
•
• f

A THESIS ON

SYNTHESIS OF SPEECH FROM BANGLA TEXT

BY

MD. RABIUL HASAN

Roll No. 930531P

Reg. No. 93742

Session 1992-'93-'94

SUPERVISOR

MD. ABDUS SATTAR

Assistant Professor

1111111111111111111111111111111111
1193624#

I
---~

A thesis submitted to the Department of Computer Science and Engineering, BUET

in partial fulfilment of the requirements for the degree of Master of Science in

Computer Science and Engineering .

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA, BANGLADESH.

OCTOBER, 1999.

'SYNTHESIS OF SPEECH FROM BANGLA TEXT'
A thesis submitted by

MD. RASIUL HASAN, Roll no. 930531P, Session 1992-'93-'94

for partial fulfilment of the requirements for the degree of

Master of Science in

Computer Science and Engineering held on 17-10-1999 .

. Approved as to the style and contents by :

~
(1) Md. Abdus Sattar Chairman

Assistant Professor, CSE Department, SUET. (Supervisor)

~lff?
(2) Dr. Mohammad Kaykobad Member

Head and Professor, CSE Department, SUET. (Ex-Officio)

~
(3) Dr. Md. Abul Kashem Mia Member

Assistant Professor, CSE Department, SUET.

~.J,tu---
(4) Dr. Md. Saidur Rahman Member

Assistant Professor, CSE Department, SUET.

~

(5) Dr. M. Rezwan Khan Member

Professor, EEE Department, SUET. (External)

Declaration

This is declared that the thesis work on 'SYNTHESIS OF SPEECH FROM BANGLA

TEXT' has been done by me under the guidance of MD. ABDUS SATTAR and has not

been submitted elsewherefor the award of any degree or diploma except for publication.

Countersigned

Signature of the Supervisor

(MD. ABDUS SATTAR)

iii

Signature of the Candidate

(MD. RABIUL HASAN)

Acknowledgement

I wish to express my deepest graditude to my guide MD. ABDUS SATTAR, Assistant

Professor, Department of Computer Science and Engineering, BUET, DHAKA for his

meditative, affectionate and careful guidance which rights for a great contribution

incarrying out my job. His keen interest and vast experience in this field have influenced me

to complete this work. Though the job was so difficult, I was able to successfully complete

the job due to his assistance, encouragement and valuable advice at every stage.

Sincere graditude are also propounded in favour of my respected teacher

DR. MOHAMMAD KAYKOBAD, Professor and Head, Department of Computer Science

and Engineering, BUET for his inspiration, administrative support and animated co-
operation.

Finally, I extend my heartiest thanks to all of my. teachers, mends and other fellows

specially to DAISY PERVIN, Asst. Engineer, PDB who helped me in various stages in
carrying out this thesis work.

I

DHAKA

OCTOBER, 1999.

iv

Author

Abstract

BangIa text to speech synthesizer can generate speech sounds from arbitrary text input.

BangIa text to speech synthesizer is developed using the method that stores speech sounds

of parts of words. The parts of words i.e. basic sounds units are recorded using sound card,

microphone and sound recorder utility software. The pronunciation rules and the

determination of basic sound units of BangIa words are studied extensively as part of the

current research which is the field of BangIa phoneme research. At first BangIa text to

speech synthesizer accepts the character from keyboard and identifies the sound unit and

plays that. This task is repeated until the word is completed. Then the text is normalized by

defining the wave files from the adjacent keys as per pronunciation rule and searched.

When identification of the sound units for a particular BangIa word is completed, all the

sound units are merged together into a speech file to form the complete speech signal for

that Bangia word and finally the merged wave file is played. Note that BangIa text to

speech synthesizer is interfaced with the applicationlword processing software so that at

first the message (generated by pressing key) is retrieved from application's message queue

to BangIa text to speech synthesizer.

v

Contents

CHAPTER 1. INTRODUCTION PAGE NO.

1.1 Introduction to speech technology........................... 01

1.2 Literature review and present state of the problem......... 06

1.3 Objectives with specific aims and possible outcomes........... 08

1.4 Applications of BangIa text to speech synthesizer......... 09

1.5 Organization of the thesis paper... 11

CHAPTER 2. METHODOLOGY OF TEXT TO SPEECH SYNTHESIZER

2.1 Introduction... 12

2.2 Phoneme method... 12

2.3 Segment storage strategies....................................... 13

2.4 Method used for Bangia text to speech synthesizer... 14

CHAPTER 3. SPEECH DATA PREPARATION

3.1 Digital audio file .

3.2 Musical Instrument Digital Interface (MIDI) .

3.2.1 .MIDI Network .

3.2.2.MIDI music data .

3.2.3 .MIDI messages .

3.3 File used for development of Bangia text to speech .
synthesizer.

3.4 Sound file format. .

3.5 Recording the wave file .

3.6 File packing and compression .

3.7 Sound Blaster .

3.7.1 The chips of sound blaster. .

vi

16

18

18

18

19

20

21

23

24

26
26

CHAPTER4.TEXTTOSPEECHSYNTHES~ER

4.1 Te),:t to speech synthesizer.. .

4.2 Developed Bangia text to speech synthesizer. .

4.3 Wave file searching technique .

4.4 Playing the wave file .

4.5 Developed text normalizer.. .

4.6 Wave file merging technique .

PAGE NO.

28

32

33

36

37

42

CHAPTER 5. INTERFACING WITH APPLICATION SOFTWARE

5.1 Introduction... 46

5.2 Message loop.. 47

5.3 Message queue... 51

5.4 Interfacing with application software............................ 52

5.5 Keyboard translator.. 57

CHAPTER 6. CONCLUSION
~.. -"

6.1 Results of developed Bangia text to speech.. 59
synthesizer

6.2 Suggestions for further research in this field.............. 60

6.3 Conclusion... 62

References.. 64

Appendices

Appendix A : BangIa alphabets... 66

AppendixB: Bangia sound units and their filenames............... 67

Appendix C : Bangia symbols and their codes............... 71

Appendix D : Bangia Bijoy keyboard layout.................. 76

Appendix E : Program of Bangia text to speech........................ 78
synthesizer.

vii

List of figures

Figure Description Page
no.

3.1 Analog to digital conversion. 17
3.2 Digital to analog conversion. 17
3.3 MIDI message structure. 19
3.4 Silence block packing. 25
4.1 Generalised block diagram of text to speech synthesizer. 29
4.2 Generalised block diagram of developed BangIa text to speech 32

syIlthesizer.
4.3 Generalised block diagram of play procedure of the wave file. 32
4.4 Memory mapping of the wave file. 33
4.5 Program flowchart of play procedure of the wave file. 35
4.6 Program flowchart of developed text normaliser. 39

jy{ave file defining and searching technique)
4.7 Program flowchart of developed text normaliser. 41

(Last wave file defining and searching technique)

4.8 Block diagram of the wave file merging technique. 42
4.9 Program flowchart of wave file merging technique. 43
5.1 wParam and lParam of WM_CHAR message. 48
5.2 WM_CHARlParam coding. 49
5.3 Program flowchart of main module of BangIa text to speech 50

synthesizer.
5.4 Message queues. 51
5.5 Interface of BangIa text to speech synthesizer with application/word 52

processing software.
5.6 Program flowchart of hook procedure. 56
5.7 Block diagram of the keyboard translator. 57
5.8 Program flowchart of keyboard translator. 58

viii

Chapter 1

Introduction

This chapter describes the basic information of speech technology. Section 1.1 discusses

the introductory information of speech technology. The developments in speech technology

are also included in this section. Section 1.2 discusses the literature review and present

state of the problem. Section 1.3 introduces the objectives with specific aims and possible

outcomes. Section 1.4 describes the applications of BangIa text to speech synthesizer.

Section 1.5 includes the organization of the thesis paper.

1.1 Introduction to speech technology

Speech is the most natural form of human co=unication. Speech consists of a

continuously changing complex sound wave linking the speaker's mouth and the hearer's

ear. Sound is due to the vibratory motion of an object. The vibrations may be rapid or slow.

These vibrations are recognized as audible sound"if they lie within certain limits 20

cycles/sec to 20,000 cycles/sec known as the limits of audibility.The physical properties [1]

of speech are as follows.

- Intensity;

- Pitch i.e. intonation,

- Frequency spectrum i.e. quality, and

- Duration.

Intensity is a measure of loudness of sound. Intensity of sound wave at any point is defined

as the amount of energy flowing per second through a unit area about that point at right

angles to the direction of flow. It depends on amplitude, distance of the sounding body,

density of the medium, area of the vibrating source. Actually amplitude determines the

loudness of sound. Pitch means fundamental frequency of variation of the vocal cord. Pitch

is a measure of acuteness or shrillness of a sound. For example, a woman's voice is more

1 , "

~,~..

shrill than that of a man. So her voice is said to be higher pitch than that of a man. Pitch is

independent of loudness and quality. Wave length determines pitch. Quality distinguishes

between two notes of same pitch and intensity but coming from two different sources.

Duration is the length in time taken by sound wave.

Speech is also the natural way for human beings to connunicate with a computer. For

two-way connunication, the computer must speak like a person. Part of the requirement

to reach this goal is to give the computer the ability to generate natural and fluent speech in

response to any input text.

Speech technology as well as speech processing is one of the most exciting areas of signal

processing. The developments in speech technology [2] include

- Speech analysis and synthesis,

- Speech coding,

- Speech enhancement,

- Speech recognition,

- Spoken language understanding,

- Speaker identification and verification, and .~

- Multimodal connunication.

Speech analysis and synthesis

The areas of speech synthesis [3] include

- Generation of speech from text,

- Voice conversion, and

- Modification of speech attributes such as time scaling and articulatory minic.

Text to speech synthesis takes text as input and generates human like speech as output.

Voice conversion refers to the technique of changing one person's voice to another, from

person A to person B or from male to female and vice versa.

2

In many applications, it is useful to be able to change the time scale of a signal (to speed up

or slow down the speech signalwithout changing the pitch) or to change the "mood" of the

speech (making it sound happy or sad). This signal processing technique has appeared in

animation and computer graphics applications.

Speech coding

Homer Dudley's pioneering work [2] was motivated by the need to increase the

connunication capacity (number of channels) in a telephone network (which was analog

then). The term "bandwidth compression" was generally used to refer to such a task.

Today, most if not all of the telephone network is digital and hence, speech bandwidth

compression translates into speech coding, which aims at representing the speech signal in

binary digits (bits) with highest efficiency (i.e. highest quality of the reconstructed signal

with least number of bits).

Digital encoding of speech begins with an analog to digital conversion device that samples

the analog speech wave form at an appropriate rate (usually 8,000 samples per second for

telephone bandwidth speech) and then represents the amplitude of each sample digitally. In

connunication systems, this is called pulse code ~~d~lation (PCM). Typically, each wave

form sample is represented by 12-16 bits, resulting in a rate of 96-128 thousand bits per

second (kb/s). Research in speech coding attempts to find methods to increase the

efficiency in transmission and storage while maintaining the speech quality. Aside from

efficient transmission, speech coding is also essential for achieving secure connunications.

In general, speech coder attributes [2] can be described in terms of the following four

classes.

- Bit rate,

- Complexity,

- Delay, and

- Quality.

The bit rate is the connunication channel bandwidth (kb/s) at which the coder operates.

Complexity refers to the computational complexity of the speech coder. Delay refers to the

3

connunications delay caused by the coder. Quality refers to a large number of attributes.

As bit rates are lowered, speech coders become more speech specific and give less faithful

renditions of other sounds.

Today, speech coding finds a diverse range of applications such as cellular telephony, voice

mail, multimedia messaging, digital answering machines, packet telephony, audio-visual

teleconferencing and of course many other applications in the internet arena.

Speech enhancement

The idea that vocoder principles could be used to improve the quality of a speech signal

corrupted by additive noise [2]. The basic idea was to generate a signal with a fine structure

as close as possible to that of the original speech signal, but with an envelope that

attenuates the signal between formant peaks. Although the idea was shown to be feasible,

the quality attained was not very good.

Since those early days, variants of this idea have been proposed and implemented by several

authors. The connon features of all these implementations are to split the noisy speech

signal into frequency regions by passing it through a filter bank and attenuating the output

of each channel by a factor depending on the estimated signal to noise ratio in that channel.

The main differences between these various proposals are the methods used to estimate the

level of noise and of speech in various frequency bands.

Enhancement of speech signals in noise has been quite useful in telephony applications.

Speech recognition

Speech recognition technology has made it possible for computers to follow human voice

connands and even understand human languages and converts a speech wave form into

words.

4

Spoken language understanding

Spoken language understanding as undertaken at present involves integrating speech

recognition (what are the words?) and natural language understanding (what do those

words mean?).

Speaker verification and identification [2]

Speaker recognition is the process of automaticallyrecognizing a speaker by using speaker-

specific information included in his or her speech. This technique can be used to verify the

identity claimed by people accessing systems; that is, it enables control of access to various

services by voice. Applicable services include voice dialling, banking over a telephone

network, telephone shopping, database access services, information and reservation

services, voice mail, security control for confidential information and remote access to

computers.

Speaker recognition can be classified into speaker identification and speaker verification.
'(" .

Closed -set speaker identification is the process of determining which of the registered

speakers a given utterap.cecomes from. Speaker verification is the process of accepting or

rejecting the identify claimof a speaker. Most of the applications in which voice is used to

confirm the identity claimof a speaker require speaker verification.

From spoken language to multimodal communication [2]

Human machine communication (HMC) is evolving from text interface (i.e., keyboard and

screen display) to spoken language (automatic speech recognition and understanding) to

multirnodal communication involving different senses (audio, visual, tactile or even

gestural) with synergy.Human communication includes the perception or production of a

message or of an action as an explicit or implicit cognitive process. For perception, there

are the "five senses": hearing, vision, touch, taste and smel~ with reading as a specific

visual operation, and speech perception as a specifichearing operation. For production, it

5

includes sound (speech or general sound production) and vision (generation of drawing,

graphics or more typically, written messages). Cognition includes the means to understand

or to generate a message or an action from a knowledge source.

Research interest in speech processing today has gone well beyond the simple notion of

mimicking the human vocal apparatus (which still intrigues many researchers). The scope

(both breadth and depth) of speech research today has become much larger due to advances

in mathematical tools (algorithms), computers, and the almost limitless potential

applications of speech processing in modem communication systems and networking.

Conversely, speech research has been viewed as an important driving force behind many of

the advances in computing and software engineering, including digital signal processors

(DSPs). Such a synergetic relationshipwill continue for years to come.

1.2 Literature review and present state of the problem

Research on speech technology began in 1865. One of the first speech researchers was

Alexander Graham Bell, who experimented with various analogues of speech waves as

early as 1865. His work led to the invention ofth;;;i~lephone, for which he was awarded

the Volta Prize in 1880 and the Bell Telephone Company has hosted one of the most

important speech research laboratories up to the present day. In 1940, at the Bell

Laboratories, an apparatus was designed which allowed the spectrum of a speech wave to

be analysed against time - the spectrograph. To understand the acoustic form of speech it is

essential to study the complex changes that take place across the utterance, so this

breakthrough meant that at last a piece of speech could be analyticallydescribed [I].

A few years later, people began to develop apparatus which would play back speech from a

simple spectrographic picture, as was done at the Haskins Laboratory in 1947. This could

be regarded as the real beginning of speech synthesis technology, since the human voice

was being analysed into a set of data and reconstructed at a later time. By 1960 many

academic institutions around the world shared techniques of synthesizing human speech

using minicomputer. In 1971 a new digital technique 'Linear prediction' was developed for

analysing and synthesizing speech using computer [I].

6

A text to speech synthesizer was first developed for the English language in 1960.

Following English, text to speech synthesizers of Telegu and Hindi languages have also

been developed in our sub-continent [4].

The special series for the 50th anniversary for the Signal Processing Society [2] covers the

history and current status of the field of speech processing research and describes future

contributions of speech processing.

A neural network based approach to synthesize FO information for Mandarin text to speech

is discussed in [5]. The basic idea is to use neural networks to model the relationship

between linguistic features, extracted from input text and parameters representing the pitch

contour of syllables.

The application of BangIa in computer is not new now. But there is no satisfactory

development in speech technol~~ of it. BangIa text to speech converter has been

developed by Islam [6]. But this software is applicable only for a particular BangIa word

processor 'Amar BangIa' which was developed in the Department of Electrical and

Electronic Engineering, BUET and is not WINDOWS based which is popular now.

A group of researchers of the Applied Physics Department of the University ofRajshahi are

trying to find the formant frequencies of BangIa phonemes [7].

The confirmation of the correctness of typed BangIa character during word processing can

be done by developing Bangla text to speech synthesizer. But Bangla text to speech

synthesizer must be interfaced with any other application/word processing software. In this

case, user can correct the character or word innediately. But previously, by checking the

proof copy the character or word was to be corrected.

It is cumbersome to use the computer for blind person. If the keyboard layout, computer

operation and any application/word processing software are in control and BangIa text to

7
o

. ,/~

~, "
1 ~ :c

speech synthesizer is included to the applications/word processing software with BangIa

font then it is easy to process BangIaword for blindperson.

So BangIa text-to-speech synthesizer should be developed and interfaced with any

WINDOWS based application/word processing software without knowing the internal

software structure of the well known word processors like Microsoft Word or other word

processors.

