab
Let,

I= [x*+ f(x)dx -
_ng(n *x *(1—7] dx

n=1

Afier solving the intcgration at the right side of the above ¢quation, we get —

1 ab 2 N ¥ yr:+l yu
[ === -
2( T J ;g(”)[n+l n J

where,

2
X

ab

y=1-

(13)

(14)

as)

(16)

The subtracted value of y indicates the proportion between two areas of Figure 4-3. Here,

the first area is the area inside the circle with the center at the sensor node under

consideration and the radius equal to the distance from the sensor node to its nearest

cluster head. The second area is the total arca covered by all the sensor nodes. If the

2

cluster head position coincides with that of the node, we get the lower limit of x and =
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equal to zero. In this case, y value becomes 1. If the cluster head is positioned at a
position such that the first area fully covers the second area, we get the higher limit of x

2

Find .
and pry equal to 1. In this case, y value becomes 0.
a

PRy L P “ansvider
. T
e
e N A
,/;?;f//://;ﬁf;;«,, f'ﬁ/’/l\ie"“tl ad
/;hﬁ%;?ﬂ%;%zf%{g//g cluster heaq
e e
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Figurc 4-3 y is the ratio between two areas. First one is the remaining arca
under consideration and the sceond onc is the total arca under consideration

Therefore, the integrated value with the limits of y is:

2

N
1 =292] S gl £ - 1 an

2\ 71 ) o n n+l

Combining Equations [0 and 17, we get the expected value of energy consumption of a

sensor node as a follower in a subinterval as follows:

1(ab)" & 11
E(F) - (Eefec*k)+(eawrrp*k)* 5 ? ;g(’?) ;—m (18)

4.2,2.2 Calculation of E(H)
We can also compute the expected value of energy, E(H), consumed by a cluster head in a

single subinterval using Heinzelman’s first order radio model [21]. The cluster head
aggregates and compresses the data to be relayed from its followers with its own data
before sending them to the base station. Therefore, the actual number of bits sent by a

cluster head is less than the summation of the numbers of the bits of all the messages
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those it handles. Let, y be the compression ratio. If there are Ny followers and each sensor
node generates & bit message, according to Heinzelman’s first order radio model, the

energy consumption by a cluster head will be:

Elalv,) = @, + ke, + (N, +1)e,, k7’ )
Now,
E(H) :21 (N, =i) P(v, =)
= Nﬁl[{(ZHl WL, + (+1)e,, kydy = PN, = i) 20)
Since N, is the total number of cluster heads we can wrile,
PN, =i) = EP(NI:I'] N.=n) P(N.=n) an
Here, _
plic =)= Joz0-0,)"
and
PN, =i|Ny=n)= [N;"JP(A)“ (1-P(4)" " 23

Here, A is an cvent that ensures that the cluster head under consideration is the nearest
cluster head to a follower. If the location of the cluster head is (x5, y») and the location of

the foltower is (x, y), we can write

2 2 n-1 )
P(4)=""p, [l—ﬂ—an - @
ab

ab

where, r = V((x - x;,)z + (v - y,u,)") and p, is the percentage of the circular area (centered at
the follower and with radius r) falls within the area covered by the sensor network. Let,
P(A) = h(r, n). Combining Equations 21, 22, and 23, we get
N n { —-n=i N t -"
A, == S ettty (Voo e
n=l h

1

Combining Equations 6, 20, and 25, we get -
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4.3 Erergy Consumption Rate

Combining Equations 7, 8, 18, and 26, we can get encrgy consumption rate as follows:

lim @ M
ST )

(I_STHB,H(EG,M 0+ n (2] Satf L)

22 5 ) Saton) @

I}

n=1

where,
o) = Qi+DkE,, + (i+1)e,, kydy'
and, .
N— ‘ . n N-n
i) ={ "l Getten ()m] [1-2 )
I 3 § hY

