
A,STUDY ON
COMPUTER ALGORITHMS

INVOLVING MULTIPLICATION

BY
MD, SANAUL HOQUE

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

MASTER OF SCIENCE IN ENGINEERING

~ - -----'--------

//11111111111111111111111111111111 !
#90292# I

I

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

September I996

,. "/C""

-;'
'>

"I.,

I-,

~)

i
1

,
I.,

The thesis A STUDY ON COMPUTER ALGORITHMS INVOLVING MULTIPLICATION,
submitted by MD. SANAUL HOQUE, Roll No. 901814P, SessIon 1988-89, Registration No.
84182 to the Computer Science and Engineering Department of Bangladesh University of
Engineering and Technology has been accepted as satisfactory for partial fulfillment of the
requirements for the degree of M. Sc. Engg. in Computer Science and Engineering and approved
as to its style and contents. Examination held on September 24, 1996.

BOARD OF EXAMINERS

,,

,
I

\
".' !

I.

2.

3.

(Dr. Mohammad Kaykobad)
Associate Professor and Head
Department of CSE
BUET, Dhaka

~-:>

~-A~,
(Dr. Md. Shamsul Alam)
Professor
Department of CSE
BUET, Dhaka

(Dr. M. amsher Ali)
Vice Chancellor
Bangladesh Open University
Dhaka.

Chairman
(Supervisor)

Member

Member
(External)

{
,

] DEC LARA nON.

I, hereby, declare that the work presented in this thesis is done by me under the

supervision of Dr. Mohammad Kaykobad, Associate Professor, Department of Computer Science

and Engineering, Bangladesh University of Engineering and Technology, Dhaka. I also declare

that neither this thesis nor any part thereof has been submitted elsewhere for the award of any

degree or diploma.

,
r
\
I

Countersigned

Dr. Mohammad Kaykobad
(Supervisor)

ACKNOWLEDG EMENTS

All praises are for the Almighty.

The author would like to express his sincere gratitude and profound indebtedness to his

supervisor Dr. M. Kaykobad, Associate Professor and Head, Department of Computer Science

and Engineering(CSE), BUET, Dhaka, for his constant guidance, helpful advice, invaluable

assistance and endless patience throughout the progress of this work, without which the work

could not have been completed.

The author gratefully acknowledges the kind support and encouragement extended to him

by Dr. Md. Shamsul Alam, Professor, CSE Department, BUET. The author also acknowledges

support extended to him by Dr. A.B.M. Siddique Hossain, Ex-Head, CSE Department.

The author conveys his gratitude to Professor M. Shamsher Ali, Vice-Chancellor,

Bangladesh Open University for agreeing to act as an External examiner and showing keen

interest in the work even amidst his heavy scientific and social preoccupations in national and

international arena.

The author is indebted to Mr. Ahmad Fuad Rezaur Rahman, Lecturer (on leave), CSE

Dept., BUET, Mr. Md. Yasin Ali, Lecturer (on leave), BIT, Chittagong, Mr. Mohammad Manzur

Murshed and Mr. Sandeepan Sanyal, Ex-Lecturers, CSE Dept, BUET for their effort in collecting

and sending relevant papers from abroad, and generous assistance in the thesis work.

The author also acknowledges the constant support and patience of his family members.

The arduous task of having completed the thesis could not have been accomplished without the

understanding he received from them.

Finally, the author acknowledges with hearty thanks the all out cooperation of his friends,

particularly Abdul Mannan and the faculty members of the CSE Department, who gave their

time, their knowledge and their best advice.

ABSTRACT

This ~esearch work has been aimed at investigating algorithms involving multiplication.

In particular three classes of problems namely, polynomial evaluation, matrix multiplication and

chain matrix multiplication have been considered.

The problem of polynomial evaluation has been considered with preprocessing which has

been proven efficient in case it is evaluated at many points. Belaga, Peterson-Stockmeyer and

Knuth's method of preprocessing have been subject to numerous experiments, and Belaga's

method has outperformed the remaining algorithms in terms of computational time requirement

for evaluating preprocessed polynomials, whereas Belaga's preprocessing algorithm was found to

be the most time consuming.
Matrix multiplication algorithms were tested with both integer and real data. We have

considered order of the matrices in the range 4-128 for our experiment. It was observed that in

this range none of the prospective algorithms of better orders could perform better than O(nJ
)

classical algorithm and algorithm using Winograd's identity. Multiplication algorithm using

Winograd's identity came out superior in both the cases of integer and real data elements. This

finding does not totally disagree with the previous assertion that Strassen's algorithm become

competitive only after order of the involved matrices exceed 120. However, our numerical

experiments do not indicate that even after the order exceeds 120 it can have any competitive

edge over Winograd's identity or even classical algorithm for orders near 120. We have also

introduced a new preprocessing method for converting an arbitrary system of linear equations into

a positive definite linear systems for which convergent iterative schemes exist. This

preprocessing was done by recursively using Strassen's scheme to compute A'A by using only

two-thirds of the cost required to multiply two arbitrary matrices using Strassen's scheme. This

has resulted in an algorithm with 33% savings over direct application of Strassen's multiplication

scheme.
For chain matrix multiplication, dynamic programming scheme as well as heuristic

algorithms of Chin and Hu-Shing were considered. Both the heuristic algorithms performed very

well producing optimal sequences in reasonable amount of computation with Hu-Shing's

algorithm performing better. Moreover, both these methods produced solutions whose deviation

from the optimal solution was found to be decreasing with the number of matrices in the chain.

CONTENTS

Abstract
Contents
List of Tables
List of Figures

CHAPTER ONE INTRODUCTION
Introduction
Importance of the Study
Historical Perspective
Thesis Organization

CHAPTER TWO POLYNOMIAL EVALUATION
Introduction
Representation of Polynomials

The Power Form
The Nested Form
The Root Product Form
The Lagrange Form
The Newton Form
Orthogonal Form

Preprocessing of Coefficients
Todd-Motzkin Algorithm
Belaga Algorithm
Peterson-Stockmeyer Method
Knuth Algorithm

CHAPTER THREE MATRIX MULTIPLICATION
Introduction
The Classical Method
Karatsuba's Method
Winograd's Method
Strassen's Method
Winograd Variant of Strassen's Method
Trilinear Form
Victor Pan's Method
Matrix Multiplication in Preprocessing of Systems of Linear Equations

ii

Page

1

11

IV

V

I
I
3
5
8

10
IO
11
1 I
12
13
14
15
16
19
19
20
24
27

30
30
32
32
34
36
38
41
42
45

CHAPTER FOUR CHAIN MATRIX MULT1PLlCA T10N
Introduction
Dynamic Programming Approach
Chin's Method
Hu-Shing Heuristic Method

CHAPTER FIVE EXPERIMENTAL RESULTS
Polynomial Evaluation Algorithms
Matrix Multiplication Algorithms
Chain Matrix Multiplication

CHAPTER SIX CONCLUSIONS AND RECOMMENDATIONS
Conclusions
Recommendations for Further Study

REFERENCES

11I

50
50
51
54
57

61
62
62
81

8S
8S
88

89

LIST OF TABLES

Page

TABLE 5.1 Experimental Results for Matrix Multiplication using Classical Method 64

TABLE 5.2 Experimental Results for Matrix Multiplication using Karatsuba Method 65

TABLE 5.3 Experimental Results for Matrix Multiplication using Winograd's Identity 65

TABLE 5.4 Experimental Results for Matrix Multiplication using Strassen's Method 66

TABLE 5.5 Experimental Results for Matrix Multiplication using Strassen's Method

using Winograd's Variation 66

TABLE 5.6 Experimental Results for Matrix Multiplication using Trilinear Form 67

TABLE 5.7 Experimental Results for Matrix Multiplication using Pan's Method 67

TABLE 5.8 Performance of Calculating AlA and AB 68

TABLE 5.9 Time Required to Obtain the Optimum Order of Multiplication 81

TABLE 5.10 Performance of Heuristic Chain Matrix Multiplication Algorithms 82

IV

Fig. 1.1

Fig. 5.1

Fig. 5.2

Fig. 5.3

Fig. 5.4

Fig. 5.5

Fig. 5.6

Fig. 5.7

Fig. 5.8

Fig. 5.9

Fig. 5.10

Fig 5.11

Fig 5.12

Fig. 5.13a

Fig. 5.13b

LIST OF FIGURES

Cost versus Performance Curve and Its Evolution over the Decades

Evaluation Time for Different Algorithms

Preprocessing Time for Different Algorithms

Matrix Multiplication Time for Integer Elements

Matrix Multiplication Time for Float Type Elements

Additions Required for Matrix Multiplication

Elementary Multiplication Requirement for Matrix Multiplication

Memory Access for Reading Matrix Data

Memory Access for Writing Matrix Element

Memory Access for Writing Non-matrix Element

Comparisons Made While Multiplying Matrices

Procedures Called During Matrix Multiplication

Space Requirement for Matrix Multiplication

Time to Find the Multiplication Order of a Matrix Chain

Time to Find the Multiplication Order of a Matrix Chain

v

Page

4

.63

64

71

72

73

74
75

76

77
78

79

80

83

84

CHAPTER ONE

INTRODUCTION

An algorithm is any well defined computational procedure that takes some value, or set

of values, as input and produces some value, or set of values, as output in a finite amount of

time. An algorithm is thus a sequence of computational steps that transform the input into the

output. An algorithm is usually specified as programs written in pseudocode.

An algorithm is said to be correct if, for eveiy input instance it halts with the correct

output. An incorrect algorithm might not halt at all on some input instances, or it might halt with

other than the desired result.

Algorithms devised to solve the same problem often differ dramatically in their efficiency.

A good algorithm is like a sharp knife - it does exactly what it is supposed to do with a minimum

amount of applied effort. Using a wrong algorithm to solve a problem is like trying to cut a steak

with a screwdriver. It may eventually produce a digestive result but requires considerably more

effort than necessary, and the result is unlikely to be aesthetically pleasing.

Analyzing an algorithm mean predicting the resources that the algorithm requires. By

analyzing several candidate algorithms for a problem, the most efficient one can be easily

1

,,

identified. Such analysis may indicate more than one viable candidate, but several inferior

algorithms are usually discarded in the process.

Algorithms can be evaluated by a variety of criteria. Mostly the interest is in the rate of

growth of time or space required to solve larger and larger instances of a problem ..

The time needed by an algorithm expressed as a function of the size of a problem is called

the time complexity of the algorithm The limiting behavior of the complexity as size grows is

called the asymptotic time complexity If an algorithm processes inputs of size n in time an2+bn+c

. for some constants a, b, c, then the time complexity of that algorithm is O(n 2). Similar definition

can be given for space complexity and asymptotic space complexity The asymptotic complexity

of an algorithm ultimately determines the size of problems that can be solved by the algorithm.

If for a given size, the complexity is taken as the maximum complexity over all inputs

of that size, then the complexity is called the worst case complexity. The worst case running time

of an algorithm is an upper-bound on the running time. Knowing this gives a guarantee that the

algorithm will never take any longer.

If the complexity is taken as the average complexity over all inputs of a given size then

the complexity is called the expected .complexity (also called average complexity). The expected

complexity of an algorithm is more difficult to ascertain because it may not be apparent what

constitutes an average input for a particular problem. Most often it is assumed that all inputs of

a given size are equally likely. A randomized algorithm can sometimes force it to hold.

2

-~

In analyzing algorithms, the accuracy of the computed result is another important

criterion. The computer being a finite state machine, is capable of representing numbers only to

a finite number of digit positions. As a result, most numbers are rounded if they are too long for

the computer to represent exactly. Thus, some algorithms may produce approximations that are

wildly inaccurate.

IMPORTANCE OF THE STUDY

Classical science is based on observation, theory and experimentation. Unfortunately,

scientists cannot use physical experiments to test many of their theories. High speed computing

allows them to test their hypothesis in another way by developing a numerical simulation. Many

important scientific problems are so complex that solving them via numerical simulation requires

extra ordinarily speedy computer.

Ever since conventional computers were invented, their speed has steadily increased to

match the needs of emerging applications. One might suspect that this would decrease the

importance of efficient algorithms However, just the opposite is true. Fundamental physical

limitations make it impossible to achieve further improvements in the speed of these computers

indefinitely. Recent trends show that the performance of these computers is beginning to saturate.

