
.Evolving Artificial Neural Networks Using

Permutation Problem Free Modified

Cellular Encoding

by

Mohammad Masud Hasan

Submitted for the partial fulfillment of the requirements for the degree of

M.Sc. Engineering in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology

Dhaka-I 000, Bangladesh

\

1111111111111111111111111111111111
#99613#

August 16, 2004
I
I

L _

.-
~. ', "'-,'-

The thesis, EVOLVING ARTIFICIAL NEURAL NETWORKS USING PERMUTATION

PROBLEM FREE MODIFIED CELLULAR ENCODING, submitted by MOHAMMAD

MASUD HASAN, ROLL No. 040205035P, Session: April, 2002, Registration No. 95394 to the

Department of Computer Science and Engineering of Bangladesh University of Engineering and

Technology has been accepted as satisfactory for partial fulfillment of the requirements for the

degree of M.Sc. Engg. in Computer Science and Engineering and approved as to its style and

contents. Examination held on August 16, 2004.

BOARD OF EXAMINERS

1

2

3

4

Dr. Md. Moniru1 Islam
Assistant Professor
Department of CSE
BUET, Dhaka-IOOO

~lb!1ry
Dr. Md:ShSUIAIaI11
Professor and Head
Department of CSE
BUET, Dhaka-IOOO

~~
Dr. M. Kaykobad
Professor
Department of CSE
BUET, Dhaka-IOOO

rloh~
Dr. 'd: Quamrul Ahsan

~. Professor
Department of EEE
BUET, Dhaka-IOOO

Chairman
(Supervisor)

Member
(Ex-officio)

Member

Member
(External)

(

11

Declaration

I, hereby, declare that the work presented in this thesis is done by me under the supervision of Dr.

Md. Monirul Islam, Assistant Professor, Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka-IOOO.I also declare that neither

this thesis nor any part thereof has been submitted elsewhere for the award of any degree or
diploma.

Countersigned,

Dr. Md. Monirul Islam
(Supervisor)

~UD~
Mohammad Masud Hasan

111

Acknowledgements

All praises are for the Almighty ALLAH who IS the most beneficent and the most

merciful.

First of all, I would like to thank my supervisor Dr. Md. Monirul Islam, Assistant

Professor, Department of CSE, BUET for teaching me how to carry out a research work.

I express my heart-felt and most sincere gratitude to him for his constant supervision,

valuable advice and continual encouragement, without which this thesis would have not

been possible.

Special thanks should be given to Prof. Dr. Md. Shamsul Alam, Head of the CSE

Department, for his continuous suggestions regarding the thesis.

I would like to thank the other members of my examination board Prof. Dr. M. Kaykobad

and Prof. Dr. Md. Quamrul Ahsan for their valuable suggestions and of course for their

unconditional encouragements.

I must have to acknowledge with sincere thanks the constant support and patience of my

family members- my parents specially. The arduous task of having completed the thesis

could not have been accomplished without their assistance.

Finally I would like to acknowledge the all-out cooperation and services rendered by the

members of the Department ofCSE, BUET.

iv

Abstract

This thesis works with a new evolutionary system for feedforward artificial neural

networks (ANNs). An indirect encoding scheme, to be particular, modified cellular

encoding (MCE) is proposed to represent ANNs. The original cellular encoding is

modified in such a way that it does not suffer from the well-known permutation problem

or competing conventions problem of genetic algorithms for evolving ANNs. The

functionality of some program symbols in cellular encoding is changed; new rules are

added. As a consequence, it is possible to apply crossover operator in the genetic search.

Radical change of architecture i.e. behaviour from parents to their children is stopped by

keeping the application of crossover on genotypes within certain levels. It is shown in

this work that addition / deletion of nodes / conncctions can evidently be done by

crossover alone. Other attempts are also taken to minimize behavioural disruption

between parents and their offspring. In the evolution system, the number of user specified
parameters is also decreased.

The evolutionary system is also implemented and its performance is tested on some real

world problems. The upshot of the genetic search is studied and assessed against the

contemporary researches, although direct comparison with other evolutionary approaches

to designing ANN is very difficult. It is shown in this thesis that the genetic search can

find a reasonable ANN from the search space in considerably short period.

l .-
v

Contents

Board of Examiners - __._ _ i
Declaration ii
Acknowledgements iii
Abstract iv

Chapter 1
Introduction
1.1 Introduction '" I
1.2 Literature Review 3
1.3 Objective of this Thesis 8
1.4 Thesis Organization 9

Chapter 2
Basic Concepts

2.1.1 The Analogy to the Human Brain 10
2.1.1.1 The Biological Neuron II
2.1.1.2 The Artificial Neuron 12

2.1.2 Design ; 12
2.1.2.1 Layers 13
2.1.2.2 Connections 14
2.1.2.3 Learning '" 16

2.1.3 Types of ANN 16
2.1.4 Areas of Application 17

2.2 Encoding Scheme 20
2.2.1 Direct Encoding 21
2.2.1.1 Connection-based Encoding 21
2.2.1.2 Node-based Encoding 23.
2.2.1.3 Layer-based Encoding 24
2.2.1.4 Pathway-based Encoding 24

2.2.2 Indirect Encoding 24
2.3 Evolutionary Operators 25
2.3.1 Population 26
2.3.2 Mutation 26
2.3.3 Crossover 26

2.4 Permutation Problem 27
2.5 The Learning Process 28
2.5.1 Memorization Paradigms 29
2.5.2 Learning Rules 29
2.5.2.1 Hebb' s Rule 30
2.5 .2.2 Hopfield Law 30
2.5.2.3 The Delta Rule 30

VI

2.5.2.4 Kohonen's Learning Law 31
2.5.3 Learning Approaches , 31
2.5.3.1 Unsupervised Learning 32
2.5.3.2 Supervised Learning 32
2.5.3.3 Off-line or On-line 34

2.6 Selection Mechanisms 34
2.6.1 Roulette Wheel Selection 34
2.6.2 Rank Selection : 35
2.6.3 Steady-State Selection 36
2.6.4 Elitism 37

Chapter 3
Modified Cellular Encoding
3.1 Cellular Encoding 38
3.1.1 Basics of CE 38
3.1.2 Developing ANN from CE 40
3.1.3 Properties of CE 44

3.2 Program Symbol Set Used 46
3.3 Modification to Symbol Functionalities 51
3.4 Other MCE Properties 57

Chapter 4
The Genetic Search Scheme
4.1 Evolutionary Approaches 58
4.1.1 Genetic Algorithm 59
4.1.2 Evolutionary Programming 60
4.1.3 Evolution Strategy 61
4.1.4 Genetic Programming 61

4.2 Crossover on MCE 61
4.3 CE to DE Conversion 64
4.4 The Evolutionary System 65

Chapter 5
Experimental Studies
5.1 Data Sets Applied 68
5.1.1 Heart Disease 70
5.1.2 Diabetes 70
5.1.3 Thyroid 71
5.1.4 Breast Cancer 71

5.2 Experimental Setup 72
5.3 Results 73
5.4 Comparison with other works 82

Chapter 6
Conclusion & Future Research
6.1 Concluding Remarks 87

Vll

6.2 FutureDirections 88
Bibliography 90
Appendix A : ; 98
Neural Network Glossary 98

Vlll

List of Figures

Figure 1.1: The evolution of the most popular artificial neural networks 8
Figure 2.1: A simplified biological neuron 11
Figure 2.2: An artificial neuron. 12
Figure 2.3: Layers in ANN 13
Figure 2.4: Different ANN structures 19
Figure 2.5: Direct encoding example 21
Figure 2.6: An ANN and its genotypic representation 27
Figure 2.7: The behaviour of a neuron 28
Figure 2.8: An illustration of roulette wheel selection 35
Figure 2.9: An example of rank selection, situation before ranking 36 .
Figure 2.10: An example of rank selection, situation after ranking 36
Figure 3.1: Simple Cellular Instance (CI) 40
Figure 3.2: Interpretation of Simple PST.. 43
Figure 3.3: An example describing Properties 1 and 3 54
Figure 3.4: An example describing Properties 2 and 3 55
Figure 3.5: Permutations of nodes in an ANN 58
Figure 4.1: Problem solution using EA 59
Figure 4.2: Major steps of the evolutionary system 66
Figure 5.1: Generation Vs Error for diabetes 75
Figure 5.2: Generation Vs Connections for diabetes 75
Figure 5.3: Epoch Vs Error for diabetes 75
Figure 5.4: Time Vs Error for diabetes 76
Figure 5.5: Generation Vs Error for Thyroid 76
Figure 5.6: Generation Vs Connections for Thyroid 77
Figure 5.7: Epoch Vs Error for Thyroid 77
Figure 5.8: Time Vs Error for Thyroid 77
Figure 5.9: Generation Vs Error for heart disease 78
Figure 5.10: Generation Vs Connections for heart disease 78
Figure 5.11: Epoch Vs Error for heart disease 79
Figure 5.12: Time Vs Error for heart disease 79
Figure 5.13: Generation Vs Error for breast cancer 80
Figure 5.14: Generation Vs Connections for breast cancer 80
Figure 5.15: Epoch Vs Error for breast cancer. 81
Figure 5.16: Time Vs Error for breast cancer. 81
Figure 5.17: PST ofthe best ANN found in breast cancer problem 82
Figure 5.18: DE of the best ANN found in breast cancer problem 82
Figure A.l: A multilayer perceptron 101

IX

List of Tables

Table 2.1: Application areas of different artificial neural networks 21
Table 2.2: Application areas of different ANNs grouped by network structure 22
Table 3.1: Realization of END symbol. .47
Table 3.2: Realization of PAR symbol. 48
Table 3.3: Realization of SEQ symbol. , 49
Table 3.4: Realization of CUT / CLIP symbol. 50
Table 3.5: Realization ofMRG symbol. 51
Table 4.1: Effects of crossover on CEo 62
Table 5.1: Experimental outcomes 74
Table 5.2: Comparison with EPNet for heart disease problem 83
Table 5.3: Comparison with EPNet for diabetes problem 83
Table 5.4: Comparison with EPNet for Thyroid problem 84
Table 5.5: Comparison with EPNet for breast cancer problem 84
Table 5.6: Comparison with other works for heart disease problem 85
Table 5.7: Comparison with other works for breast cancer problem 85
Table 5.8: Comparison with other works for diabetes problem 86
Table 5.9: Comparison with other works for thyroid problem 86

List of Notations

ANN Artificial Neural Network

ART Adaptive Resonance Theory

BP Back Propagation

CE Cellular Encoding

DE Direct Encoding

EP . Evolutionary Programming

ES Evolutionary Strategy

GA Genetic Algorithm

GP Genetic Programming

LMS Least Mean Square

LVQ Linear Vector Quantization

MCE Modified Cellular Encoding

MLP Multi-layer Perceptron

n Number of nodes in the output layer

Omax Maximum values of output coefficients

Omin Minimum values of output coefficients

PST Program Symbol Tree

RSG Random Selection Group

SOM Self Organizing Map

T Total number of input pattern

Y(i,t) Actual output for the i-th output neuron ofthe t-th input pattern

Z(i,t) Desired output for the i-th output neuron of the t-th input pattern

x

\

Chapter 1

Introduction

1.1 Introduction

For decades after Darwin laid down its basic principles, evolution was the domain of

biologists and paleontologists. When the synthetic theory brought the successful union of

Darwinian principles with Mendelian genetics at the turn of the nineteenth century, most

biologists were confident that they had a solid conceptual basis for biology. The

mathematical theory of evolution came to be dominated by population genetics, which

was commonly thought to provide a sufficiently deep theoretical framework for

analyzing the constituent mechanisms driving evolutionary processes. Over the same

period that witnessed the flourishing of evolutionary science, starting in the mid- to late-

nineteenth century, new concepts and methods were developed in mathematics and the

natural sciences that now promise to remove several of the roadblocks to an integrative

theory of evolutionary systems.

Evolutionary computation has provided an alternative to the more classical search and

optimization methods in recent years. Classical methods tend to get stuck in local optima.

One of the advantages of evolutionary computation is that the algorithms do not start

from a local search point but explore different areas of the search space in parallel. Other

advantages are that they have no presumptions with regard to the search space, that they

are widely applicable, that they can be interpreted, that they provide several alternative

solutions to the problem at hand and that they are easily combined with other methods.

The idea of using evolutionary computation as a problem solving technique exists since

the 1950s. Since then, four major approaches have evolved [25]: Evolutionary

Programming (EP), Evolution Strategies (ES), Genetic Algorithms (GA) and Genetic

Chapter 1: Introduction 2

Programming (GP). All these algorithms have been inspired by the notions of evolution

and survival in nature.

Artificial neural networks (ANNs), also referred to as neuromorphic systems, artificial

intelligence and parallel distributed processing, are an attempt at mimicking the patterns

of the human mind. Many researches have concluded that understanding the human mind

is probably the most difficult challenge left in science. Consequently, ANNs have seen an

explosion of interest over the last few years, and are being successfully applied across an

extraordinary range of problem domains, in areas as diverse as finance, medicine,

engineering, geology and physics. Indeed, anywhere that there are problems of

prediction, classification or control, ANNs are being introduced. This sweeping success

can be attributed to a few key factors like power, easy of use and applicability.

The power of ANNs is that they are very sophisticated modeling techniques capable of

modeling extremely complex functions. In particular, ANNs are nonlinear. For many

years linear modeling has been the commonly used technique in most modeling domains

since linear models have well-known optimization strategies. Where the linear

approximation was not valid (which was frequently the case) the models suffered

accordingly. ANNs keep in check the curse of dimensionality problem that bedevils

attempts to model nonlinear functions with large numbers of variables.

Another key factor is the ease of use. ANNs learn by example. An ANN user gathers

representative data, and then invokes training algorithms to automatically learn the

structure of the data. Although the user does need to have some heuristic knowledge of

how to select and prepare data, how to select an appropriate ANN, and how to interpret

the results, the level of user knowledge needed to successfully apply ANNs is much

lower than would be the case using (for example) some more traditional nonlinear

statistical methods.

Also, ANNs are applicable in virtually every situation in which a relationship between

the predictor variables (independents, inputs) and predicted variables (dependents,

outputs) exists, even when that relationship is very complex and not easy to articulate in

the usual terms of "correlations" or "differences between groups." The computing world

has a lot to 'gain from ANNs. ANNs also contribute to other areas of research such as

neurology and psychology.

Chapter I: Introduction

1.2 Literature Review.

3

The field of ANNs has a history of some five decades but has found solid application

only in the past fifteen years, and the field is still developing rapidly. In the early 1940's

scientists came up with the hypothesis that neurons, fundamental, active cells in all

animal nervous systems might be regarded as devices for manipulating binary numbers.

Thus spawning the use of computers as the traditional replicants of ANNs.

To be understood is that advancement has been slow. Early on it took a lot of computer

power and consequently a lot of money to generate a few hundred neurons. In relation to

that consider that an ant's nervous system is composed of over 20,000 neurons and

furthermore a human being's nervous system is said to consist of over 100 billion

neurons! To say the least replication of the human's neural networks seemed daunting.

However, today ANNs are being applied to an increasing number of real- world problems

of considerable complexity. The history of ANNs that was described above can be

divided into several periods [46]:

a) First Attempts: There were some initial simulations using formal logic. During the

decade of the first electronic computer, McCulloch and Pitts (1943) developed models of

neural networks based on their understanding of neurology. These models made several

assumptions about how neurons worked. Their networks were based on simple neurons

which were considered to be binary devices with fixed thresholds. The results of their

model were simple logic functions such as "a or b" and "a and b". Another attempt was

by using computer simulations. There were two groups (Farley and Clark, 1954;

Rochester, Holland, Haibit and Duda, 1956) [42]. The first group (ffiM researchers)

maintained close contact with neuroscientists at McGill University. So whenever their

models did not work, they consulted the neuroscientists. This interaction established a

multidisciplinary trend which continues to the present day.

b) Promising and Emerging Technology: Not only was neuroscience influential in the

development of neural networks, but psychologists and engineers also contributed to the

progress of neural network simulations. Rosenblatt (1958) stirred considerable interest

~' .•...••- -,

Chapter I: Introduction 4

and activity in the field when he designed and developed the Perceptron. The Perceptron

had three layers with the middle layer known as the association layer. This system could

learn to connect or associate a given input to a random output unit. Rosenblatt also took

part in constructing the first successful neurocomputer, the Mark I Perceptron.

Another system was the ADALINE (ADAptive LInear Element) which was developed in

1960 by Widrow and Hoff (of Stanford University) [46]. The ADALINE was an

analogue electronic device made from simple components. The method used for learning

was different to that of the Perceptron, it employed the Least-Mean-Squares (LMS)

learning rule.

c) Period of Frustration and Disrepute: In 1969 Minsky and Papert wrote a book in

which they generalized the limitations of single layer Perceptrons to multilayered

systems. In the book they said: "...our intuitive judgment that the extension (to multilayer

systems) is sterile". The significant result of their book was to eliminate funding for

research with neural network simulations. The conclusions supported the dis-

enhancement ofresearchers in the field. As a result, considerable prejudice against this

field was activated.

d) Innovation: Although public interest and available funding were minimal, several

researchers continued working to develop neuromorphical based computational methods

for problems such as pattern recognition. During this period several paradigms were

generated which modern work continues to enhance. In 1988, Grossberg's influence

founded a school of thought which explores resonating algorithms [42]. They developed

the ART (Adaptive Resonance Theory) networks based on biologically plausible models.

Anderson and Kohonen developed associative techniques independent of each other.

Klopf in 1972 developed a basis for learning in artificial neurons based on a biological

principle for neuronal learning called heterostasis.

In 1974, Werbos developed and used the back-propagation learning method, however

several years passed before this approach was popularized. Back-propagation nets are

probably the most well known and widely applied of the neural networks today. In

essence, the back-propagation net is a Perceptron with multiple layers, a different

Chapter 1: Introduction 5

threshold function in the artificial neuron, and a more robust and capable learning rule.

Amari (A. Shun-Ichi 1967) was involved with theoretical developments: he published a

paper which established a mathematical theory for a learning basis (error-correction

method) dealing with adaptive pattern classification. While Fukushima developed a step

wise trained multilayered neural network for interpretation of handwritten characters. The

original network was published in 1975 and was called the Cognitron.

1) Re-Emergence: Progress during the late 1970s and early 1980s was important to the

re-emergence on interest in the neural network field. Several factors influenced this

movement. For example, comprehensive books and conferences provided a forum for

people in diverse fields with specialized technical languages, and the response to

conferences and publications was quite positive. The news media picked up on the

increased activity and tutorials helped disseminate the technology. Academic programs

appeared and courses were introduced at most major Universities (in US and Europe).

Attention is now focused on funding levels throughout Europe, Japan and the US and as

this funding becomes available, several new commercial with applications in industry and

financial institutions are emerging.

A totally unique kind of network model is the Self-Organizing Map (SOM) introduced by

Kohonen in 1982. SOM is a certain kind of topological map which organizes itself based

on the input patterns that it is trained with. The SOM originated from the LYQ (Learning

Yector Quantization) network the underlying idea of which was also Kohonen's in 1972.

Hopfield brought out his idea of a neural network in 1982. Unlike the neurons in

Multilayered Perceptron (MLP), the Hopfield network consists of only one layer whose

neurons are fully connected with each other. Since then, new versions of the Hopfield

network have been developed. The Boltzmann machine has been influenced by both the

Hopfield network and the MLP. Adaptive Resonance Theory (ART) was first introduced

by Carpenter and Grossberg in 1983. The development of ART has continued and

resulted in the more advanced ART II and ART III network models.