1.3 Objectives with specific aims and possible outcomes

The main objective ofthis research is to develop a systemso that user can understand easily

about the correctness of the typed BangIa character during word processing. For two-way

connunication, the computer must speak like a person. Part of the requirement to reach

this goal is to give the computer the ability to generate natural and fluent speech in

response to any input text. By developing the text to speech synthesizer, the computer

informs BangIa character what is typed by generating the sound through sound card and

speaker and then plays after synthesis of speech from BangIa text which will be helpful for

blind person during word processing. Also the prominciation rules and the determination of

basic sound units of BangIa word are studied extensivelyas a part of the current research

which is the field of BangIa phoneme research.

In this research, conversion of arbitrary text input to voice output actually involves three

separate tasks.

(i) At first, accepting the character from keyboard and is to detect the character and

identify the sound unit and play this file. This task is repeated until the word is

completed.

(ii) The second task is to normalize the text by definingthe wave file from the adjacent

keys as per pronunciation rule and search that.

(iii) Finally,merge the sound units together to form the complete speech signal for that

BangIa word and play this file to a listening device (a speaker) to produce the

audible speech sound.

8

1.4 Applications of Bangia text to speech synthesizer

The Bangia text to speech synthesizer can be used in a variety of applications. They are

discussed below.

(a) As an assisting tool for a blind person in typing

A blind person does not know which key means which digit or letter in a keyboard.

So blind person might make mistake in typing. By hearing the sound, a blind person

can understand which key has been pressed.

(b) As a language tool for the dumb

The BangIa text to speech synthesizer can be used as a language tool for the dumb

who can write, but can not speak. If the desired texts are given as a input from the

keyboard of a PC, the text to speech synthesizer will convert these texts into

audiable speech sounds. Thus, a dumb can connunicate with others using BangIa

text to speech synthesizer. ,,".

(c) Generation of speech from arbitrary text input

For development of Bangia text to speech synthesizer, the sound units are recorded.

Later on, BangIa text to speech synthesizer will generate the sounds from arbitrary

text input. This may have manifold applications, some of which are mentioned

below.

(i) Voice generation of a person

Once the basic sound units of a particular person are recorded, the BangIa text to

speech synthesizer simply requires to input the corresponding text from the

keyboard of a PC, to produce any speech sound in that person's voice.

9

(ii) As a talking computer in the classroom

In educational institutions, a teacher becomes so busy that he can not be present in

the classroom. He may input the texts of his lecture during off time and BangIa text

to speech synthesizer will take the class on his absence. Thus, it will be a talking

computer in the class room.

(iii) To produce actor's/actress's voice in an unfmished Bangia film

If the sound units of a actor/actress are once recorded, his/her voice may be

generated by using the BangIa text to speech synthesizer even his/her death. Also,

the voice of a person of young age can be generated at a later stage. This facility

may be used along with the video processing systems to finish the dialogues of an

unfinished BangIa film due to sudden death or illness of an actor/actress.

(iv) For advertisement and announcementpurposes in public places

BangIa text to speech synthesizer can be used for advertisement and announcement

purposes in public places like at a bus stop;"~ort, railway station, hospital, fair

etc. It can also act as a receptionist at a party or function.

(v) In telecommunication and electronic mail systems

BangIa text to speech synthesizer can be used in telecommunication and electronic

mail systems to produce audio messages from the corresponding text inputs.

(vi) For generating speech sounds to develop various video games and

education programs on a PC

BangIa text to speech synthesizer can be used to develop useful education programs

like teaching BangIa alphabets and numerical digits and also to generate BangIa

sounds for the video games on a PC.

10

1.5 Organization of the thesis paper

The thesis paper has been organized in the following way.

This chapter (Chapter I) describes the introductory information about speech technology,

literature review and present state of the problem, objectives with specific aims and

outcomes, applications of BangIa text to speech synthesizer.

Chapter 2 describes the methodology of text to speech synthesizer.

Chapter 3 describes about the preparation of speech data. It is discussed about the digital

audio file and their format, MIDI files, recording and compression techniques. It is also

discussed about the sound blaster at the end of this chapter.

Chapter 4 introduces a generalized block diagram of text to speech synthesizer and

discusses about the wave file searching, playing, text normalizing and merging technique.

Chapter 5 discusses about the concept of message driven programming, the interface of

Bangia text to speech synthesizer with application/word processing software and keyboard

translator.

Chapter 6 describes the results of Bangia text to speech synthesizer and coments on the

topics of further research in this field.

11

Chapter 2

Methodology of text to speech synthesizer

This chapter describes the methodology of text to speech synthesizer. Section 2.1

introduces the types of the methodology of text to speech synthesizer. Section 2.2

discusses about the phoneme method. Section 2.3 discusses about the segment storage

strategy method. Section 2.4 describes the method used for developing Bangia text to
speech synthesizer.

2.1 Introduction

Language conveys mearnng by stringing together discrete symbolic units at several

concurrent levels. Sequences of sound form words andwhen words are assembled together

they form sentences. The combination of these units is governed at each level by a set of
't

principles. The science of linguistic provides rigorous methods for identifying these

principles and represents them in a formal manner. The methodology of text to speech

synthesizer [1] is as follows.

- Phoneme method, and

- Segment storage strategies.

2.2 Phoneme method

Phoneme analysis of a particular language is important for synthetic voice generation.

Phoneme may be viewed as a sequence of segmental units at a linguistic level [1,6]. These

phonemes are abstract linguisticunits and may not be directly observed in the speech signal.

Phonetics is concerned with sound of human speech. Phoneme analysismeans to derive the

phonetic structure of an utterance directly from the speech signal.

12

Conversion of arbitrary text input to voice output actually involves three separate tasks.

The first consists of accepting a sequence of characters, identifying the phonetic

components of the required message and extracting information about its syntactic

structure. The second part of the process is to match the phonetics symbols stored in the

phonetics inventory. The computer program is generally based on the rules for converting

phonetic information to acoustic information. For this reason, the synthesis process is often

referred to as 'speech synthesisby rule'. So thirdly, the phonetic symbols are linked together

and send the resulting coded wave form to a voice output device. Also the prosody

(variations in intonation, pitch, rhythm or timing and intensity or loudness) [6] of the

speech must be determined directly from the textual representation. Pitch means

fundamental frequency of variation of the vocal cord. Intonation means the rise and fall of

the pitch of the voice in speaking,which is an element of meaning in language.

So text to speech synthesizerusing phoneme method requires two major tasks. Translation

of the text into phonetic symbols and determination of the prosody from the text are very

complex task. So phoneme analysis of a particular language is very difficult and difficult

software development is required. But by using the phonetic symbols, natural sound can be

produced.

2.3 Segment storage strategies

The multi-level linguistic message supports a number of possible strategies [I] for their

storage and retrieval regardless of which voice output technology is employed in a

particular system. They are as follows.

- Sentence storage,

- Word and phrase storage, and

- Storing parts of words i.e. syllables.

Sentence storage

In the sentence storage system, the voice of a live speaker is recorded with the desired

inflection and personality and then processed to derive a matrix of parameters from which

13

the original utterance may be reconstructed. Sentence storage offers the highest level of

naturalness currently possible for synthetic speech. But this system is not flexible because it

requires more memory space to store repeated words or phrases.

Word and phrase storage

In word or phrase storage system, it stores the similarwords or phrases just for one time

which reduces the number of the words to be stored to a greater extent. Besides these

advantages the word and phrase storage system has contextual variation problem, variation

in intonation and duration which provide important clues about syntactic structure. Also

slapping together words and phrases from different sentences recorded at different times

can also result in choppy 'sing song' effect since the pitch and duration of words will not

necessarilymatch.

Storing parts of words

This method also requires to store a small number of sound units compared to sentence

storage or word and phrases storage system. Also'6ontextual variation problem can be

solved by storing parts of words, but in this system if correct variant of a prefix or suffix

has been selected there remains the problem of matching its intonation to that of the words

to which it is attached.

2.4 Method used for developing BangIa text to speech

synthesizer

Bangia text to speech synthesizer can be developed by using either phoneme method or

segment storage strategies mehod. Bangia text to speech synthesizer using phoneme

method requires two major tasks. Translation of the text into phonetic symbols and

determination of the prosody from the text are very complex task. So we have discarded

this method. Bangia text to speech synthesizer can also be developed by using any of the

segment storage strategies method like sentence storage, word and phrase storage and

14

storing parts of words (i.e. syllables). Sentence storage is not flexible because it requires

more memory space to store repeated words or phrases. The word and phrase storage

system has contextual variation problem, variation in intonation and duration. This variation

results 'sing song' effect. So we have not used the sentence storage and word or phrase

storage methods. Third segment storage strategy 'storing parts of words' 1S more

appropriate [1] for development Bangla text to speech synthesizer. Because

(a) This method requires to store a small number of sound units compared to sentence

storage or word and phrase storage system.

(b) Contextual variation problem can be solved by using storing parts of words method.

(c) There are fixed pronunciation rules for a specific arrangement of BangIa letters in a

word. On the contrary, there are no such definite rules for the English language. The

English letters has a different pronunciation rule according to the position of the letter

in the word, and therefore, is pronounced differently according to the use of words. A

particular arrangement of BangIa letters obeys the same pronunciation rule despite its

position in the word. This helps the method that. stores parts of words.
t."

However in storing parts of words method, there remains the problem of matching its

intonation to that of the words to which it is attached [1].

Finally, we again say that we have used the storing parts of word method for development

of BangIa text to speech synthesizer. The parts of words i.e. basic sound units have to be

recorded. In this method, the sound units will be detected from the text input and will be

merged together as per BangIa pronunciation rule to form a complete word.

15

'-

Chapter 3

Speech data preparation

In this chapter, a description is given on the preparation of speech data. Section 3.1

discusses about the digital audio file. Section 3.2 discusses about the musical instrument

digital interface (MIDI). Section 3.3 describes the file used for development of Bangia text

to speech synthesizer. Section 3.4 includes the sound file format. Section 3.5 introduces the

recording of the wave file. Section 3.6 discusses about the file packing and compression

technique. Section 3.7 describes the chips of sound blaster.

3.1 Digital audio file [8]

Digital audio files are files that contain sound converted to digital form by analog to digital

converter (ADC) with pulse code modulation (pCM) technique so it can be stored in

computer's memory or disk. Once sound has been converted to digital form it can be easily

modified with an editor. Figure 3.1 below depicts how analog to digital conversion is

performed.

The quality of digital audio sound depends on two key factors.

- Sampling rate (number of samples taken per second), and

- Sampling size.

The higher sampling rate performs the better the sound quality. The sampling rate must be

at least twice the highest frequency component. But there are some problems to use the

highest sampling rates. First, highest sample rate requires a lot of storage capacity. Each

sample consumes 1 byte of memory or disk space. At a sample rate of 6,000 Hz, one

minute of recording will fill a 360k disk. At the peak sound blaster pro sampling rate of

44,100 Hz (for monaural sound) or 22,050 Hz (for stereo), an empty 10 ME hard disk will

16

be filled in just four minutes!. Second, it is not used too high a sampling rate if the files are

planed to pack (compress).

The other factor in quality of digital audio is the sampling size. The sound card may be 8 bit

(a maximum of 256 steps) or 16 bit (256X256 or 65,535 steps) which varies the signal

strength. The human ear perceives the difference between these two sampling size. The ears

are most sensitive at detecting pitch (frequency) but also quite sensitive to sound intensity.

Human ears are capable of detecting sounds that vary in intensity by orders of magnitude

and 8 bits sound is perceived as lethargic and noisy in comparison to 16 bits sound.

When the digitized audio file is played back, the digital data is converted from a stream of

byte values to an analog electrical wave by hardware called a DAC, a digital to analog

converter represented at figure 3.2. The analog signal, sound c.onsists of a pressure wave is

then fed to the speakers or headphone which moves through a medium, such as air. These

analog to digital and digital to analog conversion are done by digital sound processor

(DSP) chip of sound blaster which is described at the end of this chapter.

~og-!o-Digi!al Conversion (ADC)

Analog audio source

.- Sampling at constant •
rate (up to 44,100
samples per second)

Sequence of B.bi!
digital values

.- + '."r~'"",,,,,,,,,,,,,,,,, -J... •. I!.."...,,,....,,)....,,,.,,,,..,.-v Ill'

Figure 3.1 Analog to digital conversion.

Digital-to-Analog Conversion (DAC)

~

••• .- .-
=C>.

T. =C>
T.

Sequence of B-bij .on .- .-digijal values

Figure 3.2 Digital to analog conversion.

17

3.2 Musical Instrument Digital Interface (MIDI) [9]

The Musical Instrument Digital Interface (MIDI) has completely reshaped the electronic

music world, by delivering sophisticated music recording and performing capability to

amateur musicians. MIDI actually makes no sound at all. MIDI is just a protocol that

enables computers, synthesizers,keyboards and other musical devices to communicate with

each other. At the hardware level, MIDI provides a simple asynchronous serial interface

that transmits data in 10 bit chunks at a rate of 31.25 kilo baud (31,250 bits per second).

The ten bits include a start bit, eight data bits and a stop bit.

3.2.1 MIDI Network [8J

A MIDI network is a music network that connects computer and musical instruments that

have a MIDI interface by inserting the sound blaster card and an external MIDI device such

as a MIDI keyboard. Almost every sound card of PC includes some kind of built in

synthesizer.

MIDI consists of a digital protocol for representing musical notes and actions and a

network protocol for transmitting music data between MIDI compatible devices. The

digital protocol allows MIDI to describe music in a digital fashion that is, as a sequence of

byte value with musical meaning. These byte values can be recorded on disk by a digital

computer. The network protocol refers to the network software protocol used to pass

music data between MIDI devices including personal computer.

3.2.2 MIDI music data [8J

Rather than musical sounds, MIDI consists of instructions on how to play music when a

sequencer program stores music as a MIDI file on disk, it records MIDI instructions that

specify what instrument to play, what key to press, with how much strength and when to

press it.

18

3.2.3 MIDI messages [9]

MIDI devices connunicate by sending each other messages. The most connonly

messages used are Note Number (what note to play), Note On (when to play a note,

Velocity (how hard to hit the note), Note off (when to release a note) and Channel Number

(what instrument should play the note). Message is divided into the following two general

categories.

j-.

- Channel message, and

- System message.

Channel message

The first category, channel messages includes voice messages and mode messages. They

are transmitted on individual channels rather than globally to all devices in the MIDI

network.

Data bytes

0I[? BII?1

As shown in figure 3.3 a MIDI message includes a status byte and up to two data bytes. It

is easy to identifY a status byte because all status bytes -have their most significant bit set to

1. Conversely the most significant bit of any data byte is set to O. This convention holds for

all standard MIDI messages and not just channel messages.

Status bytes>- ..

..- Message ill -.. .-- Channel -..
Specification

Figure 3.3 MIDI message structure.

MIDI devices transmit all messages on the same cable, regardless of their channel

assignments. The four low order bits of each status byte identity which channel it belongs

to. Four bits produce 16 possible combinations, so. MIDI supports 16 channels over a

single cable string. The three remaining bits identity the message. Three bits encode eight

possible combinations, so channel message could come in eight flavours, but they don't. A

19 .. '

status byte with all four high order bits set to 1 indicates a system common message - the

second general category. So there are only seven channel messages.

System messages

The second general category of MIDI messages is the system messages, which include

system common messages, system real time messages and system exclusive messages.

These messages carry information that is not channel specific, such as timing signals for

synchronization, positioning information in pre-recorded MIDI sequences and detailed set-

up information for the destination device.

3.3 File used for development of BangIa text to speech

synthesizer

Advantages of MIDI file over digital audio file [8]

(a) MIDI is the most economical type of multimedia sound. Digital audio file contain

actual sound, recorded in digital form by taking thousands of samples each sound.

MIDI music, on the other hand, consist'~ "~n1y instructions on how to play an

instrument. Digital audio files may require millions of bytes of data to play just a

few minutes of music but it is played hours of music with a MIDI file of just a few

thousand bytes of data.

(b) Another advantage is that it allows to change the MIDI music data. The MIDI file is

the computer equivalent of sheet music that is read by a musician. A MIDI

sequencer program displays the music composition on the screen, showing the notes

for each instrument on its own track.

Disadvantages of MIDI file over digital audio file [9,10]

(a) The major disadvantage of MIDI is that the quality of sound it produces depends

entirely on the synthesizer on which it is played, whether that is a sound card or an

external synthesizer.

(b) Requires MIDI hardware to record the wave file.

20

, But we have no MlDI hardware. For these reasons, we have used the digital audio file for

development of text to speech synthesizer.

There are many digital audio files [8] such as

- Voice file by a file name extension of. VOC,

- Microsoft wave file by a file name extension of .WAV,

- Creative Music file by a file name extension of. CMF,

- Sound Blaster Instrument file by a file name extension of .SBI, and

- Sound Blaster Instrument Bank file by a file name extension of .ffiK.

Wmdows supports the wave file and it is possible to play the wave file easily with a few

lines of code by VISUAL C++ multimedia software. So we have used the wave file from

many digital audio files for development of Bangia text to ?peech synthesizer.