A cost-performance comparison over the last few decades revealed that at the lower end,

performance increases almost linearly (or even faster than linearly) with cost. However, beyond

a certain point, each curve starts to saturate, and even smaller gains in performance come at an

exorbitant increase in cost.

3

1
I

Perf omlancC

.19905

.. 1980, ,
" 1970;

emt

.... -_ ..-

Figure 1.1 Cost versus performance curve and its

evolution over the decades.

Instead it can be shown that speed gam that can be achieved through algorithmic

improvements is much more prominent than that can be achieved from a high speed next

generation computer.

The third argument that may be placed in favour of hardware is the use of parallel

computers. This is a comparatively new field. Besides many algorithms suitable for conventional,

single processor computers are not appropriate for parallel architectures. Many algorithms with

inherent parallelism have a higher computational complexity than the best sequential counterpart

Thus total system performance depends on choosing efficient algorithms as much as on choosing

fast hardware.

4

.J

J Many of the scientific calculations are repetitive in nature. Saving a small amount of

computational time for frequently used program segments can result in large overall savings.

Since computer arithmetic is in the heart of every computational work, a marginally better

algorithm for one of these basic operations will result in tremendous savings.

IIISTOIUCAL I'~:RSI)ECTIVE

Algorithms for doing elementary arithmetic operations such as addition, multiplication,

and division have a very long history, dating back to the origins of algorithm studies in the work

of the Arabian mathematician al-Khowarizmi, with roots going even further back to the Greeks

and the Babylonians.

W.G. Horner[1] taught an elegant way to rearrange a polynomial for computation. He

gave this rule early in the nineteenth century. Though the fame goes with Horner, this idea was

used by Sir Isaac Newton[2] in 1711, 150 years earlier than Horner.

AM Ostrowski[3], in 1954, was the first to ask whether a good algorithm, Horner's rule

for polynomial evaluation, was the best method possible. This began the modern history of

arithmetic complexity. Ostrowski was only partially successful in answering the fundamental

question he posed.

5

-,

In 1966, V. Y. Pan(4] established that Horner's rule is optimal with respect to the number

of multiplications/divisions for the evaluation of a polynomial. Z. Kedem and D. Kirkpatrick, in

1974, provided lower bounds on addition/subtraction operations for a number of problems

including polynomial evaluation and matrix multiplication. Initially all scientific endeavour to

polynomial evaluation were attempts to bring about efficient evaluation schemes by means of

conceptually new representation forms.

In 1955, Motzkin(6] introduced the idea of preprocessing the polynomial coefficients.

Belaga(5], in 1958, established the lower bound on polynomial evaluation with preprocessed

coefficients. Pan(7]' in 1959, proposed a form of economical evaluation of a polynomial. Since

then, several other schemes of polynomial evaluation were brought into light. Rabin and

Winograd(8], in 1971, presented a number of rational preconditioning methods.

Multiplication and division, of the four basic arithmetic operations, are the most time

consuming. Thus minimum computation time can be achieved if multiplications can be done fast.

Karatsuba(9] suggested a method for doing multiplication with running time of order n10g
'.

A.L.Toom(10], in 1963, gave a new idea to further improve Karatsuba's method. S.A. Cook(ll]

showed how this method can be adapted in a computer program. V. Strassen and A. Schrnage(12]

jointly discovered a 2-base-FFT based scheme to multiply large integers.

The classical matrix multiplication algorithm seemed irreducible for a long time. In 1962,

A. Karatsuba(9], with Yu Ofman, developed a method for multiplying two matrices. His

algorithm uses fewer number of additions and the same number of multiplications as compared

6

to that of the classical method. S. Winograd[14], in 1967, discovered a method based on the

identity involving the sum of two pairwise products. V. Strassen[15], in 1969, observed that a

pair of 2 x 2 matrices can be multiplied in 7 multiplications, instead of the usual 8. This single

result has provided the greatest impetus to the field of computational complexity.

After Strassen's 0(11100 7) algorithm, numerous attempts were made to improve it.

S Winograd[16] further improved Strassen's method. He presented an algorithm which uses 7

multiplications and IS additions to multiply two 2 x 2 matrices. Victor Pan[17], in 1978,

discovered that it could be lowered to 0(112.795). This breakthrough led to further intensive analysis

of the problem, and the combined efforts of D. Bini, M. Caporani, G. Lotti, F. Romani, A.

Schrnhage, V. Pan, S. Winograd, and D. Coppersmith (see [30], p.482) culminated in

constructions that have an asymptotic running time of 0(112.5161). The asymptotically most efficient

algorithm to date, due to V. Pan[18], has a running time of 0(11'-496).

Francis Y. Chin[19], in 1978, presented an 0(11) algorithm for determining a near-optimal

computation order for chain-matrix multiplication problem. A.K. Chandra[13) presented an 0(11)

algorithm which produces an order that requires no more than twice the optimum computation

time. T.e. Hu[20), along with Shing, presented a heuristic algorithm to find the optimum order.

7

.
'.

< ••

'':<'

THESIS ORGANIZATION

This thesis comprises six chapters. Chapter one provides the motivation for the study. It

explains what algorithm is, what complexity is, why this analysis is needed. It also gives some

insights into the various developments in the field of arithmetic computation.

Chapter two deals with the evaluation of polynomials. Initially it describes some

polynomial representation techniques and their associated evaluation algorithms. Then it

introduces the concept of preconditioning and describes algorithms that uses preconditioning.

Algorithms to evaluate polynomials with complex arguments are also described here. In addition,

techniques for evaluating several polynomials at several different points simultaneously are

presented in this chapter.

Chapter three is dedicated to matrix multiplication. Operation on matrices are at the h~art

of scientific computing. Though classical method of matrix multiplication is widely used, several

other efficient algorithms have been developed. This chapter presents Strassen's surprising

algorithm and several other algorithms.

Chapter four describes techniques that should be employed while performing chain matrix

multiplication. The way matrices are parenthesized has a dramatic impact on the cost of

evaluating the product. This chapter presents a dynamic programming approach to determine the

optimum order. In addition, it also presents two other algorithms, one by F.Y. Chin and the other

by Hu and Shing, that can efficiently determine near-optimal order.

8

Chapter five is intended for the experimental results based on the algorithms discussed so

far in the previous chapters. This chapter compares the complexities of similar algorithms.

In chapter six, conclusions were made on the findings and some issues for further research

in those directions are recommended.

9

CHAPTER TWO

POLYNOMIAL EVALUATION

Evaluation of polynomials is one of the most widely used operations in practical

computation. In fact, many algorithms entail the evaluation of one or more polynomials at a

large number of points. A polynomial is, generally, an expression of the form

A(x) axn-1a xn-1-j
n n-.) ••• , 81X.' 80 (2.1)

where the coefficients an' an-J ' •••• , aJ ,ao are elements of some algebraic system

(e.g., integers, floating point numbers, complex quantities etc.) and x is an indeterminate. If

an *0, n is referred to as the degree of the polynomial.

Evaluation of polynomials occur while computing transcendental or more complex

algebraic expressions. Trigonometric functions like sine, cosine etc. and exponential and

logarithmic functions are sometimes expressed as a polynomial and their evaluation depends on

the evaluation of those polynomials.

10

REPRESENTATION OF POLYNOMIALS

Any particular polynomial may be expressed in a variety of ways. We can represent a

polynomial of degree n by its value at n + J points, by its roots, or by its value and all

derivative values at a single point. Each of these representations exactly describe the polynomial

but where numerical evaluation is concerned, the various forms show different properties.

The following section describes various ways of evaluating a polynomial, depending on

the form in which it is presented.

The Power Form : The most common and widely used form of a polynomial is the

power form shown in eqn. (2.1). This is sometimes referred to as coefficient representation of

a polynomial. A polynomial given in power form can be evaluated at a point Xo using the

following algorithm. Algorithm 2.1 requires 2n multiplication, n addition and (2n +2)

assignments.

procedure powerform (A, n, xo)
S 0(- °0; r 0(- 1
for i <- J to n step J do

r «- r * Xo
s <-aj * r + s

repeat
return (s)
end powerform

Algorithm 2.1

11

The Nested Form : W. G. Horner[l] suggested a different representation for a

polynomial. This form is known as nested form or Horner form. A polynomial in Horner form

is expressed as

This suggests the evaluation algorithm for Horner form as

procedure horner (A, n, xo)
s +-- an
for i ~ (n-1) to 0 step -1 do

s +- s * Xo + aj

repeat
return (s)
end horner

Algorithm 2.2

.................................. (2.2)

Algorithm 2.2 requires n multiplication, n' additions and (n+ 1) assignments.

A slight variation of Horner's form states a polynomial as

+((... (a2q_, x2 \- a2q_J)x
2 + ...)x2 + a,)x

where p= L n /2J and q = ["n /21 ..(2.3)

We can evaluate this polynomial using the algorithm shown in next page. This algorithm

requires (11+ 1) multiplications and n additions. Though slightly expensive as compared to

Horner's algorithm, this algorithm is particularly useful if one wishes to evaluate both A(x,) and

12

A(-x,). This is accomplished with just one extra addition operation, as such two values are

obtained almost at the cost of one.

procedure horner _variation(A, n, xo)
u+-2 *LnI2J .. y'- 2 *inI2l-1
sJ 0(- au ; s] of- av
r of- Xo * xa
for (i ~ u - 2, j = y- 2 .. i ~ 0; j ~ 0 .. i = i-2, j= j - 2) do

Sf +- S, * r + Qj

s] (.,-.\') * r + Qj

repeat
return (sJ + S2 * Xo)

end horner variation

Algorithm 2.3

The Root Product Form :

n

The Root Product form of a polynomial is given by

A(x) = Go IT (x - y,)
i =1

where, A(y,) = o. The roots y,'s can be real or complex.

...............(2.4)

}..'

Important cases of polynomials in this form anse, for example, In statistics. The

computational algorithm for this representation can be expressed as .

procedure root-'product (y, Go, n, xo)
S +- Go

for i +- 1 to n do
S +- S * (xo - Y i)

repeat
return (s)
end root-.product

Algorithm 2.4

13

It can be easily seen that evaluation algorithm for the Root Product form of representation

requires n multiplications and n additions.

The Lagrange Form : A polynomial can be represented by their values at

different points. Given (n + 1) points [x; , f(x;)], we can uniquely describe a polynomial A(x)

of degree :s n that goes through these (n + 1) points. A polynomial has many different

point-value representations, since any set of (n+ 1) distinct points can be used as a basis for the

representation. A polynomial thus can be expressed as

l x . x'jA(x) ~ L II__J fj
I~i$n iii Xi - Xj (2.5)

This representation is quite convenient for many operations on polynomials, such as

addition, subtraction, multiplication, etc. We can compute the polynomial at any point x = Xo

using Algorithm 2.5 given below. This algorithm requires (2n2 + 2n) multiplications and (2n
2
+ 3n

+ 1) additions which is discouragingly very high.

procedure lagrange (X, F, n, xo)
s+-O
for i +- 0 to n step 1 do

p ,- J;
for j ,- 1 to n step 1 do

if i '* j then
p +- p * (xo - x;) I (x; - xj)

endif
repeat (j)
s+-s+p

repeat (i)
return (s)
end lagrange

Algorithm 2.5

14

The Newton Form :. The Newton form of a polynomial is a modified form of

Lagrange's form. This polynomial form arises in the form of interpolating a function given in

tabular form. The form does not occur directly but is arrived at after some manipulation on the

.direct interpolating polynomial.

Lagrange's polynomial of degree two can be expressed as

{ (x
I

(XI

x2)(x x))

x)(x, x))

(x x,)(x x)) (x xl)(x x2)
I 1;------ I fj------

(x2 xI)(X2 x)) (x) x,)(x) x2)

and that of degree one can be expressed as

X x2 X Xl1;-- 't;,--
XI x2 x2 XI

Subtracting,

Now 1'2 (x) - PI (x) is a second degree polynomial that vanishes at x =xj and X2 , and must

therefore be a multiple of (x - xI)(X - x2).

Pix) - Pix) = (X2 (X-XI) (x-x2).

Similarly, it can be shown that

therefore,

15

Generalizing, we can write

.......... (2.6)

This is the Newton form of a polynomiaL The computational algorithm based on Newton

form may be stated as follows:

procedure newton (a, p, n, v)
s +- an
for i ,- n to 1 step -1 do

s <- s * (v - P) + a'_1
repeat

return (s)
end newton

Algorithm 2.6

This algorithm requires n multiplications and 2n additions.

