
CLUSTERING SOFTWARE SYSTEMS TO IDENTIFY

SUBSYSTEM STRUCTURES USING KNOWLEDGEBASE

BY

MD. NASIM ADNAN

A thesis submitted to the Department of Computer Science and Engineering, Bangladesh

University of Engineering and Technology, in partial fulfillment of the requirements for

the degree of Master of Science in Computer Science and Engineering

. ,

. ".

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA, BANGLADESH

JANUARY 2010

ii

CERTIFICATE OF APPROVAL

The thesis titled "Clustering Software Systems to Identify Subsystem Structures
using Knowledgebase" submitted by Md. Nasim Adnan, Roll No: 040505035P, Session:
April, 2005 to the Department of Computer Science and Engineering, Bangladesh
University of Engineering and Technology, has been accepted as satisfactory in partial
fulfillment of the requirement for the degree of Master of Science in Computer Science
and Engineering on January 14,2010.

Board of Examiners

~/1 .
Dr.~aAkbar
Associate Professor
Department ofCSE, BUET, Dhaka.

Chairman
(Supervisor)

2. ('rn. ()n. l.!.\£A. ...•.•.•..
Dr. Md. Monirul Islam.
Head
Department of CSE, BUET, Dhaka.

Member
(Ex-officio)

3. {In. ern. L k.-n-
Dr. Md. Monirul Islam
Professor
Department ofCSE, BUET, Dhaka.

Member

Member

Member
(External)

5.
Dr. Md. Zahidur Rahman
Professor
Department of Computer Science & Engg.
Jahangir Nagar University, Savar, Dhaka

4.
Dr. M. Kaykobad
Professor
Department ofCSE, BUET, Dhaka.

~

/

r'

iii

CANDIDATE'S DECLARATION

This is to certifY that the work entitled "Clustering Software Systems to Identify
Subsystem Structures using Knowledgebase" is the outcome of the research carried out
by me under the supervision of Dr. Md. Mostofa Akbar in the Department of Computer
Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka-
1000. It is also declared that this thesis or any part of it has not been submitted elsewhere
for the award of any degree or diploma.

Md. Nasim Adnan

Candidate

IV

Table of Contents

Boa rd of Examiners .•...•••...........•.••••......•.•.••......•..•.•.....•.........•••........•...•.••••.•.•.•....••......... ii
Candidate's Deeta ration iii
Table of Contents iv
List of Figu res vii
List of Tables ix
Glossary of Terms •••.........•••.............•..........•••.................•••••......••.......•••............••....•.......•.x
Acknowledgement xi
ABSTRA CT xiii

Chapter 1: Introd uction •.•.••.•.......•...•••.•...•..••••.•......••........••.......••......•••.....••.....•••...•••.....•.1
1.1 Motivation 1
1.2 Software Clustering Problem 2
1.3 Software Clustering as an Emerging Area ofResearch 2
1.4 Issues in Software Clustering 2
1.5 Main Focus 3
1.6 Outline of the rest of the Thesis 3

Chapter 2: Literature Review and Related Works 5
2.1 Major Components of Clustering Approaches 5

2.1.1 Similarity Measurement 5
2.1.2 Different Types of Clustering Algorithms 7

2.2 Existing Clustering Algorithms ; 9
2.3 Existing Software Clustering Algorithms 10

2.3.1 An Algorithm for Comprehension-driven clustering 10
2.3.2 Information-Theoretic Software Clustering 10
2.3.3 A Heuristic Approach to Solving the Software Clustering Problem 11
2.3.4 Reverse Engineering Software Architecture using Rough Clusters 13
2.3.5 Other Prominent Clustering Approaches 16

2.4 Observations 16
2.5 Research Challenges 17
2.6 Chapter Summaxy ...•......................... 18

Chapter 3: Software Clustering Using the Knowledgebase .•...••••......•••....••••..•••.......•..19
3.1 Problems with Existing Software Clustering Approaches 19

3.1.1 Existing Similarity Measurement Techniques for Software Systems 19
3.1.2 Our Solution to this Problem: Software Clustering using the

Knowledgebase 22

v

3.2 The Knowledgebase 23
3.2.1 Knowledgebase Development 23
3.2.2 Knowledgebase Representation 24

3.3 Similarity Measurement using the Knowledgebase 26
3.3.1 Example of Similarity Measurement Computation 27

3.4 Subsystem Identification using the Knowledgebase 28
3.5 Software Clustering Using the Knowledgebase 29
3.6 Pseudo Codes 31
3.7 Comparison of the Proposed New Clustering Method over the Existing
Methods 34
3.8 Complexity Analysis 35
3.9 Chapter Summary 37

Chapter 4: Implementation of Clustering System 38
4.1 Key Modules in B UET Cluster 1.0 38
4.2 Source Code Analysis and Creation of MDG 39

4.2.1 Source Code Analysis using Understand 2.0 40
4.2.2 Creation of the MDG 45
4.2.3 Visualization of MDG using Graphviz-win v2.16 .47

4.3 Generation of the Subsystems using BUET Cluster 1.0 .49
4.3.1 Knowledgebase Development 49
4.3.2 Knowledgebase Adaptation 51
4.3.3 Cluster Generation 52

4.4 Clustering software systems using BUNCH and ACDC 53
eha pter 5: Results with Comparison 54

5.1 Comparison Criteria 54
5.2 Mojo Distance for Comparison of Clustering Quality 55
5.3 Resultant Clusters of the Library Management System 56

5.3.1 Results generated by BUETCluster 1.0 56
5.3.4 Results generated by BUNCH 58
5.3.5 Result generated by ACDC 59

5.4 Resultant Clusters of the Xfig 60
5.4.1 Results generated by BUET Cluster 1.0 60
5.4.2 Results generated by BUNCH 61
5.4.3 Result generated by ACDC 62

5.5 Comparison among the results of BUET Cluster 1.0, BUNCH and ACDC 62
5.6 Comparison with other Clustering Approaches 63

-

vi

Ch apter 6: Co nclusio os 65
6.1 Major Contributions 65
6.2 Future ResearchDirections 66

vii

List of Figures

Figure 2.1 Entities with features 6

Figure 2.2 Example of partition sequence 8

Figure 2.3 The dendrogram for the example partition sequence 8

Figure 2.4 A small compiler 12

Figure 2.5 Output from BUNCH for the small compiler 13

Figure 2.6 Rough clusters 14

Figure 3.1 Knowledgebase Development 24

Figure 3.2 Simple relational Knowledgebase for similarity measurement.. 26

Figure 3.3 A typical example of two functions 27

Figure 3.4 Architecture of the proposed clustering approach 30

Figure 3.5 Flow Chart of the proposed clustering process 31

Figure 4.1 Modules in clustering approaches 39

Figure 4.2 Run of Understand 2.0 42

Figure 4.3 Main window of Understand 2.0 used to create the new project .41

Figure 4.4 Source Code of Library Management System as input to Understand2.0 41

Figure 4.5 Analysis ofthe Source Code .42

Figure 4.6 Intermediate file generation .42

Figure 4.7 Run of BUET Cluster 1.0 .45

Figure 4.8 Parsing of UnderstandLibrary. txt .46

Figure 4.9 Editor of Graphviz-win v2.16 .48

Figure 4.10 DOTIayout engine to view the MDG .48

Figure 4.11 MDGjpg to view the MDG 49

Figure 4.12 Knowledgebase Development.. 50

Figure 4.13 Soul cluster identification 51

Figure 4.14 Resultant subsystems 52

Figure 4.15 Pathway for running BUNCH and ACDC 53

Figure 5.1 Gold Standard for Library Management System 55

Figure 5.2 Gold Standard for Xfig 56

.,.~
• •

viii

Figure 5.3 Resultant Clusters from BUET Cluster 1.0 (with threshold 8) 56

Figure 5.4 Resultant Clusters from BUETCluster 1.0 (with threshold 9) 57

Figure 5.5 Result 1 58

Figure 5.6 Result 2 58

Figure 5.7 Result 3 59

Figure 5.8 Resultant Clusters from ACDC 59

Figure 5.9 Resultant Clusters from BUET Cluster 1.0 60

Figure 5.10 Resultant Clusters from BUNCH 61

Figure 5.11 Resultant Clusters from ACDC 62

ix

List of Tables

Table 3.1 Entity with their associated features 20

Table 3.2 Similarity table using Jaccard coefficient.. 20

Table 3.3 Entity with their associated features 21

Table 3.4 Similarity table using Weighted scheme 21

Table 3.5 Facts associated with the Generic Types 25

Table 3.6 Example of a part of the Similarity Matrix 28

Table 4.1 Brief content of the Intermediate Representation .43

Table 5.1 Results from BUET Cluster 1.0 for Xfig for different threshold values 60

Table 5.2 Results from BUNCH for Xfig 61

Table 5.3 Comparison among ACDC, BUNCH and BUET Cluster 1.0 62

Table 5.4 Characteristic observation 64

QT
ACDC

LIMBO

AIB

SA
MQ
BUCNH

ADG

BCM

LT
HT

DBMS

OS

MDG

IDE
API

COM

Glossary of Terms

Quality Threshold

Algorithm for Comprehension-Driven Clustering

scaLable InforMation BOttleneck

Agglomerative Information Bottleneck

Summary Artifact

Modularization Quality

Tool for Software Clustering using Heuristic Approach

Artifact Dependency Graph

Business-Concept Model

Lower Threshold

Higher Threshold

Database Management Systems

Operating System

Module Dependency Graph

Interactive Development Environment

Application Programming Interface

Component Object Model

x

• •••.<

xi

Acknowledgement

I would like to express my deepest appreciation to my supervisor Dr. Md. Mostofa Akbar

for his generous help and thoughtful suggestions. He acted as a mentor and gave me

much of his valuable time. His innovating and thinking capability helped me a lot.

I want to thank all my colleagues of Bangladesh Bank to help me in different ways. I am

especially thankful to my eSE, KU friend Mr. Mohammad Monoar Hossain for his

generous help and guidance. Thanks to Mr. Kevin Groke for allowing me to register for

an academic license for Understand 2.0.

I also want to thank the other members of my thesis committee: Dr. Md. Monirul Islam,

Dr. M. Kaykobad and Dr. Md. Zahidur Rahman for their valuable suggestions.

I would like to express my gratitude to my parents Dr. Md. Nur-un-nabi and Mrs. Nasrin

Akhtar for giving me support and love. I am also thankful to my brothers Mr. Md. Nahid

Noor Tusher and Mr. Md. Nashid Farhad for their generous support. I express my thanks

to my sister-in-law Miss. Zannatul Zakia Tumpa for her co-operation.

Finally, I want to thank my wife Mrs. Afroza Sultana who helped me a lot during the

course of the thesis.

To My Mother Nasrin Akhtar, Ph. D.

&

Father Dr. Md. Nur-Un-Nabi

xii

•

r

xiii

ABSTRACT

The structure of a software system deteriorates as a result of continuous maintenance

activity. For the purpose of software reengineering or reverse engineering, often the

software engineers get only the original source code as the most updated source of

information due to lack of current documentation and limited or nonexistent availability

of the original designers. The application of clustering techniques to the software systems

aiming to discover the feature-oriented and meaningful subsystems helps the software

engineers to understand the high-level features provided by those subsystems which is

very essential for the purpose of software reengineering and reverse engineering.

Continuous research is going on in the recent years -addressing different issues in the

software clustering problem. Similarity measurement is the key to perform successful

clustering. The similarity measurement criteria used in the existing clustering technique

has the common drawback that they do not incorporate the diversity of software systems.

Our approach introduces the use of the Knowledgebase which acts as the repository of

information about the internal structure of the Generic types of the software systems to

provide the guidelines on similarity measurement criteria and weights. The final

clustering is done by integrating automatically generated subsystems with the known

subsystems (provided by the Knowledgebase). Thus the new clustering technique is a

semi automatic technique with the provision of tuning the results by the software

engineers. In our research, we have developed a tool named BUET Cluster 1.0 which

implements our new clustering technique. This clustering tool has been evaluated by

using a benchmark named Mojo distance for different well known software systems. The

experimental results show that our approach generates more appropriate subsystems than

the other existing clustering techniques and outperforms other clustering techniques in

different dimensions of software clustering quality.

r

Chapter 1

Introduction
The structure of a software system deteriorates as a result of continuous maintenance

activities. This problem is exacerbated by the fact that the documentation of the software

system is rarely updated along with limited or nonexistent availability of the key

developers. Often the original source code is the only available source of information and

it is very time consuming to study it manually because of its sheer size and complexity.

But software engineers need to understand the structure of the software systems to be

able to make effective modifications and improvements. As a result, there is always a

need to develop clustering techniques for understanding the structure of the software

systems from the available source codes.

1.1 Motivation
Commercial or industrial software systems commonly have two properties that make the

understanding of their structure a difficult task: they are large and complex. A typical

system consists of thousands of entities (e.g., functions, procedures, classes, variables)

and those are interconnected in intricate ways (e.g., function/procedure calls, inheritance

relations, variable references).

Software Engineering textbooks advocate the use of documentation as an essential tool

for describing a system's intended behavior and for capturing the system's structure.