3.4 Sound file format

Sound file format is I Header I Data

The header is introduced at the very beginning of the file that identifies the file's type. For

digital audio files, this header characterizes the file as wave or voice; designates whether

}.. the raw data. should be played as stereo or monaural and so forth. Data is raw data of

musIc.

Microsoft wave file format has been discussed here. The wave form audio file is organized

in RIFF (Resource Interchange File Format) structure [8].

RIFF file format

The basic building block of a RIFF file is called a chunk, which is formatted as follows.

<rID> <rLen> <rData>

o <rID> 'RIFF' identifies the representation of the chunk data (4 bytes).

o <rLen> is the length of data in the chunk. (4 bytes)

o <rData> is the RIFF data chunk.

21

.L

WAVE form definition

The wave form of a RIFF data chunk is further divided into chunks. It must always contain

a format chunk followed by a data chunk.

<rData>=<wID><Format Chunk><Data Chunk>

where <wID> 'WAVE' identifies the data as wave form audio (4 bytes).

WAVE format chunk

The format chunk contains data which specifies the format of the data contained in the data

chunk. The syntax of the format chunk is as follows.

<Format Chunk> =<00> <flen><wFormatTag><nChannels><nSamplesPerSec>

<nAvgBytesperSeC><nBlockAlign><nBitsPerSample>

o <00> 'fint' identifies the block as a format chunk (4 bytes), .
o <fLen> length of Data in the format chunk (4 bytes)

o <wFormatTag> indicates the wave format category of the file (2 bytes)

For example, I = Pulse Code Modulation (pCM) format.

o <nChannels> indicates the number of channels for output (2 bytes)

For example, I = mono, 2 = stereo

o <nSamplePerSec> indicates sampling rate (in samples per second) at which

each channel should be played back (4 bytes)

o <nAvgBytesPerSec>indicates the average number of bytes per second that

the data should be transferred (4 bytes).

<nAvgBytesPerSec>=nChannels * nSamplesPerSec*(nBitsPerSample/8)

o <nBlockAlign> indicates the block alignment (in bytes) of the data in the Data

Chunk. Play back software needs to process a multiple of

<nBlockAlign> bytes of data at a time, so that the value of

<nBlockAlign> can be used for buffer alignment (2 bytes).

22

<nBlockAlign>=nChanne1s *(nBitsP erS ample/8)

o nBitsPerSample (2 bytes)

WAVE Data Chunk

The data chunk contains the actual .WAV audio data. The format of the data depends on

the <wFormatTag> value stored in the Format Chunk.

<Data Chunk> = <dId> <dLen> <dData>

where

o <dId> 'DATA' identifies the block as data chunk (4 bytes)

o <dLen> indicates the length of data in the data chunk (4 bytes)

o <dData> is the actual wave form data.

3.5 Recording the wave file

Most popular sound files are recorded as 8 bit or 16 bit pulse code modulated (pCM) data.

The total number of byte in the file depends on the recording frequency and the total length

of the recording. The recording frequency, also called the sample rate, is the number of

times sound is sampled within one second. In 8 bits PCM format, each sample yields a

single byte. Higher frequencies or sample rates, produces higher quality recordings. The

higher quality recording of digital audio files requires more disk space.

The question arising for recording has to do with the segmentation of the wave file. Let us

consider the BangIa word '\5lI11IC~~'.The basic sound units of '\O{llllc~~' are~, i, ~, C, '1 and

~. So the basic sound units~, i,~, c, '1 and ~ are recorded for playing Bangia word

'\5lI11IC~~'individually. Now for playing the merged wave file of Bangia word '\5lI11IC~~',the

basic sound units are 'lilt, ~, ~ and ~ I So total basic sound units ~, 'lilt or i, ~, C, '1, ~, ~,

~ and ~ are recorded for Bangia word '\5lI11lc~~'. Remember that ~ is not recorded

23

directly. At fIrst ~ is recorded then to get ~ , ~ is removed from ~ by using utility

software.

Note that these sound units are also used for another any Bangia word when necessary. A

list showing the names of the basic sound units and the corresponding file names is included

in Appendix B. A particular combination of these sound units will form the pronunciation

of a Bangia word .

..-
To avoid background electrical noise during recording, it is best to shut off any computers,

air conditioning, fluorescent light, fan or any other machinery in the vicinity of the sound

booth.

We have used the sound recorder utility software to record the wave file for development

the BangIa text to speech synthesizer. For this, sound card and microphone must be

needed.

3.6 File packing and compression

The higher quality recording of digital audio files requires more disk space. The higher

quality recording means highest sample rates. Each sample consumes I byte of memory or

j. disk space. At a sample rate of 6,000 Hz, one minute of recording will fill a 360k disk. At

the peak sound blaster pro sample rate of 44, I00 Hz (for stereo), an empty lOMB hard

disk will be filled in just four minutes!. So two techniques [8] for packing and compression

are available for requiring the reduced disk space.

- Silence block packing, and

- Data block packing.

Silence block packing

Silence Block packing is a technique for replacing stretches of silence or near silence with a

special marker that represents a period of silence. Digital audio files containing speech is

24

much more compact by eliminating the silent data. Figure 3.4 shows the audio data that can

be replaced by silence block.
Audio data that can be replaced by silence block

,--,,,
••

Silence data
converted to
silence block

Silence Window

,
---J ,,,,,

Silence beginning here
fits within Silence Window

Figure 3.4 Silence block packing.

During recording of wave file, a silent block is added to the recorded file for time required

of file saving in hard disk. So when two or more wave files are merged for speech synthesis

then silence block is to be inserted into merged wave file. This silence block must be

removed and we have removed this silence block by CREATIVE WAVE STUDIO utility.

The recorded wave file is also edited by this CREATIVE WAVE STUDIO software such

as amplifY, copy, cut and paste etc.

Data block packing

Data block packing is a two step process. First the digital audio file is compressed without

the loss of information. Second the file is decompressed when played and original file is

restored. Many different compression algorithms are used, after the sound files have been

recorded. The sound blaster cards are capable of playing the digital audio files in which the

data blocks are compressed. That means decompression is done by the sound blaster cards'

hardware during playback, by means of the digital signal processor (DSP) chip. The

beginning of the file (the header) must not be compressed, since it contains information that

identifies the file. Only the data blocks within the file are compressed.

25

\.

The size of the wave file can be reduced by the new audio compression technique. Human

ear cannot detect all audio frequency. The principle of audio compression is to cut off the

frequency which is out of audibility limits of human ear.

3.7 Sound blaster

To develop a Bangia text to speech synthesizer, a sound card is needed to record the basic

sound units and also to play back these.

3.7.1 The chips of sound blaster

The main chips of sound blaster include the digital sound processor (DSP), FM synthesizer

and Mixer etc [8].

Digital Sound Processor (DSP) chip

The most versatile chip on the sound blaster is the DSP (Digital Sound Processor) chip; it

processes all the connands that come from an:application. The DSP chip must also

instruct all the other sound chips on sound blaster in order to produce sounds.

When a presentation program wants to play notes through the FM synthesizer, the DSP

must accept the data from the computer and instruct the PM chip how to play the music

and converts it from digital to analog form to near the sound.

The DSP is responsible for sending and receiving the MlDI data used by electronic

keyboards and synthesizers. The DSP also performs the analog to digital and digital to

analog functions that allow to do digital recording and play back of music, sound effects

and speech.

Some digital sound files are stored in a compressed format to save disk space and must be

decompressed. The DSP can play these sound files by decompressing the data as it arrives

from computer.

26

FM synthesizer chip

The FM synthesizer is a modem invention for producing a wide range of sounds, both

music and special effects. The FM chip'is responsible for synthesizingthe sounds of musical

instruments. This chip can play up to II instruments simultaneously. A wealth musical

sounds could be created by the mixing of low frequency (audible to the human ear) speech

and music with a pure, very high frequency electrical wave using the FM (frequency

modulation) techniques.

The mixer

Another new chip introduced on the pro cards is the Mixer. This chip allows to adjust and

mix the sounds from the microphone, line in, CD input & the digital sound output and to

control volumes. This way it can be heard a blend of sounds such as music playing in the

background while speech and sound effects blast away in the foreground on the sound

blaster l.x/2.0, it can be only heard one thing at a time.

27

Chapter 4

Text to speech synthesizer

This chapter discusses about the text to speech synthesizer. Section 4.1 introduces a

generalized block diagram of text to speech synthesizer. Section 4.2 introduces the block

diagram of developed Bangia text to speech synthesizer. Section 4.3 describes the wave file

searching technique. Section 4.4 discusses how the wave file is played. Section 4.5

introduces the developed text normalizer. Section 4.6 discusses the wave file merging

technique.

4.1 Text to speech synthesizer

Text to speech synthesizer is a device which takes text as a input and generate the synthetic

speech by controlling the parameters and a model. If the model and parameters are

sufficiently accurate then the production of intelligible synthetic speech would be possible .. .

The basic goal in text to speech synthesis is to convert unrestricted text input into natural

sounding speech.

Key problems in this area include

- To study the pronunciation rule and determine the basic sound units of Bangia

words.

- To produce the natural sound of Bangia words.

- To develop the mathematical model of sound units of Bangia words.

- Introducing the text normalizer including syntax parser and abbreviation

interpreter.

- Handling an imperative, interrogative, exclamatory sentences and joint letter.

- Conversion of text of a sentences or a paragraph into speech continuously.

28

A generalised block diagram of text to speech synthesizer [1] is shown in figure 4.1.

ASCII TEXT

INPUTI-Text normalizer

Dictionary Letter to
lookup phoneme rules

L
Stress & syntactic

assingment

1
Allophonics PHONEME

INPUT

~
.

Prosodies

•
Parameter -

generator

~

Speech
synthesizer

~.

Speech wave form

Figure 4.1 Generalised block diagram of text to speech synthesizer.

29

..•.-

Text normalizer

By text normalizer, the Bangia word ~ should be pronounced as 'maa' and not as 'rna',

'aa' and also a string such as ~, ~~8 should be spoken as <!j<l' ~ ~ "l\O ~ and not as

<!j<l' <l"l11 ~ 1Wo1DB! if it is to be clearly understood by the general listener. Text normalizers

which must make decisions must also be controllable by the user so that incorrect decisions

can be rectified. Text normalisation can also handle syntax parsing, abbreviations and forms

like ~~~ and ~~goo .

(i)

(ii)

Syntax parsing

Further obstacles to the development of a rule set for interpreting spelling are

provided by pairs of words which are spelled the same but pronounced differently.

As for example, Bangia text to speech synthesizer produces the correct speech

sound of Bangia word '<fm' when it represents a day, However, when the same

word '<fm' is used to represent a number (which represents twelve in Bangia), the

synthesizer will still pronounce the word as to mean 'day' of week. The only real

solution to this problem would be to devise an algorithm capable of determining

the syntactic structure of a given sentence and assigning each word to its proper

grammatical category.

Abbreviation interpreting

30

Letter-to-sound conversion..
If

Accurate conversion of normalised text to equivalent sounds requires both a set of rules

and a list of exceptions to those rules. This rule set must be augmented by 'dictionary'

which associates exceptional text strings with appropriate phoneme strings. A sample

strategy for identifYingword boundaries would involve replacing spaces, connas, full

stops (periods) etc with phonetic symbols which are then part of the input to subsequent

rule of sets. Since the look-up process is usually much faster than application of the rules,

no speed penalty is paid for extensive exceptions lists. The size of the memory available can

be important, however.

Stress and syntactic marking

Very natural speech can only be produced if the converter knows what it is saying user

enters phonemes strings with stress marks to permit specification of correct pronunciation

and stress when the automatic results are not acceptable.

Allophonics and prosodies

\". The actual sound (or phone) produced by operation of a rule is called an allophone of the

phoneme. Allophonics variation is determined by syllabicstress as well as by the identity of

neighbouring phonemes. That means, each sound produced by a human vocal tract is

influenced by the other sounds surrounding it, so a text-to-speech product must operate

similarlyto speak naturally. This naturalness is enhanced by incorporation of proper pitch

and amplitude variations at the clause and sentence level. These cues can help the listener

....; identify questions, for instance.

Final speech production

Once the sound string to be produced is fully specified, it must be converted into an

electrical signal. If algorithmic smoothing is used, this process includes generation of the

data that drives a filter representing the vocal tract.

31

4.2 Developed Bangia text to speech synthesizer

For development of Bangia text to speech synthesizer, at first the wave file is to be

recorded by any utility software. Then key is pressed and keyboard translator translates the

key according to Bangia code. After this, play procedure of the wave file is executed. In

play procedure of the wave file, at first, according to key pressing, the wave file is searched

and played individually. Then the wave file is defined from the adjacent keys by text

normalizer and searched. After this, searched wave files are merged and merged wave file is

played. These procedures are shown in figure 4.2 and 4.3.

Key Input

Keyboard translator

Play procedure of the
wave file

Figure 4.2 Generalized block diagram of developed Bangia text to speech synthesizer.

Searching wave file from
key pressed

Playing the wave file
individually

Text norma1izing
(Defining the wave file
from the adjacent keys)
and searching the wave

file.

Merging the wave file

Playing the merged wave file

Figure 4.3 Generalized block diagram of play procedure ofthe wave file.

32

If 4.3 Wave file searching technique

Like in English alphabet, there are three types of letter in Bangia alphabet.

- Vowel,

- Vowel auxiliary, and

- Consonant.

There are II vowels, 9 vowel auxiliaries and 39 consonants in Bangia alphabet. A list of

Bangla vowels, vowel auxiliaries, consonants and other symbols used to form a Bangia

word are given in Appendix A

The memory mapping of the wave file is shown in figure 4.4.

SET 0 C'i'T C"l1 nIT

0 38

~- SET I '1'1 "lIT

39 77

SET 2 ~ l

78 .. 116

SET 3 <l\T iiT

117 155

.k SET 4 C'l' Cl[

156 194

SET 5 f.li fu

195 233

SET 6 'l' l[

~
234 272

SET 7 'Of I ~ T

273 282 283

SET 8 ~ "{ 'I

284 322 •..- Figure 4.4 Memory mapping of the wave file .

33 •.......

-)..-

.l

Set 0 to set 8 describe all possible sound units to form a complete word and is mapped into

memory in this sequence.

If there is no necessary of a particular sound unit to form any BangIa word, then the

memory space of that particular sound unit's location is reserved for keeping the other

sound units at right position.

Wave files are searched by direct searching technique. So the wave files (from set 0 to

set 6) are searched by the following equation.

Position = Bangia code of the key pressed - 75

+ (Difference between I'" and last consonant code + I) X set ... (4.1)

Note that BangIa code of '<1>'IS 75 for sulekha, proshun font which IS shown ill

Appendix c.

For set 7 except 1, the equation will be

Position = BangIa code of the key pressed + 208 ... (4.2)

When the last wave is from '1' to ~ then set 8 is applicable. w is the number of sound units

k then the equation will be

Position = 50 + Position of sound unit at (w-1)th ... (4.3)

These equations may be changed if we change the memory mapping of the wave file.

The wave file searching technique has been shown in the program flowchart of play

procedure of the wave file (figure 4.5).

34

No

Yes

No

Input the
Bangia code

Yes

Position=Bangla code+208

Play the wave file at that
position

Posilion=Bangla code+159

Play the wave file at that
position

Text normalizing (Defining the
wave file from adjacent keys) and

searching the wave file

Wave file merged

Playing the merged wave file

Figure 4.5 Program flowchart of play procedure of the wave file

35

.•..

4.4 Playing the wave file

There are three easy ways to play the wave files.

(a) Message Beep: Plays only sounds configured in the registry for warnings and

errors.

(b) sndPlaySound: Plays sounds directly from .WAV files or from memory buffers.

The syntax ofsndPlaySound function [9,10] is as follows.

BaaL sndPlaySonnd (LPCTSTR IpszSoundName, II file name

DINT uFlages) ; II SND - option Flags

The first parameter contains a full path name pointing to a .WAV file. sndPlaySoundO first

searches the [Sounds] section ofWIN.INI for a matching string. If it does not find one, it

looks on the disk for a matching file, If it still does not find a match, it plays the "system

default" sound.

sndPlaySoundO requires enough memory to load the full sound into memory. It works best

with sound files no larger than about 100 KB.

The second parameter expects a flag controlling how the sound is played. Some possible

values are as follows.

SND SYNC:

SND ASYNC:

The sound is played synchronously and the function does not

return until the sound ends.

The sound is played asynchronously and the function returns

immediately after beginning the sound. To terminate an

asynchronously played sound, call sndPlaySoundO with the

SoundName parameter set to NULL.

36

SND NODEFAULT:

SND_ NOSTOP:

.If the sound can not be found, the function returns silently

without playing the default sound.

The parameter specified by SoundName points to an III

memory image of a wave form sound.

The sound continues to play repeatedly until sndPlaySoundO

is called again with the IpszSoundName parameter set to

NULL. SND_ASYNC flag must be also specified to loop

sounds.

If a sound is currently playing, the function i=ediately

returns FALSE without playing the requested sound.

(c) PlaySound: New in Win 32. It does not play sounds from memory.

4.5 Developed text normalizer

Bangia has a very rich vocabulary. There is a .J'j)ced pronunciation rule for a specific

arrangement of Bangia letters in a word. The pronunciation rule is introduced by using text

normalizer which defines the wave file from the adjacent keys in our software. The

pronunciation of each letter of Bangia alphabet (vowels and consonants) as one reads them

produces unique sound.