The application area of the MLP networks remained rather limited until the breakthrough

in 1986 when a general backpropagation algorithm for a multi-layered perceptron was

introduced by Rummelhart and Mclelland.

Chapter 1: Introduction 6

Radial Basis Function (RBF) networks were first introduced by Broomhead & Lowe in

1988. Although the basic idea of RBF was developed 30 years ago under the name

method of potential function, the work by Broomhead & Lowe opened a new frontier in

the neural network community [42]. The development of ANNs has proceeded as

described in Figure I.

1 1 --------1

fRBFl
~

ART!
1983

ART II
1987

ART III
1989

Discre" Ccmlinuous
Hopfield Hopfield
1982 1984

Boltzmann
Machine
1984

Perceptron
1958

Backpropagoling
Perceptron

1974

Modified
B ackpropagoli
Perceptron
1986-1990

1'------'1
1950 1960

1
1970

1
1980

I
1985

I
1990

Figure 1.1: The evolution of the most popular artificial neural networks.

g) Today: Significant progress has been made in the field of neural networks-enough to

attract a great deal of attention and fund for further research. Advancement beyond

current commercial applications appears to be possible, and research is advancing the

field on many fronts. Neural based chips are emerging and applications to complex

problems developing. Clearly, today is a period of transition for neural network

technology.

ChapterI: Introduction 7

Most applications of ANNs use feedforward networks and variants of the classical

backpropagation (BP) algorithm. All these training algorithms assume a fixed ANN

architecture. They only train weights in the fixed architecture that includes both

.connectivity and node transfer functions. Many attempts have also been made in

designing ANN architectures automatically, such as various constructive and pruning

algorithms [29], [38], [48], [49], [50].

Associative memories (AMs) can be implemented usmg networks with or without

feedback. In [63], a two layer feedforward ANN is utilized and proposed a new learning

algorithm that efficiently implements the association rule of AM. In order to find an

appropriate architecture for a large scale real world application automatically and

effieciently, a natural method is to divide the original problem into a set of subproblems.

In [51], a simple ANN task decomposition method based on output parallelism is

presented. Hsin et. al. [26] suggest divide and conquer learning (DCL) schemes for the

design of modular ANNs. When a training process in a multilayer perceptron falls into a

local minimum or stalls in a flat region, the proposed DCL scheme is applied to divide

the current training data region into two easier to be learned regions. In [37], a

constructive algorithm for training cooperative neural network ensembles (CNNEs) is

presented which have good generalization ability. Paul et. al. [40] show the use of

parallel self scaling quasi-Newton (QN) optimization techniques to improve the rate of

convergence of the training process for ANNs.

Angeline et. al. [43] indicate two problems of constructive and pruning hill climbing

methods: they may be trapped at local optima and they do not investigate complete class

of network architectures. That is why researchers [35], [62] argued on behalf of

evolutionary algorithms for finding a near optimal system in the ANN architecture search

space.

The central task in evolving ANNs is finding a genetic representation, also called

chromosome, genotype or encoding, for an ANN [35]. It dictates how the search

landscape is structured, and how scalable the method is [41]. Importance has to be given

on the optimal representable structures, excluding mcaningless structures, yielding valid

offspring by the genetic operators etc. Since the first attempts to combine genetic

algorithm and neural network started in the late 1980s, other researchers have joined the

Chapter 1: Introduction 8

research and created a flood of papers. A variety of different encoding methods does

outcome. Two main directions of ANN encoding are direct encoding and indirect

encoding. As characterized by Whitely in 1992, low level or direct encoding techniques

mostly specify directly parameters such as connectivity or weight values in the genome.

Researchers proposed different types of direct encoding based on connections, nodes,

layers, pathway etc.

On the other hand, indirect encoding techniques specify not the parameter themselves but

production rules that define how to generate these parameters are encoded. This is

biologically motivated by the fact that in case of the human brain, there is much more

neurons than nucleotides in the genome. So, there has to be a more efficient way of

description. Probably, the first indirect encoding scheme was proposed during 1990 by

Kitano [23]. Boers and Kuiper [16] proposed another indirect encoding system which

was based on Lindemayer's [2] biological model. But may be the most sophisticated

encoding method is developed by Frederic Gruau [18] in 1994 in his PhD thesis, which is

called cellular encoding. Yet, cellular encoding is not a fully precise representation

method. As argued by Talib Hussain [55] in 1997, the scope of improvement defining

cellular encoding would be the components of a representation, possible properties of a

cell and limit of a cell has on its navigation of the program symbol tree (PST).

In this thesis work, an attempt is taken to find out an enhanced cellular encoding

technique so that it can be applied in ANN search space through evolutionary operators.

1.3 Objectives of this Thesis

This thesis work focuses on interactions between ANN's indirect encoding techniques

with the evolutionary algorithms. It tries to remove a well known problem of

evolutionary neural network encoding called permutation problem and develop a fast

evolutionary search scheme with this genome. In summary, the targets are:

~ Representing ANNs using a new indirect encoding scheme i.e. modified CE

scheme that does not suffer from permutation problem.

~ Introducing a new evolutionary system for feed forward ANNs.
('.

Chapter I: Introduction 9

,(Applying crossover operator in the genetic search with the intention to reduce

the number of user specified parameters.

,(Examine the effects of crossover on cellular encoded genotype.

,(Finding out attempts to reduce the noise in fitness evaluation and minimize

behavioural disruption between parents and their offspring.

,(Presenting an algorithm to convert genotype from CE to DE.

,(Applications of the new approach with some real world problems and analysis

the result.

1.4 Thesis Organization

The organization of the rest of this thesis is as follows: Chapter 2 represents preliminaries

of ANN and its evolution. The biological motivation of artificial neural network, its

structure, types, encoding and applications, the evolutionary operators, permutation

problem, ways of training and selecting good network etc are covered here.

Chapter 3 starts with the basics of the original cellular encoding. It presents how to

develop an ANN from the cellular encoding. Then some modifications are suggested and

its new properties are described.

Chapter 4 introduces different types of evolutionary methodology. Along with the new

approach, the effects of the genetic operator crossover upon the MCE encoded ANNs are

discussed. The algorithm to realize the PST is also presented.

The experimental setup, dataset used and the experimental outcome are given in Chapter

5. An analytical review of the result and the comparison with other works are also given.

Chapter 6 concludes with a summary of the thesis and a few additional remarks about

future research directions.

. ('-

'"' .

Chapter 2

Basic Concepts

In this chapter preliminaries of neural network and its evolution are presented. At first, in

Section 2.1, the biological aspects of artificial neural network, its structure, types and

applications are given. Section 2.2 introduces how neural network can be represented.

Then, the evolutionary operators are discussed along with the permutation problem which

is concerned in this thesis. Ways of training and selecting good network are presented

too. This is a non-technical description; thereby it does not go into depth with

mathematical formulas, but tries to give a more general understanding. Definitions, which

are not included in this chapter, will be introduced later as they are needed.

2.1 Artificial Neural Network

Artificial Neural Network (ANN) is a system loosely modeled on the human brain. The

field goes by many names, such as connectionism, parallel distributed processing, neuro- .

computing, natural intelligent systems, machine learning algorithms, and ANNs. It is an

attempt to simulate within specialized hardware or sophisticated software, the multiple

layers of simple processing elements called neurons. Each neuron is linked to certain of

its neighbors with varying coefficients of connectivity that represent the strengths of

these connections. Learning is accomplished by adjusting these strengths to cause the

overall network to output appropriate results.

2.1.1 The Analogy to the Human Brain

The most basic components of ANNs are modeled after the structure of the human brain.

Some ANN structures are not closely to the brain and some does not have a biological

Chapter 2: Basic Concepts II

counterpart in the brain. However, ANNs have a strong similarity to the biological brain

and therefore a great deal of the terminology is borrowed from neuroscience.

2.1.1.1 The Biological Neuron

The most basic element of the human brain is a specific type of cell, which provides us

with the abilities to remember, think, and apply previous experiences to our every action.

These cells are known as neurons, each of these neurons can connect with up to 200000

other neurons. The power of the brain comes from the numbers of these basic

components and the multiple connections between them.

All natural neurons have four basic components, which are dendrites, soma, axon, and

synapses. Basically, a biological neuron receives inputs from other sources, combines

them in some way, performs a generally nonlinear operation on the result, and then

output the final result. Figure 2.1 shows a simplified biological neuron and the

relationship of its four components.

4 P8J'ts:ofa
~l1'lcal Ne""Cell

Dendntes Accept mputs

Soma: Process the inputs

Axon: Turn tht"processed inputs
into outputs

Synapses: The electrochemical
contact between neurons

Figure 2.1: A simplified biological neuron.

Chapter 2: Basic Concepts

2.1.1.2 The Artificial Neuron

12

The basic unit of ANNs, the artificial neurons, simulates the four basic functions of

natural neurons. Artificial neurons are much simpler than the biological neuron; the

Figure 2.2 below shows the basics of an artificial neuron.

Inputs

Output Path

Processing
Element

Figure 2.2: An artificial neuron.

Note that various inputs to the network are represented by the mathematical symbol, Xn.

Each of these inputs are multiplied by a connection weight, these weights are represented

by Wn• In the simplest case, these products are simply summed, fed through a transfer

function to generate a result, and then output. Even though all ANNs are constructed

from this basic building block the fundamentals may vary in these building blocks and

there are differences.

2.1.2 Design

The developer must go through a period of trial and error in the design decisions before

corning up with a satisfactory design. The design issues in ANNs are complex and are the

major concerns of system developers.

Designing an artificial neural network consists of:

• Arranging neurons in various layers.

Chapter 2: Basic Concepts 13

• Deciding the type of connections among neurons for different layers, as well as

among the neurons within a layer.

• Deciding the way a neuron receives input and produces output.

• Determining the strength of connection within the network by allowing the

network learns the appropriate values of connection weights by using a training

data set.

• The process of designing a ANN is an iterative process.

2.1.2.1 Layers

Biologically, ANNs are constructed in a three dimensional way from microscopic

components. These neurons seem capable of nearly unrestricted interconnections. This is

not true in any man-made network. ANNs are the simple clustering of the primitive

artificial neurons. This clustering occurs by creating layers, which are then connected to

one another. How these layers connect may also vary. Basically, all ANNs have a similar

structure of topology. Some of the neurons interface the real world to receive its inputs

and other neurons provide the real world with the network's outputs. All the rest of the

neurons are hidden form view.

INPUT
LAYER

HIDDEN
LAYER
(there may be several
hjdden layers)

OUTPUT
LAYER

Figure 2.3: Layers in ANN.

Chapter 2: Basic Concepts 14

\

As the Figure 2.3 shows, the neurons are grouped into layers. The input layer consists of

neurons that receive input form the external environment. The output layer consists of

neurons that communicate the output of the system to the user or external environment.

There are usually a number of hidden layers between these two layers; the Figure above

shows a simple structure with only one hidden layer.

When the input layer receives the input its neurons produce output, which becomes input

to the other layers of the system. The process continues until a certain condition is

satisfied or until the output layer is invoked and fires their output to the external

environment.

To determine the number of hidden neurons the network should have to perform its best,

one are often left out to the method trial and error. If you increase the hidden number of

neurons too much you will get an over fit, that is the net will have problem to generalize.

The training set of data will be memorized, making the network useless on new data sets.

2.1.2.2 Connections

Neurons are connected via a network of paths carrying the output of one neuron as input

to another neuron. These paths is normally unidirectional, there might however be a two-

way connection between two neurons, because there may be another path in reverse

direction. A neuron receives input from many neurons, but produces a single output,

which is communicated to other neurons.

The neuron in a layer may communicate with each other, or they may not have any

connections. The neurons of one layer are always connected to the neurons of at least
another layer.

There are different types of connections used between layers, these connections between

layers are called inter-layer connections.

Fnlly connected - Each neuron on the first layer is connected to every neuron on the
second layer.

Partially connected - A neuron of the first layer does not have to be connected to all

neurons on the second layer.

Chapter 2: Basic Concepts 15

Feed forward - The neurons on the first layer send their output to the neurons on the

second layer, but they do not receive any input back form the neurons on the second

layer.

Bi-directional - There is another set of connections carrying the output of the neurons of

the second layer into the neurons of the first layer.

Hierarchical - If an ANN has a hierarchical structure, the neurons of a lower layer may

only communicate with neurons on the next level of layer.

Resonance - The layers have bi-directional connections, and they can continue sending

messages across the connections a number of times until a certain condition is achieved.

Feed forward and bi-directional connections could be fully or partially connected. In
more complex structures the neurons communicate among themselves within a layer, this

is known as intra-layer connections. There are two types of intra-layer connections.

Recurrent - The neurons within a layer are fully- or partially connected to one another.

After these neurons receive input form another layer, they communicate their outputs

with one another a number of times before they are allowed to send their outputs to

another layer. Generally some conditions among the neurons of the layer should be

achieved before they communicate their outputs to another layer.

On-center/off surround - A neuron within a layer has excitatory connections to itself

and its immediate neighbors, and has inhibitory connections to other neurons. One can

imagine this type of connection as a competitive gang of neurons. Each gang excites

itself and its gang members and inhibits all members of other gangs. After a few rounds

of signal interchange, the neurons with an active output value will win, and is allowed to

update its and its gang member's weights.

There are two types of connections between two neurons, excitatory or inhibitory. In the

excitatory connection, the output of one neuron increases the action potential of the

neuron to which it is connected. When the connection type between two neurons is

inhibitory, then the output of the neuron sending a message would reduce the activity or

action potential of the receiving neuron. One causes the summing mechanism of the next

neuron to add while the other causes it to subtract. One excites while the other inhibits.

Chapter 2: Basic Concepts

2.1.2.3 Learning

16

The brain basically learns from experience. ANNs are sometimes called machine learning

algorithms, because changing of its connection weights (training) causes the network to

learn the solution to a problem. The strength of connection between the neurons is stored

as a weight-value for the specific connection. The system learns new knowledge by

adjusting these connection weights. The learning ability of a ANN is determined by its

architecture and by the algorithmic method chosen for training. This topic is described in

more details in the section 2.5.

2.1.3 Types of ANN

The ANNs can be classified according to the structure that they exhibit. Figure 2.4

represents four commonly used ANN structures [42].

Figure 2.4 a) represents the structure of a multi-layered feedforward network, the most

commonly used. The neurons in this ANN model are grouped in layers which are

connected to the direction of the passing signal (from left to right in this case). There are

no lateral connections within each layer and also no feedbackward connections within the

network. The best-known ANN of this type is the perceptron network.

Figure 2.4 b) depicts a single-layered fully connected network model where each neuron

is laterally connected to all neighbouring neurons in the layer. In this ANN model, all

neurons are both input and output neurons. The best-known ANN of this type is the

Hopfield network.

Figure 2.4 c) demonstrates the connections in a two-layered feedforward / feedbackward

network. The layers in this ANN model are connected to both directions. As a pattern is

. presented to the network, it 'resonate's a certain number of times between the layers

before a response is received from the output layer. The best-known ANN of this type is

the Adaptive Resonance Theory (ART) network.

Figure 2.4 d) illustrates the idea of a topologically organized feature map. In this model,

each neuron in the network contains a so-called feature vector. As a pattern from the

training data is given to the network, the neuron whose feature vector is closest to the
"

\

Chapter 2: Basic Concepts 17

input vector is activated. The activated neuron is called the best matching unit (BMU)

and it is updated to reflect input vector causing the activation. In the process of updating

the BMU, the neighbouring neurons are updated towards the input vector or away from it

(according to the learning algorithm in use). The network type exhibiting this kind of

behaviour is the Self-Organizing Map ofKohonen.

~ ~

c) d)

Figure 2.4: Different ANN structures. a) Multi-layered feedforward network,

b) single-layered fully connected network, c) two-layered feedforward /

feedbackward network and d) topographically organized vector map.

2.1.4 Areas of Application

ANNs are performing successfully where other methods do not, recognizing and

matching complicated, vague, or incomplete patterns. ANNs have been applied in solving

a wide variety of problems.

The most common use for ANNs is to project what will most likely happen. There are

many areas where prediction can help in setting priorities. For example, the emergency

Chapter 2: Basic Concepts 18

room at a hospital can be a hectic place, to know who needs the most critical help can

enable a more successful operation. Basically, all organizations must establish priorities,

which govern the allocation of their resources. ANNs have been used as a mechanism of

knowledge acquisition for expert system in stock market forecasting with astonishingly

accurate results. ANNs have also been used for bankruptcy prediction for credit card

institutions.

Although one may apply ANN systems for interpretation, prediction, diagnosis, planning,

monitoring, debugging, repair, instruction, and control, the most successful applications

of ANNs are in categorization and pattern recognition. Such a system classifies the object

under investigation (e.g. an illness, a pattern, a picture, a chemical compound, a word, the

financial profile of a customer) as one of numerous possible categories that, in return,

. may trigger the recommendation of an action such as a treatment plan or a financial plan.

A company called Nestor, have used ANN for financial risk assessment for mortgage

insurance decisions, categorizing the risk of loans as good or bad. ANNs has also been

applied to convert text to speech, NETtaik is one of the systems developed for this

purpose. Image processing and pattern recognition form an important area of ANNs,

probably one of the most actively research areas of ANNs.

Another type of research for application of ANNs is character recognition and

handwriting recognition. This area has use in banking, credit card processing and other

financial services, where reading and correct! y recognizing handwriting on documents is

of crucial significance. The pattern recognition capability of ANNs has been used to read

handwriting in processing checks, the amount must normally be entered into the system

by a human. A system that could automate this task would expedite check processing and

reduce errors. One such system has been developed by HNC (Hecht-Nielsen Co.) for

BankTec.

One of the best known applications is the bomb detector installed in some U.S. airports.

This device called SNOOPE, determine the presence of certain compounds from the

chemical configurations of their components.

In a document from International Joint conference, one can find reports on using ANNs

in areas ranging from robotics, speech, signal processing, vision, character recognition to

musical composition, detection of heart malfunction and epilepsy, fish detection and

Chapter 2: Basic Concepts 19

classification, optimization, and scheduling. One may take under consideration that most

of the reported applications are still in research stage.

Basically, most applications of ANNs fall into the following five categories [4], [8], [17]:

• Prediction - Uses input values to predict some output. e.g. pick the best stocks in

the market, predict weather, identify people with cancer risk .

• Classification - Use input values to determine the classification. e.g. is the input the

letter A, is the blob of the video data a plane and what kind of plane is it.

• Data association - Like classification but it also recognizes data that contains

errors. e.g. not only identify the characters that were scanned but identify when the

scanner is not working properly .

• Data conceptualization - Analyze the inputs so that grouping relationships can be

inferred. e.g. extract from a database the names of those most likely to be a

particular product.

• Data filtering - Smooth an input signal, e.g. take the noise out of a telephone

signal.

Table 2.1 illustrates the use of well-known ANNs [42]. Table 2.2 lists the application

areas grouped according to the ANN structure.

Table 2.1: Application areas of different artificial neural networks.

. Network model

Applicati 00. Back-prq>agation Hopfield Bdt:l:mann KohonenSOM
machine

Classification • • • •
1mage processing • •
Decioion-m eking • • •
Optimization • • •

••

Chapter 2: Basic Concepts

Table 2.2: Application areas of different ANNs grouped by network structnre.

20

Stmcture Siflgl •. layer,laeral Topological vector Two-layer Multi-layer,
coonechems map feedfolWardl feedforward

feedbackward

Network type Hoplield LVQ ART Perc eptron-netwark
KohonenSOM BoI1zmannmachine

Autoa ••ociation Heteroassociation
Appli c8l.i em Autoassociation Pattern recognition Heteroassociatian Pattern r ecognition
area Optimization D6ta cotnp-ession Pattern recognition Data comp' •••• on

FilteringOptimization Ontimizati em

2.2 Encoding Scheme

The genotype representation of a neural architecture is critical to the working of an

evolutionary ANN design system. Considerations have to be taken so that the optimal

structures are representable in it, meaningless structures are excluded, genetic operators

yield valid offspring, and the representation do not grow in proportion to the network.