Equation 27 concludes the formulation of our mathematical model. This equation
evaluates the expected energy consumption rate in a wireless sensor network. The optimal
number of cluster hecads can also be determined using this equation. In the next chapter,
we propose a new clustering technique for WSN based on some heuristics and maodify the

mathematical model accordingly.
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5 Proposed Protocol: Cluster Heterogeneous Sensor Network
(CHSN)

in this chapter, we propose a new algorithm namely “Cluster Heterogeneous Sensor
Network (CHSN)” to cluster sensor nodes of a heterogeneous sensor network. We
consider the heterogeneity of sensor nodes in terms of their residual energy levels, which
makes our work more practical and useful over the original LEACH algorithm. We use
three heuristics on LEACH to enhance the performance. We also modify the
mathematical model derived in the previous chapter accordingly. After describing those

heuristics, we describe our clustering algorithm in details in this chapter.

5.1 Heuristic 1

In the original LEACH algorithm if a node becomes cluster head in a subinterval, it
cannot become cluster head again in any of the subsequent subintervals of the same
interval, However, if a sensor node with higher residual energy can become cluster head
again in the same interval it might be more energy efficient for the whole network. For
this reason, we make the subintervals completely memory less and don’t use a separate
set of nodes that have not been cluster head yet in the current interval. In this case, the
probability of becoming cluster head of a sensor node in a subinterval does not depend on

its status in the previous subintervals.

5.2 Heuristic 2

It will be more energy efficient for the sensor network if the nodes with higher residual
energy have the higher probability to become cluster head. For this reason, we consider
relative residual energy of a sensor node while selecting the cluster heads. Accordingly,
we map the relative residual energy of a sensor node in its threshold computation so that
it keeps its expected value at the optimal percentage of cluster heads P. At the beginning
of each subinterval, each node knows its own residual energy (£} and the maximum

(Ecur max), the minimum (Ecu min), and the average (Ecur avg) Tesidual energies of all the
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sensor nodes alive in the network. Considering Ecyur ag corresponds to P, we map Ecur min,
and Ecy; max 10 (1-Prange) and (14-P,ayg.) respectively, where Prapg. is the minimum between
P and (1-P). If P<(1-P), (P-Prange) becomes zero and if P2(1-P), (P+P ) becomes one.

This has been shown in Figure 5-1.

: P"Pl'fﬂ'ﬂgc’ P +,I:J'(lﬂ"7t

. Threshold - - l\ \
Res idual eneroy }

E EC'H?' mm ECHf' avg .ECH" max

Flgure 5-1 Distribution of Threshold Value accordmg to Residual Energy

We define AP, the deviation from P that should be considered for a sensor node based on
the difference between its residual energy L. and the average residual energy Ecirr avg in
the network. Hence,

AP =P * F (28)

where,

cur ECN!' avg f E E
- s cur <
E —F

cur _avg enr _mis

E = 9 0 b I.f Ecur = EC”"_GV&'

Ecur - Ecur avyr .
= ? I.!f- Ecm‘ > E
| E -£E

cur _max cur _avg

cur _avg

cur _avg

In order to make the threshold value proportional to the residual energy of a sensor node,
we assign threshold value equal to P plus AP, i.c.,

T(n) = .ID + AP . (29)

5.3 Heuristic 3

After a long duration of service from the initial deployment, the number of live nodes,
Niive, becomes so small that the number of probable heads (¥, * ®p) become very smail
and even less than one. If this situation occurs, the threshold from Equation 29 may

frequently cause the cluster selection algorithm to choose only one member clusters. In
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this case, all the live sensor nodes become the cluster head of its one member cluster and
die very quickly. To prevent this unwanted situation, we preserve the optimal initial
number of cluster heads rather than the optimal percentage of cluster heads. For this
reason, we multiply the right side of Equation 29 by the ratio between the initial number
of sensor nodes (N) and the number of currently live sensor nodes (N..) in the network as
follows:

