ed b

Xz

A.STUDY ON
COMPUTER ALGORITHMS
INVOLVING MULTIPLICATION

BY

MD. SANAUIL. HOQUE

' ' A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE '
' DEGREE OF

MASTER OF SCIENCE IN ENGINEERING

- HIWATIOAHOnn- |
#90292# |
_ |
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

September 1996

: The thesis A STUDY ON COMPUTER ALGORITHMS INVOLVING MULTIPLICATION,
_ﬁj : submitted by MD. SANAUL HOQUE, Roll No. 901814P, Session 1988-89, Registration No.

I\I 84182 to the Computer Science and Engineering Department of Bangladesh University of
Engineering and Technology has been accepted as satisfactory for partial fulfillment of the
T requirements for the degree of M.Sc. Engg. in Computer Science and Engineering and approved
as to its style and contents. Examination held on September 24, 1996.

BOARD OF EXAMINERS

i 1. Chairman
(Dr. Mohammad Kaykobad) {Supervisor)
Associate Professor and Head
Department of CSE
BUET,MI\)haka

2. TSN /4(/7 A(C‘m"-"“’* Member

(Dr. Md. Shamsul Alam)

Professor
Department of CSE
BUET, Dhaka
}‘ i ’
L W
3 3. ‘ Member
. (Dr. M. Shamsher Ali) (External)

T Vice Chancellor
- Bangladesh Open University
Dhaka.

S

ey iy, T s

DECLARATION -

I, hereby, declare that the work presented in this thesis is done by me under the
supervision of Dr. Mohammad Kaykobad, Associate Professor, Department of Computer Science
and Engineering, Bangladesh University of Engineering and Technology, Dhaka. I also declare
that neither this thesis nor any part thereof has been submitted elsewhere for the award of any

degree or diploma.

Countersigned

Dr. Mohammad Kaykobad (fMd. Sanaul Hoque)
(Supervisor)

ACKNOWLEDGEMENTS

All praises are for the Almighty.

The author would like to express his sincere gratitude and profound indebtedness to his
supervisor Dr. M. Kaykobad, Associate Professor and Head, Department of Cdmputer Science
and Engineering(CSE), BUET, Dhaka, for his constant guidance, helpful advice, invaluable
assistance and endless patience throughout the progress of this work, without which the work
could not have been completed.

The author gratefully acknowledges the kind support and encouragement extended to him
by Dr. Md. Shamsul Alam, Professor, CSE Department, BUET. The author also acknowledges
support extended to him by Dr. A B.M. Siddique Hossain, Ex-Head, CSE Department.

The author conveys his gratitude to Professor M. Shamsher Ali, Vice-Chancellor,
Bangladesh Open University for agreeing to act as an External examiner and showing keen
interest in the work even amidst his heavy scientific and social preoccupations in national and
international arena. .

The author is indebted to Mr. Ahmad Fuad Rezaur Rahman, Lecturer (6n leave), CSE
Dept., BUET, Mr. Md. Yasin Ali, Lecturer (on leave), BIT, Chittagong, Mr. Mohammad Manzur.
Murshed and Mr. Sandeepan Sanyal, Ex-Lecturers, CSE Dept, BUET for their effort in collecting
and sending relevant papers from abroad, and generous assistance in the thesis work.

The author also acknowledges the constant support and patience of his family members.
The arduous task of having completed the thesis could not have been accomplished without the
understanding he received from them.

Finally, the author acknowledges with hearty thanks the all out cooperation of his friends,
particularly Abdul Mannan and the faculty members of the CSE Department, who gave their

time, their knowledge and their best advice.

ABSTRACT

This research work has been aimed at investigating algorithms involving multiplication.
In particular three classes of prdblems namely, polynomial evaluation, matrix multiplication and
chain matrix multiplication have been considered.

The problem of polynomial evaluation has been considered with preprocessing which has
been proven efficient in case it is evaluated at many points. Belaga, Peterson-Stockmeyer and
Knuth's method of preprocessing have been subject to numerous experiments, and Belaga's
method has outperformed the remaining algorithms in terms of computational time requirement
for evaluating preproceésed polynomials, whereas Belaga's preprocessing algorithm was found to
be the most time consuming.

Matrix multiplication algorithms were tested with both integer and real data. We have
considered order of the matrices in the range 4-128 for our experiment. It was observed that in
this range none of the prospective algorithms of better orders could perform better than O(n’) |
classical algorithm and algorithm using Winograd's identity. Multiplication algorithm using
Winograd's identity came out superior in both the cases of integer and real data elements. This
finding does not totally disagree with the previous assertion that Strassen's algorithm become
competitive only after order of the involved matrices exceed 120. However, our numerical
experiments do not indicate that even after the order exceeds 120 it can have any competitive
edge over Wihograd's identity or even classical algorithm for orders near 120. We have also.
introduced a new preprocessing method for converting an arbitrary system of linear equations into
a positive definite linear systems for which convergent iterative schemes exist. This
preprocessing was done by recursively using Strassen's scheme to compute A4 by using only
two-thirds of the cost required to multiply two arbitrary matrices using Strassen's scheme. This
has resulted in an algorithm with 33% savings over direct application of Strassen's multiplication
scheme.

For chain matrix multiplication, dynamic programming scheme as well as heunstic
algorithms of Chin and Hu-Shing were considered. Both the heuristic algorithms performed very
well producing optimal sequences in reasonable amount of computation with Hu-Shing's
algorithm performing better. Moreover, both these methods produced solutions whose deviation

from the optimal solution was found to be decreasing with the number of matrices in the chain.

i

CONTENTS

Abstract
Contents
List of Tables
List of Figures

CHAPTER ONE INTRODUCTION
Introduction
[mportance of the Study
Historical Perspective
Thesis Organization

CHAPTER TWO POLYNOMIAL EVALUATION
Introduction
Representation of Polynomials
The Power Form
The Nested Form
The Root Product Form
The Lagrange Form
The Newton Form
Orthogonal Form
Preprocessing of Coefficients
Todd-Motzkin Algorithm
Belaga Algorithm
Peterson-Stockmeyer Method
Knuth Algorithm

CHAPTER THREE MATRIX MULTIPLICATION
Introduction
The Classical Method
Karatsuba's Method
Winograd's Method
Strassen's Method
Winograd Variant of Strassen's Method
Trilinear Form
Victor Pan's Method
Matrix Multiplication in Preprocessing of Systems of Linear Equatlons

ii

Page

ii
iv

00 Lh L) —i

10
11
§|
12
13
14
15
16
19
19
20
24
27

30
30
32
32
34
36
38
41
42
45

CHAPTER FOUR CHAIN MATRIX MULTIPLICATION
Introduction
Dynamic Programming Approach
Chin's Method
Hu-Shing Heuristic Method

CHAPTER FIVE EXPERIMENTAL RESULTS
Polynomial Evaluation Algorithms
Matrix Multiplication Algorithms
Chain Matrix Multiplication

CHAPTER SIX CONCLUSIONS AND RECOMMENDATIONS

Conclusions
Recommendations for Further Study

REFERENCES

iii

50
50
51
54
57

61
62
62

81 .

85
85
88

89

Ao

TABLE 5.1
TABLE 5.2
TABLE 5.3
TABLE 5.4
TABLE 5.5

TABLE 5.6
TABLE 5.7
TABLE 5.8
TABLE 5.9
TABLE 5.10

LIST OF TABLES

Page
Experimental Results for Matrix Multiplication using Classical Method 64
Experimental Results for Matrix Multiplication using Karatsuba Method 65

Experimental Results for Matrix Multiplication using Winograd's Identity 65

Experimental Results for Matrix Multiplication using Strassen’s Method 66
Experimental Results for Matrix Multiplication using Strassen's Method

using Winograd's Variation 66
Experimental Results for Matrix Multiplication using Trilinear Form - 67
Experimental Results for Matrix Multiplication using Pan's Method 67
Performance of Calculating A'A and AB 68
Time Required to Obtain the Optimum Order of Multiplication 81
Performance of Heuristic Chain Matrix Multiplication Algorithms 82

v

1
.51
. 5.2
.53

ig. 5.4

Fig.
Fig,
Fig.
Fig.

.55
.56
.57
. 5.8
.59
. 5.10

5.11
5.12
5.13a
5.13b

LIST OF FIGURES

Cost versus Performance Curve and Its Evolution over the Decades
Evaluation Time for Different Algorithms

Preprocessing Time for Different Algorithms

Matrix Multiplicatién Time for Integer Elements

Matrix Multiplication Time for Float Type Elements

Additions Required for Matrix Multiplication

Elementary Multiplication Requirement for Matrix Multiplication
Memory Access for Reading Matrix Data |

Memory Access for Writing Matrix Element

Memory Access for Writing Non-matrix Element

Comparisons Made While Multiplying Matrices

Procedures Called During Matrix Multiplication

Space Requirement for Matrix Multiplication

Time to Find the Multiplication Order of a Matrix Chain

Time to Find the Multiplication Order of a Matrix Chain

Page

. 63
64
71
72
73
74
75
76
77
78
79
80

- 83
84

CHAPTER ONE

INTRODUCTION & ™ *
N ‘?5@
\\\bc@“‘/‘/ *

An algorithm is any well defined computational procedure that takes some value, or set
of values, as input and produces some value, or set of values, as output in a finite amount of
time. An algorithm is thus a sequence of computational steps that transform the input into the

output. An algorithm is usually specified as programs written in pseudocode.

An algorithm is said to be correct if, for every input instance it halts with the correct
output. An incorrect algorithm might not halt at all on some input instances, or it might halt with

other than the desired result.

Algorithms devised to solve the same problem often differ dramatically in their efficiency.
A good algorithm is like a sharp knife - it does exactly what it is supposed to do with a minimum
amount of applied effort, Using a wrong algorithm to solve a problem is like trying to cut a steak
with a screwdriver. It may eventually produce a digestive result but requires considerably more

effort than necessary, and the result is uniikely to be aesthetically pleasing.

Analyzing an algorithm mean predicting the resources that the aigorithm requires. By

analyzing several candidate algorithms for a problem, the most efficient one can be easily

JRCTA

At

identified. Such analysis may indicate more than one viable candidate, but several inferior

algorithms are usually discarded in the process.

Algorithms can be evaluated by a variety of criteria. Mostly the interest is in the rate of

growth of time or space required to solve larger and larger instances of a problem..

The time needed by an algorithm expressed as a function of the size of a problem is called
the time complexity of the algorithm. The limiting behavior of the complexity as size grows is

called the asympiotic time complexity If an algorithm processes inputs of size 7 in time an’+bn+c
ymp piexily g P p

for some constants @, b, ¢, then the time complexity of that algerithm is O(#?). Similar definition

can be given for space complexity and asymptotic space complexity. The asymptotic complexity

of an algorithm ultimately determines the size of problems that can be solved by the algorithm.

If for a given size, the complexity is taken as the maximum complexity over all inputs
of that size, then the complexity is called the worst case conmplexity. The worst case running time
of an algorithm is an upper-bound on the running time. Knowing this gives a guarantee that the

algorithm will never take any longer.

If the complexity is taken as the average complexity over all inputs of a given size then
the complexity is called the expected complexity (also called average complexity). The expected
complexity of an algorithm is more difficult to ascertain because it may not be apparent what
constitutes an average input for a particular prbblem. Most often it is assumeci that all inputs of

a given size are equally likely. A randomized algorithm can sometimes force it to hold.

In analyzing algorithms, the accuracy of the computed result is another important
criterion. The computer being ﬁ finite state machine, is capable of representing numbers only to
a finite number of digit positions. As a result, most numbers are rounded if they are too long for
the computer to represent exactly. Thus, some algorithms may produce approximations that are

wildly inaccurate.
IMPORTANCE OF THE STUDY

Classical science is based on observation, theory and experimentation. Unfortunately,
scientists cannot use physical experiments to test many of their theories. High speed computing
allows them to test their hypothesis in another way by developing a numerical simulation. Many
important scigntiﬁc problems are so complex that solving them via numericallsimulation requires

extra ordinarily speedy computer.