Ideally, the representation should be able to span all potentially useful structures and omit

unviable network genotypes. The encoding scheme also constrains the decoding process.

For example, a ANN requiring a recurrent structure should have a representation

expressive enough to describe recurrent networks. Also the decoding mechanism should

be able to read this representation and transform it into an appropriate recurrent network.

Since first attempts to combine GA and NN started in the late 1980s, other researchers

have joined the movement and created a flood of journal articles, technical reports etc. A

variety of different encoding strategies have been implemented. This section tries to

structure this information. It does not emphasize on the complete review of single

approaches, it rather attempted to gather more general information.

Two main directions of ANN encoding are direct cncoding and indirect encoding. Low

level or direct encoding techniques mostly specify thc connections only. Indirect

encodings are more like grammatical rules; these rules suggest a context free graph

grammar according to which the network can be generated. Direct encoded genotypes

increase very fast in length with a growing network. Thus, the maximum topological

..

Chapter 2: Basic Concepts 21

space has to be limited by the user. This may exclude the fittest structure in the lot, or

may result in networks with special connectivity patterns.

2.2.1 Direct Encoding

111 101110101 1 11-

/target unit
345

110
1 1 0

o 1

1

enable

1 yes

source 2 yes
. 3 yesumt -

4 yes
5 (always)

In this thesis, the term "direct encoding" [14] refers to encoding strategies that directly

encode parameters of the neural net such as weight values, connection information, etc.

into the genome. This is opposed to "indirect encoding", where rules or alike are encoded

which carry information how the network has to be constructed. An example is shown in

the Figure2.5.

chromosome:

Figure 2.S: Direct encoding example

2.2.1.1 Connection-based Encoding

Most of the encoding strategies that can be encountered in literature are connection-

based. This means, that they encode and optimize the connectivity of a network

architecture that is predefined.

a) Innervator

In [22], a GANN system called innervator is described that searches for effective

architectures for simple functions such as XOR. Based on a five-node feed-forward net-

work model, each connection is encoded by a bit. For fitness evaluation, each generated

Chapter 2: Basic Concepts 22

individual is trained over a certain number of epochs. Fast convergences toward

architectures that are able to solve the task are reported.

b) Genitor

Maybe the most influential approach is Whitley's GENITOR [15]. A lot of researchers

copied or reinvented his encoding strategy in order to, for instance, evaluate the quality of

the GANN idea (such as [24]).

c) Real-Valued Encoding

An encoding strategy similar to GENITOR was proposed in [II], [13]. It encodes the

weights as real number, thus the genome is a list of real numbers. A couple of adapted

mutation operators are used that apply to the changed format. Results in of the successful

application of this encoding strategy to classification tasks are reported.

d) Variable Length of Weight Encoding

An interesting improvement of Whitley's GENITOR is proposed by Maniezzo [56], [57].

He is adding the evolution of granularity to the original approach. He argues that the

binary encoded weights result in a bit-string that is too long for efficient evolution of the

genetic algorithm. Thus, he encodes the number of bits per weight in the parameter

string. This enables the algorithm to first efficiently find a proper topology with a small

number of bits. At a later stage, the fine tuning of the individuals occurs with an

increasing number of bits per weight.

e) Shuffle of Encoding Positions of Connections

In [31], an "outer" genetic algorithm is proposed. Its purpose is to optimize the placement

of the connection encodings on the genome. Experimental results show that the

performance of the standard weight-based encoding scheme can be improved by an

advanced placement.

Chapter 2: Basic Concepts

2.2.1.2 Node-based Encoding

23

The class of connection-based encoding strategies has the disadvantage that basic

(maximal) network architecture has to be designed. As mentioned before, however, the

choice of the number of neurons is difficult to make. It would be an advantage, if the user

of a GANN system would be released from this decision. A solution is promised by node-

based encoding strategies. As indicated by the name, the parameter string does no longer

consist of weight values, but entire node information.

a) Schiffmann

A quite simple example of node-based encoding was developed by Schiffmann, Joost and

Werner [58], [59], [60]. The parameter string is a list of nodes including connectivity

information. In an early version called "BP-Generator", this connectivity information

included weight values. The later version is reduced to mere existence information of a

connection.

b) GANNet

A node-based encoding for layered networks called GANNet is proposed by [9]. Its basic

structure is quite similar to the previous one. The parameter string is a list of neurons

with connectivity and placement information. However, the architecture of the neural net

is more restricted.

c) Koza

Koza applies his genetic programming paradigm to ANNs by choosing a node-based

encoding strategy [27]. The nodes are not encoded in a parameter string, but rather in a

parameter tree.

d) Related Strategies

Related to these kinds of node-based encoding are contributions such as "GA-delta" [46],

where only one layer of neurons is optimized via a genetic algorithm. A very simple

Chapter 2: Basic Concepts 24

encoding is proposed by Bishop and Bushnell, who merely encode the number of neurons

per layer for a color recipe prediction task [28].

2.2.1.3 Layer-based Encoding

The first layer -based encoding scheme was proposed in [53], [54]. The genome consists

of a certain number of areas, each of which encodes one layer of the network. The nodes

of each layer are arranged in three dimensions. Each area contains a layer rD, information

about the number and arrangement of nodes, and a varying number of projector fields

that contain connectivity information. A variation of this encoding scheme is presented in

[36], which is based on layers.

2.2.1.4 Pathway-based Encoding

A different approach is taken in [7]. Here, not connections, nodes or layers are encoded,

but pathways through the network. A path is defined as a list of neurons beginning with

an input neuron and ending with an output neuron. There is no further restriction to the

order of nodes in the paths. Hence, the strategy does not necessarily define feed-forward

networks.

2.2.2 Indirect Encoding

The encoding strategies mentioned in section 2.2.1 share a common property: They

directly encoded parameter such as connectivity or weight values in the genome.

Opposed to that, this section presents some indirect encoding strategies, which is also

called "recipe" encoding in [60]. Here, not the parameter themselves, but production

rules, that define how to generate these parameters are encoded. This is biologically

motivated by the fact, that in case of the human brain, there is much more neurons than

nucleotides in the genome - for instance [5]. So, there has to be a more efficient way of

description. As pointed out in [16], the organization of a biological organism shows a

great deal of modularity. Its division into cells and the division of the brain into neurons

Chapter 2: Basic Concepts 25

exemplifies this. The skin is composed of the same kind of skin cells all over the body.

Encoding strategies that use rules to copy units with the same function can be more

efficient in producing large networks.

a) Grammar Encoding Method

Probably the first indirect encoding scheme was proposed by Kitano [23], also called

grammar encoding method. The encoded rules rewrite an initial weight matrix, whose

structure is similar to the one used in Innervator. However, the entries are non-terminal

symbols of the grammar.

b) Cellular Encoding

Maybe the most sophisticated encoding method is developed by Frederic Gruau [18],

which is caned cellular encoding. The genome encodes an set of instructions that are

applied to an initial network, consisting of one hidden node. During the execution of the

instructions, a larger network evolves.

These instructions cover operations such as duplication of a node, deletion of a

connection, sequential division and a couple of more complex operations that include the

use of registers. Recursive calls allow the modular constructions of large networks with a

relative small instruction set. This scheme will be discussed more details in chapter 3.

c) Liudenmayer-Systems

Lindenmayer-Systems are based on a biological model proposed by Aristid Lindemayer

[2]. It tries to simulate the cellular development of organisms, where cells only exchange

information with their neighbors without central control. Boers and Kuiper [16] describe

how this model can be used to encode ANNs.

2.3 Evolutionary Operators

This section gives mainly the idea about some basic genetic operators such as crossover

and mutation.

Chapter 2: Basic Concepts

2.3.1 Population

26

Where most classical optimization methods maintain a single best solution found so far,

an evolutionary algorithm maintains a population of candidate solutions. Only one (or a

few, with equivalent objectives) of these is "best," but the other members of the

population are "sample points" in other regions of the search space, where a better

solution may later be found. The use of a population of solutions helps the evolutionary

algorithm avoid becoming "trapped" at a local optimum, when an even better optimum

may be found outside the vicinity of the current solution.

2.3.2 Mutation

Inspired by the role of mutation of an organism's DNA in natural evolution --an

evolutionary algorithm periodically makes random changes or mutations in one or more

members. of the current population, yielding a new candidate solution (which may be

better or worse than existing population members). There are many possible ways to

perform a "mutation," and the Evolutionary Solver actually employs three different

mutation strategies. The result of a mutation may be an infeasible solution, and the

Evolutionary Solver attempts to "repair" such a solution to make it feasible; this is

sometimes, but not always, successful.

2.3.3 Crossover

Inspired by the role of sexual reproduction in the evolution of living things - an

evolutionary algorithm attempts to combine elements of existing solutions in order to

create a new solution, with some of the features of each "parent." The elements (e.g.

decision variable values) of existing solutions are combined in a "crossover" operation,

inspired by the crossover of DNA strands that occurs in reproduction of biological

organisms. As with mutation, there are many possible ways to perform a crossover

operation -- some much better than others -- and the Evolutionary Solver actually

employs multiple variations oftwo different crossover strategies.

Chapter2:BasicConcepts

2.4 Permutation Problem

27

The evolution of ANN architectures in general suffers from the permutation problem

[44], [47] (also called competing conventions problem [14], [44] or structural-functional

mapping problem [15]). It is caused by the many to orte mapping from genotypes to

phenotypes. In general, it is happened when any permutation of the hidden nodes

produces behaviourally equivalent ANN but with different genotypic representation. This

problem not only makes the evolution inefficient, but also makes crossover operators

more difficult to produce quality descendants [41]. It is unclear what building blocks

actually are in this situation. For example, ANNs shown in Figure 2.6(a) and Figure

2.6(c) are equivalent, but they have different genotypic representations as shown by

Figure 2.6(b) and Figure 2.6(d) using a direct encoding scheme, assuming that each

weight is represented by four binary bits. Zero weight implies no connection. In general,

any permutation of the hidden nodes will produce behaviorally equivalent ANN but with

different genotypic representations. This is also true for indirect encoding schemes. In

order to avoid the detrimental effect of the permutation problem the EPNet [62]

algorithm does not use crossover. Hence, the permutation problem in the encodings of

ANNs needed to be resolved.

(a)

Node Node 1

(b)0010 0000 0100 1010 00110111 (d) 0100 1010 0010 0000 01110011
Figure 2.6: (a) An ANN and (b) its genotypic representation, 2.6(c) An ANN which is

equivalent to that given in Figure 2.6(a) and (d) its genotypic representation.

Chapter 2: Basic Concepts

2.5 The Learning Process

28

The brain basically learns from experience. ANNs are sometimes called machine learning

algorithms, because changing of its connection weights (training) causes the network to

learn the solution to a problem. The strength of connection between the neurons is stored

as a weight-value for the specific connection. The system learns new knowledge by

adjusting these connection weights.

Figure 2.7: The behaviour of a neuron.

The behaviour of an ANN (Artificial Neural Network) depends on both the weights and

the input-output function (transfer function), as shown in the Figure 2.7, that is specified

for the neurons. This function typically falls into one of three categories:

o linear (or ramp)

o threshold

o sigmoid

For linear units, the output activity is proportional to the total weighted output. For

threshold unit, the output is set at one of two levels, depending on whether the total input

is greater than or less than some threshold value. For sigmoid units, the output varies

continuously but not linearly as the input changes. Sigmoid units bear a greater

resemblance to real neurons than do linear or threshold units, but all three must be

considered rough approximations.

Chapter 2: Basic Concepts

2.5.1 Memorization Paradigms

29

The memorization of patterns and the subsequent response of the network can be

categorized into two general paradigms:

a) Associative mapping in which the network learns to produce a particular pattern on

the set of input units whenever another particular pattern is applied on the set of input

units. The associative mapping can generally be broken down into two mechanisms:

Auto-association: an input pattern is associated with itself and the states of input and

output units coincide. This is used to provide pattern completion, i.e. to produce a pattern

whenever a portion of it or a distorted pattern is presented. In the second case, the

network actually stores pairs of patterns building an association between two sets of

patterns.

Hetero-association: IS related to two recall mechanisms: nearest-neighbour and

interpolative recalls. In nearest-neighbour recall the output pattern produced corresponds

to the input pattern stored, which is closest to the pattern presented, and in interpolative

recall the output pattern is a similarity dependent interpolation of the patterns stored

corresponding to the pattern presented. Yet another paradigm, which is a variant

associative mapping, is classification, i.e. when there is a fixed set of categories into

which the input patterns are to be classified.

b) Regularity detection in which units learn to respond to particular properties of the

input patterns. Whereas in associative mapping the network stores the relationships

among patterns, in regularity detection the response of each unit has a particular

'meaning'. This type of learning mechanism is essential for feature discovery and

knowledge representation.

2.5.2 Learning Rules

There are a variety of learning rules which are in common use. These laws are

mathematical algorithms used to update the connection weights. Most of these laws are

some sort of variation of the best known and oldest learning law, Hebb's Rule. Man's

understanding of how neural processing actually works is very limited. Learning is

Chapter2:BasicConcepts 30

certainly more complex than the simplification represented by the learning laws currently

developed. Research into different learning functions continues as new ideas routinely

show up in trade publications etc. A few of the major laws are given as an example

below.

2.5.2.1 Hebb's Rule

The first and the best known learning rule was introduced by Donald Hebb. The

description appeared in his book "The organization of Behavior" in 1949. This basic rule

is: If a neuron receives an input from another neuron and if both are highly active

(mathematically have the same sign), the weight between the neurons should be

strengthened.

2.5.2.2 Hopfield Law

This law is similar to Hebb's Rule with the exception that it specifies the magnitude of

the strengthening or weakening. It states, "if the desired output and the input are both

active or both inactive, increment the connection weight by the learning rate, otherwise

decrement the weight by the learning rate." (Most learning functions have some provision

for a learning rate, or learning constant. Usually this term is positive and between zero

and one.)

2.5.2.3 The Delta Rule

The Delta Rule is a further variation ofHebb's Rule, and it is one of the most commonly

used. This rule is based on the idea of continuously modifying the strengths of the input

connections to reduce the difference (the delta) between the desired output value and the

actual output of a neuron. This rulc changes the connection weights in the way that

minimizes the mean squared error of the network. The error is back propagated into

previous layers one layer at a time. The process of back-propagating the network errors

Chapter 2: Basic Concepts 31

continues until the first layer is reached. The network type called Feed forward, Back-

propagation derives its name from this method of computing the error term.

This rule is also referred to as the Windrow-Hoff Learning Rule and the Least Mean

Square Learning Rule.

2.5.2.4 Kohonen's Learning Law

This procedure, developed by Teuvo Kohonen, was inspired by learning in biological

systems. In this procedure, the neurons compete for the opportunity to learn, or to update

their weights. The processing neuron with the largest output is declared the winner and

has the capability of inhibiting its competitors as well as exciting its neighbors. Only the

winner is permitted output, and only the winner plus its neighbors are allowed to update

their connection weights. The Kohonen rule does not require desired output. Therefore it

is implemented in the unsupervised methods of learning. Kohonen has used this rule

combined with the on-centerloff-surround intra-layer connection to create the self-

organizing ANN, which has an unsupervised learning method.

2.5.3 Learning Approaches

Information is stored in the weight matrix of a ANN. Learning is the determination of the

weights. Following the way learning is performed, one can distinguish two major

categories of ANNs:

Fixed networks in which the weights cannot be changed. In such networks, the weights

are fixed a priori according to the problem to solve.

Adaptive networks which are able to change their weights.

The learning ability of a ANN is determined by its architecture and by the algorithmic

method chosen for training. All training methods used for adaptive ANNs can be

classified into two major categories: supervised learning and unsupervised learning.

Chapter 2: Basic Concepts

2.5.3.1 Unsupervised Learning

32

Unsupervised learning method is not given any target value. A desired output of the

network is unknown. The hidden neurons must find a way to organize themselves without

help from the outside. During training the network performs some kind of data

. compression such as dimensionality reduction or clustering. The network learns the

distribution of patterns and makes a classification of that pattern where, similar patterns

are assigned to the same output cluster. Kohonen network is the best example of

unsupervised learning network. According to Sarle [61], Kohonen network refers to three

types of networks that are Vector Quantization, Self-Organizing Map and Learning

Vector Quantization.

2.5.3.2 Supervised Learning

In supervised learning, the network user assembles a set of training data. The training

data contains examples of inputs together with the corresponding outputs, and the

network learns to infer the relationship between the two. Training data is usually taken

from historical records. Data are used to adjust the network's weights and thresholds so as

to minimize the error in its predictions on the training set. If the network is properly

trained, it has then learned to model the (unknown) function that relates the input

variables to the output variables, and can subsequently be used to make predictions where

the output is not known.

a) Reinforcement Learning

This method works on reinforcement from the outside. The connections among the

neurons in the hidden layer are randomly arranged, then reshuffled as the network is told

how close it is to solving the problem. Reinforcement learning is also called supervised

learning, because it requires a teacher. The teacher may be a training set of data or an

observer who grades the performance of the network results.

Both unsupervised and reinforcement suffers from relative slowness and inefficiency

relying on a random shuffling to find the proper connection weights.

Chapter 2: Basic Concepts 33

b) Baek Propagation

One of the most commonly used supervised NN model is backpropagation network that

uses backpropagation learning algorithm. It has been popularized by Rumelhart, Hinton,

and Williams in 1980s as a euphemism for generalized delta rule. Backpropagation of

errors or generalized delta rule is a decent method to minimize the total squared error of

the output computed by the net [32].

In order to train an ANN to perform some task, one must adjust the weights of each unit

in such a way that the error between the desired output and the actual output is reduced.

This process requires that the ANN compute the error derivative of the weights (EW). In

other words, it must calculate how the error changes as each weight is increased or

decreased slightly. That is why sigmoid function is, in general, used as the activation

function:

Sigmoid(x) = 1 / (1 + eC-x»

The back-propagation algorithm is easiest to understand if all the units in the network are

linear. The algorithm computes each EW by first computing the EA, the rate at which the

error changes as the activity level of a unit is changed. For output units, the EA is simply

the difference between the actual and the desired output. To compute the EA for a hidden

unit in the layer just before the output layer, first it needs identify all the weights between

that hidden unit and the output units to which it is connected. Then it is multiplied those

weights by the EAs ofthose output units and add the products. This sum equals the EA

for the chosen hidden unit. After calculating all the EAs in the hidden layer just before

the output layer, one can compute in like fashion the EAs for other layers, moving from

layer to layer in a direction opposite to the way activities propagate through the network.

This is what gives back propagation its name. Once the EA has been computed for a unit,

it is straight forward to compute the EW for each incoming connection of the unit. The

EW is the product of the EA and the activity through the incoming connection.

Note that for non-linear units, the back-propagation algorithm includes an extra step.

Before back -propagating, the EA must be converted into the EI, the rate at which the

error changes as the total input received by a unit is changed.

-."c.
\

. Chapter 2: Basic Concepts

2.5.3.3 Off-line or On-line

34

One can categorize the learning methods into yet another group, off-line or on-line. When

the system uses input data to change its weights to learn the domain knowledge, the

system could be in training mode or learning mode. When the system is being used as a

decision aid to make recommendations, it is in the operation mode, this is also sometimes

called recall.

a) Off-line: In the off-line learning methods, once the system enters into the operation

mode, its weights are fixed and do not change any more. Most of the networks are of the

off-line learning type .

