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Abstract
Network lifetime is one of the important metrics in performance evaluation of sensor

network. It depends on both the rate of energy consumption and the relative distribution

of the energy consumption among the sensor nodes. Among various clustering solutions

to elongate the network lifetime, LEACH (Low-Energy Adaptive Clustering Hierarchy)

is one of the most widely cited solutions due to its simplicity and effectiveness. However,

LEACH considers only homogeneous sensor network. Moreover, there is no known

complete mathematical model derived for LEACH that can be used to tune various

LEACH parameters in order to achieve better perfoffilance. In this thesis, we first

formulate a complete mathematical model for LEACH and verify its correctness through

simulation. Next, we present three heuristics to enhance the energy efficiency of LEACH

and propose an energy efficient modification of LEACH, CHSN (Cluster Heterogeneous

Sensor Networks), considering the heterogeneity of sensor nodes in terms of residual

energy. Our simulation results show that CHSN improves the network lifetime

significantly. The increase in network lifetime has been shown in terms of the First Node

Dies (FND), the Half of the Nodes Die (HND) and the Last Node Dies (LND).
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1 Introduction

With the advent of new technology and low production costs, wireless sensor networks

(WSN) have been proved to be useful in myriad of diversified applications although its

original development was motivated by military applications, such as battlefield

surveillance, enemy tracking and monitoring. Most of the WSN applications involve

monitoring, tracking, or controlling, e.g., habitat monitoring, object tracking, nuclear

reactor control, fire detection, and traffic monitoring etc.

In a typical WSN application, sensor nodes are scattered in a region from where they

collect data to achieve certain goals. Data collection may be continuous, periodic or event

based. Irrespective of data collection type, different kinds of management, such as power

management, dynamic topology (due to node failure) management, self-configuration

management, resourcc management, and security management are necessary for WSN.

Power management deals with the optimum energy usage in order to increase the network

lifetime. Dynamic topology management dynamically adjusts the topology in case of the

death of an existing node or the arrival of a new node. Self configuration management

enables the nodes to tune its parameters on the fly. Resource management takes the role

to ensure effective resource (CPU and memory) sharing among multiple tasks. Security

management guarantees protection against any theft or intrusion in the network.

Among all of these, power management is very important since the sensor nodes come

with pre-installed limited powered battery. Moreover, the batteries cannot be replaced in

the sensor nodes once they are in operation. For these reasons, the algorithms and

protocols used in WSN have to be energy efficient in order to have better power

management. Different techniques are used to achieve energy efficiency like clustering,

data compression, dynamic power management etc.

Clustering is a technique in which some nodes act as the cluster heads and the others act

as the followers. The followers collect data and send it to their corresponding cluster

6
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heads. The cluster heads aggregate its own data with the data received from its followers.

Aggregated data is then sent to a sink to accomplish a specific goal. Cluster heads remain

closer to their follower sensor nodes compared to the sink. It takes less energy to transmit

data to the cluster head instead of the sink, which allows the sensor nodes to conserve

more energy and livc 10ngcr in WSN.

1.1 Motivation

Thcrc are different clustering techniques already established for ad-hoc networks.

However, those techniques cannot be directly used in WSN because of the fact that WSN

imposes strict requirements on the energy efficicncy than that ad-hoc networks do. As a

result, many techniques have been proposed for clustering in WSN. LEACH [1] is one of

the simple .and popular clustering techniques used for WSN. However, LEACH does not

consider the heterogeneity of the sensor nodes in temlS of residual energy when it selects

the cluster ,,~ads. LEACH has some tunable parameters that can be tuned to achieve

optimal energy consumption. Due to the absence of a mathematical model, it is also hard

to tune these parameters.

In this thesis, we have proposed a mathematical model for LEACH and proved its

corrcctness by simulation results. We have also tuned LEACH parameters using our

proposed mathematical model in order to achieve optimal energy consumption goal.

Finally, we have proposed a new clustering approach namely Cluster Heterogeneous

Sensor Network (CHSN) and we give the mathematical model for CHSN. Simulation

results prove that CHSN performs belter than LEACH [1] and its variations [16], [17].

1.2 Disposition

This thesis consists of seven chapters. In the second chapter, the general concepts of

sensor node, wireless sensor network and clustering are briefly discussed. The third

chapter describes some existing popular clustering techniques in sensor networks. In the

fOUlth chapter, the formulation of a proposed mathematical model for LEACH is

elaborated. In the fifth chapter, a novel approach to Cluster Heterogeneous Sensor

Network (CHSN) is proposed. The sixth chapter presents the simulation results to verity

the correctness of the proposed LEACH mathematiea1 model and the performance of our

7
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CHSN. Finally, we conclude the thesis in Chapter seven with shedding some light on the

future works.
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2 General Concepts

A wireless sensor network (WSN) is a wireless network consisting of spatially distributed

autonomous devices. Using sensors these devices cooperatively monitor physical or

environmental conditions, such as temperature, sound, vibration, pressure, motion or

pollutants at different locations. These autonomous devices arc called sensor nodes. The

main challenge for WSN is the power management due to the one-time low power

batteries installed in the sensor nodes. To meet power management challenge, different

techniques are used. Clustering is one of the most prominent one among them. In this

chapter, we briefly describe sensor node, WSN, and clustering concept.

2.1 Sensor Node

A sensor node is an electronic device which is capable of gathering sensory information,

processing the information, and communicating the information with similar type of other

devices. Figure 2-1 shows a widely known sensor node Berkeley Mote. There arc

different commercial sensor nodes like Mica, IMote, Kmote, Dot etc.

Figure 2-1 Berkeley Mote

2.1.1 Architecture

The main components of a sensor node are mieroeontroller, transceiver, external memory,

power source and one or more sensors are shown in Figure 2-2. Microeontroller processes

data and controls the functionality of the other components in the sensor node.

9



Transceiver transmits and receives data. Memory contains programs and all sort of data.

Data can be application related or used to identify the device if necessary. Power sources

supplies power required for data processing and communication. Sensors are hardware

components that produce measurable response to a change in a physical condition like

temperature and pressure. Sensors sense or measure physical data of the area to be

monitored.

I'uwt'r
SOlll"C(,
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Figure 2-2 Basic Architecture of a typical sensor node

Most of the sensor nodes are designed to be low cost and small so that their deployment

can be arbitrary and in a big number in a WSN. For this reason, they come with following

limitations:

I. Limited power

2. Limited memory and processing capabilities

2.2 Wireless Sensor Network (WSN)

WSN consists of a set of sensor nodes capable of sensing their surroundings, i.e.

gathering, processing, transmitting, and relaying data in order to monitor a specific

phenomenon. The sensors in a WSN may be of the same or different capabilities or

characteristics. The first one is called homogeneous WSN and the later one is called

heterogeneous WSN. The heterogeneity may arise from different ways, e.g., different

energy levels, different transmission ranges, different application logics etc. In a

heterogeneous WSN, there may be a small set of costly, but more powerful sensor nodes,

called relay nodes. The main purpose to deploy relay nodes is to prolong network lifetime

while preserving network connectivity. The relay nodes are capable of receiving and

aggregating data packets from neighboring sensor nodes and transmitting them to the sink

node directly or via multi-hop wireless paths. Figure 2-3 shows typical homogeneous and

heterogeneous WSN.

10



Sensors are deployed in a region using any of the following three approaches-

I. Random deployment

2. Regular deployment

3. Dynamic deployment

~ ~

(a) (b)

Figure 2-3 (a) Homogeneous Wireless Sensor Network (b) Heterogeneous Wireless Sensor Network

In the random deployment sensor nodes can be dropped from an aircraft. Regular

deployments are well planned and the sensor nodes are deployed in the fixed locations. If

the deployed sensor nodes are allowed to move then it becomes dynamic. Deployed

sensors can communicate to the real world via Internet gateways. Figure 2-4 shows this

type of operation.

Figure 2-4 Communication ofWSN into the real world
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2.2.1 Challenges

After deploying the sensor nodes in a WSN it is necessary to ensure that the network is

functioning effectively. There are many issues to consider in order to ensuring effective

operation of a WSN. We are briefly discussing those issues in this section.

Energy efficiency is a major issue for WSN operation and management. In most of the

cases, the size of the sensor nodes is very small. Hence, the batteries installed in the

sensor nodes to supply the power are also very small and have limited power supply

capability from the very beginning. Moreover, sensors are usually deployed in the areas

which are not very easy to access. i.e., energy replenishment of sensor nodes is not

possible. Network may contain a huge number of sensor nodes. Also, the deployment of

the sensor nodes may be dense or sparse or combination of both. Variation in the network

size and density imposes several difficulties t? devise common algorithms for WSN.

Transmission range and the sensing range impose another kind of challenge in the

deployment and management of WSN. Connectivity and coverage are two other issues

need to be considered in conjunction with transmission and sensing ranges. Different

types of communication techniques such as broadcast and multicast may also be needed

to incorporate. Due to the small size of the sensor nodes, the hardware installed in it may

not have high capability. Specially, the processing power and the memory are limited for

the nodes. This hardware limitation imposes lot of difficulty to develop good operational

algorithm for WSN.

There arc many types of varying conditions or network dynamics that may arise in the

environment or in the network respectively. This can impose following challenges:

~ Sensor nodes are prone to failure. Connectivity and coverage must be maintained

in the similar fashion after the death of a sensor node.