In Bangia language, generally vowels may occur as a first letter and sometimes used singly

as a Bangia word such as <Jl (pronounced as 'A') and ~ (pronounced as 'Oi'). There are also

vowel auxiliaries in Bangia language and have different symbols [1 (Aa-kar), C (A-kar), .•.

(U-kar), T(E-kar) etc.].

A consonant may take its position at the beginning, at the middle or at the end of a Bangia

word. Two or more consonants may form a Bangia word (examples <f<lS, 4'''1>4 etc.).

However, in most of the cases, vowels, vowel auxiliaries and consonants combine together

to form a Bangia word. A consonant has a vowel auxiliary before and/or after it. The

37

pronunciation of the combination of a consonant and vowel auxiliary depends on the

particular consonant and the particular vowel auxiliary being used. The Bangia word ~

(pronounced as 'Maa') is recorded and this wave file is defined and searched when ~ (Ma)

is followed by an 1 (A-kar). So by text normaliser the Bangia word ~ should be

pronounced as 'maa' and not as 'rna' ,'aa'. Similarly 'Of ' (pronounced as English word

'Mae') is defined and searched when vowel auxiliary <: (A-kar) is placed before ~ (Ma).

This wave file defining from the adjacent keys by text normaliser and searching technique

using <:. 1 and <:t have been shown in the program flow chart (figure 4.6). In this

discussion, we can say that 11 vowels and 39 consonants are not sufficient to pronounce all

the Bangia words.

There is another instance of varied pronunciation, when a vowel or a consonant appears at

the middle or end of a word without any vowel auxiliary. Its pronunciation depends on the

ending sound of the utterance of the letter immediately preceding it. Let us take the Bangia

word ~ ('Kaak') as an example. Here the first sound unit is <l>t ('Kaa') and the second

sound unit, if pronounced in isolation is <f.' ('Kau'). If these two sound units are now

combined together, the word will be pronounced as .'Kaakau'. However, as we know, the

actual pronunciation of this word is 'Kaak', that is, the utterance <l>t ('Kaa') +~ ('aak')

actually produce the sound. This pronunciation rule of BangIa language is introduced by

text normalizer shown in the program flowchart (figure 4.7). The consonant ("f' to ~) are

mapped from 234 to 272 position in the memory. If the consonant ("f' to ~) appears at the

end of the word then TextNormaiiser2 function is executed. The position of the last wave

file is also determined by the equation 4.3 shown in wave file searching technique.

38

-1'" }., ,,,.'
\

r-- .., .~.

y
Input the Bangia code, key[ky] and
total number(k) of key pressed

Counter (ky) which represents the number of key pressed=O
Consonant=39

Counter (w) which represents the number of sound units=O

Yes

Yes

Yes

No

".d",

No

Yes

No

p[w]=key[ky]+208
wave[w]=WaveFile[p[wlJ

key[ky]
is vowel

?

No

~

39
""1 'f'

-l, }--- ~ />-,, .', ,"l

p[w]=283
wave[wl=WaveFile[283]

p[wl=key[kYl-75+
Consonant*6

wave(wl =WaveFiI e[p(w II

w=w-1
p[wl=key[ky]-7 5+Consonant* 4

wave[w]=~ aveFile[p[w II

p[wl=key(kYl-75+Consonant
wave[w]=WaveFile[p[wll

ky=ky+1

w=w-1
p(wl=key[ky],75

wave[wl=WaveFile[p[wII
ky=ky+1

ky=ky+1
w=w+1

., No Yes

Stop
Figure 4.6 Program flowchart of developed text normalizer (Wave file defining and searching technique)

40

Start

Input the number of sound units (w)
and positions of all wave files (p[w])

l-..

No

No

position=50+p[w-1]

w=w-1

Yes

Yes

wave[w-1]=WaveFile[position 1

Stop

Figure 4.7 Program flowchart of developed text normalizer
(Last wave file defining and searching technique)

41

4.6 Wave file merging technique

A few Bangia words need single sound unit. However, most of the Bangia words require

multiple sound units to form the corresponding speech sounds.

After assigning the sound units for each speech segment of a word, it is necessary to merge

the sound units together to reconstruct the speech sound corresponding to the word.

Depending on the sound units present in a word, the file merging technique differs. An

individual file corresponding to a sound unit has its own header, which contains useful

information about the type and length of the sound file. This information is vital for

producing correct speech sound when the sound file is played back. When two such sound

files are merged together to form a new sound file, the headers of both the files are omitted

and new header is inserted with the new chunk size and data size followed by the speech

information of the two sound units. When three sound units are merged together, another

new header is generated omitting the headers of each sound unit and merging all speech

information sequentially. The block diagram and program flow chart of wave file merging

technique are shown in the figure 4.8 and 4.9 respectively.
r-::'

HEADER HEADER

DATA DATA

NEW HEADER

DATA

DATA

......

Figure 4.8 Block diagram of the wave file merging technique.

42

Start

Input the number
of wave file
merged

Remove the old temporary
wave file

Create the new temporary file
with write mode

Open the wave file which will
be merged

,-. :~

Yes

Yes

Set the file pointer at the
beginning of the wave file

.,l.,

Yes

Read the header of the wave
file (44 byles)

Yes

Read the data size from
f' header of the wave file

No Yes

Read the chunk size
from header of the

wave file

New chunk size is the sum of the previous
chunk size and data size, Data size is

added to the previous data size

Counter=Counter+1

Yes

Set the file pointer at the
beginning of temporary file

No

Write the header into temporary file
with new chunk size and new data size

No

Yes

Set the file pointer at the beginning of data
area of the temporary file (after 44 bytes)

No Yes

"
• >I.,'
-'~ ..""

No Yes

'-.
Set the file pointer at the beginning of data

area of the wave file

Yes

Read the wave file

Yes

Write into temporary file

Yes

Close the wave file

Cou nter=Cou nter+ 1

Yes No

Close the
tern porary file

Figure 4.9 Program flowchart of wave file merging technique

45 '..•..

Chapter 5

Interfacing with application software

This chapter discusses the concept of message driven programming. Section 5.1 introduces

the basic idea of message driven programming, Section 5.2 discusses the message loop of

windows programming. Section 5.3 discusses the message queuing technique of windows

programming. Section 5.4 discusses the interface between BangIa text to speech

synthesizer and application software. Section 5.5 describes the keyboard translator.

5.1 Introduction

Message driven programming (also known as event driven programming) is a process by

which various subprocessess and/or applications co=unicate. In windows, messages are

the process used by windows itself to manage a, multitasking system and to share
'{", .

keyboards, mouse and other resources by distributing information to applications,

application instances and processes within an application.

Instead of telling the computer what to do one step at a time, windows programs are

structured to wait there until the program receives a message from windows. Messages can

be sent to the application's program by keystrokes (pressed or released) or other external

system events, such as selecting a menu or moving or clicking the mouse. The application

program must interpret this message and then act on it. This is the basic concept of

windows programming. The program of BangIa text to speech synthesizer has been

developed on windows programming using 'VISUAL e++' language [la, 11, 13].

46

5.2 Message loop

The message loop of windows programming is the heart of a windows application. The

message loop is as follows.

While (GetMessage (&msg, NULL, 0, 0))
{

}

TranslateMessage (&msg);
DispatchMessage (&msg);

Windows passes all of the messages to the program via the functions in this loop. Wllldows

keeps a message queue for each running application. When a key or a mouse button is

pressed (input events), windows translates the input event into a message, then places the

message in that application's message queue. The application retrieves these messages with

the message loop.

GetMessageO pulls the next waiting message from windows into MSG structure pointed to

by msg. The second parameter of GetMessageO 'NOLL' instructs the function to retrieve

any of the messages for any window that belongs to the application. The last two

parameters, 0 and 0, tell GetMessageO not to apply any message filters. Message filters

can restrict retrieved messages to specifY categories such as key strokes or mouse moves.

GetMessageO examines msg and returns zero only if the message member of msg is

WM_QUIT. When WM_QUIT is encountered, the program terminates, returning the value

of msg.wParam. The MSG structure contains the following fields (defined in
WINDOWS.H) [10,12].

typedef struct tag MSG

{

HWNDhwnd;

DINT message;

WPARAM wParam;

LPARAM IParam;

/* window handle */

/* 16 bit message ill */

/* 32 bit (double word) message parameter */

/* 32 bit (long) message parameter */

47

DWORDtime;

POINT pt;

} MSG;

/* time when message was placed in the queue */

/* x,y mouse co- ordinates at the time the message was placed in the

message queue */

TranslateMessageO posts the corresponding WM_CHAR code on the applications message

queue when a virtual key (WM_KEYUP or WM_KEYDOWN) code is received.

In windows, the wParam and IParam arguments accompanying each keyboard event

message carry the event character code, the scan code, all of the shift state information just

mentioned and, in addition, an eight bit key repeat count. Figure 5.1 illustrates the

components of the wParam and IParam arguments [9] forWM_CHAR.

wParam (32 bit value)

(hiword unused)
••

- 8 bit ANSI char _
16 bit unicode char ~

Extended key flagr
t t 8 bit flagsI Context (Alt+key) code
Prior key state

Transition state

~

8 bit scan code

~
16 bit repeat code

Figure 5.1 wParam and IParam ofWM_CHARmessage

48

lParam meaning [11] is shown in figure 5.2.

Repeat code

o - 15 (low order word) The repeat count. This is the number of times the character

is repeated because the user holds down a key.

Scan code

16 - 23 The keyboard scan code.

Flags

24 1 if an extended key, such as a function key or a key on the

numeric keypad.

25 -28 Not available.

29 1 if the 'Alt' key is held down when the key is pressed, 0 if

not.

30 1 if the key is down before the message is sent, 0 if not." .

31 1 if the key is being released, 0 if the key is being pressed.

Figure 5.2 WM_CHARlParam coding.

DispatchMessageO sends the message to windows. When window's receives the message

from DispatchMessage, it dispatches the message to the window's window procedure.

The program flowchart of main module of BangIa text to speech synthesizer which is

related to message loop is shown in figure 5.3.

49

Initialization of windows
creation

and
windows create & show

Hook function

------------ --------------------------------- -----------------

GetMessageO,,,,,,,,,,,,,,,,,,,,
,,,,

Yes

Yes

Yes

No

--- - --- - ------- --- - - -- ---- --- - --------., ,,,
,,,,,,,,,,,,,,,

,

Get message

No

No

Translate
message

Dispatch
message

Windows
procedure

Figure 5.3 Program flowchart of main module of Bangia text to speech synthesi:;;er

50

f

5.3 Message Queue

Since Wmdows has to control the execution of all active programs, all messages pass

through windows before being dispatched to the appropriate application program. Within

windows, the messages are processed by two queues (see figure 5.4). The first queue, the

system queue, is where messages are originally placed until they can be read by Windows.

After Wmdows examines a message, it is placed in a queue for one of the active programs.

The queues for the application programs are called the application queues. Notice that the

individual windows do not have queues; it is the applications that have queues. The main

procedure of the program reads the application queue and then dispatches the message to

the appropriate window routine within that application. The queues are generally quite

short, normally three or fewer messages. Normally, the queue's function is FIFO; that is,

the first message in is the first out. Messages are processed in the order in which they are

received [13].

Message

o
Application
program I
queue

o
o
o

l
o
o
o

~ystem queue

Application
program 2
queue

o
o
Application
program 3
queue

Figure 5.4 Message queues.

51

5.4 Interfacing with application software

When a key or a mouse button is pressed (input events) in any application/word processing

software, windows translates the input event into a message, then places the message in the

application's message queue. Then Bangia text to speech synthesizer will be interfaced with

the application/word processing software so that at first the message is retrieved from

application's message queue to Bangia text to speech synthesizer. Now Bangia text-to-

speech synthesizer works according to the message and software. Then this message is sent

back to the application's message queue. After this, application/word processing software

takes this messages and works according to message and software. This procedure is

shown in figure 5.5 .

Bangia

text to

speech

synthesizer

.........._-_._.~j
r;Im~~');lil;~~~i3!1~~;I;::~~i:,l;~III,1! ",.':c:"..w.w ..' '..' '.." ..".' .. '.' c.' .. , .

...... . -.. _.w.. .,'.::,..,.:':::.:::.,'.::.:..:.::'.:.:•..:'•..,::::::s.:.•.:..,..,:,..:.::::.c.•.,:,..:.:.,.'•..•:••...RE..
c
,,..:'-•..:••..•.•..,.:,1,:..E'.,.:•.,.:.••.,,:N'•.•...:.••:•.•••.•..•....•..•...••...•..•..:.:::••:.:.::..:::.-.•.••...:.:•...•:.::..::•..:::.-.•::.:•..:.:..:•.::.,':B!lI~11 J------..-- 1 --------- .

Figure 5.5 Interface of Bangia text to speech synthesizer with application/word processing

software.

At first for retrieving the message from application's message queue to Bangia text to

speech synthesizer, Bangia text to speech synthesizer must be hooked by the hook function.

Hooks are one of the most powerful features ofWmdows. They give a way to trap various

'r- events that are about to occur with respect to the application or the entire windows system.

52

,.

Wmdows now offer 12 hooks. If many hooks are installed, windows has to notifY all of

them. An application installs a hook by calling SetWindowsHookEx. The

SetWmdowsHookEx function installs an application defined hook procedure into a hook

chain. A hook procedure can monitor events associated either with a specific thread or with

all threads in the system. The prototype of the hook function appears below.

HHook SetWmdowsHookEx (int idHook, II type of hook to install
HookProc Ipfn, II address of hook procedure
HINSTANCE hMod II handle of application instance
DWORD dwThread ill II identifY of thread to install
); hook for

When this function is called, Wmdows allocates a block of memory containing an internal

data structure describing the newly installed hook. All of these data structures are linked

together to form a linked list with each new node (data structure) being placed at the front.

After the node has been inserted into the list, SetWindowsHookEx returns a handle to the

node. This value must be saved by the application needs to refer to the hook. idHook

parameters specifies the type of hook procedure to be installed. This parameter can be one

of the following values.

WH CALLWINDPROC
WH CALLWINDRPOCRET
WH CBT
WH DEBUG
WH GETMESSAGE
WH JOURNALPLAYBACK
WH JOURNALRECORD
WH KEYBOARD
WH MOUSE
WH MSGFILTER
WH SHELL
WH SYSMSG FILTER

In BangIa text to speech synthesizer, we have used WH_GETMESSAGE which installs a

hook procedure that monitors messages posted to a message queue.

The hook function used in BangIa text to speech synthesizer appears bellow.

HHOOK bRook =NULL;
bRook = SetWmdowsHookEx (WH_ GETMESSAGE,

(HOOKPROC) GetMsgProc, NULL, 0);

53

The GetMsgProc hook procedure is an application defined or library defined call back

function that the system calls whenever the GetMessage function has retrieved a message

from an application message queue. Before passing the retrieved message to the destination

window procedure, the system passes the message to the hook procedure. The

GetMsgProc hook procedure can examine or modifY the message. After the hook

procedure returns control to the system, the GetMessage function returns the message,

along with any modifications, to the application that originally called it. The prototype of
••• GetMsgProc hook procedure appears bellow.

LRESULT CALLBACK GetMsgProc (int code,
WPARAM
LPARAM
);

II hook code
WParam, II removal flag
lParam II address of -
I I structure with message

than zero, the hook procedure must pass the message to the CallNextHookEx function

without further processing and should return the value returned by CallNextHookEx.

• Parameter code specifies whether the hook procedure must process the message. if

code is HC_ACTION, the hook procedure must process the message. If code is less
"

r-:
• wParam specifies whether the message has been removed from the queue. This

parameter can be one of the followingvalues.
PM_NOREMOVE specifiesthat the message has not been removed

from the queue.

PM REMOVE specifies that the message has been removed from
the queue.

• lParam points to anMSG structure that contains details about the message.

..'
The prototype ofCallNextHookEx is as follows.

LRESULT CallNext HooksEx (HHOOK hhook,
int ncode,
WPARAM wParam,
LPARAM lParam);

When an application no longer needs it hooks, they are removed by calling

UnhookWindowsHookEx.

54
, .-. .

The prototype of UnhookWindows HookE x is as follows.

BOOL UnhookWmdowsHookEx (HHOOK hHook);

The hHook parameter specifies the handle of the hook. The handle was originally returned

from the call to SetWmdowsHooksEx when the hook was first installed.

There are keyboard translator and play procedure of the wave file in hook procedure. The

program flowchart of hook procedure is shown in figure 5.6.

"55

Start

Input the code,
wParam and IParam

of GetMsgProc

No

No Yes

No Yes

CallNexlHookEx
Keyboard translator

(Pointer of MSG structure)

Play procedure of the wave file
(Pointer of MSG structure)

II Stop
•

Figure 5.6 Program flowchart of hook procedure

56

5.5 Keyboard translator

Keyboard translator translates ASCII code to BANGLA code which is shown in figure 5.7.

I
KEYBOARD I

ASCII code ----~ TRANSLATOR, ----~ BANGLA code

Figure 5.7 Block diagram ofthe keyboard translator.