Orthogonal Form : The orthogonal polynomial form is given by

n

Fn(x) L bk Qk(x)
k-O

16

....................... (2.7)

where the orthogonal polynomials, {Q, (x), i = 0, J, ... ,n} satisfy a recurrence relation

Q" lx) =(A,x + B,) Q'(x) - C,Q,} (x) with A, ,,0, Qo(x) ~ J, Q.} (x) ~ ° and where A" B, and

C, are independent of x. The computational algorithm for orthogonal representation is,

procedure orthogonal (A, B, C, n, b, Xo)
Vn +- bn

Vn.} +- (An.} Xo + Bn.}) Vn + bn.}
for k +- n- 2 to ° by - J do

Vk +- (Ak Xo + Bk)Vk+} - CkVk+2 + bk
repeat

return (Vo)
end orthogonal

Algorithm 2.7

This scheme of evaluation requires (3n- J) multiplications and (3n- J) additions.

Chebyshev polynomial Tlx) is a classical orthogonal polynomial. Here,

n

Pn(x) - L bkTk(x)
k,O

and Bi~O, C,~ 1 for ie?O,Ai~2for ie?1 and Ao~ 1.

..................... (2.8)

Clenshaw[21] developed an algorithm (referred to as Chebyshev-Clenshaw algorithm) to

evaluate a Chebyshev polynomial.

procedure chebyshev _c1enshaw (n, b, Xo)
Y +- 2 * Xo
V .- bn n

Vn.} +- Y * Vn + bn.}
for k +- (n-2) to J step - J do

Vk +- Y * Vk+} - Vk+2 + bk
repeat

return (xo*V} - V2 + bo)
end chebyshev _c1enshaw

Algorithm 2.8

17

The evaluation of a general polynomial as a weighted sum of Chebyshev polynomials

using the above algorithm requires (11.1.1) multiplications and 211 additions.

Bakhvalov[22) developed another algorithm to evaluate Chebyshev polynomials. This

algorithm is referred to as Chebyshev-Bakhvalov algorithm and is given below.

procedure chebyshev _bakhvalov (11, h, Xo)
for k ,- 0 to 11-2 do

Dk ,- (hk - b"'2) / 2
repeat
D

n
_
1

<---- bn_1 /2
V
n

<---- bn / 2
Y <---- 2 * Xo
V
n
_
f

,- Y * Vn + Dn_1

for k <---- 11-2 to 0 by - J do
Vk ,- (Y * Vhf - Vh2) + Dk

repeat
return (Vo)
end chebyshev _bakhvalov

Algorithm 2.9

This algorithm requires (11+ J) multiplications, (11+ J) divisions by a factor of2, and (311- J)

additions.

Algorithm Chebyshev _Clenshaw is more efficient than algorithm Chebyshev _Bakhvalov

in terms of the number of arithmetic operations, but for certain polynomials the use of the latter

may be preferable on the grounds of numerical accuracy.

18

PREPROCESSING OF COEFFICIENTS

There are many possible representations of a polynomial, all of which may be used as

inputs to a computation. A.M. Ostrowski[3] showed that at least n multiplications and n

additions are required to evaluate degree n polynomials for n'fA with the underlying assumption

that the polynomial coefficients were not in any way artificially transformed. Since then, this

result has been proved true for all non-negative values of n. This establishes that the Horner

algorithm is optimal regarding the number of arithmetic operations involved.

However, it can be shown that if the polynomial coefficients are preprocessed for the

evaluation of the polynomial, it requires fewer multiplication and/or additions than the Horner

algorithm. This preconditioning involves a lot of additional arithmetic operations, but it has to

be done only once. The overall savings on the number of arithmetic operations may be

significant if the polynomial is evaluated at many points.

In distinction to the polynomial forms considered earlier, polynomials with preprocessed

coefficients do not arise 'naturally' but are obtained in an artificial way, with the sole purpose of

facilitating their fast evaluation.

Todd-Motzkin algorithm: Motzkin[6] was first to introduce the idea of

-S:,

1

preprocessing the polynomial coefficients for the purpose of polynomial evaluation. The

Todd-Motzkin approach expresses a degree four polynomial as

A(x) = cx. [z(z +x+ cx,) + cx3]

19

-: ~-.•'

z = x(x + ao) + a,where,

substi tuti ng,

A(x) = a4x
4 +a.(2ao+l)x' + a4[a,+a2+ao(ao+I)]x2

+ a4[(a,+a2)aO+a,]x + a.(a,a2+a,)

equating like powers of x,

.................... (2.9)

a 0 = 0.5 (a, / a4 - I)

a 1 = a, / a4 - aop.

a2 = P - 2a,

a, = ao/ a4 - a,(a, + (2)

where, P = a2 / a4 - ao(ao + I)

Three multiplications and five additions are required to evaluate a degree four polynomial

using this approach. Though the preconditioning operation (i.e., evaluation of a's) requires extra

9 multiplications/divisions and 7 additions/subtractions.

Belaga Algorithm :

In 1958, E.C. Belaga[5] formulated two theorems stating that "For any polynomial A(x)

of degree n, there exists a computational evaluation seheme that requires L(n+1)/2J+1

multiplications and (n+ 1) additions" and "No evaluation scheme exists with less than

L(n+l)/2J multiplications or with less than n additions." These theorems establish the lower

bounds on the number of multiplications and additions, under the assumption that some

20

preprocessing of the coefficients is allowed without cost. The general scheme suggested by

Belaga can evaluate any polynomial of degree n 2: 4 with prior preprocessing of the coefficients.

The scheme for evaluation of a polynomial as suggested by Be1aga can be described as

n

Fn(x) ~L ak x
n-k ~

k-O
{

0:n" "In121 I 0:0, fOr n even

0: n.' 1X "In121 ., 0:0, for n odd (2.10)

where, k = 3, ... , Ln/2J

V2 = (VI + X + 0:2)(VI + 0:3) + 0:,

We can easily see that the Belaga computational scheme reqUIres L(n+1)/2J+ 1

multiplications and 2Ln/2J+ 1 additions.

E. W. Cheney[26] developed a method for computing the parameters 0:, 's in the Belaga

scheme in terms of (ao' al •..• ,an)' Let

1
0:n ,I v", I 0:0

3
0
X n I 3

1
Xll I I ••• I an ' In - In/2J

O:n'lxVm 10:0 ...(2.11)

Without restricting the generality of the method, we may assume that 110 = O:n+1 = 1, and

considering

21

v = X2m + C X2m -I + C X2m -2 + + Cm I 2 ... 2m

_ (2m -2 + b 2m -3 + b 2m -4 b)(2)- X IX 2X + ... + 2m-2 X + alx + a2m-, + a2m •... (2.12)

where cj = aj• j = I•...• 2m. m = l~j

Equating like powers of X in eqn. (2.11) gives:

Setting al

I (m'-I)c,,1
-(CI I). we obtainblm m

a
2m

-
1

is still unknown. To obtain this value, solve

k = 3•... ,2m-2

after substituting the b's in it. At this point. substitute the value of a2m-1 into the expressions for

b2m-2 •... ; b2 and obtain their numeric values. Finally. solve the equation

We have now obtained values for an = a2m , an-1 = a2m-l, and al. By replacing m by

m-I in eqn.(2.12) and solving the system obtained in the manner similar to the above. we obtain

a
n
-
2

and a
n
-
3
. The process is repeated until all aj are computed. The parameters of Belaga form

for a given polynomial are not unique. In addition. some of the a) 's may be complex for a

polynomial with real natural coefficients.

22

"-

-,

An example:

Let, P7(X) = x7 - 2x' + x' - O.lx be the polynomial to be evaluated.

We may write,

v, = x6 - 2x' + x2 - O.I

= (x' + b, x' + b2 x
2 + b, x + b,)(x2 + a, x + a,) + a6

here, m = 3, c, = 0 , c2 = -2, c, = 0, c, = I, c, = 0, c6 = -0.1.

we also get, a7 = 1.0 , and ao = O.

a I = -0.333, bl = 0.333

b2 = - 1.89 - a" b, = - 0.63 - 0.67a,

. 2
b, = 0.79 + 1.22a, + a, .

Now, solving . 0.26 + 1.04a, + a,2 = 0, we get a, = -1.607 or 2.39.

substituting, a, in the equations for b2 , b, , b, , we get

b2 = - 0.283, b, = 0.447, b, = 1.412.

finally, a6 = c6 - a, b, = 2.169.

Thus we get,

V2 = x' + 0.333x' - 0.283x2 + 0.447x + 1.412

Equating like powers,

b2 = - 0.172 - a,

for a, , we get, 0= 0.504 - 0.666a, or a, = 0.757.

therefore

and

b2 = - 0.929

a, = 1.412 - a, b2 = 2.115.

23

This is the end of preprocessing.

For evaluation, we have,

VI = (X - 0.333) X

V
2
= (VI + X - 0.929)(VI + 0.757) + 2.115

V, = V2 (V, - 1.607) + 2.169

P(x) = x V, + 0

For x = 2, we can easily calculate

VI = 3.334

V2 = 20.136

V, = 36.944

P(2.0) = 1.0 x 2.0 x 36.944 + 0.0

= 73.887

Paterson-Stockmeyer method:

M. Paterson and L. Stockmeyer(25] have developed a rational preconditioning algorithm

in which only rational functions are used in the preconditioning phase. Their method was

motivated by computation of polynomials whose coefficients and variable are matrices. This

algorithm is developed assuming the polynomial P(x) to be monic and of degree n. We can

decompose P(x) as follows:

24

where,

lnll] 1

PI (x) Xln/l] I L aixi
j ()
lnl2]~ I

Pl(X) XlnllJ, L Pixi
i-O

equating like powers of x, we can obtain

........(2.13)

n is odd

n is even

.............. (2.14)

Only rational operations are needed to compute {aj}, Y, {Pj} from the coefficients of

P(x). More over, the idea can be recursively used to compute the monic polynomials PJ(x) and

P2(x)

Not counting the cost of preconditioning nor computing the appropriate powers of x, we

can analyze the multiplication and addition complexity of the algorithm. For simplicity, let

Then the cost of multiplication is f(k+l) = 2f(k) +1 wheref(l)=O~

25

After simplification,

or, in terms of n,

f(k+l) = Z' - 1

f (n) " nlZ

Additional log n multiplications will be required for computing the powers of x.

The cost for addition, g (k+ I) = Zg (k) + Z where, g (I) = I.

After simplification, g (k+ I) = 3 . Z' - Z

or, in terms of n, g (n) " 311/2

Hence the complexity after preconditioning is roughly (niZ + log n) multiplications and

3n/Z additions.

Example:

Let the polynomial to be evaluated is

P(x) = x7 - x6 + 8x' - 4x' + 6x' + Zx2 - 5x + I.

We may write,

equating we get, y=5, lX2 = -I, lX, = 8, lXo = -4, P2 = 7, P, = -45, Po = 21.,

Thus P,(x) = x' - x2 + 8x - 4

= (x2 + y')(x + lXo') + (x + Po')

where y' = 7 lX' = - 1 n' = 3, , 0 , ""0

26

and . P,(x) = x3 + 7x' - 45x + 21

= (x' + y")(x + aD") + (x + Po")

where, y" = -46, ao" = 7, Po" = 343.

Now, 10 evaluate P(2.0), we get,

Pi = (2+ao') = I, P,' = (2+Po') = 5, PI" = (2+ao") = 9, P," =(2+Po") = 345.

P = (2'+y')P' +P '= 16 P = (2'+y")P "+p " = -33I I 2 , 2 1 2 .

P(2) = (2'+y)I\+P, = 303.

Knuth Algorithm :

Donald E. Knuth suggested another preprocessing scheme. His method is described below.

Let the polynomial be expressed as

n

Fn(x) L cix i
i~O

This arbitrary polynomial of degree n can be expressed as

.......................... (2.15)

where, an is a constant, Pn _, is a polynomial of degree (n-2), and R,. is of degree at most 1.

Since an is arbitrary, it can be chosen to make R,. a constant. The factoring can be continued in

the same way and thus would yield an Ln/2J + 2 multiplication algorithm.

27

To establish that appropriate set an and R,. can always be obtained, the following scheme

can be used. We may write,

which means that o1Fn are roots of Pn(x) - R,..