N

T(n)= (P+AP)x N

30

ive

5.4 CHSN Algorithm

As it is done in LEACH, we divide the lifetime of the network into some discrete equal
length intervals in CHSN. Each interval has three consecutive phases - advertisement,
cluster-setup, and steady-state phase. The algorithm depicted in Figure 5-2 runs
independently in each sensor node in each interval. The parameters are initialized at the
start of the algorithm. E,,, is set to its current residual energy level. Evur yuar, Ecur min, and
Ecur avg are set to its own current residual energy level, i.e., equal to Ec... The number of
live sensor node, Ny, is set to one assuming it is the only live sensor node in the
network. Advertisement, cluster-.setup, and steady-state phases are exccuted as follows:

I. Advertisement Phase: During this phase, each node executes two parallel
processes. One of them broadcasts its current residual energy level. Before this
broadcast, a node waits for a random amount of time. This random delay 1s used to
make the probability of collision lower. Uniformly distributed random amount of
time is chosen for this purpose. Another process receives the current residual energy
levels of other sensor nodes. A sensor node may receive multiple copies of a current
energy level advertisement message from the same sensor node due to multi-path
effect. A receiver sensor node detects these duplicate receptions and ignores them.
A receiver sensor node updates the parameters — Eeur maxs Ecur_mins Ecr_avg> a0d Nie
using the fresh advertisement messages only.

II. Cluster Sct-up Phase: In this phase, each sensor node independently decides
whether to become a cluster head or not based on the information gathered in the
advertisement phasc. At first, it calculates the threshold T{(r) using Equation 30.
Next, it picks a random number and compares the random number with the

threshold. Three cases may arise as follows:
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1. CASE 1: The random number is less than the threshold. In this case, the
sensor node becomes a cluster head and broadcasts HEAD EXPOSURE
message.

2. CASE 2: The random number is not less than the threshold and it does not
receive any HEAD EXPOSURE message from other sensor nodes. In this
case, the sensor node becomes a one member cluster head.

3, CASE 3: The random number is not less than the threshold and it receives
one or more HEAD EXPOSURE messages from other sensor nodes. In
this case, the scnsor node becomes a follower of the nearest cluster head
and sends a FOLLOWER_ACCEPTANCE message to the nearest cluster
head.

111. Steady-state Phase: In this phase, the followers send data to the corresponding
cluster head. The cluster heads accumulate, aggregate, and compress the received
data with its own data. Cluster heads send the aggregated and compressed data to
the base station. The duration of steady-state phase is significantly longer than the
summation of the durations of the advertisement and cluster-setup phases in order to

minimize cluster establishment overhead.

5.5 New Mathematical Model

Heuristic 1 of our new clustering algorithm makes the subinterval completely memory
less. For this heuristic, the first state transition diagram of Figure 4-2 is no longer
applicable. The equation of @, has been formulated form the weighted combination of
two state transition diagrams of Figure 4-2. Therefore, the equation of ®p needs to be
changed. After the introduction of heuristic 1 the probability of becoming cluster head of
a follower node at the start of any subinterval P, become equal to the probability of
becoming cluster head of a sensor node at the start of any subinterval ®y. Therefore, ®p =
P, in the new mathematical model. With this minor change we can use the mathematical
model derived in the previous chapter as the new mathematical model for our new

clustering algorithm.
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Algorithm CHSN ()

Set the value of E,.,,

Initialize Eevr g 10 Epur

Initialize Er pmin 10 Eour

Initialize E,.; 4 10 Ecur

Initialize Ny, to 1

Advertisement(); broadcasts and receives current energy levels
Cluster_Set_Up(); Generates the clusters

Steady_State(); Receive and transmit data

Advertisement()
Transmit_Current_Energy Residual_Level()

Receive Current_Residual_Energy Level()