When a key is pressed, Wmdows translates the input event into a message, then places the

message in that program's message queue. The message of a character key pressed on the

keyboard is WM_CHAR This message is generated by TranslateMessageO function in the

program's message loop. wParam parameter of WM_CHAR contains the ASCII value of

the key pressed.

For Bangia character, there must be a code which is not fixed up now. But we have

considered the codes of the popular Bangia font sulelFha, proshun etc. which are shown in

Appendix C. In these codes, the code of Bangia character '<I>' is 75. The popular Bangia

keyboard layouts are Lekhani, Munir, Jatiya, Bijoy etc. But now there is no standard

Bangia keyboard layout. We have considered the Bijoy keyboard layout (shown in

Appendix D) for development of Bangia text to speech synthesizer. For typing the Bangia

Character '<I>' in Bijoy keyboard layout, j (106) key is pressed. Then the parameter of

wParam of WH_CHAR message is 106. But for typing Bangia character '<1>', wParam

value must be 75. So when pressing the j(106) key, the wParam value must be changed by

75 for typing '<1>'.This is keyboard translator. Note that inspite of wrong typing, backspace

is pressed for deletion of wrong character and during merging the wave files, these wrong

characters are omitted. For Bangia text to speech synthesizer, we need application/word

processing software with Bangia font and Bangia text to speech synthesizer has built in

keyboard translator. The program flowchart of the keyboard translator is shown in figure

5.8.

57

Start

Input the message
pointer (m)

key[k]=m->wParam

Get the keyboard status

No

No

Yes

Yes

k=k-1

No

key[k]=m->wParam=98

Yes

key[k]=m->wParam=89

Figure 5.8 Program flowchart of keyboard translator

58 i~
,. !

Chapter 6

Conclusion

Chapter 6 is the conclusion chapter. Section 6.1 describes the results of developed Bangia

text to speech synthesizer. Section 6.2 discusses the suggestions for further research in this

field. Section 6.3 discusses the conclusion of the thesis.

6.1 Results of developed Bangia text to speech synthesizer

Bangia text to speech synthesizer can generate sounds from arbitrary text inputs. We have

developed the generalized software for synthesis of speech from Bangia text and tested this

software which works properly. At first Bangia text to speech synthesizer accepts the

character from keyboard and identifies the sound unit and plays that. This task is repeated

until the word is completed. Then the text is normalized by defining the wave files from the

adjacent keys as per pronunciation rule and searched. When identification of the sound

units for a particular Bangia word is completed, all the sound units are merged together

into a speech file to form the complete speech signal for that Bangia word and finally the

merged wave file is played. Note that Bangia text to speech synthesizer is interfaced with

the application/word processing software so that at first the message (generated by pressing

key) is retrieved from application's message queue to Bangia text to speech synthesizer.

If we store more basic sound units, then Bangia text to speech synthesizer can work

properly from any input text.

As Bangia text to speech synthesizer merges different sound units together to form a word,

there remains the problem of intonation (pitch). Slapping the sound units together from

different words, recorded at different times, may also result in a choppy 'sing song' effect

since the pitch and duration of words will not necessarily match.

59

"

"

6.2 Suggestions for further research in this field

There may be modifications of Bangia text to speech synthesizer to suit specific needs.

These and the other topics of research are described below.

(a) To produce natural sound

As Bangia text to speech synthesizer merges different sound units together to form

a word, there remains the problem of intonation (pitch). Slapping the sound units

together from different words, recorded at different times, may also result in a

choppy 'sing song' effect since the pitch and duration of words will not necessarily

match. So further research may be carried out to produce natural sounds by

reducing the 'sing song' effect and the problem of intonation. In tms regard, the

envelop of the wave file will be determined and carrier frequency will be added to

the wave file for obtaining the same pitch of the wave file.

(b) To develop the mathematical model of BangIa Sound units

Research may be carried out to develop proper mathematical model of Bangia
<.:-- -:-'

sound units, wmch would enable the current' Bangia text to speech synthesizer to '"

produce syntheticBangia speech.

(c) To determine the basic BangIa sound units of all BangIa

words

For development of Bangia text to speech synthesizer, the basic Bangia sound units

of all Bangia words must be determined wmch is the field of Bangia phoneme

research.

(d) Handling an imperative, interrogative, exclamatory

sentences and joint letter

Research may be carried out to handle an imperative, interrogative, exclamatory

sentences and joint letter wmch express the feeling of the speaker differently at

different situations.

60

(e) Introducing the text normalizer including syntax parser

and abbreviation interpreter

Research may also be carried out to introduce the text normalizer. By text

normaliser, a string such as ~,,,,~8should be spoken as <!i<P~ ~ "t6 ~

and not as <!i<P'RI ~ fW-fDB!if it is to be clearlyunderstood by the general listener.

Text normalisation can also handle syntax parsing, abbreviations and forms like

",,,,WI! and ~",zOO.

(i) Syntax parsing

Further obstacles to the development of a rule set for interpreting spelling are

provided by pairs of words which are spelled the same but pronounced differently.

As for example, Bangia text to speech synthesizer produces the correct speech

sound of BangIa word '<rffi' when it represents a day, However, when the same

word '<rffi' is used to represent a number (which represents twelve in BangIa), the

synthesizer will still pronounce the word as to mean 'day' of week. The only real,'- -;~
solution to this problem would be to devise an algorithm capable of determining

the syntactic structure of a given sentence and assigning each word to its proper

grammatical category.

(ii) Abbreviation interpreting

Another function 'abbreviation interpreting' should be included in BangIa text to

speech synthesizer. We can use the abbreviation such as ~g, \lOg etc in BangIa

sentences. But the exception rules must be accomplished in BangIa text to speech

synthesizer which convert the abbreviation into spoken form such as ~g to

(f) To play sentences or paragraph continuously

A provision can be kept in the Bangia text to speech synthesizer to generate play

files corresponding to text inputs of a sentences or paragraph, and then the speech

61

files of the paragraph or page should be played back sequentially at a time. This will

produce speech sounds of the texts of a paragraph or of a page continuously.

However, this method would increase the hard disk surface requirement to store

many speech files and would take more time to convert text to speech file before

the actual playing of the files.

(g) Reducing the sound file size by compression

The higher quality recording of digital audio files requires more disk space. So

research may be carried out to reduce the sound file size by compression during

recording and file is decompressed when playing. The size of the wave file can be

reduced by the new audio compression technique. Human ear cannot detect all

audio frequency. The principle of audio compression is to cut off the frequency

which is out of audibilitylimits of human ear.

(h) To develop the application software

Research may be carried out to develop application softwares and education tools

for PC using the speech sounds produced by the BangIa text to speech synthesizer.

(i) Handling exceptions

Research may be carried out to handle exceptions when many problems might have

remained unnoticed.

6.3 Conclusion

Bangia text to speech synthesizer can generate speech sounds from arbitrary text input.

Bangia text to speech synthesizer has been developed using the method that stores speech

sounds of parts of words. The parts of words i.e. basic sounds units have been recorded

using sound card, microphone and sound recorder utility software. Though the

pronunciation rules and the determination of basic sound units of Bangia words have been

studied shortly as part of the current research yet BangIa phoneme specialist can do this

extensively. At first Bangia text to speech synthesizer accepts the character from keyboard

62

and identifies the sound unit and plays that. This task is repeated until the word is

completed. Then the text is normalized by defining from the adjacent keys as per

pronunciation rule and searched. When identification of the sound units for a particular

Bangia word is completed, all the sound units are merged together into a speech file to

form the complete speech signal for that BangIa word and finally the merged wave file are

played. Note that BangIa text to speech synthesizer will be interfaced with the

application/word processing software so that at first the message (generated by pressing

key) is retrieved from application's message queue to BangIa text to speech synthesizer.

A generalized software has been developed for synthesis of speech from BangIa text which

can generate any speech sounds from any text inputs. But if we store more basic sound

units, then Bangia text to speech synthesizer can work properly from any input text.

As BangIa text to speech synthesizer merges different sound units together to form a word,

there remains the problem of intonation (pitch). Slapping the sound units together from

different words, recorded at different times, may also result in a choppy 'sing song' effect

since the pitch and duration of words will not necessarily match.

We do not handle an imperative, interrogative, exclamafory sentences and joint letter which

express the feeling of the speaker differently at different situations.

We do not introduce the text normalizer including syntax parser and abbreviation

interpreter.

The code of Bangia character is not fixed now. Also there is no standardisation of BangIa

keyboard layout. So problem was arised during development of BangIa text to speech

synthesizer.

Many other problems might have remained unnoticed. These problems will, hop ely, be

eliminated in the subsequent versions of BangIa text to speech synthesizer.

.'63

References

[1] Bristow, Geoff, "Electronic Speech Synthesis", McGraw-Hill Book Company, 1st

Edition, 1984, pp: 19-47,94-113.

[2] Chen, Tsuhan, "The past, present and futer of speech processing", IEEE Signal

Processing Magazine, May 1998, Vol. 15, NO.3, pp 24-48.

[3] "Speech synthesis", IEEE Signal Processing Magazine, July 1997, Vol. 14, No.

4.

[4] Sinha, D.K. (ed), "Special issue on computer applications in processing of indian

languages and scripts", JIETE,.vol. 30, NO.6, November 1984.

[5] Hwang, S.H. and Chen, S.H., "Neural network based FO text to speech syntherizer

for Mandarin", lEE Procedings, VlSION, IMAGE AND SIGNAL PROCESSING,

Vol. 141, Number 6, December 1994.

[6] Islam, Md. Nazrul, "Development of a Bangia text to speech converter", M.Sc.

Engg. thesis, Department of Electrical & Electronic Engg., BUET, April, 1995.

[7] Uddin, M. Jamal and Sobhan, M.A., "Studies on the effects of number of periods on

the formants frequencies of Bangia voice using Hamming window", 38th Annual

Convention oflEB, 1994.

[8] Heimlich, Rich and Golden, David M. and Luk, Ivan and Ridge, Peter M., "Sound

Blaster: The Official Book", Osborne McGraw-Hill, 1993, pp:4-57,428-444.

[9] Aitken, Peter and Jarol, Scott, "Visual C++ Multimedia", Comdex Computer

Publishing, 3rd Edition, January 1997, pp: 86-92, 108-111.

.'64

[IOJ Ezzell, Ben and Blaney, Jim, "NT 4lWindows 95 Developer's Hand Book", BPB

book centre, First Edition, 1997, pp : 16-183, 1230-1295.

[l1J Conger, James L., "Windows API Bible", Galgotia Publications Pvt Ltd., 1996, pp:

1- 349.

[12J Pappas, Chris H. and Murry, William H., "Visual C++ 5: The Complete

Reference", Tata McGraw Hill PublishingCompany Limited, New Delhi, 1998, pp :

682-732.

[13] Townsend, Cart, "Advanced MS-DOS Expert Technique for Programmers",

Howard W. Sarnsand Company,First Edition, pp 359-405.

65

i

Appendix A

BangIa Alphabets

Vowels of BangIa word

Vowel auxiliaries of BangIa word

Consonants of BangIa word, -

o
o

Other Symbols

J

66

Appendix B

BangIa Sound units and their file names

Serial BangIa Sound FileName
No. Unit
1 ~ wOOO1.wav
2 ~ wOO02.wav
3 t'1i wOO03.wav
4 t'itt wOO04.wav
5 *
6 CDt wOO06.wav
7 ~ wOO07.wav
8 ~ wOO08.wav
9 r<m wOO09.wav
10 *
11 Wi w0011.wav
12 ~ wOO12.wav
13 ~ WOO13.wav
14 WI wOO14.wav
15 tett wOO15.wav
16 T;\5l wOO16.wav
17 *
18 *
19 *
20 * .
21 ~ w0021.wav
22 ro w0022.wav
23 tllt w0023.wav
24 t'tt wOO15.wav
25 c9ft w0025.wav
26 rn w0026.wav
27 t<ll w0027.wav
28 ~ w0028.wav
29 ro w0029.wav
30 T;><t wOO08.wav
31 em w0031.wav

Serial BangIa File Name
No. Sound Unit
32 CO'ft w0032.wav
33 V'tt w0033.wav
34 T;><t w0033.wav
35 t'ft w0033.wav
36 ~ w0036.wav
37 *
38 *
39 tm w0039.wav
40 <lIi w0041.wav
41 ~ w0042.wav
42 '1i w0043.wav
43 <rr w0044.wav

, "44 *
45 Dr w0046.wav
46 ~ w0047.wav
47 ~ w0048.wav
48 ~ w0049.wav
49 *
50 ~ w0050.wav
51 -m w0051.wav
52 ~ w0052.wav
53 Dt w0053.wav
54 ett w0054.wav
55 wt w0055.wav
56 *
57 *
58 *
59 *
60 "!t w0060.wav
61 'It w0061.wav
62 llt w0062.wav

67

(

Serial BangIa Sound FileName
No. Unit
63 "It w0054.wav
64 9ft w0064.wav
65 <l't w0065.wav
66 'li w0066.wav
67 '5l w0067.wav
68 ''It w0068.wav
69 <It w0047.wav
70 m w0070.wav
71 <'ft w0071.wav
72 "tt wOO72.wav
73 <It wOO72.wav
74 ~ wOO72.wav
75 ~ w0075.wav
76 *
77 *
78 m w0078.wav
79 ~ w0079.wav
80 '{ w0080.wav
81 ~ w0081.wav
82 ~ w0082.wav
83 *
84 R w0084.wav
85 ~ .w0085.wav
86 ~ w0086.wav
87 l w0087.wav
88 *
89 g w0089.wav
90 ~ w0090.wav
91 W w0091.wav
92 ~ wOO92.wav
93 e.t w0093.wav
94 ~ w0094.wav
95 *
96 *
97 *
98 *
99 '{ w0099.wav
100 l1. wOlOO.wav

68

Serial BangIa File Name
No. Sound Unit
101 l1. wO10 l.wav
102 ~ w0093.wav
103 '1 wOl03.wav
104 V wOl04.wav
105 <J: wOl05.wav
106 ~ wOlO6.wav
107 ~ wOl07.wav
108 "7J. w0086.wav
109 W wOl09.wav
110 'i wOllO.wav
111 ~ wOlll.wav
112 "'J: wOlll.wav
113 ~ wOlll.wav
114 '<. wOl14.wav
115 *
116 *
117 1 w0117.wav
118 ~ w0118.wav
119 ~ w0119.wav
)20 <jt w0120.wav
121 ~ w0121.wav
122 *
123 ~ wOl23.wav
124 ~ w0124.wav
125 iit w0125.wav
126 ~ w0126.wav
127 *
128 'ijt w0128.wav
129 OJ" wOl29.wav
130 -&t w0130.wav
131 tT w0131.wav
132 9t w0132.wav
133 ~ w0133.wav
134 *
135 *
136 *
137 *
138 Q.iT w0138.wav

,~,

Serial Bangia Sound File Name
No. .Unit
139 ~ w0139.wav
140 lit wOl40.wav
141 ~ w0132.wav
142 9ft wOl42.wav
143 <R wOl43.wav
144 ~ wOl44.wav
145 -&t wOl45.wav
146 ~ wOl46.wav
147 ~ wOl25.wav
148 ~ wOl48.wav
149 oiit wOl49.wav
150 -ijt wOl50.wav
151 ~ wOl50.wav
152 ~ wOl50.wav
153 ~ wOl53.wav
154 *
155 *
156 ~ wOl56.wav
157 c<li wOl57.wav
158 ~ wOl58.wav
159 c<t wOl59.wav
160 N wOl60.wav
161 *
162 CD wOl62.wav
163 ~ wOl63.wav
164 ~ wOl64.wav
165 c<lt wOl65.wav
166 *
167 W wOl67.wav
168 ~ wOl68.wav
169 CiS" wOl69.wav
170 CD wOl70.wav
171 cot w0171.wav
172 ~ wOI72.wav
173 *
174 *
175 *
176 *

69

Serial Bangia File Name
No. Sound Unit
177 ~ wOl77.wav
178 Cl'f wOI78.wav
179 Cl:! wOl79.wav
180 ~ w0171.wav
181 C9f w0181.wav
182 ~ wOl82.wav
183 C'f wOl83.wav
184 CG" wOl84.wav
185 Of wOl85.wav
186 ~ w0164.wav
187 ~ wOl87.wav
188 IFf wOl88.wav
189 ext wOl89.wav
190 Vl wOl89.wav
191 ~ wOl89.wav
192 ~ wOl92.wav
193 *
194 *
195 rn wOl95.wav
196 ~ wOl18.wav
197 ~ wOl19.wav
198 ~ wOl20.wav
199 N w0121.wav
200 *
201 W wOl23.wav
202 ~ wOl24.wav
203 ~ wOl25.wav
204 f.\t wOl26.wav
205 *
206 ~ wOl28.wav
207 if wOl29.wav
208 ~ wOl30.wav
209 W w013l.wav
210 tot w0132.wav
211 ~ w0133.wav
212 *
213 *
214 *

j

Serial BangIa Sound FileName
No. Unit
215 *
216 ~ w0138.wav
217 N wOl39.wav
218 ~ wOl40.wav
219 for w0132.wav
220 f9t wOl42.wav
221 fii; wOl43.wav
222 f<t wOl44.wav
223 ~ wOl45.wav
224 ~ wOl46.wav
225 ~ wOl25.wav
226 fit wOl48.wav
227 f.'r wOl49.wav
228 fi't wOl50.wav
229 ~ wOl50.wav
230 PI wOl50.wav
231 ~ wOI53."wav
232 *
233 *
234 fir wOl56.wav
235 '1' w0235.wav
236 ~ w0236.wav
237 't w0237.wav
238 '<[w0238.wav
239 *
240 1> w0240.wav
241 ~ w0241.wav
242 'Sf w0242.wav
243 '1t w0243.wav
244 *
245 ~ w0245.wav
246 ~ w0246.wav
247 is w0247.wav
248 1> w0248.wav
249 et w0249.wav
250 \3 w0250.wav
251 *
252 *

70

Serial Bangia FileName
No. Sound Unit
253 *
254 *
255 Q,(w0255.wav
256 "If w0256.wav
257 ~ w0257.wav
258 ., w0249.wav
259 'Of w0259.wav
260 'l' w0260.wav
261 'l: w0261.wav
262 '" w0262.wav
263 "'"f w0263.wav
264 ~ w0242.wav
265 ~ w0265.wav
266 '1 w0266.wav
267 "t w0267.wav
268 <r w0267.wav
269 ~ w0267.wav
270 ~ w0270.wav
271 *
272 *
273 ~ w0273.wav
274 '5f w0274.wav
275 ~ w0275.wav
276 '5f w0276.wav
277 ~ w0277.wav
278 '@ w0278.wav
279 <It w0279.wav
280 <!l w0280.wav
281 Ji w0281.wav
282 ~ w0282.wav
283 ~ w0283.wav
284 1 w0284.wav
285 ~ w0285.wav

* Reserved for future use.