Ever since conventional computers were invented, their speed has steadily increased to
match the needs of emerging applications. One might suspect that this would decrease the
importance of efficient algorithms. However, just the opposite is true. Fundamental physical
limitations make it impossible to achieve further improvements in the speed of these computers
indefinitely. Recent trends show that the performance of these computers is beginning to saturate.
A cost-performance comparison over the last few decades revealed that at the lower end,
performance increases almost linearly (or even faster than linearly) with cost. However, beyond
a certain point, each curve starts to saturate, and even smaller gains in performance come at an

exorbitant increase in cost.

i
|

Performance

Cost —————~

Figure 1.1 Cost versus performance curve and its
evolution over the decades.

Instead it can be shown that speed gain that can be achieved through algorithmic
improvementé is much more prominent than that can be achieved from a high speed next

generation computer.

The third argument that may be placed in favour. of hardware is the use of parallel
computers. This is a comparatively new field. Besides many algorithms suitable for conventional,
single processor computers are not appropriate for parallel architectures. Many algorithms with
inherent parallelism have a higher computational complexity than the best sequential counterpart.
Thus total system performance depends on choosing efficient algorithms as much as on choosing

fast hardware.

Many of the scientific calculations are repetitive in nature. Saving a small amount of
computational time for frequently used program segments can result in large overail savings.
Since computer arithmetic is in the heart of every computational work, a marginally better

algorithm for one of these basic operations will result in tremendous savings.

HISTORICAL PERSPECTIVE

Algorithms for doing elementary arithmetic operations such as addition, multiplication,
and division have a very long history, dating back to the origins of algorithm studies in the work
of the Arabian mathematician al-Khowarizmi, with roots going even further back to the Greeks

and the Babylonians.

W.G. Horner[1] taught an elegant way to rearrange a polynomial for computation. He
gave this rule early in the nineteenth century. Though the fame goes with Horner, this idea was

used by Sir Isaac Newton[2] in 1711, 150 years earlier than Horner.

A. M Ostrowskif3], in 1954, was the first to ask whether a good algorithm, Horner's rule
for polynomial evaluation, was the best method possible. This began the modern history of
arithmetic complexity. Ostrowski was only partially successful in answering the fundamental

question he posed.

‘h‘?: :

In 1966, V. Y. Pan[4] established that Horner's rule is optimal with respect to the number
of multiplications/divisions for the evaluation of a polynomial. Z. Kedem and D. Kirkpatrick, in
1974, provided lower bounds on addition/subtraction operations for a number of problems
including polynomial evaluation and matrix multiplication. Initially all scientific endeavour to
polynomial evaluation were attempts to bring about efficient evaluation schemes by means of

conceptually new representation forms.

In 1955, Motzkin{6] introduced the idea of preprocessing the polynomial coefficients.
Belaga[5), in 1958, established the lower bound on polynomial evaluation with preprocessed
coefficients. Pan[7], in 1959, proposed a form of economical evaluation of a polynomial. Since
then, several other schemes of polynomial evaluation were brought i'nto light. Rabin and

Winograd[8], in 1971, presented a number of rational preconditioning methods.

Multiplication and division, of the four basic arithmetic operations, are the most time
consuming. Thus minimum computation time can be achieved if multiplications can be done fast.
Karatsuba{9] suggested a method for doing multiplication. with running time of order n'®?’.
A.L Toom[10], in 1963, gave a new idea to further improve Karatsuba's method. S.A. Cook[11]

showed how this method can be adapted in a computer program. V. Strassen and A. Schinage[12]

jointly discovered a 2-base-FFT based scheme to multiply large integers.

The classical matrix multiplication algorithm seemed irreducible for a long time. In 1962,
A. Karatsuba{9], with Yu Ofman, developed a method for multiplying two matrices. His

algorithm uses fewer number of addilions and the same number of mulltiplications as compared

to that of the classical method. S. Winograd[14], in 1967, discovered a method based on the
identity involving the sum of two pairwise products. V. Strassen[15], in 1969, observed that a
pair of 2 x 2 matrices can be multiplied in 7 multiplications, instead of the usual 8. This single

result has provided the greatest impetus to the field of computational complexity.

After Strassen's Q07 ") algorithm, numerous attempts were made to improve it.
S. Winograd[16] further improved Strassen's method. He presented an algorithm which uses 7
multiplications and 15 additions to multiply two 2 x 2 matrices. Victor Pan[17], in 1978,
discovered that it could be lowered to Q(*™). This breakthrough led to further intensive analysis
of the problem, and the combined efforts of D. Bini, M. Caporani, G. Lotti, F. Romani, A
Schénhage, V. Pan, S. Winograd, and D. Coppersmith (see [30], p.482) culminated in

2.5161

constructions that have an asymptotic running time of O(**'*"). The asymptotically most efficient

algorithm to date, due to V. Pan[18], has a running time of o).

Francis Y. Chin[19], in 1978, presented an O() algorithm for determining a near-optimal
computation order for chain-matrix multiplication problem. A K. Chandra[13] presented an O(1)
algorithm which produces an order that requires no more than twice the optimum computation

time. T.C. Hu[20], along with Shing, presented a heuristic algorithm to find the optimum order.

r,

THESIS ORGANIZATION

This thesis comprises six chapters. Chapter one provides the motivation for the study. It
explains what algorithm is, what complexity is, why this analysis is needed. It also gives some

insights into the various developments in the field of arithmetic computation.

Chapter two deals with the evaluation of polynomials. Initially it describes séme
polynomial representation techniques and their associated evaluation algorithms. Then it
introduces the concept of preconditioning and describes algorithms that uses preconditioning.
Algorithms to evaluate polynomials with complex arguments are also described here. In addition,
techniques for evaluating several polynomials at several different points simultaneously are

presented in this chapter.

Chapter three is dedicated to matrix multiplication. Operation on matrices are at the heart
of scientific computing. Though classical method of matrix multiplication is widely used, several
other efficient algorithms have been developed. This chapter presents Strassen's surprising

algorithm and several other algorithms.

Chapter four describes techniques that should be employed while performing chain matrix
multiplication. The way matrices are parenthesized has a dramatic impact on the cost of
evaluating the product. This chapter presents a dynamic programming approach to determine the
optimum order. In addition, it also presents two other algorithms, oﬁe by FY Chin and the other

by Hu and Shing, that can efficiently determine near-opﬁmal order.

AJLF

Chapter five is intended for the experimental results based on the algorithms discussed so

far in the previous chapters. This chapter compares the complexities of similar algorithms.

In chapter six, conclusions were made on the findings and some issues for further research

in those directions are recommended.

Trae !

CHAPTER TWO

POLYNOMIAL EVALUATION

Evaluation of polynomials is one of the most widely used operations in practical
computation. In fact, many algorithms entail the evaluation of one or more polynomials at a

large number of points. A polynomial is, generally, an expression of the form

. n n-b,o .
A(x) = ax"1a, x7 ' va Xt a

where the coefficients a,, a@,_, , ... , 4, , @, are elements of some algebraic system

n !

(e.g., integers, floating point numbers, complex quantities etc.) and x is an indeterminate. If

a #0, n is referred to as the degree of the polynomial.

Evaluation of polynomials occur while computing transcendental or more complex
algebraic expressions. Trigonometric functions like sine, cosine etc. and exponential and
logarithmic functions are sometimes expressed as a polynomial and their evaluation depends on

the evaluation of those polynomials.

10

roger

REPRESENTATION OF POLYNOMIALS

Any particular polynomial may be expressed in a variety of ways. We can represent a
polynomial of degree n by its value at »n +/ points, by its roots, or by its value and all
derivative values at a single point. Each of these representations exactly describe the polynomial

but where numerical evaluation is concerned, the various forms show different properties.

The following section describes various ways of evaluating a polynomial, depending on

the form in which it is presented.

The Power Form : The most common and widely used form of a polynomial is the
power form shown in eqn. (2.1). This is sometimes referred to as coefficient representation of
a polynomial. A polynomial given in power form can be evaluated at a point x, using the
following algorithm. Algorithm 2.1 requires 2n multiplication, #» addition and (2n +2)

assignments.

procedure powerform (4, 1, x,)
se—a,; r+«1
for i+ [/ ton stepl do
Fertx,
s«—a *r+s
repeat
return (s)
end powerform

Algorithm 2.1

11

The Nested Form : W. G. Homer[1] suggested a different representation for a
polynomial. This form is known as nested form or Horner form. A polynomial in Horner form

is expressed as

Ax) = (-~ (g,x+4a, Jx+ = +a)x+a

This suggests the evaluation algorithm for Horner form as

procedure horner (4, #, x,)
s+ a,
for i« (n-1) to 0 step -/ do
§e 8 *fx,+ aq
repeat
return (s)
end horner

Algorithm 2.2

Algorithm 2.2 requires # multiplication, n additions and (m+ 1) assignments.

A slight variation of Horner's form states a polynomial as
Af) = (o (@, x7 + a5,)x*+ .)x?+ a,
V(@ X7 @y)X Jx?+ a,)x

where p=| n/2] and g=[n/27 (2.3)

We can evaluate this polynomial using the algorithm shown in next page. This algorithm
requires (r+ /) multiplications and » additions. Though slightly expensive as compared to

Horner's algorithm, this algorithm is particularly useful if one wishes to evaluate both A(x,) and

12

A(-x,). This is accomplished with just one extra addition operation, as such two values are

obtained almost at the cost of one,

procedure horner_variation(4, #, x,)
, ue2*\n/2|; ve 2*[n2)-1
- s,<a, ; S, +da,
rex, *x,
for(i=u-2,j=v-2;i=0j20;i=1i-2 J=j-2)do
s, s, *rtoa :
S, -8 rr g
repeat
return (s, + 8, * x;)
end horner variation

Algorithm 2.3

The Root Product Form : The Root Product form of a polynomial is given by

4]

At =a, TI (x- v} e, (2.4)
i=1 . .
where, A(y,) = 0. The roots y/s can be real or complex.

Important cases of polynomials in this form arise, for example, in statistics. The

computational algorithm for this representation can be expressed as

procedure root_product (Y, d,, 7, X,)
s+ a,
for i< [to n do
§ < 85* (xo - Y,/
repeat
return (s)
end root_product

Algorithm 2.4

13

e *

It can be easily seen that evaluation algorithm for the Root Product form of representation

requires # multiplications and # additions.

The Lagrange Form : A polynomial can be represented by their values at
different points. Given (n + 1)' points [x; , f(x,)], we can uniquely describe a polynomial A(x)
of degree < n that goes through these (n +1/) points. A polynomial has many different
point-value representations, since any set of (n7+ /) distinct points can be used as a basis for the

representation. A polynomial thus can be expressed as

ITI X “Ag

it XXy

L.

f

Ax) -)]

1s7/sn

This representation is quite convenient for many operations on polynomials, such as
addition, subtraction, multiplication, etc. We can compute the polynomial at any point x = X,
using Algorithm 2.5 given below. This algorithm requires (21 + 2n) multiplications and (2n’+3n

+ 1) additions which is discouragingly very high.

procedure lagrange (X, I, , x,)
s+ 0
fori < 0 to n step / do
pef
for j«— 1 to n step/ do
if i+ j then
pepr(x -x)/(x-x)
endif
repeat (j)
S—s+p
repeat (7)
return { 5)
end lagrange
Algorithm 2.5

14

The Newton Form : | The Newton form of a polynomial is a modified form of

Lagrange's form. This polynomial form arises in the form of interpolating a function given in

tabular forin. The form does not occur directly but is arrived at after some manipulation on the

direct interpolating polynomial.

Lagrange's polynomial of degree two can be expressed as

L m)x x)

(x x)x x) > (x x x)

P(x)y
s I(XI XX x)

and that of degree one can be expressed as

X x X X
P(x) = f v h
X X X X
Subtracting,
(x x)|(x x)
P(x) P(x) £ :
(N x) | (x x)

Now P,(x} - P,(x) isa second degree polynomial that vanishes at x =x, and x, , and must

therefore be a multiple of (x - x;){ x - X,

? (X)X, %) ’ (- x)X X))

1] r (xx,)

2 (x-x3) _ 1] r (X--xl)(xfxz)
(Xzfxl)

(- %) ’ (x5 x) (x5 X))

).

Pl - P = ay(x-x,) (x-x,).