~ The environment in which the sensor nodes are deployed may be changed due to

different natural phenomenon like storm, rainfall etc. The nodes must be

dynamically adapted to these changes in the environment.

~ The topology of sensor networks may be changed very frequently due to the

displacement or death of existing sensor. Also, new sensor nodes may be

deployed. These changes in the topology must be dynamically maintained.

12



It is not feasible to manually configure thousands of sensors. Hence, the nodes must be

capable to be configured themselves on the fly. Also, the sensors may need to change

location and move to a foreign network. These changes are also required to be

dynamically configured.

2.2.2 Applications

Now-a-days, WSNs have many applications although the original purpose of developing

WSN was military sensing. In a military sensing application, different security issues are

monitored by the sensor nodes. Sensor nodes arc very useful in the movement tracking in

the battle field. Multiple targets can be tracked using sensor nodes. Perimeter protection

can also be achieved using boarder tracking with the help of these sensor nodes. There are

many WSN deployments for different types of environmental monitoring. These include

but not limited to habitat, temperature, pressure, and humidity monitoring. WSN is also

used for wildlife conservation.

WSN has a number of applications in the industrial sensmg and diagnostics. In the

hazardous and risky environment in an industry WSN playa significant role. Different

types of applications in the industry include:

o Manufacturing automation

o Chemical products tracking

o Disaster prevention and recovery

WSN has an important role in infrastructure protection. There are many applications to

protect the infrastructure using WSN. Some of them are:

o Traffic management and control

o Roads/vehicle safety

o Electricity distribution in power grids

o Water distribution

WSN is now frequently used for different context-aware computing such as remote

monitoring of a building to ensure its security. It is also used for intelligent home

applications. Baby-sitting and children monitoring are some other applications of WSN.

13



Hcalthcare is another field of application for WSN. Different types of biosensors are

being used for life signs monitoring, remote tracking of patients, and in-home elderly

care. WSN has also important commercial applications like inventory control, product

quality control, smart office spaces, environmental control in office buildings etc.

2.3 Clustering

Clustering techniquc subdivides a WSN into multiple parts. In each part there will be only

one cluster head and the other nodes will become the followers of the head. A follower

can only communicate to its head in the cluster. However, a head can communicate to any

of its follower or to any other cluster head or to the base station. A cluster head can

aggregate data before transmitting it to the base station dircctly or through other cluster

heads. Figure 2-5 shows a typical example offorwarding data in a clustered WSN.

o Clusrerhcact

Q~ \ 13

~ Hasc
Srat'ion

Figure 2-5 Data forwarding in a clustered WSN

2.3.1 Objectives

Clustering is done in a sensor network with following objectives:

>- To improve network lifetime through reducing the energy consumption rate by

decreasing the distances to which data are to be transmitted.

>- To limit the required number of bits in data to be transmitted.

>- To reduce network traffic and the contention for the channel.

>- To aggregate and update data in cluster heads.

>- To facilitatc the proportionate usability of the resources by choosing cluster heads

from the sensor nodes with higher capability.

14



;. To design efficient upper layer functionalities like broadcas!.

;. To enable inter cluster rouling by forming a virtual backbone with cluster heads

and gateway nodes.

;. To make the network more stable.

Since clustering promises many benefits towards WSN, many researchers have devoted

their effort to build good clustering algorithm. We discuss some of prominent clustering

algorithms in the next chapter.

15



3 Related works

Clustering a WSN yields many benefits, which have been discussed in the previous

chapter. Several clustering techniques have also been proposed for partitioning nodes in

wireless ad-hoc networks, mobile ad-hoc networks and sensor networks. Some of the

early but not widely accepted clustering techniques are - Hierarchical Clustering [2],

Distributcd Clustering Algorithm (DCA) [3], Spanning Tree (or BFS Tree) based

Clustering [4], Clustering With On-Demand Routing [5], Clustering based on Degree or

Lowest Identifier Heuristics [6], and Distributed and Energy-Efficicnt Clustering [7],

Adaptive Power-Aware Clustering [8]. Some of the recently developed clustering

techniques are PEGASIS (Power-Efficient Gathering in Sensor Information Systems) [9],

Energy Efficient Clustering Routing [10], PEACH (Power Efficient And Adaptive

Clustering Hierarchy) [II], Optimal Energy Aware Clustering [12], ACE (Algorithm For

Cluster Establishment) [13], HEED (Hybrid Energy-Efficient Distributed Clustering)

[14], PADCP (Power Aware Dynamic Clustering Protocol) [IS], LEACH (Low-Energy

Adaptive Clustering HIerarchy) [I], SEP (Stable Election Protocol) [16], and LEACH

with Deterministic Cluster Head Selection [17]. We are briefly introducing the recently

developed clustering tcchniques in this chapter.

In [9] PEGASIS introduces a near optimal chain-based protocol. Here, each node

communicates only with a close neighbor and takes turns transmitting to the base station,

thus reducing the amount of energy spent per round. It assumes that all nodes have global

knowledge of the network and employ the greedy algorithm. It maps the problem of

having close neighbors for all nodes to the traveling salesman problem. The greedy

approach to constructing the chain of nodes for communication is done before the starting

of the first round. The construction of thc chain starts from the furthest node from the BS.

This node is chosen in order to make sure that nodes farther from the BS have close

ncighbors, as in the greedy algorithm the neighbor distances will increase gradually since

nodes already on the chain cannot be revisited. When a node dies, the chain is

reconstructed in the same manner to bypass the dead node. PEGASIS is a greedy chain

16
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protocol that is ncar optimal for a data-gathering problem in sensor networks. It limits the

number of transmissions and receptions within the chain, and uses only one transmission

to the BS per round. Greedy approach considers the physical distance only, ignoring the

capability of a prospective node on the chain. Hence, a node with a shorter distance but

less residual energy may be chosen in the chain and may die quickly.

In [10] a routing algorithm is proposed which combines hierarchical routing and

geographical routing. The process of packet forwarding from the sOurce nodes in the

target region to the base station consists of two phases-inter-cluster routing and intra-

cluster routing. For inter-cluster routing, a greedy algorithm is adopted to forward packets

from the cluster heads of the target regions to the base station. While picking a next hop,

a cluster head compares the costs of its neighbor cluster heads to reach the destination.

The cluster head with the lowest cost to the destination is chosen as the next-hop node.

For intra-cluster routing, a simple flooding is used to flood the packet inside the cluster

when the number of intra-cluster nodes is less than a predetermined threshold. Otherwise,

the recursive geographic forwarding approach is used to disseminate the packet inside

target cluster, that is, the cluster head divides the target cluster into some sub-regions,

creates the same number of new copies of the query packet, and then disseminates these

copies to a central node in each sub region. It repeats this recursive splitting and

forwarding procedure until the number of nodes in a sub-region reach the threshold. This

approach let the sensor node to conserve energy by not transmitting data directly to the

base station. Like [9], it uses greedy algorithm based on the distance only but not on the

capability or the residual energy. Although it deals with the optimal forwarding approach

the criteria to choose the cluster heads optimally is not clearly explained.

PEACH [II] is a cluster fonnation technique based on overheard information from the

sensor nodes. In PEACH, a node set namely NodeSet(N;, Nj) and a cluster set namely

ClusterSet(N;, Nj) have been defined when a node N; transmits packet to a node Nj.

NodeSet(N;, N;) is the set of all nodes in a circle (or sphere in a 3-dimensional space),

where the center of the circle is the sender node N;. The radius of the circle is the distance

between the node N; and the node N;. Similarly another node set NodeSet(Sink, Nj) has

been define keeping the sink node at the center of a circle having a radius equal to the

distance betwcen the sink and node Nj ClusterSet(N;, N;) is set of all nodes that are

included in NodeSet(N;, N;) but not in NodeSet(Sink, Nj). ClusterSet(N;, Nj) is the cluster

17



set of the overheard nodes where node ~ is the cluster head. Figure 3-1 shows how

PEACH forms clusters on wireless sensor networks; In this example, the NodeSet(A, E)

and the ClusterSet(A ,E) are {A, E, C, D, E, F, G} and {A, C, D, E}, respectively. The

node E becomes a cluster head of the ClusterSet(A, E).

-"-"- --------
/' " ~~ " ,, ~~ ,

Qc " "B/ / ':

I
OH

I
D

I 0,"
" A",

Sink
\ OE" /

" , '- OJ--.. :OataTransmit OJ
... > :Overhear

Figure 3-1 Overhearing and cluster formation in PEACH

A cluster head node ~ first sets the sink node as its next hop. Then it sets a timer to

receive and aggregate multiple packets from the nodes in the cluster set for a pre-

specified time Tdday. If node ~ overhears a packet destined to a node NdW, it checks

whether the distance between ~ and Nd," is shorter than that of between ~ and already

selected next hop node. If the distance is shorter, the ~ joins to the cluster of Nd,,[ and the

next hop of the ~ is changed to node Nd",[. PEACH is an adaptive clustering approach for

multi-hop inter-cluster communication. However, it suffers from almost the same

limitations of PEGASIS.

Optimal energy aware clustering [12] solves the balanced k-c1ustering problem optimally,

where k signifies the number of master nodes that can be in the network. The balanced k-

clustering problem tries to group the sensor nodes into some clusters such that each

cluster is balanced by the number of member sensor nodes and has exactly one master.

The algorithm is bascd on the minimum weight matching. It optimizes the sum of spatial

distances bctween thc member sensor nodes and the master nodes in the whole network.