'-

Appendix C

Bangia symbols and their codes
(SulekhaT font)

71

Offset. 0

i@
;g----

\"': .:.'~ :s ~ ;.

•
>~,,;e/.I'
s--~-
>

VJi:iih: 5S~

Offset: 5

C'- :~C_
9~

~ S~"

~- -~'---,

iiGih

Offset: 43;,-0
3------
c

:~~~,::-:i

8ffSi:l: 7-i

v
~------

W-idth: 4-33

-J)--

Offset: 43

-~C;_
"-9

• .'i :~:; \

C~Tsel: ~;.

~~~
•

Width: 3-;3

~fl~e~:p _ .

"'"
'~"r .-~

_ ;'~,eL is:J

~:=.

;'"jidth: 2-;5

~•
~.

~:

-

~
~.

I:::

~-
~~

.,

~- -
~
~
:f-

~

o

~
~:-
@..

~

•Offsat: -50

~-).W-
.9;- - - -
'"Wicth: 459

•Offset: ~56

~(~-,
:::1- - - - - -I
n,

,_. 1

Width: 513

•Offset: -'56

,i~~@(
0'

Width: si,

•mOff'~lt-,
~--~-'
m

~i;=th: 551'

Offset: 15

,:::.-- As--
~ ~,9------.
."
Width: 605

Offset: 41~-J;--,
~------.

"Width: 586

Oifsat: 8.----_.

~

\'\I-idlh: 27E:

Offset: 63------..• .
C'
.~3

V'.Tidth: 278

Offset: 27

i~A-
Wid"ih: 5o~

Offset: 30

~~JL
\I'jidlh: 5-5~

Offset: 27:.-V-
~- ~- -

~"iidlh: 554

Offse!. 93

...: - "'"~- - -
~
i,r,i"ldth: 373

Offset: 34
'0-;1".--
(j,-~--
-9.

\I'JIdth: 4-79

•Offset: -4
u -CG--
(j;_-l "';.=' ,
u

\.-••Tidth: SOB

Offset 38~- -00-
"(j;------
O! '~ ,

Width: 497

Offse\: 32
::: -c~--

t..~------

"~
Width: 501

•Offset: .1~ - -<:s' - -,
Ui-":----'
-" '~
Width: 483

C?ff~e~:~~ _

;:,..1)
\11------"'.~

Width: 504

Offset: 64---:'*~,_": -~,
"
Wi~th:506 .

Offset: 30
+:-l--
~,_.!T__
~I 1 1

+, 1

\_' 1

Width: 564

Offset: 63-----~
",------

"b
,

,-,----,
Width: 250

Offsei: 43

~~L~
"'"
Width: 333

Offset: 63------•------
"-'"
Width: 256

•Offset: -12_:~:
",:"-.
Width: 273

Cffset: 53------

~

Width: 347

Offset: 4
--~--~ .

w--- -~
~, ,
~

. .

Widlh: 500

•Offset: -13~ --Cf'--
w------
9~
Width: 384'

Offset: 58------B~~-----
~
~;jjdth: 7S1

•Offset: -203
>~~~~~~

""'"Width:'- -

~ff~~:~~_

"!E
Width: 153'

""------~
!;:
::;: .

[-:.
:i: .,:.--",,'-"-- -

~~,
F
~-
2.:

N ._.~

~~
~.

u __
~
!;:
5..-

I~---~-
u __

~.

~~
[;-'-~--

~.-;- -,- -._~
?':~
l~:f:~~,~::~~

~{"":" --
Co
@,J:
!!.::::',::'--- ;".::
a.~,'::'~-":-

~,-:--- i"":",:"' -~,
Ci;.,: "-"

~:
~~_:_---

N .._~

U
C;.".
!.:r-'~----

o-e----~.
!;-.'
g. ::
~<-~-

N------.
~:

~
~.

(..J------
~
~
~._----

~-'---
~.-
c.
~
~.

Cl.- T

~:
=
~
[:'_:_-'--'

-..1,-":" - -
C
~g,
t~:__'C-_:



J-

~
,:;::

Width: 357

'"

~"jidlh: 540

Offsel: 46

i.'7i:.!:~.-;;-;~

~,
Width: 635

~.:(¥
6,-----

Offset: 44

~Ei
~-"':----

I

7o~f~({.Xs-L

,;' - .-,

•Ot;-set: -sc,

•

;0

~,:.;~,

v,Jio'ir,":" 452

w-idih: 592

c
~,-
c

•Offset: -SO

~Gj-
"'@------
.9

"

{~~_.
N

Widlh: 5-iO

~
widlh: 45C

ii:\:-.' .;; ':

l
Offset: -53~- :61',

9---:----

x

l
Orfse!: .':9,~::<:;f

-'"

i"'~A4__

.:.;; .;-~

~-iiJ;h-:-~.;~

o

~
Width: 4':3

l
Ctlsel: -62

{~:-

2,

l
Offset: -51;;:_:~r

.9

V,..'jjl~,.

~

Viidth: 436

•Offset: -53

~~:~[
-'" '

Width: 5-'6

I
::11,,21 .:~

•Offset: .52

(:~
~

;: - -~-
.~-----

.;-

.~.

v,}dth- .;:.}

,

~~

Offset; ,

;~fl~:
~

~

l
Offset: -49~:~~r

: :.>~:.~:

Widlh~ f

•

N

. wid'ih:'- -

i:.'i~!i.~:-~:

l
Offset: .4.3,F -

~-..,----
N

"

-;.~2-~

l
Offset: -330

~~_J
.9 -

~

•Offset: .:;7':.~F--
3-..,----

~
lS,-,----

W,dU',: 1

" -w
c

I

,,-
'0-w._. _
O'Width: 219

5
:::~\'i::iih:isS:

l
,Offset: -57
~_-N-
~
w
{;1,,"., "'_ :-:::

f~c~-

•r~~7

~

l
~ Offset: .379
~- ~-,--
$-"'----

~.
w - -
<'oWidth: foB

l
,,-Offse\: -95

~'~~~(~

I;w __ 1 _

"'Width: 114

Offset: 110------
::: ,....--.
~------

'" -_1 1

Width: 480

Offset ~i

;j9~:

'".',_1 -
Width: 301

l
Offset: -50
'--~----;, :

0'- - - - -
N, '
;:, 1
._1 -

Width: 521

Offset 30

.::. -;~--
0.0 _

!E
o

Width: 535

Offset: 13.- .......-, -
-j----

;;
.::,-,

Width: fa3'

l
Offset: -50~- '-M

!:::;!,------

'"wi,i:h":" 5-63

l
Offset: .57
,- c~- - --

Ai I ,

-::::I, 1 •

E!I-'---'"
A' I

(-,----,
Width: 571

l
p"0ffset: -507
- -~---
~9 t_
I;
2;Wid"ih":" f06

~-: ~--

r"
~; .;.:::; - - "-

l
Offset: .277
"'7'----
'-'---~-
"~
:dwid"ih: f -

l
Offset: .3!?9-
;,,7'----
w _

'"I;
l,.I------
wWidlh: 1

Offset: 342------

N~
\.Vidth: .:l-6~'

Offset: 139------
:::--,
;::j--'----

'"
Width: 480

Offset: i3------
~ __Q 9_

-'"
Width: 313

l
Offset: -303"-----~

::i
" Width: ,- -

l
Offset: -49-'~--

0------

-'"
WI~lh:449

l
Offset: -50

;:- ; ~::r
0- -~--
!E '

- ,
Wldlh:509

l
Offset: -48

f-{[
~
Widlh: 505

l
Offset: -52

",::4$L
o

Width: 444

Offset: 56- -::=: - -
-a -----

"-,
Width: 366

Offset: 44
:.=-.=- .=-.=- ]~

<a
'"
Wldlh: i03

Offset: 40

{J~~_
--<

Width":" fi2

•Offset: -45- -,'..:re
~'__~J:'_

'"c
Widlh: ';-50

Offsel: 15;:~4:
-'"r,

Wid:h74-36

Offset: 14,-' ~--
~'--~-
::i_

",_1 -
Width: 485

~-
N-,'"

c-

l----c
,l>. - ~ .- -w --
s::g,:
~; -'- - __ 'I

~orfset: <:5_

'3~~b-
~
~w .. _
.l>.Width: 293

•+t0lfse!: .57r~d-
~
ti:v'iidih: i9s

l
Offset: -411

-,-l~~~~:
:8,
it-Tidlh: ,- -

""-~----
N - -

~
~:r-'--.-- ...

l
Offst!t: -8'
:~~X:

'"Ii
<

Width: iC2

l
Offset: -55

~::~.
!E -.-

Width: feo

l
Offset: -52(»r:

.9

" Widlh: 4-41
l

Offse\: -50

~~;~L-= I ,

C'
v...iidlh: 524

l
Offset: -49

:::-'(;1' -
0------

"
Widlh:532

l
Offset: -52
- -~Jr-

~.L..I0------
'" 'o
Widlh: 4-72

l
Offset: .304,- '.D.- --

~.-":_---
;;
~

Width: f -

Offsel: 12
-~-

lO'-~----

'"
Widlh: 4i7

•Offsel. -50

:: --<Sre-------
<

Width: iG5

•Offsel: -49r~~L
:;
Width: 5-23

l
Offset: .52
,- c ~--

ZI ~-::::I-~----
-'"z
Wi~lh: 471

Offset: 8
~,-'@-
.....• --,----
3. I

0: ,
Widlh: 457



.14~ UlIdcfinnd

-~'8' '~
R .~

'/145) A0145

'",m

~: :
"". '-0
('; '~

n' [153l 1'\0153

or. ,~
, '-~~:~

0', .~
'(146) A0146

"
nO , 'M
,;~ 1,1;..t :~
o :~
:;(I54)A0154

'00:"=l I~

••t,.,' ',;:
~' 1 ::ti
0' , ,~

'(ISS) A0155

148 Undefined

•• -;, I.e

~~, :~
0' .S
n~(156)A0156

,
"

157 Undefined

~-,
150 Undefined

158 Ulldchned

,
151'U~d~rin~d

t. ,~&: .~
(160) A0160

0, '",

.•t<l: . :~
o :~

; (161)A0161

en' .. r - - -,
~' ,

.•i:~: ;~
~,. f" - - -,:E
0' 1_~_~3:
t (162) A0162

M.--'----
~I I I
'I I I•...

.•t~: :~
~,. 1- - - -I:E
0'__.1" __ ~3:
E (163) A0163

M" -, - '0

.• ~: 1: .;~
~~: - 1'-

01_ L. .,~
¥ (165) A0165

to'-- '1

g:1 ,
" ,

"7;;~' _:~
~I-- ,_ ,'_

01• ,_ ,S
: (166) A0166

'<I' " " - - - -

:'!:.": ::"
•• 7;; !i.' :~:2 •... , - -I:s!
0' .'._ ... ,5:
9 (167) A0167

"U'l_ ,;',

.•if;:
8" ..

- t 163) A01&'"

;;~:8' . ~'
.i 134) A01S<l

:;;;.~:
"Q.j' ,~. ,

Q' , :...
A (192) A019::

- -:..:. '.c
.~:. '-5
(J '~
., (169) 1'\0169

, <;-f
." Cjl. ~

'(IS5) A013f

:':,~'. ,,', . ,;r;-~ ':~
." '0=;
\.1 50

i~(I!)J) A01~1.J

:e :Offi]": :~
".;' :~' ::5

~, - - 1 - _1"1:1

0' l.~
; (178) A0178

", - ..~
"""' '«)

~.~ :~~, . - -, - ~;:E
0' _, .~

~ (186) A0186

,
~:- __ I :Jg

"~I\S'J: 1..<::
~.- - - ., - -:!i
0' ... '. ~~

• (179) A0179

-1- - -

'<1'1 , ':g
::,~ :::;. ,-:21-------

I
:s!

01_ J __ .•~
•• (187) A0187

-, - - -

"~' : :~Q.j' , ,£
~. ...,- - -I:E
0.1

• ' ••• _.~

A (195) A0195

~'w,
"?, I ' •.•

"~Cd ..: :.~
OJ , .s
.• (172) A0172

,
o ,m..::~:::
8~' , . ~~

. (180) A0180

"MI I I"-

M,~, ,~
i' I :£
~", ., 1- - -,."'S!
0" I .S
A (196)A0196

1- ' •••••.•~:~:~::~•... _. , ,'-
01 • ' ,3:

]J (181) A0181

,
o 'M..::q: :~
~, .. , -,:E
0'.. I. ,~

~ (189) A0189

M 'I,(}.•~;~:;~£,. __ , ."0

01
~~

11(182) A0182

'" '«).•~:~::~8~'" - ., :S
0/. (190) A0190

.•2~',: ::
-;~: _''68~" '~
,I:f (198) A0198

..... , :8
"? ,-::FJ. ~.

"i' :~
~, -I~ - -,:E
0.: -' .s:

(175) A0175

.,

.•~~::~
~;~. -,."E
0'. • .S

. (183) A01S3

.J

,
W 'N

..~:\55::~
~, - - - ., -.:E
0' , .S
G (199) A0199

( ,,' ,~ ,
'm 'M 'w

,
.m

:;;'--' ~~r 0;~
0,

N~ "~O ':,; ,Q ,£ ,£ ,:;; w __ ' ,m- , "" . ~ ' ;;~ "'{3 "I.!j'
'~

~. I .i:" '.i:" .•t' J ~-;~ ~, , ',;: .•tl , - _:~ .•t, , ,~,
""

,~. ". , ''0 ~ .. _1'6 ~, . -1- ~;- , _ .,''5 £,.- .. f" ~... - ,

" 0 '0 :.; () , '~ 0' , ~~ 0' ~~ 0' ~~ 0' '!:
E (~OO) AO:OO , co I) I\O~OI E aOZ) AOZ02 E (203) AOZ03 1(204) AOZ04 I (Z05) AOZOS I P06} A020G

..;~ ;~
~:_".'"{: _"1:1

Q' '~.
1(207) ADZ07

'Q:;-
8' ~.
o aOS) A020S

" ':5
t, .~
r 1 (209) A0209

'0"" ;~~"-' ,
~' J..<::
~' 'B
o . ~~
0(210) A0210

"<D"" ;g
'<1'" ~

t, .:~
~' ,.-
01 , __ •• 5:
O(211)A0211

~:' ,~
!i' '.e
~' , ,~
O' ~~
o (Z12) A021Z

,
<D"I '~
"'<1', I IN

i' :~
~I t 1'_

C;' , ,~
0(213) A0213



-~~8: .
0(216}A02IG

..~:~:::~,Gl1- - .;:2
0' .~
U (218) AOZ1S

o 'N

..;:\S: __:~
~'. - -,-
Q' .. ' - . :~
U (219) A0219

o '0..::~::~
'" ~( _'is6.: ' :~
u (220) A0220

_:..'.:-~;:~
~ I~;3:' - - -, - :~

b (222) A022~

,
, '0.,~: ,,.,

"i' '.c
..!!.!' , - - ':;;;
0' , '~
~ (223) ADZ23

got: ..'
!i9{'" 'o
.', 1.:':4) AO:::.1

"
~':"122S) AO:::2"f

,
M 'm~~~::~8: : :~
" (226) A0226

,.
N 'ro.•~:~;:~
<Il, Tl '''5
5' .: '~
a (227) AOZ27

o ,~

.•~:<l:": ::
,~ "t t '"'5
8: ' ~~
;; (228) A0228

o ••..~:t"1: :~
~,~, ':2
0' , .~
}l (229) A0229

,
0'> '~.•~:~::
B:' ~
fe (230) A0230

,n 'N
' ,- - ,~ ,~ '0 'N

-~;~:., 'C~,
.• "i:~ ,'" ~~ :~ "~ ':0 "~ ,~ ~:~ .~ '7~: ,,.,.~ ~

"'i'" , 'i: -i' 1 'i: •• 'E' ; '.j;; -t, , '.e "~I I 'i: "ii' . '.,;: ••t' I '.i:::
.!f!' , ~ ~~. . :"S! ~, 1- .. .'<; 8~_~-.~..~~:~ ~I - - or . _'ij ~I. , __ f:O ..!!.!' _. ,- .~ '" . ,. .. ''5
5: .;::; ()' :5: 0' J _ :~ 0' , :~ 0' .. ,_ :~ 0' ';: 0' '.. ~~
r. t:~32)ADZ3:- ;. (233) AOZ33 C (234) A0234 e (235) A0235 i (236)" A0236 i (237) A0237 i (238) A0238 .•.(239) A0239

, '0..::<l3: :~
,!!, . ,-:~
0' '.~
0(242) A0242

~;~: :~. " ~
•• ~, 1 _ ~:~

~: ' r-o. _.... ~_,3
6 (243) A0243

~

'N:il' , ':/" ,"~l , :~8: _.;__ ~~
6 (244) A0244

,
M ,~

.•;:1fP: ::
8: -.. : ~~
0(245) A0245

"" .'0-~,~.~
6; '.3
i, (~49) A0249

,
'N

-~:~:.::,!!, -.., - - ,.-
0' , ,~
Ii (250) A0250

, ,
~, 'N

'1,-: ':.•.~,~: :£
.!!!1-~---:2
01 - '.. - :~
Ii (251) A0251

:.):~: :iii
"ii' 1 :£
,!!'- - - - -,~
0' , .3
ij (252) A0252

,,:~::~
"i' I ;£

.!!!'-- "---,:2
0' . _, .3
y (253) A0253

N 'm..;:~::~
~,. _ , "'5
0' I~

P (254) A0254

,
~'~';~, , ,~~

"i' , :€~,.-.- - , ,.:::
0' t .3
y (255) A0255

256 UtldefifH~lI :'5l UlllJdillCd 260 Unde!i~~d

...., .
,,.

262 Undefined 263 Undefined

!.:,.-.•,.- ..
270.U,;delim;d

I ...

268,i,;",;,,;,;;',:'i'; Uruldill.:r!2G,II)",If'filU"J

,
g'-,
'.~'

"'"'ijj', 1=
,!!I-.•----I~
0" 3:

(274)

N'~,~, '.•....~~- - - -:~
0'_, ~~

(275)

,
'ro m' N

~:l) :;l' N.,~
'~'

'- ..~~; -
"Cjj' '.e ••.ii' , '.e :£~'-..,-- _'-'5 .!!!'_.,- ''5 .!!!' • ~
0' , :~ 0'. :;: 0' 'j;

(277) (278) (279)