. b) On-line: In on-line or real time learning, when the system is in operating mode

(recall), it continues to learn while being used as a decision tool. This type of learning has

a more complex design structure.

2.6 Selection Mechanisms

Inspired by the role of natural selection in evolution -- an evolutionary algorithm

performs a selection process in which the "most fit" members of the population survive,

and the "least fit" members are eliminated. In a constrained optimization problem, the

notion of "fitness" depends partly on whether a solution is feasible (i.e. whether it

satisfies all of the constraints), and partly on its objective function value. The selection

process is the step that guides the evolutionary algorithm towards. ever-better solutions.

There are many methods in selecting the best offspring. Examples are roulette wheel

selection, BoItzman selection, tournament selection, rank selection, steady state selection

and some others. Some of them will be described here.

2.6.1 Roulette Wheel Selection

Parents are selected according to their fitness. The better the chromosomes (genotypes of

the ANNs) are, the more chances to be selected they have. Imagine a roulette wheel

rl

Chapter 2: Basic Concepts 35

where all the chromosomes in the population are placed. The size of the section in the

roulette wheel is proportional to the value of the fitness function of every chromosome _

the bigger the value is, the larger the section is. The following picture in Figure 2.8 is

given for an example.

EJ Chromosome 1
• Chromosome 2
oChromosome 3
oChromosome 4

Figure 2.8: An illustration of roulette wheel selectiou.

A marble is thrown in the roulette wheel and the chromosome where it stops is selected.

Clearly, the chromosomes with bigger fitness value will be selected more times. This

process can be described by the following algorithm.

[Sum] Calculate the sum of all chromosome fitnesses in population - sum S.

[Select] Generate random number from the interval (0, S) - r.

[Loop] Go through the population and sum the fitnesses from 0 - sum s. When the

sum s is greater then r, stop and return the chromosome where we are.

Of course, the step I is performed only once for each population.

2.6.2 Rank Selection

The previous type of selection will have problems when they are big differences between

the fitness values. For example, if the best chromosome fitness is 90% of the sum of all

fitnesses then the other chromosomes will have very few chances to be selected.

Rank selection ranks the population first and then every chromosome receives fitness

value determined by this ranking. The worst will have the fitness 1, the second worsi 2

etc. and the best will have fitness N (number of chromosomes in population).

The following pictures in Figure 2.9 and Figure 2.10 show how the situation changes

after changing fitness to the numbers determined by the ranking.

Chapter 2: Basic Concepts 36

IIIChromosome 1
• Chromosome 2
oChromosome 3
oChromosome 4

Figure 2.9: An example of rank selection, situation before ranking (graph of

fitnesses).

iii Chromosome 1
• Chromosome 2
oChromosome 3
oChromosome 4

Figure 2.10: An example of rank selection, situation after ranking (graph of order

numbers).

Now all the chromosomes have a chance to be selected. However this method can lead to

slower convergence, because the best chromosomes do not differ so much from other

ones.

2.6.3 Steady-State Selection

This is not a particular method of selecting parents. The mam idea of this type of

selecting to the new population is that a big part of chromosomes can survive to next

generation.

The steady-state selection GA works.in thc following way. In every generation a few

good (with higher fitness) chromosomes are selected for creating new offspring. Then

some bad (with lower fitness) chromosomes are removed and the new offspring is placed

in their place. The rest of population survives to new generation.

Chapter 2: Basic Concepts

2.6.4 Elitism

37

When creating a new population by crossover and mutation, one has a big chance, that

one will loose the best chromosome. To prevent this elitism is used. It first copies the best

chromosome (or few best chromosomes) to the new population. The rest of the

population is constructed in ways described above. Elitism can rapidly Increase the

performance of GA, because it prevents a loss of the best found solution.

r

Chapter 3

Modified Cellular Encoding

In this chapter fundamental aspects and stages of developing ANN from the cellular

encoding, in the context of the original cellular encoding system, is discussed first. Then

some modifications are suggested. The new system is called modified cellular encoding.

3.1 Cellular Encoding

An important direction in NN resear~h is the development of systematic methods for the

exploration of this space of possibilities. Even more important is the development of

automatic forms of such systematic methods. Gruau [18] has proposed an initial step

towards such automatic exploration by defining a system capable of generating a wide

variety of ANN's from representations formed from a small class of operators. Gruau has

named his method Cellular Encoding (CE) and the basics of his approach shall be

presented here.

3.1.1 Basics of CE

In CE, a particular artificial neural network (ANN) is specified through the application of

a sequence of graph transformations to an initial graph. The transformations operate upon

graphs which may have two classes of nodes, either cells or neurons. These two nodes

differ in that each cell has associated with it a program symbol tree (PST) that specifies

how that cell will ultimately be replaced by neurons. Each cell of the starting graph (of

which there is usually only one) has a PST associated with it. Neurons are the nodes

Chapter 3: Modified Cellular Encoding 39

which make up the ANN that ultimately results from the process. In the end, all cells

must have been transformed into neurons. Thus, there is an analogy to phrase structure

grammars in that cells are nonterminal symbols in the representation and neurons are

terminal symbols. Similarly, the initial graph usually consists of a single cell, from which

sentential forms containing both types of nodes are created, and finally only the terminal

symbols (i.e., neurons) remain. These forms will thus be referred to as the starting graph

(SG), sentential graphs (IG), and the terminal graph (TG).

The analogy to the use of phrase structure grammars can be extended to the idea that the

expansion of each cell (non-terminal) into neurons (terminals) is context-free, in that its

expansion is independent of its neighbouring nodes in the graph. Thus, with respect to the

resultant set of neurons, the expansion of any sentential forms is independent of the order

in which the cells are expanded, and in fact, all cells in any sentential form may therefore

be expanded in parallel to result in a unique set of neurons. However, the final graph also

consists of connections among neurons. The final configuration of connections among

neurons may be dependent on the order of expansion of the cells and can therefore be

viewed as a context-sensitive component of the ANN generates in this way. The PST

associated with a particular cell consists of program symbols that each specifies a

particular transformation applicable to that cell. These transformations may replace,

expand, duplicate or remove the cell itself within the sentential graph, they may modify

the way in which the cell is connected within the sentential graph, and they may modify

the cell's internal variables.

To summarize visually, Figure 3.1 shows a simple cellular instance [55] with the starting

graph consisting of a single cell a, whose reading head ra indicates a starting execution at

the root of its PST. The labels SEQ and END refer to program symbols which shall be

discussed later. In this case, as is required to ultimately obtain a functional ANN, the

single cell in the starting graph has initial connections to inputs and outputs.

Chapter 3: Modified Cellular Encoding

Input

40

PSTa sa
Figure 3.1: Simple Cellular Instance (CI)

3.1.2 Developing ANN from CE

The cellular code is represented as a grammar tree with ordered branches whose nodes

are labeled with name of program symbols. The reader must not make the confusion

between grammar tree and tree grammar. Grammar tree means a grammar encoded as a

tree, whereas tree grammar means a grammar that rewrites trees. A cell is a node of an

oriented network graph with ordered connections. Each cell carries a duplicate copy of

the cellular code (i.e., the grammar tree) and has an internal reading head that reads from

the grammar tree. Typically, each cell reads from the grammar tree at a different position.

The character symbols represent instructions for cell development that act on the cell or

on connections of the cell. During a step of the development process, a cell executes the

instruction referenced by the symbol it reads, and moves its reading head down in the

tree. One can draw an analogy between a cell and a Turing machine. The cell reads from

a tree instead of a tape and the cell is capable of duplicating itself; but both execute

instructions by moving the reading head in a manner dictated by the symbol that is read.

Here, the grammar tree is referred as a program and each character as a program-symbol.

A program symboJ(PS) applied to a cell has four defining functions. Firstly, it has a

certain succession function. The PS must specify whether and how that cell is to be

superseded in the sentential graph. The possible succession actions are to remain in the

Chaptcr 3: Modificd Ccllular Encoding 41

IG, expand through the creation of new successor cells which are placed in the IG,

eliminate itself from the IG, or to terminate and become a neuron in the IG. Anyone or

more of these operations may be performed by a PS, although in the interest of simple,

atomic program symbols, usually only one or two are performed. In Gruau, for example,

several program symbols eliminate the cell and replace it with two successor cells.

Secondly, a PS has a certain structure function. The PS must specify what changes, if

any, are to be made to the connectivity of the cell within the sentential graph and to the

neuronal variables of the cell. If the cell has successors, the PS must specify their

connectivity and neuronal variables as well. For example, a program symbol may have a

single connection of the cell removed. One important issue concerning the structure

function is the scope of the changes to connectivity that is permitted. How connections

are stored and changed is an implementation issue, but there is the question of where they

are ideally considered to be stored - i.e., locally in the cell or globally as a shared variable

of the sentential graph - and how they may be changed - i.e., maya cell connect to any

other cell in the sentential graph or are there limitations. The decision about this at the

ideal level determines the consequences of the order of execution of the cells. In Gruau,

the connections are stored locally, but a cell is able to make changes to other cells and to

connect to any cell by maintaining a complete connection matrix of all cells.

Thirdly, a PS has a certain completion function. The PS must specify what action is to be

performed by the cell upon the completion of its succession and structure functions. In

particular, the PS must specify which program symbol in the cell's PST is to be executed

next. To specify the execution of another program symbol, the PS must use and modify

the cell's developmental variables. In particular, the reading head of the cell must be set

to point to a different node in the PST. If the cell has successors, the PS must specify

what their first action should be. Of course, if the cell was eliminated from the sentential

graph or transformed into a terminal neuron, then it has no next action. The consequence

of such a completion function is that the program symbols in a cell's PST are not

processed in a standard order, such as depth-first or breadth-first. Rather, the order is

determined dynamically by the resetting of the reading head that accompanies the

execution of each PS. In some cases, the resulting order can be quite haphazard. In

Gruau, most PSs simply move the reading head to a child in the tree, but some move the

Chapter 3: Modified Cellular Encoding 42

reading head to the root or to arbitrary positions in the tree. Finally, a PS has a certain

priority function. In addition to the ordering of the execution of program symbols within

the PST of a particular cell, there is the more global issue of the order in which the cells

themselves have their PSTs executed. In Gruau's work, the cells are not truly

independent, and the connectivity in the final graph is often dependent upon the order in

which all the program symbols in all the PSTs of all the cells throughout development are

executed. To resolve a unique interpretation of the initial graph, each PS must specify

what priority should be assigned to the next action of the cell. For example, a PS may

assign a low priority to the action, resulting in the cell giving up processor control and

allowing another cell to execute first. The consequence of the priority function is that the

ordering of the program symbols is determined dynamically during development. Gruau

uses a strict priority form with a global first-in, first-out (FIFO) queue structure. At a

given time, a number of cells may be on the queue; if the starting graph has one cell, then

it is the only entry in the queue at the beginning of development. The cell at the head of

the queue has the highest priority and executes its program symbol before the others.

Within the execution of a PS, changes may be made to the queue. In Gruau's work, a cell

may remove itself from the head, may place itself on the tail, and may place its

successors on the tail. Gruau imposes a strict ordering by forcing every PS to always

remove the cell from the head of the queue and place it at the tail (i.e., always assigns

lowest priority to the next action), and to always place the left successor on the tail before

the right successor. Gruau's purpose in using such a structure to determine order of

execution is to mimic as closely as possible a parallel execution of the cells, as well as a

breadth-first-like traversal of the PST.

The development of the simple starting graph from Figure 3.1 is traced using the cellular

encoding processes of Gruau as shown in Figure 3.2. That cell has a reading head which

points to the root of the program symbol tree, and that cell can be considered to be the

first and only entry in a global FIFO queue. The first step in the development ofthe graph

is to examine the first cell in the FIFO queue. This is done, and it is noted that the cell (a)

has a reading head (ra) pointing to the root of its PST. The root is read, and it is noted that

the operation SEQ is written there. The succession function of SEQ is to replace the

single ancestor cell, a, with two successor cells, band c. Each, of course, has its own

Chapter 3: Modified Cellular Encoding 43

copy of the PST of cell a. The structure function of SEQ is to assign the first successor

cell, b, the same input connections as a and a single output connection to the second

successor cell, c, and to assign c with a single input connection from b and the same

output connections as a. What so far found is an intermediate ANN structure consisting

of two cells connected in a certain way, and no neurons.

Figure 3.2: Interpretation of Simple PST

,

Chapter 3: Modified Cellular Encoding 44

The completion function of SEQ is to set the reading head of the first successor, rb, on the

left subtree of the SEQ symbol and the reading head of the second successor, rc, on the

right subtree. The priority function of SEQ is a set of FIFO queue instructions. The

instructions, in order, are to remove the original cell from the queue, place the first

successor cell onto the FIFO queue, place the second successor on to the FIFO queue,

and signal completion. The last will invoke the process of reading the next cell at the

head of the queue and starting its development. In this particular case, the next cell is the

the first successor, b. One can imagine that if all cells follow similar tree navigation

pattern, then the entire process can be imagined as performing a breadth-first, left to right

traversal of a single PST. To complete the description of the PST interpretation process,

discussion is needed what happens when a terminal program symbol is read. The primary

terminal symbol in Gruau's work is END. When a cell labeled with END is read, the

succession function is to cease being a cell and replace the cell with no new cells. The

structure function is to create a ANN node with the same connection characteristics (e.g.,

connectivity pattern, specific weight values) as the cell and with certain internal

parameters (e.g., activation function, initial bias threshold value, learning rate). For

example, after cell b executes its END symbol, an ANN with one neuron (i.e., light

circle) with (tentative) connections to the remaining cell, c is found. There is no

completion or priority function since the cell has ceased to exist.

3.1.3 Properties of CE

The properties of CE can be summarized as follows:

• Completeness: Any ANN can be encoded, thus the GA can reach the solution

ANN if it exists at all.

• Compactness: The CE is topologically more compact than classical

representations of neural net-works, and functionally more compact than any

other representation. This ensures that thc codes manipulated by the GA are

minimal in size. The shorter the codes are, the shorter the search space is, and the

less effort the GA has to do.

Chapter 3: Modified Cellular Encoding 45

•

•

•

•

•

•

Closure: The CE always develops meaningful architectures. It produces acyclic

or recurrent architectures, depending on the initial graph. Both of these closure

properties ensure that the chromosomes produced by the GA always give

interesting ANNs. The GA does not throwaway any codes. This increases

efficiency:

Modularity: If a network can be decomposed into copies of subnetworks, the

code of network is the concatenation of the subnetworks code, and a code that

describes how to connect the subnetworks. This facilitates the formation of

building blocks. The resulting regularities in the final architecture make it clear

and interpretable. The code is more compact.

Scalability: A fixed size code encodes a family of ANNs. For any reasonable

family of problems, there exists a code such that the i-th ANN solves the i-th

problem. A parameterized problem of arbitrary size, say 1000000, can be as easy

to solve as the same problem of size 2 or 3 because the code of the corresponding

neural net is the same, only the size parameter changes.

Power of expression: The CE can be seen as an "ANN machine language". Its

power of expression is greater than Turing machines and cellular automata. It is

another proof of the extreme compactness of the coding.

Abstraction: It is possible to compile a program into the code of a ANN that

simulates the computation of the program. The wide search space of ANN is

transformed into a smaller search space of programs. It helps the GA to find

ANNs for problems that can be solved with a short program.

Grammars: Cellular encoding encodes a graph grammar, this property is in fact

the root of all the other properties.

According to [55], it seems as though cellular encoding is not a precise representation

method. A proper approach to defining cellular encoding would be to:

1. Clearly define the components of a representation.

2. Define the possible properties of a cell.

3. Specify what limits a cell has on its navigation of the PST.

Chapter 3: Modified Cellular Encoding 46

4. Strictly delineate what other functions may and may not be performed during

the interpretation of a cell

Once this is done, the basic properties of the encoding approach may be proved.

3.2 Program Symbol Set Used

In this thesis, initially program symbol set {ACYC, END, PAR, SEQ, CUT, WAIT,

INCLR, MRG} which is closed and complete is chosen. There are other sets of symbols

that also hold such features, but this one is simpler and minimum in cardinality [18].

Among the above program symbols, link register is used only for CUT and MRG

symbols. It means that INCLR (and DECLR, [55]) is used with CUT and MRG symbols.

If parameters are used with these two symbols to determine the link to be processed, it is

not needed INCLR any more.

Again, the symbol WAIT is a skip operation. It is introduced since in some cases the

order of cell execution should be varied to be able to represent all ANNs, i.e. for more

compact codes. As mentioned in [55], the benefits and drawbacks of WAIT were not

analyzed. CE needs WAIT because of Gruau's implementation of connections. He

implements them as a matrix, and when a node is added, the matrix is resized to include a

new row and new column, and Gruau is very unclear as to how these rows and columns

are initialized. Moreover, while it is attempted to get rid of permutation problem form the

encoding scheme, WArT enables operations, which are independent of it, to be reordered.

The possibilities of shuffling program symbols with WArT in a PST permit different

encodings for the same ANN. That is why WAIT is not used here directly. The

functionality of WAIT is used implicitly whenever needed. For example, a MRG

operation that causes deletion of a cell will be delayed until the reading head of the cell is

END. Such implicit use of WAIT's functionality not only make sure to remain the

completeness and closure properties defined by Gruau but also purge the permutation

problem associated with WAIT symbol.

Hence the five program symbols used for CE without recurrent link are END, PAR, SEQ,

CUT, and MRG. This modification of CE scheme does not weigh down compactness

Chapter 3: Modified Cellular Encoding 47

property; the closure & completeness properties also hold as well. The following tables

(Table 3.1 to 3.5) show their functionalities in brief.

Table 3.1: Realization of END symbol.

Succession function Cease being a cell (0 arity)

Structure function Create ANN node with same connectivity

and internal properties as original cell. (A

final node is represented as a light circle)

Completion function Lose reading head

FIFO queue Signal completion

instruction

Visual description

PST IG

Chapter 3: Modified Cellular Encoding

Table 3.2: Realization of PAR symbol.

Succession function Replace cell with two child cells. (2 arity)

Structure function Both cells share the same input and output

connections as

original.

Completion function (I) Place reading head of first child cell (b) on left

subtree

48

FIFO
instruction

(2) Place reading head of second child cell (e) on

right subtree

queue (1) Place first child cell (b) on queue

(2) Place second child cell (e) on queue

(3) Signal completion

Visual description

PST IG

Output

FIFO

instruction

Chapter 3: Modified Cellular Encoding

Table 3.3: Realization of SEQ symbol.

Succession function Replace cell with two child cells. (2 arity)

Structure function Create one cell sharing the same input

connections as original, one cell sharing the same

output connections as original, and a connection

from the tirst to the second.

Completion function (I) Place reading head oftirst child cell (b) on left

subtree

(2) Place reading head of second child cell (c) on

right subtree

queue (1) Place first child cell (b) on queue

(2) Place second child cell (c) on queue

(3) Signal completion

49

Visual description

PST IG

.-

Succession function

Chapter 3: Modified Cellular Encoding

Table 3.4: Realization of CUT I CLIP symbol.

The connection indicated by the 'current

link' pointer is removed (1 arity)

Structure function Removal of connection

Completion function Place reading head of the cell on the unique

subtree

50

FIFO

instruction

queue (l) Place the cell on queue

(2) Signal completion

Visual description

PST 10

Chapter 3: Modified Cellular Encoding 51

Succession function

Structure function

Completion function

FIFO queue

instruction

Table 3.5: Realization of MRG symbol.

Given an integer argument i and cell b, let I be the input link

which number is i and c the neighbor cell which is connected

through I. The program-symbol replaces I by the list of input

links of C,... If after this operation, c has no more output links, c

is suppressed. (arity 1)

Change connectivity as above and possibly eliininate a node.