Transmit Current Residual Energy Level()
Wait for a random time

Broadcast own current residual energy level

Receive Current Residual_Energy  Level()
For each received current residual energy level, £ .,

if £, is nota repetition from an already received node
Update_Parameters(Ve, £ )
endif

Update_Parameters(]\’,,-w, E 'm) )

if E‘mr > Erur_rmu'

endif

if E cur < Eur_min
Emr_m,'n =E ‘cur'

endif
Mz‘vc * Ecuriuvg + E cur
Ecur_nvg =
M‘ivc +1
Increment Ny,

Figure 5-2 Algorithm to cluster heterogencous sensor network
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Cluster_s et__UP 0

Calculate P by £, = max (P ,1- P)

ringe

ifEcur < Er.ur_!wg
cur —E('!H' g
Calculate £, by E, = =
Ecur_m'g T Eeur _min
else ifErm‘ > Er.ur_m‘g
cur _ECHF avg
Calculate &, by E, = =
Ecur_max - cur _avg
else
E=0
endif
Caleulate APby AP =F, . * E,
N
Calculate T(n) by T(n) = (P+ AP) * m
live

Choose a random number »
if (r < T{n)} then
status=head

broadcast HEAD EXPOSURE message

else
Receive HEAD EXPOSURE messages from other sensor nodes
if (no HEAD_EXPOSURE message received) then
status=head
else
status=follower
send FOLLOWER_ACCEPTANCE message to nearest cluster head
endif
endif

Figure 5-3 Algorithm to cluster heterogeneous sensor network (contd.)
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Steady_State () -
if status=follower
send self originaied data to own cluster head

else
receive messages from own followers
aggregate and compress the received messages with own message
send to base station

endif

Figure 5-4 Algorithm to cluster heterogeneous sensor network (contd.)

We have presented our clustering algorithm and its mathematical model in this chapter.
Qur algorithm performs better than LEACH and its variants, which we will proof by

some simulation results in the following chapter.
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6 Simulation Results

In Chapter 4, we have derived our mathematical model for LEACH based on solid
reasoning. As a further validation, we compare the energy consumption rate behavior
resulted from our mathematical model with that from simulation runs for a particular
network setup. We also comparc the performance of our new clustering algorithm,
proposed in Chapter 5, with that of LEACH and one of its best variant. The performance
is compared in terms of the number of live nodes, the First Node Dies, the Half of the
Nodes Die, and the Last Node Dies. Simulation environment is discussed in the next

section.

6.1 Network Settings and Simulation Parameters

A visual C++ program is developed for the simulation. We use a network setting as
shown in Figure 6-1 in the simulation runs. The network setting compiles with the
assumptions stated in Chapter 4 and is as follows:

» The dimension of sensor area is 200 X 200,
Total number of heterogeneous sensor nodes in the network is 100,
The sensor nodes are uniformly distributed over the sensor area.

The base station is located at position (1500, 100).

Y V V¥V V¥

Nodes are heterogeneous in terms of their energy levels. Initial energies of the
sensor nodes are uniformly distributed between 1.0Joule and 5.0foule, which has

been shown in Figure 6-2.

In the simulation runs the following parameters are used —
1. The amount of energy per bit to run sensor node circuitry, Eere. 15 0.00000005;

The value of energy constant, €, for radio transmission, is 0.0000000001;

2
3. A sensor node generates 0 to 50 units data in an interval;
4, Each data unit contains 8 bits data;

5

The probability that a message successfully arrives at its destination is 90%.

49



6. The number of data units générated in each subinterval by a sensor node is
normally distributed in [0, 50], with the value of mean equal to 25. We applied
Box-Muller transformation [22] to achieve this normal distribution from the

uniform distribution of the built-in rand() function in ve-++.
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Figurc 6-1 Network Setting: Uniformly distributed sensor nodes with a distant base station
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Figurc 6-2 Initial Energy Distribution of the Sensor Nodcs

6.2 Verification of the Mathematical Model

To verify the correctness of our mathematical model (Equation 27), we conducted
simulation runs with the network settings and parameters described in Section 6.1. From
the results of our simulation runs, we first plot the energy consumption rate versus the
percentage of heads for a random LEACH node in Figure 6-3. According to the graph:

1. Energy consumption rate initially decreases very sharply with the increase of the

percentage of cluster heads.
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2.