This helps in balancing the load on each master. It also reduces the energy dissipation by
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the sensor nodes to communicate with the respective master node. Each sensor node and

each master node is represented by a vertex in a graph G. A sensor node and a master

node pair, such as (x, a;), is represented by a directed edge from x to a; in G. Each edge

has a weight equal to the energy dissipation required to transmit a message from one

vertex to the other vertices of the edge. For example, an edge connecting x and a; has

weightflx, ail. A source node S and a sink node T are also added to G as the starting point

and the ending point for a message transmission respectively. There are n directed edges

from the source node S to n vertices correspond to n sensor nodes. Similarly, there are k

directed edges from k vertices assumed to be the master nodes to the sink node T. All

edges incident from S or to T are assumed to have weight O. Finally, the vertices

correspond to the sensor nodes are assumed to have the capacity 1, while the vertices

correspond to the master nodes are assumed to have the capacity n/k, where nlk>> 1. S

and T both are assumed to have infinite capacity. Each flow solution in the above graph

corresponds to a k-clustering solution. The cost of each flow solution is also equal to the

cost of corresponding k-clustering solution, since all the edges adjacent to S or T have

zero cost and the other edges have cost equal to energy dissipation between the

corresponding sensor and master nodes. Figure 3-2 shows an example graph built on a

sample sensor network.

master nodes
Al ---.---.--~ A2
•••...- x J -•••

"" 0 I ""; I

- '0
I u
IYO I

J,
0' 0I w

'I.e) 1

• A3

Figure 3-2 Transforming a balanced k-c1nstering instance to a minim nm cost flow
instance. Each sensor node has unit capacity, while each master node has capacity nlk.

This approach illustrates an optimal algorithm for clustering the sensor network such that

each cluster is balanced and the overall distance between the sensor and the master nodes

is minimized. It effeCtively distributes the network load on all the masters and reduces the

communication overhead and the energy dissipation. However, this research work does
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not consider of residual energy level while choosing a node as the master. Hence, the

choice of the master or cluster head is far away from the optimal energy efficient

distribution of the cluster heads.

ACE [13] is a distributed clustering algorithm which establishes clusters into two phases-

spawning and migration. There are several iterations in each phase and the gap between

two successive iterations follows unifoml distribution. During the spawning phase, new

clusters are formed in a self-elective manner. Every node discovers its neighbors first. A

node will elect itself as a temporary cluster head if the number of its neighbors is greater

than a pre-specified threshold. When a node decides to become a cluster head, it will

broadcast a message to its neighbors to become its followers. A node can receive

broadcast messages from more than one cluster head. It randomly chooses a single

cluster head from them and broadcasts this information periodically. During migration

phase, existing clusters are maintained and rearranged, if required. Migration of an

existing cluster is controlled by the cluster head. Each cluster head will periodically poll

all of its followers to determine which could be the best candidate to elect as a new leader

for the cluster. The best candidate is one which has the largest sum of the same cluster

neighbors and cluster free neighbors. The neighbors who are the member of a different

cluster will not be included in the sum. This selection of a new cluster head will help to

minimize the level of overlapping among the existing clusters. Current cluster head will

promote the best candidate as the new cluster head and abdicate itself from its position.

ACE results in uniform cluster formation with a packing efficiency close to hexagonal

close-packing. ACE clusters are an efficient cover of the network with significantly less

overlapping. However, ACE does not consider the residual energy of the nodes while

selecting cluster heads. Hence, the clustering is far away from the optimal energy

efficient.

HEED [14] introduces a distributed algorithm considering the residual energy of sensor

nodes. It results in some clusters by uniformly distributing the cluster heads across the

network. It periodically selects cluster heads according to a hybrid parameter which

consists of a primary parameter, the residual energy of a node, and a secondary

parameter, such as propinquity of a node to its neighbors or node degree. Here, an initial

percentage, Cpmb, is set randomly such that only Cp,'ob percentage of nodes from n nodes
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can become cluster heads. Individual node sets its probability of becoming a cluster head,

CHpmb, as follows:

CH = C X Eresidual
prob prob E

max

where, E"'iduai is the estimated current residual energy in the node and Emax is a reference

maximum energy corresponds to the energy level of a fully charged battery. The CHp,"b

value of a node, however, is not allowed to fall below a certain threshold pmin. During any

iteration i, every "uncovered" node elects itself as the cluster head with the probability

CHp,"b. If a node elects itself as a cluster head, it sends an announcement message. At the

end of iteration i, the set of tentative cluster heads SeH contains the new heads elected in

this iteration and the cluster heads from iteration i-I. A non-cluster-head node Vi selects

its cluster head from SC/{ to which it needs minimum energy to transmit a packet. Every

node then doubles its CHp,"b and goes to the next iteration. A cluster head can relegate

itself to a regular node in a later iteration if it finds itself covered by another cluster head

using average minimum energy in transmission. HEED converges in 0(1) iterations using

low messaging overhead and achieves fairly uniform cluster head distribution across the

network. With the appropriate bounds on node density and intra-cluster and inter-cluster

transmission ranges, HEED can asymptotically guarantee connectivity of clustered

networks. However, the random choice of the initial percentage of cluster heads, Cp,"b.

remains as a severe limitation of this algorithm.

PADCP [I5] uses several adaptive schemes like dynamic cluster range, dynamic

transmission power and cluster head re-election to form clusters. In this approach, the

sensor nodes are assumed to have the same transmission capability and the ability to

adjust transmission power in five levels. Each cluster head can choose the minimum

transmission power from level I to 5 to connect to different cluster heads of different

distances. Level 5 is used to guarantee the connectivity between cluster heads. PADCP

has four major phases. In the first phase, each node collects the neighbor information and

creates a look-up table by broadcasting messages with first four transmission power

levels. In the second phase, cluster heads are elected based on a cost function. The cost

function is as follows:
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where, A, is the average minimum power that indicates the intra-cluster communication

cost, Ev is the ratio betwccn the maximum energy and the remaining energy that indicates

the impact of residual energy and Mv indicates the probability of becoming cluster head

due to mobility. WA, WE, and WM are their respective weights. In the third phase, clusters

are fomled using the same method that has been used in HEED and discussed earlier. In

the final phase, cluster head is re-elected if its residual energy falls below a pre defined

threshold value. PADCP improves the load balance when the sensor nodes are non-

unifomlly dispersed. The mobility of the sensor nodes is also considered in cluster

fonnation. However, it suffers from the same randomly chosen initial probability

limitations of HEED as it completely follows HEED algorithm for cluster formation in its

phase 3. It is also hard to know which weight values in the cost function and which

threshold value in the re-election phase will give optimum results.

LEACH [1] introduced a simple mechanism for localized coordination and control for

cluster sct-up and operation. It also introduces the randomized rotation of the cluster

heads and the corresponding clusters. However, it does not consider the variation of the

initial energy nor the residual energy of sensors during cluster hcad selection. Other

limitations of LEACH have been discussed later in this chapter. SEP [16], a LEACH

variant, modifies the equation of the threshold. However, it considers two types of nodes

only, normal and advanced, instead of many types that can be encountered in the wireless

sensor network after a significant amount of time of operation. Deterministic Cluster

Head Selection [17], another variant of LEACH also modifies the threshold to

accommodatc the heterogcneity of residual energy based on some heuristics. It has

several limitations discussed later in this chapter. LEACH-C, proposed by the same

authors of LEACH in [18], is a centralized technique which selects the cluster heads

based on their positions. It considers uniform distribution of the cluster heads based on

their positions and the average residual energy in the network. They did not consider the

relative residual energy in each sensor node. Adaptive Cluster Head Selection [19], a

distributed clustering technique based on LEACH, considers the positions but not the

relative residual energies of the sensor nodes. We explored LEACH and its variants in

this research work. For this reason, we describe LEACH and those variants in detail in the

following sections.
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3.1 LEACH: Low Energy Adaptive Clustering Hierarchy

LEACH is a self-organizing, and adaptive clustering protocol [I]. It dynamically creates

clusters in order to distribute the energy load evenly among all of the sensor nodes. This

algorithm needs time synchronization. Cluster heads are randomly rotated during each

time interval. The resultant cluster heads directly communicate with the base station.

3.1.1 Mechanism

In LEACH, the lifetime of the network is divided into some discrete, disjoint time

intervals. Each interval is again divided into some subintervals as shown in Figure 3-3.

Each subinterval begins with an advertisement phase followed by a cluster set up phase.

In the advertisement phase, each node independently decides whether to become a cluster

head or not. In the cluster set-up phase, the clusters are organized based on the decisions'

made in the advertisement phase. Then a steady-state phase follows. In this phase, the

followcrs, i.e., the scnsor nodes cxcept clustcr heads, will send data to the corresponding

cluster hcad. The cluster heads accumulate and compress the receivcd data with its own

data. Cluster heads send the comprcssed data to the base station. In order to minimize

cluster establishment ovcrhead, the duration of steady-state phase must be longer than

that of clustcr set-up phase.

Interval

--------hL:-I-: ..
Stlbi~te,val

. .
)

Time'
Figure 3-3 discrete and disjoint intervals in the whole network lifetime; discrete and

disjoint subintervals in an interval.