Place reading head of child cell on unique subtree

(I) Place child cell on queue

(2) (Remove cell c from queue ifit is there)

(3) Signal completion

Visual description

Q1RG0

'~-'2I:S

PST

Output

Before

-..•••.

Input

After

3.3 Modification to Symbol Functionalities

To solve the permutation problem, first it is done modification of some properties of the

program symbols of CEo To understand clearly, let us observe the program symbols more

details. Permutation problem arises whenever different orientations of nodes in hidden

layers are possible for behaviourally same ANN. Two children created by program

symbol SEQ do not have this property since here the output of one child is the input to

another child. This link will totally reverse if these two children are arranged in another

orientation while creation and hence will get ANN of different phenotype. Program

Chapter 3: Modified Cellular Encoding 52

symbol END has no arity and CUT, MRG have single arity [55]. Therefore permutation

problem cannot be generated from their children. But the program symbol PAR is of

double arity and its two children grow in parallel having same input-output links. If the

two children are arranged in different order different genotypic representations for the

same phenotype will be found.

This problem arises from the poor definition of the execution of PAR symbol while

interpreting PST (i.e. CE of ANN). According to [18], after execution of PAR the reading

head of the first child cell will be placed on left subtree and the reading head of the

second child cell will be placed on right subtree. If the reading head of the first child cell

is placed on right subtree and the reading head of the second child cell on left subtree

(which is another CE), different ANN of same behaviour will be found.

Hence, the interpretation of PAR symbol is redefined so that the decision of placing

reading head of a child, either at the left subtree or at the right subtree, will be taken

randomly at the time of execution of PAR symbol while interpreting the PST (addressed

by Property 3 given below). This ensures that the two children of PAR have equal

probability to place reading head at the left (or right) subtree. Consequently, in the PST,

any order of two subtrees (hence constructing different redundant CEs) below PAR

symbol can produce same set of behaviourally equivalent ANNs. If it is allowed both

orders, many to one mapping from genotypes to phenotypes will be found. Instead, it is

permitted to appear the program symbols under the PAR symbol in the PST according to

a fixed order only (addressed by Property 1 given below). Any order here may suffice.

(Property 3 explains why it is true), one can select program symbols randomly from the

order given in Property 1. This restriction just removes redundancy in the search space by

not allowing the occurrences of multiple CEs for the same phenotype.

Property 1: The two children (program symbols) of the PAR symbol in PST can appear

according to the following order only, given in descending priority, PAR, SEQ, CUT,

MRG,END.

Chapter 3: Modified Cellular Encoding 53

When the two children of PAR in PST are of same type symbol, there is no problem until

they are both PAR again. For the case of two PAR children of a parent PAR, another

restriction is formulated.

Property 2: At most one child of a PAR symbol in the PST can be a PAR symbol again.

According to Property I, it should be the left child if there is one.

In fact, Property 3 enables us to represent a PAR symbol with two PAR children by a

series of PAR symbols in PST. Hence Property 2 does not restrict search space at all;

rather it removes redundancy from the search space by stopping to encode same

phenotypic ANN in different ways.

Before going to Property 3, first should be introduced a new term Random Selection

Group (RSG). If a PAR symbol in the PST has two non"PAR symbols (symbols other

than PAR), they (including their corresponding subtrees) constitute the RSG of that PAR

symbol. If one child of the PAR symbol is PAR again (it should be left child by Property

1), then the two non-PAR children (along with corresponding subtrees) of this child PAR

symbol and the right child (along with corresponding subtree) of the parent PAR symbol

constitute the RSG for that parent PAR symbol. This definition ofRSG goes recursively.

Property 3: During the interpretations of the children of a particular PAR symbol in

PST, one can choose randomly and exclusively any symbol (including corresponding

subtree) from the RSG of that particular PAR symbol for all the positions of non-PAR

symbols children.

Here exclusively means that if it is chosen one element from RSG for a position this form

will be excluded from the RSG and not consider any more. All elements have equal

probability to be chosen.

An important point to note is while representing CE with RSGs, one will keep symbols in

a RSG according to the order given in Property 1. That is, highest priority symbol of a

RSG will appear in the highest level of positions that constitute the RSG. Ifmultiple CUT

(or MRG) symbols appear, they also are ordered based on the parameters.

Chapter 3: Modified Cellular Encoding 54

Figure 3.3 describes the interpretations of Properties I and 3. ANNs shown in Figure

3.3(a) and 3.3(b) are of same phenotype [62]. CE shown in Figure 3.3(c) can generate

both ANNs. Here two children of PAR, CUT I (along with its subtree) and END

constitute RSG of the parent PAR. According to Property 3, while interpreting the PST

one can choose for the left child of PAR anyone from RSG. If one chooses CUT 1 for the

left child execution one gets ANN as in Figure 3.3(a). If one chooses END for the left

child execution one gets ANN as in Figure 3.3(b). CE shown in Figure 3.3(d) is invalid.

According to Property I CUT has higher priority than END, hence CUT should be left

child and END should be the right child of PAR as shown in Figure 3.3(c).

(e) (d)

Figure 3.3: An example describing Properties 1 and 3. (a), (b) ANNs of same

phenotype. (c) CE of the architecture of both (a) and (b).

(d) an invalid encoding of the ANNs.

Figure 3.4 explains Properties 2 and 3. Figure 3.4(a) is an ANN that can be encoded in

several ways. Among these only the CE shown in Figure 3.4(b) is valid according to

Property 2. Figure 3.4(c) is an invalid representation since it has two PAR children of the

parent PAR symbol. Any permutation of the four nodes (P(4, 4) = 4! = 24 ways) of the

ANN in Figure 3.4(a) will produce behaviourally same ANNs. Figure 3.4(b) can generate

any of these ANNs. The RSG of the root PAR symbol constitute of CUT I, CUT 3, along

with their corresponding subtrees, and the two ENDs of the last PAR symbols. One has 4

ways to select from RSG for the first right child. For the second right child one has the

remaining 3 ways. For the other two children one has 2 and I ways. So, total ways to

Chapter 3: Modified Cellular Encoding 55

execute the PST is 4 x 3 x 2 x 1 = 24. The general proof is shown in the following

Proposition / Theorem.

(a) (b) (c)

Figure 3.4: An example describing Properties 2 and 3. (a) a given ANN.

(b) its valid CEo (c) an invalid encoding.

Proposition 1: Property l, Property 2, and Property 3 allow a unique CE for all ANNs of

same phenotype, thus removing permutation problem.

Proof: Since program symbols SEQ, CUT, MRG and END do not contribute in the

permutation problem, it needs to concentrate on PAR symbol only. As a result of the

modification of the behaviours of the original PAR symbol the only CE found is shown

in Figure 3.5(b) for the ANN as in Figure 3.5 (a). No other organization of PAR symbols

to produce this ANN is valid by the Properties land 2.

Chapter 3: Modified Cellular Encoding 56

Parallel
n nodes
ofa NN
causing

permuatation
problem

(n - 1)
PAR

symbols..

Subtree Subtree
withroot Pn withroot Pn.'

(a) (b)

Figure 3.5: Permutations of nodes in an ANN. (a) part of a ANN shows the nodes

that may have any permutations. (b) CE of that part of ANN.

The n nodes in Figure 3.5(a) can be oriented in any permutation each gives an ANN with

the same behaviour. Since these nodes can be arranged in P(n, n) = n! ways, one has n!

ANNs all having same phenotype.

Now, the Random Selection Group (RSG) of the top PAR symbol in Figure 3.5(b) is

made of the non-PAR symbols that are the roots of the subtrees shown in triangles.

Subtree i is rooted with a program symbol Pi which is not a PAR symbol. Hence, RSG

constitutes of PI> P2, P3, ... Pli (along with corresponding subtrees). According to

Property 3, while executing the first right child one can choose any of the elements from

RSG in n ways. For the next right child the remaining n - 1 element is left from RSG

leaving n - 1 ways to choose with. Thus continuing up to the last child it is left with I

way for the last child. So, there is a total n x (n - I) x (n - 2) x ... x I = n! ways to

select. It means that the CE of Figure 3.5(b) can represent all n! ANNs that are of same

phenotype. Thus, permutation problem is resolved by the modified CE scheme 0

Chapter 3: Modified Cellular Encoding

3.4 Other MCE Properties

57

This subsection summarizes other properties ofMCE.

1. When there is only one input link on a given cell, the CUT operation is not

applicable for that cell [18J, [55]. CUT cannot also be applied on a link when this

is the only output link from the parent cell (or from input). Because if it is

allowed, the parent cell should be deleted after the operation developing a new

PST that can be generated in another (simpler) way arising permutation problem.

2. MRG symbol cannot be applied on the first level of the ANN i.e. on the cells that

are directly connected to the inputs. Like CUT, when there is only one input link

on a given cell, the MRG operation is not applicable for that cell [18J, [55].

3. The parameters of CUT and MRG can be used as modulus n + 1 where n is the

number of current input links of the cell now considering. If so, one needs not

worried or be informed about the number of current input links when one set the

parameter.

4. First symbol (root) of PST must be PAR, SEQ or END.

Chapter 4

The Genetic search scheme

This section introduces different types of evolutionary methodology. Along with the new

approach, the effects of the genetic operator crossover upon the MCE encoded ANNs are

discussed. The algorithm to realize the PST is also presented.

4.1 Evolutionary Approaches

Evolutionary algorithm (EA) is an umbrella term used to describe computer based

problem solving systems which use computational models of evolutionary processes as

key elements in their design and implementation. A variety of EAs have been proposed.

The major ones are: genetic algorithms, evolutionary programming, evolution strategies

and genetic programming. They all share a common conceptual base of simulating the

evolution of individual structures via processes of selection, mutation, and reproduction

as depicted in Figure 4.1. The processes depend on the perceived performance of the

individual structures as defined by an environment. In brief, EA is a system which

incorporates aspects of natural selection or survival of the fittest. Although simplistic

from a biologist's viewpoint, these algorithms are sufficiently complex to provide robust

and powerful adaptive search mechanisms.

Chapter4: GeneticSearchScheme 59

Problem c::>
codi~ of solutions
cbjective £.U'lCtion

evolutimtary opera.tors
.ped,," knowlodge

=> c::> Solution

Figure 4.1: Problem solution using EA.

4.1.1 Genetic Algorithm

The genetic algorithm (GA) is a model of machine learning which derives its behavior

from a metaphor of the processes of evolution in nature. This is done by the creation

within a machine of a population of individuals represented by chromosomes, in essence

a set of character strings that are analogous to the base-4 chromosomes that is seen in our

own DNA The individuals in the population then go through a process of evolution.

At the molecular level what occurs is that a pair of chromosomes bump into one another,

exchange chunks of genetic information and drift apart. This is the recombination

operation, which GA generally refer to as crossover because of the way that genetic

material crosses over from one chromosome to another.

The crossover operation happens in an environment where the selection of who gets to

mate is a function of the fitness of the individual, i.e. how good the individual is at

competing in its environment. Mutation also plays a role in this process, although how

important its role is continues to be a matter of debate. When the GA is implemented it is

usually done in a manner that involves the following cycle: evaluate the fitness of all of

the individuals in the population. Create a new population by performing operations such

as crossover, fitness-proportionate reproduction and mutation on the individuals whose

fitness has just been measured. Discard the old population and iterate using the new

population. One iteration of this loop is referred to as a generation. There is no

theoretical reason for this as an implementation model. Indeed, one does not see this

Chapter 4: Genetic Search Scheme 60

punctuated behavior in populations In nature as a whole, but it IS a convenient

implementation model.

4.1.2 Evolutionary Programming

Evolutionary programming (EP), originally conceived by Lawrence J. Fogel in 1960, is a

stochastic optimization strategy similar to GAs, but instead places emphasis on the

behavioral linkage between parents and their offspring, rather than seeking to emulate

specific genetic operators as observed in nature. EP is similar to evolution strategies (ES),

although the two approaches developed independently. It should be pointed out that EP

typically does not use any crossover as a genetic operator [12].

There are two important ways in which EP differs from GA. First, the typical GA

approach involves encoding the problem solutions as a string of representative tokens, the

genome. In EP, the representation follows from the problem. A neural network can be

represented in the same manner as it is implemented, for example, because the

mutation operation does not demand a linear encoding. Second, the mutation operation

simply changes aspects of the solution according to a statistical distribution which

weights minor variations in the behavior of the offspring as highly probable and

substantial variations as increasingly unlikely.

The main differences between Evolution strategy (E8) and EP are:

a) Selection: EP typically uses stochastic selection via a tournament. Each trial solution

in the population faces competition against a preselected number of opponents and

receives a "win" if it is at least as good as its opponent in each encounter. Selection

then eliminates those solutions with the least wins. In contrast, ES typically uses

detenninistic selection in which the worst solutions are purged from the population based

directly on their function evaluation.

b) Recombination: EP is an abstraction of evolution at the level of reproductive

populations (i.e., species) and thus no recombination mechanisms are typically used

because recombination does not occur between species.' In contrast, ES is an abstraction

I

Chapter 4: Genetic Search Scheme 61

of evolution at the level. of individual behavior. When self-adaptive information is

incorporated this is purely genetic information (as opposed to phenotypic) and thus

some forms of recombination are reasonable and many forms of recombination

have been implemented within ES.

4.1.3 Evolution Strategy

Evolution strategies (ES) were invented to solve technical optimization problems. It is

more or less similar to EP. Self-adaptation within ES depends on randomness, population

size, cooperation and deterioration [21], [40].

4.1.4 Genetic Programming

Genetic programming (GP) is the extension of the genetic model of learning into the

space of programs. That is, the objects that constitute the population are not fixed-

length character strings that encode possible solutions to the problem at hand, they are

programs that, when executed, are the candidate solutions to the problem. These

programs are expressed in genetic programming as parse trees, rather than as lines of

code.

In GP the crossover operation is implemented by taking randomly selected subtrees in the

individuals (selected according to fitness) and exchanging them. It should be pointed out

that GP usually does not use any mutation as a genetic operator.

4.2 Crossover on MCE

This subsection illustrates the rules and effects of the genetic operator crossover on the

modified CEo

While growing of an ANN from a PST, each cell transformed to a neuron when its

reading head ends at an END symbol. This necessarily means that for each neuron there

must have an END symbol, which is a leaf of the PST. In fact, the number of ENDs in a

Chapter 4: Genetic Search Scheme 62

PST is equal to or greater than (some neurons of corresponding END leaves may be

removed by MRG operation) the number of neurons in the ANN. To avoid the risk of

changing the structure of ANN drastically by crossover effect, crossover is allowed on

last level (leaf) or second last level. That is, the roots of the two subtrees chosen form a

pair of CE for crossover must have all children as END or no children. If the root of a

. subtree is a binary symbol (i.e. PAR or SEQ) it has two children both of END symbols. If

the root is a unary symbol (i.e. CUT or MRG) it has single child END. If the root is END

itself, it has no children. But both of the subtrees chosen for exchange cannot be same

since in that case the crossover would have no effect. The following table shows all

possible combinations of crossover and their effects on the genotypes of ANNs.

Table 4.1: Effects of crossover on CEo

Effects of Replaced by

Crossover PAR SEQ CUT MRG END

PAR NC OCN CD,ND OC,ND ND

~ SEQ OCN NC CD,ND OC,ND ND
~

OC ND'~ CUT CA,NA CA,NA OC orNC CA•• ,
'll

MRG OC,NA OC,NA OC,NA' NCorOCN OC,NA'.."
~.

END NA NA CD OC ND' NC,
Here,

NC '" no change in the architecture of corresponding ANNs

NA '" node addition

ND '" node deletion

CA '" connection addition

CD '" connection deletion

OC '" new orientation of connection

OCN '" new orientation of both connection and node

, effect mayor may not takes place, depcnds on orientation of connections and

the parameter of the corresponding symbol

Chapter 4: Genetic Search Scheme 63

It is clear from the above table that all sorts of modifications of ANNs (for example

addition and / or deletion of node and / or connection) can be happened from crossover.

Since crossover is allowed only at the lowest level or immediate above it, massive

changes in the architecture at a time cannot occur.

One has to put across the rules for applying the genetic operator crossover on the

modified CE so that its properties are not destroyed even after crossover operation. First

thing to remember is that crossover cannot be applied on the roots of PSTs, it must be

applied on two different subtrees. If these two subtrees are same crossover would have no

effect. When applying crossover between two cellular encodings CEI and CE2 by

exchanging two random subtrees STI (from CEI) and ST2 (from CE2), the following

three situations may arise.

i) None the parents of STI and ST2 is PAR.

ii) One of the parents ofSTl and ST2 is PAR.

iii) Both the parents of STI and ST2 are PAR.

In case (i), crossover is just applied accordingly.

In case (ii), let, without loss of generality, the parent of STI is PAR and the parent of ST2

is not PAR. The sub-cases can occur as follows:

a) Both the roots of STl, ST2 are PAR

b) Both the roots of STl, ST2 are not PAR

c) The root ofSTl is PAR, the root ofST2 is not PAR

d) The root of STI is not PAR, the root of ST2 is PAR

In sub-case (a) crossover is not applied. For other sub-cases it is applied accordingly.

After crossover is done, the ordering described in Property 1 is established among the

children ofthe parent of ST2 in CE 1.

In case (iii), the sub-cases can occur as follows:

e) Both the roots ofSTI, ST2 are PAR

f) Both the roots ofSTl, ST2 are not PAR

g) The root of STI is PAR, the root of ST2 is not PAR

h) The root of STI is not PAR, the root of ST2 is PAR

Chapter 4: Genetic Search Scheme 64

In sub-case (e) crossover is not done. For other sub-cases, crossover is applied

accordingly but the ordering described in Property I is established among the children of

both the parent ofST2 in CEI and the parent ofSTl in CE2.

4.3 CE to DE Conversion

Input: the PST to be executed.

Output: the matrix representation (direct encoding) of the ANN.

m '" number of input nodes

n '" number of output nodes

N '" maximum number of hidden nodes allowed in the ANN

M '" a matrix with m + N rows and N + n columns; M[i, j] = I means that there is a

connection from i-th node to j-th node, M[i,j] = 0 means that there is no connection

from i-th node to j-th node

Initialize a FIFO with the root of the PST as the only entry

Initialize all the entries of the matrix M to 0

while (head ofthe FIFO", NULL)

case (head of the FIFO)

PAR: Copy the inputs and outputs of the current i-th entry (cell) in a new

j-th entry (cell) of the matrix. Enter both of the entries (cells) i,j at the end

of the FIFO in random order.

SEQ: Remove the outputs of the current i-th entry and copy these to a new

j-th entry of the matrix; Set M[i, j] = I. Enter entry i at the end of the

FIFO, then enter entry j in the FIFO.

CUT x: Let the x-th input link to the current entry i is j. Set M[j, i] = O.

Place the entry i at the end of the FIFO.

MRG x: Let the x-th input link to the current entry i is j. If j-th entry has

only one output link and its reading head not yet end, enter the current

Chapter 4: Genetic Search Scheme 6S

entry i at the end of the FIFO. Nothing changes in the matrix (this action is

like WAIT). Otherwise, set M[j, iJ = 0 and copy all the input links into

entry j to the entry i. Also ifj-th entry has no more output link, remove all

the input links into entry j. Place entry i at the end of the FIFO.

END: Do nothing. Purge the reading head of the cell and convert it to a

node of ANN.

end case

end while

The number of symbols k executed by the algorithm is the number of symbols present in

the PST and k = Oem + N + n). Let, PAR, SEQ and MRG handle on an average I number

of connections (entries of the matrix) that depends on Oem + N). So in the worst case, the

cost for executing the above algorithm is O(lk).