If we let Co = Co -- Rn ' then

n
il2 -L CjCXn I C 00

i," I

~

n
and, L c;a~!2(I)'

- 0I Co
j.l

Assuming, an # 0, adding and subtracting the above two equations, we get,

In!2 J

L C;z;a~1 Co 0
i ~)

....... (2.16)

.... (2.17)

.......... (2.18)

and,
[n121 1-1-

L t;i 1 an 2

i' I

o(2.19)

Multiplying eqn. (2.19) by Fn, we get that an is a root of the eqn (2.19)

Some of the a's may be complex.

28

'f

\
1. Ev~[32] gave a theorem which can be used to make all the a's real. According to Eve, If Pn

(x) = L c,xi has n -1 roots with nonnegative real parts, then all the roots of

r n12.1
Qn(x) - L c2i_1 X

i
-
I

i~t are real.

Thus, Pn(X) can be altered so that all its roots will have non negative real parts. If

-Pn(x) = Pn(x - r), where r is a positive number large enough to guarantee that all the roots

-
of P n(x) have positive real parts.

There is a very simple, though inefficient, way to determine the value of r. It has been

established that any root of a polynomial A (x) •• anx n, an -I X n 1, "'1 a1x I 00 will satisfy,

A1+- ,
80

So, by selecting r equal to an amount

negative real parts.

-, P n (x) will have roots, all with non

To evaluate P
n

(x), evaluation of P,,(x I r) will give the desired result.

29

CHAPTER THREE

MATRIX MULTIPLICATION

A matrix is a set of numbers arranged in a rectangular array written between parentheses

or double lines on either side of the array. For example,

Gil GI2 GI3 .• GIn

G21 G22 G2n

A G31

amI am2 amn

In the matrix, A = [a'i 1, where for i =1,2, ...,m and} =1,2, ... ,n,' the element of the

matrix in row i and column} is a'j' The elements of a matrix are numbers from a number system,

such as, real numbers, complex numbers etc. A matrix of m rows and n columns is called an

(m x n) matrix. Matrices are usually denoted by capital bold faced letters. A matrix does not have

any quantitative value. Matrices can be added, subtracted, multiplied, inverted, transposed etc.

Such sets and arrangements occur in various branches of applied mathematics. In many

cases they are sets of coeflicients of linear transformations or systems of linear equations arising,

30

for instance, from electrical networks, frameworks in mechanics, curve fitting in statistics, and

transportation problems. Matrices are useful because they enable us to consider an array of many

numbers as a single object, denote it by a single symbol, and perform calculations with these

symbols in a very compact form. The mathematical shorthand thus obtained is very elegant and

powerful and is suitable for various problems. It entered engineering mathematics about sixty

years ago and is of increasing importance in various branches.

Matrix multiplication is principally used in many successful algorithms of linear algebra,

for example, solving a set of linear algebraic equations, matrix inversion, evaluation of the

determinant, boolean matrix multiplication, etc. The complexity of a variety of algorithms such

as those for performing transitive closure of graphs, parsing of context-free languages, etc., can

be shown to depend on the complexity of matrix multiplication. In other words, if faster

algorithms for matrix multiplication are developed, they may be applicable in speeding up the

algorithms for solving a variety of interesting problems.

Some recently developed matrix multiplication algorithms are discussed here. These

methods compute the product of two matrices using significantly fewer arithmetic operations

compared with the classical technique. These algorithms are yet of theoretical interest only as

they can actually supersede the standard method only when applied to solve problems of truly

large size. Still, these new algorithms form a basis for the development of genuinely efficient

algorithms for this important class of problems.

31

THE CLASSICAL METHOD

Two matrices can only be multiplied if the number of columns in the first matrix equals

the number of rows in the second one and multiplication of matrices is not commutative. If

A = (a;j) is an m x n matrix, B = (bjk) is an n x p matrix, then their matrix product C = AB is

an m x p matrix C=(C;k)' where,

C,k L <1ii bjk
i:f,j:f, n

where, I ~ i ~ m, I ~ k ~ P (3.1)

The total number of operations required by this process IS mnp multiplication and

mp(n - 1) additions. If the matrices are square, i.e., m = n = p, the above process performs n 3

multiplications and 11'(11-1) additions.

KARATSUBA'S METHOD

In 1962,A. Karatsuba, with Yu Ofman, developed a method for multiplying two matrices.

His algorithm uses fewer number of additions and the same number of multiplications as

compared with that of the classical method.

Let C be the product of the two matrices A and B each of order m2'. We may represent

A, B, C, as

32

The elements C;j can now be computed using the formula

CII = AII(BII+B,,) + (A12-AII)B",

C'2 = A12(B,,+B12) - (A\2-A,,)Bm

C" = A2,(B,,+B2,) + (A"-A,,)B,,,

C" = A,,(B,,+B'2) - (A,,-A2,)B'2

Another possibility is to use

C" = A12(BII+B,,) - (A12-AII)BII,

C\2 = Al1(BII+B,,) - (A12-AII)B,I'

C" = A,,(B\2+B,,) + (A,,-A,,)Bm

C" = A,,(B12+B,,) - (A,,-A,,)B12•

........................ (3.2)

. (3.3)

Let a"',k denote the algorithm to multiply matrices of order n = m2' , where a",. 0 is the

classical algorithm for matrix multiplication with m3 multiplication and m2(m-l) additions. If

Ma"" k denotes the number of multiplication required by am k' then

Ma",.k 8 Ma",.k_J

8k m3

n3 (3.4)

Let Sa",. k define the number of additions and subtractions. Since the algorithm requires

8 additions/subtractions of matrices of order m2k-' and also the 8 matrix multiplication of order

m2k-' requires Sam. k-J additions each. Thus

33

= n3 _ 2n'

Thus when used recursively, Karatsuba method saves n' additions.

WINOGRAD'S METHOD

......................... (3.5)

Samuel Winograd discovered, in 1967, that there is a way to trade about half of the

multiplications for additions as compared to that of the classical algorithm. This method is based

on the identity involving the sum of two pairwise products, as shown

where,

" (xz+ YZ--I k)(XZ--1+ YZ-k)-a-bk+ckL..J 1, 'J 'J. I, J J, I J

a- = " X-z- X-z- 11 ~ I, J J, j-

!-!'j:5.!!..,

bk = I: YZj-1.k YZj.k
I :5.j:5.!!..

2

.., (3.6)

n even
n odd

This identity can be used in multiplying matrices. Let A and B be two matrices of

34

dimension m x nand n x p, respectively. The algorithm for computing C=AB usmg the

Winograd Method is given as

(assuming, n = 2k)

k

eli = I: (aj•2u_1 + b2u) (aj•2u + b2u_l) - t;-.¥j
u -I

i =1, ... ,m j =1, ... ,p

........... (3.7)

where,
k

1; = I: ai,2u-1 8j,2u
U'!

k

gj = I: b2u_l,j b2u•i
u. 1

i = 1,2, ... , m

j = 1,2, ... , p

If n is not even, we can easily pad a 0 column to matrix A and 0 tow to matrix Band

apply the algorithm accordingly. The total number of operations required by this process is

",;p + ~(IIl+P) multiplication and %nmp + mp + (~ - 1)<m+ p) additions. If the

matrices are square of dimension n by n, we shall need (n
2
' + n 2) multiplications and

(%n J + 2n 2 _ 2n) additions. By using Winograd's method, the number of multiplication is about

halved while some price for this reduction is paid in terms of an increased number of additions

required.

35

STRASSEN'S METHOD

In 1968, Volker Strassen discovered a clever scheme for multiplying matrices. Strassen's

method computes the product of 2x2 matrices with only seven multiplication and eighteen

additions. By using the method recursively, he was able to multiply two n byn matrices in

times D(niO'7), which is of order approximately n 2.8i.

Let A, B are two matrices of order n (= m2') to be multiplied, we may write them as

and their product is

where the Aik, B'k' eikare matrices of order m2"'.

Then we compute

I = (Aii+A,,)(Bii+B,,),

.................... (3.8)

36

..

CII = I+IV-V+VII,

C" = I1+IV,

C12 = IlI+V

Cn = I+III-II+VI (3.9)

Let OIm.k denote the algorithm to multiply matrices of order m2' , where 01"1.0 is the

classical algorithm for matrix multiplication and requires m' multiplication and m'(m-l) additions.

It follows that 01"1k requires 7 multiplication of matrices of order m2'.I. Denoting by MOIm.k the

number of multiplication required by algorithm OIm.k' we get

MOIm,k 7 MOim k.!

7km' (3.1 0)

Similarly, SOIm,k defines the number of additions and subtractions required by the

algorithm OIm.k' Now from eqns. (3.8) and (3.9), it follows that OIm,k requires 18 additions of

matrices of order m2k.'. Also the multiplication of matrices of order m2k.', each requires SOIm.k.!

additions. Thus

SOIm.k 18 (m2k.')' + 7SOImk.!

= 18 (m2k.')' [1 + 7/2' + 7'/24 + + 7k•I/(2"')'] + 7kSOIm,0

(S+m)m' 7' - 6(m2')' (3.11)

37

".

From eqns. (3.10) and (3.11), the total number of arithmetic operations is

Tam,k = Mamk + Samk. .
7km3 + (S+m)m27k - 6(m2k?

= (S+2m)m27k - 6(m2k?

setting k = LJog n - 4J and III = Ln2.kJ +1, with n assumed to be ::::16, and introduced to

includc all II in [he rangc 1Il2'.' < II ::; 11/2" we gct,

< 2n\7/8)k + 12.03n2(7/4)k

now 16.2k ::;n, k c 0

= [2(817)'Og".k + 12.03(417)'ogo. k] n'Og7

::; 4.7 n'og7 (3.12)

Thus using Strassen's matrix multiplication algorithm, the product of two matrices of

order n can be computed using no more than 4.7 n'og7 arithmetic operations.

WINOGRAD VARIANT OF STRASSEN'S METHOD

S. Winograd further improved Strassen's method. He presented the following algorithm

which uses 7 multiplication and IS additions to multiply two 2 x 2 matrices. Let A and B be two

matrices of order n = 1Il2' and their product be denoted by C. We write

38

.,

and their product is,

whcre the A", B", Clk arc malriees of order m2'~I. To evaluate C, we compute.

(Q2) = All + A12

(Q3) = AI2 - (QI)

(Q4) = A" - (Q3)

(Q5) = B" - B21

(Q6) = BI2 - BII

(Q7) = B21 - (Q5)

(Q8) = B21 - (Q7)

(1'1) = A2IBII

(1'2) = A"BII

(1'3) = (QI)(Q5)

(1'4) = (Q2)(Q6)

(1'5) = (Q4)B"

39

.......................... (3.13)

(1'7) = (Q3)(Q7)

(Q9) = (PI) + (1'7)

(QIO) = (Q9) + (1'7)

(QIl) = (1'4) + (1'5)

CII = (QIO) + (1'6)

CI, = (QIO) + (1'4)

C2l = (PI) + (1'2)

C" = (Q9) + (QII)

.......................... (3.14)

.......................... (3.15)

we get,

Using Strassen's analysis of the number of arithmetic required to multiply n by n matrices,

7'm3 (3.16)

= 15 (m2'-I)' [1 + 7/2' + 7'/24 + + 7'-1/(2'-1)'] + 7'Scxm,o

(4+m)m'7' - 5(m2')' (3.17)

From eqns. (3.16) and (3.17) the total number of arithmetic operations is

Tam,k =

= 7'm3 + (4+m)m'7' - 5(m2')'

= (4+2111)111'7'- 5(m2')'

40

setting k = Uog n - 4J and III = Ln2" J +1 , we gei,

Tan/.k < [4+2(n2"+ 1)](n2" + 1)'7'

< 2n3(7/8)' + IO,58n'(7/4)'

now 16.2' "n, k?:: 0

[2(8I7)'Og"" + I0.58(417)'Og",'] n'og7

" 4.54 n'og7 ... , (3.18)

Thus by using Winograd's improved method, total arithmetic operations can be reduced

to 4.54 n 'og7 .

TRILINEAR FORM

The evaluation of the product of n x p by p x n matrices and decomposing the trace

product of three matrices of dimension n x p by p x m by m x n are two equivalent problems.