At the very beginning of advertisement phase, each .node decides whether it wants to

become a cluster head for the current round. This decision is based on the suggested

percentage of cluster heads for the network, which is set a priori. This decision also

depends on the number of times the node has already been a cluster head. This decision is

madc by a node II choosing a random number bctween 0 and I. If the number is less than

a threshold T(Il), thc node dccides to become a cluster head. The threshold is calculated as

follows:
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ifn EG

otherwise

where,

P = the pereentage of nodes that ean beeome cluster heads (e.g. P = 0.05);
liP = the number of subintervals in an interval;

r = the cunent subinterval;

G = the set of nodes that have not been cluster heads yet in the cunent interval.

Using this threshold, a node can be a cluster head in anyone of liP subintervals in an

interval. At the first subinterval of an interval (r = 0), each node has a probability P to

become a cluster head. The nodes that are cluster heads in the first subinterval cannot be

cluster heads in the next (liP - I) subintervals of the same interval. Thus the probability

that the remaining nodes are becoming cluster heads is increasing. After the completion

of liP subintervals, a new interval will start and all the nodes are again eligible to become

cluster head.

Each node that has chosen itself as a cluster head in the cunent subinterval, broadcasts an

advertisement message to the rest of the nodes. The non-cluster-head nodes will choose

the cluster to which it will belong in this subinterval. This decision is based on the

received signal strength of the advertised message. Assuming symmetrie propagation

channels, the eluster head whose advertisements have been heard with the largest signal

strength will be seleeted by a non-cluster-head sensor node as its cluster head. In case of a

tie, a cluster head is chosen randomly.

This algorithm introduced a fairly simple strategy which is more efficient than the direct

transmission and the minimum-transmission-energy (MTE) protocol. However, it has

several limitations briefly deseribed in the next subsection.

3.1.2 Limitations of LEACH

1. LEACH algorithm uses the desired percentage of eluster heads as a parameter.

However, there is no suggestion for which value of this parameter LEACH will

cnsure optimum energy consumption.
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2. LEACH always wants to achieve an even distribution of energy consumption

which might not be rational. Residual energy in different nodes is not even or

same after a significant amount of time of operation. Nodes with higher residual

energy should get preference to be elected as cluster head. Otherwise, longer

network stability as well as longer network life cannot be ensured.

3. When the number of live nodes becomes small, the number of prospective cluster

heads which is equal to the number of live nodes multiplied by desired percentage

of heads will also become very small and in some cases it may become less than

one. For example, if the initial number of sensor nodes is 100 and the desired

percentage of heads P is 0.05 then the initial number of prospective heads is

100*0.05=5. However, with the same P when the number of live nodes becomes

less than 20 the number of prospective heads will become less than one. Under

this condition in most of the subintervals, none of the live sensor nodes can

become a cluster head by choosing a random number which is less than the

current threshold. In other words, there will be no cluster head available to the

sensor nodes to which they can become followers. Rather, all the live sensors will

force themselves to become a one member cluster head. Thus, there will be very

little energy efficiency due to this sort of clustering.

3.2 SEP: A Stable Election Protocol

SEP [16] is variant of LEACH, which elects the cluster heads based on weighted

probabilities according to the residual enerb'Yof the sensor nodes. It assumes that a

percentage of the sensor nodes arc coming with higher energy resources and studies the

impact of heterogeneity of nodes based on their energy levels.

3.2.1 Mechanism

This approach follows the underlying synchronization approach used in LEACH. In

addition, it considers the variation in the residual energy assuming two types of nodes -

normal and advanced. It assumes III fractions of the nodes are advanced nodes, which

have a. times energy than that of the normal nodes. As a result, it assumes 11(1 + a. m)

number of virtual normal nodes in the network. It extends the number of subintervals

from liP to (1+ a.m)/P in an interval. The objective of this extension is to elect a normal
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node once and an advaneed node (1+ a) times as the e1uster head in an interval. The

probability equation to beeome e1uster head has been modified. In faet, two different

equations are used for the normal and the advanced nodes. The weighted eleetion

probabilities for the nonnal and the advaneed nodes are pa,.,a and Pad, respeetively. Their

equations are as follows-

POP!

Pllrm = 1+axm

POP! (1 )Pad,=--~-X +a
l+axm

where, POP! is the optimal probability of a node to become a e1usterhead.

The equation of the threshold has not only been changed, two different equations for the

threshold are used. One for the normal nodes called T(s",.",) and the other for the advaneed

nodes called T(s",,,,). T(s",,,,) and T(Sad') are ealculated as follows:

Pnl'lI1 if s-nrm EG'

l-p",,,,x(r P~,JT(snl"m)= mod

0 otherwise

and,

Pm/l' ifsadvEG"
1- Pad, x(r 1)T(sad')= mod

Padv

0 otherwise

where, G' is the set of normal nodes that have not beeome e1usterhead yet within the last

1Ip",.", subintervals and Ga is the set of advaneed nodes that have not become e1usterhead

yet within the last lJPad, subintervals in an interval. This works introdueed the

heterogeneity to LEACH in terms of residual energy. However, this introduction was

limited to only two types of nodes. Limitations of SEP are briefly diseussed in the next

subsection.
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3.2.2 Limitations of SEP

1. In SEP, the percentage of cluster heads is optimized based on the energy

consumption in an interval. However, this value should be optimized on the basis

of the long run rate of energy consumption for achieving the higher network

stability period.

2. SEP considers two types of nodes only in terms of residual energy. However,

during the life cycle of the network the different levels of the residual energies

may exist which will not be covered by only two types. More types of nodes are

necessary to consider covering numerous residual energy levels in different nodes

to achieve maximum network stability.

3.3 LEACH Variant: Deterministic Cluster Head Selection

Detemlinistic Cluster Head Selection [17] introduces the heterogeneity to LEACH III

terms of residual energy. It considers the residual energies of the sensor nodes in order to

manage rational power consumption throughout the network.

3.3.1 Mechanism

Detemlinistic Cluster Head Selection follows the underlying mechanism of LEACH

exactly. It has changed the equation of the threshold value only to incorporate the residual

energy in cluster head selection process as follows:

P Ell_current

T(n)"e" = (. 1) X E1- Px r mod _ n_max

P

where, En_c."",,," is the current energy, En_max the initial energy of the node. The other

parameters have the same definitions as of LEACH. After a significant amount of time of

operation" the residual energies of the sensors would become very low and then this

threshold value will be very low. This can result in a situation where all the live sensors

are one member cluster head. In this case the energy consumption rate will be very high.

To break this stuck condition another modified equation of the threshold value has been

proposed -
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whcrc, r, is thc humbcr of consecutive rounds in which a node has not bcen cluster head.

3.3.2 Limitations of Deterministic Cluster Head Selection

1. Like LEACH Detemlinistic Cluster Head Selection uses a random value for the

percentage of heads paramcter, hence, does not consider the optimal value of this

parameter.

2. It does not suggest any optimum value for r,either.

3.4 LEACH-C: Centralized LEACH
LEACH-C is a ccntralized technique to cluster sensor nodes based on their positions. In

this approach, base station selects cluster heads to get uniformly distributed clusters.

3.4.1 Mechanism

Sensor nodes detect their current locations usmg GPS (Global Positioning System)

receivcr or any other technique. At the beginning of each interval, each node informs the

base station its current location and residual energy level. After receiving the information

from all the sensor nodes, base station computes the average residual energy in the

nctwork. It precludcs thosc sensor nodcs whosc rcsidual encrgy is bclow the avcrage

rcsidual encrgy from attaining clustcr headship. Basc station sclects the clustcr heads

from thc remaining nodes using the simulated annealing algorithm [20]. This algorithm

minimizes the total sum of squared distances between all the non-cluster-head nodes and

the corresponding closest cluster -head node. Thus, it minimizes the amount of energy

necessary to use to transmit data to the cluster head nodes by the non-cluster-head nodes.

Base station also selects corresponding follo~ers for the clusters while selecting the

clusters and cluster heads, and the base station broadcasts a message into the network

informing these sclcctions.
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3.4.2 Limitations ofLEACH-C

I. In LEACl-I-C, the base station selects the cluster heads based on their positions

and the average residual energy in the network. Like LEACH, the individual

residual energy in each sensor node has little impact on the cluster head selection

process m LEACH-C. This centralized algorithm also suffers from non-

scalability.

2. Incorporating GPS receiver or similar device in the sensor nodes increases sensor

node cost.

3.5 Adaptive Cluster Head Selection

Adaptive Cluster Head Selection [19] assumes that a sensor node knows its distance from

another sensor node by observing the signal strengths in the received messages.

3.5.1 Mechanism

At first, this approach randomly selects cluster heads following LEACH. Next it reselects

the cluster heads considering the distance between each cluster head and the sensor nodes

farthest from the cluster heads. The reselection is done in order to distribute the cluster

heads uniformly in the network. When a sensor node is sclected as a cluster head by

LEACH, it broadcasts an advertisement message to all other nodes. Other sensor nodes

respond to the broadcast. From the received responses, a cluster head calculates its

distance to its farthest follower node and its distance to the nearest cluster head of

neighbor clusters. It subtracts the first distance from the later. Three cases may arise as

follows:

Case I: The result is positive.

Case 2: The result is negative.

Case 3: The result is zero.

In order to place the cluster head in an optimum location, the cluster head is moved to the

direction of the closest head in Case I and to the direction of the farthest sensor node in

Case 2. Cluster head position remains the same in Case 3.
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3.5.2 Limitations of Adaptive Cluster Head Selection

I. In this work cluster head movement, if necessary, is not clearly defined.

2. It completely ignores the relative residual energy of each sensor node m the

network while selecting the cluster heads.