'oJ'.•~... I:
,t' ,

"



Appendix D

BangIa Bijoy Keyboard Layout

76



,

/ " /

Q
C/l "2: ~::>

/ .\
\ ,



AppendixE.

Program of BangIa text to speech synthesizer

IlHeader file
# include <windows.h>
# include <windowsx.h>
# include <ddeml.h>
# include <string.h>
# include <mmsystem.h>
# include <stdlib.h>
# include <stdio.h>
# include <memory.h>
# include <math.h>
# include <io.h>

IlFunctionproto~1Pe

int WINAPI WinMain (HINST ANCE,HINST ANCE,LPSTR,INT);
LRESULT CALLBACK SounderWndProc(HWND,UINT,UINT,LONG);
LRESUL T CALLBACK GetMsgProc(int, WP ARAM,LP ARAM);
VOID KbdXlator (MSG *);
VOID PlayProc (MSG *);
VOID Tex1:NormaliserIO;
VOID Tex1:NormaIiser20;
VOID WaveFileMergeO;

char szAppNameD="Sound";
HHOOK hhook=NULL;

IIW ave file assign.
char * WaveFile[285] ={

IIApplication name.
IlHandle of the hook function.

"c:\\wave\\wOOOl.wav",
"c:\\wave\ \WO002.wav",
"c:\\wave\ \wO003.wav",
"c:\\wave\\wO004. wav",
"c:\\wave\\wO005. wav",
"c:\\wave\\wO006. wav",
"c:\\wave\\wO007. wav",
lIe:\ \wave\\wO008. wav",
"c:\\wave\ \wO009.wav",
"c:\\wave\\wOOIO. wav",
"c:\\wave\\wOOll.wav",
"c:\ \wave\ \WOO12.way",
"c:\\waye\\wOO 13.way",
"c:\\waye\\wOO14.way",
"c:\\waye\\wOO 15.way",
"c:\\wave\\wO016.wav" ,
"c:\\waye\\wOOI7.way",
"c:\\waye\ \WOO18.way",
"c:\\wave\\wO019.wav",
"c:\ \waye\ \wO020.way",

78



"'.

"c:\\wave\\wO021.wav" ,
"c:\\wave\\wO022.wav" ,
"c:\\wave\ \wO023. wav",
"c:\\wave\\wOO1 S.wav" ,
"c:\ \wave\ \wO02S. wav",
IIc:\\wave\\wO026. wav",
"c:\\wave\ \wO027. wav",
"c:\\wave\ \WO028.wav",
"c:\\wave\\wO029. wav",
"c:\ \wave\\wO008. wav",
"c:\\wave\\wO031. wav",
"c:\\wave\\wO032. wav",
"c:\\wave\\wO033. wav",
"c:\ \wave\ \wO03 3.wav",
"c:\\wave\\wO033. wav",
"c:\\wave\\wO036. wav",
"c:\\wave\\wO037 .wav",
"c:\\wave\\wO038.wav" ,
"c:\ \wave\ \WO039.wav",
"c:\ \wave\\wO040. wav",
"c:\\wave\\wO041.wav",
"c:\\wave\ \WO042.wav",
"c:\\wave\\wO043.wav",
"c:\ \wave\ \wO044. wav",
"c:\\wave\\w004S. wav",
"c:\ \wave\\wO046. wav",
"c:\\wave\\wO047. wav",
"c:\ \wave\\wO048. wav",
"c:\\wave\\wO049 .way",
"c:\\wave\\wOOSO. wav",
"c: \\wave\\wOOSl ..wav",
"c:\\wave\\wOOSiwav",
"c:\ \wave\\wOOS3. wav",
"c:\\wave\ \wOOS4.wav",
"c:\\wave\ \WOOSS.wav",
"c:\\wave\\wOOS6. wav",
"c:\\wave\\wOOS7. wav",
I1c:\\wave\ \wO058. wav'.,
"c:\\wave\ \wOOS9.wav",
"c:\\wave\\wO060. wav",
"c:\\wave\\wO061.wav" ,
"c:\\wave\ \wO062. wav",
"c:\\wave\\wO054. wav",
"c:\ \wave\\wO064. wav",
"c:\\wave\\wO06S.wav" ,
"c:\\wave\ \wO066. wav",
"c:\\wave\\wO067. wav",
"c:\\wave\\wO068. wav",
"c:\ \wave\\wO047 .wav",
"c:\\wave\\wO070. wav",
"c:\\wave\\wO071. wav",
"c:\\wave\\wO072. wav",
"c:\\wave\\wO072. wav",
"c:\\wave\ \WO072.wav",
"c:\\wave\\wO07 S.wav",
"c:\\wave\\wO076. wav",
"c:\\wave\\wO077. wav",
"c:\\wave\ \~078. wav'l,

79



"

"c:1Iwayellw0079. way",
"c:llwaYel lw0080. way",
"c:llwayellw0081.way",
"c:llwaYel lw0082. way",
"c:llwayellw0083. way",
"c:llwaYel lw0084. way",
"c:llwaYel lw0085. way",
"c:1Iwayellw0086. way",
"c:llwavellw0087. way",
"c:1Iwayellw0088. way",
"c:llwavellw0089. way",
"c:1Iwayellw0090. way",
"c:llwaYellw009 I. way",.
"c:1IwayellwO092. way",.'
"c:llwayellw0093. way",
"c:llwaYel lw0094. way",
"c:llwaYel lw0095. way",
"c:llwaYel lw0096. way",
"c:llwayellw0097. way",
"c:llwaYel lw0098. way",
"c:llwayellw0099. wav",
"c:llwaYellwO I 00. way",
"c:llwaYellwO I0 I. way",
"c:llwayellw0093. way",
"c:llwayellwOI03. way",

It- "c:\\wave\\wO lO4.wav",

l"c:llwaYellwO 105.way",
"c:llwaYellwO 106.way", 1"c:llwaYellwO I 07. way",
"c:llwaYel lw0086. wily",
"c:llwaYellwO I 09. way",
"c:llwayellwOl 10. way",

I"c:llwayellwOlll.way",
"c:llwaYellwOl I I.wav",
"c:llwayellwOl I I.way",

I"c:llwaYellwO I 14.way",
.~ "c:llwayellwOI15.way",

,"c:llwayellwOl 16.way",

I"c:llwayellwOl 17.way",
"c:llwaYellwOl 18.way",
"c:llwayellwOl I 9.way",
"c:llwaYellwO 120. way",
"c:llwayellwOI21. way",
"c:llwaYellwO 122. way",
"c:llwaYellwO I 23. way",
"c:llwaYellwO 124. way",
"c:llwaYellwO 125. way",
"c:llwavellwO I 26.way",

I"c:llwayellwOI27. way",
"c:llwaYellwO 128. way", ,I"c:llwaYellwO 129.way",

II"c:llwaYellwO I 30. way", ,,
"c:llwaYellwO 13 I.way", 1.,"c:llwayellwOI32. way", I

"c:llwayellwOI33. way", j'
"c:llwavellwOI34. way", ," "c:llwaYellwO I 35. way", !.
"c:llwaYellwO 136. way",

80



•••••

"c:\\wave\\wOI37. wav",
"c:llwavellw0138. wav",
"c:llwavellwO I 39.wav",
"c:llwavellwO 140. wav",
"c:llwavellwO I 32.wav",
"c:llwavellwO 142. wav",
"c:llwavellwO 143.wav",
"c:llwavellwO 144.wav",
"c:llwavellwO 145. wav",
"c:llwavellwO 146. wav",
"c:llwavellwO 125. wav",
"c:llwavellwOI48. wav",
"c:llwavellwO 149.wav",
"c:llwavellwO 150. wav",
"c:llwavellwO 150. wav",
"c:llwavellwOI50. wav",
"c:llwavellwO 153. wav",
"c:llwavellwOI54. wav",
"c:llwavellwO 155.wav",
"c:llwavellwO 156. wav",
"c:llwavellwO 157. wav",
"c:llwavellwOI58. wav",
"c:llwavellwO 159.wav",
"c:llwavellwO 160. wav",
"c:llwavellwOI61. wav",
"c:llwavellwO 162. wav",
"c:llwavellwO 163.wav",
"c:llwavellwOI64. wav",
"c:llwavellwO 165.wav",
"c:llwavellwO 166.wav",
"c:llwavellwOI67. wav";
"c:llwavellwO 168.wav",
"c:llwavellwO 169. wav",
"c:llwavellwO 170.wav",
"c:llwavellwOI71.wav",
"c:\\wave\\wO 172. wav",
"c:llwavellwOI73.wav",
"c:llwavellwOI74. wav",
"c:llwavellwOI75.wav",
"c:llwavellwOI76.wav",
"c:llwavellwO 177.wav",
"c:llwavellwO 178. wav",
"c:llwavellwO 179. wav",
"c:\\wave\\w0171.wav",
"c:llwavellwO 181. wav",
"c:llwavellwO 182. wav",
"c:llwavellwOI83. wav",
"c:\\wave\\w0184. wav",
"c:llwavellwO 185. wav",
"c:llwavellwOI64. wav",
"c:llwavellwO 187. wav",
"c:llwavellwO 188. wav",
"c:llwavellwOI89.wav",
"c:llwavellwOI 89.wav" ,
"c:llwavellwO 189. wav",
"c:llwavellwO 192.wav",
"c:\\wave\\w0193.wav",
"c:llwavellwOI94. wav",

81
.'

.' .~.
~....:'~.r'.&
",',i ., ~,



"c:llwavellwOl 95.wav",
"c:llwavellwOl 18.way",
"c:llwavellwOI19.way",
"c:llwavellw0120. wav",
"c:llwavellwO 12 I.wav",
"c:llwavellwO 122.wav",
"c:llwavellwO 123.wav",
"c:llwavellwOI24. wav",
"c:llwavellwO 125.wav",
"c:llwavellwO 126. wav",
"c:llwavellwO 127.way",
"c:llwavellwO 128. way",
"c:llwavellwOI29. way",
"c:llwavellwO 130. wav",
"c:llwavellw013 I.wav",
"c:llwavellwO I 32.wav",
"c:llwavellwOI33. wav",
"c:llwavellwO 134. wav",
"c:llwavellwO 135.wav",
"c:llwavellwO 136. way",
"c:llwaYellwO 137. wav",
"c:llwavellwO 138. way",
"c:llwavellwO I 39.wav",
"c:llwavellwO 140. wav",
"c:llwavellwO 132.wav",
"c:\\wave\ \wO 142. wav'.,
"c:llwavellwO 143.wav",
"c:llwavellwOI44. way",
"c:llwavellwOI45. wav",
"c:llwavellwO 146. wav",
"c:llwavellwO 125. wav";
"c:llwavellwO I 48. way",
"c:llwavellwOl 49. way",
"c:llwayellwOI50. wav",
"c:llwavellwOI50. wav",
"c:llwavellwO 150. wav",
"c:llwavellwOI53. wav",
"c:llwavellwO 154. wav",
"c:llwavellwO I 55. wilY",
"c:\\wave\\wO 156. wav",
"c:llwavellw0235. way",
"c:llwavel lw0236. wav",
"c:llwavellw023 7.wav",
"c:llwavellw0238. wav",
"c:llwayellw023 9.wav",
"c:llwavellw0240. wav",
"c:llwavellw024 I. wav",
"c:llwavellw0242. way",
"c:llwavellw0243. wav",
"c:llwavellw0244. wav",
"c:llwavellw0245. way",
"c:\\wave\\w0246. wav",
"c:llwavellw024 7.wav",
"c:llwavellw0248. wav",
"c:llwavellw0249. wav",
"c:llwavellw0250. wav",
"c:llwavellw025 I. wav",
"c:1Iwavellw0252. wav",

82



};
char TempFile[]="c:\\waye\\temp. way";

char' waye[IO];
int p[IO];
char key[20];
int k,w=O;

"c:\\wave\\w0253. wav",
"c:\\wave\\w0254. way",
"c:\\waye\\w0255. way",
"c:\\waye\\w0256.wav" ,
"c:\\waye\\w0257. way",
"c:\\wave\ \w0249. way",
"c:\\waye\\w0259. way",
"c:\\wave\\w0260. way",
"c:\\wave\\w0261.wav",
tlc:\\wave\\w0262. way",
"c:\\wave\\w0263. way",
"c:\\waye\\w0242.way" ,
"c:\\waye\\w0265. wav",
"c:\\waye\\w0266. wav",
"c:\\wave\\w0267. wav",
"c:\\wave\\w0267. way",
"c:\\wave\\w0267. wav",
"c:\\wave\\w0270. wav",
"c:\\waye\\w0271.way",
"c:\\wave\\w0272.way" ,
"c:\\waye\\w0273. way",
"c:\\wave\\w0274. way",
"c:\\waye\\w0275 .way",
tlc:\\wave\\w0276. way",
"c:\\wave\\w0277. way",
"c:\\wave\\w0278.wav" ,
"c:\\waye\\w0279. way",
"c:\\waye\ \w0280. way",
"c:\\wave\\w0281.way",
"c:\\waye\\w0282. way",
"c:\\wave\\w0283. wav",
"c:\\waye\\w0284. way",
"c:\\wave\\w0285. way",

II Merged wave file.

IIWaye file assign for merging.
IIPosition of the wavefile.
IIKey pressed.
IICounter of the key pressed and wave file.

int WINAPI WinMain (HlNSTANCE hlnstance,HlNSTANCE hPrevlnstance,LPSTR IpcmdLine, int cmdShow)
(

MSGmsg;
WNDCLASS wc;
HWNDhWnd;

//Message structure
IIW indow class
IlHandle of the window.

IIWindow create initialize
we. style =CS_HREDRA WI CS_ VREDRAW; IIClass styles.
wc.lpfuWndProc =(WNDPROC) SounderWndProc; IIFunction called by message loop.
wC.cbClsExtra ~ 0; liNo extra class data.

wC.cbWndExtra = 0; liNo extra window data.
wc.hlnstance=hlnstance; Illnstance value of the application.

wc.hlcon=Loadlcon(NULL,IDl_APPLICAT10N); IlHandle for an icon.
wc.hCursor~LoadCursor(NULL,lDC _ARROW); IlHandle to a cursor type.
wc.hbrBackground=GetStockObject(WHITE_BRUSH);//Handle althe backgmundpaioted.
wC.lpszMenuName~NULL;
wc.lpszClassName~szAppN arne;

83



I/Register the window class.
if (!RegisterClass (&wc))

return FALSE;

I/Window create
hWnd = CreateWindow(szAppName,

IISpeech Synthesizer",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL);

IIClass name
I/Window name.
I/Window style.
I IX position on the screen.
IIY position on the screen.O
I/Width of the window.
IlHeight of the window. 0
IlNo parent window handle.
llUses window class menu.
//lnstance handle.
IlNot required.

l!Make Window visIble.
ShowWindow(h Wnd, SW_ SHOWMINIMlZED);
UpdateWindow(hWnd); IISend first WM]AlNT message.

I/Message hook
bhook=SetWmdowsHookEx (WH_GETMESSAGE,(HOOKPROC) GetMsgProc,NULL,O);

II Message loop.
while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage( &msg);
DispatchMessage (&msg);

}

return (msg.wParam);
}

IlTranslates the virtual key to ASCII.
IISend message to SounderProc.

LRESUL T CALLBACK GetMsgProc (int code, WP ARAM wParam,LP ARAM lParam)
{

MSG*mp;
LRESUL T !result=O;
mp=(MSG *)lParam;

if (code>=O)
{

I/Pointer of message structure.

I/Pointer of message structure.

if (mp->message-WM_ CHAR)
{

}
else

}

if (!(mp->lParam & Ox80000000L))
{

KbdXlator (mp);
PlayProc (mp);

}

IlKeyboard translator.
I/Play the wave file.

-""

lresult = CallNextHookEx (hhook,code,wParam,lParam);

return «LRESUL 1") !result);
}

84



I/Keyboard translator.