Clearly, in order to be useful to future software maintainers, a system's documentation

must be updated with respect to any software changes. In practice, however, we often

find that accurate and current design documentation does not exist. Because, once an

understanding of the system structure is formed, it is difficult to maintain the

documentation updated as the software systems tend to evolve during maintenance. This

problem is exacerbated as the key designers and developers of the system are often no

longer available for consultation. Often the designers have found a new job or are

working on another project with deadlines that preclude them from providing advice to

the current maintainers of the system.

1

In the absence of advice or current documentation about a system's structure, software

engineers are left with very limited choices. Briefly, they can manually inspect the source

code to develop a mental model of the system organization. This approach is often not

practical because of the large number of dependencies between the source code

components. So, an alternative comes forward to the software engineers is to use

clustering techniques suitable for software systems to produce useful information about

the system structure.

1.2 Software Clustering Problem
Clustering is the process of grouping together items or entities based on their properties

or features. This grouping (clustering) reduces the amount of data that must be

understood, which makes the original problem easier to understand. The application of

clustering techniques in the area of software systems focus on recovering subsystems to

understand the high-level features provided by those subsystems which is very much

essential for the purpose of software reengineering. The input of the clustering process is

the source code of the application.

1.3 Software Clustering as an Emerging Area of Research
Clustering has been applied in many disciplines like mathematics, social sciences,

engineering, biology, astronomy, archaeology etc. where it is used to group together

similar objects thus making large data sets more understandable and also in helping to

find reasons for an entity's behavior.

The use of clustering in the arena of software systems is a relatively newer area of

research (within the last 30 years). As the software systems exhibit some peculiarities in

comparison to the subjects of other disciplines, it is required to tailor clustering

techniques keeping in mind the type of software systems and the purpose of clustering.

These situations have resulted the proliferation of new clustering techniques in the recent

years.

1.4 Issues in Software Clustering
Clustering a software system into meaningful modules is very much important to make

the clustering process efficient for software engineers. Following issues need to be

addressed for successful clustering:

2

• Cohesion and Coupling: There is no guarantee that the developers of a legacy

software system have followed software engineering principles such as high-

cohesion and low-coupling. As a result, the validity of the clusters discovered

following such principles, as well as the overall contribution of the obtained

decomposition to the reverse engineering process, can be challenged.

• Nonstructural lriformation: Any type of nonstructural information such as

timestamps, naming conventions, ownership information, comments etc. does not

have the credibility to be used in software clustering approaches. Because, all

these information may be partially present or totally absent in the source code of

any software system. Also, it is not clear what types of nonstructural attributes are

appropriate for inclusion in the software clustering approach.

• Stability: The results of the software clustering approaches should demonstrate

stability. To be stable, the algorithm must produce software clustering results that

do not vary widely from one version of a software system to the next (after being

changed slightly). An approach which produces software clustering results that

vary widely even though no major code restructuring occurred between versions

is likely not to be reliable in the context of software clustering.

1.5Main Focus
The main focus of software clustering is to discover valid feature-oriented subsystems

which will really help the software engineers. In this thesis we do not develop the source

code analyzer as there are available source code analyzers which are being used for other

clustering technique. We also use off the shelf visualization tool to visualize the clusters

to be produced. In this research we concentrate on the algorithm of clustering. A tool has

been developed to demonstrate a practical clustering system using our algorithm. We also

compare all the available clustering technique with our new technique.

1.6 Outline of the rest of the Thesis
The thesis is organized into six chapters as shown in below:

• Chapter 2 (Literature Review and Related Works): This chapter describes major

components of software clustering. Other prominent approaches are also

described here.

3

• Chapter 3 (Software Clustering using the Knowledgebase): This chapter describes

our proposed software clustering approach along with block diagram, flow chart,

pseudo codes and complexity analysis.

• Chapter 4 (Implementation of Clustering System): This chapter gives a detailed

description of implementing our software clustering approach.

• Chapter 5 (Results with Comparison): This chapter presents the results generated

by our approach and other available approaches. This chapter also contains a

detailed comparison among them.

• Chapter 6 (Conclusions): This chapter concludes this thesis focusing on major

contributions and future research scopes.

4

Chapter 2

Literature Review and Related Works
Software clustering problem has attracted many researchers in the last two decades. The

importance that the software engineering community assigns to the software clustering

problem is indicated by large number of publications on the subject that appear in many

research articles on software engineering. Now, we introduce some software clustering

terminologies which appear in the research articles more frequently. The elements to be

clustered in the arena of software clustering such as "entities", "functions", ''procedures''

etc. are commonly referred to as software artifacts. Moreover, the terms

"decomposition", "subsystem generation", "partition" and "clustering" will be used

interchangeably to describe the output of software clustering algorithm.

2.1 Major Components of Clustering Approaches
Clustering approaches from every discipline are more or less similar in their composition.

Every clustering approach has two major components namely - the similarity

measurement and the clustering algorithm.

2.1.1 Similarity Measurement

One of the first things that a clustering approach usually does is to decide on what

grounds two objects will be judged to be similar. That is, one needs a measure that will

decide which pair of objects are "more similar" than any other pair. The answer to this

problem is: "similarity measures". Similarity measures are designed in such a way that

larger values indicate a stronger similarity between the objects.

Three types of similarity measures are typically employed in clustering applications [10].

Those are described as follows:

Association coefficients: Association coefficients are applied to calculate similarity when

the features are binary. To illustrate how these coefficients are calculated, assume two

entities E1 and E2, represented by feature vectors indicating the presence or absence of a

feature. The similarity between E1 and E2 can be compactly represented by a table as

shown in Figure 2.1.

5

1

o

1

a

c

Ez
o
b

d

Fig. 2.1 Entities with features

In the above table a represents the count of features present in both El and Ez, b

represents the total number of features present in E1 but absent in Ez, c represents the

total number of features present in Ez but absent in EI, and d represents the number of

features that are absent in both E, and Ez. It is worth noting that in the software domain,

typically d will be much larger than a, b, c since the feature vector associated with each

entity is likely to be sparse. The following association coefficients can then be defmed:

• Jaccard coefficient, J= a/(a+b+c)

• Simple coefficient, S = (a+d)I(a+b+e+d)

• Sorensen-Dice coefficient, SD = 2a/(2a+b+e)

• Ellenberg measure (non-binary counterpart of Jaccard coefficient)

E = 1/2 *Ma , Here M is defined as the magnitude of the variables.
l/2*(Ma +Mb +Me)

Distance measures: The distance measures calculate the dissimilarity between entities.

The larger the distance, the lesser is the similarity between the entities. The measure is

zero if and only if the entities have the same score on all features. Some popular distance

measures are:

n

• Canberra Distance, C(X,Y) =2: lx, - y,I/(lx,l+Iy,l)
i=l

6

Correlation Coefficients: Correlation coefficients are used to correlate features. The well-

known Pearson product moment correlation coefficient is given by:

As the software artifacts are different in nature than the entities of other disciplines,

similarity measures must be modified so that they can be applicable on the software

artifacts.

2.1.2 Different Types of Clustering Algoritluns

Once the similarity measure has been decided upon, an appropriate algorithm has to be

chosen for the purpose of clustering. Clustering algorithms can be broadly divided into

categories, namely partitional and hierarchical [18].

Partitional algorithms: Partitional algorithms usually work by starting with an initial

partition and try to modify it in an attempt to optimize a criterion that represents the

quality of a given partition. But the challenge that partitional algorithms face is the

combinatorial explosion of the number of partitions. Even for a small number of objects

the number of possible partitions is astronomical. For example, there are 34,105

partitions of ten objects into four clusters but this number explodes to approximately

11,259,666,000 if the number of objects is increased to 19.

The usual workaround to this problem is to start with an initial partition (chosen

randomly or based on some heuristics) and attempt to optimize the chosen criterion by

modifying that partition in an appropriate way. Therefore, the choice of initial partition is

crucial for success of this algorithm.

Hierarchical algorithms: Hierarchical algorithms produce a nested sequence of partitions.

At one end this sequence is the partition where each object is in a different cluster (we

will call this partition ALL) and at the other end the partition where all are in the same

cluster (we will call this partition ONE). At each step through this sequence two of the

clusters are joined together. Figure 2.2 shows an example partition sequence for four

objects A, B, C and D.

7

ALL

00 CAB)
80 80

ONE

AB

CD

Fig. 2.2 Example 0/partition sequence

A common representation for a hierarchical structure is that of a dendrogram. Figure 2.3

shows the dendrogram for the of example partition sequence shown in Figure 2.2.

A B C D

Fig. 2.3 The dendrogram/or the example partition sequence

However, clustering algorithms need a "cut point" as it is not realistic to generate a single

(ONE) cluster. Factors that influence the selection of a "cut point" are usually a priori

knowledge on the expected structure or pre-chosen parameters such as the maximum

number of clusters allowed or the maximum number of objects in a cluster.

Hierarchical algorithms are divided into two categories, agglomerative and divisive:

• Agglomerative (bottom-up): These starts with partition ALL and iteratively join

the most similar clusters based on the similarity measure.

• Divisive (top-down): These start with partition ONE and try to iteratively split it

until we reach partition ALL. Such algorithms suffer from excessive

computational complexity as there is an exponential number of possible partitions

at every step. This is the main reason why these algorithms are not very popular.

8

RegUlar clustering algorithms are generally used for data partitioning [12]. In the next

subsection we present some renowned clustering algorithms.

2.2 Existing Clustering Algorithms

k-means clustering: k-means clustering [12], [22] is one type of partitional algorithm

which aims to partition n observations into k clusters in which each observation belongs

to the cluster with the nearest mean. The steps of the algorithm are:

• Choose the number of clusters, k.

• Randomly generate k clusters and determine the cluster centers, or directly

generate k random points as cluster centers.

• Assign each point to the nearest cluster center.

• Recompute the new cluster centers.

• Repeat the two previous steps until some convergence criterion is met.

The complexity ofk-means algorithm is O(knI), where I is number of iterations.

Quality Threshold clustering: Quality Threshold (Q1) clustering [22] is method of

partitioning data invented for gene clustering. It requires more computing power than k-

means, but does not require specifying the number of clusters a priori, and always returns

the same result when run several times. In this algorithm:

• The user chooses a maximum diameter for clusters.

• Build a candidate cluster for each point by including the closest point, the next

closest, and so on, until the diameter of the cluster surpasses the threshold.

• Save the candidate cluster with the most points as the flfst true cluster, and

remove all points in the cluster from further consideration.

• Recurse with the reduced set of points.

Monothetic divisive method: This method of clustering [12] splits clusters using one

variable at a time. This is a convenient (though restrictive) way to limit the number of

possible patterns that must be examined. It has the attraction that the result is easily

described by the dendrogeam - the split at each node is defined in terms of just a single

variable.

Polythetic divisive method: This method of clustering [12] makes splits on the basis of all

the variables together. Any inter-cluster distance measure can be used. The difficulty

9

comes in deciding how to choose potential allocations to clusters. In one approach,

objects are examined one at a time, and that one is selected for transfer from a main

cluster to a subcluster that leads to the greatest improvement in the clustering score. In

general, this method is computationally intensive and tends to be less widely used.

There are many types of clustering techniques like probabilistic model-based clustering

[12], spectral clustering [22] and so on. All these cluster analysis techniques are very

much data-driven, with relatively little formal model-building capability [12].

2.3 Existing Software Clustering Algorithms

Software clustering is different in nature from data clustering and relatively newer area of

research. We have studied several software clustering approaches and now in this section

we will present some prominent approaches.

2.3.1 An Algorithm for Comprehension-driven clustering
Tzerpos et. al. [I] proposed a pattern-based software clustering algorithm named

Algorithm for Comprehension-Driven Clustering (ACDC) that performs the task of

clustering in two stages. In the first stage, it creates a skeleton of the fmal decomposition

by identifYing subsystems that resemble established subsystem patterns of the original

software system. Depending on the pattern used by the subsystems, they are given

appropriate names. In the second stage, ACDC completes the decomposition by using an

extended version of a technique known as Orphan Adoption. Orphan Adoption is an

incremental clustering technique based on the assumption that the existing structure is

well established. It attempts to place each newly introduced resource (called an orphan)

in the subsystem that seems "more appropriate". The complexity of this algorithm is NP

complete.

2.3.2 Information-Theoretic Software Clustering
Here, Andritsos et. al. [2] introduced the scalable InforMation BOttleneck (UMBO)

algorithm which is an improvement of the Agglomerative Information Bottleneck (AlB)

algorithm [8] and capable of handling larger inputs. The aim of this algorithm is to use

the AlB algorithm but on a smaller set of artifacts. In order to reduce the number of

artifacts, it performs an initial phase, where artifacts are summarized in a newly created

set of summaries that we call Summary Artifacts (SA).

10

The LIMBO Clustering Algorithm:

The LIMBO algorithm proceeds in four phases. These are-

Phase I (Creation of the Summary Artifacts): In this phase, original artifacts are read one

by one. The frrst artifact al is converted into the summary artifact SA({aJ}). For each

subsequent artifact ai, the algorithm computes its distance to each existing summary

artifact. Next, we identify the summary artifact SA(Smin)with the smallest distance to ai.