3. It also suffers from other LEACH limitations.

Though LEACH is widely used clustering technique for WSN, it does not have a

complete mathematical model that can be used to tune LEACH performance by selecting

different values for different LEACH parameters. In this thesis, we have first proposed a

mathematical model of LEACH in the next chapter.
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4 Proposed Mathematical Model for LEACH

The primary reason behind the clustering technique is to reduce the rate of energy

consumption. Popular clustering techniques LEACH [1] and its variants [16], [17], have

achieved a significant amount of lower rate of energy consumption. All of these

techniques have been developed based on some heuristics rather than a complete

mathematical model. A mathematical model can serve better than those heuristics to

achieve an optimal rate of energy consumption. Moreover, a mathematical model can

provide the ways to tune application specific parameters. For this reason, we derive a

complete mathematical model of energy consumption rate of LEACH. We describe our

mathematical model in this chapter.

4.1 Preliminaries

We use some basic assumptions about the sensor nodes and the network settings while

developing our mathematical model for LEACH. After describing the basic assumptions,

we describe some base models that have also been used in the formulation of our

mathematical model.

4.1.1 Assumptions
Original LEACH algorithm uses following assumptions about the sensor nodes and

network settings:

~ Nodes do not have any location information.

~ All nodes can reach the BS.

~ The propagation channel is symmetric.

We also use these assumptions while formulating the mathematical model in order to

keep our model fully aligned with LEACH algorithm.

4.1.2 Base Models
Heinzelman proposed an energy model namely first order radio model for energy

consumption in a wireless network in [21]. Like other research works [1], [16], [17], we
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use this first order radio model to compute the expected energy consumption rate in

sensor networks.

Energy consumption due to the reception and the transmission of data in a sensor network

is a stochastic process. We use the Renewal Reward stochastic process to capture the

nature of energy consumption due to data transmission and reception by a sensor node. In

the following subsections, we briefly describe these two base models.

4.1.2.1 Energy Model: Heinzelman's First Order Radio Model
A sensor node consumes energy to run the circuitry, which is proportional to the number

of bits in the message under processing. For example, if the message contains k bit and

the energy per bit is E"" Joules, then the energy used to run the circuitry will be (E",c *
k) Joules. A sensor node consumes this energy while receiving and processing a message.

Therefore, the energy consumed by a receiving node to receive a k-bits message is,

(I)

The energy needs to send k bit message over a distance d is (Camp * k * eI) Joules, where

camp is the energy constant for the radio transmission and A is the path loss exponent.

While transmitting, a sensor node needs energy to run the circuitry as well as to send the

message. We consider Heinzelman's first order model where }.= 2. Therefore, the total

energy consumed by a transmitting node to send a k.bits message over distance dis,

E" (k,d) = (E"" * k) + (Eamp * k * d2) (2)

This model is shown in Figure 4-1.

k bit 1ll~SS<lgc'. Transmit
Elee-tronies

E~I~* k

k bit lllessngc

Ix Amplitier

E' *k*cF
~l1ljJ

Receive
Electronics

Figure 4-1 Heiuzelmau's first order radio model
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4.1.2.2 Renewal reward process
A rcncwal process is special counting proccss N(t) which counts the numbcr of events up

to timc t and the inter-arrival times of thc events are independent and identically

distributed (iid) random variables. The expected value of inter-arrival times is in between

zero and infinity. A re~ewal reward process is a renewal process such that there are some

rewards for each of the inter-arrival times. These rewards are also independent and

identically distributed (iid) random variables. If, x,. is the ith inter-arrival time and Ri is

reward for the inter-arrival time x" the total reward earned up to time t will be:

(3)
i=l

According to renewal reward theorem, the rate of reward will be:

lim R (I) = E (R )
1->00 1 E(X) (4)

This means that the rate of reward is equal to the ratio between the expected reward in a

single inter arrival time E(R) and the expected inter-arrival time E(X) in the long run. The

theorem can bc provcd bascd on Strong Law of Large Numbers and is out of scope of thc

this thesis. In stochastic process, the inter arrival time is also called a cycle.

4.2 Proposed Mathematical Model
As the part of our mathematical analysis, we calculate the expectcd encrgy consumption

rate following the renewal-reward process. We consider the energy consumed by the

sensor as the reward. Thcn, the long run rate of rcward will essentially be the long run

rate of encrgy consumption. However, to map this problem with renewal-reward process

perfectly, we have to dcfine cycle in such a way that both the reward and the cycle can be

treatcd as iid random variables.

According to LEACH algorithm, in the first subinterval of an interval each live sensor

node will have some non zero probability to become cluster head. However, in the other

subintervals a scnsor node has zero probability to become cluster head, if it became a

cluster head in the first or any other previous subinterval. It must be a follower in all other

subscquent subintervals in the same interval. We define a cyclc as the number of

subintervals betwccn two consecutive subintervals in which a sensor node becomes
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cluster head. Cluster establishment is probabilistically done in each subinterval. Hence,

the cycle or inter-arrival time is an integer number and iid random variable. Similarly

energy consumption by a sensor node in each cycle is an iid random variable. These

definitions of cycle and reward map our problem to a renewal-reward process

appropriately. Thus, the long run rate of reward in Equation 4 gives the expected energy

consumption rate in a subinterval. We need to compute E(R) and E(X) to derive the

energy consumption rate. We define following parameters for this purpose.

I. P be the desired percentage of cluster heads,

2. s be the number of subintervals in an interval (= 1IP),

3. Ph be the probability of becoming cluster head of a follower node at the start of

any subinterval,

4. Ph' be the probability of becoming cluster head of a cluster head node at the start

of a subinterval in next interval,

5. <I'D be the probability of becoming cluster head of a sensor node at the start of any

subinterval,

6. Th be the currently considered threshold value.

7. N be the total number of sensor nodes in the network.

8. a * b be the sensor area in two dimensions.

4.2.1 Calculation of E(X)
We compute expected cycle length, E(X), of Equation 4 in this section. At the beginning

of each subinterval new cluster heads are selected and new clusters are generated. Each

sensor will generate a random number betwecn 0 and I and compares it to a predefined

threshold value Th. If the random number is less than the threshold, the sensor node

becomes cluster head. Otherwise, the sensor node acts as a follower. We can show that

the transitions between two states (heads: h and follower: 1) of a sensor node while

changing the subinterval in an interval by following matrix:

'---~-

h

h (0
f P"

If the interval is changed then the probability of becoming head while changing the

subinterval will be the same irrespective of the previous state. Therefore, we can show the
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transitions between two states of a sensor node while changing the subinterval as well as

the interval by following matrix:

f

'JI-~"I-F"

Above behaviors of sensor nodes in LEACH can be shown by the transition diagrams in

Figure 4-2.

(a)

Figure 4-2 State Transition of a Node while (a) Changing Subinterval without
changing Interval, (b) Changing Snbinterval as well as the Interval

A sensor node can become cluster head at the start of the first subinterval of a new

interval based on the picked random number and the threshold. This decision does not

depend on whether it was cluster head or follower in the last subinterval of previous

interval. In this case, the probability of a follower to become a cluster head and the

probability of a cluster head to remain cluster head are same, i.e., P,,' ~ Ph..

The number of subintervals in an interval is s. Therefore, a sensor node remains in the

same interval up to (s-I) subinterval transitions and moves to the next interval only at the

last subinterval transition. From this observation, we can say that the probability of

remaining in the same interval is equal to (s-I)/ s and the probability of changing the

interval is equal to 1/s.

We combine these probabilities with their corresponding transition matrices in order to

capture the whole scenario.

S-I(O
s F"

I J I (P"
I-p', +~ p"

I-P,'J=[~
I-p" ~
. "
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Hence, the combined transition matrix becomes as follows:

I. The probability of a cluster head to remain cluster head, Phi> at the start of any

subinterval is Phis.

2. The probability of a follower to become a cluster head, Ph! at the start of any

subinterval is Ph.

3. The probability of a cluster head to become a follower, PfI, at the start of any

subinterval is (s-Ph)ls.

4. The probability of a follower to remain follower, PfJ at the start of any subinterval

is I-Ph.

Now, we can compute the probability of becoming a cluster hcad, <1>0,at the start of any

subinterval by summing up the first two values Phh and Plifas follows:

(6)

We can say that the expected value of the cycle is reciprocal of the probability of

becoming clustcr head, <1>0,at the start of any subinterval, i. e. -

E(X) = _1 = s
<Po (s + 1)* P" (7)

In order to compute Ph we need to considcr following two conditions -

1. A node can be a cluster head if the picked random number is lower than the

threshold. In LEACH, the threshold is maintained in a way such that the mean

value of the threshold becomes the percentage of sensor nodes to be elected as the

cluster heads in the network. Hence, the probability of becoming cluster head in

this way is equal to the said percentage, i.e., Phi = P.

2. If none of the nodes pick the random number less than that of the threshold, all

nodes act as one-member cluster head. The probability of becoming one-member

cluster head in this way is, Ph2 = (1 _p)N.
Therefore, the ultimate probability of becoming a cluster head, Ph while changing

subinterval in an interval will be P + (1 -pt.
Hence, expected cycle length E(X) can be calculated by substituting Ph from Equation 7.
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4.2.2 Calculation of E(R)
We compute expected reward (energy consumption), E(R), of Equation 4 in this section.