Similarly, it can be shown that
Pix)} - Pofx) = o, (x-x)

therefore,

15

Pyx) = a,(x-x;) (x-x,)+ P,(x)
=0, {xx)(xx)+ a (x-x,) + Pyfx)

=0, (x-x,) (xx,)+ o, {x-x,)+ O

Generalizing, we can write

S O T - 2 7Y R - 7 SRR (2.6)

This is the Newton form of a polynomial. The computational algorithm based on Newton

form may be stated as follows :

procedure newton (o, B, 1, v}
5,
for i+ n to I step -1 do
ses =Pt o,
repeat
return (s}
end newton

Algorithin 2.6

This algorithm requires 7 multiplications and 2n additions.

Orthogonal Form : The orthogonal polynomial form is given by

P(x) = E b, QA—(X)
%0

16

where the orthogonal polynomials, {Q; (x), i = 0, 1, .. ,n} satisfy a recurrence relation
Q..(x) =(A,x+ B)Q.(x) - CO,,(x) withA,#0, Qy(x)=1, 0, (x)=0 and where A4,, B, and

C, are independent of x. The computational algorithm for orthogonal representation is,

procedure orthogonal (A, B, C, n, b, x;)
VH - bﬂ
Vi e (A %o+ By WV, + b,
for k< n-2 to 0 by -/ do
Vie (Aexg+ B)Wy - Cia t by
repeat
return (V)
end orthogonal
Algorithm 2.7

This scheme of evaluation requires (37-7) multiplications and (3n-/) additions.

Chebyshev polynomial 7(x) is a classical orthogonal polynomial. Here,
I

P -) 5T(%
=0

and B.-0, C;=1 for i20, A,-2 for i2] and Ay~ 1.

Clenshaw[21] developed an algorithm (referred to as Chebyshev-Clenshaw algorithm) to

evaluate a Chebyshev polynomial.

procedure chebyshev_clenshaw (7, b, x,)
Y«2*x,
V.o« b,
Vn—l “ Y * Vn + bn-[
for k « (n-2) to 1 step -1 do

Ve Y *V,, - Vi, + b,

repeat

return (x,*V, - V, + by)

end chebyshev clenshaw

Algorithm 2.8

17

The evaluation of a general polynomial as a weighted sum of Chebyshev polynomials

using the above algorithm requires (n+/) multiplications and 2n additions.

Bakhvalov[22] developed another algorithm to evaluate Chebyshev polynomials. This

algorithm is referred to as Chebyshev-Bakhvalov algorithm and is given below.

procedure chebyshev_bakhvalov (#, b, x;)
for k< 0 to n-2 do
Dy (by - byy) /2
repeat
Dn-] - bn-I / 2
V « b,/2
Y« 2 *x,
Vo <Y *V,+ D,
for k< n-2 to 0 by -/ do
Vi (Y * V0, - V2) + Dy
repeat
return (V)
end chebyshev_bakhvalov

Algorithm 2.9

This algorithm requires (n+ /) multiplications, (n+ /) divisions by a factor of 2, and (3n-1)

additions.
Algorithm Chebyshev_Clenshaw is more efficient than algorithm Chebyshev_Bakhvalov

in terms of the number of arithmetic operations, but for certain polynomials the use of the latter

may be preferable on the grounds of numerical accuracy.

18

]

PREPROCESSING OF COEFFICIENTS

There are many possible representations of a polynomial, all of which may be used as
inputs to a computation. A.M. Ostrowski[3] showed that at least » multiplications and #
additions are required to evaluate degree n polynomials for n<4 with the underlying assumptioﬁ
that the polynomial coefficients were not in any way artificially transformed. Since then, this
result has been proved true for all non—negat.ive values of n. This establishes that the Horner

algorithm is optimal regarding the number of arithmetic operations involved.

However, it can be shown that if the polynomial coefficients are preprocessed for the
evaluation of the polynomial, it requires fewer multiplication and/or additions than the Horner
algorithm. This prec-onditioning involves.a lot of additional arithmetic operations, but it has to
be done only once. The overall savings on the number of arithmetic operations may be

significant if the polynomial is evaluated at many points.

In distinction to the polynomial forms considered earlier, polynomials with preprocessed
coefficients do not arise 'naturally' but are obtained in an artificial way, with the sole purpose of

facilitating their fast evaluation.

Todd-Motzkin algorithm : Motzkin[6] was first to introduce the idea of
preprocessing the polynomial coefficients for the purpose of polynomiai evaluation. The
Todd-Motzkin approach expresses a degree four polynomial as

A(X) = @, [z(z + x+ ;) + €]

19

where, z=x(xt+tagytoe, L (2.9)
substituting,
AX) = oxt o 201 + o (oot (e t1))x’
+ oo to)atogx + (e egtag)
equating like po;’vers of x,
0, =05(a,/a, - 1)
o, =a /a — op where, B =a,/a, - oo, + 1)
o, =P - 2a,
o, =2,/ a, - o (o, +o,)

Three multiplications and five additions are required to evaluate a degree four polynomial
using this approach. Though the preconditioning operation (i.e., evaluation of @'s) requires extra

9 multiplications/divisions and 7 additions/subtractions.
Belaga Algorithm :

In 1958, E.C. Belaga[5] formulated two theorems stating that "For any polynomial A(x)
of degree n, there exists a computational evaluation scheme that requifes [(n+1)/2]+1
multiplications and (n+1) additions" and "No evaluation scheme exists with less than
|(n+1)/2| multiplications or with less than n additions." These theorems establish the lower

bounds on the number of multiplications and additions, under the assumption that some

20

preprocessing of the coefficients is allowed without cost. The general scheme suggested by

Belaga can evaluate any polynomial of degree n > 4 with prior preprocessing of the coefficients.

The scheme for evaluation of a polynomial as suggested by Belaga can be described as

o V't 0 forneven

n
nil
P (x) =Z a, x"k =
P o, XV, pt % forn odd

where, Vo= Vi (Vi + g) + oy, k=3 ..,|n /2J
V,=(V, +x+a)V, +ta,) t o,
V,=(x+a)x
We can easily see that the Belaga computational scheme requires | (n+1)/2]+1

multiplications and 2|n/2 |+1 additions.

E. W. Cheney[26] developed a method for computing the parameters @, 's in the Belaga

scheme in terms of (g,, 4,a,). Let
@, Vit O
Px) ax"rax"'iea , m-|n/2]
%y XVt % L (2.11)

Without restricting the generality of the method, we may assume that a, = a,,, =1, and

considering

21

— L2m 2m -1 Zm -2 .
V,=x"+c¢x + ¢ + .t ey

m

= (X2 b T b by (X F X g) Gy - (212)

. — L — "
where ¢; = a;, J = 1,...,2m, m~+ IEJ

Equating like powers of x in eqn. (2.11) gives:
;=0 +b

Setting o, i(c, 1), we obtainb, M
m m
Cy = Qg + €yby + by
or, b,=c¢, - o,b, - &y
for other b's, b, = ¢, - o;b,, = %y 1bea, k=3, ...,2m-2
&, is still unknown. To obtain this value, solve
Com-1 = %om-4bom-3 T €ybam
after substituting the b's in it. At this point, substitute the value of &, into the expressions for
b, , ... ; b, and obtain their numeric values. Finally, solve the equation

Clm = amelem—z + a2m fOf 0"':!m'

We have now obtained values for &, = o, , 0,4 = Qs y, and &, By replabing m by
m-11in eqnl. (2.12) and solving the system obtained in the manner similar to the above, we obtain
¢, , and oc,,__,,.. The process is repeated until all o; are computed. The parameters of Belaga form
for a given polynomial are not unique. in addition, some of the «, 's may be complex for a

polynomial with real natural coefficients.

22

An example :

Let, P,(x)=x" -2x'+x>-0.1x be the polynomial to be evaluated.

7

We may write,

V,=x*-2x'+x* - 01

(x“+blx3+b2x2+b3x+b4)(x2+oz,x+ocs)_+oz6
here, m=3,¢,=0,¢,=-2,¢,=0,¢,=1,¢,70,¢g=-0.1.
we also get, a, = 1.0, and &, = 0.

o, = —0.333, b, = 0.333

b,=-189 - a,, by=-063-067a,

b, =0.79 + 1.22a, + .

Now, solving . 0.26 + 1.04a, + o’ =0, we get a; = -1.607 or 2.39.
substituting, o, in the equations for b, , by , b, , we get
b, = - 0.283, b, =0.447, b, = 1.412,
finally, @, =¢cs - &5 b, =2.169.
Thus we get,.
V, = x' +0.333x - 0.283x” + 0.447x + 1.412
=(x2+b,x+b2)(xz+0t,x+ocg,)+0t4
Eciuating like powers,
b,=-0.172 - «;
for a, , we get, 0 =0.504 - 0.666&, or &y =0757
therefore b, = - 0.929
and %, =1412 - a3 b, = 2.1.15. | This is the end of prepfocessing.

23

For 'evaluation, we have,
V,=(x - 0.333)‘x
V, = (V, + x - 0.929)(V, + 0.757) + 2.115
V, =V, (V, - 1.607) + 2.169

P(x)=x V,+0

For x = 2, we can easily calculate

v, =3334
V, = 20.136
V, = 36.944

P(2.0)= 1.0 x 2.0 x 36.944 + 0.0

= 73.887

Paterson-Stockmeyer method :

M Paterson and L. Stockmeyer{25] have developed a rational preconditioning algorithm
in which only rational functions are used in the precc;nditioning phase. Their method was
motivated by computation of polynomials whose coefficients and variable are matrices. This
algorithm is developed assuming the polynomial P(x) to be monic and of degree n. We can

decompose P(x) as follows :

P(x) = (xI™Ve) P(x) + Py(x)

24

where,

{mf2] 1 '
P (x) xl2l Z o, x/

Jo

[nf2)- 1

. opl®2] f
P(x) - x E% B,x’
=

...................... (2.13)
equating like powers of x, we can obtain
-1 n Is even
®; = Aan) s
By = a- Ye, (2.14)

Only rational operations are needed to compute {e;}, v, {B;} from the coefficients of

P(x). More over, the idea can be recursively used to compute the monic polynomials P,(x) and

P,(x).

Not counting the cost of preconditioning nor computing the appropriate powers of x, we
can analyze the multiplication and addition complexity of the algorithm. For simplicity, let

=21

Then the cost of multiplication is f (k+1) = 2f (k) +1 where f (1)=0.

25

After simplification, fk+y =2 -1
or, in terms of #, S = w2

Additional log » multiplications will be required for computing the powers of x.

The cost for addition, g (k+1) =2g (k) +2 where, g (1) = L.
After simplification, g (k+1)=3-2*-2

or, in terms of n, g = 3n2

Hence the complexity after preconditioning is roughly (#/2 + log n) multiplications and

3n/2 additions.
Example:

Let the polynomial to be evaluated is
P(x) =x - x*+ 8% - 4x"+ 6> + 2xF - 5x + 1.

We may write,

Px) (Ve x? o x e (x0 Byxle Byrxt By)

equating we get, Y=5, a, = -1, &, =8, ag= -4, B, =7, p, = -45, B, =21..
Thus P,(x) =x’ - x"+8x - 4

= (X" + Y)x +) + (x + By)

where, Y' =7, o, = -1, B, =3

26

x + Tx* - 45x + 21

and P,(x)

= (7 Y ag") F (x+ Bo")

where, " = -46, a," =7, By" = 343,
Now, to evaluate P(2.0), we get,
P=@rag) = 1, Py = (24By) =5, P = (2+a,") = 9, P, =(2+B,") = 345,
| = (24P, +P,'= 16, P, = (2%+y")P,"+P," = -33.

P(2) = (2+7)P,+P, = 303.
Knuth Algorithm :

Donald E. Knuth suggested another preprocessing scheme. His method is described below.

Let the polynomial be expressed as

n
P(x) = E c; X d
i-0

This arbitrary polynomial of degree # can be expressed as
P = (-a)P+ R (2.15)
where, @, is a constant, P, _, is a polynomial of degree (n-2), and R, is of degree at most 1.

Since o, is arbitrary, it can be chosen to make R, a constant. The factoring can be continued in

the same way and thus would yield an |n/2|+ 2 multiplication algorithm.

27

_ To establish that appropriate set , and R, can always be obtained, the following scheme
can be used. We may write,
P (x) -R, = (x*-a)P, ,(x

which means that ﬂ:@ are roots of P (x) ~ R,.