If this distance is smaller than a predefined threshold, then SA(Smin) is replaced by a new

summary artifact SA(Sminu {ai}). The complexity of this phase is O(qEnlogE n)with va
cost O(n).

Phase 2 (Application of the AlB algorithm): In this phase, the algorithm employs the AlB

algorithm to cluster the set of SAs. This phase creates many clusterings of the summary

artifacts, one for every value between 2 and IISII(number of all summary artifacts). The

time for this phase depends upon the number of all summary artifacts, which can be much

smaller than all software artifacts. The complexity of this phase is 0(IISI1210gIISII).

Phase 3 (Associating original artifacts with clusters): Phase 2 produces IISII-I

clusterings. Now, Phase 3 performs a scan over the set of original artifacts and assigns

each one of them to the cluster to which it is the closest. The complexity of this phase is

0(IIS11
2
qn).

Phase 4 (Determining the number of clusters): This is the fmal phase. In this phase the

differences among the clusters (produced in Phase 2) are tested against a threshold value

to determine the appropriate number of clusters. If the difference between two clusters is .

less than the threshold then they are merged together to form a single one. In this way,

the algorithm produces a refmed set of clusters.

2.3.3 A Heuristic Approach to Solving the Software Clustering Problem

This approach proposed by Mitchell [3] is a heuristic one which creates random number

of partitions and evaluates the "quality" of these partitions using a fitness function that is

called Modularization Quality (MQ) which has the property of redrawing cohesive

clusters and penalizing excessive inter-cluster coupling. To fmd appropriate number of

11

clusters with appropriate software artifacts metaheuristic search algorithms are used.

Given that the fitness of an individual partition can be measured with MQ, metaheuristic

search algorithms are used in the clustering phase in an attempt to improve the MQ of the

randomly generated partition. The name of the tool for implementing the heuristic

approach is BUNCH which includes several hill climbing and a genetic algorithm also.

The complexity of this algorithm is NP complete. The output created by BUNCH for a

small compiler shown in Figure 2.4, is shown in Figure 2.5.

Fig. 2.4 A small compiler [3]

12

(SS.LO):s .ontroller

Fig. 2.5 Outputfrom BUNCHfor the small compiler [3]

2.3.4 Reverse Engineering Software Architecture using Rough Clusters

In this approach, Jahnke et. al. [4] argued that - while great diversity of algorithms on

how to compute software clusters has been developed over time, they are not well

adopted in industrial practice so far. The authors believe that this is mainly due to two

main limitations, firstly, the lack of algorithms to represent approximate clusters, and

secondly, the inability of clustering algorithms to use human expertise and domain

knowledge about the legacy application.

For the solution to the first problem, the authors proposed to pin-point clusters based on

the selection of so-called seed artifacts (seeds for short). Seeds are software artifacts that,

according to a human expert, clearly belong to a particular cluster as defined in the

domain architecture. The relationships of seeds to other software artifacts are then

evaluated to build the basis for automatic clustering.

For the solution to the second problem, the authors proposed to adopt rough set theory to

address this problem of representing ambiguity. Intuitively, a rough set S. uses two

(traditional) sets Slaw and Supp to approximate another set S. Slow is called lower

approximation and contains only those elements that are known to belong to S, while Supp

is called upper approximation and contains all elements that may belong to S. This model

provides us with a simple, yet powerful way to address the ambiguity problem in

13

software clustering: if we know with certainty that a software artifact belongs to a given

cluster, we add it to the lower approximation of this cluster. Otherwise, if we are

uncertain about the membership of an artifact in a cluster, we can add it to its upper

approximation. The overall approximation of rough clusters is shown in Figure 2.6.

CJalao 1

Fig. 2.6 Rough clusters

Rough Set Theory Applied to Software Clustering: Software clustering algorithms

commonly use an abstract model about the interdependencies among software artifacts,

which has been extracted from the system to be reverse engineered. We use an Artifact

Dependency Graph (ADG) for this purpose, which can be formalized as a tuple ADG ~

(A, R, K, t), where

• A is a finite set of software artifacts.

• R finite multi set of dependencies among artifacts.

• K is an alphabet of type labels.

• t :AvR ~ K is a labeling function, providing types for artifacts and

dependencies (e.g., "class", "variable", "function", "function call", "uses"

etc.).

It is the objective of clustering to find a (meaningful) partition of A. The authors believe

that clusters only have meaning if we can identify at least one seed artifact in the legacy

14

system that belongs to it. So, this seed artifact would appear in the lower approximation

of the cluster and every cluster will be strictly non-empty.

Incremental Clustering Process: The authors believe that user involvement is essential

for the reverse engineering of meaningful software architectures from legacy code.

Therefore, the clustering process suggested here has semi-automatic and incremental

nature. It consists of two main phases, namely Concept Assignment and Partition

Refinement. The first phase is a top-down analysis of the software system, while the

second phase is primarily a bottom-up clustering.

The objective of Phase I is (Concept Assignment) to come up with a first-cut rough

partition of the software system to be clustered based on user-defined conceptual model.

The user defines a Business-Concept Model (RCM) describing the problem domain

implemented in the legacy software system. The next step (seed matching) finds artifacts

in the legacy software that can be associated with the concepts in the RCM. This step is

done automatically based on simple string pattern matching. The following step

(impedance based clustering) evaluates the dependencies between seed artifacts and other

artifacts by using a weightage function in order to populate the rough clusters. In this

approach, the user can parameterize the impedance-based clustering algorithm with two

threshold values, namely the lower threshold (L1) and the higher threshold (NT) to

populate lower approximation and upper approximation respectively. When the

impedance-based clustering step is finished, the quality metrics are computed and the

result is displayed to the user. After investigating the rough partition, the user can decide

whether the match between the generated clusters and the BCM is satisfactory. It might

take several iterations in Phase I (Conceptual Assignment) until the user is satisfied with

the conceptual partitions (generated clusters) matched to the BCM. During these

iterations, the user can modify seed assignments and change the RCM to attain a better

match.

Phase 2 of the interactive clustering process (Partition Refinement) starts when the user is

satisfied with the result of the conceptual match achieved in Phase I. In this second

phase, the user can investigate and resolve ambiguities by moving artifacts from the

boundary regions to the lower approximation of clusters. Furthermore, the user can

15

resolve situations of incompleteness by creating new clusters and assign new seeds. The

user can also customize the values for HT and LT, and the weights associated with the

different dependency types. Like the first phase, the refinement phase is iterative and the

user can re-evaluate the rough partition after each cycle of modifications. The process

ends when the user is satisfied with the partition attained.

2.3.5 Other Prominent Clustering Approaches

In the early stage of software clustering, Hutchens et. aI. [5] introduced the concept of

data binding. A data binding classifies the similarity of two procedures based on the

common variables in the static scope of the procedures. Anqetil et. aI. [6] claimed that

clustering based on naming convention often produce better results than using source

code features. They presented several case studies that showed very promising results

(high precision and high recall) using the file name features to cluster the software

systems. Schwanke [7] provided a semi-automatic approach. His clustering heuristics

ware based on the principle of maximizing the cohesion of procedures placed in the same

module and at the same time minimizing the coupling between procedures that reside in

different modules. Sionim et. al. [8] presented AlB based on mutual information between

two variables. Recently, Xiao et. al. [9] proposed software clustering based on dynamic

dependencies.

2.4 Observations
In the previous section, we reviewed various prominent software clustering approaches.

By examining these works, several interesting observations can be made -

• The majority of these clustering approaches use only the information of coupling

and cohesion for similarity measurement.

• A CDC uses pattern matching for the generation of a skeleton by identifYing the

subsystems of the fmal decomposition. Depending on the pattern used by the

subsystems, they are given appropriate names.

• LIMBO creates the summary artifacts from the original software artifacts by

measuring the distance against a predefined threshold value. LIMBO also

determines the final number of clusters by testing the inter-cluster distances

against another predefined threshold value.

16

• BUNCH creates random number of partitions and evaluates the "quality" of these

partitions using a fitness function that is called Modularization Quality (MQ). To

find appropriate number of clusters with appropriate software artifacts

metaheuristic search algorithms are used.

• Rough Set Clustering is a semi-interactive one which allows users to inject his/her

valuable domain knowledge while clustering process is on and therefore the

algorithm is iterative and incremental. Rough software architectures (number of

partitions and their properties) can be refined by the users while clustering.

2.5 Research Challenges
Peculiarity of the software artifacts as a subject of clustering causes a lot of hindrances to

the researchers. We describe some of the interesting research challenges below-

• Improving performance: Software clustering is never a "silver bullet". There is

always a scope of improving the result of software clustering. Incorporation of

runtime information would make it more precise.

• Control on cluster generation: In the case of software clustering, there should be a

doctrine (a set of guidelines) which can influence the clustering tendency in the

process of cluster generation. Otherwise the resultant clusters may not look like

the subsystems of a software system.

• Improving visualization of the result: Since visualization is one of the key tenants

of program understanding, improved visualization services would have high

impact. There can be many levels of views based on appropriate levels of

granularity. Also, the software system can have more than one valid view.

• Other research opportunities: Most of the clustering approaches are

computationally intensive. We should find ways the make the software clustering

approaches faster so that they can be applied to the extra large software systems to

be dealt in future.

17

2.6 Chapter Summary
In this chapter we have presented how clustering can be used in the domain of software

systems to discover the subsystems within them. Then, we have presented some

prominent approaches of software clustering and we had some observations on those

approaches. Finally we have explored some research challenges in the arena of software

clustering.

18

Chapter 3

Software Clustering Using the Knowledgebase
As evidenced in the previous chapter, software clustering problem has attracted the

attention of many researchers. In this chapter, we figured out some serious problems of

those approaches presented earlier. As a consequence, we introduce a novel approach of

software clustering based on Knowledgebase. Here we identity the need to utilize the

power of Knowledgebase as the solution to many problems associated with software

clustering. A detailed description along with pseudo code, flow chart and block diagram

of our approach is presented too. The chapter concludes with comparative characteristic

observations among the prominent approaches of software clustering.

3.1 Problems with Existing Software Clustering Approaches
Appropriate similarity measurement is the most important issue in any clustering

problem. In software clustering, similarity measurement is a challenge as wide range of

diversity in nature is observed in the software systems. That is why there is no

generalized similarity measurement technique applicable to every software system.

3.1.1 Existing Similarity Measurement Teclmiques for Software Systems

Similarity measures like association coefficients, distance measures and correlation

coefficients are not flexible enough to be used in software clustering. However, it has

been observed that Jaccard coefficient [11] gives better result compared to other typical

similarity measures for software clustering. Recently Maqbool et. al. [10] showed that

incorporation of weighted scheme through Ellenberg measure in similarity measurement

outperforms Jaccard coefficient and guarantees accumulation of more appropriate

software artifacts in the process of clustering. Here we give a simple example from a

Library Management System.

Suppose, in the Library Manag~ment System there are four entities like: Book, Rent,

Book_Find and Rent_Find. The feature vectors used by the four entities are presented in

Table 3.1 where presence of any feature is represented as I and absence as O.

The features indicated in the feature vector are:

19

I. Use of the same Global Variables named

a. Name

b. Emp

c. Rent

d. Match

2. Function Call named

a. Book]ind

b. Rent]ind

Table 3.1 Entity with their associatedfeatures

Entity Feature Vector

Book { (0 I 0 I), (0 I) }

Rent { (0 I 0 I), (1 0) }

Book]ind { (I 0 I 0), (0 I) }

Rent Find { (1 0 I 0), (I 0) }

The corresponding similarity table using the Jaccard coefficient is tabulated in Table 3.2.

Table 3.2 Similarity table using Jaccard coefficient

Book Rent Book]ind Rent]ind

Book - I 1/4 0

Rent - - 0 1/4

Book]ind - - - I

Rent Find - - - -

Here, in the first step of generating clusters, Book and Rent will be merged to form a new

cluster. In the second step, Book_Find and Rent_Find will be merged to form another

new cluster. But normally, Book and Rent should be placed into different clusters as they

are totally separate entities. Moreover, Book_Find should belong to the same cluster of

Book and Rent_Find should belong to the same cluster of Rent.

Now, if we consider a run-time information we fmd that the two functions Book_Find

and Rent_Find are called by the functions Book and Rent respectively multiple times

20

(say, 5 times) and it is expected that such called functions and callee entities should be in

the same clusters. Thus to incorporate this obvious nature of clustering we can assign

weightages for multiple function calling in the expression of similarity measurement. In

this scenario the feature vectors of the entities can be presented as shown in Table 3.3.

Table 3.3 Entity with their associatedfeatures

Entity Feature Vector

Book {(01 0 1),(05)}

Rent { (0 1 0 1), (5 0) }

Book Find { (1 0 1 0), (0 5) }

Rent]ind L { (1 0 1 0), (50) }

Now, by applying Ellenberg measure on the feature vector presented in Table 3.3 we get

the following similarity table as shown in Table 3.4.