Energy consumption by a sensor node as a cluster head differs from that of a sensor node

as a follower. Let -

I. H be the amount of energy consumed by a cluster head in a single subinterval and

2. F be the amount of energy consumed by a follower in a single subinterval.

In a cycle, the expected number of subintervals in which a sensor node remains a follower

is E(X) - I and the expected number of subintervals in which a sensor node remains a

cluster head is I. Therefore, the amount of energy consumed by a sensor node in a single

cycle is -

E(R) = (E(X) - 1)* E(F) + E(H) (8)

Here, E(F) and E(H) are the expected values of energy consumed by a follower and a

cluster head, respectively, in a single subinterval. E(X) has already been calculated in

Section 4.2.1. We need to calculate E(F) and E(H) in order to find E(R) of Equation 8.

4.2.2.1 Calculation of E(F)
We can compute the expected value of energy, E(F), consumed by a follower in a single

subinterval using Heinzelman's first order radio model [21]. Being a follower, a sensor

node consumes energy only for transmitting. According to Heinzelman's first order radio

model, the total energy to transmit a k-bit message over distance X is

E(FIX = x) = (Ed" * Ie )+(E,,,,,, * k*x2) (9)

Ifj(x) is the distribution function of the distance X of a follower to its nearest cluster head,

the energy consumption by a follower will be:

E(F) = IE(FIDistance to nearest cluster head=x)f(x)dx

= I((Edcc * k)+ (E,,,,,, * k * x2 ))f(x )dx

= (E"" *k) + (En",p * k) Ix' f(x)dx
Now, we calculate the distribution function of the distance,j(x).

d
f(x) = -p(X s;x)

dx
There might be several cluster heads at the nearest distance. Therefore,

P(X s;x) = P(at least Icluster head is at distance of x or less than x)
= 1- P(no cluster head is inside the area with radius x)
= 1 - P(all cluster heads are outside the area with radius x)
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Now, if the number of cluster heads is N, then,~
P(all cluster heads are outside the area with radius x)

N

=I P(all cluster heads are outside re* x'IN, = Il) P(N, = n)
/I == 1

= f(N] (~~,)n(l_ ~~,)N-n(I_~]n
n=1 Il S s ab

Therefore, we can calculate the distribution function of the distance,j(x) as follows:

dj(x)= -p(X:Sx)
dx

= f(N] (~Ph)n(I_~Ph)N-n 2Ilrex(l_rex']
n=1 n s s ab ab
N (,]n-I

=Ig(n)* x * 1- rex
n=l ab

where,

Let,

1= fx' * j(x)dx
N (' In-l=Ifg(n)*x3* I_rex dx
n=l ab

After solving the integration at the right side of the above equation, we get-

, " ]1 ab N - y"+l y'l
1= -(-J 2::g(n)[~--

2 re ,,=1 n+l Il

where,

rex'
y=l-~

ab

(13)

(14)

(15)

(16)

The subtracted value ofy indicates the proportion between two areas of Figure 4-3, Here,

the first area is the area inside the circle with the center at the sensor node under

consideration and the radius equal to the distance from the sensor node to its nearest

cluster head. The second area is the total area covered by all the sensor nodes. If the
2

cluster head position coincides with that of the node, we get the lower limit of x and 7IX
ab
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equal to zero. In this case, y value becomes I. If the cluster head is positioned at a

position such that the first area fully covers the second area, we get the higher limit of x

;rrx2
and - equal to 1. In this case, y value becomes O.

ab
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Figul"e4-3Y is the I"atiobetween two areas. First one is the remaining area
under consideration and the second one is the total area under consideration

Therefore, the integrated value with the limits ofy is:

o 1(ab)2 N (1 1 J[1L = - - L g(n) - - -
2 Jr no1 n n +1

(17)

Combining Equations 10 and 17, we get the expected value of energy consumption of a

sensor node as a follower in a subinterval as follows:

(18)

4.2.2.2 Calculation ofE(H)
We can also compute the expected value of energy, ECH), consumed by a cluster head in a

single subinterval using Heinzelman's first order radio model [21]. The cluster head

aggregates and compresses the data to be relayed from its followers with its own data

before sending them to the base station. Therefore, the actual number of bits sent by a

cluster head is less than the summation of the numbers of the bits of all the messages
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those it handles. Let, y be the compression ratio. If there are Nf followers and each sensor

node generates k bit message, according to Heinzelman's first order radio model, the

energy consumption by a cluster head will be:

E(HINJ = (ZNj+l)kEd" + (Nj+l)Eamp kyx'

Now,

E(H) = IE(HINj =i)P(Nj =i)
j",Q

= I[((Zi+l)kEd" + (i+l) Eam" kydBs'}* P(Nj = i)]
j==O

Since Nc is the total number of cluster heads we can writc,

N-i

P(Nj =i) = Ip(Nj=iINe=n)P(Ne=n)
lI",l

Here,

and

Here, A is an event that ensures that the cluster head under consideration is the nearest

cluster head to a follower. If the location of the cluster head is (Xh, Yh) and the location of

the follower is (x, y), we can write

where, r = "«x - Xh)2 + (y - yd) and pn is the percentage of the circular area (centered at

the follower and with radius r) falls within the area covered by the sensor network. Let,

peA) = her, Il). Combining Equations 21, 22, and 23, we get

Combining Equations 6, 20, and 25, we get-
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(23)
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E(H) = I[{(2i+l)kEdec + (i+l)E"mpkydB/)
i=O

4.3 Energy Consumption Rate
Combining Equations 7, 8, 18, and 26, we can get energy consumption rate as follows:

(26)

lim R(t)
/4-lf.i t

where,

and,

E(R)
- E(X)

= (1-S;I p,)[ (Edeck)+ (Eampk)H ~ J' ~g(n{~ - n~lJ]

+ S;l P" ~[P(i)* ~q(i,n)] (27)

Equation 27 concludes the formulation of our mathematical model. This equation

evaluates the expected energy consumption rate in a wireless sensor network. The optimal

number of cluster hcads can also be determined using this equation. In the next chapter,

we propose a new clustering technique for WSN based on some heuristics and modify the

mathematical model accordingly.
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5 Proposed Protocol: Cluster Heterogeneous Sensor Network
(CHSN)

In this chapter, we propose a ncw algorithm namely "Cluster Heterogeneous Sensor

Network (CHSN)" to cluster sensor nodes of a heterogeneous sensor network. We

consider the hcterogeneity of sensor nodes in terms of their residual energy levels, which

makes our work more practical and useful over the original LEACH algorithm. We use

three heuristics on LEACH to enhance the performance. We also modify the

mathematical model derived in the previous chapter accordingly. After describing those

heuristics, we describe our clustering algorithm in details in this chapter.

5.1 Heuristic 1
In the original LEACH algorithm if a node becomes cluster head in a subinterval, it

cannot become cluster head again in any of the subsequent subintervals of the same

interval. However, if a sensor node with higher residual energy can become cluster head

again in the same interval it might be more energy efficient for the whole network. For

this reason, we make the subintervals completcly memory less and don't use a separate

set of nodes that have not been cluster head yet in the current interval. In this case, the

probability of becoming cluster head of a sensor node in a subinterval does not depend on

its status in the previous subintervals.

5.2 Heuristic 2
It will be more energy efficient for the sensor network if the nodes with higher residual

energy have the higher probability to become cluster head. For this reason, we consider

relative residual energy of a sensor node while selecting the cluster heads. Accordingly,

we map the relative residual energy of a sensor node in its threshold computation so that

it keeps its expected value at the optimal percentage of cluster heads P. At the beginning

of each subinterval, each node knows its own residual energy (Ecur) and the maximum

(Ec",'_",",<), the minimum (Ecur_mi,,), and the average (Ecur_avg) residual energies of all the
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sensor nodes alive in the network. Considering Ecur_a,gcorresponds to P, we map Ecur_m;n,

and E",,_max to (I-Pmngc) and (I +Prange) respectively, where Pmngc is thc minimum between

P and (I-P). If P::o(l-P), (P-Pmngc) becomes zero and if P~(I-P), (P+Pmngc) becomes one.

This has been shown in Figure 5- I.

ThresllOld

'Residual euergy
Ecurmin

p P+P;';;;;g;;

Figure 5-1 Distribution of Threshold Value according to Residual Energy

We define I',P, the deviation from P that should be considered for a sensor node based on

the difference between its residual energy Ecur and the average residual energy E",,,_a,g in

the network. Hence,

where,

M=P *Erange r (28)

E -Ecur cur _avg

Ecur_avg - EellY _min
, if Eeur <Eeur _avg

(29)

E,. = 0 , if Eeur = Eellr avg

E -E
cur cur avg if E E

- , 1 eliI' > ellr avgE E -
cur max eliI' avg

In order to make the threshold value proportional to the residual energy of a sensor node,

we assign threshold value equal to P plus I',P, i.e.,

r(n)=P+M

5.3 Heuristic 3
After a long duration of service from the initial deployment, the number of live nodes,

N;;,." becomes so small that the number of probable heads (N;;" * <Do) become very small

and eVen less than one. If this situation occurs, the threshold from Equation 29 may

frequently caUSe the cluster selection algorithm to choose only one member clusters. In
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this case, all the live sensor nodes become the cluster head of its one member cluster and

die very quickly. To prevent this unwanted situation, we preserve the optimal initial

number of cluster heads rather than the optimal percentage of cluster heads. For this

reason, we multiply the right side of Equation 29 by the ratio between the initial number

of sensor nodes (N) and the number of currently live sensor nodes (Nliw) in the network as

follows:

NT(n)=(P+M)*-
Nlive

5.4 CHSN Algorithm

(30)

As it is done in LEACH, we divide the lifetime of the network into some discrete equal

length intervals in CHSN. Each interval has. three consecutive phases - advertisement,

cluster-setup, and steady-state phase. The algorithm depicted in Figure 5-2 runs

independently in each sensor node in each interval. The parameters are initialized at the

start of the algorithm. EM is set to its current residual energy level. Ecur.max, Ecw_mj,,, and

Ecw,_",'g are set to its own current residual energy level, i.e., equal to Ec",. The number of

live sensor node, Nliw, is set to one assuming it is the only live sensor node in the

network. Advertisement, cluster-setup, and steady-state phases are executed as follows:

1. Advertisement Phase: During this phase, each node executes two parallel

processes. One of them broadcasts its current residual energy level. Before this

broadcast, a node waits for a random amount of time. This random delay is used to

make the probability of collision lower. Uniformly distributed random amount of

time is chosen for this purpose. Another process receives the current residual energy

levels of other sensor nodes. A sensor node may receive multiple copies of a current

energy level advertisement message from the same sensor node due to multi-path

effect. A receiver sensor node detects these duplicate receptions and ignores them.

