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ABSTRACT

Symbolic Substitution has been proposed in optical computing literature as a parallel
processing technique to perform arithmetic computation. Employing a conversion table as

a reference, the process iteratively substitutes a set of input patterns by pre-defined output

patterns. Along with the development of this parallel processing technique, researchers

have also come up with a number of non-bil)ary representations that allow fast carry-

free addition. Modified Signed Digit(MSD) and Canonical Modified Signed Digit(CMSD)

number systems have been extremely popular in this regard. In contrast with the binary

system, these number systems use three types of symbols: 0, 1 and -1. Redundancy due

to the extra digit make these systems suitable for symbolic substitution based parallel
addition process.

However, traditional computing is based on binary system and corresponding binary logic.

But generation of carry in binary arithmetic is the main hindrance to employing the
symbolic substitution process and making the computation fast.

The focus of this study has, therefore, been the development of a symbolic substitution
based process for fast arithmetic computation of binary numbers. The idea has been the

design of a fast addition unit that accepts at its interface numbers represented in binary

form, then converts these numbers to some intermediate non-binary
representation for processing, and then converts the result back to the binary form. The

focus has been the development of symbolic substitution processes for all the intermediate
phases involved like the conversion of binary to the non-binary representation, processing
of the numbers and finally the conversion of the non-binary representation to binary

representation. Due to its capability of unique representation of numbers and sparseness
of the non-zero digits in the representation, Canonical Modified Signed Digit (CMSD)

representation has been chosen as the non-intermediate representation for the arithmetic
unit proposed in the study.

An important factor in the context of symbolic substitution is the required number of

ii



substitution steps. The thesis presents a set of symbolic substitution tables and algorithms

that require much less substitution steps to complete the conversion and addition

operations than any other corresponding earlier schemes. Also, the addition algorithm

presented in the study derives the addition result in CMSD notation and thus it could be

employed to perform symbolic substitution based associative addition of a set of CMSD

numbers.

An important contribution of this thesis is the development of a symbolic substitution
based unit that can perform the associative addition of a set of binary numbers in

computationally more efficient way than using any of the earlier proposed schemes. Such
an algorithm can lead to the way of employing symbolic substitution in other arithmetic

operations, like multiplication, where associative addition of a set of numbers is an integral

process.
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Chapter 1
INTRODUCTION

1.1 Fast Computation and Bottlenecks of Traditional Computing

System

With the advance of science and technology, the need for processing of large amount of

data at high-speed has gradually increased. Data-intensive applications like signal and

image processing, weather forecasting and modelling, remote sensing require

computational rates equivalent to trillions of operations per second. This high speed-

up can only be achieved through parallel processing of information.

Traditional computing system is based on electronic devices and binary number system.
One of the main obstacles to the increase of speed in the traditional binary computing

system is the generation of carry during arithmetic operation. Any generated carry

during binary arithmetic ripples through all the cascaded stages and affects the overall

computation. Thus binary computing system implies sequential processing of data and

results in a bottleneck in the context of fast computation. Also, high speed computing
in the traditional electronic computing system is constrained by the interconnection

bottleneck that results in sequential processing of digital information.

There have been efforts to improve the performance of a conventional computer system

by reducing the basic cycle time through employing different fast circuits and packaging
technique. However, to reach the rate of one trillion operations per second, the system
requires a cycle time of less than a picosecond. This cannot be expected from the advances

in electronic technology alone, because of the inherent physical limitations. Further speed-

up, therefore, will have to come through parallelism.

1
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1.2 Approaches to Fast Computation

2

Researchers have made numerous efforts to develop computing systems that can perform

fast parallel arithmetic computation. These studies have been carried out mainly in two

perspectives. One is the development of computing systems that can process information

in parallel [1-7]. The other is the design of number systems that allow limited carry-

propagation or completely carry-free arithmetic [2,7-13].

1.3 Optical Computing and Symbolic Substitution

Optics has many unique features that can be exploited for high speed computation.

Optical signals propagate in parallel, cross each other without interference, have lowest

propagation delay of all signals, and can provide a million channel free-space

interconnections with primitive lenses. Whereas communication bottleneck forces

electronic computers to update the computation state space sequentially, optics allows
the whole state to be changed in parallel [14]. This inherent parallelism has led to the

development of parallel arithmetic processing techniques in the field of optical computing,

that allow higher throughput and faster processing rate than conventional computing

system.

Symbolic substitution [2,15,16] is an optical processing technique that has been widely

proposed for applications like image processing and arithmetic computation. Basically it

is a parallel pattern replacement process through which a set of given input patterns
are substituted by a set of output patterns. A symbolic substitution table is used as

reference during the substitution process. Considering the representation of operands as

input patterns, researchers have proposed the symbolic substitution process for arithmetic

processing of numbers [14]. The main advantage of the process is the absence of carry. As
a res,ult all output bits are derived in parallel, resulting in the speed up of the computation.

1.4 Non-binary Number Systems

Along with the development of parallel processing techniques, researchers have also come

up with different non-binary representation of numbers that exploit the parallelism through

limited carry-propagation or carry-free arithmetic [8,9,12,14,17,18]. Among these number

systems, the Modified Signed Digit(MSD) number system and its variation, the Canonical
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Modified Signed Digit(CMSD) number system, have found its wide application in optical

computing in the context of symbolic subst.itution process [2,14]. Both of these systems

are weighted radix 2-based number systems, comprising three types of symbols: 0,1&-l.

The redundancy in the systems allows carry-free operation and therefore the systems have

been most suitable for application in symbolic substitution process.

1.5 Objective and Scope of the Thesis

The earlier proposed symbolic substitution processes have concent.rated on employing
non-binary systems for arithmetic computing. This study, however, concentrates on the

design of an arithmetic unit that combines the parallelism of the symbolic substitution

process with the flexibility of binary system for data-intensive computing. Addition is

the basic operation involved in any arithmetic computation and speeding up addition will

result in speeding up the whole arithmetic process. So the focus has been mainly on the

development of an adder that operates with binary numbers at its interface; however,

employs the symbolic subst.it.ut.ion technique for its processing. The idea was to convert

the given binary operands to a non-binary representation, apply symbolic substitution
technique for t.heir processing, and finally convert the result to binary notat.ion. For the
study, t.he CMSD syst.em, due to it.s capability of unique

representat.ion of numbers and carry-free parallel arithmetic, has been chosen as t.he
intermediate non-binary representat.ion. The focus has been the development. of symbolic

substitution tables and algorithms for all the phases involved like: conversion of binary

to the non-binary representat.ion, processing of the numbers and finally conversion of the
non-binary represent.ation to binary representation.

In any symbolic subst.itut.ion process, there are two basic operations involved: the

recognition of input patterns and t.he substit.ut.ion of t.hese patterns. A number of optical
hardware systems for these operations have already been proposed [3,6,7,19]. We have
uked in this st.udy a simplified version of such a system as presented by Louri [6,19].
This study, however, mainly concentrates on developing the symbolic substit.ution tables

and algorithms involved in the proposed addition unit, rather than on designing the

corresponding hardware.

An important factor in the context of symbolic substitution is the required number of

substitution steps. The thesis presents a set of symbolic substitution tables and algorithms

that require much less substitution steps than any earlier corresponding schemes. Another

issue the study concentrates on is the development of a symbolic substitution based



CHAPTER 1. INTRODUCTION
4

approach for associative addition of binary numbers. Such an algorithm can be employed

in arithmetic computation, like multiplication, where associative addition of a set of

numbers is an integral process.

1.6 Organization of the Thesis

The thesis has been organized in different chapters, with each chapter discussing different

aspects of the study. The areas covered by different chapters are briefly as follows:

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Provides a literature review of the different methods and number

systems that have been proposed in the context of carry-free addition

The concept of optical computing, symbolic substitution and related

algorithms for arithmetic computation

A detailed discussion of the outcome of the study; introducing the

different symbolic substitution based algorithms and tables

A computer analysis of reduction of steps introduced in the algorithms

presented in chapter 4

A novel approach for symbolic substitution based associative addition

The concluding chapter giving some recommendations



Chapter 2
CARRY=FREE ARITHMETIC: A LITERATURE

SURVEY

2.1 Carry-free Arithmetic

Different researchers have developed a number of methodologies and number systems for

the design of parallel carry-free arithmetic unit. Figure 2.1 illustrates what is meant by

the term 'carry-free computation'. The left side of the figure depicts an arithmetic unit in

which each output bit depends not only on the input bits, but also on the previous stage

carries. The right side of the figure illustrates another arithmetic unit where each output

bit depends on input bits only, but not on any processing result of previous stages. Thus
while the left sided unit implies sequential processing, the right sided unit can derive all
the resultant bits in parallel and independent of each other. The development goal of a
carry-free addition unit is, hence, the design of a system, similar to the right sided unit

of Figure 2.1, that can derive its operational result based on its operands only and not

on any previous stage computations.

The efforts made in the context of the implementation of carry- free computation have been
mainly in two perspectives. One is the design of computational system that process the

digits in the computer representation of the operands in parallel. The other has been the
design of number representation that allows the parallel arithmetic computing technique
to be applied for carry-free computation. This chapter takes a look at these different
techniques and number representation systems that have been proposed in computing

literature.

5
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Y.

0,0,O~I

Figure 2.1 Carry-free addition

1. Carry-Generated 2 Carty-Free

2.2 Carry Lookahead Adder(CLA)

Carry Lookahead Adder(CLA) is an implementation proposed [20] to speed up the addition

of two binary numbers. Let A; & Bi be the addend and augend

respectively in the ith bit position of a binary full adder. Also let two

functions: the carry propagate, Pi and the carry generate, Gi be defined as follows:

Pi = Ai Ell Bi
Gi = A;. Bi

Then the full adder equations can be written as follows:

Si = Pi Ell Ci
CHj = Gi + Pi . Ci

Here the '+' symbol denotes logical 'or'.

Using this scheme, the addition of two .binary numbers can be performed in parallel.
However, the implementation is expensive, since it requires a lot of internal circuitry. For
example, for a four-bit adder, the carries for various bitpositions are calculated as follows:

Cj = G, + P,Ca
C, = G, + P,Gj + P,PjCo
C3=G3 +P3G, +P3P,G, +P3P,PjCo
~=~+~~+~~~+~~AG,+~~A~~
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while the sum bits can be calculated as follows:

81 = H EBCo
82 ~ P2 EBC1

83 = P3 EBC2

84 = P4 EBC3

7

As can be seen, with the increasing no. of bits, the circuit complexity and the required

no. of gates increases. For large no. of input bits, this implementation becomes too

expensive. Also, the inherent delay in the internal circuitry affects the computation speed

and the circuit virtually becomes a sequential carry-affected adder.