4.4 The Evolutionary System

The major steps of the evolutionary system proposed in this work are depicted in the

Figure 4.2, which are explained further as follows [6], [12], [19], [33]:

I. Generate initial population (program symbol trees) of M networks randomly.

The initial number of hidden nodes, connection density and weights for each

ANN are uniformly distributed at random within certain ranges.

I.'

Chapter 4: Genetic Search Scheme

Random initial
population

Initial partial
training

Rank NNs from the
best to the worst

Use roulette wheel
selection, apply

crossover

Partially train each
child, replace better
child to its parent

Further training

yes

66

Figure 4.2: Major steps of the evolutionary system.

2. Partially train each network in the population for a certain number of epochs

It,ll,Ko, which is user specified, using normal backpropagation [52]. hJ
3. Rank the networks in the population according to their error values, from the ,

best to the worst.

4. If the best network found is acceptable or the maximum number of

generations has been reached, stop the evolutionary process and go to the step

7. Otherwise continue.

Chapter 4: Genetic Search Scheme 67

5. Use the rank based selection (the roulette wheel selection [10]) to select

parents for crossover operations to obtain offspring networks.

6. Partially train each child for Kj epochs using normal BP. Here, Kj IS a user

specified parameter. In the evolution if an offspring is better than its parent it

will replace the parent. Go to step 3.

7. After the evolutionary process, train the best network further on the combined

training and validation sct until it converges.

•

Chapter 5

Experimental Studies

Machine learning investigates the mechanisms by which knowledge is acquired through

experience. Databases with millions of records and thousands of fields are now common

in business, medicine, engineering, and the sciences. In order to evaluate the ability of the

approach in evolving ANN, it has been applied to the database of some real-world

problems. This section portrays the experimental references, setup, results and

comparisons with other works.

5.1 Data Sets Applied

The algorithm is applied on four real-world problems in the medical domain, i.e., the

breast cancer problem, the diabetes problem, the heart disease problem, and the thyroid

problem. All data sets were obtained from the machine learning benchmark repository

cited at the Department oflnformation and Computer Science of University of California,

Irvine.

This is a repository of databases, domain theories and data generators that are used by the

machine learning community for the empirical analysis of machine learning algorithms.

A large collection of data sets is accessible via anonymous FTP at ftp.ics.uci.edu

[128.l95.1.1) in directory "/pub/machine-Iearning-databases" or via web browser at

http://www.ics.uci.edu/-mlearn/ MLRepository.html. The Knowledge Discovery in

Databases (KDD) Archive here encompasses a wide variety of data types, analysis tasks,

and application areas. The primary role of this repository is to serve as a benchmark

tested to enable researchers in knowledge discovery and data mining to scale existing and

http://www.ics.uci.edu/-mlearn/

Chapter 5: Experimental Results 69

future data analysis algorithms to very large and complex data sets. This archive is

supported by the Information and Data Management Program at the National Science

Foundation, and is intended to expand the current UCI Machine Learning Database

Repository to datasets that are orders of magnitude larger and more complex. An

important file to read regarding the repository is the README file. It contains an overall

description of the repository. Another file, .SUMMARY-TABLE, contains a table of

some of the databases. Each database is characterized by a fixed set of attributes. The

construction of this repository is an on-going process. The majority of the entries in the

repository were contributed by machine learning researchers outside ofUCr.

Here the data format followed in Proben I is used. Probenl is a collection of 12 learning

problems consisting of real data. The data files all share a single simple common format.

Along with the data comes a technical report describing a set of rules and conventions for

performing and reporting benchmark tests and their results. It is accessible via

anonymous FTP on ftp.cs.cmu.edu [128.2.206.173] as/afs/cs/projectlconnectlbench/

contrib/precheltlprobenl.tar.gz and also on ftp.ira.uka.de as /pub/neuron/probenl.tar.gz.

The file is about 1.8 MB and unpacks into about 20 MB.

The four medical diagnosis problems used have the following common characteristics
[34] .

• The input attributes used are similar to those a human expert would use in order to
solve the same problem .

• The outputs represent either the classification of a number of understandable classes

or the prediction of a set of understandable quantities .

• In practice, all these problems are solved by human experts .

• Examples are expensive to get. This has the consequence that the training sets are.
not very large .

• There are missing attribute values in the data sets.

These data sets represent some of the most challenging problems III the ANN and

machine learning field. They have a small sample size of noisy data.

Chapter 5: Experimental Results

5.1.1 Heart Disease

70

This Heart directory contains 4 databases concerning heart disease diagnosis. The data

was collected from the four following locations:

1. Cleveland Clinic Foundation (cleveland.data)

2. Hungarian Institute of Cardiology, Budapest (hungarian. data)

3. V.A. Medical Center, Long Beach, CA (long-beach-va.data)

4. University Hospital, Zurich, Switzerland (switzerland. data)

The first set which comes from the Cleveland Clinic Foundation and was supplied by

Robert Detrano of the V.A. Medical Center, Long Beach, CA is used. The purpose of the

data set is to predict the presence or absence of heart disease given the results of various

medical tests carried out on a patient. This database contains 13 attributes, which have

been extracted from a larger set of 75. The database originally contained 303 examples.

There are two classes: presence and absence (of heart disease). This is a reduction of the

number of classes in the original data set in which there were four different degrees of

heart disease. The input attributes are discrete on a scale 0 - I (real) and output is 0 or I

(binary).

5.1.2 Diabetes

This data set was originally donated by Vincent Sigillito from Johns Hopkins University

and was constructed by constrained selection from a larger database held by the National

Institute of Diabetes and Digestive and Kidney Diseases. All patients represented in this

data set are females of at least 21 years old and of Pima Indian heritage living near

Phoenix, AZ. The problem posed here is to predict whether a patient would test positive

for diabetes according to World Health Organization criteria given a number of

physiological measurements and medical test results. This is a two class problem with

class value one interpreted as "tested positive for diabetes." There are 500 examples of

class I and 268 of class 2. There are eight attributes for each example. The data set is

rather difficult to classify. The so-called "class" value is really a binarised form of

another attribute which is itself highly indicative of certain types of diabetes but does not

(
"

Chapter 5: Experimental Results 71

have a one to one correspondence with the medical condition of being diabetic. Although

there are no missing values in this dataset according to its documentation, there are

several senseless 0 values. These most probably indicate missing data. Nevertheless, this

data are handled as if it was real, thereby introducing some errors (or noise, if you want)

into the dataset. The input attributes are discrete ona scale 0 - I (real) and output attribute

is binary valued.

5.1.3 Thyroid

This data set comes from the "ann" version of the "thyroid disease" data set from the UCI

ML repository. Original donor is RandolfWernero btained from Daimler-Benz.Two files

were provided. "anntrain.data" contains 3772 learning examples. "ann-test.data" contains

3428 testing examples. There are 21 (IS attributes are binary, 6 attributes are continuous)

attributes for each example. The purpose of the data set is to determine whether a patient

referred to the clinic is hypothyroid. Therefore three classes are built: normal (not

hypothyroid), hyperfunction and subnormal functioning. Because 92 percent of the

patients are not hyperthyroid, a good classifier must be significantly better than 92%. The

input attributes are discrete on a scale 0 - 1 (real) and the 3 output attributes (1, 2, or 3)

are encoded with a l-of-3 encoding (1 0 0, 0 1 0, or 0 0 I).

5.1.4 Breast Cancer

The breast cancer data set was originally obtained from Dr. William H. Wolberg

(physician) at the University of Wisconsin Hospitals, Madison, Wisconsin, USA. The

purpose of the data set is to classify a tumor as either benign or malignant based on cell

descriptions gathered by microscopic examination. The data set contains nine attributes

and 699 examples of which 458 are benign examples and 241 are malignant examples.

There are 9 input attributes, all discrete on a scale 0 - I (real) and I binary output

attribute.

Chapter 5: Experimental Results

5.2 Experimental Setup

72

All the data sets used have been partitioned into three sets: a training set, a validation set,

and a testing set. The training set is used to train ANN by back propagation, the testing

set is used to evaluate the performance of the system. The validation set is not used in this

work. In the following experiments, according to Probenl, each data set is partitioned as

follows .

• For the breast cancer data set, the first 350 examples are used for the training

set, the following 175 examples for the validation set, and the final 174

examples for the testing set.

• For the diabetes data set, the first 384 examples are used for the training set, the

following 192 examples for the validation set, the final 192 examples for the

testing set.

• For the heart disease data set, the first 152 examples are used for the training set,

the following 76 examples for the validation set, and the final 75 examples for

the testing set. .

• For the thyroid data set, the first 3600 examples in "ann-train data" are used for

the training set, the next 1800 for the validation set, and the rest 1800 for the

testing set.

It, however, should be kept in mind that such partitions do not represent the optimal ones

[37]. As said before, the input attributes of the diabetes data set and heart disease data set

are rescaled to between 0.0 and 1.0 by a linear function. The output attributes of all the

problems are encoded using a l-of-output representation for classes. The winner-takes-all

method is used here, i.e., the output with the highest activation designates the class. There

are some control parameters which need to be specified by the user. Most parameters

used in the exp.eriments are set to be the same: the population size (20), the learning rate

(0.25), initial weight range -0.5 to +0.5 etc. These parameters were chosen after some

limited preliminary experiments. They were not meant to be optimal. Actually, enormous

amount of experiments are needed for the parameter tuning and the tuned parameter may

be sub-optimal since parameters are independent and interacts in very complex ways.

Chapter 5: Experimental Results 73

This is true regardless how the parameters are tuned and is based on the observation that

a run on an evolutionary algorithm is intrinsically dynamic and adaptive process (1].

In this approach, the selection mechanism used is the elitist roulette wheel scheme, which

is described in chapter 2 more details. The error function (inverse of fitness) E is

E = 100. Dmax- Dmin f:t(Y(i,f) -Z(i,f») 2

T.n '01 ;01

where the Omax and Om;o are the maximum and minimum values of output coefficients in

the problem representation, n is the number of output nodes, T is the number of patterns

and Y(i,t), Z(i,t) are actual and desired outputs of node for pattern. The values of Oma. and

Om;o are found from the input data set before the evolution starts. The equation above was

suggested by Prechelt [34] to make the error measure less dependent on the size of the

validation set and the number of output nodes. Hence a mean squared error percentage is

adopted. In this thesis, training error and testing error rate refer two different measures.

Training error means the value calculated while training through the error function

described above. And testing error rate is the percentage of testing input patterns that are

incorrectly classified.

5.3 Results

The program is run for different epochs and different generations. Their ranges vary from

one data set to another set. The following table summarizes the results. The Table 5.1

shows average values, standard deviations and best results for number of connections,

number of hidden nodes, number of generations and epochs needed, training and testing

errors of the ANN evolved. Here the best result (* marked) is for the ANN with the least

testing error rate. For the diabetes problem, it has been found in one generation for 200

epochs. So, total time (epoch x generation x ANN) is 200 x I x 20 = 4000 only. Average

number of epochs needed is 127.96 and average number of generations needed is 9.99.

On average an ANN has 6 hidden nodes and 56.7 connections with testing error rate is

0.25108. For thyroid, heart disease, breast cancer problem total time needed is 70000,

13000 and 200 respectively. These are much less than that of the experiments done by

others as shown in the next section.

Chapter 5: Experimental Results

Table 5.1: Experimental outcomes (* ANN with the least testing error rate)

74

Data Sets No. of No. of No. of No. of Training Testing
Connections Hillden Generations El,ochs Enol' Errol' rate

nOlles
Diabetes Mean 56.75555556 6.059259259 9.99259259 127.962 13.001760 0.2510803

SD 23.90824084 2.278265126 12.30368 141.479 1.7322284 0.0390747

Best' 51 6 1 200 11.989235 0.208333

Thyroid Me:m 80.0882353 4.441176471 11.0882353 450.588 2.2820206 0.057467265

SD 40.8429124 2.258870413 15.8733007 883.108 0.9273925 0.031933939

Best' 114 5 1 3500 0.671626 0.027222

Hemt Mean 204.033058 5.73553719 44.702479 117.809 6.2917089 0.13652889

SD 100.599696 2.90335609 57.967756 169.049 3.3793083 0.05559175
Best' 145 4 5 130 4.54072 0.053333

Cancel' Mean 80.3763441 7.77419355 10.2473118 70.5376 2.6638425 0.025806527

SD 58.6144206 4.72304487 12.7156664 124.189 0.7204406 0.016328747

Best' 40 4 1 10 3.658594 0.005714

For the diabetes problem the following trend of generation versus error given in Figure

5.1 is found, error is decreased as generation is increased up to certain level. Generation

versus connections in Figure 5.2 shows that number of connection is minimized around

generation 3. In Figure 5.3, epoch versus error for both generation 5 and 12 are shown.

Figure 5.4 indicates, error is minimized when time is near 30000.

Chapter 5: Experimental Results 75

Diabetes (Epoch 100)12.7

12.6

12.5..g 12.4w

12.3

12.2

12.1
0 2 4 6 8 10 12

Generation

Figure 5.1: Generation Vs Error for diabetes.

Diabetes (Epoch 100)
90
80

III

'" 700:=" 60'"'"'"0 50
0

40
30

0 2 4 6

Generation

8 10 12

Figure 5.2: Generation Vs Connections for diabetes.

Diabetes (for fixed generation)

Gen5
Gen 12

- Poly. (Gen 5)
-Pol. Gen 12

16.5

15.5

.. 14.5
0
t: 13:5w

12.5

11.5

10.5
0 50 100

Epoch

150 200

Figure 5.3: Epoch Vs Error for diabetes.

Chapter 5: Experimental Results 76

Diabetes Error Trend
15

14,5

14.. 13,5
0....w 13

12,5

12

11,5
0 10000 20000 30000 40000 50000

Time (Epoch x ANN x Gen)

Figure 5.4: Time Vs Error for diabetes.

For the thyroid problem, as depicted in Figure 5.5, it is found the following trend of

generation versus error, error is decreased as generation is increased up to certain level.

Generation versus connections in Figure 5,6 shows that number of connection is

minimum around generation 3. In Figure 5.7, epoch versus error for both generation 1

and 7 are shown, Figure 5.8 indicates, error is minimized when time is near 27000,

2
1.9
1.8
1.7..

~ 1.6w
1.5
1.4
1.3
1.2

o 2 4

Thyroid (Epoch> 160)

6 8
Generation

Figure 5.5: Generation Vs Error for Thyroid.

Chapter 5: Experimental Results

180

160

~ 140
o
'" 120u••c: 100c:
~ 80

60
40

o 2

ThyroId (Epoch> 180)

4 6
Generation

8

77

Figure 5.6: Generation Vs Connections for Thyroid.

Thyroid (for fixed generation)

Gao 1
Gao 7

- Poly. (Gao 1)
- Poly. (Gao 7)

4

3.5
3

.~ 2.5
t:w 2
1.5
1

0.5
o 500

Epoch

1000 1500

Figure 5.7: Epoch Vs Error for Thyroid.

Thyroid Error Trend
2.55

.2.05•..g 1.55
UJ
1.05

0.55

0.05
0 100000 200000 300000

Time (Epoch x ANN x Gen)

Figure 5.8: Time Vs Error for Thyroid.

400000

Chapter 5: Experimental Results 78

For the heart disease problem the following trend of generation versus error graph in

Figure 5.9 is found, error is decreased as generations is increased up to certain level.

Generation versus connections in Figure 5.10 shows that number of connection is

maximizing around generation 45. In Figure 5. I I, epoch versus error for both generation

20 and 60 are shown. Figure 5.12 indicates, error is minimized when time is near 26000.

..
~w

4.5

4

3.5

Heart Cleveland (Epoch 130)

3
o 10 20 30 40 50 60

Generation

Figure 5.9: Generation Vs Error for heart disease.

Heart Cleveland (Epoch 130)320
(/)c 2700
:;::
"., 220cc
0
(J 170

120
0 10 20 30 40 50 60 70

Generation

Figure 5.10: Generation Vs Connections for heart disease.

Chapter 5: Experimental Results 79

Heart Cleveland (for fixed generation)

Gen60
Gen20

- Poly. (Gen 60)
- Poly. (Gen 20)

12

10

8..g 6
w

4

2

o
o 100 200 300

Epoch

400 500 600

Figure 5.11: Epoch Vs Error for heart disease.

Heart Error Trend

100000 150000 200000 250000 300000 350000 400000 .
Time (Epoch x ANN x Gen).

Figure 5.12: Time Vs Error for heart disease.

10

a
•.. 6g
w 4

2

0
0 50000

For the breast cancer problem the following trend of generation versus error in Figure

5.13 is found, error is decreased as generation is increased up to certain level. Generation

versus connections in Figure 5.14 shows that number of connection is maximizing around

generation 40. In Figure 5.15, epoch versus error for both generation 1 and 10 are shown.

Figure 5.16 indicates error is minimized when time is near 22000.

Chapter 5: Experimental Results 80

Cancer (Epoch 10)
3.4
3.2

3
g 2.8
w2.6

2.4

2.2
2
o 10 20 30 40 50

Generation

Figure 5.13: Generation Vs Error for breast cancer.

220
.,
c 1700

""<J.,
c 120c
0
u 70

20
0 10 20

Cancer (Epoch 10)

30
Generation

40 50

Figure 5.14: Generation Vs Connections for breast cancer.

Chapter 5: Experimental Results 81

600400

Cancer (for fixed generation)

Gen 1
Gen 10

- Poly. (Gen 1)

- Poly. (Gen 10)

200

4

3.5
•.. 3
0•..•..w 2.5

2
1.5

0
Eooch

Figure 5.15: Epoch Vs Error for breast cancer.

3.5

3
•..g 2.5
w

2

1.5
a

Cancer Error Trend

10000 20000 30000

Time (Epoch x ANN x Gen)

Figure 5.16: Time Vs Error for breast cancer.

40000

Here is now given an example of ANN, both cellular encoding and direct encoding. It is

taken the best (in term ofleast error rate) ANN found in breast cancer data set. The CE of

this ANN is: PAR, PAR, SEQ, CUT 30, CUT 21, CUT 22, MRG 20, END, PAR, END,

END, END, END. The program symbol tree is shown in Figure 5.17.

•,

Chapter 5: Experimental Results

Figure 5.17: PST of the best ANN found in breast cancer problem.

The corresponding direct encoding is shown in Figure 5.18 too.

0123"5678901201
0100000000111100
1100000000111100
2100000000111100
3100000000000100
.•100000000111000
5100000000111100
6100000000111100
7100000000111100
8100000000111100
9210000000000011
1002 10 00 00 00 0 0 0 1 1
11210000000000011
122 10 I)I)0 I)0 0 0 I)0 I)1 1

Figure 5.18: DE of the best ANN found in breast cancer problem.

5.4 Comparison with other works

82

Direct comparison with other evolutionary approaches to designing ANN is very difficult

due to the lack of such results. Instead, the best and latest results available in the

literature, regardless of whether the algorithm used was an evolutionary, a BP or a

statistical one, are used in the comparison. It is possible that some papers which should

have been compared with were overlooked. However, the aim of this thesis is not to

compare this algorithm exhaustively with all other algorithms.

Chapter 5: Experimental Results 83

First, the results are compared with EPNet [62] although the data sets used for some

problems may differ. For example, for the heart disease problem EPNet does not used 27

disputable patterns, but here is used. For heart disease, thyroid and breast cancer

problems, the partitions into training and testing data sets are not matched too. Yet, one

can have a rough comparison among the experimental outcomes as shown in Table 5:2

through Table 5.5. Here the best result (* marked) found in this approach is for the ANN

with least testing error rate. Whereas the best counted in EPNet was based on

compactness of the evolved ANN.