There is an optimal point for which energy consumption rate is the lowest. After
this point the energy consumption rate increases with the increase of the
percentage of cluster heads. In our simulation runs this optimal point'is (0.057,
0.003433).
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Figure 6-3 Energy Consumption Rate against Different Percentage of Heads for a

Random LEACH node

Next, we plot the average energy consumption rate by all the sensor nodes in the network

in Figure 6-4. This graph has the similar pattern that has been found in Figurc 6-3. The

behavior of energy consumption rate against the percentage of heads in Figure 6-3 and

Figure 6-4 is due to following reasons:

1.

The percentage of cluster heads P reflects the expected value of the threshold.

When the value of P is close to 0, the probability of the random numbers picked
by the sensor nodes in the network to be less than the threshold becomes very low.
In this situation, most of the sensor nodes will frequently become one member
cllustcr head. Therefore, the expected cnergy consumption rate becomes high. As
the value of P increases, the probability of frequently becoming one member
cluster head for the sensor nodes decreases, i.e., the probability of becoming

follower increases and the expected encrgy consumption rate decreases. Though
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the probability of becoming a one member cluster head decreases with the

increase in P after a certain point this does not help that much to reduce the
ultimate cnergy consumption rate.

2. After the said point the increase in the percentage of cluster heads increases the
probability of the sensor nodes to become regular cluster head. This is superseding
the encrgy savings by not becoming one member cluster head. For this reason, as
the value of the percentage of cluster heads increases the ultimate energy
consumption rate increases.
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Figure 6-4 Average Encrgy Consumption Rate against Different Percentage of
Heads over the Whole Network

We plot the energy consumption rate against different percentage of cluster heads P using
Equation 27 of our mathematical model for the same network settings and parameters.
The resultant graph is shown in Figure 6-5. The value of the probability of becoming
cluster head of a sensor node at the start of any subinterval @, must not exceed 1 and the
value of @y can be computed from by Equation 6. According to Equation 6, if the value of
P exceeds 0.61 then the value of @p will exceed 1. In order to avoid this, we plot the

graph against the percentage of cluster heads /> up to 0.61.
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The graph obtained from the mathematical model also shows the similar pattern that has
been found in Figure 6-3 and Figure 6-4. Energy consumption rate also decreases very
sharply at the beginning with the increase of the percentage of cluster heads. The optimal
point (0.045, 0.003733) in Figure 6-5 is also almost equal to that of in Figure 6-4. And
beyond this optimal point the energy consumption rate increases with the increase of the
percentage of cluster heads in both graphs. This result is clearly validating the correctness

of our mathematical model.
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Figure 6-5 Energy Consumption Rate against Different Percentage of Heads
according to the Mathematical Model of LEACH

6.3 Result from New Mathematical Mode!

We plot the graph of energy consumption rate against the percentage of cluster heads P
using new mathematical model with the same network settings and parameters in Figure
6-6. This graph is also depicting the similar behavior that has been depicted in the graphs
plotted from the simulation runs and from the previous mathematical model and shown in
Figure 6-4 and Figure 6-5 respectively. The values of the optimal percentage of heads do
not vary from Figure 6-5 to Figure 6-6. However, the energy consumption rate at this

optimal point in the new algorithm is 0.003582 instead of 0.003733. Therefore, the
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percentage of improvement in the energy consumption rate at the optimal point in the new

model is 4.05%.
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Figure 6-6 Energy Consumption Rate against Different Percentage of Heads
according to the Mathematical Model incorporating Heuristic 1

6.4 Overall Comparison

We run our simulation for CHSN, LEACH, and a best LEACH variant with the network
settings and parameters described in Section 6.1. The authors of Deterministic Cluster
Head Selection [17] claimed that it improves the network stability period by 30% over
LEACH whereas the authors of SEP [16] claimed that it does the improvement over
LEACH by 26%. These two are the most improved LEACH variants claimed so far. For
this reason, we take Deterministic Cluster Head Selection as the best LEACH variant

instead of SEP in our performance comparison.