2.3 Introduction of Redundancy in Number Systems

The alternative schemes to CLA, that have been proposed, involve the use of number

systems with some kind ofredundancy in the representation [8,9,11,21J. The redundancy

allows multiple encoding for the same number and thus can be utilized for the development

of carry-free or limited carry-propagation addition scheme. The next section focuses on

some of these number systems, while the subsequent section discusses about the use of

these number systems in the context of parallel carry-free addition.

2.4 Different Number Systems

Different number systems have been proposed for the computation of arithmetic operations

by computers. These number systems may be categorized into two classes:

1. Weighteq, where every integer X can be represented as in equation 2.1. Here r is

the corresponding base and X,E{O, 1, ... , T - I}

n

X = Lx,r' (2.1)
i::::D

2. Non-weighted, where digits are not assigned any specific weight and the ordering of

the digits does not affect the representation.

'\
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The most common number systems like binary number system, hexadecimal number

system are examples of the weighted number system. The Residue Number system (RNS)

is an example of non-weighted number system.

In this section, we focus on the different number systems that have been proposed in

computing literature in the context of carry-free parallel arithmetic. An outline of their

relative advantages and disadvantages in this respect is also provided.

2.4.1 Redundant Number System

Avizienis [8] introduced the Redundant Number system. Formally, Redundant Number

System is a redundant representation of a number that operates as follows [8,22]:

For any radix, r ~ 2, a signed digit integer number, X = (Xn-l,"" X" xo), represented

with n digits, has the algebraic value, X = 2::':0' x;ri.
Here each digit X; assumes its value in the digit set,

S = {-a, -a + 1, ... ,-1,0, 1,... ,a -1,a}

The cardinality of the set S is 2a + 1 and maximum digit magnitude, a must satisfy,

(
r - 1)ceil -- <a<r-l2 - -

here ceil (x) denotes rX 1
The redundant number system is also known as signed-digit number system in computing

literature [8,23].

A significant property of the redundant representation is that it allows limited carry-
propagation or carry-free addition. This capability arises due to the redundancy of extra

digits and the capability of representing number in more than one way.

Different variations of the redundant number system have been proposed in literature [2,9,

10,12,18,21]. However, the Modified Signed Digit and Canonical Modified Signed Digit

number systems have found the most popularity among the researchers in the context of

carry-free addition [1,2,14,24-26].
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2.4.2 Modified Signed Digit Number System

9

The Modified Signed Digit(MSD) number system is a redundant number system with

" = 1. An n-digit Modified Signed Digit (MSD) number can be represented as:

71-1

X = :z= Xi
2i

i=O

where each digit XiC{O, 1,I}. Here 1 denotes-1.

(2.2)

MSD number system is thus a redundant binary number system employing the symbols

'0','1' and '-1'. The MSD number system allows carry-free and borrow-free arithmetic

operations. It is essentially a superset of the binary number system. The inclusion of the

extra symbol 1 [denoting' -l'J makes the provision for parallel arithmetic operations.

A number in MSD number system is represented as a string of symbols, members of which

are from the set {O,l,l}. For example,
51014+0+1

-5 1 0 1 = -4 + 0 + -1

However, representation of a number in MSD syst.em is not. unique. For example the

number 11 [using 6 bits] can be represent.ed as any of t.he following ways:
11 001011

11 010101

11 111011

This non-uniqueness of MSD number syst.em is one of its disadvant.ages. However, a

specializat.ion of this number system, known as Canonical Modified Signed Digit (CMSD)
number syst.em, has been proposed [2, 261 that. gives unique representation for each

number.

2.4.3 Canonical Modified Signed Digit Number System

Canonical Modified Signed Digit (CMSD) number system is essentially a variant i.e. a

recoding of t.he general Signed Digit number system. The property t.hat is maintained in

the representat.ion is t.hat no two consecutive digits are non-zero.
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Formally, an n-digit Canonical Modified Signed Digit number can be represented as :

10

n-1

X = LT,2i
i=O

where each digit XiE{O, 1,1.} and Xi.Xi-1 = O;Vi = 1 ... n - 1

The representation of number 11 [using 6 bits], for example, in CMSD is as follows:

11 0 1 0101

(2.3)

The advantage of this number system is that representation is unique. Also, the sparseness

of non-zero digits in the representation minimizes the number of addition and subtraction

operations required in arithmetic computation. Canonic Modified Signed Digit (CMSD) is

thus a good candidate for appliance in parallel computing architecture and fast processing.

2.4.4 Residue Number System

Residue Number System(RNS) [27,28] is a non-weighted number system that allows carry-

free addition and borrow-free subtraction. It uses positional bases that are relatively

prime to each other. For example, using 2, 3 and 7 as the prime modula, we can represent

the following numbers as shown:

Number Bases: 2, 3, 7

0 0, 0, 0

7 1, 1, 0

11 1, 2, 4

Here the digit for each position is obtained by the modulus of the number to be represented
divided by the prime factor for that position. The representation of '11' is thus obtained

as:

11 1 (11mod 2), 2 (11mod 3), 4 (11mod 7)

The dynamic range, DR, of the number system is the product of the prime moduli.
The dynamic range for the example is thus 0 to 41. Negative numbers can also be

accommodated by designating D R/2 numbers as positive and the rest as negative. For

example, using 2,3,7 as the prime moduli and employing Signed RNS, the following

numbers may be represented as follows:

'~r
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11 1, 2, 4
-11 1, 1, 3

11

The addition and subtraction are performed in digit by digit basis. The result of operation

in each position is then represented as the modulus of the resultant divided by the prime

factor at that position. The following examples (using 3,5,7 as the prime moduli) illustrate

the operation:

21 + 13 17 - 38

a, 1, a 2, 2, 3

+ +
1,3,6 1,2,4

1,4, 6 0, 4, 0

=34 =-21

Residue Number system thus allows carry-free arithmetic. However, it is more difficult to

implement due to the fact that the system computation elements require a different set

of prime-moduli-based logic elements for each arithmetic operation. It is thus a rather

complex system.

2.4.5 Other Variations of Redundant Number System

The redundant signed-digit number representations is of symmetrical type in the sense

that the allowed digit range is from -a to a, for some value of a satisfying equation 2.4.1.

It is now referred to as the Ordinary Signed Digit (OSD) number system in contemporary

literature [12].

An extension of this system was later proposed and is known as the Generalized Signed

Digit (GSD) number system [9,211. The GSD number system for radix r > 1 has the
digit set -a, ..., -1, a, 1, ... , (3, where a ::::a and (3 ::::a. The system has been proposed for

use in schemes like carry-save adders and carry-skip adders [17].

Another variation of signed digit number system, that has been recently proposed, is the

Asymmetric High-radix Signed Digit (AHSD) number system [121. The radix-r asymmetric
high-radix signed-digit (AHSD) number system, denoted AHSD(r), is a positional weighted

number system with the digit set S = -1,a, ...,r -1, where r > 1. The AHSD number
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system is a minimally redundant system with only one redundant digit in the digit set.

An n-digit number X in AHSD(r) is represented as

x = (Xn-Il Xn-2, ... , xo) (2.4)

where XiCS for i = 0,1, ...,n - 1, and S = -1,0,1, ...,r -1 is the digit set of AHSD(r).
",n 1 .The value of X can be represented as, X = L...i:O Xir'.

2.4.6 Double Base Number System

The Double Base Number System (DBNS) [11] is a 2-D representation of numbers with 2

and 3 used as bases and using ° and 1 as the only allowable digits. The representation of

a given number x is of the form:

X = LXi,j2iSj;x"Jc{O, 1}
i,j

(25)

A simple geometric interpretation of the system may be denoted as in the following table:

2° 2' 22 23
3° xo,o XO,1 XO,2 XO,3

3' Xl,O Xl.I Xl,2 XI,3

32 X2,O X2,1 X2,2 X2,3

33 X3,a X3,! X3,2 X3,3

For example, one representation of the number '11' is as follows:

3° ° ° ° 1

3' 1 ° ° °32 ° ° ° °33 ° ° ° °
The DBNS system have a sparseness in its representation and is thus a suitable number

system for application in parallel computing architecture. However, we require much

"\
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more storage for the representation of a DBNS number than its binary notation. Also,

the representation of a number is not unique.

2.5 Carry-free Addition Schemes

A number of schemes, based on the aforementioned number systems, ha"e been designed.
These schemes, described under different titles in computing literatures like carry-skip
(single- or multile"el) adder, carry-select adder, carry-save adder and hybrid adder [5,9,
17, 18,29], deal with the generation of carry by limiting carry propagation to within a

small number of bits or detecting the end of propagation; or speeding up propagation via

some lookahead scheme or eliminating carry propagation altogether. Several digital and

VLSI systems have been proposed on the basis of these schemes [9,17,29,301.

Another arena, where these non-binary number systems have found their application

in the context of carry-free arithmetic, is the symbolic substitution process in optical

computing. Detailed description of the process has been presented in the next chapter.

2.6 Choice of Number System in Carry-free Addition Scheme

Each number system has its advantages and disadvantages in the context of a carry-free

arithmetic scheme. Usually the questions that are asked while selecting a number system

are as follows:

1. Does the number system represent every number? (completeness)

2. Are the representation of the numbers unique for every number?

(non-ambiguous)

3. Does the number system give any advantage in employing arithmetic operations and

other operations like sign detection and comparison?

Not all advantages can be gained from employing a single number system. Binary system,
for example, is the simplest to implement. But it does not allow carry free operation.
Redundant number system, on the other hand allows carry free arithmetic. But it is
harder to implement and the representation is not unique. The same problem holds

for other variants of redundant number system, residue number system and double base
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number system as well. Hence no single number system is the best choice.and the choice

solely depends on the application and algorithm to be implemented.

The MSD number system (which is a subset of the redundant number system) and its

variant the CMSD number system, though having an extra digit than binary, allow carry-
free arithmetic and thus are suitable for parallel computing architecture. It is used

specially in optical computing where polarization and other properties of light may be

utilized to denote the three different states as required in the representation [14]. Thus
the symbolic substitution based architectures have always concentrated on using these

trinary systems [2,16,19,311 and in this thesis also, focus will be made on the utilization

of these trinary number systems.



Chapter3
SYMBOLIC SUBSTITUTION AND ARITHMETIC

COMPUTATION

3.1 Optics as a Backbone of Fast Computation

The speed of conventional computers is mainly constrained by the interconnection
bottleneck and inherent delay within the electronic devices. So efforts have been made to
achieve speedup by miniaturizing electronic components to a very small micron-size scale

so that those electrons need to travel only very short distances within a very short time.

This goal of improving computer speed has thus resulted in the development of the Very

Large Scale Integration (VLSI) technology with smaller device dimensions and greater

complexity. However the VLSI technology is approaching its fundamental limits in the

sub-micron miniaturization process. To meet the demand of high speed processing, we

therefore need to find alternative fast computing system.