A receiver sensor node updates the parameters - Ecur max, Ecur mill, Ecur a~g" and Nlive- - -

using the fresh advertisement messages only.

II. Cluster Set-up Phase: In this phase, each sensor node independently decides

whether to become a cluster head or not based on the information gathered in the

advertisement phase. At first, it calculates the threshold T(Il) using Equation 30.

Next, it picks a random number and compares the random number with the

threshold. Three cases may arise as follows:
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1. CASE I: The random number is less than the threshold. In this case, the

sensor node becomes a cluster head and broadcasts HEAD_EXPOSURE

message.

2. CASE 2: The random number is not less than the threshold and it does not

receive any HEAD_EXPOSURE message from other sensor nodes. In this

case, the sensor node becomes a one member cluster head.

3. CASE 3: The random number is not less than the threshold and it receives

one or more HEAD_EXPOSURE messages from other sensor nodes. In

this case, the scnsor node becomes a follower of the nearest cluster head

and sends a FOLLOWER_ACCEPTANCE message to the nearest cluster

head.

III. Steady-state Phase: In this phase, the followers send data to the corresponding

cluster head. The cluster heads accumulate, aggregate, and compress the received

data with its own data. Cluster heads send the aggregated and compressed data to

the base station. The duration of steady-state phase is significantly longer than the

summation of the durations of the advertisement and cluster-setup phases in order to

minimize cluster establishment ovcrhead.

5.5 New Mathematical Model
Heuristic I of our new clustering algorithm makes the subinterval completely memory

less. For this heuristic, the first state transition diagram of Figure 4-2 is no longer

applicable. The equation of <1>0 has been formulated form the weighted combination of

two state transition diagrams of Figure 4-2. Therefore, the equation of <1>0 necds to be

changed. After the introduction of heuristic I the probability of becoming cluster head of

a follower nodc at the start of any subinterval Ph become equal to the probability of

becoming cluster head of a sensor node at the start of any subinterval <1>0. Therefore, <1>0 =

Ph in the new mathematical model. With this minor change we can use the mathematical

model derived in the previous chapter as the new mathematical model for our new

clustering algorithm.
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Algorithm CHSN 0
Set the value of Em

Initialize Eeur_II1/1x to Eeur

Initialize Eeur _mill to Eeur
Initialize EcuI"_avg to Eellr

Initialize NJjve to 1

AdvertisementO; broadcasts and receives current energy levels

Cluster_Set_UpO; Generates the clusters

Steady_StateO; Receive and transmit data

AdvertisementO
Transmit_ Current_Energy _Residual_ LevelO

Receive_Current_ Residual_Energy _LevelO

Transmit_ Current_ Residual_Energy_ LevelO
Wait for a random time

Broadcast own current residual energy level

Receive_ Current_ Residual_ Energy- LevelO
For each received current residual energy level, E'ellr

if E'", is not a repetition from an already received node

Update Parameters(N/i,,, E'm)

endif

Update Parameters(N/i'" E'",)

if E'ellr > Eeur_mllt

£C"'"_111(1X =E '('ur

endif

if E'ell/" < Eew_min

Eeur_min = E'ellr

endif

Ecur_flvg =
Nlive * £CI"_(lvg + E'ellr

Nlivc +1

Increment Nlivc

Figure 5-2 Algorithm to cluster heterogeneous sensor network
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Calculate Prange by Prange = max(P,l-P)

E -E
C I I. E b E - _--"CII:c,_--"",:c,,,,",,,'g"---.-a ell ate r Y r - -

Ecllr _fll'g - Eellr _min

E -E
C I 1 E bE - __ ,::",::,_--"":c,,,,,,,,,'g,-_a ell ate r Y r-

Eellr _max - Eellr _(/I'g

else

E,.=O

endif

Calculate IV' by M = Pm"g, * E,

Calculate T(II) by r(n) =

Choose a random number r

if (r < T(II)) then

status=head

broadcast HEAD_EXPOSURE message

else

Receive HEAD_EXPOSURE messages from other sensor nodes

if ( no HEAD_EXPOSURE message received) then

status=head

else

status=jollower

send FOLLOWER_ACCEPTANCE message to nearest cluster head

endif

endif

Figure 5-3 Algorithm to cluster heterogeueous sensor network (contd.)
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Steady_State 0 .
if status~jiJl/ower

send self originated data to own cluster head

else

receive messages from own followers

aggregate and compress the received messages with own message

send to base station

endif

Figure 5-4 Algorithm to cluster heterogeneous sensor network (contd.)

We have presented our clustering algorithm and its mathematical model in this chapter.

Our algorithm performs better than LEACH and its variants, which we will proof by

some simulation results in the following chapter.
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6 Simulation Results

In Chapter 4, we have derived our mathematical model for LEACH based on solid

reasoning. As a further validation, we compare the energy consumption rate behavior

resulted from our mathematical model with that from simulation runs for a particular

network setup. We also compare the pcrfonuance of our new clustering algorithm,

proposed in Chapter 5, with that of LEACH and one of its best variant. The performance

is compared in temlS of the number of live nodes, the First Node Dies, the Half of the

Nodes Die, and the Last Node Dies. Simulation environment is discussed in the next

section.

6.1 Network Settings and Simulation Parameters

A visual C++ program is developed for the simulation. We use a network setting as

shown in Figure 6-1 in the simulation runs. The network setting compiles with the

assumptions stated in Chapter 4 and is as follows:

~ The dimension of sensor area is 200 X 200.

~ Total number of heterogeneous sensor nodes in the network is 100.

~ The sensor nodes are uniformly distributed over the sensor area.

~ The base station is located at position (1500, 100).

~ Nodes are heterogeneous in tenus of their energy levels. Initial energies of the

sensor nodes are uniformly distributed between 1.0Jou1e and 5.0Joule, which has

been shown in Figure 6-2.

In the simulation runs the following parameters are used-

I. The amount of energy per bit to run sensor node circuitry, Ed,c is 0.00000005;

2. The value of energy constant, Camp, for radio transmission, is 0.0000000001;

3. A sensor node generates 0 to 50 units data in an interval;

4. Each data unit contains 8 bits data;

5. The probability that a message successfully arrives at its destination is 90%.
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6. The number of data units generated in each subinterval by a sensor node is

normally distributed in [0, 50], with the value of mean equal to 25. We applied

Box-Muller transformation [22] to achieve this normal distribution from the

uniform distribution of the built-in randO function in vc++.

200
180 • • • • •.+
160 .t • + .+4' • + •
140 • • .+••• + .++
120 • •• •• +

<:> .+<:> ~.1••N 100 • •1 • +80 +. + + ++
60 \ •••• .+ •• + •
40 • •• •~ \ •20 ••• •• •• • +
0
0 50 100 150 200

a~200

i

j,.'-:~\
Base station at (1500, 100)

Figure 6-1 Network Setting: Uniformly distributed sensor nodes with a distant base station
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Figure 6-2 Initial Energy Distribution of the Sensor Nodes

6.2 Verification of the Mathematical Model
To verify the correctness of our mathematical model (Equation 27), we conducted

simulation runs with the network settings and parameters described in Section 6.1. From

the results of our simulation runs, we first plot the energy consumption rate versus the

percentage of heads for a random LEACH node in Figure 6-3. According to the graph:

1. Encrgy consumption rate initially decreases very sharply with the increase of the

pcrcentage of cluster heads.
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2. There is an optimal point for which energy consumption rate is the lowest. After

this point the energy consumption rate increases with the increase of the

percentage of cluster heads. In our simulation runs this optimal point is (0.057,

0.003433).

0,04 ..,

Figure 6-3 Energy Consnmption E.ate against Different Percentage of Heads for a
Random LEACH node

Next, we plot the average energy consumption rate by all the sensor nodes in the network

in Figure 6-4. This graph has the similar pattern that has been found in Figure 6-3. The

behavior of energy consumption rate against the percentage of heads in Figure 6-3 and

Figure 6-4 is due to following reasons:

1. The percentage of cluster heads P reflects the expected value of the threshold ..

When the value of P is close to 0, the probability of the random numbers picked

by the sensor nodes in the network to be less than the threshold becomes very low.