Thus the bilinear form of the traditional algorithm

n

cij ~ L 8ikbkj, j~l"",m, j~I, ...,p
k.\

can be represented in trilinear form as

here the coefficients of C;j is the (j,i)th element of the product C.

41

,"

\
To evaluate product of matrices, we may consIder the trilinear form as

L (aij' ak, I';' I)(b;k' bi"J' ,)(Cki' Ci",k' ,)
jljl kcven

L (ak",;,,) L (bik ,. bi"J") Cki
i,k j jljl k even

L aijbi"J" L (Cki' Ci",k")
iJ ki+j+keven

L L (aij' ak']J']) bikCi",k"
j;k j j'}1 k even

""" ..""""", ,(3.19)

This method is inferior to Strassen's method but when n>6, this algorithm becomes faster

than the classical method,

VICTOR PAN'S METHOD

There is more than one way in which the trilinear form can be represented, After

considering various trilinear representation forms, Victor Pan derived a new algorithm which

yields results superior to Strassen' s method. The Pan algorithm represents the trilinear form in

the following manner:

Laijb;kCki= To-~-J;-J;,
';J; k

where,

42

"""""."",,,,,,, ,(3.20)

'"~,

To = L (aii-+a;k+ak,)(b;k+bkj-+bj)(Ckj-tCii+C;k)
';jkES"(.~)

(ajFajk +ak,)(~k +bkj-b;)(-Ckj+Cjj~ Cjk)

(-,1jj+tYk + ,1k,)({~k- bkj+ b,)(Ckj+CIj+Cjk)

(ad+ ajk- ak,)(- ~'k-+bkj~ bj)(Ckj- C;rCji)

(a;j+ajk -ak,)(- ~k + bkj+ b;)(circlj+Cjk)

(-ajj+ajk+ai;)(bjCbkj+ b;)(- Cij+ C;;-Cji)

(arajk+ai,)(bjk+bkj-b;)(-Cij+ C;j+cji)

;. (afj+ aji+ ak,)(bjk+ bki+ b;)(cki+ C;j+Cji)

1; = L aiib;,{(s-2w)cii+L'(Ckj-t cjk)]
t :::s: ,;j:!. s

+ aAi[(s- w) cii+ L '(- Cij+ cjk)]

+ aljblj{(s-w)cii-+HjjCjj+L' (Ck;-Cjk)]

;. a,A;{(s-Wlj)Clj-L' (Ckj+'ji)]

+ a;,bi;{(s-wlj)C,rL' (CkJ+Cjk)]

+ ajjblj[(s- wii) cfj- Wj;cji+ L' (cir Cji)]

+ a;jblj[(s-wlj)cii+ L' (- ck;+ 'j'i)]

+ ajjb,;{(s-2w)clj+ L' (Ck;-l-Cjk)]

li = L {aljL' (bkj+b;k)Cii- aiiL' (bkj+~i)Cjj
1 :::s: ij ~s

+ aljL' (bjk - bk,)Clj+ ajjL' [(bk;- ~'k) - Hjjbjil Cfj

+ a,) L' (bij- bji) - Wj;b) Cd+ ajjL' (bje bk;)cl)

- a,",,' (bk,+bk)c,+ a',"'" (bk,,+b'k)C'}
1jL.J I J I) IjL- J j '}

43

Here,

T ~
3 L {L' (ak;' ajk)bijcij+ L' ((ak;-aji)-Wj;aj{lb;jCu

I ~iJ:j, S

L' (ak;+ajk)b;jcij -t L' (ajk- ak;)bijcU

+ L" (ajk-ak)b;jcU - L" (ak;+ajk)bUc;j

+ L' ((a,(;-aj!;)-Uj(aj;lb;jcij + L' (a,((+aji;)b;jC;J}

/ /

SICS) U S2(S)

{(/,j,k), 1 ~ j ~j<k ~s}

{(/,j,k), 1 ~ k<j ~ j ~ s}

S/(s)
,

SI(S),
S2(S)

n" 2s,

Wpqc { ~

1."-. ,A J\

I~ liS, jo. j-I S, k. kl s,
Ifp=q,
jf pi- q,

s

L' L if j j thcl1!<.#
k.'

. It can be seen that the number of terms in To IS 8(S3_S)/3, and each of T, , T2, T3 has

8s' terms. Therefore the complexity of the algorithm is

8(s 3 _ s)/3 + 24s '

= (n3 _ 4n)/3 + 6n'

This is still 0(n3) but still a reduction in the number of multiplications comes from the

low coefficients of the dominant term in the complexity function.

44

MATRIX MULTIPLICATION IN PREPROCESSiNG OF SYSTEMS OF LINEAR

EQUATIONS

The system Gf linear equations is one of the most important problems that occur in the

solution of many practical problems. Direct methods like Gaussian elimination and triangular

decomposition solve the problem in O(n3) arithmetic operations. Indirect iterative methods like

Gauss-Seidel, Jacobi take O(n2) arithmetic operations. Thus iterative schemes are attractive from

computational point of view. But the main drawback is that these iterative methods cannot

necessarily ensure convergence of an arbitrary system of linear equations. For convergence, the

systems must satisfy some stringent constraints.

Let us consider the non singular system of linear equations : Ax=b, where A is an

arbitrary n x n matrix. Solving the above equation is equivalent to solving At Ax = At b. This

preprocessing makes the system symmetric and positive definite for which there are many

convergent iterative schemes of O(n2).

The cost involvement In the preprocessing can be calculated as shown below. For

simplicity of derivation, let us assume that n=2k for some integer k.

Let,

then,

Ao[AIIA12]
AZI Azz

I I
All AZI

A t ~
I tAlZ Azz

where Aij is a matrix itself.

,
>

therefore, A I.A .

4S

.................... (3.21)

The product of two matrices thus can be defined as follows:

I
Po AIIAII

I
PI A22A22

1'2 ~ AI~12

IPSo A21A22
CII Po I PJ
C22 1'2 I PI

C12 1'4 I 1's
................................. (3.22)

Therefore, computation of AlA of order 2' requires 4 multiplications of matrices of order

2'-1 with their transposes and 2 general matrix multiplications of order 2'-'.

IfM'(k) denote the complexity of multiplication of matrix A of order 2' with its transpose

and M(k) denote the complexity of multiplication of two arbitrary matrices of order 2', then

MS(k) - 4M'(kl)' 2M(k I)

4[4M'(k-2) I 2M(k2)]~ 2M(k-l)

4k-IM'(I)I 2 [4k-2M(l) + 4k-JM(2) 4 ••• +4k-kM(k-l)]

......... (3.23)

Now multiplication of a 2x2 matrix with its transpose requires only 5 multiplications.

Thus, M'(I) = S. Ifwe use Strassen's multiplication scheme which requires 7' multiplications for

multiplication of two matrices of order 2'. Then, M(k) = 7'.

46

M '(k)

....... _ _ (3.25)

5 2 2 log,? 7 2-n I-n --n
4 3 6

_1_n 2, 2 n log,?

12 3
............... : (3.24)

In a similar fashion, the complexity of addition can be computed. Let, A'(k) denote the

number of addition operations required for multiplication of one matrix of order 2k with its

transpose and A(k) denote the number of addition operations required for multiplication of one

matrix with any arbitrary matrix of order 2"

Since, every matrix multiplication with its transpose requires 3 matrix additions. Two

additions of symmetric matrices of order 2k
-' and one addition of two non symmetric matrix.

Therefore,

A '(k) 4A '(k- I), 2A (k 1)' 2 (2k-1j2 i 2k-1

-- 4[4A' (k 2)' 2A (k 2) + 2 (2k-1)2 + 2k-1J, 2A (k 1)' 2 (2k-'j2, 2k-1

4k 'A-' (1) , 2 [4k 2A (1) , 4k3A (2) -I ••. , 4kkA (k 1)]

, 2 [4k -2 (2')2, 4k 3(22f' ...,4kk (2k-lf]
, [4k 22', 4k-322 , ... , 4k-k2k ']

47

. ,
,.:'"

Now, only 3 additions are required while multiplying a 2x2 matrix with its transpose, ie.,

A'(J)=3. If we use Winograd's variation of Strassen's matrix multiplication scheme, then

A(k) 5. [7k 4k]. Therefore,

A '(k)

2 [4k-1 4k-1 4k"l]of. + + 4

+ [22k ..3 _, 22k-A, j 2k I]

2 (t..:'. I)
4 i I

7

4

8(k 1)4k I ,

I '
22k 3 x __ ,'_'

I -'-
2

10 log,7-n
3

1-n
2

........................... (3.26)

To compute At b will need n2 multiplications and (n_J)2 additions. Thus total arithmetic

operation for the preprocessing is

T '(k) M'(k) I A "(k) I n2 '(n Ii

4 log27n 3_n2

4
32n 2 log2n , -n ,
2

................ ,.. ,,..,..... (3.27)

As this is a recursive method, space requirement is high. At the ith step of recursion,

.. "-maximum number of storage required when matrix C is determined from matrix Po to P s. In all

previous stages of recursion, 6 matrices of specified size are stored. Thus total requirement is

given by

48

< 2n2

I
-I

16

~,)
I I]I-I

4' I 4'

...................... (3.28)

For i=l, this space requirement is maximum, and equals 2n 2 data words.

49

CHAPTER FOUR

CHAIN MATRIX MULTIPLICATION

Let M, x M2 X ..• x M. be a chain of matrices to be multiplied wnere M, is a k, x ki>J

matrix. Matrix multiplication is associative and thus this chain may be evaluated in several

different ways. Of these, two possibilities are (... ((MJ x M.) x M) xM.J x .. .) x M. and

(MJ x (M2 X (... X (M,.J x M.) ...). It can be shown that the number of different ways to

evaluate such a matrix product chain is [2(" I)]' which is very large even when n is relatively
n! (n -- I)!

small. All of these arrangements yield the same result. But the way OIieorder the multiplication

operation can have a dramatic impact on the cost of evaluating the product. Here the term cost

denotes the number of scaler multiplications needed to compute the product. If the classical

method is used, multiplication of a p x q matrix by a q x r matrix requires pqr scaler

multiplications and the product is a p x r matrix. Though there are other efficient (see Chapter 4)

matrix multiplication methods, the multiplication cost is considered pqr in this chapter.

Let P(n) denote the number of alternative parenthesization of a sequence of n matrices.

Since we can split a sequence of n matrices between the k~ and (k+ I)~ matrices for any

k = I,2, ...,n- I and then parenthesize the two resulting subsequences indepertdently, we obtain the

recurrence

50

P(I1) J ~ P(k) Pin k),L-l
jfl1~1

jf 11 ~ 2
.................. (4.1)

The solution to this recurrence is the sequence of Catalan numbers.

Pen) = qn - 1)

where, ceIl) I (211)
11+ I 11

4n
-- (1 + 0(11))
fii 113/2

~ 0(4n/113/2) (4.2)

The number of possible arrangements is thus exponential in n, and the brute force method

of exhaustive search is therefore a poor strategy for determining the optimal parenthesization of

a matrix chain. To find the optimum order of multiplication several schemes may be employed.

DYNAMIC PROGRAMMING APPROACH

Dynamic programming approach is an algorithm design method that can be used when

the solution to a problem may be viewed as the result of a sequence of decisions. An optimal

sequence of decisions may be found by making the decisions one at a time and never making an

erroneous decision. This technique can be used to find the order of the matrix multiplication that

minimizes the total number of scaler multiplications used.

51

Let the notations Mi ..; denote the resulting matrix from evaluating the product

Mi M"J ... ~. An optimal ordering splits the product MJ M2 ••. M. between Mp and Mp+J for

some p in the range 1 ,; p ,; n. That is, for some value p, the matrices M;.p and Mp+J..~ are first

computed and then these are multiplied to produce the final product MJ.... The cost is thus the

cost of computing the matrix MJ..p, plus the cost computing Mp+J.." plus the cost of multiplying

them together. Thus it can be written,

1
0,

c,j~' min [C +C)+k)k k],i5~ . I•.p p'.J 1- P J
--,y-4

when i j

when i<j
................ (4.3)

where Ci,i denote the optimum cost for generating Mi..i. The computation is done' bottom up',

saving computed answers to small partial problems to avoid recomputation. In only one way one

can multiply M] by M
"
M, by MJ , ... , Mn_) by ~ and these costs are recorded. Then the best

way to multiply successive triples are computed using all the information computed so far. For

example M) M, MJ can be computed either by computing M) x M, first or M, x MJ first. These

costs have already been computed in the previous step and no need to compute it again. The

minimum cost of the two approach is computed and saved again for reference in the following

steps. This procedure continues until successive groups of n matrices is formed and thus

generate the best way to order a matrix-chain.