Optical interconnections arid optical integrated circuits may provide a way out of the
lil)1itations to computational speed and complexity inherent in conventional electronics.
They are immune to electromagnetic interference and free from electrical short circuits.
They have low-loss transmission and provide large bandwidth; I.e. multiplexing capability,

capable of communicating several channels in parallel without interference. They are

capable of propagating signals within the same or adjacent fibers with essentially no
interference or cross-talk.

Another advantage of optical methods over electronic ones for computing is that optical

data processing can be done much easier in parallel than can be done in electronics.
Parallelism is the capability of the system to execute more than one operation

15
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simultaneously. Electronic computer architecture is, in general, sequential, where the

instructions are implemented in sequence. This implies that parallelism with electronics

is difficult to construct. Parallelism in conventional electronic computing system has

focussed mainly on the use of multiple processors in conjunction with the computer
memory to enhance the speed. However, the effect of using a large number of processors
are not necessarily an increase of computational speed, but could be in fact detrimental.
This is because as more processors are used, there is more time lost in communication.
On the other hand, using a simple optical design, an array of pixels can be transferred
simultaneously in parallel from one point to another. Thus optical system that works

simultaneously with an array of numbers, represented using some kind of spatial

arrangement of pixels, and derive the arithmetic computation in parallel has been

developed based on this inherent parallelism of optics [14,19].

3.2 Symbolic Substitution

Symbolic substitution [14,19,31-351 technique was developed as an optical computing
method to take advantage of the optical parallelism for 2-D image processing and arithmetic

computation. At the heart of the process is a pattern replacement operation, defined by

a symbolic substitution rule, that converts some given patterns to some desired patterns.

The substitution process, therefore, comprises two basic phases. In the first phase, the
recognition phase, the inputs are scanned for the location of desired input patterns. In
the second phase, the substitution phase, the desired output pattern is written into all the
locations determined by the previous phase.

3.3 Different Symbolic Substitution Methods

In:order to process an information by a device, the data has to be encoded with a physical

quantity that the device can process. While in electronic computers information is encoded
with an electrical quantity (electrical voltage or current), in optics the information is
encoded with an optical quantity (optical intensity, polarization, amplitude or phase).
Optical intensity and the optical polarization are the two optical quantities that have been
used extensively in optical computing in the context of symbolic substitution process.

And according to the type of encoding, the symbolic substitution methods have been

classified into two categories: intensity coded symbolic substitution (ICSS) [14,33,34]

and polarization coded symbolic substitution (PCSS) [36]. Another method, symbolic
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substitution using shadow-casting, employs both ICSS and PCSS [1,35].

3.4 Intensity Coded Symbolic Substitution

17

Intensity coded symbolic substitution (ICSS) uses the information coded with the optical
intensity. The basic units in this coding are pixels which can be either transparent or

opaque. A pixel or certain spatial combination of pixels represents a certain value of the
encoded information.

3.4.1 Dual-rail Encoding

The simplest way of encoding an informatiOIi in binary form is to attach the logical

one to the transparent pixel and the logical zero to the opaque pixel. However, optical
computing uses a scheme termed as Dual-rail Encoding [2,14]that uses more than one pixel
to represent information. In dual-rail encoding a spatial arrangement of the transparent

and opaque pixels is treated as a logical one and another arrangement is treated as logical

zero as shown in figure 3.1. The dark and white pixels, in this figure, indicate the opaque

and the transparent pixels respectively. As has been illustrated, in dual-rail encoding,

pixels are arranged into a two-pixel vertical bar, where the logical one is represented by

the transparent pixel in the upper position and by the opaque pixel in the lower position
and logical zero is represented vice versa. Similar spatial arrangement of the transparent

and opaque pixels are also used to represent 1, 0 and -1 in the MSD representation.

Figure 3.1 Dual-rail encoding

1 o 1 o -I

Binary MSD
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3.4.2 Symbolic Substitution Process

18

Symbolic substitution operation is characterized by the substitution rule. Figure 3.2 shows
an example substitution rule that will be used to explain the method. The pattern at the
left is the recognition pattern that has to be located in the input array. The pattern at

the right is the substitution pattern, which has to replace the located pattern.

Figure 3.2 Substitution rule

RecogJlitioJll Patrem

Recognition Phase

Substitution Patrem

In the recognition phase all occurrences of a recognition pattern are located. First a
pixel of the recognition pattern is defined as a reference pixel. This reference pixel will
determine the position of the recognition pattern in a masked array, which is a recognition

phase output array. Figure 3.3 shows the recognition pattern and the reference pixel,

which is the lower left pixel of the 2 X 2 square surrounding the pattern. Naturally,
any other choice is also possible. The pixels in the input or output patterns are also
referred to as 'pels' and we will use this term for the subsequent discussion. The first

step in the recognition phase is to produce as many replicas of the input array as there

are significant( opaque) pels in the left hand side (LHS) of the rule. For the demonstrated

example, the number is two. One replica is associated with the upper left pixel and the
other replica with the lower right pixel. The significant pels are then shifted onto the
reference pixel. For the example, the replica associated with the upper left pel is shifted
one pixel down and the replica associated with the lower right pel is shifted one pixel to .
the left.These two replicas are then superimposed to produce the superposition array.

The second step is an operation of inversion(Figure: 3.4). All dark pixels are inverted

onto bright pixels and vice versa.
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Figure 3.3 Symbolic substitution: Recognition phase (step 1)

Reference ~ I;Pixel ~
'- l'

'.
Recognition ,, "

Pamrn / '.,
/ "./ ~,,

Move Left

a
, /~"

lJIpu.tArray
,

a Supelposition\
" ,/, / Array

'" .',

Move Down

Figure 3.4 Symbolic substitution: Recognition phase (step 2)
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Inversion

Supelposition
Array

Inverted
Array

The final step in the recognition phase (Figure: 3.5) is an operation of masking. The mask

selects only the pels whose positions in the inverted array coincide with positions of holes

in the mask. The output of this operation is an array with the bright pels determining

the occurrences of the recognition pattern. The remaining pels are dark.
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Figure 3.5 Symbolic substitution: Recognition phase (step 3)
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Inverted Array

Substitution Phase

Mask Masked OuJput

.The first step in the substitution phase is to create as many copies of the masked output as
there are bright pels in the substitution pattern. As shown in Figure 3.6, the substitution
pattern, for the example, contains two bright pels and therefore two copies are made. To
scribe the substitution pattern, one copy is shifted to the top and the other copy to the
right. The copies are then superimposed to obtain an output array:

Figure 3.6 Symbolic substitution: Substitution phase
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Move Right
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3.4.3 Multiple-rules Symbolic Substitution Process

In a typical symbolic substitution process, a set of symbolic substitution rules, stored in
the storage element of the unit, are applied to detect a set of input patterns and scribe

a set of output patterns. The unit consists of pattern recognizer and pattern substituter

for each set ofrules (Figure: 3.7). The pattern splitter splits the input for the recognition

phase, while the pattern combiner combines the substituted patterns at the output.

Figure 3.7 Multiple substitution rules
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f--i> Pattern RlIle 2 Pat1ern ---Pattern Recognizer 2 Substitut or 2 Pattern
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----+
Pattern RlIleS Palrern ---Recognizer 3 Substitutor 3

. . •. • •. . .
-+ Pattern Rm. Pattern -Rtcognizern Substitutor n

,..,..,....... ,., ..,'.......1 •. ' ..••.•..• ,:.:..:.:, ...:.:..:.::1

Inplit Output

3.5 Polarization Coded Symbolic Substitution

Polarized coded symbolic substitution (PCSS) is another implementation of symbolic

substitution logic. The basic feature of this method is that an information is coded in

terms of polarization. The input data array in PCSS looks like in ICSS, but with one
exception. Instead of bright and dark pels the input array consists of pels containing

horizontally or vertically polarized light. In essence, the basic principle of PCSS is the
same as in ICSS and consists of replication, shifting, superimposing, inverting and masking

operations as in the ICSS. However, PCSS offers four logic values as compared to two logic
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Figure 3.8 Block architecture of a symbolic substitution unit
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Symbolic Substitution Unit

values in lCSS. The states 'zero' and 'one' have the same meaning as in ICSS. In addition

PCSS appears allows two new logic states, that after Brenner [36]' are referred to as the

'never match' and 'always match' states. The state 'never match' can be used to inhibit

the recognition, whereas the state 'always match' can serve as a wild card or don't care

condition. Thus PCSS allows the implementation of complex symbolic substitution rules.

3.6 Basic Symbolic Substitution Unit

Figure 3.8 depicts the basic block architecture of a symbolic substitution unit. The

inputs to the system are the variables X & Y. C is an auxiliary variable and 0 is

the output variable. The symbolic substitution rules are stored in memory, while the
controller controls the recognition and substitution phase. Inputs, X & Y are scanned
for recognition patterns during the recognition phases. During the substitution phase,
the controller substitutes these patterns with the substitution patterns, defined by the

symbolic substitution rules, at the output O. Some applications require multiple
;substitution steps. In these cases, the auxiliary variable C is used as another output

during the substitution phase. For the subsequent iteration, the values of 0 and Care

copied back to X and Y and the symbolic substitution process is repeated with the new
values of X and Y.

,
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3.7 Symbolic Substitution and Arithmetic Computation

23

Symbolic substitution can be used for implementing arithmetic operations [2,6,14,31,33,

36]. The idea is to consider the representation of the operands as input patterns and the

resultant as the output patterns. The symbolic substitution rules define the corresponding

arithmetic operation. As an example, figure 3.9 illustrates an addition following the rules:

1 + 1 = 10, 1 + a = a + 1 = 1, a + a = O. lCSS process has been used for the illustration
and a bright pixel, in the figure, represents the logical one, while a dark pixel represents
the logical zero. The symbolic substitution rules corresponding to the addition operation
have been shown at the left side of the figure. The right side shows the addition of two
numbers (OllO) and (0101), the addition of which equals (lOll). As has been shown, the

symbolic substitution process simply detects the desired input patterns in the operands

and substitutes these patterns with the substitution rule-defined patterns at the output.

There are four substitution rules and are applied as many times as there are bits in the

numbers (in this example four times). Obviously, this addition can also be implemented

with dual-rail coded or polarization coded numbers provided they use the corresponding
substitution rules.

Figure 3.9 Symbolic substitution based arithmetic computation

B-~ ~--Ib
OLWm-~ 0000+0101 WU-I--~ 1(.111
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3.8 Symbolic Substitution Based Computation Algorithms

This section presents a set of symbolic substitution based algorithms that have been
proposed in computing literature for different arithmetic computation. These algorithms

are mainly based on MSD or CMSD representation of numbers. The reason why these non-
binary systems have found their popularity in the context of symbolic substitution is, as

mentioned in chapter 2, the capability of these systems to perform carry-free arithmetic
operations and thus the suitability of these systems to be employed in the inherently
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parallel symbolic substitution process.