In this situation, most of the sensor nodes will frequently become one member

cluster head. Therefore, the expected energy consumption rate becomes high. As

the value of P increases, the probability of frequently becoming one member

cluster head for the sensor nodes decreases, i.e., the probability of becoming

follower increases and the expected energy consumption rate decreases. Though
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thc probability of becoming a one member cluster head decreases with the

increase in P after a certain point this does not help that much to reduce the

ultimate energy consumption rate.

2. After the said point the increase in the percentage of cluster heads increases the

probability of the sensor nodes to become regular cluster head. This is superseding

the encrgy savings by not becoming one member cluster head. For this reason, as

the value of the percentage of cluster heads increases the ultimate energy

consumption rate increases.
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Figure 6-4 Average Energy Consumption Rate against Different Percentage of
Heads over the Whole Network

We plot the energy consumption rate against different percentage of cluster heads P using

Equation 27 of our mathematical model for the same network settings and parameters.

The resultant graph is shown in Figure 6-5. The value of the probability of becoming

cluster head of a sensor node at the start of any subinterval <Do must not exceed I. and the

value of <Docan be computed from by Equation 6. According to Equation 6, if the value of

P exceeds 0.61 then the value of <Do will exceed 1. In order to avoid this, we plot the

graph against thc percentage of cluster heads P up to 0.61.
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The graph obtained from the mathematical model also shows the similar pattern that has

been found in Figure 6-3 and Figure 6-4. Energy consumption rate also decreases very

sharply at the beginning with the increase of the percentage of cluster heads. The optimal

point (0.045, 0.003733) in Figure 6-5 is also almost equal to that of in Figure 6-4. And

beyond this optimal point the energy consumption rate increases with the increase of the

percentage of cluster heads in both graphs. This result is clearly validating the correctness

of our mathematical model.
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Figure 6-5 Energy Consumption Rate against Different Percentage of Heads
according to the Mathematical Model of LEACH

6.3 Result from New Mathematical Model
We plot the graph of energy consumption rate against the percentage of cluster heads P

using new mathematical model with the same network settings and parameters in Figure

6-6. This graph is also depicting the similar behavior that has been depicted in the graphs

plotted from the simulation runs and from the previous mathematical model and shown in

Figure 6-4 and Figure 6-5 respectively. The values of the optimal percentage of heads do

not vary from Figure 6-5 to Figure 6-6. However, the energy consumption rate at this

optimal point in the new algorithm is 0.003582 instead of 0.003733. Therefore, the
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percentage of improvement in the energy consumption rate at the optimal point in the new

model is 4.05% .
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Figure 6-6 Energy Consumption Rate against Different Percentage of Heads
according to the Mathematical Model incorporating Heuristic 1

6.4 Overall Comparison
We run our simulation for CHSN, LEACH, and a best LEACH variant with the network

settings and parameters described in Section 6.1. The authors of Deterministic Cluster

Head Selection [17] claimed that it improves the network stability period by 30% over

LEACH whereas the authors of SEP [16] claimed that it does the improvement over

LEACH by 26%. These two are the most improved LEACH variants claimed so far. For

this reason, we take Deterministic Cluster Head Selection as the best LEACH variant

instead of SEP in our performance comparison.

At first, we determine the optimal values of the percentage of heads P for each clustering

technique using corresponding mathematical model. These values are 0.045, 0.063, 0.045

for LEACH, LEACH variant and CHSN respectively. Next, we run our simulations using

corresponding optimal value of P for each clustering algorithm under comparison. We
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plot the number of live nodes against the number of interval passed in Figure 6-7. These

values are taken from the average of ten simulation runs. According to the graph, CHSN

performs better than LEACH and its variant.
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Figure 6-7 Number of Live sensor nodes in Different Intervals for LEACH, LEACH
Variant, and CHSN

The probability of a sensor node to become a cluster head does not depend on its residual

energy in LEACH. A sensor node with high residual energy may become a follower

while a sensor node with low residual energy is becoming a cluster Ilead. After being a

cluster head with low residual energy a sensor node will die quicker. As a result, the first

sensor node dies very quickly in LEACH. Due to the death of sensor nodes the number of

live nodes in the network decreases as the time passes.

LEACH variant (Deterministic Cluster Head Selection) distributes the probability of

becoming cluster head to the sensor nodes based on the ratio between the current residual

energy and the initial maximum energy in the network. As the current residual energy of a

sensor node decreases its probability of becoming regular cluster head decreases. It also

reduces the value of the threshold. At the reduced threshold the probability of becoming

one member cluster head increases. This in turn increases the energy consumption rate of
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the sensor nodes where energy is already scarce. As a result, the first sensor node dies in

LEACH variant even quicker than that of LEACH.

CHSN distributes the probability of becoming cluster head to the sensor nodes based on

their relative residual energies. In this approach, a sensor node with lower residual energy

has lower probability of becoming' cluster head and a sensor node with higher residual

energy has higher probability of becoming cluster head. The energy consumption rate of a

sensor node with higher residual energy is higher. However, the energy consumption rate

of a sensor node with lower residual energy is lower. This proportionate distribution of

energy consumption rate results in almost equal lifetime for all the sensor nodes in the

network. Therefore, the first sensor node dies after longer duration in CHSN than that in

LEACH. Most of the sensor nodes remain alive for a long time. However, once they start

dying almost all of them die in a short time. For this reason, number of live nodes in the

network falls vary sharply just after the first node dies in CHSN.

Now, wc plot the standard deviations of the number of live nodes for LEACH, LEACH

Variant, and CHSN. TIle resultant graph is shown in Figure 6-8. From the graph it is

obvious that for a long duration of time from the deployment, the behavior of CHSN is

more stable than that of both LEACH and LEACH variant. However, the behavior of

CHSN becomes rclatively unstable for a shorter period at the end of the network lifetime

when nodes start dying, which is quite acceptable.

We also observed CHSN performance ovcr LEACH with respect to three metrics as

follows:

1. First Node Dies (FND): The time needed for the death of the first node. This

metric is also called the network stability period.

2. Half of the Nodes Die (HND): The time needed for the death of the half of

initially deployed live nodes.

3. Last Node Dies (LND): The time needed for the death of the last live node in the

network. This metric is also called the network lifetime.

Figure 6-9(a), Figure 6-9 (b), Figure 6-9 (c) shows the average values for FND, HND,

and LND over ten simulation runs for each clustering algorithm.
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The perfom13nce improvements on these metrics by CHSN over LEACH and its variant

are shown in Table 6-1.

Metric
Improvement with Improvement with

respect to LEACH respect to LEACH Variant

First Node Dies (FND) 188.56 % 326.62 %

Half of the Nodes Die (HND) 17.21 % 98.04 %

Last Node Dies (LND) 1.67 % 70.73 %

Table 6-1 Improvements of First Node Dies (FND), Half ofthe Nodes Die (HND), and
Last Node Dies (LND) in CHSN

The standard deviations of FND, HND, and LND for LEACH, LEACH Variant, and

CHSN found from 10 simulation runs are quite acceptable and shown in Table 6-2.

Standard Deviation
Metric

LEACH LEACH Variant CHSN

First Node Dies (FND) 3.414 2.348 5.103

Half of the Nodes Die (HND) 8.140 3.425 4.756

Last Node Dies (LND) 8.034 2.757 4.433

Table 6-2 Standard deviation of First Node Dies (FND), Half of the Nodes Die
(HND), and Last Node Dies (LND) in CHSN

As CHSN ensures almost equal lifetime for each sensor node by distributing the energy

consumption relative to the current residual energy, it takes a long time for the first sensor

node to die. Therefore, the improvement on FND in CHSN is very significant over

LEACH and its variant. For the same reason and for preserving the initial optimal number

of cluster heads, CHSN has improvements on HND and LND over LEACH and its

variant.
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7 Conclusion and Future Works

In this thesis, we devised a mathematical model for LEACH protocol, a widely accepted

clustering protocol for WSN. We have validated the correctness of our mathematical

model by simulation results. We have proposed a new technique namely CHSN to cluster

sensor network which considers the heterogeneity of sensor nodes in terms of residual

energy levels to elongate both the network stability and the network lifetime. We have

analyzed the perfomlance of our clustering technique as well as the perfomlance of other

popular clustering techniques.

For the verification of the correctness of our mathematical model, we have simulated a

WSN with a random setting. We have applied our mathematical model on the same

network setting. We have plotted two graphs of energy consumption rate versus the

percentage of heads, one for each of the above cases. The conformity between these two

graphs ensures the correctness of the mathematical model.

We have also showed that we can find the optimal percentage of heads, for which the

energy consumption rate would be the lowest from the graph of the mathematical model.

Using this optimal value, we conducted the simulation runs to see the perfomlance of our

proposed clustering technique compared to other clustering technique. We found that our

clustering technique performs better than others in terms of the number of live nodes, the

first node dies, the half of the nodes die, and the last node dies.

In this thesis, we have considered heterogeneity only 111 terms of residual energy.

However, the heterogeneity in a sensor network may arise from the difference in

transmission and receiving range. We have not considered this type of heterogeneity in

this thesis assuming all the sensor nodes can reach the base station directly. We preserved

the initial optimal number of cluster heads from the beginning of the deployment to avoid

the situation where it forces the sensor nodes to become one member cluster head. This

situation might not arise from the beginning of the deployment. However, this situation
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may become severe after certain time. In this thesis, we have not considered that time. In

our future works we will incorporate the heterogeneity of the sensor nodes in terms of

receiving and transmission ranges. We will also consider the time from when the initial

optimal number of cluster heads should be preserved in our future research work.
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