Table 3.4 Similarity table using weighted scheme

Book Rent Book_Find Rent_Find

Book - 1/6 5/9 0

Rent - - 0 5/9

Book Find - - - 1/6

Rent Find - - - -

This time, in the first step, Book and Book_Find will be merged to form a new cluster

and in the second step, Rent and Rent_Find will be merged to form another new cluster.

Certainly, these resultant clusters are more appropriate compared to the previous result.

But this run-time information of function calling is a real-time information where the

number of calls of a particular function can be different based on different tasks

performed by the user. Also, the run-time information is not easily accessible and can not

be obtained from the available source code. So, assigning weightage based on run-time

function call is not a realistic option for software clustering.

As we see, all the similarity measurement processes used in different software clustering

approaches like Ellenberg measure (for weighted scheme), Orphan Adoption [1] (in

21

ACDC) , Summary Artifacts Creation [2] (in UMBO, where measuring the distance is

vital) or Modularization Quality Calculation [3] (in the Heuristic Approach) do not

consider the diversity and uniqueness among the software systems. As a result, the

common drawbacks of these approaches are:

• They propose a generalized similarity measurement criterion for all the software

systems. But in reality, even one software system may consider different

similarity measurement criteria in different scenarios or environments.

• They can not incorporate dynamic weightages on the selected similarity

measurement criteria. But in reality, one similarity measurement criteria may have

different importance for different software systems.

Thus, the similarity measurement process of software clustering should be a dynamic one

to cope up with the diversity in software systems. It is worth mentioning that a particular

weightage of a similarity measurement criterion is denoted by the strength of the feature

to contribute in the similarity among several entities.

3.1.2 Our Solution to this Problem: Software Clustering usmg the

Knowledgebase
Almost every software system can be grouped into some Generic types such as Database

Management Systems (DBMS), Operating Systems (OS), Compilers, Network utilities,

Games etc. Most of the software systems under the same Generic type share many

common characteristics. They can have many similar approaches, functionalities and

features. Also they can have similar inputs and/or outputs. So, it is very likely that they

will have similar types of considerations for similarity measurement. For example, a

DBMS can consider a database table name or prefix of any software artifact name as the

most important in similarity measurement criteria, a compiler can consider the global

variable usage / computational aspects of functions or an OS can give emphasis on high

cohesion and low coupling. So, Generic type of any software system can provide strong

clues for similarity measurement by providing guidelines on similarity measurement

criteria and weightage for the respective similarity measurement criteria.

The Generic type of any software system not only provides direction for similarity

measurement but also provides valuable information about the formation (structural

22

arrangement) of that software system. As a result, indispensable subsystems ofasoftware

system can also be comprehended according to its Generic type.

Now, if a software clustering approach is able to utilize the information about the Generic

type of the software system to be clustered, the overall quality of the clustering result will

be improved. So, the use of Knowledge base comes forward as a consequence.

3.2 The Knowledgebase
Knowledgebase is a common term used in the discipline of artificial intelligence defined

as collection of rules and facts relevant to the real world [13]. In the context of Software

clustering, the Knowledgebase will act as a repository of information about the internal

structure of the Generic types of software systems. The Knowledgebase will contain

information about how the software artifacts (under the same Generic type) are inter-

related (the similarity measurement criteria and their respective weightages) and how

they differ from each other. The Knowledgebase may also contain information like

indispensible subsystems, program unit complexity, cyclomatic complexities etc. of the

Generic types of software systems.

3.2.1 Knowledgebase Development

Development of any type of Knowledgebase is a continuous process. The

Knowledgebase for software clustering is not an exception. However, the major

challenge here is to identify the rules and facts associated with the Generic types of

software systems and incorporate them into the Knowledgebase. But in our proposed

technique, rules and facts (i.e. similarity measurement criteria and their respective

weightages, indispensable subsystems etc.) relating to the Generic types will be observed

by the experts and software engineers will apply them in software clustering. As a result,

the software engineers will be able to verify the effectiveness of those rules and facts

used in the clustering process and if necessary modify them to generate more appropriate

clustering.

So, the Knowledgebase for software clustering is an adaptive technique to improve the

generation of more appropriate clustering from a continuous learning process by the

experience of clustering. Figure 3.1 shows the Knowledgebase development process-

23

/ /
Initial development of the
Knowledgebase by the
Experts by providing

Knowledgebase o Similarity measurement
criteria and Weightage
o Indispensable subsystems...----------- o Other information

\
For a particular Generic type

\
I f
I I
I •... _-------------
I I
I I

I Modification of

I
o Similarity measurement
criteria and Weightage

I o Indispensable
subsystems

I o Other infonnation

I
!

Software Clustering using Verification of the c1ustaring

the Knowledgebase results by Software
Engineers

Fig. 3.1 Knowledgebase Development

3.2.2 Knowledgebase Representation
The information of the Knowledgebase can be stored in a relational database [14]. The

Knowledgebase representation (using the relational database) can be further enhanced

with inference mechanism like property inheritance, in which elements of specific classes

inherit attributes and values from more general classes in which they are included. In this

research, the information about similarity measurement and subsystem identification has

been incorporated into the relational database. Here we present some of the facts of the

Generic types:

24

Table 3.5 Facts associated with the Generic Types

Fact 1: (For DBMS)

Similarity Measurement Criteria Weightage

Function Call (A function calls another one) 25.00

Same Global Variable Use 2.00

Two functions calling the same function 15.00

Shares the Same Prefix (i.e. Employee*) 100.00

Shares the Same Table 1000.00

Same Global Structure/Class Use 5.00

Fact 2: (For OS)

Similarity Measurement Criteria Weightage

Function Call (A function calls another one) 100.00

Same Global Variable Use 5.00

Two functions calling the same function 75.00

Shares the Same Prefix (i.e. init*) 25.00

Same Global Structure/Class Use 5.00

Fact 3: (For Compilers)

Similarity Measurement Criteria Weightage

Function Call (A function calls another one) 15.00

Same Global Variable Use 75.00

Two functions calling the same function 10.00

Shares the Same Prefix (i.e. parse*) 50.00

Same Global Structure/Class Use 100.00

25

Fact n: (For Games)

Similarity Measurement Criteria Weightage

Function Call (A function calls another one) 15.00

Same Global Variable Use 125.00

Two functions calling the same function 5.00

Shares the Same Prefix (i.e. render") 75.00

Same Global Structure/Class Use 100.00

An example showing representation of similarity measurement criteria and their

respective weightages in a relational database is given as follows:

Generic Types -

1 Database Management System ---. Similarity Measurement Weight
Criteria aj!;e

2 Operating System 1 Function Call 25.00
3 Compilers 1 Same Global Variable Use 2.00

1 Two functions calling the 15.00
.., ,-, ..' same function

n Games 1 Shares the Same Prefix 100.00
1 Shares the Same Table 1000.00
1 Same Global Structure/ 5.00
Class Use

Fig. 3.2 Simple relational Knowledgebasefor similarity measurement

3.3 Similarity Measurement using the Knowledgebase
Now the process of similarity measurement comes to the point. At first, the proper

Generic type of the software system to be clustered is determined. Then the appropriate

similarity measurement criteria and their respective weightages for that particular Generic

type are obtained from the Knowledgebase. The Strength of Similarity (0) between two

software artifacts can be computed using the following expression:
m

a{A,B) = Lw,A,B,
i=l

26

Here, A and B are two software artifacts.

Index i indicates a similarity measurement criteria of the Generic type.

m is the number of similarity measurement criteria considered for similarity measurement

of the corresponding Generic type of the software system.

W is the weightage vector and Wi indicates the weightage for the i-th similarity

measurement criteria

Ai and Bi indicates the absence and presence of a feature in entity A and B. That is, Ai, Bi

= {O, I}.

3.3.1 Example of Similarity Measurement Computation -

Here we apply similarity measurement criteria with their respective weightages of DBMS

from Table 3.5 to a Library Management System.

Now, we consider two functions Employee_add and Employee_edit of the Library

Management System to compute the Strength of Similarity between them.

name = 'Adnun';

Add (name, 1);

name = 'Adnan';

Add (name, 2);

Employee_edit

Fig. 3.3 A typical example of two jUnctions

According to the similarity measurement criteria and their respective weightages of Table

3.5, the components of the Strength of Similarity between these two functions will be:

• For using the same global variable (name): 2

• For calling the same function (Add): 15

• For sharing the same prefix (Employee*): 100

So, the total Strength of Similarity will be: 2+ 15+100= 117.

27

After the computation of the Strength of Similarity among all pairs of software artifacts

of a given software system, we get the desired Similarity Matrix. Here we present an

example of Similarity Matrix to get a visual overview:

Table 3.6 Example of a part of the Similarity Matrix

Book_Find Rent_Find Employee_Add Employee_Edit

Book Find - 17 2 2

Rent Find - - 2 2

Employee_Add - - - 117

Employee_Edit - - - -

3.4 Subsystem Identification using the Knowledgebase
There may have some indispensable subsystems associated with the Generic type of any

software system. Even the software system to be clustered may have some known

obligatory subsystems with some known properties. For example, a Library Management

System can have subsystems like Book, Member etc. Here we label these indispensable

subsystems as soul clusters. These obligatory subsystems for any software system or of

its Generic type can be stored into the Knowledgebase to ensure their presence in the

clustering result for the correctness of the overall clustering. As the soul clusters (if any)

are distinguishing to their associated software systems, the presence of them in the

clustering result makes the result more acceptable to the software engineers.

There can be many types of pre-conditions based on which a software artifact can be

accumulated into a soul cluster. Some of them are listed as follows:

• Possessing the same predefined prefix.

• Calling the same predefined function or routine.

• Reading from the same type of files.

• Writing to the same type of files.

• Functions with similar cyclomatic complexity.

28

3.5 Software Clustering Using the Knowledgebase
The proposed clustering approach requires some preprocessing before applying the

regular algorithm for clustering. The basic methodologies of both the steps are described

as follows:

Preprocessing of Software Artifacts:

The following operations are performed in this step:

• All the software artifacts are compared with the soul clusters defined in the

Knowledgebase. The software artifacts that satisfy the pre-conditions to be a part

of the soul clusters are no more considered as separate entities and they are

merged into the soul clusters.

• A Similarity Matrix is determined with the remaining software artifacts which do

not match with any of the soul clusters.

• Two clusters with the highest similarity measurement from the Similarity Matrix

will be clustered to form a premature cluster. This process of forming premature

cluster will be repeated on the remaining software entities of the Similarity

Matrix.

• It is worth mentioning that there will be a single software artifact remaining

without forming premature cluster if there is odd number of software artifacts in

the Similarity Matrix. We defme that software artifact as a premature cluster as

well. The main objective of finding premature cluster is to reduce the search space

substantially.

Thus the outcome of the preprocessing step is a collection of soul clusters and premature

clusters. We define each of these clusters as candidate cluster.

Clustering of Candidate Clusters:

The operations performed in this step are straightforward. In each iteration of this step the

following operations are performed:

• A new Similarity Matrix is determined with the candidate clusters.

• Two candidate clusters with maximum strength of similarity is merged into a new

candidate cluster.

29

The iteration stops when the number candidate cluster reduces to a threshold value,

defined in the Knowledgebase. This threshold can be a user input of the clustering system

from the software engineer.

The overall architecture of the clustering process can be presented in the block diagram

shown in Figure 3.4 .

• 1. Soul Cluster
Identification Process Clustering Resu~

• C8Q• •
• (8• • Soul Clusters

• • Knowledgebase

Q•
• gQ

• • • •
Automatically Generated

• • Clusters

2. Premature Cluster• Generation Process

Software System
Software Artifacts

Fig. 3.4 Architecture of the proposed clustering approach

The flow chart of the clustering system is shown in Figure 3.5.