3.8.1 Three-step MSD Addition

Table 3.1 shows the rule for 3-step MSD addition.

Table 3.1: Symbolic substitution tables for MSD

addition: Three-steps

24

AiBi '£+1 Wi

00 00

01 11

01 11
10 11
11 10

11 00

10 11

11 00

11 10

The Final Sum: Si = T; + Wi

TiWi T,+1Wi
00 00

01 01

01 01
10 11
11 01

11 00

10 01

11 00

11 10

The input A and B are scanned for the desired input patterns,(AiBi), as depicted in the

substitution table. In the first step, all these patterns are substituted by transfer and

weight bits (TiWi) according to the defined rule. These bits are then substituted by TiWi
according to the symbolic substitution table, in the second step. The last step is the

direct substitution according to the addition rule.

Example:

27 + 15

1 1 1 a 1
1 a a a 1
1 1 1 a 1

a 1 1 a a
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o 0
1

1 1
= 42

o 0
011
011 o

The underlying concept of the process is that, when two single digit MSD numbers are

added, a carry is generated whenever the to-be-added numbers are either 1,1 or 1,1. This

carry is locally absorbed by allowing one bit propagation to the left. The generation of

such carry may be avoided by mapping the two digits in question into an intermediate

sum and an intermediate carry (known as weight and transfer bits) such that the n-th

intermediate sum and the (n - 1)-th intermediate carry never form any of the carry-

generation combinations. Thus the following steps may be used in deriving the required

rules for realizing carry-free addition:

1. The set of MSD addend and augend digits are grouped into multiple classes III

accordance with the value of their sums

2. For each of the above classes, all possible two-digit MSD representations of the

corresponding sum are identified

3. Of the MSD representations derived in the previous step, the less significant digit is

taken to represent the intermediate sum while the other digit is taken to represent
the intermediate carry. The next step identifies the form of intermediate sum and
carry.

4. A substitution rule for the addend and augend is selected from the different

representations derived in Step 2 above. The substitution rule for a group of paired

numbers that has the same sum is derived by examining the (n - 1)-th pair of digits;

so that the n-th intermediate sum when added to the (n -1)-th intermediate carry,

does not generate a carry. For each substitution rule selected for aparticular group

of inputs, the allowable set of the (n - 1)-th pair of digits must be specified so that
the intermediate sum, Sn and intermediate carry Cn-1 generated from the group
satisfy the equation:

ISn + Cn-1 < RI

where R is the radix of the number system under consideration; for MSD, R=2.

"::;. .
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Table 3.3: Symbolic substitution tables for MSD
addition: Two-steps

AiBi Ai-1Bi-1 Ti+l Wi
00 Don't Care 00
11 Don't Care 00
11 Don't Care 00
01 Both Positive 11
01 Otherwise 01
10 Both Positive 11
10 Otherwise 01
01 Both Negative 11
01 Otherwise 01
10 Both Negative 11
10 Otherwise 01
11 Don't Care 10
11 Don't Care 10

3.8.2 Two-step MSD Addition

26

The Table 3.3 shows the rule for 2-step MSD addition. The symbolic substitution involved

here is an example of a conditional symbolic substitution process [16]. It is so called since
the substitution here depends on some input bits other than the corresponding addend

and augend bits.

Example:

102 + -47

1 1 0 1 0 1 0

1 1 1 1 1 1 1

0 1 1 0 1 1 0

0 0 1 0 1 0 1

0 1 1 1 1 0 0 1

= 55

The underlying concept is similar to that of the three-step algorithm. The pair of MSD

digits to be added have been classified in five groups in this case. Now, the summation

of two MSD digits ranges from -2 to 2 and the sum can be represented as two-digit MSD

representation as follows:
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(a) -2"" 1 0

(b) -1 "" 01 1 1-, -

(c) o = 00

(d) 1 = 01, 11

(e) 2 = 10

27

Of these options, rules for (a), (c) and (e) are fixed since there is only one way to represent

the numbers in those cases. For finding substitution rules for (b) and (d), it may be noted

that they have a possible intermediate sum digit of either 1 or 1. So, to determine the

substitution rule, the digits at the previous positions are also considered. When the

intermediate sum at the n-th position is 0, any combinations of digits may appear at the

(n -l)-th position without generating a carry.' On the other hand if the intermediate sum

at the n-th position is 1, then a carry will be generated only if the intermediate, carry

from the (n - l)-th position is also 1. In other words if the digit pair at the previous

position is anything but all negative ( that is, anything but (1,1) or (0,1) or (1,0)) then a

carry will not be generated. In this case we take the representation of intermediate carry

and sum to be respectively 0 and 1. On the other hand if both the previous digits are

positive, the intermediate carry and sum is taken to be 1 and 1. If the intermediate sum
at the n- th position is 1, a similar requirement is taken into consideration for the design

of the symbolic substitution rules.

3.8.3 One-step CMSD Addition

As has been illustrated, carry-free addition of two numbers represented in MSD

presentation can be performed in 3 or 2 steps. However if the operands are represented in

CMSD notation, then addition can be performed by a direct symbolic substitution table
and in one step only. The Table 3.4 shows the one-step symbolic substitution table for

CMSD addition.

The idea of the algorithm is to consider the CMSD representation of the two operands, A
and B as input patterns and derive the MSD representation of their summation as output

pattern and using one symbolic substitution step. For each pair of bits, AiAi-l, BiBi_l,

the resultant bits, Si, are derived by a simple substitution and in a 'parallel carry-free

manner, Vi = 0, ... ,n where n is the bit-size of the operands.
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Table 3.4: Symbolic substitution tables for CMSD
addition: One-step

A;Bi Ai-1Bi-1 Si

10 OD 1
01 DO 1
00 11 1
01 DO 1
10 OD 1
00 11 1
00 OD 0
00 11 0
00 11 0
00 11 0
11 00 0
11 00 0
11 00 0
11 00 0

D = don't care
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Although the addition can be performed in one step, the problem with this algorithms is
that it does not maintain the Canonic property in result. Thus if we require to perform

associative addition of a set of numbers, then the algorithm is to be applied repeatedly for

each pair of numbers with the implied overhead of conversion of MSD number to CMSD

for application in the subsequent associative addition.

3.8.4 Conversion to CMSD

Conversion from binary or MSD representation to CMSD is an important process in many

computations [2,25,26]. Reitwiesner's algorithm [37] has been-the most cited one [25,26]
in this regard. Reitwiesner's Algorithm requires that the binary expansion of a number x
is P!J.ddedwith an initial zero. The algorithm computes the signed-digit representation y
starting from the least significant digit and proceeding to the left. Initially an auxiliary
binary variable c is set to 0 and subsequently the binary expansion of x is scanned. At each

parallel step, the canonically recoded digit Yi and the next value of the auxiliary binary

variable 8;+" for i = O...n-l, are calculated using the values of Xi , Xi+1, and 8; according
to a conversion and complementary conversion table as shown in Table 3.5 [2,37]. The
complete CMSD representation is obtained after n + 1 parallel steps. A corresponding

algorithm, as presented in [2]' has been reproduced in algorithm 3.1.

•
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Algorithm 3.1 Conversion to CMSD (Reitwiener's algorithm)
Let:X = Xn-1Xn-2 ..• Xo, be an n-digit Signed-digit number
Set Xn = 0 {Padding 0 at Left}
for i = 1 to n - 1 do
if Xi of 0 then

if Xi > 0 and Xi+l 2: 0 then
if Xi + Xi+l 2: 2 then

Xi = Xi - 2
Xi+l = Xi+l + 1

else
if Xi < 0 and Xi+l :0;0 then

if Xi + Xi+l :0;-2 then
Xi = Xi + 2
Xi+l = Xi+l - 1

else
if Xi > 0 and Xi+l < 0 then
if Xi 2: Xi+ 1 then

Xi = Xi - 2
Xi+l = Xi+l + 1

else
if Xi < 0 and Xi+! > 0 then
if - Xi 2: Xi+ 1 then

Xi = Xi + 2
Xi+l = Xi+l - 1

28

Table 3.5: Reitwiesner's conversion table and

corresponding complementary conversion table

C; Xi+l Xi CHI Yi

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 1 1
1 0 0 0 1
1 0 1 1 0

1 1 0 1 1
1 1 1 1 0

C; Xi+l Xi CHI Yi

0 0 0 0 0

0 0 1 0 1
0 1 0 0 0

0 1 1 1 1

1 0 0 0 1
1 0 1 1 0

1 1 0 1 1
1 1 1 1 0

3.9 Concluding Remarks

This chapter has introduced the idea of symbolic substitution for arithmetic computation.
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The different algorithms and tables presented here have different limitations and

advantages. The next chapter depicts the main objective of the study and presents a

set of improved symbolic substitution tables and algorithms.

,
-',



Chapter 4
DESIGN OF A SYMBOLIC SUBSTITUTiON

BASED BINARY ARITHMETIC UNIT

4.1 Underlying Motivation

As has been mentioned in the previous chapter, the earlier proposed symbolic substitution

based methods and algorithms have concentrated mainly on the use of non binary num-
ber systems like MSD and CMSD. Binary system, due to its incapability of processing

information in parallel, has not found much application in this context.

Traditional digital computing, however, is based on binary system and corresponding
binary logic. Also a binary system is simpler to implement than a corresponding non-
binary based system. This study has therefore made an effort to develop system that

works with binary numbers, yet use the symbolic substitution method for fast arithmetic

computation. As addition is the basic operation involved in any arithmetic computation,

the focus has been on the development of a symbolic substitution based fast, carry-free

binary adder.

4.2 Proposed Arithmetic Unit

A logical diagram of the proposed arithmetic unit has been shown in Figure 4.1. The
idea has been the design of a system that works with binary numbers at its interface, but

uses an intermediate non-binary representation that can process data in parallel using

the symbolic substitution process. The goal has been the design of symbolic substitution

30
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logic for all the processing steps involved like the conversion of binary to the non-binary

representation, processing of the non-binary numbers and finally the conversion of the

non-binary representation to binary representation. The proposed nnit works with binary

numbers represented in both unsigned and 2's complement form. As for the intermediate

non-binary representation, both MSD and CMSD are suitable. However CMSD system is

preferable since it has a unique representation for every number. And also it has a sparse-

ness among the non-zero digits in the representation and this sparseness is suitable for

fast (in terms of the required number of substitution steps) symbolic substitution process.

A practical application of such unit may be an opto-electronic arithmetic unit that accepts
binary numbers at its input and produces the result in binary form, but process the

numbers optically using the symbolic substitution logic within the device. Such unit will

result in higher computation speed than the sequential digital computing devices.