If welet ¢, = ¢,- R, , then

Ec’.af:z fe 0 e (2.16)
i1

and, Yegec)yvg o (2.17)
il

Assuming, o #0, adding and subtracting the above two equations, we get,

Lar2l]
Z CZia:r -+ EO =~ {} ' Lo T (2.18)
i1 '
IHIZ] ’__!_)

and, E G0, 20 e (2.19)
F!

Multiplying eqn. (2.19) by \/oTn , we get that o, is a root of the eqn (2.19)

Some of the a's may be complex.

28

J. Eve[32] gave a theorem which can be used to make all the o's real. According to Eve, If P,
(x) = Z c,x" has n -1 roots with non negative real parts, then all the roots of
[Ai2]

Q,(x) = E ("2:‘--1)""“l
i=1

are real.

Thus, P(x) can be altered so that all its roots will have non negative real parts. If

}_’n(x) =P (x - r), where r is a positive number large enough to guarantee that all the roots

of I;H(x) have positive real parts.

There is a very simple, though inefficient, way to determine the value of r. It has been

established that any root of a polynomial A(x) = a,x"+qa,_x 7Ly e agx o1 ay will satisfy,
A
| <|1+—| where A = max{a],), 5|}
%
So, by selecting r equal to an amount 1+£— , '[—’-;(x) will have roots, all with non
a, :

negative real parts.

To evaluate P_ (x), evaluation of F,,(x ') will give the desired result.

29

CHAPTER THREE

MATRIX MULTIPLICATION

A matrix is a set of numbers arranged in a rectangular array written between parentheses

or double lines on either side of the array. For example,

[.]

dy dp dp a,

a; 4y ay,
A s

_a mi Ym2 ’ ta mn |

In the matrix, A = [a;], where for i =1,2,...,m and j =1,2,..,n, the element of the
matrix in row i and column is a;. The elements of a matrix are numbers from a numbef system,
such as, real numbers, complex numbers etc. A matrix of m rows and n columns is called an
(m x n) matrix. Matrices are usually denoted by capital bold faced letters. A matrix does not have

any quantitative value. Matrices can be added, subtracted, multiplied, inverted, transposed etc.

Such sets and arrangements occur in various branches of applied mathematics. 1n many

cases they are sets of coefficients ol lincar transformations or systems of linear equations arising,

for instance, from electrical networks, frameworks in mechanics, curve ﬁltting in statistics, and
transportation problems. Matrices are useful because they enable us to consider an array of many
numbers as a single object, denote it by a single symbol, and pefform calculations with these
symbols in a very compact form. The mathematical shorthand thus obtained is very elegant and
powerful and is suitabie for various problems. It entered engineering mathematics about sixty

years ago and is of increasing importance in various branches.

Matrix multiplication is principally used in many successful algoritMs of linear algebra,
for example, solving a set of linear algebraic equations, matrix inversion, evaluation of the
determinant, boolean matrix multiplication, etc. The complexity of a variety of algorithms such
as those for performing transitive closure of graphs, parsing of context-free languages, etc., can
be shown to depend on the complexity of matrix multiplication. In other words, if faster
algorithms for matrix multiplication are developed, they may be applicable in speeding up the

algorithms for solving a variety of interesting problems.

Some recently developed matrix multipliéation algorithms are discussed here. These
methods compute the product of two matrices using significantly fewer arithmetic operations
compared with the classical technique. These algorithms are yet of theorétical interest only as
they can actually supersede the standard method only when applied to solve problems of truly
large size. Still, these new algorithms form a basis for the development of genuinely efficient

algorithms for this important class of problems.

31

THE CLASSICAL METHOD

Two matrices can only be multiplied if the number of columns in the first matrix equals
the number of rows in the second one and multiplication of matrices is not commutative. If
A = (a;) is an m x n matrix, B = (b;) isan n x p matrix, then their rﬂatrix product C = AB is
an m x p matrix C=(¢,), where,

c, Y. a; 0, where, 151 < m, 1< k AP e (3.1)
isfsn

The total number of operations required by this process is mnp multiplication and

mp(n - 1) additions. If the matrices are square, i.e., m = 1 = p, the above process performs n’

multiplications and n*(n-1) additions.
KARATSUBA’S METHOD

1n 1962, A. Karatsuba, with Yu Ofman, developed a method for multiplying two matrices.
His algorithm uses fewer number of additions and the same number of multiplications as

compared with that of the classical method.

Let C be the product of the two matrices A and B each of order m2*. We may represent
A, B, C, as

All Al2 Bll BIZ C'll C12

Cll CZZ

= ,C:AB=
BZl B22

¥

A2I A22

32

r
T
A

The elements C; can now be computed using the formula

C, = A,B,+B,) + (A,-A,))B,,

C,=A,B,+B)) - (A;-A,)B,,,

C,, = A, (B, 1B,) + (A,-A,))B,,

C,, = Ap(BtBy) - (A-A)B, (3.2)
Another possibilily is to use |

Ci = Au(B,+B,) - (Ar-A,)B),

C,, = A(B,1B,) - (A;-A)B,,,

Gy = Ap(Bp1By) + (Ay-Ay)By,

C,, = Ay(B,,+B,) - (Ay-Ay)B s (3.3)

Let o, ; denote the algorithm to multiply matrices of order n = m2* | where o, ; is the
classical algorithm for matrix multiplication with nt’ multiplication and m’(m-1) additions. If

Ma,, ; denotes the number of multiplication required by @, ,, then

M,

Mam,k = 8 Mam,k-!

k
8 Mam,(]

8 m’

= ' (3.4)

Let Sc,, ; define the number of additions and subtractions. Since the algorithm requires
8 additions/subtractions of matrices of order m2*"' and also the 8 matrix multiplication of order

m2*' requires Se,, ;. ; additions each. Thus

33

Sam,k = 8 (mzk-l)z + 8So‘rm,k-l
= g'm’ - 2(4"m’

(m2*) - 2(m2%)?

= nP-2n7 e

Thus when used recursively, Karatsuba method saves n® additions.

WINOGRAD’'S METHOD

Samuel Winograd discovered, in 1967, that there is a way to trade about half of the

multiplications for additions as compared to that of the classical algorithm. This method is based

on the identity involving the sum of two pairwise products, as shown

z, = Z (X, 2}.1— Vi, k) (X; 241 + Y, k) - a’.—b FCh (3.6)
izjzt :
2
a=) X i27 Kizj-

where,
<52 f

b=) Y-tk Y2k

.oon
Is;sz
0 n evern
c. =
k X, V., 1 odd

This identity can be used in multiplying matrices. Let A and B be two matrices of

34

dimension m x n and n x p, respectively. The algorithm for computing C=AB using the
Winograd Method is given as

(assuming, n = 2k)

, k
CJ = E (ai,2u--l +b2u,j) (al',2u+b2u-—l,j) —flt.—gf' i =1’ v ’m " 21’ oo
u-1

........... 3.7
k
where, f= z ;001 230 i=12,..,m
u-1
k
£ = E b2u—l,j qu,_,r' j=1L2,..,p

If 7 is not even, we can easily pad a 0 column to matrix A and 0 fow to matrix B and
apply the algorithm accordingly. The total number of operations required by this process is
P g 2 (mtp) multiplication and %n mp + mp + (% - 1)(m+ p) additions. I the
matrices are square of dimension n by n, we shall need (n_;+ n 2) multiplications and
(%n 342n2- 2n) additions. By using Winograd’s method, the number of multiplication is about

halved while some price for this reduction is paid in terms of an increased number of additions

required.

35

STRASSEN’S METHOD

In 1968, Volker Strassen discovered a clever scheme for multiplying matrices. Strassen’s
method computes the product of 2x2 matrices with only seven multiplication and eighteen
additions. By using the method recursively, he was able to multiply two n by n matrices in

times O(n'"*t7), which is of order approximately n>*'.

Let A, B are two matrices of order #» (= m2*) to be multiplied, we may write them as

Ay Ay By, By
Ay Ap By By
and their product is
¢, Cp ; . »
C- AB - where the A, B, C, are matrices of order m2*".
Gy Cp

| Then we compute
I = (A +A,)(B+By),
1 = (Ay+An)By,
I = A, (B),-B;),
IV = A,,(-B,1B,)),
V = (A +A)B,,,
VI = (A A (B, 1By,

Vil= (Ap-An)By+By), e (3.8)

36

s

g
-

C,, = I+IV-V+VII,

Cyy = 1141V,
Cp, = I+
C,, = [T+ VI e -(3.9)

Let o, denote the algorithm to multiply matrices of order m2* | where a,,, is the
classical algorithm lor matrix nm]lip]icuﬂon and requires n’ multiplication and m?(m-1) addilion.s.
It follows that ¢, , requires 7 multiplication of matrices of order m2*!. Denoting by Me,,, the
number of multiplication required by algorithm ¢, , , we get

Ma 7 Mamk_,

ik

= 7k Mam,O

= 7*m L R, (3.10)

Similarly, Sc,, defines the number of additions and subtractions required by the
algorithm «,,, . Now from eqns. (3.8) and (3.9), it follows that requires 18 additions of
matrices of order m2*'. Also the multiplication of matrices of order m2*", each requires S, ; ;

additions. Thus

Se,,, = 18 (m2-")? + 7S04

I¢

18 m25Y? [1 + 7/22 + 752" + ..+ TN + TSay,,

(S+m)m? 7* - 6(m2%)? s (3.11)

37

From egns. (3.10) and (3.11), the total number of arithmetic operations is

Tam,k = Mam,k + Sam,k

T*m® + (5+m)m’7* - 6(m2")’

il

(5+2m)m*7* - 6(m2%)’

setting k= [logn-4] and m= | 2%] +1, with n assumed to be > 16, and introduced to
include all »7 in the range m2%' < n < m2,, we gel,
Ta,,, < [5+2(n2*)+1)(n2*+1)7*
< 20%(7/8)F + 12.03n%(7/4)¢

now 162 <n, k>0

[2(8/7)°8" % + 12.03(4/7)"-¥] n*”

PN

4.7 n"¥ e (3.12)

Thus using Strassen’s matrix multiplication algorithm, the product of two matrices of

order n can be computed using no more than 4.7 n°¢ arithmetic operations. -
WINOGRAD VARIANT OF STRASSEN’S METHOD
S. Winograd further improved Strassen’s method. He presented the following algorithm

which uses 7 multip{ication and 15 additions to multiply two 2 x 2 matrices. Let A and B be two

matrices of order n = m2* and their producf be denoted by C. We write

38

An Ao B, By,
i > B -
A Ay ' By By
, . Ch Cy
and their product is, C-AB -
Cy Cp

where the A, B, C, arc matrices of order m2%', To evaluate C, we compute

QD) = A, - A

(Q2) =A, + A,
(Q3) =A,-(QD
Q4 = Ap-(Q3)

(Q5) =By - By

(Q6) =B, - B,

(Q7) =B, - (Q5)

(Q8) =B, -(Q7) e (3.13)
(P = AyB), ‘ i

(P2) = A22B|_l

(P3) =(QINQ5)
(P4) = (Q2)(Q6)

(P5) =(Q4By

39

(P6) = A;,(Q8)

(P7) = (Q3)Q7)

Q9 = (P1) + (P7)
(Q10} = (Q9) + (P7)
Q1) = P4 +(P5) e (3.14)

C,, = (Q10) + (P6)
C,, = (Q10) + (P4)
C,, =(P1) + (P2)
C,=(Q9N+@QI) (3.15)
Using Strassen’s analysis of the number of arithmetic required to multiply n by n matrices,
we get,
Ma,, = 7 e o (3.16)

and So,, = 15(m2<') + 78w, ,

Il

15 (m25"Y [1+ 7/22 + 72° + ...+ T2 + TSe,,

(4+m)rr127k -5m2% e, 3.17)

From egns. (3.16) and (3.17) the total number of arithmetic operations is

Tam,k = Mam,}c + Sam, k

T*m’ + (4+m)m?7* - 5(m2%)

{l

(4+2mym’7* - 5(m2%)’

1

40

setting k= [logn-4] and m= |n2*] +1, we get,

Te,, < [4+2(m2*+1)](n2* +1)°7*

< 2n*(7/8)% + 10.58n%(7/4)*

now 162 <n, k > 0

[2(8/7) " + 10.58(4/7)¢""*] n'°¢”

45407 s (3.18)

A

Thus by using Winograd’s improved method, total arithmetic operations can be reduced

to 4.54 n'¢7
TRILINEAR FORM

The evaluation of the product of n x p by p x r matrices and decomposing the trace
product of three matrices of dimension # x p by p x m by m x n are two equivalent problems.