52

The pseudocode is given below.

procedure dynamic (k, n, cost, order)
for i <- j to n do

for j <- i+1 to n do
cost [i)Ol <- <X

repeat (j)
repeat (i)
for i ,- 1 to n do

cost [iJ[i) ,.- 0
repeat (i)
for j ,- 1 to n -I do

for i <- 1 to n-j do
for m <- i+I to i+j do

t ,- cost [i)[m-I) = cost [m)[i+j) + k[i) • k[m) • k[i+j+1
if (t < cost [i)[i+j]) then .

cost [iJ[i+j) <- t
order [iJ[i+j) <- m

endif
repeat (m)

repeat (i)
repeat (j)

end dynamic

Algorithm 4.1

In the above algorithm, the loops are nested three deep and each loop index takes on at

most n values. Thus the running time of this algorithm is O(n 3). It requires O(n 2) space to store

cost and order tables. Thus this algorithm is much more efficient than the exponential time

method of enumerating all possible combinations and checking each one.

53 C\
.~.
(.•

, ~f-':.,~

CHIN'S METHOD

Francis Y. Chin, in 1978, presented an O(n) algorithm for determining a near-optimal

computation order of matrix chain products [19]. This algorithm takes less than 25 percent longer

than the optimal time. Although, in most cases, the algorithm yields the optimal order or an order

which takes only a few percent (usually less than one percent on the average) longer than the

optimal time.

Consider the evaluation of the product of n matrices,

where, M; is a ki -I X k; matrix with each k, ;, 1.

Chin establishes the following two theorems to derive a near-optimal order.

Theorem I For all i, if

(I 1) (I I)-+->-+-,
ki_1 k">l k,. k.

where k. = min (k)

holds, then (M, x M; + I) must be in the optimal order.

Theorem I provides a sufficient condition to determine whether two matrices are

associated in optimal order. Each pair of adjacent matrices in a matrix chain are scanned and

associated if they satisfy Theorem 1. The matrix chain is shortened by replacing all the associated

54

•

terms in the order with single matrices. This procedure is iterated until no remaining part of

adjacent matrices satisfies the above theorem and no more shortened matrix chain can be done.

Theorem 2 comes into action at this stage.

Theorem 2: Given a reduced matrix chain, the order

M ~ (MJ x ... (Mm-! x M,j ...) x (...(MmH X Mm+) x ... x Mj, where km ~ k.

guarantees that T < 1.2485 l~pr

So, after obtaining the reduced matrix chain, index m is searched for so that km = k. and

the matrices are associated both ways from m. The algorithm in pseudocode is given below.

procedure mat_chain (K, Y, n)
II K denotes the dimensions of the matrices,

Y the order vector to be returned and
n the number of matrices in the chainll

Y[] +- 0; C +- I; b +- n -I
for i = 0 to n do

ri= Ilk;
if (rm < ri) rm = ri

repeat
j +- 0 ; s[j] ,- 0
for i = I to n - I do

j +- j+I ;s[j] +- i
while (j > 0 AND r'I;J + rm < r ,[;-IJ + r i+[) do

v +-c
0[j J .

c+-c+l;j+-j-1
endwhile

repeat

55

j ,- j + I; sOl ,- n; k ,- 0; flag ,- 0
while (flag = 0) do

flag ,- 1
if (r < r) then

'lkI'lj)
If (r + rm < r + r) then

slj) s[j-IJ !ilk]
j<--j-I
v <--b.

sl j]

b'-b-I
flag <--0

e1seif (r + rm < r + r) then
!irk] s(I{+I] sij]
k<--k+1
v ,- b

sl k I
b ,- b -I
flag <--0

endif
endif

for i = m - 1 to s[k]+ 1 step - 1 do
if (Vi = 0) then

Vi «- C
C ,- c+ 1

end if
repeat
for i = m+ 1 to sOl -I do

if (Vi = 0) then
Vi +- C

C ,- c+ 1
endif

repeat
if(Vm = 0 AND m ,,0, n) then

Ym «- C

endif
end procedure

Algorithm 4.2

In the above algorithm, calculation of ri and rm can be done in O(n) time. Initially c = 0

and b = n - 1; besides throughout the program b ~ c - I. The procedure has four different loops.

S6

In each loop, either c is increased by 1 or b is decreased by 1 after assigning the value of c or

b to Vi. Since at most (n - 1) associations can be done, the SU!'1 of repetitions in all the loops

is no more than n. Thus the algorithm is O(n).

HU-SHING HEURISTIC METHOD

I.e. Bu and MT Shing[20J proposed a heuristic algorithm to find a near-optimum

order for multiplying a number of matrices. They drew an analogy between matrix chain product

problem and the problem of partitioning a convex polygon into non -intersecting triangles, and

develop an O(n) heuristic algorithm which has a 15% error in the worst case ..

The one-to-one correspondcnce bctween thc ordcring of a chain of n matrices and thc

partitioning of a convex (n + i) -gon can be established as follows. For the (n + i)-gon, the side
<

V,-Vn+, is drawn horizontally. All other sides are considered in the clockwise direction. Every

vertex Vi of the polygon is assigned a weight k;. Let the cost 'Of a triangle be the product of

the weights of its three vertices, and the cost of partitioning a polygon is the sum of the costs of

all its non-intersecting triangles. Then it can be assumed that each side represent a matrix in the

chain where the dimensions of a matrix are the two weights associated with the two end vertices

of that side. For example, the V,- V2 side represent the first matrix M,in the chain, the V2- V,

side denote M
2
, and so on. Then the base V,- Vn represent the resulting product matrix M. The

cost of partitioning is then the cost of the matrix chain product.

57

\ Given an (n -I- I)-sided convex polygon, the number of ways to partition the polygon into

(n - I) triangles by non-intersecting diagonals is the Catalan numbers.

To optimally partition a polygon, several theorems were presented and established by Hu and

Shing.

Theorem: In every optimum partition of a polygon, the smallest vertex VI is always

connected with the second smallest vertex V2 and also with the third smallest

vertex Vj•

This fact can be used recursively. To find the optimal partition of a given polygon, it is

decomposed into subpolygons by joining the smallest vertex with the second smallest and third

smallest vertices repeatedly, until each of these subpolygons has the property that its smallest

vertex is adjacent to both its second smallest and third smallest vertices. Such a polygon can be

referred to as a basic polygon.

Theorem: (i) A necessary hut not sufficient conditionfor V2 - Vj to exist in an optimum

partition of a hasic polygon is

(ii) If V2and Vj are not connected in an optimum partition, then VJ and V, are

always connected in that optimum partition.

58

\ Theorem: Let k, be the minimum vertex of a general convex polygon, and km be a local

maximum vertex, with kp and k as its two neighbors, i.e., k > k and k > k. Ifq m p f'- q

then wp - w q will exist in the optimum partition of the polygon.

Based on the above observations, T. C. Hu and M. T. Shing gave the following heuristic

algorithm. The algorithm is based on two intuitions:

(i) if a vertex has a very large weight, it should be cut out in the optimum partition;

(ii) if none of the vertices has a very large weight, the fan' with the smallest vertex

k I as its center should be near optimum.

Thus the algorithm can be implemented in the following manner.

STEP I: Start from the smallest vertex k I ' travel in the clockwise direction around

.the polygon, and push the weights of the vertices successively onto a stack.

Thus k I will be at the bottom of the stack. Let k I be the top element

on the stack, k I _, be the element immediately belowk t ,and k, be the

element to be pushed onto the stack. If there are two or more vertices on

the stack and I ...!... > ...!... I ...!..., then join k - k and pop k off
k'_l k" kl k, I-I c I

A partition which is made up entirely of arcs joining the smallest veltcx to all other vertices is
called a fall.

59

STEP 2:

the stack, else push k onto the stack. Repeat this step until the nth vertex,

has been pushed onto the stack.

If there are more than 3 vertices on the stack, join k I - k I -I ' pop k I off

the stack and repeat this step, else stop.

The STEP I in the above algorithm cuts out a vertex if its weight is sufficiently large and

STEP 2 joins k I to all vertices which have not been cut off. If there are two or more vertices

with weights equal to the smallest weight WI' arbitrarily anyone can be chosen as vertex k l'

60

CHAPTER FIVE

EXPERIMENTAL RESULTS

This chapter is intended to present the experimental results based on the algorithms

discussed so far in the previous chapters. Three different arithmetic operations were

considered for this study. This chapter comprises three sections, each dealing with one type

of arithmetic operation. Each section begins with a brief description of the experimental setup

for that section. It should be emphasized that one can go a long way without limit if one likes

to carry out experiments with the algorithms in all possible respects. But, in this study, some

representative properties of the algorithm were chosen as the basis of the experiments. Mainly

the time complexity has been chosen to be the major concern, though in some cases (where

appropriate) space complexity, number of multiplications etc. were also considered.

The PC used for the experiments bears the following properties:

Processor

RAM

Clock Speed

486SX

4 MB

33 MHz

All codes were written in C and were compiled using Turbo C++ 3.0 compiler of

Borland International.

61

Polynomial Evaluation Algorithms :

This section deals with experiments on the algorithms for polynomial evaluation.

Polynomial Evaluation is one ofthe most frequently occurring task in numerical computation.

Chapter two presented various polynomial representation techniques. These representations

occur naturally and do not offer reduced number of multiplications for computation purpose.

For this reason, the standard representation of polynomial is assumed throughout this study.

Since, in many computation, polynomials are usually evaluated at many different points, some

artificial representation that offer better computation time are tried. The latter half of chapter

two discusses three evaluation algorithms that involved preprocessing.

As the test data, several data sets of varying order were prepared. The Belaga

algorithm sometimes generated complex quantities. Since complex arithmetic require extra

operations, only those data sets, that do not generate complex Belaga coefficients, were used

so that a comparative study can be carried out. The experimental findings are presented in Fig.

5.1 and Fig. 5.2.

Matrix Multiplication Algorithms:

In Chapter three, seven different algorithms for matrix multiplication were presented.

To test these algorithms, ten sets of square matrices of order 4, 8, 16, 32, 64, 128 were

created. The matrix elements were chosen to be both integers (as they require less memory

space) and floating point numbers and were generated randomly.

62

150 J

j
125

u

il\
'"if> 10 0

(jl

E .

c
~

'"E 7.5
c
0
:;:0
0
.2
0
> 5.0w

25

9CJcZ 9~

•..•••• Power form
~ Horner
•••• * Paterson-Stockmeyer
__ Belaga
•.•••.• Knuth

* *

00
o 5 10 15 20 25 30

Degree of the polynomial

I '
35 40 45

•••
{ po

,

Fig. 5.1 Evaluation time for different algorithms

4540I '
3515 20 25 30

Degree of the polynomial

10
I

5
I
o

0.0

17500 j

~ ***** Poterson-Stockmeyer

/1500.0 1 __ 8eloga
••••.• Knuth

~
0' 12500 -j

/

•Lee .. /
/

Q)

7500 lE
.~()\
OJ'..h
c

"'"'Q)
()

0
L

,00.0 j0-
Q)
L

Il-

,
250.0

••
Fig. 5.2 Preprocessing time for different olgol"ithms

The main interest was on the computation time. In addition, the memory requirement

for some of these algorithms is substantial. In addition to data and product matrices,

intermediate results of the manipulation need to be stored temporarily. The total volume of

memory required may become an important factor which limit the size of the problem that

can be solved on a particular computer. Speed of the process is also influenced by the amount

of auxiliary memory used.

In most of the matrix multiplication algorithms, number of costly multiplication is

usually reduced at the cost of extra addition/subtractions. In addition, memory accesses for

intermediate and initial data play a considerable role in the computation time. Additional

complexities are added by logical comparisons, procedure calls, looping overheads etc.

Based on the above considerations, criteria selected to measure the performance of

these algorithms are

a) time complexity
b) space complexity
c) number of fundamental arithmetic operations
d) number of assignments and memory accesses

The experimental findings are presented in TABLE 5.1 through TABLE 5.7 and

Fig. 5.3 through Fig. 5.12.