Figure 4.1 Logical diagram of the proposed fast addition unit

Binary Sy.l.... p::- ConVl! •.• ,on block
Btn.~PJlto non-binary

(CMSD) 0'"1"'"

f
..-<.-----
'•..~.__ .

-------~

Proc.""inll Block

Conversioon 'block
non-binary (CMSD)
syst-8m 1.0 am-a'y

4.3 Different Phases of the Proposed Arithmetic Unit

In this section, we take a look at the different phases involved in the proposed addition

unit and develop symbolic substitution based algorithm for each of these phases.

,
••
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Algorithm 4.1 Algorithm to convert MSD and binary number to CMSD in (l%J + 1)

steps
Let X=Xn-l

, ... , X" Xo be a given MSD 01' unsigned binary or 2's complement binary
number, C=Cn+l

, ... , C
"
Co be an auxiliary variable used in symbolic substitution pro-

cess, Y=Yn+
"

... ,Y
"
YO be the output CMSD number and CT=CTn+" ... ,CT"CTo be

the temporary auxiliary variable generated in each symbolic substitution step.

Set C=O
if input is in 2's complement Binary representation then
Pad 2 'MSB' digits at Left

else
Pad 2 '0' digits at Left

for stepcount = 1 to ln/2 J + 1 STEP 1 do
*(
for i = 0 to n+1 STEP 2 do
Set Yi+lYi and CTi+3CTi+2 based on Xi+lXi and Ci+lCi according to the symbolic
substitution table; 0 :S i, (i + 1), (i + 2), (i + 3) :Sn+l; else Yi = CTi = 0 . If
there is an entry for further check(CheckCond.1 or CheckCond.2), then perform
the substitution based on Xi+2 and C'+2 according to the corresponding Check-

condition table.
)*
Set X = Y, Set C = CT

The derived Y=Yn+l, ... , Y
"
Yo is the output CMSD number

NB: The *-marked code runs in parallel for all digits

4.3.1 Conversion of MSD and Binary to CMSD

The first phase is the conversion of binary numbers to CMSD number. As already stated

in section 3.8.4, Reitwiesner's algorithm [37] is the most cited one [25,38] in this regard.
However, a symbolic substitution table based on this algorithm requires steps proportional

to the number of digits in the representation of the number. If n is the bit-size of the
binary or MSD number to be converted, a symbolic substitution process based on the

Reitwiesner's algorithm will require n + 1 substitution steps to complete the conversion.

'In this section, we present a new symbolic substitution table and corresponding algorithm

that requires l% J + 1 substitution steps. One highlighting feature of this algorithm is that it

can convert binary numbers represented in both signed 2's complement form and unsigned

form to their correct representation in CMSD. Moreover, it can convert any given MSD
number to CMSD representation. The algorithm and the symbolic substitution table has

been shown in Algorithm 4.1 and Table 4.1. The demonstration of the algorithm has been

shown in Demonstration 4.3.1,4.3.2 and 4.3.3.

"-
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Table 4.1: Symbolic substitution table to convert MSD
and binary number to CMSD in (l ~J + 1) steps

Cheek:CH1 Ci
Bits (XH1Xi) OutputS(Yi+l Yi, CTi+3CT;+2)

00 01 01
00 00,00 01, 00 01,00
01 01, 00 CheckCond.1 00,00
01 01,00 00,00 CheckCond.2
10 CheckCond.1 01,01 01,00

10 CheckCond.2 01,00 01, 01
11 01,01 00, 01 CheckCond.1

11 01, 01 CheckCond.2 00,01
11 01,00 - CheckCond.1 00,00
11 01, 00 00,00 CheckCond.2

Note: CheckCond.1 and CheckCond.2 implies further conditions as have been illustrated
in Table 4.2 and Table 4.3

Table 4.2: CheckCond.1 for Table 4.1

Bits (XH2CH2) Outputs: Yi+lYi, CTi+3CTi+2
00 or 11 or 11 or 11 or 11 10, 00

01 or 10 10,01
01 or 10 10, 01

Table 4.3: CheckCond.2 for Table 4.1

Bits (XH2Ci+2) Outputs: Yi+1Yi, CTH3CT;+2
00 or 11 or 11 or 11 or 11 10, 00

01 or 10 10,01
01 or 10 10,01
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Demonstmtion 4~3.1
Given number: 7 (4 bit unsigned binary) =(0 1 1 1).
After padding 2 '0' bits at Left: X = (0 0 0 1 1 1).
Initi"l auxiliary variable C =(0 0 0 0 0 0)
STEP 1: Y = (0 0001 01), CT = (0001 00)
STEP 2: Y = (0001 001), CT = (000000)
STEP 3: Y = (0001 001), CT = (000000)
The CMSD Output: (0 0 0 1 0 0 1) = 7.

Demonstmtion 4.3.2
Given number: -9 (5 bit 2's complement binary) =(1 01 1 1).
Since Input is 2's Complement Binary, Padding 2 'MSB' bits at Left: X =(1 1 1 01 1
1).
Initial auxiliary variable C =(0000000)
STEP 1: Y = (001 01 01), CT = (00001 00)
STEP 2: Y = (0011 001), CT = (001 0000)
STEP 3: Y = (0001 001), CT = (0000000)
The CMSD Output: (0 0 01 0 01) = -9.

4.3.2 Conversion of Binary to CMSD: One-step Algorithm

In this section we present another conversion algorithm that works only for binary num-

bers. But the exciting feature is that it can perform the conversion of a binary number to

its CMSD equivalent in just one step. Also the conversion process can begin from either
side: left to right or right to left, thus implying the total parallelism. The algorithm is as

shown in Algorithm 4.3.

Algorithm 4.2 Search for a pattern like (10)'11. used in Algorithm 4.3
Procedure FindPattern(i)
if there is a pattern like (10)'11 starting from bit position i then
Return True

else
Return False.

End Procedure
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Demonstration 4.3.3
Given MSD number: -14(4 bit MSD) =(111 0).
After padding 2 '0' bits at Left: X =(0 0111 0)
Initial auxiliary variable C =(000000)
STEP 1: Y = (0001 1 0), CT = (01 01 00)
STEP 2: Y = (01 001 0), CT = (000000)
STEP 3: Y = (01 001 0), CT = (000000)
The CMSD Output: (01 001 0) = -14.

Algorithm 4.3 Binary to CMSD Conversion Algorithm: 1 Step
Procedure DoConversion
Let X=Xn-1, ••• , XI, Xo be a given unsigned binary or 2's complement binary number
and n is even. Let Y=Yn+1, ... , Y1, Yo be the output CMSD number.
Pad 20's at right
if X is a 2's complement binary number then

Sign extend X by I bit by padding the MSB bit 1 times at left
else

Pad 20's at left
endif
for i=n downto 0
switch (XiXi-l)

case 00 or 11: y;=0
case 01:

switch (Xi+1Xi-Z)
case 01: Y;=1
case 11: Y;=l
case 00:

if (FindPattem(i - 1)) then Y;=1 else Y;=O
case 10:

if (FindPattem(i - 1)) then Y;=l else Y;=O
case 10:

switch (Xi+IXi-Z)
case 00: Y;=1
case 10: Y;=l
case 01:

if (FindPattem(i)) then Y;=O else Y;=1
case 11:

if (FindPattem(i)) then Y;=O else Y;=l
End Procedure

The complete algorithm consists of two procedures. The first procedure, given a bit
position i, searches for a pattern like (10)*11, i.e. patterns like 1011 or 101011 or 10101011

or so on, starting from the bit position i,. It returns true if such pattern is found. The

second procedure comprises the main conversion algorithm. Initially it pads 2 0 bits

referred to as X-I and X-z )at right of the binary expansion of the number to be converted.
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Depending on the representation, it also pads the MSB bit or 2 '0' bits at left. Then for

each bit position i, the algorithm checks Xi and Xi-1 to determine the final digit y" for

i=O, ..,n-l. If XiXi-1 = 01 or 10, the algorithm checks the values of Xi+1 and Xi+l also.
The determination of the output digits are done in parallel for all bit-positions. Thus the
full conversion is performed in just one step. The demonstration of the algorithm is as

shown in Demonstration 4.3.4 and 4.3.5.

Demonstmtion 4.3.4
Given number: 43 (6 bit unsigned binary) =(1 01 01 1).
After padding 2 '0' bits at Right =(1 01 01 1 00).
Since Input is unsigned Binary pad 2 '0' bits at Left.X = (0 0 1 0 1 0 1 1 0 0)
For bit position 6: X6Xs=01 : X7X4=00 :FoundPattern(5)=True : Y6=1
For bit position 5: XsX4=10 : X6X3=01 :FoundPattern(5)=True : Ys=O
For bit position 4: X4X3=01 : XsX2=10 :FoundPattern(3)=True : Y4=1
For bit position 3: X3X2=10 : X4X1 =01 :FoundPattern(3)=True : 1'3=0
For bit position 2: X2X1 =01 : X3Xo=11 : 1'2=1
For bit position 1: X1Xo=11 : Y1=0
For bit position 0: XOX_1=10: X1X_2=10 : Yo=l
The CMSD Output: (1 01 01 01) = 43.

Demonstmtion 4.3.5
Given number: -21 (6 bit 2's complement binary) =(1 01 01 1).
After padding 2 '0' bits at Right =(1 01 01 1 00).
Since Input is 2's complement Binary pad the MSB bit once at Left.X = (1 1 01 01 1 0
0)
For bit position 5: XsX4=10: X6X3=11 :FoundPattern(5)=True : Ys=O
For bit position 4: X4X3=01 : XsX2=10 :FoundPattern(3)=True : Y4=1
For bit position 3: X3X2=10 : X4X1 =01 :FoundPattern(3)=True : Y3=0
For bit position 2: X2X,=01 : X3Xo=11 : 1'2=1
For bit position 1: X,Xo=11 : Y1=0
For bit position 0: XoX_, =10: X1X_2=10 : Yo=l
The CMSD Output: (01 01 01) = -21.

Although the algorithm can convert a binary representation to corresponding CMSD in
one step, it has the disadvantage of checking for (10)'11 pattern in the representation.
This checking implies that for any bit position i of the binary number to be converted, the
algorithm may require the values of bit positions i+ 1,...,i - n + 1 to make the conversion
decision. Thus the symbolic substitution table has to contain entries for all bit positions
in the check condition. In other words, if the bit-size of the binary number to be converted

is n, then the symbolic substitution table has to contain column entries for bit positions

Xn+J,"',Xo. However, not all the permutations of these bits are necessary for inclusion

as conversion rules i.e. row entries in the symbolic substitution table. If the conditions

. ' ,
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specified in the algorithm are co-opted in the symbolic substitution table, then for the
conversion of an n bit binary number, we need a symbolic.substitution table with (n + 1)

column entries for check conditions, and 4 * (n - 1) row entries for conversion rules. Thus

for bit-size of 4, 6 and 8, we need only 12, 20 and 28 conversion rules with 5,7 and 9
check conditions. The dependency of the symbolic substitution table on the bit size of

the binary number to be converted may appear to be a disadvantage. Also the inability, to

make the symbolic substitution table generalized to perform conversion of binary number

of any size, may appear to be a flaw. However, at the cost of some extra entries and non-

generalization, the advantage of performing the conversion in just one step may outweigh

these disadvantages in many parallel processing situations.