Thus the bilinear form of the traditional algorithm

i
;™ Z agby, 7=l,..m, j-1,..p
k-1

can be represented in trilinear form as

_Z a;b, ¢,
Lk

here the coefficients of C; is the (j,i)th element of the product C.

41

To evaluate product of matrices, we may considef the trilinear form as

E a.y Tk cki

4k
= > (@ By by X' Gy Y,
i jv keven
- Z (alrl 1A l) Z (bjk g bf! I l) Cri
Lk Fijok even
- Z agb E (' Ciypp)

k ik even

- E) (@5 a1) B Gy e

Ak Efgrk even

This method is inferior to Strassen’s method but when n>6, this algorithm becomes faster

than the classical method.
YICTOR PAN’S METHOD

There is more than one way in which the trilinear form can be represented. After
considering various trilinear representation forms, Victor Pan derived a new algorithm which
yields results superior to Strassen’s method. The Pan algorithm represents the trilinear form in

the following manner :

Yoagbie,=TL-T=5L-T, (3.20)
Lk

where,

42

Iy= Y (ara v a)b rb b)Y rccy)
l'.jlkr:S'(.c)

= (y—au @ N0+ by~ b) (- g e acy)
- (—aU+a.k+.?h)(b& b+ b) e e r ey
= (ay+a,-a) - bt b, A b,)(cmcivcy)

(a;+ay-a,)-b 0wt Ot O)(Cpi-¢; it Ci)
= (agragragNby-b b))~ e ep=c)
— (ag-ayg+a)by b, ~b)(~cpicivcy)

+ (3&& afk""alcff)(bjk+ bkr+)(Ciit C G k)

T = Y aﬁby{(s 2w+ (et €]

1<if%s
+ ybu[(s' Dei+ Y, (= i c.k)]
+ gbfs-w)epwer Y (6y-c)

a,;b,[(s=w) e, =3 " (¢

+ a&bu{(s—W)C =Y. (gi*e]

+ abl(s~wyc~wuc+ Y (cmcy 5]
+ aubu[(s-W)Cy*E (= G+]

+ apbls-2wyer Y (cw%-})]

’J’ L

L= X ()] (oo~ a)) (v by

120725

+ ad (Gymb)e;+ ad) [(Bm bfk) —w;b) ¢
+ a!j[Z (bkr Jk) i _,u] 3;]:2 ' (bjf_ b,h") ij
a3 (Buvbge,+ ad) (b bc

43

T, =

L <ifss

>) (@ ag)b;c; + > (e ~ai) —wya;1b;c,

-y (g, +a)bc, + Yo (@, a,;) b,
+) (@~ bycy —) (a+a)b ey

+ Y [(ay; - a-wialbc; + 3 (a+ a;) b ci

Here,

S - S9 U 859

S8 {0, 1 <isj<k<s)
SH8) AU KR, 1 <k<j2izs)
n = 12s i~ irs, f=— Ji s, £k S,
. { 1 ifp=g,
Py 0 ifp#gq -

E' Z i1 then k#i.
P

"It can be seen that the number of terms in T, is
8s? terms. Therefore the complexity of the algorithm is
8(s? - s)/3 + 24s?

= (n’ - 4n)/3 + 6n°

8(s*-s)/3, and each of T,, T,, T, has

This is still O(n®) but still a reduction in the number of multiplications comes from the

low coeflicients of the dominant term in the complexity function.

44

MATRIX MULTIPLICATION IN PREPROCESSING OF SYSTEMS OF LINEAR

EQUATIONS

The system of linear equations is one of the most important proBlems that occur in the
solution of many practical problems. Direct méthods like Gaussian elimination and triangular
decomposition solve the problem in O(n”) arithmetic operations. Indirect iterative methods like
Gauss-Seidel, Jacobi take O(n”) arithmetic operations. Thus iterative schemes are attractive from
computational point of view. But the main drawback is that these iterative methods cannot
necessarily ensure convergence of an arbitrary system of linear equations. For convergence, the

systems must satisfy some stringent constraints.

Let us consider the non singular system of linear equations : Ax=b, where A is an
arbitrary n x n matrix. Solving the above equation is equivalent to solving A'Ax = A' b. This
preprocessing makes the system symmetric and positive definite for which there are many

convergent iterative schemes of O(n?).

The cost involvement in the preprocessing can be calculated as shown below. For

simplicity of derivation, let us assume that n=2* for some integer k.

A, 4
Let, 4 . e where A, is a matrix itself.
Ay Ay
{ f
A
then, A f _ A“ 1
4 f
Ay Ay _
{ f { t
therefore, 44 - Apdy Ay A Anda Cu Col 3.21)
! ! f i{
Ay Apdy Ay Apdy G Cy

45

The product of two matrices thus can be defined as follows :

Py AlflAll

P Az'zAzz

Py - A1!2A|2

Py - AzriAu

Py - A|’|A12

Ps - A2'|A22

Ciy = Py v Py

Cp Py P

Cp Py P

Cy - lez (3.22)

Therefore, computation of A'A of order 2* requires 4 multiplications of matrices of order

2% with their transposes and 2 general matrix multiplications of order 2.

If M*(k) denote the complexity of multiplication of matrix A of order 2* with its transpose
and M(k) denote the complexity of multiplication of two arbitrary matrices of order 2% then

MSk) - 4M*(k-1)+ 2M(k 1)
4[4M‘(k--~2) | 2M(k--2)] COMk-1) e (3.23)

A (1) 1 2[4 M) - 4M@2) 0 4FRpf (k- 1))

Now multiplication of a 2x2 matrix with its transpose requires only 5 multiplications.
Thus, M(1) = 5. If we use Strassen's multiplication scheme which requires 7* multiplications for

multiplication of two matrices of order 2¥ Then, M(k) = 7°.

46

M (k)

415 2[4k 27 3T 40Tk]

7 7 7 !
-
4 42 k

S.4k axgk !
4

U
4
7}—1
71{L— 1
—5-nz+2><4"‘"' (4'“)
4
—5—f12 ! —><[7’" 7 x 4% ']
4
£n2!zn10217 ln2
4 3 6
iHZJ __2n|°gz7
12 3

In a similar fashion, the complexity of addition can be computed. Let, A'(k) denote the

number of addilion operations required for multiplication of one matrix of order 2" with its

transpose and A(k) denote the number of addition operations required for multiplication of one

matrix with any arbitrary matrix of order 2+,

Since, every matrix multiplication with its transpose requires 3 matrix additions. Two

additions of symmetric matrices of order 2! and one addition of two non symmetric matrix.

Therefore,

A (k)

445 (k1) + 24k 1)+ 2(2F 1) i 2k

a4 sk 2) 1 24k 2y + 202 2684 24 (k1) + 2241+ 24
A4y 20 24 (1) 0 A4 2) e AR (e)]
24k 43D L AR

i [4k 291 gk-392 o ghoRgk l]

47

Now, only 3 additions are required while multiplyifig a 2x2 matrix with its transpose, i.e.,

A(1)=3. If we use Winograd's variation of Strassen's matrix multiplication scheme, then

A(k) 5-[7* 4%]. Therefore,

A %”2 10 [4% 37" 4y 4 P-4 0 40T)

TSIV
T [22.&-‘3 4 22k’-4 - 2,{,,]]
3 e

ZH2|10><4’(1__1___ S(k 1)4k|I22k3x o

I
4
K ,
N S AN 2n2log,n + 2n% + 22721 - L
4 3 gk-1

_12}1 082’ —1—7112 2n*log,n lr.r
3 6 2

To compute A'b will need n* multiplications and (n-1)? additions. Thus total arithmetic

operation for the preprocessing is

T 5(k) MSk)+ A5+ n? o (n- 17

L EFL L 10, toe7 T, 2n?log,n - Lyin2s (n-1)?
12 3 3 6 2

4n 8 éMz 2ntlog,n | ir.r! 1
4 2

As this is a recursive method, space requirement is high. At the ith step of recursion,

-, A
maximum number of storage required when matrix C is determined from matrix P, to P;. In ali

previous stages of recursion, 6 matrices of specified size are stored. Thus total requirement is
given by

48

4 4il 4i
() 1
3 4
< 2n?

For i=1, this space requirement is maximum, and equals 2n? data words.

49

CHAPTER FOUR
CHAIN MATRIX MULTIPLICATION

Let M, x M, x ... x M, be a chain of matrices to be multiplied where M is a k,xk,,
matrix. Matrix multiplication is associative and thus this chain may be evaluated in several
different ways. Of these, two possibilities are (..((M, x M,) x My} x M) x ...) x M, and
M, x (Myx (... x (M,_, xM,) ...). It can be shown that the number of different ways to
evaluate such a matrix product chain is % which is very large even when # is relatively
small. All of these arrangements yield the same result. But the way one order the multiplication
operation can have a dramatic impact on the cost of evaluating the product. Hefe the térm cost
denotes the number of scaler multiplications needed to compute the product. If the classical
method is used, multiplication of a p x ¢ matrix by a ¢ x r matrix requires pqr scaler

multiplications and the product is a p x matrix. Though there are other efficient (see Chapter 4}

matrix mulitiplication methods, the multiplication cost is considered pqr in this chapter.

Let P(n) denote the number of alternative parenthesization of a sequence of » matrices.
Since we can split a sequence of »# matrices between the k™ and (k+1)" matrices for any
k = 1,2,...,n-1 and then parenthesize the two resulting subsequences indeperidently, we obtain the

recurrence

50

| i n=1

P | - n-1 :
() Y P(k)P(n-k), if n>2
k=1

.................. .1)
The solution to this recurrence is the sequence of Catalan numbers.
P(n) = C(n - 1)
where, C(n) = 1 (2HJ
nsl A\
-4 (1 +O(n)
Y2
- olama®)y (4.2)

The number of possible arrangements is thus exponential in #, and the brute force method
of exhaustive search is therefore a poor strategy for determining the optimal parenthesization of

a matrix chain. To find the optimum order of multiplication several schemes may be employed.
DYNAMIC PROGRAMMING APPROACH

Dynamic programming approach is an algorithm design method that can be used when
the solution to a problem may be viewed as the result of a sequence of decisions. An optimal
sequence of decisions may be found by making the decisions one at a time and never making an
erroneous decision. This technique can be used to find the order of the matrix multiplication that

minimizes the total number of scaler multiplications used.

51

Let the notations A, ; denote the resulting matrix from‘ evaluating the product
M M,, .. M. An optimal ordering splits the product M, M, ... M, between M, and M,,, for
some p in the range 1 < p < n. That is, for some value p, the matrices M, , and M, , ; are first
computed and then these are multiplied to produce the final product M, . The cost is thus the
cost of computing the matrix M, ,, plus the cost computing M, ,, ,, plus the cost of multiplying

them together. Thus it can be written,

0, when { J \
C .-
" min [C, +C,, *+k; 1K,k |, when i</ :
spsf o e (4.3)

where C, , denote the optimum cost for generating M, ;. The computation is done "bottom up',
saving computed answers to small partial problems to avoid recomputﬁtion. In oﬁly oﬁe way one
can multiply M, by M,, M, by M, , ..., M, by M, and these costs are recorded. Then the best
way to multiply successive triples are computed using all the information computed so far. For
example M, M, M, can be computed either by computing M, x M, first or M, x M, first. These
costs have already been computed in the previous step and no need to compute it again. The
minimum cost of the two approaéh is computed and saved again for reference in the following
steps. This procedure continues until successive groups of n matrices is formed and thus

generate the best way to order 2 matrix-chain.

52

The pseudocode is given beiow.

procedure dynamic (4 n, cost, order)
fori « jtondo
for j + i+l ton do
cost [i}fj] < =
repeat (j)
repeat (i)
fori < 1tondo
cost [i}fi] « O
repeat (i)
forj «< 1ton-1do
fori < 1ton-jdo
for m « i+l to i+j do
t « cost [iJ[m-1] = cost [m][i+j] + k[i] * k[m] * k[i+j+1]
if (t < cost [i}[i+j]) then '
cost [i][iHj] « t
order [i][i+j] < m
endif
repeat (m)
repeat (1)
repeat (j)
end dynamic

Algorithm 4.1

In the above algorithm, the loops are nested three deep and each loop index takes on at
most 7 values. Thus the running time of this algorithm is O(# %). Tt requires O(n %) space to store
cost and order tables. Thus this algorithm is much more efficient than the exponential time

method of enumerating all possible combinations and checking each one.