30

Source Code Analysis

Final List of
Clusters

Knowledgebase

Determination of Final
Clusters

Matching wnh Soul Clusters

Generation of Similarily Matrix

Generation of Premature Clusters

Determination of Candidate Clusters

L _

I
I

Generation of Similarity Matrix

Merging of two candidate clusters to form
a new cluster

Fig. 3.5 Flow Chart a/the proposed clustering process

3.6 Pseudo Codes
Here we present the pseudo codes for Similarity Matrix generation, premature cluster

generation and final clustering from the candidate clusters:

31

Iia is the matrix of strength of similarities

Procedure Generate_Similarity_Matrix (A)

begin procedure

II A: The list representing the feature of vectors of entities At, Az, , An. Aj is the i-th

entity (software artifact) and A;! is the k-th feature of the i-th entity.

for i +- 1 to n do IIn is total number of software artifacts

forj +- i+ 1 to ndo

a(i,j) +- 0 Ila(i,j) is the strength of similarity between i-th and

j-th entity

fork+-l tomdo

a(i,j) +- a(i,j) + wkAikAjk

endfor

endfor

endfor

return a

end procedure

Procedure Generate_Candidate _Cluster (A)

begin procedure

II A: The list representing the feature of vectors of entities At, Az, , An.

soul_clusters =match_soul_cluster (A) I/Matching the soul clusters in

lithe Know1edgebase

individual clusters =A - soul clusters

I(faking out soul cluster for generation of the next

Iisimilarity measurement calculation

a +- Generate_Similarity _Matrix (individual_clusters)

for i+-1 to size_of(individual_clusters) do is_clustered; = false
I/Marking that no entity has been selected as premature cluster

while size_of (individual_clusters) >1 do I/Finding a premature cluster in each step

(i,j) =Find_Max_Strength (individuaCclusters, is_clustered, a)

I/Finding a couple of entities with maximum

Iistrength of similarity

32

C +--- merge (AI; Aj) I/Merging two entities with maximum strength of similarity

isJlusteredl +--- true I/Discarding the merged entity from the list

is_clusteretlj +--- true Ilof consideration for premature cluster

individual_clusters +--- individual_clusters - AI - Aj

premature_clusters +--- premature_clusters + C

end while

ifsize_of(individual_clusters) = I then
premature_clusters =premature_clusters + Al I/Number of individual entities is

end if Ilodd

return (premature_clusters + soul_clusters)

end procedure

Procedure Find_Max_Strength (individual_clusters, is_clustered, cr)

begin procedure

max_strength = 0

for i +--- I to size_of(individual_clusters) do IISearching in the Similarity Matrix

for j +--- i + I to size_of(individual_clusters) do

ifis_clusteredl =false and is_clusteretlj = false then
IIAlready clustered entities will not be considered

if crij>max_strength then IfThis strength is higher than the

Ilprevious one

max_strength = crij

index_1 =i

index_2 =j

end if

end if

endfor

endfor

return (index_I, index_2) IIReturning the indices with the highest strength

end procedure

33

Procedure Do_Final_Clustering (candidate_clusters, cp)

begin procedure

II cp is the threshold value to determine the final number of clusters

while size_of(candidateJlusters) > cp do

(J = Generate_Similarity_Matrix (candidate_clusters)

for i +-1 to size_of(individual_clusters) do is_clusteredi =false

l/lntializing is_clustered indicating that none of the entities will be discarded

(i, j) =Find_Max _Strength (candidate_clusters, is_clustered, (J)

C +- merge (Ai; Aj) I/Merging two entities with maximum

Iistrength of similarity

candidate_clusters +- candidate_clusters - Ai - Aj

candidate_clusters +- candidate_clusters + C

end while

3.7 Comparison of the Proposed New Clustering Method over the

ExistingMethods
The following points depict why the proposed method is exceptional from the existing

ones:

• The proposed approach can combine both the soul clusters and automatically

generated clusters in the same result. No other approaches proposed so far, can do

this. Rough set clustering approach can detect only user-defmed subsystems

configured in the BCM. Users might not define every subsystem of a huge

software system. As a result, many subsystems can be absent in the clustering

result which can lead to wrong clustering as a whole.

• All the clustering approaches proposed so far, did not consider these soul clusters;

rather they relied on the clustering generated by the process which could lead to

the absence of many of these types of soul clusters. As a result, due to the absence

of many crucial subsystems the whole clustering result will be meaningless to the

software engineers.

• A soul cluster defined in the Knowledgebase may not be a part of the software

system to be clustered. Our approach ignores those soul clusters which do not

34

match any of the softWare entities. Thus our newly proposed system is not totally

dependent on the Knowledgebase. It incorporates the benefits of the

Knowledgebase through the softWare artifact criteria extracted from the code of

the softWare system.

• In any softWare clustering approach, the threshold value which determines the

number of clusters in the [mal result is very important. The total skeleton of the

resultant clustering depends on this value. The Heuristic Approach (BUNCH)

randomly generates the threshold value. If the random generation is affected by

local minima, the threshold value will not be close to an acceptable one. So,

important subsystems can be divided or ignored in the clustering result. As the

threshold value is generated randomly, the skeleton may differ in the second run.

Different results from different runs are not realistic as it can create confusion to

the softWare engineers.

• Finally, there no room for improvement for the clustering approaches proposed so

far. But our proposed approach is an exceptional in this regard. Our clustering

approach learns to cluster more efficiently from the experience of clustering and

day by day it improves its capability to discover the underlying subsystems of the

softWare systems.

3.8 Complexity Analysis
As we know already, there are two main steps in our clustering approach. They are:

preprocessing for softWare artifacts and clustering of candidate clusters. In both the steps

Similarity Matrix calculation contributes to the complexity analysis substantially. That is

why we present the complexity of Similarity Matrix at first.

Complexity o/Similarity Matrix Calculation:

For n artifacts there will be nc, entries for nc, pairs of entities in the Similarity Matrix.
For the calculation of the strength of similarity for a pair of entity it requires m floating

point operations. Here m is the number of features in the feature vector of the entities.

Thus the total complexity of Similarity Matrix calculation will be mn(n - I) / 2 .

35

n, 12 premature•

Complexity of preprocessing for software artifacts:

The number of floating point operations in this step are as follows:

• nn,p comparisons where we have n, soul clusters in the Knowledgebase and there

arep criteria for matching a soul cluster against n entities.

• m(n,)(n, -1)/2 additions to calculate Similarity Matrix where we have nr

remaining entities which do not belong to the soul clusters.

~(n -2i+2Xn -2i+1) hin . C fi d.1... ' , searc g operatIOns lor m mg
'~l 2

clusters from nr remaining entities. It is worth mentioning that we need to do

(n, -2i+2Xn, -2i+1) h. . find. th 1. th-----2---- searc mg operations to 1- premature custer m e

i-th iteration as shown in the while loop of Procedure Generate_Candidate_

Cluster.

For the simplification the complexity calculation we can assume that n, "'nl4and

n, '"n 12 then the number of floating point operations in this step is expressed as:

C . =n2p mn(n-1) ~(n-4i+4Xn-4i+2Lo(3)
Preprocessmg +-- ----+ 1...~--~ - . ----~ - n

4 4 i~l 8

Complexity of clustering of candidate clusters:

Let there be nc candidate clusters in the beginning of this step. In each iteration of the

while loop in procedure Do_Final_Clustering we merge two clusters into a single cluster.

In i-th iteration of this loop the number of floating point operations are as follows:

m(ne -i+1Xne -i) addi. al 1 S.. l. . h• ~~--~~~ bons to c cu ate mll anty Matrix were we have
2

•

ne - i + 1candidate clusters.

(ne - i + 1Xne - i) searching operations to fmd maximum strength of similarity in
2

a Similarity Matrix with ne - i + 1 candidate clusters.

36

This clustering will be done until the number of cluster reduces to 'P. For the

simplification of the complexity calculation we can assume that n,'" n / 2 then the

number of floating point operations in this step is expressed as:

C. . =n/~I{m(n-2i+2Xn-2i) (n-2i+2Xn-2i)}=ol ;)
Fma_lClustenng ~ 8 + 8 ~mn

1::1

Thus the complexity of the total clustering process is expressed as:

CClustering= CPreprocessing + CFinaCClustering

= _n2_p + _m_n(_n_-_l)+ f _(n_-_4_i_+_4_Xn_-_41_'+_2_)+ n/r' {_m_(n_-_2_i_+_2_X_n_-_21__(n_-_2_i_+_2_X_n_-_21_)}
4 4 j~l 8 j~l 8 8

=O(mn3
)

3.9 Chapter Summary
In this chapter we have presented our clustering approach which can exploit the

Knowledgebase for the purpose of generating meaningful and legitimate subsystems. We

also presented the problems that the existing approaches face on the way of software

clustering and came up with a novel solution to those problems - "Introduction of the

Knowledgebase in the arena of Software Clustering". We also discussed the

computational complexity of the main parts of our clustering approach. Also, this chapter

includes block diagram, pseudo code and flow chart and of our approach. The next

chapter describes the clustering capability of BUET Cluster 1.0 (implementation of our

approach presented in this chapter), BUNCH and ACDC.

37

Chapter 4

Implementation of Clustering System
In Chapter 3 we described our clustering approach, which generates subsystems using the

Knowledgebase. We have a tool named BUET Cluster 1.0 to demonstrate our clustering

approach. This chapter primarily describes the structural design of BUET Cluster 1.0 in

detail along with APIs and other tools used in the processes of clustering. This chapter

also describes another two well-known clustering tool BUNCH and ACDC shortly.

4.1 Key Modules in BUET Cluster 1.0

Almost every software clustering tool consists of some key modules where each module

performs quite different tasks from others. These are defined briefly as follows:

1. Source Code Analyzer: This module involves source code analysis for creating

a language independent representation called Module Dependency Graph [3]

(MDG) based on the relations embedded in the source code. Source code

analysis is done with the help of a specialized source code analysis tools like -

Understand 2.0 [15] of Scientific Toolworks, Inc. The result of the source

code analysis is an intermediate representation of the source code. Next, this

intermediate representation is parsed and an in-memory representation is

generated which we distinguish as the MDG. The MDG can be used to view

the whole un-clustered software system.

2. Cluster Generator: This is the most important module of any clustering

approach. In this module, the MDG gets partitioned in such a way that those

partitions represent subsystems of the software systems. To do this, some

important tasks are carried out by this module:

i) Firstly, a modified representation of the source code is created from

MDG which actually serves as the input to the clustering algorithm.

This modified representation may vary as the format of the input may

differ from one algorithm to another.

ii) Secondly, the clustering result is created from the modified

representation by the clustering algorithm. This is the most

38

distinguishing part of any software clustering tool. That is - if you

supply the modified representation of the source code acceptable to the

clustering algorithm then you will be supplied with the clustering

result in such a way which can be viewed with the available

visualization tool.

3. Visual Display: This is the final module that involves visualization of the

clustering results. Graph visualization tool such as Graphviz-win v2.l6 [16]

can be used to view the clustering results.

All these major modules with their sub-modules are shown in Figure 4.1.

IVIsual DlsplayerI

- Source Code Analyzer

Representation

•• Similarity Measurement -
Clustering Algorithm

• • 1-

Fig. 4.1 Modules in clustering approaches

Now, we will give a detailed description on how these steps are implemented.

4.2 Source Code Analysis and Creation of MDG
BUET Cluster 1.0, BUNCH and all other software clustering tools assume that the source

code of a software system must be presented in such a way that adheres to a standard

39

format. For this, a suitable 3rd party source code analysis tool such as - Understand 2.0

has been used.

4.2.1 Source Code Analysis using Understand 2.0
Understand 2.0 is a cross-platform, multi-language and maintenance oriented Interactive

Development Environment (IDE). It is designed to help maintain and understand large

amounts oflegacy or newly created source code. The source code analysis by Understand

2.0 may include Ada, C++, C#, FORTRAN, Java, JOVIAL and/or DelphilPascai.

Understand 2.0 creates an intermediate representation of the relations and structures

contained within the source code of the software system.

On the way of creating the intermediate representation using Understand 2.0, the

following steps are performed:

Step 1: Understand 2.0 can be run directly from the menu shown in Figure 4.2 of our

implemented project. The path is: Code Analysis -> Understand 2.0.

Fig. 4.2 Run a/Understand 2.0

Step 2: After clicking on the Understand 2.0 menu, the main interface of Understand 2.0

is loaded with Understand Analyst - [Getting Started) tag as shown in Figure 4.3. By

clicking on the New Project menu of the main interface of Understand 2.0, a New

Project for source code analysis is initiated. After this, a name is given to the newly

40

created project. Here the name UnderstandLibrary. udb is given to the newly created

project.

Ptojed Informltlon-~
tbnber 01 Flies:

"~Lroos:_.
Y!ftw prgted; fie,
Vim pro!m:;I Ft.nctm
sem;n prgted fIe1

SMrc:tl Prpied ErfIIe;
Alchlt:ec:t-------

N!It IsAnAuHectwe1
cwteAgmpmArrHect1re
Brpme ArchIectLm
I!It!'!!!lzt ArCjl'!te!jtt!e;

ul"
I-_. I

C:'OocunerI:s and seM'lg3'rl$:

Now--"ojocI-.-.. --- L
Opon_ ...

- CllMge -.

~ I l$~i~ -»-~0-
~oettng~ s'

S6veFIeAs.

'""
SoY •••..•......,...

e. •....•.. 0,''''-- •-- •
E><I QrloQ

Fig. 4.3 Main window a/Understand 2.0 used to create the new project

Step 3: Next, the source code file of the Library Management System (Library.cpp) is

given to Understand 2.0 as the input shown in Figure 4.4.

Add directories that CClI'UIn the ~ Res you
wsnt analyzed. You may choose whether or not to
automallcdynekldo ~ed""'. _ thsI
ITllItch~ you selected are added tothe
•• oIed.

Yw do not need to add Res ilcfuded from other
ibnwles, tmce thOse can be actded eater when you
Ideril1y IrdJde chctot1es.

IConcoI

,_ e:lAJJd.Olredory B AJJd.Fie •

t:lE:
8 e:l MSC THESIS8 e:l __ 0100

L B Lbory.CPP

«Bocl< II NO>d •

Fig. 4.4 Source Code 0/Library Management System as input to Understand 2.0

41

Step 4: After getting the source code file, Understand 2.0 immediately provides us with a

versatile analysis of the source code as shown in Figure 4.5.

J

-.
: (.

'~e.tnltll:d:.

- -~0I:nnIa-.--•••••••• InlUnry.m-_ .•.
+.••••••••-cr..'DICd:."...,. .(_1~.