Although EPNet can evolve very compact ANN which generalizes well, they come with

the cost of additional computation time in order to perform search. The total time needed

in the breast cancer problem, for example, by EPNet was very high. It could require

roughly 109,000 epochs for a single run [62] whereas it is on average around 14,000 in

this approach. Although, the actual time was less since few runs reached the maximal

number of generations. Similar estimations can be applied to other problems.

Table 5.2: Comparison with EPNet for heart disease problem.

He:lr! No. of No. of No. of No. of Tl'niIung resting
COlluections Hidden Gt'1l("l'atiollS E])ot'lls Error Error ratE'

Data Set uo(l(>s

EPNet Me~Ul 92.6 4.1 19.1.3 500<! 10.708 0.16765,
SD 40.8 21 60.3 0.748 0.02029

Boot 34 1 120 - 8.848 0.13235

0111' MeRII 204.033058 5.73553719 44.702479 117.809 6.2917089 0.13652889
appronrll SD 100.599696 2.90335609 57.967756 169.049 3.3793083 0.05559175

Bpst. 145 4 5 130 4.54072 0.053333

Table 5.3: Comparison with EPNet for diabetes problem.

Diabetes No. of No. of No. of No. of Tl'nillillg resting
Conufctions Illddell Gt>IlNlltiOIlS EIlOfhs Error Errol' I'ate

Data Set nodes

EPNet MeRII 52.3 3.4 132.2 400'2 16.674 0.22379'

SD 16.1 . 1.3 48.7 0.294 0.00014

B••t 27 1 100 16.092 0.19271

Our MeRn 56. i5555556 6.059159159 9.99159159 127.962 13.001760 0.2510803
appr(Ulc11 SD 23.90824084 2.278265126 12.30368 141.479 1.7322284 0.0390747

Best. 51 6 1 ZOO 11.989235 0.208333

Chapter 5: Experimental Results

Table 5.4: Comparison with EPNet for Thyroid problem.

84

Thyroid No. of No. of No. of No. of T!'ahung Testhlg
COllnections Ifill lIen Gellel':-ltiolls Eporlt, E!'!'o!' Erro!' !'ate

Data Set nOlle,

EPNel Mean 219.6 5.9 45.0 350};3 OAi 0.02115

SD i436 2.4 12.5 0.091 0.00220

Best 128 3 10 0.336 0.01634

A'" Mean 80.0882353 4.4411 i64 71 11.0882353 450.588 2.2820206 0.05i46i265
fllJJJTOlld, SD 40.8429124 2.2588i0413 15.8i3300i 883.108 0.92i3925 0.03193.1939

Be,t* 114 S 1 3S00 0.6i2626 0.02i222

Table 5.5: Comparison with EPNet for breast cancer problem.

Cancer No. of No. of No. of No. of Training Testing
COllnections lfidllen Generations EpoellS EITOI' Errol' rate

Data Set nodes

EPNel !I1e,m 41.0 2.0 13i.3 400x2 3.246 0.013i6

SD 14.i 1.1 Hi 0.589 0.00938

. Be,t IS 0 100 1.544 0.00

Our Mean SO.3i63441 i. ii419355 10.24i3118 iO.53i6 2.6638425 0.02580652i
opproad, SD 58.6144206 4.i230448i 12.i156664 124.189 0.i204406 0.016328i4i

Be~t" 40 4 1 10 3.658594 0.005714

It is also compared with the results of different other works (L Prechelt, W. Schiffman, R.

Miranda, K. Bennet, O. L. Mangasarian, R. Werner, R. Reed, A. Roy, S. Govil etc). The

following tables (Table 5.6 through Table 5.9) show them concisely. Here the

evolutionary system proposed beats all other systems except for the thyroid data set as

shown in Table 5.9.

For the heart disease problem, Table 5.6 shows results from this algorithm and other

neural and non-neural algorithms. The GM algorithm [3] is used to construct RBF

networks. It produced a RBF network of 24 Gaussians with 18.18% testing error. Bennet

and Mangasarian [30] reported a testing error rate of 16.53% with their MSMI method,

25.92% with their MSM method, and about 25% with BP, which is much worse than the

worst ANN evolved here. The best manually designed ANN achieved 14.78% testing

Chapter 5: Experimental Results 85

error [34], which is worse than the best result of this approach, 5.33%. Again, Panayiota

et. al. [39] found 16.8% training error rate and 27.4% testing error rate by their enhanced

guided annealing technique.

Table 5.6: Comparison with other works for heart disease problem.

Hellit RBFofGM Bell/1ft - Beullet- Bellllet - Malllm//y Ollr

D'lta Set a/goriUlI/l ;'\lallga.1'fl1ia~/- M(II/garariall 111fl1lga,mna1t Desiglled approadl
(MSMI) (MSAf) (BP) ANN

Error l"lIteof 18.18% 16.53% 25.92% 25% 14.78% 5.33%
tIle Best ANN

For the breast cancer problem, Prechelt [34] reported results on manually constructed

ANN (denoted as HDANN's) after testing a number of different ANN architectures.

Table 5.7 shows that this approach found better ANN with error rate 0.5714% whereas it

is 1.149% with HDANN. Again, Panayiota et.al. [39] found 2.35% training error rate and

4.7% testing error rate by their enhanced guided annealing technique. Ravi et. al. got it

upto 95.5% accuracy level by their ALAR method [45].

Table 5.7: Comparison with other works for breast cancer problem.

Cancel' HDANNS~, OTtr
Data Set trial azul errl'r flpproflc11

Error I'ate of 1.149% 0.5714%
the Best ANN

The diabetes problem is one of the most challenging problems in ANN and machine

learning due to its relatively small data set and high noise level. In the medical domain,

data are often very costly to obtain. It would be unreasonable if an algorithm relies on

more training data to improve its generalization. Table 5.8 compares the result with that

one produced by Prechelt [34]. He found an ANN with eight hidden node which achieved

the testing error rate of 0.2135 (21.35%), while ANN with the testing error rate of 0.2083

(20.83%) is achieved here outperforming his results.

••

Chapter 5: Experimental Results

Table 5.8: Comparison with other works for diabetes problem.

Diabetes Prec1u/t Our

Data Set {lppro{lch

El'l'ol' l'ate of 21.35% 20.83%,
the Best ANN

86

Schiffmann et al. [59] tried the thyroid problem using a 21-20-3 network. They found that

several thousand learning passes were necessary to achieve a testing error rate of 2.6%

for this network. They also used their genetic algoritlun to train multilayer ANN on the

reduced training data set containing 713 examples. They obtained a network with testing

error rate 2.5%. These results are slightly better than those generated by the ANN

evolved by this approach. Table 5.9 summarizes the above results.

Table 5.9: Comparison with other works for thyroid problem.

Thyroid Scllijfil/Illut et (1/. SclliffiJlll1l11et aI. Ollr

D'ltll Set 21-2 O-.~1/et MII/ti/flyer ANN (lpproflcll

Error l'llte of . 2.6%, 2.5% 2.7%
the Best ANN

Chapter 6

Conclusion & Future Research

6.1 Concluding Remarks

This thesis presents a new indirect encoding scheme, known as MCE, based on CE for

evolving feedforward ANNs. The salient feature MCE is that it does not permutation

problem of conventional crossover operator of Gas. A close and complete set of program

symbols is chosen to generate the PSTs, i.e. the genotypes of ANNs. Some symbols of

CE are excluded and the functionalities of other symbols are changed. New restrictions

are also imposed on their appearances in the PSTs. These upgradations of CE result a

permutation problem free encoding.

Consequently, one can employ the genetic operator crossover on the genotypes of ANNs

in the evolutionary system, that is, the difficulties in producing highly fit offspring would

no longer exist with crossover operators. Here, crossover tries all kinds of evolutions, i.e.

deletion or addition of nodes and connections. Close behavioural link between the parents

and their offspring is maintained by adopting a number of techniques. For example,

partial training is always employed after each architectural change in order to reduce the

behavioural disruption to an individual. To reduce the drastic change of architecture (and

behaviour) from parents to their children, crossover is allowed at the lower levels ofPSTs

with higher probability. A hidden node is not added to an existing ANN at random, but

through splitting an existing node by means of an additional program symbol to its PST.

The proposed genetic search algorithm in this paper implements these strategies which

imply significant improvement is the reduction of the number of user specified

parameters. Since this approach searches a much larger space than that searched by most

Chapter 6: Conclusion & Future Research 88

other constructive or pruning algorithms and thus seems to require longer computation

time, but it outperforms the time needed in other contemporary works.

6.2 Future Directions

In this subsection, four directions are given to extend the research followed in this thesis.

a) One of the important goals of the contemporary research going on the evolutionary

artificial neural network is to reduce evolution time. In the evolutionary search training

algorithm is not applied directly on the genotypes of the population. Rather a conversion

of the cellular encoding to direct encoding is performed to learn current population

through backpropagation. If it can be saved this conversion time by incorporating directly

the cellular encodings with the training phase, then significant improvement in the

generation time will be gained. Researchers are still waiting for an efficient training

algorithm directly applicable over cellular encoded neural networks.

b) Another future research direction can be reducing the number of user defined

parameters. Not only that, evolutionary parameters can be made adaptive with the search

performance. Eiben et.al. [I] describe in details why it is necessary. As mentioned earlier,

parameter tuning by hand is a common practice in evolutionary computation. Typically,

one parameter is tuned at a time, which may cause some sub-optimal choices, since

parameters are not independent and they often interact in a complex way. Simultaneous

tuning of more parameters, however, leads to an enormous amount of experiments. Also,

it is intuitive that different values of parameters might be optimal at different stages the

dynamic evolutionary process. Hence adaptive (with respect to search stages /

performances) parameters may lead to superior search result.

c) In order to reduce the noise in fitness evolution, the evolutionary system can evolve

ANN architectures and weights simultaneously. Learned architectures and weights in

one generation are inherited by the next generation. This is closer to the Lamarckian

evolution than to the Darwinian one. Also, this is quite different from most genetic

approaches where only architectures not weights are passed to the next generation [62].

d) To improve the rate of convergence in the training process for ANN one can follow

the parallel nonlinear optimizing techniques proposed recently by Paul et. al. [40], which

Chapter 6: Conclusion & Future Research 89

ultimately will speed up the evolutionary search. Also, ANN task decomposition method

can be adopt based on output parallelism [51] to increase learning speed. Divide and

conquer (DeL) scheme by Hsin et. al. [26] and the suggestions for associative memories

proposed by Yingquan et. al. [63] can also be considered.

e) One of the future improvements would be giving more attention to the compactness of

the evolved ANN. For example, the EPNet algorithm of Xin Yao et. al. [62] produces

very compact ANN which is an attractive property of their evolutionary approach. But

this is achieved at the cost of longer computation time. Thus, if a new evolutionary

system can be proposed that encourages the parsimony of the evolved ANN without

compromising the evolution time, it will be a very appreciable.

Bibliography

[I] Agoston E. Eiben, Robert Hinterding, and Zbigniew Michalewicz, "Parameter control

in evolutionary algorithms", IEEE Trans. on Evolutionary Computation, vol. 3, pp: 124-

141,1999.

[2] Aristid Lindenmayer, "Mathematical Models for Cellular Interactions In

Development", in Journal o/Theoretical Biology, vol. 18, pp. 280-299,1968.

[3] A. Roy, S. Govil, and R. Miranda, "An algorithm to generate radial basis function

(RBF)-like nets for classification problems," Neural Networks, vol. 8, pp. 179-20 I, 1995.

[4] Avelino J. Gonzalez, and Douglas D. Dankel, "The Engineering of Knowledge-based

Systems", Prentice-Hall Inc. ISBN 0-13-334293-X, 1993.

[5] Bart L. M. Happel, and Jacob M. J. Murre, "Design and Evolution of Modular Neural

Network Architectures", in Neural Networks, vol. 7, no. 6/7, pp. 985-1004, 1994.

[6] C. M. Friedrich and C. Moraga, "An evolutionary method to find good building

blocks for architectures of artificial neural networks", Proceedings of the Sixth

International Conference on Information Processing and Management of Uncertainty in

Knowledge Based Systems, pp. 951-956, 1996.

[7] Christian Jacob, and Jan Rehder, "Evolution of Neural Net Architectures by a

Hierarchical Grammar-based Genetic System", in Proceedings of the International Joint

Conference on Neural Networks and Genetic Algorithms, Innsbruck, pp. 72-79, 1993. ..

Bibliography 91

[8] Data and Analysis Center for Software, "Artificial Neural Networks Technology",

http://www.dacs.dtic.mil/techs/neural/neural. title.html, Rome. NY, August, 1992.

[9] David W. White, "GANNet: A genetic Algorithm for Searching Topology and

Weight Spaces in Neural Network Design", Dissertation at the University of Maryland,

1993.

[10] David E. Goldberg, "Genetic algorithms in search, optimization, and machine

learning", published by Pearson Education (Singapore) Pte Ltd, ISBN 81-7808-130-X,

Fifth Indian Reprint, pp. 10-14, pp. 236-238, 2002.

[11] David J. Montana, "Automated Parameter Tuning for Interpretation of Synthetic

Images", in the Handbookfor Genetic Algorithms, pp. 282-311, 1991.

[12] D. B. Fogel, "Evolutionary computation: towards a new philosophy of machine

intelligence", IEEE Press, NY 10017-2394, 1995.

[13] D. Montana, and L. Davis, "Training Feedforward Neural Networks using Genetic

Algorithms", in Proceedings of the lith International Joint Conference on Artificial

Intelligence, Morgan Kaufmann, pp. 762-767,1989.

[14] Darell Whitley, 1. David Schaffer, and Larry J. Eshelman, "Combinations of genetic

algorithms and neural networks: A survey of the State of the Art", in Proceedings of the

International Workshop on Combinations of genetic algorithms and neural networks,

Baltimore, IEEE, pp. 1-37, 1992.

[15] D. Whitley, T. Starkweather, and C. Bogart, "Genetic algorithms and neural

networks: optimizing connections and connectivity", in Parallel Computing 14, North-

Holland, pp. 347-361, 1990.

http://www.dacs.dtic.mil/techs/neural/neural.

Bibliography 92

[16] Egber Boers, and Herman Kuiper, "Biological Metaphors and the Design of Modular

Artificial Neural Networks", Master thesis at Leiden University, the Netherlands, 1992.

[17] Fatemeh Zahedi, "Intelligent Systems for Business: Expert Systems with Neural

networks", Wadsworth Inc. ISBN 0-534-18888-5,1993.

[18] Frederic Gruau, "Neural network synthesis using cellular encoding and the genetic

algorithm", Ph.D. Thesis, Ecole Normale Superieure de Lyon, 1994.

[19] Frederic Gruau and Darrell Whitley, "Adding learning to the cellular development of

neural networks: evolution and the baldwin effect", Evolutionary Computation, vol. I,

pp. 213-233, 1993.

[20] Frederic Gruau, Darrell Whitley and Larry Pyeatt, "A comparison between cellular

encoding and direct encoding for genetic neural networks", Proceedings of the First

Genetic Programming Conference, pp. 81-89, 1996.

[21] F. Kursawe, "Evolution Strategies: Simple Models of Natural Processes", Revue

Internationale De Systemique, France, 1994.

[22] Geoffrey F. Miller, Peter M. Todd, and Shailesh U. Hedge, "Designing Neural

Networks using Genetic Algorithms", in Proceedings of the Third International

Conference on Genetic Algorithms, Morgan Kaufmann, pp. 379-384, 1989.

[23] Hiroaki Kitano, "Designing Neural Networks Using Genetic Algorithms with Graph

Generation Systems", in Complex Systems, no. 4, pp. 461-476, 1990.

[24] Hiroaki Kitano, "Empirical Studies on the Speed of Convergence of Neural Network

Training using Genetic Algorithms", in Eighth National Conference on Artificial

Intelligence, AAAI, MIT Press, vol. II, pp 789-795, 1990.

Bibliography 93

[25] H. Schwefel, "Collective Phaenomena in Evolutionary Systems", 31st Annual Meet.

Inter'l Soc. for general system research, Budapest, 1025-1033, 1987.

[26] Hsin-Chia Fu, Yen-Po Lee, Cheng-Chin Chiang and Hsiao-Tien Pao, "Divide and

Conquer Learning and Modular Perceptron Networks", IEEE transactions on neural

networks, vol 12, no 2, pp 250, March 2001.

[27] John R. Koza, and James P. Rice, "Genetic Generation of Both the Weight and

Architecture for a Neural Network", in Proceedings of the International Joint Conference

on Neural Networks, IEEE, vol. II, pp. 397-404, 1991.

[28] J. M. Bishop, and M. J. Bushnell, "Genetic Optimization of Neural Network

Architectures for Colour Recipe Prediction", in Proceedings of the International Joint

Conference on Neural Networks and Genetic Algorithms, Innsbruck, pp. 719-725,1993.

[29] J. P. Nadal, "Study of growth algorithm for a feedforward network", International

Journal of Neural Systems, vol. 1, pp. 55-59,1989.

[30] K. P. Bennet, and O. L. Mangasarian, "Robust Linear Programming Discrimination

of Two Linearly Inseparable Sets," Optimization Methods Software, vol. 1, pp. 23-34, .

1992.

[31] Leonardo Marti, "Genetically Generated Neural Networks II: Searching for an

Optimal Representation", in IEEE International Joint Conference on Neural Networks,

vol. II, p. 221-226, 1992.

[32] L. Fausett, "Fundamentals of Neural Networks", Englewood Cli.fft, Prentice-Hall

Inc., pp. 461, 1994.

[33] L. 1. Fogel, A. J. Owens, and M. J. Walsh, "Artificial intelligence through simulated

evolutionary", New York, NY: John Wiley & Sons, 1996.

Bibliography 94

[34] L. Prechelt, "Proben I-A set of neural network benchmark problems and

benchmarking rules," Fakultat fur Informatik, Univ. Karlsruhe, Karlsruhe, Germany,

Tech. Rep. 21/94, Sept. 1994.

[35] Marko Gronroos, "A comparison of some methods for evolving neural networks";

Proceedings of GECCO'99, Morgan Kaufmann Publishers, San Francisco, California,

vol. 2, 1999.

[36] Martin Mandischer, "Representation and Evolution of Neural Networks", in

Proceedings of the International Joint Conference on Neural Networks and Genetic

Algorithms, Innsbruck, pp. 643-649, 1993.

[37] Md. Monirul Islam, Xin Yao, Kazayuki Murase, "A Constructive Algorithm for

Training Cooperative Neural Network Ensembles", IEEE transactions on neural
networks, vol 14, no 4, pp 820, July 2003.

[38] N. Burgess, "A constructive algorithm that converges for real-valued input patterns",

International Journal of Neural Systems, vol. 5, no. 1, pp. 59-66, 1994.

[39] Panayiota Poirazi, Costas Neocleous, Costantinos S. Patti chis and Cristos N ..

Schizas, "Classification Capacity of a Modular Neural Network Architecture and

Implementing Neurally Inspired Architecture and Training Rules", IEEE transactions on
neural networks, vol 15, no 3, pp 597, May 2004.

[40] Paul K. H. Phua, Daohua Ming, "Parallel Nonlinear Optimization Techniques for

Training Neural Networks", IEEE transactions on neural networks, vol 14, no 6, pp

1460, Nov 2003.

[41] Philipp Kohn, "Genetic encoding strategies for neural networks", Master's thesis,
University of Tennessee, Knoxville, IPMU, 1996.

Bibliography 95

[42] Petri Hodju, and Jokko Halme, "Neural Networks Information Homepage",

http://kotimbnetji/-phodju/nenet/index.html, Copyright (c) 1999.