53

CHIN'S METHOD A

Francis Y. Chin, in 1978, presented an O(n) algorithm for determining a near-optimal
computation order of matrix chain products {19]. This algorithm takes less than 25 percent longer
than the optimal time. Although, in most cases, the algorithm yields the optirﬁal order or an order
which takes only a few percent (usually less than one percent on the average) longer than the

optimal time.

Consider the evaluation of the product of » matrices,
M=MzxM,x. xM,

where, M, is a k _, x k, matrix with each &, > 1.
Chin establishes the following two theorems to derive a near-optimal order,

Theorem 1 : For all i, if

(_'__ + L)>(i + i), where k, = min { k,} |
k] &k &

kf—l i

holds, then (M, x M, ,,) must be in the optimal order.

Theorem 1 provides a sufficient condition to determine whether two matrices are
associated in optimal order. Each pair of adjacent matrices in a matrix chain are scanned and

associated if they satisfy Theorem 1. The matrix chain is shortened by replacing alt the associated

54

e

terms in the order with single matrices. This procedure is iterated until no remaining part of
adjacent matrices satisfies the above theorem and no more shortened matrix chain can be done.

Theorem 2 comes into action at this stage.

Theorem 2 : Given a reduced maltrix chain, the order

M= (M, % . (M, XM,).) X (Mo, XM,) % . x M), where k, = ki

guarantees that "< 1.2485 1

So, after obtaining the reduced matrix chain, index m is searched for so that &, = k. and

the matrices are associated both ways from m. The algorithm in pseudocode is given below.

procedure mat_chain (K, V, n)
// K denotes the dimensions of the matrices,
V the order vector to be returned and
n the number of matrices in the chain//
V[1«< 0,c« 1, b+n-I
fori=0tondo
= 1/k
if{rm<r)rm-=r
repeat
j«<0,;sj]«<0
fori=1ton-1do
jeirl; s} <
while (j >0 AND r_. +rm < Tyj-1) T Fia)do

endwhile
repeat

55

jjt1,s[jl < n k< 0flag < 0

while (flag = 0) do
flag « 1
lf(rsikl<r![“)then

if (r +rm<r +r
(SIj]_) s[§-1) sm)then

flag «- 0
elseif (rslk] +mm <r

k+~k+1

Ve b

b«b-1

flag < 0
endif

+
sf K +1] r s[j]) then

endif
fori = m-1 to s[k]+1 step -1 do
if (v; = 0) then
v, < C
c + ¢+l
endif
repeat
for i = m+1 to s[j]-1 do
if (v, = 0) then
v, +¢C
¢ « ¢+l
endif
repeat
if (v,, =0 AND m # 0, n) then
vV, ¢
endif

end procedure

m

Algorithm 4.2

In the above algorithm, calculation of r, and rm can be done in O(n) time. Initially ¢ = 0

and b = n - 1; besides throughout the program b > ¢ - 1. The procedure has four different loops.

56

N

In each loop, either c is increased by 1 or b is decreased by 1 after assigning the value of ¢ or
b to v,. Since at most {(n - 1) associations can be done, the sum of repetitions in all the loops

is no more than n. Thus the algorithm is O(n).
HU-SHING HEURISTIC METHOD

T.C. Hu and M.T. Shing[20] proposed a heuristic algorithm to find a near-optimum
order for multiplying a number of matrices. They drew an analogy between matrix chain product
problem and the problem of partitioning a convex polygon into non-intersecting triangles, and

develop an O(#) heuristic algorithm which has a 15% error in the worst case. .

The one-to-one correspondence between the ordering of a chain of » matrices and the
partitioning of a convex (7 + /)-gon can be established as follows. For the (n +1)-gon, the side
V,-V,,, is drawn horizontally. All other sides are consid;;ied in the clockwise direction. Every
vertex V, of the polygon is assigned a weight k;. Let the cost of a triangle be the product of
the weights of its three vertices, and the cost of partitioning a polygon is ifle sum of the costs of
all its non-intersecting triangles. Then it can be assumed that each side represent a matrix in the
chain where the dimensions of a matrix are the two weights associated with the two end vertices
of that side. For example, the V,-V, side represent the first matrix M, .in the chain, the V,-V,

side denote M, , and so on. Then the base V|-V, represent the resulting product matrix M. The

cost of partitioning is then the cost of the matrix chain product.

57

Given an (n + 1) -sided convex polygon, the number of ways to partition the polygon into
{n - 1) tnangles by non-intersecting diagonals is the Catalan numbers.
To optimally partition a polygon, several theorems were presented and established by Hu and

Shing.

‘Theorem : In every optimum partition of a polygon, the smallest vertex V, is always

connected with the second smallest vertex V, and also with the third smallest

vertex V.

This fact can be used recursively. To find the optimal partition of a given polygon, it is
decomposed into subpolygons by joining the smallest vertex with the second smallest and third
smallest vertices repeatedly, until each of these subpolygons has the property that its smallest
vertex is adjacent to both its second smallest and third smallest vertices. Such a polygon can be

referred to as a basic polygon.

Theorem : (i} A necessary but not sufficient condition for V, - V; o exist in an optimum
partition of a basic polygon is

<L,

1 1
k k&

R

1
kl

(i) If V,and V, are not connected in an optimum partition, then V, and V, are

always connected in that optimum parfition.

58

Theorem : Let k, be the minimum vertex of a general convex polygon, anc_i k_ be a local

niaximum vertex, with k, and k, as its two neighbors, i.e., k, > k,and k, > k. If

}- -2 i

LI TR I
kK, k, k Kk,

then w, - w, will exist in the optimum partition of the polygon.

Based on the above observations, T. C. Hu and M. T. Shing gave the following heuristic |
algorithm. The algorithm is based on two intuitions :

® if a vertex has a very large weight, it should be cut out in the optimum partition;

(i) if none of the vertices has a very large weight, the fan' with the smallest vertex

k, as its center should be near optimum.
Thus the algorithm can be implemented in the following manner.

STEP 1: | Start from the smallest vertex & , travel in the clockwise direction around
the polygon, and push the weights of the vertices successively onto a stack.
Thus & will be at the bottom of the stack. Let & be the top element
on the stack, kl " be the element immediately below ',k‘ , and l'cc be the
element to be pushed onto the stack. If there are two or more vertices on

the stack and > + —, thenjoin & -k and pop k, off

L T N .
lkrd kc kl k,

! A partition which is made up entirely of ares joining the smallest vertex to all other vertices is
called a fan. ‘

59

the stack, else push & onto the stack. Repeat this step until the n" vertex

has been pushed onto the stack.

STEP 2: If there are more than 3 vertices on the stack, joink -k ., popk, off

the stack and repeat this step, else stop.
The STEP 1 in the above algorithm cuts out a vertex if its weight is sufficiently large and

STEP 2 joins k£ to all vertices which have not been cut off. If there are two or more vertices

with weights equal to the smallest weight w,, arbitrarily any one can be chosen as vertex k.

60

CHAPTER FIVE

EXPERIMENTAL RESULTS

This chapter is intended to present the experimental results based on the algorithms
~discussed so far in the previous chapters. Three different arithmetic operations were
considered for this study. This chapter comprises three sections, éach dealing with one type
of arithmetic operation. Each section begins with a brief description of the experimental setup
for that section. It should be emphasized that one can go a long way without limit if one likes
to carry out experiments with the algorithms in all possible respects. But, in this study, some
representative properties of the algorithm were chosen as the basis of the experiments. Mainly
the time complexi.ty has been chosen to be the major concern, though in some cases (where

appropriate) space complexity, number of multiplications etc. were also considered.

The PC used for the experiments bears the following properties:

Processor : 4865X
RAM ; 4 MB
Clock Speed : 33 MHz

All codes were written in C and were compiled using Turbo C++ 3.0 compiler of

Borland International.

61

Polynomial Evaluation Algorithms :

This section deals with experiments on the algorithms for polynomial evaluation.
Polynomial Evaluation is one of the most frequently occurring task in numerical computation.
Chapter two presented various polynomial representation techniques. These representations
occur naturally and do not offer reduced number of multiplications for computation purpose.
For this reason, the standard representation of polynomial is assumed throughout this study.
Since, in many computation, polynomials are usually evaluated at many different points, some
artificial representation that offer better computation time are tried. The latter half of chapter

two discusses three evaluation algorithms that involved preprocessing.

As the test data, several data sets of varying order were prepared. The Belaga
algorithm sometimes generated complex quantities. Since complex arithmetic require extra
operations, only those data sets, that do not generate complex Bélaga coefficients, were used
so that a comparative study can be carried out. The experimental findings are presented in Fig.

5.1 and Fig. 5.2.

Matrix Multiplication Algorithms :

In Chapter three, seven different algorithms for matrix multiplication were presented.
To test these algorithms, ten sets of square matrices of order 4, 8, 16, 32, 64, 128 were
created. The matrix elements were chosen to be both integers (as they require less memory

space) and floating point numbers and were generated randomly.

62

<2

12.5

10.0

7.5

Evaluation time (in msec.)

5.0

2.5

Cc.0

Fig. 5.1

90292

su888 Cower form —
st Horner f’
*dcdekd Paterson—-Stockmeyer /

=Pl Belaga
299 Knuth

Q

I I T N O A I O O B I |
5 . 10 15 20 © 25 30 35 40 T 45
Degree of the polynomial

Evaluation time for different algorithms

b9

1720.0

1200.0

T 12500
[

n mse

1C00.0

750.0

Preprocessing time (

500.0

250.0

Q0.0

Fig. 5.2

Lo v v b v v by v e b e e

*akik Paterson—Stockmeyer
P Beloga
*%e9 Knuth

-

gy
- e ————" T sl

T 2 A T At A S T Y IO B
5 - 10 15 20 25 30 3 40 45
Degree of the polynomial

(8]

Preprocessing time for different clgerithms

The main interest was on the computation time. In addition, the memory requirement
for some of these algorithms is substantial. In addition to data and product matric_es,
intermediate results of the manipulation need to be stored temporarily. The total volume of
memory required may become an important factor which limit the size of the problem that
can be solved on a particular computer. Speed of the process is also influenced by the amount

of auxiliary memory used.

In most of the matrix multiplication algorithms, number of costly multiplication 1s
usually reduced at the cost of extra addition/subtractions. In addition, memory accesses for
intermediate and initial data play a considerable role in the computation time. Additional

complexities are added by logical comparisons, procedure calls, looping overheads etc.

Based on the above considerations, criteria selected to measure the performance of

these algorithms are

a) time complexity

b) space complexity

c) number of fundamental arithmetic operations
d) number of assignments and memory accesses

- The experimental findings are presented in TABLE 5.1 through TABLE 5.7 and

Fig. 5.3 through Fig. 5.12.

We have performed an experiment of solving systems of linear eqhations by
preprocessing the system to obtain a positive definite system which can be solved by using
many convergent iterative schemes. In this case matrix 4 pf the syétem of linear equations is
premultiplied by its transpose to obtain a positive definite symmetfic system. For computing

65

AA' we used Strassen’s scheme recursively to obtain some savings for finding the transposed
product. It may be recollected that solving a system of linear equations is equivalent to matrix
multiplication in terms of complexity. Approximate savings that can result from computing
AA' by our method compared to multiplying two general matrices using Strassen’s scheme
has been presented in TABLE 5.8. A 90 MHz Pentium machine with 16MB RAM and 512

KB cache was used for this experiment.