VOID KbdXIator (MSG • m)

It'
{
static char cKeyBuf[256];

key[k]=(char) LOWORD(m->wParam); IIStore the key.
I I Assign if the Shift key is depressed.
GetKeyboardState( cKeyBuf);

switch (key[kJ)
{
case 8: IlBackspace pressed for Cancel.

if(k>O) k-;
~ break;

case 66: lIB
case 98: lib

if(cKeyBuf[VK_SHlFT] & Ox80)
key[k]=m->wParam=89; IIShift + B or b.

else
key[k]=m->wParam=98; II B or b.

k++;
break;

case 67:
case 99:

IIC
Ilc

if (cKeyBuf[VK_SHlFT] & Ox80)
{

if (cKeyBuf[Ox47] & Ox80)
key[k]=m->wParam=72;

}
else
{

if (cKeyBuf[Ox47] & Ox80)
key[k]=m->wParam=71;

else
key[k]=m->wParam=127;

}
k++;
break;

case 68: lID
case 100: lId

if (cKeyBuf[VK_SHlFT] & Ox80)
{

if (cKeyBuf[Ox47] & Ox80)
key[k]=m->wParam=67;

else
key[k]=m->wParam= 120;

}
else
{

if (cKeyBuf[Ox47] & Ox80)
key[k]=m->wParam=66;

85

IIG or g, Shift + C or c.

IIGorg, Corc.

IICorc.

IIG or g, Shift +Dar d.

IIShift + D or d.

IIGor g, D ord.



else
key[k]=m->wParam=119; II D or d.

}
k++. ,
break;

case 69:
case 101:

lIE
lie

if(cKeyBuf[VK_SHIFT] & Ox80)
key[k]=m->wParam=88;

else
key[k]=m->wParam=87;

k++;
break;

IIShift + E or e.

liE ore.

case 70:
case 102:

IIF
Ilf

if (cKeyBuf[VK_SHIFT] & Ox80)
key[k]=m->wParam=65;

else
key[k]=m->wParam=118;

k++;
break;

case 71: IIG
case 103: Ilg

m->wParam=31;
break;

IIShift +F or f.

IIForf.

case 72:
case 104:

IfH
1&

:;iT if (cKeyBuf[VK_SHIFT] & Ox80)
key[k]=m->wParam= 102; IIShift + H or h.

else
key[k]=m->wParam=10 I; ,IIHorh.

k++;
break;

case 73: III
case 105: Iii

J- if (cKeyBuf[VK_SHIFT] & Ox80)
key[k]=m->wParam=84; IIShift + I or i.

else
key[k]=m->wParam=110; III or i.

k++;
break;

case 74: IIJ

.it. case 106: Ilj
;;

~

"86



if (cKeyBuf[VK_SHIFr] & Ox80)
key[k]=m->wParam=76; IIShift + J or j.

else
key[k]=m->wParam=75; IIJ or j.

k++;
break;

case 75: 11K
case 107: Ilk

if (cKeyBuf[VK_SHIFr] & Ox80)
key[k]=m->wParam=95; IIShift + K or k

--'i,; else
key[k]=m->wParam=90; IIKork

k++;
break;

case 76: IlL
case 108: III

if (cKeyBuf[VK_SHIFr] & Ox80)
key[k]=m->wParam=97; IIShift + L or 1.

else
key[k]=m->wParam=96; II Lor 1.

k++;
break;

case 77:
case 109:

11M
11m

if (cKeyBuf[VK_SHIFr] & Ox80)
key[k]=m->wParam=107; IIShift + M or m.

else
key[k]=m->wParam=103; II M or m.

k++;
break;

case 78:
case 110:

lIN
lin

if (cKeyBuf[VK_SHIFr] & Ox80)
key[k]=m->wParam=108; IIShift + Nor n.

else
key[k]=m->wParam=109; II Nor n.

k++;
break;

case 79:
case 111:

110
110

if (cKeyBuf[VK_SHIFr] & Ox80)
key[k]=m->wParam=78; IIShift + 0 or o.

else

87

.
. \~ -



key[k]=m->wParam=77; 110 or o.

k++.,
break;

case 80:
case 112:

lIP
IIp

else

if (cKeyBuflVK_SHIFrj & Ox80)
key[k]=m->wParam=112; IIShift + P or p.

key[k]=m->wParam=lll; II P or p.

k++;
break;

case 81:
case 113:

IIQ
Ilq

key[k]=m->wParam=79; IIQ or q.
k++;
break;

case 82:
case 114:

liR
Ilr

if(cKeyBuflVK_SHIFrj & Ox80)
key[k]=m->wParam= 100;

else
key[k]=m->wParam=99;

k++;
break;

IIShift + R or r.

IIRorr. .~;-:

case 83:
case 115:

lIS
lIs

if (cKeyBuflVK_SHIFrj & Ox80)
{

if (cKeyBuf[Ox47] & Ox80)
key[k]=m->wParam=69;

}
else
{

if (cKeyBuf[Ox47] & Ox80)
key[k]=m->wParam=68;

else
key[k]=m->wParam= 121;

}
k++;
break;

IIG or g, Shift + S or s.

IIGorg,Sors.

II S or s.

case 84:
case 116:

Iff
lIt

if(cKeyBuflVK_SHIFrj & Ox80)

88



key[k]=m->wParam=86; IIShift + T or t.
else

key[k]=m->wParam=85; IITort.

k++;
break;

case 85: IfU
case 117: Ilu

if (cKeyBuf[VK_SHlFI'] & Ox80)
key[k]=m->wParam=83; IIShift + U or u.

else
c key[k]=m->wParam=82; IIUoru.

k++;
break;

case 86: IN
case 118: IIv

if (cKeyBuf[VK_SHlFI'] & Ox80)
key[k]=m->wPararn= I06; IIShift + V or v.

else
key[k]=m->wPararn= I05; IIVorv.

k++;
break;

case 87: IIW ~'<
case 119: Ilw

if(cKeyBuf[VK_SHlFI'] & Ox80)
key[k]=m->wParam=I13; IIShift + W or w.

else
A key[k]=m->wParam= I04; IIWorw.

k++;
break;

case 88: IfX
case 120: Ilx

if(cKeyBuf[VK_SHlFI'] & Ox80)
{

if (cKeyBufIOx47] & Ox80)
key[k]=m->wParam=74; IIG or g, Shift + X or x.

}
else

key[k]=m->wParam=73; IIXorx.

k++;
break;

case 89: IIY
case 121: Ily

.'
89



}

if(cKeyBuflVK_SHIFT] & Ox80)
key[k ]~m->wParam~81;

else
key[k]~m->wParam~80;

k++;
break;

IIShift + Y or y.

IIY ory.

VOID PlayProc (MSG • m)
{
int position;

if«m->wParam>~75) && (m->wParam<~113))
{

IIConsonant

else

}
else
{

position=m->wParam+ 159;
sndPlaySound(WaveFile[position ],SND _ ASYNqSND _NODEF A UL T);

if(m->wParam~~118) INowel auxiliary: AA-kar
sndPlaySound(WaveFile[283],SND _ASYNqSND _NODEFAUL T);

{
if«m->wParam>~119) && (m->wParam<~121)) INowel auxiliary
{

position=m->wParam+ 155;
sndPlaySound(WaveFile[position],SND _ ASYNqSND _NODEF AUL T);

}
else
{

if (m->wParam~~127)
{

I/Vowel auxiliary:A-kar o
sndPlaySound(WaveFile[279],SND _ ASYNqSND _NODEF AULT);
m->wParam~135;

}
else
{

if«m->wParam>~65) && (m->wParam<~74))
{

I/Vowel

position=m->wParam+ 208;
sndPlaySound(WaveFile[position],SND _ASYNqSND _NODEFAUL T);

}
else
{

if (m->wParam~~32)
{

Illf spacebar pressed.

.•...

if (k>O)TextNormaliserlO;!/Define the wave file.

if(w>O)
{

TextNormaiiser20;llLast wave file define
WaveFileMcrgeO: IIWave file merged

}

90



IlPlay the merged wave file.
sndPlaySound(fempFile,SND _ASYNqSND _NODEF AUL T);

\Al',
k=O;
}

}
}

}
}

}
}

VOID TextNormaliseriO
{
int step=2;
int ky;
int consonant=39;

IIStep of key selectioIL
IICounter of key pressed.
IlTotal no of consonant.

p[w j=key[kyj -75+consonant*2;
wave[wj=WaveFile[p[w]]; IIConsonant with U-kar
ky+=step;

for (ky=O;ky<k;ky+=step)
{

if «key[kyj>=75) && (key[kyj<=l 13»
{

if «(ky+step)<k) && «key[ky+step])=118»
{

if «ky>(step-I)) && «key[ky-step])=I27»
{
w-;
p[wj=key[kyj-75;
wave[wj=WaveFile[p[w]]; IIConsonant with O-kar
ky+=step;

}
else
{

p[wj=key[kyj-75+consonant;
wave[wj=WaveFile[p[w]]; IIConsonant with AA-kar
ky+=step;

}
}
else
{

if «(ky+step)<k) && «key[ky+step])=I2I»IIU-kar
{

IIConsonant

IIAA-kar

IIA-kar

r

}
else
{

if «(ky+step)<k) && «key[ky+step])=I20»IIEE-kar
{

p[wj=key[kyj-7 5+consonant*3;
wave[wj=WaveFile[p[w]]; IIConsonant ,,~th EE-kar
ky+=step;

}
else
{

if «ky>(step-I» && «key[ky-step])=I27))IIA-kar
{

91



w--~
p[w]=key[kyj- 75+consonant*4;

wave[wj=WaveFile[p[w]]; IIConsonant with A-kar
}

else
{

if ((ky>(step-l)) && ((key[ky-step])=1l9)) IIE-kar
{

w-',
p[w ]=key[ky]- 75+Consonant* 5;
wave[wj=WaveFile[p[w]]; IIConsonant with E-kar

}
else
{

p[w]=key[ky]- 75+consonant*6;
wave[wj=WaveFile[p[w]]; IIConsonant

}
}

}
}

}

_.
}
else
{

if ((key[ky]>=65) && (key[kyj<=74))
{

p[w]=key[ky]+208;
waver w]=WaveFile[p[ w]];

INowel

if (((ky+step)<k) && ((key[ky+stepj) '. 118)) IIAA-kar
{

if (key[ky]=65)
{

p[w]=283;
wave[w]=WaveFile[283j; IlAA
ky+=step;

}

}

}
else
{

if (key[ky]= 118)
{

IIAA-kar

p[w]=283;
wave[w]=WaveFile[283]; IIAA

}
else
{

if ((key[ky]>=1l9) && (key[ky]<=121)) INowel auxiliary
{

p[w]=key[ky]+ 155;
waver w]=WaveFile[p[ w]];

}
else
{

if (key[ky]=127) IIA-kar

92



{
p[w]=279;
waver w)=WaveFile[2 79];

}
}

}
}

}
w++;

}
}

I*VOID TextNormaIiser20
{

int position;
int set;

if (w>l)
{

if ((P[w-l]>=234) && (P[w-l]<=272»
{

position=50+p[ w-l]+set
w••;
wave[w-l]=WaveFile[position]; Ilder

}
}

}*I

VOID TextNormaliser20
{

if (w>l)
{

if ((wave[w-2]-WaveFile[l77J) && (wave[w-l]-WaveFile[264])) Ilde + ra
{

w-.,
wave[w-l]=WaveFile[284];

}
}

}

VOID WaveFileMergeO
{
HANDLE hOntFile, hlnFile[lO];
BOOL bRESUL T;
DWORD dwPointer;

I!lnitialize the number of bytes read.
DWORD testl[IO]={O,O,O,O,O,O,O,O,O,O};
DWORD test2=O;

93

Ilder



DWORD test3(10]={O,O,O,O,O,O,O,O,O,O};
DWORD test4[1O]={O,O,O,O,O,O,O,O,O,O};

unsigned char h[ 44];
intx;
long dsize[lO];
long tsize[lO];
long size;
long cksize;
char bufflIOOOOO];

remove(TempFile);

IlHeader Buffer.
IlWave File Counter.
IlData Size.
l!rotal Data Size.

II Do
IIChunk Size.
l!remporary Buffer.

IlDelete the temporary file.

--

l!remp. File Create.
hOutFile..createFile(TempFile,GENERlC _WRlTE,l,NUlL,CREATE _ALWAYS,FILE _ATTRlBUTE _NORMAL,NULL)

if (hOutFile INVALID_HANDLE_ VALUE) return;

for(x=O;x<w;x++ )
{

IlWave File open.
hInFile[ KJ..createFile(wave[KJ,GENERlC _READ,l,NULL,OPEN _EXISTING,

FILE _ATTRlBUTE _NORMAL,NULL);
if (hInFile[x]=INV ALID _HANDLE _VALUE) return;

IlPointer Set in the wave file.
dwPointer=SetFilePointer(hInFile[x],O,NULL,FILE _BEGIN);

if (dwPointer==OxFFFFFFFF) return;

I/Header Read from the wave file ..
bRESUL T=ReadFile(hInFile[ x],h, 44 ,&test I [x],NULL);

if (!bRESUL T) return;

IlFile size calculation
dsize[x]=*«(long *)(h+40»;
tsize[x]=dsize[x];
if (x>O)

{
cksize=cksize+tsize[ xl;
tsize[ x]=tsize[ x- I ]+tsize[ xl;

}
else

cks:ize=*«(long *)(h+4»;

size=tsize[x];
}

IISet the file size in header.
*((long *)(h+4»=cksize;
*«(long *)(h+40»=size;

IlPointer Set in the temp.file.
dwPointer=SetFilePointer(hOutFile,O,NULL,FILE _BEGIN);

if (dwPointer==OxFFFFFFFF) return;

IlHeader Written in the temp.file.
bRESUL T=WriteFile(hOutFile,h, 44 ,&test2,NULL);

if (!bRESUL T) return;

94



liSe! the pointer in the temp.file for data mitten.
dwPointer=SetFilePointer(hOutFile. 44 ,NULL,FILE _BEGIN);

if (dwPointer=OxFFFFFFFF) retorn;

IlDataadd
for(:\.=Q;x<w:_,,++)
{

liSe! the pointer in the "=e file for data read.
dwPointer=SetFilePointer(hInFile[ xl, 44 ,NULL,FILE _BEGIN);

if (dwPointer=9lxFFFFFFFF) retorn;

IlRead the data from ""ye file.
bRESUL T=ReadFile(hInFile[x],bnfLdsize[ xl,&test3 [xl,NULL);

if (lbRESULT) break;

I/Write the data in temp. file.
bRESUL T=WriteFile(hOutFile,bnfLdsize[ x],&test4[ xl,NULL);

if (lbRESUL T) retorn;

I/File Close.
if (bInFile[xl !=INV ALID JIANDLE _VALUE)
{

}
}

CloseHandIe (bInFile[x]);
hInFile[xl=INV ALID _HANDLE_VALUE;

if (hOutFile !=JNVlu.ID _R!U\'DLE _VALUE)
{

}
}

CloseHandle (hOutFile);
hOutFile=INVALID_R!U\'DLE_ VALUE; ;.;"

{

I/Function of the Message Loop.
LRESUL T CALLBACK SounderWndProc(HWND hWnd, UJNT msg, UJNT wParam,

LONG !Pm)

switch (msg)

{

case WM_DESTROY: IIStop Application.
UnhookWmdowsHookEx(hhook);
hhook=NULL;
PostQuitMessage(O);
break;

case WM _CLOSE: I/Wmdows close & Stop Application.
DestroyWmdow(h Wnd);
break;

}

defanlt :

}
retnrn (01.);

IlDefanlt windows message processing.
return DefW'mdowProc(h Wnd, msg, wParam, !Pm);

95


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103