At first, we determine the optimal values of the percentage of heads P for each clustering
technique using corresponding mathematical model. These values are 0.045, 0.063, 0.043
for LEACH, LEACH variant and CHSN respectively. Next, we run our simulations using

corresponding optimal value of P for each clustering algorithm under comparison. We
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plot the number of live nodes against the number of interval passed in Figure 6-7. These
values are taken from the average of ten simulation runs. According to the graph, CHSN

performs better than LEACH and its variant.

| <ok = LEACH
: - - - LEACH Variant
109 Lz i BRI ¥
4,_“"‘ M W‘i}' o oo KHSN
‘.- h“% y
"
- b N
-_. b VO ]
1 ¢
L ® " N“M ;
: T i
o
) : e
- )
Z “ ‘}A &
“oss " ™ :
P2 : E :
H i ¥ ’
2 b i §
e " % :
- i 5 ;
‘A E :
© Eas i - L .
z gg A k
- Eeu . % 5
Lz . E .
'~ s
! . : '
[ B
i) , u .A!. ‘
' '
| E b
: . Noos
: a
H * :
o e ,.‘:5-p-nu—n---q-- mn--ayn-’&“.ﬁr""' weey
197 120 13

60 50
Number of intervals

Figure 6-7 Number of Live sensor nodes in Different Intervals for LEACH, LEACH
Yariant, and CHSN

L=]

Ky
W

I

(=]

The probability of a sensor node to become a cluster head does not depend on its residual
encrgy in LEACH. A sensor node with high residual energy may become a follower
while a sensor node with low residual energy is beéoming a cluster head. After being a
cluster head with low residual energy a sensor node will die quicker. As a result, the first
sensor node dies very quickly in LEACH. Due to the death of sensor nodes the number of

live nodes in the network decreases as the time passes.

LEACH variant (Deterministic Cluster Head Selection) distributes the probability of
becoming cluster head to the sensor nodes based on the ratio between the current residual
energy and the initial maximum energy in the network. As the current residual energy of a
sensor node decreases its probability of becoming regular cluster head decreases. It also
reduces the value of the threshold. At the reduced threshold the probability of becoming

one meinber cluster head increases. This in turn increases the encrgy consumption rate of
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the sensor nodes where energy is already scarce. As a result, the first sensor node dies in

LEACH variant even quicker than that of LEACH.

CHSN distributes the probability of becoming cluster head to the sensor nodes based on
their relative residual energies. In this approach, a sensor node v‘vith lower residual energy
has lower probability of becoming cluster head and a sensor node with higher residual
energy has higher probability of becoming cluster head. The energy consumption rate of a
sensor node with higher residual energy is higher. However, the energy consumption rate
of a sensor node with lower residual energy is lower. This proportionate distribution of
energy consumption rate results in almost equal lifetime for all the sensor nodes in the
network. Therefore, the first sensor node dies after longer duration in CHSN than that in
LEACH. Most of the sensor nodes remain alive for a long time. However, once they start
dying almost all of them die in a short time. For this reason, number of live nodes in the

network falls vary sharply just after the first node dies in CHSN.

Now, we plot the standard deviations of the number of live nodes for LEACH, LEACH
Variant, and CHSN. The resultant graph is shown in Figure 6-8. From the graph it is
obvious that for a long duration of time from the deployment, the behavior of CHSN is
more stable than that of both LEACH and LEACH variant. However, the behavior of
CHSN becomes relatively unstable for a shorter period at the end of the network lifetime

when nodes start dying, which is quite acceptable.