TABLE 5.1 Experimental results for matrix multiplication using Classical method

order 4 8 16 32 64 128
time in | integerdata | 021978 | 1.813187 | 14.120879 | 109.8901 | 901.0989 | 7241 7582
msec. float data | 7.197802 | 56.593407 | 460.54945 | 3626.374 | 29065.924 | 223516.48
no. of additions 64 512 | 4096 32768 262144 2097152
no. of multiplications 64 512 4096 32768 262144 2097152
array read 192 1536 12288 98304 786432 6291456
memory |_array write 64 512 4096 32768 | 262144 | 2097152
aceess other read 0 0 0 0 0 0
other write 0 0 0 0 0 0
space 48 192 768 3072 12288 49152

66

TABLE 5.2 Experimental results for matrix multiplication using Karatsuba’s method -

order 4 B 16 32 64 128
time in | integerdata] 0.824176 | 8.186813 67.69231 | 494.505 3846.154 | 31208.79-
msec. float data 10.93407 | 93.35165 | 769.2308 | 6186.813 50659.34 | 401263.7
no. of additions 112 960 7936 64512 520192 4177920
no. of multiplications 64 512 4096 . 32768 262144 2097152
array read 288 2432 19968 161792 1302528 10452992
memory array writc 80 704 5888 48128 389120 3129344
access | other read 57 417 3297 26337 210657 | 1685217
other write 42 346 2778 22234 177882 1423066
" no. of comparisons 9 73 585 4681 37449 299593
procedure calls 30 254 2046 16382 131070 1048574
space 88 376 1528 6136 24568 98296

TABLE 5.3 Experimental results for matrix multiplication using Winograd’s identity

order 4 8 16 32 64 128
fime in | integerdata | 0.219780 | 1.538462 | 11.043956 | 82.912088 | 651.09890 | 5115.3846
msec. float data 10.38461 | 64.175824 | 439.5604 | 3230.7692 | 24780.220 | 192692.31
no. of additions 160 1024 7168 53248 409600 3211264
no. of multiplications 48 320 2304 17408 135168 1064960
array read 224 1408 9728 71680 548864 4292608
memory array write 32 128 512 2048 8192 32768
access other read 129 897 6657 51201 401409 3178497
other write 129 897 6657 51201 401409 3178497
no. of comparisons 0 0 0 0 0 0
procedure calls 0 0 0 0 0 0
space 56 206 800 3136 12316 49408

67

X

TABLE 5.4 Experimental results for matrix multiplication using Strassen’s method

order 4 : 8 16 32 64 128
time in | integer data | 1.098901 10.43956 | 78.57143 | 516.4835 | 3956.044 | 25824.176
msec. float data | 16.098901 | 130.21978 | 983.5165 | 7219.7802 | 51373.63 | 364450.55
no. of additions 145 1027 7201 50419 352945 2470627
no. of multiplications 49 343 2401 16807 117649 823543
array read 206 1466 10286 72026 504206 3529466
memory | _2Iay write 47 341 2399 16805 117647 823541
access other read 117 - 824 5773 40416 282917 1980424
other write 91 651 4571 32011 224091 1568651
no. of comparisons 8 57 400 2801 19608 137257
procedure calls 45 346 2453 17202 120445 843146
space 100 436 1780 7156 28660 114676

TABLE 5.5 Experimental results for matrix multiplication using Strassen’s method
(Winograd variation)

order 4 8 16 32 64 128
fime in | integer data | 1.703297 | 14.450549 [100.000 | 7637363 | 5329.670 35604.396
msec. float data | 17.967033 | 141.26374 | 1098.901 | 7527.473 | 53736.264 X
no. of additions 121 856 6001 42016 294121 2058856
no. of multiplications 49 343 2401 16807 117649 823543
array read 158 1124 7886 55220 386558 2705924
memory | _ATray write 44 317 2228 15605 109244 7764717
access other read 215 1510 10575 74030 518215 3627510
other write 177 1262 8857 62022 434177 3039262
no. of comparisons 8 57 400 2801 19608 137257
procedure calls 60 466 3308 23202 162460 1137266
space 136 616 2536 10216 40936 163816

68

TABLE 5.6 Experimental results for matrix multiplication using Trilinear form

order 4 8 16 32 04 128
fime in | integerdata | 0.714286 | 549451 | 384615 | 329.670 | 2637.363 | 212663.74
msec. float data 27.4725 | 2142857 | 1703.297 | 13571.429 | 108406.59 | 868461.54
no, of additions 320 2560 20480 163840 1310720 10485760
no. of multiplications 80 4438 2816 19456 143360 1097728
array read 544 4229 33280 264192 2105344 16809984
memory | aTray write 192 1536 12288 98304 786432 6291456
aceess | other read 218 1618 12578 - 99394 790658 6308098
other write 177 1201 8865 68161 534657 4235521
no. of comparisons 116 840 6416 50208 397376 3162240
procedure calls 0 0 0 0 0 0
space 48 192 768 3072 12288 49152
TABLE 5.7 Experimental results for matrix multiplication using Pan’s method
order 4 8 16 32 64 128
time in integer data 0.54945 4,3956 24.72527 154,94505 | 1061.5385 7807.6923
nisec. float data 26.5384 151.64835 | 884.6154 | 5587.9121 | 38351.648 | 282637.36
no. of additions 350 2324 14920 101136 729120 5498944
no. of multiplications 141 673 3425 19265 120961 833793
array read 316 1816 10544 66144 451776 3295616
metnory array write 90 516 3016 19088 131360 963136
access | other read 236 1304 7408 45792 309696 2245504
other write 164 8i6 4096 22144 132864 882176
no. of comparisons 30 188 1144 7408 51680 381888
procedure calls 0 0 0 0 | 0
space 48 192 768 3072 12288 49152

69

_ TABLE 5.8 Performance of Calculating A'A and AB
Computation time*
k % of saving
A'A AB
3 0.0125 0.03 58.33
4 0.125 0.25 50
5 1 1.9 47.37
6 8.5 13.5 37.04
7 61 99 38.38
8 446 705 36.74
9 3205 4975 35.58
10 22825 34961 34.71
¥ Time shown in clock ticks. 18.21 clock tick = T second.

70

T.

o~

(@]

[

(@]

[a]
I

] o399 Classical
i kel Karatsuba
. Fedexdkd Winograd identity
— Sadd Strassen
7 s»se2 Strassen (Winograd variant)
N su-ea8 Trilinear
a aaaaa Pon
30000 — ,
4 e
o 4
PH il
wn -
= -
= 20000 —
o i
- _
= -
10000
00— T
0

Order of the matrix

Fig. 5.3 - Matrix Multiplication time (for integer element)

(A

1000000

= 44459 Classical
- doloiek Kargtsuba
] *xkdex Winograd identity
-1 D Strassen
] seew9 Sirgssen (Winograd variant)
- mnua8 Trilinegr
800000 - et Pan
5 600000 —
84
v N
= N
= .
2 .
£ 400000
= . &
3 5
200000
OO T ®T=FT 0T] T T T T T T T T [T T T 1T] T 77T T [T 77T
0 20 40 . B0 80 100 120 © 140
Order of the matrix
Fig. 5.4 Matrix Multiplication time (for float type element)

-

¢l

No. of additions

12000000 —

8000000 —

4000000 —

Fig. 2.5

4949 Classical

scleter Karatsuba

*erekxx Winograd identity

el Strassen

sesee Sirgssen (Winograd variant)
sa-ua8 Trilinear

aaaraea Pon

Order of the matrix

Additions requirec for matrix muitiplication

v/

No. of multiplications

2500000

2000000

1500000

1006000

3000600

1
Livoves vt ve v cevg oot ceebs e e syl

(@]

(@}

Fig. 5.6

099049 Classical, Karatsuba
sk Winograd identity
s Strassen

sassa Trilinear
s Pan

Order of the matrix

Elementary multiplication requirement for matrix
multiplication

ey

(72

Array reads (in nos.)

20000000 — 04060 Classical
_ Fetedsk Karatsuba
. *kkkk Winograd identity
— Fpabd Strassen
7 se+2ee Strassen (Winagrad variant)
N mamms Trilineqr
| aaraeaa Pan

15000000

10000000 -

5000000 —

00— ™

0 140

Order of the matrix

Fig. 5.7 Memory access for reading matrix data

8C00000

] 499 Classical
- dsddeek Karatsubo)
. *krex Winograd identity
- PP Strassen
. sssee Strgssen (Winograd variant)
N wasus Trilinear
B et Pgn
5000000 —
n _
o —
N - ’
N c]
4000000
2 -
> §
>, _
2 -
£ =
2000000 —
O_.

O

20 40 60 80 100 120
Order af the matrix

Fig. 5.8 Memory access for writing matrix element

re 1w

6.

No. of non array writes

5000000

4000000

3000000

20000¢0

1000000

@]

Fig. 5.9

Lovvvver et oo et b rr i raalriviriirg

(]

36499 Classical

etk Karatsubao

etk Winograd identity

FEED Strassen

s+e9s Sirgssen {Winograd variant)
msmun Trilinegr

aaah Pan :

£
- - - //" “ —
, -;/'/""—f
. 5 Sy S ey B B R B B B B A
20 40 60 80 100 120 140

Order of the matrix

Memory access for. writing non—matrix element-

seolypw bulAidiyinw spiym epow suosuodwon gLg by

XLDW 3yl (0 43p4Q

ovl 0Z1 00! 08 09 ot 0z 0
[S
0000001
B =
- o
B 4
C o
— Q00000T m
B ©
- e
- o
Q
—]
— [5)]
L 000000¢
CDQ —eEpy r
103Ul] wenen B
UBSSONS Gopad L
DQNEIDIDY setetetok -
 000000F

30

uonoondinw xuiow Buunp ps|oo sednpsdodd | |G biyg
X[J3IDW 9y} o JapuID
¥ L 0zZi 00l 08 09 07 0z 0
[T B _ TN S T T S S W
— 00000 %
I 2
B ©
-)
O
I~ 42
| a
o
- 3
B O
- o
— 000008

(yuolipa poubouip) USSSDAIS sesee

USSSDIIS Gaisdnds
DGNSICIDY eokestenerk

— 0000021

81

200000 —

446499 Classical, Trilinear, Pan
Jefolok Karatsuba

*kkekx Winograd identity

>SS Strassen ‘

se239 Strassen (Winograd variant)

130000

100000

(AS]

Space required (in data words)

50000

(@]

T T U T T T S S A

Order of the matrix

Fig. 5.12 Space requirement for matrix multiplication

Chain Matrix Multiplication :

In chapter four, we presented three different algorithms to obtain the optimum (or
near-optimum) order in multiplying a series of matrices. Several data sets were randomly
generated to study the behaviour of these algorithms. As before, the principal objective was

to study the time complexity. The observations are shown in Table 5.9 and Fig. 5.13.

TABLE 5.9 Time required to obtain the optimum order of multiplication

Time (in msec) |
No- of marices Pr:))g);r;:rlri:i:ng Chin’s method Hl%J-Shing algorithm
10 2.198 0.109890 0.219780
20 14.835 0.329670 0.439560
30 48.352 0.509451 " 0.604396
40 - 114.286 0.69231 - 0.769231
50 223.077 0.879121 0.989011
60 384.615 1.043956 . 1.203736
70 607.143 1.263736 . 1.373626
80 942.857 1.483516 o 1.593407
90 1297.802 1.653407 1.868132

i
1

In addition to time complexity, several other experiments were ciarried out. As only
the dynamic programming approach generates the optimum order for all cases of computation,
we observed the deviation (both average and maximum) from optimum cost for the orders
generated by the other two algorithms. We also observed how many tir:nes these algorithm

generate the optimum order.

81

Another attempt were madc {o dctermine the effect of matrix dimensions on the cost.
For this, three sets of data {each set with 31 problems) were generated for matrice chains with
n=30, 50, 70 with maximum k; equal to 30, 50, and 70. All the algorithms were tested with

these data sets and the results are presented in Table 5.10.