We have performed an experiment of solving systems of linear equations by

preprocessing the system to obtain a positive definite system which can be solved by using

many convergent iterative schemes. In this case matrix A of the system of linear equations is

premultiplied by its transpose to obtain a positive definite symmetric system. For computing

65

AA' we used Strassen's scheme recursively to obtain some savings for finding the transposed

product. It may be recollected that solving a system of linear equations is equivalent to matrix

multiplication in terms of complexity. Approximate savings that can result from computing

AA' by our method compared to multiplying two general matrices using Strassen's scheme

has been presented in TABLE 5.8. A 90 MHz Pentium machine with 16MB RAM and 512

KB cache was used for this experiment.

TABLE 5.1 Experimental results for matrix multiplication using Classical method

order 4 8 16 32 64 128

time in integer data 0.21978 1.813187 14.120879 109.8901 901.0989 7241.7582
msec. float data 7.197802 56.593407 460.54945 3626.374 29065.924 223516.48

no. of additions 64 512 4096 32768 262144 2097152

no. of multiplications 64 512 4096 32768 262144 2097152

array read 192 1536 12288 98304 786432 6291456

memory array write 64 512 4096 32768 262144 2097152
access other read 0 0 0 0 0 0

other write 0 0 0 0 0 0

space 48 192 768 3072 12288 49152

66

.,

TABLE 5.2 Experimental results for matrix multiplication using Karatsuba's method

order 4 8 16 32 64 128

time in integer data 0.824176 8.186813 67.69231 494.505 3846.154 31208.79

fisec. float data 10.93407 93.35165 769.2308 6186.813 50659.34 401263.7

no. of additions 112 960 7936 64512 520192 4177920

no. of multiplications 64 512 4096 .32768 262144 2097152

array read 288 2432 19968 161792 1302528 10452992
memory array write 80 704 5888 48128 389120 3129344

access other read 57 417 3297 26337 210657 1685217

other write 42 346 2778 22234 177882 1423066

no. of comparisons 9 73 585 4681 37449 299593

procedure calls 30 254 2046 16382 131070 1048574

space 88 376 1528 6136 24568 98296

TABLE 5.3 Experimental results for matrix multiplication using Winograd's identity

order 4 8 16 32 64 128

time in integer data 0.219780 1.538462 11.043956 82.912088 651.09890 5115.3846
msec. float data 10.38461 64.175824 439.5604 3230.7692 24780.220 192692.31

no. of additions 160 1024 7168 53248 409600 3211264

no. of multiplications 48 320 2304 17408 135168 1064960

array read 224 1408 9728 71680 548864 4292608

memory array write 32 128 512 2048 8192 32768
access other read 129 897 6657 51201 401409 3178497

other write 129 897 6657 51201 401409 3178497

no. of comparisons 0 0 0 0 0 0

procedure calls 0 0 0 0 0 0

space 56 206 800 3136 12316 49408

67

TABLE 5.4 Experimental results for matrix multiplication using Strassen' s method

order 4 8 16 32 64 128

time in integer data 1.098901 10.43956 78.57143 516.4835 3956.044 25824.176
rosec. float data 16.098901 130.21978 983.5165 7219.7802 51373.63 364450.55

no. of additions 145 1027 7201 50419 352945 2470627

no. of multiplications 49 343 2401 16807 117649 823543

array read 206 1466 10286 72026 504206 3529466

memory array write 47 341 2399 16805 117647 823541
access other read 117 824 5773 40416 282917 1980424

other write 91 651 4571 32011 224091 1568651

no. of comparisons 8 57 400 2801 19608 137257

procedure calls 45 346 2453 17202 120445 843146

space 100 436 1780 7156 28660 114676

TABLE 5.5 Experimental results for matrix multiplication usmg Strassen's method
(Winograd variation)

order 4 8 16 32 64 128

time in integer data 1.703297 14.450549 100.000 763.7363 5329.670 35604.396
I11sec. float data 17.967033 141.26374 1098.901 7527.473 53736.264 x

no. of additions 121 856 6001 42016 294121 2058856

no. of multiplications 49 343 2401 16807 117649 823543

array read 158 1124 7886 55220 386558 2705924

memory array write 44 317 2228 15605 109244 7764717
access other read 215 1510 10575 74030 518215 3627510

other write 177 1262 8857 62022 434177 3039262

no. of comparisons 8 57 400 2801 19608 137257

procedure calls 60 466 3308 23202 162460 1137266

space 136 616 2536 10216 40936 163816

68

TABLE 5.6 Experimental results for matrix multiplication using Trilinear form

order 4 8 16 32 64 128

time in integer data 0.714286 5.49451 38.4615 329.670 2637.363 212663.74
msec. float data 27.4725 214.2857 1703.297 13571.429 108406.59 868461.54

no. of additions 320 2560 20480 163840 1310720 10485760

no. of multiplications 80 448 2816 19456 143360 1097728

array read 544 4229 33280 264192 2105344 16809984

memory array write 192 1536 12288 98304 786432 6291456
access olher read 218 1618 12578 99394 790658 6308098

other write 177 1201 8865 68161 534657 4235521

no. of comparisons 116 840 6416 50208 397376 3162240
.

procedure calls 0 0 0 0 0 0

space 48 192 768 3072 12288 49152

TABLE 5.7 Experimental results for matrix multiplication using Pan's method

order 4 8 16 32 64 128

time in integer data 0.54945 4.3956 24.72527 154.94505 1061.5385 7807.6923

msec. float data 26.5384 151.64835 884.6154 5587.9121 38351.648 282637.36

no. of additions 350 2324 14920 101136 729120 5498944

no. of multiplications 141 673 3425 19265 120961 833793

array read 316 1816 10544 66144 451776 3295616
memory array write 90 516 3016 19088 131360 963136

access other read 236 1304 7408 45792 309696 2245504

other write 164 816 4096 22144 132864 882176

110. of comparisons 30 188 1144 7408 51680 381888

procedure calls 0 0 0 0 0 0

space 48 192 768 3072 12288 49152

69

TABLE 5.8 Performance of Calculating AlA and AS

Computation time*
k % of saving

AlA AS

3 0.0125 0.03 58.33

4 0.125 0.25 50

5 I 1.9 47.37

6 8.5 13.5 37.04

7 61 99 38.38

8 446 705 36.74

9 3205 4975 35.58

10 22825 34961 34.71

"Tune s own 111 clock ticks. 18.21 cloCKtl<:k - I second.

70

~ Classical
__ Karalsuba
***** Winograd identity
~ Strassen
••..••• Slrassen(Winagrad vo"ant)
••..•.•• Trilinear
-Pan

---.J
~

40000 J
]

~
J

30000i
~ ~

~ 20000i
E
f.=

10000

o i
o

I
20 40 60 80

~;
/

100 120 140

,

Fig. 5.3

Order of the matrix

Matrix Multiplication time (for integer element)

1000000 ~

800000

~ Classical
-- Karatsuba*** * * Winograd identity
~Strossen
•.•••.• Strassen (Winogrod variant)
•.•••• Trilinear
~Pon

200000

o
o 20 40 60 80

Order of the matrix
100 120 .140

f

Fig. 5.4 Matrix Multiplication time (for float type element)

12000000 ~ Classical
-- Karatsuba***** Winograd identity
~Strassen
•.•.••.• Strassen (Winagrad variant)
•••.•.• Trilinear
•..•...•..•..••Pan

8000000

"'c
0

~

~
u
u
0-0
0z

4000000

o
o 20 40 60 80

Order of the matrix
100 120 140

,.',

Fig. 5.5 Additions required for matrix multiplication

2500000

2000000

~ Classical, Karatsuba
••••••••• Winograd identity
~Strassen
•..•••• Trilinear
•...•..•...•..•Pan

if)
c~ 1500000
0
u

~ CO-~
~
E
a 1000000
0z

500000

o
o 20 40 60 80

Order of the matrix
100 120 140

Fig. 5.6 Elementary multiplication requirement for matrix
multiplication

20000000 1
15000000

~
V>o
c

~ Classical
~ Karatsuba
*H** Winograd identity
~ Strassen
•••.•• Strassen (Winograd variant)
•..••.•.• Trilinear
•..•..•.•...•Pan

~

c
~
V> 10000000
v
o
Q)~
Ao~~«

5000000

o
o 20 40 60 80

Order of the matrix
100 120 140

0'

I

Fig. 5.7 Memory access for reading matrix data

~ Classical
- Karatsuba
-- Winagrad identity
~Strassen
•.••••• Strassen (Winagrad variant)
•.••.•• Trilinear
-Pan

8000000 J
:J
J
I

6000000

if)
0
c

~ c
~

4000000if)

'"~."
'">,
0~~
<{

2000000

o
o 20 40 60 80

Order of the matrix
100 120 140

;
I.

Fig. 5.8 Memory access for writing matrix element

~ Classical
_ Koratsuba
***** Winograd identity
~Strossen
•.•••• Strossen (Winograd variant)
•..••.•• Trilinear
-- Pan

5000000

4000000

'"2
c:

---l
" 3000000

I..D
>,
0~~
0

c
0
c
'0 2000000
0z

1000000

o
o 20 40

I
60 80

Order of the matrix
100 120 140

~~_-
'~j

•
~

Fig. 59 Memory access for. writing non-matrix element .

80

a.;-

C
0
+-'

a 0
N ()

0.-
+-'
:::J

a Ea
x
l-

x +-'
'C 0~ Ea 0

OJ E
~ <1J CJ1
~ .£ Ce ~
0 I-
'C '0
0 :::J
> a ~ V

<J) <1J
U U
0 ~ v~ a
0' Q)
0e.~ 0
~ a ()

0flee .;-

:3<lJ<lJ (f)
if>"'if> Q)

~if>if>
E22 I-

o~~ :::J
><(f)(f) V

III a Q)
N ()

0
I-

0...

1-'-' I i i a
a a a a
a a a
a a a L()
a a a
a a a
N OJ .;- CJ1

sliDO oJnpoooJd)0 'oN LL

81

.

200000

~ Classical, Trilinear, Pan
-- Karatsuba***** Winograd identity
~Strassen
••••• Strassen (Winograd variant)

()J
?'J

150000~
if>
'0~
o

"o~
o
'0

C
~ 100000
'0

<l>~
"V
<l>~
<l>
U
o
Q.
Ij) 50000

o
o 20 40 60 80

Order of the matrix
100 120 140

. ~Do
.J'<-.. .

Fig. 5.12 Space requirement for matrix multiplication

Chain Matrix Multiplication :

In chapter four, we presented three different algorithms to obtain the optimum (or

near-optimum) order in multiplying a series of matrices. Several data sets were randomly

generated to study the behaviour of these algorithms. As before, the principal objective was

to study the time complexity. The observations are shown in Table 5.9 and Fig. 5.13.

TABLE 5.9 Time required to obtain the optimum order of multiplication

Time (in msec) :

No. of matrices Dynamic Hu-Shing algorithm
Programming

Chin's method

10 2.198 0.109890 0.219780

20 14.835 0.329670 0.439560

30 48.352 0.509451
i 0.604396 .

40 114.286 0.69231 0.769231

50 223.077 0.879121 0.989011

60 384.615 1.043956 1.203736

70 607.143 1.263736 1.373626

80 942.857 1.483516 1.593407

90 1297.802 1.653407 1.868132

In addition to time complexity, several other experiments were carried out. As only

the dynamic programming approach generates the optimum order for all cases of computation,

we observed the deviation (both average and maximum) from optimum cost for the orders

generated by the other two algorithms. We also observed how many times these algorithm,

generate the optimum order.

81

. -.....•'.

Another attempt were made to determine the effect of matrix dim~nsions on the cost.

For this, three sets of data (each set with 31 problems) were generated for matrice chains with

n=30, 50, 70 with maximum k; equal to 30, 50, and 70. All the algorithms were tested with

these data sets and the results are presented in Table 5.10.