_ll<.~~
" CllNf1IMlh--'!'~

~•••.i~e-I..tnryCl'l',..,~~a- '!
:-'-:-*l1l1l11ll ••••]

"toW .0
"" ••• 1-.o •• [U;Q!

:=~(1l1l11M]
"lWId .,

~':."..::!-.L..._J,J...J

HIfp •• if •

• !&-"i.'.1 :~.j .•••.•'iO.'-=-- .-.-.-...:.....
J

Fig. 4.5 Analysis of the Source Code

Step 5: The intermediate representation is formed by selecting File Contents Report,

Program Unit Cross Reference Report and Simple Invocation Tree Report from the

project reports provided by Understand 2.0 as shown in Figure 4.6.

J

-.

Oft••

- ~.

1-1

J
~..J-

,.

_'I & ."i u>, ~i~ ••i •••

J

,,',,t, ~_'~,

••, .
l ••••••J---ll-I;..
--•.•....•..._-'!l"_.,',••..._-<-.:J:c..-...~~

Fig. 4.6 Intermediate file generation

42

This intermediate representation of the source code consists of -

1. File Contents Report: This report contains types (structures), global variables

and global functions used in the source code.

2. Program Unit Cross Reference Report: This report contains the calling

(multiple) of a function by other functions.

3. Simple Invocation Tree Report: This report contains the invocation of other

functions in a function.

By accomplishing these steps a Library Management System (Library.cpp) developed in

C programming language is analyzed using Understand 2.0 and the intermediate

representation file UnderstandLibrary.txt is generated. The file Understand Library. txt

contains the following in brief -

Table 4.1 Brief content of the Intermediate Representation

Types (Structures):

_ret, book, d, erop, mem, ren

Global Variables:
B, brid, brp, E, erid, erp, M, mrid, mrp, R, RD, rrp, T, trp

Global Functions:

File Contents

Report

_return, beustom, bidavl, bidehk, binfo, bmatch, bnonnal, book, bookadd,

bookdelete, bookedit, bookfind, booksbow, by_addr, by_author, by_bid, by_bname,

by_eaddr, by_eid, by_ename, by_mid, by_mname, bYJbid, bYJbname, by_nnid,

by_nnname, control, ecustom, eidavl, eidchk, einfo, empadd, empdelete, empedit,

empfind, employee, ernpshow, ename_eaddr, enonnal, esex, info, main, mcustom,
memadd, member, memdelete, mernedit, memfind, memshow, menu, midavl,

midchk, miufa, monnnal, name_addr, name_author, one_book_add,
one_book_delete, one_book_edit, one_book_show, one_emp_add, one_emp_delete,

one_crop_edit, one_crop_show. one_IDem_add, one_mem_delete, one_fiem_edit,
one_IDem_show, one_rent_add, one_rent_edit, one_rent_show, one_ret_add,

one_ret_show, rbidavl, rent, rentadd, rentedit, rentfind, rentshow, retadd, retshow,

nnidavl, monnal, sex, sex_code, titlebar, tnonnal

43

I

Line number

Callee Caller in

Library.cpp

book (Function) control 2433
bookadd (Function) book 726

Program Unit Cross bookdelete (Function) book 730

Reference Report bookedit (Function) book 729
-
member (Function) control 2434
...
one_book _show (Function) one_book _edit 1606

one_book _delete 1705
.........

Invoked by Invokees

book titlebar, menu, bookadd, bookshow, bookfind,

bookedit, bookdelete

bookadd one_book _add, print£, toupper, getche

bookdelete textcolor, textbackground, titlebar, print£, getch,

one_book _delete, toupper, getche

Simple Invocation

Tree Report
bookedit textcolor, textbackground, titlebar, print£, getch,

one_book _edit, toupper

bookfind titlebar, textcolor, textbackground, printf, geteh,

menu, gotoxy, by_bid, by_bnarne, by_author,

narne_author

bookshow titlebar, textcolor, textbackground, printf, getch,

menu, bnonnal, bcustom

... "'" .,.
... -.- ...

44

4.2.2 Creation of the MDG
Understand 2.0 writes the intermediate representation in the file UnderstandLibrary. txt.

Then BUET Cluster 1.0 parses the intermediate representation and creates an in-memory

representation (based on the dependencies among the entities in the intermediate

representation) of the software system which is known asMDG.

On the way of creating the MDG, the following steps are performed:

Step 1: BUET Cluster 1.0 is run from the menu shown in Figure 4.7 of our implemented

project. The path is: Clustering Approaches -> BUET Cluster 1.0.

Fig. 4.7 Run ojBUETCluster 1.0

Step 2: After clicking on BUET Cluster 1.0menu, the main form shown in Figure 4.8

named BUET Cluster 1.0 is loaded. Then, by clicking the Load Data Button the

intermediate file UnderstandLibrary.txt is loaded for parsing.

45

•

S_eSyotemType lootabase

P•••• I~I OutterGenerotionl

IE. 1M seT H ESIS ~ mpiement.tion IU 00'" $landL •• a'y. tx1 I I LoadDot. II Par.. 'I

IViewWIlhGrophV••_11 S.ve.v_

I Cancel

Fig. 4.8 Parsing of UnderstandLibrary. txt

When Parse Button is clicked, Parse _Data() function takes the intennediate file

UnderstandLibrary. txt as the input and finds out the dependencies among the entities in

the intennediate representation by tracking many properties stored in the file

UnderstandLibrary.txt. Firstly, Parse_Data() function tracks types (structures), global

functions and global variables. Then it tracks the usage of structures or global variables

by the functions. The frequency of the usage is also determined. Parse_Data() also tracks

the function calls from every individual functions and the frequency of calling. Each and

46

every infonnation extracted from the UnderstandLibrary.txt by Parse_DataO is stored in

the in-memory collection (a C# data type) of associated objects. After this, Prune_DataO

function is used to exclude some information (e.g. functions like main) which is

insignificant and in some times detrimental to the clustering process. We call this in-

memory representation asMDG.

4.2.3 Visualization of MDG using Graphviz-win v2.l6

Graphviz-win v2.16 is a tool for creating, viewing, editing and processing DOT files.

DOT is a versatile, command line graph drawing utility (layout engine) that has been

used by researchers for many years. One notable feature of DOT is its graph description

language. Users specifY the nodes and edges of the graph in a text file and may add any

number of optional attributes to the nodes and edges in order to control the appearance of

the graph. For example, users can set attributes to control the font, font size, edge style,

edge labels, colors of the nodes and edges, fill types, scaling and so on. DOT draws

directed graphs as hierarchies. It reads attributed graph text files and produces output in

anyone of twelve different supported output file formats (e.g., GIF, JPEG, PostScript,

etc.).

The parser of BUET Cluster 1.0 generates the graph description language acceptable to

DOT to view the MDG using the Generate_MDG() function. When Parse Button is

clicked, the Generate _MDG() function writes the appropriate graph description language

in the file named MDG.txt. A sample ofMDG is shown in Table A.I in Appendix A.

Now, to view the MDG using Graphviz-win v2.16, the following steps are performed:

Step I: Graphviz-win v2.16 is directly run by clicking the View with Graph Viewer

Button of the main form and then the editor of Graphviz-win v2.16 is loaded. After this,

the MDG.txt file loaded to the editor as shown in Figure 4.9.

47

~j@i!l!iiii!!!h!••!!!ii!i!!!6i!!l!i@@@!!!!I!!!!!!!!!~,J!6J~!F!#!l!l~b~\@Il!!!.~¥=iMlIl!l!!m!!!l!MB=im.ll!l!!Ii~; !!!!!!!!!!!!~!!~!!!!!!~!!~!!!!!!~MMiiil!~.!Illi
1r'1'IIt M: Q••••••••• HIIb _ ~ x~~Lilil!!['---- - -~
llJtllPb LIll!.llIY I
n .••o.p"'.3.0 eqQI'>UV-:
_re~urn->re~.cId:
ncurn->"'t.boWI
idl:hk-__ booll:_'~l
llIll•.•••.I-XlM_boClk_ .bo.,

It->booll:aocM:
~>booltlobD"
It->bOOltUhClI
It->bool=dltl
it->bOOkdill'UI
U44-Xlml_booll:_"':
_1.UO_H __ I<"'J.n, ••,
_u.->ODe_bOoJ:_.41tl
1l:f11ld->__ .lltbO'ccl

, blli->OOM boOlI: "_J
,:eid->O_:""",_;bo',, __ ld->ODll lIbowl

, rt!1d->OM cent. .bo.,
, : •.••lCl->oee:rem.:.llo.'
Il\lroll->book;
nt.roll-~r,
Iltrol1->~lorn=1
otltnll->rentl
ldChII:->ODe_eJiO_Il'"

-XlM_ClIP_..sdl
leU-loOlltI _ delnw,
It.-XlDe_~_eOlt.:

lll'fft-~
loY"'->eap.bO"
l~_tlndl
ioyte->eopdelne:

no~l-Xlne .-p .bo•.;-.•..•-;:.." ;.....
~I:I . -"', ..::

I
Fig. 4.9 EditorofGraphviz-win v2.l6

Step 2: After getting the MDG.txt file, Graphviz-win v2.16 runs DOT layout engine to

view theMDG as shown in Figure 4.10.

-:=r~~--
OtApIA:Fie N,yne IE:\MSC THESIS\l~\MOG.1lg ~

Add

H.-,

OK

Fig. 4.1 0 DOT layout engine to view the MDG

48

After clicking the OK Button, we can visualize the MOO from the generated image file

MDGJpg as shown in Figure 4.11.

Fig. 4.11 MOOJpg to view the MDG

Also, BUET Cluster 1.0 can generate a preview of MDG in the picture box using

WINGRAPHWIZlib COM (Component Object Model). The WINGRAPHWIZlib COM is

integrated with BUET Cluster 1.0 through a class named clsGraphViz. The code for the

integration is listed as follows.

clsGraphViz oGraphViz = new clsGraphViz();
pblmageMDG.lmage = oGraphViz.Createlmage(MDG.txt);

4.3 Generation of the Subsystems using BUET Cluster 1.0
In the previous chapter, we have presented the theoretical steps of how BUET Cluster 1.0

can utilize the Knowledgebase to generate more accurate subsystems. As we know

already, the Knowledgebase acts as the repository of information about the internal

structure of the Generic types of software systems to help computing an appropriate

similarity matrix. Indispensable subsystems of any software system can also be obtained

from the Knowledgebase. Now, we present the development and incorporation of the

Knowledgebase into BUET Cluster 1.0.

4.3.1 Knowledgebase Development
Knowledgebase development is one of the most vital steps in BUET Cluster 1.0. This

work is done by the experts mainly. They identify the conditions for inter-relations and

differences among the entities of the Generic types of the software systems by

49

determining the similarity measurement criteria and their respective weightages. They

also figure out the indispensable subsystems (if any) of the Generic types and makes

them as the part of the Knowledgebase. The Knowledgebase can also be developed from

external sources of information and can be improved as a continuous process from the

experience of clustering. On the way of developing the Knowledgebase in EUET Cluster

1.0, the following steps are performed:

Step I: Similarity measurement criteria and their respective weightages are given as

shown in Figure 4.12.

P5te ~ OlsterGenerm,

KnowIedgebeseDe.eq"lItd Kuo 1:~ bate" ";'IEd

H

SilHi,y 104••••••••••.• Cdorio
Cr"m,t<.!
G_VoriobleUsage
GeIer of Semc FIIdian-Seme Table NlJ'l'le
G_ Structure Usage

gt 'f3
Wrq< I Add25:00
:too IIS.00 Ecil

100.00
1lXXlOO.00 I Delele

5.00

0.001

SilHi,yM ••••••••••• CdorioN.... I~I ~_.._.. _.~__-_-..~
Del••••Wrq<age I

'---_S•••_ ••.•I I_Cancel_~

Fig. 4.12 Knowledgebase Development

50

I Cancel

I

I

Step 2: Indispensable subsystems (soul clusters) along with their property-indentifying

information (prefixes) are given as shown in figure 4.13.

N••••
boo
•••••

[••• 1

d '&I'

I Add I
I Eell I
I Delete J

Prefi<N •••• 1 -------

•..•.._s_•••__ II__ConcoI__ --'

Close

Fig. 4.13 Soul cluster identification

4.3.2 Knowledgebase Adaptation

When a software system is selected for clustering, all the information (similarity

measurement criteria and their respective weightages, soul clusters etc.) of the selected

software system's Generic type is obtained from the Knowledgebase and used in the

processes of clustering. But when the clustering result is not up to the mark using the

information of the selected software system's Generic type, there is a need for adaptation.

51

At this point, similarity measurement criteria and their respective weightages are altered;

soul clusters are added or removed in a trial and error basis. In this way, the

Knowledgebase is enriched to generate more appropriate subsystems from a continuous

learning process by the experience of clustering. The already demonstrated pages of the

Knowledgebase development have the facility of adaptation by adding or modifYing soul

clusters, prefixes and similarity measurement criteria.