[43] P. J. Angeline, G. M. Sauders and 1. B. Pollack, "An evolutionary algorithm that

constructs recurrent neural networks", IEEE Trans. on Neural Networks, vol. 5, no. 1, pp.

54-65, 1994.

[44] P. J. B. Hancock, "Genetic algorithms and permutation problems: a comparison of

recombination operators for neural net structure specification", Proc. of the Int'l

Workshop on Combinations of Genetic Algorithms and Neural Networks (COGANN-92)

(D. Whitley and 1. D. Schaffer, eds.), IEEE Computer Society Press, Los Alamitos, CA,

pp.l08-122,1992.

[45] Ravi Kothari and Vivek Jain, "Learning from labeled and unlabeled data using a

minimal number of queries", IEEE transactions on neural networks, vol 14, no 6, pp

1496, Nov 2003.

[46] Resonance Publications, Inc, "Neural Networks", http://www.Resonancepub.com

neuralnets.htm, June, 1998.

[47] R. K. Belew, J. Mcinerney, and N. N. Schraudolph, "Evolving networks: Using

genetic algorithm with connectionist learning," Computer Sci. Eng. Dept., Univ.

California-San Diego, Tech. Rep. CS90-174 revised, Feb. 1991.

[48] R. Reed, "Pruning algorithm - a survey", IEEE Trans. on Neural Networks, vol. 4,

no.5,pp. 740-747,1993.

[49] R. Setiono and L. C. K. Hui, "Use of a quasi-newton method in a feed forward neural

network construction algorithm", IEEE Trans. 0/1 Neural Networks, vol. 6, no. I, pp. 273-

277, 1995.

http://kotimbnetji/-phodju/nenet/index.html,
http://www.Resonancepub.com

Bibliography 96

[50] S. E. Fahlman and C. Lebiere, "The cascade-correlation learning architecture",

Advances in Neural Information Processing Systems 2 (D. S. Touretzky, ed.), Morgan

KaufmaJm, San Mateo, CA, pp. 524-532, 1990.

[51] Sheng Uei Guan and Shanchun Li, "Parallel growing and training of neural networks

using output parallelism", IEEE transactions on neural networks, vol 13, no 3, pp 542,

May 2002.

[52] Simon Haykin, "Neural networks: a comprehensive foundation", published by

Prentice Hall International, Inc., Upper Saddle River, New Jersey 07458, ISBN 0-13-

908385-5, pp. 161-175, 1999.

[53] Steven Alex Harp, and Tariq Samad, "Genetic Synthesis of Neural Network

Architecture", in Handbook of GeneticAlgorithms, pp. 202-221, 1991.

[54] Steven Alex Harp, Tariq Samad, and Aloke Guha, "Towards the Genetic Synthesis

of Neural Networks", in Proceedings of the Third International Conference on Genetic

Algorithms, Morgan Kaufinann, pp. 360-369, 1989.

[55] Talib Hussain, "Cellular encoding: review and critique", Queen's University, July'
19, 1997.

[56] Vittorio Maniezzo, "Searching among Search Spaces: hastening the genetic

evolution of feed-forward neural networks", in International Joint Conference on Neural

Networks and Genetic Algorithms, Innsbruck, pp. 635-642, 1993.

[57] Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distribution of

Neural Networks", in IEEE Transactions of Neural Networks, vol. 5, No.1, pp 39-53,

1994.

Bibliography 97

[58] Wolfram Schiffinann, Merten Joost, and Randolf Werner, "Performance Evaluation

of Evolutionary Created Neural Network Topologies", in Parallel Problem Solving from

Nature 2, H.P. Schwefel and R. Maenner, Springer Verlag, pp. 292-296, 1991.

[59] W. Schiffmann, M. Joost, and R. Werner, "Synthesis and Performance Analysis of

Neural Network Architectures", Technical Report 16, University of Koblenz, Germany,

fip:/ /archive.cis.ohio-state.edu(128.146.8 .52)/pub/neuroprose/schiff.nnga.ps.Z, 1992.

[60] W. Schiffmann, M. Joost, and R. Werner, "Application of Genetic Algorithms to the

Construction of Topologies for Multilayer Perceptrons", in Proceedings of the

International Joint Conference on Neural Networks and Genetic Algorithms, Innsbruck,

pp. 675-682, 1993.

[61] W. S. Sarle, "futroduction. Periodic posting to the Usenet newsgroup", URL:

jip://ftp.sas.com/pub/neural/FAQ.html, Neural Network FAQ, part I of7, 1999.

[62] Xin Yao and Yong Liu, "A new evolutionary system for evolving artificial neural

networks", IEEE transactions on neural networks, vol 8, no 3, pp 694-713,1997.

[63] Yingquan Wu and Stella N. Batalama, "An efficient learning algorithm for

associative memories", IEEE transactions on neural networks, vol 11, no 5, pp 1058,

Sept 2000.

_________________ A_l!Pendix A

Neural Network Glossary

In this section some of the common terms about neural networks and genetic evolution,

which have not discussed in the previous chapters, are given for the interested reader.

Activation I Initialization function: The time-varying value that IS the output of a

neuron.

Artificial Intelligence: An interdisciplinary approach to understanding human

intelligence that has its common thread the computer as an experimental vehicle.

Associative memory: Also called 'content-addressable' memory. This type of memory is

not stored on any individual neuron but is a property of the whole network. It is by

inputting to the network part of the memory. This is very different from conventional

computer memory where a given memory (or piece of data) is assigned a unique address

which is needed to recall that memory.

Baldwin effect: In hybrid strategies, the effect of usmg the individual's fitness

determined by the objective function value after application of a local search. The

individual's genotype serves as initial condition of the local search. However, unlike

Lamarckian evolution, the individual's genotype remains unchanged.

Bias: The net input (or bias) is proportional to the amount that incoming neural

activations must.exceed in order for a neuron to fire.

Appendix 99

Connectivity: The amount of interaction in a system, the structure of the weights in a

neural network, or the relative number of edges in a graph.

Elitism! elitist selection: Property of selection methods, which guarantees the survival of

the best individual(s).

Encode network: A perceptron network designed to illustrate that the hidden layer nodes

playa crucial role in allowing the network to learn about special features in the input

patterns. Once it has learnt about the' generalized' features of the training pattern sit it can

respond usefully in new situations.

Epoch: One complete presentation of the training set to the network during training.

Fitness: Evaluation of an individual with respect to its reproduction capability. Selection

in EA is based on the fitness. Generally, it is determined on the basis of the objective

value(s) of the individual in comparison with all other individuals in the selection pool.

The fitness function may additionally depend on different side conditions/constraints and

stochastic influences (fitness noise/noisy fitness). The term "fitness function" is often

used as a synonym for objective function. It varies greatly from one type of program to

the next. For example, if one were to create a genetic program to set the time of a clock,

the fitness function would simply be the amount of time that the clock is wrong.

Unfortunately, few problems have such an easy fitness function; most cases require a

slight modification of the problem in order to find the fitness.

Generalization: A measure of how well a network can respond to new images on which

it has not been trained but which are related in some way to the training patterns. Ail

ability to generalize is crucial to the decision making ability of the network.

Genotype: In EA with genotype-phenotype mapping, the genotype is the representation

on which the crossover and mutation operators are applied to (see also phenotype).

Appendix 100

Hopfield network: A particular example of an artificial neural network capable of

storing and recalling memories or patterns. All nodes in the network feed signals to all

others.

Input layer: Neurons whose inputs are fed from the outside world.

Lamarckian evolution: Adjustment of the genotype to the locally optimized offspring

(local search) in hybrid strategies.

Layer: A group of neurons that have a specific function and are processed as a whole.

The most common example is in a feedforward network that has an input layer, an output

layer and one or more hidden layers.

Learning parameter: Also learning rate, in self-adaptive ES/EP, an exogenous strategy

parameter which influences the speed of self-adaptation of the mutation strength

Linear Networks: A general scientific principal is that a simple model should always be

chosen in preference to a complex model if the latter does not fit the data better. In terms

of function approximation, the simplest model is the linear model, where the fitted

function is a hyperplane. In classification, the hyperplane is positioned to divide the two

classes (a linear discriminant function); in regression, it is positioned to pass through the

data. A linear model is typically represented using an N x N matrix and an N x 1 bias

vector.

A neural network with no hidden layers, and an output with dot product synaptic function

and identity activation function, actually implements a linear model. The weights

correspond to the matrix, and the thresholds to the bias vector. When the network is

executed, it effectively multiplies the input by the weights matrix then adds the bias

vector.

The linear network provides a good benchmark against which to compare the

performance of your neural networks. It is quite possible that a problem that is thought to

be highly complex can actually be solved as well by linear techniques as by neural

Appendix 101

networks. If you have only a small number of training cases, you are probably anyway

not justified in using a more complex model.

Multilayer-perceptron (MLP): This is perhaps the most popular network architecture in

use today, due originally to Rumelhart and McClelland (1986) and discussed at length in

most neural network textbooks (e.g., Bishop, 1995). MLP is a type of feedforward neural

network that is an extension of the perceptron in that it has at least one hidden layer of

neurons. Layers are updated by starting at the inputs and ending with the outputs. Each

neuron computes a weighted sum of the incoming signals, to yield a net input, and passes

this value through its sigmoidal activation function to yield the neuron's activation value.

Unlike the perceptron, an MLP can solve linearly inseparable problems. A graphical

representation of an MLP is shown below.

Input
La,."

First
Hidden
La""

Second
Hidden
La""

Output
La,."

Figure A.I: A multilayer perceptron.

Neuron: A simple computational unit that performs a weighted sum on incoming signals,

adds a threshold or bias term to this value to yield a net input, and maps this last value

through an activation function to compute its own activation. Some neurons, such as

those found in feedback or Hopfield networks, will retain a portion of their previous

activation.

Appendix 102

Output neuron: A neuron within a neural network whose outputs are the result of the

network.

Over-learning and Generalization: One major problem with the approach outlined

above is that it doesn't actually minimize the error that one is really interested in - which

is the expected error the network will make when new cases are submitted to it. In other

words, the most desirable property of a network is its ability to generalize to new cases.

In reality, the network is trained to minimize the error on the training set, and short of

having a perfect and infinitely large training set, this is not the same thing as minimizing

the error on the real error surface - the error surface of the underlying and unknown

model. The most important manifestation of this distinction is the problem of over-

learning, or over-fitting.

How can one select the right complexity of network? A larger network will almost

invariably achieve a lower error eventually, but this may indicate over-fitting rather than

good modeling. The answer is to check progress against an independent data set, the

selection set. Some of the cases are reserved, and not actually used for training in the

back propagation algorithm. Instead, they are used to keep an independent check on the

progress of the algorithm. It is invariably the case that the initial performance of the

network on training and selection sets is the same (if it is not at least approximately the

same, the division of cases between the two sets is probably biased). As training

progresses, the training error naturally drops, and providing training is minimizing the

true error function, the selection error drops too. However, if the selection error stops

dropping, or indeed starts to rise, this indicates that the network is starting to overfit the

data, and training should cease. When over-fitting occurs during the training process like

this, it is called over-learning. In this case, it is usually advisable to decrease the number

of hidden units and/or hidden layers, as the network is over-powerful for the problem at

hand. In contrast, if the network is not sufficiently powerful to model the underlying

function, over-learning is not likely to occur, and neither training nor selection errors will

drop to a satisfactory level.

Appendix 103

Perceptron: An artificial neural network capable of simple pattern recognition and

classification tasks. It is composed of three layers where signals only pass forward from

nodes in the input layer to nodes in the hidden layer and finally out to the output layer.

There are no connections within a layer.

Phenotype: Expression of the properties coded by the individual's genotype. The

expression/development of the phenotype can additionally be influenced by (stochastic)

constraints. The precise definition is mostly problem-dependent. For parameter

optimization the phenotype is usually identical with the object parameters, whereas for

structure optimization (e.g. of neural networks) the phenotype represents a specific

structure.

Population: Pool of individuals exhibiting equal or similar genome structures, which

allows the application of genetic operators

Probabilistic Neural Networks: A useful interpretation of network outputs was as

estimates of probability of class membership, in which case the network was actually

learning to estimate a probability density function (p.d.f.). A similar useful interpretation

can be made in regression problems if the output of the network is regarded as the

expected value of the model at a given point in input-space. This expected value is related

to the joint probability density function of the output and inputs.

Estimating probability density functions from data has a long statistical history (Parzen,

1962), and in this context fits into the area of Bayesian statistics. Conventional statistics

can, given a known model, inform us what the chances of certain outcomes are (e.g., it is

known that an unbiased die has a 1I6th chance of coming up with a six). Bayesian

statistics turns this situation on its head, by estimating the validity of a model given

certain data. More generally, Bayesian statistics can estimate the probability density of

model parameters given the available data. To minimize error, the model is then selected

whose parameters maximize this p.d.f.

In the context of a classification problem, if one can construct estimates of the p.d.f.s of

the possible classes, one can compare the probabilities of the various classes, and select

Appendix 104

the most-probable. This is effectively what one ask a neural network to do when it learns

a classification problem - the network attempts to learn (an approximation to) the p.d.f.

A more traditional approach is to construct an estimate of the p.d.f. from the data. The

most traditional technique is to assume a certain form for the p.d.f. (typically, that it is a

normal distribution), and then to estimate the model parameters. The normal distribution

is commonly used as the model parameters (mean and standard deviation) can be

estimated using analytical techniques. The problem is that the assumption of normality is

often not justified.

An alternative approach to p.d.f. estimation is kernel-based approximation (Parzen, 1962;

Speckt, 1990; Speckt, 1991; Bishop, 1995; Patterson, 1996). One can reason loosely that

the presence of particular case indicates some probability density at that point: a cluster

of cases close together indicate an area of high probability density. Close to a case, one

can have high confidence in some probability density, with a lesser and diminishing level

as one moves away. In kernel-based estimation, simple functions are located at each

available case, and added together to estimate the overall p.d.f. Typically, the kernel

functions are each Gaussians (bell-shapes). If sufficient training points are available, this

will indeed yield an arbitrarily good approximation to the true p.d.f.

This kernel-based approach to p.d.f. approximation is very similar to radial basis function

networks, and motivates the probabilistic neural network (PNN) and generalized

regression neural network (GRNN), both devised by Speckt (1990 and 1991). PNNs are

designed for classification tasks and GRNNs for regression. These two types of network

are really kernel-based approximation methods cast in the form of neural networks.

In the PNN, there are at least three layers: input, radial, and output layers. The radial units

are copied directly from the training data, one per case. Each models a Gaussian function

centered at the training case. There is one output unit per class. Each is connected to all

the radial units belonging to its class, with zero connections from all other radial units.

Hence, the output units simply add up the responses of the units belonging to their own

class. The outputs are each proportional to the kernel-based estimates of the p.d.f.s of the

various classes, and by normalizing these to sum to 1.0 estimates of class probability are

produced.

Appendix 105

The greatest advantages of PNNs are the fact that the output is probabilistic (which

makes interpretation of output easy), and the training speed. Training a PNN actually

consists mostly of copying training cases into the network, and so is as close to

instantaneous as can be expected.

The greatest disadvantage is network size: a PNN network actually contains the entire set

of training cases, and is therefore space-consuming and slow to execute.

PNNs are particularly useful for prototyping experiments (for example, when deciding

which input parameters to use), as the short training time allows a great number of tests

to be conducted in a short period of time.

Radial Basis Function Networks: MLP models response functions usmg the

composition of sigmoid-cliff functions - for a classification problem, this corresponds to

dividing the pattern space up using hyperplanes. The use of hyperplanes to divide up

space is a natural approach - intuitively appealing, and based on the fundamental

simplicity of lines. An equally appealing and intuitive approach is to divide up space

using circles or (more generally) hyperspheres. A hypersphere is characterized by its

center and radius. More generally, just as an MLP unit responds (non-linearly) to the

distance of points from the line of the sigmoid-cliff, in a radial basis function network

(Broomhead and Lowe, 1988; Moody and Darkin, 1989; Haykin, 1994) units respond

(non-linearly) to the distance of points from the center represented by the radial unit. The

response surface of a single radial unit is therefore a Gaussian (bell-shaped) function,

peaked at the center, and descending outwards. Just as the steepness of the MLP's

sigmoid curves can be altered, so can the slope of the radial unit's Gaussian. MLP units

are defined by their weights and threshold, which together give the equation of the

defining line, and the rate of fall-off of the function from that line. Before application of

the sigmoid activation function, the activation level of the unit is detennined using a

weighted sum, which mathematically is the dot product of the input vector and the weight

vector of the unit; these units are therefore referred to as dot product units. In contrast, a

radial unit is defined by its center point and a radius. A point in N dimensional space is

defined using N numbers, which exactly corresponds to the number of weights in a dot

product unit, so the center of a radial unit is stored as weights. The radius (or deviation)

Appendix 106

value is stored as the threshold. It is worth emphasizing that the weights and thresholds in

a radial unit are actually entirely different to those in a dot product unit, and the

terminology is dangerous if you don't remember this: Radial weights really form a point,

and a radial threshold is really a deviation.

A radial basis function network (RBF), therefore, has a hidden layer of radial units, each

actually modeling a Gaussian response surface. Since these functions are nonlinear, it is

not actually necessary to have more than one hidden layer to model any shape of

function: sufficient radial units will always be enough to model any function. The

remaining question is how to combine the hidden radial unit outputs into the network

outputs? It turns out to be quite sufficient to use a linear combination of these outputs

(i.e., a weighted sum of the Gaussians) to model any nonlinear function. The standard

RBF has an output layer containing dot product units with identity activation function.

RBF networks have a number of advantages over MLPs. First, as previously stated, they

can model any nonlinear function using a single hidden layer, which removes some

design-decisions about numbers of layers. Second, the simple linear transformation in the

output layer can be optimized fully using traditional linear modeling techniques, which

are fast and do not suffer from problems such as local minima which plague MLP

training techniques. RBF networks can therefore be trained extremely quickly (i.e., orders

of magnitude faster than MLPs).

Experience indicates that the RBF's more eccentric response surface requires a lot more

units to adequately model most functions. Of course, it is always possible to draw shapes

that are most easily represented one way or the other, but the balance does not favor

RBFs. Consequently, an RBF solution will tend to be slower to execute and more space

consuming than the corresponding MLP (but it was much faster to train, which is

sometimes more of a constraint). RBFs are also more sensitive to the curse of

dimensionality, and have greater difficulties if the number of input units is large.

Self-organizing: A network is called self-organizing if it is capable of changing its

connections so as to produce useful responses for input patterns without the instruction of

a smart teacher.

Appendix 107

Sigmoid function: An S-shaped function that is often used as an activation function in a

neural network.

SOFM Networks: Self Organizing Feature Map (SOFM, or Kohonen) networks are used

quite differently to the other networks. Whereas all the other networks are designed for

supervised learning tasks, SOFM networks are designed primarily for unsupervised

learning (see Kohonen, 1982; Haykin, 1994; Patterson, 1996; Fausett, 1994). A SOFM

network has only two layers: the input layer, and an output layer of radial units (also

known as the topological map layer). The units in the topological map layer are laid out

in space - typically in two dimensions. SOFM networks are trained using an iterative

algorithm. Once the network has been trained to recognize structure in the data, it can be

used as a visualization tool to examine the data.

Threshold: A quantity added to (or subtracted from) the weighted sum of inputs into a

neuron, which forms the neuron's net input. Intuitively, the net input (or bias) is

proportional to the amount that the incoming neural activations must exceed in order for a

neuron to fire.

Weight: In a neural network, the strength of a synapse (or connection) between two

neurons. Weights may be positive (excitatory) or negative (inhibitory). The thresholds of

a neuron are also considered weights, since they undergo adaptation by a learning

algorithm.

,

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118