An example of a symbolic substitution table, that can be used to convert a 4-bit binary
number, is shown in table 4.4. The blank (-) entries in the table indicate don't care

condition for that bit position.

Table 4.4: Symbolic substitution table for converting 4-

bit binary number to CMSD representation in 1 step

Xi Xi-2 Xi-3

- 0 0 - - 0

- 1 1 - - 0

0 0 1 1 - 1

0 0 1 0 - 0

1 0 1 1 - 1
1 0 1 0 - 0

0 1 0 1 1 0

0 1 0 1 0 1

0 1 0 0 - 1

1 1 0 1 1 0

1 1 0 1 0 1
1 1 0 0 - 1

,
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4.3.3 Addition of CMSD numbers
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The next phase of the proposed arithmetic unit is the addition of two CMSD numbers. An

one step substitution process has already been shown in the previous chapter. However
the algorithm produces the result in MSD form. Thus to apply the resultant for further

associative addition, we have to convert it again using either the Reitwiener's algorithm

or the algorithm presented in section 4.3.1.

This section presents a novel symbolic substitution approach for CMSD addition that

requires l~J + 1 steps to complete. However this substitution process maintains the
canonic property in the output. The algorit.hm and symbolic substitution table has been
shown in Algorithm 4.4 and Table 4.5. The demonstration of the algorithm has been

shown in Demonstration 4.3.6.

Algorithm 4.4 Algorithm for performing addition of CMSD numbers in (l ~J + 1) steps
Pad 2 '0' digits to the Left and 1 '0' digit at right of both n-digit operands (A and B)
for j = 1 to l~J+ 1) do
*(
for i = 0 to n STEP 2 do
Set Yi+1Yi CH3CH2 according to the symbolic substitution table on the basis of
the values of AH1Ai and Bi+lBi; ; 0:0; i, (i+ 1), (i+2), (i+3) :0; n; else Yi = Ci = 0

)*
Set A = Y and B = C

Y = Yn, Yn-1, ... , Yo is the resultant

NB: The '-marked code Runs in parallel

At each substitution step, the proposed algorithm considers 3 bits from each of the' input

operands, AH1AiAi-l, Bi+1BiBi-l as input patterns and using Table 4.5, derives as out-

put patterns the two variables Y and C (by determining the bits, Yi+l Yi and CH3Ci+2,

Vi = 0, ... ,n - 1, where n is the bit-size of the operands) in parallel. In some cases, the

substitution process requires to check the bits, Ai+2 and BH2 as well and Table 4.6 and

Table 4.7 are used according to the corresponding entry in Table 4.5. After a step has been
completed, the values of 0 and C are copied back as A and B for next substitution step.

This substitution process is iterated l~J+ 1 times, at the end of which Y = Yn, Yn-1, ... , Yo
holds the result of addition.
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Table 4.5: Symbolic substitution table for performing ad-
dition of CMSD numbers in (l ~J +1) steps and preserving
CMSD property

Check: Ai-1 Bi-1
Ai+lAi Bi+1Bi Outputs(Yi+l Yi, Ci+3Ci+2)

11 11 otherwise

00 01, 00 01, 00 00, 00
01 - - 01, 00

00 01 - - 01, 00
10 01, 01 01, 00 CheckCond.l
10 01, 00. 01, 01 CheckCond.2

00 - - 01, 00
01 - - CheckCond.l

01 01 - - 00, 00
10 - - 01, 01
10 - - 01, 00

00 - - 01, 00
01 - - 00, 00

01 . 01 - - CheckCond.2
10 - - 01, 00
10 - - 01, 01

00 01, 01 01, 00 CheckCond.l
01 - - 01, 01

10 01 - - 01, 00
10 01, 00 01, 00 00, 00
10 01, 00 01, 00 00, 00

00 01, 00 01,01 CheckCond.2
01 - - 01, 00

10 01 - - 01, 01
10 01, 00 01, 00 00, 00
10 01, 00 01, 00 00, 00

Note: CheckCond.l and CheckCond.2 implies further conditions as have been illustrated
in Table 4.6 and Table 4.7

,
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Table 4.6: CheckCond.l for Table 4.5
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0 0
1 1
1 1 10,00
1 1
1 1

____ o_th_e_r_w_is_e____ otherw~_i_se ,~

Table 4,7: CheckCond.2 for Table 4,5

10, 01

0 0
1 1
1 1 10, 00
1 1
1 1

____ o_th_e_r_w_i_se____ otherwise ,~

4.3.4 Addition of CMSD numbers in 1 step

10,01

Section 3.8.3 provides a symbolic substitution process for addition of two CMSD numbers
in 1 step. In this section we provide a similar algorithm. The previous algorithm checked

two input bit positions (AiBi, Ai-IBi-,) to determine one output bit(Si)' In contrast the
new algorithm presented here checks three input bit positions (Ai+IBi+1,AiBi, Ai_IBi_l)

and determine two output bits(Si+I,Si). Thus, although in terms of required steps the

algorithms have no difference at all (both requires 1 substitution step), the presented

algorithm here, however, requires lesser number of comparison devices (pattern recogniz-
ers). While the previous algorithm requires n - 1 comparisons for a n-bit number, the
proposed algorithm requires n/2 comparison and thus n/2 pattern recognizers only. The
algorithm and symbolic substitution table has been shown in Algorithm 4.5 and Table
4.8. The demonstration of the algorithm has been shown in Demonstration 4.3.9.
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Demonstration 4.3.6 Addition of CMSD numbers in (l~J + 1) steps
A = 01 01 = .3
B=1010=6
Padding two 0 at left and one zero at right of both A fj B:
A: 0 0 01 0 1 0
B:0010100

Y: 0001 01 0 (STEP 1}
C: 0000000
==================================
Y: 00 01 01 0 (STEP 2(
C: 0000000
==================================
Y: 0001 01 0 (STEP 3(
C: 0000000
==================================
o 0 1 01 = 3 (Final output(

Algorithm 4.5 CMSD addition in 1 step
Pad 2 '0' digits to the Left and 1 '0' digit at right of both n.digit operands (A and B)
*(
for i = 0 to n STEP 2 do
Set Si+lS, according to the symbolic substitution table on the basis of the values of
Ai+lA and Bi+lB,;

)*

S = Sn,Sn-l, ..., So is the resultant

NB: The *.marked code Runs in parallel

Table 4.8: Symbolic substitution table for performing ad.
dition of CMSD numbers in one step

Check: A'_IB'_1

A'+IA Bi+lB, Outputs( S'+1S,)
11 11 otherwise

00 01 01 00
01 . . 01

00 01 . . 01
10 11 11 .10
10 11 11 10

Contd. On next page ...
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Table 4.8: Continued ...

... Contd. From Previous page

Check: A-I Bi-I

Ai+1Ai BH1Bi OutputS(Si+ISi)
11 11 otherwise

00 - - 01
01 - - 10

01 01 - - 00
10 - - 11
10 - - 11
00 - - 01

01 - - 00
01 01 - - 10

10 - - 11
10 - - 11
00 11 11 10
01 - - 11

10 . 01 - - 11
10 01 01 00
10 01 01 00
00 11 11 10
01 - - 11

10 01 - - 11
10 01 01 00
10 01 01 00

Demonstration 4.3.7 Addition of CMSD numbers in one step
1 0 1 0 = A = 10
1 01 0 = B = 10

001 01 00 (Pad 20's at left and 1 '0' at right)
0010100

o 1 0 1 0 0 = Using table the final value = 20

>,
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4.3.5 Conversion of MSD to Binary
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The last phase of the proposed unit is the conversion of the non-binary representation

to binary. This section considers the conversion of any MSD number to its binary pre-

sentation. The next section will reflect upon the conversion of CMSD number to binary
notation. The algorithm and symbolic substitution table for the MSD to binary con-
version have been shown in Algorithm 4.6 and Table 4.9. The corresponding symbolic
substitution process requires n substitution steps, where n is the bit-length of the number

to be converted. The demonstration of the algorithm has been shown in Demonstration

4.3.8.

Algorithm 4.6 Algorithm for converting MSD number to 2's complement binary number
in n steps
Let X = Xn-l, ... ,Xl, Xo be the given MSD number; C = O.
for j = 1 to n do
*(
for i = a to n - 1 do
Substitute Xi by Y, according to the symbolic substitution table and also determine
e:+1

)*
Set X = Y and C = C'

NB: The *-marked code Runs in parallel

Table 4.9: Symbolic substitution table for converting
MSD number to 2's complement binary number in n steps

Xi Ci

a a a a
a 1 1 1

1 a 1 a
1 1 a a
1 a 1 1

1 1 a 1
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Demonstration 4.3.8 Conversion of MSD number to 2's complement binar1j
01 0 0 = -4 , Given Input

0100=X
oooO=C
0100
1000

1100
0000

1 1 00
0000

1 1 00
0000

1 1 0 0 = Final Conversion

4.3.6 Conversion of CMSD to Binary
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This section presents symbolic substitution table (Table 4.10) and algorithm (Algorithm
4.7)that can be used for the conversion of any CMSD number to its Binary represen-
tation(2's complement) in n/2+1 steps. The demonstration of the algorithm has been
shown in Demonstration 4.3.9.