4.3.3 Cluster Generation
When Cluster !!! Button is pressed, clustering will be performed as per clustering

technique presented in Chapter 3. The resultant subsystems are shown in Figure 4.14.

I lhtedll II

Fig. 4.14 Resultant subsystems

52

4.4 Clustering software systems using BUNCH and ACDC
BUNCH and ACDC are the clustering tools intended to aid the software engineers in

understanding, verifying and maintaining a source code base. These tools also let the user

evaluate the quality of an application's modularization by analyzing the MOO.

The first step in the clustering processes using BUNCH or ACDC involves creating an

MOO based on the source code components and relations. The next step involves the

partition of the MDG using BUNCH or ACDC. Finally, the resulting subsystem

decomposition is visualized.

BUNCH or ACDC can be run from the menu as shown in Figure 4.15.

Fig. 4.15 Pathway for running BUNCH and ACDC

By clicking on BUNCH or ACDC, corresponding clustering software is involved for

clustering. Please refer to [17] and [18] for details of using BUNCH and ACDC for

generating clusters. Only BUNCH and ACDC are the available clustering tools available

and downloadable for free of cost on the Internet. The other clustering tools require

licensing for which could not implemented due to unavailability for funds. That is why

we only compare our approach with these two available tools. The following chapter

presents results with analysis.

53

Chapter 5

Results with Comparison
In the previous chapter, we have used a Library Management System (Library.cpp)

developed in C progranuning language as a case study. In this chapter, at first we will

present, analyze and compare the resultant clusters of that Library Management System

generated by BUET Cluster 1.0, BUNCH and ACDC. Then we will also present, analyze

and compare the resultant clusters of Xfig (an open source drawing tool developed in C

programming language) generated by BUET Cluster 1.0, BUNCH and ACDC. It is worth

mentioning that BUNCH and ACDC are one of the most recognized tools in the arena of

software clustering. All the results in this chapter have been generated using a Hewlett-

Packard HP Compaq dq7300 Microcomputer having Intel(R) Core(TM)2 CPU 6400 @

2.13 GHz and 0.98 GB of RAM.

5.1 Comparison Criteria
It is very tough to justifY the quality of software clustering results based on one single

criterion. As the result of software clustering is more related with the quality acceptable

to the software engineers, it is very difficult to parameterize the result in a single numeric

value. There are several characteristics in a software clustering result (19]. So, software

clustering results are usually compared based on the criteria stated below:

• Stability: Similar clustering should be produced for similar versions of a software

system.

• MeaningfUlness: Generated clusters should resemble the subsystems of original

system.

• Extremity of Cluster Distribution: The cluster size distribution of a clustering

should not exhibit extremity. That is - the majority of software artifacts should

not be grouped into one or few huge clusters and also there should not be clusters

with very few software artifacts.

• Human Intervention: Clustering process should not require lots of human

interventions.

54

• Vulnerable to Error

• Computation Time: The clustering should not require too long.

5.2 Mojo Distance for Comparison of Clustering Quality
Mojo distance [20] is the distance between two clusterings A and B of the same software

system. It is defined as the minimum number of Move or Join operations one needs to

perform in order to transform either A to B or vice versa. The smaller the Mojo distance

between a resultant decomposition A and the Gold Standard decomposition B, the more

effective the approach that created A. Gold Standard is defined as the expert

decomposition of any software system. It is the most important reference point to which a

software clustering result can be judged. Here we outline the Gold Standard

decompositions for Library Management System and Xfig in Figure 5.1 and Figure 5.2

respectively.

Fig. 5.1 Gold Standard/or Library Management System (The original version of this

figure is shown in Figure B.I)

From Figure 5.1, we see the true decomposition or Gold Standard decomposition of the

Library Management System has 5 (five) distinct subsystems namely "book",

"employee", ''member'', "rent" and "return". There is another cluster containing functions

not related to those subsystems. So, the total number of clusters is 6 (six).

The figure showing the clustering results of a software system generally does not fit in a

small area. In this chapter, the Gold Standard decompositions and the clustering results of

the software systems are shown using scaled version of the original figures. Original

figures are shown in Appendix B.

55

,
..'>~

Fig. 5.2 Gold Standard/or Xfig (The original version of this figure is shown in Figure

B.2)

From Figure 5.2, we see the true decomposition or Gold Standard decomposition of Xfig

has 2 (two) distinct subsystems [21]. One subsystem takes specification of objects and

another subsystem renders the object~

5.3 Resultant Clusters of the Library Management System

5.3.1 Results generated by BUET Cluster 1.0

Fig. 5.3 Resultant Clusters from BUET Cluster 1.0 (with threshold 8)

Figure 5.3 and Figure 5.4 presents the results of clustering of the Library Management

System using BUET Cluster 1.0 using different values of threshold. We see BUET

Cluster 1.0 has clustered the Library Management System (Library.cpp) quite fairly

using threshold value 8 and 9. Here the subsystem "Book" was supplied from the

Knowledgebase as an integral part of the Library Management System. However, BUET

Cluster 1.0 finds other subsystems of the Library Management System like "employee",

56

'''member'', "rent", "return" and others automatically and combines them with the

subsystem supplied from the Knowledgebase ("Book") to generate the final result.

One major characteristics of the result using threshold value 8 is: the subsystem

"employee" is almost flawless as it contains almost every functions belonging to

"employee" of Gold Standard.

Fig. 5.4 Resultant Clusters from BUET Cluster 1.0 (with threshold 9)

The only difference between the two results generated by using different threshold is that

the later result splits the subsystem "employee". Some of its functions have been placed

in the extra cluster of the result. Thus it is obvious that selection of threshold is an

important factor in the Software Clustering. The Software Engineers responsible for

clustering or reengineering must select a suitable threshold value for effective clustering

on trial and error basis.

Overall quality of results generated by BUET Cluster 1.0: The resultant clusters

generated by BUET Cluster 1.0 contain some anomalies as many of the functions have

not been placed in the most appropriate clusters. However the result as a whole does not

contradict with the meaningfulness, as we see that most of the subsystems figured out can

affirm their own identity.

The results shown in Figure 5.3 and Figure 5.4 are not necessarily the best one generated

by BUET Cluster 1.0. Yet one can find more suitable combination of similarity

measurement criteria and their respective weightages for the Library Management

System and improve the clustering result.

57

....~

5.3.2 Results generated by BUNCH
As we already know, BUNCH (one of the most recognized tool for software clustering) .

uses heuristic approach and therefore we get more than one clustering result from the

Library Management System for different runs of this tool.

Here, we have generated three resultant clusters from three different runs of BUNCH on

the same Library Management System. Now we present those results in detail -

Result 1from BUNCH:

Fig. 5.5 Result I

From Figure 5.5 we see, BUNCH has created 13 clusters in Result I. From Result I we

see BUNCH finds "book" and "member" subsystems to some extent. But other

subsystems like "employee", "rent" and "return" got divided and amalgamated with each

other. Hence the quality of the result is degraded substantially.

Result 2from BUNCH:

Fig. 5.6 Result 2

58

.
;'i{ ~

• c

'-.• l.'

From Figure 5.6 we see, BUNCH has created 6 clusters in Result 2. From Result 2 we see

BUNCH has discovered the "employee" subsystem perfectly but inter-mixes other vital

subsystems like "book" and "member", which has made the total result less meaningful.

Result 3 from BUNCH:

-r.

Fig. 5.7 Result 3

From Figure 5.7 we see, BUNCH has created 14 clusters in Result 3. From Result 3 we

see BUNCH has found "book", "rent" and "return" subsystems partially but inter-mixed

other vital subsystems like "member" and "employee", which has made the total result

less meaningful.

5.3.3 Result generated by ACDC

Fig. 5.8 Resultant Clusters from ACDC

From Figure 5.8 we see, ACDC has created 29 clusters. Thus, the result contains many

small clusters with very few software artifacts. From the result we see ACDC has found

"employee" and "member" quite fairly. But other subsystems like "book", "rent" and

"return" was not identifiable as they got inter-mixed and broke into pieces.

59

5.4 Resultant Clusters of the Xfig

.5.4.1 Results generated by BUET Cluster 1.0
Here we consider a range of threshold values (from 2 to 10) for clustering Xfig. The

results are shown in Table 5.1.

Table 5.1 Results from BUET Cluster 1.0for Xfigfor different threshold values

Results Threshold Computation Time MoJo Distance(in seconds)

Result I 2 47.306 4

Result 2 3 44.041 5

Result 3 4 41.945 6

Result 4 5 39.277 7

Result 5 6 35.906 8

Result 6 7 33.339 9

Result 7 8 30.875 10

Result 8 9 29.017 II

Result 9 10 26.944 12

Average: 6 36.517 8

From the results shown in Table 5.1, we find that BUET Cluster 1.0 generates the best

result for the threshold value 2. The subsystems generated by BUET Cluster 1.0 using

threshold value 2 is shown in Figure 5.9.

Fig. 5.9 Resultant Clusters from BUET Cluster 1.0 using threshold value 2 (The original

version of this figure is shown in Figure 8.3)

60

From Figure 5.9 we see BUET Cluster 1.0 has clustered Xfig quite fairly. The result

contains two distinct subsystems ofXfig with very little anomaly.

5.4.2 Results generated by BUNCH
We run BUNCH for multiple times for clustering Xfig. The results are shown in Table

5.2.

Table 5.2 Results/rom BUNCH/or Xjig

Results Number of Clusters Computation Time Mojo Distance(in seconds)

Result I 8 0.105 6

Result 2 8 0.125 6.

Result 3 9 0.109 6

Result 4 7 0.093 6

Result 5 8 0.098 6

Result 6 7 0.109 6

Result 7 8 0.094 6

Result 8 8 0.103 6

Result 9 8 0.094 6

Average: 7.89 0.103 6

From the results shown in Table 5.2, we find that BUNCH generates almost similar types

of results in every run. The best Mojo distance here is 6. The average number of clusters

is 7.89. We present a result with 8 clusters in Figure 5.9.

- -

Fig. 5.10 Resultant Clusters from BUNCH (The original version of this figure is shown in

Figure B.4)

61

From Figure 5.10 we see BUNCH has clustered Xfig quite fairly but the result contains

more subsystems than necessary.

5.4.3Result generatedby ACDC

Fig. 5.11 Resultant Clusters from ACDC (The original version of this figure is shown in

Figure B.5)

From Figure 5.11 we see ACDC has clustered Xfig in a moderate way. ACDC has figured

out one subsystem fairly but other subsystem has been broken into pieces.

5.5 Comparison among the results of BUET Cluster 1.0, BUNCH and

ACDC

The detailed comparison is shown in Table 5.3.

Table 5.3 Comparison among ACDC, BUNCH and BUET Cluster 1.0

Criteria ACDC BUNCH BUET Cluster 1.0

Generates Generates new Generates

Stability High identical Low clustering in High identical
clustering in clustering in
every run. every run. everv run.

Medium

Meaningfulness Low As described /Low (due to As described High As described
above. local above. above.

minima)

Generates too Low Sometimes
Extremity of many clusters

(Because it Generates generates ve,rycan penalize
Cluster High if too many excessive subsystems of Medium small or
Distribution patterns are inter-duster unifonn size. comparatively

discovered coupling)
large clusters.

Human No human No human Medium! Minimum
Low Low human

Intervention intervention. intervention. Low intervention.

62

Vulnerable to High As described Medium As described Low As described
Error above. above. above.

For Library For Library
Management Management

For Library System of the System (with
Management three runs: threshold 8
System: 0.015 (0.125+0.067+

Medium!
and 9): (14.88

Computation Low sec. Low 0.093)/3 = +12.26)/2 =
Time 0.095 sec. High 13.57 sec.

For Xfig:
0.028 sec. For Xfig: For Xfig:

0.103 sec. 36.517 sec.
(avg.) (avg.)

For Library
Management

Average MoJo System (with
distance for threshold 8
Library and 9): (9+ 10)

For Library Management =9.5
Management Medium

System of the
Medium!MoJo distance High System: 32 three runs: For Xfig for/High (26+30+27) / 3 Low

threshold
For Xfig: 12 = 27.67. value 2: 4 (The

ForXfig: 6 Lowest MoJo
Distance)(avg.)
Average MoJo
Distance for
Xfig: 8

5.6 Comparison with other Clustering Approaches
As all the clustering tools are not available for clustering we cannot analyze those

techniques by comparing the results. The following table compares the characteristics of

those techniques with our proposed technique:

63

Table 5.4 Characteristic observation

Criteria Rough Set LIMBO BUET Cluster 1.0Clustering

Medium (for excessive Low (final clustering
Stability human intervention) depends on distance High

calculation)

Meaningfulness High Medium/ Low (depends on Hightoo many threshold values)

Extremity of
Cluster Medium/Low High Medium
Distribution

Human High Medium/Low Medium/Low
Intervention

Vulnerable to High (if human direction Medium Low
Error goes wrong)

Compntation High Medium Medium/ High

64

Chapter 6

Conclusions
Many software engineers have noted that maintaining and understanding the structure of

source code is getting harder because the size and complexity of modern software

systems is growing. This coupled with associated problems such as lack of accurate

design documentation and the limited availability of the original designers of the system

adds further difficulty to the job of software engineers to understand the structure of large

and complex software systems. The application of clustering techniques appears to be a

promising way to help software engineers by enabling them to create abstract views of

the system structure. This chapter summarizes the major contributions of this thesis on

software clustering and presents suggestions for future research.