TABLE 5.10 Performance of Heuristic Chain Matrix Multiplication Algorithms
I
I

\,

Optimum order generated, Max. deviation, Average deviation
n Algorithm ,

max. k; = 30 max. k; = 50 I max. k; = 70

Chin 12,2.77%,0.68% 12,2.52%, 0.64% 12,2.31%,0.60%
30

Hu-Shing 14, 2.12%, 0.53% 14, 1.91%,0.49% 14, 1.74%, 0.46%

Chin 6, 2.13%, 0.60% 4, 2.02%, 0.59% 4, 1.92%, 0.58%
50

Hu-Shing 7, 1.78%, 0.53% 6, 1.69%, 0.50% 6, 1.61%,0.49%

Chin 3, 1.54%, 0.47% 3, 1.48%, 0.46% 3, 1.43%, 0.445%
70

Hu-Shing 4, 1.54%, 0.47% 3, 1.48%, 0.45% 4, 1.43%, 0.441 %
,

82

••

1500

••.••• Dynamic programming method
••••• Chin's method
~ Hu-Shing method

1000
~
l)
<J)

CP
VJ

E
(>J c

~
<J)

E
f.=

500

o
o 10 20

,
30 40 50 60 70
No. of motrices in the choin

, ,
80 90 100

Fig. 513a Time to find the multiplication order of
a matrix chain

2.00

o

***** Chin's method
OOOOVHu-Shing method

100gO80

~

30 40 50 60 70
No. of motrices in the choin

2010

1.75

1.50

050

000

025

~ 1.25
u
Q)
VJ

Q::l
E

..l::..
.'= 1.00~
Q)

E
>= 0.75

Fig. 5.1.3b Time to find the multiplication order of
a matrix chain

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

In this thesis we have considered the problems of polynomial evaluation, matrix

multiplication and chain matrix multiplications. Conclusions of expe~imental results on the

implementation of different algorithms for solving these problems have been presented below.

We have considered the problem of polynomial evaluation along with preprocessing when

the same polynomial is evaluated in many different points. Among the preprocessing algorithms,

Belaga method evaluates the preprocessed polynomial in the fastest possible time, whereas

preprocessing time taken by the algorithm is the highest. Belaga has the problem of generating

complex Belaga coefficients, in which case time requirement in evaluation will be multiplied by

at least four times. Results presented in the thesis correspond to polynomials not generating

complex coefficients.

85

Peterson-Stockmeyer method of preprocessing requires minimum preprocessing time but

requires alarmingly high evaluation time with a staircase nature as is evident from the application

of binary tree concepts.

Knuth's evaluation time is very close to that of Belaga whereas preprocessing time is less

than that of Belaga.

Among the non-preprocessing algorithms Horner's scheme has the best evaluation time.

We have considered matrix multiplication with integer elements and with float elements.

Experiments with both integer and real data show that matrix multiplication using Winograd's

identity has the best time performance. Classical method's performance is the second best.

Theoretically superior methods of Pan, Strassen, Karatsuba and trilinear have performance in this

order, and have proved to be inferior for at least lower values of n. Although Strassen's method

requires lesser number of multiplications, excessive memory accesses, other computational and

recursion overheads offset the savings from reduced number of multiplications. Classical,

trilinear Pan's and Winograd's identity require minimum space, whereas Strassen's and Winograd's

variation of Strassen's method require significantly more space. This excessive space requirement

will act as limiting factor for using these methods.

We have also applied a variation of Strassen's method for preprocessing arbitrary system

of linear equations to convert it into positive definite systems for which a lot of O(n2) convergent

86

iterative schemes exist. This preprocessing consists of premultiplying A with A' . We have

recursively used Strassen's method and symmetricity of involved submatrices to cut down cost

of multiplication by approximately 33% thus giving us a better method of solving arbitrary

systems of linear equations.

In chain matrix multiplication dynamic programming approach has always produced

optimal sequence of multiplication at the cost of O(n') operations. W~ have also tried two
i

heuristic methods for finding the best sequence of multiplication. These methods require

negligible amount of time compared to dynamic programming approach with Chin's method

outperforming Hu-Shing's method. However, solution obtained by Hu-Shing's method was

consistently superior to that of Chin's method. Although probability of obtaining the optimal

sequence reduced with the increase of number of matrices n in the chain inaximum and average

deviations of the obtained solution from the optimal reduced with the increase of n. Our

experiments show that deviations from the optimal sequence did never cross 3%, and it

decreased with the increase of n. Although these algorithms are heuristic ,in many cases optimal
i
,

sequences were generated ..

87

RECOMMENDATIONS FOR FURTHER STUDY

In polynomial evaluation we have not considered Belaga method with complex Belaga

parameters in order to keep it competitive with other algorithms. One can study this aspect of

the problem has remained untouched, and therefore, one can try to pursue research in this

Belaga method in detail to ascertain its performance in cases where those parameters become
!

complex. We have not also considered polynomials with complex coefficients. So this aspect of
!,

direction as well.

Although our experiments do indicate inferior performance of theoretically superior matrix

multiplication algorithms since due to technical reasons we were not able to perfonn experiments,

with much larger memory space, the conclusions will perhaps be in their favour if dimensions

of matrices involved could have been increased significantly. In absence of enough primary

memory one can attempt to perform these experiments using secondary'memory.

One can attempt to derive a better time complexity for these algorithms incorporating
I

memory access time, looping overheads, logical operations, procedure calls and recursion

overheads among other items.

One can also try to ascertain performance of all the popular parallel algorithms for matrix

multiplications.

88
'II

REFERENCES

[I] Horner, W. G., Philosophical Transactions, Royal Society of London, vol. 109,

pp.308-335.

[2] Newton,!., De Analysi per Aiquationes Infinitas, 1969.

[3] Ostrowski, A. M., On two problems in abstract algebra connected with Horner's rule,

Studies in Mathematics and Mechanics, Academic Press, N.Y. pp.40-48, 1954.
,

[4] Pan, V. Ya.,Methods of computing values of polynomials, Uspekhi Math. Nauk, vol. 21,

pp. 103-134, 1966 (in Russian). English translation in Russian l>1ath.Surv., vo1.21,

pp. 105-136.

[5] Belaga, E. C., Some problems in the computation of polynomials, Dokl. Akad. Nauk.,

SSSR, vol. 123, pp. 775-777, 1958 (in Russian).

[6] Motzkin, T. C., Evaluation of polynomials, Bull. Amer. Math. Soc., vo1.61, p.163.

[7] Pan, V. Ya., Schemes for computing polynomials with real coefficients, Dokl. Akad. Nauk.

SSSR, vol 127, pp.266-269 (in Russian). English translation in Math. Rev., vol. 23, 1962.

[8] Rabin, M. and S. Winograd, Fast Evaluation of polynomials by rational preparation, IBM

Tech. Report RC3645, Dec. 1971.

[9] Karatsuba, A. and YuOfman, Multiplication of multiple numbers by means of Automata,,
Dokl. Akad. Nauk. USSR, vo1.145,No.2, pp.293-294, 1962 (in Russian).

,

I

[10] Toom, A. L., 71le complexity of a scheme of jUnctional elements realizing the
. I

multiplication of integers, Dokl. Akad. Nauk, SSSR, vol. 150, pp.496-498, 1963.
. ,

[II] Cook, S. A., On the minimum computation time of jUnctions, Doctoral thesis, Harvard

University, Cambridge, Massachusetts, 1966.

89

[12] Schrnage, A. and V. Strassen, Schene/leMultiplikation Grosser Zahlen, Computing, vo!.7,

pp.281-292, 1971.

[13] Chandra, A. K., Computing matrix chain products in near optimal time, IBM Research

Report RC5625 (#24393), IBMT. J. Watson Res.earch Center, Yorktown Heights, N.Y.,

1975.

[14] Winograd, S., On the number of multiplications required to compute certain jimctions,

Proc. Nat!' Acad. Sci., USA, vo!.58, pp.1840-1842, 1967.

[IS] Strassen, V., Gaussian elimination is not optimal, Num. Math., vo!.13, pp.354-356, 1969.

[16] Winograd, S., Some remarks on fast multiplication of polynomials, in Complexity of

Sequential and Parallel Numerical Algorithms, J.F. Traub ed., Academic Press, N.Y.,

1973.

[17] Pan, V., Strassen algorithm is not optimal. Trilinear technique of aggregating. uniting

and cancelling for constructing fast algorithms for matrix multiplication, Proc. 19th

Annual Symposium on the Foundation of Computer Science, Ann Arbor, MI, pp.166-176,

1978.

[18] Pan, V., How can we speed up matrix multiplication ?,

pp.393-415, 1984.

i
SIAM rev. vo!.26, NO.3,

i
I

[19] Chin, F. Y, An O(n) Algorithm for Determining a Near-Optimal Computation Order of
i

Matrix Chain Products, Comm. of the ACM, vo!. 21, NO.7, pp.544-549, July 1978.

[20] Hu, T. C., Combinatorial Algorithms, Addison Wesley Publishing Company, pp. 242-267,

1982.

[21] Clenshaw, C. W., A note on the summation of Chebyshev series, MTAC, vo!.9,

pp.118-120, 1955.

[22] Bakhvalov, N. S., On the stable evaluation of polynomials, 1. Compo Math. and Math.

Phys, voUl, NO.6, pp.1568-1574, 1971.

90

~.."-~-- -~----_._.

, \
[23] Hopcroft, 1. E. and Kerr, L. R., On Minimizing the Number of Multiplications Necessary

for Matrix Multiplication, SIAM 1. Appl. Math., vol. 20, No. I, pp. 30-36, 197 I

[24] Dekel, E., Nassimi, D. and Sahni, S., Parallel Matrix and Graph Algorithms, SIAM J.

Comput., vol. 10, No.4, pp.657-675, 198 I.

[25] Paterson, M. and L. Stockmeyer, On the Number of Nonscaler Multiplications Necessary

to Evaluate Polynomials, SIAM J. of Computing, vol.2, No. I, pp.60-66, 1973.

[26] Cheny, E. W., Algorithms for the Evaluation of Polynomials Using a Minimum Number

of Multiplications, Technical Note 2, Computation and Data Processing Center, Aerospace

Corporation, El Segundo, California, 1962.

[27] Paprzycki, M., Cyphers, C., Using Strassen's Matrix Multiplicati0'1 in High Performance
i

Solution of Linear Systems, Computers Math. Applic., vol.3 I, No. 4/5, pp.55-6I, 1996.
I

[28] Bjorstad, P., Manne, F., Sorevik, T., and Vajtersic, M., Efficient MfCltrixMultiplication on
,

!

SIMD Computers, SIAM J. Matrix Anal. Appl., vol. 13, No. I, pp. 386-401, 1992.

[29] Knuth, D. E., The Art of Computer Programming, Volume I: Fundamental Algorithms,

Addison-Wesley Publishing Company, (second edition), 1973.

[30] Knuth, D. E., The Art of Computer Programming. Volume 2: Seminumerical Algorithms,

Addison-Wesley Publishing Company, (second edition), 1981.

[31] Knuth, D. E., The Art of Computer Programming, Volume 3: Sorting and Searching,

Addison-Wesley Publishing Company, 1973.

[32] Eve, J .• The Evaluation of Polynomials, Num. Mathematik, vol. 6, pp. 17-21.

[33] Horowitz E. and S. Sahni, Fundamentals of Computer Algorithms, Galgotia Publications,

New Delhi, 1990.

[34] KronsjQ L. I., Algorithms: Ineir Complexity and Efficiency, John Wiley and Sons, 1990.

[35] Brigham, O. E., The Fast Fourier Transform, Prentice Hall Inc., 1974.

[36] Kaykobad, M., Hoque, S., Akbar, M.M., and Nath, S.K., An Efficient Preprocessing for

Solving Systems of Linear Equations, to appear in Int. J. of Comput. Math ..

91

Borodin, A, and L Munro, Ihe Computational Complexity of Algebraic and Numeric

[37J Cormen, T H, C E Leiserson and K L Rivest, Introduction to Algorithms, The MIT

Press, J 990,

Sedgewick, K, Algorithms, Addison Wesley Publishing Company, 1988,

Aho, A V"], E Hopcroft and], D, Ullman, The Design and Analysis of Computer

Algorithms, Addison Wesley Publishing Company, 1974,

[38J
I
i [39J

-,

"

[40J

-~

Problems, American Elsevier, N,Y, 1975,

[41J Scarborough,], R, Numerical Mathematical Analysis, Oxford and IBH Publishing

Company, (third Indian reprint), 1971,

[42J Cohen,], and Roth, M" On Implementation of Strassen's Fast Multiplication Algorithm,

Acta Informatica, 6, pp,341-355, 1976,

[43J Schildt, H, C: Ihe Complete Reference, Osborne McGrawHill, 1987,

92

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101