Algorithm 4.7 Algorithm to convert CMSD to binary in (L¥J + 1) steps
Pad 2 '0' digits to the Left
for j = 1 to n/2 + 1 STEP 2 do
*(
for i = 0 to n STEP 2 do
Substitute Xi+1Xi by Y,+1 Y, according to the symbolic substitution table and also
determine C7;+3C7;+2; 0 ~ i, (i + 1), (i + 2), (i + 3) ~ n; else Y, = CTi = 0

)*
Set X = Y and C = CT

Y = Yn, ... ,Yois the resultant

J .•.
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Table 4.10: Symbolic substitution table to convert

CMSD to binary in (l ~J + 1) steps

Check:Ci+1 Ci

Bits (Xi+1Xi) OutPUtS(Yi+,Yi, CTi+3CTi+2)
00 01

00 00,00 11,01

01 01, 00 00, 00

01 11,01 Not Applicable

10 10, 00 01,00

10 10,01 10, 01

11 11,00 10,00

Demonstration 4.3.9 Conversion of CMSD number to binary
101 0 = 6 (Given Number)

o 0 1 01 0 = X (Pad 20's at Left)
oooooo=c
o 0 1 0 1 0 [Step 1[
000100

o 0 0 1 1 0 [Step 2f
000000

o 0 0 1 1 0 [Step 3f
000000

o 0 0 1 1 0 = Final Binary Representation

4.4 Comparison of the Proposed Schemes with Earlier Ones

In this chapter, we have presented a set of new tables and algorithms for different

arithmetic computation involved in the proposed unit. To see how the new processes lead
to computational efficiency, we may first calculate the steps required using the earlier

schemes as follows:
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Function Steps Required (n = No. of bits in Input)
Conversion of Binary To CMSD n+l
Addition of CMSD 1
Conversion of CMSD To Binary n
Total 2n+2

On the other hand, if the adder is implemented using the substitution tables and algorithms
presented in this chapter, the steps required are as follows:

n+2 or l3;J +2
n + 3 or l~J + 3

Function Steps Required (n = No. of bits in Input)

Conversion of Binary To CMSD 1(using Algorithm 4.3)

or

l¥J + l(using Algorithm 4.1)
Addition of CMSD 1(using Algorithm 4.5:

resultant in MSD notation)
or

l¥J + l(using Algorithm 4.4:
resultant in CMSD notation) .

Conversion of MSD/CMSD To Binary n(MSD to binary) or

l¥J + I(CMSD to binary)

I Total

As can be seen, the required number of steps are much less than a system based on earlier
schemes. The next chapter will reflect on how these new symbolic substitution processes
may be improved further in terms of required substitution steps.

-_.
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Chapter5
STEP REDUCTION AND EXPERIMENTAL

ANALYSIS

5.1 Reduction of Symbolic Substitution Steps

Symbolic substitution tables for different conversion and addition processes have already

been discussed in the previous chapters. However, it may noted that processing based on
these earlier and new tables often perform extra calculations than necessary.

For example, let us consider a demonstration of conversion of a MSD number
'1 0 110' (10) to binary equivalent using the Reitwiesner's algorithm as presented in

the next page. The demonstration has shown only the positions where some kind of
substitution is made. The blank spaces at the right indicate that the corresponding X

bits have reached their final values since the corresponding C bits are O. It can be seen

that, after 2 steps, C become 0 and there is no need for any more substitution steps. But

an arithmetic unit implementing the table will perform an extra step.

A'similar example, using the proposed algorithm 4.1 for MSD to CMSD conversion
(conversion of 20) has also been presented in the second example of the next page.In
this case also, the processor performs 2 extra steps even after the value of C has become

O.

47
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1 0 1 1 o = 10 , Given Input
1 0 1 1 0= X
0 0 0 0 O=C
1 0 1 1 0
0 1 1 0
1 1 0 1
1 0 0
0 1 0
0 0
0 1
0 1 0 1 o = Final Conversion

20 = Given Input

1 0 1 1 0 o = 6 Bit MSD represent"tion

0 0 1 0 1 1 0 o = Pad 20's at Left
0 a a a a a a a = Initial C's

a 0 1 0 0 1 a 0

0 a a 1 a 0

a a a 1 a 1

0 a 0 0

0 0 0 1

a a
a 0

a a a 1 a 1 a a = Final CMSD Representation
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Similar situations can be found in other processes where the substitution involves two

numbers and in all these cases once the second number (C) becomes 0, no effective

substitutions are made and the rest of the steps are simply unnecessary. Thus there

is a scope for improvement if the substitution process regards this phenomenon and stop

processing whenever the second number (C) becomes o. For subsequent discussion, we
will use the term 'auxiliary variable' to denote this second number.

As a part of this study, a set of some computer programs (provided in the source code
listing), written in C++, were used to analyze the computational efficiency, in terms of the
required number of steps, of units based on the proposed symbolic substitution algorithms,
as presented in the previous chapter. As has already been pointed out, these algorithms

perform the computation faster than any earlier scheme. However, the analysis presented

in this chapter will show that these can be further optimized by stopping substitution

once the auxiliary variable reaches the value of zero.
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Normally a processor implementing the substitution table 4.1 will require l%J + 1 steps.
However if the process is stopped after the auxiliary variable, C becomes 0, then an
improvement is expected. To demonstrate the optimization, a computer program to

simulate the conversion process was developed. For a given bit-size (71,), the program

could generate all the possible combinations of MSD numbers (in total: 3n numbers) for

that particular bit-size. For each of these MSD numbers, the number of parallel steps that

are necessary to convert the number to CMSD representation was recorded. From these
data, the cumulative percentage of the total possible combinations that are completely
converted to CMSD representation within a particular number of steps was calculated.
The result of the analysis is as shown in Table 5.1 and the graph of Figure 5.1. It can be
seen that for some fixed bit-size most of the MSD numbers(more than 90%) are converted

to corresponding CMSD representation in steps much less than the specified maximum of

(l%J + 1) parallel processing steps. As illustrated iu the graph of Figure 5.1, even with a

large fixed digit-size, most of the numbers (more than 97%) are converted within 5 steps.

Hence for any MSD or binary number generated at random, the proposed algorithm with

optimization will show superiority over other algorithms.

Table 5.1: Result of analysis for MSD to CMSD

conversion

Result of Analysis

No. of Bits Total Possible Steps Number of % of total

MSD Required for MSD MSD

(71,) W) Conversion requiring

this Step

1 41 50.62

4 81 2 38 46.91

3 2 2.47

1 231 31.69

6 729 2 306 41.98

3 182 24.97

4 10 1.37

1 1289 19.65

2 2418 36.85

8 6561 3 2094 31.92

Contd. on next page ...

,.



CHAPTER 5. STEP REDUCTION AND EXPERIMENTAL ANALYSIS

Table 5.1: Continued ...

50

... Contd. from previous page

Result of Analysis

No. of bits Total possible Steps Number of % of total

MSD required for MSD MSD

(n) (3n) conversion requiring

this step

4 588 8.96

5 172 2.62

1 7175 12.15

2 18338 31.06

10 59049 3 21736 36.81

4 8426 14.27

5 2694 4.56

6 680 1.15

1 39913 7.51

2 135810 25.56

3 207316 39.01

12 531441 4
.

77512 14.59

5 34540 6.50

6 28340 5.33

7 8010 1.51

5;3 Addition of CMSD numbers

A similar experiment was performed with the CMSD addition algorithm (Algorithm 4.4)

presented in the previous chapter. In this case, for a given bit-size (n), all possible
combinations of CMSD numbers( in total: (2n+2 + (_1)n mod 2+1/3))2 CMSD numbers)

were generated and required substitution steps to perform their addition was recorded.
The result of the analysis is as shown in Table 5.2 and the graph of Figure 5.2. It can

be seen that most of the additions are finished in steps much less than the specified
maximum of (l ~J + 1) parallel processing steps. As illustrated in the graph of Figure 5.2,

even with a large fixed digit-size, most of the combinations of CMSD numbers (more than

r, •



CHAPTER 5. STEP REDUCTION AND EXPERIMENTAL ANALYSIS 51

-+- 4 Bits
-{]- 6 Bits
--tr- 8 Bits
-11-10 Bits
-<:-12 Bits
-0-14 Bits
~16 Bits

98765

Steps

432

100
90
80

"C 70Gl
1::
Gl 60>=0 50U
~0 40
"\is•••
0 30I-

20
10
0
1

Figure 5.1 Graph of total of the percentage converted vs. required no. of steps for MSD
to CMSD conversion

97%) reaches their addition result within 4 steps. Hence for CMSD numbers generated

at random, the proposed algorithm with optimization will show superiority over other

corresponding algorithms.

Table 5.2: Result of analysis for CMSD addition

Result of Analysis

No. of bits Total possible Steps Number of % of

combinations required combinations total

1 293 66.44

4 441 2 128 29.02

3 20 4.54

1 3685 51.00

6 7225 2 2808 38.87

3 648 8.97

4 84 1.16

1 44901 38.61

2 53288 45.83

Contd. On next page ...
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... (ontd. From Previous page
Result of Analysis

No. of bits Total possible Steps Number of % of
combinations required combinations total

8 116281 3 15072 12.96

4 2680 2.30

5 340 0.29

1 541541 29.06
2 935464 50.21

10 1863225 3 311368 16.71
4 62680 3.36

5 10808 0.58

6 1364 0.07

Figure 5.2 Graph of total of the percentage added vs. required no. of steps for CMSD
addition
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Another experiment was performed for the CMSD to binary conversion algorithm

(Algorithm 4.7). In this case, all possible combinations of CMSD numbers for a fixed

bit-size were generated and the required substitution steps to perform their conversion

was recorded. The result of the analysis is as shown in Table 5.3 and the graph of Figure
5.3. As illustrated in the graph of Figure 5.1, even with a large fixed digit-size, most of

the numbers (more than 97%) are converted within 4 steps.

Table 5.3: Result of analysis for CMSD to binary

conversion

Result of Analysis

No. of bits Total possible Steps req-uired Number of % of total

CMSD CMSD

1 293 66.44

4 441 2 128 29.02

3 20 4.54

1 3685 51.00

6 7225 2 2808 38.87

3 648 8.97

4 84 1.16

1 44901 38.61

2 53288 45.83

8 116281 3 15072 12.96

4 2680 2.30

5 340 0.29

1 541541 29.06

2 935464 50.21

10 1863225 3 311368 16.71

4 62680 3.36

5 10808 0.58

6 1364 0.07
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Figure 5.3 Graph of total of the percentage converted vs. required no. of steps for
CMSD to binary conversion

5.5 Concluding Remarks

Thus we see that introducing the optimization results in faster processing for random
samples. So if the proposed addition unit incorporates the optimization, the whole system

will process addition in much less number of substitution steps than any other schemes.

,



Chapter 6
SYMBOLIC SUBSTITUTION BASED

ASSOCIATIVE ADDITION

6.1 Introduction to the Topic

All the earlier proposed symbolic substitution tables and algorithms have focussed mainly

on the addition of two numbers. In this chapter, however, we take a step further by
incorporating a symbolic substitution based process for aSsociative addition of numbers.

The goal is to develop a symbolic substitution based method for adding a set of numbers

such that the required substitution steps is much less than that required bya symbolic

substitution scheme for addition of two numbers, being applied iteratively.

6.2 Associative Addition of Binary Numbers

The study, here, focusses on the associative addition of binary numbers only. But similar

:algorithm can also be developed for other number systems. The process for associative

addition of binary numbers has been described in Algorithm 6.L

The idea of the algorithm is to gradually reduce the number of operands by

considering the total summation at each bit position. If m n-bit numbers are added,
the resultant will be of maximum n + flg(mll bits. The target of the algorithm is to
determine gradually the bit value of the total summations at each of the bit position.