6.1 Major Contributions
In this section we highlight some of the significant research contributions of the work

described in this thesis:

• Software Clustering using the Knowledgebase: We have introduced a novel

approach for software clustering approach which can exploit the strength of the

Knowledgebase to generate meaningful and legitimate subsystems. Our

understanding is - The richer Knowledgebase you have, the more accurate

subsystems you get.

• Design and Implementation of BUET Cluster 1.0: We have developed BUET

Cluster 1.0 as a complete tool for software clustering. This software is ready for

the use of clustering of any software if the source code is available.

• Comparison of BUET Cluster 1.0 with other Clustering Techniques: The other

clustering techniques are compared with our new clustering technique by applying

both the techniques on the renowned software code available as open source.

With the help of a rich Knowledgebase BUET Cluster 1.0 is capable to

outperform any available clustering tool.

65

6.2 Future Research Directions
In this section we describe some suggestions for extending our research and propose

some opportunities for future research directions.

• Improving the Knowledgebase: The enrichment of the Knowledgebase used in

software clustering is a continuous process. The Knowledgebase can be improved

in a disciplined way so that the whole software engineer community can be

benefited from it.

• Introducing Multi-Layered view in the Clustering Result: Software clustering

results can be multi-layered. Software engineers should be able to drill down from

the top-level subsystems to view their inner structures.

• Improving the Computational Time: Computational overhead in our approach is

much compared to other approaches. Researchers can contribute in this area.

• Introducing Dynamic Iriformation in Software Clustering: Dynamic information

like calling of functions in run-time should be used in clustering process.

• Improving Visualization service for Results with Multi-Layer view: There should

be easy ways to visualize the multi-layered results of software clustering.

66

References
[I] Tzerpos, V. and Holt, R. C., "ACDC: An algorithm for comprehension-driven

clustering," Proceedings of the 1hWorking Conference on Reverse Engineering

(WCRE '00), pp. 258-267, 2000.

[2] Andritsos, P. and Tzerpos, V., "Information_Theoretic Software Clustering," IEEE

Transactions on Software Engineering, Vol-31, No.2, pp. 150-165,2005.

[3] Mitchell, B.S., "A Heuristic Approach to Solving the Software Clustering

Problem," Proceedings of the International Conference on Software Maintenance

(ICSM '03), pp. 285-288, 2003.

[4] Jahnke, J. H. and Bychkov, Y., "Reverse Engineering Software Architecture using

Rough Clusters," Proceedings of the International Conference on Software and

Knowledge Engineering (SEKE '04), pp. 749-757,2004.

[5] Hutchens, D. and Basili, R., "System Structure Analysis: Clustering with Data

Bindings," IEEE Transactions on Software Engineering, Vol-ll, No.6, pp. 150-

165,2005.

[6] Anquetil, N. and Lethbridge, T., "Recovering Software Architecture from the

Names of the Source Files," Journal of Software Maintenance, Vol-ll, No.3, pp.

201-221, 1999.

[7] Schwanke, R., "An Intelligent Tool for Re-engineering Software Modularity,"

Proceedings of the 13th International Conference on Software Engineering (ICSE

'91), pp. 321-327, 1991.

[8] Sionim, N. and Tishby, N., "Agglomerative Information Bottleneck," Proceedings

of the Conference on Neural Information Processing Systems (NIPS-l2), pp.617-

623, 1999.

[9] Xiao, C. and Tzerpos, V., "Software Clustering based on Dynamic Dependencies,"

Proceedings of the cjh European Conference on Software Maintenance and

Reengineering (CSMR '05), pp. 124-133,2005.

[10] Maqbool, O. and Babri, H.A., "The Weighted Combined Algorithm: A Linkage

Algorithm for Software Clustering," Proceedings of the International Conference

on Software Maintenance (ICSM '04), pp. 15-24,2004.

67

[II] Jaccard, P., "The Distribution of the Flora in the Alpine Zone," The New

Phytologist, Vol-II, No.2, 29th February, 1912.

[12] Hand, D., ManniIa, H., and Smyth, P., "Principles of Data Mining," The MIT

Press, 2001, ISBN 0-262-08290-X.

[13] Townsend, C., "Introduction to Turbo Prolog," Revised Edition, 2000, ISBN 81-

7029-104-6.

[14] Rich, E. and Knight, K., "Artificial Intelligence," TATA McGRAW-HILL Edition,

1991, ISBN 0-07-460081-8.

[15] Understand 2.0 - www.scitools.com(Last visit: 15/08/2009)

[16] GraphViz-win v2.16 - www.l!rlI!lhviz.org(Lastvisit: 25/09/2008)

[17] Mitchell, B. S., "A Heuristic Search Approach to Solving the Software Clustering

Problem," Ph. D. Thesis, Drexel University, March 2002.

[18] Tzerpos, V., "Comprehension-Driven Software Clustering," Ph. D. Thesis,

Graduate Department of Computer Science, University of Toronto, 2001.

[19] Wen, Z. and Tzerpos, V., "An effectiveness measure for software clustering

algorithms," Proceedings of the 12th IEEE International Workshop on Program

Comprehension (lWPC '04), pp. 194-203,2004.

[20] Tzerpos, V. and Holt, R. C., "Mojo: A Distance Metric for Software Clustering,"

Proceedings of the (fh Working Conference on Reverse Engineering (WCRE '99),

pp. 187-193, 1999.

[21] Xfig (open source drawing tool) - www.xfig.org (Last visit: 14/07/2009)

[22] Wikipedia - www.wikipedia.org (http://en.wikipedia.orgfwiki/Cluster analysis)

(Last visit: 10/07/2009)

68

http://www.scitools.comLast
http://www.l!rlI!lhviz.orgLastvisit:
http://www.xfig.org
http://www.wikipedia.org
http://en.wikipedia.orgfwiki/Cluster

Appendix A
Table A.I Sample of MDG

Graph Definition Language to Visualize

MDG
Remarks

digraph LIBRARY
{
ranksep="3.0 equally";
return->titlebar;- return->menUi-return->retadd:
return->retshow:

bcustorn->titlebari
bcustom->bidchk:
bidchk->bidavl;
bidchk->one_book_shoWi
binfo->titlebar:
bnormal->titlebar;
bnormal->one_book_show;
book->titlebari
book->rnenui
book->bookadd;
book->bookshow;
book->bookfind:
book->bookedit:
book->bookdelete;
bookadd->one_book_add;
bookdelete->titlebar;
bookdelete->one book_delete;
bookedit->titlebar;
bookedit->one book edit;- -bookfind->titlebar;
bookfind->rnenui
bookfind->by_bid;
bookfind->by_bname;
bookfind->by_author;
bookfind->name author:
bookshow->titlebar;
bookshow->menui
bookshow->bnormal:
bookshow->bcustom:
by_addr->mnormal;
by_author->bnormal;
by_bid->titlebar;
by_bid->bidavl;
by_bid->one_book_show;
by_bname->bnormal;
by_eaddr->enormal:
by_eid->titlebar;
by_eid->eidavl;
by_eid->one_emp_showi
by_ename->enormal:
by mid->titlebar;

digraph LIBRARY: Name of the Graph
ranksep="3.0 equally": Equal
separation between ranks (layers of the
graph), in inches.

book->bookadd;: Edge from book to
bookadd i.e. book calls bookadd.

69

,

by_mid->midavl;
by_rnid->one_mern_showi
by_mname->mnormal:
by_rbid->titlebar;
by_rbid->rbidavl;
by_rbid->one_rent_show;
by_rbname->rnormal:
by_rmid->titlebar;
by_rmid->rmidavl:
by_rrnid->one_rent_show:
by_rrnname->rnormal;
controll->titlebar:
controll->menu:
controll->book:
controll->member:
controll->employee;
controll->rent;
controll->_return:
controll->infoi
ecustom->titlebar:
ecustom->eidchk:
eidchk->eidavl:
eidchk->one_emp_showi
einfo->titlebar:
empadd->one_emp_add:
empdelete->titlebar;
empdelete->one_emp_delete:
empedit->titlebar;
empedit->one_ernp_edit;
empfind->titlebar;
empfind->menui
empfind->by_eid;
empfind->by_ename:
empfind->by_eaddr;
empfind->esex:
empfind->ename_eaddr;
employee->titlebar;
employee->rnenu:
employee->ernpadd:
employee->empshowi
employee->empfind;
employee->ernpdelete:
empshow->titlebar:
empshow->menu:
empshow->enormal:
empshow->ecustorn;
enarne_eaddr->enormal;
enormal->titlebar;
enor.mal->one_emp_show;
esex->sex_code;
esex->enorrnal;
info->titlebar;
info->rnenu;
info->binfo;
info->rninfo;
info->einfo;
main->control1;

70

mcustom >titlebar;
rnernadd->one_mem_addi
member->titlebari
member->menu;
rnember->memaddi
member->memshowi
member->memfind;
member->memedit;
member->memdelete;
memdelete->titlebari
memdelete->one_mem_delete;
memedit->titlebar;
memedit->one_mem_edit;
memfind->titlebar;
memfind->menui
memfind->by_mid;
rnemfind->by_mname;
memfind->by_addr;
rnemfind->sex;
memfind->name_addr;
memshow->titlebar;
mernshow->menu;
memshow->mnormal;
memshow->mcustorn;
rnenu->titlebar;
midchk->midavl;
rnidchk->one_mem_show;
minfo->titlebar;
mnorrnal->titlebar;
mnormal->one_mern_show;
name_addr->mnormal;
narne_author->bnorrnal;
one_book_add->titlebar;
one_book_add->brnatch;
one_book_delete->titlebar;
one_book_delete->bidavl;
one_book_delete->one_book_show;
one_book_edit->titlebar;
one_book_edit->bidavl;
one_book_edit->one_book_show;
one_book_edit->bmatch;
one emp_add->titlebar;
one_emp_add->sex_code;
one_emp_delete->titlebari
one_emp_delete->eidavl;
one_ernp_delete->one_emp_show;
one_emp_edit->eidavl;
one_emp_edit->one_emp_show;
one_emp_edit->sex_code;
one_mern_add->titlebar;
one_mern_add->sex_code;
one_rnem_delete->titlebar;
one_rnern_delete->midavl;
one_mem_delete->one_mern_show;
one_mern_edit->titlebar;
one_mern_edit->rnidavl;
one mem edit->one !neroshow;

71

one mem edit >sex code:- - -one_rent_add->titlebar;
one_rent_add->midavl:
one rent add->bidavl:
one=rent=edit->titlebar;
one rent edit->rmidavl;- -one_rent_edit->one_rent_show;
one rent edit->bidavl;- -one_ret_add->titlebar;
one_ret_add->rmidavl;
one_ret_add->one_rent_show;
one ret add->bidavl:
rent->titlebar;
rent->menu;
rent->rentadd;
rent->rentshow;
rent->rentfind;
rent->rentedit;
rentadd->one_rent_add;
rentedit->titlebar;
rentedit->one_rent_edit;
rentfind->titlebar;
rentfind->menu;
rentfind->by_rmid:
rentfind->by_rmname;
rentfind->by_rbid;
rentfind->by_rbname:
rentshow->titlebar:
rentshow->rnormal;
retadd->one_ret_add:
retshow->titlebar:
retshow->rnormal:
rnormal->titlebar;
rnormal->one_rent show:
sex->sex code;
sex->mnormal;
tnormal->titlebar:
tnorrnal->one_ret show:

}

EO.::!.,
~-Ii:III
EO
~
l:!
~
c-
~ ...,

cD

~ ,......:I...

I

~

X

~

r

~~

......,

!

,. A L~Z

~

UJ.

~

Q....

•••

D-

ll:1~

"'(

~

,

J

,~--~. - -

' .. "

.:;:;.

,.

E-...;:,98

"--.--
I
i

Fig. B.3 Clustering for Xfigfrom BUET Cluster 1.0
•
I

75

"'.

.,

~ •. !I.• f1ti-'J!,I

~jJi.Bl.~

.~J,./\
~Ii_,"~~~!)i.1\'\ -.J •..i.d.~:ilil~

."' '['./':7
/,,) ()

~.IJJi)d~ .,"'\' .,
>/'~.Ij,

~ili~\' .
/'~ .. \
tB.i.~'ti.~)
'., '\
/ ..",1 1_"
'ki~~Ik~:dillj~\
: ,-;.,-1 Jor ,I"

/,\I~i'

f\

/

".!
\j

("

'tli./rJ,\

/Z7~
I~.QV:"}1i.'Lt".")/k.IiJ!l'

r' (' ;,.'r" (H /,., /~ .~

~.~~:'ti.~:1ilI.~i~:Iilj.~~Ii.I~1~.~.~.IIilJI:IS~"}
/,},' j '\ I

~i.~ i

Fig. B!4 Clustering for Xfigfrom BUNCH

76

I.n
I j)

.' -..'

-

~:
],

. c

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090