We also observed CHSN performance over LEACH with respect to three metrics as
follows:
1. First Node Dies (FND): The time needed for the death of the first node. This
metric is also called the network stability period. 7
2. Half of the Nodes Die (HND): The time needed for the death of the half of
initially deployed live nodes.
3. Last Node Dies (LND): The time needed for the death of the last live node in the

network. This metric is also called the network lifetime.

Figure 6-9(a), Figure 6-9 (b), Figure 6-9 (c) shows the average values for FND, HND,

and LND over ten simulation runs for each clustering algorithm.
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The performance improvements on these metrics by CHSN over LEACH and its variant

are shown in Table 6-1.

) Improvement with Improvement with
Metric
respect to LEACH | respect to LEACH Variant
First Node Dies (FND) 188.56 % 326.62 %
Half of the Nodes Die (HND) 17.21 % 98.04 %
Last Node Dies (LND) 1.67 % 70.73 %

Table 6-1 Improvements of First Node Dics (FND), Half of the Nodes Die (HND), and
Last Node Dies (LND) in CHSN

The standard deviations of FND, HND, and LND for LEACH, LEACH Variant, and

CHSN found from 10 simulation runs are quite acceptable and shown in Table 6-2.

. Standard Deviation
Metric
LEACH LEACH Variant CHSN
First Node Dies (FND) 3414 2.348 5.103
Half of the Nodes Die (HND) 8.140 3.425 4.756
Last Node Dies (LND) 8.034 2.757 4.433

Table 6-2 Standard deviation of First Node Dies (FND), Half of the Nodes Die
(HND), and Last Node Dies (LND) in CHSN

As CHSN ensures almost equal lifetime for cach sensor node by distributing the energy

consumption relative to the current residual energy, it takes a long time for the first sensor

node to die. Therefore, the improvement on FND in CHSN is very significant over

LEACH and its variant. For the same reason and for preserving the initial optimal number

of cluster heads, CHSN has improvements on HND and LND over LEACH and its

variant.
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7 Conclusion and Future Works

In this thesis, we devised a mathematical model for LEACH protocol, a widely accepted
clustering protocol for WSN. We have validated the correctness of our mathematical
model by simulation results. We have proposed a new technique namely CHSN to cluster
sensor network which considers the heterogeneity of sensor nodes in terms of residual
energy levels to elongate both the network stability and the network lifetime. We have
analyzed the performance of our clustering technique as well as the performance of other

popular clustering techniques.

For the verification of the correctness of our mathematical model, we have simulated a
WSN with a random setting. We have applied our mathematical model on the same
network setting. We have plotted two graphs of energy consumption rate versus the
percentage of heads, one for each of the above cases. The conformity between these two

graphs ensures the correctness of the mathematical model.

We have also showed that we can find the optimal percentage of heads, for which the
energy consumption rate would be the lowest from the graph of the mathematical model.
Using this optimal value, we conducted the simulation runs to see the performance of our
proposed clustering technique compared to other clustering technique. We found that our
clustering technique performs better than others in terms of the number of live nodes, the

first node dies, the half of the nodes die, and the last node dies.

In this thesis, we have considered heterogeneity only in terms of residual energy.
However, the heterogencity in a sensor network may arise from the difference in
transmission and receiving range. We have not considered this type of heterogeneity in
this thesis assuming all the sensor nodes can reach the base station directly. We preserved
the initial optimal number of cluster heads from the beginning of the deployment to avoid
the situation where it forces the sensor nodes to become one member cluster head. This

situation might not arise from the beginning of the deployment. However, this situation
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may become severe after certain time. In this thesis, we have not considered that time. In
our future works we will incorporate the heterogeneity of the sensor nodes in terms of
receiving and transmission ranges. We will also consider the time from when the initial

optimal number of cluster heads should be preservéd in our future research work.
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