TABLE 5.10 Performance of Heuristic Chain Matrix Multiplication Algorithms

i

Optimum order generated, Max. deviation, Average deﬁation

n | Algorithm ‘

max. k; = 30 max. k; = 50 | max. k; =70
Chin 12, 2.77%, 0.68% 12, 2.52%, 0.64% 1:2, 2.31%, 0.60%
% Hu-Shing 14, 2.12%, 0.53% 14,-1.91%, 0.49% 14, 1.74%, 0.46%
Chin 6, 2.13%, 0.60% 4, 2.02%, 0.59% 4, 1.92%, 0.58%
» Hu-Shing 7, 1.78%, 0.53% 6, 1.69%, 0.50% | 6, 1.61%, 0.49%
20 Chin 3, 1.54%, 0.47% 3, 1.48%, 0.46% 3, 1.43%, 0.445%
Hu-Shing 4, 1.54%, 0.47% 3, 1.48%, 0.45% 4;, 1.43%, 0.441%

82

€3

— s*28s Dynamic programming method
o wkAk Chin's method
4 S Mu—Shing method
1000 —
m _
D _
wn
E -
£ N
o -
E =
l— —
500 —
0 T T T T
0 10 20 30 40 50 60 70 a0 30 100

No. of matrices in the chain

Fig. 5.13aq Time to find the multiplication order of
a matrix chain

4>}

2.00

1.75
ddededk Chin's method
it Hu—Shing method
1.50
1.25

0.50

025

Lot el v b b b g tvvv e e s beea o
|
|
|
|

0.00 LN L L I I I e e

0 10 20 30 40 50 60 70 30
No. of motrices in the chain

Fig. 5.13b Time to find the multiplication order of
a matrix chain

0

100

CHAPTER SIX

CONCLUSIONS AND RECOMMEND.ATIONS

CONCLUSIONS

In this thesis we have considered the problems of polynomial evaluation, matrix
multiplication and chain matrix multiplications. Conclusions of expefimental results on the

implementation of different algorithms for solving these problems have been presented below.

We have considered the problem of polynomial evaluation along v;fith preprocessing when
the same polynomial is evaluated in many different points. Amoﬁg the p%eprocessing algorithms
Belaga method evaluates the preprocessed polynomial in the fastest bossible time, whereas
preprocessing time taken by the algorithm is the highest. Belaga has the problem of generating
complex Belaga coefficients, in which case time requirement in evaluation will be multiplied by
at least four times. Results presented in the thesis correspond to polyﬁomials not generating

complex coefficients.

85

Peterson-Stockmeyer method of preprocessing requires minimum preprocessing time but

requires alarmingly high evaluation time with a staircase nature as is evident from the application

I
|

of binary tree concepts.

Knuth's evaluation time is very close to that of Belaga whereas pr:eprocessing time is less

than that of Belaga.

Among the non-preprocessing algorithms Horner's scheme has the best evaluation time.

We have considered matrix multiplication with integer elements and with float elements.
Experiments with both integer and real data show that matrix multiplication using Winograd's
identity has the best time performance. Classical method's perforr'nanjce is the second best.
Theoretically superior methods of Pan, Strassen, Karatsuba and trilinear h;'flve performance in this
order, and have proved to be inferior for at least lower values of #. Alth:bugh Strassen's method
requires lesser number of multiplications, excessive memory accesses, o:ther computational and
recursion overheads offset the savings from reduced number of mt;ltiplications. Classical,
trilinear Pan's and Winograd's identity_require minimum spacé, whereas Stjrassen's and Winograd's
variation of Strassen's method redﬁire signiﬁcaﬁtly more space. This exceésive space requirement

will act as limiting factor for using these methods. .

We have also applied a variation of Strassen's method for preprocessing arbitrary system

of linear equations to convert it into positive definite systems for which a lot of O(#’) convergent

iterative schemes exist. This preprocessing consists of premuitiplying A with A' . We have
recursively used Strassen's method and symmetricity of involved submatrices to cut down cost
of multiplication by approximately 33% thus giving us a better method of solving arbitrary

systems of linear equations.

In chain rﬁatrix multiplication dynamic programming approach has always produced
optimal sequence of multiplication at the cost ofl O(n*) operations. Wé have also tried two
heuristic methods for finding the best sequence pf multiplication. These methods require
negligible amount of time compared to dynamic programming approach with Chin's method
outperforming Hu-Shing's method. However, solution obtained by Hu-Shing's method was
consistently superior to that of Chin's method. Although probability of ?obtaining the optimal
sequence reduced with the increase of number of matrices # in the chain ;maximum and average |
deviations of the obtained solution from the optimal reduced with th:e increase of n. Qur

experiments show that deviations from the optimal sequence did never cross 3%, and it

decreased with the increase of n. Although these algorithms are heuristic in many cases optimal

sequences were generated..

- RECOMMENDATIONS FOR FURTHER STUDY

In polynomial evaluation we have not considered Belaga method with complex Belaga
parameters in order to keep it competitive with other algorithms. One can study this aspect of
Belaga method in detail to ascertain its performance in cases where those parameters become

!

complex. We have not also considered polynomials with complex coefficients. So this aspect of

the probiem has remained untouched, and therefore, one can try to pursue research in this

direction as well.

Although our experiments do indicate inferior performance of theoretically superior matrix
multiplication algorithms since due to technical reasons we were not able to perform experiments

with much larger memory space, the conclusions will perhaps be in their favour if dimensions

of matrices involved could have been increased signiﬁcantly. In absence of enough primary -

memory one can attempt to perform these experiments using secondary: memory.

One can attempt to derive 2 better time complexity for these algorithms incorporating
‘ i

memory access time, looping overheads, logical operations, procedure calls and recursion
i .
overheads among other items. |
. |
|

One can also try to ascertain performance of all the popular parallel algorithms for matrix

multiplications.

88

El-ll

¥

(1]

[2]

[4]

[5]

(6]
[7]

(8]

(9]

[10]

(1]

REFERENCES

Horner, W. G., Philosophical Transactions, Royal Society of London, vol. 109,
pp.308-335. |
Newton, 1., De Analysi per Aquationes Infinitas, 1969,

Ostrowski, A. M., On two problems in abstract algebra connected ‘with Horner's rule,
Studies in Mathematics and Mechanics, Academic Press, N.Y. pp.4Q-48, 1954,

Pan, V. Ya., Methods of computing values of polynomials, Uspekhi Math. Nauk, vol. 21,
pp. 103-134, 1966 (in Russian). English translation in Russian Math. Surv., vol.21l,
pp. 105-136. |
Belaga, E. C., Some problems in the computation of polynomials, Dokl. Akad. Nauk.,,
SSSR, vol. 123, pp. 775-777, 1958 (in Russian). .

Motzkin, T. C., Evaluation of polynomials, Bull. Amer. Math. Soc.,i vol.61, p.163.
Pan, V. Ya., Schemes for computing polynomials with real coefficients, Dokl. Akad. Nauk.
SSSR, vol 127, pp.266-269 (in Russian). English translation in Math. Rev,, vol. 23, 1962.
Rabin, M. and S. Winograd, Fast Evaluation of polynomials by rational preparation, IBM
Tech. Report RC3645, Dec. 1971. | |
Karatsuba, A. and Yu Ofman, Multiplication of multiple numbers by imeans of Automata,
Dokl. Akad. Nauk. USSR, vol.145, No. 2, pp.293-294, 1962 (in Rélssian).

Toom, A. L., The complexity of a scheme of functional eler:nems realizing the
multiplication of integers, Dokl. Akad. Nauk, SSSR, vol. 150, pp_4?6-498, 1963,
Cook, S. A., On the minimum computation time of functions, Doctjo'ral thesis, Harvard

University, Cambridge, Massachusetts, 1966.

89

[12]

[13]

[14]
[15]

[16]

[17]

[18]
[19]
[20]
[21]

[22]

Schinage, A. and V. Strassen, Schenelle Multiplikation Grosser Zahlen, Computing, vol.7,
pp.281-292, 1971.

Chandra, A. K., Computing matrix chain products in near optimal time, IBM Research
Report RC5625 (#24393), IBM T. J. Watson Research Center, Y@rktown Heights, N.Y,
1975. |

Winograd, S., On the number of multiplications required to compute certain functions,
Proc. Natl. Acad. Sci., USA, vol.58, pp.1840-1842, 1967. :

Strassen, V., Gaussian elimination is not optimal, Num, Math., volj. 13, pp.354-356, 1969.
Winograd, S., Some remarks on fast multiplication of po!jmomlfals, in Complexity of
Sequential and Parallel Numerical Algorithms, JF. Traub ed., Ac.ademic Press, N.Y.,

[

1973. :

Pan, V., Strassen algorithm is not optimal. Trilinear technique of aggregating, uniting
and cancelling for constrircting Jast algorithms for matrix multiplication, Proc. 19th
Annual Symposium on the Foundation of Computer Science, Ann Arbor, MI, pp.166-176,
1978.

Pan, V., How can we speed up matrix multiplication ?, SIAfM rev. vol.26, No.3,
pp.393-415, 1984. ' !

Chin, F. Y., An O(n) A!gorithm Jor Determining a Near-Optimal fComputation Order of
Matrix Chain Products, Comm. of the ACM, vol. 21, No. 7, pp.§44-549, July 1978.
Hu, T. C.,, Combinatorial Algorithms, Addison Wesley Publishing éompany, pp. 242-267,
1982, | |

Clenshaw, C. W, A4 noté on the summation of Cheby&hev: series, MTAC, vol.9,
pp-118-120, 1955. '

Bakhvalov, N. 8., On the stable evaluation of polynomials,). Comp. Math. and Math.

Phys, vol.11, No.6, pp.1568-1574, 1971,

90

W
-5,

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]
[35]
[36]

|
;

Hopcroft, J. E. and Kerr, L. R, On Minimizing the Number of Multiplications Necessary
for Matrix Multiplication, SIAM J. Appl. Math., vol. 20, No. 1, pip. 30-36, 1971
Dekel, E., Nassimi, D. and Sahni, S., Parallel Matrix and Graph‘Algorithms, SIAM J.
Comput., vol. 10, No. 4, pp.657-675, 1981. |
Paterson, M. and L. Stockmeyer, On the Number of Nonscaler Multiplications Necessary
to Evaluate Polynomials, SIAM J. of Computing, vol.2, No. 1, pp.60-66, 1973.
Cheny, E. W., Algorithms for the Evaluation of Polynomials Usingl a Minimum Number
of Multiplications, Technical Note 2, Computation and Data Procesaing Center, Aerospace
Corporation, El Segundo, California, 1962.
Paprzycki, M., Cyphers, C., Using Strassen 's Matrix Mulnplzcanon in High Performance
Solution of Linear Systems, Computers Math. Applic., vol.31, No|. 4/5, pp.55-61, 1996.
Bjorstad, P., Manne, F., Sorevik, T., and Vajtersic, M., Efficient MptrixMulaplication on
SIMD Computers, SIAM J. Matrix Anal. Appl., vol. 13, No. 1, pp 386-401, 1992.
Knuth, D. E., The Art of Computer Programming, Volume 1: Fundamental Algorithms,
Addison-Wesley Publishing Company, (second edition), 1973.
Knuth, D. E., The Art of Computer Programming, Volume 2: Semmumencal Algorithms,
Addison-Wesley Publishing Company, (second edition), 1981. '
Knuth, D. E., The Art of Computer Programming, Volume 3: Sortmg and Searching,
Addison-Wesley Publishing Company, 1973.
Eve, J. ,The Evaluation of Polynomials, Num. Mathematik, vol. 6, pp. 17-21.
Horowitz E. and S. Sahni, Fundamentals of Computer Algorithms, Galgotia Publications,
New Delhi, 1990. -
Kronsja L. 1., Algorithms : Their Complexity and Lfficiency, John.Wiley and Sons, 1990.
Brigham, O. E., The Fast Fourier Transform, Prentice Hall Inc.,' 1974.
Kaykobad, M., Hoque, S., Akbar, M. M., and Nath, S.K., An Efficient Preprocessing for

Solving Systems of Linear Equations, 10 appear in Int. J. of Comput Math.

91

EFN

[37]

[38]
[39]

[40]

[41]

(42

{43]

Cormen, T. H,, C. E. Leiserson and R. L. Rivest, Infroduction to Algorithms, The MIT
Press, 1990.

Sedgewick, R., Algorithms, Addison Wesley Publishing Company, 1988.

Aho, A. V.,]. E. Hopcroft and 1. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison Wesley Publishing Company, 1974. |

Borodin, A., and I. Munro, The Computational Complexity of Algebraic and Numeric
Problems, American Elsevier, N.Y., 1975.

Scarborough, J. B., Numerical Mathematical Analysis, Oxford and IBH Publishing
Company, (third Indian reprint), 1971.

Cohen, J. and Roth, M., On Implementation of Strassen's Fast Multiplication Algorithm,
Acta Informatica, 6, pp.341-355, 1976

Schildt, H., C: The Complete Reference, Osborne McGrawHill, 1987.

92

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101