If there are m numbers, then the addition of all corresponding bits of m numbers at a

particular position can be represented using a r bit number, where r = llg(m)J + L

55
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Algorithm 6.1 Associative addition algorithm
Let: M axcol = n + flg( m) 1; the maximum number of bits possible in the total
summation of the m n-bit binary numbers

1. Let: Xo, Xl, ...,Xm-l, denote m n-bit binary numbers to be added, where each
X = Xn~11 Xn-2, .'" xo;
Let: r = llg(m)J + 1
Let: Xj,i denote the bit at i-th position of the j-th binary number, for IIj = 0, ... ,m-l
and IIi = 0, ... ,n - 1; Pad flg(mll '0' at the left of all X].
Let: Si = L;;-;" Xj,; = L;::~ 2kS;,k where Si,k is the bit at the k-th position of the
binary representation of Si with bit-length r;

2. Deploy in the SS system r planes & Let P',k denote the k-th bit of the I-the plane,
for I = 0, ... , r - 1 and k = 0, ... ,M axcol - 1; Set P',k = 0, Ill, k.

3.
for count = 0 to M axcol - 1 do
for I = 0 to r - 1 do
Set: P','+eoun' = Seoant,!; for 0 ::; I + count::; M axcol - 1

4. Set: m = r; Repeat the steps 2-4 until m ::; 2

The algorithm applies this principle for all the bit positions involved and thus reduce

the m numbers to r numbers at each step. The bit values of the addition result at each

n + flg(m)l bit position are coordinated in such way that the total addition of the m

numbers equal the total addition of r numbers. The process, in the next step, works
similarly with the r operands and the reduction process continues iteratively until the

number of operands is 2. Then any symbolic substitution based binary addition unit, like
the proposed one in previous chapters, can be used to determine the addition.
A demonstration of the algorithm adding a set of binary numbers has been shown in Table

6.1

Table 6.1: Demonstration of associative addition

Step Given Numbers Comment

o 0 0 1 0 1 101 - 45-

o 0 001 101 1 - 27 n=6-

o 0 0 0 0 0 1 0 1 - 5 m = 8-

0 000 1 010 1 1 - 43 Pad flg(m)l = 3 '0'-

o 0 001 101 1 = 27 at left

000 1 0 1 101 - 45-

000 1 0 1 1 1 1 - 47-

Contd. On next page ...
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Step Given Numbers Comment

000 1 1 1 1 1 1 - 63~

000 1 1 1 1 1 0 - 62~

1 000110000 = 48 Reduction
o 1 0 1 1 1 000 - 184~

000001000 ~ 8-

o 1 0 1 1 1 1 1 0 ~ 190-

2 001 1 1 0 0 0 0 - 112 Reduction-

000000000 ~ 0-

3 o 1 100 1 110 - 206 Reduction: last step-

001100000 - 96-

6.3 Block Level Architecture of the Unit

Figure 6.1 depicts a block architecture of the addition unit. The unit comprises a set of

symbolic substitution units. Each of these units accepts m numbers at input and reduce
them to r = llg(m)J + 1 numbers at the output using the symbolic substitution logic of

Algorithm 6.1. The output of a unit is passed to the subsequent unit and this continues
until the last substitution unit that accepts two binary numbers as input. These two
numbers are then processed using the symbolic substitution logic for binary addition.

6.4 Required Steps to Complete Addition

To calculate the required number of symbolic substitution steps, we define a function
F(m) as follows.

Let 2q
-1 :S m < 2Q• Then F(m) = 1 + F(q), when m > 2 and F(m) = 0, when m :S 2.

The required number of symbolic substitution step to complete associative addition of
m binary numbers is then: S(m, n) = F(m) + G(n + flg(m)l) , where G(x) denotes
the number of symbolic substitution steps required for the addition of two x-bit binary

numbers. Since the reduction process results in two binary numbers of n + flg( m) 1 bits,

'"-
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Figure 6.1 Symbolic substitution architecture for associative addition

Symbolic Symbolic Symb«.c
SubsritUtl on un; t Substitution umt Substitution urot

(m ~anes) (lg(m)+1 planes) (lgOg(m)+l) +1
planes)
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m binary nUlllbers

~sull of addilio'l

Table 6.2: Values of m and F( m)

m F(m)
2 0
3 1
4 2
7 2
8 3
16 3
127 3
128 4
2127 5

,\.
Symb«ic

Substitution unit
(2 pllUles)

G(n + flg(m)l) denotes the steps required in the binary addition symbolic substitution

u!,\it. F(m) is in-effect a poly-logarithmic function and therefore very slow growing. Table

6.2 illustrates the values of F( m) for some value of m. As can be seen, even with a very
large m, F(m) has a very small value. In other words, only for impractically large value of
2127, we have F(m) = 5. Thus for practical purposes we may consider F(m) = 4. Hence,
we require only a few substitution steps for the completion of associative addition.

,., ." .
".
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Obviously the algorithm presented here is computationally more efficient than any non-

associative scheme for associative addition. A non-associative scheme would require

pairwise addition for all the given set of numbers and thus will require many more steps

than the presented algorithm. The algorithm is a very suitable choice for application in

arithmetic computation, like multiplication, where associative addition of a set of numbers

is an integral process.



Chapter 7
CONCLUSION AND RECOMMENDATIONS

7.1 Concluding Words

The thesis has performed a detailed study on the applicability of symbolic

substitution technique for arithmetic computation involving binary numbers. The earlier

algorithms focussed on employing non-binary systems like MSD or CMSD in symbolic

substitution process. Binary system has been regarded as unsuitable for this parallel

computing due to the inherent carry. This study, however, shows how a symbolic
substitution based unit could be derived that works with binary numbers at its interface
and use a non-binary system to perform the computation. The focus has been using the

symbolic substitution process for all the intermediate phases of conversion and
computation involved. The study has also sought to improve the existing algorithms

and tables in the context. As has already been shown, if such an unit is designed based

on existing algorithms, the unit would require 2n + 2 symbolic substitution steps, while

the proposed unit will require (depending upon the algorithm used) only n+2 or [32nJ +2
or n+ 3 or [3;J + 3 substitution steps (as illustrated in section 4.4). The required number
of steps are, therefore, much less than a system based on earlier schemes.

The thesis also makes a study on how these tables and algorithms could be further
improved by introducing some efficiency in the substitution process. As has been

illustrated, for the different algorithms, in chapter 5, most of the computation can be
completed within much less the specified maximum steps if the substitution is stopped

as soon as the second input variable involved reaches the value of O. So a symbolic

substitution unit based on this concept will give high computational efficiency, in terms

of substitution steps.

60
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A pioneer role of the thesis is the introduction of symbolic substitution based associative

addition technique that may lead way to the application of this process for other arithmetic
computation like multiplication. Rather than employing a non-associative addition
algorithm repeatedly to perform associative addition of binary numbers, the application

of the presented algorithm will require much less substitution steps.

To summarize, the main contributions presented in this research are as follows:

• A symbolic substitution table and corresponding algorithm to convert any MSD and
binary number to CMSD number in (l!iJ + 1) steps. The earlier algorithm in this
context required n + 1 steps. Thus the presented algorithm has made roughly a 50%

improvement in terms of substitution steps .

• A symbolic substitution table and corresponding algorithm to convert any binary

number to CMSD number in one step. This algorithm can handle binary numbers

in both signed 2's complement form and unsigned form. The one-step substitution

implies that the algorithm reaches the fastest rate, in terms of substitution steps,

as possible .

• A symbolic substitution table and corresponding algorithm to perform addition of

CMSD number in one step. There was a corresponding one step algorithm for
CMSD addition. However, the proposed algorithm requires less comparisons of bits
and hence less number of pattern recognizers than the earlier one.

o A symbolic substitution table and corresponding algorithm to convert any MSD

number to 2's complement binary number in n steps .

• A symbolic substitution table and corresponding algorithm for performing addition

of CMSD number in (l!iJ + 1) steps but preserving CMSD property. The earlier one
step algorithm, though using one step, produced the result in CMSD notation. Thus

to use the algorithm for subsequent associative addition, we require the resultant
; to be converted to CMSD notation, using one of the previous algorithm, before

applying the addition algorithm again. The presented algorithm, however, derives

the result in CMSD notation and therefore requires less substitution steps than the
previous algorithms applied repeatedly .

• A symbolic substitution table and corresponding algorithm to convert any CMSD

number to 2's complement binary number in (l!iJ + 1) steps. This is a ;ew
development in the context .

• An analysis of how the substation process can be improved by stopping the
substitution process as soon as the second input variable becomes all zero.

."



CHAPTER 7. CONCLUSION AND RECOMMENDATIONS 62

• A symbolic substitution based approach for the associative addition of binary

numbers. The approach is extremely suitable for application in the context of

multiplication, where associative addition is an integral process.

7.2 Recommendations for Future Work

The study has concentrated on the improvement of existing symbolic substitution steps
and development of symbolic substitution based approach requiring fewer substitution
steps. There are, however, further scope for improvements, as listed below .

• This thesis has regarded two bits of the operands as a single unit for the symbolic

substitution tables and algorithms presented. This has led to the improvement of

the earlier algorithms in terms of reduction of substitution steps. Further reduction

might be possible if more bits are considered as unit in the symbolic substitution

process. However, considering more bits in the symbolic substitution table will

increase table size and will therefore require more storage. Hence an area of future

research might be, at the cost of some extra storage, use more bits in the symbolic

substitution process so as to reduce the required number of steps. Efficient
algorithms could be designed that will keep the table-size feasible and yet use the

flexibility of using more than two bits as unit for the substitution .

• The tables and algorithms presented in the study has focussed on the use of MSD

or CMSD number system as the non-intermediate number representation. There
are, however, other possibilities like the signed-digit number system with higher

radix or non-weighted number systems like Residue Number System, as discussed

in chapter 2. Also the development of a binary like number system as a replacement

of the non-binary intermediate representation, may lead the way to use this symbolic

substitution process in the context of electronic computing .

• The study has concentrated on the use of symbolic substitution for addition.
Research works may be undertaken to employ this process for multiplication and

other arithmetic computation .

• The study has concentrated mainly on the development of symbolic substitution

tables and algorithms. Existing optical hardware systems have been assumed as the
backbone for the processing involved. However, a research on the design of efficient
hardware for the symbolic substitution processes may lead to further computational

efficiency. Also, efforts may be made on employing the concept of this optical
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processing method in digital electronics domain. Research works may be undertaken
to develop VLSI based systems that will allow the use of this parallel fast

computation procedure in the conventional computing architecture.

o Symbolic substitution based approach has been developed for associative addition of

binary numbers. Similar arrangements could be developed for associative addition

of numbers represented in other number systems as well.
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